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1 Introduction
Wolfgang Rhode
Katharina Morik

Abstract: The question of how to arrive at scientifically secured knowledge has accom-
panied research from the very beginning. Depending on the scientific context and the
historical epoch, answers have been given, essentially depending on the demanded de-
gree of truth and the scientificmethodology. Recently, a new scientificmethodology has
emerged, which is best characterized as “probabilistic rationalism”. This methodology
is the subject of this book: Over the past decades, the fields of computer science and
physics have collaborated to create AI- machine learning-based methods for analyzing
massive amounts of data collected in modern experiments in view of their probabilistic
properties. Artificial intelligence ormachine learning is themethodology of the day. The
considerations presented here are based on understanding the probabilistic character
of scientific statements. In Dortmund, we have investigated not only isolated aspects of
these analyses but the entire evolutionary process of knowledge expansion. In this first
chapter, we combine interdisciplinary aspects of epistemology from the perspectives of
physics, artificial intelligence, and philosophy to form an up-to-date and consistent
model of knowledge acquisition. With this model, some known problems of existing
epistemological approaches, e.g., the problem of inconsistent experimental results, can
be overcome. The refutability of theories is based on testing, as in Popper’s paradigm.
The conclusion, however, is no longer a binary decision but a probability.

1.1 Basics, Questions, and Motivation

This book describes and discusses new data science methods developed as part of the
Collaborative Research Center (CRC) “Data Analysis under Resource Constraints” to
solve problems in the field of astro/particle physics. These methods contribute to the so-
lution of the fundamental epistemological question of how conclusions to explanatory
theories can be drawn from observations of nature or from measurements in experi-
ments. Although methodologically a multitude of very different sub-problems had to
be solved here, the methodological meshing of the algorithms, i.e., the entire analysis
cycle, is at the center of our interest. In this first chapter, we sketch the sequence of
the solution we have worked out and embed it in its epistemological context before we
later turn to specific problems and exemplary approaches.

Classically, the problem to be solved first appears in the form of Plato’s Allegory
of the Cave, in which the researchers are fixed on a bench behind a wall so that they

Open Access. ©2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
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2 | 1 Introduction

only can see patterns on the cave wall opposite them. They cannot look back to see
that these dancing shapes in front of them are the work of puppeteers moving figures
in front of a fire. In this picture, the ray optics needed to understand represents the
theory. And quite obviously, neither by logical nor by mathematical operations can
we infer the theory directly from the shadows and prove its truth. However, as we will
see, the problem can be solved by overcoming the linear view of the inference chain
in favor of a cyclic-networked interpretation and the demand for truth by calculating
probability intervals. The underlying fundamental epistemological problem concerns
the question of whether there is a way to of concluding backward from the effect (in the
picture: “from the shadow”) to its cause.¹

Newton demanded as a solution to this question that similar impacts must be
caused by the same causes.² In this, he was fortunate that this postulate applied to the
gravitational effects he considered in the sublunar world of the Earth’s surface and the
translunar world of the solar system and that he was thus able to unify the phenom-
ena of both physical worlds. The subsequently rapid and successful development of
classical mechanics suggested that the world of nature could be mapped onto a world
of clearly solvable mathematical problems and theories. Also, the new path from the
phenomena of electro- and magnetostatics to Maxwell’s equations, though leading
to a more complex descriptive theory structure, did not change anything about the
epistemological classification of this form of explaining the world. In thermodynamics,
statistical statements and correlations forced their way into the world explanation
based on the ignorance interpretation of probability³. Later, in quantummechanics, the
more far-reaching demand for an identity of probabilistic structure and physical law
turned against the realm of what could be said with certainty. At first, however, these
developments seemed to be only disturbing artifacts within a deterministic explanation
of the world.

The practical path from experiment to theory always seemed to include the neces-
sity to abstract a few (preferably) factual and clear statements from the experimental
measurement. These propositions, in which an observed phenomenon (e.g., the spiral
track of a particle in a cloud chamber at a known magnetic field) is interpreted as
something (“the particle is an electron with an energy in the interval between E1 and
E2”), are the (basic) sentences, which are set up and checked by Popper according to
the rules of logic, and that decide in critical rationalism via falsification or confirmation

1 “Cause” here and in the following in the sense of reason.
2 Rules of Reasoning: (I) No more causes of natural things should be admitted than are both, true and
sufficient, to explain their phenomena. (II) Therefore, the causes assigned to natural effects of the same
kind must be, so far as possible, the same [288].
3 From a deterministic starting point, one concludes: “In principle, all processes in physics are exactly
calculable. Because we cannot do this at the moment because of our personal mathematical incapacity
or because it would be disproportionate to the desired result in terms of time, we are content with a
merely statistical description of the phenomenon”



1.1 Basics, Questions, and Motivation | 3

Fig. 1.1: Connection between a physical theory and measurements in critical rationalism. The process
will continue as long as the necessary scientific resources are available. Problems arise because no
clear, logical answers can be given at the decision points in many real-world cases.

about the fate of preferably structurally simple theories with very few free parame-
ters. As all measurements are a record of a finite number of discrete information (data
points), there is no logical conclusion to the generalizing mathematical function of
the describing theory. In the natural sciences, falsificationism, the basic concept of
critical rationalism, has therefore largely prevailed. In this context, from rationally con-
ceived theories, functional connections between experimentally measurable quantities
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are predicted, which are tested in experiments, attempting to falsify the postulated
connection and with it the predicting theory (see Figure 1.1).

If falsification is successful, a new, better theory must be developed. If the exper-
iment confirms the theory, the experimental tests should be continued under more
stringent conditions. This epistemologicalmodel presented in 1933 by Karl Popper in his
book The Logic of Scientific Discovery [315] is based on clearly defined logical conditions.
However, as stated in various discussions between Karl Popper and his critics, criti-
cal rationalism is neither intended nor suitable for describing physics research’s real
temporal course. Popper was criticised because of this logical structure when trying to
clarify under which conditions a theory can or must be regarded as refuted in the world
of modern, very complex experiments and theories. How are experimental results to be
classified if experiments yield inconsistent results or different experiments contradict
each other? Which practical requirements for experimental statements must be met to
refute a theory? How exotic may the requirements for experiments be so that a theory
can still be considered disprovable by experiments and thus be called scientific?

1.2 Machine Learning as Model of the Scientific Process

Artificial Intelligence (AI) began as a model of cognitive processes. This applies to
several levels: the neurons at the subsymbolic level, models of learning and decision-
making at the individual level, and the process of scientific discovery at the epistemo-
logical level, which is our concern here.

1.2.1 Early Approaches to Scientific Discovery

As a model of the scientific process, machine learning started early on to discover
regularities in data, generate hypotheses, and test them. Statistics is employed for
hypothesis testing, but machine learning has a much broader view of the overall pro-
cess of modeling, including hypothesis generation, self-supervision of the learning
algorithm, creating representations, and the generation of new data by conducting ex-
periments automatically [320]. Approaches to enhance given or learned models, called
“explanation-based learning” were also discovered as part of the field [140].

Learning of equations fromdata by theABACUS systemaimed atmodeling scientific
discovery [158]. The ABACUS system learns equations from observations and derives
their applicability conditions. Variables in the data are qualitative proportional if they
rise (or decrease) together, or one rises if the other decreases, while other variables
remain constant. These hypotheses are tested allowing a user-specified proportion
of exceptions or a split of the data into relevant subgroups that can be characterized.
For equation formation, sum, product, square, and their inverse operators generate
hypotheses. The space of all possible hypotheses is restricted by redundancy and
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tautology constraints. Learning is formalized as a search in the hypothesis space. The
result is a set of rules, each with a logical description of the applicability. An example
is detecting the ideal gas law in a data set of 6 variables PV/nT = 8.314 J K−1 mol−1

with P/hPa being pressure , V/m3 the volume, T/K the temperature, and n the number
of moles. Another example is the rule set for the experiment with balls of different sizes
falling through different fluids:

If substance = vacuum, then v = 9.8175 ms−2 × t
If substance = glycerol, then v × r = 0.9556 ms−2 × m
If substance = CastorOil, then v × r = 0.7336 ms−2 × m

with v/ms−1 being velocity, r/m the radius of the falling ball,m/kg themass of the body.
This example shows the learned split into the different rules for different substances.

Volume III of the classic work Machine Learning – An Artificial Intelligence Ap-
proach III (1990) gives an overview of statistical learning, the integration of domain
theories into learning from examples, learning by experimentation, enhancing im-
perfect domain theories, causal models, subsymbolic learning, and computational
learning theory. The variety of topics covers muchmore than just the statistical analysis.
The view of scientific discovery is broad and multi-faceted.

This short summary of early machine learning approaches sounds as if this would
be everything we need for a model of scientific investigation. However, this is not
the case. All these topics are still research subjects today. In order to support human
scientific discoveries, machine learning moved beyond the early works in three ways,
as we explain below.

1.2.2 Knowledge Representation – What is a Theory?

First, one law or decision function is not sufficient to represent a theory. A theory
consists of many integrated rules. If the machine learning process aims at modeling
the scientific process of how to make sense out of observations and integrate new
concepts into what has been learned already, it needs to handle more than just one
isolated concept. It needs a sound way of expressing interrelated concepts and their
interpretation. A representationwithout a formal inference is just ink on paper requiring
the human interpretation.

Therefore, artificial intelligence has developed formalisms for knowledge represen-
tation that expresses and interprets concepts and their relationships. One of them is
description logic,which represents a theory in terms of concept definitions togetherwith
the two principle relationships between them: concepts used to define other concepts
and concepts subsuming other concepts in a generalization hierarchy [73]. Descrip-
tion logic carefully restricts mathematical logic as little as possible to keep reasoning
tractable. The theory is consistent, i.e., contradictions are efficiently recognized and
prohibited. The theory not only performs inference in the conceptual space but also
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decides whether an observation or measurement is covered by a concept. To this de-
ductive reasoning, machine learning has added induction, which learns concepts from
observations and places them into concept hierarchies. Following Popper’s paradigm,
machine learning exploited contradictions to learn a refined model. Inspecting contra-
dictions has even been used to introduce new concepts into the representation so that
the theory covers more observations coherently [279].

Another family of knowledge representations is Horn logic, which represents a
theory by a set of rules that together form a program. The programming language
Prolog [126] is itself a kind of Horn logic and has been used to program large knowledge
bases with a deductive inference, that concludes a theoretical statement or predicts an
observation. The other way around, inferring sets of rules from observations, is known
as inductive inference. Of course, it would be pleasant if we could automatically find
the smallest possible model that covers all observations. This sharp theory formation
would be a strict axiomatization. However, inductive learning is a process that, at some
point, may lack predicates or functions that are needed to compress the model, so that
the smallest model cannot be found.⁴ The formulation of inductive logic programming
covers a soft minimality condition. It does not require the model to be the smallest, but
only that none of its rules can be deleted without loss of coverage. The conditions on
an induced set of rulesH, a theory, are
1. the minimal logic model of H is true in all minimal models of the examples E

(possibly together with those of background knowledge);
2. there is no h ∈ H such that all examples could be deduced from H (possibly

together with the background knowledge) without h;
3. all rules that fulfill 1) and 2) can be deduced fromH;
4. H is minimal.

This logic-based definition of Helft [195] for learning sets of rules from examples could
also be turned into a description of classification learning [283]. In this paradigm,
inducing a set of rules from observations resembles the scientific process since the rules
are used to deduce or predict observations. Learning, the inductive step, concludes from
the observations to the causes. Moreover, it includes the already acquired knowledge as
background knowledge. The learned rule set is used by deductive inference to conclude
the outcome from the cause. The key to inductive inference here is generalization in the
mathematical framework of predicate or even higher-order logic.

4 Kleene stated that a first-order language is axiomatizable if finitely many additional predicates are
added [228]. Stahl worked on predicate invention for better axiomatization of finite languages [357]. See
also [290].
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1.2.3 Towards Probabilities

The second reason why the early approaches are not sufficient is their two-valued logic.
We may say that a disagreement with the strict Newton view already occurred within
logical inference. In contrast to Newton, who offers just one true model, alternative
explanations of phenomena have to be expressed and stored for further theory devel-
opment [151]. Since we do not want to express arbitrary concepts, the notion of truth
and consistency needs to be kept. The pure two-valued logic, however, is not sufficient
for non-monotonic reasoning and for revising propositions of logic programs due to
new observations. The model of knowledge acquisition here substantially differs from
Popper’s critical rationalism (to which it is otherwise very much indebted) by replac-
ing purely logical decisions with a cycle of probabilistic evolutionary evaluations. As
with Popper, completely wrong models of explanation can easily be sorted out. Which
probabilities one has to drop as a criterion for specific theoretical approaches depends
on the significance of the physical question under consideration, the customs of the
physical discipline concerned, and the available resources. Methodologically, decisions
based on only moderate differences in the probabilities of the explanatory approaches
are not necessary. Due to the very good quality of the physical description of nature,
many long-used models and theories in practice have a very high probability. In this
way, the classical approach to knowledge can be understood as a borderline case. And,
as always, when the accustomed result is understood as a borderline case of a more
general consideration, we become observers and promoters of a new phase of science.

The novel paradigm of modeling evidence in favor of a hypothesis and evidence
against a hypothesis allows us to characterize propositions as unknown, known, or pre-
dicted, or as its negation or as an excluding state—all to a certain degree. Emde’s more
probabilistic inference engine allowed for the revision and representation learning in
the course of modeling [150]. New concepts could be introduced into the represented
theory, but this time without sacrificing alternatives [390]. Instead, possible revisions
and novel concepts that would help to solve a contradiction are maintained as alter-
natives, together with their derivation paths. The overall modeling process has been
investigated based on a sound inference engine in restricted first-order logic. In addi-
tion, the tools that support all steps within it were integrated such that humans and
machines could interactively build a complex knowledge base [281].

This view of epistemology fits well the with physics view, where there is no absolute
space, no absolute time, and no absolute truth. Due to thermodynamical and quan-
tum effects necessarily coupled to the electromagnetic interactions in the detection
processes, even a fixed combination of theory parameters in top-down calculations
cannot lead to any desired degree of precision and unambiguity in the measurement
results. We improve our knowledge relative to the existing knowledge, which is itself
relative to its context in the same sense.

The insight that uncertainty needs to be made explicit to allow for an ongoing pro-
cess of modeling points to the probabilistic view of science, as put forward by Dempster
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[142], Shafer, and Pearl [347]. The conference Uncertainty in Artificial Intelligence has
been held every year since 1985. From a philosophical point of view, some machine
learning approaches adopted a probabilistic view early on, e.g., [280].

This brings us to probabilistic representations of theories as Bayesian networks and
graphicalmodels. For our discussion, themost important characteristics of the Bayesian
methods are i) that they combine knowledge in the form of a priori probabilities with
learning from data and ii) that several hypotheses can be combined for the output of a
prediction that is expressed as a probability of the outcome. Bayesian reasoning and
learning both build on Bayes' law:

P(h|D) = P(D|h)P(h)P(D) (1.1)

The hypothesis h that has the highest probability given the data, i.e., the Maximum A
Posteriori (MAP) hypothesis is the resulting hypothesis. For a fixed data set, this is

argmaxh∈H P(D|h)P(h) (1.2)

If we regard only the probability of the hypothesis conditioned on the data and we
assume equal probability for all hypotheses, P(h) is omitted because it is the maximum
likelihood. For all hypotheses in the space of possible hypotheses, e.g., all classes that
are to be predicted, the probabilities are calculated, and the one with the highest is
chosen. The network structure of Bayesian networks and graphical models in general is
determined by the conditional independence of two variables (or network nodes) given
the third one. This, together with prior knowledge, reflects the scientific knowledge.

Bayesian models may characterize other learning models and, hence, give them
a sound basis. Actually, the output of many machine learning algorithms is the MAP
hypothesis. It is a very general description of learning. Although the minimization of
the least square error—computed in a statistical manner—is usually not performed
according to the Bayes law, it delivers the MAP if the prior probabilities are the same
for all classes, which is then the maximum likelihood. Understanding neural networks,
giving them a sound theoretical basis, also employs Bayesian statistics. One instance is
to show that a neural network’s inference with dropout approximates a deep Gaussian
process in a Bayesian sense [174].

Causal reasoning is once again a hot topic in machine learning [301] and has also
been investigated in a Bayesianmanner [222]. Current approachesmaywell be described
as probabilistic rationalism.

1.2.4 The Big Data Move

The third reason why the early methods are not sufficient anymore comes from a fun-
damentally different situation in today’s knowledge acquisition in physics, where the
data volume and granularity demand novel methods, as stated in the following.
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Volume We are no longer dealing with a few individual observations or measurements,
but with the collection of data volumes so large and complex that the compilation
of a few individual statements classifiable by humans is no longer possible. The
analysis of a massive amount of data makes such different qualitative demands on
its epistemological treatment that the whole can no longer be described effectively
as a sum of its purely logically interpretable single statements.

Granularity What is electronically recorded or measured in such large numbers is
simple. It consists of charges, times, and positions—and nothing else. The measure-
ments are only indirectly related to the dependencies (e.g., energy spectra, angular
distributions, mass distributions, or regularities in their temporal fluctuations),
which are to be investigated in the language of physical theories. Usually, most of
the measured data is not only entirely irrelevant for the investigated phenomenon;
it can also be disturbing. In spite of the large amount of data recorded, the measure-
ment space can be very sparsely occupied. Therefore, in addition to mapping the
data onto the theory, the selection of the subset of the data relevant to the physical
problem to be analyzed has to be investigated first. In this view, phenomenon and
measurement are linked by probability distributions, and may be suspended at a
few measuring points (like e. g. in radio astronomy).

Background knowledge andmodel checking We already have a very sophisticated
and successful model conception of the world fixed in mathematical theories. So
the task is not to conclude from “something observed” to an explanatory relation-
ship for the first time, but it consists in checking whether a model⁵ is compatible
with the measurement in the light of all known contexts. Given the granularity
of the experimental data, model checking is no longer logical inference relating
proposition to data. Moreover, the theory is not stated by a coherent set of logical
propositions that could be used as background knowledge. Instead, the theory is
expressed in the form of Monte Carlo simulations that map the physical knowl-
edge about the investigated process with high precision and under consideration
of all probabilistic parts of the problem description onto the charges, times, and
positions to be registered in the measurement. Then data analysis classifies the
difference between the measured values and the values expected from the theory
and this is translated into physically relevant statements.

Modern scalable machine learning methods have been developed as a response to
the situation of big data. The research question of how the levels of cognition can be
integrated is still open. Neural networks model the low-level processes of recognition
and action, which are not conscious, and have been tremendously successful in image

5 This model can, for example, contain the standard models of particle physics and cosmology and
other theories confirmed so far. It is used for the explanation of the cosmos, which is supplemented by
new effects of, say, dark matter, dark energy, sterile neutrinos or other not yet excluded phenomena of
particle physics.
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or vision understanding. Explaining the recognition patterns and allowing for a critical
inspection of the trained neural network is not only attractive for the human supervision
of computational learning; it also aims at a model of the interaction of neural and
semantic cognition [358]. Again, the exploitation of contradictions plays a crucial role.

In order to apply these general insights to the relationship between experimental
data recording and physical theory, we will first introduce the generic cycle of knowl-
edge acquisition based on big data in physics. The key issues in data analysis will
first be outlined per se in this framework before presenting recent methodological
developments in the remainder of the book.

1.3 From the Physical Theory to the Physical Observable

The core of the statistical methods used in modern physics, together with the ma-
chine learning methods developed in computer science, consists of determining the
probability densities needed to establish connections between the world of registered
values and the world of formulas in theoretical physics. The principle of this form
of knowledge acquisition is top down (in the forward direction); the aim is to derive
phenomena from causes in simulations based on all existing physical knowledge by
creating a complete virtual reality, including all known fluctuations and oscillations.
On the one hand, the predictions of the measurement results calculated this way can be
directly compared with experimental measurements.⁶ On the other, this virtual reality,
in which the (virtual) truth and the (virtual) measurement results are always known
at the same time, can be used to check the validity, efficiency, and robustness of the
applied inference methods of machine learning to be used in the backward direction,
or bottom up, inferring elements of the physical theory from the data. Since our interest
in this chapter is in epistemological understanding, we will refrain from describing the
individual methods and their linkages, though these will be discussed in detail later in
the book.

The paradigm is outlined in Figure 1.2. If an initial situation is given in the theory
(the initial position of the blue sphere), its fall through a generalized “Galton’s nail
board” can be calculated top down. At each black nail (according to Galton) or red nail
(in generalization), the sphere is deflected to the right or left until it lands in one of the
square detectors or—as happens in real life, when the detector does not recognize a
signal—gets lost in between.

The probability distribution of signatures for a given theory value can thus be
calculated with presupposed theoretical knowledge. However, only the experimental

6 This comparison could show that measurement and theory do not fit each other, which would then be
a starting point for a technical search for the reasons. Are there numerical problems? Is the experimental
technique adequately described? However, this direct comparison can justify no deeper bottom-up
inferences from experiment to theory. See Section 4.3 for solutions of the inverse problems.
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signature (sphere in the blue square) is given after a measurement. Conversely, the
epistemological problem requires determining the probability distribution for an initial
value formulated in the nomenclature of theory bottom up based on the measured
signature. Such a calculation is possible if certain methodical boundary conditions are
met. Its epistemological meaning and the conditions are explained in this chapter.

Fig. 1.2: Sketch of the relationship between theory and measurement in a simple model.

To understand the process, we first consider the top-down calculation of an experimen-
tal effect resulting from postulating a function f (x) to be investigated in the frame of a
physical model. Subsequently, the specific probability distributions of the data to be
detected and registered by a suitable detector are to be calculated.

A Generic Detector We collect the experimental data electronically and hence free of
subjective influences such as human reading errors. This fact alsomeans that everything
we can measure must ultimately always result from electromagnetic interaction, i.e.,
from the existence of charges or their change. The interaction of charges with the
detector is read out electronically and (if necessary) stored. Such a measurement in
the form of electronic detection of charge in a specific part of the detector will always
take place at a particular point in time, e.g., at the end of a defined time interval in
which the charge was previously deposited in that sensitive volume. This way, it can be
compared, for example, whether a resulting voltage to be determined lies within an
interval of reference voltages. The width of the reference voltage intervals correlates
with the measurement accuracy.

Using electrical oscillators, high-precision clocks can be built. If necessary, these
clocks can be used so that the sketched read-out process takes place in very short time
intervals.⁷ Thus the chronological sequence of charge measurements in the intervals
represents the bin-wise, digitizedmeasurement of time dependencies.

7 In practice, this can take place today with high frequencies of more than 109Hz, i.e., more often than
one billion times per second. For the argument, the size of the frequency, resp. the time interval of the
measurement is irrelevant.
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A detector usually consists of a large number of sub-detectors (pixels). In each of these
sub-detectors, the described processes take place. We know the position, form, and
size of these electrically sensitive components. Thus a spatial image of the observed
phenomenon canbe created for each time interval. Because of the sub-detectors discrete
nature, this image is also spatially divided into intervals, or pixelated. Neither the
temporal nor the spatial intervals in which the detector is sensitive, have to fit together
without gaps. A loss of signals is always possible. The theoretically possible signals
will be registered only with a certain probability.

Therefore, the result of a measurement is always a spatially and temporally discrete
sequence of numbers (integers). Its relative accuracy depends on the design of the
experiment and the data acquisition electronics, but it is limited in any case. The exact
amount of charge recorded electronically will always depend on thermal, problem-
related numerical, or quantummechanical fluctuations, which create differences in
the digitized results. Finally, there will always be several (maybe unwanted) physical
possible causes that change the detector’s charge state. In any case, and beyond other
causes, the desired signals are also influenced by electronic noise.

Everything on which our measurement of the world is based, everything that we
can have as an unquestionable result of a single measurement, is therefore a multi-
dimensional, spatially and temporally discrete frequency or probability distribution
of the measured charges, positions, and times. To make possible statements based
on such measurements, the measurements must be repeated until the shapes of the
probability distributions are known with sufficient accuracy. In an idealized form, we
can write a measured probability distribution as a continuous function g(y), taking
into account that the actual measurement result consists of the discrete elements of a
vector g⃗, which contains in each element i the normalized frequency distribution, i.e.
the normalized sum of the entries between the minimum and maximum yi.

The Connection between Theory and Measurement The connection between a
prediction of theoretical physics⁸ f (x) and the experimental result g(y) is given by
Equation 1.3. For simplicity’s sake, the formula is only noted one-dimensional and
continuous. The equation is nothing more than an expression of Plato’s cave allegory

8 This can be a single value, a prediction in an interval, or an unlimited function.
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we discussed above:⁹,¹⁰

g(y) =
b∫︁
a

A(y, x) · f (x) dx + b(y) (1.3)

In this equation, x is the variable of a physical theory whose connection with the
measurement must be examined. For example, x could be an elementary particle’s
energy whose existence and properties must be investigated in a detector. Measured are
the integer numbers y (charges in time intervals at specific positions). After a sufficiently
large number of measurement repetitions, a frequency distribution of g(y) containing
the (many) single measurements of y can be specified. Also, the occurrence of an x is
a discrete act, either because it is discrete (decay of an atomic nucleus leading to the
emission of the elementary particle under investigation) or because the intensity of x is
averaged over the time measurement interval.

An occurrence of x thus leads to a measurement of a state y. Between both worlds
of theory and measurement results, there can be many levels of theoretical description
(“Galton’s nail boards in all imaginable forms and irregularities”). For example, we
consider a telescope to detect high-energy neutrinos from various sources: If the first
particle here is a muon-neutrino, it could, in a weak interaction, generate a muon
which, as it propagates, reaches the detector and, via various forms of electromagnetic
interaction, deposits energy there, part of which is emitted as Cherenkov light. These
photons could pass through the detector if transparently designed. They may be scat-
tered or absorbed until they cause the photoelectric effect in the detection instrument,
which in turn may trigger electrons that—after amplification—can be detected by the
measuring electronics.

All of the above processes must be understood in theory with high precision. This
fact presupposes that this theoretical understanding is based on well-confirmed back-
ground knowledge established by other experiments. Since stochastic elements of
thermodynamics, quantum physics, or quantum field theories sooner or later appear in
the ladder of all descriptive theories (as in the example), even a fixed x will always pro-

9 In terms of Plato’s cave, the g(y) corresponds to the shadows on the wall, which result from the
unknown reality f (x) transformed by an also unknown imaging procedure A(y, x) and that are disturbed
by an unknown number of unwanted artifacts b(y).
10 How difficult it is to discuss topics in an interdisciplinary way becomes clear also from the nomencla-
ture in this book. In this introductory chapter, we follow the notation common in physics, mathematics,
and rationalist epistemology, in which there is a dependence of physical quantities x determined by a
theory, from which the randomly distributed observables y = f (x) are calculated. In computer science,
the view of dependence is reversed. There, the observables, known as features, are denoted by x, and the
classifications derived from them are denoted by y, as would correspond to an empiricist-constructivist
interpretation. In this book, the notation of computer science is retained in Chapter 10. Epistemologi-
cally, however, Chapter 10 is fully consistent with the considerations of probabilistic rationalism as we
present it here.
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duce a different y with a frequency distribution g(y) characteristic for the measurement
process, if the measurement is repeated several times.

As already discussed in consideration of the generic detector, we can assume
that each measurement is repeated often, so that ensembles of measurement results
g(y) always have to be considered. The single measurements central to the classical
epistemological discussions in the philosophy of science, or the significance of single
measurements’ analysis, would have to be treated as special cases. The components of
the Equation 1.3 can thus be explained as follows:
– g(y) is a frequency or probability distribution as obtained or derived from very

many repetitions of the measurement. This distribution represents the result of
the measurement. Since the data is recorded electronically, it can only be based on
distributions of positions, charges, and times or quantities calculated from them.
This frequency distribution of the measurement results is additively composed of
two components of different meanings:

– b(y) is the contribution of unintentionally measured components. This fact
refers to signals recorded only for technical reasons because it is a priori unknown
whether, say, a change in the detector’s charge state is caused by the phenomenon
under investigation or by another reasonunrelated to the investigated question. The
causemay be some form of electronic noise, or it may consist of various signals that
can be physically analyzed and are important for answering other questions that
do not play any role concerning the current question. This contribution, potentially
consisting of different components, is called background. This background can be
derived from theory or measured directly with the detector (e.g., with the signal
switched off, if possible). That b(y) must be a frequency, or probability distribution
is given by the aforementioned technical reasons.

– f(x) is the frequency distribution of the variable x that is to be inferred in the
experiment and that causes the measurement results. The variable x is written
as part of the world of physical theories in physical units. It must therefore be
translated into the world of electronically recorded positions, charges, and times or
the quantities calculated from them, in which g(y) is given. This translation depicts
the understanding of the measurement process. Fixed values for x are conceivable
but are practically unrealizable. In experiments, it is almost always the case that
only a very narrow probability density around the desired value can be realized.

– The translation of a single value x into a contribution to the measured fre-
quency distribution g(y) is performed by the so-called design function A(y, x).
This function depicts all physical properties of the experiment, including the sub-
detectors. It summarizes the sequence of all interactions and their stochastically
generated results, in our example, this corresponds to all that intermediates be-
tween the energy of the primary neutrino x and the frequency distribution g(y)
registered by the electronics. Only in rare and simple cases can A(y, x) be given
analytically as a solution of nested integrals. How this function can be numerically
determined is explained below in the section on Monte Carlo calculations.
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– By the integral
∫︀
A(y, x) · f(x)dx all contributions containing the relevant infor-

mation for the examined question are summed up to the measured distribution.
To calculate the contribution, the causal theoretical function f (x) is folded with the
design function A(y, x), which translates the values from f (x) into the measured
units of g(y). The integration must be done via the probability (resp. frequency)
f (x) of all possibly contributing x (via the energy spectrum of the neutrinos to be
detected, say) to obtain the sum of all contributions to the signature g(y) to be
measured.

If the physical function f (x) is known, the expected distribution of the measured values
g(y) can be derived if the design function A(y, x) and the background b(y) are also
known. Interpreting Equation 1.3 as a modern notation of Plato’s cave allegory, the
mapping of theory onto experiment is described from an omniscient perspective, in
which the experimental result can only be assigned to the theory because all involved
functions are known. If the blue sphere’s position above the Galton’s board is known,
the frequency with which it falls in this or that pot detector can be calculated. This
procedure describes the inference from cause to effect.

Monte Carlo Simulations As evident from the example of the neutrino detection,
the previous discussion shows that the central problem is the calculation of the design
function A(y, x). For practical purposes, it cannot be expected that this function can
be given by analytically solving the large number of nested integrals that describe
the different stages of the interactions. In the search for a numerical representation of
the design function, however, theMonte Carlomethod to solve integrals by stochastic
evaluation is used.

To illustrate this method, imagine that an unknown area and known area envelop-
ing the first one are evenly covered with randomly distributed points. The number of
points on both surfaces can be counted, and their ratio can be calculated to determine
the unknown surface.¹¹,¹² The Monte Carlo method is calledMonte Carlo because of
the random scattering of the points. By a high number of randomly distributed points,
arbitrarily exact results can also be obtained on sub surfaces. This is relevant for the
mentioned nesting of processes. What at first seems to be only a halfway smart numeri-
cal trick to the solution of nested integrals, opens up on closer inspection a multitude
of epistemologically relevant possibilities. Let us now inspect the world of Monte Carlo
simulations in more detail.

11 There are more elegant numerical ways to perform the method in practice.
12 A circular surface can be calculated (as a simple example) so that a square with an inscribed circle
is evenly covered with equally distributed random points. To determine the circular area, one counts
the points in the square and the circle and finds the ratio of the number of points to the area.
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For this purpose, again, as an example, the propagation of the elementary particle
muon is discussed: Muons are “heavy electrons” whose interaction probability is so low
that with the appropriate starting energy, they can penetrate kilometers into materials
such as stone or water. Various processes (the most important being ionization, pair
formation, bremsstrahlung, and nuclear interaction)may occur. Each of these processes
takes place with a specific probability (depending on the energy and material). It has
specific properties regarding the amount of energy loss suffered by the muon and the
muon track’s deflection during an interaction. The corresponding probabilities have
been calculated in quantum field theory. On their way through matter, muons, like
spheres on Galton’s board, undergo a multitude of corresponding interactions [148,
229].

Because of the originally stochastic character of the (quantum field) interactions, a
muon’s path cannot be determined deterministically. However, some of its properties
can be calculated by suitable averaging and integration over all the probability distribu-
tions involved. These include the mean position, the mean velocity, the mean deviation
of the muon from a straight path after crossing a certain thickness of the material, and
other quantities. This form of calculation corresponds to classical approaches and the
attempt to produce testable predictions [155]. Apart from the effort involved in this
procedure, the method has the disadvantage that it can provide only the centers and
perhaps the moments of the resulting probability distributions for the investigated
properties (g(y)).

However, as discussed above, we are interested in the complete probability distri-
butions of specific signatures. This desired result is obtained by randomly generating
individual muon trajectories using the Monte Carlo method. In our example, it is pos-
sible to determine, based on the quantum field theory, the interaction probabilities
and to derive where the next interaction will occur. Then, we can find which of the
partial cross-sections mentioned above (pair production, bremsstrahlung, ...) will be
employed, how much energy will be released in the material, and then at what angle
themuon continues its path. In this way, the possible muon trajectory can be calculated
step by step until the muon stops or decays.

With the large numbers of possible muon trajectories that result, the initial con-
dition (muons start at the position p⃗ in direction a⃗ with energy E) can be correlated
with, say, the distribution of the charges, times, or positions yi at which (some of the)
muons hit the detector, or simultaneously the number of hit sub-detectors yj. This
is always and independently of all the individual properties of a specific path possi-
ble. Geometrical peculiarities (different materials at different positions, geometrical
boundary conditions, etc.) can easily be integrated into the process so that, finally, very
realistic simulation results can be generated. A distribution of the resulting y is always
assigned to a primary x. The design function A(y, x) is thus obtained from determining
the distribution of the final y assigned to a primary x.
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From Integrals toMatrices A further step is relevant for understanding the cognitive
process because it prepares the inversion of the direction of cognition (top down −→
bottom up). So far, we have written the cave allegory as a convolutional integral,
taking into account the continuous character of theoretically calculated probability
distributions. However, due to the necessarily discrete nature of the measurement
results, Equation 1.3 can also be written as Equation 1.4 in the language of linear
algebra:

g⃗ = Ax⃗ + b⃗ (1.4)

The vectors g⃗, x⃗ and b⃗ contain in each element the number of entries counted in the
respective specific interval as binned frequency distributions. The size of the intervals
is arbitrary and can be chosen depending on the problem. In b⃗ the contributions of the
background are counted, in g⃗ all contributions to be measured, and in x⃗ the initially
primarily continuous function f (x) is integrated bin-wise from the lower to the upper
interval boundary. The translation of numbers with physical units into numbers in
detector units is done here using the design matrix A, in which (as described) all Monte
Carlo results are assigned and counted. In this picture, the properties of the matrix A
can be understood as follows.
– An ideal detector would register every particle crossing its geometrical volume and

measure observables for all its properties with absolute accuracy. The determina-
tion of the particle energy in such a detector could work via the number of cells hit
by the particle and, per definition, perfectly correlate to the energy. The matrix A
is then a diagonal matrix where the probabilities contained on the main diagonal
(besides normalization factors) would be equal to 1. All other entries are equal to 0.

– A detector may be crossed by some particles that hit its mechanical structure but
not its sensitive volume. If the existing measurements were absolutely accurate,
the matrix A would also be represented by a diagonal matrix. Because of the lower
reconstruction probability, the main diagonal’s probabilities are less than or equal
to one. All other entries are zero here as well.

– If, in addition, the measuring accuracy is not perfect, i.e., if several possible hit
numbers are assigned to one energy (perhaps because the track lengths of the
particles with the same energy in the detector and so the number of hit cells vary
also by geometrical reasons), the elements next to the main diagonal will begin to
populate with entries unequal to 0. This range becomes the wider, the probabilities
outside the main diagonal become the larger, the worse the resolution (the higher
the probability for misallocations).

Thematrix A is thus determined as the result of the Monte Carlo simulation by counting
the combinations of the physical quantity x (in our example, this corresponds to energy)
and the detector quantity y (in our example, this corresponds to the number of hits in
a sub-detector) in each element of the matrix. A high number of simulated entries in
one element means that this number was determined with a low statistical error. Few
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entries mean that this combination occurs very rarely and is therefore only known with
a relatively sizeable statistical error. Normalization to the number of generated events
produces probabilities in the matrix.

In summary, it can be stated that single measurements produce singular entries to
the concerned probability distributions. A large number of measurements determines
the shape of these distributions. With numerically highly accurate Monte Carlo simula-
tions, based on all known physical knowledge, the expectedmeasurement result can be
calculated (deductively concluded) for a known function f (x). The whole complicated
procedure can be summarized by a simple linear algebra relation.

1.4 From the Measured Variable to the Measuring Point

With the goal in mind of concluding from measurements to theories, one may read
Equation 1.3 in the integral form in the backward direction: g(y) is measured, A and
b(y) are then calculated or measured, and f (x) is unknown and to be determined. With
this status of knowledge, the unknown physical function f (x) can be inferred from the
measured numbers. In this reading, Equation 1.3 is a Fredholm’s integral equation of
the second kind. Because the described process in the forward direction is a convolution
integral, the solution of this inverse problem is also called deconvolution.

The equation in its algebraic form (1.4) symbolically states the steps necessary
for a solution of the problem. Therefore these mathematical steps shall be separately
discussed before they are put into the final context of the multi-dimensional analysis
of large amounts of data with methods of machine learning:
1. Monte Carlo calculation of the design matrix A: As explained above, to deter-

mine the matrix A, the simulation problem in the forward direction first has to be
solved. For this purpose, it is necessary to write the problem so that the simulation
only includes correlations that can be assumed to be known for the present anal-
ysis.¹³ To determine A, a function f̂ (x) (or a resulting vector x⃗(f̂ (x)) ) is assumed,
which serves only to determine the correlation between f⃗ and g⃗ using the Monte
Carlo method. The function f̂ (x) chosen for this purpose is, in principle, arbitrary
and only for computational (resource-saving) reasons should f̂ (x) be chosen such
that A can be calculated with minimal computational costs. We can consider the
simulation problem solved with the previous explanations.

13 Of course, the input for every simulation input is always subject to uncertainties from different
sources. How these uncertainties affect the results is examined and considered in special analyses but
should not distract our thinking. As a result of such systematic investigations, one finds that in addition
to the statistical uncertainty from the number of measurements comes a further systematic uncertainty
from ignorance of the exact conditions and correlations. The extent of this ignorance, however, is
assumed to be estimated based on previous experiments.
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From an epistemological point of view, it is essential to notice that the reversal of
the inference direction also changes the direction in which the matrix A is read.
For inferences from cause to effect, A determines which probability distribution
of experimental signatures g⃗ is assigned to a dedicated theory value x. Here, for
the inferences from effect to cause, A assigns to a dedicated measured signature g
the probability distribution of possible theoretical causes x⃗. This also applies to
the probability that a measured signature is triggered by a signal event, as by a
background event. Furthermore, this is also valid for the probability with which the
size of a property from the world of physical theory (the energy) can be assigned to
a measured signature (hit count).

2. Background subtraction: To subtract the background b(y), it must either have
been simulated with Monte Carlo methods or alternatively have been measured
with the detector under special conditions. Then it can be (symbolically) subtracted
from g(y) in Equation (1.4):

g⃗ − b⃗ = Ax⃗ (1.5)

The distinction between signal and background in real measurement data will be
discussed below.

3. Solution of the inverse problem: The goal of calculating the vector x⃗ from the
measurement of g⃗ would be fulfilled by multiplying Equation 1.5 with the inverted
matrix A from the left:

A−1
(︁
g⃗ − b⃗

)︁
= x⃗ (1.6)

Apart from the mathematical difficulties that can occur with matrix inversions,
one central problem remains to be discussed: When calculating the matrix A,
we have seen that its elements are based on the simulation of large numbers of
entries. Near the main diagonal of A, there are numbers close to probabilities of 1
with small statistical uncertainties derived from many entries. Far from the main
diagonal, elements with only a few entries generate probabilities close to 0 based
on a small entry number and correspondingly large statistical errors. An example
of correlations for the construction of a realistic matrix A is given in Figure 1.3,
where the estimation of the energy of muons is presented as it might appear in a
generic neutrino telescope.
“Measured” in the simulated detector of Figure 1.3 are times and charges at many

positions for 100 000muons with different energies. Then, using a trained neu-
ral net¹⁴, this multi-dimensional information is projected to a one-dimensional

14 Neural nets asmachine learning algorithmswill be discussed below. For themoment, we understand
the “trained neural net” as a somehow invented function to calculate numbers more or less correlated
to energy.
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(a) Color-coded correlation of combinations between
a calculated neural net output and a physical quantity
(muon energy).
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(b) Binned mean values of the left frequency distribu-
tion. The error bars indicate the width of the distribu-
tion.

Fig. 1.3: Example: Estimation of the muon energy as it might appear in a generic neutrino telescope.
The figure shows the inference from a neural net output (x-axis) to the true energy (y-axis). The
difference between a simple calibration function (right) and a frequency distribution (left) for the
same data is obvious. The Monte Carlo simulations were executed with the program PROPOSAL [148,
229, 355].

quantity in arbitrary units correlated to the energy. The figure shows the typ-
ical correlation between the output of the neural net on the (x-axis) and the
logarithm of the true neutrino energy in the simulation (y-axis). A given muon
energy can lead to different neural net outputs; vice versa, a certain neural net
output can have been activated by different muon energies. This is a necessary
consequence of the thermodynamic and quantum physical processes involved.
The correlation with its statistical consequences via matrix A is considered in
the procedure discussed here.

On the left of Figure 1.3, the frequency of the occurring combinations is color-coded.
Rare single entries are visible as single black points. Below it is shown that
they cause the ill-posedness of the problem. In classical analytical approaches,
one would have tried to identify a unique calibration function fitted to the
mean-values and width of the distribution of the correlations, as depicted on
the right in Figure 1.3 for the same data. Such a calibration function, however,
leads to false ideas about the unambiguousness of the assignment between the
derived quantity (neural net output) and the searched-for physical quantity.

When matrix A is inverted, large numbers become small and vice versa. Neverthe-
less, large uncertainties remain large and small ones remain small. Thus, single,
random entries in A, irrelevant in the forward direction, might become large, noisy
terms (large numbers with considerable uncertainty) after inversion, disturbing
a clean determination of a result. Therefore the class of these inverse problems
belongs to the “ill-posed problems”, where small numerical differences in the ar-
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gument (single random entry in A) can produce large differences in the result. This
unpleasant situation can be cured by suppressing the distracting terms in A. This
so-called regularization is based on additional assumptions about the properties
of the solution chosen to eliminate the fluctuations. Thus, a similar but not ill-
posed problem is created. That way, however, necessarily “prejudices” about the
properties of the solution enter the mathematical problem. Therefore, the impact
of the regularization on the solution of the problem has to be investigated. In no
case it is permissible to change the physical interpretation of the unfolding result.
We consider the measurement of the function f (x) = N · x · e−ax in 20 measuring
points (bins), as an example. Instead of using simulations to determine the detector
properties, we assume a simple illustrativeMatrix A: ourmeasurement is performed
with a detector that does not lose any signals but assigns them with a probability
of ϵ (in a friendly manner symmetrically) to correlated matrix elements. If the
probability for mismatches ϵ would be = 0, the matrix would be diagonal and the
detector ideal. The matrix is shown in Equation 1.7.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − ϵ ϵ 0 0 . . . 0
ϵ 1 − 2ϵ ϵ 0 . . . 0
0 ϵ 1 − 2ϵ ϵ . . . 0
...

. . .
...

0 . . . 0 ϵ 1 − 2ϵ ϵ
0 . . . 0 0 ϵ 1 − ϵ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.7)

In Figure 1.4 the function f (x) to be measured is shown as a solid line. If A were
inverted and the Equation 1.6 applied, the strongly oscillating blue measuring
points might be obtained because this is an ill-posed problem. If the relevant
uncertain terms are moderately suppressed by regularization, the green measuring
points are derived, fitting very well to the initially assumed function. However,
regularization that is too strong forces the (now violet) measuring points more and
more to a straight horizontal line.

Epistemologically, it is notable that inferences from the effect on the cause lead to
inverse problems. Inverse problems are by their nature ill-posed and can produce fluc-
tuating solutions. The fluctuations can be suppressed by regularization, i.e., creating a
suitable variation of the mathematical function to be solved. Inevitably, however, it
is then necessary to weigh physically possible fluctuations of the measurement result
against the bias strength of regularization as a smoothing condition of the solution.

Multidimensionality Before discussing the solution of the problem with means of
computer science, the limitation of the observed quantity to one dimension shall be
removed. With each measuring act in an actual detector, many measured variables
are electronically read out. Further quantities are calculated from these original num-
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Fig. 1.4: Example solution of the inverse problem without regularization (blue measuring points),
with appropriate regularization (green measuring points) and with too hard regularization (violet
measuring points).

bers. Analogous to the above discussion, the central data analysis question is how
probability densities for the physical properties of the investigated events can be cal-
culated from (highly) multi-dimensional measured signatures. Not only the measured
data but also the properties to be reconstructed in the world of physics will usually be
multi-dimensional (although in fewer dimensions).

Signal-Background Separation In the first step of data analysis, the signal events
of interest must be filtered out of the entire data set (subtraction of the background b,
see above). Since the unwanted but technically unavoidable background can often be
many orders of magnitude larger than the searched-for signal, this indicates the search
for a tiny needle in a gigantic haystack. In the exemplary astroparticle physics data
analyses, the backgroundmay exceed the signal by up to 10 orders of magnitude. In our
example, a wrong decision may only be made less than once in a trillion events. Also,
for less ambitious problems, fast, highly precise, and reproducible decision procedures
are required in which the error rate is also calculable. Such tasks can no longer be
solved with the necessary precision by human decisions. Instead, they require the use
of high-precision robust rating algorithms developed in the framework of machine
learning.

Thesemachine learning rating algorithmsare optimizedaccording to to-be-investigated
quality criteria. First, the signal-background separation task is defined in the world
of simulations. In this world, it is known which multi-dimensional signatures occur
with which frequency and which of these signatures are assigned to the signal or the
background class, respectively. For this purpose, many examples of the sought signal
events and all possible variants of background events are generated with Monte Carlo
methods.

The goal of machine learning is to identify mathematical operations to be applied
to the many dimensions of generated and, in principle, measurable variables (number
of hits in the detector, their spatial distribution and temporal sequence, size of the
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deposited charge, etc.) and then to assign a value to each event on an at least one-
dimensional finite scale. (In advanced applications, as discussed in Chapter 9, multi-
dimensional output assignments are also possible.) The variables, the mathematical
operation, and their internal structure are optimized to maximize the distance between
signal and background events on that scale. For this optimization, simulated signal and
background events are successively evaluated by the algorithm. The larger the number
of these examples is, the better the algorithm can be optimized. Anthropomorphically,
the process of entering an example is called “showing”, and the process of optimization
is called “learning”.

Thus, the algorithms are optimized for separation tasks. Since the necessary de-
cisions are statistical processes, the accuracy with which a decision is made must be
specified. Furthermore, it must be tested whether the algorithm is sufficiently tolerant
to unavoidable imperfections of the simulation compared with the experimentally
determined data. If one is finally sure about the procedure, one knows how many
simulated signal and background events are expected in the data set after applying
the separation algorithm, including the uncertainties of these numbers. Applying the
so-determined algorithm to the world of measured data, one can transfer the selection
rates determined in the simulation to the world of measurements.

In machine learning research, many algorithms have been developed in which rep-
resentations are structuredwith entirely different approaches tomapmulti-dimensional
measurement results to one-dimensional order parameters. Their regularization and
robustness to small changes are investigated bymachine learning theory, see Chapter 3.

The performance of the algorithm in recognizing structures and its dependence on the
precision and the number of Monte Carlo events depend on how many free parameters
have to be calculated to solve the task. Only a few free parameters are used in discrimi-
nant analyses, in which for the separation task flat, n − 1-dimensional hyperplanes are
optimally placed in the n-dimensional space of the measured signal and background
distributions. Distributions that lie curved and nestled into each other are obviously
difficult to separate with this method. Hence, kernel functions such as the Radial Basis
Function have been introduced to map the measurements to a space that allows correct
separation by hyperplanes, here, correctly separating signals from the background
[380]. The “kernel trick” [343] is indirectly present in neural networks.

In extreme cases, the optimization of algorithms that are capable of learning non-
linear functions may lead to a separation in the simulation world that is too good, in
the sense that the positions of all generated events are parameterized, or “learned”.
This effect is called overtraining or overfitting. If applied to real data or even to another
simulation data set, such a learnedmodel would fail because it does not find signatures
to be identical to those learned with the simulation.

Which machine learning approach is chosen and how it is validated that it delivers
adequate and expected results has to be analyzed separately for each separation task.
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The first examples of such algorithms that wewant to consider are simple decision trees.
A decision tree is a hierarchical set of conditions that defines that a dataset (event) is
classified in one or another form if the measured parameters lie in specific logically
nested intervals. Very simple classifications can be executed in a single decision tree
with a small number of conditions. The more complicated the signal-background sepa-
ration is, the more conditions would have to be nested and inserted into the tree. These
conditions, however, are determined based on the simulated Monte Carlo events. If a
sufficiently large number of conditions is selected, individual properties of the Monte
Carlo events are mapped, and thus the classification of all simulated events could be
stored. In this case, the algorithm would not be able to learn to generalize the topology.
Such a generalization would be indicated by a robust parameterization of the placing
of the searched-for signal-background-separation-plane. Without this generalization,
the separation will fail in all practical applications.

Alternatively, what is known as a random forest can be applied. In a random forest,
an ensemble of decision trees with moderate branching possibilities is defined instead
of one widely ramified, deep tree. Not all trees of the forest are provided with the
same information. The trees are further only given randomly selected information
(some simulated observables plus the label showing the true class affiliation). Also, on
which branching level which information is used in the decision process is determined
randomly. After the numerical optimization of a random forest with simulated events
(called “training”), all trees of the forest “vote” by calculating their scale value for an
event, answering the question of whether an event belongs to the signal or background.
This results in the above required one-dimensional scale on whose one side the trees
ideally vote for “background” (scale value close to 0), and on whose other side the trees
vote ideally for “signal” (scale value close to 1). A cut on this scale can then be used to
determine the ratio of signal to background events, the purity of the finally selected
signal sample, the efficiency of the selection (how many signal events survive the cut?),
the robustness (is the forest as desired insensitive to, say, Monte Carlo fluctuations?),
or in the agreement between Monte Carlo and measured data. Finally, the decision
process of the specially trained and tested random forest is executed on the measured
data. As desired, a sample is obtained in which the number of signal and background
events and their statistical uncertainties are known.

In this way one finds a mapping from the high-dimensional space of the (real or
simulated) measurement data to a one-dimensional order parameter. The measured
data’s multi-dimensional character is preserved and supplemented by the order param-
eter calculated by the random forest. Considering the measured variables as carriers of
a multi-dimensional probability distribution, the signal-background separation can
be understood as a transformation of the multi-dimensional probability distributions
for the signal and background samples enabling a separation of both topologies by a
simple linear cut. The strength of a selected signal can now be given as the probability
that the signal is inconsistent with a random background fluctuation. This signal data
set can then be selected and used for further analysis.
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Solution of the Inverse Problem After the signal-background separation, a dataset
may be assumed containing only a known small number of background events that can
be considered as negligible for our purposes. In the example, one would now be sure
to have a dataset consisting of signatures of the sought-for neutrinos as signal events.
Now, these signal events must be examined for other properties, such as the energy
spectrum of the neutrinos.

The paradigmof signal-background separation requires that signal andbackground
are perfectly known in all properties except the relative number of events in the classes.
Therefore, they can be described just as correctly in the simulation. If, however, a
quantity such as the energy is to be measured, then (at least) the energy distribution of
the singular events cannot be wholly known. Therefore the simulation cannot describe
the distribution to be measured perfectly. For the deconvolution, a weaker paradigm
is postulated, according to which only the experimental effect of the searched phe-
nomenon has to be known. Only the simulation of the detector in all of its properties
(e.g., the response to the energy) must agree in nature and in the Monte Carlo world.

Regardless, the unfolding analysis is based on the same data situation in mea-
surement and simulation as the signal-background separation: we consider a multi-
dimensional spatio-temporal pattern of positions, times, charges, and variables de-
rived. The Monte Carlo dataset for each event also contains the true information about
the quantity (energy) to be measured, which is unknown in the world of experimen-
tally recorded data. Again, a mapping from the multi-dimensional space to a one-
dimensional parameter is sought. And again, this is a task that can be formulated
mathematically as an optimization task: the simulated examples are used or “shown”
one after the other to a machine learning algorithm to adjust the inner parameters of
the learning algorithm so that the sought-after quantity (in our example, the energy of
neutrinos) can be determined with the best possible accuracy. In place of the bipolar
finite scale for the separation, a continuous and unlimited magnitude (correlated to
the energy, say) is calculated (cf. Figure 1.3 and the example given there). The primary
considerations for machine learning, however, will not change. Suppose a relation
between the many technical quantities (charge, time, position, and derived from that)
and the quantity (energy) to be measured physically is established. In that case, the
inverse problem (Equation 1.6) is solved under a controlled addition of assumptions to
suppress unwanted properties of the solution (regularization). The analysis optimized
in the Monte Carlo world is then equally applied to the measured data. If necessary,
the signal to be measured is corrected for signatures that could not leave a trace in the
detector. Also, a normalization of the event numbers considered so far to the physical
theory quantities, including their unit, is performed by what is known as acceptance
correction.

Thus, the deconvolution leads to a projection of the multi-dimensional measure-
ment data into the one- or few-dimensional space of the quantities predicted in theoret-
ical physics. Since the statistical character of the simulated or measured data was at
no point limited or cut off, the expectation values and the corresponding confidence
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intervals can be specified for each measuring point in physical units. The result of the
analysis consists of measuring points with their statistical errors. If a definite prediction
for ameasured value was calculated in theoretical physics before themeasurement, it is
now possible to specify the probability with which this prediction and themeasurement
match. If the theory contains parameters that cannot be predicted, they can be adjusted
according to the physical measurement points (fitted). These parameters can then be
introduced into further calculations and tested there again.

1.5 The Epistemology of Physics in Concert with Machine Learning

As epistemological lesson, in a generalization of Popper’s approach of falsification,
we see that—even if some results are obvious—only probabilistic evaluations of mea-
surements and theories are appropriate for the further discussion of the results and the
consequences.

Since the basic ideas of Popper’s Logic of Scientific Discovery were formulated,
thinking about theoretical physics has changed. Originally, the evolution from Ptolemy
to Copernicus to Kepler toNewton andfinally to Einstein could be seen as a development
that suggested the goal of elegantly developing theories using new approaches and
mathematical methods and adding only a few measurable new parameters. Thus, this
seemed to be a paradigm for the further development of theoretical physics. Today,
whole classes of theories are proposed and calculated simultaneously. These classes of
theories may contain many free parameters with possibly substantial uncertainties, so
a complete refutation of such a class of theories is hardly possible. Modern epicycles,
if you will, are built into the structure of the theory from the outset in such a way
that they need not stand out as additional constructions. Nevertheless, there are, of
course, parameter ranges within the classes of these proposed theories, which can be
meaningfully investigated by experiment.

This does not prevent understanding theories as products of rational consider-
ations, and the goal of these considerations may still be to develop a mathematical
description of the world that is as complete and uniform as possible. However, since a
class of theories can rarely be fully tested, it would be a very hard demand¹⁵ to link the
scientific validity of a theory to its complete refutability. However, an experimental test
of parts of the parameter range may be possible.

Which parameter range is experimentally testable in which combination can often
only be determined by means of Monte Carlo methods because of the large number
of free parameters in the theories and the possible complexity of its dependencies.

15 With this demand one would remove many extensions of the Standard Model of particle physics
from the field of scientific research because they contain parameters that are not measurable in this
world.
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In these approaches, numerical values for the free parameters are randomly drawn,
based on which experimentally verifiable values are identifiable for, say, the resulting
mass of a potentially existing dark matter particle or the flux of particles (neutrinos).
The Monte Carlo method is thus suitable for testing the range of potentially occurring
measurement results for two reasons. First, the relationship between the parameters
and the possiblemeasurement results is not always obvious. Second, parameter regions
excluded by other experiments can easily be considered.

This fits nicely with the machine learning view of modeling mentioned above [276].
There, under the heading of sloppy modeling, every current state of knowledge was
considered preliminary. In the view presented here, the knowledge is expanded iter-
atively and evolutionarily: cyclically, the definition of the problem, the simulation of
measurement results based on existing knowledge, the search for deviations from it in
the experiment, the interpretation of the measured probabilities in terms of theoretical
physics, and finally the revision of the problem follow each other (Figure 1.5). The
acquisition of knowledge is no longer based on complete inferences from the effect
to the cause but instead on playing through all theoretically conceivable possibilities
and constantly comparing and optimizing these predictions using new measurement
data. The concrete and solid empirical basis for this purpose consists of the measured
positions, times, charges, and the quantities calculated directly from them.

Note that this picture enhances the well-known Cross-Industrial Standard Process
(CRISP) of data analysis [117]. First, the data is not in the form of a readily given database.
Instead, data is produced based on physical knowledge through simulation and based
on a physical detector and a triggering process. Both data-generating processes may
exploit machine learning methods. Adversarial training using generative models might
produce helpful additional data. On the other hand, active sampling might select the
most useful data for learning. In principle, also the optimization of the trigger is a
learning task. The cycle continues with four learning tasks, where the first two differ
considerably from the CRISP modeling in that they work on streams and under real-
time conditions. The following two learning tasks use databases that can be stratified
beforehand. The physical interpretation of the results may lead to novel questions or
inspire novel analysis approaches.

The preceding considerations show that the first solution to a problem is not possi-
ble without human intervention. Once solved, selection and reconstruction problems
can be solved automatically over and over again. Based on this, the researchers involved
in knowledge acquisitionmust now perform dedicated tasks. Theoretical physicists will
develop new concepts for interpreting observed phenomena, constraining the parame-
ter range. Experimental physicists will invent new techniques to enable qualitatively
new measurements and further optimize existing techniques. Computer scientists will
develop new algorithms and methods that will allow the ever-increasing amount of
data to be analyzed more accurately with fewer and fewer resources.
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Fig. 1.5: Cycle of methodical steps for knowledge expansion. Indicated are the most important
aspects under which the multidimensional probability distribution based on the measurements is
investigated and transformed for quality assurance and knowledge gain. The figure symbolizes a
process whose details depend on the problem being studied. In particular, cycles are conceivable
that can skip certain steps or require additional steps (e.g. for data reduction or estimation of
properties).

1.5.1 Further Reading in this Book

The process we have discussed here from an epistemological point of view is detailed
by more technical contributions throughout this book. These contributions are pre-
sented in an order following the methodological steps shown in Figure 1.5. From data
acquisition, including the preparing and calibrating of the detectors, through sampling
and preprocessing data to classifier learning and unfolding, the chapters offer methods
of how probabilistic rationalism can be performed in practice.
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The methods presented and discussed in this book are suitable for application to
problems from the environment of astroparticle and particle physics. Therefore, the
underlying physical issues are presented and explained in Chapter 2.

Chapter 3 gives an overview of the key concepts frommachine learning that will be
used further on.

The first group of questions to be solved for each physical experiment leads from
the acquisition of data through the structure of this data to the first trigger decision
through which the experimental data are fed into the analysis cycle. Newly developed
concepts in this regard are presented and discussed in Chapter 4.

Physical knowledge has advanced to such an extent that all measurable signals
can, in principle, also be simulated. However, the calculations are so resource-intensive
that machine learning methods can also be used here to reduce the effort. The cor-
respondence between data and the Monte Carlo world must also be demonstrated
technically and physically so that machine learners can be trained on the Monte Carlo
data. Developments in this area are presented in Chapter 5.

How to access the research data on different time scales? Problems are posed by
high-speed access to enormous amounts of data during the data analysis, long-term
access to all research data for ten years after the end of the experiment, and permanent
access to all physical results. Example approaches to this problem are discussed in
Chapter 6.

The question of representation learning remains the key to scientific processes. It
can be modeled explicitly by automated feature extraction from signals [270]. Feature
extraction for physical experiments is presented in Chapter 7.

Since the recorded background often exceeds the signal under investigation by or-
ders of magnitude, new efficient and robust methods for signal background separation
become crucial. These are presented in Chapter 8.

Because of their great importance in applications, several new deep learning appli-
cations are explained in Chapter 9. Representations are learned implicitly by neural
network-based learning because we might interpret higher weighted internal nodes
at hidden layers as representations. References to representation learning in unsuper-
vised learning can be found in [205]. Boltzmann machines are made for representation
learning [307, 335]. Graph neural networks combine the advantages of probabilistic
graphs with those of neural networks and successfully learn representations, because
they introduce structure into deep learning [162, 395]. For an overview and current
research, see Section 4.3 in Volume 1. In this book, the implicit approach is detailed for
gamma-ray astronomy in Section 9.4.

The issue of inverse problems and deconvolutions, the way from the frequency
distribution to the physical statement, is investigated in Chapter 10. There, the rep-
resentation is explicitly designed for learning as an extra step in an overall learning
process on streams.





2 Challenges in Particle and Astroparticle Physics
Bernhard Spaan
Wolfgang Rhode

Abstract: The elementary particles, the history, and the structure of our universe are
studied in the physical disciplines of particle physics and astroparticle physics. Intend-
ing to study these fundamental processes and structures because of the expansion of
the universe, both disciplines are closely connected. For this purpose, one can either
study the high-energy interactions of particles in hot environments or analyze the
information transmitted by messenger particles from distant events and sources in the
universe. The former is studied in experiments at the Large Hadron Collider at CERN,
the latter in various types of astroparticle detectors or telescopes. Both physical disci-
plines complement each other in the information accessible to them, are similar in the
extreme demands placed on the resources required for data analysis and data quality,
but differ due to the design and operation of the detectors in the generic properties of
the collected data. Since the operation of the detectors is designed to answer specific
fundamental questions, the guiding questions of particle and astroparticle physics are
presented and explained in this chapter. Since many (if not all) of the later discussed
exemplary applications of the computer science findings of the CRC 876 have been
developed for the detectors LHCb, IceCube, MAGIC, FACT, and CTA, a special emphasis
will be put on questions investigable with these detectors.

2.1 Physical Motivation, Problems, and Examples

In general, the epistemological considerations sketched in Chapter 1 do not only apply
to the treatment of questions from a specific field of research; they claim general validity.
However, this book is aimed at readers with different scientific backgrounds, so it seems
appropriate to present a paradigmatic motivation for particle and astroparticle physics
to which the examples given later may refer.

Our understanding of the physical world is essentially shaped by the two very
successful theoretical standard models of cosmology and particle physics. The former
focuses on the evolution of the universe in space and time, the latter on the interaction of
its smallest particles. Both models are connected in many ways so that their statements
complement but also control each other. Basically, both models are or were initially
adapted to the cognitive preferences of man, symmetrical in theory—so symmetrical
that for some time now, the justification of the asymmetry observed in the world has
become a central research focus in the field of astrophysics and particle physics.

Open Access. ©2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
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There are many fundamental questions that can be solved only by adding asymmetries
to the standard models. Why do elementary particles have mass? Why is there more
matter than antimatter? Why have no magnetic monopoles been detected (so far)?
Why did the universe expand at different velocity scales? Why is matter distributed so
differently in the universe? Why does dark matter exist? How (and where) can cosmic
rays gain energy?

The physical disciplines of particle physics and astroparticle physics try to find
ways to clarify these questions in different types of experiments. In particle physics,
high-energy elementary particles are shot at each other in terrestrial accelerators under
very controlled conditions so that the symmetry of interactions can be studied under
the energetic conditions of the early universe. In astroparticle physics, astronomical
objects are used to accelerate particles to the highest energies. And either these mes-
senger particles themselves or their interaction products are detected and interpreted
on Earth. The challenges in astroparticle physics and particle physics are complemen-
tary. In particle physics, the conditions under which the first interaction occurs in the
experiment are very well controlled. The experiments consist of different functioning
inhomogeneous subdetectors in which data with different physical interpretations are
recorded. In astroparticle physics, the detectors and, thus, the recorded data are com-
paratively homogeneous. However, the experimental conditions, such as the particle
type, the location of the interaction, and its energy, cannot be controlled. Moreover, the
detectors can change their properties with, e.g., the weather conditions, the incidence
path through the surrounding natural media, or the time during the measurement.

2.2 Astroparticle Physics

Astroparticle physics is an approximately three-decade-old field of research [157] that
has emerged from the extension of astronomy by experimental methods and theoretical
concepts from particle physics. Its understanding is impossible without the current
theoretical standard models of particle physics and cosmology and their possible
extensions. Thus, it is based on the classical field theories (for gravity) and quantum
field theories (for particle interactions), which have not yet been unified. The essential
components of astroparticle physics are shown in Figure 2.1.

In astrophysical sources (such as stars, supernova remnants, the nuclei of active
galaxies, and many other objects), temperatures are so high that matter must be consid-
ered as plasma (atomic nuclei and electrons are separated and move independently).
The charged particles cause irregular magnetic fields and are vice versa, accelerated
by these magnetic fields towards very high energies. The electrons and nuclei from
the plasma can interact with other particles or emit radiation so that the sources can
finally be observed from the detection of the light of electromagnetic radiation between
the radio and gamma frequency ranges. Also, the neutrinos produced in hadronic
interactions in the sources can be detected. A general glow in the sky of astroparticle
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Fig. 2.1: Sketch of astroparticle physics. The figure shows the astronomical sources, the messenger
particles, and the different detection scenarios (adapted from [385]).

physics is produced by the charged nuclei, which mostly lose their directional informa-
tion when flying through the different magnetic fields on their way and are therefore
of limited use for astronomical purposes. After repeated interactions, the follow-up
products of astrophysical accelerations can be detected with different techniques using
satellites, earthbound telescopes of different designs, and underground detectors.
These individual and globally distributed detectors also use techniques developed
in particle physics. To arrive at a complete understanding of astrophysical sources,
the information from all detectors must be combined. At the latest, after this combi-
nation, the different components of the cosmic raysmust be separated and understood.¹

Depending onwhich of the three components contributing to themeasurements (source
properties, radiation propagation between the source and Earth, or interactions of el-
ementary particles) is considered unknown, insights can be gained in astroparticle
astrophysics, cosmology, or particle physics. Because of the complexity of the required
physical descriptions and though much is known with precision, the assumption of

1 For further discussion see [156].
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completely controllable initial conditions cannot be made in this field. What is de-
tected is the result of a concatenation of processes described by different theories and
phenomenological approximations. In the end, these results may be precision mea-
surements used, say, to close measurement gaps between experiments, test predicted
signatures, or discover unexpected new phenomena that can only be explained by
an extension of physical concepts. In the three decades of its existence, astroparticle
physics has contributed to the revision of outdated theoretical ideas through many
observations, despite or because of its complexity. And thus it might be well suited for
the current discussion of epistemological boundary conditions of current physics using
the science of big data.

In the historical development of physics one repeatedly finds dependencies be-
tween new physical insights and the new mathematical methods applied to them.
The method of machine learning was developed in parallel to astroparticle physics.
And it took some time until the early insight of computer science into the necessarily
probabilistic nature of analytical results [280] was accepted in physics.

2.2.1 Experiments

From the field of astroparticle physics, two classes of experiments have given rise to
and exemplified the development of machine learning methods in our work: neutrino
telescopes and gamma telescopes, named after the messenger particle used to transmit
information from the astrophysical source to Earth. Thus, both telescope types do not
detect the astrophysical sources in the sky directly. They do not see the primary mes-
senger particle but the Cherenkov light emitted from charged, high-energy secondary
particles traversing a clear medium (water, ice). These secondary particles are produced
in the form of an electromagnetic cascade in the atmosphere for primary gammas. In a
charged current interaction of primary neutrinos, charged leptons (electrons, muon,
taus) are produced. Also, a dominant part of the undesired background stems from the
same source for both types of telescopes: cosmic rays in the form of atomic nuclei inter-
act in the high atmosphere, also producing electromagnetic and hadronic cascades,
including neutrinos. The background consists of the Cherenkov light induced by these
particles and—depending on details of the data-taking—is many orders of magnitude
stronger than the signal.
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2.2.1.1 Neutrino Astronomy
Tim Ruhe

As stated above, neutrinos cannot be directly detected, and their detection thus relies
on the detection of their leptonic partners, which are created in interactions with
nuclei. Depending on the neutrino flavor, the interactions may happen either inside
the detector or in the surrounding medium. The detection of neutrinos is nonetheless
challenging due to their small interaction probability. This small interaction probability
can, however, be accounted for by long exposure times, by utilizing large detection
volumes or, ideally, by an optimized combination of both. As the detection of charged
particles with velocities of approximately c (the speed of light in a vacuum) relies on the
Cherenkov effect, and thus on the detection of Cherenkov photons, possible detection
media also need to be as transparent as possible for blue light.

This requirement for transparent detection media with volumes of cubic kilometer-
scale leads to basically two natural media that can be utilized for the construction of
neutrino telescopes: water and ice. Both options have been realized in practice and
come with their very own experimental challenges. While water has been used for
the neutrino telescopes Baikal [72], Antares [39] and KM3NetT [37], ice was used for
AMANDA and IceCube [21].

When utilizing ice, one of the main challenges is the remote location of the tele-
scopes, which requires sophisticated logistics during construction and operation. For-
tunately, the South Pole is a location that offers large volumes of ice as well as research
infrastructure via the Amundsen Scott South Pole station. Additional experimental
challenges arise from the fact that water bubbles frozen in the ice cause a significant
amount of light scattering. The amount of air bubbles, however, decreases with depth,
and this challenge can be mitigated—at least to a certain extent—by deploying sensors
at depths below 1500m. Sensor deployment is carried out via the use of a hot water drill,
and the deployment of sensors in a single borehole takes approximately 48 hours. After
deployment, the sensors are frozen into place and cannot be accessed for maintenance.
This thus requires the use of extremely reliable sensors, both in a mechanical and an
electronic sense. The sensors used in IceCube were found to operate in an extremely
reliable fashion, and in fact, most sensor failures did occur during deployment.

With respect to deployment and maintenance, the use of water is somewhat less
challenging, as sensors and sensor units can be deployed by ship and also recovered
for maintenance if necessary. Research infrastructures required for the operation of the
telescopes are generally located at the coast in the vicinity of the installed telescopes.
Although the scattering of Cherenkov photons only plays a minor role in water, two
other main experimental challenges arise. The first one is associated with the decay of
40K, which, due to its natural abundance, gives rise to increased noise rates observed
by the sensors. A second challenge arises from the presence of bioluminescence in
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the ocean, which also contributes to the increasing background noise recorded by
individual sensors.

Although neutrino telescopes in ice and water are equally important for neutrino
astronomy as they complement each other with respect to the utilized techniques but
also with respect to the observation of certain parts of the sky. The remainder of this
sectionwill briefly introduce the IceCubedetector. This is due to the fact that all neutrino-
related analyses in this book use data obtained with the IceCube neutrino telescope. A
brief understanding of the detector itself is thus a prerequisite for a comprehension of
the analyses.

Fig. 2.2: Sketch of the IceCube neutrino observatory. Image courtesy of the IceCube collboration.

Figure 2.2 shows a schematic sketch of the IceCube neutrino observatory, located at
the geographic South Pole. The detector consists of 86 strings arranged on a triangular
grid with a string-to-string spacing of approximately 125m. Strings in the center of the
detector have a smaller spacing of roughly 70m and form the DeepCore sub-detector.
While the energy threshold of the entire in-ice array is Eν ≈ 100GeV, DeepCore is
optimized for neutrino energies as low as Eν ≈ 10GeV.

IceCube strings are equipped with Digital Optical Modules (DOMs), which house a
downward-facing 10" photomultiplier tube, as well as high voltage supply and readout
electronics. The DOM-to-DOM distance on a string is 17m, except for DeepCore strings,
where the DOM spacing is only 7m. In order to utilize the clear deep ice at the South
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Pole, DOMs are deployed at a depth between 1450m and 2450m below the surface.
The surface component IceTop, which serves as an air-shower array, completes the
detector [21]. Although primarily designed for the detection of high-energy neutrinos
from astrophysical sources, IceCube is a multi-purpose detector with a large scientific
portfolio, as depicted in Figure 2.3.

Fig. 2.3: The IceCube science portfolio. Graphic courtesy of the IceCube collaboration.

Although the instrumented volume of the detector is one cubic kilometer, the actual
size of the detector can be larger or smaller, depending on the analyzed particle type
and interaction. On the one hand, electron neutrinos and neutral current interactions
might require the definition of a veto region. Often the outer string of DOM layers is used
for such veto regions, which of course, lowers the volume available for the detection
of particle interactions. Muons, on the other hand, can traverse large distances in ice
and can consequently be produced far outside the instrumented volume. While this
increases the volume available for particle interactions, the lack of knowledge on the
interaction vertex at which the muon has been produced is a significant challenge
for the reconstruction of neutrino energy spectra (see Section 10.6). Furthermore, the
long-range of muons allows atmospheric muons produced in cosmic-ray interactions
in the atmosphere to enter the detector in large numbers. Although they are interesting
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in themselves, these atmospheric muons are the largest background component in
basically all neutrino analyses.

Based on the event signature, atmospheric muons cannot be distinguished from
neutrino-inducedmuons, but the simplest formof background rejection canbe achieved
via geometrical arguments: as the Earth is opaque for muons, upward-going neutrinos
have to originate from neutrino-interactions. Discarding all downward-going muons is
thus a promising background rejection strategy.

This strategy comes with a caveat, however: a small fraction of downward going
muons will be falsely reconstructed as upward going. Due to the overwhelmingly large
number of atmospheric muons relative to atmospheric muons, this small fraction still
leads to a signal-to-background ratio of approximately 10−3. This remaining back-
ground is significantly harder to discard but can be efficiently rejected by the use of
machine learning-based analysis techniques. These approaches and, of course, the
lessons learned from them, are the subject of this book.

A physics analysis is not complete once the background has been sufficiently re-
jected. In order to gain physics insight from the data sample, it needs to be analyzed,
and physics parameters need to be extracted. A particularly challenging type of anal-
ysis in astroparticle physics is the reconstruction of energy spectra. The challenges
arise from different sources. First, the underlying processes of particle production are
governed by stochastical processes, which are mathematically covered by the Fredholm
integral equation of the first kind. This, in turn, means that the sought-after spectrum
can only be successfully recovered from distributions of measured observables via the
use of deconvolution techniques. Further challenges arise from a secondary amount
of smearing introduced by the detector itself. For neutrino telescopes, this additional
smearing is mainly introduced by the fact that muons can be produced far outside
the detector. While awaiting their detection and traveling towards the detector, these
muons consequently lose a certain part of their energy. The energy of the incoming
muon (neutrino induced or not) is thus somewhat smaller than the energy of the muon
at its production vertex. Electronic noise and uncertainties in the description of im-
purities in the ice only add to this. It is then the task of the deconvolution algorithm
to recover the neutrino energy spectrum from the inaccurately measured distribution
of neutrino-induced muons. It becomes quite clear that it is a challenging task that
requires a certain amount of algorithmic development. We have thus dedicated an
entire chapter to deconvolution for an in-depth coverage of this topic (see Chapter 10).

The quality of spectral reconstruction does improve with the quality of the under-
lying energy reconstruction, but neutrino telescopes also suffer from their relatively
poor angular resolution. IceCube, for example, has an angular resolution of ≈ 0.7∘ for
tracks and of ≈ 15∘ for cascades. For comparison, the size of the Sun and the Moon in
the sky is on of the order of 1°. A good angular resolution is, however, a prerequisite for
the detection of astrophysical neutrino sources. Over the past decade, deep neural net-
works have been extremely successful in various task areas, e.g., image reconstruction.
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Within this book, we also show how neural networks can be applied to reconstruction
tasks in neutrino astronomy (see Section 9.2).

Although spread out over several thematic chapters, this book will guide the reader
through an entire analysis in neutrino astronomy, ranging from data acquisition (Sec-
tion 4.2.3), feature selection and track reconstruction (Section 7.2) to background re-
jection (Section 8.3.1) and finally to the deconvolution of neutrino energy spectra (Sec-
tion 10.6).

2.2.1.2 Gamma-Ray Astronomy
Lena Linhoff

Alicia Fattorini

Just as neutrino astronomy, ground-based gamma astronomy exploits the Cherenkov
effect to visualize particles that are not directly accessible. In this case, the Earth’s
atmosphere is used as adetectormedium to observe gamma rays in an energy range from
roughly 50MeV to 30 TeVoriginating fromdistant galaxies or supernovae. Bymeasuring
and analyzing these particles, we gain knowledge about the gamma-ray sources in the
universe, their composition, and the mechanisms that drive their behavior.

If a high-energetic particle, no matter if it is a gamma ray or a charged particle,
hits Earth’s atmosphere, it produces a cascade of charged particles. These so-called
secondary particles inherit a fraction of the primary particle’s energy and propagate
through the air at high velocities, which might be faster than the speed of light in that
medium. The particle cascade emits Cherenkov radiation, which is visible for a few
nanoseconds as a large blue to the ultraviolet light cone. From the size, shape, and
orientation of this Cherenkov cone, one can derive information about the energy, type,
and origin of the primary particle.

Since Cherenkov light is extremely faint and the cone is visible only for a few
nanoseconds, a big light collector and camera are needed that are capable of resolving
these very short timescales. These requirements are technically realized as Imaging Air
Cherenkov Telescopes (IACT). IACTs consist of large spherical mirrors with a diameter
of several meters that reflect the Cherenkov light into a camera equipped with pixels
that are capable of detecting detect single photons. In very high energy gamma-ray
astronomy, the camera pixels typically consist of several hundred photomultiplier
tubes (PMT) or silicon photomultipliers (SiPM).

When the camera is triggered by incoming light, a time series of roughly 100
nanoseconds is recorded for every pixel. Based on these time series, the number of
photons hitting the pixel and their arrival time are calculated. Once these values are
derived, the pixels containing the actual Cherenkov shower are selected from the whole
camera image based on their photon charge and arrival time. The selected pixel groups
are then parameterized, taking into account their shape, position in the camera, and
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light distribution. Once the data is reduced this way, one ends up with a set of parame-
ters belonging to a single event. In modern telescope setups, two or more Cherenkov
telescopes are used to observe the same shower from slightly different positions at the
same time. This way, the parameter sets of all telescopes are combined, and the posi-
tion and energy reconstruction can be improved using the information of all observing
telescopes. The resulting data set is then used to estimate the primary particle’s type,
energy, and origin via the data analysis techniques further explained in the following
chapters. As soon as the energy and origin are reconstructed, the source’s spectral
energy distribution and flux variations as a function of time can be computed and
studied further.

As already described for neutrino astronomy, gamma-ray astronomers also have to
deal with a large background that has to be separated from the actual signal in one of
the first steps. With a factor of roughly 105, the background is, in this case, dominated
by hadronic particles that induce similar showers as gamma rays. In contrast to gamma
ray-induced showers, these showers cannot be traced back to a specific source because
charged particles are deflected by magnetic fields on their way through the universe.
Therefore they do not carry any source-specific information and have to be separated
from the gamma-ray events.

An IACT’s observation capacity is limited mostly by sunlight and moonlight and its
location on Earth, which restricts the sources that can be observed. Since the Cherenkov
showers are very dim and the camera electronics are extremely sensitive, ground-
based gamma-ray observations can take place only during nights with no or moderate
moonlight and far away from man-made light sources in urban areas. Furthermore,
the sky must be transparent for the Cherenkov light, which means that bad weather
conditions and clouds heavily affect the observation quality. Therefore IACTs are mostly
built at remote places, several hundred to thousands of meters above sea level, to
ensure stable observation conditions.

Among other IACTs, the Major Atmospheric Gamma-Ray Imaging Cherenkov Tele-
scopes (MAGIC [47, 48]) are the world’s largest operating stereo system. MAGIC is
located at the height of 2200m at the Roque de los Muchachos, the main volcano of
the Canary Island, La Palma, Spain. Each telescope has a mirror with a diameter of
17m, focussing the light into the camera with 1039 PMTs. The telescopes are sensitive
to gamma rays with energies between 30GeV and 100 TeV, depending on observation
and trigger settings. The construction of the first telescope was completed in 2004, and
the second telescope started operations in 2009. With a series of upgrades in 2011 and
2012, MAGIC got a stereo trigger and readout system to performmeasurements in stereo
mode.

MAGIC has provided many scientific insights over the years. With the detection
of very-high-energy gamma rays from the known blazar, TXS 0506+056 in 2017 [55],
a breakthrough was made in the astrophysics community regarding the question of
the origin of high-energy cosmic rays. The observed gamma rays were temporally and
spatially correlated with a neutrino event reported by IceCube, which confirmed blazars
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to be the most promising candidates for neutrino sources. With its lightweight structure
based on carbon-fiber tubes, MAGIC is able to reposition with a speed of 7 °/s. After
a gamma-ray burst (GRB) was detected with the Swift-BAT satellite in 2019, an alert
was sent to the Gamma-ray Coordinates Network (GCN), and MAGIC managed to start
observations only 50 seconds after the burst. With this effort, a gamma-ray burst was
detected with an IACT for the first time [365, 383].

Next to MAGIC is a second telescope, the First G-APD Cherenkov Telescope (FACT)
[53], which was originally designed for employing and testing novel camera technology.
It is the first IACT with a camera made of SiPMs (1440 pixels) instead of PMTs. The FACT
mirror has a diameter of 3.5m. The telescope is sensitive to gamma rays with energies
from several hundred GeV up to about 10 TeV.

Fig. 2.4: The LST-1 (back) and the FACT (front) at the Roque de los Muchachos Observatory in La
Palma, Spain. Photo: Maximilian Linhoff/TU Dortmund University, 2021.

Meanwhile, the new generation of IACTs is under construction. The Cherenkov Tele-
scope Array (CTA) [120] will consist of more than 100 telescopes in La Palma, Spain,
and Paranal, Chile, providing a view of the northern and southern skies. Three types
of telescopes are planned: Large-, Medium-, and Small-Sized Telescopes, called LSTs,
MSTs, and SSTs. Each type has a specific size of the reflector surface and covers a certain
energy range, resulting in a wide total energy range from 20GeV to 300 TeV for the
whole telescope array. CTA will be ten times more sensitive than the current generation
of IACTs and will have a higher energy resolution. The construction of the first LST at
La Palma was completed in 2018, and after the commissioning phase, three further
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LSTs will be built at the site. With unprecedented sensitivity from IACT systems, CTA
will open a new window on the universe and enable the discovery of new gamma-ray
sources .

2.3 Particle Physics

Bernhard Spaan
Holger Stevens

The discovery of nuclear fission in 1939 is one of the primary reasons for establishing
particle physics. Nowadays, the focus of interest is not on the atomic level but on sub-
atomic elementary particles. These elementary particles are influenced by multiple
forces. In the 1970’s, a theory was developed that describes the particles and the cor-
responding forces, known as the standard model of particle physics. With the model,
predictions of various physics processes are possible. The most straightforward pre-
diction is the ratio of different decay modes from a so-called mother particle. To test
such predictions, such decays must be observed. As the particles of interest are not
stable and decay very fast, they needed to be produced in a detector. The particles are
produced by accelerators, which collide high energetic particles. From the free energy
in the collision, new particles can be formed. This transformation possibility is com-
monly known as Einstein’s equation E = mc2. It is important to note that the produced
particles’ type, energy, and flight direction are unknown a priori. Therefore one of the
main challenges of particle physics detectors is to reconstruct and identify particles.
Because they decay fast, this is done indirectly via the reconstruction and combination
of their daughter particles. An essential tool is Monte Carlo simulations. They are used
before and during the construction of a detector to simulate the expected performance.
However, the simulation is also used for cross-checks and error estimations to analyze
the actual data.

2.3.1 Experiments

The LHCb experiment at the Large Hadron Collider (LHC) at CERN has been designed
to probe the standard model with high precision measurements. The main focus of
the experiment is the analysis of particles consisting of at least one heavy quark, the
b-quark or its antiparticle, the b̄-quark—sometimes also called the beauty- or bottom
quark. The so-called b-hadrons (B-mesons or b-Baryons) are relatively short-lived with
a lifetime of about 1.5 ps, thus decaying after traveling on average approximately 1 cm
to a few other particles that are long-lived and thus can be detected by the experiment.
At the Large Hadron Collider, bunches of protons collide with other bunches of protons
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at center-of-mass energies of up to 14 TeV. The collision of heavy ions with heavy ions
or heavy ions with protons is also possible. LHCb can take data in all running scenarios.
However, the experiment primarily collects proton data. In these collisions, pairs of
b-quarks, namely a b and b̄ (the anti-b-quark), are copiously produced. However,
processes involving the production of lighter quarks or gluons are much more frequent
by approximately a factor of 100. In addition, many other particles are produced in a
single collision of 2 protons. For example, in a collision of 2 protons where a b̄-pair is
produced, only a few percent of all particles visible in the detector stem from the decay
of the B-hadrons. b-hadrons have typically several hundred different decay modes
where those of interest for the data analyses of LHCb occur only with a fraction of 10−3

or less, sometimes as low a 0− or even less than that.
Processes of particular interest involve neutral B-mesons (B0s : b̄s, B0d :: b̄d)

decaying to final states that are sensitive to violation of the symmetry between particles
and antiparticles. The analyses of these decays bear the potential to shed some more
light on the origin of the CP-violation and thus on themystery of the apparent asymmetry
between matter and antimatter in the universe, which the standard model of particle
physics cannot explain. The need for precisionmeasurements of these types of decays is
the driving factor in the design of the LHCb-experiment. Due to a very subtlemechanism,
neutral B-mesons can oscillate between particle and antiparticle states during the short
time between production and decay (BB̄-oscillations). Since there are certain types of
B-meson decays with common final states (CP-eigenstates) for B0 and anti-B0-mesons
(B̄0), the interference between (BB̄-oscillations and decays into such CP-eigenstate give
rise to measurable CP-violation effects. The measurements of the magnitude of these
CP-asymmetries are then used to probe the standard model of particle physics with
precision. The measurement principle is to determine differences between decay rates
of B- and B̄-mesons at the time of production t = 0 as a function of time until they
decay. This measurable asymmetry ACP can be written as follows:

ACP =
Γ(B0(→ fCP) − Γ(B̄0(→ fCP
Γ(B0(→ fCP) + Γ(B̄0(→ fCP

, (2.1)

where fCP denotes a CP-eigenstate such as J/ψK0S or D+D−. Obviously, it is impossible
to tell from the decay final state whether the initially produced meson has been a B- or
a B̄ meson. Likewise, it is impossible to know whether the decaying meson was a B-
or a B̄ meson at the time of decay. However, it is essential to determine the "flavor" of
the initially produced meson, i.e. B or B̄. As pointed out, the design of the experiments
reflects the need to perform these precision measurements. Compared with other large
particle physics detectors at the LHC, such as ATLAS or CMS, LHCb has a different shape,
as can be seen in Figure 2.5, where cross-sections of CMS and LHCb are shown. CMS is a
so-called 4π-Detector, with a maximum coverage symmetrically around the interaction
point where the protons collide. By contrast, the interaction point at LHCb is not the
center of the detector but almost at one side. The detector topology resembles a forward
spectrometer typically used in fixed-target experiments. It thus detects only particles
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emitted from the interaction point within an angle between ≈ 15 and ≈ 300mrad
around the beam axis. Although only a tiny fraction of particles produced in a collision
can be detected, it turns out that about 1

4 of all bb̄-quark pairs, and thus their decay
products are directed into this region. This phenomenon is caused by the fact that
protons are very complex objects, consisting of so-called partons, which consist of 3
valence quarks and a vast number of quark-antiquark pairs as well as gluons. When

Fig. 2.5: Cross-section of the detectors: CMS (left) and LHCb (right). [244]

two protons collide, the primary interaction at the LHC is typically the interaction of
2 gluons, which may produce a bb̄-quark pair, whereas the remainder of the proton
is initially not involved in this process. The momentum of a proton is the sum of the
momenta of all partonswithin the proton. Thus, the partons participating in the primary
interaction may carry very different momenta, resulting in a boost of the bb̄-quark pair
along the beam axis. Another feature of the strong interactions is that free quarks
cannot be observed. It turns out that the binding potential between a quark and an
antiquark as a function of the distance between the quarks r can be described as

Vqq̄(r) ∝ −
α
r + κr, (2.2)

where α is the (running) coupling constant of the strong interaction and κ ≈ 1GeV/fm.
Therefore, an energy of ≈ 1GeV is needed to separate two quarks by just 10−15m. Now
consider a bb̄ being created with high momenta in opposite directions in the rest frame
of both colliding partons. An enormous field-energy will be created between the quarks
separating from each other. According to Einstein’s famous formula E = mc2, it turns
out that it is energetically preferred to create numerous qq̄-pairs out of the field energy,
which subsequently find partners to form hadrons such as mesons (qq̄-pairs) and
baryons (3 quarks) and antibaryons (3 antiquarks). These newly produced particles
are then visible in the detector. This simplified picture should be used to understand
what events at the LHC look like. Thus, several hundred particles can be produced
in a high-energy proton-proton collision at the LHC within a range of mostly a few
femtometer, thus appearing to stem from a single point, known as the primary vertex.
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This brings us back to the bb̄-pairs being produced with momenta, which points to the
acceptance of the LHCb detector. They will form B-hadrons accompanied by numerous
other particles. The lifetime of about 1.5 · 10−12s makes these particles unique. Many
other particles will decay almost immediately. Thus they will decay within the range
mentioned above of few femtometer. B-hadrons will travel on average ≈ 1 cm before
they decay. Only very few charged particles species have lifetimes that allow them to
travel through the entire detector: electrons (e±), muons (μ±), pions (π±), kaons (K±),
and protons (p, p̄), and very light nuclei such as deuterons, which are produced only
very rarely. As the decay of B-mesons such as B0d or ¯B00s will follow an exponential
distribution, the average time between production and decay is thus the lifetime. The
actual decay time t can be determined by their flight distance ℓ:

ℓ = βγt, (2.3)

where β is the velocity of the B-meson v divided by the speed of light c, and the Lorentz
factor γ is:

γ = 1√︀
1 − β2

. (2.4)

As B-mesons ultimately decay into long-lived particles, we can use the measured trajec-
tories of the charged long-lived particles from B-meson decays to infer their location
of decay known as the secondary vertex. Likewise, the primary vertex can be located
similarly. Thus, we have derived a crucial design criterion for the LHCb detector, namely
to have the ability to reconstruct primary and secondary vertices with precision. The
next design criterion can be easily derived: B-mesons have to be identified, and their
momenta have to be measured with precision to derive the decay time from their flight
distance ℓ. The LHCb detector is shown in Figure 2.6. Several tracking detectorsmeasure
the trajectories of charged particles. At the interaction point, one can find the Vertex
Locator (VELO), which is capable of measuring track hits very close to the beamline.
The innermost sensors have a radial distance from the beam of just 5 millimeters, which
is perilously close compared with other detectors. Using the vertex locator, the track
parameters can be measured with high precision, enabling us to extrapolate them
towards the beam to find primary and secondary decay vertices. As seen from the inter-
action point, there is one tracking detector (TT, tracker turicensis) just in front of the
magnet, and another tacker just behind the magnet, consisting of the Inner Tracker
(IT and the outer Tracker (OT). With the current upgrade of the experiments, all three
trackers will be replaced by a new tracking detector. The IT/OT tracker will be replaced
by the ScFi-Tracker (Scintillating Fibre), whereas Upstream Tracker (UT) has a very
similar sensor technology to the TT. The Upgraded VELO will now contain a pixilated
sensor, increasing the number of channels significantly. With tracking detectors in
front of and after the magnet, the bending of the charged tracks in the magnetic field
can be measured, which enables the determination of their momenta. However, several
ingredients are still missing as we need to know which type of particles have been
measured. This is highly relevant for the measurements on CP-violation or rare decays
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Fig. 2.6: The LHCb detector. [51]

of B-mesons. Therefore, the next design criterion is to have the capability of identifying
the different particles in a given event.

Several sub-detectors are devoted to this task. The sub-detector furthest away from
the interaction point is known as the Muon system, a dedicated muon identification
system. This system identifies muons by particles traversing the detector because all
other particle species will be absorbed by the calorimeters and the absorbers of the
muon system with the highest probability. Typically, all detectors at particle colliders
will have a muon system, as the presence of muon is an excellent indication of an
exciting physics process in the event. The aforementioned calorimeters consist of an
electromagnetic calorimeter followed by the hadron calorimeter. Contrary to all other
charged particles with high momentum, the electron will be stopped in the calorimeter
and thus deposit its total energy. The measurement of the deposited energy, together
with the momentum, provides information about the presence of an electron. The other
large detectors are equipped with calorimeters and muon systems.

Identifying pions, kaons, and protons is a bit more complex, as, unlike electrons
andmuons, they do not have specific properties that allow their identification. However,
they have different masses, which results in particles with the same momentum having
different velocities. Thus, a measurement of the velocity can be used to infer the mass
of a particle when the momentum is known. Due to the relativistic nature of particles
with high momenta, the velocity of the particles with different masses is very similar,
making a direct measurement of the velocity difficult. However, using Ring-Imaging
Cherenkov detectors, information on the velocity of high momentum particles can be
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inferred. LHCb has two of those detector types, called RICH1 and RICH2. They make
use of the fact that light is emitted when a charged particle traverses a medium with
a velocity greater than the speed of light in this medium. The light is emitted under
a velocity-dependent angle with respect to the trajectory. With sophisticated optics,
this light is a projector to a sensor plane, where the light associated with the trajectory
appears as a ring.

It might appear that the purpose of the calorimeters is mainly to identify electrons
and absorb other particles. The electromagnetic calorimeter is responsible for measur-
ing the energy of lighter particles, such as electrons and photons, while the hadron
calorimeter samples the energy of hadrons, i.e., protons, neutrons, and other particles
containing quarks. In principle, the detector components are now available to perform
the measurements. However, the data from the sub-detectors must be transformed into
physical quantities used in the analysis. For example, individual hits in an event need
to be associated with a track, for which the momentummust be determined. This will
be discussed later.

The measurement of ACP shall now be described to illustrate the interplay of the
various sub-detector components. The decay channel B0 → J/ψK0S is known as a
golden mode, which has a large CP-asymmetry and very little theoretical uncertainties
in the interpretation of the measurement. The J/ψ is a short-lived meson, which is
reconstructed in the decay mode J/ψ → μ+μ−. Thus, the excellent muon identification
capabilities ensure the proper selection of the signal. The K0S -meson is reconstructed in
the decay mode K0S → π+π−. The electrically K0S has a lifetime of ≈ 10−10s which results
in much larger decay flight distances of up to O(1m) when compared with that of the
B0-meson. Therefore, the precision of determination of the secondary decay vertex of
the B0-meson relies mainly on the proper reconstruction of the J/ψ decay vertex. From
the measured momenta p⃗μμ = pμ+ + pμ− and energies Eμμ = Eμ+ + Eμ− of the muons, it
is straight forward to determine the invariant mass mμμ of the system:

mμμc2 =
√︁
E2μμ − p2μμc2.

The reconstructed invariant dimuon mass spectrum has a shape that resembles a
Gaussian distribution on top of some background. A typical invariant mass spectrum
indicates signal (J/ψ) and background. Figure 2.7 depicts the general shape of the
spectrum and a certain background level. The presence of background is due to several
sources. For example, combinatorial background arises if two muon candidates are
combined where one or two of the muons candidate do not stem from the J/ψ decay.
Their respective invariant math will cover a wide mass range, whereas in the signal
case, the invariant mass shape follows mainly the mass resolution.

In addition, there is the possibility that a muon candidate is identified as a muon.
This might happen with a relatively low probability should, say, a hadron not be ab-
sorbed. Although the individual survival probability is very low, the number of hadrons
is significantly larger than the number of true muons in the events. The data analysis
has a handle to change the background level. For example, the information on the
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Fig. 2.7: Illustration of a typical invariant μ+μ− mass distribution, depicting signal and background.

quality of the secondary vertex reconstruction can be used to reduce the probability of
combining particles that do not originate from the same (secondary) vertex. Similarly,
the K0S -mesons will be reconstructed from two oppositely charged pion candidates.
There are some possible backgrounds, such as decays from other similarly long-lived
particles decaying, for example, to a proton and a pion. Again, the misidentification of
particles gives rise to background levels. As pointed out, particle identification using
various sub-detectors comeswith a certainmisidentification probability. In order tomin-
imize the misidentification probability, the information provided by all sub-detectors
is combined to form a single variable called ProbNN. The combination turns out to be
complex and is based on a neural network approach that gives variables their name.

In principle, reconstructing B0-mesons candidates from J/ψ- and K0S -candidates
follows the same procedure by determining the energy and momentum of the B0 can-
didate by adding energies and momenta of the J/ψ- and K0S -candidates. However, for
basically all analyses, it is of utmost importance to minimize the effects of backgrounds
on the measurement of, e.g., CP-asymmetries. Accepting only J/ψ- and K0S -candidates
with masses in the range defined by the resolution function is standard practice. Many
other criteria can also be used to optimize the selection further. In most analyses, ma-
chine learning methods are used to achieve an optimal selection. Boosted decision
trees or neural nets are typically used.

The selection of the signal channel to measure CP-asymmetries is just the first
step. As pointed out, it is necessary to determine momentum and flight distance to
derive the decay time of the particle. The momentum is known after the selection. To
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Fig. 2.8: Illustration of a typical B-decay topology. Charged tracks emerging from the primary vertex
and other vertices are depicted as solid straight lines. The tracks are extrapolated using the track
parameters determined by the tracking systems. The B0-meson (dashed-dotted red line) travels on
average ≈ 1 cm before it decays—in this case: B0 → J/ψK0S . The J/ψ would decay almost instanta-
neously, where for the analysis, the decay into two leptons is relevant (μ+μ−, e+e−). The K0S-meson
(dashed-dotted green line) has a considerably longer lifetime than B-mesons.

determine the flight distance, the charged tracks associated with the reconstructed
B-candidate are used to reconstruct the secondary vertex of the B-meson. Therefore, the
measured track parameters of the track are used to extrapolate the trajectory of the track
towards the beamline. Due to the long lifetime of the K0S -mesons, the extrapolation of
the track parameters of the pions will have considerably larger errors at the location of
the B decay vertex. Thus, the precision in the measured vertex positions arises mainly
from the muon track parameters. The location of the primary vertex can be readily
determined from the numerous other tracks in the event. A sketch of the decay topology
is shown in Figure 2.8.

The next ingredient of analysis is called tagging, the determination of the "flavor"
of the B0-meson under consideration at the production time. The determination of
whether it was a B0 or a B̄0 at t = 0 relies on the fact that B-quarks are produced in
pairs. Since only a fraction of the produced b-quarks will end up in neutral B-mesons,
information on the other B-hadron produced in the same reaction will provide an
answer. There is more useable information in the event, say, from mesons produced
close to the neutral B-meson under consideration. In order to retrieve the desired
information, excellent particle identification capabilities are necessary—another strong
constraint in the design criteria for the LHCb experiment. Despite the excellent detector,
the probability of having a proper tag in a given event is very small.

What is known as tagging power ϵeff quantifies the effective statistical reduction of
the data sample due to imperfections in the tagging. Thus, the statistical uncertainty σ
on a time-dependent asymmetry measured on a sample of size N depends on ϵeff as
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σ ∝ 1/
√
N. The tagging power depends on the channel in which the CP-asymmetry is

measured. Despite all efforts, its value is typically well below 10%. Therefore, LHCb
invests a continued large effort to improve the tagging power. A doubling of the tagging
power corresponds to doubling the data sample with no further improvement, which
amounts to several years of data taking. In order to obtain the highest possible tagging
power, new tagging methods are being developed, based on deep neural networks.

Obviously, it is necessary to determine the efficiency of the detection and extraction
of physical observables such as CP-asymmetries. In addition, the influence of back-
grounds present in the data set needs to be known with high precision. For this type of
task, extensive Monte Carlo simulations are typically used.
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Abstract: Throughout this book, machine learning is employed in order to enhance
the knowledge about the structure of our universe and the understanding of particle
interactions through large data-producing physical experiments. This chapter gives an
overview of the structure of machine learning as a scientific discipline. Since we cannot
detail the methods and their foundations, we add pointers to relevant textbooks and
survey papers. Our goal is to raise awareness about the theoretical basis of machine
learning so that the software that machine learning generously offers is always used
with the appropriate caution.

3.1 Overview of the Field of Machine Learning

Machine Learning (ML) is the field of Artificial Intelligence (AI) that builds or enhances
a model of some phenomenon. We will give a short overview here, which shows the
structure of this large field. The levels of machine learning and their related theories
that we discuss are:
– The learning tasks that are most often given by objective functions to be optimized

are also well-known in statistics, see Section 3.1.1.
– Algorithms and libraries follow paradigms of processing, see Section 3.1.2. They

define pipelines of steps in the overall learning as described in Section 3.1.3. The
particular step of feature selection is illustrated by the minimum redundancy and
maximum relevance method in Section 3.1.4.

– Optimization methods, in particular Newton-Raphson and Stochastic Gradient
Descent, are explained in Section 3.2.

The structural view is completed by pointing at the theoretical questions of machine
learning (in Section 3.3). For the classes of learning methods, we selected to present
tree models (including the ensemble of trees) in Section 3.4 and deep neural networks
in Section 3.5 because these are the most common methods in the analysis of physical
data.
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Creative Commons Attribution 4.0 International License.
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3.1.1 Learning Tasks

Many approaches to machine learning can be described as finding a predictive function
h : X → Ywhere the learning task is specified byX, the domain of the input data, Y, the
domain of the output or label, and the risk measure that quantifies the quality of the
prediction. Instantiating the general scheme of learning tasks gives us the definition of
the most important classes of learning tasks.

Definition 1. Unsupervised Learning
Given a set of observations DU = {x⃗i ∈ X : 1 ≤ i ≤ N}
and a function ext : C → 2X returning all objects x⃗ ∈ X that are mapped to c,
find concepts {cj ∈ C : 1 ≤ j ≤ k}
such that each x⃗i ∈ X is mapped to a concept cj ∈ C,
and such that some quality function is optimized through this mapping.

Definition 2. Supervised Learning
Given a set of labeled observations DL = {(x⃗i , yi) ∈ X × Y : 1 ≤ i ≤ N},
find a mapping h : X → y
such that a quality measure is optimized.

Where the scheme of learning tasks might look simple, if we elaborate on the three
parts of it, we see how broad the space is that it covers.
– First, the input is characterized, ranging from formulas, database records, value

series, sequences, images, and linguistic input, to graphs or even other models.
Often, the input data are a sample of vectors DU with X being a d-dimensional
random variable. Each component is a feature or attribute of a certain domain. If
all features are real numbers, x⃗ ∈ Rd. The vectors might be organized into some
matrix A or into a series over an index t0, t1, ...tT . For graphs, in addition to the
vectors for nodes, there are also edges and possibly even edge features.
Learning tasks with just these input data are called unsupervised learning. Cluster
analysis and matrix factorization are popular methods of unsupervised learning. A
clustering delivers a set of concepts c1, ..., ck where each concept covers a set of
data points.
A method for selecting the appropriate set of features will be described in Sec-
tion 3.1.4.

– Second, the target is specified. If a target value or label yi is given for every x⃗i,
we call the task supervised learning. Classification assigns a class to an example,
h : X → y, y ∈ {+1, −1}. Regression assigns a real number to an instance, i.e.,
y ∈ R. For time series data, the task is either a classification, i.e. the time series is
an instance of a class y, or a forecast, i.e. given a series x⃗t0 , x⃗t1 , ...x⃗tT find x⃗T+s for
a time span s.
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It is possible to also have more complex output [370]. In speech recognition, for
instance, a value series of audio input has to be mapped to a series of words,
h : X → Y.
Since the acquisition of the labels yi for all given data DU might be costly, semi-
supervised learning uses a small set of observations x1, ..., xm together with their
labels y1, ..., ym in addition to a huge set of unlabeled observations xm+1, ..., xN .
It was introduced in the form of directing clustering through expert given advice
[127] and then became generalized for text data [340] and graphs [266].
Methods that actively determinewhich labeled data have the best utility for learning
are called active learning. They optimize theutility of labeling for learning regarding
its cost. Self-supervised learning goes even one step further in that no human
annotation is needed. Instead, the learner forms learning tasks on the basis of the
given data. A component of example vectors or some part of a value series is used as
the label that is to be predicted. Themodel is tested on exampleswith amask hiding
the label part. A more sophisticated approach is to distract the examples, train
models on the changed and the true data, and learn how to distinguish between
models [75].

– Third, a loss function, quality measure , or risk function is indicated, i.e., a
condition that must be valid for the learned model. RD : Rd → R. It is evaluated on
labeled or unlabeleddataDL orDU . This opens the floor for optimization techniques
[95, 293]. The broad field of optimization ranges from evolutionary algorithms [74]
to (stochastic) gradient descent [92].
In addition to minimizing the loss or maximizing the likelihood, the goal is to
minimize the model complexity and prevent it from overfitting the training data.
In general, regularization adds a penalty term to the loss function. This can also be
coined as multi-objective optimization [269]. Quality measures and optimization
will be described in Section 3.2.

Let us illustrate the three parts of a learning task by regression to see their interaction
more clearly. Learning a linear regression function is a simple but widespread task.
Regression functions appear in three notations: as a sum, as a matrix product, and as a
scalar product:

ŷ = hβ⃗(x⃗) =
d∑︁
i=1

βixi = x⃗T β⃗ = x⃗ · β⃗

We see that the parameter vector β⃗ affects the predictions by weighting the features xi
in a weighted sum.

To learn a model from the data set DL, we must decide on a risk measure. For linear
regression, a popular choice is the mean squared error between the predictions and
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the ground-truth values.

MSE(β⃗;DL) =
1
N

N∑︁
i=1

(yi − hβ⃗(x⃗i))
2

Due to the simplicity of the linear regression model, it is possible to find a parameter
vector β⃗* = (X⊤X)−1X⊤Y that is optimal in the sense of the MSE. In general, however,
finding a solution is not that easy. More complex models and loss functions require
numerical optimization techniques to select an optimal parameter vector.

The risk measure is typically defined as the average value over example-wise loss
values. These loss values are specified through a loss function ℓ : Y × Y → R, which
assigns a score to each individual prediction ŷ. Namely, the (empirical) risk RD, which
is to be minimized over β⃗, is defined as

RD(β⃗) =
1
N

N∑︁
i=1

ℓ(hβ⃗(xi), yi) (3.1)

For instance, the mean squared error for linear regression is based on the loss function
ℓMSE(ŷ, y) = (ŷ − y)2. A different choice is the zero-one loss with ℓ01(ŷ, y) = 0 if ŷ = y
and ℓ01(ŷ, y) = 1 otherwise. This latter choice results in RD estimating the probability
of misclassifications and is therefore a suitable measure for classification tasks. Other
choices of ℓ include the hinge loss, the Huber loss, and many others [327].

Independent of which particular loss function is employed, we want the resulting
risk to be as small as possible, so that the predictions ŷ are as close to the true outcomes
y as possible. However, we must keep in mind that the empirical risk RD is only a
substitute for a greater goal: a minimum expected risk R, which is valid for the entire
data distribution.

R =
∫︁

X×Y

P(x, y) · ℓ(fβ(x), y) dx dy (3.2)

This greater goal stems from the fact thatwewant to predict future data that is unlabeled.
In otherwords:we intend to learnprediction functions that generalize from theobserved
data DL to any data set from the same distribution. The difference between R and RD
becomes apparent when we split the data into training and validation sets: if the model
classH is powerful enough to memorize the training set, so that RD = 0, we typically
observe a validation error that is greater than zero.

One lesson from observing the difference between R and RD is that we typically
want to prevent our models from amere memorization of the training set D. To this end,
we can employ regularization techniques that impose additional constraints on the
model structure. The objective of a regularized optimization task, with a regularization
function r : Rd → R and a regularization strength λ ∈ R, is:

β⃗* = argmin
β⃗

RD(β⃗) + λr(β⃗) (3.3)
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The function r typically does not depend on the training data D but on structural prop-
erties such as sparseness, that are desired in an anticipated solution. We substantiate
this discussion with two exemplary regularizers, namely the L1 and the L2 norms. The
L2 norm, also known as the Euclidean norm, is a popular penalty term that imposes
small parameter values. It has the additional benefit of facilitating optimization by
being strongly convex. In neural networks, the L2-norm regularization is also called
“weight decay”.

rL2(β⃗) =|| β⃗ ||2=

⎯⎸⎸⎷ d∑︁
i=1

β2i =
√︁
β⃗T β⃗ =

√︁
β⃗ · β⃗

Picking up the linear regression model, the L2-norm regularization leads to the popular
ridge regression technique:

min
β⃗

N∑︁
i=1

(yi −
d∑︁
j=1

xijβj)2 + λ
d∑︁
j=1

β2j

The L1 norm, also known as the Manhattan distance, promotes a different structure for
the solution. Instead of imposing small parameter values, it promotes some parameters
to be close to zero while leaving other parameters intact. In a linear model, L1-norm
regularization can thereby perform a selection of features simultaneous to learning the
prediction model.

rL1(β⃗) =|| β⃗ ||1=
d∑︁
i=1

βi = β⃗T 1⃗

Regarding linear regression models, L1-norm regularization leads to the popular LASSO
regression technique. For linear dynamical systems (LDS), L1 regularization has been
enhanced by a reparameterization approach based on an estimation of time-variant
dynamics [310].

Bayesian statistics realizes regularization through a given prior probability distri-
bution that decreases the complexity of the model. The SVM even selects the model
that minimizes the error and the model complexity at the same time [378, 381], as
measured by the VC dimension (see Section 3.3.1) [379]. Viewing machine learning
as data compression under minimum description length [325, 326] has further led to
frequent set mining in very large data volumes [384].

3.1.2 Processing Paradigms of Machine Learning

Data may be given as a large data set or may come in as a stream of data. The very large
data sets that do not fit into the memory of a single machine require distributed pro-
cessing. Computing on large distributed compute clusters has led to the programming
paradigm ofmap & reduce. A small example illustrates the idea. In the map step, a
function is applied to each element of a list, e.g., map(+1)[1, 2, 3] delivers [2, 3, 4]. In
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the reduce step, a function is applied to the overall list, e.g., reduce(+) then delivers
[2 + 3 + 4] [135].

Computing on streams does not allow the algorithm to look at a data point more
than once, in the extreme case. The potentially infinite stream moves through the
algorithm, which processes a data point and lets it go. A data structure to handle these
streams, however, needs to be finite like any other data structure. Therefore, it is often
necessary in practice to employ algorithms that only approximate the true properties
of the data stream, for instance, in approximate counting [259]. Novel algorithms for
learning from streaming data are proposed in Chapter 3 in Volume 1. An open-source
library of learning algorithms for massive data streams is MOA [83].

Astrophysical data are big data. The notion of big data indicates a very large volume
of data arriving with high velocity and in a large variety of types, which need to be
handled. Open-source software such as Apache Hadoop “allows for the distributed
processing of large data sets across clusters of computers using simple programming
models”.¹ The Hadoop Distributed File System (HDFS) offers a high throughput of data
via parallel and distributed data management. More generally, computer science has
developed architectures for big data. The lambda architecture combines the storage
of large data sets in a batch layer with a real-time component, the speed layer [261].
The kappa architecture stores the historical data in a way that processes them in a
data streaming manner [161]. Chapter 6 presents ways of storing large astroparticle
data in more detail. For a framework for learning from data streams see [87]. It has
been exploited for astroparticle analyses [88]. A study of big data management and
processing for the Cherenkov telescope FACT shows the overall pipeline of streaming
data analysis [278].

3.1.3 Machine Learning Pipelines

In general, a data science pipeline starts with the most demanding step, the mapping
from a scientific question to a learning task. Most often, the scientific question is split
into several ones, each with its own learning task. Chapter 1 describes the interplay of
theory development and data analysis in terms of epistemology.

Sampling from all observations the data to be analyzed follows the scientific con-
cern by, say, structuring the observations according to certain concepts. In neutrino
detection, for instance, we might be interested in muon, electron, or tau neutrinos and
thus form separate learning processes for these concepts. This is also true for simulated
data. If one class is dominating, we might change the given distribution. Section 5.2.2
shows how active class selection samples disproportionately from a skewed distribution
in order to achieve a sound classification.

1 http://hadoop.apache.org.

http://hadoop.apache.org
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The given data format often needs to be transformed for learning. For instance, standard
representations of time-stamped data can be transformed in several ways to allow for
a successful training of specific learning tasks [277]. The overall process of learning
needs to be documented with all meta-parameters. Machine learning frameworks such
as RapidMiner² offer reproducible, adaptable, and easy-to-understand processes. A
complete learning pipeline for the successful learning of neutrino recognition in the
IceCube experiment has been developed with RapidMiner [331].

What is most important for successful machine learning is the features of the
observed items. Selecting the features that ease learning is a first step. There are three
types of feature selection. First, filter approaches like the t-test [168] or SAM-statistics
[372] compute a scoring function on features, disregarding feature interplay. Second,
wrapper approaches [230] train a learner with possible feature sets and evaluate each
feature set by the accuracy of the embedding learning. Each feature set evaluation
demands a cross-validated training of the used learning algorithm. Third, some learning
algorithms provide the user with an implicit feature ranking that can easily be exploited
for feature selection. Such embedded approaches use the weight vector of a linear SVM
[381], or the frequency of feature use of a Random Forest (RF) [97]. They are aware of
feature interplay and are faster than wrappers but depend on the learning algorithm
used. In Section 3.1.4, we describe a general and efficient method of feature selection.

Processes of extracting features from the raw data are often tailored to particular
scientific questions. Chapters 7 andSection 8.4.1 present this for particular astrophysical
data.

Unsupervised learning may deliver features for a succeeding supervised learning. Un-
supervised learning delivers pseudo-labels that are used to optimize an overall cost
function as in supervised learning. This approach has also been put forward for neural
networks [114].

Such a two-step procedure has been taken to the extreme of one-shot learning [249].
One-shot learning adapts given knowledge, which may have been learned before, to a
small set of examples. A Bayesian approach works especially well for image data since
there are regions of interest that could be interpreted as shapes and characteristics of
appearance, e.g., a set of textures. First, pictures of a set of categories are presented to
train a prior probability density function. The probabilities of shape and appearance
for categories are the given knowledge that forms the space of features. Then, only one
labeled example is needed to correctly classify all the instances that are close to it in
the learned feature space. This is one type of one-shot learning.

Extracting the features that allow classifier learning with high accuracy can be
automatized as a process, where the outer loop of learning and its evaluation with
respect to a quality measure embeds an inner loop that creates novel features on the
basis of given data. Autonomous feature extraction relies on a well-structured space

2 https://rapidminer.com.

https://rapidminer.com
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of possible features. Shape and texture have been structured image classification. For
value series, a structure over base transformations and shapes of curves has been
developed and used for autonomous feature extraction via an evolutionary algorithm
[270]. There, features are represented as trees of methods. The evolutionary algorithm
creates new features by adding methods to a tree or combining trees. It optimizes over
populations of method trees, and in that way performs feature selection.

Some learning algorithms provide the user with an implicit feature ranking that
can easily be exploited for feature selection. Such embedded approaches use the weight
vector of a linear Support Vector Machine (SVM) [381] or the frequency of feature use
of a Random Forest (RF) [97]. As has already been underlined by Tom Mitchell, the
hidden layers in a neural network discover useful intermediate representations [274].
This corresponds to autonomous feature extraction with evolutionary algorithms in
that the nested loop is the neural network’s backpropagation, the outer learning is
the last layer, and the hidden layers create possible representations. The supervised
training of feed-forward networks is considered representation learning because they
extract patterns from the data in the hidden layers and optimize them such that the
learned weights strengthen the relevant local patterns [183].

Finally, we might want to optimize the learned model itself. In contrast to the
terminology in physics, the termquantization inmachine learning refers to compressing
a model by turning real-valued numbers into binary or integer ones. Binarized Neural
Networks (BNN) quantize theweights now to binary values [207]. A quantization scheme
for Tensor Flow maps real numbers to a binary representation and uses integer-only
arithmetic during inference and floating-point arithmetic during training, again for
saving resources [214]. An approach that fully trains Markov Random Fields (MRFs)
using only integer values has been developed in order to save energy [308]. It allows
learning and inference on ultra-low power devices that use integer-only arithmetic.

3.1.4 Minimum Redundancy Maximum Relevance (MRMR)

The features span the space in which concepts can be learned. Too many features bring
with them the curse of high dimensionality. Having many features might slow down
learning. Hence, the goal of feature selection is to find a subset of features that allows
predicting the target concept well and has minimal redundancy. Correlation-based
feature selection (CFS) [190] iteratively adds the featurewhichhas the best ratio between
predictive relevance of the feature and its correlation with the already selected features.
Both, predictiveness and correlation, are measured by the entropy-based symmetrical
uncertainty:

SU(fi , fj) =
2 · IG(fi|fj)
H(fi) + H(fj)

(3.4)
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where the information gain IG of feature fi with regard to feature fj is divided by the
sum of the entropies H of fi and fj. Ding and Peng [144] generalized CFS with the
capability for handling numerical variables calling itMinimum Redundancy Maximum
Relevance FS (MRMR). For numerical features, the F-test is used. It reflects the ratio
of the variance between classes and the average variance inside these classes. For a
continuous feature X and a nominal class variable y ∈ Y with C classes, both from a
data set with n examples, it is defined as

F(X, Y) =
(n − C)

∑︀
c
nc(X̄c − X̄)2

(C − 1)
∑︀
c
(nc − 1)σ2c

(3.5)

with per-class-variance σ2c and nc the number of examples in class c ∈ {1, .., C}. The
redundancy of a numerical feature set is measured by the absolute value of Pearson’s
correlation coefficient

R(X, Y) = Cov(X, Y)√︀
Var(X) · Var(Y)

(3.6)

or its estimate

r(X, Y) =

∑︀
i
(xi − x̄)(yi − ȳ)√︂∑︀

i
(xi − x̄)2

∑︀
i
(yi − ȳ)2

. (3.7)

In order to stabilize the feature selection method, its variance is reduced by bagging,
i.e., the feature selection algorithm is executed in parallel on different subsamples of
the data, thus delivering an ensemble of feature sets [96]. A fast implementation of
an ensemble of MRMR feature selection, which is well-suited for high-dimensional
data, has been created [344]. Features that are selected earlier and by many sets in the
ensemble are combined to become the one selected feature set.

3.2 Optimization

By now, we have expressed the task of learning a prediction model from data as the
task of minimizing an empirical risk function. In the following, we exemplify numerical
optimization by the two most popular methods, stochastic gradient descent and the
Newton-Raphson method. Both methods search for an optimal parameter vector β⃗*
by updating an intermediate estimate β⃗(k) over multiple iterations, as described in
Algorithm 3.1. The two algorithms differ in their choice of search directions p⃗ (k), see
line 3 in this algorithm.
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Algorithm 3.1: A canonical algorithm for numerical optimization.
Input: an initial guess β⃗(0) ∈ Rd and a risk function RD : Rd → R
Output: a minimizer β⃗ ∈ Rd of RD

1 k ← 1while a stopping criterion is not met do
2 Choose a search direction p⃗(k) ∈ Rd, using β⃗(k−1) and RD
3 Choose a step size α(k) ∈ R, using p⃗(k), β⃗(k−1) and RD
4 β⃗(k) ← β⃗(k−1) + α(k) · p⃗(k)

5 k ← k + 1
6 end
7 return β⃗(k−1)

3.2.1 Stochastic Gradient Descent

Machine learning tasks are typically characterized by large numbers of training exam-
ples that need to be handled with limited resources. This profile needs to be addressed
by the numerical optimization method, which takes out the learning according to Equa-
tion 3.3. Stochastic Gradient Descent (SGD) is a family of optimization methods that is
particularly suitable if N, the number of training examples, is large.
We consider the popularmini-batch variant of SGD,which chooses each searchdirection
p⃗(k) based on amini-batch of b ≪ N examples with random indices. Since each of these
mini-batches Ik = {1 ≤ ij ≤ N : 1 ≤ j ≤ b} is a random draw from the complete data set
D, it follows that the estimates {β⃗(k)} of the SGD algorithm are a stochastic (Markov)
process. This behavior is in contrast to complete-batch algorithms, which access all
instances of D in each iteration and therefore produce a deterministic sequence of
estimates. Another characteristic of SGD is that only the gradient∇RD of the objective
function is accessed, but not any higher-order derivative of RD. Therefore, the per-
iteration cost of the mini-batch SGD is very cheap, i.e., it depends linearly on b but
does not depend on N. The search direction of this variant is given by the following
equation, where all gradients are taken with respect to the parameter vector β⃗:

p⃗ (k)
SGD = −∇RIk (β⃗

(k)) = − 1N

b∑︁
j=1

∇ℓ(fβ⃗(k) (xij ), yij ) (3.8)

Accessing only b examples in each iteration causes a considerable amount of noise in
the parameter updates. This issue can be handled by appropriate choices for the step
sizes, e.g. by decaying values α(k) < α(k−1). However, since small step sizes can slow
down the learning process, there are several other techniques that address gradient
noise more directly.

For instance, momentum-based SGD variants alter the parameter update rule of
the canonical optimization algorithm presented above. Namely, these variants alter
line 5 of Algorithm 3.1 to the following assignment, introducing an additional step size
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γ(k) ∈ R:
β⃗(k)momentum ← β⃗(k−1) + α(k) · p⃗(k) + γ(k) · (β⃗(k−1) − β⃗(k−2)) (3.9)

The additional step size γ(k) weights the contribution of another direction, which is the
difference between previous updates. Thereby, the parameter updates are “stabilized”
in the sense that they maintain earlier search directions to the degree that is configured
through the scalar sequence of step sizes {γ(k)}. Momentum-based techniques are
widely applied in practice. For instance, the famous optimization method Adam [227],
popular for learning deep neural networks, is based on two orders of momentum to
achieve even more stability.

The suitability of SGD for large N stems from the fact that the number of iterations
and the per-iteration cost do not depend on N [93]. This property is in contrast to full-
batch algorithms, where the per-iteration cost is indeed proportional to N. Since the
per-iteration cost of SGD is comparably cheap, it scales well with large data sets.

Beyond its desirable scaling behavior, SGD has two more advantages over full-
batch algorithms: first, it optimizes not only the empirical risk RD but also the expected
risk R directly. In this regard, SGD is better aligned with the actual goal of learning a
generalized predictionmodel. Second, SGD can optimize functions that are non-convex
if these functions are well-behaved in less strict terms [93].

3.2.2 Newton-Raphson Optimization

The Newton-Raphsonmethod [293] differs from SGD in two central aspects. First, it uses
not only gradient information but also the second derivative of the objective function
RD. Thereby, it is able to assess the curvature of the search space in exchange for a
cost that is quadratic in the number of parameters. Second, is the batch variant of
the Newton-Raphson algorithm, i.e., each iteration computes the full derivatives of
RD using all examples in D. Due to these differences, the per-iteration cost of Newton-
Raphson is considerably higher than the per-iteration cost of SGD. However, since
full derivatives capture considerably more information than an SGD update, fewer
iterations are typically needed. Newton-Raphson can therefore outperform SGD in
terms of the computational resources that it needs to find an accurate solution if the
number of training examples N and the number of parameters d are both sufficiently
small. Optimization tasks with a small N and a small d are not very typical in the
empirical risk minimization framework of Equation 3.1, but such tasks do have their
relevance in other aspects of data analysis such as in the deconvolution problem put
forward in Chapter 10.

Complying with the canonical optimization algorithm from Algorithm 3.1, the
Newton-Raphson method takes out multiple iterations, starting from some initial guess
β⃗(0). To find a search direction p⃗(k), the method evaluates a local second-order Taylor
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approximation ̂︀RD(k) of the actual objective function RD:̂︀R(k)D (β⃗) = 1
2 β⃗

⊤H β⃗ − β⃗⊤(H β⃗(k) − h⃗), (3.10)

where h⃗ = ∇ RD
(︀
β⃗(k)
)︀
is the full gradient and H = ∇2 RD

(︀
β⃗(k)
)︀
is the Hessian of the

actual objective RD at the latest estimate β⃗(k). The minimum of this local approximation
can be computed analytically. It defines the search direction of the Newton-Raphson
method:

p⃗ (k)
Newton-Raphson = −H−1h⃗ (3.11)

SGD and Newton-Raphson are examples of a broad research field that covers numerical
optimization algorithms. The interested reader can find additional information on batch
algorithms in reference [293]. Stochastic algorithms are covered in the survey by Bottou
and colleagues [93].

3.3 Theories of Machine Learning

Machine learning research aims at answering the following questions:
– Which guarantees can be given regarding the error? (Error bounds)
– Which model class is best suited for the problem? (Model selection)
– How many examples are needed? (Sample complexity)
– How does a model scale in terms of runtime, memory, and energy, if the number

of examples and the number of dimensions increase? (Resource bounds)

At the most abstract level, machine learning works on formulas like that of regularized
error minimization of a regression function from Equations 3.1 and 3.3 above. In terms
of these functions, the learning tasks are specified. Proving the error bounds of learning
models is the shared subject of machine learning and statistics. As has already been
stated, also the field of optimization also plays a role. Almost every paper at a machine
learning conference such as ICML or ECMLPKDDpresents or at least substantially bases
its results on a proof of error bounds. For an introduction, we recommend the books on
statistical and probabilistic approaches of machine learning [192, 284].³ Another school
of theory at this abstract level is the computational learning theory which investigates
learnability on the basis of the representations of the feature and the hypothesis space.
In Section 3.3.1 the main idea is shown with some hints for further reading.

Given a physical problem and experimental data, no class of learning theories
is a priori well suited. As the no free lunch theorem points out, every selection of a
learning method comes along with its requirements on the one hand and its theoretical
guarantees on the other [388, 389].

3 For a series of video lectures on foundations of machine learning, taught by Ulrike von Luxburg, see:
https://www.youtube.com/playlist?list=PL05umP7R6ij2XCvrRzLokX6EoHWaGA2cC.

https://www.youtube.com/playlist?list=PL05umP7R6ij2XCvrRzLokX6EoHWaGA2cC
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Within a selected general class, there are criteria that help to select a particular method.
The most important characteristic of an algorithm is the distinction between batch and
online, or distributed and centralized processing. For the development of an application,
efficient algorithms are to be studied. Worst-case complexity and proven tight accuracy
bounds are known for diverse algorithms of the same model class. The competitions
of implementing frequent set mining, a task of finding all frequent co-occurrences
of database items [163], are well known. 12 varying levels of implementations were
reported with their different resource consumption, e.g., memory usage, runtime, and
the compression of the resulting model.

Today, we go even further to the level of implementation on particular hardware.
In earlier days, learning algorithms were tailored from CPU to GPU, as discussed in
[309]. Hardware is now particularly designed for the low-latency and high-throughput
computational demands of machine learning. The non-von Neumann architectures
In-Memory Computing (IMC)/ Processing-In-Memory (PIM) are being extensively re-
searched [78]. Currently, FPGAs are frequently used machine learning accelerators.
Different implementations of an algorithm for a von-Neumann architecture and for
FPGAs have been carefully explored [107]. Also, the optimization for a fast execution
on a particular architecture received interest [231], especially computing on multicore
architectures (see Section 6.4 in Volume 1). For convolutional neural networks in partic-
ular, their abstract description in terms of the Open Neural Network Exchange Format
(ONNX) allows them to synthesize an implementation on the high-level interface of
FPGAs and optimize it [176].

Recently, the connection of machine learning algorithms with hardware architec-
tures has become even closer in that a given learning algorithm is not only adjusted to a
given architecture; the learning algorithm itself takes care of possible hardware failures
within its training procedure. This is particularly relevant for hardware that trades in
accuracy for energy savings. In-memory computation, for instance, saves energy but
may deliver wrong results. A novel max-margin optimization binarized neural networks
succeeded in optimizing the bit-error tolerance [110].

The level of model classes with its ties to statistical learning theory is important,
but machine learning investigates more levels of abstraction in collaboration with other
fields of computer science. Algorithms for a model class for distributed or streaming
learning are based on theoretical computer science work as in [129, 130]. The level of
implementations on a specific hardware links machine learning with computational
architectures [260]. Particular hardware has even been designed especially for machine
learning [217]. Machine learning investigates and contributes to all the levels: from the
model class over the algorithms to implementations and even computer architectures.
Learning is orthogonal to the hierarchical levels of computer science.
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Tab. 3.1: An example of the concept class that consists of conjunctions of Boolean literals.

c1: rainy AND not play golf;
c2: rainy AND play golf;
c3: not rainy AND not play golf;
c4: not rainy AND play golf;
c5: sunny AND not play golf;
c6: sunny AND play golf;
c7: not sunny AND not play golf;
c8: not sunny AND play golf;
c9: rainy AND not sunny;
c10: rainy AND sunny;
c11: not rainy AND not sunny;
c12: not rainy AND sunny;

3.3.1 Computational Learning Theory

In addition to the statistical theory of machine learning, a distribution-independent
theory known as the Probably Approximately Correct (PAC) learning, offers bounds of
learnability [375]. It is based on the idea of hypothesis spaces. Which hypotheses can
be expressed in a particular formal system of representation? An easy concept class is
the conjunctions of Boolean literals. Literals include rainy, sunny, and play golf. The
hypothesis space C would then be the set of concepts c1 to c12.

Learning identifies within the hypothesis space those concepts that are consistent
with the examples, i.e., there is no logical contradiction between the true hypothesis
and all the examples. In other words, a concept is a hypothesis that is determined by the
set of instances that it covers. If there is an example in contradictionwith the hypothesis,
it is counted as an error. For all domains, we shall have different literals that define the
concepts. This is not what the learning theory cares about. The theory is to state whether
the class of all concepts that can be expressed in this representation is learnable from
examples. Learnability is defined with respect to the number of computing steps that
are necessary to identify the target concept in the worst case.

Definition 3. A concept class C is PAC-learnable by a learning algorithm A using hy-
pothesis spaceH, if for all c ∈ C, distributionsD over the instance space X, ϵ such that
0 < ϵ < 1/2, δ such that 0 < δ < 1/2, A will with probability at least (1 − δ) output a
hypothesis h ∈ H such that the errorD(h) ≤ ϵ, in time that is polynomial in 1/ϵ, 1/δ and
in the size of the instance space and in the size of the concepts space complexity.

PAC learning polynomially bounds the number of computation steps needed in the
worst case to learn a classifier for a class of concepts. A proof of PAC learnability usually
first shows that each target concept in C can be learned from a number of examples,
which is polynomially bounded by ϵ and δ. This lower polynomial bound of the number
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Fig. 3.1: There exists a set of three points {x1 , x2 , x3} for which any binary labeling can be separated
by a single, straight line L ∈ {L1 , L2 , L3 , L4}. Therefore, the VC dimension of straight lines is at least
three.

of examples is called the sample complexity of the learning algorithm [191, 349]. It
shows that the time for processing one example is also polynomially bounded. The
overall idea is described more elaborately in [273] and many proofs can be found in
[286].

PAC learning often measures the model complexity in terms of the Vapnik Cher-
vonenkis (VC) dimension [379]. A PAC learning algorithm is then required to learn a
concept class in time that is polynomial in the VC dimension of the hypothesis space.

Definition 4. A setH of hypotheses shatters a set D of examples if each subset ofH
could be separated by a h ∈ H. The VC-dimension of a set of hypothesesH equals the
maximum number d of examples in D that could be shattered byH.

We illustrate this by 2-dimensional data and the hypotheses in the form of separating
planes as shown in Figure 3.1. One set of three points could be shattered by straight
lines, but there is no set of four points that could be shattered by straight lines. Hence,
for the straight line hypothesis space, the VC-dimension is 3.

For the proof of the VC-dimension d the following has to be shown:
– There exists one set D with d points that could be shattered byH.

VCdim(H) ≥ d
– There does not exist a set D′ with d + 1 points that could be shattered by H.

VCdim(H) ≤ d

The VC-dimension denotes themodel complexity and hence allows us to select the least
complex model that still learns the target concept. It also gives a hint to the confidence
we can have in a learning result. A large VC-dimension indicates a large confidence.
There is even a learning method that exploits the VC-dimension by regularizing its
internal optimization such that it guarantees a unique and optimal learning result. This
method is the support vector machine [380].
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The VC-dimension allows us to write a lower bound on the sample complexity. The
theorem has been proven for all learners and concept classes [149]. It is given below
according to Mitchell [274].

Theorem 1. Lower bound on sample complexity. Consider any concept class C such
that VCdim(C) ≥ 2, any learnerA, and any 0 < ϵ < 1

8 , and 0 < δ < 1
100 . Then, there exists

a distributionD and target concept in C such that ifA observes fewer examples than

max
[︁

1
ϵ log(1/δ),

VCdim(C)−1
32ϵ

]︁
(3.12)

thenA outputs a hypothesis h having error errorD(h) > ϵ with probability at least δ.

The theorem states that with fewer examples, no learner can PAC-learn every target
concept in C. This very general bound for all learners is turned into more specific
bounds, when the VCdim is known for the model class.

PAC learning has investigated the learning of neural networks from its very begin-
ning [256] and succeeded in showing that neural networks are capable of approximating
arbitrary functions [224]. As is sketched in Section 3.5, the theoretical analysis that gives
us tight bounds and a deep understanding of deep learning is still an active research
area.

3.4 Tree Models

Decision trees are one of the most successful learning methods: often applied, based on
probabilistic theory, and easy to implement. They recursively divide the feature space
into smaller and smaller hyper-rectangles until there are only members of one class in
the hyper-rectangle, which makes it a leaf node, or until some other stopping criterion
is met [319]. While usually used for classification in supervised learning, decision
trees may also model regression tasks. Training a tree, where each node covers a set
of examples, is performed by selecting the best feature for splitting the current node,
creating sub-nodes for each feature value, and passing the examples to those fitting
their feature value until a node covers only examples of the same class or has a clear
majority of one class. The learned model classifies a previously unseen example by
passing it according to its feature values to its leaf.

Selecting the splitting feature Xj often follows the information gain criterium. The
probability p+ that an example belongs to class + is the entropy I:

I(p+, p−) = (−p+ log p+) + (−p− log p−)

A feature Xj with k values divides a set of examplesX into k subsetsX1, ...,Xk. For real-
valued features, the numerical values are partitioned into some intervals, so that these
intervals are handled along with the discrete features. Binary decision trees always
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split into a left and a right branch. For numerical values, a threshold t is used xj ≤ t.
The best feature Xj or the best threshold t is selected based on a quality criterion such
asinformation gain:

Information(Xj ,X) := −
k∑︁
i=1

|Xi|
|X| I(p+, p−)

The information gain is the difference between the entropy of the examples with and
without the segmentation by Xj. It is calculated with respect to the particular set of
examples at each sub-tree.

The higher the information gain, the closer a feature is to the root. In this sense, the
place in the tree seems to indicate feature importance. However, the order of selected
features is not a precise feature weighting algorithm. In particular, correlated features
along a path in the tree do not share the importance but add it. Hence, they violate the
condition that the sumofweights of alternative featuresmust be constant independently
of the actual number of alternative features used. This condition is important since it
guarantees that a set of alternative features is not more important than a single feature
[271].

Decision tree learners are not robust with respect to the order in which examples
arrive. Hence, in their original form, they are not applicable to data streams. For a
data stream setting, the VeryFastDecisionTree (VFDT) approach has been introduced
[146]. They are efficient in that the runtime is proportional to the number of features;
moreover, the examples of the stream are not stored but processed just once. In the
beginning, a sample of observations at a node is kept. For these, the split criterion is
evaluated. The difference between the top features is required to be larger than some ϵ.
Reading in additional examples and evaluating the split criterion is continued until the
Hoeffding bound is reached. From then on, only aggregated statistics are stored at a
node. The Hoeffding bound guarantees that a sum or difference of independent random
variables most likely will not deviate more than a constant from the expectation value.
Here, it states that with probability 1 − δ, after seeing n examples, the feature which
receives an evaluation (e.g., information gain) that is ϵ larger than that of the next best
feature is indeed the best split criterion also for future examples. ϵ can be calculated:

ϵ =
√︂
R2ln(1/δ)

2n
with R being the range of feature values, e.g., the log of the number of classes.

3.4.1 Ensemble Methods

The idea of training many decision trees in parallel and letting each tree vote for a
class, hence delivering the majority vote as result, is known famously as a Random
Forest (RF) [97]. The ensemble of many simple models achieves a higher robustness



68 | 3 Key Concepts in Machine Learning and Data Analysis

than a complex model that covers the same observations. Since ensembles are trained
in parallel, their runtime is also an advantage. The algorithm for training the random
forest is shown in Algorithm 3.2. The application of the random forest delivers the

Algorithm 3.2: The Random Forest algorithm.
Input: number of decision trees l and n examples and desired number of

features k
Output: h1...hl mapping X to Y

1 forall the i = 1...l decision trees in the forest do
2 Sample n examples without removal
3 choose k ≪ K features from the K given ones randomly,
4 split the set of examples at the node according to the best split, given by,

e.g., the information gain
5 if the resulting nodes have enough examples of the same class then
6 stop and output hi
7 else
8 go to line 3
9 end
10 end

classification

h(x) = sign
(︃
1
l

l∑︁
i=1

hi(x)
)︃

The procedure is a kind of a bootstrap aggregation—bagging for short. The statistical
bootstrapmethod draws samples and fitsmodels to each of them. The output of bagging
is the averaged output of all the models or the majority vote. In any case, the variance
of the prediction over the data is decreased. Among the many successful applications
of Random Forests are those in astrophysics, namely the IceCube experiment [16, 18,
331] and several Imaging Air Cherenkov Telescopes [48, 258, 294].

Another ensemble method is boosting, first introduced as AdaBoost [169]. Like the
Random Forest, it also consists of several learners and decreases the variance of the
learning result. In contrast to bagging, boosting is an incremental method that directs
the training to areas of the example space that are difficult to learn. It is based on PAC
learning, where it has been shown that it is sufficient to have hypotheses that are only
slightly better than pure random on the training data because these can be boosted
to become arbitrarily correct. The algorithm of AdaBoost is given in Algorithm 3.3. On
the one hand, the weak classifiers are weighted by α. On the other, the weights of
the examples wm are updated such that the ones misclassified by hm(x) receive more
impact by exp(αm). Hence, the next weak classifier hm+1(x) will fit the previously not
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Algorithm 3.3: The AdaBoost algorithm.
Input: N examples and the desired number of decision trees M
Output: a prediction rule h : X → Y

1 initialize example weights: w1,i ← 1/N ∀ i = 1, 2, . . . N
2 forall m = 1, 2, . . . M do
3 train a weak classifier hm(x) using the weighted examples
4 compute the error errorm on all data
5 αm ← log((1 − errorm)/errorm)
6 wm+1,i ← wm,i exp(−αmyihm(xi)) ∀ i = 1, 2, . . . N
7 end
8 return h(x) = sign

(︁∑︀M
m=1 αmhm(x)

)︁

well-covered areas of the example space. There are several applications of boosted
decision trees in physics. See Chapter 8.

3.4.2 Implementations and Hardware Considerations

Decision trees and their ensembles have a statistical or PAC learning description as
described above. This abstract level is complemented by algorithmic challenges and
their implementation on diverse hardware. The highest performance has been achieved
by gradient-boosted trees. The implementation XGBoost is a truly scalable algorithm
using external memory and processing the training in a parallel manner on GPUs,
exploiting gradient descent optimization (cf. Section 3.2.1) [119].

Other approaches optimize the application or evaluation of the learnedmodel. This
is particularly important if the training may be run on a large computing center, but the
learned model is to be applied in the wild of a physical experiment like the Cherenkov
Telescope Array (CTA) or IceCube. The execution of the model is then restricted in
runtime as well as in memory. Traversing a large ensemble of decision trees has been
developed for fast inference [242]. A probabilistic view of executing decision trees has
been developed in order to optimize the data layout and enhance the cache usage
[107]. The improvement is based on the systematic use of tree usage statistics. Two
different implementations of decision trees are investigated, namely, an optimized if-
then-else tree and an optimized path layout. These implementations exploit computing
architectures better and should be considered for real-time applications under resource
constraints. Section 7.3.3 in Volume 1) provides more information and explains how to
generate optimized code for specific computing architectures.

Machine learningmodels are often compressed or quantized to use fewer resources.
For decision trees, the pruning of sub-trees was put forward from the beginning on
[319]. Also, the selection of ensemble members has received attention, e.g. [371], but
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this is an active research field. Before deploying a tree model, it is worth determining
the appropriate pruning method.

3.5 Neural Networks

Neural networks have attracted attention from their inception. Here, we present the
structure of the field and indicate selected literature for further studies.

Neural networks are—most often acyclic—directed graphs with the nodes being
organized in layers. The input layer consists of nodes xi for the input features. The
output layer gives the result of the network y or has several so-called heads each
being a target in a multinomial neural network. Layers between input and output are
called hidden layers. A neural network with hidden layers is called a Deep Neural
Network (DNN) . Figure 3.2 shows a neuron with the weights of the incoming nodes
that are summed up and the non-linear activation function, here, the Rectified Linear
Unit, which computes ReLU(z) = max{0, z}. Other activation functions are sigmoid,
tanh, and softmax. Just one such neuron is also called a perceptron. Having layers
of several such perceptrons is then also called a Multilayer Perceptron (MLP). The
connections between the nodes in the following layers may be such that every node
of the preceding layer is connected with every node of the next layer, yielding fully
connected layers. There are also types of networks with fewer connections between
layers. Since the inference feeds the computed values from the incoming signals to
the next hidden layer(s) until the output layer is reached, it is a feedforward neural
network. If computation also includes feedback connections, the neural network is
called a recurrent network.

The term “neural network” originates from the idea that the combination of a
weighted sum and a non-linear activation function is reminiscent of a biological neuron
cell. In fact, the neuron cells of the human brain become activated when they receive a
sufficiently strong signal from their input neurons. However, a neuron cell is muchmore
complex than the simple mathematical function that we call “neuron” here. Also, a
brain is muchmore complex than a simple concatenation of neuron layers. Therefore, a
neural network should not be misunderstood as an appropriate model of the biological
brain.

Training a neural network is performed by optimizing the weights between the
nodes of succeeding layers. These parameters are to be determined such that for all
possible inputs, the respective true output value is returned. An output that does not
fit the true label starts a backpropagation of the error from the last to the first layer. We
consider the DNN a chain of functions. Hence, we can propagate the gradients of the
loss function using the chain rule. The derivative of f (g(x)) is

∂f (g(x))
∂x = f

∂g
∂g
∂x
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Fig. 3.2: General picture of a neuron with incoming units xi, the activation function with the sum-
mation of the weighted incoming values, and the non-linear ReLU function together computing the
resulting unit yi+1.

The backpropagation algorithm stores the derivatives of f with respect to all variables
x = f (w), y = f (x), z = f (y). For x, it is

∂z
∂x = ∂z

∂y
∂y
∂x

For w it is
∂z
∂w = ∂z

∂y
∂y
∂x

∂x
∂w

As is seen, for the three multipliers, only one needs to be calculated in addition, the
others are already stored. This makes backpropagation very efficient.

Once the derivatives are calculated, the optimization uses them. Iteratively, the
parameter matrix is updated until a sufficiently good matrix is found. Most often,
stochastic gradient descent is used as the optimization method (cf. Section 3.2.1).

For the abstract description of neural network training with backpropagation of
errors and weight updates to optimize the network, see [192]. However, this is only a
small part of what DNNs are about and what makes them successful. It is the design
and development of algorithms and their implementation on diverse computing plat-
forms that produces their excellent performance. For a comprehensive description, it is
very much recommended to read the book Deep Learning by Goodfellow, Bengio, and
Courville [183].

3.5.1 Architectures of DNNs

A DNN consists of a series of layers, each of which can carry out different computations.
When we speak of an architecture, we mean a particular series of layers, leaving aside
the optimization algorithm or the data with which the architecture is trained.
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The most fundamental type of layer is called the dense layer; it multiplies a weight
matrixW to the full vector of incoming values h⃗ and possibly adds a bias term b ∈ R.
The weighted sum is then fed into a non-linear activation function u, such that the
output of the dense layer is u(W⊤h + b), as shown in Figure 3.2. The weight matrix is
then optimized during the learning process, and the non-linear function enables the
model to learn non-linear dependencies within the data. However, the dense weight
matrix W introduces many parameters into the model, the training of which can be
ineffective in terms of resource consumption.

Convolutional layers circumvent this problem by sharing parameters among pairs
of inputs and outputs. Namely, a kernel of parameters that is much smaller than the
input dimension, is moved over the input. The name of this type of layers stems from
the convolution of two functions, where an input function x(a) and a kernel function
w(a) of measurement a deliver a feature map

s(t) =
∫︁
x(a)w(a − t) da. (3.13)

The discrete convolution over integer values t is

s(t) =
∞∑︁

a=−∞
x(a)w(t − a). (3.14)

This re-use of parameters leads to fewer connections between the nodes of the preceding
and succeeding layers. Moreover, the computation is straightforward to parallelize.
Another important property of convolutional layers is their translational invariance.
For object recognition in an image, it is not important where exactly the object is.
Similarly, patterns in audio input may occur at different widths and heights but should
be recognized anyhow. A DNN architecture that uses convolutional layers is called a
convolutional neural network (CNN).

A more drastic decrease in the number of connections is achieved through the
dropout layer. This layer randomly ignores, at the succeeding layer, a certain percentage
of incoming values with their weights. Dropout can be seen as a regularization of the
model.

For image processing, the pooling layer is widely used. It summarizes the values in
a rectangular neighborhood of nodes by, say, the maximum value or by the average.

The batch normalization layer takes the incoming values z1, ..., zm and calculates
mean and variance.

μ = 1
m
∑︁
i
= 1mzi

σ =

⎯⎸⎸⎷ 1
m

m∑︁
i
= 1(zi − μ)2

How to combine these building blocks or define new ones is a matter of active research.
Several network architectures have been proposed. Starting from AlexNet [233] with
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its tremendous success on ImageNet, which offers images labeled into 1000 object
categories, such as keyboard, mouse, pencil, andmany animals [143], the Oxford Visual
Geometry Group proposed a CNN of 19 layers named VGG-19 that is well suited for the
recognition of objects in images [350]. Residual networks structure a CNN into repeating
blocks of convolutional and batch normalization, where each block adds a shortcut
from the first to the last layer of the block. This allows enhancing the depth of the
network without difficulties in optimization [193].

EfficientNets scales, at the same time, a learned base model in width, depth, and
(image) resolution [363]. Experiments show good results for scaling two very different
network architectures, namely the deep ResNet and the energy-efficient MobileNet.
Bello et al. disentangle architecture and resolution again [81]. They scale the depth
and the width depending on the amount of overfitting and apply a slower resolution
increase than in EfficientNets. The race for better speed and accuracy in training neural
networks thus continue.

3.5.2 Robustness of DNNs

Neural networks are fragile in many respects. On the one hand, little changes in the
architecture may have large changes in predictive performance as a consequence. On
the other hand, little changes in the data may change the classification of the neural
network tremendously. Famous examples are the images that are imperceptibly changed
but output a completely different class [362]. Optimizing the least changes leading to
theworst accuracy has been called adversarial attack. Many types of perturbations have
been studied, not only on the data but also on the physical objects that are perceived.
In [154], some stickers were attached to a stop sign, and it was classified as “speed
limit 45”. Defense mechanisms were invented in order to make neural networks more
robust. Recently, guarantees have been developed that prove the robustness against
particular perturbations [132]. Finally, robustness might also refer to changes in the
data distributions [124].

3.5.3 Deep Learning Theory

Neural networks with a single hidden layer of n nodes have been proven to be universal
approximators of any measurable function, assuming activation functions Ψ : R →
[0, 1] that have countably many discontinuities [203]. The number of hidden nodes is
not known in general but depends on the function to be approximated. In the worst
case, one hidden node is needed for each configuration of the input, i.e., the number
of hidden nodes is exponential if we have just one hidden layer. Applying the VCdim
(see Section 3.3.1), bounds of the sample complexity of DNN were proven that depend
both on the depth and the width of the network. Deeper models require less hidden
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nodes in each layer. This is the advantage of deeper networks [364]. The complexity of
a DNN can be shown without referring to the width of the layers, but usually depends
on its depth. For ||⃗x|| ≤ B, d layers, and the matricesW1, ...,Wd, the complexity has
been shown with regard to the Frobenius norm at most MF(j) ofWj and m as seen in
examples from [181]:

O

(︃
B
√
d
∏︀d
j=1MF(j)√
m

)︃
(3.15)

The authors then convert depth-dependent bounds into depth-independent bounds,
which are based on some control over the norm of the parameter matrices.

Learning algorithms with a large capacity are capable of fitting randomly labelled
data. With increasing depth, neural networks have an increasing capacity of representa-
tion, i.e. they approximate increasingly complex functions. Hence, they are capable of
fitting pure noise. Does that contradict the statement that DNNs generalize? In general,
machine learning should not overfit the training data, or even memorize them, but
perform well on previously unseen data! Inspecting the optimization, it was found
that true patterns are learned before the overfitting occurs and that dropout and other
regularizations prevent the optimization frommemorizing [58]. Other approaches to
explaining the generalization of DNNs are the coherent gradients of similar examples
pointing in the same direction [118] and the stiffness of a network, which measures the
impact of the change in one example’s small parameters on in the gradient step in the
loss of another example. If the network’s weights based on one example help to better
classify another example, it generalizes well [167].

A way to characterize DNNs is by analogy with Bayesian models. It has been shown
that inference with dropout of a DNN approximates a Gaussian process and, hence, that
the Bayesian model uncertainty explains the dropout of DNNs [174]. Bayesian models
estimate the uncertainty of a DNN model. However, they do not scale well. Hence, a
Spectral-normalized Neural Gaussian Process (SNGP) has been proposed that replaces
the output layer with a Gaussian process and includes weight normalization in the
training [251].

3.5.4 Explanations

Explainable AI has been studied for black-box algorithms of all kinds [187]. Selecting
borderline examples or showing the feature importance according to the learnedmodel
explains the learned model without looking into the training process. If, however, the
explanation refers only to a surrogatemodel and not to the learned and deployedmodel
itself, they actually do not explain the learning result [177]. Themodel agnosticmethods
are complemented by methods for verifying and explaining DNNs. In particular, for
scientific data, where we want to model true processes, the modeling procedure itself
must be trustworthy.
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A survey of verification and explaining DNNs has been framed theoretically [206]. There
exists a large variety of methods that explain DNNs [337]. A most prominent method
is the layer-wise relevance propagation and its visualization. It shows which areas of
an image have been used for classification by a trained model [275]. For image data,
this helps users to understand the learned model. Layer-wise weight change helps to
understand the training of DNNs [41]. The training process of DNNs can be inspected
at each layer—each intermediate representation—in order to find the most influential
examples and determine the classes that attributed most to the classification [305].

3.5.5 Hardware Considerations

AI accelerating hardware is a booming market. Many companies offer specialized chips,
which are built into phones, tablets, and many other devices. We address several of
these developments in Volume 1 of this book series.

Regarding DNNs in particular, a central aspect of accelerating hardware is energy
consumption. One example of a processor dedicated to DNNs has been designed by
Google for the TensorFlow software, especially for itsmatrixmultiplications. The Tensor
Processing Unit (TPU) delivers an order of magnitude better-optimized performance
per Watt for machine learning.⁴

Even when using TPUs, DNNs still demand large amounts of energy. In particular,
for edge computing and for the Internet of Things, using a Field-Programmable Gate
Array (FPGA) as a platform is advantageous. Automatic synthesis of FPGA programs for
CNNs has been developed, see, e.g., [176].

In general, Binarized Neural Networks (BNN), i.e., those that calculate with bina-
rized weights and activation function values, consume less energy and require less
memory. The use of approximate memory provides DNN training with even lower en-
ergy consumption. However, the saving comes at the price of the memory sometimes
flipping a bit. A novel approach to BNN training using approximate memory includes
robustness against bit errors in the optimization of BNN learning, thus combining the
advantages of approximate memory and BNN directly [110].

Examples of how neural networks leverage research in astroparticle and particle
physics are described in Chapter 9. Resource consumption of learning methods is a
central theme of all chapters.

4 https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-
learning-tasks-with-custom-chip/.

https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-learning-tasks-with-custom-chip/
https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-learning-tasks-with-custom-chip/




4 Data Acquisition and Data Structure
4.1 Introduction

Wolfgang Rhode
Bernhard Spaan
Hans Dembinski

The common approach to scientific questions in astroparticle and particle physics
also results in great technical proximity in the required low-level techniques for data
acquisition and the resulting data structures to be analyzed. In this chapter, the general
approaches to data acquisition are discussed (Section 4.3.3)

In particle physics experiments at colliders, the event rate is typically very high
since rare processes are sought after in most analyses. The event rate is driven by the
desire to discover rare processes such as the production of a Higgs boson or a rare decay
that is suppressed in the standard model and may be enhanced by physics beyond the
standard model. Typically, particle bunches are made to collide at certain interactions
point. This means that the event rate is not constant; it repeatedly peaks and falls back
to zero. The acceleration with radio-frequency electrical fields enforces this structure.
The average rate of collisions of individual beam particles Ṅ is defined by the number of
particles per bunch, the particle density profile in the bunch overlap, the frequency of
the bunch crossing, and the total cross-section σ for the collision of two beam particles.
All bunch parameters can be combined in a single variable called luminosity L, which
yields the simple relation

Ṅ = Lσ. (4.1)

The cross-section σ is basically an effective area, typically given in units of a barn,
1 b = 10−24 cm2. The total cross-section is ameasure of the probability that any collision
occurs, but one is often more interested in collisions with a particular final state. Then,
Ṅ refers to the rate of this process, and σ is the corresponding (partial) cross-section.

A data set taken over a period of time t is characterized by the integrated luminosity,
L =

∫︀
t Ldt, measured in units of inverse barn, 1/b. At the LHC, bunches are 7.5m apart

and move with the speed of light, and thus collide every 25 ns or with a rate of 40MHz.
The peak luminosity and total cross-sections at the LHC are so large that several proton-
proton interactions occur per bunch crossing. For example, the ATLAS experiment
observed, on average more than 30 interactions per bunch crossing and up to 80 in
Run II of the LHC. At LHC energies, each interaction produces tens of particles so that
hundreds to thousands of secondary particles are produced in a single bunch crossing.

It is not technically feasible to record all particles of every bunch crossing. For
example, the ATLAS experiment in Run I had 140 million channels, resulting in an
average event size of about 1.5MB. At 40MHz, the full readout of the detector would

Open Access. ©2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785968-004
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result in a data rate of about 60 TB per second to be stored, which is impossible even
for a laboratory like CERN. It turns out, however, that the vast majority of collisions are
not of interest and do not have to be stored. The cross-section for a strong interaction
with low momentum transfer makes up the largest fraction of the total cross-section,
but studies of these interactions are not the prime priority for the physics program of
experiments such as ATLAS, CMS, and LHCb. Thus, the experiments make use of a
so-called trigger to reduce the number of events to record while ensuring that the events
of interest are kept. A trigger is an algorithm that quickly (within 25 ns) decides whether
a bunch collision produced an interesting final state. Examples for such interesting
final states will be given later.

Ideally, a thorough analysis of the event would yield perfect information for the
trigger tomake a decision, but this is challenging due to the short timewindow between
two bunches.Within this window, the full detector needs to be read out, and a computer
farm has to process the raw data in order to reconstruct particle tracks from detector
hits.

Section 4.2.1 describes the classic trigger concept that guided the design of readout
electronics and data acquisition of the LHC experiments in the previous Run I and Run
II of the LHC. Until recently, it was deemed impossible to do this for every event at
the LHC, but a newly developed readout and trigger scheme employed as part of the
upgrade of the LHCb experiment in Long Shutdown 2 will make it a reality. Section 4.4
will give an overview of this new architecture, where the first stage of the trigger will be
based on GPUs. The resulting data structures for LHCb will be discussed in Section 4.3.1.

Compared with the situation in particle physics, astroparticle detectors do not
have a fixed rhythm in which events occur since the astroparticles originate from
natural sources. The instruments are read out continuously during data-taking, which
would also produce unmanageable data volumes if stored permanently. The challenge
here is to reject the background of atmospheric leptons from low-energy cosmic ray
interactions, which are registered in the instruments but are usually not of interest. For
this reason, also the astrophysical experiments employ triggers, which here serve the
purpose of identifying that an event occurred. In comparisonwith the triggers in particle
physics, these triggers are usually less complex. For example, they look for coincident
light emissions in different parts of the detector, e. g. multiple DOMs in the case of
IceCube or multiple pixels in several telescopes for CTA. After the trigger decision is
made, the raw data volume is still too large for transfer (IceCube) or permanent storage
(CTA), so the next step is data volume reduction, where lossy compression is applied to
further reduce the amount of data.

Details on the data acquisition are presented in Section 4.2.2 for the Imaging Air
Cherenkov Telescopes and in Section 4.2.3 for IceCube. The resulting data structures
are described in Section 4.3.2 and Section 4.3.3 respectively.



4.2 Data Acquisition | 79

4.2 Data Acquisition

The data acquisition systems in astroparticle and particle physics experiments are
designed to handle increasing data volumes and data rates. In both fields, this is driven
by searching for rare events in a large amount of uninteresting background. Since
the volume of data that can be reasonably stored and further processed by analysts
is limited, the experiments employ trigger algorithms that select interesting events
and discards large amounts of background. An experiment can have several triggers to
select different kinds of interesting events.

In the past, the trigger was often implemented in hardware since it had to cope
with a large data rate, but there is a common development in both fields to implement
more and more parts of the trigger in software. This allows one to add new triggers
on-demand and implement more refined trigger algorithms.

Another common aspect is the use of temporary buffers, which store events that
arrive in the time window while the trigger is processing the previous event. Since the
time between two events of interest follows an exponential distribution, a significant
fraction of interesting events would be lost without buffers.

The following three subsections describe the data acquisition systems of LHCb,
as an example of a modern particle physics experiment, of Imaging Air Cherenkov
Telescopes (IACTs), and IceCube, as an example of a neutrino observatory.

4.2.1 Data Acquisition for LHCb

Bernhard Spaan
Hans Dembinski

The LHCb data acquisition system was designed as a scalable computing network with
a powerful software trigger stage to select interesting events and to provide analysts
with high-level objects that can be directly used without further processing. These capa-
bilities have been further expanded in recent years by moving to a full software trigger
and a full online reconstruction, which also performs the calibration and alignment of
the detector online. These steps make it possible for LHCb to move from full persistence
of raw data to selective persistence of only higher-level physical objects like decays that
can be used directly in physics analyzes. We first discuss the trigger concept and then
the readout.

The classic trigger concept for experiments at an accelerator uses several successive
stages. Each stage requires more time than the previous stage to form a decision, which
is compensated by a reduction of the event rate after each stage. The first stage of the
trigger at LHCb is called L0 (“Level 0”). It is very fast and reduces the event rate by a
factor of 40. Dedicated hardware is used to analyze calorimeter information as well as
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Fig. 4.1: General architecture of the LHCb Online system with its three major components: Timing
and Fast Controls (TFC), Data Acquisition, and Experiment Control System (ECS) (Reprinted with small
changes under CC BY 4.0 license from [243]).

hits in the muon system, similar to the first-level triggers of ATLAS and CMS. Hits in
the muon system are commonly used as a trigger since events that produce muons are
comparably rare. Since B hadrons are the primary focus of the LHCb experiment, the
calorimeter trigger is also important. It exploits the fact that decays of the heavy b and
c quarks produce particles that have a higher transverse momentum, pT , with respect
to the beam axis than the average particle stemming from the primary proton-proton
interaction. The L0 trigger thus requires either a calorimeter cluster with several GeVs
of transverse energy, a single muon candidate with a pT of more than 1.4GeV/c, two
muons that are back-to-back in the transverse plane and have a pT of several hundred
MeV/c each. The readout electronics are designed to temporarily store information
from the most recent events that occurred after the last readout until the next L0 trigger
signal is issued. Temporary storage is achieved either by amplifying analog signals as
needed (as in the case of the Vertex Locator) or by digitizing the detector response for
each of the active channels every 25 ns and storing it in a circular buffer.

The next stage, usually called L1, is called HLT1 in LHCb (“high-level trigger 1”)
because it runs in software on a computer farm and already processes the full event
after the L0 stage triggers a readout. In the first years of operation (Run 1), the event
filter farm was gradually developed to produce more output events per second. From
initially planned 2 kHz, the output rate was gradually increased to 5 kHz. This led to a
similarly increased luminosity, which was usable at LHCb. For the second phase of the
LHC operation (Run 2), the event filter farm was significantly upgraded to consist of 62
sub-farms with more than 50000 logical cores in total, which is almost doubling the
number of logical cores compared with the first phase.
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A plan of the LHCb online system that was used in the first and second phases of
the LHC before the upgrade in 2018–2019 is shown in Figure 4.1. A description of the
LHCb experiment and its sub-detectors (represented by the top nodes in the graphic)
was previously given in Section 2.3.1. The purpose of the online system is to transport
data belonging to a given bunch crossing from the detector front-end electronics to
permanent storage if the bunch crossing is selected by a trigger condition. The design
is based on the principles of simplicity, scalability, and, wherever possible, the use
of commercial off-the-shelf products and established components and protocols. As a
consequence, the LHCb online system is reliable and robust, with enough flexibility to
cope with new requirements motivated by experience with real data.

On readout, the on/near-detector electronics (FE electronics in the figure) for each
LHCb sub-detector multiplex the information and send it either via optical fibers or as
an analog signal to the so-called electronics, which consists of standardized readout
boards. In the case of optical transport, the information ofmany channels is transported
via a single optical fiber at a rate of 1.6 Gbit/s, and about 6000 optical links are used
for LHCb. The readout boards can handle up to 64 analogs or up to 24 optical links.
They process the optical or analog signals with FPGAs to perform error checks and
apply forms of data compression (in the simplest form by not forwarding information
from channels without hits), depending on the needs of the individual detectors. The
resulting data fragments are collected by another FPGA and formatted into a raw
IP packet that is sent to the Readout Network via fast Ethernet. Multiple events are
packed into a single frame to minimize I/O overheads further down the line. Clock
and synchronization signals (as such triggers) are received from the Timing and Fast
Controls (TFC) system. The readout boards can also send commands back to the TFC
if there is congestion and the trigger rate needs to be throttled. The readout network
assembles the data streams from the readout boards and passes those to the event
filter farm, on which the High-level Trigger (HLT) runs in software. The HLT algorithms
are run on a farm with several thousand CPUs and receive events at a rate of up to
1MHz from the hardware L0 trigger. The events selected by the farm are then stored
permanently (STORAGE in the figure).

The quality of the acquired data is automatically checked in a separate monitoring
farm (MON farm in the figure) with user-defined algorithms to track the efficiencies
of the detector channels or the mass resolution for certain decays. Random triggers
issued by the L0 trigger are also accepted with a low rate to monitor the trigger itself.
All components of the LHCb online system are connected to the Experiment Control
System (ECS), which allows for control and monitoring by scientists.

The LHCb experiment has since moved to a trigger-less readout system and a full
software trigger [245] because the largest inefficiencies in the entire trigger chain occur
in the L0 trigger decision. The new readout system has a similar architecture but skips
the hardware L0 trigger and uses a readout network with a much larger bandwidth. It is
able to process the full inelastic collision rate of 30MHz with the event filter farm and a
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bandwidth of 4 TB/s. Full track reconstruction is performed at 1 to 2MHz. Higher-level
objects like decay vertices are reconstructed at a rate of 20 to 100 kHz.

During Run 2 of the LHC, real-time alignment, and calibration were introduced to
make it available for the HLT algorithms [248]. As of Run 2, the HLT is split into two
stages. The first stage, HLT1, receives events at a rate of up to 1MHz from the L0 trigger.
A first full track reconstruction is performed at this stage, and events are selected. The
intermediate data are buffered to disk and used to obtain high-quality calibration and
alignments in an asynchronous process. The second stage, HLT2, then uses this data
to obtain the best track reconstruction possible. This scheme not only improves the
efficiency and purity of the HLT selection but also allows for the offline reconstruction
to be skipped.

Consequently, offline data processing at this stage is limited to data filtering, which
is known in LHCb as stripping. In the stripping process, many selection algorithms
(stripping lines) are executed in parallel. Each line selects events and produces a stream
of higher-level reconstructed physics objects that are directly used in data analyzes (e.g.,
fully reconstructed decays). Stripping reduces the event size to simplify the analysis,
hence the name.

The next step forward, also introduced during Run 2, was to perform the stripping
online to produce turbo streams in addition to the traditional full stream that contains
the rawevent data. Turbo streamsmaintain only thehigher-level objects that aparticular
analysis requires, along with monitoring information, but not the raw data and not
other unrelated high-level objects. Turbo streams are produced online at the HLT2
stage and saved in an internal compressed format optimized for writing speed. Offline
processing of turbo streams requires very limited CPU resources, at the level of 1 in
1000 of the total, because it only amounts to a conversion of the internal data format to
ROOT and the inclusion of luminosity information.

The size of an event depends on the amount of information that is stored, ranging
from a few kB for a turbo event up to 200–250 kB if the full event is persisted. In 2018,
full events were written with a rate of 7 kHz and turbo streams with 3.1 kHz, reaching a
throughput of 0.65 Gbit/s with an average full event size of 70 kB [248]. Several PB of
data were produced.

4.2.2 Data Acquisition for Imaging Air Cherenkov Telescopes

Maximilian Linhoff

In general, data acquisition for Imaging Air Cherenkov Telescopes (IACTs) consists of
two parts, a buffer system keeping a time range of up to several microseconds, and a
trigger system that decides when an air shower was likely registered, which leads to
the readout of the buffer system around the trigger time. In the most common IACT
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trigger system, used in different variants for FACT, MAGIC, and some CTA telescopes,
the pre-amplified analog signal is duplicated and split into both systems, and the buffer
stores analog charges.

The trigger system combines the analog signal of multiple pixels into what is called
a trigger patch and applies a threshold to these patches, transforming the trigger signal
of each patch into binary. Different rules can be applied on howmany patches at the
same time have to be above the threshold and how long the time overlap has to be.
When these rules are fulfilled, the buffer is read out, and the analog values are digitized.

For telescope arrays, there is usually the second step of an array trigger that requires
that at least a certain number of telescope triggers report an event. Due to the distance
between the telescopes and the required processing time, stereo arrays, especially
larger arrays like CTA, require the telescopes to have larger buffers. In the following,
the general hardware of IACTs and the trigger system is described.

Imaging Air Cherenkov Telescopes most commonly comprise a single, segmented
main reflector dish and a very fast camera able to detect down to single photons with
sub-nanosecond resolution. The size of the reflector varies widely over the different
currently operating and planned facilities.

Two main technologies for the photodetectors are in use: photo-multiplier tubes
(PMTs) and silicon photo-multipliers (SiPMs). While today, like photon detection, effi-
ciency in the wavelength range is relevant for IACTs, other properties are very different.
PMTs require high voltages, typically several kV, and are susceptible to damage when
exposed to excessive light levels, which can already occur during moon-lit nights. For a
long time, PMTs had an advantage in photon detection efficiency over SiPMs, which
have only recently reached comparable levels, especially in the ultraviolet to blue
regime important for detecting Cherenkov light. SiPMs require only a voltage in the
range of 30V to 100V and are virtually indestructible at high light intensities. A major
drawback of SiPMs is their limited size, which makes it hard to tile large cameras as
required for the field of view of, say, the CTA LSTs without complex electronics or light
guides. See [186] for a detailed review of these technologies.

The cameras are continuously read out during observations. However, the data
volume of storing all camera signals far exceeds the amount possible for even short-
term storage. An IACT with a 2000 pixels readout at 1 GSample/s digitized at 16 bits
would create a staggering data rate of 4 TB/s. Thus, all IACT cameras have a trigger that
observes the continuous signal and decides when data should be digitized and stored
permanently. This requires a buffer for either analog or digitized values to be able to
store the relevant data until the trigger can make its decision. The trigger usually works
by combining the signal of multiple pixels into groups and then applying thresholds on
the height of the group signal and the number of groups above that threshold. Figure 4.2
shows the individual pixels and the trigger groups for the FACT camera. In the case of
multiple IACTs operating as an array, there is also a stereo trigger, combining trigger
information of all telescopes. For more details about the FACT trigger system, see [53];
for information about the CTA trigger system, see [172]. Larger buffers are required in
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Pixels Trigger Patches

Fig. 4.2: FACT pixels (left) and trigger patches (right). The trigger patches calculate the analog sum of
9 pixels each.

Tab. 4.1: Key properties of currently observing and planned IACTs

Telescope MAGIC FACT CTA-LST CTA-MST CTA-SST
Mirror diameter 17m 4m 23m 12m 4m
No. of pixels 1039 1440 1855 1855 2048
Technology PMTs SiPMs PMTs PMTs SiPMs
Field of view 3.5° 4.5° 4.5° 8° 9°

this case since the signal delay between different telescopes leads to a larger delay
between the recording of the data and the final trigger decision. In case the trigger
decides that data should be recorded, all pixels of all telescopes with a trigger signal
are typically read out for a duration of several tens of nanoseconds around the trigger
time, digitized, and stored to disk along with the necessary metadata. This is the first
data level accessible to software analysis: time series information of the photo-sensors
for each individual pixel—basically a very short video. The typical data structures of
IACT data are discussed in Section 4.3.2.

Table 4.1 lists the key properties of currently operating and planned telescope
types.
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4.2.3 Data Acquisition for IceCube

Tim Ruhe

Data acquisition in IceCube is based on the utilization of the Cherenkov effect, which
causes the emission of photons at blue wavelengths. Said photons are then collected
by Digital Optical Modules (DOMs), where they are transformed into a time series of
charges, often referred to as a waveform, by the use of multiple digitizers with overlap-
ping dynamic ranges, and different sampling speeds. Trigger algorithms continuously
search for patterns matching predefined criteria and combine the waveforms returned
by individual DOMs to events. These events are then handed over calibrated and pro-
cessedbybasic reconstruction algorithms in order to checkwhether a certain hypothesis
(track or shower) can be met. The data is then further processed to search for events
that are likely of astrophysical origin, which then triggers a community alert, to allow
follow-up observations with other instruments. Furthermore, the data is compressed
in order to meet the criteria for satellite communication and prepared for long term
archival.

Although IceCube is a neutrino observatory [21], it does not actually detect neutri-
nos, as these can only be observed via their leptonic partners, created in a neutrino-
nucleon interaction. These neutrino-nucleon interactions can proceed either as so-
called, charged-current (CC) or neutral-current (NC) interactions. CC interactions are
governed by the following equation

νl + X −→ l + X′, (4.2)

while a neutral current interaction is governed by

νl + X −→ νl + X′. (4.3)

In both cases the νl is an incoming neutrino of a specific leptonic flavor l and l denotes
the emerging lepton. The nucleus with which the interaction takes place is denoted as
X, whereas X′ represents a hadronic or electromagnetic cascade, which also emerges
as a consequence of the interaction. In contrast to Equation 4.2, no emerging lepton is
produced in a neutral current interaction (Equation 4.3).

Due to their electric charge, the generated leptons, alongwith the secondary leptons
emerging within the cascade, cause a polarization of the medium, which is relaxed
by the emission of a characteristic radiation after the lepton has passed. For energies
relevant for IceCube, the velocity of these leptons exceeds the speed of light in the
detectionmediumand the radiation emittedby themedium,will interfere constructively.
This effect is known as the Cherenkov effect, and the emitted radiation is referred to as
Cherenkov radiation. In water this radiation has wavelengths between 400 and 700
nm. In order to observe neutrinos with IceCube, one therefore has to detect light and
the detector needs to be designed accordingly.
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Fig. 4.3: Top view of the IceCube detector with different colors indicating different construction
seasons. Graphic courtesy of the IceCube collaboration.

Photosensors for the detection of light that are embedded in Digital Optical Modules
(DOMs) are the fundamental units of the IceCube detector. In total, 5160 of these DOMs
are deployed in the deep ice at the geographic South Pole at a depth of between 1450
and 2450m. The DOMs are arranged on 86 vertical cables called strings, which are
themselves arranged on a triangular grid. While the DOM-to-DOM distance is 17 m,
the distance between individual strings is approximately 125m. Each DOM houses a
10" PMT, high-voltage supply, flasher-LEDs, and readout electronics. Data taken by
the DOMs is transferred to computers in the IceCube Laboratory (ICL) via twisted wire
pairs, which also provide the necessary power to operate the DOMs. Signals sent by
DOMs on the same string are combined and collected on dedicated computers, referred
to as DOMHubs [21]. As the construction of the IceCube detector was carried out over
multiple polar seasons, data was taken with incomplete instrumentation during that
time. In particular, data was takenwith 22, 40, 59, and 79 strings before the detector was
completed in 2010. This incomplete instrumentation leads to a different geometrical
shape between individual seasons. To distinguish between different geometries, the
number of strings is used. For example, IceCube-22 refers to IceCube in the 22-string
configuration. In case the number of strings is not specified, the fully instrumented
detector is meant. A top view of the detector with different colors indicating different
construction seasons is given in Section 4.3.

In IceCube twodifferent types of event patterns are observed. Thefirst one is referred
to as track like and originates from νμ CC interactions,whereas the second one originates
from νe and ντ CC interactions as well as from NC interactions of all neutrino flavors
and is referred to as cascade like. Due to the long range of muons in ice, the interaction
vertex of a track-like event can be outside the instrumented volume and even occur in
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the bedrock below the detector. Cascade like events, however, have to occur inside or
at least in very close vicinity to the detector. Events where the entire amount of light is
deposited inside the detector are referred to as fully contained. Neutrinos interacting
inside the instrumented volume are of special interest, as these starting events have a
high probability of being of astrophysical origin, especially for cases where their energy
exceeds a certain threshold. High Energy Starting Events (HESE) were the basis for the
discovery of the diffuse flux of high-energy astrophysical neutrinos (see [211], [19] and
[31] for details).

Within the DOMs the arriving Cherenkov photons are transformed into charges
by the PMT, which then finally forms a waveform, which is basically a time series of
charges. The digitization of the waveforms is also carried out within the individual
DOMs. As the photons may arrive from up to 500m away, and due to the large range
in the energy of incident particles (typically 10GeV up to several PeV), the waveform
amplitudes in the DOM have a large range as well (several mV up to ≈ 2 V). In order
to handle this variety of signals each DOM is equipped with multiple digitizers, with
overlapping dynamic ranges and different sampling speeds. When a DOM registers one
or more photons, this is generally referred to as a hit and each DOM detects photons
individually. The majority of these photons are due to dark noise, however [21].

As hits due to dark noise will occur as a stochastic pattern throughout the detector,
they can be distinguished from photons originating from particle interactions via coin-
cidence requirements. In IceCube two coincidence requirements can be distinguished.
The first one is a hard local coincidence (HLC), which is fulfilled in case two neighbour-
ing or next to neighbouring DOMs are hit. HLC hits often have complex waveforms
indicating that individual DOMs are hit by multiple photons, and are thus saved in full
detail. Isolated hits are marked as soft local coincidences (SLC) and more aggressively
compressed [21].

DAQ trigger algorithms continuously look for clusters of HLC hits in space and time,
which indicate a particle interaction instead of dark noise. All algorithms search for a
given multiplicity of HLC hits and may also include geometric requirements. The time
scale of the trigger is set by the speed of light in ice and the geometric requirement of
the respective trigger algorithm. Certain triggers are restricted to a subset of optical
modules, e.g. all in-ice¹ or all Deep Core DOMs [21].

The Simple Multiplicity Trigger (SMT) requires N or more HLC hits within a time
window of several µs, without any constraints on the locality of the hits. N is tuned to
the energy threshold of the specific sub-detector, which is set by the string spacing. The
Volume Trigger defines a cylinder of fixed size around each hit DOM and requires a given
multiplicity within this cylinder. This enables the triggering of low-energy events that do
not fulfill the SLC conditions. In addition, the Volume Trigger has a simple multiplicity

1 The IceCube neutrino observatory also contains the surface array IceTop [33], which is not covered in
this book. The selection of all in ice DOMS equals the exclusion of the DOMs in IceTop.
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parameter that fires, when a certain number of hits is reached within the defined
volume. The String Trigger requires a certain number of hits within a span of optical
modules along a given string. This enables the triggering of low-energy muons that
pass vertically through the detector. While the aforementioned triggers are designed
for particles moving through the detector with approximately the speed of light, the
SLOP trigger aims at triggering slow-moving particles such as magnetic monopoles. For
details on IceCube’s searches for relativistic and non-relativistic magnetic monopoles,
we refer to [20] and [27], respectively.

The Fixed-Rate Trigger reads out 10ms of hit data from the full detector at fixed
intervals. As many events fulfill more than just one trigger condition, subtriggers are
merged and a global trigger combines time windows and forms non-overlapping trigger
requests, which are then used by the Event Builder as templates to retrieve the full
information on the hits and to assemble an event. The Global Trigger also ensures that
the same hit does not appear in multiple events [21].

Once theEventBuilder receives a request from theGlobal Trigger, it extracts the read-
out time windows. The time windows are then forwarded to the appropriate StringHubs,
which return a list of all hits inside the given time window.When all hubs have returned
a list of hits, these hits are bundled and an event is formed and written to a temporary
file, which is renamed in a standardized way, once it reaches a preset size. The files are
then passed on to Online Processing and Filtering (PnF) [21].

Online Processing and Filtering handles all triggered events and reduces the data
volume to a size that can be handled in satellite transfer. The data treatment includes
the application of calibration constants, as well as event characterization and selection.
Furthermore, information on data quality is extracted. Real-time alerts are generated
for astrophysically interesting events (see [22] for details on real-time alerts by IceCube).
Last, data files and metadata information are created for long-term archiving [21].

The first data-processing step consists of the waveform calibration. This step
requires information on the geometry and the detector status, which is stored in a
database. In a second step, the waveform is deconvolved on the basis of the known
DOM response to single photons. The deconvolution is required in order to extract
amplitudes and arrival times [21]. The extracted time series of waveform amplitudes
is the basis for all further reconstructions and stored in a specific format (SuperDST),
which uses only 9% of the storage, compared with the full size of the waveforms. For
DOMs where the SuperDST representation is found to be not sufficiently accurate, or
which recorded high levels of light, the full waveform information is stored as well [21].

Events are then further processed by reconstruction algorithms, in attempting to
match the observed light patterns with track and shower hypotheses. The extracted
vertex positions, the reconstructed direction and energy, and the goodness of fit are
used to extract interesting events by various filters. Filter selections are set by the
collaboration and tuned on a yearly basis. In 2016, 25 filters were in operation and
approximately 15% of all events are selected by one or more filters. Dedicated filters,
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for example, search for events that are likely of astrophysical origin and send out alerts,
used for follow-up observations by other experiments [21, 22].

The PnF also aggregates information regarding quality and stability of the data-
taking, which are utilised for detector monitoring. Furthermore, files for satellite trans-
mission and long-term archiving are generated [21].
The total amount of rawdata acquired by the IceCube neutrino telescope is 1 TB/d. Using
SuperDST and online filtering reduce the data to 170GB/d and 90GB/d, respectively [21].

4.3 Data Structures

Data has to be stored in memory and on disk and organized for easy retrieval. It is
common among particle and astroparticle experiments to store data in different stages
of processing. The lowest stage contains raw data from the detectors, while the higher
stages contain reconstructed physical objects, such as tracks of individual particles or
particle showers.

Object orientation is a common theme. Data are typically organized in logical units.
For example, a track object stores the position and direction. Related classes are usually
linked, and a track object may contain a pointer to the lower level information from
which it was formed.

Apart from these common general concepts, there is a large diversity in the details
since each experiment typically develops its data structures from scratch for its partic-
ular purpose. The format in which data are persisted also differs from experiment to
experiment. In the following, the data structures used by LHCb, IACTs, and IceCube
are described.

4.3.1 Data Structures for LHCb

Bernhard Spaan
Hans Dembinski

The LHCb software mainly uses a classic object-oriented design to encapsulate data
and complex transformations in objects. There is a clear separation of concern between
data objects and transformation objects, the latter of which are called algorithms. Data
objects cannot transform themselves, while algorithms cannot store event data. There
is also a clear separation between data objects produced by the simulation and by
the reconstruction. Data objects are passed from algorithm to algorithm in so-called
Transient Data Stores, which are flexible and generic. Objects in the store are accessed
via keys (strings), andmultiple instances of the same class can be stored under different
keys. Algorithms can only add new data objects to the store and not modify objects
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already in the store. Related data objects can also be stored in data containers, typically
vectors. Recently, some containers have been converted from the array-of-structs to the
struct-of-arrays configuration to improve the performance of vectorized algorithms that
process large amounts of data in parallel.
Reconstructions of higher-level objects used by analysts (tracks, reconstructed decays,
etc.) are performed by the LHCb online system from raw event data in real time since
these objects are also an input for the high-level trigger. During Run 1 and 2 of the LHC,
offline reconstructions were also performed to make use of calibration and alignment
data. Traditionally, the reconstructions were processed offline, but this changed with
the introduction of online alignment and calibration so that high-level physics objects
of the highest quality are now produced online. Only a fraction of the events is now
persisted with full raw event data, called FULL stream, while many analyses use the
so-called Turbo stream, which persists only the selected high-level objects from an
event that are needed for a particular analysis. A further TurCal stream is persisted to
monitor the online calibration and alignment.

The LHCb software architecture distinguishes between transient (in-memory) and
persistent (on-disk) data representations [57]. This separation has several advantages.
The persistent data format can be changed without affecting the physics code, and the
two representations can be optimized following different criteria. Making use of this,
the previously mentioned streams are written to disk in different internal data formats,
which are further converted offline into the ROOT-based DST (Data Summary Tape)
and MDST (micro-DST) formats for user analysis. Both formats contain reconstructed
physics objects such as tracks, vertices, etc.), while the DST can also contain the raw
data.

Data processing in LHCb is performed with a pipeline of algorithms, the basic
data-processing blocks in the LHCb software architecture that perform reconstruction,
filtering, or analysis. Data is passed from algorithm to algorithm in Transient Stores,
which are organized in a tree-like structure similar to a Unix file system. Each node
of the tree is the owner of everything below it, so deleting a node also deletes all its
children. Associations between otherwise independent nodes are implemented with
links, which extends the lifetime of the linked node to the nodes which hold the link.

There are three categories of data with different access patterns and lifetimes. Each
has a corresponding store. The stores are used to pass data between algorithms and act
as an intermediate buffer for derived representations such as persistent or graphical
representations. Zero or more persistent or graphical representations correspond to
one transient representation.
– The Transient Event Store (TES) contains the event data obtained from particle

collisions (real or simulated) and their successive processing, which are valid
only for the time it takes to process one event. By convention, algorithms may not
modify data that is already in the TES nor add new objects to existing containers.
This ensures that algorithms can be run in any order (the algorithm sequence will
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Fig. 4.4: Processing of objects in LHCb. Direct links exist only between adjacent objects in this
graph. The processing of the simulated and the real event is fully disconnected, as indicated by the
vertical dashed line. The reconstructed event is matched to the simulated event at the lowest level of
abstraction, i.e. the digits.

either fail or succeed to produce the same outcome, instead of potentially different
outcomes depending on the order).

– The Transient Detector Store contains data that describe parameters of the LHCb
detector that can vary during a period of data-taking, such as its calibration and
alignment parameters. It exists for a period of data-taking in which many events
are processed.

– The Transient Histogram Store contains statistical data (histograms or tables) gen-
erated over the lifetime of a job from processing a set of events over several periods
of data-taking.

The stores contain software objects that typically model physical objects. A physical
particle, track, detector hit, cluster, vertex, etc., is represented by a corresponding
software object. Related objects can be grouped together into a data container, typically
a vector of contiguous memory. The data objects in the TES are organized into a number
of sub-trees.
– MC: Output of the detector simulation, hits, and deposits, particles, and vertices

from material interactions or particle decay.
– Raw: Raw data from the real or simulated detector in the same format.
– Rec: Output of (sub-detector) reconstruction (clusters, tracks, etc.)
– Phys: Highest-level objects for physics analysis (particles, vertices, etc.)
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Simulated objects are presented by classes other than reconstructed objects and are
strictly separated, as illustrated by Figure 4.4.

The LHCb architecture foresees that data objects have a minimal interface that is
necessary to conveniently access their state. Code that transforms data in a non-trivial
way is instead put into the aforementioned algorithms, which are also objects, but
with the complementary purpose of transforming data objects. The LHCb software
makes use of vector units in modernmicroprocessors, which can performmathematical
operations on whole vectors of numbers within a single CPU cycle. To facilitate the
use of vectorized math, traditional arrays of structs (AoS) are converted into structs of
arrays (SoA) where appropriate [247]. Some algorithms are converted to run on GPUs to
make use of massively parallel execution.

4.3.2 Data Structures for IACTs

Maximilian Linhoff

The raw data recorded by most modern IACTs consists of time series information for
each pixel in the camera, typically with a resolution between 1 and 2 GSample/s and a
duration between 30 and 150 nanoseconds. Some telescopes use two different signal
amplification gains for each pixel to increase their dynamic range. This results in a
single telescope event being a regular array of dimensionality (Ngains, Npixels, Nsamples),
where the first dimension might not be present for telescopes not using more than one
amplification (e. g. FACT andMAGIC). The data is stored in a flat array since the pixels of
IACT cameras are usually not on a regular square (hexagonal grids are more common).

This raw data is accompanied by additional metadata, such as the timestamp of
the observation, information about the trigger decision, and information needed to
perform calibration for detector properties. IACT array events comprise several of these
telescope events that belong to the same shower along with additional array-wide
metadata, such as the timestamp of the stereoscopic trigger.

In a typical IACT analysis, this raw data must first be calibrated, e. g. to mediate
manufacturing differences between pixels. In case of multiple gains, the appropriate
channel is selected. Then the time series information is reduced to just two aggregated
values per pixel: the estimated number of photons and their mean arrival time. This
data is commonly called the “image level”. For analyses based on classical feature
extractions, see Section 7.3. These images are then parametrized, resulting in a list of
numbers for each event or a 2d table for multiple events, which is the input for most
classical machine learning algorithms. For more information, see Section 8.4.

In recent years, Deep Learning approaches starting at earlier data levels, such as
the image level or the calibrated time series, have gained traction, as explained in
Section 9.4.
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In addition to the event data itself, more slowly changing data describing the state
of the telescope and the environment is needed. This includes the telescope pointing
direction, calibration coefficients, and atmospheric transmission.

The basic unit of IACT data is the array event, the data belonging to one air shower
recorded by the telescopes. An array event is composed of several telescope events,
data recorded by a single telescope of the array, and array-wide metadata.
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Fig. 4.5: Time series of a single camera pixel of FACT before and after calibration has been performed.
The vertical line is the inflection point which is used as the arrival time for the Cherenkov pulse,
and the shaded area shows the integral performed to estimate the number of photons. These two
properties are displayed in Figure 4.6.

We will follow CTA terminology in this section, which defines several data levels for
progressively higher processing stages of the analysis. The first data level, R0, is the raw
digitized signal as produced by the camera electronics and readout server. For several
IACTs, including MAGIC and FACT, this is the data level that is stored for long-term
preservation and the start point for off-site data processing. The main content at this
data level is the voltage time series of each camera pixel in each telescope, contributing
to the array event. In general, this is stored as a three-dimensional array of shape
(Ngains, Npixels, Nsamples). Ngains is the number of pre-amplification channels used to
read out the signal, usually 1 or 2. Npixels is the number of pixels, and Nsamples is the
number of samples in the time series of each pixel. The R0 data is specific to each
telescope and has to be calibrated for multiple effects, including production differences
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between the photo sensors, temperature dependencies of the electronics, aging of
PMTs, and more. In the case of multiple gain channels, the most appropriate channel
is selected. The result is the R1 data level, pre-calibrated, homogenized time series data
with only one channel, resulting in a shape of (Npixels, Nsamples). In the case of CTA,
the calibration from R0 to R1 is performed on the telescope server before the data is
transmitted to the central array computing center, while for most other telescopes, R1
is an intermediate data level not stored but only produced as an intermediate step of
the processing.

The pixels containing the Cherenkov signal from an air shower are usually only
a very small sub-sample of the camera. To reduce the data amount, CTA plans to not
store time series information for all pixels of a telescope event but only for those likely
to contain the Cherenkov signal. The data level after the data volume reduction is called
DL0 and is the first data level foreseen for the long-term preservation of CTA. The shape
is, in general, the same as for R1, but the array now is sparse, i. e. it does not contain
values for all pixels.
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Fig. 4.6: A single 500GeV shower as observed by two CTA Large-Sized Telescopes.The time series in
each pixel has been transformed into the estimated number of photons (left) and their mean arrival
time (right). On the right side, pixels not selected by the image cleaning are shown in gray.

In the common, “classical” analysis approach, this data is now reduced in three steps:
1. Image extraction: the number of photons and the arrival time of the Cherenkov

pulse are estimated from the time series in each pixel. The number of photons in
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each pixel is called the image and is comparable with our classical understanding
of the term: a monochromatic brightness image.

2. Image cleaning: pixels likely containing Cherenkov signal are selected.
3. Image parametrization: from the selected pixel values, several aggregations are

calculated, resulting in a number of image parameters for each event.

These steps are detailed in Section 7.3. In the context of data structures, it is enough to
highlight that we get two additional representations of the IACT data: the image level
with two arrays of shape Npixels for each event and the image parameter level with a
collection of single aggregations of all information discussed before. CTA combines
these two intermediate data levels into DL1.

The DL1 parameters are the entry point for classical machine learning-based analy-
ses to reconstruct the properties of the primary particles, which will be discussed in
Section 8.4. Deep learning approaches, discussed in Section 9.4, usually start at the
DL1 image level but approaches directly starting at the time series stage are also under
development.

The result of the event property estimation step is the DL2 data level. At this stage,
possibly multiple values for each property are estimated by different algorithms.

The final event-based data level is DL3, which contains the reconstructed event lists
of gamma-ray candidates accompanied by the instrument response functions . This
is the input data level for the final step of a gamma-ray analysis, the solution of the
inverse problem discussed in Section 10.5. It is also the data level CTAwill provide to the
science users of the observatory. All previous data levels are internal or intermediate
data levels and are processed by CTA to produce the DL3.

Previously, we discussed the abstract data structure of IACT data, not a concrete
data or file format in which this data is stored. While the data structures and analysis
approaches are essentially the same for all IACTs, there are currently no common data
formats for low-level IACTdata. Each collaboration of the currently operating IACTs uses
its own software stack and associated data formats, most often built on top of the ROOT
framework [56]. This also includes higher data levels and scientific analysis, but in this
area, an initiative has been formed in the last years to develop a commonhigh-level data
format and open-source analysis tools for gamma-ray astronomy, mainly motivated by
the fact that CTA will operate as an open observatory, but also by the wish to combine
data from the currently operating telescopes to enable multi-instrument analyses and
to have a format more suited for long-term archiving and independent of the often
proprietary analysis software. The initiative “Gamma-ray Astronomy Data Formats”
(GADF) [138] is developing a specification for DL3 stored in FITS[121] files, which is the
input format for the open-source analysis framework for gamma-ray data Gammapy [139].
ctapipe [296] is an open-source library and set of command-line tools for the processing
of IACT data from R1 to DL3, currently in prototype stage developed for CTA but with a
plugin systemalso enablingdata analysis for non-CTA telescopes or prototypes. ctapipe
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uses hdf5² files for the intermediate data levels. The FACT-Tools / aict-tools analysis
chain for FACT, discussed in Section 7.3 uses both FITS and hdf5 files at different stages
of the analysis.

4.3.3 Data Structures for IceCube

Tim Ruhe

IceCube utilizes its own file format, the i3-files. Inside the file, all required information
is stored in an event-wise fashion in frames. Dedicated frames also contain meta-
information on the detector geometry, calibration constants, and details on the physics
configuration of the data-taking. In addition, the data is hierarchically organized in
levels. The basic features of i3-files, as well as the meaning of the different levels, are
explained in the following.

The IceCube collaboration utilizes its own file format, which is used for experimen-
tal and simulated data. This standardized file format is the i3-file, which is also used for
parallel file processing. As every physics run in IceCube usually lasts for approximately
eight hours, this run is split into a number of sub-runs to speed up the entire processing.
The fundamental unit in the file is the frame, where every frame contains exactly one
IceCube event, which corresponds to about 10ms of IceCube data. In IceCube, an event
is formed by a what is known as a trigger and combines the information available from
the Digital Optical Modules (DOMs) in a physically meaningful way (see Section 4.2.3
for details). Different types of frames are present in a file, which can be broken down
into two larger categories.

The first category is metadata, which is usually required once per file. I frames
(also referred to as TrayInfo) contain information on how the file has been previously
processed. G frames (Geometry) contain the basic detector geometry, in particular, the
geometric coordinates of all DOMs. The nominal distance of regular IceCube strings
is approximately 125m, but the actual distance may differ by a few meters. The infill
array DeepCore has a much denser string and DOM spacing. Precise knowledge of the
DOMpositions is required for an accurate reconstruction of the events. A reconstruction
in this context is a chain of algorithms. For example, say, time residuals are to be
computed, which require DOM positions as an input (see Section 7.2 for more details
on event property reconstruction in IceCube). The G frame was introduced so that the
geometry could be updated during the construction of the experiment and to allow
for refinements of the position information. The DOM positions are measured relative
to the South Pole coordinate grid (Northings and Eastings). In the first stage, x and y
coordinates are derived from the position of the drill tower. z coordinates are derived

2 https://www.hdfgroup.org/solutions/hdf5/.

https://www.hdfgroup.org/solutions/hdf5/
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by utilizing pressure sensors during the deployment of the DOMs. After deployment,
flasher data is used to correct the initial measurements of the geometry.

C frames (Calibration) contain the calibration constants of the photo-multiplier
tubes, the core components of the DOMs. The detector status at data-taking is saved
in the D frame (Detector), generally for the entire 8 h run. Among other things, this
frame stores which DOMs and strings were active during data-taking. Although IceCube
DOMs are generally very stable and most DOM failures occurred during deployment,
individual DOMs or entire strings might fail temporarily, so that their information is
not available for reconstruction.

Information on individual events is saved in P and Q frames. While Q frames
contain the recorded waveforms of an event, event reconstruction results are saved in
the P frames (Physics). Several reconstructions can be applied independently on the
same raw data, resulting in several P frames. Within P frames, the intermediate results
of individual reconstruction algorithms can be accessed.

In addition, IceCube data is organized hierarchically in levels. The higher the level,
the closer the data are to a physics analysis, and the more reconstruction algorithms
have been run on it. Level 0,which is often also referred to as the trigger level, is designed
to be very fast and aims at separating any kind of particle interaction from noise events
in the detector. This is achieved via the application of dedicated trigger algorithms (see
Section 4.2.3).

Level 1, sometimes also called filter level, contains data taken at a rate of approx-
imately 3 kHz and is dominated by atmospheric muons. At this stage, atmospheric
neutrinos, which are the second most abundant type of particle detected by IceCube,
make up only about 10 to 20mHz. A certain amount of background rejection can al-
ready be achieved at this level by using dedicated filters that select data with different
energies and topologies. The DeepCore filter, for example, selects events below 100GeV,
which interact at the bottom of the detector.

Level 2 is dedicated to collaboration-wide processing, and no events are discarded
at this level. Instead, reconstructions are applied, and the events are processed for each
filter. The processing is continued at level 3, where it becomes specific to a particular
working group. Three main filter chains (cascades, muons, low energy) exist at level
3, where cuts are applied on events that pass a subset of filters. In addition, new
reconstructions are applied, which are generally more sophisticated and resource-
consuming than the ones applied at level 1. At level 3, which is the output level for the
reconstructions run on level 2, the data rate is reduced to approximately 1Hz.

At levels four and above, event selection and processing become analysis-specific,
and data is, for example, filtered to obtain a neutrino-dominated sample. The number-
ing of the levels and which stages of the cleaning process are summarized into a level
depends on the personal preferences of the analyzer and are not necessarily mean-
ingful in themselves. The same holds for the applied cuts and the utilized (machine
learning) algorithms. However, over time certain selections have been maintained and
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established, which serve as input for different kinds of analyses. An event selection for
IceCube is presented in Section 8.3.1.

4.4 GPU-Based Trigger Decisions

Holger Stevens

The LHCb experiment is undergoing an upgrade at the moment. A major change is
the use of a pure software trigger. All sub-detectors will be read out trigger-less at
40MHz, which results in an incoming data rate of 40 Tbit/s at the data center. This
data rate will be reduced by a fully GPU-based implementation of the first trigger stage.
The corresponding project is named Allen. The LHCb collaboration will be the first
experiment with a complete high-throughput GPU trigger in the high-energy physics
community. In the first stage of the trigger, complex raw data from the sub-detectors
needs to be decoded with the highest speed and prepared for the subsequent further
stages, where particle trajectories will be derived that are the basis for the determination
of their production vertices and for the identification of particles as muons or hadrons.
As Dortmund is participating in the construction of the SciFi tracker, the initial focus
was on the development of corresponding decoding algorithms.

TheAllen project is a GPU-based implementation of LHCb’s first trigger stage (HLT1).
The trigger is an essential tool of LHCb’s overall data acquisition system, as described
in Section 4.2.1. The general necessity for the trigger and the second stage (HLT2) was
introduced in Section 4.1 and Section 4.2.1. For the trigger decision, the raw channel
information of the various sub-detectors is combined to build tracks and pseudo par-
ticles. The different data types within the experiment are explained in Section 4.3.1.
This section first presents the general Allen structure and the different approaches to
parallelizing tasks. Then the performance in the sense of event throughput is presented
for different GPUs.

A flowchart of the trigger process is shown in Figure 4.7. The HLT1 has to reduce the
incoming data rate of 40 Tbit/s down to 1 Tbit/s. The limiting factor for the output rate
is the disk buffer. In the foreseen trigger scenario, the GPUs are located in the Event
Builder (EB). The EB servers are equipped with 32-core AMD EPYC (7502) CPUs, and
around 173 of these are needed. Because these servers have empty PCIe slots anyway,
they are ideal for hosting GPUs. In the initial plan for the upgrade trigger, no GPU was
foreseen. Thereby the HLT1 was located in the EFF similar to HLT2. Due to the transfer of
HLT1 into the EB, the first reduction is made before the EFF. This enables the connecting
of the EB and the EFF via the onboard network cards of the server. GPU usage leads to
a cost reduction; for the pure CPU scenario, an additional 100GB card would have to
be purchased. A detailed comparison of the pure CPU trigger and the hybrid GPU and
CPU version are published in [246].
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Fig. 4.7: Data acquisition system with a GPU-based HLT1 stage.

Modern instructions such as SIMD and SIMT are used within the Allen project, which
allows one to perform the same mathematical operation on multiple data values in
parallel. A single LHCb event is rather small, about 100 kB. Within the EB, multi-event
packages are built; containing 1000 events. These packages are then copied to a GPU,
and the system is not I/O bound. As the events in the package are totally independent,
they can be processed in parallel. Hereby it is also mentioned that no communication
between the various GPUs is needed. The HLT1 sequence is shown in Figure 4.8. Within
this sequence, the different kernels use multiple threads. Algorithms are illustrated
as rectangles and reducing steps as rhombi. The raw data is copied from a host CPU
to a GPU, and a first cut is applied. The Global Event Cut deletes very crowded events
with many hits. This is done as no significant track separation is possible here. In the
following steps, the hits from the different sub-detectors are decoded, and track-finding
algorithms are applied. Thereby the flight direction of the particles is adapted. One of
the most important features is the primary vertex, the place where the proton-proton
interaction takes place. The VELO is the only component where no clustering is done
within the detector readout, and therefore the clustering is in the trigger. Triplets of
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Fig. 4.8: Sequence of the HLT1 Allen application.

hits are built and used as seeds for track candidates. As all tracks are independent,
the VELO tracking is parallelized for multiple seeds. The found tracks are used within
the next step known as UT tracking. The tracks are extrapolated to the UT, and found
hits are matched to the tracks. Of course, the different tracks are handled parallel.
The next algorithms correspond to the SciFi tracker. At first, the hits are decoded, and
second, the hits are used to extend previously found tracks. Silicon photomultipliers
are used as a sensor in the SciFi. The smallest readout unit is a channel of 96 pixels,
and in total, this sub-detector has more than 500000 channels. These are distributed
over three stations with four layers each. Within the readout electronic, the signal of
the channels is processed, and clusters are formed. This improves the signal-noise
ratio. The cluster data is packed in so-called raw banks. The task of the decoding is to
transform the cluster from the various raw banks and transform them into physical
hit coordinates. An important requirement of the overall trigger sequence is the fact
that the hits need to be sorted in x. The SciFi decoding is split into three algorithms:
calculate cluster count, pre-decode, and raw bank decoder [359]. For thread-based
decoding, the number of clusters is essential. The clusters are counted because the
amount is not known beforehand. Due to special data handling, directly neighboring
clusters are merged, and only the start and end are stored. In the decoding, the merged
information is recovered. For the recognition of clusters to recover, a special bit in the
actual cluster data needs to be evaluated. This is done in the pre-decoding. The data is
also sorted here. This is needed as the data alignment direction is different for every
second layer. In the last step, the actual transformation of the cluster channel identifier
into x, y, z coordinates takes place. The values are written to a predefined memory
location. Due to the sorting in the pre-decoder, the hits are sorted. Within the SciFi
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Fig. 4.9: Allen sequence throughput against theoretical GPU performance [11].

tracking, the found VELO tracks are extended. Hereby the momentum of the charged
particles is taken into account as the SciFi is placed behind the bending magnet. The
muon stations are the only particle identification system that is evaluated in the HLT1.
This is due to the special interest in muons in the physics field of LHCb. The muon data
is decoded, and the probability for particles to be a muon is calculated. All generated
information is used to find secondary vertices. In the end several selection lines are
applied, and the selected events are copied back to the host CPU and stored in the
buffer until HLT2 starts. The key property of the HLT1 is its throughput of events, as
the computing time is limited. The throughput of the Allen HLT1 application is tested
for different GPUs. Figure 4.9 shows the theoretical GPU performance in 32-bit TFLOPS
against the achieved HLT1 throughput. It can be seen that the throughput scales well
with the theoretical performance of a GPU, and a significant performance growth is
expected with future GPU generations.

The throughput values shown in Figure 4.9 are average numbers, but due to the
random nature of particle processes, the number of hits in the detector varies signifi-
cantly. Most of the computations within the trigger are combinatorial, and therefore
the processing time per event strongly depends on the event size. Figure 4.10 shows
the event throughput in bins of the SciFi raw data size.
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5 Monte Carlo Simulations
5.1 LHCb: Monte Carlo Simulations and Libraries in Particle Physics

Bernhard Spaan
Hans Dembinski

Gerwin Meier

The LHCb simulation is a software chain that utilizes several specialized software pack-
ages. The proton-proton collisions are generated with Pythia [353, 354]. The hadronic
particle decays are simulated with EVTGEN[239], and the radiation of photons with
PHOTOS [133, 180]. The interaction of particles with the detector material is simulated
with GEANT4 [40, 50]. Finally, the internal response of the electronics in the detector
is simulated with the software BOOLE [128]. After this point, a simulated event is pro-
cessed in the same way as a real event. The LHCb data acquisition system is described
in Section 4.2.1. In the following, the individual steps are discussed further.

The task of Pythia is to simulate the high-energy proton-proton collision and the
resulting particles as accurately as possible. Like any program in the simulation chain,
it uses the Monte Carlo method, which generally speaking breaks a complex process
into small randomized processes occurring in succession. In a proton-proton collision,
the simulation starts with one or several hard scatterings of the quarks and gluons from
the colliding protons. At the beginning, the partons (parton is an umbrella term for
quark or gluon) have high energy. Some of this energy is radiated as gluons, and some
gluons convert into quark-antiquark pairs. These processes cascade and form a parton
shower. The parton-parton interaction and interaction with the other protons in the
beam, which have not collided, is also considered. When energy per quarks produced
in the parton shower drops below a certain threshold, the shower ends and the quarks
bind to form color-neutral hadrons, as mandated by the confinement property of the
strong interaction. This hadronization is a complex process for which several effective
algorithms exist. To get the properties of the hadrons right, local parton-hadron duality
is used, which implies that the flow of the momentum and quantum numbers of the
hadrons is mainly the same as the corresponding partons. For more details, we refer
the reader to the Lund string fragmentation model [54].

Most of the produced hadrons are unstable. Hadron decay is simulated by EVTGEN.
The program aims to accurately describe all underlying physics for the decay that are
relevant for an experiment designed to study flavor physics, such as angular and time-
dependencies, CP-violation, interactions with the quantum-vacuum, and the mixing of
neutral particles into their antiparticles. The programmakes sure that the momenta
and spins of the decay products are properly correlated. A correct simulation of the
correlations is important, since they are exploited by certain physics analyses, e. g. for
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Fig. 5.1: Distribution of m(e+e−K+K−) for selected B0s → J/ψϕ candidates with (left) zero and (right)
both electrons with bremsstrahlung correction. The blue solid line shows the total fit composed
of the signal (red short-dashed line) and the background contributions. The combinatorial back-
ground is indicated by the green long-dashed line while the partially reconstructed background
from the B0s → ψ(2S)ϕ and B0s → χc1(1P)ϕ decays is indicated by pink and purple dash-dotted lines,
respectively. [13].

so-called flavor tagging, an algorithm to determine whether the mother hadron is a
particle or antiparticle. For more details, we refer the reader to Ref. [239].

The next step is to simulate radiation of photons by charged particles with PHO-
TOS. The program is responsible for simulating the energy and direction of emitted
photons, as well as the change in momentum and energy of the emitting particle.
Bremsstrahlung is important for several LHCb analyses and thus an accurate sim-
ulation is required. The LHCb trigger use of photons is detected in the calorimeter.
Furthermore, the bremsstrahlung in production and decay of particles and resonances
can change the shape of measured distributions. Moreover, the LHCb reconstruction
includes an algorithm to combine photons from bremsstrahlung with their electron
emitters, which approximately restores the energy and momentum of the electron be-
fore emission. This reduces the biases in the reconstructed mass of the ancestor particle
from the energy and momentum of its children, as shown in Figure 5.1.

Simulating the propagation and interaction of all particles with the detector ma-
terial is the next step in the chain, which is done with GEANT4. The geometry of the
whole detector needs to be modeled and the various materials in the different sub-
detectors. This includes not only the active material that is used to detect particles,
but also passive support structures, electronics, cables—every bit of matter with which
the particles can interact. The effect of external electromagnetic fields, in particular
the LHCb magnet, are also accounted for. These processes can result in losses when
a particle gets absorbed, but also in newly created particles such as when a photon
converts into an electron-position pair in the electric field of a nucleus. In the end, these
interactions result in hits in the different sub-detectors.

Following that, the detector response is simulated with BOOLE. The program uses
data from the previous step (mainly energy deposits in the active material) to simulate
the detector response to these inputs. It also links recorded signals to simulated deposits.
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This link at the lowest level is used to match reconstructed tracks to the original particle
in the simulation, as described in Section 4.3.1. Different sources of background need to
be simulated as well, such as spill-over from previous events or noise from electronic
fluctuations, long-term radiation or cross-talk, and the possibility of turning a sensitive
volume radioactive. Since the LHCb sub-detectors are independent, the simulation of
each sub-detector can be run in parallel.

At this point, the simulation of an LHCb event is complete. The following steps
are applied identically to simulated and real events. The LHCb DAQ is described in
Section 4.2.1.

5.1.1 Astro: Monte Carlo Simulations, Libraries

Jean-Marco Alameddine

Abstract: In astroparticle physics, the cascading sequence of all interactions from the
outer edge of the atmosphere to the signal in the detection electronicsmust be described
with Monte Carlo simulations. The first particles that trigger such cascades can be high-
energy photons, electrons, neutrinos, or the atomic nuclei of cosmic rays. Depending
on the question under consideration, any of these particles or any of its derivatives can
be the signal to be analyzed. What is signal and what is background thus depends on
the physical question. Thus, these signals have to be simulated physically completely
from theory. Because of the changing measurement conditions with the weather and,
for Cherenkov telescopes, also with the zenith angle, especially the simulation of the
interactions in the atmosphere requires many resources. Resource consumption can be
minimized by intelligently combining computer science methods and simulation. In
this section, the applied and developed simulations programs are presented and the
linkages of machine learning and Monte Carlo simulations developed in the CRC are
motivated.

In astroparticle physics, particles are produced in faraway galactic or extragalactic
sources, which are inaccessible to direct observation and have a priori unknown prop-
erties. They reach the Earth with energies inaccessible to any currently operated (and,
in fact, technically feasible) man-made particle accelerator. Therefore, simulations
play a crucial role in the field of astroparticle physics. Astroparticle physicists need
to rely on these simulations to be complete and accurate in their description of both
signal and background events in order to perform meaningful analyses. However, as
described in this section, the challenges physicists face, especially regarding resource
management and efficiency, are legion.
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As the Earth’s atmosphere is opaque to high-energy photons and cosmic rays, they
interact with nuclei in the air, creating a cascade of secondary particles called an
extensive air shower. While the principles of the underlying physics are, of course,
identical to those used to describe the interactions in particle physics experiments,
there are important differences that need to be considered. First, interactions in air
showers are generally strongly boosted into the forward direction, while the highest-
energetic particle physics experiments operate and observe in a head-to-head collision
configuration, as in the Large Hadron Collider. This also means that the region of
interest for astroparticle physics can’t be easily measured with accelerator experiments
as particles in the forward direction are lost in the beam pipe. Second, the energies
involved can surpass the energies reached with collider experiments by several orders
of magnitude, which means that reasonably motivated extrapolations of physics to
higher energies need to be made.

In principle, each physical interaction of this cascade needs to be sampled indi-
vidually to create a complete simulation of an air shower. This idea is implemented by
the air-shower simulation tool CORSIKA, which is the most commonly used simulation
framework for this purpose and has been utilized by many experiments in astroparticle
physics for over 30 years now. The description of the underlying physics is mostly pro-
vided by external tools, and canbedivided into twodifferent components: The first is the
electromagnetic component, which describes the interactions of electrons, positrons,
and photons in the particle shower. This component can be described either by a modi-
fied version of EGS4, providing direct Monte Carlo simulations, or by the NKG formula,
which provides an analytical approach to describe the electromagnetic component.
The second is the description of the interactions of hadronic particles, which consists of
low-energetic and a high-energetic components. Low-energetic hadronic interactions
can be described by the FLUKA, GHEISHA, or UrQMD model, while the high-energetic
hadronic interactions can be described by the DPMJET, HDPM, QGSJET01, QGSJET
II-04, SIBYLL, VENUS, NEXUS, or EPOS LHC model [194]. Using different models to
describe hadronic interactions can yield significantly different results for the shower
simulations. This is the effect of different models providing different extrapolations of
results from collider experiments into energy and rapidity regimes that are currently
technically inaccessible with particle physics experiments. This shows an important
connection between challenges in air-shower physics and particle physics, which is
highlighted even more in what is known as the muon puzzle: the highly-significant dis-
crepancy of muon numbers measured in extensive air-shower experiments compared
with air-shower simulations. This muon puzzle and its implications on particle and
astroparticle physics are described in detail in Section 5.4.

Since every interaction in an extensive air shower needs to be sampled individ-
ually, their complete simulation is a highly runtime-intensive task. In addition, this
random nature makes it possible that even showers with identical initial conditions
can have different developments and therefore look entirely different. This means that
an enormous number of showers must be simulated to obtain a statistically complete
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description, especially if a full-sky description of cosmic rays is needed. In the context
of CRC 876, there has been a major effort to find ways to improve the efficiency of the
simulations. One possible approach is to limit the time spent on the simulation of show-
ers that are not going to be important for a specific purpose because, say, they are not
hitting the detector. For this, it is possible to train models, determining at which point
the simulation of a shower, or part of a shower, can be terminated early. This strategy
is described in Section 5.2.1. When simulating sets of air showers for classification
tasks such as for signal-background separations, the distribution of the underlying
initial states can be chosen freely. However, to optimize the necessary computational
resources, it is desirable to find a distribution that is optimal for the training of the
underlying classification models. An approach to solve this problem called Active Class
Selection, which uses machine learning techniques, is described in Section 5.2.2. While
the above-mentioned approaches focus on finding improvements on the software side,
it is also possible to find potential improvements in the underlying hardware. This
is especially important as the electricity costs are a major limitation when it comes
to computationally expensive tasks. For this, improvements in resource efficiency by
using low-power hardware in CORSIKA simulations are investigated and presented in
Section 5.2.4.

As the improvements of the software framework CORSIKA become more and more
advanced, the underlying code base, parts were originally developed 30 years ago,
reaches its limits. The development of CORSIKA 8 represents the necessary transition to
a modern codebase. The aim of this process is to intrinsically provide modern features
such as hardware acceleration or parallelization, as well as to create an easier way
for developers to implement new features by providing a modular, extensible code
structure. This transition, which can be seen as an exemplary effort to modernize
scientific software, is described in Section 5.2.3.2.

While in particle physics it is often possible to control the environmental conditions
of the experiments to a very high extent, this control can be difficult, if not impossible,
for experiments in astroparticle physics. This holds especially true for experiments
using the atmosphere as a detection medium, as in IACTs or fluorescence detectors.
These experiments are highly dependent on effects such as temperature, exposure
to background light, or local magnetic fields. Not taking these effects into account
for simulations can lead to significant biases, but recreating full simulations for each
possible environmental condition is too runtime-extensive to be feasible. Instead, it
is possible to adapt the existing simulation results to the changing environmental
conditions by, say, adding noise from the night sky background to noiseless simulations
of IACT images. This approach has been developed within this CRC and is described in
Section 5.3.2.

A special aspect of astroparticle physics are experiments locatedunderground, such
as the Neutrino Observatory IceCube. For these experiments, particles on the Earth’s
surface—such asmuons from air showers—or particles created within the vicinity of the
detector—such as particles from weakly interacting neutrinos—need to be propagated
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until they interact inside the detector. In this context, muons play a special role, as
they can travel large distances through dense media, and are therefore still abundant in
undergrounddetectors. Their simulation is therefore crucial, especially as a background
that needs to be taken into account. As the number ofmuon interactions in densemedia
can be very high, the requirements for muon simulations are both a high precision and
a high performance. One tool for this purpose is the software simulation framework
PROPOSAL, which provides up-to-date parametrizations of muon physics, as well as an
algorithm that allows the finding of a trade-off between speed and accuracy. PROPOSAL
is described in more detail in Section 5.2.3.2.

In addition to the above-mentioned simulation tools—frameworks that are used by
many different experiments in astroparticle physics—many experiments use their own,
often detector-specific, simulation tools. These tools are in particular used to describe
very low-level parts of the detector such as the response functions of specific detector
parts.

Especially for highly complex or newly installed detectors, much effort needs to be
made to get an acceptable level of agreement between real, measured data and simu-
lated events. This data/MC agreement is important since otherwise, machine learners
might be trained on features that can only be seen on simulated data, but not in real
data. Since calibration measurements in astroparticle physics experiments are, in most
of the cases, only possible to a limited degree, it is necessary to directly compare the
observed and simulated features. However, simply comparing one-dimensional fea-
tures is not always sufficient as mismatches might only be visible in high-dimensional
correlations. It is thus worthwhile that methods of machine learning be used to find
data/MC mismatches by, say, analyzing models that are trained to distinguish between
real and simulated events. This approach is described in Section 5.3.3.1, where it has
been applied to IceCube simulations.

5.2 Simulation Efficiency Studies

5.2.1 Corsika – Active Learning

Dominik Baack

Abstract: The simulations of high-energy cosmic rays hitting the atmosphere are a
requirement for many astroparticle experiments. For most experiments, those simu-
lations consist of tracking the individual incoming particles through the atmosphere,
including random effects such as interaction, which can create new particles. Those
must be handled in the same way, creating an expanding cascade of particles that
must be propagated through the atmosphere. With the high complexity of those Monte
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Carlo simulations, the computing time of real-world examples can range from several
CPU seconds up to several CPU months for each individual shower, depending on
specific settings. For a complete set with a statistically significant number of events,
the cumulative computing time is even higher.
Due to the inherent random nature of Monte Carlo simulation, the initial particle’s

fixed constraints must be kept wide to allow the simulation of boundary cases. This
leads to the effect that a large number of simulated particles or even whole events are
not triggered inside the experiment and therefore discarded. Looking several steps later
in the simulation and analysis pipeline, the training of classifiers or unfolding methods
can favor specific events that rarely occur, unlike the previous ones.
A learning algorithm executed after batches of the simulation makes it possible to

train a model to reduce the simulation phase space, which is to say, the number of
simulated but not triggered events. In an extension, not only can whole cascades be
stopped early; individual parts of the generated shower, called a sub-shower, can also
be checked against the model.

5.2.1.1 Introduction - Cascades
Astroparticle physics is a relatively new field of research based on particles with in-
terstellar origins. This covers a wide field of energy from several eV up to several PeV.
In the higher energy regime starting around GeV, individual particles are far too rare
to observe them directly with comparable small satellite experiments. The difficulty
of earth-bound detectors is that cosmic rays do not pass through the atmosphere but
rather interact with it. At each interaction point, the energy is transferred to several
more particles, which themselves interact in the atmosphere. This leads to a cascade of
particles as displayed in Figure 5.2.

5.2.1.2 Introduction - Experiments
With the large variety inside the cascade, several different experimental detection
methods are available. Secondary particles can be measured directly or through their
emission of electromagnetic waves in the form of fluorescence light, Cherenkov light,
or radio emission. The methods of optimizations described later are tailored for exper-
iments where the size of the shower (see Figure 5.3) is an order of magnitude larger
than the instrumented area. This condition can be met by Cherenkov telescopes such
as MAGIC, CTA, or FACT and smaller water detectors such as HAWK. Furthermore,
there are not only experiments, like the already mentioned ones, which observe and
measure showers directly. For a much larger number of experiments, the resulting
particles do form a disturbing background in their actual measurements. One example
is neutrino telescopes. In both cases, a complete simulation is necessary to provide a
solid foundation for the subsequent analyses.
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Fig. 5.2: Schematic representation of an electromagnetic and hadronic cascade inside the atmo-
sphere. A realistic representation of the shower is displayed in Figure 5.3.

5.2.1.3 Introduction - Simulations
The signal of interest for the physical analysis is in almost all experiments of this kind
superimposed by several orders of magnitude by background signals. In order to be
able to draw conclusions frommeasurements, a classification of the signal events is
necessary. Due to the complexity and quantity of the signals, this can only be done
automatically on a reasonable scale. For training these automatic classifiers, datasets
are required where all input variables are already known. However, since these cannot
be determined in the experiment, we can only predict individual events based on
theoretical considerations. Due to the large number of statistical processes underlying
each interactionwithin particle showers and other non-linear effects in the experiments,
it is impossible to give a closed-form analytical solution to predict the distributions of
observables as a function of the input variables. Therefore simulations were developed
that describe individual interactions via Monte Carlo methods. Each interaction is
sampled from random distributions derived from physical measurements or theoretical
results. With this step-by-step process, all particles are tracked, and physical effects
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(a) Gamma (b) Proton (c) Iron

Fig. 5.3: The cascade with different primary particles at an energy of 10 TeV. The shower is displayed
with a orthographic projection, which means that the height/width of the image corresponds to a
real height of 64 516m and an accumulated width of 32 000m.

are applied. The required computing time is equally large given the high number of
particles and complexity. It is possible to propagate averages or simplified distributions
in the form of cascade equations from which individual parameters can be sampled at
the observation level. This enables a faster calculation time, but the simulation can not
be utilized for an experiment where observable parameters are generated during the
propagation, as with radio emission or Cherenkov light.

5.2.1.4 Cascade Cutting Strategies
In order to reduce the computational time required for each cascade, the number of
physical effects applied could be reduced, but this would also reduce the realism of the
simulation and, consequently, the possible results. Another simple-sounding method
is to reduce the required calculations in the cascade itself. Until now, the air-shower
simulation, the simulationof theproperties of the experiment suchas the optics, and the
construction of the observable parameter vectors for the subsequent calculation have
been treated entirely separately. Therefore, knowledge about the detector or analysis
properties could not be applied to the simulation of the showers itself. Consequently,
the complete air shower always had to be simulated.
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Fig. 5.4: A possible telescope configuration for CTA South with the real telescope size in gray and the
photon distribution for a 1 TeV shower.

With this new approach, information such as, which photon contributed to the recon-
struction, can be utilized to train a specialized machine learning process to enable the
early removal of cascade parts that do not contribute to the later stages of the simulation
or provide any information-gain to automatic classifiers.

5.2.2 Control of the Simulation – Active Sampling

Mirko Bunse

Abstract: Simulations in astroparticle physics are label-dependent data generators;
they produce the observed features depending on the type of the primary particle, its
energy, direction, and other latent quantities to be predicted. When generating training
data through such a simulation, we are therefore free to choose the distribution of
labels in the resulting training set. In fact, we have to choose this distribution prior to
the data production. For classification problems, such as signal-versus-background
separation, this problem is knownas active class selection.We survey existingheuristics
for choosing the proportions of classes in this setting and we present a recent strategy
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Fig. 5.5: Strategies for active class selection optimize class-conditioned data acquisition [103].

for this choice. This strategy fully accounts for uncertainties about the class proportions,
e.g., unknown signal-to-noise ratio, and it is justified in PAC learning theory. Hence,
our strategy is a promising candidate for controlling Monte Carlo simulations in terms
of the class distributions they generate.

5.2.2.1 Introduction
Active Class Selection (ACS) [254] allows machine learning practitioners to actively
choose the label proportions of their training data. This freedom of choice is due to a
class-conditional data generator, e.g., an experiment or a simulation, which acquires
feature vectors for arbitrarily chosen classes. In particle and astroparticle physics, we
must define an initial particle for which the response of a particle detector is simulated.
This input is what we later need to predict from the detector response [88].

Lomasky et al. [254] have put forward the idea that such a generator can be lever-
aged in a sequence of multiple acquisition steps, as sketched in Figure 5.5: (i) in each
step, a classifier is trained and evaluated on all examples that have been acquired so far,
starting from a small initial dataset; (ii) based on the classifier’s performance, a data
acquisition strategy is then allowed to choose the label proportions of the next acquisi-
tion step; (iii) the desired proportions are realized by a generator, e.g., a simulation of
a particle or astroparticle detector, which produces a batch of labeled data according to
the choice of the strategy. This batch adds to the training set from which the classifier
will be trained in all subsequent iterations. The promise of such a sequential and in-
formed data acquisition is that the classifier can benefit in terms of data acquisition cost
and performance, as opposed to being trained with some predetermined proportions
of classes. The ACS framework is considerably different from classical active learning
[346], which assumes that unlabeled data can be labeled after its acquisition by, say, a
human labeler.

5.2.2.2 Strategies for Class-Dependent Data Acquisition
Lomasky et al. [254] introduced five heuristics for the class-dependent data acquisition
in their seminal work on ACS. These heuristics are based on the inverse relative utility
of the current prediction model h : X → R|Y| for each class y ∈ Y. Namely, each class y



114 | 5 Monte Carlo Simulations

is sampled according to the weight.

w(y) = u(y)∑︀
y′⊆Y u(y′)

,

where u : Y → R is a utility heuristic that might or might not depend on the current
prediction model h.
Uniform Assign the same utility u(y) = 1 to all classes.
Natural Sample with the class proportions that also occur during deployment, i.e.

w(y) = u(y) = P(Y = y). While the natural strategy usually performs highly compet-
itively in terms of accuracy, it is sometimes beaten by one of the other heuristics.

Inverse Sample by the inverse class-wise accuracy, u(y) = Acch(y)−1. This strategy
is motivated by the assumption that a low accuracy is exclusively caused by an
insufficient amount of training data.

Improvement Like the inverse method, but based on the improvement of accuracy
during the last iteration u(y) = (Acch(y) − lastAcch(y))−1. This strategy assumes
that classes with a “stable” accuracy will remain stable in future iterations.

Redistricting Count the number of examples u(y) = n(y)h for which the prediction
changed during the last iteration. The idea behind this strategy is that examples
close to the decision boundary may be more informative than others. Classes for
which predictions frequently change are assumed to contain many examples close
to that boundary.

Several follow-up studies [113, 204, 299, 391] have applied these heuristics in different
settings. One additional heuristic has been proposed as “PAL-ACS” [232], which embeds
a classical active learning strategy into ACS. The idea is to evaluate a set of pseudo
instances D̂, over which the class-wise utilities are then aggregated from an active
learning utility measure uAL : X → R. This approach requires a generative model to
produce the pseudo instances and an active learning utility function like entropy.

uPAL-ACS(y) =
1

|D̂y|
∑︁
x⃗∈D̂y

uAL(x⃗)

Quite often, however, these sophisticated ACS strategies are not able to outperform
the natural strategy, which does not even take into account the model performance as
proposed by the ACS framework from Figure 5.5 [232, 254]. In fact, we have theoretically
assessed that the natural class proportions yield optimal classifier performance in the
limit of data acquisition [106]. These findings show that sophisticated strategies are
losing their potential benefit over the natural class proportions during the acquisition
process.

5.2.2.3 Certification
The existing ACS strategies [232, 254], except for the natural strategy, do not account for
the class proportions that a trained model needs to handle during deployment; they
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solely focus on the perceived difficulty of classes. The natural strategy, however, requires
the practitioner to know the deployment class proportions precisely in advance. What
if we know the deployment class proportions not precisely, but with some degree of
uncertainty? For instance, astroparticle physicists can estimate the ratio between their
signal and their background class only roughly, as being approximately 1 : 103 or
even 1 : 104 [88].

One way to tackle these uncertainties is through the certification of ACS-trained
models [104]. To this end, we certify the set of class proportions P to which a fixed
hypothesis h, trained on the ACS-induced source distribution S, is safely applicable. By
“safely”, we mean that during the deployment on the target distribution T, h induces
only a small ACS-induced error with a high probability.

Definition 5 (Certified hypothesis [104]). A hypothesis h ∈ H is (ε, δ)-certified for all
class proportions in the set P ⊆ [0, 1]|Y| if with probability at least 1 − δ and ε, δ > 0:

|RT(h) − RS(h)| ≤ ε ∀ p⃗T ∈ P,

where RD(h) =
∫︀
X×Y PD(x⃗, y)ℓ(y, h(x⃗)) dx⃗ dy is the expected risks of h, as according to

the distributionD and the loss function ℓ.

In binary classification, P is simply a range [ pmin
T , pmax

T ] of class proportions. This
range is defined by the largest ∆p* for which

∆p · ∆ℓ ≤ ε ∀ ∆p ≤ ∆p*, (5.1)

where ∆p = |pT − pS| denotes the difference between class proportions and ∆ℓ =
|ℓY=2(h) − ℓY=1(h)| denotes the difference between class-wise losses. The latter of these
terms is constant for both distributions S and T. In turn, ∆p · ∆ℓ is constant with respect
to the random draw of the training set D and is, therefore, independent of ε, δ, and
N. It reflects the interplay between the classifier h, the data distribution, and the loss
function.

Here, the true difference ∆ℓ is unknown, but we can estimate an upper bound ∆ℓ*
of this quantity from ACS-generated data. We have proposed a PAC bound [104] that
is the smallest upper bound of ∆ℓ that holds with a probability of at least 1 − δ. The
probabilistic nature of this upper bound stems from the fact that ∆ℓ* is estimated from
finite amounts of data.

5.2.2.4 A Strategy For Uncertain Class Proportions
A certificate can help practitioners in assessing the practical value of an ACS-trained
model. However, it has no immediate implication on how to acquire data—in terms
of an ACS strategy—when the deployment class proportions are uncertain. Therefore,
we have proposed an ACS strategy [103] that aims at decreasing the inter-domain gap
∆p · ∆ℓ from Equation 5.1 as much as possible, as according to a prior distribution P̂
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of the deployment class proportions pT . This goal will allow any binary classification
algorithm to learn accurate predictions for the target domain, as according to the prior
beliefs of a domain expert. In astroparticle physics, for instance, this belief could be a
prior distribution about the proportions of gamma and hadronic particles.

Formally, we assume a prior P̂ : [0, 1] → [0, 1] of the positive class prevalence
pT ∈ [0, 1] to be given. We incorporate P̂ by marginalizing the inter-domain gap over
this prior according to Equation 5.2. Since we do not know the true ∆ℓ, we are using the
estimated upper bound ∆ℓ* instead. Consequently, the marginalization according to
∆ℓ* is an upper bound, with probability 1 − δ, of the marginalization according to the
true ∆ℓ.

ε* =
1∫︁

0

P̂(pT = p) · |pS − p|⏟  ⏞  
= ∆p

· ∆ℓ* d p (5.2)

In each ACS iteration, we are free to alter the class proportions pS of the ACS-generated
training set to some degree, depending on howmuch data we acquire in each batch and
on howmuch data we already have acquired. In fact, we can understand pS = N2

(N1+N2) as
a function of the class-wise numbers of samples N1 and N2. The upper bound ∆ℓ* also
lends itself for interpretation as a function of sample sizes: the more data is acquired
in both classes, the tighter will our estimation of this quantity will be. Ultimately, we
consider ε* to be a function of N1 and N2, so that we can minimize ε* via an optimal
choice of N1 and N2 in each data acquisition batch.

Our strategy decreases ε* in the direction of its steepest descent, i.e., it takes a
simple gradient step with respect to the acquisition vector N⃗ = (N1, N2). The gradient
that defines the steepest descent is computed via the product rule:

∇N⃗ ε
* = ∇N⃗ f · ∆ℓ

* + f ·∇N⃗∆ℓ
*

where f (N⃗) =
1∫︁

0

P̂(pT = p) · |pS(N⃗) − p| d p
(5.3)

We will come back to the function f shortly. For now, we plug ∆ℓ* and∇N⃗∆ℓ
* into the

equation above. These functions are defined by

∆ℓ*(N⃗) = ℓ̂Y=2(h) +
√︂

ln δ2
−2N2

− ℓ̂Y=1(h) +
√︂

ln δ1
−2N1

,

[∇N⃗∆ℓ
*]y =

(︂
−ln δyNy

)︂ 3
2

· (2
√
2 ln δy)−1,

(5.4)

where the δy are probabilities of violations of ∆ℓ* that occur from either one of the
class-wise losses ℓY=y(h) in ∆ℓ. In fact, finding a suitable assignment of δy values within
a given probability budget δ = δ1 + δ2 − δ1δ2 is the central difficulty in ACS model
certification; there, the sample size N⃗ is fixed, so that ∆ℓ* can be optimized over this
assignment [104]. Here, we keep the δy fixed instead of values that are obtained with a
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certificate from previous ACS acquisitions. This change allows us to optimize ∆ℓ* over
N⃗ to acquire new data and guarantees that ∆ℓ* remains an upper bound of the true ∆ℓ
also in the next batch, at least with probability 1 − δ. The class-wise estimates ℓ̂Y=y(h)
in Equation 5.4 are the average values of losses in the training data; they are also part
of our certificate.

Plugging a Beta(α, β) prior into the f function fromEquation 5.3 yields the following
components, where I is the regularized incomplete Beta function:

fα,β(N⃗) =
2pS(N⃗)α(1 − pS(N⃗))β

(α + β)B(α, β) +
(︁
pS(N⃗) −

α
α + β

)︁(︁
2IpS(N⃗)(α, β) − 1

)︁
∇N⃗ fα,β =

2IpS(N⃗)(α, β) − 1
(N1 + N2)2

·
(︃
N2
−N1

)︃
(5.5)

Plugging Equation 5.4 and 5.5 into Equation 5.3 provides us with a gradient that we
can compute analytically from a certificate with a δy assignment, from sample sizes
N1 and N2, and from the prior parameters α and β. The negative gradient −∇N⃗ ε

* of
the marginalized error ε* defines the class-wise numbers of samples that our strategy
acquires in the next data acquisition batch.

5.2.2.5 Synopsis
With small data volumes or with highly imbalanced classes, our ACS strategy is domi-
nated by the ∆ℓ* component; small classes need additional data until this upper bound
holds with some desired probability 1 − δ. By contrast when the total data volume is
large, our strategy is dominated by the f component. To this end, a Beta prior favors
class proportions that are close to its mean α

α+β . The turning point between these two
behaviors is well founded in the PAC learning theory that underlies the estimation
of ∆ℓ*.

Due to these properties, our ACS strategy is a promising candidate for controlling
physical simulations in terms of the class distributions they generate. Instead of sim-
ulating signal events and background events in fixed proportions, our strategy has
the potential to improve signal-versus-background classification performance through
optimized class proportions that are justified in PAC learning theory. Uncertainties of
the practitioner, regarding the signal-to-background ratio in the real world, are fully
accounted for through a Beta prior.
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5.2.3 Corsika 8 New Modular Library

Dominik Baack
Jean-Marco Alameddine

Abstract: The classification and reconstruction algorithms in astroparticle physics
depend on an accurate description of simulated events, as calibration measurements
with extragalactic sources are not feasible. Due to the stochastic behavior of the particles
during their propagation, huge amounts of Monte Carlo-based simulations are required
to cover most parts of the phase space and describe the measured event signatures.
For air-shower events, the simulation framework CORSIKA has become the most

used tool. The transition of CORSIKA to a modern and modular framework allows for
further optimization methods such as parallelization, GPU programming, and more
usage of external physical interaction libraries. Among these new external libraries is
PROPOSAL, a simulation library used in neutrino telescopes to propagate leptons.
In this section, we describe the transition of the simulation library PROPOSAL, de-

veloped in Dortmund, from a simple muon propagator to a modular library simulating
electromagnetic and weak interactions of high-energy leptons and photons. Further-
more, the development of the CORSIKA framework to use external libraries for core
processes is described regarding the use of PROPOSAL for the electromagnetic shower.

5.2.3.1 Monte Carlo Simulations of Extensive Air Showers
Extensive Air Showers are particle cascades initiated by high-energy cosmic rays inter-
acting with the Earth’s atmosphere (see Section 5.2.1.1). An accurate understanding of
air showers is relevant for all experiments that are either interested in the reconstruc-
tion of properties of the primary particles or need to consider them as a background for
other observations.

In 1989, the first version of CORSIKA (Cosmic Ray Simulations for KASCADE), a
Monte Carlo software to simulate air-shower events, was published [194]. Originally
developed to provide simulations for the air shower array KASCADE, CORSIKA has
evolved into a tool that is now widely used by physicists worldwide. At its core, the
CORSIKA code consists of four components: a physics description of hadronic inter-
actions for low and high particle energies, a physics description of electromagnetic
interactions, and a general framework responsible for all other physics and the steering
of the program. Over time, CORSIKA has been improved, and its functionalities have
been continuously extended. However, new developments are impeded by two main
constraints: CORSIKA is written in FORTRAN 77, whose language features are limited
compared with modern programming languages. Furthermore, the codebase of COR-
SIKA has not been developed with today’s requirements in mind, which imposes severe
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conceptional limitations. This means that the current codebase is hard to maintain,
and new developments are challenging to include. With these factors in mind, a white
paper stating the requirements of a next-generation CORSIKA was formulated in 2018,
which ultimately led to the development of CORSIKA 8 [153].

5.2.3.2 CORSIKA 8: The Future of Air-Shower Simulations
CORSIKA 8 is the newest version of the shower simulation framework CORSIKA. With
the development of CORSIKA 8, the code was completely rewritten in modern C++,
which provides a future-proof and state-of-the-art framework. Considering the many
computational resources spent on creating Monte Carlo simulations, which will also
be used for CORSIKA 8, one key focus during the development lay in the intrinsic
efficiency of the codebase. This means that runtime-efficient designs such as static poly-
morphism are used, and techniques such as parallel computations and GPU support
are an inherent part of the code.

For the design of CORSIKA 8, the driving idea is to provide a flexible codebase
that not only fulfills the current requirements but is also highly adaptable for future
developments. Previous versions of CORSIKA were developed solely with the idea of
creating a program to simulate extensive air showers, resulting in a very specialized,
monolithic code structure. CORSIKA 8, however, is designed to be a general framework
for particle cascade simulations, not limited to air shower simulations. This idea of
flexibility is also represented in the code structure, which consists of four main parts:
the particle stack, storing and providing access to all information about the propagated
particles; the process sequence, which is the composition of all modules providing
the physical input of the simulation; the environment, which stores all medium and
geometrical properties of the environment; and the transport code, which combines all
parts of the code and simulates the particle development. Each part of the code is highly
modular and canbe adapted, extended, or completely exchanged.One relevant example
is PROPOSAL, an external library used in CORSIKA 8 to simulate the electromagnetic
shower component.

PROPOSAL (PRopagator with Optimal Precision and Optimized Speed for All Lep-
tons) as a scientific software went through several transitions during its development.
Originally, PROPOSAL was developed as a tool to propagate high-energy muon and
tau leptons, i.e., providing information about energy losses as these particles travel
through dense media such as ice. As the development continued, this concept was gen-
eralized. PROPOSAL is now also capable of simulating electron, positron, and photon
interactions. One major advantage of PROPOSAL is that in its current version, physics
parametrizations can easily be switched, and the user can add new parametrizations
in a modular way. Furthermore, up-to-date parametrizations of particle interactions
are directly provided and are regularly updated.

A restructuring of the code has been made to prepare PROPOSAL for the integra-
tion into CORSIKA 8 as an external module. Initially, PROPOSAL provided a single
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Propagator class, which was responsible for the complete simulation of a single parti-
cle. While this class is still available, physical calculations have been separated into
individual modules. Each module is responsible for solving an individual task, such as
sampling stochastic or continuous energy loss, calculating time steps, or performingpar-
ticle decays [45]. CORSIKA 8 uses these autonomous modules provided by PROPOSAL
to simulate the electromagnetic and muonic components of particle cascades. Thus,
PROPOSAL replaces the former treatment of the electromagnetic shower component in
CORSIKA, which has been performed by using a modified version of EGS4, a FORTRAN
code released in 1985. The clear advantages of PROPOSAL over EGS4 are its modern
code structure, as it is written in modern C++, its flexibility, which allows adapting
PROPOSAL for specific use cases, and the included up-to-date physics descriptions.

CORSIKA 8 is actively developed as an open-source community project.¹ A first
pre-release version of CORSIKA 8 is available, which can be used for first tests and
validations [52].

5.2.4 ARM-Cluster for Corsika

Jens Teubner
Thomas Lindemann

Abstract: For several years now, power has become the limiting factor in virtually
every computing system. Electricity cost has become an economic issue in modern data
centers; enormous efforts have to be invested in dissipating excessive heat; and—often
overlooked—all modern microprocessor designs are limited in terms of the energy
amounts that can be managed within the very small chip sizes [89].
Brawny chip designs, optimized for single-thread performance (Intel’s x86 line being

the most popular), suffer these limitations even more than lean-core designs (ARM-
based chips are well-known representatives). The latter have been designed with a
much closer eye on their power consumption, typically at the price of an inferior
single-thread performance. As such, lean core designs can be a perfect match for many
simulations problems, which typically do not depend on single-thread performance
but carry intrinsic parallelism.
As we show in this section, systems built from lean processor cores can indeed out-

perform their brawny counterparts, which still dominate the market. With Eriador, we
constructed amassively parallel cluster-in-a-box solution based onARMprocessors. For
many of the relevant (simulation) problems, Eriador provides runtime characteristics

1 https://gitlab.iap.kit.edu/AirShowerPhysics/corsika.

https://gitlab.iap.kit.edu/AirShowerPhysics/corsika
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comparable to those of state-of-the-art (brawny) server systems but at a significantly
lower energy footprint. This is all the more remarkable since Eriador is also cheaper in
terms of its raw hardware cost.

5.2.4.1 Introduction
Over several decades, hard- and software advances were driven by the miniaturization
of integrated circuits. In line withMoore’s Law, every hardware generation would dou-
ble the amount of compute resources, resulting in exponentially growing hardware
performance. Even more importantly, that performance growth would come “for free”
from an energy perspective: as a consequence of Dennard scaling, new hardware gener-
ations would still not need more electrical power than their predecessor generation,
yielding twice the performance-per-watt ratio.

As time progressed, Dennard scaling came to an end, though, and energy consump-
tion has become the problem child of hardware technology. In fact, energy consumption
is the limiting factor in modern chip designs [89]. Growing energy demands hinder
performance advances in two crucial ways. Themonetary cost of first providing energy
and then removing it through cooling, has become a critical cost factor in the design of
data centers. Even more importantly, high energy consumption at small chip geome-
tries will result in a massive heat dissipation. If the excessive heat cannot be removed
through cooling, chips would simply melt.

Hardware manufacturers responded with different strategies to handle the new
limitation. Processors primarily used in desktop and server systems are typically opti-
mized for single-thread performance. Toward this end, designers built sophisticated
caching and control logic in order to feed a few instruction pipelines in “brawny” pro-
cessor designs so that they can perform as much work as possible. In the mobile and
embedded markets, by contrast, processors have emerged that prioritize energy ef-
ficiency. “Lean” processor designs are significantly more energy efficient than their
brawny counterparts, but they offer onlylimited single-thread performance.

The favorable energy characteristics of lean processors provide incentives to use
them also for applications that are traditionally dominated by server-class, brawny
CPUs. At least conceptually, the slow speed of lean processor designs can be compen-
sated by increased parallelism.

CORSIKA simulations are a good candidate to follow the route of high parallelism
degrees in order to improve the energy efficiency of simulations. Figure 5.6 illustrates
the distribution of processing effort spent on individual events. Except for some high-
effort events, most events require a relatively short and predictable processing cost.
Thereby, individual events can be processed independently of one another, enabling
the use of parallelism. Under these premises, we evaluated the energy efficiency gains
that can be harvested by replacing the prevalent server-class computing infrastructures
(relatively few but brawny processors) with low-power,energy-efficient alternatives
(that is, a large count of lean processors instead).
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Fig. 5.6: Distribution of CORSIKA FACT event count vs. their processing time (on Intel Xeon).

Specifically, with Eriador we propose a platform that can replace a commodity two-
socket server system by a cluster of 40 low-energy ARM processors. The low-energy
alternative provides the same form factor as the commodity system (two rack units),
a much smaller energy envelope, and comparable (sometimes significantly better)
application performance when compared with the commodity system.

In the following, we sketch the design decisions behind the Eriador platform and
demonstrate the energy advantages that can be obtained by running compute-intensive
workloads on low-energy hardware.

5.2.4.2 Related Work
The idea of using energy-aware hardware for certain compute-intensive tasks is not
entirely new. In 2021, Ou et al. built a cluster out of ARM-based PandaBoards [298].
Their system turned out to be highly efficient for web servers, in-memory databases,
and video transcoding applications but less for compute-intensive workloads. Göddeke
et al. [179], too, observed that compute-heavy applications were a weakness of (their)
low-power hardware design.

Kruger [234] demonstrated that a combination of an ARM A9 CPU and an Epiphany-
based co-processor could match the performance of an Intel i5 at only a third of the
Intel processor’s power consumption.

5.2.4.3 CPU Architectures for Simulation Tasks
ARMprocessors are often used as a poster child for energy efficiency. In a student project
at TU Dortmund, we evaluated various ARM-based architectures but also low-power
offerings with other architectures.

Table 5.1 illustrates several key characteristics for four popular single-board com-
puter offerings (the ARM-based Raspberry Pi 3 probably being the most widely known).
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Tab. 5.1: Selected performance and power characteristics of ARM- and Intel Celeron-based single-
board computers [184].

Board RAM CPU Network Power

Odroid-C2 2GB DDR3 4×1.5GHz ARM A53 1GBit 2.0–4.2W
Odroid-XU4 2GB LPDDR3 4×2GHz ARM A15 1GBit 3.8–10.5W

4×1.4GHz ARM A7
Rasp. Pi 3 1GB LPDDR2 4×1.2GHz ARM A53 100MBit 1.3–4.2W
ASRock 4GB DDR3L 4×2.2GHz Int. Cel. J3160 1GBit 10.6–16.0W

As can be seen already in this small selection, performance characteristics (including
CPU and network speeds) vary just as much as the average power consumption.

A set of raw performance experiments, primarily based on the Phoronix Test Suite,
confirmed what Table 5.1 suggests: ARM processors are indeed more energy-efficient
than their Intel Celeron counterparts. Given the minimalistic resources of the popular
Raspberry Pi and the relatively high power consumption of the Odroid-XU4, we decided
to build our own Eriador platform based on Odroid-C2 single-board computers.

5.2.4.4 ARM-Based Eriador Cluster System

Fig. 5.7: Eriador cluster.

Eriador is a platform that packages 40 Odroid-C2 single-board computers, i.e., 160 ARM
Cortex-A53 cores, into a single chassis. Mounted into a standard 19” rack, Eriador
occupies two height units, similar to a commodity (e.g., Intel-based) “brawny” server.
An image of Eriador is shown here in Figure 5.7.

The platform logically provides a cluster of 40 independent machines. A dedicated
cluster management software helps to schedule workloads within the cluster and gives
access to hardware profiling features.
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Fig. 5.8: CORSIKA throughput observed when processing FACT/MAGIC events on 160 ARM cores
(“Eriador”) vs. 48 Intel Xeon cores.

Besides the actual processing boards, Eriador’s chassis also includes networking hard-
ware, fans, and heat management, as well as a separate, Odroid-based,management
server. Themanagement server has access to a tailor-made energymeasurement compo-
nent, enabling fine-grained power measurements without interference to the workload
processors. Finally, the management server drives an LCD-display, which reports the
current system state at the front of the unit.

5.2.4.5 Eriador vs. Conventional Server Architectures
We designed Eriador to study whether the performance and power-efficiency of particle
simulations can indeed be improved by using low-power hardware.

To assess the performance aspect, we benchmarked the CORSIKA FACT and MAGIC
particle simulators and compared our measurements on Eriador with a commodity
Intel server. Specifically, our reference platform was a dual-socket Intel Xeon E5-2695 v2
system, clocked at 2.4 GHz and equipped with 256GB of main memory. As such, our
reference platform is not only a good representative of the hardware deployed in data
centers at the time of our experiments. Moreover, the machine also likens Eriador in
terms of form factor and monetary cost (∼ 6000EUR).

Figure 5.8 shows the throughput (measured as simulated events per second) for
both platforms. It is easy to see that Eriador outperforms the commodity Intel server by
about a factor of two.

To evaluate energy consumption, we could rely on the power measurement func-
tionality directly built into Eriador. Through dedicated logic, Eriador can measure the
energy consumption of individual cluster regions with a high resolution. On the Intel
side, we used an EnerGenie EGM-PWM-LAN Energy Meter.

On both platforms, we measured full system power, i.e., including components
such as RAM or storage. Although we turned off as many hardware components in
the Intel system as possible, this may somewhat underestimate the achievable power
efficiency. However, we would like to note that neither the off-the-shelf Odroid-C2
building blocks of Eriador nor the infrastructure developed by our group (networking,
power distribution, etc.) has been aggressively optimized for power efficiency. So there
likely is room for improvement on the Eriador side, too.
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Fig. 5.9: CORSIKA energy efficiency observed when processing FACT/MAGIC events on 160 ARM cores
(“Eriador”) vs. 48 Intel Xeon cores.

Tab. 5.2: Runtime performance and energy consumption of Eriador vs. a commodity Intel server
when evaluating k-means.

System Exec. Time Energy

Eriador 2.194 sec 314.36 kJ
Intel Xeon E5-2695 v2 1.139 sec 462.35 kJ

Figure 5.9 illustrates the results of our measurements. The higher throughput of Eriador
comes at a lower power consumption when the system is under load. Consequently,
the advantage of Eriador becomes even more pronounced when looking at the energy
efficiency of the two platforms.

What is important to note is that Eriador consumes less energy per simulated event.
In a parallelizable workload like CORSIKA, throughput can always be controlled by
provisioning more or less compute resources. The low-energy footprint of Eriador could
therefore be used to simulate at the same speed with less power and to simulate faster
while staying within a given power budget.

5.2.4.6 Beyond Particle Simulation
Workloads like CORSIKA favor parallel architectures like Eriador, since independent
simulations can almost trivially be parallelized over individual machines.

Not all real-world use cases behave so well. To illustrate how Eriadormay fare in
other data analysis settings, we benchmarked the cluster with an MPI-based k-means
implementation and a dataset that included 1.59M samples with 20 features each
(∼ 780MB data set size in total; see [184] for details).

Table 5.2 shows the measurements we obtained. This time, Eriador is notably
slower than the Intel-based reference system. Despite the long execution time, Eriador
consumes less energy for the overall benchmark.

The key reason for this is that k-means is notoriously hard to parallelize. In our
case, phases where the implementation can fully leverage the available parallelism,
take turns with phases where intermediate results are exchanged between parallel
units.
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5.2.4.7 Summary
Our evaluation demonstrates that low-power hardware can indeed improve the resource
efficiency of particle simulation by a significant margin. Our prototype platform Eriador
can execute CORSIKA simulations at a higher speed while consuming less energy than
a commodity server.

5.3 Validation of the Simulation

Abstract: Analyses in astroparticle physics heavily rely on the use of Monte Carlo
simulations, which are utilized in basically all analysis steps from detector calibration
to the reconstruction of energy spectra. A good agreement between simulated and
experimental data is thus crucial for the scientific success of these experiments. Despite
this necessity, a complete agreement between data and Monte Carlo cannot always be
guaranteed. As a result, some simulated features disagree more than the experimental
ones, while others disagree less. Capturing, quantifying, and possibly eliminating
these disagreements, which can arise from a multitude of sources, is the purpose of
simulation validation. This section explains how simulations can be validated and
further points towards a machine learning-based possibility of minimizing their impact
on the analyses for cases where their sources cannot be fully resolved.

5.3.1 Introduction

Creating meaningful Monte Carlo simulations is an iterative process, which is complex,
especially at the beginning of new instruments. Today’s physics instruments such as
particle detectors or Cherenkov telescopes are extremely complex machines with many
subsystems resulting in myriads of tweakable parameters that influence the validity of
the simulations.

Many of these parameters are directly accessible from design documents, lab mea-
surements of components, or calibration data, but many are not. The main challenge
of validation of the simulations is to identify the low-level “screws” that need to be
turned once an issue is identified in the higher-level data outputs of the simulations or
even after processing the simulated data.

In this section, we offer a small introduction to identifying and tackling these
issues, and present a machine learning-based method to identify mismatches between
simulated and observed data.
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5.3.2 Mismatches Between Observed and Simulated Data

Maximilian Linhoff

Differences between observed and simulated data in physics can arise from four main
areas: insufficiently understood physics (see Section 5.4), insufficiently understood
properties of the detector system, approximations and simplifications in the simulation,
and changing environmental conditions and detector properties over time.
Any simulation will be affected to at least some extent by these problems. In the context
of machine learning that uses simulated data for the labeled training dataset, these
problems introduce differences between the training data and the data to which a
model is applied, resulting in biases in the predictions, if the models are susceptible
to differences. Concerning the inverse problems, these systematic errors will affect
the detector response, which is also calculated from the labeled simulated data and
produces biased results.

A simple example of such a difference is an imaging air Cherenkov telescope that
is simulated with a higher reflectance of the mirrors than the actual telescope. This
flaw results in brighter images in the simulations, which in turn result in a negative
bias of the energy estimation when applied to observed data. Three complementary
approaches can be taken to mitigate these issues:
– adapting the simulation,
– transforming the observed data, or
– transforming the simulated data.

The first approach is the most fundamental one and requires re-running the simulation;
it is thus the most computationally expensive approach but also the one that likely
yields the best results.

The second approach is mostly taken to calibrate for the low-level properties of
detector electronics, which would be very expensive to simulate and are thus usually
over-simplified in the simulation software.

A prime example of the third approach is the amount of night sky background
photons contributing to the noise in IACT images. The amount of moon- and starlight
in the field of view does not affect the air-shower physics and thus the amount of
Cherenkov light produced. This is, however, the most resource-intensive part of the
simulation. Thus, simulating IACT images with low amounts of or even entirely without
night sky background photons and then only adding this additional noise in the data
processing so that it fits the noise characteristics of the observed data can be much
more computationally efficient than doing multiple air-shower simulations and de-
tector simulations with different noise levels. Additionally, instead of simulating the
additional noise, one can use noise from observed events without showers (known as
random trigger or pedestal events). This can dramatically improve the agreement of
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the noise characteristics between simulated and observed data. This approach was
developed as part of the CRC works [102, 111].

Validation of simulations and the transformations applied to observed data is done
by comparing parameter distributions at different levels of the data processing. This
becomes much harder in end-to-end analyses, e. g. Deep Learning (Chapter 9), where
intermediate, interpretable representations of the data might not be easily accessible.

Modern particle and astroparticle physics instruments comprise lots of subsystems
and especially experiments in astroparticle physics do not have easily controllable
environmental conditions. This results in a sizeable combinatorial parameter space for
the simulations, which cannot be fully explored to find the correct combination. The
computational complexity of creating simulations with sufficiently statistical uncer-
tainties results in very slow feedback loops in the iterative process of improving the
simulations. This makes creating suitable simulated datasets one of the major tasks
when new experiments are planned and commissioned.

In the end, mismatches between the observed and simulated data will result in
systematic biases of the results obtained by applying algorithms trained on these
simulated datasets to the observed ones. Sometimes, these systematic errors will be
relatively straightforward, as in the example of the IACT with reduced reflectance above.
But most of the time, due to the combinatorial nature and complexity of the detectors,
the cause, and effects are much more indirectly linked, making it very hard to identify
the root cause once a mismatch is identified.

5.3.3 Detection of Mismatches

Tim Ruhe
Maximilian Linhoff

For well-simulated data, simulated events should be indistinguishable from observed
events by their properties. Classically, investigations of possible mismatches between
simulated and observed datasets rely on one-dimensional parameter distributions.
However, systematic errors in the simulation will also affect the correlation between
parameters, so looking at single parameter distributions is insufficient. With the high
dimensionality of typical intermediate data representations in particle and astroparticle
physics, it is infeasible to inspect all possible combinations of parameters manually.

A way to quantify the agreement of simulations and observations is thus to try
to classify the datasets with the goal of predicting for each event if it was simulated
or observed and then applying the usual quality metrics for supervised classification
tasks such as accuracy or the area under the ROC curve. For a well-simulated dataset,
this classification task should be hard to impossible, and thus the classification metrics
should be compatible with randomly guessing.
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Fig. 5.10: Two example features from the IceCube dataset for observations and simulations. Top:
total charge in the DOMs, one of the well simulated features. Bottom: number of pulses in the DOMs,
one of the not-so-well simulated features.

0.00 0.05
SplineMPECramerRaoParams.variance_x

SplineMPEDirectHitsICC.dir_track_hit_distribution_smoothness
SplineMPETruncatedEnergy_SPICEMie_DOMS_Muon.energy

SPEFit2TimeSplit1Bayesian.z
BestTrackCramerRaoParams.variance_theta

SplineMPECramerRaoParams.variance_theta
ProjectedQ.ratio

SplineMPECramerRaoParams.cramer_rao_theta
SplineMPEDirectHitsD.dir_track_length

MuEXAngular4_rllt.value
SplineMPE_MillipedeHighEnergyMIEFitParams.chi_squared

LineFitGeoSplit1Params.n_hits
SplineMPE_SegementFitParams.rlogl
SPEFitSingle_TWHVFitParams.rlogl

SplineMPEMuEXDifferential.energy
SplineMPE_MillipedeHighEnergyMIEFitParams.logl

LineFitTimeSplit2Params.n_hits
HitStatisticsValuesIC.q_tot_pulses

SplineMPEDirectHitsICE.n_dir_pulses
SPEFit2Bayesian.time

Random Forest Feature Importance

Fig. 5.11: Feature importance of the 20 most important features for the classification into observa-
tions or simulations
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Fig. 5.12: ROC curves for the classification into observations or simulations. After removing the 12
most important features for this classification from the dataset, the task is much harder to solve.

In addition to quantifying the match between simulations and observations, this ap-
proach also allows the identification of badly simulated features by calculating how
important an individual feature was to the overall classification. Decision tree-based
algorithms can provide individual feature importances via the total reduction of the
loss function achieved by the splits in the respective features. For all algorithms, a
permutation-based approach can be used [97, section 10]. To quantify the importance of
a single feature, the values of this feature are permuted, and the classifier is evaluated
on the permuted dataset, resulting in a worse metric than the baseline if the feature is
important to the classification.

After identifying problematic features, two approaches are possible: removing
badly simulated features until the classification is no longer possible or using the
gained insight to improve the simulations. These two approaches are akin to treating
symptoms or the underlying root condition in medicine. If possible, the latter will
always produce better results, and the former is easier in the short term. Again, both
approaches complement each other. This approach was developed as part of [91], and
more details can be found in [90].

5.3.3.1 Application using an IceCube high-level dataset
In the following, we will apply this approach to a high-level IceCube dataset, which
generally has an excellent agreement between simulated and observed data. Using the
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Fig. 5.13: Score distributions for the classifications observations or simulations.

approach, we will identify a few columns in the dataset that show mismatches and
make the classification impossible by iteratively removing features with high feature
importance with respect to the classifications observed and simulated.

The dataset consists of simulated, neutrino-induced events and observations after
suppressing the atmospheric muon background to very low levels. As the simulations
do not directly follow the expected energy spectra and the observation durations are
not equivalent, sample weights for the simulated dataset are necessary to obtain a
realistic comparison. Due to the low cross-section, neutrino interactions in IceCube are
very rare relative to atmospheric muons. Primary neutrinos are also simulated with an
artificially increased cross-section to force interactions inside the detector to obtain
sufficient statistics for the neutrino events (the searched-for signal in most IceCube
analyses). This artificially increased cross-sectionmust be considered when calculating
the sample weights for these events. While most of the features in the dataset show
very good agreement between simulations and observations, a few do not, like those
shown at the bottom of Figure 5.10.

As quality metric, area under the ROC curve (AROC) is used, with AROC ≈ 0.5 consti-
tuting random guessing, the desired outcome. Both loss-reduction feature importance
for tree-based models and permutation-based feature importance for all classification
algorithms are implemented in scikit-learn. For this example, we will use a random
forest classifier and rely on the loss-based feature importances, as these are provided
by scikit-learn out of the box after training. We train a random forest classifier using
tenfold cross-validation.
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In the first iteration, we train with all available features. The mean feature importance
over the cross-validation iterations is shown in Figure 5.11. It can be seen that a few
features stick out, including the one shown in Figure 5.10. We now remove the four
features with the largest importance and repeat the procedure three more times. Fig-
ure 5.12 shows the resulting ROC curves for each cross-validation iteration along with
the mean area under the curve. As expected, the problem gets progressively harder to
solve for the classifier; after removing 12 features the mean area under the ROC curve is
down to ĀROC = 0.55 from ĀROC = 0.67 on the full dataset.

The same behavior can be seen when looking at the score distributions in Fig-
ure 5.13. While for the entire dataset, there is a considerable number of events that the
model assigned a large likelihood to be simulated, the distributions approach a normal
distribution around a mean of 0.5 for the reduced dataset.

For further investigations, looking at the events that were classified as simulations
with high likelihood might give valuable insights into why those events were clearly
identified, meaning they belong to a class of events that is not or only much more
rarely observed in measured data. The same could be said for the opposite case: events
identified with high confidence as observed might be a missing class of events in the
simulations, but this seems not to be the case here.

As a final remark, it should be stated that this approach is only feasible for datasets
with an excellent general agreement between observations and simulations. For exam-
ple, we did not consider the importance of the features towards our main analysis goal.
Suppose the algorithm would remove important features for the following science anal-
ysis. In that case, our only choice is to improve the quality of the simulations (treating
the underlying condition) instead of keeping the dataset with a reduced feature set
(treating the symptoms).
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5.4 Keynote: The Muon Puzzle

Hans Dembinski

Abstract: High-energy cosmic rays are studied indirectly through extensive air show-
ers, which are hadronic cascades in the atmosphere. Simulated air showers based on
hadronic interactionmodels tuned to fixed-target and collider data show amuon deficit.
This is called the muon puzzle. This is a challenge for applying machine learning to
astroparticle physics experiments since machine learning needs accurate simulations
to generate training samples. Progress has been made in recent years to experimentally
measure themuon discrepancy with high precision. Theoretical studies have connected
muon production to the basic properties of hadronic interactions. The studies show
that the discrepancy can only be resolved by reducing the energy that goes into neutral
pion production relative to long-lived hadron production. The ALICE experiment at
the Large Hadron Collider (LHC) recently discovered an enhancement of strangeness
production in proton-proton and proton-lead collisions at the LHC, which qualitatively
matches this requirement. Further studies on strangeness enhancement in the forward
region at the LHC have the potential to finally resolve the muon puzzle.

5.4.1 Introduction

At cosmic ray energies above about 100 TeV, the flux of cosmic rays is so low that di-
rect observation with satellite and balloon experiments becomes infeasible. At these
high energies, cosmic rays are observed indirectly via air showers, hadronic cascades
initiated by high-energy cosmic rays in the atmosphere. The indirect observation re-
quires accurate air-shower simulations since properties of the cosmic ray have to be
inferred from features of the air shower. This is true for conventional analyses in which
human-made models are fitted to air-shower data and for modern analyses that use
machine learning to create models directly from simulations. The cosmic ray commu-
nity has built sophisticated simulation packages that integrate state-of-the-art models
of electromagnetic and hadronic interactions. Air showers simulated with these pro-
grams describe real showers quite successfully, but there is a long-standing discrepancy
between simulated and observed muon production in air showers.

Tensions between simulation and experiment are observed in several aspects of
muon production, but the most prominent and extensively studied deviation is that
of the total number of muons Nμ that arrive at the ground. The muon abundance is
significantly lower in simulations than in experiments, and this is called the muon
puzzle. Air-shower simulation codes such as CORSIKA use a variety of models for
hadronic interactions, which all fail to reproduce the large number of muons observed
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in ultra-high-energy air showers. This is a major obstacle for the field since the muon
number and the depth of shower maximum Xmax are the two main features to infer
the mass composition of cosmic rays as a function of their energy. Because of this
discrepancy, the estimates for themass composition obtained from these two air-shower
features donot agree. It is also a challenge to usemachine learning to analyze air-shower
data employed by the Pierre Auger, and IceCube Neutrino observatories [3, 137, 314].
The mismodelling of air showers may introduce subtle biases to the model that the
machine learns.

The muon puzzle is also interesting from the point of view of high-energy particle
physics because it could indicate missing physics in current state-of-the-art models of
hadronic interactions, which describe the hadronic cascade that leads up to the muon
production. The dominant interactions in air showers have lowmomentum transfer and
cannot be computed from first principles with perturbative quantum chromodynamics.
Effective theories are used to describe these interactions, and an important effect may
be missing in these theories.

In this light, the recently discovered universal strangeness enhancement at mid-
rapidity in proton-proton and proton-lead collisions at the LHC by the ALICE collabora-
tion [36] is of particular interest. This effect was previously only observed in heavy-ion
collisions, where the standard model to interpret these data is based on the formation
and subsequent freeze-out of a quark-gluon plasma (QGP). The theory community
is divided over whether a QGP can also form in smaller collisions systems such as
proton-lead or proton-proton. Even though the mechanism that causes strangeness
enhancement is currently unclear, the effect phenomenologically changes the hadron
composition so that the muon number in air showers is increased. The phenomenology
has been explored with a toy model [77, 312] with the conclusion that this effect could
be the missing piece in the muon puzzle.

This guest article is based on a recent review on themuon puzzle and its connection
to the LHC [46], which summarizes the current knowledge about the muon discrepancy
in air showers, the state of air-shower simulations, what we have learned about the
connection of microscopic hadronic physics and muon production in air showers, and
finally what we have already learned from the LHC and what kind of measurements are
still needed. We refer the reader to the review for further details.

5.4.2 Meta-Analysis of Muon Measurements in Air Showers

Several deviating aspects exist between the simulated muon component in air showers
and measurements. The most striking and best explored is the deviation in the mean
number of GeVmuons as observed by ground arrays of particle detectors. This quantity,
or proxies thereof, has beenmeasured bymultiple experiments,with initially contradict-
ing results. These apparent contradictions have been largely reduced by ameta-analysis
from the Working group on Hadronic Interaction and Shower Physics (WHISP), which
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Fig. 5.14:Measurements of muons produced in air showers from nine experiments after adjusting
for energy-scale offsets (points) converted to the z-scale as a function of shower energy for different
hadronic interaction models. For reference, the figure shows the expected values from global fits to
air-shower data (lines) and from optical measurements of the depth of the shower maximum (band).
The image was taken from [356].

was formed in 2018 by members of eight (now nine) air shower experiments [116, 141,
356].

Muon measurements from different experiments are not directly comparable since
the experiments and data analysis methods differ in many details. They are therefore
converted to the logarithmic z-scale, defined by the formula

z = lnNμ − lnNμ,p
lnNμ,Fe − lnNμ,p

, (5.6)

where lnNμ is the logarithm of the muon number, or any measurable quantity propor-
tional to the muon number, as measured by the detector, while lnNμ,p and lnNμ,Fe are
the corresponding simulated numbers (on detector-level) from an air-shower simula-
tion with a particular hadronic interaction model. While Nμ depends strongly on the
experimental conditions, z is approximately independent of experimental conditions.
Furthermore, the results from different experiments are cross-calibrated to avoid rela-
tive offsets between the independent energy calibrations of each experiment. This is
important since the muon number scales almost linearly with the (apparent) shower
energy.

The energy-scale corrected z-values from nine experiments and for eight hadronic
interaction models are shown in Figure 5.14. Above 10 EeV, the z-values exceed those of
pure iron showers for all models, which is astrophysically not plausible. Furthermore,
the values should be consistent with predictions based on the optical measurements of
the depth of showermaximum Xmax, which constrain the cosmic-raymass composition,
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the only other aspect that z values depend on, apart from the shower energy. The
measured z values exceed these predictions above 1017eV.

An experimental mistake can be ruled out as the cause of the muon discrepancy
since the effect is seen by several independent experiments. A statistical fluctuation
can be ruled out as well with very high confidence. Other potential origins for the dis-
crepancy have also been ruled out; see [46] for details. A major error in the propagation
of GeV muons through the air can also be excluded. However, there are ongoing efforts
to improve the precision for TeV muons propagating in dense media like water, and
ice [148, 159, 229, 338, 339], which will also benefit these studies. Attempts to explain
the muon discrepancy with exotic physics such as Lorentz-invariance violation [34]
or exotic astroparticles are challenged by the fact that this would change the depth
fluctuations of the shower maximum [1, 2] and the muon number [4], which are well
described by current simulations. The early onset of the discrepancy, at about 4·1016eV
and corresponding to a center-of-mass energy√sNN ≈ 8TeV in the first interaction, is
another challenge for exotic theories. Hadron collisions at such center-of-mass energies
are observed at the LHC, and signatures of exotic physics at these energies would have
been found if they had played a role.

The most plausible remaining possibility is a subtle deviation in the simulated
hadronic cascade leading to muon production. Progress has been made in recent
years on understanding air-shower physics and the possible microscopic origin of
this discrepancy, as discussed below. A relatively small deviation in the simulation,
potentiated by the hadronic cascade, cannot be ruled out by current LHCmeasurements
and may even be suggested by them.

5.4.3 Muon Production in Air Showers

An air shower is a hadronic cascade in which the kinetic energy of the cosmic ray
is successively converted into secondary particles in inelastic interactions with the
atmosphere. The Heitler-Matthews model [262] is a simplified model of an air shower.
A schema is shown in Figure 5.15 on the left-hand side. Only pions, the most abundant
long-lived hadrons, are produced in this model. Charged pions have long lifetimes
and interact again to form a hadronic cascade. Neutral pions decay immediately into
photons, which form a decoupled electromagnetic cascade. There is a small feedback
from the electromagnetic into the hadronic cascade via photo-nuclear interactions, but
this effect is neglected here.

In the model, the energy of the parent pion in the model is distributed equally to
its children. The energy of each pion, therefore, decreases after each interaction. After
k steps of the cascade, it falls below the critical energy, where decay becomes more
probable than another collision. At this point, the pions decay into muons. The number
of muons Nμ as a function of the energy E and nuclear mass A of the cosmic ray can be
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initial hadron

Fig. 5.15: Left: Sketch of the Heitler-Matthews model [262] of an air shower initiated by a cosmic
ray, in which only pions are produced. Image from [373]. Right: Impact of changing the hadron
multiplicity and the energy ratio R = ⟨Eem⟩/⟨Ehad⟩ on the muon number and the depth of shower
maximum for 1019eV air showers. Lines indicate predictions from air-shower simulations with EPOS-
LHC [311] for any cosmic-ray composition between pure proton (bottom right) and iron (top left).
The gray line indicates the baseline model, while the colored lines indicate predictions from an
ad-hoc modified model, with modifications in steps of 10%. The data point is from the Pierre Auger
Observatory [5]. Image from [77].

computed in this simplified model as

Nμ(E, A) = A(1−β)
(︂
E
ξh

)︂β
with β = ln(α Nmult)

lnNmult
, (5.7)

where α is the fraction of charged pions produced, Nmult is the hadron multiplicity
(average number of hadrons produced per collision), and ξh is the critical energy for
pions (when decay becomes more likely than another interaction).

The muon number Nμ is very sensitive to α. For an EeVair shower, a 10% change
in α would roughly introduce a 50% change in the muon number. Accordingly, α
needs to be known over a wide energy range to calculate the muon number correctly.
In the simplified model, α is 2/3 due to isospin symmetry, but the value differs in
real air showers. Protons, neutrons, and strange hadrons are produced, which have
lifetimes large enough to participate in the cascade. The results of the simplified model
approximately carry over if α is considered more broadly as the energy fraction carried
by long-lived hadrons. It is experimentally convenient to measure is the closely related
quantity

R = Eem
Ehad

= 1 − α
α , (5.8)

where Eem is the electromagnetic energy flow from photons and electrons, while Ehad
is the hadronic energy flow, and the average is taken over the phase space of the
secondaries.
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These basic analytical results are confirmed by full air-shower simulations [373]. To
increase the muon number in simulations, one must increase the hadron multiplicity
Nmult or decrease the fraction of neutral pions produced. However, it turns out that an
increase in the hadron multiplicity changes the depth of shower maximum in such a
way that the discrepancy cannot be resolved. This is illustrated in Figure 5.15 on the
right-hand side. Modifications of the hadron multiplicity shift the model line parallel
to itself; one cannot close the vertical gap to the data point. This is only possible
with a modification of R. A reduction in the energy fraction carried by neutral pion (a
reduction in R) is, therefore, the only solution, according to this study, though it may
be accommodated by a moderate change in the hadron multiplicity Nmult. Currently
available data on R from the LHC does not yet constrain the value to the required
precision in the phase space relevant for air showers. However, there are strong hints
that R may be lower than the value currently used in hadronic interaction models.

5.4.4 Related Measurements at the LHC at CERN

A comprehensive overview of existing LHC measurements at CERN that are relevant for
air-shower simulation is given in [46]. The LHC mainly accelerates protons and lead
ions, and for a short time, also xenon ions have been accelerated. The approved plans
to accelerate oxygen beams in the following years are essential for air-shower physics
to measure p -O and O-O collisions [99, 125]. The most common interaction in an air
shower is π-N for which p -O collisions are an excellent reference. Current state-of-the-
art models show considerable variance in their predictions of hadron production in
p -O collisions, despite being tuned to pp data, reflecting the theoretical uncertainties
in extrapolating from a pp reference. Together with the essential direct measurements
in p -O, the study of both pp and p -Pb data is important to detect potential scaling laws
and the universal features of hadron-ion collisions.

A general challenge for air-shower physics is that hadrons emitted in the forward
region dominate the air-shower development, but data is sparse in the forward region.
This is illustrated in Figure 5.16, in which the particle density is shown as a function
of pseudorapidity (related to emission angle as described in the figure caption). The
forward emitted particles are less numerous but more energetic and therefore create
more secondary particles in the next step of the hadronic cascade. Eventually, the bulk
of particles (and muons) is produced by the most energetic particles in the interac-
tion, which are those produced in the forward region. The LHC experiments are well
instrumented at mid-rapidity (|η| < 2), while the very forward region |η| > 5 is covered
only by calorimeters. LHCb is the most forward general-purpose hadron spectrometer,
covering the range 2 < η < 5, thanks to its focus on measuring decays of charm and
beauty quarks, and is therefore of particular interest. Important in the very forward
region are CMS with its CASTOR calorimeter system, the forward counters of TOTEM
and ALICE, and the LHCf zero-degree calorimeters for photons and neutrons.
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Fig. 5.16: Density of pions, neutrons, long-lived hadrons, photons and electrons as function of
pseudorapidity η in p -O collisions (solid lines) at 10 TeV, which is related to the emission angle θ
relative to beam axis, η = − ln tan(θ/2). Shown for comparison is the expected muon yield from
these particles if they form a shower in the atmosphere (dashed lines) and the acceptances of
several LHC experiments (bands). Image taken from Ref. [46].

As discussed in the previous section, muon production in air showers depends on
hadron multiplicity and the ratio R of electromagnetic to hadronic energy flow—or,
more generally speaking, the hadron composition.

Experimental proxies for the hadron multiplicity are the charged particle multi-
plicity and the energy flow, which have been measured in pp, p -Pb, Pb-Pb, and Xe-Xe
collisions at the LHC by ALICE, CMS, LHCb, and TOTEM up to η = 6.4. See [46] for
details. These forward measurements are important since the current generation of
hadronic interaction models deviate by less than 5% at |η| < 1 in pp collisions (where
they have been tuned to older LHC data), but up to 20% in the forward region. The latest
data strongly constrains the model predictions in the forward region in pp collisions. A
model variance of 20% is still found for p -O collisions, which is expected to be strongly
reduced with the upcoming p -O data.

The hadron composition has the largest influence on muon production. High-
precision data on the relative yields of pions, kaons, and protons in pp, p -Pb, and
Pb-Pb collisions is available at mid-rapidity |η| < 1 from ALICE and CMS. In particular,
ALICE studied the production cross-sections of strange hadrons at mid-rapidity |η| < 1
and discovered an universal (independent of collision energy and system) rise in the
production ratios of strange hadrons to pions as a function of the charged-particle
multiplicity [36, 382], as shown in Figure 5.17. This behavior was previously known
only from heavy-ion collisions and is not expected in p -Pb and pp collisions. The
hadron density in the central region rises rapidly with the collision energy; thus, the
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Fig. 5.17: Ratios of strange hadrons to pions measured at mid-rapidity |η| < 0.5 in pp, p -Pb, and
Pb-Pb collisions as a function of the charged particle density dNch/dη. Image taken from [36].

relative amount of strangeness production also rises. The strangeness enhancement
is accompanied by a reduction of neutral pions, which reduces R. The impact of this
effect on air showers was studied with toy simulations [77], and it was found that this
modification has the potential to resolve the muon puzzle in air showers.

The ALICE datasets are essential for model tuning and validation. However, they
do not directly constrain the hadron composition in the forward region, where two
hadron production mechanisms, string fragmentation and remnant fragmentation,
contribute. In the forward region, yields of pions, kaons, and protons can be studied
only by LHCb since the other detectors lack particle identification capabilities. LHCb
has published data from pp collisions up to 7 TeV. The analysis of pp collisions at 13 TeV
and p -Pb collisions at 8.16 TeV is ongoing and expected to have an important impact
on air showers.

CMS with CASTOR has studied the energy ratio R of electromagnetic to hadronic
energy flow as a function of the charged particle multiplicity at mid-rapidity in pp
collisions [77, 351] in the very forward region. CMS observed a high value of R in pp,
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Fig. 5.18: Energy fraction transferred to anti-protons (left) and ρ0-mesons (right) in π-C collisions as
measured by NA61/SHINE (data points) and as predicted by hadronic interaction models over the
whole range of beam energies relevant for air showers (images from [316, 374]).

which is larger than what is predicted by all current models, but the value also has a
relatively sizeable systematic uncertainty of about 20%. The considerable value of R in
pp found by CMS is surprising because it favors air-shower simulations with even lower
muon content than the current state of the art. By contrast, the opposite is required to
resolve the muon discrepancy. No significant trend of R was observed as a function of
the charged particle density at mid-rapidity.

A follow-up study with p -O and p -Pb collision is critical to understand whether R
is reduced in ion collisions compared with pp. Unfortunately, a measurement of future
p -O collisions with CASTOR is not possible since CASTOR has been decommissioned.
In the very forward region, R is also constrained by LHCf with measurements of photon-
production, π0 production, and neutron production in pp and p -Pb collisions. LHCf
plans to study strangeness production at zero-degree angles based on the decay K0S →
2π0 → 4γ with its upgraded detectors in the upcoming high-luminosity LHC run [265].

5.4.5 Fixed-Target Experiments at SPS and LHC

Since hadronic interactions in an air shower span many orders of magnitude in energy,
there are also opportunities to improve our knowledge at lower values of the center-
of-mass energy in the nucleon-nucleon collision system, √sNN, which are reached
by fixed-target experiments [268]. One advantage of fixed-target experiments is the
flexibility regarding the target, which makes it ideal for studying nuclear effects in
various systems.

The NA61/SHINE experiment at the Super Proton Synchrotron, the pre-accelerator
of the LHC, has measured hadron production in pp, π-C, and p -C collisions, where
carbon is used as a proxy for air. Among the many measurements, we highlight mea-
surements of the forward ρ0 and anti-proton production [38, 317] in Figure 5.18. The
ρ0 production is important since it is an alternative to producing a π0 meson in the
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charge-exchange reaction π− + p → π0 + n + X. An enhancement of the ρ0/π0 ratio
decreases R and increases the muon number in air showers. Anti-protons are a mea-
sure of baryogenesis in the air shower, which reduces R. Although the energy flow
towards these particle species is small in each interaction, the compounding effect
over many interactions leads to an increase up to 60% in the muon number produced
in air showers run with the recent version of SIBYLL-2.3d compared with SIBYLL-2.1
without these effects [324]. While this change is imposing, it has not resolved the muon
discrepancy since SIBYLL-2.1 formerly produced particularly muon-poor air showers.
The muon production in air showers simulated with SIBYLL-2.3d is now on par with
those simulated with EPOS-LHC.

At the LHC, fixed-target experiments are performed by LHCb with the SMOG device
[15], which injects small amounts of gas into the detector. The original system was
designed to study the beam profile but has been used to place limits on the intrinsic
charm inside the proton [12] and to measure the anti-proton production cross-section
in p -He collisions [14], which is needed to model cosmic ray interactions in space.
The original device has been replaced as part of the LHCb upgrade for Run 3 with an
open storage cell that allows for higher gas densities and more target gasses, including
nitrogen and oxygen [76]. With LHCb in fixed-target mode, it will be possible to study
hadron production at √sNN = 115GeVc−1 at mid-rapidity −2.5 < ηcms < 0.5 in the
nucleon-nucleon center-of-mass frame.

5.4.6 Summary and Outlook

The cosmic ray community has found a discrepancy in themuon production in air show-
ers initiated by ultra-high energy cosmic rays. A muon deficit is observed in air-shower
simulations, which after careful evaluation, can be attributed only to a mismodelling of
the hadronic cascade in the air shower, leading up to the muon production. The most
plausible way to resolve the discrepancy is to moderately reduce the forward energy
flow to neutral pions relative to long-lived hadrons as the collision energy increases.

The relative energy flows to neutral pions, and long-lived hadrons in the forward
region can be constrained with measurements of proton-proton and proton-ion col-
lisions at the LHC. The upcoming pilot run with proton-oxygen and oxygen-oxygen
collisions at the LHC is particularly important. Experiments with forward acceptance,
ALICE, CMS, LHCb, LHCf, and TOTEM, provide the best experimental constraints. LHCb
is the only fully instrumented general purpose spectrometer with hadron identification
capabilities in the forward region. The other experiments provide calorimetric and
particle counting information in the very forward region.

The discovery of a universal multiplicity-dependent strangeness enhancement in
high-density collisions at mid-rapidity by ALICE could be a potential solution to the
muon puzzle. The exact mechanism behind this effect is currently unclear. Further
measurements of a possible strangeness enhancement in the forward region with LHCb



5.4 Keynote: The Muon Puzzle | 143

and LHCf are underway. Further opportunities for air showers will be offered by running
LHCb in fixed-target mode to the study collisions of the LHC beams with nitrogen and
oxygen.

Data from the LHC is expected to improve air-shower simulations and resolve the
muon puzzle, which will likely boost the prospects of machine learning in astroparti-
cle physics. An intriguing idea to be explored in the coming years is to constrain the
parameters of hadronic interactionmodels with collider and air-shower data simultane-
ously. This is technically challenging since full air-shower simulations are required to
connect the effect of a parameter change to a change in air shower features, and these
simulations are very time-consuming. Currently, only collider data is used to constrain
the models, and air-shower data is predicted. The air-shower simulation step could
potentially be accelerated in the future with fast simulation techniques based on neural
networks.





6 Data Storage and Access
6.1 Introduction

Wolfgang Rhode

In Chapter 1, we recognized that the analysis cycle must be considered as a whole in
modern knowledge discovery. Data storage can occur at different points in this cycle,
from huge volumes of raw data at the beginning, through data selected for specific
analysis purposes, to the deconvolved data as the solution to inverse problems. The
more fundamental this stored data is, the more analysis can and must be performed to
obtain physically meaningful results. Therefore, the data is always inextricably linked
to the programs and analyses that are needed.

With this in mind, in this chapter, we will first look at the framework of research
data management from the perspective of resource-efficient data analysis. Then two
examples will be discussed, and an open approach to raw data will be presented for
the example of the FACT Open Data project. The example of the DeLorean architecture
will show how fast data access to experiment-internal data structures can be achieved.

6.2 Research Data Management

Wolfgang Rhode
Dominik Elsässer

Abstract: Astroparticle and particle physics analyses usually rely on processing a large
number of observables or features that are recorded and processed at a high frequency.
The datamay have been either recorded experimentally or calculated usingMonte Carlo
methods. The data may contain information that is scientifically irrecoverable either
because the triggering event is unique (such as a supernova explosion) or because the
experiments no longer exist in the same form. Thus, regardless of their nature, the
data also represents a large material value. In this chapter, the path of data through
data analysis is discussed keeping in mind that appropriate means of access must
be found, depending on the particular purpose of the data analysis: from real-time
analysis during data collection to precision analysis in the weeks and months after
data collection and possibly to re-analysis many years after data collection.

Open Access. ©2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785968-006
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6.2.1 Management of Large Amounts of Research Data

It seems quite natural to themodern scientist to be able to access the observation results
of Ptolemy, Galileo, or Brahe—but at the same time, the contents of research done a few
years ago, possibly even on data from an ongoing experiment, cannot be reproduced
because the necessary information is no longer available or the programs required for
this are no longer executable.

In this book, we discuss data analysis derived from experiments designed and
conducted by hundreds of scientists over decades. In addition, a roughly equal amount
ofwork is needed todetermine the virtual reality (Monte Carlo simulation) that describes
the experiment in question. Here, the material value of the work may well lie in the
many CPU hours spent generating and testing the simulations. Both the real and ideal
financial contributions to such an experiment will eventually be about the same, and
are likely to total several hundred million euros.

A material idea is appropriate here because it immediately shows that experiments
that require considerable time and financial resources, and thus are realizable only
by large international collaborations, must be repeatable, in principle. However, prac-
tically no one will want to or be able to finance them. This is also because a future
experiment would undoubtedly consider technological advances that have taken place
in the meantime. Especially in astrophysical observations, transient phenomena occur
anyway, which can be observed practically only once. This raises the question of how
to handle these valuable data in such a way that they remain accessible to mankind
for the most benefit in an optimal form for as long as possible. This is a question of
research data management.

The long-term vision for the coming centuries or millennia here can obviously
only be to leave to posterity measurement points in physical units and with the best
possible calculation of the uncertainties in such a way that these measurements can
be interpreted physically even without detailed knowledge of the experiments or anal-
ysis methods. These are the optimal solutions to the inverse problems posed by the
measurement, including the corresponding error considerations.

A comparatively modest requirement is the stipulation of many research funding
organizations that research data be retained for reanalysis for at least ten years in such
a way that it is accessible to and useable by the scientific community. The time period
can be seen as the time when re-analyses of the original experiment are initiated to
consider new or improved findings. New questions may be raised about the research
data from among the receiving scientists, and it must be possible to substantiate the
course of the analysis for litigation that, unfortunately, can occasionally arise. Within
this time, the experimentally recorded data go through a gradual publication process
in which the circle of researchers who have access to the data continues to expand, and
the range of user qualifications changes accordingly. This transition process requires
careful planning.
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The flow chart of typical analyses in the research field considered here, outlined in Fig-
ure 1.5 in Chapter 1, contains three meta-levels relevant for research data management.
This is, first, the data reduction by many orders of magnitude that necessarily occurs in
the experiment or during the analysis. There is, second, the level of increasing publicity
of the data. Third is the level of the usually very specialized software, which not only
has to be made increasingly accessible to other researchers so that they have access to
the analyses, but which also has to be designed in principle from the outset in such
a way that it remains executable despite changing conditions (computer hardware,
operating systems, further development of software, and libraries used).

In this book, we address the situation of large international research consortia such
as the LHCbdetector in particle physics or the IceCube,MAGIC, andCherenkov telescope
array (CTA) experiments in astroparticle and particle physics. Even though the question
of how to manage the totality of all research data from the large research consortia can
be answered only by the international consortia themselves, we develop approaches to
solutions for the contribution of the individual analysis or the individual researcher.
Even in the experiments, the management of the analyzed data is the responsibility of
the researchers at the universities or institutes where the analyses were performed.

The situation thus differs fundamentally from those scientific fields in which the
volumes of data collected are still very moderate. There, it is technically possible in
principle to store all the data required for an analysis for the required period of ten
years. Naturally, this also simplifies the aforementioned associated secondary tasks of
data management.

Below we offer an abstract discussion of the management of large volumes of
electronically stored and machine-processed research data regarding data reduction,
publicity, and software.

6.2.1.1 Data Sources and Streams
Data analyses in experiments in the natural sciences and engineering are usually based
on processing data sets containing a large number of features collected in parallel
for each measurement. For storage space reasons, the individual measurements are
recorded at a high frequency and must be processed in real time, at least at the lower
levels. In addition to a large volume, the data is characterized by structures of very
different complexity.

Data is collected and stored in a multi-step process. In the first step, several thou-
sands to millions of electronic sensors are typically read out with potentially very high
frequencies (GHz). The primary data rate here can be a few 1000 petabytes/year. This
signal can be interpreted as the beginning of a continuous data stream. The storage of
data volumes that predominantly contain a noise signal is neither possible nor reason-
able. Within nano- to microseconds, therefore, an initial decision must be made as to
which spatial or temporal signal configuration may contain meaningful information.
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The signal selected in this trigger decision consists of remaining noise and physical
signals that are of interest for different analyses. The different signatures are separated
step by step in the following steps, usually using machine learning methods, and put
in the form of a scientifically interpretable functional relationship as the solution to an
inverse problem. The time available for the analysis depends on the compression of the
data and the available computing capacities.

The decision models for data reduction developed with data mining methods are
based on analyses of simulation results (Monte Carlo events), which, as “virtual reality”,
represent the expected physical situation with sufficient precision.

The aim of the management of the research data is to store the relevant data for a
long time. The analyses performed should be reproducible. Re-analyses in the form of
a new run through the analysis chain under possibly improved knowledge of mathe-
matical or physical boundary conditions should also be feasible.

At least in the first analysis steps, data is necessarily lost (trigger). Also, it can be
assumed that the importance of individual research papers (dissertations) does not
necessarily justify petabyte-sized data storage. In such scenarios, data of the entire
stream can be stored, at least exemplarily, before and after the selection and decon-
volution steps. Thus, although a selection cannot be undone, the effect of a selection
algorithm is traceable. This is especially true for the simulated Monte Carlo data and
the models used for the decisions.

6.2.1.2 Data Formats and Software
The data formats, the operating systems used for analysis, and the specialized software
rapidly evolve, just like computer hardware, and can change even during the runtime
of the experiments. This usually leads to the fact that after a very short time, the data
can no longer be read, and the analysis programs can no longer be run on the then
more modern computers. One solution is to store virtual machines with the complete
software used for the analysis along with the data. Such a procedure is necessary
especially because the specialized software often documents the special characteristics
and treatment of the data more exactly than any written documentation (e.g., efficiency
corrections of detector components). For this purpose, suitable criteria catalogs must
be developed for the joint storage of data and software.

6.2.1.3 Privacy
Scientific data is preferentially available to the scientists (collaborations) involved in its
collection. The data (e.g., telescope images) should be made available to the interested
scientific public after an appropriate period of time. However, during the analysis of
the data in a collaboration, different access rights may be required. Initially, to avoid
psychologically induced effects in analyses, only small parts of the entire data are used
in what is known as blind analyses where scientists investigate, discuss, and test the
analysis methodology for errors.
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The “blindness” of the data is only lifted when all participating scientists in a collabora-
tion are in agreement. Ph.D. students may be allowed to see different parts or properties
of the data, depending on the state of their analyses. Because of the sheer size and
complexity of the research data, manual problem-solving is increasingly bound to
become error-prone in the future.

Other features of the data, as well as the programs used for analysis, which may be
the personal, unpublished intellectual property of the scientists, may or may not be
released to the public.

A publication systemmust therefore be integrated into themanagement of research
data that can also manage access rights at the same time in a personalized and time-
dependent fashion. Such a system must ultimately meet the same requirements that
are also necessary for using medical data for research.

6.2.1.4 Sustainability
Many experiments in basic research are not only linked to large and sometimes singular
expenditures; they also have runtimes of several decades. At the same time, a laboratory
calibration of the entire detector is regularly not possible. Therefore, there is a great
interest in being able to compare measurements and observations of well-understood
events or sources—astrophysical objects with temporally constant fluxes and spectra—
across experiment generations and also for the purpose of “cross-calibration” between
experiments running at the same time. In principle, this opens up exciting possibilities
such as separating previously unrecognized systematics on the detector or analysis side
from “new physics” and thus either improve existing methods or directly pave the way
to new discoveries. Likewise, in principle, an increase in integral sensitivity is possible
by combining many data sets from different experiments. Such a sustainable use of
research data directly requires the long-term preservation of data sets and associated
programs and documentation analogous to the criteria and procedures outlined above.
At the same time, however, it ideally includes open access to data sets, instrument
response functions, and analysis tools. A best practice example is the development of
a common data format for the high-level data of ground-based Cherenkov astronomy,
as well as the open availability of some observational data of the Crab Nebula (Messier
1) analyzed in [1] with the open-source package gammapy. Individual fits and joint
fits for comparing the results of the Fermi-LAT, MAGIC, VERITAS, FACT, and H.E.S.S.
experiments have been produced (see Figure 6.1). This represents a significant step
into the era of the long-term reuse of existing observations, such as during future
observatory operations of the Cherenkov Telescope Array.
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Fig. 6.1: Fits of the spectral energy distribution of the Crab Nebula (Messier 1); comparison of indi-
vidual instruments, and common fit. The figure is taken from page 5 (Figure 2) of Nigro et al. [292],
reproduced with permission ©ESO.

6.3 The FACT Open Data Project as an Example of Public Data
Access

Maximilian Linhoff

Abstract: In particle and astroparticle physics, the data observed or simulated by the col-
laborations who are operating the instruments is almost always treated as proprietary, a
closely guarded secret. No collaboration has made its raw data publicly available. This
can also be explained by the sheer amount of data, which makes simple solutions like
webservers infeasible, and by the complexity of the data, the large amount of domain
knowledge, and often by proprietary tools required to analyze the data.
However, in 2017 the FACT collaboration (Section 2.2.1.2) published¹ a large dataset

consisting of 17 hours of Crab Nebula observations and simulated data needed to
perform the analysis. The data is available at all the data levels described in Section 7.3
and can be used for teaching and machine learning (ML) research and has facilitated
many student projects and lectures that would be much harder or less interesting

1 https://factdata.app.tu-dortmund.de.

https://factdata.app.tu-dortmund.de
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without this publicly available, complex data set.

In 2017, the FACT collaboration published a set of Crab Nebula observations comprising
a total of 17.7 h of observation time together with accompanying simulations. The data
is available at several processing steps, from the raw data of the telescope over interme-
diate steps of the extracted Cherenkov images up to the feature level, where each image
is parameterized by a set of attributes suitable as input for classical ML algorithms.

The steps from raw data to image parameters are discussed in Section 7.3, the
estimation of event properties using ML is described in Section 8.4 and the final step of
unfolding the energy spectrum of the Crab Nebula from these observations is performed
in Section 10.5 using this data sample as an example.

6.3.1 Available Data

Tab. 6.1: Key properties of the simulated data sets released as part of the FACT Open data set.

Primary Emin / GeV Emax / TeV Rmax / m Nsimulated Ntriggered

Gamma 200 50 270 12000000 1914812
Proton 100 200 400 780046520 509652

The observed data consists of 218 runs taken under mostly favorable environmental
conditions, with a small number of runs suffering from cloud coverage or other bad
weather conditions. The accompanying simulation data is used as the labeled dataset
required at several points in the analysis, mainly for training the machine learning
models and calculating the instrument response needed for the unfolding.

The observed raw data is stored in FITS files using a custom compression extension,
readers are available for Python², Java³ and C++⁴.

Simulated raw data is stored in standard-conform FITS files. Processed data is
available either in FITS format for single runs or as HDF5 files for the whole dataset.
The Python module pyfact provides utility methods to read the HDF5 files into pandas
DataFrames.

Simulations of the particle cascades in the atmosphere were carried out using
the software CORSIKA [194] resulting in the Cherenkov light reaching the telescope.
The following simulation of the telescope was performed using CERES [98]. The most
important properties of these simulations can be found in Table 6.1.

2 https://github.com/fact-project/zfits.
3 https://github.com/fact-project/fact-tools.
4 https://trac.fact-project.org/browser/trunk/Mars.

https://github.com/fact-project/zfits
https://github.com/fact-project/fact-tools
https://trac.fact-project.org/browser/trunk/Mars
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In total, 1.1 TB of simulated raw data and 0.9 TB of observed raw data were released.
The amount of raw data belonging to this relatively brief observation time exemplifies
the challenges connected with making raw scientific data accessible. In general, it
is not feasible or even helpful to publish the raw data to a wider audience. Several
challenges scientific instruments face when it comes to publishing raw data are:
– The sheer data volume.
– The required level of expert knowledge to do anything with these low-level data.
– Non-standard data formats that are needed to efficiently store the large data volume.

Due to these reasons, it is normally only feasible to publish data at higher abstraction
levels. These are accessible to the majority of researchers in the field.

For gamma-ray astronomy, the abstraction level are lists of gamma-ray candidate
events where each event has a single estimated value of the relevant quantities like
energy and direction. To obtain scientific results from this, the inverse problem needs to
be solved. This requires knowledge of the instrument response (the convolution kernel).
Hence, this is also included in data releases at this abstraction level.

One example, which also includes the discussed data level of the FACT open
dataset, is the combined analysis of Crab Nebula data from several currently oper-
ating gamma-ray observatories as shown in Figure 6.1. This is also the plan for the
upcoming Cherenkov Telescope Array, the main users of the observatory will be able to
openly obtain this abstraction level of the data.

For the FACT dataset, also intermediate data levels between the raw data and the
high-level event lists for published. This proved very fruitful and most of the examples
in this book make use of this dataset at the different levels of processing.

6.4 The DeLoreanSystem Architecture as Example of
Experiment-Internal Access

Jens Teubner

Abstract:Modern research in high-energy physics depends on the ability to analyze
massive volumes of data in a short time. DeLorean is a new system architecture for high-
volume data processing in the domain of particle physics. It combines the simplicity
and performance of relational database technology with the massive scalability of
modern cloud execution platforms (Apache Drill, for that matter). The key ingredient
to DeLorean is a compact data synopsis that can be used to approximate the result set
of complex analysis queries. The approximation allows a guided search to obtain the
actual query result with minimal I/O cost for large data sets.



6.4 The DeLoreanSystem Architecture as Example of Experiment-Internal Access | 153

collision

raw
data

40MHz

Trig-
ger

12.5 kHz

stor-
age

PBs

anal-
ysis

kBs∼MBs

Fig. 6.2: LHCb processing pipeline. Data is collected at a rate of 40MHz, then pre-filtered using a
trigger system, and persisted. Stored data is then made available to various forms of analyses.

6.4.1 The Data Volume Problem at LHCb

The experiments at the Conseil Européen pour la Recherche Nucléaire (CERN) are often
cited for their stunning data volumes and rates. And in fact, the detectors of the LHCb
experiment (cf. Section 2.3.1) collect about 1 TB worth of data every second—a data
volume far exceeding what could be analyzed in full with current hardware. Although
an elaborate trigger system (cf. Section 4.2.1) disposes of more than 99.99% of the raw
data volume, data in the order of 10–20 petabytes remains left to be stored permanently
and made available for analyses.

As their daily task, physicists around the world access these data to verify their
hypotheses. When doing so, they are generally after rare events, which may occur with
probabilities as low as 10−15.⁵ That is, out of the vast data volume stored at CERN, often
only very few events have to be identified and retrieved efficiently.

The criteria that characterize a (potentially) relevant data item can be diverse,
ranging from simple predicates such as “return all collision events that produced a
muon particle with an energy of at least x” to complex conditions on particle trajectories
that can be inferred from observations. With the DeLorean system, whose concepts we
will detail in this section, we aim to provide answers for simple classes of predicates
with extreme efficiency—expecting that simple predicates can cut down the full data set
to volumes where compute-intensive criteria become feasible even with conventional
methods.

Our processing pipeline is summarized in Figure 6.2. Event data is collected at a
rate of 40MHz and fed through a trigger system. 10–20 PB of data are persistently stored
every year and made available for analyses. Out of the large data volume, analyses
typically select only a few kilo- or megabytes.

6.4.1.1 LHCb’s “Stripping” Mechanism
Sifting through the complete data set for every analysis is not feasible with the data
volumes involved. Therefore, LHCb physicists installed a mechanism that they refer to
as “stripping.”

5 To illustrate, as few as ten B0 → μ+μ− decays were extracted from the entire data set of the first LHC
run from 2010 to 2013 [225].
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Fig. 6.3: LHCb “stripping” concept. The input stream is partitioned into a few hundred “stripping”
lines after data acquisition (events may also be stored in multiple stripping lines). The only access
mechanism allowed is to scan a full stripping line.

Thismechanism is illustrated in Figure 6.3. After data acquisition, a separate preprocess-
ing stage segregates all event data into so-called stripping lines on the storage cluster;
each stripping line corresponds to a predefined selection criterion. In Figure 6.3a, the
high-volume input stream coming from the left is partitioned and stored into multiple
files (“stripping lines”).⁶ After “stripping,” individual analysis tasks read one or more
stripping line(s) as a whole (Figure 6.3b).

To date, a few hundred stripping lines are registered with the LHCb-system, which
was found to be a compromise between selectivity and the cost of preprocessing. In
fact, stripping lines need to have a selectivity below 0.5%, so the cost of materializing
data into stripping lines stays manageable.

A key limitation of the “stripping” approach is that arbitrary access to the full
data set is still not feasible. Any filter criterion must be declared ahead of time, so a
dedicated stripping line can be populated during preprocessing. It would be highly
desirable to permit flexible ad hoc querying to scientists instead.

6.4.1.2 Database Technology to the Rescue?
Database systems can be extremely efficient at navigating huge amounts of data. This is
achieved by providing efficient data representations, access methods, and distribution
of available resources. In particular, indexing techniques promise the fast identification
of relevant data. Searching for small subsets in extensive data collections is inherently
challenging whenever the number of dimensions is high and the queries unknown or
ad hoc, i.e., when query-relevant dimensions change frequently. However, even without
considering a particular indexing technique, the hardware limitations of the underly-

6 Some events may appear in multiple stripping lines. This happens when they satisfy the predicates
stated for more than one stripping line.
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ing storage media are already a sizeable obstacle when trying to achieve reasonable
speedups compared to a simple scan of the data.

A Primer on Database Indexing On a huge scale, when data far surpasses the
amount that could be reasonably held in main memory, the cost of database access
is measured by the number of required I/O operations on the storage devices. The
performance of already slow (compared to main memory) bulk storage media, such as
disk- or tape devices, degrade even further when data is not accessed in an orderly or
sequential order. For example, reading a particular byte from a disk-based hard drive
requires the retrieval of a whole block of multiple kB or MB and, more importantly, the
physical movement of the disk’s arm into the correct position on the disk. Because the
data of interest is rarely located in a single, consecutive location and is more likely to
be scattered randomly across the whole storage, the number of items identified by an
index has to be very small in order to even compensate the hardware’s performance
degradation due to this random access.

Indexes for Multi-Dimensional Data In addition, the cost of evaluating the index in
the first place has to be compensated as well. Popular multi-dimensional indices, such
as the R*-tree [80] or k-d-tree, can reduce the number of data points to the relevant
set at a reasonable access cost, provided that the dimensionality is sufficiently low.
However, when the dimensionality becomes too high, or only a subset of the indexed
dimensions is used in a query, the cost of their access, combined with the cost due to
random access during result retrieval, quickly outweighs the gains [386]. Due to this
curse of dimensionality, multi-dimensional indices either require super-linear search
time or they grow super-linear in size, often both [361].

Weber et al. [386] recognized that this dilemma leaves scans as the only viable
route to answer queries on high-dimensional data. In this spirit, it has been shown
that even a simple scan on a vertically partitioned (in-memory) database, where each
column is stored separately, outperforms multi-dimensional indices with selectivities
as low as 1% [196]. Due to the vertical partitioning, or columnar storage, dimensions
not involved in a query can be ignored, effectively reducing the scan volume. When
only a subset of the indexed dimensions in a multi-dimensional index is used, such a
scan is almost always preferable [361].

An essential approach to this indexing problem is bitmap indices, such as Fast-
Bit [392]. They use a set of bitmaps per attribute, with a number of binary entries equal
to the number of tuples in the database to indicate which tuple is associated with a
particular attribute value. The bitmaps associated with qualifying values are retrieved
for each attribute and then logically combined to identify data that qualifies for a query.
The index result is then used to access the storage and retrieve the actual query result.
Because they treat dimensions individually and bitmaps can be efficiently combined
via bit-wise operations, bitmap indices are said to beat the curse of dimensionality [360].
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However, the size of bitmap indices poses another important issue, which is also shared
by many multi-dimensional indices. The number of bitmaps in a bitmap index is pro-
portional to the number of indexed, distinct values of the attributes. To deal with
high-cardinality attributes, most notably floating-point data, quantization strategies
are used to reduce the effective number of different values and, therefore, bitmaps.
In addition, compression is an integral part of bitmap indices. Despite the usage of
compression, and although their space requirements do not increase super-linearly
with the number of dimensions, they still often consume about the same space as the
indexed data [237]. Furthermore, the quantization, also termed binning in this con-
text, introduces false-positive candidates that increase the number of I/O accesses by
inflating the selectivity of the index access.

6.4.1.3 Efficient Database Scans
Because a simple, columnar scan is one of the most efficient ways to evaluate queries
on high-dimensional data, many techniques were developed to accelerate it.

A straightforward way is via parallelization. Machines in large clusters can sift
through data independently, which eventually motivated frameworks such as MapRe-
duce [136], which allow for a straightforward and failure-tolerant implementation of
scan-heavy workloads on large clusters of commodity machines. However, with limited
project budgets, the ability to scale the performance simply by extending the cluster is
also limited.

When many queries are issued to a system, the scanning effort can often be shared
between concurrent workloads, which allows utilizing the limited I/O bandwidth of the
storage more efficiently [238, 397].

Other approaches try to reduce the effective scan volume for a query. One way to
achieve this is by first considering compact summary statistics about a hardware block
(on disk). For example, the BlockIndex [393], which was implemented in the ADIOS I/O
system [252], stores the ranges of values in each block as meta information. Comparing
the value ranges with the predicates of a given query allows skipping blocks during
a scan that can not contain tuples that might qualify. However, this technique can
only be efficient when ranges of values in a block exhibit a statistical dependency on
the data storage order. Although this property is available for some attributes of some
spatio-temporal data sets, data from independent events in projects such as the LHCb
is unlikely to offer it.

Another way to reduce the considered data volume during a sequential scan is by
scanning a reduced representation of the data points. ColumnSketches [196] represent
the values of a column by quantized values, such that each value requires fewer bits
but still allows the evaluation of predicates. Again, this comes at the cost of an inflated
selectivity because some of the data points might be false-positively identified as quali-
fying by the ColumnSketch. However, the effective data volume that must be considered
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Fig. 6.4: DeLorean architecture. At data acquisition time, DeLorean extracts a compact synopsis of
the raw data. At analysis time, DeLorean permits ad hoc selection criteria and fetches only a relevant
data subset from the raw data part.

may be considerably reduced compared to a plain, columnar scan. The same technique
was also used before for nearest-neighbor queries in the form of VA-files [386].

6.4.2 DeLorean: Optimized Scans for Efficient Data Access

To make the aforementioned advances in database technology accessible to physics,
we prototyped the DeLorean platform at TU Dortmund University. DeLorean assumes
a high-volume data store—such as embodied by the ROOT-based storage of the LHCb
experiment at CERN—and pairs it with a novel acceleration engine, which is based on
relational database technology.

The latter “relational part” of DeLorean is obtained by extracting a synopsis or
summary from the original data set. Figure 6.4a illustrates this idea (where we refer
to the existing ROOT store as “raw data”). The synopsis holds information that we
can later use to access the “raw data part” in a very deliberate way, picking only a
few selected items from the potentially huge data set (cf. Figure 6.4b). We will detail
possible synopsis implementations in the following.

Feasibility and Required Selectivities For the DeLorean architecture to be feasible,
the size of the synopsis must be small enough to not overstretch the available storage
budget. DeLoreanmay replace space-consuming stripping lines, making the concept
typically feasible from a storage space perspective.

The approach is much more sensitive than the achieved selectivity when accessing
the raw data store at data analysis time. Every “pick” from the data store will incur a
relatively high access latency. In practice, thismeans thatDeLorean can only be cheaper
than reading the complete (!) data set when ≪ 1% of the stored events are actually
fetched (cf. Figure 6.4b).
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Tab. 6.2: Observed filter selectivities for a very small LHCb data excerpt and initial cuts to analyze
J/ψ → μ + μ− decays (extracted from JPsi2MuMu stripping line).

Cut Candidates Survivors Selectivity

First 7 325 531 170 858 2.33%
Second 170 858 2 542 1.49%

Total 7 325 531 2 542 0.03%

This requirement is given for all analyses that we encountered.⁷ To illustrate this, Ta-
ble 6.2 lists the selectivities of the initial cuts that implement the JPsi2MuMu condition
at LHCb. Taken together, both predicates correspond to a selectivity as low as 0.03%.
That is, an efficient accelerator mechanism based on these two cuts can significantly
reduce the query time that the analysis program will observe.

Scan-Based Acceleration As detailed before, multi-dimensional data sets favor scan-
based processing. This is particularly true when the query patterns on the data sets
vary strongly, as is the case for LHCb. Therefore, the accelerator for DeLorean is built
mainly using scans.

The software frameworks at CERN heavily rely on ROOT, which—for our current
context—provides a persistencemechanism for C++ objects. That is, the existing storage
layer at CERN consists of serialized C++ objects. For analysis, these objects are de-
serialized, and then handed over to C++/Python code for processing. To save disk
space, ROOT files are aggressively compressed.

The beauty of ROOT is its seamless interplay with the existing analysis code. Over
time, a very large library of analysis routines has evolved that is mostly written in C++.
It is, however, challenging to make the approach run efficiently at very large scales.
This is mainly for two reasons:
1. C++ object (de)serialization results in relatively complex data structures on disk

and in memory. The strategy can, therefore, poorly benefit from modern hardware
advances and deep memory hierarchies. By contrast, relational database engines
intentionally stick to a very rigid and well-defined data model—one of the key
ingredients to their excellent scalability.

2. The ROOT de-serialization mechanism will always read in C++ objects as a whole.
In practice, many kilobytes have to be read from storage, even when a very simple
characteristic (e.g., a charge value) would be enough to decide that the object can
be skipped for a particular analysis.

7 In fact, the existing “stripping-line” mechanism has a similar limitation. Registered stripping lines
must have a selectivity≲ 0.5% to not exceed storage budgets at LHCb.
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To avoid—or at least mitigate—the above two problems, the synopsis of DeLorean uses a
relational storage model. Thereby, the synopsis includes those fields of the dataset that
are queried frequently (using simple, “sargable” predicates) and with high selectivity.
With a scan on the relational side, we select candidate matches, and then de-serialize
from the ROOT part only those C++ objects that are still promising.⁸

6.4.2.1 Optimizing Scans
Parallelization Using Drill/HDFS An advantage of scan-based processing is that
scans can be parallelized easily, even to a massive scale. In DeLorean, we use Apache
Drill to realize the relational part. Based on a Hadoop Distributed File System (HDFS),
Drill provides a natural way to parallelize typical analysis queries at very large scales.
Drill’s column-oriented Parquet storage format can assist in optimizing the type of scans
typical for DeLorean. A big bonus of using a Hadoop-based approach is its tolerance to
failures, which allows the use of cost-efficient consumer hardware.

Columnwise Storage The characteristics in Table 6.2 make selection queries in De-
Lorean an excellent candidate to apply column-store technology. Storing data in a
columnar fashion has two important advantages:
1. Queries must read from disk only those columns that are actually relevant for the

particular filter task (such as charge and the position vector).
2. When a query consists of multiple selection predicates (“cuts”), data for later

attributes must only be fetched from disk for rows where earlier predicates were
satisfied. The query optimizer may optimize the order of predicate evaluation
accordingly.

Both properties result in a reduction of the data volume that has to be scanned (read
from disk) for filtering. For simple queries like those that we discuss here, reducing the
I/O volume may directly translate into improved overall performance.

Lightweight Compression Column-oriented storage goes well together with light-
weight compression. With a reduced overall disk memory footprint, the system may be
able to read the relevant data from disk with fewer I/O requests and faster. Such an
improvement will, of course, only be beneficial as long as the implied overhead—CPU
cost for decompression in particular—does not outweigh the reduction in I/O cost.
To this end, earlier work has developed compression schemes that are particularly
lightweight and can provide high throughput. The most notable example is the PFOR
family of compression schemes of Żukowski et al. [398]. In DeLorean, we opted for

8 ROOT supports the efficient, tree-based seeking of selected events.
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Fig. 6.5: Single node scalability of DeLorean compared with DaVinci.

Google’s Snappy library and gzip because they integrate particularly well with our base
platform Apache Drill.

6.4.3 Evaluating DeLorean

To test whether Apache Drill is a viable back-end option for DeLorean, preliminary
experiments were conducted to be able to compare DaVinci (the existing software stack
used in the LHCb collaboration) and DeLorean. In this experiment, both approaches
execute the “indexing part” to show the scalability of DeLorean. All experiments have
been conducted on an Intel Xeon E5-2609v2 dual-socket workstation (8 physical cores,
no Hyper-Threading) with 64GB of RAM and a 7200 rpm SATA HDD running Scientific
Linux 6.7.

Using an out-of-the-box embedded Drill instance, we were able to achieve an event
throughput increase of up to a factor of 4.6 (single-threaded). Unfortunately, a multi-
threaded configuration of DaVinci is currently not available in our laboratory setting.
For the sake of fairness, we assume a linear scalability forDaVinci (best case). Figure 6.5
shows the scalability for different compression algorithms compared with the DaVinci
projection. One notable result of the experiment is that DeLorean even outperforms the
linear projection of DaVinci.
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Figure 6.5 clearly shows that the HDD-bound experiments hit the I/O barrier.⁹ Here,
we can see that compression can leverage the I/O bottleneck significantly. gzip, the
“heaviest” of the compression algorithms, performs best in this scenario, so it might be
worthwhile to invest in higher compression ratios using domain-specific compression
algorithms (like run-length encoding or delta encoding).

6.4.4 Looking Ahead

The massive data volumes at LHCb are a prime example of the size and the complexity
of modern, data-intensive applications. The example also shows that classical database
techniques, indexing in particular, can hardly support the given complexity; but naive
approaches cannot deal with the data sizes encountered here.

DeLorean illustrates a possible way out of the dilemma based on proven techniques
from the database literature. The combination of a “naive” (i.e., scan-based) access
mechanism and a compact data representation can help to master the size and com-
plexity of the data at hand. Thereby, scans are trivial to implement, parallelize, and
scale. Our compact synopsis makes the approach viable for LHCb’s data volumes.

It is easy to see that the pattern behind DeLorean—scan-based access to a compact
data structure—is highly versatile. Not only could it be applied equally well to other
application classes. We are also actively working on variations to the DeLorean scheme,
e.g., by applying (lossy) compression (to reduce scan volumes even further, at the
price of low false-positive rates) or by breaking up DeLorean’s strictly column-oriented
view. Combined representations of small groups of attributes can, in fact, result in
even further volume reduction, with negligible impact on the result quality. Conversely,
extending the synopsis by pre-materialized information may increase scan volumes
somewhat; the return can be better response times and reduced CPU complexity when
asking queries whose bits and pieces were pre-materialized before.

9 The RAM drive experiment is there to verify the I/O bottleneck. Regarding the massive amount of
data, it is unrealistic to process the whole data set in memory.





7 Monitoring and Feature Extraction
7.1 Introduction

Wolfgang Rhode

First, the data recorded by an experiment consists of the individual detections of
electromagnetic interactions that are spatially and temporally limited in the smallest
subdetectors. These signals are used for data analysis in two ways.

In particular, using Monte Carlo methods (as presented in Chapters 1 and 5) to
develop and optimize machine learning methods for data analysis requires a perfect
description of the detector inMonte Carlo. A dedicated analysis of unprocessed or barely
preprocessed (e.g., calibration, if necessary) data can provide spatial and temporal
monitoring of the detector function. Failures, malfunctions, or gradual changes in parts
of the experiment are detected and can be either corrected or integrated into the Monte
Carlo simulation.

Usually, the low-level data contains the information initially sought for signal
background separation or later for finding a correlation with a physical property only
indirectly. Therefore, the second analysis path leads to the extraction of these features.
What will inspire the chosen path will be, of course, the domain knowledge of the
analyzing physicist. Also, on this basis for feature extraction, differentmachine learning
methods are evaluated and optimized problem-specifically. Conversely, this procedure
also leads to the fact that all recorded signals that do not carry any information that
can be used later on may be removed from the dataset. This significantly reduces the
amount of data to be stored. Both parts of the feature extraction save resources from all
areas (CPU, memory, storage, network traffic, ...) for further analysis.

The examples presented in this chapter are taken from gamma astronomy for
monitoring and from gamma and neutrino astronomy for feature extraction.

7.2 Feature Extraction and Selection in IceCube

Tim Ruhe

Abstract: In neutrino astronomy, data can be represented in the form of simple tables
with a large number of columns and an even larger number of rows. Columns represent
event properties extracted by so-called reconstruction algorithms and include, for
example, the estimated energy and direction of an incoming particle. At later stages
of an analysis, these event properties or features serve as input for machine learning

Open Access. ©2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785968-007
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Fig. 7.1: Schematic view of a Cherenkov light cone, depicted in light grey, entering the IceCube
detector from the right-hand side. While a particle traverses the detector, several optical modules
register the Cherenkov light and transform it into a time series of charges. Graphic: courtesy of the
IceCube collaboration.

classifiers. However, not all extracted features can be used for several reasons. Certain
features may be entirely useless in classification, especially if they are constant, while
others are expected to cause a bias in the automated classification. Furthermore, the
information contained within certain features may be redundant and may be caused,
say, by the extraction of the same event property (e.g., the zenith angle) by multiple
reconstruction algorithms. Last but not least, the distributions between simulated and
experimental data may be different. The aforementioned arguments ask for a detailed
feature selection to be carried out prior to the classification of events via machine
learning models. The reduction of dimensionality while maintaining an amount of
information that is sufficient to obtain a stable and reliable classification is an active
field of research. This chapter will provide an overview of feature selection techniques
utilized in analyses of data obtained with the IceCube neutrino telescope.

In IceCube (see Section 2.2.1.1), the features later utilized in physics analyses are
extracted from the light-pattern produced from Cherenkov radiation from charged
secondary particles. Figure 7.1 depicts a Cherenkov light cone (shown in light grey),
entering the detector from the right-hand side. While the charged particle initiating
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the cone traverses the detector, it is followed by the light cone. Optical modules are
hit by the Cherenkov photons and, as a consequence, register so-called hits. These
hits are transformed into a time series of charges, generally referred to as a wave
form (see inset of Figure 7.1). The wave form itself is a consequence of the fact that
South Pole ice is a natural medium, which contains a depth-dependent amount of
impurities. The impurities, mainly dust, cause a significant amount of light scattering.
As a consequence, the peak of the Cherenkov radiation spectrum is smeared out to
a so-called wave form. The depth-dependent optical properties are, in fact, one of
the largest sources of systematic uncertainties for the IceCube detector. For details on
the determination of the optical properties of South Pole ice and their effect on the
photon detection in IceCube, we refer to Refs. [35] and [26]. In summary, the optical
modules thus transform an optical into an electrical signal, which is then used for
feature extraction.

Some of the extracted features are relatively simple and do not require a sophis-
ticated reconstruction. The total charge (Qtot) accumulated by all optical modules
during an event is a straightforward example, as is the number of optical modules NCh
(sometimes referred to as the number of channels) hit in an event.

The second category of features is extracted via the use of simple algorithms, which
assume the particle’s trajectory through the detector to be a straight line. Accordingly,
these algorithms are referred to as line-fits. The line-fit ignores the optical properties of
the detection medium, as well as the geometry of the Cherenkov cone, and attempts to
minimize a χ2 of the form [44]:

χ2 =
N∑︁
i=1

(ri − rLineFit − vLineFit · t)2 . (7.1)

In Equation 7.1, the ri correspond to the positions of the optical modules and rLineFit de-
notes the extracted particle trajectory. vLineFit describes the speed of light in themedium
and is also extracted from the line-fit algorithm. The three variables are connected via
the time t required for photons to travel from their point of origin somewhere along the
particle trajectory r to an optical module where it is finally detected [44]:

ri = rLineFit − vLineFit · t. (7.2)

Although the assumptions for the line-fit algorithmdo simplify the problem, its outcome
already provides valuable insight into the detected event. The extracted speed of light,
for example, can be utilized to discriminate between track- and cascade-like events. Due
to the geometry of a cascade-like event, basically a ball of light expanding within the
detector, the reconstructed values of vLineFit are significantly smaller than for track-like
events. Furthermore, the line-fit algorithm provides a first guess, utilized as a seed
value for more sophisticated reconstruction algorithms.

Using a likelihood description, the task of feature extraction can be generalized
to estimate a set of parameters a⃗ given some measured observables x⃗. For indepen-
dent components, xi of x⃗, a⃗ can then be estimated by maximizing a likelihood of the
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form [44]:
L =

∏︁
i
p(xi|a⃗), (7.3)

where p(xi|a⃗) is the probability density function of measuring xi given a⃗. For simplicity,
a Cherenkov cone initiated by an infinite muon track is assumed. Said muon track is
then described by [44]:

a⃗ = (r⃗0, t0, ^⃗p, E0). (7.4)

In Equation 7.4 r⃗0 is an arbitrary point on the muon’s trajectory, which is passed by the
muon at time t0 with energy E0 along a direction ^⃗p. Along this trajectory, Cherenkov
photons are emitted at a fixed angle θC (also referred to as the Cherenkov angle), with
respect to ^⃗p. The actual feature extraction is then performed by minimizing − logL
with respect to a⃗.

The measured observables include the times ti at which a certain optical module is
hit. In that case, the likelihood in Equation 7.3 becomes [44]:

L =
∏︁
i
p(tres,i|a⃗), (7.5)

where the so-called time-residual tres,i is given as the difference between the arrival
time of unscattered photons (in the context of IceCube, often referred to as a direct
photon) and the actual arrival time. As part of the reconstruction, different likelihoods
are evaluated. These include the hit and not hit likelihood, the amplitude likelihood and
the zenith-weighted Bayesian likelihood [44].

In addition to the arrival direction of the incident particle, its energy is important in
many analyses. As the energy of the particle is not directly accessible as a consequence
of the indirect nature of the measurement, energy-related observables are derived in-
stead. These energy-dependent observables are especially important for reconstructing
neutrino energy spectra (see Chapter 10). In IceCube, various algorithms are used for the
reconstruction of energy-dependent variables (see for example [32]). The total charge
(Qtot) is a particularly straightforward example. The amount of charge collected by
a Digital Optical Module (DOM) (see Section 2.2.1.1) is proportional to the amount of
Cherenkov radiation observed by said DOM, which is itself proportional to the energy
of the incident particle. Qtot thus provides an intuitive approximation for the particle’s
energy, which is relatively simple to reconstruct. This proxy does, however, not account
for the detector geometry or the properties of the detection medium. It becomes clear
that a long track, which traverses the entire detector, will emit more Cherenkov light
within the detector than a so-called corner clipper, which only traverses a small portion
of the detector. The same holds when comparing particles traversing the deep clear ice
with particles traversing large layers of dust, where a significant portion of the light is
absorbed. To account for these effects, more sophisticated reconstruction algorithms
are required.

One example of a more sophisticated energy reconstruction is the so-called trun-
cated mean [32], which discards large energy losses that occur stochastically along the
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track (mostly via bremsstrahlung) and thus distorts the energy reconstruction. Another
example is the use of the muon energy as a proxy, which is more directly accessible
than the energy of the neutrino but also suffers from the limitations due to the detector
geometry and the detection medium described above. A more accurate reconstruction
of the particle energy and certain other properties is obtained by utilizing deep neural
networks (see Section 9.2.2).

For an machine learning-based analysis, it is often beneficial to generate new
features in addition to the existing ones. These new features can be based on the
existing ones, which has the additional advantage that the information contained in
two or more reconstructed variables is condensed into one feature. This approach has
the advantage that a certain amount of resources can be saved during training, testing,
and application of the utilized classification algorithm. The zenith angle θ of incident
particles in IceCube is a relatively simple example. As this property is extracted by
several reconstruction algorithms, the agreement between the different algorithms with
respect to θ does provide a valuable handle to discriminating between well and poorly
reconstructed events [16]. More sophisticated approaches to feature engineering in
IceCube are discussed in [91].

Feature Selection While the wave forms obtained by the DOMs can be directly used
in Deep Learning applications (see Section 9.2), a more conventional feature extraction
requires the events to be processed to what is internally referred to as level 3 [91, 329,
341, 342], via standardized reconstruction algorithms. The type of algorithm used for
processing and, thus, also for feature extraction, strongly depends on the observation
channel (see Section 4.2.3). We refer to Section 4.3.3 for details on IceCube data levels.
At level 3, which forms the starting point for the machine learning-based analyses
discussed in this section, each event is characterized by more than 1200 attributes [91,
329, 341, 342]. In order to reduce the computational cost of the subsequent machine
learning analysis, it is beneficial to reduce the dimensionality of the feature space.
The challenge is, however, to achieve such a dimensionality reduction with a minimal
loss of information. A method is needed that takes into account feature interactions,
enhances the learning performance, scales well for large feature sets, and is stable
with respect to unseen data of the population. The FastEnsemble algorithm offers a fast
computation of such a method [344]. It has been successfully applied to the IceCube
data [332]. In the following, the method is described in detail focusing on the impact of
feature selection and stability for the analyses in neutrino physics.

Comparing the feature selections carried out on data taken with IceCube in the
59-, 79- and 86-string configuration, one finds that certain recurring patterns can be
identified and that differences mainly arise from improvements in the available fea-
ture extraction algorithms and from improvements in the detector itself. Compared
with the 59-string configuration, the 79- and 86-string configurations exhibit a more
homogeneous instrumentation (see Section 4.2.3 for details on the different detector
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configurations). Furthermore, an improved understanding of certain detector properties
such as that of ice has been gained over time.

In a first step, attributes that are either constant or might become a source of
potential bias are removed from the feature set. Constant attributes can obviously not
be utilized to discriminate between signal and background events, and potentially
biasing features are excluded to achieve an unbiased selection. A potential bias in the
selection might, for example, arise from including timing information or identifiers.
If these are different between simulated signal- and background events, a classifier
might pick up these differences. Such behavior could result in a classifier that does
not generalize to unseen events. The same step excludes features that only exist for
simulated events, e.g., the true zenith angle or the true particle energy, and attributes
with running numbers (mainly IDs).

In a second step, NaNs (not a number) and other missing values are handled. The
strategies for handling these, however, differ between different analyses. The straight-
forward approach is to simply exclude features above a certain threshold with respect
to missing values [16]. Although NaNs are often a nuisance in data analyses because
many numerical algorithms cannot handle these effectively, they can also be a source of
valuable information. In IceCube, for example, the failure of a reconstruction algorithm
is often encoded as a NaN. This failure can, however, provide valuable information on
the quality of an event, especially if more than one reconstruction failed or the failure
occurred for a significant fraction of events. In order to keep this information, which
can later be handled by a machine, it is thus beneficial to replace the missing values by
a real number. When doing so, however, one should aim at choosing numbers outside
the range of the feature, as a bias is constructed otherwise.

In a next step, attributes carrying identical or almost identical information are
excluded. Encoding the same information in two or more different features does not
add any value to the feature space. This exclusion is easily achieved by computing
the correlation between different features via, say, the Pearson correlation coefficient.
After the correlation is computed, one ends up with n sets of highly correlated features,
where only one such feature per set is retained [91, 329, 341, 342].

Applying the feature selection steps discussed above reduces the dimensionality
of the dataset from more than 1000 to 200–400 features. The exact number depends
on the detector configuration, as well as on the chosen thresholds. This number can, in
principle, be handled bymachine learning algorithms, but one should keep inmind that
in most real-life analyses, the algorithm will be trained, validated, and tested multiple
times. Even in the rare case where the setup of the machine learning process does not
require any further optimization or debugging, the process will have to be carried out
on example sets generated with different simulation settings, in order to avoid large
uncertainties in the event selection, due to a specific choice of simulated events. It is
thus advisable to aim for an efficient machine learning process and a feature set that
does not contain useless information with respect to the target variable. Furthermore,
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certain types of learning algorithms are bound to fail when trained with such a large
number of variables.

From this point on, a manual feature selection becomes rather challenging, as, in
addition to the discriminative power of an attribute, its correlation to other attributes
should be taken into account to avoid redundant information. One naïve example
includes reconstructed features, which are returned by various reconstruction algo-
rithms and may individually provide a relatively strong separation between signal- and
background events. Adding more than one of these attributes will, however, not aid the
selection because the information encoded in the attributes is more or less redundant.
Hence, automated feature selection methods are generally applied at this point of the
analysis [344].

Numerous feature selection algorithms exist, and using a simple forward selection
is in many cases a feasible solution. In the context of astroparticle physics, however,
the use of a forward selection (or backward elimination) is not sufficient. The reason
for this does not lie with the aforementioned algorithms but with the data, which
exhibit numerous features with similar information. As already discussed above, a
selection of such redundant features, which will occur in a native way when a forward
selection is used (simply because of their strong correlation with the target variable),
does not—or at least not significantly—improve the event selection. The Minimum
Redundancy MaximumRelevance (MRMR) algorithm [144, 190] is an iterative algorithm
that addresses this issue by taking into account the relevance of a feature with respect
to the target variable, as well as its redundancy with respect to the variables already
selected in previous iterations. For details on MRMR we refer to Section 3.1.4 and [144,
190, 344]. MRMR has been applied in analyses of atmospheric muons [170, 171] and
muon neutrinos [16, 18, 91].

Feature Selection Stability As any feature selection is carried out on an example set
with a finite number of events, the selection can be affected by statistical fluctuations. In
order to avoid a bias, the stability of the feature selection should be carefully monitored
via a stabilitymeasure like the Jaccard index [213] or Kuncheva’s index [235]. The Jaccard
index is given as [213]:

J(A, B) = |A ∩ B|
|A ∪ B| , (7.6)

whereas Kuncheva’s index is defined as [235]:

IC(A, B) =
rn − k2
k(n − k) . (7.7)

In both equations, A and B represent subsets of features. In Equation 7.7 k is the size of
the subset, whereas r = |A ∩ B| denotes the cardinality of the subset. The total number
of features is given as n. While the Jaccard index can take values between zero and one,
Kuncheva’s index is bound below by −1 and can take a maximum value of 1. It should
be noted that Equation 7.7 is not defined for k = 0 and k = n. As these are the trivial
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Fig. 7.2: Feature selection stability for a MRMR . The stability of the selection increases with an
increasing number of attributes and starts to saturate for nAtt ≥ 20. Figure taken from [329].

cases of selecting either no or all features, which render the comparison of feature sets
useless, this does not pose a problem. A good agreement between the selected subsets
is achieved when the indices are close to one, whereas a poor agreement is observed
in case the indices are close to 0 (Jaccard) or −1 (Kuncheva). Examples regarding the
stability of the feature selection carried out with MRMR, and a simple forward selection
are depicted in the Figures 7.2 (MRMR) and 7.3 (forward selection). One finds that for
MRMR, the stability of the selection increases with an increasing number of selected
attributes. The opposite case is observed for the forward selection, and both indices
are found to decrease with an increasing number of selected attributes. For selection
algorithms, both indices are equal to one in case only one attribute is selected. This
indicates the existence (and selection) of a feature with a very strong correlation to the
class variable.

Further Remarks The best and most stable feature selection becomes useless in case
the selected features are subject to disagreements between simulated- and experimental
data. As experiments in astroparticle physics are sometimes subject to suchmismatches,
all selected features should bemonitored with respect to this agreement. This will allow
for training a well-generalizing classifier, which can be applied to experimental data.
It is mostly a matter of taste where in the feature selection such a check for potential
disagreements should occur. One may, for example, analyze the selected features after
the selection is completed. This has the advantage that relatively few attributes must
be closely studied, and features with detected mismatches can be manually excluded
from the selected set. However, by doing so, one runs the risk that an entirely new
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Fig. 7.3: Feature selection stability for a simple forward selection. A decreasing stability is observed
with an increase in the number of attributes. Figure taken from [329].

feature selection becomes necessary if too many selected features have to be excluded.
By contrast, the opposite case of investigating and excluding attributes before running
an automated feature selection can be time- and resource-consuming. For more details
on the data/MC mismatches and their detection via the use of machine learning, see
Section 5.3.3.

As an additional sanity check on the feature selection, it is often helpful to study
the importance of the individual features with respect to the classification task they
have been selected for. When using MRMRwith IceCube data, it has been observed that
the features selected in the later iterations of MRMR show little to very little importance
with respect to the classification task. Whether some of those less important features
can be manually excluded from the feature set depends on the available computa-
tional resources and the classification task at hand. Moreover, to some extent, such an
exclusion can also be considered a matter of taste.
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7.3 Feature Extraction for IACTs

Maximilian Linhoff
Jens Buß

Lukas Nickel

Abstract: The classical approaches for Imaging Atmospheric (or Air) Cherenkov Tele-
scope (IACT) data analysis provide physicists with a multi-stage data analysis chain
that is responsible for the estimation of the physical properties of each air shower
from the raw telescope data. An essential step in this chain is the reduction of the time
series for each pixel to a set of features characterizing the events by an IACT. In this
section, we describe how raw data from an IACT is generally handled to determine a
parametrization of the shower image. These features are used in subsequent stages of
the analysis chain to estimate the physical properties of an incoming cosmic particle
(see Section 8.4). In order to give an example for such a low-level analysis, we discuss
the implementation in the analysis package fact-tools. This package was developed
within CRC 876 as an extension to the streams framework [87] for the low-level analysis
of data from the FACT experiment [88].
Typically, each IACT’s raw data event contains the digitized and uncalibrated elec-

tronic signal of its camera’s pixels, which is often a time series. An event is defined
as a single trigger of the IACT’s data acquisition, as described in Section 4.2.2. In this
section, we present the consecutive steps performed by the fact-tools:
i) calibrating the raw data and removing artifacts from the time series,
ii) reducing the pixel’s time series to the number of photons and their mean arrival

time per pixel,
iii) selecting those pixels that belong to the shower image (aka image cleaning), and

finally
iv) reducing the information from the selected pixels (photons arrival times) to an

ensemble of features per event.

These features characterize the spatio-temporal distribution of photons in the shower
image using descriptive statistics, fits to the photon distribution, and hand-crafted
features known to domain experts as Hillas parameters. These features are used in
subsequent steps to determine the class of the primary particle, its energy, and direction.
The main goal of the feature extraction is to reduce the amount of data while keeping
most of the information relevant to the task at hand, i. e. engineering features that are
relevant to the classification or regression tasks and not redundant to other features.
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7.3.1 Introduction

The “classical” analysis approaches for IACTs aim at reducing the dimensionality of
telescope data by using a multi-stage data analysis chain. Following CTA’s terminology,
this chain is responsible for the transition from data level R0 to data level DL2. The
goal is the extraction of meaningful parameterizations of the observed particle shower
images. The provided features are used to estimate the properties of the gamma events
(DL3) by applying machine learning models trained on simulated data. The machine
learning applications are discussed in Section 8.4.

As described in Section 4.3.2, the measurements of the photo sensors of an IACT are
digitized and stored (or streamed) as data level R0 for further steps of the analysis chain.
These data must be calibrated to get voltage time series at data level DL0. However, the
operations that are necessary for the calibration are specific to the hardware of each
IACT. Therefore, the calibration is not further explained in this section. Examples for
raw data calibrations of some of the currently operating IACTs can be found in: [334,
352].

7.3.2 Image Extraction

The first step in the event reconstruction of IACT data consists of calibrating the raw
wave forms in order to compensate for differences in the electronic modules. Inherently,
different pixels will have varying properties regarding electronic noise, time offsets and
signal gain. Using calibration measurements with lasers or a closed camera shutter,
these can be corrected, and charges can be translated into photo electron counts.

Reducing data from a series of normalized charges to images is done by integrating
over a selected window of the wave forms. Since the Cherenkov pulses are only seen
for a few nanoseconds, the readout window will generally be larger than the part of the
wave form containing the photon signal. While the width of the integration window
can often be seen as a constant, the position needs to be chosen for each pixel either
individually or by averaging the wave form with surrounding pixels.

Integrating the wave forms over the specified window then reduces the data from
nreadout bins × npixels to 2 × npixels with the two values per pixel corresponding to the total
intensity and the time of the Cherenkov signal. The position of the inflection point
in terms of the n-th bin of a time series is translated to a time relative to the trigger
giving a measure for the temporal evolution of the shower, referred to as signal arrival
time. The integral value over the calibrated wave form charge is expressed in terms of
photoelectron counts, giving ameasure for the light intensity. This process is illustrated
in Figure 7.4 for the case of a pixel containing a signal in the readout window.

Thus, two images are obtained for every recorded event: One of the photon counts
and one of arrival times.
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Fig. 7.4: Image extraction for a single pixel containing a pulse. As a first step, the raw wave form
(blue) is calibrated. The calibrated wave form (orange) is then integrated in the part containing the
signal peak (upper right). The start of the integration window is identified with the arrival time, and
the integral under the wave form gives the photon counts.

7.3.3 Image Cleaning

A typical gamma-ray shower does not extend over the whole camera. In the image
cleaning step, a subset of pixels likely to contain the Cherenkov signal is selected.
The selection is based on the image values obtained in the extraction step, assuming
that the pixels containing the signal are brighter than those only containing noise.
Additionally, signal pixels are required to be correlated in terms of their arrival times as
is evident from the shower development. A complete image cleaning usually consists
of some combination of the following steps:
1. Selecting pixels above a certain charge threshold
2. Removing pixels with less than a given number of selected neighboring pixels
3. Selecting pixels above a second, lower threshold if they are adjacent to selected

pixels
4. Removing pixels with less than a given number of selected neighboring pixels

arriving at a similar time

As a result of this step, pixels not likely to contain the Cherenkov signal are discarded
and subsequent analysis steps focus only on the selected part of the image(s). Figure 7.5
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shows the selection of signal pixels by constructing a mask on the full (photon counts)
image.

Fig. 7.5: Zoomed-in view of a recorded Cherenkov image showing pixels in the vicinity of the
Cherenkov signal. Out of the full image, a subset of pixels with high photon counts is selected
(white border).

7.3.4 Image Parametrization

In comparison to shower images produced by hadronic primaries (which constitute
the main background class in gamma-ray data analysis), the shower images created by
gamma rays are rather homogeneous, single-blob images elongated along the shower
direction. To parametrize these properties, Michael Hillas introduced a set of features
when working for the first IACT, the Whipple telescope [199]. His initial set of param-
eters has been extended over time. However, the classical set of parameters is still
used regularly and considered the most important feature also in modern machine
learning-based analyses. TheHillas features can be calculated by performing a principal
component analysis on the two-dimensional images. Let xi and yi be the coordinates
of the i-th pixel of the camera in the focal plane and wi the number of photons of that
pixel, and C the set of pixels selected by the image cleaning. The first Hillas parameter
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Fig. 7.6: The classical Hillas features calculated for a simulated gamma-ray event in the FACT camera.

is just the sum of the weights:
size =

∑︁
i∈C

wi

We start by calculating the center of gravity (cog) of the shower by calculating the
weighted mean of each coordinate:

cogx =
1
size

∑︁
i∈C

wi · xi cogy =
1
size

∑︁
i∈C

wi · yi

and translate into coordinates with the origin at the cog
∆xi = xi − cogx ∆yi = yi − cogy

Now we have to calculate the weighted covariance matrix of the pixel coordinates:

Cov(x, y) = 1
size

∑︁
i∈C

wi · ∆xi · ∆yi

and accordingly calculate Cov(x, x) and Cov(y, y) resulting in the 2 × 2 covariance
matrix V .

As the final step, we calculate the eigenvalues and eigenvectors of V . Let λ0 be the
larger and λ1 be the smaller eigenvalue of V . We then calculate the Hillas parameters
length and width as

length =
√︀
λ0 width =

√︀
λ1,
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which correspond to the standard deviations along the principal components of our
light distribution.

The rotation angle of the main component with respect to the x-axis is obtained
via the corresponding eigenvector v0 and usually called δ:

δ = arctan(v01/v00).

Especially for estimating the shower direction, it is helpful to calculate skewness and
kurtosis along with the principal component. Often, a linear regression of the arrival
times in the rotated system is also performed. A simplified python function to calculate
the Hillas parameters is shown in Listing 7.1.

Listing 7.1: Simplified python code to calculate Hillas parameters given pixel coordinates and the
image. This code does not handle edge cases such as size = 0 or width = 0 and does not calculate
higher order moments along the main axis. Adapted from ctapipe [296].

import numpy as np

def hillas(pixel_x, pixel_y, image):

'''Calculate hillas parameters'''

size = np.sum(image)

cog_x = np.average(pixel_x, weights=image)

cog_y = np.average(pixel_y, weights=image)

delta_x = pixel_x - cog_x

delta_y = pixel_y - cog_y

cov = np.cov(delta_x, delta_y, aweights=image)

# eigh assumes a hermitian matrix (here real and symmetric)

# and guarantees the order of the eigenvalues

eig_vals, eig_vecs = np.linalg.eigh(cov)

width, length = np.sqrt(eig_vals)

delta = np.arctan(eig_vecs[1, 1] / eig_vecs[0, 1])

return size, cog_x, cog_y, length, width, delta

Additional features describing the image morphology can be calculated. This includes
the number of pixel groups in the set of selected pixels, the proportion of light at the
edge of the camera, and proportions of light in some regions of the image with respect
to size, e. g. the proportion of light inside the ellipse with semi-major axes length and
width as shown in Figure 7.6.



178 | 7 Monitoring and Feature Extraction

7.4 Monitoring the Telescope via Data Summarization

Sebastian Buschjäger

Abstract: In astroparticle physics, we naturally face machines with long lifetimes and
long-running processes since a detector instrument such as a telescope is often built,
used, andmaintained for several decades. Thus, it is imperative tomonitor the behavior
of the detector in order to assure a certain data quality during its lifetime. While opera-
tors closely monitor the behavior of their detectors, they cannot possibly review, e.g.,
60 events per second in real time. However, a small and well-chosen sample of the mea-
surements can help to monitor the behavior of the detector and pinpoint unexpected
results early in the processing pipeline. To be meaningful, such a data summary must
be small, comprehensive, and computed on time. Due to their compelling theoretical
properties, submodular functions have been the focus of data summarization algo-
rithms as they naturally capture many aspects of data summarization while offering
theoretical guarantees. However, one challenge in applying submodular functions for
data summarization in astrophysics is the data representation. As we will discuss, sub-
modular functions require a notion of similarity between measurements to select the
most informative events from the data stream for the summary. Thus, an appropriate
representation of the eventsmust be obtained before the summary selection. Such a rep-
resentation can be obtained through autoencoders, which embed the high-dimensional
raw feature space into a meaningful lower-dimensional embedding space. However,
there is no guarantee that the embedding space is well suited for data summarization.
In this section, we will first review submodular functions in the context of data summa-
rization and then present an autoencoder algorithm that computes embeddings that
are tailored to the summarization tasks.

7.4.1 Introduction

Astroparticle physics experiments naturally deal with large volumes of data measured
over years of continuous observation. Over time, the measurements are subjected to a
natural concept drift by, say, broken sensors, changes in the environment, or changes
in the telescope’s operation. Thus, the health status and the actual observations must
be closely monitored to detect changes and interesting events early on.

While numerous concept drift detection mechanisms exist, they do not give direct
feedback to the operator by, say, characterizing the type of concept drift occurring. One
way to visualize large amounts of data and possible concept drifts is to give a human
operator a small, comprehensive summary of the measurements. This way, the operator
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can interact with the data by looking at the data summary and directly reason about
possible changes in the data or detector.

Submodular optimization has become a valuable tool in machine learning and
data mining. Submodular functions reward adding a new element to a smaller set more
than adding the same element to a larger set. This makes them ideal for solving data
summarization tasks in which a submodular set function f assigns a utility score f (S)
to a summary S. Then, using submodular maximization, the optimal summary can be
selected. Submodular functions designed for data summarization utilize a notion of
distance between two observations xi and xj. Unfortunately, distance metrics lose their
expressiveness with higher dimensions, so data summarization through submodular
optimizations becomes more andmore difficult with increasing numbers of dimensions
[82].

One way to circumvent this problem is to embed the high-dimensional data into a
lower-dimensional embedding space. To do so, we can use a specialized Deep Learning
architecture (see Chapter 9) called autoencoders that consists of two parts, namely the
encoder and the decoder. The encoder tries to encode the data into a lower-dimensional
space, whereas the decoder tries to reconstruct the original data from the output of the
encoder. Both parts are trained jointly in an end-to-end fashion so that the encoder tries
to encode most of the information about the data into the lower-dimensional space.
By contrast, the decoder tries to reconstruct the original data as much as possible
(see [183], Chapter 14). Autoencoders and their variations have been studied extensively
with great practical success for embedding tasks. Unfortunately, while autoencoders
perform well, there is no guarantee that the embedding space retains the same notion
of similarity as the original data space. Simply put, there is no way to guarantee that
objects that are close in the original space are still close to each other in the embedding
space, making it difficult to use them with data summarization techniques.

In this section, we discuss how to apply autoencoders for subsequent data sum-
marization. First, we introduce the framework of submodular functions in the next
section. Then, we discuss autoencoders in general and their application to the related
tasks of cluster analysis. From these clustering autoencoders, we derive submodular
autoencoders specifically targeted for data summarization tasks. Finally, we present
experimental summaries of the FACT data and conclude the section.

7.4.2 Data Summarization with Submodular Functions

Submodular optimization offers a well-established mathematical framework to select
small and comprehensive summaries for various tasks in linear time. Formally, we
consider the problem of selecting K representative elements from a ground set V into a
summary set S ⊆ V. To do so, we maximize a non-negative, monotone submodular set
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function f : 2V → R+ which assigns a utility score to each subset:

S* = argmax
S⊆V ,|S|=K

f (S) (7.8)

For the empty set, we assume zero utility f (∅) = 0. We denote the maximum of f with
OPT = f (S*). A set function can be associated with a marginal gain which represents
the increase of f (S) when adding an element x ∈ V to S:

∆f (x|S) = f (S ∪ {x}) − f (S) (7.9)

We call f submodular iff for all A ⊆ B ⊆ V and x ∈ V \ B it holds that:

∆f (x|A) ≥ ∆f (x|B) (7.10)

The function f is called monotone, iff for all x ∈ V and for all S ⊆ V it holds that
∆f (x|S) ≥ 0. In general, the maximization of a submodular set function is NP-hard [160],
which makes solving Equation 7.8 difficult. Therefore, a natural approach is to find an
approximate solution. Nemhauser et al. presented in [164] a simple (1 − (1/ exp(1))) ≈
63% greedy approximation algorithm called Greedy for solving Equation 7.8, which
runs in linear time and requires a fixed memory budget. Greedy offers a constant ap-
proximation guarantee and only requires O(K) memory. As the name suggests, it works
in a greedy fashion. Starting from an empty summary, it computes the marginal gain
∆f (x|S) of each element in the ground set and picks the one with the largest gain. This
process is repeated K times until the summary is full. The algorithm is depicted in
Algorithm 7.1.

Algorithm 7.1: Greedy algorithm.
1 S ← ∅
2 for 1, . . . , K do
3 x = argmax{∆f (x|S)|x ∈ V}
4 S ← S ∪ {x}
5 end
6 return S

The disadvantage of Greedy is that it requires K iterations over the entire dataset, which
is costly if the ground set is very large. By contrast, submodular streamingmaximization
algorithms (see Section 3.1 in Volume 1 for an overview) review each item in the dataset
exactly once and decide on the fly if a new item should be added to the summary or
not, reducing the overall runtime from O(NK) to O(N). As an example consider the
ThreeSieves algorithm presented in Section 3.1 in Volume 1. The main idea of this
algorithm is that we can simulate the Greedy algorithm if we would stack K copies of
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the entire dataset on top of each other and process them one by one. If we had known
the gains of each item in summary ahead of time (i.e., the gains of the elements the
Greedy algorithm would select), then we could review each item in the stacked dataset
and compare it against the optimal gain to decide if we should add it to the summary.
Of course, it is impossible to know the exact gains ahead of time, and in fact, this is
part of the problem we would like to solve. Submodularity allows us to estimate that
the optimal gains should be in the interval [m, K · m], where m = maxx∈V f ({x}) is the
maximum singleton element. Given this interval, we can sample different thresholds
from it into a set O and hope that one of the thresholds is close enough to the true
gain. The question now becomes which threshold to pick from this set O for comparing
the individual gains against each other. Note, that when the threshold is too large, we
will never pick any item; if it is too small, we will quickly fill up the summary with
sub-optimal items. As stated, we cannot determine with absolute certainty that a given
threshold is exceeded. However, we can do so with high probability.

More formally, we aim at estimating the probability p(x|f , S, v) of finding an item x
that exceeds the gain v for a given summary S and function f . Once p drops below a
user-defined certainty margin τ, we pick the next smallest threshold in O and repeat
the process. The estimation of p(x|f , S, v) is straightforward since we observe with
each item regardless whether it exceeds the current threshold or not. However, this
estimation comeswith its ownuncertainty, soweneed to estimate its confidence interval
to make a confident decision. The computation of confidence intervals for estimated
probabilities is a well-known problem in statistics. Assume we start with the largest
threshold in O. In this case, most items will not have a gain exceeding the threshold, so
we reject the item. In this case, we have a heavily one-sided binominal distribution with
probabilities near 0. We can use the Rule of Three to estimate the confidence interval
for these types of distributions. It states, that the confidence interval of p(x|f , S, v)
after observing T events is

[︁
0, − ln(α)T

]︁
. For example, with 95% certainty the confidence

interval of p(x|f , S, v) is
[︀
0, − ln(0.05)/T

]︀
which is approximately [0, 3/T] leading to

the term “Rule of Three” for this estimate [218]. We can use the Rule of Three to quantify
the certainty that, with high probability, there will not be a novel item in the data stream
after observing T items. Once ThreeSieves determines with enough credibility that the
current threshold will likely not be out-valued, it picks the next smallest threshold and
continues the estimation. The complete algorithm is depicted in Algorithm 7.2.

Until now, we have characterized the utility function as being non-negative, mono-
tone, and submodular, but we left open which particular function would be well suited
for a data summary on the fly. For a data summary, a diverse set of items is desired
to capture the data stream fully. In other words, we want the observations in S to be
most dissimilar to each other. One way to write this more formally uses a kernel func-
tion k(xi , xj), which expresses the similarity between two items xi , xj ∈ S. A common
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Algorithm 7.2: ThreeSieves algorithm.
1 O ← {(1 + ε)i | i ∈ Z,m ≤ (1 + ε)i ≤ K · m}
2 v ← max(O); O ← O \ {max(O)}
3 S ← ∅; t ← 0
4 for next item x do
5 if ∆f (x|S) ≥ v/2−f (S)

K−|S| and |S| < K then
6 S ← S ∪ {x}; t ← 0
7 else
8 t ← t + 1
9 if t ≥ T then
10 v ← max(O); O ← O \ {max(O)}; t ← 0
11 end
12 end
13 end
14 return S

example of such a kernel function is the radial-basis-function (RBF) kernel

k(xi , xj) = exp
(︂
− 1
2l2 · ||xi − xj||

2
2

)︂
(7.11)

where l ∈ R is a scaling constant and || · ||2 denotes the Euclidean norm. A kernel
function gives rise to the kernel matrix ΣS = [k(xi , xj)]ij containing all similarity pairs
of all points in S. This matrix has the largest values on the diagonal because the items
are the most similar to themselves. By contrast, values on the off-diagonal indicate
the similarity between distinct elements and thus are usually smaller. Since we seek
a comprehensive summary, we are more interested in the pairs with values near 0
on the off-diagonal of ΣS. This intuition has been formally handled in the context of
the Informative Vector Machine (IVM) [197]. The IVM is a Gaussian Process (GP) [322],
which greedily selects a subset of data points and keeps track of the GP’s posterior
distribution. Based on a diversity argument, the authors propose to select the point that
covers the training data best, iteratively. The intuition can be formalized in maximizing
the logarithmic determinant of the kernel matrix:

f (S) = 1
2 log det(I + aΣS) (7.12)

where a ∈ R+ is a scaling parameter for numerical robustness and I is the K ×K identity
matrix.

In [345], this function is shown to be submodular. Its function value does not
depend on V, but only on the choice of the kernel function k and the summary size K.
This makes it an ideal candidate for summarizing data in a streaming setting. In [108],
it is proven that m = maxx∈V f ({x}) = 1 + aK and that OPT ≤ K log(1 + a) for kernels
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with k(·, ·) ≤ 1. This property can be enforced for every positive definite kernel with
normalization [185].

7.4.3 Dimensionality Reduction with Autoencoders

Submodular functions offer an excellent framework for selecting a well-chosen data
summary. The log-determinant in Equation 7.12 is a submodular function that focuses on
a diverse set of candidates, making it ideal for monitoring tasks. However, this function
requires using a similarity kernel that must fit the task at hand. While submodular
functions guarantee a mathematically sound solution to the summarization problem,
the kernel encodes the similarity between items and thus determines how valuable the
data summaries are in practice.

Different kernel functions for different application scenarios have been studied
extensively in the literature. However, they sometimes yield sub-optimal results for
high-dimensional, unstructured data such as images or time series. In these cases, Deep
Learning-based approaches often show better results. Recently, the combination of both
approaches has also been successfully explored [219, 236]. One approach to combine
both methods is to first project the original data in a lower-dimensional embedding
space by a deep autoencoder and then take these embeddings as an input for a kernel to
compute the actual similarities. This way, the embeddingsmight be able to capture high-
level interactions between data points, whereas kernels offer a mathematically proven
way to express similarities. An autoencoder is a special neural network architecture
designed to encode the input into a compressed embedding, which is then used to
decode the original input. Figure 7.7 gives an overview of the general structure of an
autoencoder, where w ≪ r is the embedding size and r is the dimensionality of the
original data. Formally, we jointly train the encoder e : Rr → Rw and the decoder
d : Rw → Rr so that the reconstruction loss ℓ : Rr ×Rr → R is minimal:

L(e, d) = 1
N

N∑︁
i=1

ℓ(xi , e(d(xi))) (7.13)

where {x1, x2, . . . , xN} are samples drawn from the data distributionD. In practice, e
is the desired encoding architecture and usually d mirrors e in reversed order. Both are
jointly trained via stochastic gradient descent.

Autoencoder is a simple, unsupervised method that can reduce the runtime and
improve the results of successive summarization methods that use embeddings in-
stead of the unstructured input data. However, a fundamental assumption in data
summarization is that similar events have a similar feature representation. While this
might be true for the original data, this is not necessarily true for the latent embedding
space. Put differently, there is no guarantee that similar observations are placed in the
same region of the latent space and thus have a similar embedding. Clustering tasks
are closely related to data summarization tasks, in which we want to find clusters of
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Fig. 7.7: An overview of the autoencoder architecture. The encoder e receives the original data as
an input and embeds it in a lower-dimensional space. Then the decoder d uses this embedding to
reconstruct the original input.

data. The main difference between both tasks is that in clustering, artificial centroids
represent a cluster of data, whereas, in data summarization, the actual observations
are reported. This makes data summarization more challenging because we cannot
freely optimize the centroids to improve the summary as we would do in clustering.
However, we can still borrow some insights from cluster embeddings for our desired
summary embeddings.

Cluster embeddings are embeddings that are specifically trained for successive
cluster analysis [394]. The main idea is that once an autoencoder with sufficient recon-
struction capabilities is trained, we can refine it for the cluster analysis. For clustering,
it might be desirable that the distances between a point and the cluster centroids should
roughly follow a Student’s t-distributionwhere one centroid is very close, and the others
are far away [376]. Given an initial guess of centroids S = {μj|j = 1, . . . , K}, the authors
of [394] use a soft cluster assignment and measure the distance between an embedding
point e(x) = z ∈ Rw and the centroids μ ∈ Rw:

q(z, μ) =
(︀
1 + ‖z − μ‖2/α

)︀− α+12∑︀K
j=1
(︀
1 + ‖z − μj‖2/α

)︀− α+12 (7.14)

Here α is the degrees of freedom of the Student’s t-distribution, and q(z, μ) can be inter-
preted as the probability of assigning sample x to cluster μ. Given these assignments,
the authors now propose minimizing the KL divergence between these assignments
and a target Student’s t-distribution p:

KL(P(S, e)‖Q(S, e)) =
N∑︁
i=1

K∑︁
j=1

p(zi , μj) log
(︂p(zi , μj)
q(zi , μj)

)︂
(7.15)

where S is the set of chosen clusters and p(zi , μj) is given by

p(zi , μj) =
q(zi , μj)2/ci∑︀K
k=1 q(zi , μk)2/ck

, with cj =
N∑︁
i=1

q(zi , μj) (7.16)

Let
c(x) = argmin

μ∈S
‖x − μ‖22
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be the closest cluster center to x. The cluster embeddings follow a three step procedure

e, d = argmin
e,d

L(e, d) (7.17)

S = argmin
S⊆Rw ,|S|=K

N∑︁
j=1

‖x − μc(x)‖22 (7.18)

e, S = argmin
e,S

KL(P(S, e)‖Q(S, e)) (7.19)

In the first optimization step, an encoder/decoder pair is trained via stochastic gradient
descent. Then, k-means clustering is obtained (via Lloyds algorithm [253], say). Finally,
the encoder is refined again via stochastic gradient descent. Note, that after the initial
encoder/decoder pair is trained, the decoder is not changed anymore.

7.4.4 Submodular Autoencoders

Cluster embeddings work well in situations where a good autoencoder is already avail-
able that only needs refining for later cluster analysis. However, they have four individ-
ual shortcomings, which we will now tackle in detail.

Selecting Meaningful Representatives The joint optimization of S and e in the
last optimization step may lead to cluster centers that do not correspond to an actual
measurement from the data distribution. Put differently, μk might be the result of
an optimization step (e.g., averaging in the case of k-means) that—once decoded—
would have never occurred in the original data distribution. Data summaries offer a
way to select meaningful representatives from the dataset, which naturally do not
have this problem. The initial cluster assignment can directly be replaced by a data
summarization algorithm such as the maximization of a submodular function via
Greedy. In this case, the last optimization step should not alter the selected centroids
leading to:

e, d = argmin
e,d

L(e, d) (7.20)

S = argmax
S

f (S) (7.21)

e, S = argmin
e

KL(P(S, e)‖Q(S, e)) (7.22)

Joint Optimization of the Reconstruction Loss Cluster embeddings use a post-
processing step to refine embeddings after being trained for a minimal reconstruction
loss. However, there is no reason to directly train the autoencoder to minimize the
reconstruction loss and compute good cluster embeddings at the same time.We propose
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a regularized training objective that balances the reconstruction error and the clustering
performance. Let λ ∈ R be a regularization strength, and

e, d = argmin
e,d

L(e, d) (7.23)

S = argmax
S

f (S) (7.24)

e, d = argmin
e,d

L(e, d) + λKL(P(S, e)‖Q(S, e)) (7.25)

Incorporating Domain-Specific Knowledge Like clustering, data summaries assign
similar items to the same representative. Thus, as already discussed, an autoencoder
should place similar items into the same region of the latent spaceRw. We can leverage
similarities and structures from the original domain Rd to further enforce these types
of similarities. As discussed in Section 7.3 we can often represent the measurements of
a detector as an image (cf. Figure 7.7). The content of these images is rotation-invariant,
e.g., a very similar shower can come from different directions. This results in vastly
different imageswhere a shower is depicted, say, in the upper left or upper right corner of
the image, while both might be very similar from a physicist’s point of view. In addition,
similar-looking showers can have vastly different intensities. While one shower might
contain up to 400 photons per pixel, other showerswith very similarmorphology can be
comparably weak, with only up to 100 photons per pixel. Again, both events give very
different images but with similar physical interpretations. We can utilize this insight
more formally by introducing a noise process Θ that applies domain-specific alterations
to the original images and demands that embeddings for the original image e(x), as
well as the embeddings for the altered image e(̃︀x), are close together. Let λ1, λ2 ∈ R be
regularization parameters. Then we may use:

e, d = argmin
e,d

L(e, d) + λ2
1
N

N∑︁
i=1

Ẽ︀x∼Θ [︁‖e(xi) − e(x̃i)‖22]︁ (7.26)

S = argmax
S

f (S) (7.27)

e, d = argmin
e,d

L(e, d) + λ1KL(P(S, e)‖Q(S, e)) + λ2
1
N

N∑︁
i=1

Ẽ︀x∼Θ [︁‖e(xi) − e(x̃i)‖22]︁
(7.28)

Alternating Minimization So far, we have presented the training of the autoencoder
and the summary selection as two separate training steps. If the summary selection
algorithm (e.g., Greedy) is comparably slow, performing a single summary selection
in-between autoencoder training and cluster refinement is beneficial. However, with
faster summary selection algorithms such as ThreeSieves available, we can perform
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multiple summary selections in an alternating minimization-maximization scheme
where we alternate between the two objectives:

e, d = argmin
e,d

L(e, d) + λ1KL(P(S, e)‖Q(S, e)) + λ2
1
N

N∑︁
i=1

Ẽ︀x∼Θ [︁‖e(xi) − e(x̃i)‖22]︁
(7.29)

S = argmax
S

f (S) (7.30)

Here, after a first initial guess of S has been made, we train the autoencoder for, e.g.,
one epoch. Then, we reselect the summary via ThreeSieves (or via Greedy if the dataset
is small) and continue to train the autoencoder for the next epoch repeating the overall
process. This allows us to refine the cluster assignments, the encoder/decoder pair, and
the actual summary at the same time while simplifying the overall training process.

7.4.5 Experiments

It has been shown that ThreeSieves has a good performance under concept drift [110].
Here, we focus on the interpretability of submodular autoencoders in the context
of physics data. To do so, we evaluate our submodular autoencoder on the publicly
available Crab Nebula observation data in which the FACT telescope was directed at this
source [53, 84]. The data consist of 17.7 h of total recordingwith 3 972 043 recorded events.
Before training the submodular autoencoder, we perform the following pre-processing
(see Section 9.4 for a more detailed explanation):
– Sensor calibration: The detector’s sensors behave differently in different environ-

mental situations. For example, the temperature may effect the sensor, which
should be corrected.

– Extracting photon counts: The FACT telescope produces 1440 time series, each with
a length of 150 nanoseconds. We remove noise from the time series and focus on
a time window of 55 nanoseconds which contain most of the relevant Cherenkov
photons. Calibration measurements for the sensors depict a typical voltage curve
when a single photon hits the sensor. This baseline measurement is subtracted as
often as possible from the actual measurement until there is no signal left [282].
The number of subtractions can be considered to be the number of photons that
arrived during the time series. The resulting image then shows the photon counts
for each sensor in each pixel.

– Image mapping: The FACT sensors are arranged in a hexagonal form. In hexagonal
grids, each pixel has up to six neighbors instead of four, as in regular Euclidean
grids. Convolutional autoencoders apply rectangular convolution filters to extract
and generate higher-level features. Although the neighborhoods of pixels in rectan-
gular and in hexagonal grids are slightly different, in a series of pre-experiments
and student works, no performance difference could be found between using rect-
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angular and hexagonal filters for FACT [263, 328]. Therefore, we choose to transform
the data into 45 × 45 images in which the hexagonal grid is slightly rotated into the
middle of the image. This allows us to use regular Convolutional neural networks
(CNN) architectures and filters together with standard frameworks.

– Filtering: Data of the Crab Nebula only contains a small fraction of the interest-
ing gamma-ray events. The measurements are overwhelmed with the hadronic
background noise by a factor of 1000–10 000, which is isotropically distributed
over the entire sky. Due to their high frequency, these events dominate both the
reconstruction errors and the clustering, so we decided to remove events that did
not contain at least one pixel with more than 29 photons. After filtering, 157 420
interesting events were left in the dataset.

As an encoder, we use a VGG-style neural network architecture [350] with three convo-
lution blocks followed by a single linear block. Each convolution block contains two
3 × 3 convolutional layers, each followed by a batch normalization layer and a ReLU
activation, as well as a single max-pooling layer of stride 2. The linear block contains
a linear layer with 64 hidden neurons followed by a batch normalization layer and a
ReLU activation. Finally, we add another linear layer with size 64 to obtain w = 64
dimensional embeddings. Our decoder mirrors the encoder in reversed order. We used
the mean-squared error for training via stochastic gradient descent using PyTorch
[300] and achieved a near-perfect reconstruction loss. However, we suspect that a loss
function that better fits the distribution of the pixel values (e.g., a Poisson loss) might
further increase the performance. We apply the following noise process to the images
during training:
1) The images of the FACT telescope are rotation-invariant so that showers can occur

from any direction. We randomly select a rotation angle from [0, 360) degrees and
rotate the alerted image by the given angle.

2) We are mainly interested in showers with different morphologies. Hence, showers
with different energy levels but a similar morphology should be considered similar,
here. Our noise process randomly selects a scaling factor from (0, 2] and scales all
photon counts in the image by the given factor.

We train for a total of 100 epochs with an initial learning rate of 10−3, which is halved
every 25 epochs on a batch size of 128. We set λ1 = λ2 = 1 and α = 1 (cf. [257]) in our
experiments. As mentioned earlier, we reselect summaries after each epoch. To do so,
we use the Greedy algorithm maximizing the log-determinant using the RBF kernel
(Equation 7.12) and (Equation 7.11) with a = 1 and l = 1.We found that a summary of size
K = 25 gives a manageable but reasonably accurate overview of the data. For a better
presentation, we focus on a selection of images in this chapter and refer interested
readers to https://www-ai.cs.tu-dortmund.de:5443/, which lets people select and view
summaries of varying sizes and with varying parameters.

https://www-ai.cs.tu-dortmund.de:5443/
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Figure 7.8 displays the summary selected in this experiment. For presentational pur-
poses, we depict 5 of the 25 events here. The left column depicts the original events,
whereas the right column depicts the corresponding reconstruction via the decoder. On
average, we obtained a reconstruction error of around 1.5 photons per pixel, which can
also be seen in this figure. For most events, the reconstructed image is nearly indistin-
guishable from the original one, although the reconstructions do not seem as nuanced
as the original events. The only exception is the event (5), in which the reconstruction
seems to overestimate the number of photons a bit. Together with a domain expert,
we identified the following types of events: (1) is a small, focused gamma shower with
moderate intensity; (2) is a small, gamma shower with low intensity; (3) is a so-called
corner clipper, in which only part of an air shower hits the telescope; (4) is a very
fragmented shower with moderate intensity, possibly due to a proton event and (5) a
large gamma shower with high intensity. The physicist concluded that the images offer
some form of interpretability and clearly distinguish different types of events, making
them useful for monitoring.
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Fig. 7.8: Data summary of Crab Nebula data using submodular autoencoders (excerpt).



7.4 Monitoring the Telescope via Data Summarization | 191

7.4.6 Discussion and Outlook

In astrophysics experiments, we face large volumes of data measured over years of
continuous observation. This data naturally contains concept drift due to, say, broken
sensors, changes in the environment, or changes in the operation of the telescope.While
classic concept drift detection methods accurately detect concept drift, they do not
display current measurements in a meaningful way so humans can interact with them.
Data summarization techniques condense large amounts of data into a small, compre-
hensive data summary that can then be reviewed by humans in considering current
measurements. Submodular functions are at the heart of summarization algorithms as
they reward adding a new element to a smaller set more than adding the same element
to a larger set. Submodular functions designed for data summarization often utilize the
distance between two observations. Unfortunately, distance metrics start to lose their
expressiveness with higher dimensions, so data summarization through submodular
optimizations becomes more and more difficult. Autoencoder, by contrast is a tech-
nique well suited to embed high-dimensional measurements into a lower-dimensional
embedding space, which can then be used to compute data summaries.

Unfortunately, while the autoencoder shows excellent performance in compressing
information into a lower-dimensional latent space, there is no guarantee that the
embedding space retains the same notion of similarity as the original data space. To
tackle this problem, we presented submodular autoencoders. Our method alternates
between summary selection via submodular maximization and the refinement of an
autoencoder for better embeddings. Moreover, we added a novel, domain-specific
regularization to further reinforce similarities between similar events in the data. Our
submodular autoencoder produces embeddings well suited for data summarization
and, thanks to recent advances in submodular streaming maximization, are generally
quick and easy to train. The resulting summaries provide physicists with selected events
that are easily interpretable.





8 Event Property Estimation and Signal Background
Separation

8.1 Introduction

Wolfgang Rhode

Abstract: Imaging Air Cherenkov and neutrino telescopes acquire data at rates up to of
several thousand events per second. For most science cases, however, the majority of
the triggered events consists of unwanted particles, typically referred to as background,
that need to be discarded in order to carry out precision analyses and to answer physics
questions.
Although a certain fraction of said background can be rejected by the use of simple

cuts, a relatively large fraction remains. The remaining signal-to-background ratio
strongly depends on the details of the analysis and ranges from 10−9 for tau-neutrino
searches to 10−3 in spectral analyses of atmospheric muons. In state-of-the-art analyses
this remaining background is typically rejected by the use of supervised machine
learning algorithms such as Random Forests (RFs).
This chapter describes the utilized algorithms and discusses the practical challenges

arising in the application of supervised learning techniques in astroparticle physics
exemplified by analysis from the IceCube neutrino observatory and the Imaging Air
Cherenkov Telescopes MAGIC, FACT, and CTA. We discuss how the existing methods
were altered to match the requirements of large scale experiments in astroparticle
physics and present select results obtained over the entire funding period.

After measurement data without information content has been removed from the data
sets for analysis and physically meaningful features have been extracted from the
information carriers, the next step is to extract the signal events relevant for analysis.
At this point, the datasets typically contain several classes of events with physical
information content. In order to analyze a dedicated physical question, the event class
of interest must be separated as a signal from the sum of all other event classes. This
separation can result from a single or multi-stage ML selection process. The choice of
the specific machine learner used will also depend on the quality criteria relevant for
further analysis.

It is obvious for physical reasons that the features technically used for the sepa-
ration may be correlated with physically relevant characteristics. Therefore, it often
helps to optimize estimators for specific physical characteristics (direction, energy,
. . . ) at this point of the analysis. These estimators can be used here as carriers of do-

Open Access. ©2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785968-008
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main knowledge in the separation and later (Chapter 10) as a basis for solving the
inverse measurement problem (deconvolution of the energy spectrum or the angular
distribution).

Different approaches from the fields of particle physics (LHCb and ATLAS) and
astroparticle physics (IceCube and IACTs) are presented in this chapter.

8.2 Boosted Decision Trees LHC

Margarete Schellenberg
Bernhard Spaan

Abstract: The classification of relevant data points is the most common use of data
analysis in particle physics, where one observes billions of data points, of which less
than a thousand can be interesting. The main part of the data is the combinatorial
background, where unrelated tracks are combined andmimic an interesting signal data
point. This background can be reduced with requirements on single variables. However,
much better efficiencies can be achieved with the usage of boosted decision trees. At
the LHCb experiment, this is commonly done with supervised learning. The signal
proxy is typically well modeled simulated or recorded data, and the background proxy
recorded data outside the signal region. In the analysis of the decay B0 → J/ψK0S , about
90% of the signal data is kept, while over 99% of the background data is removed
with the use of a boosted decision tree. The analysis of the decay B0 → D*±D∓ requires
a more complex selection, keeping 92% of the signal data and suppressing more than
98% of the background data. In summary, modern particle physic analysis would not
be possible without the use of machine learners such as boosted decision trees.

In this section, the use of Boosted Decision Trees at LHCb is described in the context
of the analysis of the B0→ D*±D∓ decay. A challenge here is identifying and reducing
the background candidates that dominate the recorded data set. Still, with the use of
a boosted decision tree, about 92% of the signal data is kept, while over 98% of the
background data is removed.

In the analysis of the decay B0→ D*±D∓ [10], a measurement of time-dependent
charge-parity (CP)-violation is performed, which is one of the keys to understanding
the matter-antimatter-asymmetry observed in our universe. The reconstruction is done
with the decays D−→ K+π−π− and D*+→ D0π+, where the D0 decays into K−π+.

Freely propagating B0 mesons can mix into their anti-particle state (B̄0) and vice
versa. Also, the charge-conjugated final states, D*+D− and D*−D+, are common to both
the B0 and B̄0 meson decays. The interference between the amplitudes of the direct
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decay and of the decay after B0 − B̄0 mixing results in the decay time-dependent CP-
asymmetry is:

Af (t) =
Γ(B̄0(t) → f ) − Γ(B0(t) → f )
Γ(B̄0(t) → f ) + Γ(B0(t) → f )

=
Sf sin(∆mt) − Cf cos(∆mt)
cosh

(︀ ∆Γt
2
)︀
+ Df sinh

(︀ ∆Γt
2
)︀ . (8.1)

The decay time-dependent asymmetry is given by the difference between the decay
time-dependent decay widths, Γ(t), of B0 and B̄0 mesons decaying into the final state f ,
normalized to the sum. An analogous asymmetry exists for the final state f . B0(t) and
B̄0(t) denote the initial B flavor, and the parameters ∆m and ∆Γ are the differences of
the masses and decay widths between the heavy and light mass eigenstates concerning
the B0 − B̄0 system. With some assumptions, the decay time-dependent asymmetries
become

Af (t) = Sf sin(∆mt) − Cf cos(∆mt), Af (t) = Sf sin(∆mt) − Cf cos(∆mt), (8.2)

where Sf , Sf , Cf , and Cf are the CP observables that are to be measured by performing
a maximum-likelihood fit of the B0 meson decay-time distribution. In order to extract
the information from such large data samples, it is necessary to achieve a good control
over the different backgrounds. Depending on the kinds of background, it is common
to use different selection methods.

Besides the relevant and interesting data points, known as the signal data, the data
samples at LHCb contain many uninteresting data points, known as background data.
These can be divided into two classes: physical background and combinatorial back-
ground. Physical background can be further classified into different kinds. Exclusive
backgrounds arise when final state particles are misidentified or misreconstructed and,
as a result, mimic the signal. In partially reconstructed backgrounds, single particles of
a different decay are not reconstructed, and the remaining tracks are wrongly combined
with the signal candidate. Furthermore, the background can arise from different B
mesons decaying into the same final state. All of these kinds of physical backgrounds
appear as peaking structures in the mass distribution. In most cases, they can be sup-
pressed efficiently with rectangular requirements on single variables. In this context,
rectangular means that certain measured quantities of the event have to lie in well-
defined ranges and do not vary depending on other quantities in the event, which
contrasts with using a multivariate analysis. If contributions cannot be eliminated
completely, they must be described by Probability Density Functions (pdfs).

A combinatorial background arises when unrelated particle tracks, which do not
necessarily originate from the same vertex, are combined and mimic signal data points.
The combinatorial background shows no peaking structures. Rather, it has a flat, expo-
nentially decreasing shape, which cannot be removed entirely andmust be described by
a pdf. Due to the high trackmultiplicity at LHCb, the data is dominated by combinatorial
background.



196 | 8 Event Property Estimation and Signal Background Separation

To illustrate, Figure 8.1 shows the distribution of the invariant D*±D∓ mass after a
selection using a Boosted Decision Tree (BDT). The signal component is shown in
dashed blue. To its right, a background component arising from a B0s meson decaying
into the D*±D∓ final-state is apparent, represented as the dotted green line. To its left,
exclusive background arising from B0 → D+

sD*− is present and displayed in brown.
Due to a kaon/pion misidentification in the D+

s → K−K+π+ decay, the signal decay
gets reconstructed. Towards lower masses, partially reconstructed backgrounds from
B0 → D*+D*− and B0s → D*+D*− are present and shown in magenta and turquoise,
respectively. One of the D*± meson is decaying into D±π0, where the neutral pion is not
reconstructed, leading to a false reconstructionof aD*±D∓ final state. The combinatorial
background component is described by the dark green line extending across the whole
range.
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Fig. 8.1: Distribution of the invariant D*±D∓ mass after the application of the BDT requirement [10].
The fitted pdf is overlaid in black; the figure displays projections of the components of the pdf.

Like the physical background, the level of combinatorial background can be reduced
by requirements on single variables. However, much better efficiencies can be achieved
using Boosted Decision Trees. At LHCb, this is commonly donewith supervised learning.
The signal proxies are typically well modeled simulated or recorded data, and the
background proxy consists of recorded data outside the signal region. In the case of
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the B0→ D*±D∓ analysis, simulated signal decays are used for the signal proxy. The
distribution of the invariant D*±D∓ mass in Figure 8.1 shows that above 5400MeV/c2,
the upper mass side-band, only combinatorial background is present. Towards lower
masses, physical backgrounds contribute. Thus, the background proxy is represented
by reconstructed B0 candidates with invariant masses higher than 5400MeV/c2. For
the training of the BDT, the TMVA framework [200, 201] utilizing the Freund-Schapire
method [169] is used.

A 2-folding method is employed to avoid overtraining effects in the upper mass
side-band as it is not only used in the BDT training but also for themass fit in a following
analysis step. The data set is randomly divided into two equally sized parts. On each
half, a separate BDT is trained, but with precisely the same training options. Each of
the two BDTs is then applied to the dataset that was not used for the training.

A set of input features is needed to train the BDT. A first BDT is trained using a large
set of features that show visible differences in their signal and background distributions.
This is done by comparing the distributions of signal data and statistically subtracting
the background [313] and the background from the uppermass side-band. After training
the BDT, the variable importance is calculated by counting how often the variables are
used for a decision at a node and weighting each decision occurrence by the separating
power it has achieved and the number of events in the node. All observables showing
low importance are discarded, leaving the final selection of features. A total of 26
features are used for the final training. These are listed in Table 8.1.

Tab. 8.1: List of input variables used in the training of the BDT in order of importance.

Variable

D+ decay time significance K(D+) ProbNN B0 IP
χ2 D+ FD χ2 π2(D+) pT

D0 FD χ2 m(D*+) − m(D0) K(D+) pT
K(D0) ProbNN DTF χ2 D0 decay time significance
cos(∠(D+ , π2)) cos(∠(D+ , K)) D*+ pT
cos(∠(D0 , π)) B0 pT cos(∠(B0 , D*+))
D+ IP χ2 D+ pT cos(∠(D+ , π2))

π2(D+) ProbNN π1(D+) ProbNN π(D*+) ProbNN
D0 IP χ2 π1(D+) pT π(D0) ProbNN

Among the set of features are decay-time significance variables of theD+ andD0mesons,
which are defined by the decay time divided by its uncertainty, and the χ2 of the flight
distance of the D+ meson. These features represent how far the D meson has traveled
before its decay. D mesons have a finite lifetime, i.e., they travel a certain distance
before they decay. By contrast, background candidates have much lower reconstructed
decay times. Typically their flight distance is close to zero.
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The so-called ProbNN variables of all final state particles are included. They provide the
probability that the particle is a kaon or pion and can be used to suppress pion-kaon
misidentification.

Another feature is the χ2 of the impact parameter (IP) of the B0, D+, and D0 meson.
The IP represents the shortest distance between the reconstructed track and the primary
proton-proton interaction vertex (PV). It ensures that the B0 meson originates from
the PV, while the D+ and D0 mesons do not originate from the PV but from a detached
vertex.

Additional features are transverse momenta pT of some final state particles. Typ-
ically, the signal has higher transverse momenta than the background. Besides that,
correlations between the pT and the kinematic of other final state particles are present
for the signal, whereas the background has no such correlation.

The mass difference of the D*+ and D0 mesons is a powerful feature. The D*+ and
D0 mesons are reconstructed by the final state particles K−π+π+ and K−π+, respectively,
whereby the reconstructed K−π+ particles are the same for both mesons. Due to this,
the difference between the two nominal masses is barely higher than the pion mass.
By subtracting the two masses, mass resolution effects are reduced. Correctly recon-
structed D*+→ D0π+ decays have a sharp distribution around the true mass difference,
while candidates with larger mass differences are probably background caused by
mis-reconstruction.

Furthermore, the χ2 of the fit to the complete decay chain is included. While the
typical value is relatively small for signal, it is high for background.

Features describing the cosine of the angles between reconstructed tracks also
exploit the different correlations between signal and background.

In order to optimize the hyperparameters used in training, the ROC (receiver oper-
ating characteristic) curve, which represents the background rejection as a function
of the signal selection efficiency, is utilized. The larger the area under the ROC curve,
the better the BDT performance. The hyperparameters are changed iteratively until
the area under the curve does not increase in size. In the final BDT training, the BDTs
consists of 800 trees, and the depth of the trees is limited to three. At each node of the
tree, 3% of the training data set must be present. Each variable is scanned at 40 points
to find the best cut point. For boosting the method by Freund and Schapire [169] is used
with a factor of β = 0.1. To ensure a more robust prediction and avoid overtraining, the
bagging method is employed. Here, this method reduces the variance of the BDTs by
creating subsets with a size of 80% compared to the original dataset for every tree. In
this resampling, events can be picked several times. In addition, for every tree, only
ten random features of the whole set are used.

The BDT classifier distributions, with training and testing samples superimposed,
are shown for one fold in Figure 8.2. The training and test samples are in goodagreement,
and it can be assumed that no overtraining is present. The classifier distributions of
the two trained BDTs, when applied to the candidates they were not trained on, are
compatible with each other on data. Hence, the BDT classifiers from the two folds can
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be combined and are treated as one in the following. The BDT response is added to
the data samples. Afterward, the selection is performed by applying a cut on the BDT
response.
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Fig. 8.2: Comparison between the BDT classifier on the (data points) training and the (shaded area)
test samples of the (blue) signal and (red) background components.

In order to maximize the sensitivity on the CP parameters, the optimal cut point on
the BDT response has to be found. A measure called “figure of merit” (FOM), which
represents the inverse variance of the CP parameter of interest, is maximized with
respect to the requirement on the BDT response. As only the sensitivities are reflected
in the FOM, the central values of the CP parameters are not biased. In this case, the
parameter sinϕeff

d , which combines the CP parameters S and C, is used as a single
reference parameter. The FOM takes into account several properties of the data sample
that directly affect the statistical power of the sample in a CP measurement. Besides a
high effective signal size and good flavor-tagging performance, small estimates of the
decay time error will lead to a more precise measurement. In addition, the sensitivity
of the CP parameters depends on the reconstructed decay time of the B0 candidates.
Differences in the distributions of these observables for different BDT cut points are
considered.

By summing over all events, the FOM is defined as

FOM =
(
∑︀

i swi)
2∑︀

i s2wi
D , (8.3)

where swi denotes the so-called sWeights [313] and statistically substracts remaining
background data. They are determined by performing an extendedmaximum likelihood
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fit to the D*±D∓ mass distribution. The term D is defined by

D = 1∑︀
i swi

∑︁
i
(1 − 2ωi)2e−(∆mdσ(ti))2 · Xi · swi . (8.4)

It is averaged over all candidates considering the decay-time uncertainty estimates
σ(ti), where ti denotes the decay time, and the mistag probabilities ωi. The parameter
∆md represents the mass difference in the B0 − B̄0 system and is an external, constant
input. The term Xi includes the parameter of interest sinϕeff

d , which is also an external
and constant input, and is defined by

Xi =
[︁ 2di|λ|s
1 + |λ|2 + diDFTe−(∆mdσ(ti))2/2

(︁
−2|λ|s sinϕeff

d − (1 − |λ|2)c
)︁]︁2, (8.5)

where di denotes the decision for the production flavor of the B0 mesons and the
abbreviations s = sin(∆md ti), c = cos(∆md ti), and DFT = (1 − 2ωi) are introduced for a
more compact definition of the term.

At first, the influence of the single contributions is investigated by dividing the FOM
into the following individual components. The effective flavor-tagging term efficiency
is given by

FOMϵD2 ≡ 1∑︀
i swi

∑︁
i
(1 − 2ωi)2 · swi , (8.6)

and the effect of the decay time error estimates is described by the term

FOMσt ≡
1∑︀
i swi

∑︁
i
e−(∆mdσ(ti))2 · swi . (8.7)

The effective signal size is given by

FOMSeff ≡ (
∑︀

i swi)
2∑︀

i s2wi
, (8.8)

and
FOMB0 ≡ 1∑︀

i swi

∑︁
i
Xi · swi , (8.9)

denotes the term associated to sinϕeff
d .

Afterward, the FOM is calculated completely. Figure 8.3 shows the total FOM along
with its individual components determined in the BDT cut scan.

The optimal cut-point is found at a BDT classifier value of 0.18. It is shifted towards a
harder cut value than that of the maximum of the component of the effective signal size.
This is caused by the flavor-tagging component and the component FOMB0 comprising
sinϕeff

d . Due to the fact that the oscillation period given by 2π/∆md is large compared
with the decay time of the B0 meson, the component containing the decay time error
estimates has no impact on the optimal cut value. This becomes noticeable as the term
is constant on the entire scan range.
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Fig. 8.3: The FOM on recorded data for different cuts on the BDT response. The full FOM is presented
in violet. The other graphs show the individual components: in blue, the term of the effective signal
size; in green, the term for the decay time error estimates; in red, the tagging power term; and in
turquoise, the term depending on sin ϕeff

d . All graphs are normalized to the highest value.

While the FOM used in this decay time-dependent analysis optimizes the uncertainty
of CP observables, different FOMs are used depending on the kind of measurement.
A FOM commonly used in particle physics maximizes the significance of the signal
candidates Nsignal

FOM =
Nsignal√︀

Nsignal + Nbackground
. (8.10)

For making a discovery, a FOM that is independent of expectations about the presence
of signal,

FOM =
εsignal

3
2
√︀
Nbackground

, (8.11)

with the signal efficiency εsignal, is commonly used [318].

The cut on the BDT response is applied to all data samples. The D*±D∓mass distribution
before and after the application of the optimized BDT requirement is shown in Figure 8.4.
The comparison demonstrates that the level of the combinatorial background has been
reduced by a significant amount while the signal peak remains almost unchanged.
Afterward, the signal efficiency is calculated with simulated B0→ D*±D∓ samples, and
the background rejection is determinedwith the uppermass side-band of recorded data.
With this optimized BDT requirement, it is possible to remove 98% of the background
while keeping 92% of the signal. This achievement would not be possible without the
use of a multivariate analysis.
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Fig. 8.4: Distribution of the invariant D*±D∓ mass before (left) and after (right) the application of the
optimized BDT requirement

8.3 Event Selection in IceCube

Tim Ruhe

Abstract: If the IceCube trigger conditions are fulfilled, an event is formed as the
waveforms of the DOMs are read out. The information of the individual waveforms is
then combined to reconstruct the incident particle’s energy and direction. As IceCube
is a multi-purpose detector, different types of events are triggered. This introductory
section explains the different types of events and their sources.

Before one commences with a classification task, it is advisable to gain a clear under-
standing of the class variable(s) and the number of classes. When physics analyses
apply classification algorithms, the task is usually to discriminate between physically
interesting and physically non-interesting events, which are often referred to as signal
(interesting) and background (not interesting). The definition of the signal depends on
the experiment at hand and often also differs between individual analyses carried out
with data obtained with the exact same instrument. In IceCube, for example, atmo-
spheric muons form a background for many different analyses but are also interesting
in themselves and are thus the signal in analyses of atmospheric muons. This chapter
discusses the selection of signal events in IceCube using two examples: muon neutrinos
(νμ) and tau neutrinos (ντ). As the different event topology is an essential criterion for
distinguishing different types of events, the different event topologies are explained
below.

Within IceCube, events with different geometric properties originating from differ-
ent interactions are observed.
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Track-Like Events Track-like events originate from muons in the ice, which initiate
the emission of Cherenkov light along their trajectories. Accordingly, an elongated
light pattern is detected by the optical modules. The majority of the muons in IceCube
originate from two sources. The first source is neutrino-induced muons, meaning they
are produced in charged-current (CC) neutrino interactions of the form:

νμ + X −→ μ− + X′. (8.12)

Due to the relatively long range of the muon (500 meters for a muon with an energy of 1
TeV), the interaction in Equation 8.12 may occur in the ice outside of the instrumented
volume or even in the surrounding bedrock.

The second source is atmospheric muons created in cosmic ray air showers.

Cascade-Like Events Cascade-like events exhibit a more spherical light pattern and
are produced in two types of interactions. The first type is νe CCs of the form:

νe + X −→ e− + X′, (8.13)

which—due to the short range of the electron—results in an electromagnetic cascade
around the interaction vertex. Cascade-like events further originate from ντ-CC interac-
tions. In rare cases, however, these interactions exhibit a very distinct light pattern,
often referred to as a double cascade. Due to their uniqueness, double-cascades are
separately addressed below. The second type is neutral-current (NC) interactions of all
neutrino flavors.

Cascade-like events can be further subdivided into fully and partially contained
events. For fully contained events, the entire Cherenkov light is emitted within the
detector, and thewhole cascade is visible to the opticalmodules. For partially contained
events, only a part of the Cherenkov light is emitted within the instrumented volume,
and only a certain part of the cascade is visible to the optical modules. While fully
contained events require an interaction well inside the instrumented volume, partially
contained events can have vertices at the edges of the detector.

Double Cascades This particular type of event exhibits a rather unique light pattern,
consisting of two cascades, which in an ideal setting are connected by a track. Double
cascades are a smoking gun signature for detecting a tau neutrino, as this event topology
can be produced only via the interaction of a ντ. The first of the two cascades originates
from the interaction of the ντ, where a τ-lepton is formed. The τ-lepton will then travel
through the ice and cause a track-like structure, similar to the ones created by muons.
Due to the relatively short lifetime of the τ, the leptonwill decay shortly after its creation,
which in the case of a hadronic decay, will result in a hadronic cascade.

The challenge in the detection of double cascade arises from the interplay of two
limiting factors, the first one being the short lifetime of the τ and the second one being
the steeply falling energy spectrum of the ντ. Due to the short lifetime of the τ, the
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length of the track is rather limited (≈ 50 meter per PeV), which implies that the two
individual cascades will not be sufficiently far apart to be resolved individually, in case
the energy of the ντ is smaller than a few PeV. In addition, the expected power law with
a spectral index of γ ≈ −2 will lead to only a handful of events, energetic enough to
produce a well resolvable double cascade over the entire lifetime of the detector.

The selection of muon neutrinos and tau neutrinos via the application of machine
learning techniques is addressed in the following sections.

8.3.1 Muon Neutrino Selection

Tim Ruhe

Abstract: As muon neutrinos cannot be measured directly, they are detected via their
interaction with nuclei in the ice or the bedrock. Within these interactions, a muon—
the leptonic partner of the muon neutrino—is formed. In IceCube, muons will then
initiate the emission of Cherenkov light, which is then detected by the Digital Optical
Modules (DOMs). Unfortunately, muons are also created in cosmic ray air showers.
As these so-called atmospheric muons outnumber the neutrino-induced muons by
several orders of magnitude, they provide an inevitable background in searches for
muon neutrinos. Since the Earth is opaque to muons, a significant fraction of the
background can be removed by applying geometrical cuts, which effectively use the
Earth as a muon shield. Applying such cuts will remove 99.9% of the background
muons, but this is not sufficient due to their sheer abundance. Furthermore, the
remaining background of atmospheric muons is falsely reconstructed and signifi-
cantly harder to reject. This section will describe the tools and techniques utilized for
selecting muon neutrinos with the IceCube experiment in analyses of atmospheric
neutrino energy spectra. Special focus is laced on the utilization of random forests
and their optimization,whichwere foundparticularly useful for this type of application.

First, it is helpful to understand the goal of such an analysis. In the muon neutrino
analysis presented here, the physics goal is themeasurement of amuon neutrino energy
spectrum via the use of deconvolution techniques (see Chapter 10 for details). Such
an analysis requires not only a high purity (better than 99%, if possible) of the final
set of selected events but also a clear understanding of the remaining background. As
the neutrino energy spectrum is expected to follow a power law of the form dΦ

dE ∝ E−γ,
with γ ≈ 3.7 for atmospheric and γ ≈ 2 for astrophysical neutrinos, one expects only a
small number of events at high energies. As a certain amount of background examples
within the final data set are unavoidable, one has to make sure that these do not
populate the high-energy bins to a large extent. A significant background contribution
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in the highest energy bins would result in an apparent flattening of the unfolded
neutrino energy spectrum. As a certain amount of flattening is, in fact, expected due to
a shift in the dominant component of the spectrum (atmospheric neutrinos for small
energies, astrophysical neutrinos for high energies), such an additional flattening
would significantly alter the physical interpretation of the spectrum.

In atmospheric muon neutrino analyses, which are used as an example in this
section, the straightforward definition labels neutrino events as signal andmuon events
as background. It is not that simple, however. Muon neutrinos can be detected only via
their leptonic partner—the muon—which is created in an interaction of the neutrino
with a nucleus in the ice or the bedrock. In this type of analysis, muons are thus the
signal and the background. The question is then: How can these two types of muons,
which can be more clearly labeled as atmospheric- and neutrino-induced muons, be
distinguished?

Before answering this question, it is useful to consider the data at the starting
point of the analysis. Like many other IceCube analyses, the analyses presented here
do not commence from raw data, which consists of electric pulses recorded by the
optical modules as a response to the detected Cherenkov light. Instead, the analyses
use data with a higher level of abstraction. Internally, this higher level of abstraction is
referred to as level 3. On this level 3, data cleaning, as well as advanced reconstructions
and some initial background rejection, has already been applied. Details on the data
acquisition in IceCube are given in Section 4.2.3, whereas a brief overview of the applied
reconstructions is provided in Section 7.2. An overview of the different data levels is
given in Section 4.3.3.

The Earth can be used as a filter to discriminate between atmospheric and neutrino-
induced muons. While neutrinos can traverse the Earth up to PeV-energies¹, the Earth
is opaque for muons. The first task in a muon neutrino analysis is thus often to apply
a cut, which rejects events with zenith angles smaller than θ ≤ 86∘. Purely geometric
considerations would suggest the cut to be placed at θ ≤ 90∘. However, muons entering
the detector at angles 86∘ ≤ θ ≤ 90∘ have a very high probability of ranging out before
reaching the detector. Allowing for this additional zenith range results in the acceptance
of more neutrino-induced muons while restricting the additional background to only
a few events. This relatively simple physical and geometrical consideration already
reduces the background by approximately one order of magnitude.
A certain fraction of downward-going (θ ≤ 90∘) atmospheric muons is, however, falsely
reconstructed as upward going (θ > 90∘). Due to the overwhelming number of atmo-
spheric muons, compared with the number of interacting neutrinos, falsely recon-
structed atmospheric muons still outnumber neutrino-induced muons by more than
two orders of magnitude. Accordingly, the classification task carried out by the use

1 The neutrino cross-section increase linearly with energy, which finally results in the fact that the
Earth can no longer be traversed unhindered for neutrino energies of a few PeV or higher.
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Fig. 8.5: Number of events per second as a function of the reconstructed zenith angle. The dashed
and solid lines indicate the applied cut and the horizon. Figure adapted from [91].

of machine learning algorithms is to distinguish between correctly and falsely recon-
structed muon events.

Figure 8.5 shows the true (blue) and reconstructed (green) zenith for atmospheric
muons. The true and reconstructed zenith of atmospheric νμ is shown for comparison.
The solid red line depicts the horizon (θ = 90∘), whereas the applied cut for the IC86
analysis (θ ≥ 86∘) [91] is shown as the dashed red line. One finds that the number of
detected atmospheric muons exceeds that of detected atmospheric neutrinos by several
orders of magnitude. By applying the aforementioned cut, 97.7% of the background
muons are removed while retaining 76.9% of the νμ [91]. Due to the larger overall
number of atmospheric muons, the signal-to-background ratio after the application of
the cut is still 1:18 [91].

As individual events in IceCube are described by more than 1000 features, the
next step in a muon neutrino analysis is the selection of attributes that are considered
suitable as input for the utilized classification algorithm. The feature selection is often
an iterative process and is described in more detail in Section 7.2.

After the input features have been selected—a dimensionality reduction that makes
the entire analysis less resource-consuming—the automated classification commences.
In the context of IceCube and this CRC, analyses of muon neutrinos were carried out for
data taken in the 59- [16], 79- [18], and 86-string [91, 341] configuration. In all analyses, a
random forest [97] has beenused as a classifier.While the random forest fromWeka [189]
embedded in the Rapidminer [321] framework was used for the IC59 and IC79 analyses,
the 86-string analysis utilized the random forest from sklearn [302].

As no labeled historical data exist, the machine learning-based event selection
in IceCube requires using simulated events for the training and the validation of the
selected classifier. For IceCube analyses, atmosphericmuons are generated using the air
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shower code CORSIKA [194] (see also Chapter 5), whereas neutrino events (in this case,
neutrino-induced muons) are generated using the ANIS package [175]. Using simulated
examples bears the risk of disagreements between simulated and experimental data,
whichmay result in a classifier bias. Therefore, some care must be taken to validate that
there is sufficient agreement between simulated and experimental data or to ensure
that the classifier is not affected by possibly observed discrepancies. Details on how to
detect and handle such mismatches are given in Subsections 5.3.2 and 5.3.3.

As a result of the use of different data, as well as different implementations of the
random forest, the utilized settings are somewhat different for the individual analyses.
The number of trees is one of the most important parameters of a random forest, and
500 trees were used in the IC-59 analysis [16]. For IC-79, however, 200 trees were found
to be sufficient [18], while for IC-86, 503 trees were used [91]. In all three analyses, the
number of attributes selected at each node was chosen according to the default value.
Moreover, the depth of trees was not restricted in any of the three analyses.

The individual analyses differ regarding the ratio of signal and background ex-
amples utilized for training. While a ratio of 10:1 (signal to background) was found
to be optimal for the IC-79 analysis [18], ratios of 1:1 were used for IC-59 and IC-86 [16,
91]. Neither of the ratios, however, represents the true signal-to-background ratio. The
differing signal-to-background ratios are mainly used for two reasons. The first reason
is a practical one, as the production of enough simulated muon events to mimic the
expected ratio on experimental data would be too resource-consuming. The second
reason is that using the expected ratio with the available amount of simulated muon
events would result in only a handful of neutrino events. This is clearly not sufficient
for the training of a machine learning algorithm. The ratios of 1:1 and 10:1, respectively,
are then also used for testing and validation. The number of selected neutrino events
and the estimated purity are two figures of merit for physics analyses, and the true
signal-to-background ratio needs to be taken into account to obtain both numbers. At
this stage, it should be noted that these are, of course, not the only figures of merit.
Measures like accuracy, precision, and AUC are, of course, also taken into account in
the optimization process. These measures are, however, not always reported in physics
papers, and different event selection methods can thus often be compared only by their
achieved purity and the total number of neutrino candidates.

Although the majority of the selected neutrino candidates are expected to be of
atmospheric origin, the energy distribution of the simulated examples follows an E−2

spectrum rather than an atmospheric one (dΦdE ∝ E−3.7). For practical reasons, neutrino
events are generated according to power laws following either E−1 or E−2 to generate a
sufficient number of events at high energies. Using an E−2 instead of an atmospheric
distribution was, however, also found to be beneficial for the training of random forests
in muon neutrino analyses. In this case, the distribution contains a sufficient number
of high-energy events in the training sample, which can then also be selected from
the overall set of experimental data. Furthermore, a significant drop in the recall was
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observed in IC-59 in case an atmospheric spectrum was used [329]. To obtain reliable
numbers for the expected number of events and the purity after selection, weights
corresponding to certain atmospheric models, e.g., Honda [255] and ERS [152], are
assigned to the events and evaluated when these figures of merit are computed. In all
three analyses, training and testing of the classifier were carried out in cross-validation.
The usage of cross-validation also allows for the estimation of uncertainties in the
expected number of events. Because the number of expected background examples is
small, the derived confidence intervals provide valuable information when comparing
the number of events observed on experimental data with the number of expected
events.

After training, the classifier is applied to simulated data to verify its performance.
In most cases, the classifier is also applied to experimental data at this stage to check
for possible inconsistencies between data and simulation. In a random forest, all events
are processed by every tree, and the final confidence assigned to the i-th event is then
given as:

ci =
1
n

n∑︁
j=1

cij , (8.14)

where n is the number of trees in the forest and cij , is the classification score assigned
to the i-th example by the j-th tree. For the event selections discussed here, the forest
settings were chosen such that cij can take the value 0 and 1, where 1 corresponds to
the classification as a signal and 0 corresponds to the classification as a background
event. Other settings are, however, possible, and the cij can then take values between
0 and 1. When using the default settings of the classifier, examples with ci ≥ 0.5 are
classified as signal events by the random forest.

Figure 8.6 depicts the classification score obtained for signal (upgoing νμ, blue)
and various possible sources of background. Although the main background com-
ponent is atmospheric muons (cyan), other possible background sources might also
be present in the sample. These components include νe and ντ, which will generate
cascade-like events in the detector. The same holds for νμ originating from NC instead
of CC interactions. Looking at Figure 8.6 one finds that low classification scores are
dominated by background events (especially atmospheric muons), whereas signal
events mostly populate high classification scores. The two distinct maxima observed at
ci = 0 (atmospheric muons) and ci = 1 (νμ) are typical for this kind of analysis.
One also finds that the default setting of the classifier for the applied cut (ci ≥ 0.5)
is insufficient in this case. A sample selected in such a way would be dominated by
atmospheric muons, which are still one order of magnitudemore abundant at this score.
Instead, a user-defined cut on ci needs to be placed to achieve a high enough purity (P ≥
99%), which is required by the spectral reconstruction. It should be noted, however,
that the purity requirement needs to be interpreted correctly, as not the number itself is
important. Due to the steeply falling energy spectra of atmospheric and astrophysical
neutrinos, the contamination with atmospheric muons must be considered for the
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Fig. 8.6: Classification score obtained for signal (upgoing νμ) and various possible sources of back-
ground. Figure adapted from [91].

individual energy bins. Too many atmospheric muon events would alter the shape of
the reconstructed spectrum and thus also change its physical interpretation, especially
at high energies. As the number of neutrino-induced muons is significantly larger at
low energies, one can allow for a certain muonic contamination in these bins.

From Figure 8.6 one also finds that atmospheric muons are the dominant back-
ground component, even at high classification scores. The contribution of all other
background components is found to be 1–2 orders of magnitude smaller compared to
atmospheric muons and can therefore be neglected in the subsequent unfolding.

As stated above, the trained classifier is usually applied to experimental data at
this stage so that the outcome of the classification score can be readily compared with
results anticipated from simulations. To obtain the results shown in Figure 8.7 the exact
same classifier as for Figure 8.6 was used. The classification score for experimental
data is depicted in green, whereas the scores obtained for simulated data are shown
in blue. In contrast to Figure 8.6, only the sum of all simulated components is shown.
One finds that the two distributions agree well. Especially the two distinct maxima at
ci = 0.0 and ci = 1.0 are well reproduced.

Although the necessity of applying an additional cut on the obtained ci exists in
basically all analyses discussed here, the choice of this cut differs between individual
analyses. While an extremely strict cut of ci = 1.0 was chosen in the analysis of data
obtained with IceCube in the 59-string configuration [212], a somewhat looser cut of ci ≥
0.92 was chosen for data obtained with IceCube in the 79-string configuration [18]. In
order to observe a possible flattening of the spectrum at high energies and thus achieve
amodel-independent confirmation of a flux of high-energy astrophysical neutrinos, one
has to ensure that a sufficient number of high-energy events passes the event selection.
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Fig. 8.7: Classification score obtained for data and simulation. For simulations the sum of all con-
tributing components is shown. Figure adapted from [91].

To achieve this, two-dimensional cuts, which also consider the energy dependence
of the classifier output, were applied in [341] and [91]. In [341] events were chosen to
pass the selection if ci ≥ 0.87 for cases where the estimated energy of the event was
found to be below 10TeV. For all other cases, events with ci ≥ 0.7 were chosen to pass
the selection. The final selection presented in [91] is somewhat more sophisticated. In
order to achieve a high enough number of events in the sample, the confidence cut is
optimized in N overlapping windows of width w. Cuts are optimized such that a purity
of P ≥ 99.7% is achieved.

The correlation of the classification score to the estimated muon energy is shown
in Figure 8.8. Results for experimental data are shown in the larger left panel, whereas
the outcome for different simulated spectral components is depicted in the smaller
panels on the right-hand side. The black and the grey solid lines indicate the applied
two-dimensional cuts for the zenith bands from 86∘ ≤ θ ≤ 111∘ and 111∘ ≤ θ ≤ 180∘,
respectively. Two distinct maxima at ci = 0.0 and ci = 1.0 are also visible in this
visualisation. In contrast to Figure 8.6, however, one finds that atmospheric muons
with high classification scores are centered around muon energies of approximately
103 GeV. This clearly shows the benefit of studying the correlation of the classification
score to other variables of interest, which allows the application of more sophisticated
cuts and thus the selection of more neutrino candidates. The different cuts obtained
for different zenith regions within the optimization process show that it is beneficial to
include even more dimensions in the cut optimization.

Although the specific choices between the discussed analyses differ to a certain ex-
tent, one can summarise that the basic conceptual steps required for selecting neutrino-
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induced muons remain unchanged. These steps commence with applying a fundamen-
tal and straightforward geometry cut on the estimated arrival direction of the incident
particles. This cut is followed by a dedicated feature selection, which has not been
covered in this section (see Section 7.2 for details), and serves the purpose of selecting
the input variables for a machine learning-based selection of events. Finally, a cut on
the classifier output must be applied to account for the overwhelmingly large number
of atmospheric muons.
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8.3.2 Tau Neutrino Selection

Tim Ruhe
Maximilian Meier

Abstract: An ideal tau neutrino interaction in IceCube will produce a very distinct light
pattern, consisting of two cascades—the first one originating from the tau neutrino
interaction itself and the second one originating from a non-muonic decay of the
emerging tau lepton—and a track-like signature emerging along the path of the tau
lepton. Such signatures are generally referred to as double cascades. For such an ideal
scenario, however, both cascades need to be contained within the detector. In addition,
the length of the tau track is 50m per PeV of neutrino energy. A double cascade will
thus become more distinguishable from a single cascade as energy increases, but it
will also become less likely, due to the steeply falling neutrino energy spectrum. This
challenge can be circumvented by looking at double pulses in waveforms of individual
DOMs. In this section we present a random forest-based tau neutrino selection and its
optimization via a model rejection factor. The section will put particular focus on the
challenges associated with the identification of tau neutrinos. Compared with muon-
neutrino searches, these challenges arise from the significantly larger background rate
(the signal to background ratio is 10−10) and additional sources of background.

Tau neutrinos are not produced in the Earth’s atmosphere, and their detection is thus a
direct evidence for the emission of high energy neutrinos in astrophysical sources. For
energies in the PeV-range, ντ are expected to exhibit a unique event signature inside
the detector, which is referred to as a double cascade. This distinct signature consists
of two single cascades, connected by a track-like signature. The first cascade originates
from the ντ CC interaction of the form:

ντ + X −→ τ− + X′. (8.15)

In Equation 8.15, X denotes a nucleus in the ice or the surrounding bedrock, whereas
X′ denotes the emerging hadronic cascade. Before its decay, the emerging τ-lepton
traverses the detector on a straight line, and the subsequent τ-decay then causes a
second hadronic cascade. Unlike themuon, the τ cannot only decay into lighter leptons
(e and μ), but also into hadrons, due to its relatively large rest mass.

In spite of this very unique signature, ντ are extremely difficult to detect. Due to
the relatively short lifetime of the τ, the lepton will decay promptly after its generation,
which poses strict limits on the length of the observed track. Comparing a track length
of ≈ 50m per PeV with the string spacing of ≈ 125m, one finds that in most cases the
two emerging cascades will not be far enough apart to be distinguishable. In addition,
the expected power law with a spectral index of γ ≈ −2, will lead to only a handful of
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Fig. 8.9: Expected number of events per year (right y-axis) and performance parameter (purity, left
y-axis) as a function of the applied double pulse score cut. Figure taken from [264].

events, energetic enough to produce well-resolvable double cascades over the entire
lifetime of the detector.

This challenge can, however, be addressed, by looking for double pulses instead of
double cascades. Double pulses are waveforms with two distinct peaks, which can be
observed in individual optical modules, even in cases where the track of the τ lepton
is too short to generate a distinguishable double cascade. Accordingly, the first pulse
originates from the first, and the second pulse from the second cascade. In order to
detect double pulses, many of the analysis techniques derived for the selection of muon
neutrinos, such as feature selection via MRMR, can be readily applied.

One of the main differences between the selection of νμ and ντ are the additional
classes of background events, which need to be considered during the analysis. While
atmospheric muons are themain background source in νμ analyses, νe (CC and NC) and
νμ (NC only) interactions also need to be considered in ντanalyses, as these interactions
result in single-cascade events, which need to be distinguished from double cascades.
Double cascades can also be mimicked by muons, when the first pulse is due to a
neutrino-nucleon interaction and the second pulse originates from a large stochastic
energy loss (bremsstrahlung inmost cases). These challenges are addressed by utilizing
a two-stage event selection, where different classes of background events are rejected
at each of the stages.

As there is no obvious label for double-pulse waveforms in IceCube simulations,
the first task of the analysis is a manual definition of signal waveforms. This manual
definition includes the application of cuts on the total charge per event and per wave-
form. These cuts need to be applied, as an energy of Eν ≈ 10TeV is required for a
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Fig. 8.10: Classification score obtained for the first of two random forests. Figure taken from [264].

double cascade to be recognized as two distinct pulses in one or more of the adjacent
DOMs.Whether a double-pulse waveform is detected in a ντ-interaction or not, crucially
depends on the deposited energies, the vertex positions of the interaction, and the
subsequent decay. Therefore, a set of geometrical cuts is applied to simulated events
to pick up waveforms with substantial double-pulse features. The application of said
geometrical cuts, led to the selection of 6874 waveforms, which were used as input to
the machine learning algorithms applied in the next steps of the analysis.

The first of two machine learning-based analysis steps consists of the training,
optimization, and application of a random forest, in order to distinguish double and
single cascades. Here we use a random forest of 200 trees. The majority of the features
used as input to the forest is derivative-based and aims at characterizing the changing
slope of the waveform. Figure 8.9 depicts the outcome of the application of the obtained
model. While the double-pulse score cut (confidence obtained from the random forest)
is shown on the x-axis, the performance parameter—in this case the purity of the event
selection (depicted in red)—is shown on the left y-axis. The y-axis on the right-hand
side depicts the number of events per year as a function of the double pulse score. Tau
neutrino CC events are depicted in blue, whereas single cascade events are shown in
orange. One finds that both distributions fall off as a function of the score cut. There is,
however, a relatively sharp drop in the number of single cascades between double-pulse
score cuts of 0.0 and 0.1.

A rather soft cut of 0.2 on the double-pulse score cut is chosen. This cut suppresses
the majority of the single-cascade background. Compared with [387] an increase of
90% is observed for the retained signal events, which results in an expected event



8.3 Event Selection in IceCube | 215

0.5 0.6 0.7 0.8 0.9 1.0

Cascade score cut

100

101

102

M
o
d

el
re

je
ct

io
n

fa
ct

o
r

Best MRF = 1.39 ± 0.20, Score cut: 0.62

Fig. 8.11: Distribution of scores obtained with a random forest. The forest was trained to distinguish
between single and double cascade events. Figure taken from [264].

rate of 0.63 ντ-events per year. The selected cut further improves the purity of the
sample from 90% to 97%. While single cascades are well rejected at this stage, the
sample is still dominated by atmospheric and neutrino-induced muons. Therefore, a
second selection step is required. Fortunately, the track-like events, which form the
irreducible background to the previous analysis step, can be reduced by taking into
account their distinct event topology. In order to do so, the data are processed from
level 2, which contains only a minimum of reconstructions, to a dedicated cascade
level 3, which allows for additional cascade reconstructions. Variables used as input
to the model (again a random forest) were selected using the MRMR algorithm. The
agreement between simulated and experimental data was validated using the method
proposed in [90] (see Section 5.3.2 for details).

In contrast to previous analyses, no veto region is defined for the ντ-selection pre-
sented here, as the definition of such a region drastically reduces the fiducial volume of
the detector. Not using a veto region also offers the possibility of retaining partially con-
tained events, which is expected to further increase of the event rate. However, in order
to obtain a feasible classification task, twomeasures are taken. First, selection is limited
to events, where both the ντ-interaction and the τ-decay vertex are containedwithin the
boundaries of the detector. The boundaries of the detector are given by the outer layer
of strings or DOMs. Second, a cut is applied to remove all events, for which the recon-
structed interaction vertex is 60m outside the detector. The background is composed of
atmospheric muons, and muons induced in νμ-CC interactions. At this point the use of
CORSIKA becomes unfeasible, due to computational constraints. Instead, atmospheric
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muons were simulated with MuonGun [377], which allows effective parameterization
of incoming muons around the IceCube detector to reduce computational cost.

The outcome of the application of the trained model is shown in Figure 8.10. While
atmospheric muons are depicted in blue, neutrino-induced muons are depicted in
orange. Contained and uncontained ντ CC events are shown in green and red, respec-
tively. One finds that the rate of muon tracks falls off as a function of the classification
score (x-axis). The rate of atmospheric muons is found to fall off faster than the rate of
neutrino-induced muons. After a sharp peak around a classification score of 0.0, the
rate of contained and uncontained ντevents increases as a function of the classification
score. For scores exceeding ≈ 0.8, the sample is expected to be dominated by ντ CC
events.

In order to obtain the final event sample, an additional cut on the classification
score of the second random forest needs to be applied. Within the analysis discussed
here, this final cut is chosen on the basis of a model rejection factor (mrf) [198], which
is defined as follows:

mrf = μ̄90ns
(8.16)

with

μ̄90 =
∞∑︁

nons=0
μ90(nobs, nb)Pnb (nobs), (8.17)

where μ̄90 represents the average upper limit of all possible observable counts (nobs)
weighted with the respective Poisson probability Pnb (nobs) assuming that no signal is
observed [264].

The model rejection factor is chosen as an optimization criterion, to avoid a poten-
tial bias, which may originate from selecting a cut based on the observed events. As the
mrf uses expectations only, the selected cut will result in an optimal upper limit for the
analysis at hand. Figure 8.11 depicts the mrf of the analysis as a function of the applied
score cut. The shaded area represents the uncertainty of the obtained values. Looking
at Figure 8.11 one finds that an optimal (minimal) mrf of 1.39 ± 0.20 is obtained for a
score cut of 0.62.

After the application of the score cut, two ντ-candidates are selected from IceCube
data obtained in the 86-string configuration from 2011 to 2019 (7.5 years in total). For
the first event, which was observed during the 2014 season, three waveforms pass the
double-pulse selection criteria. The waveform obtained in the central DOM achieves the
highest possible double-pulse score of 1.0. Double-pulse scores of 0.45 and 0.81 were
obtained for the remaining two waveforms. The event was classified with a cascade
score of 0.92. The combination of the observed cascade and double-pulse scores make
this event the most interesting one in the sample.

Figure 8.12 shows the waveforms with a distinct double-pulse shape, observed
for this particular event. One finds that all three DOMs are located on the same string
(string 20). Themost prominent double-pulse structure is observed for DOM 26 (orange),
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Fig. 8.12:Waveforms exhibiting a double-pulse structure for the ντ -candidate observed in the 2014
data-taking season of IceCube. The double-pulse structure is most prominent for DOM 26 on string
20 and becomes less distinct for the two neighbouring DOMs (25 and 27) on the same string. Figure
taken from [264].

but becomes less distinct for the two neighbouring DOMs, depicted in blue (DOM 25)
and green (DOM 27).

Figure 8.13 shows the event display of this particularly interesting ντ-candidate.
The event is fully contained within the instrumented volume of the detector, as DOMS
near the detector boundaries did not observe a significant amount of light. Colors in
this figure represent the arrival time of the observed Cherenkov photons and range
from red (early) to blue (late). The size of the color-coded DOMs represents the amount
of light collected by a particular DOM. The spherical shape of the event, indicated by
large amount of light collect at early times (central DOMs in red) and smaller amounts
of light detected by outer DOMs at later times, is clearly visible from the event display.

For the second event, a double pulse score of 0.565 was observed for a single
waveform and a cascade score of 0.675 was observed for the event as a whole. This
event is thus most likely a background event.
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Fig. 8.13: Event view of the ντ -candidate observed during the 2014 data-taking season of IceCube.
The event is fully contained inside the instrumented volume. Colors in this plot represent the timing
of the detected Cherenkov photons from red (early) to late (blue), whereas the size of the DOMs
corresponds to the amount of light observed by a particular DOM. Figure courtesy of the IceCube
collaboration.

8.4 Estimation of Event Properties for IACTs

Maximilian Linhoff
Jens Buß

Abstract: To be able to do gamma-ray astronomy and obtain spectral information about
the sources using IACT data, three properties of each recorded air-shower event have to
be estimated: the energy of the primary particle, its type, and its direction. Estimating
the energy is a one-dimensional regression task. The type of a particle is in general a
multi-class classification. However, for standard gamma-ray analysis it is simplified to
a binary classification into “gamma” (the signal class) and “hadron” (the background
class). Direction is a two dimensional regression, since the two angles of the spherical
celestial coordinate system have to be estimated. In IACT arrays like MAGIC or CTA,
geometric approaches utilising the fact that the air shower was observed from multiple
angles, usually deliver the best results. However, this task is considerably harder for
monoscopically operating telescopes, like FACT or the LST-1 prototype. Here, machine
learning instead of the geometric approach delivers the most competitive results.
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In this section, we present the analysis chain based on the feature extraction from
Chapter 7, using classical machine learning approaches to solve these tasks for FACT,
CTA, and the LST-1 prototype.
We present the used algorithms and obtained results of this analysis chain, including

energy-dependent benchmarks for the analysis such as the angular resolution of the
directional reconstruction, the bias andvariance of the energy estimation, theROCcurve
of the gamma/hadron classification, and the overall the point-source flux sensitivity.
For the telescope arrays, an additional challenge is how to best combine the data

and/or predictions of the single telescopes into a common prediction for the observed
air shower.

In this section, we discuss how to estimate the relevant properties of the primary
particles which induce the air showers from the features extracted as described in
Section 7.3. This section was partly adapted from two Ph.D. theses written in the context
of the CRC 876 [101, 294].

To do gamma-ray astronomy and the spectral analysis of gamma-ray sources, three
main properties have to be estimated for each recorded air-shower event:
Particle type IACTs measure thousands of air showers induced by charged cosmic

rays for each measured gamma ray. To reduce this background as effectively as
possible, events are classified as induced by gamma rays or hadrons. This is a
classification task.

Primary energy While techniques such as unfolding could directly estimate a spectral
distribution from several input features, the condition of the inverse problem
usually improves when using a direct estimator of the primary energy. Using a
single estimate also makes it much easier to define common data formats for event
lists and instrument response functions since the low-level image features will
differ between the different observatories and software packages, but an estimated
energy is very universal. This is a one-dimensional regression task.

Particle origin To enable gamma-ray astronomy, we need to know from where the
particle actually came. In the end, we want to know this direction expressed in
the fixed coordinate system of the International Celestial Reference Frame (ICRS).
Usually, the estimation is done in the local coordinate system of the detector, say,
using horizontal coordinates, which are then transformed into the sky-fixed system.
The direction of the particle also plays a crucial role in the background suppression,
as the cosmic ray background is isotropic compared with the compact or point-like
gamma-ray sources.
The two-dimensional regression to estimate the origin of a gamma ray is especially
hard for monoscopic IACTs, as multiple telescopes allow simpler and more precise
geometric reconstruction methods. We will discuss both approaches, a machine
learning-based solution for monoscopic telescopes and several approaches for
stereoscopic arrays.
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Historically, these tasks were performed by applying event selection criteria, often
called cuts, for the particle classification and hand-crafted regression formulas fitted to
simulations for the energy estimation and reconstruction of origin, see e. g. [43]. Modern
methods of machine learning have improved performance and removed human biases
from these steps.

Additionally, a high precision timestamp of the arrival time of the event is needed,
which is of special interest for pulsars like the one at the center of the Crab Nebula,
which has a period of ≈ 30ms [79]. This is usually produced by the trigger electronics at
the telescope, can be usedwithout further processing and can achieve sub-microsecond
precision.

In case of stereoscopic observations, the question arises when and how to combine
thedata of the single telescopes to forma commonprediction for the air shower.Multiple
approaches of different complexity exist and are discussed towards the end of this
section. This is also a topic of ongoing research to improve the analysis, especially for
the complex arrays of CTA.

8.4.1 Labeled Training Data

Since we have well-defined reconstruction tasks and labeled data available from either
Monte Carlo simulations (see Chapter 5) or measurements of regions where no (known)
gamma-ray source resides and thus only background events are expected, supervised
machine learning is the method of choice.

The labeled data for gamma rays always comes from Monte Carlo simulations,
while two approaches exist for the background training data. The first possibility is
to also use Monte Carlo simulations, but since these simulations are computationally
expensive and more prone to mismatches (cf. Section 5.3.2) another possible approach
is to use observed data from positions in the sky where no gamma ray source is. But the
second approach however comes with its own challenges to make sure the “off data” is
measured under conditions comparable with the data of interest.

Two different kinds of gamma-ray simulations are distinguished: simulations of
a point source at a certain position in the field of view of the telescope and diffuse
simulations, where gamma rays are uniformly sampled in the field of view.

Simulating point sources is more efficient if only known point sources at a specific
position in the field of view are to be analyzed. This is usually the case for extra-
galactic observations due to the large distances, relatively compact emission regions,
and angular resolution of the telescopes. However, there are also numerous extended
sources, mainly inside our own galaxy and unknown sources or wide-field observations.
For these kinds of observations, the models need to be able to make predictions over
the full field of view and the instrument response functions must also be evaluated
over the full field of view.
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However, since the cosmic ray background arrives isotropically, the estimation of the
particle’s origin and type should always be trained on diffuse gamma-ray simulations,
as to not create biases towards a specific position in the field of view.

Simulations of background particle types are always diffuse. The full background
for gamma-ray analyses is formed by all charged cosmic rays and diffuse gamma-ray
emission. This includes protons, helium cores, heavier nuclei, electrons, and positrons.
Two assumptions reduce the different training datasets we need:
1. Helium cores and heavier nuclei are similar to protons or, more precisely, the

features that differentiate gamma-ray- from proton-induced showers are even more
pronounced for heavier nuclei.

2. Electron- or positron-induced air showers are indistinguishable from gamma-ray-
induced air showers on an individual basis, since the exact same processes take
place, save for the very first interaction in the air shower.

With these two assumptions, it is sufficient to train the particle classification model on
gamma-ray and proton simulations or observed off data, which includes all types of
background particles.

This leaves us with two or three needed datasets for training our machine learning
models:
1. diffuse proton simulations or off data labeled as background data for the particle

type classification;
2. diffuse gamma-ray simulations for the origin estimation, as signal class for the

particle type classification, and possibly for the energy regression in case the
assumption of a known point source at a fixed position in the field of view cannot
be made; and

3. point-source gamma-ray simulations for the energy regression in case the assump-
tion above is valid.

In the following sections, the analysis developed for FACT on its open Crab data set is
presented. The analysis configuration and software dependencies are described in the
“Open Crab Sample analysis” repository.²

This analysis starts at the feature level stored in HDF5 files as described in (Sec-
tion 4.3.2 and Section 7.3). These preprocessing steps were performed using the FACT-
Tools software [100]. For the machine learning tasks at hand, the aict-tools [295] are
used. This python package builds on the machine learning algorithms implemented
in scikit-learn [302] and provides command-line tools to train, apply, and evaluate
machine learningmodels for the three tasks discussed above. These tools are configured
using yaml files, specifying which algorithms to use, which features should be included,

2 https://github.com/fact-project/open_crab_sample_analysis.

https://github.com/fact-project/open_crab_sample_analysis
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random seeds, and other important options. This analysis approach was developed as
part of [294] and is discussed in more detail there.

8.4.2 Particle Classification
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Fig. 8.14: Receiver-Operating-Characteristic curve for the gamma/hadron separation on the FACT
Open Crab data set.

Most commonly, particle classification is done using decision tree-based ensemble
methods including boosted decision trees and random forests, which are trained to
distinguish gamma-ray-induced showers (signal) from proton-induced showers (back-
ground). The output score is usually called gammaness, with values close to 1 indicating
that the shower was likely induced by a gamma ray. For the analysis of the FACT open
Crab data set using the aict-tools, a random forest classifier is trained in a five-fold
cross-validation on simulated diffuse gamma-rays as signal class and protons as back-
ground class. The resulting ROC curve for this classification is shown in Figure 8.14.
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8.4.3 Energy Estimation
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Fig. 8.15: Energy migration for the FACT open Crab data set.

Energy estimation is also most commonly done using decision tree-based ensemble
methods, this time of the regression type. Instead of predicting the energy directly,
it is beneficial to predict the natural logarithm of the energy with the MSE as a loss
function. The choice of using the logarithm as opposed to the value itself is motivated
in the large domain of the primary energies. The loss function would be completely
dominated by few very high energy events if evaluated on the values themselves. Using
the logarithm of the energy, the lower-energy particles also contribute to the loss and
overall performance over the whole energy range is improved.

On the FACT open Crab data set, a random forest is also used. Figure 8.15 shows
the and the resulting energy confusion, the resulting R2 score is 0.7811 ± 0.0036.
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8.4.4 Origin Estimation

In general, the estimation of the gamma-ray origin is a two-dimensional regression task,
as either two coordinates in the detector plane or on the sky have to be estimated. For
stereoscopic operations with many telescopes, geometrical methods are possible and
perform well. With a single telescope, no stereoscopic reconstruction of the direction is
possible and it has to be estimated from the single image or the image parameters. The
most straight-forward approach would be a two-dimensional regression. However early
in thehistory of gamma-raydata analysis, the so-called “dispmethod”was invented that
reduces the problem to a one-dimensional regression and a classification task building
on the Hillas image parametrization [241]. First solved with simple parametrizations,
the regression and classification tasks lend themselves to being solved using supervised
machine learning as with the other tasks. The “dispmethod” can also be used for arrays
and was shown to perform better than the geometrical methods in situations with very
few telescopes, as for example the two-telescope MAGIC system [289].

To simplify the task, the assumption is made, that the source position lies on the
reconstructed shower axis. This simplification introduces a source of error if the shower
axis is not properly reconstructed. However, it also enables the decomposition of the
origin estimation into two tasks that are more easily solvable. First, the objective of the
regression task is to find the absolute distance from the center of gravity of the shower
image to the origin of the shower called disp. Second, the classification task is to find
the direction on the shower axis that can be interpreted as the sign of disp. This is also
referred to as “head-tail disambiguation” and is shown in Figure 8.16.

This method was developed for the Whipple telescope [241], greatly improving the
sensitivity for point sources over the methods used before, but this did not predict a
source position; it only used the orientation of the Hillas ellipse towards the assumed
source position. Disp was parameterized using

disp = ξ
(︂
1 − width

length

)︂
, [241, (7)] (8.18)

which is also the parameterization used by the FACT-Tools analysis. The parameter ξ
was found either by optimizing it on observed data of a known, strong source as in
[241] or on simulations as for the FACT-Tools. As this parameter ξ is just a fixed number,
(8.18) is not able to predict |disp| well over a large energy range. The value used in the
FACT-Tools, ξ = 1.38∘, performed best around an energy of 3 TeV, see Figure 8.17, but
much worse at higher energies. The FACT-Tools head-tail disambiguation used features
dependent on the known position of a point source. While this greatly increased the
efficiency of the prediction—especially for low-energy gamma rays—it also increased
the false positive rate as all showers including the diffuse hadronic background were
more often predicted towards the suspected gamma source. As the prediction is not
independent of the source position, it has to be repeated for the off positions, increasing
the computational costs with each off position. It also prevents the creation of skymaps,
as there is no single prediction for an event.
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TheMAGIC experiment improved on the simple parameterization in Equation 8.18 using
parameters depending on image parameters, e. g. size, to model energy dependencies
and leakage to better handle showers not fully contained in the camera. Finally in 2009,
before MAGIC-II was built and MAGICmoved to stereo reconstruction techniques, using
a random forest regressor to estimate |disp| was evaluated and was found to perform
better than the previous parameterization. In that case, the prediction for sgn dispwas
done using the difference between the image center of gravity and its brightest pixel,
which is related to the skewness of the light distribution. To adapt these methods for
the FACT-Tools analysis chain, the disp estimation was built into the aict-tools. To
further improve over previous works, a random forest classifier is employed for the
head-tail disambiguation. This results in a single prediction of origin for each event in
the detector coordinates frame, which can be transformed to a position in the ICRS. A
comparison of the results of the machine learning-based approach to the previously
used approach is shown in Figure 8.17.

8.4.5 Combining Multiple Telescopes

With multiple telescopes, the reconstruction of the origin is a much simpler task. The
main shower axis in each telescope camera together with the telescope position defines
a plane. The direction of the primary particle is now the intersection of all planes defined
by the individual telescopes. The solution proposed by [101] is to take theweightedmean
of all possible two-telescope intersections, thus averaging over N · (N−1)/2 intersecting
lines of two planes. As weights for the individual telescopes, wi = size · length/width
is used, which puts larger weights on bright (large-size) and more elongated events, as
the determination of the shower axis is more precise for those.

This geometrical approach performs best for large numbers of telescopes, i. e. N ≥ 4.
For the stereoscopic arrays with few telescopes such as two MAGIC telescopes or the
very-low energy showers in CTA, a stereoscopic version of the disp approach yields
slightly better results [289].

In this scheme, each individual telescope estimates disp, yielding two possible
source positions per telescope. Now, the least-squares solution only using one source
position from each telescope is used.

For the other parameters, weighted averages of single-telescope predictions are
used. However, the machine learning models can receive features from the stereo recon-
struction and aggregated values of the array, much improving the learner performance
over the monoscopic case.
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Fig. 8.18: Squared distance between estimated and assumed source position. The Crab Nebula is
in the region called “On”, while “Off” is the background estimated from 5 geometrically equivalent
positions in the field of view. A likelihood-ratio [250] test is performed to test the null hypothesis
of no gamma-ray emission in the on-region. The null hypothesis is here rejected with a p-value
corresponding to 26.5 σ.
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8.4.6 Final Event Selection

The last step of the event reconstruction—or rather the first step of any following
analysis—is to select the events for further processing, discarding events based on the
estimated gammaness and, if analyzing point sources, the estimated direction.

As always, this is a trade-off between background suppression and signal retention.
There are different trade-offs to be made for different kinds of studies. Spectral- and
spatial analyses usually can live with a higher background, while the detection of weak
sources usually needs stronger background suppression to find a significant signal at
all.

Up to a point, the performance of the different reconstruction tasks also increases
as energy increases. It is therefore beneficial to not apply a single-selection threshold
in gammaness and a reconstructed source position. Rather, one is needed that depends
on the estimated energy.

Figure 8.18 shows the distribution of the distance between the estimated source
position and the catalog position of the Crab Nabula for all events with gammaness >
0.8. There is a large excess towards 0 over the background estimated from the off-
regions, which are positions inside the field of view that are geometrically equivalent
to the Crab Nebula position, but where no gamma-ray source resides.

8.5 Keynote: Data Analysis at ATLAS

Johannes Erdmann

Abstract: Machine learning plays a crucial role in many aspects of data analysis at
the ATLAS experiment. ATLAS is one of the multipurpose particle-physics detectors
at CERN’s Large Hadron Collider and targets a diverse scientific program. This section
highlights a few aspects of machine learning in ATLAS, which are taken from two
scientific areas: the search for rare top-quark processes and the search for new heavy
particles. Theprimary applicationofmachine learning is drivenby theneed for excellent
classification to efficiently suppress the large background processes and allow for better
sensitivity to the signal processes. A particular challenge in all of the applications is
given by the fact that the classifiers are trained on simulations, while their effect in real
collision data must be well modeled in order to be reliably used in the data analysis.
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8.5.1 Introduction

The ATLAS experiment [71] is one of the four large experiments at CERN’s Large Hadron
Collider (LHC). ATLAS is an omni-purpose detector with the typical onion-like struc-
ture of collider detectors. The particle collisions occur in its center, and the detector
consists of different cylindrical detector parts around the interaction point. The first
detector part is made of tracking detectors in a magnetic field. The curved trajectory of
charged particles leaves hits in the different layers of the tracking detector, measuring
the direction of the particle’s track as well as its momentum via the track’s curvature.
The second detector part is made of calorimeters, which measure the deposited energy
of electrons³, photons, and hadrons. Electrons and photons initiate electromagnetic
cascades (“showers”) in the first layers of the calorimeter known as the the electromag-
netic calorimeter (ECAL). While these showers are typically fully contained in the ECAL,
showers induced by hadrons reach into the surrounding layers, which are therefore
called the hadronic calorimeter (HCAL) and are deep enough to contain these hadronic
showers. The calorimeters are segmented into cells so that the direction of the initial
particle is reconstructed in addition to its energy. The calorimeters are surrounded
by tracking chambers that are immersed in a magnetic field. These are called muon
chambers because muons are the only charged particles that are expected to traverse
the calorimeters. The direction and momentum of muons are hence measured via the
hits and the curvature in the muon chambers.

The ATLAS detector is designed to pursue a large range of particle-physics goals,
which are primarily focused on the analysis of proton-proton interactions that are
provided by the LHC. The goals include precision tests of the predictions of the Standard
Model of particles physics (SM) as well as the search for new particles that are predicted
in theories beyond the SM (BSM).While the latter would showup as resonant deviations
from the SM-only hypothesis, the former would result in non-resonant deviations. Each
crossing of the proton bunches in the LHC can result in an “event”. However, most
events that occur in the collisions are not of interest. Even after selecting events for
permanent storage with a rate of approximately 1000Hz with triggers, the majority of
recorded events are background events. The main task for analyzing the data, therefore,
is making an excellent selection of the events to enrich the event sample with signal
events. Classification based onmachine learning (ML) is hence of enormous importance
for data analysis. Its use is primarily focused (although not limited to) the separation
of signal from background events on the event level as well as the discrimination
of particles in the detector (electrons, photons, muons. . . ) from misidentified other
particles (known as fakes).

3 Following the jargon in collider physics, no distinction is made between reconstructed particles
and anti-particles. In the detector, a positron is simply an electron with a track curved in the opposite
direction.
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When searching for rare processes, all other SM processes with their respective cross-
sections are considered background. Actually, if the rare process is only present in a
BSM theory (such as the production of a new particle), all SM processes are part of the
background. In any case, the modeling of the background is of crucial importance. In
many cases, it relies onMonte Carlo (MC) simulations (cf. Chapter 5). These simulate the
relevant process at a given order in perturbation theory (for example, next-to-leading
order in αS), and simulate the evolution of quarks and gluons in the parton shower,
their hadronization, and the response of the detector, so that the output format of the
MC simulations is identical to real raw collision data (digitized voltages or currents in
individual detector cells for example). The same algorithms used to reconstruct the
particle signatures from the raw detector output are then used for real collision data
and simulations. Typically, these MC simulations already provide excellent modeling
of the SM processes. However, the quality of the predictions depends on the process,
and there are processes for the parts of the generated phase space that are known to
be subject to large uncertainties. All MC simulations are improved using data-driven
corrections so that, say, the identification of a muon in data and MC simulations is
corrected to agree based on measurements in clean reference processes (Z → μ+μ− and
J/ψ → μ+μ− in this case). The MC simulations and the data-driven corrections come
with their set of systematic uncertainties so that the full background model includes a
nominal prediction and a well-defined set of systematic uncertainties.

When searching for rare processes, the presence of the signal is tested by a hypoth-
esis test. The goal is to reject the background-only hypothesis with large significance.
Suppose no such deviation from the background-only hypothesis is found. In that case,
however, the signal-plus-background hypothesis is tested with a varying degree of the
signal so that an upper limit on the minimal amount of signal is set that would have
been incompatible with the observed data if it existed. The hypothesis test is typically
based on a profile-likelihood fit with the likelihood ratio as a test statistic [131]. The
fit can be binned or unbinned, and systematic uncertainties are included as nuisance
parameters. In order to avoid overly optimistic exclusion limits, the CLs technique is
used [323].

In this article, two representative examples of searches for rare processes with
the ATLAS experiment, focusing on the analysis strategy and the use of ML⁴, will
be discussed. These examples highlight typical analysis strategies in searching for
non-resonant and resonant deviations from the SM hypothesis with a binned profile-
likelihood fit. The non-resonant search shows the use of ML as an event classifier, while
the resonant search uses ML to discriminate different particles.

4 The choice of the examples is obviously driven by personal bias.
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8.5.2 Rare Top-Quark Processes: Searching for FCNC Processes

Processes with flavor-changing neutral-current (FCNC) interactions are examples of
extremely rare SM processes, as these are forbidden at the tree level and highly sup-
pressed at the loop level due to the Glashow-Iliopoulos-Maiani mechanism [178]. For
the top quark, these couplings are so weak that they translate into branching ratios
(BR, B) in the top quark of the order of 10−17 to 10−12 [42]. However, BSM theories
can introduce new particles that effectively introduce stronger FCNC interactions that
could be detectable in top-quark processes. These could result in the decays of the top
quark to an up or charm quark plus a neutral boson, such as a photon. However, the
same vertex also gives rise to the anomalous production of the top quark in association
with the neutral boson. In our example this is the photon, as shown in the Feynman
diagram⁵ in Figure 8.19.

This is the process searched for in this analysis [67]. It is an example of an analysis
with a MC-driven background estimate that is used in a binned profile-likelihood fit to
search for a BSMenhancement over the SMbackgroundhypothesis. It is also an example
of an event-level classifier based on neural networks to distinguish the rare signal
process (FCNC production) from the background. As shown in Figure 8.19, the outgoing
particles (“final state”) consist of a top quark and a high-transverse-momentum (pT)
photon.⁶ The top quark decays almost entirely into aW boson and a b quark, and the
W boson can either decay leptonically,W → ℓν, or hadronically,W → qq′. Despite the
smaller BRof the leptonic decay, it has thehuge advantage ofmuch smaller backgrounds
due to the characteristic feature of a high-pT electron or muon.⁷

The SM background processes consist of irreducible and reducible backgrounds.
An important irreducible background isW + γ production together with additional jets
from the hadronization of quarks or gluons, including potentially including b jets from
the hadronization of b quarks. An important reducible background is tt̄ production in
the dilepton decay channel, i.e. both top quarks decay leptonically, where one of the
leptons is an electron that is misidentified as a photon. Both electrons and photons,
result in electromagnetic showers with the main difference being that the electron
shower is expected to have one track pointing to the center of the energy deposition
in the calorimeter. If that track is mismeasured, the electron is easily misidentified
as a photon. The different background contributions are shown in Figure 8.20, where

5 Feynman diagrams are a visual representation of interaction processes of elementary particles: the
interacting particles enter from the left (“initial-state particles”), interact via vertices and the exchange
of virtual particles (in this case: the up or charm quark in the middle), and the outgoing particles
(“final-state particles”) are shown on the right side of the diagram.
6 At hadron colliders, the initial momentum in beam direction, pz, of the colliding partons within
the proton is not known. Hence, momentum conservation of the final-state particles is given only in
the transverse direction. This is the reason for the frequent use of transverse momenta, pT, at hadron
colliders.
7 Tau leptons are typically not used, because of their many different decay modes.
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Fig. 8.19: Example Feynman diagram for the FCNC process [67]. The FCNC vertex is highlighted with
the red dot.

“e → γ fake” is mostly from dilepton tt̄ events. All background contributions are initially
estimated from MC simulation but are checked and adjusted using data. In particular,
theW + γ background is estimated in a control region that is kinematically close to the
phase space that is used to search for the FCNC signal (signal region) but enriched in
W + γ production. The modelling of the e → γ fake probability is checked by comparing
Z → e+e− events, i.e. e+e− events with an invariant mass (mee), close to the Z-boson
mass (mZ), with eγ events with a similar invariantmass. These eγ events withmeγ ≈ mZ
originate from Z → e+e− production with a misidentified electron. Comparing the ratio
of ee and eγ events in data and MC results in a correction factor that is applied to the
MC simulations and that corrects for the difference in the fake probability between data
and MC.

Now that the background contributions are well estimated, the task is to discrimi-
nate the backgrounds from the signal process to be sensitive to signal cross-sections
as small as possible. The reason is that the signal cross-section is so small in the SM
that it is impossible to measure it at the LHC. By targeting signal cross-sections that
are as small as possible, however, we address BSM theories that predict cross-sections
of at least that value. This means we need excellent discrimination of the signal from
the background, which is achieved in this analysis with a fully-connected feed-forward
neural network (NN) as a binary classifier. The NN is trained based on the MC simula-
tions that have been corrected using the data in the control regions, using a set of ten
well-discriminating input variables. Most of these variables are kinematic variables,
such as the transverse momentum pT of the photon (Figure 8.20, left), a particle that
shows, on average, a much higher transverse momentum for the signal than for the
background. Another input variable is the sign of the electric charge of the charged
lepton (Figure 8.20, right). Most backgrounds are charge-symmetric, in particular tt̄
production, which constitutes the main part of the e → γ fake background. The FCNC
signal, however, couples a top quark to either an up or a charm quark (cf. Figure 8.19).
These couplings to the up and charm quark are searched for separately in the analysis.
In the case of the up-quark coupling, there is a preference for the production of top
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Fig. 8.20: Data-MC comparison of input variables to the FCNC neural network: transverse momentum
of the photon (left) and sign of the lepton charge (right). The signal is overlaid with an arbitrary
cross-section and the bottom panel shows the ratio of data over MC prediction [67].

quarks as opposed to anti-top quarks because the proton contains up quarks as valence
quarks but anti-up quarks only as sea quarks. This results in a preference for positively
charged leptons from the top-quark decay, which is shown in Figure 8.20 on the right.⁸
What is essential to notice is that the input variables show excellent discrimination
of signal and background and that—very importantly—the description of the input
distributions in the MC samples agrees with the data within the uncertainties in the
background-enriched regions. This is crucial because the MC samples are used to train
the NN classifier, and a badly-modeled input variable would likely lead to the NN output
distribution also being poorly modeled by the MC samples (cf. Section 5.3.2). This step
must, of course, be checked before training the NN and, in particular, before “unblind-
ing” any bin of a distribution with good sensitivity to the FCNC signal. In order to avoid
any (unconscious) bias in the design of the analysis (selection, NN training, systematic
uncertainties, etc.), a blinding criterion is formally applied, and the unblinding of the
sensitive bins is formally agreed upon in the ATLAS-internal review process when the
analysis strategy is fully defined. The blinding criterion is typically based on the signal-
to-background ratio so that bins with a ratio of > X% are blinded. For signals with a
varying cross-section, such as the FCNC signal in this analysis, the upper limit on the
cross-section from the previously best search can serve as the reference cross-section
for the blinding criterion.

8 Charm and anti-charm quarks both come from the proton sea. So, there is no preference for a positive
lepton charge in the case of the FCNC coupling to the charm quark.
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Fig. 8.21: Output of the event-level neural network in the FCNC search for signal and background, for
training and test datasets in each case [67].

The available MC datasets are then divided into a training, a validation, and a test
dataset, with the training dataset being the largest of the three. The NN is trained on
the training dataset with different sets of hyperparameters (number of hidden nodes,
number of hidden layers, hyperparameters of the NN optimizer, etc.), and the best set of
hyperparameters is chosen based on the discrimination as evaluated on the validation
dataset. Possible overfitting is tested by comparing the NN output distributions for the
training and test datasets, as shown in Figure 8.21. Background and signal distributions
are much better separated in the NN output distribution than for the individual input
distributions, with the signal peaking at NN values around one. Also, the training and
test distributions agree within the statistical uncertainties of the MC samples for the
signal as well as for the background, indicating the absence of overfitting. Actually, this
test is only shown for one type of FCNC signal in Figure 8.21, i.e. an FCNC coupling to
the up quark with left-handed chirality. Indeed, the whole analysis (including the NN
training) is repeated for a right-handed FCNC coupling and for left- and right-handed
FCNC couplings to the charm quark. This is necessary because the distributions of the
input variables change depending on the choice of the FCNC coupling. The difference
between up- and charm-quark couplings, which arises from the coupling to valence up
quarks in contrast to charm quarks from the proton sea, leads to different kinematic and
lepton-charge input distributions. The effect from the chirality of the coupling is smaller
but still influences the kinematic distributions of the top-quark decay products. Due to
the specific nature of the weak interaction, which only couples to left-handed particles,
the weak top-quark and W-boson decays result in different kinematic distributions of
the lepton pT, depending on the handedness of the FCNC coupling.
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After unblinding, a binned profile-likelihood fit is performed to the NN output distri-
bution in the signal region and distributions in two control regions. The result of this
fit is shown in Figure 8.22 for the signal region and the W + γ control region. This fit
includes nuisance parameters for the systematic variations constrained to their respec-
tive systematic uncertainties. Performing the fit to all regions simultaneously allows
these nuisance parameters to be adjusted to fit the best data. The data in the control
regions allow us to adapt and potentially constrain the nuisance parameters of the
background modeling.

Indeed, some nuisance parameters may be left entirely unconstrained in the fit,
which in this analysis was done to normalize theW + γ process. Its normalization is
entirely determined by the data, so that theW + γ normalization in the signal region is
primarily determined by the data in theW + γ control region. However, one needs to be
careful, though, to make sure that such extrapolations make sense. Actually, theW + γ
events in the signal region are primarily produced in association with b-jets, while
this is not the case for theW + γ events in the control region. One solution would be
to introduce separate nuisance parameters for theW + γ normalization in the control
and signal regions so that the normalizations are fully decoupled. The solution used
in this analysis is to apply an additional nuisance parameter for W + γ production
in association with b-jets, according to its systematic uncertainties. This additional
nuisance parameter is then unconstrained mainly by the data in the control regions.

As seen in Figure 8.22, the NN output distributions in the control and signal region
are well described by the post-fit MC predictions, i.e. after all nuisance parameters are
adjusted in the profile-likelihood fit.⁹ This is good news regarding backgroundmodeling
but bad news regarding the search for the FCNC signal: no significant deviation from the
SM prediction (expected around NN outputs of one) is observed, and no BSM physics
is found. But this also allows us to constrain FCNC interactions of the top quark and
photon much more strongly than ever before. Testing how strong the signal must have
been so that it would have been very unlikely to observe the background-like data that
we did observe, we can set upper limits on the FCNC signal cross-section, which we
can translate into upper limits on the FCNC couplings’ strength. One can then further
interpret these upper limits on the couplings as an upper limit on the BR for the FCNC
decays t → u + γ of 2.8 × 10−5 and 6.1 × 10−5 for left- and right-handed coupling,
respectively, as well as upper limits on the BR for the decay t → c + γ of 2.2 × 10−4

and 1.8 × 10−4 (again for left- and right-handed coupling). These were by far the most
sensitive limits on these couplings and BRs when this analysis was published and still
are at the time of writing.¹⁰

9 The sixth bin in theW + γ control regions shows a discrepancy that is not significant.
10 That is, January 2022.
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Fig. 8.22: Data-MC comparison of the output of the neural network in the FCNC search for the W + γ
control region (left) and for the signal region (right). The signal is overlaid with an arbitrary cross-
section and the bottom panel shows the ratio of data over MC prediction [67].

8.5.3 Searching for New Heavy Particles: Vector-Like Quarks

The previous section discussed an example of a search for non-resonant BSM contribu-
tions on top of the SM background. This means that we were looking for new particles
that cannot be resolved at the LHC because, say, their masses are too large. However,
the LHC provides the highest center-of-mass energies ever achieved in a laboratory
particle-physics experiment, whichmeans that we can search for new,massive particles
directly via their resonant contributions to SM spectra.

One example of a type of new, massive particle that could be observed at the LHC
is a vector-like quark (VLQ). One of the big questions of the SM is why there are exactly
three generations of fermions. A priori, there is no good reason for the number of
generations to be three, and one can ask whether there is a fourth generation of quarks.
After the discovery of the Higgs boson, however, it has become clear that this fourth
generation cannot just be another, heavier chiral quark doublet [145], because the
Higgs boson couples to fermions proportionally to their mass, and such a heavy fourth
generation would contribute significantly to the Higgs-boson production cross-sections
and to several decay-branching ratios via loops. If the heavy quarks are vector-like,
however, i.e. if their electroweak couplings do not follow the typical V−A structure but
couple as a vector (V), the SM Lagrangian could simply include a direct mass term.
Their masses would not originate in the Higgs mechanism, and the constraints from
Higgs-boson cross-sections and branching ratios would not apply! Actually, there is
much more motivation for these VLQs to exist. In particular, they appear in models
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Fig. 8.23: Example Feynman diagram for the VLQ search [70].

that explain the large difference between the electroweak (246GeV) and the Planck
scale (O

(︀
1019

)︀
GeV) [221] and in models that explain the large hierarchy of the fermion

masses [220], if they couple primarily to the third quark generation, i.e. the top, and
the bottom quark. This means that their primary decay channels would be one third-
generation quark plus a boson: tZ, tH, tW, bZ, bH and bW. The focus of the search
discussed here is VLQs with the same charges as the SM quarks (+2/3e and −1/3e),
which are traditionally denoted by the symbols T and B, respectively. The masses of
these particles are free parameters of the search, as they are not predicted, but there is
good motivation for them to be in order of 1 TeV.

As VLQs are colored particles, they can be produced in pairs at the LHC via strong
interaction, just as any other quark. A Feynman graph is shown in Figure 8.23 together
with some possible decays. The BRs of the VLQ decays are only predicted in specific
models and are, in principle, free parameters of the search. One such model would
be a specific electroweak representation of the VLQ. For example, in a model with a
singlet T or singlet B, the BRs to quark + Z/quark +H/quark +W ratio is approximately
25% : 25% : 50% for large VLQ masses. This means that many final states of VLQ pair
production are possible, and it would be inefficient to design searches for each possible
final state (ZtZt, ZtHt, ZtWb, HtHt, . . . ). The ATLAS VLQ search program was hence
divided into several analyses that focus on one specific VLQ decay for the first VLQ
and cover as much of all decays of the second VLQ in the pair. The analysis discussed
here is the so-called “Zt/b + X search”, which covers final states with at least one VLQ
decaying to a Z boson and a third-generation quark [70].

This search is complemented by other searches that focus on at least one VLQ
decaying to Ht (“Ht + X search”) etc. For the Zt + X search, the most promising strategy
is to select events with Z boson decays to e+e− or μ+μ−, because of the excellent electron
energy and muon momentum resolutions that make for the reconstruction of a sharp Z-
boson peak and hence low backgrounds from non-Z-boson events. The final state hence
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consists of two oppositely-charged leptons¹¹ in association with a varying combination
of heavy resonances (top quarks, Z/W/Higgs boson) depending on the VLQ BRs. In
addition, the final state contains at least two b quarks from the VLQ decay or from the
top-quark decays and may even contain additionally charged leptons from the decays
of top quarks or one of the bosons. While this results in a signature that is already quite
distinct, there is an additional feature that can be exploited to separate the signal from
the SM background: a VLQ with a mass that is much larger than the masses of its decay
products. This means that the heavy resonances from the decay are strongly Lorentz-
boosted and that the decay products of these resonances will have small angles to each
other. Given that the main decay modes of these resonances are decays to quarks, this
results in collimated streams of hadrons that can be reconstructed as jets.¹²

One can then analyze the structure of the energy depositions in the calorimeter cells
to distinguish jets that originate from the heavy resonances from jets that originate from
gluons or up, down, charm, strange, or bottom jets (“QCD jets”). Top quarks decay to
three quarks (t → Wb → qq′b) and are likely to have a three-prong-like substructure. Z,
W, and Higgs bosons decay to two quarks and likely have a two-prong-like substructure.
In addition, Higgs bosons decay mostly to a pair of bottom quarks so that the number
of b-tags associated with the jet helps to distinguish it from Z- andW-boson jets. The
latter two types are difficult to distinguish, though, and are typically treated together
as vector-boson (V-boson) jets.

Themain development for the search discussed herewas the development of a deep
learning-based algorithm to distinguish these multiple classes of jets—hence its name:
Multi-Class Boosted Object Tagger (MCBOT).¹³ It is based on a deep fully-connected
feed-forward neural network trained with MC simulations for the different classes of
jets over a large range of jet pTand builds on developments in a VLQ search in fully
hadronic final states [69]. The latter point is important because the higher the pT, the
larger its Lorentz boost. This results in smaller angles of the resonances’ decay products
and hence different patterns of the energy depositions in the calorimeters. As we do not
know the VLQmass, MCBOTmust work well for a large range of masses and hence pT of
the VLQ decay products. MCBOT is not the first algorithm to identify boosted hadronic
resonance decays. Much work was done previously for the identification of boosted
hadronic top quarks as well as V-boson and Higgs-boson jets (see for example [62, 63,
65] for some work within the ATLAS Collaboration), and not the first to use ML for this
task (for a top-tagging comparison of many different ML algorithms see [112]). However,
the search for VLQs is different from many other use cases of top-/V-/Higgs-tagging,
where only one type of resonance is present in the final state. As opposed to searches

11 Tau leptons are again neglected.
12 Actually, one needs large radius parameters for these jets (of the order of 1.0), as opposed to the
relatively small radius parameter of 0.4 that is typically used in the experiment to reconstruct jets from
QCD jets.
13 Here, the term “boosted” refers to boosted particles and not to boosted ensemble classifiers.
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for resonances that decay to tt̄ and for which the identification of boosted top quarks
is enough, the VLQ final states are rich in all different classes of hadronic resonances,
which calls for a multiclass strategy.

MCBOT is a deep neural network (DNN) with four different output nodes: one for
boosted top quarks, one for boosted V bosons, one for boosted Higgs bosons, and one
for QCD jets. As an activation function for the four output nodes, the softmax function
is used so that each output lies in the range [0, 1], and all four output values add up
to one. Instead of designed features, essential variables are used as input to the DNN:
the four-vectors of the three jet constituents with the highest pT, the information on
whether these constituents are associated with a b-tag, as well as the jet invariant mass
and its pT. While constituents’ kinematic and b-tagging information encode the decay
kinematics of the underlying resonance decays and their quark flavor, the jet mass
naturally distinguishes the different resonances due to their different masses. The jet
pT, however, is not a discriminating variable but rather a parameter for MCBOT: the
algorithm must work well for low and high pT, and hence all different input classes are
reweighted to have the same underlying jet pT.

However, as the Lorentz boost strongly influences the patterns within the jet, it is
essential to pass this information to the DNN training. Another particularity of MCBOT
is that its jets are not built from individual calorimeter depositions but from smaller
jets, which are already calibrated [285]. This is important to assess the systematic
uncertainties associated with the efficiencies for the identification of the hadronic
resonances, which are estimated from MC simulations. Any potential difference in
efficiency between MC simulations and data must be accounted for by systematic
uncertainties, which are often estimated by comparing data and MC predictions in a
reference process. However, it is difficult to identify hadronic resonances with very
high pT, which can be so high that any SM reference process runs out of statistics and
makes it impossible to compare with MC predictions in a meaningful way. Building the
jet from small jets, which have a calibration that comes with well-defined systematic
uncertainties, circumvents this problem because the uncertainties from the small jets
can be used to estimate the uncertainties for the larger jets straightforwardly. This
is well worth the cost of not using the higher resolution within the jet that could be
achieved with even smaller jet constituents that lack a proper systematic model.

The final DNN has a structure with four hidden layers, with 32, 27, 14, and 12 nodes
each. The output distributions for V-boson jets, Higgs-boson jets, and top-quark jets are
shown in Figure 8.24 together with the distribution for QCD background jets. MCBOT
clearly discriminates the different resonances from background jets. Several distinct
features can be observed in the distributions, such as the peaks around 0.9 and 0.8
in the Higgs-boson distribution. These features have been investigated in detail, and
the Higgs-boson peaks around 0.9 and 0.8, for example, originate from Higgs-boson
jets with precisely two and only one b-tagged constituent, respectively, i.e. jets in the
peak around 0.8 are missing the second b-tag that is expected from the decay H → bb̄.
In order to unambiguously assign each jet to one output class, the class with the
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curves) and for QCD background jets (dashed curves): V-boson jet output (top), H-boson jet output
(middle), and top-quark jet output (bottom). The dashed vertical lines indicate the thresholds that
are used in the VLQ search [70].

largest softmax output is chosen. Additionally, a minimum threshold for a successful
classification was optimized for each output class, shown as dashed vertical lines in
Figure 8.24. Jets that pass these thresholds form MCBOT tags of the top, V, or Higgs
type.

How is MCBOT now used in the VLQ search? The VLQ search uses many analysis
regions based on the number and type of MCBOT tags, the number of associated b-tags,
and the presence of two or at least three charged leptons. An overview of the different
categories is shown in Figure 8.25 together with the MC prediction in each region and
the observed data. An example signal that consists of a vector-like T quark with a
mass of 1.2 TeV and BRs as predicted in the singlet model is also shown. Clearly, the
number of expected and observed events differs strongly from category to category,
and so due to the contributions from the different background processes as well as the
signal-to-background ratio. In general, regions with many MCBOT tags have a better
signal-to-background ratio and a lower number of events with the associated larger
statistical uncertainty. Combining all categories in an overall hypothesis test gives the
best sensitivity for the VLQ signal.

In addition, in each of the different analysis categories, a “final discriminant” is
chosen that further separates the background from the signal events. One example of
such a final discriminant is shown in a region with two MCBOT tags, two b-tags, and
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Fig. 8.25: Data-MC comparison for the different analysis regions in the VLQ search. In each region,
the inclusive event yield is shown. The vector-like T signal is overlaid for an example mass of 1.2 TeV
and singlet branching ratios. The bottom panel shows the ratio of data over MC prediction [70].

two charged leptons in Figure 8.26. The final discriminant is the invariant mass of the Z
boson (reconstructed from the two charged leptons) and one of the b-tagged small jets.
This is exactly the reconstructed invariant mass of a vector-like B quark. As mentioned
at the start of this section, we are searching for a resonance on a falling background
spectrum! Actually, the background expectation is very low due to the presence of
the two MCBOT tags. The signal that is overlaid in the figure is a vector-like T signal,
however, which is not expected to show a sharp resonance in this final discriminant.
The T decays to Zt, which results in a final state with an additionalW boson from the
top quark decay in addition to the Z boson and the b quark. However, the T signal
also shows an enhancement at larger values of the discriminant compared with the SM
background. In principle, one could use different optimized final discriminants for the
different signals. This was tested, and the gain was small compared with the additional
complication of basically doing the analysis twice, i.e. once for each signal.

The combined fit to all final discriminants in all categories is then performed under
the background-only hypothesis to test for the presence of a VLQ signal. Actually,
several of the regions are very background-rich and serve as control regions, just as
in the case of the FCNC search. Also, here, the good modeling of the data and the MC
prediction give confidence in the overall background modeling. No significant excess
above the SM background was found, which means that 95% confidence-level upper
limits are set on the VLQ production cross-section using signal-plus-background fits
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Fig. 8.26: Data-MC comparison of the final discriminant in an example signal region of the VLQ
search. The vector-like T signal is overlaid for an example mass of 1.2 TeV and singlet branching
ratios. The bottom panel shows the ratio of data over MC prediction [70].

as a function of the VLQ mass (for the T and B signals separately). Since we know the
production cross-section for VLQ pair production from QCD, the intersection of the
upper cross-section limit, and the theory cross-section results in a lower limit on the
VLQ mass at 95% confidence level. Assuming singlet BRs for the VLQ, the lower mass
limit is approximately 1200GeV for the B quark, for example (Figure 8.27, left). When
we want to move away from specific BR assumptions, we can scan all possible BRs into
SM particles, which results in a “BR triangle”, shown in Figure 8.27 (right) for the B
quark. The BR into Wt is shown on the x-axis, the BR into Hb on the y-axis, and the
BR for the decay into Zb results from 1 − B(Wt) − B(Hb), i.e. high values for B(Zb)
populate the lower left “Z corner”, where this search is particularly sensitive. For very
large values ofB(Zb), masses below 1400GeV are excluded at 95% confidence level. At
the time of writing¹⁴, this analysis sets the most stringent lower limits on vector-like T
and B quarks that decay primarily into Zt and Zb, respectively. ForB(Zt/Zb) = 100%,
these are as high as mT > 1600GeV and mB > 1402GeV, and hence significantly more
stringent than the limits from the previous most sensitive limits from the combination
of many ATLAS VLQ searches from a smaller dataset [59].

14 That is, January 2022.
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into Zb is calculated viaB(Zb) = 1 − B(Wt) − B(Hb), i.e. it is 100% in the lower left corner [70].

8.5.4 Conclusions

The search for rare processes with the ATLAS experiment crucially relies on a good
modeling of the background as well as excellent discrimination of the signal from the
background using classification algorithms. Shallow neural networks and boosted
decision trees have a long tradition in collider experiments and have been successful
in ATLAS for, say, the measurement of rare single-top-quark production with early LHC
data [8], the observation of the very rare tt̄H production process [6], or the search for
new particles, such as leptoquarks [9]. However, more and more advanced machine
learning techniques are being exploited to improve the precision of the analyses. The
Multiclass Boosted Object Tagger is one example that uses deep learning to separate
several classes of jets.

While this chapter was written, the FCNC search was updated with a larger
dataset [68], which showed that the multiclass approach is also useful in the case of
signal-background discrimination if the signal consists of several components (in this
case, the FCNC production and decay processes). Combining the three-class output
of a deep neural network into a likelihood-ratio-inspired discriminant improved the
sensitivity to the FCNC signal by up to 30% compared with a binary DNN classifier [68].

Many more approaches have been and are being explored in ATLAS. Here are just
some successful examples: the classification of jets as originating from the hadroniza-
tion of a quark or a gluon with convolutional neural networks treating the energy
depositions in the calorimeter cells as an image [66]; b-tagging with recurrent neural
networks interpreting the set of tracks associated with the jet as an ordered series [64];
b-tagging with deep sets interpreting the set of tracks as a point cloud [60]; search-
ing for new resonances in dijet events without assuming a specific resonance model
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using weak supervision [7]; and simulation of showers in the calorimeter using Genera-
tive Adversarial Networks to approximate the precise but rather slow simulation with
GEANT4 [61].

Further improvements in machine learning and its application to collider physics
have the potential of advancing the sensitivity of the experiment further to better
explore the (costly!) collider data. However, it is important to ensure that more complex
algorithms do not exploit unphysical features in the training data. These could be
correlations that are present in the MC simulations but are different in real collision
data or in features of the data in control regions that are different in the actual signal
regions. The validation of a very goodmodeling of the input variables, their correlations,
and the output of the machine learning algorithms remains crucial when exploiting
new exciting methodology.



9 Deep Learning Applications
9.1 Introduction

Wolfgang Rhode

“Deep Learning” is one of themachine learningmethods and is therefore always referred
to in this book when they are mentioned. However, deep learning has a special position
in that it is based on algorithms called “neural networks” and thus has a very large
number of free parameters that can be optimized to fulfill the learning task. Experience
shows that the danger of overtraining, which is higher than with other algorithms
because of the large number of parameters, can be averted. A frequently occurring
uneasiness of physicists about the fact that the physical meaning of the resulting
optimal parameter sets is not necessarily obvious can be minimized with statistical
tests of the learning success. However, it may be advantageous or even necessary for
the learning success if the algorithm is given further structural algorithmic help.

In three application areas, we show examples of how Deep Learning can be used
in astroparticle and particle physics. In the neutrino telescope IceCube, convolutional
neural networks are applied to data of shallow abstraction level to reconstruct events
of different classes under the algorithmic inclusion of domain knowledge. In LHCb,
B mesons are identified and interpreted. The construction of a Deep Learning-based
analysis chain is presented from the field of gamma astronomy.

9.2 Deep Learning for IceCube

Mirco Hünnefeld

Abstract: Data of high-energy physics experiments, such as IceCube, is rare in the
context of machine learning, insofar as its generation and the laws and symmetries it
abides by are usually well understood. The goal of reconstruction methods is to utilize
this information to infer physical properties from measured data. While traditional
methods use this information explicitly, most machine learning approaches learn the
underlying patterns implicitly from the training data.
In this section, we illustrate how a deep convolutional neural network (CNN) can

be applied to IceCube data for event reconstruction. As systematic uncertainties are
inherent to Monte Carlo simulations, emphasis is placed on the investigation of the
robustness of the employed method and its response to systematic variations of the

Open Access. ©2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785968-009
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baseline Monte Carlo simulation. Although successful, the CNN cannot fully utilize
available information. To combat this deficiency, a hybrid reconstruction method
is proposed that combines the strengths of traditional maximum likelihood-based
methods with those of deep learning.

Data in high-energy physics experiments comes along with extensive knowledge of the
underlying data-generating processes. Most experiments utilise complex Monte Carlo
simulations (see Chapter 5), an approach requiring that inherent patterns, symmetries,
and scientific laws exhibited in the data are well understood. The abundance of this
detailed domain knowledge provides the opportunity for dedicated deep learning
architectures that harness the full potential of the physics detector. Crucial to the
success of this task is the exploitation of domain knowledge within the applied method.

The advent of machine learning in physics experiments illustrates a paradigm shift
from explicit to implicit utilization of domain knowledge. In traditional data analysis,
methods from physics and statistics, most prominently maximum likelihood-based
reconstruction methods, are implemented with the aim of exploiting available domain
knowledge directly. By contrast, standard machine learning applications and deep
learning architectures do not directly use this information; rather, they learn it im-
plicitly from the training data. Often these approaches are in direct competition with
each other, with strong proponents on either side. Particularly in physics experiments,
where interpretability and understanding of the inner workings of algorithms as well as
their effect on analysis results is crucial, the advent of deep learning was initially per-
ceived more reluctantly than in other domains. However, as illustrated in the following
sections, classical and deep learning approaches do not have to exclude each other;
instead, they can be used in symbiosis.

9.2.1 Domain Knowledge in IceCube

In this section, deep learning approaches to IceCube data are illustrated by the example
of angular reconstruction of cascade events. Cascades are short-ranged particle showers
with an expansion of several meters induced by neutrino interactions in the instru-
mented volume (see Section 8.3). These events are inherently difficult to reconstruct
in IceCube as the particle shower appears almost point-like given IceCube’s sparse
instrumentation [17, 21]. Reconstruction methods must therefore be sensitive to subtle
differences in the deposited light pattern in order to achieve high accuracy.

The direct exploitation of existing symmetries and prior knowledge in the neural
network architecture may aid the reconstruction task by improving the model’s per-
formance. As this domain knowledge is already built into the architecture, it must not
be learned implicitly in the training process, which speeds up and facilitates conver-
gence. At the same time, the direct inclusion of symmetries allows the neural network
to extrapolate along these symmetries. Therefore, the model can provide meaning-
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Fig. 9.1: The IceCube detector encompasses three main parts: the main array, consisting of 78
strings arranged on an approximate triangular grid and another eight strings in the center, which
comprise upper and lower DeepCore. Data from the three detector components is separated, padded
with zeros and transformed to fit into an orthogonal grid. This transformation allows for the utiliza-
tion as input data to a CNN. [31] © 2021 IOP Publishing Ltd and Sissa Medialab

ful inter- and extrapolations beyond the phase space covered by the training data,
as long as these are covered by the built-in symmetries. This leads to a more robust
and complete utilization of available information. Standard neural networks are able
to interpolate on the training data if this is sampled densely enough, and they can
therefore appropriately model the symmetries. However, they are incapable of truly
extracting and exploiting these symmetries unless the architecture itself supports this.
For instance, convolutional neural networks (CNNs) utilize translational equivariance
in order to exploit translational invariance of the input data [240], which has lead to
breakthroughs in the field of image recognition [233]. A standard multilayer perceptron
can theoretically learn the same mapping. However, in practice, it does not perform as
well for image recognition tasks.

Available domain knowledge and symmetries in IceCube include translational and
rotational invariance in the particle shower. The underlying physics of the neutrino
interaction is invariant under translation and rotation—they do not depend on the loca-
tion or orientation of the detector. However, this symmetry is only approximately valid
in measured data, due to dust impurities and anisotropy in the detector medium [25]
and the geometry of the detector grid (see Figure 9.1). Apart from these symmetries,
further domain knowledge, such as the linear relation between deposited energy and
detected charge or the properties of the detector itself, is known a priori.
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As mentioned in Section 7.2, IceCube records photons in the photo-multiplier tubes
at each Digital Optical Module (DOM). These are the measurements. The photons are
converted to an electrical signal–charge as a function over time also known as a wave
form. In a subsequent step, individual pulses, each consisting of a time and charge, are
then extracted from the wave form. Each DOMmay measure a pulse series of arbitrary
length. A collection of such pulse series in a specified time window is referred to as
an event. A reconstruction method aims at extracting the properties of the primary
neutrino based on the pulse series and the given domain knowledge.

9.2.2 Convolutional Neural Networks in IceCube

In order for Neural Networks (NNs) to make reliable and robust estimates, the NNs
have to learn the underlying patterns in the data. This can be achieved either implicitly
during the training procedure by inferring them from the training data or explicitly
by choosing appropriate network architectures. One of the dominating symmetries in
IceCube is translational symmetry in the x-y-plane (parallel to the ice surface) and to
first order also along the z-axis. Convolutional layers are equivariant under translation
and therefore can exploit translational symmetries in the input data. Consequently,
Convolutional Neural Networks (CNN) are a suitable choice for event reconstruction in
IceCube.

There are, however, some challenges in applying CNNs to IceCube data. IceCube
data consists of pulse series collected in each of the 5160 DOMs. The DOMs are installed
on a total of 86 vertical strings that are broadly grouped into three detector parts, as
illustrated in Figure 9.1. The data has to be transformed to fit into orthogonal tensors, as
required by CNN applications. This is achieved by separating the data of the individual
detector components. The strings of themain array are shifted and paddedwith zeros in
order to transform the triangular into an orthogonal grid (see Figure 9.1). The resulting
three input arrays are then provided to three independent stacks of convolutional layers
as depicted in Figure 9.2. The result of each of the convolutional layers is combined in a
flattened layer and passed on to two small dense NNs, which output the quantity of
interest and the estimated uncertainty on the prediction, respectively. The convolution
kernels utilized for the main array are similarly transformed to the input data, such
that the convolution operation effectively convolves a hexagonally shaped kernel. The
hexagonal convolutions are more adequate to IceCube’s geometry and, in principle,
enable the exploitation of the six-fold rotational symmetry, although this is not further
pursued here for simplicity (see [31] for further details on the hexagonal convolutions
and the network architecture).

At this point, the spatial coordinates of the DOMs are transformed in a way such
that they are suitable to a CNN. Each of the elements in the input arrays from Figure 9.1
corresponds to a DOM.What remains is the transformation of the time dimension, given
by the pulse series at a given DOM in a feature vector of constant length.
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Fig. 9.2: A sketch of the neural network architecture is shown. Data from the three subarrays is
sequenced into convolutional layers. The result is flattened, combined, and passed on to two fully-
connected subnetworks that perform the reconstruction and uncertainty estimation. The uncertainty-
estimating sub-network also obtains the prediction output as an additional input. The figure and
caption are taken from [31]. © 2021 IOP Publishing Ltd and Sissa Medialab

The pulse series at a given DOM can have an arbitrary length depending on the amount
of deposited energy and the distance of the DOM to the energy depositions in the detec-
tor. This leads to varying numbers of pulses across several orders of magnitudes. While
variable input lengths are appropriate to recurrent architectures, the CNN applied here
requires a constant-sized input tensor. Hence, the pulses are transformed to a feature
vector of nine variables that summarize the pulse distribution at a particular DOM.
These variables include quantities such as the total charge (correlated to the energy
deposition around a DOM) and timing information such as the time of the first pulse.
The time of the first pulse is essential for directional reconstruction as the first pulse
at a given DOM is least likely to have scattered prior to hitting the photomultiplier.
Based on the arrival time, the distance of the emitter to the receiving DOM can be
estimated. All nine input features are illustrated in Figure 9.3. Note that these input
features are a general selection that is applicable to a wide range of tasks. Specific clas-
sification or regression tasks may benefit from dedicated input features that emphasize
the information relevant to the task at hand.

In order to obtain per-event uncertainties, the network is trained with a Gaussian
likelihood

ℓ = ln (yunc) + 0.5 ·
(︂ ytrue − ypred

yunc

)︂2
(9.1)
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as the loss function (constant terms omitted), where ypred and yunc are the outputs
of the two sub-networks for the reconstructed quantity and uncertainty estimation
thereof, respectively. As a result, the network not only provides a point estimate, but an
estimate of the posterior distribution. This assumes that the residuals ∆y = ypred − ytrue
are distributed as Gaussians with the width yunc.

This assumption canbe tested byplotting the pull distribution,which is a histogram
of the per-event residuals divided by the estimated uncertainty: ∆y/yunc. For Gaussian
distributed residuals and a correct uncertainty estimate, this should result in a normal
distribution. As shown in Figure 9.4, the pull distribution for the three reconstructed
quantities is well described by a normal distribution, apart from deviations in the tails
of the distribution.

An alternative method to verify the uncertainty estimate of the neural network is
by computing the coverage. Based on the assumed Gaussian distribution, the number
of events can be computed in which the true value lies within a certain quantile of the
predicted value. This can then be compared with the number of events in which the
true value should lie within a certain quantile, assuming that the estimated Gaussian
distribution is correct. As is illustrated in Figure 9.5, the coverage indicates that the
neural network provides an appropriate uncertainty estimation.

In Figure 9.6, the angular resolution of the CNN approach is compared with the
default reconstruction method in IceCube, which is based on Maximum Likelihood
Estimation (MLE). The CNN is capable of significantly improving the directional re-
construction of cascade events above 10 TeV. This is the interesting energy regime
when searching for extraterrestrial neutrino sources because the contribution of astro-
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physical neutrinos becomes more dominant with increasing energy. In addition to the
improved resolution, the necessary computation time is reduced by two to three orders
of magnitude compared with IceCube’s standard reconstruction method. Additional
performance comparisons, including energy reconstruction, are provided in [31].

The calculation of the performance gain in Figure 9.6 is based on a Monte Carlo
simulation. However, the simulation is an approximation of reality—it includes inher-
ent uncertainties. Some of the sources of uncertainties may be known, such as the ice
properties that affect photon propagation in IceCube, but others may remain unde-
tected. For physics analyses, it is therefore important that the effect of these potential
systematic uncertainties be well understood. Since these uncertainties are inherent to
the physics experiment, analyses are constructed in a way that the impact on the results
is minimized. Hence, reconstruction methods, whose outputs are often directly used in
analyses, should ideally be robust regarding systematic uncertainties. This is particu-
larly important for machine learning-based methods, which rely on the correctness of
the training data.

The investigation of the data/Monte Carlo agreement and the impact of systematic
uncertainties play a crucial role in interpreting analysis results. For one, the degree of
data/Monte Carlo agreement needs to be quantified. This is typically done by comparing
one-dimensional distributions of reconstructed ormeasured quantities. To also account
for correlations in a high-dimensional space, wemay train amachine learning classifier
to distinguish real data events from simulated ones. Ideally, the classifier should not
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and the hybrid method [208], discussed in Section 9.2.3. The CNN improves the resolution above
10 TeV compared with the standard method in IceCube (MLE). Due to the inclusion of additional
domain knowledge, the hybrid method leads to a significantly improved angular resolution over
the whole energy range. The plateau towards higher energies is induced by systematic uncertain-
ties. [208].

be capable of separating these. If a separation is possible, this indicates that there is
a certain mismatch between simulated and real data. See also Section 5.3.2 for more
details.

This test can be performed on the inputs to the CNN as well as the outputs of the
CNN. No significant mismatches were found when applying a random forest classifier
to the outputs of the CNN [31]. Apart from this test, the impact of known systematic
uncertainties on the NN output may be studied. The primary sources of systematic
uncertainties in IceCube arise from the optical properties of the glacial ice. The impact
on the angular resolution for various realizations of the optical properties is illustrated
in Figure 9.7. Monte Carlo simulations are performed in which the optical properties
of the ice are modified. The angular resolution is then computed on these systematic
datasets and comparedwith the resolution on the baselineMonte Carlo set. A slight shift
in resolution indicates that the reconstructionmethod is insensitive to themodifications.
As shown in Figure 9.7, the CNN (right panel) is more robust towards the studied
systematic uncertainties than the standard reconstruction method (left panel). Further
tests and modifications are performed in [31] that are omitted here for brevity.

The (CNN) provides a robust reconstructionmethod that improves upon the current
standard in IceCube while significantly reducing the required computational cost.
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based method (right). A ratio close to 1.0 indicates a robust reconstruction method that is insensitive
to the varied systematic parameter. For each systematic variation, the data/MC test via the is per-
formed. The resulting Area Under the Curev (AUC) for each variation is shown in brackets in the
legend. The figure and caption are taken from [31]. © 2021 IOP Publishing Ltd and Sissa Medialab

Consequently, the CNN approach has been employed in a search for neutrino emission
with cascade events [24] as well as for a novel real-time alert stream with high-energy
cascade events. These events are likely of astrophysical origin and are therefore of
greater interest to the scientific community. Reconstructions via the CNN are performed
in real time such that alerts can be sent out to telescopes around the world within
seconds to a few minutes of detection at the South Pole (required time is dominated by
online filtering and satellite transfer of data). This allows for fast follow-up observations
with different messenger particle.

Despite the success of the CNN in IceCube, the approach has inherent limitations.
The translational invariance is only approximately given in IceCube data, and the
assumption of a regular grid, as required by the CNN, is also violated due to minor
irregularities in the detector layout. While the summary features of the pulses at a
DOM allow for robust features, they induce information loss and also require a manual
selection. Moreover, additional symmetries and domain knowledge exist that cannot
be directly utilized by the CNN.

Some of these limitations can be solved using other standard NN architectures. For
instance, Recurrent Neural Networks eliminate the necessity of the pulse summary
features and enable end-to-end training directly from the extracted pulses. This would
avoid potential information loss but might result in the NN being more susceptible
to subtle systematic uncertainties in the Monte Carlo simulation. At the same time,
graph neural networks can be employed to handle IceCube’s irregular geometry more
adequately. However, none of the standard deep learning architectures has the ability to
explicitly include the wealth of available domain knowledge. As previously mentioned,
the detailed knowledge of the data-generating processes in physics experiments like
IceCube is by far superior to other domains such as image recognition. Dedicated



254 | 9 Deep Learning Applications

solutions are required to harness the full potential. The following section presents a
hybrid reconstruction method that tackles these deficiencies.

9.2.3 Combining Deep Learning with Maximum-Likelihood

The previously described CNN approach exploits translational invariance, but lacks
the ability to put additional domain knowledge to good use. Current standard recon-
struction methods in IceCube are in principle able to fully utilize available information,
but they are often limited by computational constraints [17, 29, 30, 122, 188]. These
methods infer event properties by optimizing the likelihood of the observed data using
maximum likelihood estimation. In this MLE approach, the observed light pattern
in the detector is compared with the pattern expected for a certain event hypothesis.
One of the major limitations of the MLE approach is the accurate description of the
high-dimensional pulse arrival time pdf and expected charge at each DOM for a given
event hypothesis. The probability density function (pdf) of the pulse arrival time for
IceCube’s default reconstruction method is obtained from splines fit to tabulated Monte
Carlo simulations [17, 29]. Due to the high dimensionality, simplifications, such as the
approximate rotational symmetry in the x-y plane, must be used to reduce the size of
the look-up tables. MLE approaches via direct re-simulation exist [122], but they are
generally infeasible to run on a large number of events. Neural networks, by contrast,
are universal approximators that excel at interpolating high-dimensional data. A hybrid
reconstruction method is defined in the following that uses this property by replac-
ing the look-up tables with a generative neural network. The following discussion is
adopted literally from [208].

The generative model G
G(ξ⃗ ) = {λ⃗, P⃗(t)} (9.2)

is trained tomap the cascade hypothesis ξ⃗ = (x, y, z, θ,Φ, E, t) to the expected charge λ⃗
and pulse arrival time pdf P⃗(t) at each DOM. The pulse arrival time pdf Pd(t) at the d-th
DOM is parameterized by a mixture model

Pd(t) =
K∑︁
j
wj · AG(t|μ(d,j), σ(d,j), r(d,j)) (9.3)

of K asymmetric Gaussians [223]:

AG(x|μ, σ, r) = N ·

⎧⎨⎩exp
(︁
− (x−μ)

2

2σ2
)︁
, x ≤ μ

exp
(︁
− (x−μ)

2

2(σr)2
)︁
, otherwise

(9.4)

N = 2√
2π · σ(r + 1)

(9.5)



9.2 Deep Learning for IceCube | 255

where r parameterizes the asymmetry. The mixture model allows for a good description
of the pdf while keeping the number of free parameters reasonably low, as illustrated
in Figure 9.8.
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Fig. 9.8: The pulse arrival time pdf at a specific DOM gives insight into the incident angle and the
distance of the origin of the arriving photons. The legend indicates the string and DOM number,
the distance to the cascade vertex, incident angle, and the average charge collected over 1000
simulations. A mixture model of only three to five asymmetric Gaussians (five shown here) is enough
to provide a good description of the pdf. The generator neural network (NN) is able to model the pdf
on unseen data. The figure and caption are taken from [208].

The architecture of the generator NN is set up to output the parameters of the mixture
model {μ⃗d , σ⃗d , r⃗d , w⃗d} and the expected charge λd for each DOM. In order to utilize
the exact detector geometry and rotational and translational invariance in physics
parameter space of the neutrino interaction, relative displacement vectors and angles
to each individual DOM are computed and provided as input to the NN, as illustrated
in Figure 9.9. The neural network performs a series of convolutional layers with 1 × 1-
kernels. Internally this is implemented in the TensorFlow framework [28] via two-
dimensional convolutions. The first layer uses locally connected layers, i.e. it does
not apply weight sharing across DOMs. This allows the NN to model the position and
direction dependent on the symmetry-breaking optical properties of the ice. Subsequent
layers utilize standard convolution operations with weight sharing. Therefore, after
the initial locally connected layer, every DOM is treated equally. Additional domain
knowledge, such as the linear scaling of the collected charge to cascade energy or
the differing quantum efficiency ϵd of the DOMs, is directly incorporated into the
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Fig. 9.9: A sketch of the generator neural network architecture is shown. Due to the construction in
“forward direction”, similar to the Monte Carlo simulation, domain knowledge (examples indicated
in orange) can be explicitly included in the architecture. The figure and caption are taken from [208].

architecture, by scaling the expected charge output:

λ′d = λd ·
E

10TeV · ϵd . (9.6)

In general, the architecture may be configured analogously to the MC simulation, while
computationally expensive parts are replaced by a neural network approximation. Any
domain knowledge that goes into the Monte Carlo simulation may therefore also be
utilized in the generator NN. In contrast to standard deep learning architectures, this is
possible here because the generator NN is defined in the same “forward” direction as
the simulation. Standard deep learning applications, such as the CNN-based method,
attempt to directly infer the the quantities of interest from measured data, i.e., in the
“inverse” direction compared with the simulation. However, in this “inverse” direction,
it is a challenge to exploit information such as the symmetries of the underlying physics
interactions because the observed data is already convolvedwith detector effects, which
may break symmetries and lead to degeneracies.

Although the focus is on the reconstruction of cascades, this method can be gener-
alized to arbitrary light sources. In IceCube, any event topology can be built up from
a linear superposition of cascades and track segments, such that only two generative
models for these elementary source types are required. Systematic uncertainties may
also be included in the event hypothesis ξ⃗ as nuisance parameters. An alternative
method to account for systematic uncertainties is to marginalize over them during the
training process of the generator NN. This is accomplished by utilizing a training dataset
that employs the SnowStorm [23] method, which samples new systematic parameters
from a continuous prior distribution for every batch of simulated events.

For the training procedure, an extended unbinned likelihood over the measured
pulses is used. For the case without systematic parameters or systematic parameters as
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nuisance parameters, the per-event likelihood is defined as

ℓevent
(︁
x⃗ = {c⃗, t⃗} | ξ⃗

)︁
=

D∏︁
d
Poisson

(︃ Nd∑︁
i
cd,i | λd

(︁
ξ⃗
)︁)︃

·
Nd∏︁
i
Pd(td,i | ξ⃗ )cd,i , (9.7)

where D = 5160 is the total number of DOMs, Nd is the number of pulses at the d-
th DOM, and cd,i and td,i are the charge and time of the i-th pulse at the d-th DOM.
When marginalizing over systematics, one must account for the over-dispersion in
measured charge. In this case, the measured charge at a DOM no longer follows a
Poisson distribution and a Gamma-Poisson mixture distribution may be used instead.
The Gamma-Poisson mixture distribution is a real-valued pendant to the negative bino-
mial distribution. It is capable of modeling the over-dispersion. The parameterization
from [336] is chosen:

GammaPoisson (z|λ, α) =
Γ(z + 1

α )
Γ(z + 1)Γ( 1α )

(︂
1

1 + αλ

)︂ 1
α
(︂

αλ
1 + αλ

)︂z
(9.8)

which introduces the shape parameter α that leads to over-dispersion when α > 0. As a
result, the generator NN must also output the shape parameter α⃗ for each DOM and the
likelihood is modified to:

ℓevent
(︁
x⃗ = {c⃗, t⃗} | ξ⃗

)︁
=

D∏︁
d
GammaPoisson

(︃ Nd∑︁
i
cd,i | λd(ξ⃗ ), αd(ξ⃗ )

)︃
·
Nd∏︁
i
Pd(td,i | ξ⃗ )cd,i .

(9.9)

9.2.4 Model Performance and Applications

An additional benefit of the generator NN over the standard deep learning architectures
lies in the improved interpretability of the model. Individual components of the model
may be investigated and cross-checked. Figure 9.8 demonstrates that the model is
capable of correctly modeling the arrival time pdf on unseen data. It is also possible
to investigate how the pdfs change for individual DOMs when modifying the event
hypothesis. In Figure 9.10, an example is shown in which the cascade zenith values
and the z coordinate of the interaction vertex are shifted. As expected, the generator
NN models a smooth transition from one hypothesis to another.

The trained generative model may be used in a maximum-likelihood setting to
reconstruct events via the likelihoods provided in Equations 9.7 and 9.9. The hybrid
method is able to improve upon the CNN and the standard reconstruction method
over the whole energy range, leading to a significant boost in angular resolution (see
Figure 9.6). This is possible because the hybrid method is not subject to simplifications
and because it can benefit from available domain knowledge. Other applications of the
generative model include likelihood scans and Markov-Chain Monte Carlos, as well as
event simulation.
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Fig. 9.10: The pulse arrival time pdf, approximated by the generative model, is shown for three
different DOMs of the same event. The left panel shows the effect of modifying the z coordinate of
the cascade interaction vertex, while the right panel illustrates the change due to the varying zenith
angle. The figure and caption are taken from [208].

9.3 Flavor Tagging with Deep Learning LHC

Bernhard Spaan
Vukan Jevtic

Abstract: For time-dependent decay measurements of violations of CP-symmetry in
decays of neutral B mesons, it is indispensable to know whether the neutral B meson
has been produced as a particle or antiparticle. The method used for this purpose is
called flavor tagging. It allows us to infer the production state from the analysis of the
other particles in the event not belonging to the neutral Bmeson being analyzed. At the
LHC, numerous particles are produced,wheremost of them carry little to no information
on the production state of the neutral B meson, making it extremely difficult to derive
a decision on its production state. Therefore, the LHCb experiment uses a variety of
algorithms, which are optimized for specific decay signatures, thereby determining
the probability for the particle types at the time of production. A recent development
resulted in a new type of flavor-tagging algorithm, known as inclusive flavor tagging.
Contrary to the standard algorithms, where not only a few selected tracks are used, the
inclusive flavor tagging algorithms analyze all tracks measured in the collision. This
technique is also an example of the feasibility of a Full Event Interpretation, i.e., the
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overall view and interpretation of collisions at proton-proton colliders using methods
of machine learning and making use of recurrent neural networks and gated recurrent
units.

9.3.1 Neutral B Meson Oscillations and CP-Violation

One of the main research focuses of the LHCb experiment is the study of the physics of
neutral B0d (or B

0 for short) and B0s mesons. Mesons are particles that consist of two
valence quarks. B0 mesons contain one b quark (hence their name) and one d (down)
quark and come in two flavors B = (b̄, d) and B = (b, d̄), where the line above the
particle denotes the antiparticle state. B0s mesons contain a b quark and strange quark,
s, instead of d. Most often, the lifetimes of mesons carrying heavy quarks like bottom
quarks are extremely short, causing them to decay at the proton-proton beam collision
point right after their production. B mesons, by contrast, have a lifetime of 1.52ps,
allowing them to fly a distance of a fewmillimeters up to a centimeter before they decay
and thereby create a unique decay signature of a displaced decay vertex. During their
comparably long lives, B mesons (and neutral mesons in general) oscillate between
the two states B0 ↔ B0 and B0s ↔ B0s with a periodic, time-dependent probability.
Consequently, their production flavor does not always equal their decay flavor, in which
case one says that the meson hasmixed. This time-dependent probability is given by

Pmix(t) = 1
2

(︂
1 − cos(∆mt)

cosh(∆Γt)

)︂
(9.10)

in leading order of precision. Here, ∆m denotes the B oscillation frequency and ∆Γ is the
decaywidth difference of two quantum superposition states of neutral Bmesons BL and
BH, whose physics will not be explored further in this text, as ∆Γ is of almost negligible
size. For B0 mesons, ∆m = 0.5065ps−1 and for B0s mesons, ∆m = 17.757ps−1, hence
Bs mesons oscillate around 35 times faster than B mesons. Despite the comparably
slow oscillation of the B0, it is possible at LHCb to measure up to one full oscillation
with the available data.

Measuring this time-dependent oscillation opens the window to a wide range of
fascinating physics phenomena, like the violation of the charge-parity symmetry. In an
experimental setting this flavor oscillation is measured in terms of a time dependent
asymmetryA as follows

A = Γ(B(t) → f̄ ) − Γ(B(t) → f )
Γ(B(t) → f̄ ) + Γ(B(t) → f )

. (9.11)

Here, Γ(B(t) → f ) denotes the rate of the decay of B mesons that are produced with the
flavor B0 into some unspecified final state f . Analogously, Γ(B(t) → f̄ ) denotes the time
dependent decay rate of mesons produced as B into the anti-final state f̄ .

At electron-electron colliders, B mesons are produced in a mechanism that is
different from the one used at hadron colliders: there, Υ(4S) = (b, b̄) particles are
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produced at high rates, which predominantly decay into a B and B pair. Since the
daughter particle properties are fully inherited from its ancestor Υ(4S) particle, both B
mesons are produced in a state of quantum entanglement, where the measurement of
the production flavor of one of the mesons simultaneously determines the production
flavor of its undecayed partner. This is why in the context of these experiments, flavor
measurements are carried out in terms of B decay timedifferences,meaning that the first
meson to decay tags its partner. At hadron colliders, the b quark productionmechanism
does not result in the production of entangled B mesons. This hadronic production
environment will be the focus of the remainder of this section.

By formulating expression (9.11) in terms of decays ofmesonswith some production
flavor,we gain access to decayswhere f and f̄ are identical. These channels are of special
interest because they allow the measurement of CP-violation in the interference of the
decay and oscillation processes. This expression can then be rewritten as

A = S sin(∆mt) − C cos(∆mt)
cosh

(︀ 1
2∆Γt

)︀
+A∆Γ sinh

(︀ 1
2∆Γt

)︀ . (9.12)

Without going into more detail, the parameters S, C, andA∆Γ , with additional input of
other natural constants, can parametrize towhich degree CP-symmetry is violated in the
universe. CP-symmetry is the combined symmetry of charge C and parity P. If the charge
were indeed a fundamental symmetry, a mirror universe in terms of charge would be
in every possible way indistinguishable from our own universe; analogously, a parity-
inverted (i.e., mirrored) universe would display the same phenomena as an unmirrored
universe. Although these symmetries hold in classical physics, both symmetries have
been shown to be violated in quantum physics. Parity violation in weak interactions
(interactions mediated by the weak force) was discovered by C. Wu in 1956, and charge
violation is known to be violated inweak decays. Although the combined symmetry C ·P
is a much more robust symmetry and was hypothesized to be conserved in all possible
interactions, J. Cronin, V. Fitch, R. Turlay, and J. Christenson discovered CP-violation in
1964 in neutral kaon decays [123].

9.3.2 Flavor Tagging Technique

As explained in the previous section, measuring the production flavor is a crucial task
to get access to CP-violation and meson oscillation parameters. Flavor tagging is the
technique used at particle detectors (here, at proton-proton colliders in particular)
to determine the production flavor of neutral mesons. Since the decay flavor is not
always equal to the production flavor due to mixing, it cannot be deduced from the
particles that the B meson decays into at the end of its individual lifetime. Instead, the
production flavor is derived from information created at the time of the production
itself. After the bb̄ production process, the b quarks pair up with lighter quarks that
are created from the vacuum to form a variety of B hadron types because no quark can
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exist in an unbound state, i.e., in an isolated form. In Figure 9.11 such a hadronization
process is illustrated in a Feynman diagram, where time passes from left to right. The b
and b̄ quarks are created as a pair in a gluon-gluon fusion following the proton-proton
collision. The upper quark then interacts with the gluon field to produce additional
dd̄ and uū pairs, which form a neutral B0 meson and a charged pion, marked in red.
The neutral B0 is the signal particle of interest, and all processes associated with it are

b

b

d̄

d

ū

u

b

d

c̄

d

νμ

μ+

W+

d

B0

π−

D−

Fig. 9.11: Example of a bb̄ hadronization. In this (incomplete) Feynman diagram, time passes from
left to right. Feynman diagrams do not allow any conclusions about the spatial relations or the
temporal order of any two subprocesses if they happen acausally from each other. The upper (same
side) b quark hadronizes into the signal B0 meson and a (tagging) pion π−, while the lower (opposite
side) quark hadronizes differently to produce, among other particles, a charged tagging muon μ+.

called Same-Side (SS) processes, and processes coming from the b̄ hadronization are
referred to as Opposite-Side (OS) processes. On the opposite side, the b̄ interacts with
the gluon field to form a dd̄ pair. The created db̄ pair then forms an intermediate B0

meson that undergoes a weak decay (mediated by theW boson) into a charmed meson
D− and theW decays into a muon and a neutrino.

It is now essential to remember that electromagnetic charge is conserved at every
decay vertex, and therefore the charge of the SS pion is fully correlated to the flavor B0. It



262 | 9 Deep Learning Applications

is, therefore, possible to infer the production flavor by identifying these accompanying
messenger particles and measuring their charge, which is precisely the idea behind
flavor tagging.

At LHCb, processes like these happen in a hadronic environment. They contain
many more tracks from the primary interaction point (PV), which are produced by the
proton dismemberment and subsequent hadronizations and decays. Therefore, many
tracks in a collision event may be charged and well-measured but are still unrelated to
the signal meson itself. Even when the right set of tracks is found, it is impossible to
unambiguously relate it to some vertex in a process like the one shown in Figure 9.11
because these interactions happen for the most part instantaneously and at a single
point. Physical processes like mixing can play a role as well because if the intermediate
B0 on the opposite side would mix before it decayed as an example, it would result
in the final state D+μ−νμ instead of D−μ+νμ and suggest a wrong flavor for the signal
meson. Finally, not every track can be measured and saved, and when it is measured,
the uncertainty of the particle momentum, the particle type, and the measured charge
is determined, resulting in some tracks being reconstructed better than others.

Taking these challenges into account, it is clear that flavor tagging cannot produce
accurate measurements of the production flavor. At the same time, it is the only way to
do so. Flavor misidentification of a considerable magnitude is present in most events,
and the precise determination of the misidentification probability (themistag probabil-
ity) is instead a further optimization goal for this technique. If the misidentification
probability for each flavor estimate is precisely known, it is possible to flavor tag awhole
dataset correctly on averagewithout distorting the underlying physics. Parameters that
characterize the quality of a given tagging algorithm are explained in the following.

9.3.3 Flavor Tagging Formalism

A flavor tagging algorithm receives the reconstructed particle tracks and returns two
numbers: the tagging decision d and the mistag estimate η ∈ [0, 0.5]. The mistag is the
probability that the flavor has not been correctly determined. For events with η > 0.5,
these outputs are always transformed into η ↦→ 1− η and d ↦→ −d. The tagging efficiency
ϵtag is given by

ϵtag =
Nr + Nw

Nr + Nw + Nu
=
Ntagged
Ntotal

(9.13)

where Nr, Nw, Nu are the amounts of correctly tagged, incorrectly tagged and untagged
events, respectively, and quantifies the fraction of tagged events. The last metric needed
to quantify the quality of a flavor tagging algorithm is the flavor tagging dilution,D =
(1 − 2η), which takes the mistag probabilities into account by assigning each event an
effective weight, which is zero for η = 0.5 and 1 when η = 0. The tagging power, ϵtag,eff,
of the dataset measures the effective sample size for CP-violation measurementss and
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is given by
ϵtag,eff = ϵtagD2 = ϵtag

Ntagged

∑︁
i,tagged

(1 − 2ηi)2. (9.14)

This performance number is used to estimate the uncertainties of measured time-
dependent CP-asymmetries σ(A) via

σ(A) ∝ 1√︀
ϵtag,effNtotal

. (9.15)

From this equation, it follows that the tagging power gives an estimate of the effective
sample size. Imperfect flavor tagging has thus two effects, which need to be precisely
known in order to measure the correct physics parameters: it introduces amean dilution
⟨D⟩ which measures by how much the observed CP-asymmetry amplitude is flattened,
and it introduces uncertainties on the measured natural constants S (which is mostly the
oscillation amplitude), C, andA∆Γ . Standard flavor tagging algorithms have tagging
powers of around 1%, and by a combination of multiple different algorithms tagging
powers of up to 4 to 6% can be achieved, depending on the specific data set. These
low effective sample sizes show how challenging flavor tagging really is.

In practice, η is obtained from the output of a multivariate classifier and does not
really have the properties of an actual uncertainty in the statistical sense. Therefore,
the aforementioned performance estimates are commonly not computed using the raw
η distribution. Instead η is calibrated first so that the actual, true, misidentification
probability ηtrue = ω matches the mean mistag in bins of η. To that end, a calibration
polynomialω(η) is optimized on a flavor-specific decay channel like B+ → J/ψK+, where
the B flavor (B+ or B−) can, in fact, be determined unambiguously through its daughter
particles. This is possible because charged B mesons do not oscillate, and the kaon
charge can be measured with high precision.

9.3.4 Flavor Tagging Algorithms

All flavor tagging algorithms (taggers) at LHCb are multivariate classifiers, which are
either boosted decision trees or neural networks. These networks are trained with all,
or a selection of, reconstructed tracks, and the classification label is the production
flavor. The taggers are trained on flavor-specific samples B+ → J/ψK+ or B+ → J/ψK*(→
K+π−) where the production flavor can be estimated with high precision and where
CP-violation is not possible or is immeasurably small. In the case of the B0 training
channel, oscillation plays a role so that the true training label needs to be estimated
using Equation 9.10 which is evidently imperfect due to the probabilistic nature of
quantummechanics, but it is still demonstrably possible. Due to the physics of these
training channels, it is possible to train on real data aswell as onMonte Carlo-generated
samples. The following taggers are in use:
OSμ The OS muon tagger identifies a tagging muon on the opposite side.
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OSe The OS electron tagger identifies a tagging electron on the opposite side.
OSK The OS kaon tagger identifies a tagging kaon on the opposite side.
OScharm The OS charm tagger targets decays of charmed mesons on the opposite

side.
OSVtxCh The OS vertex charge tagger produces a tag using all the tracks and their

charges on the opposite side.
SSπ The SS pion tagger identifies pions that hadronize alongside the signal B meson.
SSp The SS proton tagger identifies protons that hadronize alongside the signal B

meson.
SSK The SS proton tagger identifies kaons that hadronize alongside the signal B0s

meson.

These algorithms do not cover nearly all physical processes that can be expected in bb̄
productions, but cover themost likely andmost recognizable ones. To train one of these
taggers, one track needs to be selected as the tagging track for every proton-proton
collision. Depending on the algorithm, quite often, a tagger cannot contribute to a
tag decision because particles do not exist in the data set. The tagging track selection
is usually made using simple, fixed selection cuts that exploit the conservation of
momentum (SS particles usually fly in the same direction as the signal) and the decay
signature of the displaced vertex to match them to the signal meson. The production
flavor is then directly determined from the track charge, and the mistag is determined
by a multivariate classifier.

The consequence of this approach is that tagging algorithms only use the one track
for tagging that they are specialized for. If a valuable track is lost in the track selection
or if really more than one track is needed to produce a solid tag decision, they fail to
produce the correct result. If two taggers produce contradicting or matching results,
the multivariate classifiers cannot exploit these correlations for tagging. This is why in
the past years, the development of a universal kind of tagger that analyses the whole
event has become the main research focus of the flavor tagging group at LHCb.

9.3.5 Inclusive Flavor Tagging

Inclusive flavor tagging is a technique where not just one but potentially all recon-
structed tracks in a given proton-proton collision are analyzed to produce a tagging
decision for a signal event. This creates a challenge for the choice of a multivariate clas-
sificationmodel because, in each collision, there are different numbers of reconstructed
tracks: In some collisions, as few as 30 tracks are reconstructed; in others, up to ca. 200
tracks can be found. Consequently, a classical approach of a neural networkwith a fixed
input vector or boosted decision trees cannot be used as long as this variability of tracks
is going to be tolerated. Instead, the choice was made to use an architecture where the
classifier does not operate on vectors of fixed dimension but instead on sequences of
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said vectors. Recurrent Neural Networks (RNN) have the property to not only feed an
input vector through a set number of layers but to re-route the network output back
to their input and pair it up with the next input instance (these would be vectors of
particle track features in our case) until all inputs are processed. In each iteration, these
networks update their “hidden” information vector, which can be interpreted in the
end as the network output.

A more sophisticated type of recurrent neural network that was chosen for this
task is the so-called Gated Recurrent Unit (GRU), which contains internal mechanisms
to selectively learn to forget information that is irrelevant in each input instance and
anothermechanism to combine the remaining, relevant informationwith the next input
instance to update its hidden state. The benefit of this network type is that the decay
of initial information (i.e., the first input tracks) is much smaller than in a pure RNN
and that the network learns to identify patterns that contain information on physical
processes.
The set of 18 per-track features includes most notably:
– The reconstructed particle charge as reconstructed from the track curvature in

LHCb’s magnetic field.
– The track transverse momentum pT =

√︁
p2x + p2y , where the z axis is pointing along

the proton beam. This feature is well understood to be correlated with reconstruc-
tion quality.

– Particle identification probabilities quantifying the likelihoods that a particle is
either an electron, muon, kaon, proton, pion, or whether the track has been recon-
structed in the absence of an actual particle.

– Angular differences in the LHCb detectors ϕ-η plane concerning the reconstructed
signal B meson. Due to conservation of momentum, tracks on the SS tend to fly
into the same general direction as the signal B meson. By contrast, OS tracks fly in
the opposite direction in the bb̄ collision reference frame.

– Impact parameters with respect to a) the primary interaction point of a proton-
proton collision and b) the reconstructed signal B meson. The impact parameter is
the closest distance of a track to a given point. This helps the network recognize
tracks associated with the Bmeson in question and to the primary interaction point
associated with the signal B production, as there can be multiple proton-proton
collisions in a single event that are by nature uncorrelated to each other.

The final choice of the network architecture is shown in Figure 9.12. Before the tracks

Input tracks
[⃗v0, · · · , v⃗n]

Sequential
Dense×2

GRU 1
↓

GRU 2
Flat Dense×3 Ω

Fig. 9.12: Neural network architecture of the inclusive tagger. A set of input tracks is fed into the net-
work and after a set of sequential and nonsequential layers, a scalar output Ω ∈ (0, 1) is produced.
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enter the network, the track features are transformed so that all track features are
standard normal distributed and then each track is further transformed with a flat
neural network of depth two. The transformed sequence of tracks is then fed into a
sequential GRU, which means that the hidden state is simultaneously fed into a second
GRU. When the network is done with iterating over tracks, the last hidden state of the
second GRU is then transformed with another 3 layers of a classical flat neural network.
The last network layer produces a scalar Ω ∈ (0, 1) output with the help of a sigmoid
activation function. This output is then directly translated into a mistag η and a tagging
decision d via

Ω ↦→
{︃
(1 − Ω, 1) if Ω > 1

2

(Ω, −1) else
= (η, d). (9.16)

This approach differs notably from the classical approach since the tag decision is
determined by the network and is not inferred purely from the charge of one carefully
selected particle and its assumed production process.

The network is trained on data sets of flavor-specific decays. For example B± →
J/ψK±, which has been prepared so that the particles, into which the B+ meson decays,
are removed because these tracks would instantly give away the initial flavor. This is
undesirable since a flavor tagging algorithm should apply to B decays in general and
interpret the hadronization tracks rather than applying to only one certain decay. In
this example, two muon tracks coming from the J/ψ and the K+ track are removed from
each event in the training data. The training label is the production flavor which is
known in this channel through the K± charge, and the network is then trained with
around 1.5 million simulated events with a mean of 40 tracks in each one of them. For
the validation sample, 30% of the total statistics are allocated, and for the performance
evaluation, another 10% is reserved and does not enter the training in any way.

During the development, the choice of the activation function for the dense layers
has proven to be important. This is because the widely known Rectified Linear Unit
(ReLU), defined as

ReLU(x) =
{︃
x x ≥ 0
0 else

(9.17)

produces output distributions that exhibit a variety of features in this classification
problem. These include unexpected peaks and shapes, which are of concern since such
extreme differences between matter and antimatter, i.e., measurements of positive
and negative charges, are not expected. During development, this triggered many
discussions and investigations about possible network defects or imperfect simulation
samples. This problem was eventually solved using Exponential Linear Units (ELUs),
which are defined as

ELU(x) =

⎧⎪⎪⎨⎪⎪⎩
x x ≥ 0

alpha(ex − 1) else

(9.18)
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ELUs have a smooth derivative, but otherwise have very similar advantages to ReLU
activations. Another major point of investigation has focused on understanding shifts
in the output distribution to one of the training labels. Again, this is not expected
as the network is trained with very similar amounts of training labels and cannot be
explained through physics. In the end, it has shown that this network architecture is so
sensitive to training label asymmetries that differences in the permille level can cause
tagging asymmetries of up to 15%. Needless to say, a tagger that tags an event with a
bias towards one of the flavors would be rejected. By using the exact same amounts
of training labels for each flavor and ensuring that the training labels are perfectly
balanced in each training batch, the mean observed asymmetries was reduced to a
level below one percent.

Figure 9.13 shows the output distribution of the final trained network. The total
output is shown in black, and the colored histograms show the output components
that are made of B− and B+ tagged mesons, respectively. The flavor separation is clearly
visible, and the output distribution is symmetric, as expected from the first principles.
The performance of this network was estimated to be around ϵtag,eff = 10.5% which is

0.0 0.2 0.4 0.6 0.8 1.0
NN prediction

0

500

1000

1500

2000

E
n

tr
ie

s

NN Output

True B- 

True B+

Fig. 9.13: Neural network output of a network trained on a B+ → J/ψK+ simulation which is applied
to the test sample. The black histogram shows the total output distribution and the blue (red) his-
tograms show the data belonging to each of the flavors B− and B+, respectively.
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an excellent result since only ϵtag,eff = 6% can be achieved with the classical method.
Given that the LHC has been taking data for four years during Run 2, this relative
improvement of tagging power has a comparable effect to taking data for roughly
another two years. It has since been shown that this specific network performs similarly
well on real data taken by the LHCb detector. Further research into applying thismethod
to crucial channels such as B0 → J/ψK*(892) and B0s → D+

s π− is ongoing. It is expected
to reach similar performance improvements given that the production of associated
tracks, i.e., hadronization tracks, is very similar in these channels.

9.4 A Deep Learning Analysis Pipeline for Gamma Ray Astronomy

Lukas Pfahler
Sebastian Buschjäger

Abstract: As introduced in Chapter 1, machine learning is one of the cornerstones of
data analysis for modern gamma-ray astronomy. We show how to solve three important
machine learning tasks in gamma-ray astronomy, namely gamma-hadron separation,
origin estimation, and energy estimation, in a joint neural network architecture. Current
solutions heavily rely on expert-designed, hand-crafted features. These features are
computed in a long data-processing pipeline and are used to train separate random
forest for different tasks.
By contrast, we build a single neural model that works directly on photon count

data and uses convolution layers to learn suitable feature representations. The network
is constructed with three prediction heads, one for each of the learning tasks, which
share all convolution layers. Hence, we learn representations that are not only useful
for a single task but for all three tasks. We design loss functions for each task and, more
importantly, propose a novel way of combining the different loss functions to account
for their different scales and behaviors.
Our experiments for the FACT telescope show that this approach outperforms hand-

crafted features and random forests by a large margin on simulation data. Furthermore,
we show that our approach does not only work well on simulated data but also on real
cosmic events originating in the Crab Nebula, a supernova remnant.
This section is based on a prior conference paper [109]. Its long-form version was

originally published in [304].
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9.4.1 Introduction

To study our universe, modern astronomy observes high energy particles emitted from
celestial objects in order to categorize the sources together with their key characteris-
tics. For example, different types of supernovae remnants can be found by observing
high-energy beams [115]. Large international collaborations deploy a wide variety of
detector hardware including telescopes [53, 226, 303] to observe different ranges of
electromagnetic beams. In high-energy gamma-ray astronomy, we have to solve three
machine learning problems. The first is the distinction between gamma rays, which
indicate a celestial object, and background noise mostly produced by cosmic rays from
hadrons that do not allow for conclusion on a particular source. This is known as the
the gamma-hadron separation problem. Secondly, we want to estimate the energy of
the recorded particle. And third, we need to reconstruct its origin, which is particularly
challenging in the mono-telescope setting of the FACT experiment.

As we have already seen in previous chapters, machine learning has been estab-
lished as an effective tool for analyzing modern high-energy particle experiments and
solving the above-mentioned prediction problems [88, 294]. Current approaches use
a basic hardware trigger, i.e., they begin the recording of an event when sufficient
energy hits the detector. Then, a complex analysis pipeline calibrates the data and
extracts pre-defined features, which are used for classifying the stored event as hadron
or gamma rays.

We asked ourselveswhetherwe could replace the long pipelinewith a deep learning
process. Deep learning is supposed to decrease the burden of feature engineering, as
the network already learns a suitable feature representation. Is this true for gamma-
ray astronomy? Works in other telescope projects suggest the benefits of using deep
learning [215, 291, 348]. However, deep learning is widely known to be resource-hungry,
requiring not only vast amounts of training data but also GPU hours for training as
well as applying models. Future monitoring facilities will be installed around the world
for a round-about view of the sky[330]. They need to detect interesting gamma events
fast so that they can notify the other telescopes, which then turn in order to record
the event from their angle. In modern multi-messenger astrophysics, even different
types of detectors inform each other so that the same event can be verified by different
measurements. So we have to consider not only the quality of our model predictions
but also take into account the resource constraints of executing the models.

9.4.2 Event-Tagging Pipeline

In this section, we describe the application of a multitask deep network in the data
analysis pipeline of the First G-APD Cherenkov Telescope (FACT). In the training data,
each event is represented as an image where each of 1440 pixels contains a photon
count represented as a positive integer.
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Fig. 9.14: Hexagonal data transformed to a quadratic grid. The transformation is bijective in the
green (and blue) area and does not change the raw values. However, it only approximates the neigh-
borhood relationships of the original hexagonal image. Red areas are padded with zeros.

The photon count representation is based on the single-photon extraction for FACT’s
SiPM sensors proposed by Mueller et al.[282] and is implemented in the photon-stream
software library [287].

In the camera, these pixels are arranged in a hexagonal grid. We chose to embed
these pixels in a regular, quadratic grid of size 45 × 45 where the additional pixels are
padded zero values, as depicted in Figure 9.14. This allows us to use regular convolu-
tional neural networks rather than networks specialized for hex-grids. Given the image
data, the three learning tasks already introduced in Section 8.4 should be tackled, gen-
erating annotated events for further downstream analysis. These tasks, gamma-hadron
separation, energy estimation, and origin estimation, will be solved by a single deep
neural network without the need for manual feature engineering.

9.4.3 Multi-Task Deep Neural Networks

We design a model that solves all three learning tasks simultaneously, as also proposed
by Jacquemont et al. [216]. It utilizes a shared encoder architecture that extracts features
from the raw photon count images, and these features are passed into three separate
prediction heads. The whole network is trained jointly on all tasks. We begin by dis-
cussing each task individually and present the corresponding prediction heads as well
as loss functions. Then we present our approach for combining the losses to train with
three prediction heads.

Gamma-Hadron Separation is a binary classification task. Early approaches based
on manually-designed decision rules were already quite successful. Also, simple ma-
chine learning rules based on histogram features already achieve good classification
performance. The random forest approaches outlined in Section 8.4.2 achieve excel-
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lent classification results but are outperformed on simulation data by deep learning
approaches like the one proposed by Buschjaeger et al. [109]. For application on real
telescope recordings, this performance advantage on simulation data does not increase
source detection performance, hinting at overfitting to peculiarities of the simulation
[109], an issue that may be addressed through domain adaptation techniques [147].

For the classification task we rely on the standard cross-entropy loss function. The
classification head outputs a probability ŷ that the recorded event is a gamma event.
We minimize the negative log-likelihood of the ground-truth label

ℓ(ŷ, y) = −y log ŷ + (1 − y) log(1 − ŷ). (9.19)

To ensure that the outputs are indeed valid probabilities, we apply the sigmoid activa-
tion σ(a) = 1/(1 + exp(−x)) after the final affine layer.

Energy Estimation is a univariate regression task.We use an affine function to output
the prediction given the last hidden representation. Instead of using an absolute error,
we prefer the relative error that normalizes the difference between target and prediction
by the true energy level. We use the loss function

ℓ(ŷ, y) = |y − ŷ|
y . (9.20)

and apply the exponential function as an activation function after the last layer to
account for the power-law distribution of energies. This presents an alternative to
minimizing the squared difference between the log-target and the prediction, another
approach to dealing with the power-law proposed in Section 8.4.3.

Origin Estimation is a two-dimensional regression task. In Section 8.4.4, we have
seen an approach based on the disp-method that separates the task into a 1d regression
task and a classification task by assuming the event originates on the main axis of the
reconstructed shower axis. However, since we no longer estimate Hillas parameters
but want to rely on a fully-learned analysis pipeline parameterized by a deep network,
we instead tackle the problem as a 2d-regression task and try to predict the position
of the source on the camera pane. This approach uses less domain knowledge, which
might be a disadvantage, but we might eliminate errors where the reconstruction of the
shower axis is flawed.

Our prediction head uses an affine map to compute the coordinates given the last
hidden representation. For downstream tasks like source detection, it is important that
the angle θ between the predicted source position and the actual position is as small
as possible. We compute this angle θ accounting for the geometry of the telescope and
use it as the loss function that is minimized during training.

Multi-Head Architecture Our multitask network is structured as in Figure 9.15: We
utilize a shared base encoder, i.e., a convolutional neural network that takes the input
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Fig. 9.15: Schematic of our Multi-Head Architecture.

images and maps them into a latent vector space. Then this vector representation
is fed into three separate prediction heads, i.e., multilayer perceptrons that take the
representation and compute a one- or two-dimensional output for each task.

For this study, we rely on different EfficientNet architectures [363] for our base
encoder. The prediction heads alternate fully-connected layers of a fixed-width with
batch normalization layers and ReLU activations for a specified number of layers. It
computes output using a single affine layer with the desired number of outputs, as
described above.

Multi-Head Loss Combining the three loss functions outlined above is not trivial
because they have very different loss value ranges. This results in different magnitudes
of the gradients used during the neural network training. Consequently, taskswith large
gradients dominate the training. An ad-hoc solution is figuring out a set of weights and
optimizing a weighted sum of the losses. This, however, is a tedious task, particularly
when experimenting with different losses or transformations of the targets.

We propose using a normalization layer inspired by batch normalization that learns
a normalizing constant for each loss. This constant is supposed to correspond to the
inverse of a loss value easily obtained after a short amount of training, a kind of default
loss. Hence we measure the loss relative to the default loss.

Let lt = (lt1, ..., ltk) be the vector of individual losses observed at the t-th weight
update for t ∈ N0. We compute the following aggregates loss l̄t

wt ← (1 − t−α)wt−1 + t−α lt (9.21)

l̄t ← 1
k

k∑︁
i=1

wti lti (9.22)

where α ≥ 1 controls the speed of convergence of w to the default loss. We use α = 1.2 in
all of our experiments, but preliminary studies found that varying this hyperparameter
had little effect.
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Tab. 9.1: Comparison of the different EfficientNet model architectures used for our study regarding
runtime.

Model  Number of Parameters   Fit Time in Seconds

efficientnet-b0 13 540 617 4 542.39
efficientnet-b1 16 046 253 6 694.09
efficientnet-b2 18 062 479 7 892.63
efficientnet-b3 21 877 725 10 367.49
efficientnet-b4 30 345 765 14 079.15
efficientnet-b5 42 721 037 18 886.73
efficientnet-b6 56 666 077 24 860.95
efficientnet-b7 81 234 685 33 882.70

9.4.4 Model Performance and Applications

We study two key questions: First, can CNNs replace hand-crafted features with reason-
able accuracy on simulated data? Second, will these models generalize well enough to
be used for real data?

Data When applying machine learning in astrophysics, it is difficult to obtain labeled
data. A common approach to solve this problem is to combine Monte Carlo simulations
(see Chapter 5) with a careful training of the classifier. Astrophysics has a profound
understandingof particle interactions in the atmosphere. Given the energy anddirection
of some parent particle (gamma, proton, etc.), its interaction can be described by a
probabilistic model that gives a probability for particle collisions, possibly resulting in
secondary particles, which again may interact with each other. This results in a cascade
of interactions that form the air shower, which can be simulated in software like the
CORSIKA simulator [194]. The output is a simulated air shower, which needs to be run
through a simulation of the telescope and camera device to produce realistic, raw data
mimicking a shower that would have been recorded using the telescope. This allows us
to simulate interesting particles (e.g., gamma) and uninteresting particles (e.g., proton)
and label the resulting raw data accordingly. Furthermore, we can simulate particles of
different energy levels and control the source position of the simulated gamma rays.

For our study, the simulation is run in the so-called diffuse mode that simulates
gamma particles originating from positions distributed uniformly in the camera pane
(see Section 8.4.1). comparedwith simulating only particles originating in the “Wobble”-
ring, this allows to train source reconstruction models and reduces the bias toward
gamma at wobble positions in gamma-hadron classifiers.

Models Architectures and Hyperparameters Our study investigates deep networks
based on the EfficientNet architecture, which we train from scratch for our application.
This family of deep networks contains seven differently sized models. Instead of the
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traditional classification head, we use our multi-head architecture. We use heads of
depth 3 with a fixed width of 512 neurons. In Table 9.1, we see the different resource
requirements for the architectures considered in this study. The runtimes for fitting the
deep network are measured on a Nvidia DGX-A100 using a single GPU.

Simulation Studies In Table 9.2, we see that the performance on holdout-simulation
data is very good across all architectures. The classification performance of the gamma-
hadron separation task is traditionally measured via the area under the ROC curve, and
all models score roughly the same. Similarly, the origin estimation does not depend on
the architecture. The energy estimation error, however, is larger for the three smallest
architectures. In addition, one training run for efficientnet-b7 failed to produce a good
model for the energy estimation, resulting in the outlier mean and standard deviation
score.

The performance of origin estimation is measured via the average angle θ between
the true and the estimated origin. A more detailed analysis in Figure 9.16 (left) reveals
that the deep-network analysis outperforms the random forest-based analysis sub-
stantially for lower energy, but is not competitive for higher energies. This angular
resolution plot shows the 68% quantile of the angles between true and estimated ori-
gin for different energy levels. A similar effect can be observed for the energy estimation.
We see in Figure 9.16 (right) that for lower-energy particles, our deep network approach
has a lower bias than the random forest analysis and that this effect reverses for higher
energies. Here bias is defined as themedian of the relative L1-error, and resolution is the
difference between the 84.1% quantile and the 15.9% quantile of the relative L1-error,
or intuitively the width of a confidence interval around the median error [294, Equation
6.5].

Two orthogonal approaches to further improve the performance come to mind:
Using weighted sampling, we can increase the importance of the rarer higher-energy
particles during training, with the hope of improving our results in the tail. Additionally,
the combination of a random forest model with our deep network looks promising for
getting a good performance across all energy levels.

Looking at the resource consumption of our models, we note that the smallest
efficientnet-b0 can still be executed efficiently and fast. On an Apple Macbook Pro 2020,
using a single Intel i7 CPU core, it takes 4.48237±0.3082ms to tag a single event using
onnx-runtime[297], which is sufficiently fast for the typical arrival times in the FACT
experiment without the need for specialized hardware.

OpenCrab Source Detection Now we evaluate the trained models from the last
section on real-world data collected by the FACT telescope at the Observatorio del
Roque de Los Muchachos (La Palma, Canary Islands, Spain). The telescope has been
directed once towards a known gamma source, the Crab Nebula. Thus, a significantly
higher number of gamma ray candidates originates from the direction of the known
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Fig. 9.16: Angular resolution of the origin estimator for different energy levels (left) and bias and
resolution of the energy estimator. Transparent markers show the performance of the random-forest-
based estimators.

Tab. 9.2: Performance of the three prediction heads on simulation data of the different multi-task
model architectures.

Model AUC-ROC ↑ Direction θ ↓ Energy Error ↓

efficientnet-b0 0.8939 ± 0.0020 0.3253 ± 0.0035 0.3646 ± 0.0856
efficientnet-b1 0.8972 ± 0.0026 0.3194 ± 0.0040 0.3540 ± 0.0767
efficientnet-b2 0.8968 ± 0.0038 0.3236 ± 0.0079 0.3407 ± 0.0603
efficientnet-b3 0.8953 ± 0.0040 0.3226 ± 0.0061 0.3273 ± 0.0515
efficientnet-b4 0.8898 ± 0.0066 0.3477 ± 0.0606 0.3248 ± 0.0543
efficientnet-b5 0.8883 ± 0.0083 0.3263 ± 0.0100 0.3383 ± 0.0530
efficientnet-b6 0.8929 ± 0.0035 0.3190 ± 0.0020 0.3294 ± 0.0345
efficientnet-b7 0.8897 ± 0.0041 0.3237 ± 0.0059 0.3936 ± 0.1476
efficientnet-b8 0.8876 ± 0.0087 0.3281 ± 0.0130 0.3217 ± 0.0103

SOTA Random Forest 0.7720 ± 0.0004 0.6127 ± 0.0006 0.3275 ± 0.0006
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gamma-ray source than from other directions. On these recorded data, we run the full
source detection pipeline of the FACT experiment and investigate the influence of the
gamma-hadron separation models on the overall quality of the source detection.

The evaluation proceeds in the following steps. We take the publicly available
Crab Nebula observation data [53, 84], which consist of 17.7 hours or 3 972 043 recorded
events. Our multi-task model is applied to the events and estimates the probability of
an event being a gamma particle and its direction of origin.

From the direction, we compute the angle between the trajectory of any incoming
ray and the known direction of the Crab Nebula. The number of gamma rays can be
regarded as a distribution that depends on the angle. High counts are to be expected
for small angles. The distribution with respect to the direction of the Crab Nebula is
called an on-distribution [165]. Contrasting the distribution of counts with distributions
for five different positions with no known gamma sources yields the off-distributions. A
uniform distribution of counts over angles is expected, where the majority of counted
rays can be attributed to misclassified hadronic rays. We state the null hypothesis that
on-distribution and off-distribution follow the same distribution or, intuitively, that
there is no gamma source in the direction of the Crab Nebula. The margin by which a
significance test rejects this null-hypothesis gives us a significance of detection SLi&Ma,
reported by the number of standard deviations σ [250].

Definition 6 (Li & Ma statistic). Let Non, Noff be the number of events in the on- and
off-positions. Let α = 1

k where k is the number of considered off-regions. Then we define

SLi&Ma(Non, Noff) =
[︂
2Non · ln

(︂
1 + α
α · Non

Non + Noff

)︂
+2Noff · ln

(︂
(1 + α) ·

Noff
Non + Noff

)︂]︂1/2
.

This SLi&Ma is the performance metric for gamma source detection, where larger num-
bers are better. A more detailed discussion of this statistic is delayed until next section.

The trained classifiers output probabilities that an event is a gamma-ray. We can
control the classification behavior by varying the threshold for actually predicting
gamma. A large threshold yields fewer events and also fewer misclassified events
because the classifier is more certain. If we set the threshold too large, we get too few
total events, resulting in a small statistical significance. By contrast, if we decrease
the threshold, we obtain more events but also more misclassifications. If we set the
value too small, we count too many noise events, and the difference between on- and
off-distribution shrinks, which also yields a low detection significance. Following
common practice in gamma-ray astronomy, we chose the threshold that maximizes the
significance of detection.

As we can see in Table 9.3, the significance of detection is large for all models that
we have tested. Particularly the smaller models up to efficientnet-b3 obtain large mean
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Fig. 9.17: Histogram of the frequencies of gamma predictions as a function of the squared angular
distance between the trajectory of any incoming ray and a position in the sky for efficientnet-b0
(left) and the standard analysis using random forest (right). On-events show the frequency with
respect to the position of the Crab Nebula, while off-events reflect positions with no known sources.
The significance of the detection test only considers angles smaller than 0.025 (left of the dashed
vertical line).

Tab. 9.3: Significance of detection (Definition 6) on Crab Nebula data of the different model architec-
tures.

Model Mean ± Std-Dev Min Max

efficientnet-b0 26.85 ± 0.57 26.07 29.51
efficientnet-b1 27.28 ± 1.38 23.71 29.26
efficientnet-b2 27.02 ± 1.17 25.03 28.77
efficientnet-b3 26.73 ± 1.10 25.49 29.24
efficientnet-b4 26.80 ± 1.04 24.87 28.44
efficientnet-b5 26.49 ± 1.16 24.40 27.75
efficientnet-b6 25.64 ± 0.90 24.33 26.85
efficientnet-b7 25.64 ± 1.21 23.01 27.12
efficientnet-b8 25.66 ± 0.41 25.18 26.10

SOTA Random Forest 26.25 ± 0.15 - -
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significances of detection that seem to outperform the current state-of-the-art random
forest models. However, we must note the large variance between the different runs of
the examples. The standard deviation is one order of magnitude larger than for the ran-
dom forest models. Unfortunately, we often observe this pattern for deep networks [94,
306]. Another drawback is that the performancemeasured on simulated data (Table 9.2)
does not approximately predict the detection scores. For practitioners, advantages still
remain, however. If we have the budget to train a number of candidate models, we can
pick one that works really well. Looking at the maximum reported detection scores, we
see that they exceed 29.0σ, which marks a substantial improvement on the state of the
art.

We conclude that our multi-task model not only works on simulation data but also
provides meaningful results on real-world source detection tasks. In Figure 9.17, we
see how the efficientnet-b0model achieves a higher significance of detection than the
current random-forest-based approach. Comparing the number of on-events and off-
events, we see that it predicts more gamma events in the on-region, yielding a stronger
signal of the source.

9.4.5 Discussion

Machine Learning is one of the basic building blocks of modern high-energy astropar-
ticle experiments. One important task is the gamma-hadron separation, which aims
at separating interesting gamma events from hadronic background. The FACT tele-
scope measures Cherenkov light emitted in the earth’s atmosphere when hit by gamma
beams. The telescope measures at a rate of 60 events per second; better telescopes
even measure orders of magnitudes faster, motivating the demand for fast processing
pipelines. This is even more crucial for large telescope arrays in one location or global
distribution of sites that are possibly being deployed under resource constraints and
remote locations. Current approaches solve the event-tagging problem for FACT by
using long processing pipelines that extract hand-crafted features, which are then
used by random forests. In this section, we successfully replaced the long classification
pipeline with a CNN.
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Abstract: The reconstruction of experimentally inaccessible quantities is a common
challenge in particle and astroparticle physics. This challenge arises for energy spectra
of primary particles, e.g., gamma-rays or neutrinos, which are obtained only indirectly
via the energy losses of secondary particles recorded in the detector. Unfortunately,
the dependency between the energy of the primary particle and the energy loss of a
secondary particle is governed by stochastic processes. A mathematical description of
such processes is provided by the Fredholm integral equation of the first kind, which
needs to be solved in order to obtain the desired energy spectra. The solution can
be obtained by the utilization of deconvolution algorithms, which provide stable and
accurate estimates by introducing regularization techniques to suppress their otherwise
large variances. In this chapter, we describe the two deconvolution algorithms—DSEA+
(Dortmund Spectrum Estimation Algorithm) and TRUEE (Time-Dependent Regularized
Unfolding for Economics and Engineering)—developed in CRC 876. While stable and
accurate results can be obtained with both algorithms, the difference between the
two arises from the way in which the inverse problem is solved. Within TRUEE, the
inverse problem is solved in a maximum-likelihood approach, while DSEA interprets
the inverse problem as a multinominal classification task. Accordingly, different fields
of application arise for each algorithm.

In particle and astroparticle physics, measuring distributions of quantities that are
experimentally inaccessible is a task that is both common andmathematically challeng-
ing. Inaccessible quantities of interest can only be inferred from correlated observables,
an example of which is already given by the simple case of a liquid thermometer. Essen-
tially, such a thermometer does not measure temperature directly but the height of a
liquid in a narrow glass cylinder. Fortunately, a linear expression exists, which connects
the height of the liquid to the temperature of the surroundingmedium. For convenience,
the manufacturer has already used this linear expression to ship the thermometer with
a temperature scale, which allows us to directly read the temperature, although we
actually read the height of the liquid.

Open Access. ©2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
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In particle and astroparticle physics, matters are often not this fortunate. The the quan-
tity of interest and themeasured observable are not connected by a simple linear (or by a
simple non-linear) equation. Instead, stochastical processes, e.g., particle interactions,
are involved, which pose one of the largest challenges in measuring inaccessible quan-
tities. Luckily, tools and algorithms exist that allow us to overcome these challenges.
These tools and algorithms are referred to as unfolding or deconvolutionmethods. Some
of these tools, in particular those developed in the context of the CRC 876, are the
subject of this chapter.

This chapter is organized as follows: the remainder of this introduction provides a
brief overview of the scope of a deconvolution analysis, while the mathematical back-
groundof deconvolution is provided in Section 10.2. Section 10.3 provides anoverviewof
likelihood-based deconvolution methods, whereas a machine learning-based approach
to this matter is given in Section 10.4. Deconvolution analyses are exemplified from a
practical point of view via analyses from Imaging Cherenkov astronomy (Section 10.5)
and neutrino astronomy (Section 10.6).

Remark (Nomenclature) Before we provide further details on the scope of decon-
volution analyses, it seems appropriate to add a remark regarding the nomenclature
in this book. Compared with Chapter 2, the meaning of the variables x and y are ex-
changed here in order to complywith the standard notation inmachine learning.Within
this chapter, y represents the sought-after target variable, whereas x is a measurable
observable. This exchange in the meaning of the two variables is, however, purely
syntactical and does not impact the validity of the statements regarding the matter of
deconvolution in previous chapters.

In neutrino astronomy, as well as in many other areas of astroparticle physics, the
outcome of most deconvolution analyses is an energy spectrum that is obtained for
a certain type of particle and, sometimes, for a certain source of these particles. In a
simplified view, these energy spectra follow power laws of the form dΦ

dE = Φ0E−γ, where
Φ0 and γ take different values for different particles and also different values for the
same particle if this particle was generated by different productionmechanisms. This is,
for example, the case formuon neutrinos, νμ, where themeasured spectrum is expected
to be the sum of three components. That is to say, these components are conventional
atmospheric neutrinos and prompt atmospheric neutrinos, and high-energy neutrinos
from astrophysical sources.

However, the scope of a deconvolution analysis is not to measure the individual
Φ0 and γ of such components. Forward-folding methods are, for example, better suited
for this task. In order to do so, these methods have to assume certain flux distributions
derived from theoretical models (conventional and prompt) or must simply be assumed
to follow a power law (astrophysical). Theoretical considerations of this kind, although
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providing valuable input to deconvolution analyses, might be incorrect with respect to
certain small-scale features of the flux.

A deconvolution analysis does not have these limitations, and, even though sim-
ulated events, generated according to a certain distribution, are used to model the
response function, the outcome of such an analysis is much more model-independent.
By using deconvolved spectra, it was possible, for example, to confirm the observation
of a flux of high-energy astrophysical neutrinos in a model-independent analysis [18].
One particular strength of the obtained deconvolution results is that they allow theorists
to calibrate their theories such that their predictions agreewith the experimental results.
This benefit is particularly important for theoretical models that use extrapolations to
predict fluxes at high energies. Deconvolution results also enable comparisons between
spectra that are obtained with different experiments, although this opportunity has to
be taken with a grain of salt in some cases. For neutrino telescopes, for example, the
angular ranges of multiple measurements might be different, and this difference can
cause deviations between their observed fluxes.

10.2 Keynote: Introduction to Inverse Problems

Michael Schmelling

Abstract: A common challenge in particle and astroparticle physics is the reconstruc-
tion of spectra distorted by the measurement process. A mathematical description of
the problem is provided by the Fredholm integral equation of the first kind, which
needs to be solved in order to obtain the information of interest. Here we give a general
introduction, which defines the notation, describes the kind of effects one has to deal
with, and quantifies them in information-theoretical terms. Algorithms that provide
solutions for inverse problems by either likelihood- or classification-based approaches
are then discussed in the following sections.

A central problem of any data-driven inference is the fact that a measurement almost
always is only an indirect probe for the quantity of interest. This applies even to the
seemingly obvious case of measuring the distance between two points with a ruler,
where the actual reading is a proxy for the true thickness that is affected by the calibra-
tion of the ruler and the precision with which it can be read off.

The complexity increases dramatically when the quantity of interest is not a simple
scalar quantity but a vector of discrete states or a continuum described by a probability
density. Examples from the field of particle or astroparticle physics are multiplicity
distributions or energy spectra of final state particles, which are created in high-energy
collisions where every single measurement can be due to a vector of true values. The
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inverse problem that must be solved is to infer the true distribution from a measured
one when the distortion by the measurement process is known.

When a parametric model of the true distribution is given, the inverse problem
can be solved by fitting those parameters to the data. This approach is referred to as
“forward folding”. The more demanding situation, however, is when no such model
exists. Since a true continuum cannot be probed by a finite number of measurements, a
moremodel-independent unfoldingwill be based on a discretized version of the density,
such as a step-function that can be represented by a histogram or by an expansion into
higher-order spline-functions or into a suitable basis of orthogonal polynomials.

In the following,we focus on the continuousunfoldingproblemandassumea linear
detector response. Denoting by X the space of observables and by Y the space of the
true quantities of interest, the density f (y) describes the true distribution and g(x) the
observable density. We assume that f is a probability density function (pdf), that here
the integral over Y is normalized. For g(x) this holds only if the measurement process
preserves the normalization. The measurement process is described by a response
function A(x|y), which for each y gives the distribution of the observable x. The relation
between g(x) and f (y) is given by a Fredholm integral equation of the first kind

g(x) =
∫︁
Y

dy A(x|y) f (y) . (10.1)

When the response function A(x|y) is known, e.g. from calibration measurements or
accurate simulations of the detector, and given g(x), then Equation 10.1 can be inverted
to extract f (y).

A typical experiment does not measure g(x), but records a finite sample of N in-
dividual measurements xn ∈ X, n = 1, . . . , N, drawn from a pdf proportional to g(x).
The exact density g(x) is not known, but the measurements can be aggregated into
an estimate ĝ(x), which then can be used to construct an estimate f̂ of the true pdf.
Alternatively one can also directly map the measurements from the space X of the ob-
servations Y and aggregate the mappings into an estimate f̂ . In either case, the primary
quantities to infer f (y) are the measurements D = {xn ∈ X : 1 ≤ n ≤ N}.

10.2.1 Information

For a quantitative discussion of how the response function affects the measurement, it
is helpful to have an expansion of a generic true pdf f into a complete set of orthogonal
functions, where the individual terms can be associated with well defined features of f .
Here we will consider functions that are defined on a finite interval, which without loss
of generality can be taken as [0, π]. The true distribution can then be expanded into
simple harmonic functions

f (y) =
∞∑︁
k=0

ak cos(k y) , (10.2)
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where the basis functions have k equidistant zero crossings on the range [0, π]. The
coefficients ak have a simple intuitive interpretation regarding the resolution at which
they probe the density f , which is qualitatively given by π/(k + 1) and closely related
to the information given in a histogram with k + 1 equal-size bins. Figure 10.1 shows
those basis functions for k = 0, . . . , 6.

k=0

cos(ky)

k=1

k=2

k=3

k=4

k=5

0 1 2 3
y

k=6

Fig. 10.1: Harmonic basis used to quantify the information about the shape of a pdf f (y) defined on
the range y ∈ [0, π].

The knowledge about f (y) then is given by the coefficients ak, and the key question
of each experiment is how well those coefficients can be estimated from a set of mea-
surements. When taking variance as a measure for the precision of a measurement,
the optimum is the Cramer-Raó limit which states that the minimum variance of an
unbiased estimator of the ak is given by the inverse of the Fisher information. The
Fisher information I is proportional to the number of measurements N, with a pro-
portionality factor that depends on the pdf ρ, which describes the distribution of the
measurements x and which depends on the parameter a of interest. Given ρ and a the
Fisher information per measurement is given by

Iρ(a) =
⟨(︂

d ln ρ
da

)︂2
⟩
=
∫︁
dx 1

ρ(x)

(︂
dρ(x)
da

)︂2
. (10.3)

The information grows with the sensitivity of the pdf to the parameter of interest. For
example, if one is interested in a location parameter, then a single measurement from
a narrow distribution carries a larger amount of information than one from a wide
distribution.
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A useful variable to characterise the effect of the response function A(x|y) relating a
true pdf f (y) to an observable one g(x) are the attenuation factors ωk defined as

ωk =
Ig(ak)
If (ak)

, (10.4)

which quantify how much information about ak is contained in a measurement drawn
from g compared with a measurement drawn from the true pdf f . Since the information
in a data set is proportional to the number of measurements, it follows that a set of
N measurements with the actual detector has the same information about ak as Nωk
measurementswith a perfect detector. In the language of particle physics, this translates
into howmuch the integrated luminosity¹ can be reduced to achieve a certain precision
if one had a better detector.

10.2.2 The Effect of the Response Function

The ideal response function is A(x|y) = δ(x − y), where δ(0) = 1 and δ(z) = 0 ∀ z ̸= 0.
Here thepdf g(x) describing themeasurements is equal to the truth f (y) andany estimate
ĝ thus is immediately also an estimate f̂ . In general, this will not be the case, and
different kinds of distortions of g(x) with respect to f (y) can occur, referred to as bias,
efficiency losses, or migration effects. In the following, we will discuss them in turn and
work out their impact in terms of the information carried by a measurement compared
with a measurement with an ideal detector.

Since the Fisher information of ameasurement is not only a function of the response
function but also depends on the shape of f (y), the general features of the problem
will be discussed for the simple case of a uniform pdf f (y) = 1/π, with y ∈ [0, π]. The
response functions considered are:

A(x|y) = δ(x − b(y)) with b(y) = π
ln
(︀
2ey − 1

)︀
ln (2eπ − 1)

(10.5)

A(x|y) = ϵ(y)δ(x − y) with ϵ(y) = 4y(π − y)
π2 (10.6)

A(x|y) = 1√
2πσ

e−(x−y)
2/2σ2 with σ = 0.2 (10.7)

Here Equation 10.5 describes a distortion due to only a bias in the measurement; Equa-
tion 10.6, a distortion due to efficiency losses; and Equation 10.7, distortions due to a
smearing of the measurements around the respective true values. The bias function
b(y) is constructed such that it is monotonic between (x, y) = (0, 0) and (x, y) = (π, π)

1 The integrated luminosity is the time integral of the event rate for a given cross-section, and thus
directly proportional to the size of the recorded data set.
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Fig. 10.2: Visualization of different effects of an imperfect detector. The left-hand column shows the
different response functions; the right-hand column, the observable densities g(x) compared with
the assumed uniform true pdf f , and a histogram estimate of g(x) corresponding to 25 000 events.
The top row illustrates the case of a biased measurement; the middle, the case of efficiency losses;
and the bottom, the case of finite resolution.

with finite, but different slopes at the end points. The efficiency function ϵ(y) has a
simple parabolic shape with unit value in the center and zero at the boundaries. For
the smearing function A(x|y), a simple Gaussian is chosen. Figure 10.2 visualizes the
response matrices and shows how the observable density g(x) differs from the true f (y)
and illustrates how the measurements fluctuate around g(x).

10.2.2.1 Bias
The top row of Figure 10.2 shows the effect of a biased measurement, where already a
small non-linearity in the response function leads to sizeable distortions. The generic
response function A(x|y) = δ(x − b(y)) preserves normalization, and if the function
b(y) is strictly monotonic, then every measurement x can unambiguously be associated
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with a true value y. For b′(y) > 0 and for the given example one obtains

g(x) = f (b−1(x))
b′(b−1(x)) =

β
π(1 + e−xβ)

with β = ln(e2π − 1)
π , (10.8)

and calculation of the Fisher information per measurement for the expansion coeffi-
cients ak yields

Ig(ak) =
∫︁
dx 1

g(x)

(︂
∂g(x)
∂ak

)︂2
=

π∫︁
0

dz 1
f (z) cos

2(kz) = If (ak) (10.9)

with z = b−1(x). This result is actually independent of any specific assumption about
f (y). Regarding the information content in cases where the only distortion is a bias
term one finds

ωk = 1 ∀ k . (10.10)

No information is lost for a one-to-one mapping between observation x and true value
y.

10.2.2.2 Efficiency
Next we consider the case of no bias and perfect resolution while allowing for effi-
ciency losses. The response function describing the measurement process in this case
is A(x|y) = δ(x − y)ϵ(y), where the function ϵ(y) is the probability that a true value y
is actually recorded. Here the normalization is not conserved. Like the true pdf, the
observed density is defined over x ∈ [0, π] and one has

g(x) = f (x)ϵ(x) with normalization G =
∫︁
dx g(x) . (10.11)

The normalization G has to be taken into account when calculating the Fisher informa-
tion of a measurement x about a parameter ak. One finds

Ig(ak) =
∫︁
dx 1

g(x)/G

(︂
dg(x)/G
dak

)︂2
= 1
G

π∫︁
0

dx ϵ(x)f (x) cos
2(kx) . (10.12)

If the efficiency is constant ϵ(x) = ϵ, then one has G = ϵ and the information per
measurement is again If (ak). In this case, each recorded measurement contributes the
same information as ameasurement for a perfect detector. The efficiency function leads
only to an overall reduction of the number of measurements compared with what one
ideally would have recorded.

For a non-uniform efficiency function, the information content of a single measure-
ment is affected. This is easily seen for the specific case Equation 10.6. For k = 0 one
has If (a0) = Ig(a0) = π2, and for k > 0 the explicit expressions are

If (ak) =
π2
2 and Ig(ak) =

π2
2 − 3

2k2 . (10.13)
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One finds ω0 = 1, and
ωk = 1 − 3

k2π2 (10.14)

for k > 0. There is a small loss of information in the low-order coefficients, but asymp-
totically each measurement contains as much information as if it had been recorded
by an ideal detector. The main loss is due to the average efficiency, which results in an
overall reduction in the number of usable data.

10.2.2.3 Resolution
The last effect to address is that of finite resolution. Here wewill discuss only the special
example Equation 10.7 of a uniform true density and a Gaussian response function,
which is unbiased and conserves normalization. As before, the information of the
true pdf is If (a0) = π2 and If (ak) = π2/2 for k > 0. What remains is to determine the
information about the coefficients ak per actual measurement x, which requires the
observable density g(x) and its derivative with respect to ak. With f (y) = 1/π over
y ∈ [0, π] one finds

g(x) = 1√
2πσ

π∫︁
0

dy e−(x−y)
2/2σ2 f (y) = 1

2π

(︂
erf
(︂

x√
2σ

)︂
− erf

(︂
x − π√
2σ

)︂)︂
(10.15)

and
dg(x)
dak

= 1√
2πσ

π∫︁
0

dy e−(x−y)
2/2σ2 cos(ky) . (10.16)

Even for the simple case considered here, there exists no closed-form expression for
the information in terms of elementary functions. However, the respective integrals
can be calculated numerically, and a qualitative understanding of the case σ ≪ π is
gained by considering the limiting cases k → 0 and k → ∞.

As shown in the bottom row of Figure 10.2, the requirement σ ≪ π leads to
g(x) ≈ f (x), since in the limit σ → 0 the smearing function A(x|y) approached a delta
function. Furthermore, for small values of k one finds that the derivatives dg(x)/dak
are dominated by contributions from the interior of the interval [0, π], and since that
interval is much larger than σ one finds

dg(x)
dak

≈ 1√
2πσ

∞∫︁
−∞

dy e−(x−y)
2/2σ2 cos(ky) = cos(kx)e−σ

2k2/2 , (10.17)

and the result for the leading coefficients becomes

Ig(ak) ≈ e−k
2σ2 If (ak) and thus lim

k→0
ωk = e−k

2σ2 . (10.18)

For k → ∞ a different behaviour is observed. Now the rapid oscillation of the cosine
function leads to a negligible contribution from the interior of [0, π], and the derivative
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Fig. 10.3: Illustration of the derivatives dg(x)/dak for k = 0, 8 and 18.

dg(x)/dak as defined in Equation 10.16 is dominated by the contributions from the end
points. This follows from the identity

π∫︁
0

dy f (y) cos(ky) =
∞∑︁
m=1

(−1)m
k2m

[︁
f (2m−1)(0) − (−1)k f (2m−1)(π)

]︁
, (10.19)

where substituting f (y) = A(x|y) and keeping only the leading term m = 1 yields
dg(x)
dak

≈ 1
k2σ2

1√
2πσ

(︁
(−1)k(x − π) e−(x−π)

2/2σ2 − x e−x
2/2σ2

)︁
. (10.20)

This is a very interesting result, since it shows that the existence of hard limits for
the pdf f (y) constitutes a substantial amount of information about the higher order
coefficients ak. The rapid exponential decay of information found for k → 0 is slowed
down to a power law. For σ ≪ π the contributions from the end points are independent
and the Fisher information becomes

Ig(ak) ≈
1

k4σ3

∞∫︁
−∞

dz 2z2e−z
2

1 − erf2(z/
√
2)
≈ 6.933
k4σ3 , (10.21)

where the factor 6.933 is the numerical value of the integral over z. It follows

lim
k→∞

ωk ≈
1.405
k4σ3 . (10.22)

Figure 10.4 shows the attenuation factors ωk for the Gaussian smearing of the example
discussed here compared with their asymptotic expectations.
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Fig. 10.4: Decay of information due to finite resolution. The leading order coefficients are exponen-
tially damped; the higher order contributions are power-law suppressed.

10.2.2.4 Synopsis
The above considerations show how the detector response affects the information about
the true distribution. A pure monotonic bias in the measurements does not entail any
loss of information. Efficiency losses lead to a reduction of the number of recorded
measurements, but for a sufficiently smooth efficiency function, the loss of information
is marginal. The real problem for inverse problems is due to smearing effects. Here, for
Gaussian resolutions with a variance σ2, the information about the k-th order Fourier
coefficient drops exponentially with exp(−k2σ2). If the true distribution is known to be
bounded, the decay of information in the high-order coefficients is reduced to a power
law proportional to 1/k4. Still, any information about the fine structure of the unknown
true distribution is usually damped by many orders of magnitude and thus may not be
accessible by a finite statistics measurement.

When resolution effects have to be corrected, inference about the true distribu-
tion usually requires additional information, either by, e.g., a parametric model or by
another kind of a priori information such as positivity or smoothness. Regularization
methods provide a framework to include such constraints in a controlled way. Even if
results obtained by injecting a priori information are biased, it is always possible to
ensure that the bias is small compared with the statistical uncertainties. As the above
example showed, even seemingly soft constraints like the region of support of the true
distribution may already contribute an amount of information that, when it comes to
the fine structure of the solution, is equivalent to orders of magnitude more data.
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10.2.3 Supplementary Remarks

The above discussion assumes that all elements in DX are drawn from g(x). In practical
applications, one will have to deal with the case that some measurements are back-
ground from other sources that need taking care of. While certain measurements, such
as the, in neutrino physics, are almost background-free, other particle or astroparticle
physics measurements may be dominated by background. Here an important part of
any analysis is to control the background either by “off-source” measurements where
the properties of the background are probed by a data sample that contains no signal,
or generally by studying data samples with different known mixtures of signal and
background. This adds a new, discrete dimension to the unfolding problem.

The inverse problems discussed so far relate to a one-dimensional true distribution
and a one-dimensional observed distribution. While with a suitable binning and a
corresponding mapping in principle also, higher-dimensional inverse problems can
be brought into this form, this may not always be practical. As a result, the response
function may pick up dependencies on unknown distributions, leading to systematic
uncertainties because the response function A(x|y) is not precisely known.

To illustrate this, consider the case that a measurement x is affected by the values
of two variables y1 and y2, such as an energy measurement x that depends on the true
energy y1 of the particle and the angle of inclination y2 at which it hits the detector. In
this case Equation 10.1 becomes

g(x) =
∫︁
Y

dy1 dy2A(x|y1, y2)f (y1, y2) . (10.23)

In order to deal with a one-dimensional problem that only involves x and y1, one can
re-write Equation 10.23 by integrating over y2 as

g(x) =
∫︁
dy1

(︂∫︀
dy2 A(x|y1, y2)f (y1, y2)∫︀

dy2 f (y1, y2)

)︂
·
∫︁
dy2 f (y1, y2) (10.24)

or
g(x) =

∫︁
dy1 A(x|y1) f (y1) , (10.25)

with the true energy spectrum f (y1) and the response function A(x|y1)

f (y1) =
∫︁
dy2 f (y1, y2) and A(x|y1) =

∫︀
dy2 A(x|y1, y2)f (y1, y2)∫︀

dy2 f (y1, y2)
. (10.26)

By reducing the dimensionality of the inverse problem, the response function picks
up a dependence on the unknown true density in y1 and y2. If the true pdf factorizes,
f (y1, y2) = f1(y1) f2(y2) one finds

A(x|y1) =
∫︁
dy2 A(x|y1, y2)f2(y2) , (10.27)

i.e. the response function depends only on the true distribution in y2.
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10.2.4 Mathematical Appendix: Integrals Over Cosine Functions

For k > 0 ∈ N, the identity
π∫︁

0

dy f (y) cos(ky) =
∞∑︁
m=1

(−1)m
k2m

[︁
f (2m−1)(0) − (−1)k f (2m−1)(π)

]︁
(10.28)

follows from ∫︁
dy yn cos(ky) =

n∑︁
m=0

m!
(︃
n
m

)︃
yn−m
km+1 sin

(︁
ky + mπ2

)︁
(10.29)

by using a Taylor expansion of f (y) around y = 0

f (y) =
∞∑︁
n=0

f (n)(0) y
n

n! . (10.30)

One obtains
π∫︁

0

dy f (y) cos(ky) =
∞∑︁
n=0

f (n)(0)
n!

π∫︁
0

dy yn cos(ky)

=
∞∑︁
n=0

n∑︁
m=0

f (n)(0)
n! m!

(︃
n
m

)︃
yn−m
km+1 sin

(︁
ky + mπ2

)︁⃒⃒⃒⃒⃒
π

0

=
∞∑︁
m=0

sin
(︁
ky + mπ2

)︁ 1
km+1

∞∑︁
n=m

f (n)(0) yn−m
(n − m)!

⃒⃒⃒⃒
⃒
π

0

(10.31)

where in the last step the summations overm and n were exchanged. Now the sum over
n can be identified with the m-th derivative of f (y),

∞∑︁
n=m

f (n)(0) yn−m
(n − m)! =

dm
dym

∞∑︁
n=m

f (n)(0) y
n

n!

= dm
dym

∞∑︁
n=0

f (n)(0) y
n

n! =
dm
dym f (y) (10.32)

and the above expression simplifies to
π∫︁

0

dy f (y) cos(ky)

=
∞∑︁
m=0

1
km+1

(︁
sin
(︁
kπ + mπ2

)︁
f (m)(π) − sin

(︁mπ
2

)︁
f (m)(0)

)︁
. (10.33)

Here even m values do not contribute, and with the replacement m → 2m − 1 the result
Equation 10.28 follows.
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10.3 Likelihood-Based Deconvolution

Mirko Bunse
Tim Ruhe

Maximilian Linhoff

Abstract: Likelihood-based deconvolution methods produce estimates that, in terms
of well-defined prior assumptions, are most likely about the data-generating process.
In gamma-ray astronomy, some well-motivated assumptions are that gamma parti-
cles are measured independently of each other, with some true rate that depends on
the particle energy and the celestial object under study. The detector “smears” these
underlying rates because the true particle energy is never measured, only estimated
with uncertainty. Likelihood functions capture these assumptions and can be plugged
into the Fredholm integral equation of the first kind, which models the deconvolution
task. They are usually accompanied by regularization functions, which ensure that the
method is robust towards noise in the data, mainly when the number of observations
is small. We review existing likelihood-based deconvolution methods with a focus on
our software TRUEE.

10.3.1 Introduction

Likelihood-based deconvolution methods are algorithms that maximize a likelihood
function in order to produce deconvolution results. Such a likelihood function is based
on a statistical model P(x⃗ | θ⃗) that assigns a probability to each observation x⃗, given a
parameter vector θ⃗. Using this model, likelihood maximization approaches essentially
select those parameters for which the probability of the set of all observations is maxi-
mal. In other words, we call a set of parameters “likely” if they assign a high probability
to the observed data. In this case, we also refer to a good “agreement” between data
and parameters.

Two crucial assumptions of the maximum likelihood method are that all x⃗ ∈ X are
i) statistically independent from each other, and ii) are identically distributed according
to P(x⃗ | θ⃗) with the same θ⃗ vector. The definition of the likelihood function L reflects
the intuition that a set of parameters is likely when it assigns a high probability to the
random sample

L(θ⃗ | D) = P(D | θ⃗) =
∏︁
x⃗∈D

P(x⃗ | θ⃗). (10.34)

Some likelihood functions can be maximized analytically. Often, however, we need to
use numerical optimizationmethods to find parameters thatmaximize L. Unfortunately,
a direct maximization of L via numerical optimization methods would introduce an
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issue that can be described as a lack of “numerical stability”. Namely, the many small
values of P(x⃗ | θ⃗) in L, which get even smaller whenmultiplied, are difficult to represent
with typical floating-point variables. This difficulty easily leads to an overwhelming
level of noise in the resulting estimates. In fact, directly maximizing L numerically
would lead to many solutions that are insufficient for the purposes they are meant to
solve.

Luckily, this lack of numerical stability can be circumvented by simply maximizing
the logarithm of L instead of maximizing L directly. The logarithm yields values that
a computer can represent more easily, but the solution of both maximization tasks is
identical. As a matter of convention in numerical optimization, we further choose to
minimize the negative logarithm instead of maximizing the logarithm of L. Again, the
solution is identical to the solution we are actually looking for:

θ⃗max L = argmax
θ⃗

L(θ⃗ | D)

= argmin
θ⃗

(︁
− ln L(θ⃗ | D)

)︁
= argmin

θ⃗

(︁
−
∑︁
x⃗∈D

lnP(x⃗ | θ⃗)
)︁ (10.35)

The right-hand side of Equation 10.35 defines the optimization task that many off-the-
shelf optimization techniques can solve to find maximum likelihood estimates. All that
remains for the general concept of likelihood maximization to solve the deconvolution
problem is to define a deconvolution-specific statistical model.

We want this model to comprehend well-motivated assumptions about our data.
Furthermore, the parameter values in θ⃗ should help us understand the physical process
underlying our observations. To this end, we will identify the free parameters of our
model with the bins f⃗i = θ⃗i of the true underlying distribution. In this example, this
distribution is the energy spectrum we want to estimate so that plotting θ⃗ will result in
a discrete variant of the spectrum f (y) that we are after. Moreover, we will model the
bins of the observed quantity as the g⃗j = x⃗j. The statistical model thus needs to relate
the target bins (true energy) to the bins of the observed quantity (energy estimates or
features). Maximizing the likelihood then allows us to feed themodel with observations
g⃗ to obtain the most likely spectrum f⃗ .

The contents of g⃗ are integer counts of statistically independent events from a
discretization step, which will be detailed in the next section. The important property
here is that Poissonian statistics describes such a counting experiment. Each g⃗j is
expected to follow its own Poisson distribution, which connects the true quantities
in f⃗ via the response matrix A to our observed counts g⃗. This connection gives us the
following likelihood function:

L(⃗f | g⃗) =
J∏︁
j=1
e−A

⊤
•j f⃗

(A⊤
•j f⃗ )g⃗j

g⃗j!
. (10.36)

While the Poissonian likelihood describes the problem well—for small counts—it does
not yet solve the ill condition of the inverse problem. Furthermore, the optimization
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of the likelihood will still yield oscillating results that i) deviate from the true f⃗ and
ii) in general are unphysical. Energy spectra in particular are not expected to exhibit
neighboring entries f⃗i , f⃗i+1 with large differences in between. Instead, the physical
processes that are expected to play a role produce smooth spectra. To address this issue,
an additional regularization term is added to the likelihood, that penalizes large second
derivatives of f⃗ :

rτ (⃗f ) =
τ
2 ·

I−1∑︁
i=2

(︁
− f⃗i−1 + 2 · f⃗i − f⃗i+1

)︁2
= τ

2 · (C f⃗ )
2 (10.37)

It is important to stress that additional assumptionsmust bemade to improve the condi-
tion of the original inverse problem. Here, this assumption is that the resulting f should
be smooth, defined by a low second-order derivative. These additional assumptions to
be included in the likelihood will differ from problem to problem and from domain to
domain. Themethod introduced above is a special form of Tikhonov regularization [366,
367] using the discrete second-order derivative to produce smooth solutions. Another
common choice for C is the identity matrix, which will penalize a large norm of f⃗ .

For a practical solution, it is important to consider what the values in f represent
and which assumption of smoothness or small norm can bemade. As introduced above,
one of the effects that have to be dealt with is that of limited detection efficiency: not all
events that reach a detector are recorded and not all recorded events are successfully
analyzed. Smoothness assumptions in astrophysics can usually only be made on the
f of the primary, physical spectrum that is not affected by these effects. This issue
is discussed in more detail in Section 10.5, where the likelihood-based unfolding is
applied to the FACT Open Data set.

Minimizing the following objective function is equivalent to maximizing the likeli-
hood from Equation 10.36 with the regularization from Equation 10.37:

ℓ(⃗f ; g⃗, τ) = − ln L(⃗f | g⃗) + rτ (⃗f ) (10.38)

10.3.2 Discretization of the Observable Quantities

So far, we have not yet specified what an “observed bin” g⃗j is. The statistical model from
Equation 10.36 is designed to handle integer counts in these bins. Consequently, each
bin corresponds to one discrete state that an observed event can be in, and we count
the occurrences of the states in the set of data we intend to deconvolve. The choice
of the transformation from a continuous space X to a discrete space is ours to make.
When we have defined a mapping X → S, where S is a finite set of disjunct states, we
can map each event to one state and count the events that occur in each state. Basically,
we quantize the feature space and count.

The quantization can be taken out through different methods. The most traditional
approach in particle physics would be to select a single observed or reconstructed



10.3 Likelihood-Based Deconvolution | 295

feature dimension, preferably one that is well correlated with the target quantity Y,
and quantize only this dimension through equidistant binning. While the limitation to
a single dimension ignores most of the information in the data, equidistant binning
is likely to cause quantization errors. Due to these reasons, this method is mostly
abandoned today.

A more effective approach is to quantize via unsupervised clustering, for instance,
via k-means. This algorithmmaps each point in the feature space to its nearest centroid.
The number of centroids is predetermined by the user, and the centroid positions are
chosen such that the reconstruction error of the training set is minimized. Therefore,
k-means is a generalization of one-dimensional quantization to multiple dimensions.
The k-means algorithm is able to use arbitrary numbers of features but its objective, the
reconstruction error, is not necessarily aligned with the actual goal of deconvolution:
to produce accurate predictions for Y.

Therefore, we have proposed quantizing in a supervised fashion, using a simulated
and labeled training set. The general idea is to interpret the target bins f⃗i as classes and
to train a classifier that predicts the f⃗i from the given features. To work as a quantization
method, the classification model needs to partition the feature space to make predic-
tions. As one instance of this general proposal, we have evaluated decision trees [90]
which recursively partition the feature space until a predetermined depth is achieved.
We interpret the leaves of such a tree as the clusters to which each event is assigned.
We count the number of events in each leaf and thereby obtain a count vector g⃗. Like
in the k-means quantization, all features can be used by the tree. But unlike k-means
quantization, the clusters are highly correlated with the target quantity Y. In fact, they
are designed to predict Y, and are thus well-aligned with the goal of deconvolution.

10.3.3 Optimization

The core of our TRUEE software [272] is the RUN algorithm [85, 86], whichmaximizes Equa-
tion 10.38 numerically via the Newton-Raphson method [293]. Recall from Section 3.2.2
that this method evaluates a local second-order approximation ℓ̂ (k) of the objective ℓ
in each iteration k. The minimizer of each ℓ̂ (k) is chosen as the respectively next esti-
mate ^⃗f (k+1). Taking out multiple iterations will eventually reach a local minimum of
the actual objective function ℓ. Such an iterative approach is necessary because the
actual function ℓ, in the case of likelihood-based deconvolution, can not be maximized
analytically. Letting f⃗i = θ⃗i, we obtain the following local model:

ℓ̂(k) (⃗f ) = 1
2 f⃗

⊤H f⃗ − f⃗⊤(H ^⃗f (k) − h⃗),

where h⃗ = ∇ ℓ
(︀ ^⃗f (k))︀ is the gradient and H = ∇2 ℓ

(︀ ^⃗f (k))︀ is the Hessian of ℓ at the latest
deconvolution estimate ^⃗f (k).
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10.3.4 Regularization with a Fixed Number of Degrees of Freedom

RUNdoesnot fix the value of the regularizationparameter τ, as othermethods inmachine
learning, optimization, and statistics usually do. Instead, it controls the regularization
strength by another parameter, ndf, the effective number of degrees of freedom. This
parameter has a clearer interpretation, but it is still a hyperparameter that needs to be
tuned just like a fixed value of τ would.

To fix ndf, RUN has to change τ in every iteration of the algorithm. Computing the
value of τ for a given ndf requires an eigen-decomposition H = U⊤V U of the Hessian
matrix H. Based on this decomposition, a new matrix C′ = V− 1

2 U⊤C⊤CUV− 1
2 with

the eigen-decomposition C′ = U ′⊤V ′U ′ is defined. By setting f⃗ ′′ = U ′⊤V 1
2 U⊤ f⃗ , the

regularized local model ℓ̂ (k)r can be reformulated as

ℓ̂(k)r (⃗f ) = 1
2 f⃗
′′⊤(I + τ · V ′ )⃗f ′′ − f⃗ ′′⊤(UV−

1
2 U ′)⊤(Hf⃗ (k) − h⃗),

where the minimizer of ℓ̂(k)r is ^⃗f = UV− 1
2 U ′ ^⃗f ′′. In turn, ^⃗f ′′ is the minimizer of the refor-

mulated problem, being given by

^⃗f ′′i =
1

1 + τ V ′ii

^⃗̂
f ′′i

^⃗̂
f ′′ =

(︀
U V−

1
2 U ′
)︀⊤(︀H f⃗ (k) − h⃗)︀ .

Finally, the effective number of degrees of freedomof theminimizer ^⃗f is ndf =
∑︀

i
1

1 + τ V ′ii
.

In case of τ = 0, each of the I components of
^⃗̂
f ′′ fully contributes to the solution with

ndf = I. Accordingly, the total contribution of
^⃗̂
f ′′ to ^⃗f is reduced whenever τ is greater

than zero. A low value of ndf will smooth the deconvolution result by penalizing high
curvatures.

The Newton-Raphson steps of the RUN algorithm assume a meaningful starting
point f⃗ (1). This first estimate is implemented as a basic least squares solution, which
does not yet take the assumptions of bin-wise Poisson distributions and smoothness
into account but already gives a starting point that is sufficiently close to the true
solution. Here, h⃗LSq is the gradient, and HLSq is the Hessian of the least-squares loss
ℓLSq at the zero vector:

ℓLSq (⃗f ) = 1
2(Af⃗ − g⃗)

2 → min

The original implementation of the RUN algorithm was written in Fortran77 and last
updated in 1996. This led to a couple of compatibility issues, especially with the analysis
framework ROOT [56]. Although ROOT is still extensively used in high-energy particles,
say, at the LHC experiments, it has been largely replaced by designated Python pack-
ages in astroparticle physics. The TRUEE (Time-Dependent Regularized Unfolding for
Economics and Engineering) is a ROOT-based C++ re-write of the RUN algorithm, which
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does, however, include a couple of significant improvements. Two improvements are
particularly interesting from a methodological point of view.

The first of these improvements is a verification step, in which the unfolding out-
come is cross-checked via a re-weighting procedure. Simulated energy-dependent
variables are re-weighted within this re-weighting scheme according to the unfolded
spectrum. The obtained distributions are then compared with the experimental ones,
and the cross-check is two-fold. First, an agreement between the reweighted simulated
distributions and the experimental ones is expected for the variables utilized as input to
the unfolding. A mismatch would hint at serious issues, concerning, say, the unfolding
settings. One should, however, keep in mind that such issues are likely to also become
visible via verification of the settings with Monte Carlo simulations. The second cross-
check option is thus the more valuable one. Here, basically, the same comparison is
carried out, but this time the experimental distributions are compared with simulated
re-weighted distributions of variables not used for unfolding. An agreement of these
distributions does, of course, not necessarily imply a successful unfolding but can be
seen as a strong hint at the overall correctness of the entire procedure. This procedure is
especially important in astroparticle physics, as simulated and experimentally obtained
distributions do not necessarily agree (see Section 5.3.2). For details on the application
of this verification procedure and practical examples, see [272], [16] and [329].

A second algorithmic improvement is a bootstrapping procedure, referred to as
pull mode, in TRUEE. Within this bootstrapping procedure, a fixed number of events is
randomly drawn from the sample of simulated events and subsequently unfolded. This
is carried out n times, and the results are compared with the true number of events
for each bin. This procedure verifies that correct results regarding an agreement of the
unfolding result with the true underlying distribution have not been obtained by chance
but are a consequence of careful optimization of the unfolding parameters. In addition,
the unfolding result can be checked for a potential bias. In this case, the mean of all n
unfoldings is compared with the true number of events for a particular bin. Observed
disagreements indicate a bias towards an unfolding result, which possibly over- or
underestimates the true bin content. Furthermore, the pull mode can be used to verify
the derived statistical uncertainties, which, in addition to systematic uncertainties,
impact the physical interpretation of the unfolded spectrum and should therefore
neither be too large nor too small. By definition, 2/3 of all pull mode results will be
contained within the statistical uncertainty, provided that it is estimated correctly. For
details on the pull mode and some practical examples, see again [212] and [329].

The TRUEE package further includes several practical improvements that greatly
enhance the usability of the package, including the use of up to three input variables,
as well as possibilities of accounting for a background distribution and carrying out
an automated acceptance correction. The possibility of visualizing the contributions
of individual splines, implemented for one of the later versions of TRUEE, allows for
additional cross-checks and thus also greatly enhances the reliability and the inter-
pretability of the unfolding result.
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10.3.5 Regularization with Minimum Global Correlation

As an alternative to the RUN algorithm, it is possible to minimize the likelihood objective
from Equation 10.38 via off-the-shelf optimization algorithms. This approach is easy to
implement but requires us to fix the regularization strength τ to a predetermined value.
Usually, we want to choose τ from a set of candidate values to perform a grid search
that deconvolves with all candidate values and chooses the best deconvolution result
from the candidate set.

The global correlation coefficient is a criterion through which we can decide what
“the best” deconvolution result in a set of candidates is. This criterion is defined as

ρglobal =
Ntrue∑︁
j=1

√︂
1 −
(︁
(Vf )jj · (V−1f )jj

)︁−1
, (10.39)

where Vf is the covariance matrix of f⃗ , which we estimate as the inverse of the Hessian
at the minimum of the negative log-likelihood.

We want to find the smallest global correlation, i.e., the deconvolution result where
the correlation between all target bins is as small as possible. This desire stems from the
fact that all target bins should be uncorrelated. Any apparent correlation stems merely
from the fact that deconvolution methods estimate the target bins from observed bins
rather than observing the target bins directly. Beyond this reasonable motivation for
ρglobal, practitioners usually observe that results with minimum global correlation are
also physically plausible.

10.4 Deconvolution as a Classification Task

Tim Ruhe
Mirko Bunse

Abstract: Given a set of distinct events, e.g., particle decays or air showers in a detector,
we approach the deconvolution problem by aggregating class labels predicted for
each event. This approach contrasts with likelihood-based deconvolution methods,
which first aggregate the events and then produce a single estimate for the entire
data set. Founding deconvolution on classification instead of likelihood functions has
the advantage that the per-event information is not lost—it might be used to produce
estimates dependent on other factors like time. A short digression on text analysis
reveals the great flexibility of our resulting algorithm DSEA+.
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D = {x⃗n ∈ X : 1 ≤ n ≤ N}

D
Ŷ
= { P̂(Y | x⃗n) : 1 ≤ n ≤ N}

g⃗

^⃗f

aggregate

estimateestimate

aggregate

RUN
DSEA

Fig. 10.5: Given a set of observations D, the target spectrum f⃗ can be estimated in two ways. RUN
and other likelihood-based deconvolution methods first aggregate D and take out the estimation
from there. DSEA employs a supervised machine learning model to first estimate the target quantity
for each individual event. It aggregates these predictions in a second step, taking into account all
uncertainties of the prediction model.

10.4.1 Introduction

So far, we have seen methods that first aggregate all observations into an observed
probability density function g⃗ and then use this density to estimate the target spectrum
f⃗ . Having aggregated all observations into g⃗ reduces the deconvolution problem to
solving a system of linear equations g⃗ = Af⃗ that corresponds to a discrete variant of the
Fredholm integral of the first kind. Starting from a set of N observations D = {x⃗n ∈ X :
1 ≤ n ≤ N}, however, we can also go a different way.

Instead of aggregating in the beginning, we can predict the target quantity, e.g.,
the energy of the primary particle, for each individual observation and aggregate the
set D

Ŷ
= { P̂(Y | x⃗n) : 1 ≤ n ≤ N} of predictions in the end (see Figure 10.5). In

contrast to likelihood-based methods, the contribution of individual examples to the
deconvolution result is retained in D

Ŷ
. This advantage can be leveraged to study the

deconvolution results as a function of other observables, like time or zenith angle.
This “late aggregation” is a key property of the Dortmund Spectrum Estimation

Algorithm (DSEA). Moreover, DSEA supports un-discretized inputs x⃗ as long as the under-
lying classifier supports real-valued features. The algorithm, therefore, circumvents
one layer of uncertainty that likelihood-based algorithms typically introduce through
the discretization of x⃗. Last but not least, the approach can be employed in other use
cases, such as political science, whenever a classifier P̂(Y | x⃗) is already a part of the
analysis pipeline.

To see why DSEA’s way of estimating f⃗ works, consider the following marginaliza-
tion, where only Y is discretized, but not X.

P̂(Y ≡ i) =
∑︁
x⃗∈D

P̂(Y ≡ i|X = x⃗) · P̂(X = x⃗) (10.40)

In DSEA, the conditional probabilities P̂(Y ≡ i|X = x⃗) are estimated by confidence
values ch(i | x⃗) of the underlying classifier, e.g. a random forest. In general, such value
represents the confidence of the trained classifier h that the observation x⃗ ∈ Dobs
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actually belongs to the class i. In addition, a uniform prior is imposed on x⃗, given that
X is a closed subset of Rd. The outcome is the DSEA estimator, which recovers ^⃗f from
confidence values:

^⃗fi =
1
N

N∑︁
n=1

ch(i | x⃗n) (10.41)

10.4.2 Quantification with Classify-and-Count Methods

Classification-based deconvolution is also known as quantification [166, 182], a learning
task for which methods quite similar to DSEA have been proposed. One of the closest
connections is the Probabilistic Classify-and-Count (PCC) method, which aggregates
confidence scores as in Equation 10.41. However, PCC does not reweight the training
data iteratively like DSEA. Instead, it finishes after a single iteration of classifier training,
prediction, and aggregation. In fact, PCC is equivalent to DSEA if and only if a single
iteration is taken out.

The non-probabilistic version of Classify and Count (CC) is very similar to PCC but
ignores the uncertainty of the classifier. Rather than aggregating confidence scores,
which are rarely zero or one, it counts the crisp predictions of the classifier. With “crisp”,
we mean those predictions that assign exactly one class to each instance; in multi-class
settings, these predictions are usually obtained by selecting the class label with the
highest confidence score. The CCmethod then yields relative frequencies P̂(Y ≡ i) = N̂i

N ,
where N̂i is the number of events for which class i is predicted. However, ignoring
the uncertainty of the classifier, which is only expressed through confidence values,
produces deconvolution results with an inferior quality compared with the aggregation
of confidences [333]. Therefore, DSEA is established around the PCC aggregation from
Equation 10.41.

10.4.3 Accurate Estimates Through Iterative Reweighting

The confidence values returned for observations inDobs are determinedby the frequency
of labels in Dtrain. For instance, Naive Bayes explicitly incorporates an estimate P̂(Y ≡
i) of this prior density. However, practitioners of deconvolution want the estimated
target density ^⃗f to be independent of the prior density because the ultimate goal of
deconvolution is to infer ^⃗f from observations, not from prior assumptions. In order to
mitigate the influence of the prior density, DSEA iterates the recovery of f⃗ , updating the
training set density with the latest estimate of the density for Dobs. Such an update
is performed by reweighting data points with weights wn ∈ R, 1 ≤ n ≤ N ′, assigned
to each of the N ′ events in Dtrain. These weights are accounted for while training the
classifier h, giving updated confidence values for the observations in Dobs.
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The latest version of DSEA, DSEA+ [105], weights each example with the ratio between the
estimated probability ^⃗f (k−1)i(n) and the corresponding probability f⃗ ti(n) that is exhibited by
the un-weighted training set. This modification accounts for non-uniformly distributed
training sets and promotes fast convergence of the iterative procedure:

w(k)+
n = ^⃗f (k−1)i(n) / f⃗ ti(n) 1 ≤ n ≤ N ′

To further speed up the convergence, DSEA+ introduces scalable steps between iterations
which are based on the following rationale: By iteratively updating the estimate ^⃗f , a
suitable approximation of the true density f⃗ is searched for in the space of all possible
target densities. The vector p(k) ∈ RI , also referred to as the search direction, depicts a
step through this space. The next iterate ^⃗f (k)+ is computed from such a step scaled with
α(k) ≥ 0.

p(k) = ^⃗f (k) − ^⃗f (k−1), where ^⃗f (k)+ = ^⃗f (k−1) + α(k) · p(k)

Any constant step size α > 0 and several decaying step size strategies with α(k) < α(k−1)

can be plugged into this general framework.
In order to find the best step size for each iteration, we propose an adaptive strategy

that takes the latest estimate and the direction of search into account. This strategy
computes α(k)RUN through the regularized objective function ℓr from the likelihood-based
RUNmethod, see Equation 10.38. Here, unlike in RUN, ℓr is minimized only in the search
direction determined by the DSEA estimator from Equation 10.41. The choice of α(k)RUN

is parametrized by the regularization strength τ ≥ 0 contained in ℓr. Unlike RUN, we
choose to fix τ instead of ndf when minimizing ℓr for simplicity.

α(k)RUN = argmin
α ≥ 0

ℓ
(︀ ^⃗f (k−1) + α · p(k) ; g⃗, τ )︀

By design, the adaptive strategy converges as soon as the likelihood cannot be improved
in the given search direction. Therefore, a χ2 stopping criterion can be employed, as-
suming convergence if the probabilistic symmetric χ2 distance between two subsequent
iterations is below some threshold ϵ > 0:

χ2(^⃗f (k), ^⃗f (k−1)) = 2 ·
I∑︁
i=1

(^⃗f (k)i − ^⃗f (k−1)i )2/(^⃗f (k)i + ^⃗f (k−1)i )

Usually, DSEA+ will take a large first step with α > 1 and then quickly reduce the step
sizes due to its fast convergence property. It will stop after only a few iterations, as soon
as the χ2 stopping criterion is reached. This will typically result in an accurate estimate
of the true target spectrum f⃗ .

10.4.4 Classifier Choice

One advantage of DSEA is that any classifier which returns confidence scores can be
employed, e.g., neural networks, random forests, logistic regression, Naive Bayes,
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Fig. 10.6: The mode of a time-dependent deconvolution result is studied as a univariate time series.
The figure clearly shows the concept shift that is artificially introduced by arranging two groups of
observations.

nearest neighbors, and many others. This property is particularly beneficial if some
classifier is already conventional for a given use case. Random forests, for instance, are
the standard learning method in several Cherenkov telescope collaborations, and they
can continue to be also used in DSEA. Moreover, the ability to plug in many different
classification methods allows practitioners to easily try and test multiple alternatives
for which off-the-shelf implementations are available.

Considering the marginalization from Equation 10.40, it is preferable to employ
classifiers of which the confidence scores ch(i | �x) resemble conditional probabilities
P(Y ≡ i | X = �x). In particular, we prefer calibrated [134] classifiers. The confidence
values of such classifiers (approximately) match the long-run empirical probability
P̂(Y ≡ i | X = �x), i.e.

P̂
(
Y ≡ i | ch(i | �x) = c

)
→ c for N → ∞

Any classifier that is not sufficiently well calibrated can be turned into a calibrated
classifier by means of probability calibration [396]. This additional training step uses a
labeled calibration data set that is disjunct from the training set with which the actual
classifier is trained. Our experience shows that probability calibration does not improve
the classifier in terms of accuracy but achieves remarkable improvements in terms of
the deconvolution performance.

10.4.5 Leveraging Eventwise Contributions

Since DSEA aggregates predictions instead of observations, we are free to alter the
aggregation from D

Ŷ
to �f (see Figure 10.5) to account for other variables like zenith

angle or time. For instance, we could study how the spectrum of a gamma-ray source
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changes over time, by aggregating the event-wise contributions in D
Ŷ
in a sliding time

window.
We recognize that such a sliding window aggregation is not equal to the outcome

of multiple separate, one-per-window deconvolutions, due to the reweighting in DSEA.
Still, a sliding-window aggregation allows a practitioner to obtain insights about the
deconvolution result in terms of additional variables in an efficient way because all
event-wise contributions are readily computed. Likelihood-based methods do not have
this property because their estimates are already based on aggregations; they can be run
on separate windows but can not guarantee that an aggregation of their window-wise
estimates is equal to an estimate of the full data set.

The feasibility of time-dependent deconvolution with DSEA+ is verified in the toy
study fromFigure 10.6. In this study, a concept shift is generated artificially by arranging
two subsets of the simulated MAGIC data, one with low energy values and one with
high energy values. In the beginning, only low particle energies are observed. Suddenly,
the concept changes, and only high energy values follow. This concept shift is akin to a
transient event, such as a gamma-ray burst. DSEA+ deconvolves both groups together,
returning the contribution of each observation in the entire data set. In fact, it does not
know about the two artificial groups. The returned contributions are then aggregated
in each sliding window position, which moves over the time-ordered contributions. For
simplicity, each reconstructed spectrum is represented only by its mode, i.e., its peak
position. Figure 10.6 clearly shows that DSEA+ successfully reconstructs the concept
shift that was artificially generated.

Another benefit of retaining event-wise contributions is the inspection and ver-
ification of the results. If a deconvolution result does not look physically plausible,
we can use these contributions to trace the error back to groups of individual events,
both in Dobs and Dtrain. Are there specific mismatches between the simulation and the
real data which hinder a successful deconvolution? Are there events that likely picture
background but contribute much? Is the classifier incapable of predicting a certain
group of events?We can use the eventwise contributions to trace down and debug these
issues.

10.4.6 Excursion: Document Analysis in Political Science

Electoral programs allow political scientists to characterize political parties, track their
positional changes over time, and identify their strategies, among other research goals
[267]. The high cost of hand-labeling documents such as electoral programs motivates
automated methods for text analysis. However, it is rarely the individual labels that
political and social scientists are interested in. Rather,manyworks choose the frequency
of labels in a collection to be a more appropriate representation [202]. For instance, the
spectrum of political issues in an electoral program facilitates the characterization and
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study of political parties. Estimating this spectrum, just like estimating energy spectra
in particle and astroparticle physics, is, in fact, a deconvolution problem.

A great advantage of DSEA over likelihood-based methods when it comes to using
cases like political science is that its embedded classifier is basically arbitrary.Whenever
a classifier is already used, say, to classify sentences in electoral programs, applying
DSEA is straightforward. Additionally, we can make use of the arbitrary aggregation
already presented above to aggregate the contributions of sentences for each document
in a collection. Likelihood-based methods, by contrast, struggle with the definition
of the observable bins (meaningful “text bins” would need to be defined) and with
the small number of sentences per document, which can lead to poor estimates. DSEA
is able to leverage the full-text collection and provide its aggregated spectra for each
document, using an existing classifier that is already tuned to the use case.

10.5 Deconvolution of IACT Data

Maximilian Linhoff
Mirko Bunse

Marlene Doert

Abstract: Once the initial detection of a source has been made, the main interest in
gamma-ray astronomy is in the energy spectra of observed sources. After the feature
extraction steps in Section 7.3 and the event-wise estimation of gamma-ray properties
in Section 8.4 we now have event lists comprising just a few physical properties for
each reconstructed shower. From this, we can estimate the instrument response from
simulated events and then estimate the energy spectrum of the source via unfolding.
In gamma-ray astronomy, there is nearly always a residual background, even after the
gamma/hadron separation, that needs to be considered in the unfolding. Since we deal
with event counts, regularized Poissonian likelihood approaches are most commonly
employed to solve the inverse problems for imaging atmospheric Cherenkov telescopes
(IACTs).

After the event property estimation in Section 8.4, our data is reduced to a few parame-
ters for each air shower. These are the estimated energy Ê, the estimated direction in
sky-fixed coordinates right ascension (α̂), and declination (δ̂). For observed events, we
additionally have the observation time, and for simulated events, the true energy E,
true direction (α, δ), and true particle type are known. Additionally, the distribution of
generated showers in the simulation is needed to compute the detection efficiency.

Strictly, using an energy estimator is not necessary for the unfolding. One could
use lower-level features, such as the Hillas parameters discussed in Section 7.3, directly
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as input for the unfolding. But using a direct estimate for the particle energy has some
advantages:
– By combining a large number of features into a single estimate, the dimensionality

of the problem is reduced while—it is hoped—keeping most of the relevant informa-
tion. This reduces the dimensionality of the instrument response, and the “curse
of dimensionality” decreases the amount of labeled data required to calculate
it with sufficient accuracy. Together with the reduced dimension, an improved
condition of the inverse problem is often the result of using one attribute with a
better resolution than multiple attributes with worse resolution.

– While the low-level features are not the same between the different IACT exper-
iments, the estimated primary energy is a universal quantity that is easily inter-
pretable and well-defined for all experiments. This facilitates the exchange of event
lists and precomputed instrument responses in a standardized data format such as
GADF [138].

As in the previous sections (8.4, 9.4) on gamma-ray analysis, we provide an example of
our analysis from the FACT open dataset, which is detailed in Section 6.3.

10.5.1 IACT Instrument Response Functions

An Instrument Response Function (IRF) R models the complete measurement process
of an IACT, starting from primary particles, including their atmospheric interactions,
emissions, detection of Cherenkov light, pre-processing, feature extraction, and event
selection, until the final predictions of initial particle energies have been made. An IRF,
therefore, comprises how effectively the IACT reconstructs primary particles of given
properties. In the context of deconvolution, IRFs assume the role of the convolution
kernel R = A(x⃗|⃗y) previously seen in Equation 10.1.

In gamma-ray astronomy, we model the true parameters of a primary particle,
namely its true energy and sky coordinates, as the (vector-valued) target quantity of
our deconvolution task, y⃗ = (E, α, δ). Given that we have estimated these parameters
from telescope recordings, we model the observed quantities of our deconvolution task
as x⃗ = (Ê, α̂, δ̂). The IRF, or convolution kernel, connects the two quantities, as before,
so that the Fredholm equation becomes:

g(Ê, α̂, δ̂) =
∫︁∫︁∫︁

R(Ê, α̂, δ̂|E, α, δ) · f (E, α, δ) dE dα dδ + b(Ê, α̂, δ̂). (10.42)

Usually,R is factorized into quantity-exclusive components, assuming that all quantities
are measured independently. Making this assumption consequently neglects potential
correlations between the estimators. Using this factorization, we obtain

R(Ê, α̂, δ̂|E, α, δ) = Aeff(E, α, δ) ·M(Ê|E, α, δ) · P(α̂, δ̂|E, α, δ), (10.43)
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Fig. 10.7: Energy migration M and effective area Aeff for the FACT open data. Here, M is desired to be
close to the identity matrix, which would amount to a perfect energy predictor. The effective area
indicates, for each energy bin, which fraction of the actual events is seen by the telescope. Low
values require a higher correction factor, which in turn require more observations to achieve a good
signal-to-noise ratio in the respective energy bin.

where Aeff(E) is the effective area that combines the energy-dependent detection effi-
ciencywith the area that the detector is able to observe. Furthermore,wehave the energy
migrationM(Ê|E) and the Point Spread Function (PSF) P(α̂, δ̂|α, δ), which characterize
the error made when estimating the energy and direction of gamma rays from telescope
recordings. The energy migration matrix can be computed from the confusion matrix
of a classifier by a normalization that ensures the sum over the observed quantities to
be the acceptance value for each bin of the true quantity.

The situation becomes dramatically simplified when known point sources of
gamma rays are analyzed. The location of a point source is sufficiently characterized by
a single sky coordinate, fromwhich all gamma rays of this source originate. It, therefore,
suffices to define a small region around this coordinate and to deconvolve the energy
spectrum in this on-region. We do not need to account for the PSF in this case, because
we can safely assume that the spread of direction reconstructions are sufficiently
covered by the on-region. We can therefore drop the PSF from the above equation when
analyzing a point source of gamma rays. Note, however, that the effective area must
then account for the fact that all events outside of the on-region are discarded; falsely
dropping signal events will reduce the effective area of our IACT. Without the PSF, the
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Fig. 10.8: The sky map of the estimated positions of recorded gamma-ray events. The telescope
was pointed to one of two positions close to the Crab Nebula (on-region) for each observation. This
allows selecting off-regions symmetrically to the on-region to estimate the remaining background
(false positives).

Fredholm equation simplifies to

g(Ê) =
∫︁
Aeff(E) ·M(Ê|E) · f (E) dE + b(Ê). (10.44)

An additional benefit of analyzing point sources in an on-region is that we can define
additional off -regions which the telescope can observe simultaneously. These off -
regions allow us to estimate the background b from the same telescope recordings we
use for estimating the signal, provided that no other gamma-ray source is located in
any of these regions. Observing on- and off -regions simultaneously is referred to as
“wobble mode operation” of the telescope. A sky map with the pointing, ON, and OFF
positions is shown in Figure 10.8.

Since the effective area now only depends on the true energy, we can defer its
consideration and neglect it in a first deconvolution step. Our final spectrum will be

f̂ = f̂ ′/Aeff, (10.45)

given that f̂ ′ is a solution of the simplified deconvolution equation

g′(Ê) =
∫︁
M(Ê|E) · f ′(E) dE + b(Ê). (10.46)
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This is often referred to as “acceptance correction”. This separate application of the
acceptance correction is only possible when all observations share the same IRF. Other-
wise, the full IRF has to be included in the likelihood for each observation.

We transform the simplified equation above into a matrix equation by discretezing
true and estimated energy with bins that are equidistant in logarithmic space:

g⃗ = M · f⃗ ′ + b⃗. (10.47)

For instance, the migration matrix and effective areas that result from Ntrue = 5 bins
in E and Nest = 10 bins in Ê are shown in Figure 10.7. The background b⃗ is estimated
from the off positions. We only need a specialized deconvolution algorithm to solve
Equation 10.46. The final spectrum is computed by plugging the deconvolution result
into Equation 10.45.

10.5.2 Application of the Regularized Likelihood Deconvolution

We now solve Equation 10.46 with the regularized likelihood approach introduced in
Section 10.3. Rewriting the equations to take into account the estimated background b⃗,
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we numerically minimize the negative log-likelihood

− lnL(f̂ ′|M, g⃗, b⃗) =
Nest∑︁
i=1

(︀
(λi + −gi · ln λi

)︀
+ rτ(ln f⃗ ), (10.48)

where
λi = (M · f⃗ ′)i + bi . (10.49)

Here, rτ is the Tikhonov regularization defined in Equation 10.37. Observe that we use
the logarithm of the estimate, ln f⃗ , for the regularization because we want to penalize
non-flatness only in the log-log space of the acceptance-corrected count spectrum. We
expect only in this representation a steeply falling spectrum from the source.

To find the optimal regularization strength τ, we perform a grid scan that finds
the smallest global correlation between the dimensions of our estimate, as detailed in
Section 10.3.5. The resulting global correlation for a scan of many τ-values is shown in
Figure 10.9.

The unfolding result that is obtained with the selected τ value is shown in Fig-
ure 10.10. Here, we also compare this result against a spectrum obtained with MAGIC, a
pair of IACT telescopes that is considerably larger than the FACT telescope.
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10.6 Deconvolution of Atmospheric Neutrino Spectra

Tim Ruhe
Karolin Hymon

Abstract: As neutrinos cannot be directly detected, their energy is assessed via their
leptonic partners, e.g., muons, which emerge during neutrino interactions in the ice
or the surrounding bedrock. The production of a muon of energy Eμ from a neutrino
of energy Eν, however, is a stochastic process that depends on the neutrino energy
spectrum, as well as on details of the neutrino interaction. Such processes can be
described via the Fredholm integral equation of the first kind, which can be solved via
a likelihood-based or a machine learning-based deconvolution. This section addresses
the details and challenges associated with applying the machine learning-based decon-
volution algorithm DSEA. The utilization of DSEA is exemplified via its application in the
reconstruction of muon neutrino energy spectra from data obtained with the IceCube
detector in the 86-string configuration. While previous analyses were focused on the
spectrum as a whole, the analysis presented here investigates the possible impacts
of seasonal variations in the atmospheric temperature on atmospheric neutrino spectra.

As neutrinos cannot be directly observed, their energy spectrum cannot be directly
accessed, and its reconstruction requires deconvolution techniques. Similar to gamma
rays, the energy spectrum of atmospheric neutrinos is expected to follow a power law
of the form dΦ

dE ∝ E−γ, with γ ≈ 3.7. There are, however, certain differences between
gamma rays and neutrinos concerning the challenges and the utilized approaches in
the reconstruction of the respective energy spectra. This section will first provide an
overview of the differences and similarities and then provide a sample reconstruction
of neutrino energy spectra, using a spectral analysis of seasonal variations in the
atmospheric neutrino flux carried out using data obtained with the IceCube neutrino
telescope (see Section 2.2.1.1)[210].

As analyses of seasonal variations of the neutrino flux generally utilize muon
neutrinos (νμ), this section will only discuss challenges and techniques associated
with reconstructing νμ energy spectra. Compared with electron and tau neutrinos,
the challenges for reconstructing νμ-energy spectra mainly arise from the indirect
measurement process and the inaccurate knowledge of the neutrino interaction vertex.
Both processes are detailed below. Although the measurement process is indirect for νe
and ντ as well, the knowledge about the interaction vertex and the energy resolution
for these neutrino flavors are much better. This is because both neutrino flavors are
observed as particle cascades where the energy is deposited almost entirely inside the
detector. Concerning the reconstruction of energy spectra, the main challenges for νe
and ντ arise from the detector’s decreased sensitivity for these neutrino flavors. This
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decreased sensitivity arises because νμ may also be produced outside the detector. By
contrast, νe and ντ have to interact inside the instrumented volume to be detected (see
Section 4.2.3).

Since ντ are not produced in the Earth’s atmosphere, they solely contribute to the
flux of high-energy cosmic neutrinos, and one expects only a handful of events per year.
Within an analysis, this number is further reduced by the application of quality cuts,
making the energy spectra reconstruction infeasible for this neutrino flavor. Electron
neutrinos are, in fact, produced in the Earth’s atmosphere but are also detected at a
much lower rate compared with muon neutrinos. Two physical effects contribute here.
First, the effective volume of the detector is much smaller for cascades, and second,
only electron neutrinos from one specific decay channel (three-body kaon decay) can
be detected with IceCube. The much more abundant νe from the decay of low-energy
atmospheric muons are far below the energy threshold of IceCube. Studies of spectral
changes due to seasonal temperature variations in the Earth’s atmosphere do, however,
require a resolution that is as large as possible, which requires a sufficient amount of
events. The analysis discussed here, therefore, utilizes muon neutrinos to investigate
spectral effects.

Rate variations of atmospheric muons and neutrinos arise from seasonal varia-
tions in the temperature of the Earth’s atmosphere (cf. [173, 368, 369]). These seasonal
temperature variations are expected not only to affect the overall rate of atmospheric
muons and neutrinos but also to have an impact on their energy spectra, which occurs
due to a temperature dependence in the critical energies of their parent mesons (pions
and kaons) [173].

As stated above, νμ cannot be observed directly, and thus, their detection proceeds
via their leptonic partner, the muon (μ), which is created in a charged-current (CC)
interaction of the incident neutrino with a nucleon (see Section 4.2.3). The production
of muons in CC-neutrino interactions is governed by the following equation [173]:

dNμ
dEμ

=
∞∫︁
Eμ

(︂
dNν
dEν

)︂(︂
dP(Eν)
dEμ

)︂
dEν . (10.50)

In Equation 10.50 dNμ
dEμ corresponds to the energy spectrum of the observed muons and

dNν
dEν is the sought-after neutrino energy spectrum. The term dP(Eν)

dEμ contains the physics
of the neutrino interaction and describes the probability of obtaining a muon of energy
energy Eμ from a neutrinowith energy Eν in a CC interaction. Comparing Equation 10.50
to the Fredholm integral equation of the first kind (Equation 10.1), one finds that the
reconstruction of neutrino energy spectra is indeed an inverse problem, and as such
requires the use of deconvolution algorithms.

The muon energy Eμ, however, cannot be measured directly but has to be inferred
from the energy deposited in the form of Cherenkov radiation inside the instrumented
volume of the detector. Several Eμ-dependent observables, often referred to as energy
proxies, with different levels of abstraction, can be extracted from the raw data. The
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Fig. 10.11: Correlation of the true neutrino energy with the number of hit DOMs (a), the number of
direct photons Ndir (b), and an energy estimator EDoms (c). The strong smearing, which is a result of
the two levels of indirection, is clearly visible. The horizontal stripes in the top panel arise from the
fact that both variables are discrete. Figures from [209]

.

total number of hit optical modules and the total charge accumulated across all of the
hit modules are particularly straightforward. Thus, compared with gamma rays, where
the utilized variables directly approximate the gamma energy, the reconstruction of
neutrino energy spectra faces an additional level of indirection, which manifests itself
in a larger smearing of the energy proxies with respect to the energy of the incident neu-
trino. Figure 10.11 depicts the correlation of three input variables with the true neutrino
energy. The correlation with the number of hit DOMs is shown in Figure 10.11a, whereas
the correlation with the number of direct photons Ndir is depicted in Figure 10.11b. In
IceCube, a photon is called direct, in case it can be considered to not have been subject
to scattering. Unscattered photons will thus travel on a straight line from their emission
point to a DOM, where they are eventually recorded. To estimate whether a photon can
be considered as direct or not, the travel time ttravel to the respective optical module
is computed with respect to the reconstructed track. Because the reconstructed track
is only an estimate, however, photons are considered unscattered if they are detected
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within a given window around their expected arrival time. A typical time window for
direct photons is −15ns ≤ ttravel ≤ 75ns. Figure 10.11c depicts the correlation of the true
neutrino energy with an energy estimator, generally referred to as truncated energy [32].
The impact of the two levels of indirection is directly visible in the relatively large smear-
ing of the three variables. Horizontal lines, observed in Figures 10.11a and 10.11b, arise
from the fact that both input variables are discrete. This discreteness does, however,
not impact the deconvolution result.

Due to its large track length of several kilometers, the muon is not necessarily
generated within the instrumented volume of the detector but in the surrounding ice or
even the bedrock. Hence, the exact vertex of the neutrino interaction is inmany cases in-
herently unknown, and the amount of energy lost by themuon on its way to the detector
is unknown as well. This introduces an additional level of smearing. The occurrence of
stochastic energy losses and noise caused by the readout electronics further complicate
the problem. Mathematically, all sources of smearing (indirect detection, unknown
point of interaction, muon propagation, and readout electronics) are captured in the
kernel A(x|y) in Equation 10.1. Another difference in the reconstruction of γ-ray energy
spectra concerns the background level. While a certain number of background events
is tolerable for gammas and handled via the additional term b(E) in Equation 10.1, the
purity of the utilized neutrino samples is generally well above 99% (see Section 8.3).

As for many other deconvolution analyses, an analysis with DSEA generally com-
mences with selecting a proper set of input variables. The choice of input variables
is crucial for the accuracy of the unfolding result, and the selected input variables
are required to exhibit as good as possible a correlation to the target variable. Vari-
able selection should, however, be handled with care, as selecting n variables with
the strongest correlation with the target variable will not necessarily deliver the most
accurate unfolding result. The reason for this is that variables selected this way will
exhibit a certain amount of correlation among each other via their mutual energy de-
pendence. This might then lead to the use of highly redundant information encoded in
different energy estimators. As the detection medium of IceCube is a natural medium,
its properties are depth-dependent. The use of geometric information, e.g., the depth
of an event inside the detector, can, thus, provide valuable information for spectral
reconstruction [170, 171].

Input variables to the deconvolution presented here have been chosen in a trial-
and-error approach by studying different variable combinations and their impact on
the unfolded energy spectrum. The benefit of this is obviously not the speed but the
possibility of understanding how the deconvolution algorithm deals with different
variable choices.However, if the list of candidate variables grows too long, this approach
becomes infeasible, and an automated variable selection is recommended instead
(see Section 7.2). Although the utilization of a classification algorithm within DSEA

allows for the use of an arbitrary number of input variables, three energy-correlated
variables were found to be optimal for the analysis presented here. In the next step, the
optimal parameter settings have to be found, as DSEA allows for choosing numerous
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Fig. 10.12: Parameter optimization for DSEA using the normalization s as an example. WD denotes the
Wasserstein distance obtained for the individual settings, whereas ξ represents the decay rate.

combinations of parameters. The parameter optimization requires a comparison to
the true neutrino energy spectrum, and therefore the optimization needs to be carried
out using simulated examples. In order to gain an understanding of the quality of
the deconvolution in individual bins, the number of simulated events used within the
optimization process should correspond to the number of events in experimental data.
The agreement between the true energy spectrum and the deconvolution result can
then be quantified via the use of a distance measure, e.g., theWasserstein distance. The
parameter settings were optimized for the analysis presented here in a grid search. The
final settings include a Random Forest as a classifier and an exponentially decaying
step size, governed by:

αk = s · ξ k−1, (10.51)

where k represents the number of iterations, ξ is the decay rate, and s denotes the
normalization of the decay rate.

The choice of the binning is—at least in principle—arbitrary, because DSEA interprets
the entire deconvolution as a classification task. Classes of events are then handled by
the classification algorithm, where the ordering of the classes is ignored. Ignoring the
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neighborhood relations of bins in DSEA is one of the few shortcomings of the algorithm.
Examples near the lower edge of bin i+1might bemore similar to events at the center of
bin i than to events near the upper edge of bin i + 1. This especially holds if logarithmic
binning is used, which is often the case in neutrino astronomy due to the expected
power-law behavior of the reconstructed spectra. So far, however, this shortcoming has
not had a negative impact on the accuracy of the reconstructed spectra.

When selecting the number of bins and the respective bin edges, it is advisable to
ensure that a sufficient number of events per bin is available for training and validation.
The meaning of sufficient is somewhat vague in this context, as the required number
of events largely depends on the problem at hand. If the individual classes are easily
separable by the selected classification algorithm, fewer events may be chosen than
for cases where the classification task is difficult. From a machine learning point of
view, one should utilize as many examples as possible to ensure an accurate and robust
performance of the classifier. However, this is somewhat contradicted by the physics
point of view, where one would strive for as many bins as possible to ensure optimal
spectrum resolution. Furthermore, annotated examples in astroparticle physics are
generated in Monte Carlo simulation, which is computationally expensive.

As simulated events in astroparticle physics often extend below and above the
energy range of interest for the analysis, an over-flow and an under-flow bin should be
added to account for this type of event. These extra bins contain all events above and
below the respective energy range of interest. If these bins were omitted, a classifier
could easily overestimate the bin content of the outermost bins within the energy range
of interest.

Figure 10.12 shows the optimization of the step size, using ξ = 0.5 as an example.
The normalization s of αk was varied in steps of 0.5, and the Wasserstein distance (WD)
was computed for every s with respect to the true neutrino energy spectrum. While
the true energy distribution is shown in black, spectra obtained for s = 0.5, s = 1.0
and s = 1.5 are depicted in blue, orange, and green, respectively and shown in the
upper panel of Figure 10.12. The ratio of the estimated spectrum fest to the true energy
distribution ftrue is depicted in the lower panel of Figure 10.12. The shaded areas in the
highest and lowest bin highlight the over- and underflow bin, respectively. Inspecting
the different settings and considering the computed Wasserstein distances, one finds
that the neutrino energy spectrum is sufficiently well reproduced for s = 1.

In a next step, the optimized parameter settings are used in n separate applications
of DSEA. The required n data sets are obtained from the original data set via bootstrap-
ping. The obtained bin-wise distributions can then be used to verify the stability of the
deconvolution process and to estimate statistical uncertainties. Due to the large number
of bootstraps required for an accurate estimation of the statistical uncertainties, it is
important to carefully consider the resource consumption (CPU time and memory) of
each bootstrap and to ensure that each bootstrap is as resource-efficient as possible.

Often one finds that the distributions of the deconvolution results can be described
by a normal distribution for all bins, indicating a stable algorithm performance. Devia-
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Fig. 10.13: Results of the presented analysis. The unfolding results, obtained on 10% of the available
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tions from a normal distribution or other unexpected or even unphysical properties
would indicate an unstable performance, and the algorithmic settings should be revis-
ited. A two-peak structure is a particularly straightforward example, and it indicates a
non-optimal choice of the bins. This behavior can be observed in the highest energy
bins, for cases where only one or two events populate these bins. The application of
bootstrapping then results in these one or two events either being inside or outside
the sample and might result in two or more peaks in the observed pull distribution.
When all distributions—including the under- and overflow bin—indicate a stable be-
havior, one can fit the distributions to estimate the statistical uncertainties. After all
verification steps are completed, the deconvolution can be applied to experimental
data. As the deconvolution algorithm only returns the number of events per bin, this
number needs to be converted into a neutrino flux. This flux is generally given in units
of 1/(cm2 GeV sr s). In a simple scenario, the deconvolution result needs to be divided
by the measurement time, the solid angle covered in the measurement, and the width
of the bin. The deconvolution result also needs to be divided by the so-called effective
area Aeff to obtain a flux per area. As IceCube is a three-dimensional instrument, Aeff
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cannot be trivially obtained from the area of the detector itself but has to be inferred
from Monte Carlo simulations. Details on this procedure are given in [329] and [91].

Figure 10.13 shows the deconvolution results obtained in the analysis of seasonal
variations presented here. The fluxes are depicted in the upper panel, and the results for
summer (June to August) are shown in blue, whereas the results for winter (December
to February) are shown in orange. As small-scale variations are often invisible to the
naked eye in power-law spectra, the depicted neutrino flux is weighted by the third
power of the energy. One finds that there is a certain disagreement between the two
seasons, as expected due to the seasonal variations. However, a quantitative statement
on the size of said disagreement can not be made due to the large uncertainties. The
relatively large statistical uncertainties arise from the fact that the unfoldingwas carried
out on only 10% of the available data due to the IceCube blindness policy.² The lower
panel of Figure 10.13 depicts the ratios of the obtained results to the expected yearly
average. Again, a clear deviation between the two seasons and a clear deviation from
the expected yearly average are observed.

The discussed analysis of seasonal variations is an example that shows how the
novel interpretation of deconvolution as a classification task can be applied in practice.
One finds that the approach can be utilized to even solve problems with a relatively
large amount of smearing (see Figure 10.11). The application of the approach includes
the selection of suitable input variables as well as the optimization of the algorithmic
parameters (e.g., step size). It further includes the validation of the results and the
estimation of statistical uncertainties.

2 The blindness policy requires analyzers to optimize their analyses on 10% of the data (known as the
burn sample).
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