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FOUNDATIONS OF PERTURBATIVE QCD

The most non-trivial of the established microscopic theories of physics is QCD: the
theory of the strong interaction. A critical link between theory and experiment is
provided by the methods of perturbative QCD, notably the well-known factorization
theorems. Giving an accurate account of the concepts, theorems, and their justification,
this book is a systematic treatment of perturbative QCD.

As well as giving a mathematical treatment, the book relates the concepts to exper-
imental data, giving strong motivations for the methods. It also examines in detail
transverse-momentum-dependent parton densities, an increasingly important subject
not normally treated in other books. Ideal for graduate students starting their work
in high-energy physics, it will also interest experienced researchers wanting a clear
account of the subject. This title, first published in2011, has been reissued as an
Open Access publication on Cambridge Core.

JouN CovrLins is Distinguished Professor of Physics at Penn State University. He
has long experience in perturbative QCD. He has proved a number of the fundamental
theorems that form the main content of this book, and has a record of formulating
and deriving novel results in QCD. During his career he has received several awards,
including a Guggenheim fellowship, a Humboldt Research Award, a Mercator profes-
sorship, and the JJ Sakurai prize.
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Introduction

The theory of the strong interaction of hadrons — quantum chromodynamics, or QCD — is
in many ways the most perfect and non-trivial of the established microscopic theories of
physics. It is, as far as is known, a self-consistent relativistic quantum field theory. But,
unlike the case of the electromagnetic and weak interactions, many primary phenomena
governed by QCD are not amenable to direct calculation by weak-coupling perturbation
theory. Moreover, QCD has few parameters.

To understand these assertions, first recall the classification of known microscopic
interactions into strong, electromagnetic, weak, and gravitational. Precisely because the
strong interaction is strong, it is useful to study QCD by itself, the other interactions being
perturbations.

QCD is a quantum field theory of the kind called a non-abelian gauge theory (or
a Yang-Mills theory). It has two types of field: quark fields and the gluon field. Parti-
cles corresponding to the quark fields form the basic constituents of hadrons, like the
proton, with the gluon field providing the binding between quarks. There appear to
be no states for isolated quarks and gluons; these particles are always confined into
hadrons. This contrasts with quantum electrodynamics (QED), where instead of quarks
and gluons, we have electrons and photons, which do exist in isolated single-particle
states.

One key feature of QCD is “asymptotic freedom”: the effective coupling of QCD goes to
zero at zero distance. Thus short-distance processes yield to the highly developed methods
of Feynman perturbation theory. Among other things, this allows a perturbative analysis to
give a correct renormalization of the ultra-violet divergences of QCD. The theory therefore
exists in a way that the electroweak theory may not. Thus QCD contains no hints of its own
breakdown.

On the other hand, unlike the case of QED, where perturbative methods give (first
principles) predictions of spectacular accuracy, many apparently simple phenomena in
QCD are difficult and non-perturbative, for example, its simplest bound states, like the pion
and proton. Although Monte-Carlo lattice calculations have made enormous progress, they
are limited both in achievable accuracy and in the observables that can be predicted, and
these include no hadronic high-energy scattering processes, for example. So QCD is highly
non-trivial.
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Moreover, its consequences are enormous. Of course, QCD underlies the whole of
nuclear physics and it creates most of the mass of ordinary matter, as contained in the
proton and neutron.

Despite the non-perturbative nature of the particle states in QCD, there is a vast domain
where perturbative methods can actually be applied to realistic scattering processes in
QCD. The purpose of this book is to give a systematic account of these methods and their
justification.

At present these are the methods that show the power of QCD most strongly. They have
an almost universal impact on experiments in high-energy physics, particular with hadron
beams. This ranges from the long-range planning of experiments to the analysis of data,
even when the primary subject of study is a non-QCD phenomenon, such as the weak
interaction, the Higgs boson, supersymmetry, etc.

It is easy to state the characteristic method, hard-scattering factorization, that enables
perturbative QCD to be systematically applied to these reactions. As an example, consider
production of the predicted Higgs boson in proton-proton collisions at the Large Hadron
Collider (LHC), which at the time of completion of this book (2010) was starting operation
at the European Organization for Nuclear Research (CERN). In the factorization approach,
the proton beams are treated as collections of so-called partons: quasi-free quarks and
gluons, whose (non-perturbative) distributions, the parton densities, have been measured
in other experiments, and are used at the LHC with the aid of the perturbative evolution
equations of Dokshitzer, Gribov, Lipatov, Altarelli, and Parisi (DGLAP). The cross sections
for collisions of partons of the various types to make the Higgs boson are calculated
perturbatively given its expected couplings. A provable consequence of QCD is that many
useful physical cross sections are predicted by convoluting measured parton densities with
short-distance partonic cross sections. It is the proved universality (or, more generally,
modified universality) of the non-perturbative parton densities, etc., between different
experiments that gives perturbative QCD its predictive power.

Among other things, factorization allows an extrapolation of the physics by an order
of magnitude or more in center-of-mass energy from previous experiments. Many cross
sections of interest are so minute (down to femtobarns at the LHC) compared with the
total cross section (close to 100 mb) that considerable quantitative understanding of QCD
physics is necessary for a good analysis of experimental data.

There are many places where one can learn how to perform perturbative QCD calcula-
tions. But a newcomer or an outsider can be forgiven for questioning the logical founda-
tions of the subject. For example, why should calculations be made with on-shell massless
partons, as is commonly done? There seems to be an essential use of actual collinear
singularities associated with on-shell massless partons; how can these be so routinely and
cavalierly manipulated when we know that quarks and gluons are confined inside hadrons
and are clearly not free particles and are therefore definitely not on-shell?

Therefore the purpose of this book is to give a connected logical account of the methods
of perturbative QCD. The intended audience includes not only graduate students in high-
energy physics, but also established researchers, both in high-energy physics and elsewhere,
who want a clear account of the subject.



1.1 Factorization and high-energy collisions 3

Readers are assumed to have a knowledge! of relativistic quantum field theory, up to
non-abelian gauge theories and the elements of renormalization theory, together with a
basic knowledge of elementary particle physics. Beyond this I try to keep the treatment
self-contained.

There is a clear danger that the treatment gets bogged down in mathematical minutiae
without getting to the practically applicable meat of the subject. But without a sufficiently
clear and precise treatment, the concepts get muddied, further development is stymied, and
the construction of new innovative and correct concepts is hindered.

Indeed, not everything in perturbative QCD is properly clear and established. One
reason for such problems is the way in which much knowledge in perturbative QCD has
been constructed.? It is common in science to induce theoretical ideas from a pattern
perceived in a body of experimental data. But in QCD, we also often induce new higher-
level theoretical ideas from calculations within QCD. For example, on the basis of a set
of Feynman-graph calculations, one might see a pattern that can be formalized in the
statement of a factorization property together with a definition of parton densities. The
induced property can be tested both by further theoretical calculations and by comparison
of its predictions with experiment.

Such a factorization property has the form of a statement of a mathematical theorem, and
the soundest method of establishing the property is by proving it mathematically. Naturally
researchers try to do so. But because of the difficulty of perturbative QCD, there are often
interesting gaps in the proofs.

The theorems of perturbative QCD are supported not only by proofs, but also by a
combination of agreement with the results of particular Feynman-graph calculations and
agreement with experimental data. So a gap in a proof does not imply that a theorem is
actually wrong. But the gaps can be frustrating to a newcomer learning the subject. They are
suggestive of things that are difficult and not fully explicitly understood; the understanding
in the collective consciousness of the workers in the field is quite non-verbal.> Such gaps
could become particularly important in generalizations of the theorems.

In this book I try to make the gaps explicit. I will point out some of the danger areas,
and suggest targets for research. I was also able to fill in or reduce many of the gaps.

1.1 Factorization and high-energy collisions

Since the idea of hard-scattering factorization is so central to the applications of QCD, it is
useful at this point to formulate it quantitatively in a particular example. The results in this
section are stated without any attempt at justification, the aim being to give a hint of the
landscape we will explore in detail in the rest of the book. The section may be somewhat
mysterious to a reader without any exposure to the general subject matter, and it can be
skipped if necessary.

! Standard references include: Sterman (1993); Peskin and Schroeder (1995); Weinberg (1995, 1996); Srednicki (2007).
2 These issues actually apply more generally in quantum field theory and in high-energy theory.
3 A classic case of a similar situation is with Dirac’s delta function.
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Fig. 1.1. (a) Drell-Yan cross section at lowest order in hard scattering. This represents an
amplitude times its complex conjugate, with a sum and integral over the final state, at the
vertical line. (b) Same as diagram (a) with interactions between the hadron remnants that
fill in the gap between the remnants.

Let us choose the Drell-Yan process, the inclusive production of a high-mass muon pair,
HsHpg — utu~X. Here Hy and Hp are incoming hadrons of momenta P4 and Pp in
a collision with a large center-of-mass energy +/s. The muon pair is produced through a
virtual photon (or other electroweak boson).* The symbol X denotes that the rest of the
final state is summed/integrated over, and is treated as unobserved.

In factorization, the u™ ™ pair is formed in the interaction of one constituent out of
each hadron, with the lowest-order case being simple quark-antiquark annihilation, as in
Fig. 1.1(a). In the center of the figure, a quark out of one hadron and an antiquark out of the
other annihilate at a vertex with a line for a highly virtual photon. At the other end of the
photon line are the detected muon and antimuon. The shaded blobs represent the remnants
of the incoming hadrons.

Factorization applies when the 1" 14~ pair has high mass. In this context the constituents
are called partons, and the possible types correspond to the fields in QCD: the quarks of
various types (called “flavors”), and gluons.

In a sense to be made precise in Ch. 6, the partons are approximately aligned with their
parent hadrons, and we will define a momentum fraction £ of a parton with respect to its
parent. We will define “parton densities”, f;;x(§). Here i labels the type of parton, and H
the parent hadron. Then f; () is treated as the number density of partons of type i in
hadron H. The factorized cross section is

do (e [ d6 (Ea. £, 7. )
m—;/() d‘i:a/O dép ﬁ/HA(éa)fj/HB(Eb)W, (1.1)

where y is the rapidity® of the s+~ pair, and Q is its invariant mass. We have chosen to
integrate over gr, the transverse momentum of the pair relative to the collision axis. The
errors in the factorization formula are suppressed by a power of a hadronic mass divided
by QO or /s. We have a sum over the types of the parton that are involved, one out of

4 Any other type of lepton pair may be similarly treated, e.g., e*e™ or utv,,.
> See Sec. B.3 for a definition.
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each beam hadron, and we have an integral over the possible momentum fractions. The
partons themselves undergo a collision, and this gives the u* ™ pair, with an effective cross
section denoted by dé (&,, &, i, j)/d Q% dy. This we call a “short-distance cross section”
or a “hard-scattering coefficient”. It differs conceptually from an ordinary cross section in
that it is arranged to be not a complete cross section for partonic scattering, but to contain
only short-distance contributions.

The short-distance partonic cross section can be usefully calculated in powers of the
coupling o(Q), which is small when Q is large, because of the asymptotic freedom
of QCD. The lowest-order hard-scattering for the Drell-Yan process is the tree diagram
for quark-antiquark annihilation to ™™, at the center of Fig. 1.1(a). At this order, the
parton momentum fractions are determined from the muon-pair kinematics: &, = ¢ Q/+/s,
&, = e7Y Q/./s, in the center-of-mass frame. Thus the Drell-Yan cross section gives a direct
probe of the underlying quark and antiquark.

The correct definition of a parton density depends on a resolution scale, which can be
usefully set equal to Q. There is an equation, the DGLAP (Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi) equation, which governs the scale dependence. It is a linear integro-
differential equation — (8.30) below — whose kernel is also perturbatively computable.

There are many similar factorization formulae for a wide variety of processes, typified
by the production of a high-mass electroweak system (utu™ pair, and W, Z and Higgs
bosons), or by the production of particles with large transverse momentum. There are,
in addition, many further developments, characterized by more complicated kinematic
situations.

We can now appreciate some of the issues that make the derivation and understanding
of factorization very non-trivial. One is that in Fig. 1.1(a) there are beam remnants going
into the final state. We can treat each of these as each being boosted from the rest frame
of its parent hadron to a high energy, so that the final state appears to have two oppositely
highly boosted systems, with a distinctive large rapidity gap between them. Such a state
is in fact sometimes seen experimentally, and is called a “diffractive” configuration. But
diffractive events are only a small fraction of the total. Therefore experiment suggests that
the beam remnants interact with high probability, as notated in Fig. 1.1(b). We will need
to understand whether or not factorization gets violated. For the fully inclusive Drell-Yan
process, we will show that a quite non-trivial cancellation applies, so that factorization
actually works: Ch. 14.

Moreover, the beam remnants in Fig. 1.1(a) appear to have quantum numbers, e.g.,
fractional electric charge, that correspond to beam hadrons with a quark or antiquark
removed. This is not observed in actual diffractive events.

Another issue that we will solve is that the colliding partons are often treated as being free
and on-shell, even though they are bound inside their hadrons. In addition, the partons are
treated as having certain fractions of their parent hadrons’ momenta, even though the parton
and hadron momenta cannot always be exactly parallel; there is certainly a distribution over
the components of parton momentum transverse to the collision axis. We will see how this
is allowed for in defining parton densities, and how in some situations we need to treat it
more explicitly. One standard example is the Drell-Yan process when we take the cross
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section differential in the transverse momentum gz of the u* ™ pair instead of integrating
over it as we did in (1.1).

1.2 Why we trust QCD is correct

QCD is generally regarded as the correct theory of the strong interaction. The reasons
are not just that it makes successful quantitative predictions. Also important are structural
arguments, as summarized in Ch. 2. These arguments start from high-level abstractions
from data, and make a quite rigid deduction of QCD as the theory of the strong interaction.
There does not appear to be an underdetermination of theory by data. The arguments are like
those that led Einstein to the theories of special and general relativity, and to those that led
Heisenberg, Born, Jordan, and Dirac to founding the current formulation of quantum theory.
Once QCD and asymptotic freedom were discovered, there was a positive feedback loop
where successful experimental predictions confirmed QCD. But the structural arguments
are also critical in giving the realization that QCD applies generally to strong-interaction
phenomena, including those that not yet derived from QCD, e.g., the bulk of conventional
nuclear physics.

As with many modern theories of physics, QCD and its applications have many elements
that do not in any immediate sense correspond to tangible real-world entities. Parton
densities are a good example. These elements, and the associated mathematics, provide
links between many different kinds of experimental data.

Indeed it is in the links between experiments that many of the predictions of QCD
arise. Perturbative calculations alone do not predict any cross sections in hadron-hadron
scattering and lepton-hadron scattering. Factorization gives us cross sections in terms of
non-perturbative parton densities, which we currently cannot compute from first principles.
But from QCD we deduce that the parton densities are universal between different reactions,
with energy-dependent modifications of universality caused by the evolution of parton
densities with a scale parameter. So we can fit parton densities from some limited set of
data, and use them to predict other cross sections, with the aid of perturbatively calculated
coefficients like dé in (1.1).

No single experiment really provides a critical test of QCD. But a sufficiently large
collection of experiments does simultaneously provide measurements of non-perturbative
factors, tests of the factorization structure, and tests of QCD itself. There are some interesting
issues in statistics and in the philosophy of science here, which do not appear to arise in
such a strong form in other areas of science.

1.3 Notation

As regards normalization conventions and the like, I generally follow the conventions of the
Particle Data Group (PDG) (Amsler et al., 2008), since this forms a standard for our field.
I point out exceptions explicitly. For a collection of many notations and standard results,
see App. A. For acronyms and abbreviations, see Sec. A.3.
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For the most part, I use the “natural units” conventional to the field, where s = ¢ = ¢y =
1, and the GeV is used as the unit of energy. See Sec. A.2 for common conversion factors.

I have found some variations on the standard symbol for equality to be useful. First, to
flag the definition of something, I put “def” over the “=", as in

0L /=g (1.2)

Quite often, it is convenient to explain the definition of some conceptually difficult object
by first proposing a simplified candidate definition based on a naive picture of the physics,
and then building up to the correct definition, e.g., with parton densities, starting in Ch. 6.
So I use the notation
Quantity prefim preliminary candidate definition, (1.3)

for the early incorrect definitions. This avoids having several apparently incompatible
definitions of the same quantity, with the wrong ones prone to being taken out of context.

Similarly there are situations where I motivate proofs and statements of difficult results
by first formulating them in a simplified situation. For example, before formulating and
deriving true factorization theorems, I examine the parton model, an intuitive approximation
to real physics that is relatively easy to motivate. So I flag these suggestive but ultimately
incorrect results with a question mark over an equality sign, e.g.,

F=0. (1.4)

1.4 Problems and exercises

I have devised a number of chapter-end exercises. Some of these are relatively elementary
and should be tackled by anyone learning the subject. Among these are exercises to complete
derivations in the text; some others explore the conceptual framework by the derivation
of further results. There are also harder exercises, rated with one to five stars. Those with
three or more stars are really research problems. I do not necessarily have any answers or
even suggestions for approaches to the research problems; a good solution could easily be
suitable for journal publication.



2
Why QCD?

A possible approach to a theory like QCD is just to state its definition, and then immediately
proceed deductively. However, this begs the question of why we should use this theory and
not some other. Moreover, the approach is quite abstract, and the initial connection to the
real physical world is missing.

Instead, I will take a quasi-historical approach, after first stating the theory. Such an
approach is suitable for newcomers since their background in QCD is like that of its
inventors/discoverers, i.e., little or none. There were several lines of development, all of
which powerfully converged on a unique theory from key aspects of experimental data. Of
course, we see this much more readily in retrospect than was apparent at the time of the
original work, and my account is selective in focusing on the issues now seen to be the
most significant. A historical approach also enables the introduction of ideas and methods
that do not specifically depend on QCD: e.g., deeply inelastic scattering and the parton
model.

I have tried to make the presentation self-contained, in summarizing the relevant exper-
imental phenomena and their consequences for theory. The reader is only assumed to have
a working knowledge of relativistic quantum field theory. Inevitably there are issues, ideas,
experiments, and historical developments which will be unfamiliar to many readers, and for
which a complete treatment needs much more space. I give references for many of these. In
addition, there are several references that are global to the whole chapter and that the reader
should refer to for more detail. A detailed historical account from the point of view of a
physicist is given in the excellent book by Pais (1986). A good account of the phenomena
is given by Perkins (2000). Standard books on quantum field theory also refer to them;
see, for example, Sterman (1993); Peskin and Schroeder (1995); Weinberg (1995, 1996);
Srednicki (2007). A comprehensive account of experimental results is given by the Particle
Data Group in Amsler et al. (2008); this includes up-to-date authoritative summaries of
measurements and their theoretical interpretation.

Naturally, QCD is not the whole story; there are known electromagnetic, weak and
gravitational interactions, and presumably if we examine phenomena at short enough dis-
tances, beyond the reach of current experimental probes, we are likely to need new theories.
But within the domain of the strong interaction at accessible scales, there is an amazing
uniqueness to the structure of QCD.
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2.1 QCD: statement of the theory

An expert in quantum field theory could simply define QCD as a standard Yang-Mills
theory with a gauge group SU(3) and several multiplets of Dirac fields in the fundamental
(triplet) representation of SU(3).

In more detail, QCD is specified by its set of field variables and its Lagrangian density
L. The Dirac fields ,, are called quark fields, and the gauge fields A7 are called gluon
fields. On the quark fields the indices p, a, and f are respectively a Dirac index, a “color”
index taking on three values, and a “flavor” index. The gauge group acts on the color index.
Currently the flavor index has six known values u, d, s, ¢, b, t (or “up”, “down”, “strange”,
“charm”, “bottom”, and “top”). On the gluon field, the color index « has eight values,
for the generators of SU(3), and u is a Lorentz vector index. The important role played
by the color charge leads to the theory’s name, “quantum chromodynamics” or QCD. Of
course, the names “color” and “flavor”, and the names of the quark flavors, are whimsical
inventions unrelated to their everyday meanings.

To deal with the renormalization of the UV divergences of QCD (Sec. 3.2) we distinguish
between bare and renormalized quantities (fields, coupling and masses). We define QCD
by a Lagrangian written in terms of bare quantities, which are distinguished by a subscript
0 or (0). The gauge-invariant Lagrangian is the standard Yang-Mills one:

_ 1
Lar = Yoi D — mo)yo — Z(G?o),w)z- .1

The full Lagrangian used for perturbation theory will add to this some terms to implement
gauge fixing by the Faddeev-Popov method; see Sec. 3.1. The covariant derivative is given
by

def .
Do = (9, + igot® A ) Yo, 22

where 1% are the standard generating matrices' of the SU(3) group, acting on the color
indices of 1. The gluon field strength tensor is

def B
v = Ay — AQ), — 80 fuy Ag) A0y 2.3)
where fug, are the (fully antisymmetric) structure constants of the gauge group, defined so
that 7y, tg] = ifupyt, . The Lagrangian is invariant under local (i.e., space-time-dependent)
SU(3) transformations:

Y0y pag(x) > [e782 O] o) pp(x), (2.4a)
ab
_i . o : o
A, (0 > g—e—’gowam’ D, e 0w, (2.4b)
0

The quark fields have been redefined, as is always possible (Weinberg, 1973a), so that
the mass matrix is diagonal:

Yomoyo = moyitoito + moadody + mosSoso + - . . (2.5

b = %A”, where the standard A* are given in, e.g., Amsler et al. (2008, p. 338).
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Here separate symbols are used for the fields for different flavors of quark: u¢ ps = V0 pau;
etc.

The renormalized masses of the quarks are given in Table 2.2 below, along with the
masses of the other elementary particles of the Standard Model. Large fractional uncertain-
ties for the light quark masses arise because quarks are in fact confined inside color-singlet
hadrons, which gives considerable complications in relating the mass parameters to data.

For their electromagnetic interactions, we need the quark charges:

eqg =e; =e¢, =—1/3, ey, =e.=e =2/3, (2.6)

in units of the positron charge.

The only significant freedom in specifying QCD is in the set of matter fields, the quarks.
At the time of discovery of QCD, only the u, d and s quarks were known; the ¢ quark came
slightly later. The discovery of the b and ¢ quarks needed high enough collision energies
to produce them. There have been many conjectures about possible new heavy quarks,
both scalar and fermion, possibly in non-triplet color representations, but searches so far
have been unsuccessful (Amsler er al., 2008). The decoupling theorem (Appelquist and
Carazzone, 1975) for heavy fields ensures that we can ignore the heavy fields if experimental
energies are too low to make the corresponding particles.

A complete theory of strong, electromagnetic, and weak interactions is made by com-
bining QCD with the Weinberg-Salam theory to form the Standard Model of elementary
particle physics, summarized in Sec. 2.7.

2.2 Development of QCD

Why we should postulate the QCD Lagrangian and study QCD as the unique field theory
for the strong interaction? An answer to this question should be at a high level and broad,
since QCD is a high-level theory, intended to cover a broad range of phenomena, i.e., all of
the strong hadronic interaction.

Starting in the 1950s, as accelerator energies increased, elementary particle physics
gradually became a separate subject, distinct from nuclear physics. Several, not entirely
distinct, strands of research led to the discovery of QCD in 1972-1973:

1. The quark model of hadron states.

2. The (successful) search for a theory of the weak interactions of leptons, including the
weak interactions of hadrons.

3. Current algebra, i.e., the analysis of the currents for the (approximate) flavor symmetries
of the strong interaction, including their relationships to the electroweak interactions of
hadrons.

4. The theoretical development of non-abelian gauge theories.

5. Deeply inelastic lepton scattering and the measurement that the strong interaction is
quite weak at short distances.
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It is almost paradoxical that many of the key issues involved the weak and electromagnetic
interactions; much of the research on pure strong-interaction phenomena was not critical
to the discovery of QCD.

2.2.1 Quantum fields

Always present was the notion of quantum field theory. Soon after the discovery of quantum
mechanics, it was apparent that quantum fields formed an appropriate candidate framework
in a search for an all-encompassing underlying theory of known interactions.

First, the basic dynamical variables are local in a field theory, so that there are separate
variables to discuss, for example, an experiment in Illinois yesterday and an experiment
in Switzerland tomorrow. This happens even in non-relativistic quantum theory. A theory
of interacting quantum Schrodinger fields is readily constructed; this theory can be shown
(Fetter and Walecka, 1980; Brown, 1992) to be equivalent to a collection of ordinary
quantum mechanical theories in terms of N-body wave functions, but now for any N and
with specified inter-particle interactions. In contrast, an ordinary Schrodinger equation
for a wave function concerns, for example, only one particular electron and proton. But
a quantized field theory can be formulated to describe all possible electrons and nuclei.
Thus it encompasses all of atomic and molecular physics, not to mention chemistry, etc.
Of course to take account of radiative phenomena, one also needs the electromagnetic
field.

Since quantum field theories are intrinsically many-body theories, they are suitable for
the construction of quantum theories that obey Einstein’s special relativity. Once sufficient
energy is available in a collision, particles can be created, so that a framework where
particles are conserved is wrong. Fig. 2.3 below serves as an icon of this: it shows the
multiparticle outcome of one particular positron-proton collision.

Furthermore, it is natural in relativity that fields obey local field equations, written in
terms of fields and their derivatives. A non-local interaction would involve action at a
distance, and would require enormous conspiracies to avoid faster-than-light propagation,
etc.

To obtain a quantum field theory, it is sensible to start by postulating fields that correspond
to observed particles, and then asking what interactions, governed by non-linear terms
in the field equations, give observed phenomena. This approach was successful for the
electromagnetic interaction and gave us the theory called QED. With a long delay to allow
the full formulation of the needed non-abelian gauge theories, this approach was also
successful for the weak interaction. Considerable restrictions were applied to the candidate
theories, concerning self-consistency and renormalizability.

But for the strong interaction, there was a failure of this obvious approach, where one
searches for a theory written in terms of fields for observed hadrons, initially the nucleons
and pions. In retrospect, the reason is obvious: hadrons are composite, with the size of the
bound states (Hofstadter, Bumiller, and Yearian, 1958), around 1fm = 1 x 10713 m, being
much less than the range of the strong nucleon-nucleon potential and the inter-nucleon
separation in atomic nuclei (Hofstadter, 1956).
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During the 1960s it became conventional, instead, to suppose that something other than
a quantum field theory was needed for the strong interaction, an ultimately fruitless quest.’
See the later chapters of Pais (1986) for a historical account.

2.2.2 Quark model

In strong-interaction physics very many unstable particle-like states, or resonances, have
been discovered (Amsler ez al., 2008). They are generically termed hadrons. No fundamental
distinction between the unstable and stable hadrons appeared to exist, stable hadrons simply
being those that have no available decay channels. One natural hypothesis is that these
states are bound states of more elementary particles, which turned out to be the actual
case. The establishment of this view, starting in the 1950s, was quite non-trivial, however.
Tightly coupled with these developments was the discovery that the strong interaction is
approximately invariant under an internal symmetry, called SU(3) flavor symmetry; see,
e.g., Gell-Mann (1962).

Within QCD, SU(3) flavor transformations are applied to the u, d and s quark fields,
and would give an exact symmetry if the masses of the u, d and s quarks were equal. We
get a useful approximate symmetry because the masses (and hence the mass differences) of
these lightest three quarks are substantially less than a “normal hadronic mass scale”, char-
acterized by the proton mass. The ¢, b and ¢ quarks (not known until after the construction
of QCD) are singlets under SU(3) flavor transformations.

Flavor SU(3) symmetry is to be carefully distinguished from the later-discovered color
symmetry group, which is also mathematically SU(3).

Gell-Mann (1964) and Zweig (1964a, b) constructed the quark model, in which baryons
(like the proton and neutron) are bound states of three quarks, and mesons are bound states
of a quark and antiquark. For the hadrons known at the time, they used three spin—% quarks
(u, d and s), with the fractional charge assignments of (2.6).

Now the u, d and s quarks are in the triplet representation of flavor SU(3). It follows
(Gell-Mann, 1964) that baryons can be classified into multiplets that are singlet, octet and
decuplet under SU(3), while the mesons are singlets and octets. Prior to the discovery of
a satisfactory theory of the strong interaction, i.e., QCD, it was useful to investigate the
consequences of the flavor symmetry abstractly, independently of any assumptions about
a quark substructure or a Hamiltonian; see Sec. 2.2.4. Patterns of mass splitting within
hadron multiplets can be understood quantitatively by using perturbation theory applied to
symmetry-breaking terms in the strong-interaction Hamiltonian, with the hypothesis that
symmetry-breaking terms are in an SU(3) octet. These terms are now identified with quark
mass terms in QCD. See Amsler et al. (2008, Ch. 14) for a recent review and further
references.

Each flavor of quark appeared to need three varieties (called “colors”) in order
for the spin-statistics theorem to hold. This is seen most easily for the AT+(1232)

2 Although the quest for a non-QFT theory of the strong interaction failed, it did lead to the invention of string theory,
which now leads a prominent life as a candidate fundamental theory of everything including gravity.
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baryon.? It is a ground-state baryon of spin % consisting of three u quarks, so both the
space and spin wave functions are totally symmetric.* But a side effect of the color hypoth-
esis is that each meson (e.g., 7 1) has an extra eight color states, which are not observed.
An extra assumption is needed to prohibit the extra states.

Furthermore, there is a complete failure to detect isolated quarks in high-energy col-
lisions, which requires the hypothesis that quarks are permanently confined in hadrons.
Quark confinement obviously makes it harder to deduce from data the correct bound-state
structure.

Thus there was a continued introduction of new hypotheses, which led to great scepticism
(Zweig, 1980). Nevertheless, the situation was the unusual one of a correct general idea
being forced by data into a unique implementation. In favor of the quark model, calculations
with phenomenological interquark potentials allowed calculations for the energies of excited
hadrons (non-ground-state hadrons), in essential agreement with data.

Around 1972, Fritzsch and Gell-Mann (1972) and Fritzsch, Gell-Mann, and Leutwyler
(1973) had the inspiration that a non-abelian gauge theory, with an SU(3) gauge symmetry
applied to the color degree of freedom, could not only give all these properties of the
quark model, but could also solve other puzzles involving current algebra and the weak
interactions of hadrons: Secs. 2.2.3 and 2.2.4.

Somewhat tentatively they proposed exactly the theory now known as QCD, missing only
the heavy quarks, which in any event decouple from lower-energy physics and therefore do
not affect the arguments. Understanding of the dynamics of the theory was still missing, in
particular for the observations in deeply inelastic scattering: Sec. 2.3.

As regards the quark model, the unifying hypothesis suggested by the structure of QCD
is that of “color confinement”, that all observed states are color singlet. It simultaneously
solves the quark confinement problem and the lack of extra meson states, and it is a
natural conjecture, since gluons couple to color charge. Already in lowest-order pertur-
bation theory it can be seen that the gluon exchange energy for a quark-antiquark pair is
attractive for the color singlet state and repulsive for the color octet state: problem 2.1.
Of course, perturbation theory for a generic strong-interaction quantity is at best a rough
approximation. Even so, although a real demonstration of color confinement from QCD
has still not been found, the hypothesis is consistent with all the evidence, theoretical and
experimental.

The terms in the QCD Lagrangian that correspond to differences of quark masses give
an operator in the Hamiltonian that transforms as an octet under flavor SU(3). This is
exactly what had previously been assumed to explain mass splittings in the hadronic flavor
multiplets.

w

In this notation, the number denotes the mass in MeV, i.e., 1232 MeV, while the A* denotes the quark and isospin
content of the state (Amsler ef al., 2008, Ch. 8), which in this case corresponds to a baryon of isospin 3/2 with charge
+2.

The possibility that there are other types of particle statistics than Bose or Fermi was considered under the names
of “para-statistics” or “quark statistics”. But it was shown by Doplicher, Haag, and Roberts (1974) that all these
possibilities are equivalent to ordinary Bose or Fermi statistics supplemented by selection rules on the allowed states.
See also Driihl, Haag, and Roberts (1970). So the color solution is generic.

IS
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2.2.3 Weak interactions

By the early 1970s there was a leading candidate for electroweak interactions of leptons,
the Weinberg-Salam theory (Weinberg, 1967; Salam, 1968). This theory used spontaneous
symmetry breaking to give mass to the weak gauge-bosons. It became a genuine candidate
theory after it was shown how to successfully quantize and renormalize non-abelian gauge
theories, and has since become fully established. This work solved severe consistency
problems of theories with massive charged vector fields.

How is the theory to be extended to include hadrons? We treat the situation perturbatively
in the electroweak interactions, using a decomposition of the complete Hamiltonian as

H = Hs1 + Ho, 1ept + Hi Ew + Hsiew. (2.7)

Here Hg is the full strong-interaction Hamiltonian, not yet known around 1970, Ho, iept
is the free Hamiltonian for non-hadronic fields, Hy gw is the interaction Hamiltonian for
electroweak interactions, and Hspgw gives the coupling between hadronic fields and the
electroweak fields.

We now do time-dependent perturbation theory with the unperturbed Hamiltonian
including the full strong-interaction part, i.e., Hy = Hgy + Hy, jepi. Useful information can
be extracted without either knowing or solving the full strong-interaction theory. The rea-
son is that the couplings between the strong-interaction fields and the electroweak gauge
fields were found from phenomenological evidence to involve currents for hadronic flavor
symmetries. We write these in the form

Hs pw = /d3x ij Wa . + Higgs terms, (2.8)
A

where W, ,, are the electroweak gauge fields W*, Z and y, while j§ are the hadronic
currents to which they couple. For consistency of the electroweak theory, the hadronic
currents must be conserved, apart from the effects of their couplings to the electroweak
fields. In fact, the currents, within the strong-interaction sector, are not quite conserved,
which appears to be somewhat inconsistent. The inconsistency is solved retrospectively
by the full Standard Model, where the non-conservation is caused by quark mass terms in
QCD. Since quark masses arise from the vacuum expectation value of the Higgs field in
the Yukawa couplings for the quarks, the lack of conservation of the flavor currents within
QCD is essentially associated with weak interactions.

This form of perturbation theory, where the unperturbed Hamiltonian contains the full
strong-interaction Hamiltonian leads to normal Feynman perturbation theory only for the
electroweak fields (leptons, photon, etc.). In the strong-interaction part, the electroweak
gauge fields are coupled to matrix elements of currents. For example, the decay of the
neutron to p + e + ¥, (Fig. 2.1) has an amplitude

_igul —

(p. out| j*(0)|n, in) qz_—mz”eyk(l — y5)v, x couplings, (2.9)
W
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Fig. 2.1. Lowest-order weak interaction for neutron decay.

where j is the hadronic current to which the W+ couples, u, and v, are standard Dirac
spinors for the states of the leptons, ¢ = p, — p, is the momentum transfer, and p, and
pp are the 4-momenta of the neutron and proton.

2.2.4 Current algebra

For further references and for a more detailed historical account of the issues treated in this
section, see Pais (1986, Ch. 21).

Initially, with no known theory of the strong interaction, and with no complete theory
of the weak interaction, it was measured that the weak interactions of hadrons involved
current matrix elements as in (2.9). This led to the subject of current algebra, i.e., the study
of hadronic current operators. The current coupled to the W boson appears as one of the
currents for an approximate symmetry group of the strong interactions. This group, a chiral
SU3) ® SU(3) group, will be discussed further in the context of QCD in Sec. 3.8, together
with its more exact SU(2) ® SU(2) subgroup. Explicit breaking of the symmetry is caused
by the relatively small mass terms for the u, d and s quarks in QCD.

It was found that the symmetries are spontaneously broken to a “vector” SU(3) or
SU(2), with the pions being the Goldstone bosons for the SU(2) ® SU(2) case. The explicit
symmetry breaking by quark masses implies that the pion is not massless but simply much
lighter than other hadrons. The residual vector SU(3) symmetry is the one that is prominent
in the quark model: Sec. 2.2.2.

Many consequences of the Ward identities for these symmetries were derived, in particu-
lar soft pion theorems. See, e.g., Treiman, Jackiw, and Gross (1972). One dramatic example
is the Goldberger-Treiman relation that gives a relation between the matrix element in (2.9)
and the long-distance part of the pion exchange contribution to the nucleon-nucleon poten-
tial; it thus relates a measurement of a weak-interaction quantity to an apparently very
different quantity in pure strong-interaction physics.

Studies of symmetries require understanding of commutators of currents. This led to the
study of matrix elements of two currents, like (P | j*(x)j"(0)| P), which are investigated
experimentally in deeply inelastic scattering: Sec. 2.3.

A natural problem was now to find a theory that supports current algebra, i.e., a theory
in which the currents are ordinary Noether currents and have the commutation relations
postulated in current algebra. What excited Fritzsch and Gell-Mann (1972) and Fritzsch,
Gell-Mann, and Leutwyler (1973) was that their proposed QCD Lagrangian not only could
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explain the quark model but naturally gave current algebra. The symmetry properties of
the quark mass terms are exactly those used for the symmetry-breaking part of the strong-
interaction Hamiltonian in current algebra.

Around 1970 it was found that the derivation of certain Ward identities for products of
three currents fails in real field theories. It was found, moreover, that the resulting anomalies
are correctly calculated within lowest-order perturbation theory; higher-order corrections
are exactly zero according a theorem due to Adler and Bardeen. The methods of current
algebra then enabled the decay rate for 7% — yy to be calculated to the extent that the
masses of the u and d quarks are small. Agreement with the observed decay rate is obtained
if each flavor of quark has three color states. See Peskin and Schroeder (1995, Ch. 19).

Another line of argument related to current algebra was by Weinberg (1973a, b), who
considered weak-interaction corrections to strong-interaction phenomena. In a generic can-
didate theory for the strong interaction, loop graphs have unsuppressed contributions from
momenta around the W mass. The resulting violations of strong-interaction symmetries
(e.g., parity) would be electromagnetic in strength, contrary to observation. Weinberg
showed that this problem is avoided if the strong interaction is mediated by exchange of
bosons whose symmetries commute with those for the electroweak bosons. This is the case
for QCD, where color SU(3) commutes with the electroweak gauge group. The revolu-
tionary consequence is that flavor symmetries were demoted from fundamental properties
of the strong interaction to apparently accidental and approximate symmetries that occur
because of the small size of the Yukawa couplings of the Higgs field to the light quarks.

2.2.5 Non-abelian gauge theories

The discovery of QCD needed a parallel track of purely theoretical work to formulate non-
abelian gauge theories and establish their consistency. The initial formulation was by Yang
and Mills (1954), who beautifully generalized the concept of local gauge invariance from
the abelian symmetry of QED to a non-abelian group. Their attempt to apply their theory
to the actual strong interaction foundered on the prejudice that the fields in the Lagrangian
should correspond to observed particles, contrary to the now-known reality.

But the theoretical idea remained. With the discovery of the concept of spontaneous
symmetry breaking, Weinberg (1967) and Salam (1968) found what is in fact the correct
theory of electroweak interactions. At about the same time, Faddeev and Popov (1967)
showed how to quantize such theories consistently. After this, it was quickly found how
to derive Ward identities and thence to show that Yang-Mills theories, possibly including
spontaneous symmetry breaking, are renormalizable.

With this, non-abelian gauge theories became fully fledged consistent field theories,
setting the stage for the developments outlined in the preceding sections.

2.3 Deeply inelastic scattering

In parallel with work just described, the remaining developments that led to the
establishment of QCD as the theory of strong interactions concerned deeply inelastic
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scattering of leptons (DIS). Since this process remains an important subject of study in
QCD, we now examine those aspects that do not depend on knowing the strong-interaction
Lagrangian.

We consider scattering of a lepton of momentum /* on a hadron N of momentum P* to
an outgoing lepton of momentum ['* plus anything:

[+ N(P) — ' + X. (2.10)

The symbol X has a standard connotation, that we work with an inclusive cross section,
i.e., a cross section differential in lepton momentum /’, with a sum and integral over all
possible states for the X part of the final state. Effectively only the lepton is treated as being
detected.

There are a number of cases with different types of lepton for which there is experimental
data: e+ N — e+ X, e+ N — v+ X, u+N —u+X,v+N—v+X, v+
N — (e or u) + X. When the momentum transfer at the lepton side is large, as we will
see, we effectively have a powerful microscope into the initial-state hadron N. In actual
data, N is either a proton or a heavier nucleus. Scattering on a nucleus is often approximated
as scattering on an incoherent mixture of protons and neutrons. For more accurate work,
“nuclear corrections” are applied to obtain cross sections relative to independent protons
and neutrons.

In this section we will only treat the electron-to-electron case, for which the current
state of the art for high energy is at the recently shut-down HERA accelerator at the DESY
laboratory. There an electron (or positron) beam of energy 27.5 GeV was collided against
a proton beam of energy 920 GeV, with a center-of-mass energy of 4/s = 318 GeV.

2.3.1 General considerations

Consider a wide-angle scattering of the electron in the center-of-mass frame, Fig. 2.2. The
large space-like momentum transfer, g* = I* — I'*, for the (essentially point-like) electron
suggests that a short-distance scattering is necessary, which would naturally occur off a
small constituent of the hadron. If we let the invariant momentum transfer be Q = \/j,
then a natural distance scale is 1/Q (in units with z = ¢ = 1). At HERA there is data to
above Q = 100 GeV, with a corresponding distance of less than 1072 fm.

An enormous simplification occurs because, at high energy, the hadron is Lorentz-
contracted and time-dilated® by a large factor, which is about 150 in the center-of-mass
at HERA. A hadron like a proton has a size (Hofstadter, Bumiller, and Yearian, 1958)
of around 1 fm, so it is reasonable to say that in the hadron’s rest frame the constituents
interact with each other on a time scale of order 1 fm/c. In the boosted hadron, as seen in
the center-of-mass frame of the scattering, time dilation implies that the last interaction of
the constituents typically occurred a long distance upstream. In the HERA center-of-mass
frame, this is of order 100 fm, which is much larger than the scale of the electron scattering.

3 These concepts are non-trivial (Gribov, 1973, p. 12) for microscopic particles in a quantum field theory, but that does
not affect the motivational issues for this section.
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Fig. 2.2. Deeply inelastic scattering of an electron on a proton. The electron comes from
the left and the proton from the right. In the diagram, the electron (solid line) is depicted as
point-like and the hadron as a Lorentz-contracted extended object. The three dots inside the
proton symbolize the three quarks that are its constituents in the quark model. The struck
parton is indicated by a dashed line. Drawing a realistic Lorentz contraction would result
in a much thinner proton than shown here.

This suggests (Feynman, 1972) that in the short-distance electron-constituent collisions
it is a useful approximation to neglect the interactions that bind the constituents into a
hadron. Quantitative development of this idea leads first to the “parton model”, to be
explained in Sec. 2.4, and then to the factorization theorems of QCD, which give a precise
and correct mathematical formulation of the intuitive ideas.

In the original DIS experiments at SLAC, in the early 1970s, only the outgoing electron
was detected; there was no sensitivity to the rest of the final state. Moreover the electron
beam energy was at most 21 GeV on a fixed target. Modern experiments, like the ZEUS
and HI detectors at HERA, can see the hadronic final state. An example event with
O = 158 GeV is shown in Fig. 2.3. It supports the intuitive picture: an isolated wide-angle
electron recoils against a narrow group of particles, called a jet, which is reminiscent of the
scattered constituent. The scattered constituent (the “parton” in Feynman’s terminology)
does not retain its identity as a single particle except at sufficiently microscopic distances;
this is of course compatible with the idea that quarks are permanently confined in hadrons
and never appear as isolated single particles. The standard view (Andersson, 1998) is that
many quark-antiquark pairs are created by the intense gluon field between an outgoing
struck quark and the proton remnant. These form into color-singlet hadrons, mostly pions,
that go in roughly the direction of the outgoing quark. The remnants of the proton continue
in motion, with excitation and only a small deflection: these cause hits in the detector
segments around the beam pipe, at the left of Fig. 2.3(a). Much of the remnant energy is
too close to the beam direction to be detected.

2.3.2 Kinematics; structure functions

We work to lowest order in electromagnetism and in this section we will ignore weak
interactions.® Then the amplitude for a contributing process is represented diagrammatically

6 Unless Q is at least of order the masses of the W and Z bosons, weak-interaction effects are suppressed, by a factor
of Q%/m?%,. Higher-order electromagnetic corrections are smaller by a factor of roughly «/m, except for infra-red
dominated terms associated with the masslessness of the photon. It is conventional to present data “with the effects
of radiative corrections removed”, so that higher-order electromagnetic corrections are effectively absent in published
data. The formalism is readily extended, with only notational complications, to deal with exchange of weak-interaction
bosons. See Sec. 7.1.
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Fig. 2.3. Scattering event in an positron-proton collision in the H1 detector (H1 website,
2010) at a center-of-mass energy of about 320 GeV. The detector is approximately cylin-
drically symmetric about the center line which contains the beam pipes. Both a side view
(a) and an end view (b) are shown. In (a), electrons come from the left, and protons from
the right. One isolated track was identified as an electron, and there is a recoiling jet,
approximately back-to-back in azimuth. The kinematic variables are Q% = 25030 GeV?
and y = 0.56 (see Sec. 2.3.2).

in Fig. 2.4(a), and is a product of a lowest-order leptonic vertex, a photon propagator,
and a hadronic matrix element of the electromagnetic current, (X, out| j*| P). The two
independent Lorentz invariants for the hadron system are 0> % —42 > 0 and P - g, both
of which can be computed from the measured momenta /, I’ and P, with the momentum

of the exchanged photon being g# = [* — ', The mass of the hadronic final state is
then

my =(P+q)=M+2P-q— Q% (2.11)

where M is the mass of the initial-state hadron. A convenient combination of variables is
Q and the Bjorken variable

2
NI (2.12)
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(a) (b)

Fig. 2.4. (a) DIS amplitude to lowest order in electromagnetism. (b) Hadronic part squared
and summed over final states. For the meaning of the vertical “final-state cut”, see the
discussion below (2.19).

Kinematically x is restricted to the range Q% /(s + Q?) < x < 1 (with fractional corrections
of order M?/ Q? being neglected). In the parton model we will find that x gives an estimate
of the fraction of the initial hadron’s momentum that is carried by the struck parton. That
the term “momentum fraction” has a useful meaning depends on the relativistic kinematics
of the process: Sec. 2.4.

The term “deeply inelastic scattering” (DIS) applies to the region where both Q and m x
are large, so that there is a large momentum transfer and the hadron target is very much
excited, inelastically.

Another commonly used variable is

o
o)
-

q-P
l-P’
It lies between 0 and 1. In the rest frame of the hadron, this is the fractional energy loss of

the lepton: (E — E’)/E, so that it is simple to measure in a fixed target experiment. But it
is not an independent variable, since

(2.13)

y

0% = xy(s — M* —m?). (2.14)

The Lorentz-invariant inclusive cross section is then

,do mwet - 1 . 2
a1 = 25 280 ex = P |15 5 (X, outl*1P)
X
20
= bW (2.15)

In the prefactor, we have neglected the electron mass m, and the hadron mass M compared
with /s, while the fine-structure constant is o = e?/(4m). The sum over X denotes the
usual Lorentz-invariant sum and integral over all hadronic final states. The currents jiep '
and j* are respectively the electromagnetic currents for the leptons and for the hadronic
fields. In QCD the electromagnetic current involves a sum over quark flavors:

P=Y eyt vy = 2aytu+ ) — Ydytd + ). (2.16)
f
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In the second line of (2.15), we have separated out factors for the leptonic and hadronic
parts. The leptonic tensor is obtained from lowest-order Feynman graphs, and in the unpol-
arized case is

L/“, = %TI' )/vl)/ul, = z(lullv + l,;le - guvl . l/) (217)

The hadronic tensor is defined as a complete matrix element,

W(g, P)E 4m3 " 89 (py — P — ) (P. 5] j"(0)| X) (X|j*(O)| P. S)
X

1 4 ig-z . .y
=1 d'z (P, S| j*(2) j*(0) | P, S) (2.18)

in the full strong-interaction theory. The normalization is a standard convention, and the
variable S labels the spin state of the target. In general, this may be a mixed state, and the
notation (P, S|...| P, S) is a shorthand for a trace with a spin density matrix: see App.
A.7, and especially (A.8) and (A.13), for details. For the usual case of a spin-% target,
the spin state is determined by its (space-like) spin vector S*, which obeys S - P = 0. We
normalize S* as in Amsler et al. (2008), so that S> = —M? for a pure state.

To obtain the last line of (2.18), we used a standard result for the transformation of fields
under space-time translations:

(P, S|j"(2)| X,out) = (P, S|j*(0)| X, out) &' PPz, (2.19)

This allows the conversion of the momentum-conservation delta function to an integral
over position. Then we used the completeness relation: ), | X, out) (X, out| = I.

Diagrammatically, we use the cut-diagram notation of Fig. 2.4(b) to represent W*". There
the vertical line is called a “final-state cut”. It represents the final state | X, out), and implies
a sum and integral over all possible out-states | X, out). The part of the diagram to the left of
the final-state cut is an ordinary amplitude (X, out|j”(0)| P, S); in perturbation theory it is
a sum over ordinary Feynman graphs with the appropriate on-shell conditions. The part to
the right of the cut is a complex-conjugated amplitude, in this case (P, S| j*(0)| X, out) =
(X, out| j*(0)| P, S)*.

The Particle Data Group’s definition (Amsler et al., 2008) of W#V differs in replacing
j*(2) j"(0) by the commutator [j*(z), j"(0)], but I find it better to use the more obvious
definition with the simple product. The other definition is a relic from the period when
the commutator was a dominant topic of research. The second term in their commutator
—Jj'(0) j*(z) gives a contribution equal to —W"#(—q, P), so the commutator version can
be reconstructed from knowledge of W*¥. In fact, for a given value of ¢, only one of
the two terms in the commutator contributes, since, when P is the momentum of a stable
single-particle state, only one of P 4+ ¢ and P — ¢ is the momentum of a physical state that
can be used for | X, out).

We now decompose WH” into fixed tensors times scalar functions. For this we observe
that:

e The electromagnetic current is conserved, 0 - j = 0, so that g, WH" = W"#q, = 0.
e WH is linear in the spin vector, which is an axial vector.



22 Why QCD?

o The strong interactions are parity invariant.
e W™ is a hermitian matrix, i.e., (WH*)* = WK,

Then the most general form of the tensor is

) ) K v (P* —g"P . 2)(Pv_ vp. 2)
Wi = (—g“ +ig ) Fix, Q%)+ —2 ‘”‘]P.q aP a0 by, 03
S-q
S 9o <Sﬁ - Pﬂp_.)
e g0, 0) o e (x, 07, (2.20)

The scalar coefficients Fy, F>, g;, and g, are called structure functions. The invariant

0123 _

antisymmetric tensor €,;,, obeys €p23 = +1, i.e., € —1, a convention that is not

universal.

2.3.3 Breit/brick-wall frame; helicity analysis

For much of our work, it will be convenient to use the so-called Breit frame, where
the incoming proton is in the +z direction, and the photon’s momentum is all in the —z
direction: ¢ = (0, 0, 0, — Q). In the parton-model approximation, we will see that the struck
quark gets its 3-momentum exactly reversed in this frame, which is therefore also called
the brick-wall frame.

In the Breit frame we define structure functions with simple transformation proper-
ties under rotations about the z axis. These are the longitudinal and transverse structure
functions:

RYE_uF:, RYFE. 2.21)

Then F1, corresponds to the components of W#" in the energy direction, while Fr corre-
sponds to the components transverse to ¢ and P.

2.3.4 Cross sections and measurements of structure functions

In the case of unpolarized scattering, which is the most usual situation, we set S* = 0.
Then (2.15) and (2.20) give

2,202
[(1 —y- %) Fy(x, Q%) + y*x Fi(x, Q2)]

dz(f unpol 47'[0{2

dxdy — xyQ? 0
dor o 2 2142 4
= 7ro: > |:(1 _e e ]2‘/1 ) Fy(x, 0 + %Fl(x, Q2)i| : (2.22)
0 xs s xs

The errors in this formula are due only to the neglect of the electron and hadron masses with
respect to +/s, of the electron mass with respect to Q, and to the use of lowest-order pertur-
bation theory for the electromagnetic interaction. The form of the kinematic dependence
multiplying the structure functions is due to the established form of the electromagnetic
interaction. Thus measurements of the structure functions are equivalent to measurements
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of the cross section. Without further knowledge of the strong interaction, a measurement at
a single energy /s only determines the x and Q dependence of a combination of structure
functions, as is made clear on the second line. Measurements at a minimum of two different
energies are needed to separate the structure functions. After that the cross section for all
other energies is predicted for values of x and Q that are within the kinematic limits of the
first measurements.

The remaining structure functions g; and g, can be measured with polarized electron
beams on a polarized target; see Leader and Predazzi (1982, p. 256).

This finishes the summary of those results and definitions that apply independently of
the theory of the strong interactions.

2.4 Parton model

The parton model was formulated by Feynman (1972) and formalized by Bjorken and
Paschos (1969) as an idea for understanding DIS in the absence of knowledge of an
underlying microscopic theory of the strong interaction. It relies on an intuition stated in
Sec. 2.3.1 and symbolized in Fig. 2.2.

Feynman proposed that the photon vertex couples to a single constituent of the target
hadron, and that it is useful to neglect the strong interactions of the constituents during the
collision with the lepton. The word “parton” is a generic term for one of the constituents
under the conditions in which it participates in the short-distance part of a collision. In QCD
it is therefore often treated as a collective name for quarks and gluons (and antiquarks).

A quantitative formulation is greatly helped by the relativistic kinematics of the process.
Consider a parton of momentum k inside its parent hadron of momentum P. To get from
the rest frame of the hadron to the frame of Fig. 2.2, we apply a large boost. We use
light-front coordinates (App. B) with the positive z axis in the direction of the hadron; we
therefore write k* = (k*, k=, kt), P* = (PT, M?/(2P™), Op), where k= = (k° + k%) /+/2.
We assume that in the rest frame of the hadron, the components of k are appropriate for
a constituent of a bound state whose typical scale is M, i.e., that all components of k are
of order M (or smaller) in the hadron rest frame. Then after the large boost, k* is by far
the biggest: it is of order Q, while k= and kr are of order M?/Q and M. The ratio of the
plus momenta is boost invariant, so we define the fractional momentum of the parton by
E=kT/PT.

Based on the space-time structure of the reaction, the parton model asserts that we
should approximate the inclusive DIS cross section as incoherent scattering of electrons
on quasi-free partons. The partons have a probability distribution in fractional momentum
& and in parton flavor, and the shape of the distribution is determined by the proton’s
bound state wave function. For the electron-parton interaction, the momentum transfer Q
is large, so we approximate the incoming and outgoing partons as massless free particles,
and neglect the transverse momentum of the incoming parton. The outgoing parton also
has high energy, so the interactions converting it to a hadron final state are also time-
dilated, thereby justifying its approximation as a free particle. Most importantly, the strong
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interaction is neglected, and only the lowest-order electromagnetic scattering interaction is
used.

Contrary to the impression that might be gained from the literature, the parton model does
not require that partons are genuinely free massless particles. They are only approximately
free, and only for the purposes of estimating a short-distance cross section.

It is by no means obvious, a priori, that the parton model is actually valid. In Ch. 6
and later chapters, we will formulate the parton model in real quantum field theories, and
show that modifications are generally needed, because of singularities in the short-distance
interactions. Moreover, the concept of a wave function and how to apply Lorentz boosts to
it are quite unobvious in relativistic quantum field theories. Nevertheless the parton model
has intuitive appeal, so it provides an excellent framework for motivating and organizing a
proper treatment. In fact, we will even justify the parton model, in a certain sense, because
QCD is asymptotically free; a dimensionless measure of its interactions decreases with
distance. The true results are a distorted parton model.

2.4.1 Elementary formulation of parton model; parton densities

We now make a quantitative formulation of the parton model. The logic, as presented here
following the original work, involves certain intuitively motivated jumps, the quality of
which we can best assess after the more strictly deductive treatment in later chapters.

The hard scattering, i.e., the short-distance scattering of the electron and parton, occurs
at a particular time. The proton is in a state consisting of some number of partons, whose
fractional plus momenta are £, &, . . ., which sum to unity: Y & = 1. There is a probability
distribution over states and the hard scattering samples any one particular parton. So
we postulate that there is a number distribution of partons f;(§). Thus f;(§)d& is the
expectation of the number of partons of flavor j with fractional momentum £ to & + d&.
Standard terminology is to call f;(&) a “parton density” or a “parton distribution function”.
In QCD, the flavor index takes on values for up-quark, anti-up-quark, gluon, etc. If the two
u quarks and the d quark in a proton shared its energy roughly equally, we would expect the
quark densities to be peaked at around & ~ 1/3 and the u# quark density to be approximately
twice the d quark density. We would expect the other quark and antiquark densities to be
smaller. In a real QFT, these other densities are in fact non-zero, because of the presence
of quark-antiquark pairs from the interaction terms of the Hamiltonian, as can be seen later
from the formal operator definitions of parton densities.

We can interpret the initial insight for the parton model in Feynman-graph notation with
the aid of Fig. 2.5(a). A parton of momentum k scatters off the virtual photon; it then goes
into the final state, undergoing “hadronization” interactions that convert it to observable
hadrons. Topologically this diagram is in fact the most general one possible. The parton
model consists of an assertion of the typical momenta involved and that the final-state
hadronization interactions cancel. In the parton model, the struck quark momentum k has a
large plus component, and relatively small minus and transverse components (in the Breit
frame), while the outgoing parton k + ¢ has low invariant mass. The final-state interactions
rearrange the content of the final state, but time dilation of the outgoing parton suggests that



2.4 Parton model 25
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Fig. 2.5. Parton scattering in DIS. (a) Including hadronization and final-state interactions
of struck parton. (b) Handbag diagram obtained after cancellation of hadronization and
final-state interactions in graph (a). (c) Parton model with parton density and lowest-order
DIS on partonic target.

&P

these happen on a long time-scale, and therefore do not greatly affect the probability that a
scattering has occurred. That is, the final-state interactions cancel to a first approximation
in the inclusive cross section. Thus we can approximate graph (a) by the “handbag” graph
(b), where the final-state interactions of the quark are ignored.

An analysis can be made from the handbag diagram itself, but that is postponed to Ch. 6.
Here we just work with the parton-model assertion of incoherent lowest-order electromag-
netic scattering on partons governed by parton densities, as embodied in Fig. 2.5(c).

2.4.2 Quark-parton model calculation

It is convenient to use the Breit frame, and to write the light-front coordinates of ¢ and P
as

0’ M’
q" = (—xNP+, W’OT ; Pt = P, ZPT’OT . (2.23)
N

In this equation, xy is the Nachtmann variable (Nachtmann, 1973)

2xBj

14 /14 4M2x5;/ 02

which differs from the Bjorken variable xg; = Q?/2P - g by apower-suppressed correction.

In the partonic scattering we replace k by its plus component: k — (€ PT, 0, 01), in
accordance with our discussion of the sizes of the components of k. We also approximate
the outgoing parton as massless and on-shell. We let do"™" be the differential cross

section for lepton-parton scattering with the following kinematics:

(2.24)

XN =

[+ (EPT,0,0r) > ' + K, (2.25)



26 Why QCD?

where the outgoing parton momentum &’ is massless and on-shell. Within the parton model,
the partonic cross section is computed at lowest order. Then the parton model asserts that
the inclusive DIS cross section is

do = Z / dé f;(€) do Pa“"“‘c, (2.26)

where the sum is over parton flavors. This formula relates a cross section with a hadron
target to a cross section with a calculable partonic cross section. Naturally, these two kinds
of cross section should be chosen to be differential in the same variables.

There now follow corresponding formulae for the structure tensor and for the structure
functions. Now, in (2.15), we see a factor 1/s in converting the hadronic structure tensor
to a cross section. But at the partonic level, there is instead a factor 1/£s, because the
lepton-parton scattering has a squared center-of-mass energy (£ P + g)> ~ 2£P - ¢, up to
power-law corrections. Then the parton model approximation for W*" is

v dg v
Wpn = Z / T 17 C i 2.27)
with a factor 1/& compared with (2.26). Here C”" ;. partonic 18 like W but computed on a
free massless parton of type j and momentum k" = (£ P, 0, Op), and with neglect of all

interactions.
When the partons are quarks of spin %, we have

1 1
Cl ationic = €5 7= rky”(q + By’ 2m8((q + 0%

=2 (21%**1%” + "k +k"q" — g"q - k) st(g —x), (2.28)
where ¢; is the electric charge of quark j (in units of the positron charge). It immediately
follows that

1
PM PM PM
FEM = 2 e3x f(x), F = —FQ (2.29)

where “QPM” means “quark-parton model” (to distinguish these formulae from the correct
factorization formulae in QCD). In this calculation, the incoming and outgoing quarks are
approximated as massless and on-shell. The on-shell condition for the outgoing parton
results in the parton momentum fraction & being set to the measurable Bjorken variable x
(up to ignored power-law corrections). The measured variable y, defined in (2.13), equals
(1 — cos#)/2 in the parton model, where 0 is the scattering angle of the lepton-parton
collision. Thus, a measurement of x and Q in an event immediately gives an estimate of
the parton kinematics, Fig. 2.3 providing an illustration of a typical event.

2.4.3 Bjorken scaling

A prediction of the parton model embodied in (2.29) is that at fixed x the structure functions
are independent of Q (at large Q of course). This is called “Bjorken scaling”, and, as we
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Fig. 2.6. Compilation by the Particle Data Group of data on F, on a proton target. For the
purpose of separating the different sets of data the values of F, have been multiplied by
2ix, where i, is the number of the x bin, ranging from i, = 1 for x = 0.85 to i, = 28 for
x = 0.000063. Reprinted from Amsler et al. (2008), with permission from Elsevier.

will see in Chs. 8 and 11, it is violated after allowing for QCD interactions. We will see
that measurements of scaling violation allow a deduction of the strength of the strong
interaction. Current data are shown in Fig. 2.6. It can be seen that Bjorken scaling is
approximately true at moderate x, for example between 0.1 and 0.5. This region is relevant
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Fig. 2.7. Initial state and final state for QPM, with conserved right-handed helicity for the
quark. The small arrows indicate the spin.

to a model where a substantial amount of the momentum of the proton is carried by three
similar quarks, with a typical x of around 1/3. One might expect the intuitive picture to be
less reliable at extreme values of x, so the greater scaling violations as x gets close to 1 or
0 are not in violation of the spirit of the parton model.

2.4.4 Callan-Gross relation and parton spin

Observe that the longitudinal structure function is FSPM = 0 in the QPM, a result first
obtained by Callan and Gross (1969). It is a simple consequence of conservation of angular
momentum about the z axis in the brick-wall frame, as in Fig. 2.7. The electromagnetic
interaction preserves the helicity of the massless quark (Sterman, 1993, p. 215), i.e., its spin
relative to its direction of motion. The quark’s 3-momentum is reversed in the collision,
so relative to a fixed axis its spin is reversed. There are no transverse momenta in this
calculation, so there is no orbital angular momentum about the z axis. So one unit of spin is
transferred from the virtual photon, which must therefore be transverse, not longitudinal.

2.4.5 Field theory implementation of parton model

In Ch. 6 we will show how to convert the parton-model idea into formal statements in QFT,
with definitions of parton densities as expectation values of certain operators. We will find
that the parton model is exactly correct only in certain simple field theories. In more general
cases, notably QCD, modifications are needed: Chs. 8 and 11.

Particularly in retrospect the parton model was a natural conjecture, but when first
formulated, in the absence of an underlying microscopic theory, it was controversial. The
need for modifying it in real QCD underscores the basis for the initial scepticism.

Some of the first parts of this development were obtained before the discovery of QCD,
and provided important hints that pointed uniquely to the structure of QCD.

2.5 Asymptotic freedom

A powerful argument by Callan and Gross (1973) used the operator product expansion
and the renormalization group to show that exact Bjorken scaling in DIS requires there to
be an ultra-violet fixed point of the strong-interaction theory at zero coupling. Hence the
observed approximate Bjorken scaling implies that the strong interaction is relatively weak
at short distances.

Since the strong interaction is strong at large distances, this led to a search for theories
that are asymptotically free, i.e., for which the effective coupling goes to zero at zero
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distance. One result was the demonstration by Coleman and Gross (1973) that no field
theory constructed using only scalar, Dirac, and abelian gauge fields can be asymptotically
free. This left only non-abelian gauge theories, which just slightly earlier had been quantized
and proved renormalizable. If these theories also failed to give asymptotic freedom, then it
would be strong evidence that no quantum field theory could describe strong interactions,
a view that was quite popular at the time: there were indeed absolute arguments by Landau
and Pomeranchuk based on apparently universally fundamental principles that the effective
coupling always had to increase at short distances; see 't Hooft (1999).

Then Gross and Wilczek (1973a, b) and Politzer (1973) calculated the lowest-order
renormalization-group B function for the Yang-Mills theory, and demonstrated its asymp-
totic freedom, even with quark fields present.” The previously formulated QCD Lagrangian
is therefore able to explain (approximate) Bjorken scaling. The rising coupling in the infra-
red, even if it does not by itself imply color confinement, is compatible with it and is a
precondition that the standard connection between fields and particles can be completely
destroyed for quarks and gluons.

The result then is that for the first time there was a unique viable and complete theory of
the strong interaction, QCD. Previously mysterious phenomena were direct consequences
of the Lagrangian (2.1). From now on we can proceed deductively.

2.6 Justification of QCD

I now summarize the powerful arguments that pick out QCD as the unique field theory of
the strong interaction. The following list involves a rearrangement and even a reversal of
the historical logic.

1. We can treat any theory of currently known physics as a low-energy effective theory
(Weinberg, 1995, p. 499) obtained from some more exact theory. In the normal quantum
field theory framework it is a theorem that the low-energy theory is renormalizable.
This applies to leading power in the ratio of a large mass scale for the exact theory to
currently available energies. To agree with observations, the theory is Poincaré invariant
to a very good approximation (Liberati and Maccione, 2009).

2. Bjorken scaling implies either actual asymptotic freedom, or at least a decreasing cou-
pling at currently accessible energies. Hence the theory must be a non-abelian gauge
theory with not too many matter fields. See Fig. 3.6 below for a recent plot of measured
values of the strong coupling.

3. It must be possible to combine the theory with the known Weinberg-Salam theory of
electroweak interactions. Since the couplings are very different, we cannot have anything
except a direct product of the SI gauge group and the EW gauge group. Let us call the
SI gauge fields “gluon” fields and the SI matter fields “quark” fields (which could be
Dirac and/or scalar).

7 1In fact, the calculation of this coefficient had already been made slightly earlier by *t Hooft (see ’t Hooft, 1999) and
in 1969 by Khriplovich (1970). Even earlier, Vanyashin and Terentyev (1965) computed a negative beta function in
Yang-Mills theory, but their calculation did not include the not-yet-known ghost contribution. But these authors did
not immediately recognize the significance of their results for a theory of strong-interaction physics.
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Because the electroweak and strong-interaction gauge groups commute, there are no
direct gluon couplings to W, Z, and Higgs fields.

Thus the strong-interaction theory is the QCD Lagrangian, possibly supplemented only
by extra quark fields. It is the original Yang-Mills Lagrangian, but with a different gauge
group and with extra fermion fields. No further terms are permitted in the gauge-invariant
Lagrangian without violating renormalizability.

We now identify the gauge group and the matter fields:

(a)

(b)
(©)
(d)

(e

®

Asymptotic freedom together with the masslessness of the gluons implies that the

effective coupling increases out of the perturbative range for low mass scales or

large distances. This allows the connection between fields and directly observable
particles to be lost.

It also indicates that under suitable conditions, quarks and gluons have approxi-

mately free-particle behavior for short distances.

Colored states tend to be unbound or of higher energy.

The approximation of the quark model indicates that an SU(3) color group together

with three light flavors of Dirac quark is needed to explain the observed spectrum

of hadrons.

Extra quarks, in whatever representation of the color group, are a matter for dis-

covery at higher energy, and of obtaining a suitably consistent structure for the

electroweak theory. Consistency requirements concern the lack of anomalies in the
electroweak theory.

Certain measurements are key ones in confirming the determination of the color

group, and in the measurement of the number of flavors, during and after the

discovery of QCD:

i. the 7° — yy decay rate, which is obtained from an anomaly in the vacuum
matrix element of three currents;

ii. the total cross section for ete™ annihilation to hadrons at high energy gives
a measure of the sum of the charges squared of the accessible quarks — see
Ch. 4;

iii. More detailed jet cross sections in e*e™ give quite direct measurements of the
color-group theory coefficients C4 and Cp, etc. — again, see Ch. 4.

These arguments are primarily structural. They do not depend, for the most part, on detailed
numerical predictions of the theory. Such predictions are used mainly in determining which
gauge group is needed.

Once we have confidence that the theory is a good approximation to reality, we (i.e.,
people working on the strong interaction) change our attitude. The mathematics is hard, and
when useful, we appeal to the real world as a realization of QCD to help us to determine
what results are true. A failure of agreement between theory and experiment is expected to
indicate that there is an error either in the theoretical methods or their application, or in the
experiments, but it does not normally indicate an error in the theory itself. (An extension
of the theory, to add another quark, for example, is not regarded as a breakdown in the
theory.)
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2.7 QCD in the full Standard Model

Many applications of perturbative QCD concern the interaction of hadrons with non-QCD
particles, e.g., DIS, and all kinds of production processes for leptons, the Higgs boson, and
many hypothesized particles. To put these in context, I now review the definition of the
Standard Model (SM). For details, see any standard textbook, such as Halzen and Martin
(1984); Peskin and Schroeder (1995); Quigg (1997).

The SM Lagrangian is

1 -
»CSM = _Z Za:(Ga/w)z +12f:wfw"ﬂf +D¢T . D¢+M2¢T¢

A -
— Z(¢T¢)2 — Z hij\rir@¥; L + gauge-fixing terms, etc., (2.30)
ij
with the usual modifications for renormalization. Structurally this is like QCD, except for
the addition of a scalar “Higgs” field ¢, with its self-interaction and its Yukawa couplings
to the fermion fields. The main features are as follows.

o In the first line, the sum over « is over the 12 generators of the gauge group SU(3) ®
SUR2) ® U(1). We let the gauge fields for the three commuting components of the
gauge group be Aj(x), W,{ and B,,. The renormalized couplings of the three commuting
component groups are g;, g and g’ respectively, and the SU(3) subgroup is the QCD group.

e When we are working with pure QCD, without any mention of electroweak interactions,
we will often replace the notation g; by g.

e The fermion fields ¥,,s carry different representations of the gauge group, unlike the
case of simple QCD.

e The covariant derivative is

8 3

D, = 8M—|—igS;Tc‘f,lAZ+ingIWl{T\§,+ig’BM§, (2.31)
where for any given multiplet of fields Ti, and Ty are the generating matrices for the
color SU(3) and the SU(2) groups, while Y is the weak hypercharge of the multiplet.

e The fermion fields are arranged in multiplets of left-handed fields and right-handed
fields. “Left-handed” fields are %(1 — ¥s5) times the Dirac field, and “right-handed”
fields have a %(1 + ys5) factor.

e All known left-handed fields are doublets under SU(2), and all known right-handed
fields are singlets under SU(2).

e There are three generations of fermion, and the assignments of quantum numbers to
fields are specified in Table 2.1. Here we have extended the Standard Model slightly
beyond its original definition to include right-handed neutrino fields, as needed to
accommodate the measured neutrino mixing.

e The vacuum expectation value of the Higgs field is given by (0| |0) = (0, v/~/2)",
with v = 246 GeV. This breaks three of the electroweak symmetries, with the Z and
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Table 2.1 Quantum numbers of field multiplets in the Standard Model. The
symbols for the fields correspond to the particle names.

Color singlet Y || Color triplet Y
e () )
First generation: er, dy. 3
(ex) —2| (ur) 3
(ver) 0 () =3

The next two generations (v, u, s, ¢) and (v, T, b, t) are exactly similar.

Color singlet Y

Higgs field: or
») !
photon fields being
Z,, = cos by Wi—sin@w B,, A, = sinfy Wi—i—cos@w B,,

where the measured Weinberg angle obeys sin? 6y = 0.22 & 0.02.

e The electroweak couplings are given in terms of the QED coupling and 6w by
e , e

sin By’ § T cosfyw

(2.32)

o The fermion masses are then obtained from the Yukawa couplings. From global fits to
data (Amsler et al., 2008) estimates of the masses of the elementary fields are found

(Table 2.2).

e All the formulae for masses, etc., are subject to higher-order electroweak corrections.
e The flavor and mass eigenstates of the two components of the fermion doublets are not
aligned, but have mixing given by the CKM and MNS matrices; see, e.g., Amsler et al.

(2008).

2.8 Beyond the Standard Model

All theories of physics are ultimately approximate, and many possibilities for theories that
are better than the SM are under active discussion. To keep agreement with known results,
the QFTs considered are generally extensions of the SM, except for the Higgs sector on
which there is as yet little direct data. Extensions include both the simple addition of field
multiplets and the embedding of the symmetry groups in bigger symmetries, as in Grand

Unified Theories and in supersymmetry.

Once gravity enters the picture, space-time becomes dynamical, and so any QFT, includ-
ing QCD, becomes only an effective low-energy approximation to a radically different kind
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Table 2.2 Standard Model masses for elementary fields, from Amsler et al. (2008).

Leptons and quarks (spin 1/2):

v ~0 d 3.5to 6 MeV
e 0.511 MeV u 1.5t0 3.3MeV
s ~ 104+% MeV
" 106 MeV c ~ 1.27+% GeV
b ~ 42047 GeV
T 1.78 GeV t 171.2 £2.1 GeV

Gauge bosons:

| W= 80.398£0.025GeV | Z 91.1876 +0.0021 GeV |
Higgs:

| 100 to 300 GeV (indirect)

of theory (e.g., string theory), with a very different understanding of space-time. Factor-
ization in QCD remains a vital tool in phenomenological discussions of such theories,
because it separates treatment of the ultra-microscopic physics of the new theories from
the longer-distance physics which is an integral part of a full scattering process.

For current work in this area, see the proceedings of recent conferences and workshops,
e.g., Allanach er al. (2006).

2.9 Relation between fields and particles

In a free QFT, there is a direct correspondence between the types of single particle and
the fields, and in fact with the normal modes of the corresponding classical field theory. In
simple interacting QFTs, this correspondence continues to hold, but it is clear from both
QCD and the full Standard Model, that the particle-field correspondence is not general:

e With interactions some of these particles can be become unstable, as exemplified by the
muon, with its decay to ev,, J..

e There may be bound states, e.g., atoms. These are not related in a simple way to normal
modes of the elementary fields.

e It is also possible that there is no particle, stable or unstable, that corresponds to a
particular elementary field of a theory. QCD is an excellent example with its quark and
gluon fields. Any corresponding particles are permanently confined, and only behave
approximately like particles on short enough distance scales inside collisions. Before the
advent of QCD, this possibility was hardly recognized, if at all.

e Moreover, low-energy effective theories approximating a more exact microscopic theory
may use fields corresponding to bound states. This is the case for a Schrodinger QFT for
atomic physics, which might have fields for atomic nuclei.
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Moreover, one must be careful about what is meant by a particle. One standard definition
is from the single-particle states that are used to build up the asymptotic in- and out-states
of scattering theory. For this purpose completely stable bound states, like the ground state
of a hydrogen atom or even of a large macroscopic object like a planet, are particles. But
unstable particles, even relatively long-lived ones like the muon and the neutron, are not
particles under this definition.

It is clear that the connection between particles and interacting fields is somewhat
impressionistic. Even the usage of the word “particle” is quite fuzzy in the real world.
Which objects are called particles, which bound states, and which resonances is essentially
a linguistic matter: a matter of convention, and usage, and even of context.

Some confusions in the recent literature should be noted. For example, Weinberg in
his excellent textbooks on quantum field theory (Weinberg, 1995, p. 110) bases his logic
on the concept of a particle in the strict sense of scattering theory. Then his derivation of
perturbation theory requires that the set of one-particle states be unchanged after turning
on the interaction in a theory. If this were really necessary, it would immediately rule out
conventional Feynman perturbation theory for all known interactions.

Weinberg’s derivation of perturbation theory is for the S-matrix. Instead, if one bases the
logic on perturbation theory for (off-shell) Green functions, one no longer has to assume
that the particle spectrum is unchanged under perturbations. The particle spectrum and
the S-matrix are derived objects involving examination of poles in the Green functions.
Thus, for example, the stability or instability of a particular particle can be an accidental
consequence of the particular values of parameters of the theory.

It is evidently important to dispose of this issue at the outset, for otherwise most of
our work in perturbative QCD would be without a foundation. An account of the logic
for perturbation theory that is suitable from our perspective is given in Sterman’s textbook
(Sterman, 1993).

Exercises

2.1 (a) Show how to compute a particle-particle potential from the non-relativistic limit
of a first-order 2 — 2 scattering amplitude. You might do this by comparing
the Born approximation in QED with the Born approximation in non-relativistic
potential scattering. Consider both the case of spin-% and spin-0 particles.

(b) Apply this method to QCD to find the lowest-order approximation to the quark-
antiquark potential with massive quarks. Separately consider the case that the
system is a color singlet and a color octet. You should find that the potential is
only attractive for a color-singlet bound state.

2.2 Review problem: Define the concept of a structure function. Why is it a useful concept?

2.3 In the parton model approximation, compute the electromagnetic structure functions
for a scalar quark (i.e., for a spin-0 quark).
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2.5

2.6

Exercises 35

Formulation of the structure function method for scalar field exchange instead of
vector field: Suppose you wanted to investigate the consequences of a hypothetical
theory with an extra neutral scalar field ¢ that has Yukawa couplings to quarks and to
leptons:

Ling = ¢ X (heée + Zhi@i%) ; (2.33)
where /., and h; are the couplings to electrons and to quarks of flavor i. (a) What would
be an appropriate definition of structure function(s) in this problem? (b) What would
be the parton model formula?

Review and revise your answer to problem 2.2 in the light of your answer this
problem.

How do you extend the analysis of problem 2.4 in the presence of interference between
scalar and vector exchange?

Examine the state of the knowledge about current algebra just before the discovery
of QCD, e.g., in Treiman, Jackiw, and Gross (1972). How does this compare with the
description in this chapter?

The rest of this problem is best done after finishing learning about QCD. During
your studies of QCD, determine the extent to which the work in Treiman et al. (1972)
is (a) true in QCD, (b) needs modification, or (c) still needs proof. How much remains
relevant to current research and/or to understanding QCD and the strong interaction?
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Basics of QCD

In this chapter, we review some basic properties of QCD that directly follow from its
definition. This material is completely standard, and will form a foundation for the rest
of the book. More details can be found in a standard textbook on quantum field theory,
e.g., Peskin and Schroeder (1995), Srednicki (2007), Sterman (1993) and Weinberg (1995,
1996). For specific information on renormalization and the renormalization group see also
my book on renormalization (Collins, 1984).

I first review how the theory is quantized and renormalized. Then I discuss the renormal-
ization group (RG) and the calculation of the asymptotic freedom of QCD. A brief review
of the flavor symmetries follows. Finally I show some of the complications that arise in
perturbative calculations because some of the fields are much more massive than others.

3.1 Quantization
3.1.1 Definition; functional integral

A list of the fields of QCD and the formula for its gauge-invariant Lagrangian density
(2.1) are sufficient to specify the theory, with the aid of general principles. Although there
are some mathematical issues that have not been solved properly, it is standard to assume
that the theory can be constructed (with some complications) through a functional integral.
This gives Green functions, i.e., vacuum expectation values of time-ordered products of
fields, as

(0| TfIA, v, &]\O)ZN/DMM D &SV FLA, ¥, 1. (3.1)

Here f[A, v, ¥]is a functional of the fields, e.g., a product G*(x) ¥ (y). On the left-hand
side, the fields are the quantum fields of QCD, time-ordered, while |0) is the true vacuum
state. But on the right-hand side the fields are corresponding classical fields (Grassmann-
valued in the case of the fermion fields v and ). The normalization factor N is set so that
(010) = 1.

From the Green functions can be reconstructed the state space and the operators. This
includes an extraction of the particle content of the theory, from an examination of the
positions of the poles in propagators and other Green functions. The S-matrix and scattering
theory follow by the Lehmann-Symanzik-Zimmermann (LSZ) method. Note that the poles

36
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of Green functions need not be the same as in free field theory, and so the particle content
can be different from a free field theory of quarks and gluons.

3.1.2 Faddeev-Popov method; Feynman rules

The rules for Feynman perturbation theory are readily derived from the functional integral,
with the Faddeev-Popov technique being used for gauge fixing. In this technique, a change
of variables is used on sets of field configurations equivalent under gauge transformations.
The implementation involves fermion scalar “ghost” fields, 7, and #j,. See most modern
textbooks on QFT for details.

In the covariant gauges we will normally use, the gauge-invariant Lagrangian of (2.1) is
replaced by

L = Larfrom 2.1) + Lor + Lac, (3.2)

where the gauge-fixing and “gauge-compensating” terms are
1
Lop= —5—(0-Apa)’ (3.3)
28 0
Loc = 3.0 Noa + 803" floy fupy Alyy M0 (34

in terms of bare quantities. This gives

o 1 1 .
L = Yo D — mo)o — Z(G(O)uv)z - 2—50(3 C AL
+ Bufioad" Now + 809" 70y fupy Algy uM0a- 3.5)

Feynman rules for Green functions are derived in the usual way. In Sec. 3.2, we will
formulate Feynman rules for renormalized Green functions with a counterterm method.
Rules for elementary perturbation theory in terms of bare quantities can be obtained from
those listed in Fig. 3.1 below by replacing each occurrence of gu¢ in that figure by the bare
coupling go, and each renormalized quark mass m ; by the bare mass my .

Note that without gauge fixing in the Lagrangian, Green functions of the elementary
gauge-variant field operators are zero (Elitzur, 1975).

3.1.3 BRST symmetry

The full Lagrangian (3.2) is not gauge invariant, which considerably complicates the
derivation and formulation of generalized Ward identities. The appropriate identities for
non-abelian gauge theories were first found by Slavnov (1972) and Taylor (1971). The
derivations were greatly simplified by Becchi, Rouet, and Stora (1975, 1976) and by Tyutin
(1975), who discovered a new symmetry of the full Lagrangian.

This BRST symmetry is a supersymmetry, i.e., one that relates Bose and Fermi fields. It
uses a parameter §Aq that takes its value in the fermionic part of some Grassmann algebra.
For the gauge and matter fields, the BRST transformations are gauge transformations (2.4)
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with @y (x) = 1oy (x)8Ao. Thus any gauge-invariant operator is also BRST invariant. The
linear terms in the variation of the bare fields are

SBrRSTY0 = —ig0M0adAot ™ Yo = igonoat” Yodho, (3.6a)
SBrRSTY0 = 180Vl Noado, (3.6b)
SRrsTA()),, = (3u770a + 80 fapy ﬂo,sAg/o)M> SAo- (3.6¢)

The ghost and antighost fields transform as

OBRSTN0a = _%g()faﬁyn()ﬂrl()ya)‘()a (3.6d)
1

OBRST00 = 5—3 - Apadho. (3.6¢e)
0

It can readily be checked that the full Lagrangian is BRST invariant, up to a total derivative.
With a slight exception, BRST transformations are also nilpotent. That is, applying suc-
cessive BRST transformations with different anticommuting parameters §1; and §A, gives
Zero:

) 2
BRST ) field = 0. (3.7)
520

The exception is that the second variation of 7y only vanishes after using the equation
of motion for A(y; a third variation of the field is needed to get zero without use of the
equations of motion.

A good formulation of the quantum theory associated with Faddeev-Popov quantization
and BRST transformations is given by Nakanishi and Ojima (1990). In particular they
give a full formulation of the conditions to be applied to physical quantum-mechanical
states.

3.1.4 Relation to Euclidean lattice gauge theory

The functional integral contains an oscillating functional 'S, and it can be defined by
analytically continuing to Euclidean space-time, where the time coordinate becomes imag-
inary, t = —it, and by then putting the theory on a lattice in a finite volume of space-time.
The functional integral is then an ordinary finite-dimensional convergent integral (with
suitable modifications for the fermion integrations). Numerical evaluation of these inte-
grals by Monte-Carlo methods is the core of lattice gauge theory, a key technique for
non-perturbative calculations in QCD (DeGrand and Detar, 2006).

The infinite-volume limit is an ordinary thermodynamic limit, but the continuum limit
of zero lattice spacing is non-trivial, needing the use of renormalization: Sec. 3.2. Howeyver,
there is not yet a completely rigorous proof that the limit exists.

The continuation back to real time is potentially problematic. Typical time dependence
associated with high-energy states at large times, e £, corresponds to strongly suppressed

exponentials e £7 in Euclidean time. Small errors in the Euclidean calculation, e.g., due
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to the neglect of weak-interaction effects or purely numerical errors, do not automatically
continue to small errors in the real-time formalism. Further research is clearly needed here.
Euclidean lattice methods are not suitable for high-energy scattering problems.

For our purposes, it suffices to assume that some method exists to construct real-time
functional integrals, as in (3.1).

3.2 Renormalization

Ultra-violet (UV) divergences appear in QCD (and in most other relativistic quantum
field theories) when the continuum limit is taken. These were first found in perturbative
calculations, but the divergences are a property of the exact theory, as is shown by a
renormalization-group analysis, particularly using Wilsonian methods (Polchinski, 1984).
The divergences are from large loop momenta, or, equivalently, from where interaction
vertices approach each other in space-time. In renormalizable theories, like QCD, the
divergences can be proved to be removed by a modification of the continuum limit, at least
in perturbation theory.

1. The theory is first defined with a regulator' (or cutoff) of the UV divergences. Standard
UV regulators are a non-zero lattice spacing or dimensional regularization.

2. All parameters of the theory consistent with its symmetries are made adjustable as
functions of the cutoff. The parameters include the coefficients of terms like i1/ d,y.

3. When the limit of no UV cutoff is taken, the cutoff dependence of the parameters is
chosen so as to remove the UV divergences and to obtain a non-trivial limiting theory.

Note that an entirely different status is to be given to the infra-red (IR) divergences
that appear in perturbation theory for the S-matrix in theories such as QCD and QED that
have massless fields. The S-matrix is derived given certain hypotheses about the large-time
behavior of Green functions. But in a theory like QED with actual massless particles, these
hypotheses are violated, while in QCD the particle content does not even correspond to the
elementary fields. In either case, perturbative calculations must be adapted to the correct
physics. But IR divergences do not affect the definition of the theory, only the interpretation
of its solution, unlike the case of UV divergences.

The general ideas and methods of renormalization are explained in almost any modern
QFT textbook, and a more specialized reference is Collins (1984), which is compatible
with the presentation here.

3.2.1 Reformulating L: bare parameters

To obtain finite Green functions, we use the freedom not only to change gy and m in (3.5),
but also to change the normalization of the fields, i.e., to do field strength renormalization.

! For mathematicians: In much of the mathematical literature, the word “regularization” has a different meaning,
equivalent to physicists’ “renormalization”.
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We therefore define the bare fields to be (square roots of) ‘“wave-function renormalization”
factors times renormalized fields: Ay, = Z;/ZAH, Yo = Zé/zw, and ng = Z'n. It is
Green functions of the renormalized fields that are to be finite after removal of the UV
cutoff. This gives the following formula for £:

L= 2o0Gd —mo)W — Z2Zy go Wt A%y

3/2
Z3/ 80
2

Z3 o o o o
- Z(BMAV —9,A%) + Japy (0, A% — 0,A%) AL AY

Z%g? y  Zs
wy ALAY) — 225 - A%)?
4 (f By v) 2%-0( )

+ 20710 e + Z 23" 809" 1y fapy Al e (3.8)

Note that Z, could be a matrix relating bare and renormalized quark fields, diagonal in
quark flavor, but color-independent.

Both of the formulae (3.5) and (3.8) define the same Lagrangian density; they differ
only by a change of variables; the physical predictions are the same. Thus, provided that
the correct LSZ prescription is used, the S-matrix and cross sections are unchanged under
the field redefinitions.

The first form (3.5), with the bare fields, has unit coefficients for the terms i@,
etc., which implies that the bare fields obey canonical (anti)commutation relations. This is
a natural standard which then gives an invariant meaning to the normalization of the bare
coupling and mass.

We have restricted the change of parameters to those that preserve gauge-invariance
properties, admittedly with a renormalization of the definition of the gauge transformations.
It is a theorem that this is sufficient to obtain finite Green functions. It can also be proved
that &y/Z3 is finite, so that we can define &y = £Z3 with £ a finite renormalized gauge-
fixing parameter; thus the gauge-fixing term in (3.8) has coefficient 1/£. For proofs, see,
for example, Collins (1984).

3.2.2 Renormalized BRST symmetry

The BRST transformations also need renormalization. This is done by a multiplicative
renormalization of the parameter §1:

Sho = 81Z3* 712, (3.9)

In the resulting formulae (Collins, 1984, p. 297) for the renormalized BRST transformations
of the renormalized fields, it is convenient to define

X =72y go/ g, (3.10)

where gy is a finite parameter that is a version of the renormalized coupling to be introduced
later. (The actual formula is gz = gu¢; see (3.14).) The resulting renormalized BRST
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transformations are finite:

OBRST,RY = —igRrNaOM" Y X, (3.11a)
SBRST.RY = igrV1Ny X 84, (3.11b)
SBRsT.RAY = (0.0 Z + X gr fupynpAl,) Si. (3.11c)

The ghost and antighost fields transform as

SBRST.RNa = — 38R X fapy NNy 0N, (3.11d)
1
IBRST, R7la = 53 < AgdA. (3.11e)

The finite operators on the right-hand sides of these equations are used in Slavnov-Taylor
identities.

3.2.3 Counterterms, renormalized parameters, dimensional regularization

To implement renormalization in perturbation theory, we use a counterterm approach. The
Lagrangian is split into three parts:

L= ﬁfree + Lb.iA + ‘CC.L' (312)

Free propagators correspond to the free Lagrangian L., which has the standard form
in which appear derivative terms with unit coefficient, and mass terms with renormal-
ized masses. The “basic interaction” Lagrangian L, ; contains interaction terms, but with
coefficients constructed using only finite renormalized couplings. Graphs constructed with
only the basic interaction contain divergences in some of their one-particle-irreducible
(1PI) subgraphs. The divergences are canceled by graphs in which divergent subgraphs
are replaced by counterterm vertices derived from the counterterm Lagrangian L., . The
rules for perturbation theory ensure that subdivergences in multiloop graphs are correctly
canceled, order-by-order in an expansion in powers of the renormalized coupling.

Since the counterterms cancel the divergent contributions to loop graphs from UV
momenta, it does not matter how UV divergences are regulated. After removal of the
regulator, the same results are obtained for renormalized Green functions expressed in
terms of renormalized parameters. The only requirement is a suitable adjustment of the
finite parts of the counterterms when the method of UV regulation is changed.

For QCD perturbation theory, the most convenient UV regulator is often dimensional
regularization, where the dimension n of space time is a continuous complex parameter, also
written® as n = 4 — 2¢. Although it is not known how to apply dimensional regularization
to the exact theory, there are no problems in perturbation theory. A concrete mathematical

2 Warning: Although this is the most common definition of €, other definitions also appear in the literature, notably
e=n—4ande =4 —n.
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definition can be made (Wilson, 1973; Collins, 1984) by using an infinite dimensional space
for momenta (and coordinates), and by using pathologies of infinite dimensional spaces
to define integration so that it gives the scaling properties appropriate for a non-integer
dimension.

3.2.4 Implementation in QCD

The free and basic interaction Lagrangians are defined to be

_ 1 1
Lree = WG —my = 7 (A7 = 0AT) = 520~ AP+ 0,79, G13)
_ g2M2€ 5
Loi. = —guP1* A"y + guc fup, AP# A9, AY — 4 (fdﬂyAﬁAZ)
+ gL fupy 00 Alp*. (3.14)

Here is introduced the well-known unit of mass p for dimensional regularization, so that
the renormalized coupling is gu¢, with g dimensionless for all €. The Feynman rules that
follow from these parts of £ are listed in Fig. 3.1.

The counterterm Lagrangian is everything else in the full Lagrangian (3.8):

Low=(Zo = Dty — (90222 = gu) A+ G1S)

In renormalized perturbation theory, the counterterm Lagrangian is treated as part of the
interaction. We therefore have an extra set of vertices, the counterterm vertices, listed in
Fig. 3.2. These are like those in the basic interaction, Fig. 3.1, but with modified coefficients,
together with extra two-point vertices.

3.2.5 Mass-dependence and gauge-invariance relations for counterterms
In renormalization theory (e.g., Collins, 1984) the following is shown:

o The Ward identities that follow from gauge invariance imply that independent renormal-
ization of the different interaction vertices is not needed; a single renormalization factor
applied to gy is suitable. Thus gauge invariance is preserved.

e No counterterm proportional to the gauge-fixing term is needed. Thatis, &y = Z3&, within
the class of gauges we are using.

e With the exception of the mass parameters, the renormalization counterterms can be
chosen to be independent of the quark masses.

e Renormalization of the bare coupling go and the bare mass mg can be chosen to be
independent of the gauge-fixing parameter &.

o The bare quark mass is linear in the renormalized mass: m )y = Z,,m s + mqo, with Z,,
and m independent of mass. With dimensional regularization, we can set mgy = 0, so
that maoyr = mef.

e 7, and Z,, can be chosen to be independent of quark flavor. (But other choices of scheme
can be useful in treating heavy quarks: Secs. 3.9 and 3.10.)
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Fig. 3.1. Basic Feynman rules of QCD. The coupling has been replaced by g€, according to
the standard convention for use in 4 — 2¢ dimensions. Propagators and vertices are diagonal
in any indices (flavor or color) that are not explicitly indicated. For the renormalization
counterterm vertices, see Fig. 3.2.

e Minimal subtraction (Sec. 3.2.6) is among the schemes to which the above statements
on the lack of mass, flavor and gauge dependence apply.

3.2.6 Minimal subtraction

In a calculation order-by-order in the renormalized coupling, the requirement that a coun-
terterm cancels its corresponding divergence determines the part of the counterterm that
diverges as the UV regulator is removed, but not the finite part. A rule for determining the
finite part is called a renormalization prescription. The most common in QCD calculations
is minimal subtraction in its modified form, the MS scheme due to Bardeen er al. (1978).
When dealing with heavy quarks, it is convenient to apply a different scheme for graphs
with heavy quark lines: Sec. 3.10.
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Fig. 3.2. Counterterm vertices in QCD. The 2-point counterterms have diagonal dependence
on all but Dirac indices for quarks and Lorentz indices for gluons. The other counterterm
vertices simply correspond to vertices in Fig. 3.1 with the indicated modified coefficients
for the coupling factors.

Definition

In the MS scheme, counterterms are pure poles at € = 0, except for unit-of-mass factors
and a special factor S, for each loop:

B B» B
g0 = gu‘ [l+g2Sel+g4Sf <%+l)+} (3.16)
€ € €
z z z
Z, =1+ g%, 26'” +g4Sf< 2‘222 T 1‘”) T+, (3.17)

etc. The rationale for the factor S, and its value are explained below. For normal UV
divergences, the strength of the pole is at most 1/€ in an L-loop counterterm. The only
parameter on which the coefficients depend is the gauge-fixing parameter &, and this is
absent for the bare coupling: the coefficients B;; are pure numbers. In particular, the
coefficients are independent of mass and of © ("t Hooft, 1973; Collins, 1974).

The role played in renormalization by the unit of mass u is quite central. It is commonly
called the “renormalization mass” or “renormalization scale”.

The MS scheme differs from the simplest minimal subtraction scheme by inserting a
factor S, for each loop in the counterterms. This was motivated (Bardeen et al., 1978) by
the observation that in a one-loop calculation, there is an e-dependent factor that naturally
arises from an angular integration in 4 — 2¢ dimensions, and that would lead to certain
universally occurring extra terms in renormalized Green functions. These are eliminated
by choosing S, suitably. I define

(4m)*

Se=—— =1+¢€[In(d7) — ] + O(€?) =~ 1 + 1.954¢ + O(e). (3.18)
T(1—e

Here yg = 0.5772 - - - is the Euler constant, and I" is the gamma function.
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Although there are several ways in which the MS scheme has been defined in the
literature, it can be proved (see problem 3.3) that all these definitions lead to identical
renormalized Green functions at € = (. For example, there are different formulae for S,
but only the order € part of S, affects renormalized Green functions.® The equivalence of
the definitions, to all orders of perturbation theory, applies to conventional Green functions,
where the UV divergences give at most one pole per loop. But in Chs. 10 and 13, we
will define quantities that have a double UV pole per loop. For these, it is the particular
definition, (3.18), that gives the maximal simplification.

Advantages

Among the advantages of minimal subtraction is that it automatically preserves simple
symmetries. For example, the counterterms for the 4-gluon interaction and for the 3-gluon
interaction, etc., will automatically give counterterms with the correct gauge-invariance
relations. Counterterms have their minimal mass dependence.

Mathematically, some care is needed in understanding the expansion about g = € = 0.
Perturbative renormalization is done by first expanding in g and then analyzing the €
dependence. Real physics is defined with € — 0 taken at fixed g. The direct perturbative
calculation of the counterterms is really only valid in a region of g that shrinks to zero
as € — 0. This is enough to obtain the coefficients for renormalized perturbation theory,
whose radius of applicability is not expected to shrink with €.

As we will see in Sec. 3.5, renormalization-group methods can be used to calculate the
true behavior of the bare parameters when the UV regulator (e.g., dimensional regulariza-
tion, or a lattice) is removed with the renormalized couplings and mass fixed.

Renormalization group

A change of renormalization scheme, including a change of the unit of mass, can be
compensated by a change in the numerical values of the renormalized parameters. All
that changes is the parameterization of the set of renormalized theories by coupling(s) and
masses. This is the subject of the renormalization group (RG) — Sec. 3.5 — which is a vital
technique in perturbative QCD.

Minimal subtraction with other regulators

Although minimal subtraction is normally defined using dimensional regularization, the
concept applies to any regularization method. With regularization by a lattice spacing a,
one could define the counterterms in each order to be a polynomial in In(au) with no
constant term. This would define a different scheme, related by a RG transformation to the
standard MS scheme, which uses dimensional regularization.

3.3 Renormalization counterterms of QCD

Renormalization plays an essential role in perturbative QCD calculations. Not only does
renormalization enable finite results to be obtained, but the counterterms themselves

3 Warning: In comparing formulae for S, note that some authors use a different convention for € than this book.
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Fig. 3.3. (a) Quark self-energy graph. (b) Counterterm.

determine the renormalization-group coefficients that we will see are vital to predicting
the scale dependence of measurable quantities. This is useful, since counterterms are much
simpler to calculate than the finite parts of graphs.

This section reviews the renormalization of QCD at the one-loop level, giving a complete
calculation for some parts and leaving the rest as an exercise. In Sec. 3.5, this will enable
us to verify the key result of asymptotic freedom of QCD.

3.3.1 Wave-function renormalization

The wave-function and mass renormalization factors are obtained from propagator cor-
rections, the “self-energy graphs”. For the case of the quark, the one-loop graph and its
counterterm are shown in Fig. 3.3. The graph’s value is

g u*Cr /d4_2€k YEp — K+ my” [—guw + (1 — Ok, /(K 4 i0)]
(2m)4-2e [(p — k)? —m? +i0] (k* +i0)

. (3.19)

where the Cr factor is from the color matrices Zd tyty, Which gives 4/3 in QCD. We
combine the denominators using the Feynman parameter method (A.55), after which the
momentum integral can be shifted so that the denominator loses its linear term in k. The
use of standard Dirac algebra gives

20, / /d4 2y | @=20p0 =0 — @4 = 260 + (1 = §)0n = p)
(27T)4 2 [—k2 — p2x(1 — x) + m?x — iO]2

. _ 2 2
201 = x)(1 = )P px® + kp) +termsoddink}. (3.20)

[—k2 — p2x(1 — x) + m?x — iO]3

A Wick rotation gives a spherically symmetric integral in a Euclidean k variable in 4 — 2¢
dimensions, which can be performed analytically by using (A.34) and (A.50) and I'(1 + €)
= el'(e) to give

ig*(4m*) Cr 1
TF(G)/ dx
x {(2 —26)p(1 —x) — (4 —2)m + (1 — &) [m — px — p(1 — x)(1 — €)]

ex?(1 —x)(1 —&)p*p
 [-p2x(1 = x) + m2x — i0] ] (3.21)

—p*x(1 — x) +m’x — iO]_e
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Fig. 3.4. (a) and (b) One-loop graphs for quark-gluon vertex. (c) Counterterm graph.

The pole at € = 0 is easy to extract, since I'(¢) = 1/€ + finite, so that

ig’Cr

1 t of h
pole part of graph (a) = T6m2c

[-3m+&(p —m)]. (3.22)

We require the pole part plus the order g? part of the counterterm in Fig. 3.3(b) to be finite.
This gives

o5 Se
Zy=1- scF —+ 0(a)), (3.23)
S 2
Zn=1-— 3CF o + O(ay). (3.24)
Here, oy = g%/(4m), a commonly used definition analogous to the fine-structure constant

in electromagnetism. The quantity S, is defined in (3.18), used to define the MS scheme.
Similar calculations for the gluon and ghost give

Zi=1- %% (S B 4 4o 2, (3.25)
=1 - — o .
3 ame (\2 76 ) AT 3
~ o Se 3 & 2
7=1 2_5) 4 o@d). 3.26
+ dre (4 4) +0@) ( )

In QCD, with its SU(3) gauge group and quarks in the triplet representation, the group
theory coefficients used here are C4 = 3 and Tr = 1/2. See Sec. A.11 for more details.
The quantity 7 ; is the number of quark flavors in QCD.

3.3.2 Quark-gluon vertex

To obtain gg, we need to calculate one of the vertex functions. The simplest is the quark-
gluon vertex, because it is only logarithmically divergent. The one-loop graphs and the
counterterm are shown in Fig. 3.4. Now the UV divergence is independent of masses and
external momenta. So we simplify the calculation by setting these variables to zero, and by
ignoring any € dependence that does not affect the pole. From the first graph we need

2

g 4—2¢
1674

V, = tygut S, — -
sh v (k2P

——(Cr — %CA)PP/ [—V”ky“kyu +
U

”kk} :

(3.27)
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where “PP” means “pole part at ¢ = 0. The subscript “UV” on the integration means that
we restrict the integration to the UV region; we cut out a neighborhood of k = 0. The
prefactors are those present in the lowest-order vertex. A Wick rotation and elementary
spherically symmetric integrals over Euclidean k give the integral in terms of

/~ d4—2ek JT2_E o] d|k2|
8)

= ) 3.28
A\ (k2)2 F(2 - 6) finite |kZ|1+E ( )
so that

g2

HE(CF —Ca/2). (3.29)

Vo = —ityy" guSe
Similarly, graph (b) gives
e
1674

Vh = —faglfSe (%CA)
4—2¢ yK/kyV/ n KV VKl K VU
x PP | ¥k TS0 (“2k g K g + K g
uv (k%)

kyk, kiki
X (_gv’v +(l - S) kz ) <_g/c’/< + (1 _g) k2 )

uytencs S c, (243 (3.30)
= —ily e ——— -+ =£). .
VoSH O teq2e 4 \4 T 4

From these, we deduce the one-loop counterterm and, hence, from the previously cal-
culated values of Z, and Z3 we get the bare coupling:

a8, (11 2
90 = gu° [1 — Hg (ZCA — 5Tpnf> + O(af)} ) (3.31)

Note that the manipulations to obtain the coupling are performed with only the first two
terms in a strict expansion in powers of g.

The results for the counterterms to higher order, up to four loops, can be deduced from
the published values (Tarasov, Vladimirov, and Zharkov, 1980; Larin and Vermaseren,
1993; van Ritbergen, Vermaseren, and Larin, 1997; Czakon, 2005) of the RG coefficients,
the primary ones being given in Sec. 3.7. See problem 3.2.

3.4 Meaning of unit of mass, renormalization scale

The unit of mass p is a rather abstract concept seemingly tied to the use of dimensional
regularization. It appears as a renormalization scale in renormalized quantities. We will see
later (Sec. 3.5) that the value of the renormalization scale can be freely chosen, provided that
the numerical value of the coupling and masses are adjusted in compensation. Perturbative
calculations can be optimized in accuracy by a suitable choice of .

To understand how to choose w, I now present a simple example that gives x4 an intuitive
meaning as approximating a cutoff in the physical dimension at a certain value of transverse
momentum.
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Now, in many of our calculations for scattering, there will be preferred coordinates
determined by the momenta of two of the particles. The Breit frame for DIS is a good
example. Let us use these directions to fix a plane of ¢ and z. Then for an integration
over a momentum k, we first perform the k° and k° integrals. After that we have a two
(or 2 — 2¢) dimensional integral over a transverse momentum kr, which is often rota-
tionally symmetric. A generic one-loop integral, relative to a lowest-order calculation,
is then

2 2e
g 2-2¢ 1
Iy=>"" | & %k ——
0 <4n)4*26/ T2+ M2
_ & ) [ e G
1672 T (1 —€) Jy k2—|—M2

(3.32)

The factor 7 in the first line is typical for a two-dimensional integral over the two lon-
gitudinal components of k. In an actual application, M would be a function of external
longitudinal kinematic variables as well as of masses of particles and fields. For examples,
see (9.4) and (10.137).

Using (A.50), we express the integral in terms of I" functions, and then obtain the pole
and finite part using (A.47):

4 g%S. 2

I = r( ) “ +1 “— +0(e) (3.33)
~ 1672
Subtraction of the MS pole gives the renormalized value

2 2 2

8" Se g g
Ir = 1 Iy — = In —. 3.34
B= 0 ( 0 167126) 162 " M2 (3-34)

Without the S, factor in the definition of the MS counterterm, we would get an extra term
containing In(4rw) — yg. The simple logarithmic dependence on the unit of mass u is a
general expectation, but for a more general integral the rest of the result will not be so
simple and will not always have a simple analytic form.

To obtain an interpretation, we now rewrite the counterterm as a subtraction at the level
of the integrand. Since the divergence is associated with the asymptotic large k1 behavior
of the integrand, we consider an integral over this asymptotic behavior:

827'[#26 / d2725kT g2 (4_7.[#’/2)6 o qKk2
k1>Cpu

Rkl = r_ 3.35
(47 )4—2€ K2 1672 (1 — €) Joue (K3)i+e (3-35)

The integral is of a power of kr, so it is trivial to calculate. Since the extraction of
the asymptotic behavior would otherwise expose an IR divergence, we put a lower limit
proportional to ©? on the integration, with a coefficient C that is to be adjusted to obtain
the correct finite part of the counterterm. The integral is

g8, ere
1672 T'(1 —€)

Cc™-. (3.36)
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Fig. 3.5. (a) Integrand times k2 of ((3.37) when p >> M. (b) Same when u is close to M.

Since the second factor is 1 + O(e?), we can reproduce the renormalized graph by using
(3.36) in place of the true MS counterterm, provided that we set C = 1. Then the renor-
malized graph is an integral in the physical dimension with a subtracted integrand:

2 1 0k
Ip= -3 3/d2kT< . _ 4 T'; ’”). (3.37)
167 ki + M? kT

The integrand is plotted in Fig. 3.5. Because of the logarithmic behavior at large kr, it
is convenient to multiply the integrand by k% and to plot it against In k%, to correspond to
the integrand on the r.h.s. of an integral of the form

/ di? f(kr) = / dInkg [kFf (k). (3.38)
We now interpret (3.37), with a view to generalization.

e The natural expansion parameter for perturbation theory is g?/1672, which arises as the
product of the coupling, the factor 1/(2m)* for a loop integral, and 7> for an angular
integration in four dimensions.

e This is multiplied by a group-theory factor and the number of graphs.

o In simple cases, renormalization can be performed by a subtraction of the asymptote of
the integrand. The lower bound on . in the subtraction is commonly exactly w.

e The coefficient S, defining the MS scheme is responsible for the cutoff being 1 rather
than a factor times w. This gives a direct connection to the physical scale M in the
integrand.

e In a more general graph, finite terms with modest, typically rational, numbers must be
added. The need for this can be seen in the quark self-energy calculation, where the €
dependence of the numerator algebra enters.

o To get perturbative corrections of a natural size, ¢ should be close to the scale that is set
by the transverse momentum dependence of the integrand, i.e., a scale characterizing the
change from 1/ k3 behavior at large kr to constant behavior at small k.

e Although our example integral is exactly zero when u = M, this is not true in general;
also M will generally be a function of external momentum. The best general statement
is that for a single graph without a group-theory coefficient, the expected coefficient of
g2/16m? is a modest number of typical size unity if u is close to a natural scale.

e For large values of 1, u behaves like a cutoff on kt in the unsubtracted integral.

e The rationale for these results suggests that they should approximately generalize to
higher orders. In a well-behaved L-loop calculation, we can expect the result to be
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roughly (g2/167%)" times an effective number of graphs times a typical group-theory
factor, provided again that u is of the order of the physically relevant scale in transverse
momentum.
e When we meet badly behaved situations, it is a good idea to search for explanations for
large perturbative corrections in terms of the sizes of integrands in relevant kinematic
regions.

3.5 Renormalization group

The general idea of renormalization prescribes only that counterterms cancel divergences;
thus the finite parts of counterterms can be chosen freely. Within many schemes, like MS,
there is also a parameter w that can be chosen freely. At first sight, the choices remove
predictive power from the theory since any numerical value can be obtained from a one-
loop integral with given external momenta. In reality, as explained more fully in textbook
accounts of renormalization, this is not so. Instead we exploit the freedom in choosing u
to optimize the accuracy of finite-order perturbative calculations.

The complete theory is exactly invariant if when changing u (or, more generally, the
renormalization prescription) we also change the numerical values of the renormalized
parameters of the theory. This is the renormalization-group (RG) invariance of the theory. An
RG transformation amounts to a change in the partitioning of the full Lagrangian £ into the
three terms in (3.12). Thus it corresponds to a rearrangement of the perturbation expansion.
The most important case for us is the transformation of the renormalized coupling and
masses when the renormalization mass u is changed.

3.5.1 RG evolution

When we perform RG transformations for changes of 11, keeping observable quantities fixed,
each numerical value of u corresponds to particular numerical values of the renormalized
parameters g(u), m r(u). When we change u to another value /, not only do the coupling
and masses change, but also the normalization of the renormalized fields. So we write

@i (xs ) = i, )i (x; ). (3.39)

Here i labels the different types of field (gluon, quark, etc.). A Green function therefore
transforms as

G(p:i . g(w). m(w) = [ ] . (. )G (pi /. (). m(u)), (3.40)
where p is the collection of external momenta of G, m is the set of renormalized masses,
and the_product is over the external lines, e, of G, with i, labeling the corresponding types
of field.

The S-matrix and hence cross sections are RG invariant. This is because an S-matrix
element is obtained by applying to the corresponding off-shell Green function the following
operations: (a) divide out a full external propagator; (b) multiply by the square root of the
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residue of the particle pole; (c) put the external momenta on-shell. In this process there is a
cancellation of the ¢ factors for each external line. Exactly the same idea applies to Green
functions of the composite external fields needed to obtain the S-matrix for composite
particles.

We now determine equations for u dependence of g(i). The coefficients in the equations
are obtained from the counterterms in the bare parameters, the starting point being RG
invariance of the bare parameters, as is necessary to keep the physics unchanged. The
normalizations of the bare parameters and the bare fields are fixed because terms like
iyro#Wo have unit coefficients. Our discussion is tailored to the MS scheme, but the main
principles and methods are general.

3.5.2 Coupling and mass

With a UV cutoff applied (¢ # 0), we hold the bare parameters gy and m ) s fixed and vary
w. For go, we get

9go dg 9go dg 9go
go(u, g(u), €) = —— + ——— -

0= = €go .
dlnpu dlnpg  dlnp dg dlnu og

(3.41)

We distinguish between a total derivative d/du, with respect to all the u dependence,
and a partial derivative d/du, for which the renormalized parameters g(u), etc., are fixed.
It is convenient to use a logarithmic derivative, given that renormalized graphs have a u
dependence that is polynomial in In p.

For the masses
dg dmy dm my

= dlnMmo(mw), g(p), €) = ding 9g + Al m

, (3.42)

where we used the lack of explicit i dependence of m( in minimal subtraction.
It is convenient to use as the expansion parameter o, /47 = g>/167>. Then from (3.41)
we find

dag/4m 8 dg €8 20
dinp 872 dlnp 872 dgy/dg’
The left-hand side is finite at € = 0, and therefore the right-hand side is finite also; all poles
in € must cancel. In the MS scheme each «; in the counterterms is accompanied by a factor
S and all the terms in gy have negative powers of €. We therefore find that the right-hand

side has the form*

(General €) (3.43)

—2e X 4 STV2B(0 S, /(A)), (3.44)
4

where the only € dependence is in the —ea; term and in the explicit factors of S..
At the physical space-time dimension, i.e., at e = 0, we use the perturbatively calculable
B function to give an equation for the scale dependence of the coupling:
dog/4m
dinu

=2B(as /A7), (e = 0) (3.45)

4 The factor of 2 multiplying 8 is to correspond to the definition in Larin and Vermaseren (1993); this arises because
these authors use derivatives with respect to In p? instead of In ut.
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The one-loop value of the bare coupling, in (3.31), immediately gives

o
Blo/4m) = —(%CA - g an) 16 5+ O(O{ ) (for general group)
2 2
(11 - 3" ,) o3 T 0@, (for SU(3)) (3.46)

Provided there are at most 16 quark flavors, which is true in currently known strong
interactions, the coupling decreases with increasing scale, at least when it is small enough
at the outset. The coupling does in fact go to zero as © — 00, as we will see, so that QCD
is asymptotically free. The importance of this is clear from the previous chapter.

The results at higher order will be quoted in Sec. 3.7. Here we just note that 8 can be
obtained from the single pole terms in gy. With the conventions of (3.16), we get:

- 2n+2

Blag/4m) =Y

n=1

nB,. (3.47)

The finiteness conditions for do,/d In i enable the higher poles in gy to be computed in
terms of the single poles.

The RG dependence of the mass is similarly obtained. A dimensionless function is
obtained by using logarithmic derivatives:

dl
Yn(y S f4m) & S22
dInpu
dln Z,,
= (260{5S€/47T - 2ﬂ(a¢55/4ﬂ))m
= —6CraS, + 0(c?). (3.48)
4

Again, the divergences present in Z,, must cancel in this derivative in order that y,, is
finite. This time, it can be shown that the only € dependence is in the S, multiplying o;.
This RG coefficient is usually less important in practice, since most pQCD calculations are
performed with masses set to zero, or with a different scheme for heavy quarks.

The lack of mass dependence in the renormalization group coefficients 8 and y,, follows
from the mass-independence property of MS counterterms.

3.5.3 Anomalous dimensions and RG equations for Green functions

To unify the treatment of the RG transformation for renormalized fields, let us use the
notation ¢; for the renormalized fields, with the label i denoting the type of field (gluon,
flavor of quark, etc.). We define its anomalous dimension by

de;
ity e [, E)y = —%. (3.49)
np

1ven that the corresponding bare field 1s ¢« = Z: i, 1t follows that
Given that th ponding bare field is ¢y = Z,"*¢;, it follows th

1 dInZ;
2dlnp’

YilasSe/4m, &) = (3.50)
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A complication arises in gauge theories, from the gauge dependence of wave-function
renormalization. Because of the relation &, = £ Z3, the gauge-fixing parameter obeys

dln§  dlnZs

din e __dlnu = —2y;. (3.51)
Then the definition of y; gives
o Se dln Z; d1n Z;
Y= <—€ i ,B(a.vSe/47T)> .S, /4w AT (3.52)
Hence
= kSt ﬂ((ﬁ/;ﬁ);j 13n$ Zs/d(es Se/4m). 353
For the other anomalous dimensions, we have equations of the form
o Se dlnZ, dlnZ,
V2 = <—6H + ,B(aSSe/47r)> da.S./ar -9 o (3.54)

See Sec. 3.7 for the values of the anomalous dimensions.

From the above results follows the renormalization-group equation (RGE) for a renor-
malized Green function G. If G has n, external quark fields (and the same number of
antiquarks) and n3 external gluons, then

dG
dInu

= —(2may2 +n3y3) G. (3.55)

Exactly similar equations can be derived for other operator matrix elements, where the
states can be other than the vacuum and the fields not simple products of the elementary
fields of QCD at different space-time points. A simple example is the hadronic tensor W*¥
of DIS, (2.18). The electromagnetic current is a symmetry current of QCD and can be
shown to have zero anomalous dimension. Hence W#" is RG invariant:
v
awrr 0

= 3.56
dInpu ( )

3.6 Solution of RG equations
3.6.1 General form of solution

The RG equations for the coupling, mass, and Green functions are readily solved to relate
these quantities at different values of the MS, with the aid of integrals of g, y,, and the
anomalous dimensions:

ag(pn)/4m
mt - / P _dajim (3.57)
Mo as(uo)/dn 2B(af4m)
m() f“ dp’ , /““'”/4” Yin(0t/470)
_ S (o ()4 = do /4 , 3.58

B m(HO) o ,LL/ s (a (M )/ ]T) as(po)/4m a/ g 2,3(0[/47'[) ( )

G(w) /*‘ du/ , , /“s“”/“” yola/4m, E(1))
1 = - ()4, - da/dg 2005007
n Glito) W vel(as(u')/4m, E(u')) e on a/dw 2B(a)4m)

(3.59)
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Fig. 3.6. QCD effective coupling. With kind permission from Springer Science+Business
Media: Bethke (2009, Fig. 6). The lines represent the solution of the RGE for o (1) with the
+ 10 limits on the constant of integration. The scheme used is MS with a variable number
of active quarks, as in Sec. 3.10. The data are, in increasing order of p, from fits to the
7 width, T decays, DIS, ete™ event shapes at 22 GeV at JADE, shapes at TRISTAN at
58 GeV, Z width, and e*e™ event shapes at 91-208 GeV.

Here y¢ = 2n,y, + n3ys is the anomalous dimension of the Green function G, all of whose
momentum and mass arguments we have suppressed.’

Since B(«/4m) is negative and O(e?) at small coupling, (3.57) shows that o;(w) — 0
as U — 00, i.e., that QCD is asymptotically free.

3.6.2 Effective coupling; scale parameter A

The n dependence of the coupling underlies all other RG calculations in QCD, so a detailed
analysis is useful. There is a one-parameter family of solutions of (3.45) for o (1), and the
physical solution is specified, for example, by the value of coupling at a given scale (e.g.,
“ag(Mz) = 0.1184 £ 0.0007 in the MS scheme with five active flavors”). The physical
solution is obtained by fitting the one parameter to data, with a result shown in Fig. 3.6.

One often-used procedure is the following, which is particularly useful for assessing the
errors due to the limited accuracy with which RG functions are known. It was obtained
(Buras et al., 1977) basically by expanding s () in powers of 1/1In u? at large .

Let us write the expansion of 8 as

def  dag

T dlng? —Boa; — pia;] — pra} — Bsa} + 0(a), (3.60)
npu

Blas)

where a, = a, /4w = g?/16m>. (The normalizations of all but B, differ from the less
systematic conventions of the PDG; Amsler et al., 2008.) In the solution (3.57) the integral

5 Thus G(uo) means G (p; po, (o), m(io), (1))
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is of 1/8, so we first separate out the singular parts of 1/8, and represent the general
solution of the RGE for a,(u) as

In

u? 1B
F = Bods + 13_(1% 111(,30613) - f(as)s (3.61)

where

ey (—L—L ﬂ) 3.62
7@ fo “Nb@ B " B (.62

Here the constant of integration is represented by a parameter A, of the dimension of mass;
it has an experimentally determined value® of around 200 MeV. The constant f in the
logarithm in the second term on the r.h.s. of (3.61) merely amounts to a standard convention
for the definition of A whose rationale will become apparent below. When it is necessary
to distinguish A from other similar parameters, we will add a subscript, as in Agcp.

For small coupling, § is approximately — ,BOaf, so that a (1) behaves like 1/(Bo In u?)
at large . To improve this estimate, we expand in powers of 1/In(u?/A?) (with some
modifications as required). This gives

o 1 B1 Inln(u?/A?) o (m2 In(u? /A2))

47~ Byln(u/A) B3 In*(u2/A2) In*(12/A2?)

(3.63)

Normally we would expect a term constant/ In>(12/A?), and the absence of this term is
effectively the definition of A, and is exactly correlated with the use of In(Bya;) rather than
Ina; in (3.61). This convention is due to Buras et al. (1977). Then A can, in principle, be
extracted from the large p asymptote of a,(u):

2 2 1 Bi

A = lim u”exp|— — — In(Boay) | - 3.64)
—>00 Boas ﬂ()

Notice that this formula requires only the use of the known one- and two-loop terms in S,

not any of the higher terms not all of which are known. Of course the higher terms will

improve the accuracy of the measurement of A since a,() is only known at finite w.

3.6.3 Dimensional transmutation

Suppose we were to approximate quark masses of QCD by zero. Since the masses of the light
quarks are considerably smaller than the proton mass, this is in fact a useful approximation,
for low-energy processes, if we keep only two (u, d) or three flavors (u, d, s), with the
heavier quarks being removed according to the decoupling theorem. Then the mass of any
particle, like the proton, would be a function of «; and p only. But by dimensional analysis
it is u times a function of «:

my = wk(ey) in massless QCD. (3.65)

© Details depend on a treatment of heavy quark masses which we will present later (Sec. 3.10). The current best value
with five active quarks is (Bethke, 2009) A = (213 £ 9) MeV.
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Since m,, is a physical mass, it is RG invariant, which fixes a;(x) up to a multiplicative
factor. It follows that m, equals A times a pure number, K, which is a property of the
solution of massless QCD: m, = AK,. The number K, is non-perturbative and can be
obtained from lattice QCD calculations.

Instead of specifying the theory by the numerical value of its dimensionless coupling
g, we can instead specify a fixed mass parameter A. This is the property of dimensional
transmutation (Coleman and Weinberg, 1973).

In fact, there is a certain sense in which even this parameter is illusory. Suppose we
consider pure strong interactions with massless quarks. To completely define a measure-
ment of the numerical value of A, we must specify a system of units, i.e., specify what
a mass of numerical value unity means.” But with only the strong interaction under con-
sideration, this can only mean some physical mass like the proton mass, which can be
taken as a physical definition of a standard mass. So a measurement of A is really a
measurement of the dimensionless ratio A /m p, whose value is a unique prediction of the
theory.

This is the sense in which massless QCD has no parameters. All real predictions of the
theory are pure numbers. For example, a cross section as a function of center-of-mass energy
o (E) is of the form m;zS(E /m,), where § is a dimensionless function of a dimensionless
variable. This function is in principle predicted with no parameters by massless QCD.

Since the masses of the three light quarks are known to give only a relatively small
contribution to the nucleon mass, the above statements are approximately true in real QCD.
The real intrinsic parameters of QCD are the quark masses, expressed in terms of a suitable
chosen unit, e.g., A or m,,.

There is a contrast with QED, because of the different physics of its classical long-
distance limit. For simplicity consider QED of a photon and electron field only. Then, again
by dimensional transmutation, there is only one true parameter m./Aqgp. As with its QCD
analog, Aqgp is in a region where the coupling is strong. In contrast to the QCD coupling,
the QED coupling increases at large scales, and in fact Aggp is around the Planck scale. At
low energies compared to m,, the electron decouples, giving a free Maxwell field theory
which we can solve completely and exactly. It therefore becomes much more sensible
than in QCD to use an on-shell renormalization prescription, and to define the expansion
parameter of the theory as the usual o ~ 1/137. Within pure single-lepton QED, we can
take the unit of mass to be m,.

Of course, weak coupling methods are very useful and accurate for normal phenomena
in QED, including its bound states, in contrast to QCD, where perturbation theory has a
more restricted range of applicability.

Although dimensional transmutation has reduced the number of genuine parameters in a
quantum field theory by one compared with the apparent number, the parameter is regained
when the theory is treated as a component of a more complete theory. For example, we
can combine QED and QCD to get a complete theory underlying all nuclear, atomic and

7 The last sentence was carefully worded to avoid confusion between the concept of unit of mass in dimensional
regularization and the concept of the unit of mass in a system of units.
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molecular phenomena. Then m./Aqcp is a parameter of the combined theory in addition
to the intrinsic parameters of the separate theories.

3.6.4 Bare coupling

We used (3.41) to obtain the (finite) 8 function from the divergent perturbation expansion
for the bare coupling. But we can also use it to obtain a formula for the bare coupling as a
function of A and €. From the e-dependent § function given in (3.44) we get

d1nag . €
8as B €dy — Sgllg(asse)’

(3.66)

where again a; = g*/(167%), while ay = g3 /(167?) is the bare equivalent of a,u*, with
mass dimension 2¢. The solution is

2 asSe € 1
Inag = In(a,u™) +/ da [ —] , (3.67)
0

€a — B(a) a

where the boundary condition is set by requiring ag/(a; u*€) — 1asa, — 0 at fixed €.
An important formula is obtained by expressing this in terms of A, and then taking the
limit ¢ — O at fixed a;,. This gives

2 A2 Bi/Be+ve \ €
8o 1 1+e1 /B3 € 0 2
= — _ 14+ 0 . 3.68
16712 ﬂ()e 47 [ (E )] ( )

When € — 0, the O(e?) fractional correction can be dropped, since it is equivalent to a
change in A by a fraction of order O (¢): since A determines the coupling in the renormalized
theory, the correction does not affect renormalized Green functions at € = 0. From the g
function, only the scheme-independent coefficients Sy and 8, are needed; the scheme choice
is manifested in the numerical coefficient multiplying A2. To provide a full specification of
the renormalization of the theory, only the one- and two-loop renormalization counterterms
in the coupling need to be known.

Similar results can be obtained when any regularization scheme is used. With a lattice
regulator, we would have

g 1 B1 In(— In(a®>A?)) A

= - - , 3.69
1672 —pBoIn(a’A?) B3 In*(a2A2?) In’(a2A?) (3.69)

where a is the lattice spacing, and the coefficient A can be computed (Hasenfratz and
Hasenfratz, 1980; Dashen and Gross, 1981) from the perturbative expansion of the bare
coupling computed to two-loop order, with the renormalized coupling being in the MS
scheme.

Other bare parameters and renormalization factors may be treated similarly.

3.7 Values of RG coefficients

The B function has been calculated in the MS scheme up to three loops by Tarasov,
Vladimirov, and Zharkov (1980) and by Larin and Vermaseren (1993), and to four loops by
van Ritbergen, Vermaseren, and Larin (1997). The results have been confirmed by Czakon
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(2005). The first three coefficients in 8 are rational numbers. With the notation of (3.60),

11 4

Bo = ?CA —37Trns, (3.70a)
34 20

,31 = ?CA - 4CFTFI’lf - ?CATan, (370b)

4 2857C3 Lac2r 205 . .. 1415C2T

= — ne— —— n n

2 52 Fhy 9 FCalpny — 27 Fliy

+ ﬁC T2n% + @C T2n? (3.70¢)
g MRS g TN '

The expression for the four-loop coefficient B3 is more complicated and includes the irra-
tional number ¢3; the full expression is given in van Ritbergen, Vermaseren, and Larin
(1997). The fact that even the three-loop coefficient is a rational number indicates a funda-
mental simplicity in the theory and in minimal subtraction that is certainly not apparent in
straightforward calculations of Feynman diagrams. In the case of SU(3), i.e., for QCD, the
coefficients are

2
fo=11-3ny, (3.71a)
38
pi=102—n,. (3.71b)
2857 5033 325
_ _ 5033 , 371
== TR (3.71¢)
149753 1078361 6508
= 356425 | — -
B3 ( 5 + §3> < 2 + 77 C3) ny
50065 | 6472 ) , 1093
162 g1 )" T g
A 29243.0 — 6946.30n 1 + 405.089n% + 1499 31n3. (3.71d)

The anomalous dimensions have been computed by Larin and Vermaseren (1993) up
to three loops, and by Czakon (2005) to four loops. The full results can be found in these
papers.® Up to two-loop order, where the coefficients are rational, the values are

valay/4m, &) = —CFS

+ (ﬁ)z(—§c2+§c Ca— Cpny+26CkCa + 8 2CpC )+
47_[ ) F 4 FLA Fitf FLCA 4 FLYA
(3.72)
o 13 2
vi(as/4m, &) = e [_KCA‘F 3 +&- CA:|
+(ﬁ)2[——9c 2Cen, 42 Cn +s Loz g c}
e g A FrLf Al f A A
(3.73)

In these equations, the value Tp = 1/2 was used.

8 The definition of y has different normalization conventions in different books and papers. The conventions of this book
agree with those of Larin and Vermaseren (1993).
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3.8 Symmetries and approximate symmetries of QCD

In this section, I summarize the standard set of exact and approximate symmetries of QCD.
See Narison (2002, Chs. 53 and 54) for a recent account of many of their consequences,
especially those that are not further referenced in this section.

3.8.1 Exact symmetries

The QCD Lagrangian is exactly invariant when any one of the quark fields is multiplied
by a phase. By Noether’s theorem this gives rise to conservation of the number of quarks
(minus antiquarks) of each flavor: u-quark number, d-quark number, etc. The sum of all of
these, the total quark number, is particularly important because it is not broken by flavor-
changing weak interactions. Baryon number is simply one-third of total quark number, and
its invariance was established long before QCD.

QCD s also invariant under each of the discrete symmetries of parity, charge conjugation,
and time-reversal.

3.8.2 Note on “strong C P problem”

If QCD is specified simply as a renormalizable gauge theory, with an SU(3) gauge group
and some set of quark fields in the triplet representation, then one extra term is permitted
beyond those in the Lagrangian (2.1). In a standard normalization, the extra term has the
form

G% G*™, 3.74
1672 W .74

where GZU = %EWW G“ "9, The extra term breaks C P invariance, and there is a stringent

observational bound on its coupling, # < 10~°. It is considered problematic as to why 6 is
so small. This is the strong C P problem, which is reviewed along with possible solutions
in Dine (2000).

3.8.3 Isospin and flavor SU(3)

If the up and down quarks were exactly equal in mass, QCD would be invariant under
the isospin symmetry of SU(2) transformations on the u- and d-quark fields. This sym-
metry is quite accurate; we will apply it to the flavor dependence of parton densities and
fragmentation functions in Secs. 6.9.7 and 12.4.8.

Rather less accurate is the flavor SU(3) symmetry that would be exact if the masses of
the lightest three quarks, u, d, and s, were equal. SU(3) breaking is described by the quark
mass terms, which correspond to the O3 and Qg terms of an operator transforming as an
octet under flavor SU(3). Treated to first order in perturbation theory, these give a good
description of the mass splittings within the well-known flavor-SU(3) octet and decuplet
multiplets of hadrons.
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3.8.4 Symmetries at zero mass

The masses of the u and d quarks are quite small. When these masses are neglected, the
QCD Lagrangian is further symmetric under separate SU(2) transformations on left- and
right-handed quark fields defined by

1 1
VL= 5(1 — Y)Y, Yr = 5(1 + vy (3.75)

Then chiral SU(2); ® SU(2)g transformations have six parameters w; and wg for two
commuting SU(2) groups, and the quark fields transform as

ur —iw,-0/2 (UL Ugr —iwgo/2 [UR
<dL) = e <dL) s (dR> = e (dR> . (376)

The other fields (gluons, other quark flavors) are invariant. This symmetry is in fact sponta-
neously broken down to isospin SU(2). The low mass of the pions (about 140 MeV) relative
to other hadrons is indicative of the expectation that they would be Goldstone bosons for
spontaneously broken chiral symmetry in the limit of zero quark mass. Consequences can
be successfully derived by the use of Ward identities together with the chiral transfor-
mation properties of the quark mass terms. These form much of the subject of current
algebra.

3.8.5 Anomalies

When the u# and d quarks are massless, the symmetry of their part of the Lagrangian
appears also to include separate U(1) transformations on the left- and right-handed fields.
(The quark-number symmetry corresponds to the same U(1) to both the left- and the
right-handed fields.)

This symmetry is in fact anomalously broken. Thus, unlike the case of SU(2);, & SU(2)g,
there is no approximate Goldstone boson.

3.8.6 Chiral symmetry, hard scattering and factorization

When applying a factorization theorem like (1.1) there is a hard-scattering factor
dé(&,, &, i, j). This is normally computed with quark masses set to zero, and thus chiral
symmetry applies to it.

Many consequences arise because at the quark-quark-gluon vertex, the coupling is only
between quarks of the same helicity, and between quarks and antiquarks of the opposite
helicities. That is, only the following transitions are possible:

qL < qL + &, qr <> qr t+ &, qrL +qr < &, qr t 4L < g. (3.77)

This produces many restrictions on the polarization dependence, as we will see in Secs.
11.6 and 13.16.
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3.9 Dealing with quark masses

Our basic technique for exploiting perturbation theory in QCD is to find quantities whose
calculation has internal lines of Feynman graphs far off-shell, i.e., with some large virtuality
Q2. In these quantities we set the renormalization scale of order Q, so that the weakness of
oy at large scales allows the use of low-order perturbation theory, and we normally neglect
quark masses.

However, there are quarks whose masses are not always negligible in these calculations,
so that the general procedure needs modification to deal with heavy quarks. These are
defined to be those quarks for which the coupling is small when the renormalization scale is
of order the mass: o, (m,) < 1. The known heavy quarks are ¢, b and ¢, with the remaining
quarks and the gluon being called “light”. The charm quark, of mass 1 to 1.5 GeV, is only
marginally heavy, but, for robust observables, perturbation theory may be applicable at
scales around the charm mass.

Clearly we need improved methods whenever Q, the physical of the process under
consideration, is comparable to or smaller than the mass of one or more heavy quarks.
First, we should not automatically neglect the mass. Second, the use of a mass-independent
scheme, like MS, becomes unsuitable whenever the scale is much less than one of the quark
masses.

The main issues are manifested in a calculation of the one-loop quark contribution to
the gauge-field self-energy:

e - Y T8 b T / gz U m)y p+ kA m)y
MS (2m)-2e (k2 _ m? + iO) [(p T k)2 — m? + io:l

+ counterterm, withe — 0

—2ia8upT, ! m? — p?x(1 —x)
ZZM(_gwpz‘FP”PV)/ dxx(l—x)ln%.
; 4 0 2

(3.78)

The following properties apply to this graph and more generally.

e If|p?| is large compared with m?, then m; can be neglected, with relative errors of order
2,2

m j/ Ip~l.

o Furthermore, in the same situation, |p?| > m?, there is logarithmic dependence on p?.
The large logarithm can be removed by taking p? of order | p?|.

o If |p?| is much less than m?, the integral approaches a constant, ln(m?/,uz). In (3.78),
this multiplies a factor quadratic in p, of the same momentum dependence as the UV
counterterm.

The last item exemplifies the non-trivial part of the decoupling theorem for heavy parti-
cles (Appelquist and Carazzone, 1975). This theorem concerns a situation where we hold
fixed the external scales of a Green function and make some internal mass much larger.
Then the contributions of convergent graphs with the large internal mass are suppressed.
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The suppression fails whenever the heavy internal lines are in a divergent loop, but the
unsuppressed contributions are equivalent to a contribution to renormalization coun-
terterms. Thus the unsuppressed contributions can be eliminated by a choice of
counterterm.

Suppose that we have the real-world situation that the quark masses are widely different.
Then we can have a conflict in the choice of u that eliminates large logarithms, whenever
[p|? lies between two heavy quark masses, e.g., m? > |p*| 3> m7, which is common in
practice. Different graphs for the same process involve different heavy quarks.

If we use MS renormalization, then, for the quarks that are heavy on a scale of pz, we
have logarithms ln(mf /1?), which can be removed by setting 1 ~ m ;- For the quarks that
are light on a scale of p?, we have logarithms In(—p?/u?), which are removed by setting
u? ~ |p?|. When the quark masses and |p?| cover a wide range, we have incompatible
conditions on .

The original way of using the decoupling theorem was to define a second theory in
which all fields are omitted whose masses are much larger than the external scales. This is
the low-energy effective theory (LEET) for a given set of heavy quarks. The renormalized
parameters of the LEET have numerical values that, in general, differ from those of the
full theory. These numerical values can be computed by comparing calculations of Green
functions in the two theories and requiring that they give equivalent results.

A LEET removes from calculations quarks whose masses are much larger than the
external scales. There can remain quarks with masses comparable to the external scales.
For example, in a calculation at Q ~ 5 GeV, we would decouple the ¢ quark, but none of
the others, so that the LEET has five quark fields. But we could not neglect the mass of the
b quark. Depending on the situation and required accuracy, we might be able to neglect the
charm quark mass or might need to retain its mass. One normally neglects all three light
quark masses in standard perturbative calculations.

For a full set of QCD calculations, we need to successively decouple the top, bottom
and charm quarks. This gives us a series of effective theories with three, four and five
quarks, with corresponding values of their MS couplings. Non-perturbative calculations at
low scales are normally done in the 3-flavor effective theory; these include the well-known
lattice Monte-Carlo simulations.

However, the method of LEETs has certain disadvantages, and in the next section I
present a better method. The primary disadvantage of a LEET is that it is limited in the
ultimate accuracy that it can achieve. For example, consider the 3-flavor effective theory.
We could obtain it by sequential decoupling of the three heavy quarks. Now, the decoupling
of the charm quark, to get the final 3-flavor LEET, assumes that it is much lighter than the
previously decoupled bottom quark; so we have the leading term in an expansion in powers
of m./my. But this ratio is only about 1/3, so the errors could be quite large relative to a
desirable accuracy. If instead we decouple both the charm and bottom quarks in one step,
then the matching conditions would include logarithmic dependence on m;/m,., which
would also reduce the accuracy.

A more general approach is to change the renormalization scheme to make decoupling
more manifest. The simplest of such schemes is momentum-space subtraction, in which the
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counterterms are chosen to set certain 1PI Green functions (and/or appropriate derivatives)
to zero at a particular point in momentum space. For the quark self-energy, we could choose

the renormalization point to be p?> = —u?, obtaining
—2ia,é, TF
Mhion = Y — B (—g" p* + pPp*)

J
1 2_ )2 _
x / dx x(1 —x)lnw. (3.79)
0 mj + [ x(1 —x)

This scheme solves the difficulty of removing all large logarithms; these are eliminated
by setting u? of order |p?|, independently of the size of m;. Thus the scheme satisfies
manifest decoupling, which means that we obtain the low-energy effective theory simply
by deleting all graphs containing quarks much heavier than the external scale. The errors
in doing this are a power of p? divided by the square of the mass of the lightest deleted
quark.

But the scheme has two technical disadvantages. One is that gauge invariance is not
automatically preserved. The defined momentum-space subtractions can only be applied
to a limited set of 1PI Green functions, sufficient to determine an independent set of
renormalization factors. The counterterms for the remaining 1PI divergent graphs are
determined by gauge invariance, and will generally not have an obvious momentum-space
definition. Indeed, a separate argument will be necessary to prove decoupling.

The second disadvantage is the practical one that the counterterms are mass dependent,
so that the renormalization-group equations for the coupling and mass will be compli-
cated and coupled. So the solution will be much more complicated and more difficult to
overview. Moreover, the calculations of counterterms become algorithmically much more
complicated: the exact values of off-shell Green functions are needed instead of just the pole
part at ¢ = 0. Calculation of on-shell Green functions is generally simpler than when they
are off-shell, and calculations of the pole parts are even easier. This was nicely illustrated
in our calculation of the quark-quark-gluon vertex graph in Sec. 3.3. This is an impor-
tant issue, since high-order calculations are extremely expensive in time and effort, which
rapidly increases with the order of the calculation. Moreover, for a given desired accuracy in
a final phenomenological result, it is generally necessary to compute RG coefficients to one
order higher than everything else, because the RG coefficients get integrated over a large
range of scales, thereby increasing the effect of an error due to uncalculated higher-order
corrections.

3.10 CWZ (ACOT) method for heavy quarks

A method that overcomes these complications was constructed by Collins, Wilczek, and
Zee (1978) (CWZ). This method is actually a composite scheme, composed of a sequence
of subschemes. The subschemes are parameterized by what is called the number of active
quarks, Ny The active quarks are the N, lightest, and the inactive are the remaining,
heavier quarks. Since the gluon has zero mass, it is always treated as active. For a 1PI graph
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containing only active quarks, normal MS counterterms are used. But zero-momentum
subtractions are used for any 1PI graph that has at least one internal line for an inactive
quark.

Normally, zero-momentum counterterms would have undesirable IR divergences in a
theory with massless fields, like the gluons in QCD. But the presence of at least one massive
line removes these divergences, to all orders of perturbation theory.

The CWZ scheme has the following advantages.

e Each subscheme automatically satisfies gauge invariance. That is, if the counterterms in
the Lagrangian are determined by some minimal set of 1PI Green functions, then the
remaining 1PI Green functions, with their counterterms determined by gauge invariance
of L also obey the CWZ renormalization condition. No extra finite counterterms are
needed.

e Manifest decoupling is satisfied in each scheme. In particular, the numerical value of the
coupling in the LEET with N, flavors and pure MS renormalization is the same as in
the CWZ subscheme with N, active quarks.

e The RG coefficients in each subscheme are mass independent and in fact exactly identical
to those in the theory obtained by deleting the inactive quarks.

e This apparently violates the theorem that we have scheme independence of the one- and
two-loop terms in B, and of the one-loop terms in the other RG coefficients. But the
theorem only applies if the counterterms are mass independent, which is not the case
here, when the number of active quarks changes.

e Normally, calculations of Green functions at zero external momentum are much easier
than with a general external momentum.

e No IR divergences are induced by the use of zero-momentum subtractions.

Since there is a sequence of subschemes, relations must be derived between the renormalized
parameters in the subschemes. This is quite straightforward, with some results listed below.
Moreover, there are no large logarithms in relating the subscheme with N; active quarks
to the scheme with N| + 1 active quarks, provided only that u is of order the mass of the
single quark that is making the transition between active and inactive. We will see examples
later.

This scheme has become a standard, e.g., Bethke (2009). It extends quite simply to
the treatment of parton densities, etc., in which case it is called the ACOT scheme, as
expounded by Aivazis et al. (1994). It is the one I will use throughout this book, unless
otherwise specified.

An important misapprehension needs to be eliminated from the beginning. This is that
the MS scheme only applies to massless quarks. It is true that RG coefficients (and their
generalizations) do not depend on the quark masses. For this and other reasons, it is often
best to do many calculations with massless quarks. But there is no intrinsic reason for
it to be restricted to massless quarks. The misapprehension is coupled with some severe
conceptual misunderstandings concerning the factorization theorems of QCD, as we will
see in later chapters.
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Fig. 3.7. Range of scales for which particular numbers of active flavors are appropriate.
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Fig. 3.8. Possible choice of switching points between CWZ subschemes.

3.11 Relating CWZ subschemes with different numbers of active quarks

For a particular CWZ subscheme with a given number, N, of active quarks, the vacuum
polarization in (3.78) is replaced by

—Zias,N(Sa,g TF

1
Moy, = . (—g"'p* + p“p”)/o dx x(1 —x)
m? — p?x(1 — x) m? — p?x(1 — x)
j j
X Z IHT Z IHT , (3.80)
active j inactive j J

where oy (1) is the coupling appropriate to the subscheme. For a particular value of p?, to
eliminate large logarithms, we should (a) take w2 of order | p2|, (b) make inactive all quarks
with m? > |p?|, and (c) make active all quarks with m? & |p?|. Obviously, for quarks
with m? ~ | p?| we have a choice of whether to make them active or inactive, as illustrated
in Fig. 3.7. In the past, there was a tendency to make a definite switching point between
subschemes: quark j was considered active if ;& > m , and inactive otherwise. But this is
now seen as undesirable.

At one-loop, the relations between the subschemes are readily computed from the
vacuum polarization graphs, as we will now see. Let us define Z3 y to be the value of Z;
when the lightest N quarks are active, and similarly for Z and the renormalized masses and
coupling. Let Z, v ; be the field strength renormalization for quark j.

3.11.1 Field-strength renormalization

At one-loop, the self-energies of the first N quarks and the ghost have no inactive quark lines,
so MS counterterms apply in both of the subschemes we are relating. Similar considerations
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apply to the quarks which are inactive in both schemes.

Zy = Zynw + 0@, (3.81)
Zon,j = Zan+1,j + Oad), ifj<Norj>N+2, (3.82)
Zun = Znn+1j + 0@@d), ifj<Norj>N+2. (3.83)

Here, we use a notation in which the quark label j equals its sequence number in order of
mass.

However, the counterterm for the gluon self-energy changes. From the earlier calcula-
tions we have

€
o ot Se I'(e) /Lz 1 2
Z3’N = Z3,MS + ng(nf — N);:V |:e_? (Wl—3 - z + O(OZX). (384)

Bare quantities, including fields, are the same in all schemes. We therefore obtain the
following relations between the fields and masses in the two subschemes:

2
Ay = Ay |14+ 2Tl + 0@ |, (3.852)
67 My 1
v = vl + 0@, (3.85b)
Vin =Vjnpll+0@)], ifj<Norj>N+2, (3.85¢)
miy=mjymll+0@)], ifj<Norj>N+2, (3.85d)

3.11.2 Coupling

Now consider the vertex for the ghost to a gluon. Its counterterm is pure MS in both
subschemes, and the counterterm is computed from gy and the Z factors as proportional to
80ZZ3.n — ugn + O(g>). The bare coupling is the same in both subschemes, so it follows
that the renormalized coupling has the relation

2
oy I 2

asN =Nyl |1 — ——=Trln——+ O()) | . (3.86)
2 My

Evidently, at the one-loop order, it is sufficient to compute the vacuum polarization.

Higher-order corrections to these relations have been made. For two-loop calculations,
see Bernreuther and Wetzel (1982); Bernreuther (1983a, b). For three-loop calculations,
see Chetyrkin, Kniehl, and Steinhauser (1997, 1998).

Exercises

3.1 Complete the calculation of the renormalization of QCD at one-loop order. The most
economical method is probably to calculate the gluon, quark and ghost self-energies
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Basics of QCD

in addition to the quark-gluon vertex.” You will have thus verified for yourself the
asymptotic freedom of QCD.

Given the values of the renormalization-group coefficients, reconstruct formulae for
the MS renormalization factors for the coupling, and for the fields to at least two-
loop order. You may find the results useful if you ever do serious perturbative QCD
calculations.

(One method is to treat (3.41), etc., as differential equations determining renormal-
ization factors from the RG coefficients. Solve these order-by-order in powers of the
renormalized coupling. Then apply the boundary conditions that the Z factors and
go/g e go to unity at zero renormalized coupling.)

(**) There are competing definitions of the MS scheme. Show that these definitions
all agree in the values of renormalized Green functions at € = 0, provided that S, in
the different definitions agree to order €.

Find the next term in the expansion (3.63) of the effective coupling. This will be
1/1n3(4?/ A?) times a quadratic polynomial in InIn(u?/A?). To check your answer,
see (9.5) of Amsler er al. (2008), but beware of different conventions for defining the
B; coefficients.

° The calculation of the three- and four-point gluon gluon functions is substantially more complicated, and should only
be attempted if you have much time and wish to verify the general theorems on the renormalizability of non-abelian
gauge theories. It is also possible to work with the ghost-gluon coupling, although this is a little more complicated,
because it has a derivative coupling.
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Infra-red safety and non-safety

In this chapter we examine the simplest measurable quantity that can be computed purely
perturbatively in QCD: the total cross section for ete™ annihilation at high energy Q to
hadrons. This is the paradigm of physical single-scale problems: when the renormalization
scale u is of order Q, low-order perturbation theory in «;(Q) gives a valid estimate of the
cross section.

Since the calculation involves quark and gluon final states in a confining theory, we will
examine how to justify the use of perturbation theory with apparently incorrect states. There
are divergences in individual terms in the calculation. But, in the total cross section, the
divergences cancel after a sum over all terms of a given order of «,. This property is called
“infra-red (IR) safety”, and in this case is a version of the theorem of Kinoshita (1962) and
Lee and Nauenberg (1964) (KLN theorem).

More general situations need a systematic analysis of non-IR-safe situations, and are the
primary concern of the rest of this book.

4.1 e¢te™ total cross section

We consider the process e*e~ — hadrons, to lowest order in electromagnetism.! The
amplitude, Fig. 4.1, involves an s-channel exchange of a photon of momentum ¢*, and an
incoming electron and positron of momenta /; and /,, with the center-of-mass energy being
0= \/? The leptonic and hadronic parts of the cross section factorize, as in DIS:

e v
o = Z_Q(’LMVW s (41)
where (with neglect of the electron mass, and with unpolarized beams)
L* =1L + 151 — g™l - o, 4.2)
and
W (q) =fd4x € (0] j*(x) j(0) 0). (4.3)

! There can be large IR-dominated higher-order electromagnetic corrections when the cross section is rapidly varying,
e.g., near a narrow resonance. The techniques for unfolding such radiative corrections are standard, and we will not
treat them here. A full treatment needs the addition to the amplitude of the Z exchange graph. This does not change
the principles, so the reader is referred elsewhere, e.g., Ellis, Stirling, and Webber (1996), for details.

69
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b
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Fig. 4.1. Amplitude for ete~ —> hadrons.

Conservation of j* gives g, W*" = 0, so that we can decompose W*" in terms of a
scalar structure function R(Q?) as

1
W = (=¢"q* +4"q") o R(CM0("). (4.4)
Hence the cross section is
dra®
o= 30 R(O"). 4.5)

The normalization coefficient in (4.4) is chosen so that R is the ratio of ¢ to the lowest-order
cross section ete™ —> utpu:

o(ete”™ — hadrons)

= . (4.6)

o(ete — utu=,LO, em)
Some authors define the denominator to be the complete cross section forete™ — utu™;
the definition here is the PDG one.

A compilation of the data is shown in Fig. 4.2. At low energies, there are several large
peaks, resonances corresponding to mesons made of light quarks. After that, the cross
section generally decreases with energy, approximately as 1/Q? as is generic for processes
involving a large virtuality like the photon in Fig. 4.1. The trends are easier to see in the
plot of R, whose basically constant value is interrupted at around 4 GeV and 10 GeV
by jumps that correspond to the thresholds for production of charm and bottom quarks,
preceded by sharp peaks for the bound states of these quarks with their antiquarks. Finally,
the addition of a graph with the exchange of a Z instead of a photon in Fig. 4.1 gives rise
to the prominent peak at Q = m ~ 91 GeV that interrupts the fall of the cross section.

4.1.1 Short-distance dominance in averaged cross section

When Q is large, the high virtuality of the photon in Fig. 4.1 suggests that it has a short
lifetime, of order 1/Q in its rest frame, and hence that the process occurs over a short scale
in time and distance. This makes it suitable for exploiting asymptotic freedom, so that a
first approximation is obtained from the lowest-order graph, Fig. 4.3, for ete™ — ¢g.
However, the two currents in (4.3) need not actually have a small space-time separation.
Consider a semi-classical approximation in which a quark and antiquark are assigned
trajectories after their creation at a particular time and position. Suppose that the quark-
antiquark force were such that they repeatedly bounce back to their creation position,
as in Fig. 4.4. Now the incoming electron and positron have almost definite momenta
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Fig. 4.2. (a) Total cross section and (b) R, for e"e~ — hadrons. Reprinted from Amsler
et al. (2008), with permission from Elsevier. The dashed line is the lowest-order “parton-
model” prediction, and the solid line is the 3-loop pQCD prediction from equations (1)—(3)
of Chetyrkin, Harlander, and Kuhn (2000).

(in a normal experiment), so that their states can be represented by long wave packets,
Fig. 4.5. Therefore their collision and the production of quark-antiquark pairs occurs over
an extended time.

Now a pair produced late in the collision is in the same spatial position as a pair that
is produced early but that has bounced back, and we get interference when we add the
quantum-mechanical amplitudes for pair production at different times. At certain energies
the phases of the interfering terms could all be the same, giving constructive interference,
and a resonance peak. Off-resonance, the phases vary, giving destructive interference. Thus
we can get sharp resonances, as seen at certain energies in the data in Fig. 4.2. These
correspond to interference between quark-antiquark pairs produced at very different values
of space-time positions.

For example, the sharp J/v and Y peaks occur just below the thresholds for the
production of ¢ and b quark pairs, respectively; there, the heavy quarks are slowly moving
and are easy to bring back to the production point. However, resonances are not present
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q
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M Z

Fig. 4.3. Lowest-order diagram for Fig. 4.4. Space-time evolution of semi-classical
ete™ — qq (orete” — utu™). trajectory of a ¢ pair created at the origin, if the
quark-antiquark force caused them to bounce back.

Fig. 4.5. Representation of wave packets for incoming electron and positron.

much above the heavy-quark thresholds, so that we deduce from the data that fast-moving
quarks and antiquarks do not bounce back.

Unfortunately, the relevant long-distance phenomena in QCD are non-perturbative, and
not readily susceptible to a first-principles analysis. So we ask what properties of the cross
section are predicted purely perturbatively without any need to understand long-distance
phenomena. A solution (Poggio, Quinn, and Weinberg, 1976) is to use a local average of
the cross section in energy.

To understand this idea, we investigate the relation between the space-time structure
of the scattering and the momentum spread in a physical initial state. This exemplifies a
general issue that intuition and understanding can be obtained by studying the evolution
of states in coordinate space, even though actual calculations are typically performed in
momentum space.

Now a physical incoming eTe™ state cannot be exactly a state with particles of defi-
nite momenta. We must use a superposition of momentum eigenstates corresponding to
coordinate-space wave packets, as in Fig. 4.5:

W)=Y | I, dasin) Y, h) Yadlh, Aa). (4.7)

100,00

Here I{ and /) are the momenta of the incoming electron and positron, and A; and A,
label their spin states. The momentum-space wave functions 1//1(1’1, A1) and wz(l/z, A2)
are narrowly peaked around central values of momentum Z; and I,. We let ¢ =11 + I,
be the corresponding central value of total momentum. The notation Zl/]’,/z is the usual
Lorentz-invariant integral over a particle’s momentum, (A.15).

As in (4.1) and (4.3), we treat electroweak interactions perturbatively. The initial state
|[Y) evolves to a slightly depleted version of [i) plus a hadronic component |¢), plus
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é
1/A

Fig. 4.6. A component of the wave function ¢, for the state in (4.9), as a function of a
component of position x in the overall center-of-mass.

components with scattered leptons:
[final state) = |¢) + |¢¥) (1 — ...) + |leptonic part) . 4.8)

In the graph Fig. 4.1, the hadronic factor is a vacuum-to-X matrix element of the electro-
magnetic current, (X, out|j*(x)|0), for a general hadronic out-state X.

Hence the hadronic final state |¢) is j*(x) |0) integrated with an x-dependent factor to
be computed from the Feynman rules for Fig. 4.1, and the wave packet state (4.7). Now the
creation of the hadronic final state occurs in the space-time region where the beams collide.
So at later times, the QCD part |¢) of the state in eTe~ — hadrons is a time-independent
Heisenberg state. We write this as

def

) £ / dhx j(x) 0) €0, (x), 4.9)

where we have extracted a factor e~'¢**, anticipating that it is the dominant oscillatory
factor in the coefficient, with g being the central value of the total momentum. Lowest-
order electromagnetic perturbation theory gives

bu(x) = Z Mw (A, A1) Yol hp) el @hi—lrx (4.10)
I3 _l/ = (li+lé)2+l0 1 s A 2 s N2 . .
1:62:A1:42

Here the e ~/(1*22)* factor arises from Fourier-transforming the leptonic part of the Feynman
graph, and the ¢’ factor compensates the corresponding factor in (4.9).

The beams have approximately definite momenta, centered at/; + I/, = g, so the oscilla-
tory factor mostly cancels. Let the states be localized to within A in momentum. Then each
component ¢,, is a smooth function with little oscillation, as in Fig. 4.6. Correspondingly
the position x in (4.9) is localized to about 1/A.

Once the hadronic state |¢) has been created by the current and the current is no longer
acting because the coefficients ¢, (x) have become zero, the state cannot be destroyed, to
lowest order in electroweak interactions. Thus the probability of the transition eTe™ —
hadrons is just (¢ |¢). This is genuinely a scattering probability, not a cross section. The
concept of a cross section arises when one observes that experiments are done with beams
of particles which are distributed over an area that is large compared with the scattering
region. The relative transverse separation of the beam particles has a broad distribution.
The cross section is obtained by displacing one beam transversely with respect to the other,
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and then integrating over the displacement b. Let the hadronic state with a displaced beam
be |¢ b ), with wave function ¢,,(x; bt). The cross section is
T

o= [ Eb106,10,) = [ a0 0110 PO 10700, @D

where

T (x) = /d2bT/d4w b (w + %x;bT) by (w — %x;bT), (4.12)

which is localized in x to within 1/A. After a Fourier transformation

fn(x) = / d'k t(k)e! kD% (4.13)
J73Y (27_[)4 nv ) .
we find that the cross section is a weighted average in momentum space:
/ &'k L ()W (k) ! / T an R(M?) f(M?) (4.14)
o= —=tw = — , .
Qm)+ 6r Jo

where

(Mz) _ d*k
! ‘_/@m4

We now see one result of the wave-packet construction: that a local average of R(Q) over a
range of Q of width A corresponds to a localization of the positions of the current operators
to x ~ 1/A. Of course, real particle beams are very narrow in momenta. But a broader
averaging applied to the measured cross section gives a quantity with better localization in
position and therefore with better perturbative calculability.

The standard momentum-space analysis gives the cross section in terms of R, from

()OS (k> — M?). (4.15)

which we deduce the correct normalization of the averaging function f without needing
the detailed wave-packet analysis:

82a?

QZ

o0
/ dM? f(M?) = : (4.16)
0
up to terms that vanish when A/Q — 0.
It is convenient to consider as a standardized quantity, one particular normalized local
average of R:
def

R(Q*, AHE /ds F(s — Q% A*)R(s). 4.17)

Here F(s — Q2, A?) is one particular averaging function, of unit integral, centered at
s = Q2, and of width AZ. I choose
A2

Fs— 0% Ah = 7 [(s — 027 + A']’

(4.18)

We assume A is somewhat less than Q2, but not enormously so. If R is smooth in a region
of Q, as is the case experimentally for most large values of Q, then the local average R is
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almost equal to R; the averaging does nothing. But where R has sharp features, e.g., near
the thresholds for ¢ and b quark production, the average smooths out the sharp peaks and
the thresholds.

4.1.2 When is perturbation theory good?

To put the concept of perturbative calculability in a general context, current ideas can be
summarized in the following assertion:

Consider a situation where all vertices in a perturbative calculation are dominantly separated
by small distances, of order 1/M, and that we set i ~ M. Then QCD perturbation theory in
powers of the weak coupling «;(M) provides a good approximation.

That is, short-distance-dominated quantities are perturbatively computable. The integration
over the positions of vertices is, of course, unrestricted. What matters for the above assertion
is whether the vertices are dominantly close to some external vertices determined by the
problem.

A similar assertion could be made about momentum-space Green functions, where the
premise would be about the lines of the graph being dominated by high virtualities, of order
M?. However, this assertion is not so general. This can be seen from the matrix element
(4.3) defining WV, The currents have fixed ordering and perturbation theory gives final
states with on-shell quarks and gluons, so that not all propagators are far off-shell, even
when the positions of the current operators are arbitrarily close, a situation that is different
for the time-ordered product of operators.

4.2 Explicit calculations

Since the locally averaged quantity R is short-distance-dominated, we can use perturbation
theory to predict it reliably. Therefore, to the extent we are away from resonances, we
predict the unaveraged R(Q?), in both cases at large Q. The electromagnetic current has
zero anomalous dimension within pure QCD.? So we change the renormalization scale 1
to be of order Q, without changing R, and then expand in powers of the small coupling.
We also approximate light-quark masses by zero. Thus:

R(Q%, i, g(w), m(w) = R(Q%, cQ, g(cQ), m(cQ))
~ R(Q% cQ,8(c0),0)
= a,(cQ)"R"(c). (4.19)

n>0

If we truncate the series at order N, then the error is of order %N *1. so that we have
an effective method of calculation given that o;(c Q) is small. From Sec. 3.4, we expect
(in the MS scheme) optimal applicability of perturbation theory when u? is of order a

2 This is not true beyond QCD (Collins, Manohar, and Wise, 2006), contrary to many statements in the literature.
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<

Fig. 4.7. Lowest-order graph for amplitude used in R.

typical internal virtuality. This could be governed by the width of the smoothing function,
so in (4.19) u is a constant ¢ times @, and a good value could be ¢ = % or i. RG
invariance implies that the value of c is irrelevant in an exact calculation, while in a truncated
perturbation calculation the effect of a modest change in c is of order the expected truncation
error.

In the remainder of this section, we perform the perturbative calculation of R to

order «.

4.2.1 Lowest order

The single graph for the lowest-order calculation, Fig. 4.7, is the same as for u™u~
production, with the replacement of a muon line by a quark line. So with the neglect of
quark particle masses, the lowest-order value of R is

RY=3%"¢}. (4.20)
!

The factor 3 is for the sum over quark colors, and the sum is over the accessible flavors of
quark, which depends on the value of Q relative to the quark masses.

Some complications now occur because of the non-negligible masses of the ¢, b and ¢
quarks. Any quark that is not accessible kinematically, i.e., for which m s > Q/2, should
certainly be dropped from the sum. The remaining quarks we term “accessible”. Provided
that Q is much larger than the other quark masses, these masses may be neglected, as in
the calculation giving (4.20).

The remaining case is when Q is comparable to 2m , for one of the quarks. As regards
perturbation theory, there is a threshold at Q = 2m for production of quark f. Since
there are sharp resonances just below threshold (Fig. 4.2) we should apply the averaging
procedure in Q before using the elementary perturbative prediction.

Hence we deduce that it is a good first approximation to restrict the sum in (4.20) to
those quarks with 2m ; < Q, and to otherwise ignore the effects of quark masses. The
known quark charges and masses then give a first prediction of R:

2 if 0 <3 GeV,
R =131 if3GeV < 0 <10 GeV, 4.21)
32 if 10 GeV < Q.

Once Z exchange effects become important, this prediction needs changing, so we do not
include a possible last line, to include the ¢ quark. For the inclusion of masses at lowest
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Fig. 4.8. NLO graphs for amplitudes for R.
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Fig. 4.9. Momentum configuration for 3-body final state.

order, see problem 4.2. For masses and the effects of Z at higher order, see Chetyrkin,
Harlander, and Kuhn (2000).

4.2.2 Next-to-leading order: real gluon

The next-to-leading order (NLO) terms arise from the graphs of Fig. 4.8. One contribution
is from the real-gluon emission graphs, (a) and (b), with a gg g final state:

/ dfsps |(a) + (b)|?, (4.22)

with dfsps given by (A.17). The other contribution is from the virtual corrections, (c) and
(d), with a g4 final state.

All of the terms individually have divergences which we regulate by using a space-time
dimension 4 — 2e.

Provided that the integrand involves only Lorentz scalars, the (5 — 4¢)-dimensional
integral for real-gluon emission can be simplified to a two-dimensional integral, so that
angular averages can be performed to give (A.44). So we calculate the trace of W,,,:

2

W _gmw,, =@3- 2e)g—n

In the overall center-of-mass, the 3-momenta of the final state form a triangle — Fig. 4.9,

whose perimeter is ) . |k;| = Q, from energy conservation. The integration variables in
(A.44) are the relative deficits of the spatial momenta relative to their maximum Q/2:

2]k;]|
o

The integral is over positive values subject to ), y; = 1. We have

(ki + k2)* = y3 0%, (ky + k3)* = y1 0%, (ks + k1)* = y, 0% (4.25)

R(Q?). (4.23)

yi =1 (4.24)
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It is also convenient to factor out the lowest-order calculation in 4 — 2¢ dimensions,
derived from (A.43) for the 2-body phase space:

—2¢
0] _ Y _ g v
W = R°24—46n1/2—fr(§ _6)( gu) Try kv 'k
2—-2¢ 1—
g < 4-9 (4.26)

055" — 3 .
22—4eq1/2 el“(§ —6)

After a standard application of Feynman rules, etc., we find that the contribution of
graphs (a) and (b) to W is

] <Cr >\ [ . -
Wi _ o /d / d :
(qq8) T —o \dn 2 ) y2 (y1y2y3)

L A0+ vy +2(1 - O+ y3)
yiy2

(4.27)

The sum over flavors and a factor e? are the same as in lowest order, and are in the factor
WOl Thus, the order-a, correction factor is the same for all flavors of massless quark.

The integrand is singular when y; and/or y, is zero, and gives a divergence in the
integral for space-time dimension 4 or less, i.e., when € > 0. In Ch. 5, we will analyze the
physics of these and other divergences more generally. But for calculational purposes, it
suffices that the divergence can be regulated and hence quantified by using a space-time
dimension above 4, i.e., € < 0. In the ultimate result, for R, we will find a cancellation
against divergences from the virtual-gluon graphs. The configuration of momenta at the
singularities is easily deduced from the geometry of Fig. 4.9:

y1 =0 gluon parallel to &,
y» =0 gluon parallel to &y, (4.28)
y1 =y, =0 gluon of zero momentum.

In Ch. 5, we will analyze such singularities. The first two give “collinear divergences”, where
two final-state massless particles are parallel, and the last one gives a “soft divergence”,
where the gluon has zero momentum.

The integral is readily computed in terms of I" functions. Its expansion in powers of €
exhibits the divergence quantitatively:

0? )G I(—e) | _€B =50
42 F(2—3e)|: 2 -3¢ ]

Wiligge) = WLt (
T

2 2
— [01& Qe VE)S i l —41] Q_ 212Q_
=W o (4e )[ez—i—e HM2+6+ nM2

2 2
Q L ] . (4.29)

That we obtain a relatively simple analytic result is associated with the masslessness of the
quarks and gluons in the calculation.
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4.2.3 Next-to-leading order: virtual gluon

For the virtual-gluon corrections, from Fig. 4.8(c) and (d), it is convenient to compute the
matrix elements from Green functions with bare fields, rather than using the full counterterm
structure of (3.13)—(3.15). One reason is that the electromagnetic current is simplest in
terms of bare fields: jim = > ref Y r0Y" V¥ ro. Another is that the implementation of LSZ
reduction for massless theories is trivial.

The LSZ reduction formula tells us that to get an on-shell matrix element, we amputate
complete external propagators and replace each by the square root of the residue of the
particle pole. Let zo = 1 + g%z, (' + ... be the residue of the pole in the propagator of a
bare quark field. The one-loop term is

gzz[zll ~ lim llﬁ(g’zCF(Zﬂ,u)z€ /d4_2€k . —y ko .
p—0 p? 1674 (k2 +i0)[(p — k)* +i0]

= coefficient x lim (—p?)~¢
p2—0

—=0. (4.30)

Since dimensional regularization is used here to regulate infra-red-related divergences, we
take € negative, which gives the zero result in the last line. No UV counterterm is applied,
since we work with bare fields.

The result (4.30) generalizes to all orders: an N-loop calculation gives a factor of
g?V u?N¢, and hence dimensional analysis shows that the power of p? is (—p?)~"¢. Thus
to all orders in perturbation theory the residue of the pole in the bare propagator is exactly
z22=1.

The only non-zero one-loop virtual contribution to R is therefore from the vertex graph
(d). To get its contribution at order os to W, we multiply the graph by the complex conjugated
LO graphs, then we add the complex conjugate, we take the trace of W, with —g#" and
perform the angular integral in 3 — 2¢ spatial dimensions. This gives

ig?Cp(2m p)* / 2k Tr iy ki — Oy s + Byckay®
3274Q%(1 —€) (k2+i0) [(ky — k)2 +i0] [(k2 + k)2 +i0]
4.31)

wWillgq) = Wi~ —————

There is an extra factor of 4Q?(1 — €) in the denominator of the prefactor because of the
normalization to W!°!. Standard manipulations give

oa,Cr (—0%—i0\ ‘T(+e(1—€?[ —4
47 4 pu? €2I'(1 — 2¢) 1 —2e

C 4 1 2 :
— wotr (47te_y‘“:)é ——=+—(4n Q— —6) —2In? LA
47 € € u? w?

wil(gg) = wln

+ 2€:|

2 2
Q I ] 4.32)

+6ln——16+—+0(e)
u? 3
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4.2.4 Leading and next-to-leading order: total

In the total for R, the divergences cancel, and at ¢ = 0 we find

o ()

U e | O(af):| = RO [1 + ==+ O(af)} : (4.33)

— RIO]
R=R |:1 + T
with the physical value of Cr. Notice that both logarithms of Q/u have canceled. This
follows from the RG invariance of R, which implies that a logarithm of Q/pu first appears
in the coefficient of (xf (problem 4.5). We have left the renormalization scale p arbitrary,
but, as explained earlier, a value for u of order Q should be used to ensure that higher-order
calculations do not get large logarithms. Thus O(a?) correctly represents the expected size
of the error due to omission of higher-order perturbation theory.

This result is both reassuring and disturbing. It is reassuring that the divergences cancel
in a quantity that was supposed to have a valid perturbation expansion. But it is also
disturbing: the intermediate steps involve totally unphysical states. In another arena, QED,
there are somewhat similar IR divergences because of the masslessness of the photon; but
at least electrons and photons are actual identifiable particles. See Sec. 4.3 for a detailed
analysis.

The calculation evidently makes important predictions. Among these is that measuring
the ratio R gives an estimate of the sum of the squared charges of the accessible quarks.
When first obtained, this was a rather dramatic result, and the data (Fig. 4.2) confirm the
charge assignments of the quarks. Deviations from this value can be used to measure the
strong coupling and to test its evolution with scale.

4.2.5 Full result, and phenomenological implications

The currently most accurate calculations may be traced from Chetyrkin, Harlander, and
Kuhn (2000), where the calculation is extended at order ozx3 to include quartic mass correc-
tions (i.e., of order m*/Q%). With massless quarks the current results are

R _1+a‘v+<as>2 365 et 11+2
rO T\ |4 Gng\—p 38
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4.3 Evolution of state 81

P P
. y2)
q D2 <
s Ps
pa P4

(a) (b)

Fig. 4.10. (a) Matrix element of ggq¢g fields used to obtain two-pion production. (b) An
example of a perturbative graph for the matrix element.

Here, the MS unit of mass was set to u = Q, so that oy = «,;(Q). The logarithmic depen-
dence on Q/u can be restored with the aid of the renormalization group (problem 4.5).

4.3 Evolution of state

Individual terms in the perturbative calculation of R involve quarks and gluons rather than
the hadrons that actually appear in the final state. To understand better why we nevertheless
obtain a valid prediction of QCD, we examine the evolution of the hadronic final state,
between the j*(x) and j"(0) operators in (4.11). The arguments in this section are not
intended to be precise and rigorous.

Although the hadronic Heisenberg-picture state, |¢), is time independent, its interpre-
tation in terms of localized particle content does evolve. It can be analyzed by matrix
elements of products of field operators between |¢) and the vacuum. For example, consider
[Fig. 4.10(a)]

(0] Ta(wi)d(wa)d(ws)u(ws)| ¢), (4.35)

where the fields annihilate i, d, d, and u quarks respectively. Fourier transformation gives
a function of momenta p;, p», p3, pa. Poles in this function correspond to particles in the
asymptotic out-states. For example, a state with a 7~ and a 7 gives a pole in the exact
matrix element at (p; + p2)> = m2 and at (p3 + ps)* = m>2. The poles are related to the
coordinate-space asymptotics when the times of all the four fields are taken to +o0; in the
7~ example, the spatial components of w; and w, are close together and in the direction
of the 7 ~, and similarly for w3 and w4 and the 7.

In finite-order perturbation theory, we have diagrams like Fig. 4.10(b). This has no poles
for pions, but only for quarks and gluons, for example at p7 = p; = m2 and p3 = p3 = m3.
Such poles give a large-time behavior for the individual graph that corresponds to a state
that does not exist in a theory with color confinement; fixed-order perturbation theory gives
an entirely incorrect approximation to asymptotic large-time Green functions and matrix
elements. However, if the times are not too large, perturbation theory should approximate
the true results. Thus the poles in fixed-order graphs imply that we do have, but only
approximately, the propagation of the corresponding quarks and gluons.

Returning to the lowest-order graph for R, Fig. 4.7, we deduce in a rough fashion that
at the earliest times we have predominantly an outward-moving ¢ and g, as at the lower
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(a) (b)

Fig. 4.11. Three semi-classical scenarios for evolution of gg system: (a) approximately
free, (b) string, (c) spring. In case (b), extra ¢ pairs are produced in the middle.

end of Fig. 4.4. We can reasonably assign them a virtuality of some size M? that is much
less than Q2. The Lorentz boost to energy Q/2 implies that the lifetime of the ¢ state
is of order Q/M?. Perturbative corrections, like those in Fig. 4.8 or Fig. 4.10(b), alter the
state, for example by changing the probability of the ¢4 state and by adding a component
with a gluon. At late times, QCD perturbation theory is entirely inapplicable, in the domain
where, in the real world, the system non-perturbatively hadronizes into a set of isolated
color-singlet hadrons.

4.3.1 String model for hadronization

If we ignored any knowledge of the real world we could imagine at least three scenarios
for the time development, as illustrated in Fig. 4.11:

e The quarks and gluons continue basically unhindered into the observed final state, as in
QED, where there is no confinement. Let us call this the “unconfined” or “free-quark-
and-gluon” picture.

e In the gluon field between the quark and antiquark, extra gg pairs are made. We call
this the “breakable string” picture. The ¢g pairs combine into color-singlet hadrons,
mostly pions. Nothing returns to the production point, and the general momentum flow
corresponds to the system at short times, which is little deflected. But the space between
the ends of the kinematic range is filled in with particles, and the detected particles are
hadrons, not quarks and gluons.

o A confining potential exists, which brings the quarks and gluons back. We can call this
the “unbreakable elastic spring” picture. The final states form a sequence of bound states.
After multiple bounces, it may be that the states decay, perhaps in the style of the string
picture, but the directions of the decay products need not be very correlated with the
initial gg direction.

Purely perturbative calculations in QCD cannot decide between these scenarios. But we
can appeal to experiment, semi-classical intuition, modeling, and lattice gauge theory
calculations, at least. The unconfined scenario is ruled out experimentally. The increase in
o, in the infra-red is a precondition for a rising potential. But the bound states or resonances
in the spring picture do not appear to be relevant except close to quark thresholds, where
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there is little energy for producing extra particles, and where the initial ¢ and § are moving
slowly.

It is the string picture that seems to be approximately correct. Embodied quantitatively
in the semi-classical Lund string model (Andersson, 1998), it rather successfully describes
the hadronization of quarks and gluons. In this model, when the ¢g separation is large
enough, the gluon field collapses to a flux tube (“string”) with a fixed cross-sectional area,
and with a constant energy per unit length. Without ¢g production, this would correspond
to a linearly rising potential, which has significant phenomenological support from quark
models of hadrons, etc.

The Lund model postulates that creation of light g4 pairs occurs in the string with a
constant rate per unit length and unit time; this is the only Lorentz-invariant possibility. In a
strong coupling, strong field situation such as we have here, the string therefore breaks, we
have inelastic scattering, and the description in terms of a genuine potential breaks down.

A more detailed investigation shows that the string breaking and the hadronization occur
along a hyperbolic region #> — z> ~ 1/A2. The fastest particles, with energies of order Q,
are generated at the ends of the string in a time of order Q/A?, while the slowest particles
are generated in the middle in a time of order 1/A.

The Lund model is plausible and natural as a first approximation to real QCD dynamics
in situations such as eTe™ annihilation at high energies. For each outgoing parton, the
model leads to the production of a jet of hadrons with approximately the 4-momentum of
the parton. This can be seen in event pictures like Fig. 2.3 for a similar situation in DIS.

The validity of the string model depends on specific dynamical properties of real
QCD, with its light u and d quarks. In contrast, there is the solvable model of
’t Hooft (1974), pedagogically reviewed in Manohar (1998). This model is QCD but
in 1 + 1 space-time dimensions with a gauge group U(NV) taken in the limit N — oo.
This model provides an example of the “elastic spring” scenario;’ the large N limit
suppresses the gg production that causes string breaking in the Lund model. In the
’t Hooft model, the final states in ete™ — hadrons form an infinite sequence of meson
bound states with no continuum, whereas a simple perturbative calculation gives a con-
tinuum. It is a local average of the true cross section that agrees with the perturbative
calculation, as we saw earlier. Explicit calculations support the general result, as was par-
ticularly clearly shown by Einhorn (1976), where the result was also extended to other
cases, like DIS.

4.3.2 Analysis in terms of final states

We decompose the averaged cross section (4.11) in terms of a basis for the hadronic final
states:

o :Z/d4x ¢4 (0] ()| X) (X |7 (0)]0) T (x), (4.36)
X

3 The ’t Hooft model is normally said to give an example of a string model. But I use the name “elastic spring” to
emphasize its unbreakability, to contrast with the fragility of the string in real QCD.
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and analyze the states in three bases:

e a momentum basis for the true out-states (involving hadrons);

e a spatially localized basis obtained using quark and gluon fields not too long after the
creation of |¢);

e a momentum basis for quark and gluon out-states, as seen in dimensionally regularized
weak coupling perturbation theory. Here we must go to a space-time dimension above
4, i.e., to € <0, so that the IR behavior is mild enough that the ordinary S-matrix
exists.

The first basis gives the true distribution of observed final-state particles, but its use in
calculations requires an unavailable non-perturbative solution of QCD. The second basis
is most fundamentally suited to perturbative calculations, by working only with objects
involving short distances. It completely justifies short-distance dominance for averaged
cross section, but there is no known formulation explicit enough for actual calculations.
The third basis, involving a momentum-space decomposition, is the easiest calculationally,
but it involves a basis constructed from the + — oo behavior of Green functions when a
regulator is applied.

The low-order calculation of the individual terms in the ratio R in the third basis is only
appropriate when the coupling is small enough that higher-order terms are not larger than
lower-order terms. Given the double poles in € that occur per loop, this implies that we
should only apply the calculation when a; < €2 (with € negative). When the IR regulator
is removed, the range of validity of the calculation shrinks to zero. So the cancellation of
divergences in R is not sufficient by itself to justify the use of the result for R at non-zero
a5 (Q).

But the result for R is independent of the basis for the completeness sum Y | X) (X],
so we can use the short-distance quark-gluon basis to justify the validity of perturbation
theory for R for non-zero o (Q).

4.4 Dispersion relation and effective virtuality of
final-state quarks and gluons

A perturbative calculation of R(Q) involves cut graphs with an on-shell final state. In
this section, I show that after a local average in Q, R(Q) is given by an integral over an
uncut graph, in which the final-state quarks and gluons are effectively off-shell by order
Q2. The derivation provides general principles that we will frequently generalize to other
situations.

We consider a Green function IT*Y that is defined like W#Y, but with time-ordered
current operators. It has an associated scalar function IT(g?):

" (q) = (—¢"'¢* + ¢"q") Q) = / d*x €97 (0|T j*(x) j*(0)[0).  (4.37)

Note the factor i in the last part. Diagrammatically, [T*” and W*" are notated in Fig. 4.12 .
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Fig. 4.12. (a) Uncut and (b) cut diagrams for the hadronic part of the photon self-energy,
i.e., for IT*” and WH*".

2
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Fig. 4.13. Analyticity in Q? for I1(Q?). Fig. 4.14. Contour to relate R to IT. The
off-real-axis singularities are those in the
averaging function F(s — Q2, A?). The
dots represent the singularities of F'.

Now, I1(Q?) is an analytic function of Q2 with a cut and singularities along the positive
real axis, as in Fig. 4.13. When Q? is below the threshold for physical final states, IT is
real, in particular for space-like g*. When Q? is above threshold, the physical region is on
the upper side of the cut. Moreover, the cut amplitude is twice the imaginary part, as is
provable from a dispersion relation. Hence

2I1(Q% +i0)  TI(Q*+i0) — T1(Q* —i0
R(Q?) = (Q'+l ) _ Q" +i0) : (Q° —i ). 4.38)
i i
Hence we can relate the averaged R to the uncut amplitude IT:
5002 A2y O 2 A2
R(Q", A")=— [ ds F(s — Q°, A7) II(s) [general F]
U Jr
_6_” 2, a2y 2 a2
= — [[(Q* +iA*) — TI(Q* —iA?)] [standard F]. (4.39)
i

In the first line, the contour I' loops around the positive real axis inside of the singularities
of the averaging function F, as in Fig. 4.14. In the second line, F is chosen to have the
standard form in (4.18) and the contour is closed on the two poles of F.

Thus we have expressed R in terms of IT evaluated at non-physical values of the
momentum. If the averaging range A is large, then the momentum is correspondingly far
from the physical region. The Landau analysis of the singularities of Feynman graphs
(Ch. 5) shows that the contour for the loop-momentum integrals in IT can then be chosen
to avoid the poles of the internal propagators. If A is of order Q, the internal lines have
(typically complex) virtualities of order Q2.
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Therefore in the calculation of R, we can treat the internal quark and gluon lines as far
off-shell, thereby justifying its perturbative treatment in an asymptotically free theory.

4.5 Generalizations

One simple generalization of the work in this chapter is to allow for Z exchange as well
as photon exchange. This is needed for fits to the high-energy parts of the data in Fig. 4.2.
Another generalization (Baikov, Chetyrkin, and Kuhn, 2008) is to the hadronic part of the
decay rate of the t lepton, where the initiating boson is the W.

For these cases, the same principles apply as to the case we treated: There is a cancellation
of IR-sensitive regions, leaving a quantity for which perturbation theory is applicable. Such
quantities we call “IR-safe”.

To analyze more general situations, we use the Libby-Sterman argument to be explained
in Ch. 5; this determines both the nature and power-counting of the IR-sensitive regions.
The most interesting cases are where the cancellations of divergences fail to occur. For
many of these, we will be able to derive factorization theorems, where only part of an
amplitude or cross section is IR-safe.

One outcome will be a discussion of IR-safe jet cross sections in Sec. 12.13.4.

Exercises

4.1 Compute the contribution of a scalar quark to R, to lowest order. What is the angular
distribution of the ¢g¢ final state in both the spin-0 and spin—% cases?

4.2 Compute the value of R with quark masses taken into account. You should get

2m? am?
RY= Y 3¢ <1__’”l> [ (4.40)
l Q2 0’
iimi<Q/2

4.3 (**) Compute the order « correction to R for scalar quarks.

4.4 (*) I wrote that near a resonance in e*e™ annihilation, the outgoing state is obtained

by quantum-mechanical interference involving sources at a large range of time scales.
Despite a large value of Q, the separation x of the currents in (4.3) is not small, of order
1/Q. Verify these statements explicitly. You could use the following approximation to
the cross section near the resonance of mass M and width I':
C
(Qz _ M2)2 + r2m2:

4.5 (*) Using the RG B function for the effective coupling, find the Q/u dependence of

the coefficients in the formula for R, equation (4.34).

4.41)
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Libby-Sterman analysis and power-counting

Central assertions in setting up the parton model for DIS (Sec. 2.4) were that hard scattering
occurs off a single parton constituent of the target, and that the hard scattering is just the Born
approximation for electron-quark scattering. In fact, both assertions fail if taken literally. So
in this chapter I show how to derive correct statements about the dominant configurations
in DIS and the many other cases of interest. I will interleave a general treatment with a
detailed discussion of specific examples.

Key insights were found by Sterman (1978) and Libby and Sterman (1978b), who
systematized a correspondence between divergences in massless perturbative calculations
and important configurations for high-energy processes. For any suitable process (like
DIS) with an energy scale O much larger than relevant particle masses, the main results
are:

1. A one-to-one correspondence between mass divergences' in massless perturbation the-

ory and non-UV regions in loop-momentum space that give the large Q asymptote.

2. That mass divergences are at surfaces where the integral over loop momenta cannot
be deformed away from singularities of propagators. These surfaces are called pinch-
singular surfaces (PSSs).

3. Simple and very general geometrical arguments in four-dimensional momentum space
to locate the PSSs for a massless theory. The PSSs are in the typically higher-dimension
space of all loop momenta.

4. Simple power-counting results for the strengths of the possible PSSs, and for the power
dependence on Q of the contribution of the region associated with each PSS.

5. From the derivation of the power-counting results it is made evident what approximations
are appropriate to each region, as needed to derive factorization theorems.

6. Hence error estimates are also obtained for the difference between an exact graph and
its approximation in any of the regions.

These results form the logical basis of most further work in perturbative QCD, and in
particular for the derivation of factorization theorems. The methods apply not only to QCD
but to a general QFT.

! That is, divergences that appear when fields or particles are made massless, to be distinguished from ultra-violet (UV)
divergences, for example.

87
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Fig. 5.1. Green function for ete™ annihilation to a quark-antiquark pair.

Practical calculations in QCD, as in Sec. 4.2, involve the facile manipulation of mass
divergences, so that it is easy to attribute to the divergences an existence in the real world.
But this is definitively incorrect: some of the fields have a non-zero mass, so that many of
the mass divergences are not actually present. Moreover, even though QCD does have a
massless gluon field, color confinement cuts off the divergences and prevents there from
being asymptotic quark and gluon states in the exact theory.

The true relation between mass divergences and asymptotic behavior is that the PSSs for
the divergences form a skelefon for important regions of momentum space. We use PSSs
to label the regions, with the regions being neighborhoods of the PSSs.

As one gains experience with the methodology, the results gain a reality whose intuitive
justification goes far beyond the Feynman-graph domain to which the strict mathematical
justification is currently restricted. We have already explored some of these issues in
Sec. 4.3, and we will see more in the generalization of the parton model to full QCD. Many of
the issues have not been properly formalized. As a symptom, consider the Lund string model
(Andersson, 1998), summarized in Sec. 4.3.1. This model gives a useful account of the
hadronization of high-energy systems of quarks and gluons. To connect it to the fundamental
underlying QCD theory, one needs to formulate the quantum-mechanical evolution of states
locally in space-time in highly relativistic situations. A complete appropriate formalism
is not yet available. This problem is closely related to important foundational issues in
quantum mechanics and QFT.

5.1 High-energy asymptotics and mass singularities
5.1.1 Sudakov form factor, y* — qg

Many of the general principles can be discerned from a paradigmatic example, which is
termed the Sudakov form factor, from its discussion by Sudakov (1956). We use the Green
function for a quark field, an antiquark field, and a current (Fig. 5.1):

' déf f d*x d4y eiPax+ipsy <0‘ TIﬂ(x)IZf(y)j“(O)‘O) 50

= Gl .4 x full external quark propagators.

Here j* is the electromagnetic current, and ¥ and ' are fields for some flavor of quark.

. o . . def .
The photon momentum is ¢ = p4 + pp, with invariant size Q = /¢2. Our aim is to
understand the asymptotics when Q gets large with pi and p% fixed, but not necessarily
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on-shell. Factoring out external propagators gives the definition of the irreducible amplitude
indicated in the last line. The off-shell amplitude appears in high-energy e e~ annihilation,
as a subgraph of the full amplitude for the process.

In fixed-order perturbation theory, taking p4 and pp on-shell gives IR divergences
because the gluon is massless. Beyond perturbation theory, we expect color confinement in
QCD to force on-shell quark amplitudes to be zero, and to cut off the IR divergences. But
these issues are quite separate from the association we wish to make between properties of
the large Q limit and divergences in a completely massless theory.

In setting up methods for factorization later in this book, a convenient model example is
the Sudakov form factor with on-shell quarks treated in an abelian gauge theory, normally
with a massive gluon (Ch. 10).

We work in the overall center-of-mass frame, oriented so that the external 4-momenta
in ordinary Cartesian coordinates are

pAzg(l,O, 0,,/1—4p§/Q2), (5.2a)
Pp = % (1,0, 0, —/1 —4pZB/Q2) , (5.2b)

g=0(,0). (5.2¢)

5.1.2 Scaling in units of Q

Consider a particular L-loop graph G for the 1PI factor Gjy.q. Let k denote its loop
momenta, and let / denote the integrand, so that

G = gzL f d'k Ik, pa, pg;m)+ UV counterterms. (5.3)

Imagine first that we were in a situation where all internal momenta have components
of order Q, and have virtuality of order Q2. After using the renormalization group to set
the renormalization scale to Q, we could use weak-coupling perturbation theory, and, to
the leading power in Q, we could neglect masses. Errors in the massless approximation,
from an expansion in powers of m/Q, p%/Q?, and p%/Q?, would be asymptotically much
less than corrections from higher orders in a,(Q).

Of course our initial supposition on the sizes of the internal momenta is in general false.
Nevertheless, the region of & that it covers forms a useful standard for treating the general
situation.

Relatively benign alternative regions are where some or all components of k are much
bigger than Q. Since the external momenta are much smaller than these large components,
this is the situation handled by renormalization. So let us add renormalization counterterms
and then apply an RG transformation to set the renormalization scale p of order Q. As we
saw in Sec. 3.4, this procedure effectively cuts off the integration at around Q.

Therefore the interesting regions are where relevant components of momenta are of
size Q or smaller, and where some lines have small virtuality, i.e., their momenta / obey
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|I?| < Q2. For these lines, a lowest-order Taylor expansion in masses compared with
virtuality fails. Such regions form a small part of the whole of loop-momentum space, but
they can give large contributions to the integral, because of small propagator denominators.

To systematically locate relevant regions with low virtuality, we use an analysis with
momenta and masses scaled in units of Q. Thus we define

P p_é‘ — 1(1,0,0,1), (5.4a)
s p_QB — 1(1,0,0,-1), (5.4b)
g déf% —(1,0), (5.4¢)

where the limits apply as Q — oo. The scaled external quark and antiquark momenta
become light-like, while § is a fixed time-like vector. Similarly we have scaled loop
momenta, k &ef k/Q, and mass(es), Cl=@°fm/Q — 0.

Dimensional analysis applied to (5.3) gives

G = QPOgL / d"tk I(k, pa, pg;m) + UV counterterms. (5.5)

Here D(G) is the dimension of the integral (in powers of energy), with the coupling
excluded. In a space-time dimension n = 4 — 2¢, we have

D(G) = nL +dim I = dim G — 2L dim g = —2Le. (5.6)

Equations (5.4) and (5.5) show that the infinite Q limit at fixed mass is closely linked
to the zero-mass limit at fixed Q, in the scaled integral on the right-hand side of (5.5).
As observed earlier, if there were no singularities in the zero-mass limit, we could just
set p3 = p3 = m? = 0 to obtain an elementary RG-controlled calculation of the large Q
behavior. Moreover, the Q dependence would just be QP@. From (5.6), we see that because
of the dimensionless of a gauge theory coupling at the physical space-time dimension, the
power of Q is the same for all graphs, viz. zero.

5.1.3 Importance of pinch-singular surfaces in massless limit

‘We now need to locate the situations where the zero-mass limit fails. These situations arise
from regions where one or more lines have virtuality much less than Q. But often the
contour of integration can be deformed away from such regions, and the above scaling
arguments work equally well on a deformed contour for k. So our concern is regions where
there is an obstacle to any possible deformation to where the lines have virtuality of order
Q2. In fact, as we now show, the only obstacles are those that give a pinch-singular surface
(PSS) in the massless limit.

Consider first some region of scaled loop momentum & where certain propagator denom-
inators are not part of a pinch in the massless theory. Then in the scaled integral and on
some deformed contour, these denominators have a non-zero minimum size. In the original
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integral, before scaling, the same denominators have a minimum size proportional to Q? in
the corresponding region of k. Then the simple massless limit applies for the contribution
to the large Q asymptote by these denominators.

Next we consider unscaled momenta in a neighborhood of a PSS of the massless theory.
Even with a massless PSS, the minimum virtuality of unscaled lines often stays finite as
Q gets large, even on a deformed contour. Typically, this virtuality would be of order a
mass-squared. But in some cases the minimum virtuality may grow with Q, but less rapidly
than QZ, for example, it might be of order Om. Even so, in all these cases, the scaled
virtuality, i.e., relative to Q2, goes to zero as Q — oo. This corresponds to an exact pinch
in the massless theory: that is, with masses set to zero, the scaled momenta k in (5.5) have
a minimum distance of zero from the lines participating in the PSS.

In the actual case, with non-zero masses and finite Q, the relevant momenta are forced
to go close to the PSS, the closeness in units of Q decreasing as Q increases. I summa-
rize this by saying that the PSSs of the massless theory form a skeleton for the impor-
tant non-UV regions of loop momentum space. This can happen even in a field theory
where all the fields have non-zero mass, so that the exact massive theory has no literal
PSS.

5.1.4 Location of pinch-singular surfaces: Landau criterion

Therefore we now have to find all possible PSSs in the massless limit and determine their
strengths. The general task of locating PSSs is made quite simple by the Landau criteria
(e.g.,Eden et al., 1966) in the form particularly emphasized by Coleman and Norton (1965):
The PSSs (for the physical region, which is all that concerns us) are where the on-shell
propagators and momenta correspond to classically allowed scattering processes treated in
coordinate space.

Each point on a PSS (in loop momentum space) corresponds to a space-time diagram
obtained as follows. First we write a reduced graph by contracting to points all of the lines
whose denominators are not pinched. Then we assign space-time points to each vertex
of the reduced graph so that the pinched lines and their momenta correspond to classical
particles. That is, to each line we assign a particle propagating between the space-time
points corresponding to the vertices at its ends. The momentum of the particle is exactly
the on-shell momentum carried by the line, correctly oriented to have positive energy. If,
for some set of momenta, it is not possible to construct such a reduced graph, then we are
free to deform the contour of integration.

Although our argument to this point was presented in the context of the Sudakov form
factor, it is in fact a general argument and can be applied to many processes with a
large scale Q.

5.2 Reduced graphs and space-time propagation

The construction of the most general reduced graph becomes extremely simple in the zero-
mass limit, since at a PSS all pinched lines must carry either a light-like momentum or zero
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momentum. Moreover, each light-like momentum must be parallel to one of the light-like
external lines.

To understand this, we just need to obtain the simple rules for how massless on-shell
momenta combine at vertices of a reduced graph.

1. First, adding zero momentum to anything leaves the second momentum unaltered. So a
zero-momentum line can attach anywhere.

2. Two non-zero light-like momenta in the same direction are proportional to each other
and add to make another parallel light-like momentum, with a special case of giving
zero when they are equal and opposite. If we orient the momenta of the lines for a
particular light-like direction so that they all have positive energy, then as we follow
them forward, the momenta can split and recombine arbitrarily, but the total momentum
is fixed.

3. Adding two non-zero light-like momenta with different directions produces a non-light-
like momentum, necessarily off-shell in a massless theory. Either the non-light-like
momentum is external or it is on an internal line. An external non-light-like momentum
would be like the virtual photon in the form factor or in DIS. An internal line is off-
shell, so it is internal to a reduced vertex, i.e., it does not participate in the pinch under
discussion.

4. It is possible for a reduced vertex to correspond to a non-trivial wide-angle scattering
of massless particles. But for the classical scattering condition to hold, the other ends
of the light-like lines are a long way from the reduced vertex. So further rescattering of
the same particles is not possible. See the discussion of Fig. 5.3 below on p. 94 for an
example.

The results for massless PSSs can be presented in two forms: (a) the structure of the
reduced graphs, with a labeling of lines by momentum type, and (b) the locations of the
vertices of the corresponding classical processes in space-time; see the illustrative examples
in Sec. 5.3 below.

It is convenient to present the results with the aid of massless but unscaled momenta
corresponding to high-energy external lines. For example, in the case of Fig. 5.1, from the
limits in (5.4a), we define unscaled massless momenta by

Pace & % (1, 0,0,1), (5.72)
. % (1,0,0,—1). (5.7b)

5.3 Examples of general reduced graphs
5.3.1 Vertex graph

For the vertex graph of Fig. 5.1, a typical reduced graph and the corresponding space-time
diagram are shown in Fig. 5.2. In the reduced graph, there is a subgraph H which includes
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Fig. 5.2. Typical (a) reduced graph, and (b) space-time diagram, for a general PSS for the
vertex graph.

the vertex for the current j#. This subgraph is intended to be a vertex of the reduced graph,
i.e., none of its lines participate in the pinch. Thus, in the space-time diagram all of the
lines and Feynman-graph vertices that compose H are contracted to a single point.

From H exit two sets of lines in what we call collinear subgraphs. One collinear
subgraph, A, has lines in the p4 oo direction, and the other, subgraph B, has lines in the
DB.co direction. Finally the soft subgraph S, not necessarily connected, consists of lines of
zero momentum at the PSS, and it can connect to any of the other subgraphs. Notice that
we labeled the collinear graphs by the light-like momenta p4 o and pp o rather than the
actual external momenta p,4 and pp, since we are discussing PSSs in the massless limit.

In the space-time picture the hard subgraph corresponds to a single point at the origin,
and the collinear subgraphs A and B correspond to propagation outward along light-like
directions. Within each collinear subgraph, there can be arbitrary splitting and recombina-
tion of the collinear momenta. Any number of lines can join the A and B subgraphs to the
H subgraph. Finally the S subgraph corresponds to zero momentum and so to arbitrarily
large separations in space and time. The zero-momentum lines can interact arbitrarily with
each other, and any number of lines can connect their subgraph to the other subgraphs.

From the reduced diagram point of view, the collinear and soft subgraphs contain lines
of the stated kind, i.e., parallel to ps oo, PB oo, Or zero. But it should be noted that the
reduced-graph vertices that join them within each subgraph may comprise non-trivial (one-
particle-irreducible) graphs from the Feynman graph point-of-view.

The collinear lines go outward from the hard vertex and eventually combine to form the
momenta p4 o and pp « Of the outgoing external lines of the vertex, treated as massless
momenta. There can be no other massless lines propagating in other directions, or from
the past. Any such line would just give a dangling end with no external line(s) to absorb or
generate the non-zero momentum.

These conclusions depend not only on the on-shell condition for the lines of the reduced
graph, but, critically, also on the condition that they correspond to a physical scattering. As
an example, consider the configuration illustrated in Fig. 5.3. Here there are two intermediate
massless on-shell lines with 3-momenta not along the z axis:

DCoo = %(1, n), PDyoc = %(1, —n). (5.8)
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Fig. 5.3. Non-pinched on-shell configuration for Sudakov form factor.

Fig. 5.4. Space-time diagram for PSSs for the vertex graph when the A line is incoming,
so that the momentum transfer is space-like.

These rescatter at the right-hand reduced vertex to make the standard external lines. This
reduced vertex is for elastic scattering with large momentum transfer. The on-shell con-
figuration obeys momentum conservation, and does contribute in a computation of the
imaginary part of the amplitude from on-shell intermediate states. But for the rescattering
to be classical, in the sense used for the Landau criterion, the two wide-angle particles have
to meet at a single point to rescatter. Thus they would travel only a zero distance from their
generation at the electromagnetic vertex, and not the arbitrary non-zero distance needed for
classicality. Hence this configuration does not participate in a pinch.

A minor variation can be made by letting the p4 line be incoming rather than outgoing,
with the momentum transfer now being space-like. This would be appropriate for a subgraph
inside a deeply inelastic scattering amplitude. The general reduced graphs stay the same,
except for the orientation of the momenta in the A subgraph. Correspondingly, the space-
time structure changes to that shown in Fig. 5.4.

5.3.2 Leading regions for vertex graph

Comparing Fig. 5.2(a) to the structure Fig. 2.5(b) that was used to obtain the parton-model
formula for DIS, we see a lot of extra connections between the subgraphs. This endangers
the derivation of a factorization theorem. In the parton-model ansatz for DIS, the hard
scattering involves only a single parton, and the target and outgoing collinear subgraphs
are not otherwise coupled. Similar remarks evidently apply to all other processes.

When we derive rules for power-counting, later in this chapter, we will find that for
many of the massless PSSs, the corresponding contributions to the actual vertex are in
fact suppressed by a power of Q. Generally, we will neglect these power-suppressed
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Fig. 5.5. Typical reduced graphs for the vertex graph, but now restricted to those PSSs
relevant for the leading power.

contributions. Then we will find that the leading regions for the Sudakov form factor are
restricted to those of Fig. 5.5. Compared with the general PSS, Fig. 5.2(a), the changes are
that: no lines connect S to H, only gluons connect S to the collinear subgraphs, and exactly
one fermion but arbitrarily many gluons connect the collinear subgraphs A and B to the
hard subgraph.

The arbitrary number of gluons linking the different subgraphs of a reduced graph still
leaves us with an apparent difficulty for proving factorization. A final power-counting
result will come to the rescue, concerning the dominant polarization for the extra gluon
connections.

Here we only summarize what we will prove later. The relevant polarizations are such
as to allow us to use Ward identities to sum over the ways of connecting the extra collinear
gluons to the hard subgraph and of connecting the soft gluons to the collinear subgraphs.
The end product will be a factorized form, with definitions of parton densities and other
non-perturbative quantities as matrix elements of certain non-local operators. Without
the extra gluon connections, the operators would not be gauge invariant. Summing the
extra gluon connections between the subgraphs converts the operators to a gauge-invariant
form.

5.3.3 DIS from uncut amplitude

A very straightforward application of the Landau analysis is to DIS, if we apply the same
trick as we used in Sec. 4.4 for the e*e~ — hadrons cross section.

Instead of the hadronic tensor W*" defined by (2.18), we use the corresponding uncut
amplitude? where the current operators are time-ordered:

T*(q, P) = %/d“z ETT(P, S| T J™z/2) J'(—z/2) | P, S). (5.9)

This amplitude is analytic in the plane of v = p - g, with cuts along the positive and
negative real axis starting from v = +Q?/2 (Fig. 5.6). The ordinary hadronic tensor is the

2 Warning: Definitions in the literature disagree on the normalization.
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v

Fig. 5.6. Complex plane in v = P - ¢ for T*”, with its cuts.
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Fig. 5.7. (a) Typical general reduced graph, and (b) space-time diagram, for the most general
PSS for the uncut amplitude for DIS. (c) For a leading PSS, there is no soft part, and beyond
the main partons, an arbitrary number of gluons connect the collinear and hard subgraphs.

discontinuity
WH* (g, P)=T" (v +i0) — T*" (v —i0). (5.10)

See Ch. 14 of Collins (1984) for more details and an account of earlier work on DIS.
There the analyticity properties of 7" were exploited to allow the use of the short-distance
operator product expansion to analyze integer moments of DIS structure functions.

Justin e*e™ annihilation (Sec. 4.4), a local averaging should be applied, after which we
only need to treat 7"” away from its singularities in the complex plane.

The massless PSSs for the amplitude are illustrated by the reduced graph in Fig. 5.7(a).
There is a single collinear subgraph C, where the target comes in and undergoes arbitrary
collinear splittings and recombinations until the target is reconstituted. The hard scattering
H is at the origin in space-time, and there is a soft subgraph S. In a general PSS, there are
arbitrarily many lines joining the subgraphs. The graphical structure, Fig. 2.5(b), that we
used to formulate the parton model is the simplest example. It corresponds to a minimal
PSS where only two lines join the collinear and hard subgraphs, where there is no soft
subgraph, and where the hard subgraph is a lowest-order Feynman graph.

The Landau analysis has now indicated, in Fig. 5.7(a), the maximum complication to
be considered in the general case. We can again anticipate the power-counting results, in
Fig. 5.7(c). At leading power, the soft subgraph is absent. The connections between the
collinear and hard subgraphs consist of the primary pair of parton lines, just as in the
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Fig. 5.8. A graph for uncut amplitude for DIS with multiple PSS.
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Fig. 5.9. The three leading regions for Fig. 5.8 correspond to these decompositions into
hard and collinear subgraphs.

parton model, but they are now accompanied by any number of gluon lines with the special
polarization that allows the use of Ward identities to give a factorization theorem.

5.3.4 Higher-order corrections to hard scattering

The following consequence of the general region analysis contains a critical difference
between the true results of QCD and the parton model: This is that there are higher-order
perturbative corrections to the hard scattering.

Although we will work out the details only in later chapters, it is possible to understand
the basic ideas from our analysis so far. First we observe that any particular Feynman graph
might have multiple leading PSSs. For example, consider Fig. 5.8, which can appear in a
model for DIS in which the target is treated as elementary. This graph, of the form of what
is often called a “ladder graph”, has three decompositions of the form of Fig. 5.7(c), but,
in this particular case, without any of the extra gluonic connections. In one of its PSSs all
the quark lines on the sides of the ladder are collinear to the target, i.e., the momenta k
and [ are target-collinear. This corresponds to the decomposition of Fig. 5.9(a), where the
hard subgraph H, is the smallest possible, and is indeed exactly the same as in the parton
model.

A second PSS corresponds to Fig. 5.9(b), where the upper loop momentum & is of high
virtuality, while the lower momentum /[ is still target-collinear. This has a one-loop hard
subgraph H,. Physically it corresponds to production of two jets in the hard scattering, as
in the experimental event shown in Fig. 5.10. A third PSS corresponds to Fig. 5.9(c), where
both k and [ are of high virtuality; this situation corresponds to production of three jets.
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Fig. 5.10. Scattering event with two high-transverse-momentum jets in an ep collision in
the H1 detector (H1 website, 2010). The final state contains an electron track (to the right
in the side view), and two jets of hadrons.

T e
Fig. 5.11. Another graph for uncut amplitude for DIS in which some of the same hard
subgraphs occur as for the previous graph.

Each of these hard-scattering subgraphs can occur in other graphs for 7#". For example,
the hard subgraphs H, and H, also appear in PSSs for Fig. 5.11.

The momentum regions associated with the three PSSs are represented in Fig. 5.12,
where the smaller PSSs are boundaries of the bigger ones. Disentangling the contributions
associated with different PSSs gives interesting mathematical and technical issues, which
occupy much of this book.

We will see that larger hard subgraphs Hj,, etc., can be treated as higher-order corrections
to the lowest-order subgraph H,, but with subtractions to compensate for double counting
between different contributions.
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Fig. 5.12. Momentum regions associated with the PSSs in Fig. 5.9. Each axis corresponds
to the deviation of the associated momentum from exact collinearity, and the labels “(a)”,
“(b)” and “(c)” correspond to the PSSs associated with the graphical decompositions in
Fig. 5.9.

The idea of higher-order corrections to the hard scattering is readily accommodated by
the original space-time motivation for the parton model. This asserted that the cross section
was governed by a short-distance scattering of the electron and a single constituent of the
target, as in Fig. 2.2. The true hard scattering is the short-distance structure at the origin in
the space-time representation, Fig. 5.7(b), but it need not be a lowest-order graph.

A scaling argument of the kind given in (5.5) shows that the power of Q is determined
only by the number of external lines of the hard scattering, in any renormalizable theory
like QCD, since then the coupling is dimensionless. Thus there is no power-law suppression
of higher-order hard scattering. The only suppression is from the smallness of the effective
coupling o, (Q) at large Q. The appropriate scale for the coupling in the hard scattering is
of order Q, so that the asymptotic freedom of QCD allows low-order perturbation theory
to give useful predictions of the hard scattering.

Physically, the hard subgraph H is not literally at a single point, but is spread over
a space-time range of order 1/Q. Similarly, the collinear subgraph is not exactly on the
light-like line indicated in Fig. 5.7(b), but is spread out as appropriate for a highly boosted
composite particle. Lorentz contraction indicates that the width of the collinear lines is
of order 1/Q in the ¢-z plane, but of order 1/M transversely, while time dilation gives a
large longitudinal scale to Fig. 5.7(b), of order Q/M?. This interpretation is another way
of explaining the statement that the massless PSSs form a skeleton for the location of the
actual physical phenomena. A formal derivation from first principles within QFT of the
detailed space-time interpretation would be very useful.

5.3.5 DIS from cut amplitude

To understand how the final states in DIS arise, we now restore the final-state cut. It is
evident from our calculations of e™e™ annihilation that there is a close connection between
divergences from virtual gluon emission and those from real gluon emission. Therefore, it
is useful to extend our analysis with reduced graphs and space-time diagrams to include
the integrals over final states.
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Fig. 5.13. (a) Reduced graphs and (b) space-time diagram, for DIS amplitude, in the case
that only one jet arises from the hard scattering. The lighter hatching at the top of (b)
corresponds to the low momentum or soft particles from the soft subgraph S.

The basic idea is unchanged: taking Q — oo at fixed mass is equivalent to a massless
limit at fixed Q, and we need to know where propagator denominators fail to have virtuality
of order Q2. Just as before, it is the locations of PSSs in the massless theory that label
all the interesting regions. But for final-state lines, we no longer have to appeal to a
technical argument as to whether or not a contour deformation is possible. Final-state
lines are necessarily on-shell, so they have to be considered always pinched. Since final-
state particles can be observed, it is appropriate not to even consider deforming any of
the integrals over final-state momenta. Some lines are not part of any loop, as in the real
emission graphs considered in Ch. 4; their virtuality is entirely determined by the external
lines. At a collinear singularity, it is simply from the topology of the graph plus the simple
rules for combining light-like momenta that we get the condition of a classical process. We
supplement this by the Landau criterion for lines that are part of a loop.

In the case that we only have one direction for the particles from the hard scattering,
the reduced diagrams and space-time picture are shown in Fig. 5.13, for an amplitude
(X, out|j|0). These correspond quite directly to the picture shown in Fig. 2.2, and the
actual scattering event in Fig. 2.3. The collinear subgraph A corresponds to the target
hadron, its evolution and its remnants after a quark has been struck out of it. The remnants
are around the beam pipe in the actual event. The subgraph B corresponds to collinear
evolution of the struck partonic system into an observed jet. Some lines can go out to the
final state from the S subgraph; at the exact mass singularity, these have zero momentum.
The corresponding actual particles, all of whose momentum components are much less
than Q to be close to the PSS, are those that fill in the rapidity gap between the jet and the
beam remnant.

Other PSSs arise when there are two or more groups of parallel lines emerging from the
hard scattering, as in Fig. 5.14. In experiments one manifestation of momentum configura-
tions near to such singularities are events with extra jets, as in Fig. 5.10.

Naturally, the full DIS cross section has an integral over all accessible final states.
This integral includes all intermediate configurations between the extremes given by the
reduced diagrams and their associated massless PSSs. Proper factorization theorems, and
their proofs, handle the intermediate cases once the extremes are dealt with.
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Fig. 5.14. Reduced graph for DIS, in the case that partons in more than one direction arise
from the hard scattering. For clarity the connections between the soft subgraph and the
other subgraphs have been omitted.

(b)

Fig. 5.15. (a) The double deeply virtual Compton scattering process, including the attached
leptons. (b) The Bethe-Heitler pair production process that also contributes to the scattering.

5.3.6 Deeply virtual Compton scattering, etc.

So far, we have treated the uncut hadronic tensor 7" merely as a tool for analyzing DIS,
whose true cross section arises from the discontinuity, i.e., from the cut amplitude.

But it is also interesting to examine this quantity in its own right as the hadronic part
of an appropriate scattering amplitude. It actually provides the conceptually simplest of all
QCD factorization theorems. We therefore take the opportunity to introduce the relevant
processes. For this, we attach leptons at the other ends of virtual photon lines. To obtain a
realizable scattering, one of the virtual photons is time-like, creating a lepton pair. Thus the
relevant process is [P — I'p’ete™ orIP — I'p’u* u™; Fig. 5.15(a). Since one photon has
space-like momentum ¢ and the other has time-like momentum ¢’, the hadronic amplitude
is not diagonal, unlike the case for DIS. A complication for the analysis of data is that
one needs to separate the contribution where the lepton pair arises from a virtual photon
attaching to the other leptons: Fig. 5.15(b).

This leads (Miller et al., 1994; Blumlein and Robaschik, 2000) to the study of
the process y*(q) + P — y*(q’) + p’, which corresponds to the off-diagonal hadronic
tensor

A (Y @) +p— v @)+ p)

1 o
= dz DR (P | T JM(z/2) TV (—2/2) | P). (5.11)
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(b) ()

Fig. 5.16. (a) Reduced graphs and (b) space-time diagram, for DVCS and exclusive elec-
troproduction of mesons. (c¢) Extra reduced graphs for DVCS, but not exclusive meson
electroproduction, with photon directly connected to H.

This was investigated by Berger, Diehl, and Pire (2002), who called it “timelike Compton
scattering”, and then by Guidal and Vanderhaeghen (2003), who called it “double deeply
virtual Compton scattering” (DDVCS), the term we use here. The analysis closely corre-
sponds to the DIS case, when we take a generalized Bjorken limit. In this limit qz, q/z, etc.
are large, and the hadron momenta P and p’ become parallel.

Thus the analysis in terms of massless PSSs is identical to that for 7" for DIS; the
reduced graphs and space-time picture are exactly the same. DDVCS has great fundamental
importance as the simplest quantity to which factorization methods can be applied. However
the cross sections at the leptonic level are high order in electromagnetism and thus very
small; see Berger, Diehl, and Pire (2002); Guidal and Vanderhaeghen (2003).

What is studied experimentally at present is the case that the outgoing photon is real.
This is deeply virtual Compton scattering (DVCS): Miiller et al. (1994); Blumlein and
Robaschik (2000); Belitsky, Miiller, and Kirchner (2002):

Y @)+ P — y(pp)+ P (5.12)

The outgoing photon is light-like in what we can choose to be approximately the —z
direction. Thus it is convenient to change notation to use pp for the photon momentum; this
corresponds to our notation for other processes with two high-energy particles. Another
closely related process has the photon replaced by a meson:

Y*(q)+ P — M(pp)+ p, (5.13)

the measured meson being typically a p. This is actually an exclusive two-body subprocess
of DIS, called exclusive electroproduction of mesons. The reduced graphs now acquire a
collinear- B subgraph going out from the hard scattering, Fig. 5.16(a), with a corresponding
space-time diagram. The power-counting is a bit more subtle, and depends on the
polarization of the meson (Brodsky et al., 1994; Collins, Frankfurt, and Strikman, 1997).

For the case of a photon, i.e., DVCS, there are also reduced graphs without the B
subgraph, i.e., with the photon connecting directly to the hard subgraph. These are, of
course, the same as for a highly virtual photon; it is these reduced graphs that turn out to
be the leading ones (Miiller et al., 1994; Blumlein and Robaschik, 2000; Belitsky, Miiller,
and Kirchner, 2002).
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5.3.7 Drell-Yan process

Another important process is the Drell-Yan (DY) process, i.e., inclusive production of
high-mass lepton pairs in hadron-hadron collisions:

Por+ Py — (y* — IT17) + X, (5.14)

where we have indicated that in lowest order in electromagnetism, the lepton pair arises
from a virtual photon. Essentially all the same theoretical considerations apply to the
production of high-mass electroweak bosons, like the W, Z, and Higgs particle, as well as
innumerable conjectured particles in extensions of the Standard Model.

In light-front coordinates, we write the momenta as

Py = (Pf, my/2P], 0r), (5.15a)
Py = (m3/2P5, Py, Or), (5.15b)

q= (xA Pl 1+47/0Q% xsPg \/1+47/0Q> qT) : (5.15¢)

Here the scaling variables are defined by
4= 0 /\s, xpg=Qe /s, (5.16)

of-mass rapidity of the lepton pair, and Q = \/» is its
invariant mass. In ﬂle center-of-mass, the large components of the hadron momenta are
PI and Py, both equal to /s /2 up to power-suppressed corrections. Frequently, the cross
section is integrated over g, and is presented as d’c /(d Q% dy).

We first discuss the DY amplitude. Its reduced graphs are constructed by an elementary

where y =

generalization of the construction for DIS. We now have two collinear subgraphs, A and B,
associated with each incoming particle. As in DIS, we classify the reduced graphs by the
number of outgoing directions of lines from the hard scattering H. Now H has incoming
lines from each of the A and B subgraphs, and has the virtual photon taking out momentum.
This allows the minimal situation, illustrated in Fig. 5.17, with no extra collinear groups at
all going out from H. The soft subgraph can create particles in the final state that fill in the
rapidity gap between the beam remnants.

This is illustrated by the microscopic view of a collision shown in Fig. 5.18 (which
corresponds to Fig. 2.2 for DIS). Here we have shown the simplest possibility: a single
parton from each parent hadron collides over a short distance scale, of order 1/Q at the
position indicated by a star, and we have not depicted the possible soft interactions.

One new possibility is that we could have a second hard part, disconnected from the first
in which other collinear lines from A and B collide to undergo a wide-angle scattering.
Physically, this corresponds to a second partonic collision in Fig. 5.18, typically occurring
at about the same time as the one that creates the DY pair, but at a different transverse
separation. Later, from the power-counting rules, we will see that this case is power-
suppressed.
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(b)

Fig. 5.17. (a) An important reduced graph for the amplitude for the Drell-Yan process.
(b) Space-time diagram for collinear subgraphs.

Fig. 5.19. A reduced graph for the amplitude for Drell-Yan process when one extra jet of
high transverse momentum is produced.

After this, we will find the usual situation for the leading power that only one main
parton from each beam hadron enters a single hard scattering. Each is accompanied only by
extra gluons of the longitudinal polarization that can be reorganized by Ward identities into
gauge-invariant parton densities. Also the soft subgraph at leading power only connects to
the collinear subgraphs and by gluons.

It is possible for the single hard scattering to produce, in addition to the lepton pair, one
or more extra partons of high transverse momentum, Fig. 5.19. These manifest themselves
as jets in the hadronic final state, just as in the corresponding situation for e™ e~ annihilation
or DIS.

If instead we restrict to a minimal reduced graph, and then multiply by the com-
plex conjugate amplitude, we get the cut graph shown in Fig. 5.20. This is the natural
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Fig. 5.20. Minimal reduced graph for cross section for the Drell-Yan process.
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Fig. 5.21. One-loop vertex graph.

generalization of the corresponding structure that led to the parton model in DIS,
Fig. 2.5(b). The most elementary treatment of this situation leads to the parton model
formula for lepton-pair production, first worked out by Drell and Yan (1970). Here the
lepton pair is produced in the lowest-order annihilation of a quark out of one hadron, and
an antiquark out of the other, with the same parton densities as in DIS.

We thus see a general pattern: Libby and Sterman’s insight leads to the reduced diagram
analysis. Approximating the situation by configurations corresponding to the simplest
reduced graphs gives us the parton model, with the natural space-time interpretation. The
general reduced graph plus the restriction to leading power delimits the maximum way in
which we have to distort the parton model to get the results of real QCD.

5.4 One-loop vertex graph

To illustrate the properties of the regions associated with PSSs, we examine the PSSs for
the one-loop vertex graph of Fig. 5.21:

g /‘ , numerator
- Qn)e (k2 —m2 4i0) [(pa — k)*> —m2 4 i01 [(pp + k)*> — m2 +i0]
(5.17)

Gy

The numerator factor is irrelevant for determining the positions of the PSSs. But it is impor-
tant in computing their strengths, for which different field theory models give interesting
characteristic effects. We also allow a gluon mass, which is zero in QCD, but not necessarily
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(a) (b) (c)

Fig. 5.22. Reduced graphs for PSSs R4, Rg, and Ry of Fig. 5.21. The dot represents the
short-distance reduced graph, the diagonal lines are collinear in the appropriate directions,
and the dashed line is soft (zero momentum).
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Fig. 5.23. Location of massless PSSs of Fig. 5.21 in the space of the gluon momentum. The
singularities are all in the plane of zero transverse momentum, so we just show the plane
of k¥ and k%, with the 2 — 2¢ transverse dimensions out of the paper.

(a)

Fig. 5.24. Space-time description of PSSs of Fig. 5.22. For all three plots, the scale for the
separation of the vertices is Q /A%, where A is the radial integration variable in (5.29) for a
collinear region, but A2/ Q is the radial variable in (5.49) for the soft region.

in other model theories. Generally, I will assume that the external quark lines are on-shell,
equipped with Dirac wave functions as appropriate.

5.4.1 Geometry and topology of PSSs

Useful insights are obtained from each of several ways of examining the PSSs: in
terms of reduced graphs (Fig. 5.22), in terms of PSSs’ locations in the space of loop
momenta (Fig. 5.23), and in terms of the locations of the graph’s vertices in space-time
(Fig. 5.24).
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The criterion, of a classically allowed process in the massless limit, gives the following

PSSs, which I label by the nature of the gluon’s momentum, (R4, Rg, etc.):

1.

Gluon collinear to A: We label this PSS R,. It has two massless on-shell lines: k and
D4.co — k, each parallel to pg oot

. k= ZPA, 0
Ra {pA,oo —k=(0—-2)pacs G189
with z between 0 and 1. The line pp + k has virtuality of order Q%: (pp oo + k)* = Q?%z.

In the reduced graph, Fig. 5.22(a), the far off-shell line pp + k is contracted with
the current vertex to form a composite reduced vertex. Out of this come two massless
on-shell momenta in the p4 o direction, which later combine to make a single massless
on-shell momentum py .

The momentum fraction variable z must be between 0 and 1, since other values of z
do not give a classical scattering configuration. For example, if z is negative, the quark
goes out to the future from the current vertex, but the gluon comes in from the past.
Thus they are unable to meet at the recombination point if z < 0.

. Gluon collinear to B: This PSS, labeled R, with reduced graph Fig. 5.22(b), is exactly

like the first PSS, but with the roles of the quark lines exchanged:

) —k=zpB.»

Rp: 5.19
g {pB.oo+k=(1_Z)pB,oo~ G419

. Soft gluon: k has zero momentum on this PSS, which we call Rg. Its reduced graph is

Fig. 5.22(c), and the quark lines have massless momenta p4  and pp . The quark and
antiquark come out of the electromagnetic vertex and a soft gluon is exchanged. This is
a rather special case of the Landau-Coleman-Norton criterion.

. Soft quark: Here it is the internal quark instead of the gluon that is soft. Since the gluon

now has a maximal collinear momentum k = py4 o, we label this region R, .

. Soft antiquark: Here the internal antiquark is soft, and the gluon has k = —pp . The

PSS’s label is Rp'.

The locations of the PSSs in loop-momentum space are shown in Fig. 5.23, from

which can be seen some topological relations between the different PSSs. For example,

Rg is at the intersection of R4 and Rp, while R4 is an endpoint of R4. When we derive

factorization theorems, we will find contributions and approximations associated with each

PSS. The topological relations between different PSSs will determine subtractions that

prevent double counting between different contributions. There will also be a contribution

from the region Ry where all internal lines are far off-shell. We therefore will speak about
regions; intuitively a region connotes a particular part of loop-momentum space. But as a
precise mathematical notion we will use the PSSs supplemented by the hard region Ry.

The intuitive notion of a region means, roughly, momenta near the corresponding PSS.

3

The subscripts should not be confused with the same symbols used to denote the various subgraphs of a reduced
graph.
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To formalize the relations between regions we first define a manifold for each PSS:

Name Manifold Dimension
Ry {k =0} 0
Ry {k = pa,oc} 0
Rp {k =—pB oo} 0 (5.20)
Ry {k=zpa:0<z<1} 1
Rp {k=—-zppoo:0<z <1} 1
RH {allksuchthatk¢RA,RB,RS,RA/,RBr} 4

Each manifold excludes the manifolds for smaller PSSs. For example, in the regions Ry
and Rp we exclude the point z = 0, i.e., k = 0, since this does not give a collinear gluon
momentum.

There is evidently a hierarchy of sizes of region:

S
//RA\R
S p 7 s

"Sp

B

R,

Ry (5.21)

where the biggest region is on the left. A formal definition of the hierarchy is not by simple
set-theoretic inclusion, since the manifolds for smaller regions are not part of those for the
bigger ones. Instead we define the hierarchy in terms of the topological closures R of the
manifolds R for the various regions. For example, Ry={k= ZPA.c0 - 0 <z <1}, with
the endpoints at z = 0 and z = 1 included. Then we define the statement that a PSS R; is
bigger than a PSS R, R| > R, to mean that Ri DR,

For the actual graph with massive propagators, and possibly off-shell external quarks,
we have already argued that there are important contributions from momenta close to the
PSSs. This suggests a coordinate-space interpretation in terms of the relative positions of
the vertices. For example, near the PSS Ry, the upper quark line pg + k has virtuality
of order 02, and therefore the vertices at its ends are separated by order 1/Q. The other
two lines, k and p4 — k, have low virtuality, so the invariant separation of their ends is
much larger than 1/Q. Moreover, the lines are highly boosted in the 4z direction. This
gives typical locations for the vertices as shown in Fig. 5.24(a), which corresponds closely
to the classical scattering picture given by the Coleman-Norton criterion. Corresponding
situations for the PSSs Rp and Ry are also shown in Fig. 5.24(b) and (c). The arguments
just given are quite heuristic, and it is left as an exercise to derive them more formally
(problem 5.1).

5.4.2 Pinch- and non-pinch-singular surfaces: collinear-to-A

PSS R4 was restricted to k = zp 4, o With z between 0 and 1. But the massless limit of the
integrand in (5.17) is singular for any value of z; it is the criterion of a pinch that restricts z,
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P e
e

(a) 0<z<1 (b) z<0 (c) z>1

Fig. 5.25. The k~ plane, showing the singularities for the lines k£ and p4 — k for the three
cases 0 < z < 1,z < 0,and z > 1, together with appropriate choices of contour. The scale
of the diagram is roughly (k% +m?)/p}; the pole for the pg + k line is far off-scale, at

k= =—0(0%*p}).

as we now verify explicitly. We use light-front coordinates, as is natural for collinear PSSs,
to give

ig* . numerator
Gl = (2 )n d'k - — + N L2 02 .
T [2(pp + k™) zpy + py) — k — m?2 +i0]
1

X . (5.22)

Qzpik= — ki —m2 +i0) [2(1 — 2)pj(py — k™) — ki —m2 +i0]
Here we wrote k* = zp}, so that d"k = dz p{ dk~ d"2kr.

In the following discussion, there are order-of-magnitude estimates for denominators,
and it is convenient to use the symbol m as a generic size for all masses in the problem.

To understand the R4 region, we choose k7 to be much less than Q, and we examine
the contour integral for k™. In the center-of-mass frame, the large components of external
momenta are p:{ and py, of order O, while the small components, p}, and pg, are of order
m?/Q. The poles on the collinear lines k and p, — k are at small values of |k~ |, of order
(k% +m?)/Q, and, when 0 < z < 1, they are on opposite sides of the real axis, trapping the
contour, as in Fig. 5.25(a). In contrast, the remaining pole, from the pg + k line, is much
further away, at k= >~ —p, = —O(Q), corresponding to the line’s large virtuality in the
R4 region.

Naturally, when z approaches 0 or 1, the accuracy of this argument degrades. For
example, the separation of the poles in k£~ is of order

k2 21 1
Kp +m” <_ + > i (5.23)

pi \z l-z

and this gets large close to the endpoints of Ry, i.e., near the Ry and R, regions. This
formula also exhibits the exact pinch in the massless limit. That is, when m = 0, the
minimum distance between the poles is zero, obtained at k7 = 0.

Outside the PSS region, i.e., for z below 0 or above 1, the two collinear denominators
are on the same side of the real axis: Fig. 5.25(b) and (c). Then we can deform k™ to
be of order Q, so that all the denominators are of order Q2, i.e., the momenta are in the
hard region. Note that we cannot deform the contour all the way to infinity, to give a zero
integral, because of the singularity on the pp + k line.
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5.4.3 Multidimensional contour deformation

For one variable, like k£, the analysis of the pinch condition is straightforward, because the
contour deformation is visualizable. But the actual integral is multidimensional, and thus
hard to visualize. Is there a cunning deformation of the contour in z and/or k1 that would
allow the four-complex-dimensional* contour to avoid the poles? The Landau criterion
asserts in complete generality that this cannot be done.

A devil’s advocate would search for a proof in the literature that the Landau equations
are both necessary and sufficient for a PSS, and would be rewarded by not finding a
published explicit and complete proof. Textbook treatments, when examined closely, are
incomplete. For example, in the authoritative book on analyticity properties in QFT, by
Eden et al. (1966), we read (p. 48): “A proper proof needs the use of topology; ... We
shall be content with plausibility arguments.” The reference given for a real proof is an
unpublished paper, by Fotiadi, Froissart, Lascoux, and Pham; the paper, as far as I can find
out, is still unpublished forty years later. Devil’s advocates are recommended to investigate
further (problem 5.3); there is something in this subject that is not fully understood.

I now present some techniques to help formalize issues about contour deformation in
the general case, with the momentum integral for L loops having nL dimensions. The aim
is to make very transparent the concepts that relate exact PSSs in the massless theory to
properties of actual integrals with non-zero masses but large Q.

First we write the loop momentum in terms of real and imaginary parts:

k = kg + ik ki (kg). (5.24)

Here a contour deformation is characterized by increasing the real parameter « from 0
to 1, with each point on the contour labeled by its (nL-dimensional) real part kg. The
imaginary part is some function of the real part, and naturally d"“k includes a Jacobian for
the transformation between k£ and kg. An allowed contour deformation is one for which no
poles are crossed in going from x = 0 to k = 1. We also require a uniform upper bound on
the derivatives dk;,/dkgp, so that the Jacobian stays finite; otherwise, an arbitrarily large
size for Jacobian would ruin our derivation of power-counting. Thus in a one-dimensional
contour integral we might require the deformed contour to have an angle of at most 45° to
the real axis. The precise bound does not matter, but having an angle close to 90° would
give a very big Jacobian.

Next consider a denominator D(k) 4+ i0 at a zero of D(k). Our aim is to determine
whether this denominator participates in a pinch at this value of momentum, or whether
the contour of k can be deformed away. We avoid the corresponding pole if D acquires a
positive imaginary part when « becomes slightly positive, i.e., if

kg - 7 > 0 pole avoidance criterion (5.25)

at the zero of D. We have an exact pinch if, no matter what choice we make for k;, (5.25)
fails for at least one of the on-shell lines.

4 Or 4 — 2e-dimensional contour.
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The criterion just stated applies to determining whether there is an exact pinch. In our
context, the PSSs we are cataloging are those of the massless theory. But our use of these
PSSs is also in the massive theory, where we are concerned not with whether or not there
is an exact pinch, but with whether or not the integration contour is forced to be close to
particular propagator poles. So we now ask: What are the appropriate criteria for avoiding
or not avoiding poles in the massive theory?

We do not consider a particular pole to be avoided unless the minimum value of | D(k)| on
the deformed contour is of order Q? in a whole neighborhood of some candidate for a PSS.
The neighborhood should be of a size of order Q in the components of loop momentum
kg. Now all the momentum components of interest are at most of order Q, and similarly
for the derivatives d D/dk. For the denominator to be of order Q% when the real part of k
is at a zero of D(k), it must be true that the imaginary part has a component of order Q.

It also follows that the first-order term in an expansion in powers of k;, i.e., the Lh.s. of
(5.25), must itself be of order Q2. Otherwise the first derivative would change sign near our
initially chosen kg, since the second derivative is of order unity, and then we would find
places where, as we deform the contour, the denominator gets a negative imaginary part.
Because of the limit on the gradient of k; with respect to kg, the pole avoidance condition
(5.25) is obeyed, not just exactly at the PSS, but in a neighborhood. It also follows that the
component of d D /dk in the direction k; is of order Q.

In the example of the two collinear denominators for region R4 of the vertex graph, the
derivatives are

Ik — my) d(pa — k) —m?)

=2k~2 , ~ —2(1 — . 5.26
% DA, 0 Py (1 =2)pa,c (5.26)

On PSS R4, these two vectors are opposite in direction, so that the pole avoidance criterion
(5.25) cannot be simultaneously satisfied by both denominators. The exact PSS is in the
massless theory, but small changes in the pole positions, to allow for masses, do not
break this argument. As just explained, any contour deformation that successfully avoids
a singularity has to work over a large neighborhood of the propagator poles. If we tried
deforming another component of k than £~, its imaginary part would multiply a small
derivative on the Lh.s. of (5.25), and would not make this Lh.s. of order Q2.

In contrast, when we extrapolate the PSS to z < O or to z > 1, the two derivative vectors
have the same direction. Therefore if we choose k; to give one denominator a large positive
imaginary part, then the other denominator also gets an imaginary part of the same sign.
Thus we can avoid the pole. Since k; - pa,coc =k p; o+ 1t is the minus component of k;
that needs to be made large to avoid the pole; this again justifies our choice to examine
contour integration only over k. Therefore the singular surfaces at z < 0 and z > 1 are
not PSSs.

5.5 Power-counting for vertex graph

I next use the one-loop vertex graph to motivate the primary tools for power-counting.
In addition, we will encounter the so-called Glauber region of gluon momenta. Glauber
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momenta form a subset of soft momenta, but require a different treatment than generic soft
momenta; in particular standard factorization is only obtained after a contour deformation
away from momenta in the Glauber region.
For the power-counting, I will usually set the space-time dimension to n = 4. But to
discuss properties of regulated integrals, I will sometimes change ton = 4 — 2¢.
Characteristic differences between QFTs are controlled by the numerator factor in (5.17),
and we can see the spectrum of possibilities from specific examples:

e A ¢-type theory where both the quarks and gluons are scalar fields, and the vertex for
the electromagnetic current is replaced by one for a ¢ operator. It gives a numerator
factor of unity.

e A Yukawa theory with a scalar “gluon” and fermionic quarks. It gives a numerator
ialy - (pa—k)+mg|y"[—v - (pp+k)+my]vg, where us and vg are Dirac wave
functions.

e A gauge theory with fermion quarks. The numerator factor is

any* [y - (pa = k) +mg]y" [ =y - (5 + k) +mg] v v Nes. (5.27)
In Feynman gauge, the gluon part of numerator is Ny, = —gga.

(Further cases are left as an exercise; problem 5.6.) In addition, we will examine how the
power laws change with the dimension of space-time.

Our main interest is in the size and power law of the loop graph relative to the lowest-
order graph. For the ¢3 theory, the lowest-order graph is unity, but for the other two theories,
the lowest-order graph is of order Q, since the largest component of a Dirac wave function
grows like Q'/2.

5.5.1 Hard region Ry: power corresponds to UV divergence

In region Ry, all momentum components are of order Q and all virtualities are of order
Q2. As we found around (5.6), the power of Q is given by dimensional analysis, and is the
same as for UV divergences. Thus in ¢3 theory at n = 4, region Ry’s contribution to
the vertex graph is of order 1/Q?. In Yukawa and gauge theories, which are renormalizable,
the numerators provide factors of 0? times Dirac wave functions, so the contribution is
of the same power as the lowest-order vertex, and we call Ry a leading region. Of course,
if we increased the space-time dimension to 6 in ¢ theory we also get leading behavior.
These arguments apply after UV renormalization, provided we apply an RG transformation
to set the renormalization scale i of order Q.

In any of the renormalizable theories, we therefore write the contribution of region Ry
as

G, in Ry = O(1) x LO. (5.28)

This simply means that we have a bound. That is, for large Q /m, the size of this contribution
is less than some constant number times the lowest-order graph. In QCD (for example), a
useful bound is the product of
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(a) (b) (c)

Fig. 5.26. (a) Integration domain used for region H ; it excludes the blanked-out area around
the PSSs. The size of the regions shown is a modest factor less than Q. This diagram
should be treated as having two more dimensions perpendicular to the ones shown. (b)
Integration domain used for region A, the cross-hatched area. (c) Integration domain used for
region S.

e a factor of a few, from the approximations on the denominators and from the multiple
terms in the Dirac algebra;

e afactor g?/(16m*) explicitly in the Feynman rules; and

e 72 from an angular integral in four space-time dimensions.

This gives amodest factor times g /167 2. In principle there could be cancellations, since the
sign and complex phase of the integrand are not fixed. But, in general, if such cancellations
occur frequently and are strong, we should expect this to have a specific cause.

The integration domain for an actual numerical estimate should be like that in
Fig. 5.26(a). Here we cut out pieces surrounding each of the (smaller) PSSs, perhaps
of size O/2. The precise positions of the borders will not bother us. But we must insist
that a contour deformation is applied to stay away from all propagator poles where there
is not a PSS. For example, suppose k is close to a negative number times p4 . Without
the contour deformation, we would have two low-virtuality denominators, which falsifies
the derivation of the estimate. A convenient way of interpreting Fig. 5.26(a) is to treat the
variables plotted there as the real parts kg. Imaginary parts, as in (5.24), give denominators
of order QZ, for example from the contour deformation in Fig. 5.25(b).

5.5.2 Basic treatment of collinear region R 4

Next we integrate around the PSS for region R4, Fig. 5.26(b), excluding neighborhoods of
the smaller PSSs, Rg and R4 . The dimensionless variable z parameterizes the PSS; we call
it an intrinsic variable for the PSS. At fixed z, consider the integral over K~ and kt, which
parameterize the deviation from the PSS, and which we therefore term normal variables for
the PSS. Near the PSS the momentum pp + k is off-shell by approximately z Q?. On the
other hand, the momenta k and p4 — k, which we call collinear, are approximately parallel
to pa.

To understand the integral’s behavior near the PSS as an example of a general case, we
change to a set of dimensionless variables k parameterizing a surface surrounding the PSS,
together with a radial variable A with the units of mass that scales this surface and is chosen
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N /v

Fig. 5.27. Surface of fixed A surrounding a collinear PSS. The surface is drawn asymmet-
rically, to correspond to the scalings defined in (5.29).

to lie in the range 0 < A < Q. Observe that the collinear denominators are quadratic in kt
but linear in k~. So we choose different scalings for k=~ and kr:

Collinearto A: k= =* /pt, kr= rkr, (5.29)

as illustrated in Fig. 5.27. These variables should be thought of as generalized polar
coordinates, with k being treated as two-dimensional angular variables. The definition is
non-unique, and we can specify it by giving A as a function of k™ and kr:

A= f(k™1, kTl pY), (5.30)

of a form consistent with the scaling law (5.29). I choose

FUKTL kel p) = /I pak=] + lker]?. (5.31)

Such a definition is not Lorentz invariant, but is intended to be applied in a natural frame
for the process, which is the center of mass. I have arranged for the definition to be invariant
under z boosts, and for the angular variables k  and kr to be dimensionless. Given (5.29)
and (5.31), the angular variables satisfy the normalization condition |k | + |kr|? = 1.

To understand the size of the integrand, and the consequent power-counting, we examine
the dependence on A. In each collinear denominator there are terms of order A> and of
order m?, e.g., A2 x2(1 =2k —2A2 Ei + pf\(l — z) — m? for p4 — k. Since the angular
variables parameterize a (two-dimensional) surface surrounding a point on the PSS, they
cover over a finite range independent of XA, and only one of pj{%i and kt can go to
zero simultaneously. Thus in estimating sizes, we write the collinear denominators as
220(1) + m?>0(1), where “O(1)” denotes a quantity that goes over a finite range, never
approaching infinity.

However, this is not sufficient to obtain a result for the integral. The problem is that the
argument so far only gives us an upper bound on the denominators, and the denominators
can and do get arbitrarily small. Thus for the integral itself we cannot directly deduce an
upper bound. But we can limit the closest approach to the poles by applying a contour
deformation like that in Fig. 5.25(a), where the separation of the poles is given by (5.23).
On the deformed contour there is a minimum size for each denominator, and a minimum
size for k~, for a given value of kr.

Now the definition of A in (5.30) was deliberately written with absolute values of the
momentum components. Thus it can be applied on the deformed contour, and the integration
over the purely real-valued radial variable A can be regarded as a slicing of the k integral.
We now find that on the deformed contour we can always treat the denominator as being
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of order A2 4+ m?, but in a much stricter sense. The size of each collinear denominator
obeys C;(A* + m?) < |denom.| < C5(A> 4+ m?), where C; and C are two constants with
C| strictly non-zero and C, finite. These bounds apply uniformly for all values of k on the
contour and for all relevant values of A. We could use separate bounds for the A> and m?
terms, but we would not gain anything useful.

There is in fact a notation for this which has become standard in some areas, and which
is defined in App. A.17:

|collinear denominator| = @ (x> + m?) . (5.32)

The use of ®(A? + m?) instead of O (A% + m?) indicates that we have a lower as well as
an upper bound, so that we can deduce a similar result also for the inverse

! = G‘)(;) (5.33)
o\ m? ) .

collinear denominator
This lets us obtain the power law associated with the R4 region. We have the following
sizes, in the sense of the ® notation:

1/Q? for the far off-shell denominator;

dA A3 for the radial integration;

1/(A* + m?) for each of the two collinear denominators;
unity for the integral over the angular variables k;

a numerator factor.

First, we ignore the numerator, and provide an estimate for the ¢ theory:

Ry region = £ [© 4% 5.34

Areglon—@/() W (5.34)
210002 /2

_ 0<%) (5.35)

Since the integrand has a variable complex phase, there is a possibility of a cancellation, so
that we must use the symbol O(...) rather than ®(...) for our estimate of the integral.

From (5.34), we see that for large A, of order Q, the estimate matches our result
1/Q? for the hard region Ry in ¢ theory. For small A, when m is set to zero, we get a
logarithmic (collinear) divergence at A = 0, i.e., the degree of collinear divergence is zero.
This symptomizes two properties of the actual massive integral: (a) for A of order m, we
get the same size as in the hard region Ry ; (b) there there is a logarithmic enhancement
from the region m < A < Q. This is an example of a general result, that if the two regions
have the same power law, then there is a logarithmic enhancement from the integral between
the extremes, with the exponent of the power being unchanged.

If we change the space-time dimension from 4 to n, the power for A ~ m is changed
to g2m"~*/Q?. Thus in ¢> theory, i.e., without the numerator factor, the collinear region
always has a 1/Q? suppression independent of space-time dimension; i.e., this region is
never leading. There is a contribution from the hard region of order g> Q" .
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5.5.3 Where are the vertices in space-time?

We did not associate the space-time picture of a classical space-time process at a PSS
with any specific distance scale. We now remedy this defect. The argument is sketchy, and
making a more detailed argument is left for problem 5.1.

It is reasonable that the typical time between two ends of a line of a Feynman graph is
the inverse of the deviation of its energy from being on-shell:

1 KO+ Ex] Ex
KO — Ex| (k2 —m?] k2 —m?|

At ~ (5.36)
Naturally, we assume that the integration contour has been deformed as far away as possible
from propagator poles.

For a collinear line, with its momentum scaled as in (5.29), we find a time of order Q/ A2,
This can be interpreted as a time 1/A in the rest-frame of the collinear system multiplied
by a time-dilation factor Q/X. The boost argument shows that this is also the separation of
the vertices in x™, and that the separation in the other light-front coordinate x ™ is of order
1/Q, the same as the size of the hard scattering. The separation in transverse position is
invariant under a boost in the z direction, and is therefore 1/A.

This therefore gives a scale for the drawings in Figs. 5.24(a) and (b), and for their
generalizations to higher-order graphs.

One caveat is needed. When A becomes less than the quark and gluon masses, the
virtuality of the lines remains of order m? instead of scaling down like A2, so we should
really equip the estimate with a minimum:

At~ 2 (5.37)

max(AZ, m2)
from the pole separation value given in (5.23). Naturally, if both the quark and gluon have
zero mass, then the time scale goes to infinity as A goes to zero; this corresponds to the

actual collinear divergence in the massless case.

5.5.4 Collinear region boosted from rest frame

We now consider a general case of a collinear subgraph, and more generally a non-
perturbative amplitude for a collinear subgraph, as in the lower bubble in Fig. 2.5(b)
for the parton model for DIS. We can regard a collinear subgraph or amplitude as being
obtained by a boost from its rest frame. We always define a collinear subgraph to include
all its attached collinear lines and the integral over all the small components of the collinear
momenta.

For scalar fields, a collinear subgraph is boost invariant. Thus the collinear subgraph
counts as Q, and the power law for the whole graph is just that for the hard part of the
graph, i.e., 1/Q? in our one-loop example, independent of the space-time dimension.

For a field with spin s, the biggest component of a matrix element of its field grows like
(Q/m)* under a boost to energy of order Q from a rest frame associated with mass m. This
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gives enhancements that we now investigate. We will find them to be particularly notable
for the exchange of a field of the highest spin, i.e., for the gluon.

5.5.5 Yukawa theory, region R,

First we examine the on-shell electromagnetic vertex of a fermion in Yukawa theory. The
Dirac wave functions for a spin-% fermion grows like Q'/? in the center-of-mass frame, so
the tree-graph amplitude grows like Q.

For the one-loop graph in the Yukawa theory in a collinear region, the boost argument
of Sec. 5.5.4 shows that the same Q'!/? growth applies to the whole collinear subgraph
(lines k and p4 — k) as to the Dirac wave function. Thus the power of Q for the whole
graph in the R, region is given by the off-shell propagator i[—y - (pp + k) +m]/[(ps +
k)?> —m?]. This now has dimension —1, so it contributes 1 /Q, and we get a power
suppression.

From the overall numerator factor, [y “(pa—k)+ mq] y [ —y-(ppthk+ mq], this
is not quite so obvious, since it contains two factors with momentum components of order
Q. These might compensate the 1/Q? suppression from the pp + k denominator. But the
large part of the p4 — k numerator can be eliminated by the equations of motion for a Dirac
spinor:

iy (px — kD) =0 =2iay py = (1= 2iaa(m —y*py). (5.38)

The boost argument shows that this is part of a general result, not an accident of a one-loop
calculation.

5.5.6 Gauge theory, region R,

The situation changes when the exchanged line is for a vector field, as in QCD. The collinear
part of the graph is proportional to
/d4k iay*[y - (pa—k)+mgly"
(k2 —m2 +i0) [(pa — k)? —m2 +i0]

(5.39)

Under a boost, the x = + component gains a factor of order Q relative to the size in a
Yukawa theory; this removes the 1/ Q suppression from the off-shell pg + k line. The gluon
collinear region is therefore leading, independently of the space-time dimension. The same
leading power applies to any graph in which arbitrarily many gluons go from a collinear
subgraph to a hard subgraph. This immediately implies that substantial modifications are
needed to the derivation of even the elementary parton model. Instead of considering
graphs like Fig. 2.5(b), we must allow extra gluon exchanges to the hard subgraph, as in
Fig. 5.7(c).

The resulting complications are tamed, as we will see in later chapters, by noticing that
the enhancement is associated with the one component, k = +, of the gluon field that scales
like Q/m under the boost to the collinear-to-A direction. In (5.27), the dominant part of
the gluon numerator is N, _. This dominance can be eliminated by a gauge transformation,
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e.g., by a suitable choice of axial gauge n - A = 0, for which the gluon numerator is

Nsiial-gauge = —g0 kKnA + n/ck)\ . kkkknz )
k-n (k - n)?
If we choose n at rest in the center-of-mass, say n « p4 + pg, the all-important N, _
component is —k~k*n?/(k - n)?. Itis readily checked that when & is a collinear momentum,
this is of order m?/Q?; the contribution of region R, in this gauge is thus suppressed by
two powers of Q.

Another common choice is the light-front gauge: n - A = AT = 0; in that case N, _ is
exactly zero. However, this gauge is not symmetric between p4 and pg, so that it causes
difficulties in a general treatment. Even the non-light-like case, with n? # 0, is not adequate
for our later work, because the singularity at k - n = 0 breaks standard analyticity rules for
propagators that are needed in proofs of factorization; see Ch. 14.

Therefore we will generally stay in the Feynman gauge, with the implication that regions
with collinear gluon exchange, such as region R4, will be leading. However, the fact that
these regions can be made non-leading by a certain choice of gauge, implies that important
simplifications can be made by the use of Ward identities.

We can see the basic idea of the argument by the following chain of approximations for
the numerator. We consider a general situation in which one gluon connects a collinear-to-A
subgraph to a hard subgraph:

(5.40)

collinear-A* N, hard* ~ collinear-A“ N, _ hard™

1
= collinear-A“N,_ — kThard™
i+

ki+ k - hard. 541
All the approximations are accurate at the leading power of Q. In the first line, we replaced
the hard subgraph by its minus component, that dominates in the contraction with the
collinear-to-A subgraph. Then we multiplied and divided by k*, which allows us in the last
line to replace k* ... by k - ... for the gluon connecting to the hard scattering, accurate to
the leading power of Q. Having k contracted with the hard subgraph is exactly of the form
to which a Ward identity applies. This method was obtained by generalizing the argument
of Grammer and Yennie (1973) that was devised for treating IR divergences in QED.

~ collinear-A“ N, _

5.5.7 Effect of different degree of divergence

The above calculations exhibit some quite general phenomena in the estimation of the sizes
of the contributions of different regions. For each PSS, we parameterize the approach to
the PSS by a radial variable A. The general structure of the momentum-space integrands
for Feynman graphs is of products of very simple rational functions. This generally gives
a power-law behavior in A as A — 0, with a cutoff provided by masses.

Because the power-law dependence gives useful order-of-magnitude estimates all the
way from A = 0to A = Q, we can now obtain some interesting relations between the power
laws for different regions. The basic general form of the size of the contribution from a
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region is

1 (2  daaf s 1
Q“/o 5oL (5.42)
where we now allow general exponents. Situations with nested leading regions often require
us to modify these estimates by logarithmic corrections from integrals over the angular
variables, but this will not change the basic power laws and exponents. See p. 115 for an
explanation of the ® notation.

For order-of-magnitude estimates we have a power-law integral dA A#~27 cutoff at the
lower end by mass effects. Let us define the infra-red degree of divergence in the massless
limitby A =2y — 8 — 1.

A common, but not universal, situation in QCD and other theories in four-dimensional
space-time is that we have a logarithmic divergence, A = 0. Then, as we have seen, the
total contribution has the same power 1/ Q¢ as the contribution from the hard region, i.e.,
from A ~ Q, but there is a logarithmic enhancement. If the integrand is modified by a
logarithm, then the number of logarithms increases by one after integration, e.g.,

0 2y—1 s+1
LT (L) 2o M@/m) (5.43)
o Jy o rmy " \% 0"

In this situation all scales between m and Q are important.

In contrast, if we have a power-law divergence A > 0, then the lower end of the integral,
A ~ m, dominates, and the power there is 1/Q% (times O(1/m®)). The power from the
hard region A ~ Q is weaker: 1/Q%"2. From a UV-centric point of view, we can say that
in this situation there are power-law enhancements as we go from large to small momenta.
Alternatively we can take an IR-centric view: momenta near the IR scale dominate, and
there is a convergent extrapolation of the integral to infinite A. This situation is typical in a
model super-renormalizable QFT in a space-time of dimension less than 4.

The reverse holds if A is negative. In that case the hard region A ~ Q dominates and we
can legitimately neglect masses.

In all cases, the power law for the region for the PSS at A = 0is 1/ Q% and the power for
the hard region is 1/Q%*#, with the proviso that we may have logarithmic enhancement(s)
associated with IR degree of divergence zero.

5.5.8 Soft-gluon region Rg

For the soft-gluon region Rg we integrate over a domain like that in Fig. 5.26(c) that
surrounds Ry (a single point in this case). To parameterize the approach to Rg, we use the
same scaling for all components of k:

k' = ask". (5.44)

Again the radial variable A g has the dimensions of mass and is specified by a (non-Lorentz-
covariant) function

rs = fs(k"), (5.45)
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Fig. 5.28. Surface of fixed A surrounding the soft PSS Rj. In contrast to the collinear case,
Fig. 5.27, we have the same scaling on all components of k. The diagonal lines are the soft
ends of the PSSs R, and Rp.

with an appropriate scaling property. We choose

Fsk™y =" k"] (5.46)
“w

(Three-dimensional) surfaces of fixed Ag surround the point £ = 0, which is the PSS for
Ry (Fig. 5.28). From (5.46), the angular variables are normalized to ) M |EM| = 1.

Many interesting complications in perturbative QCD arise from soft gluons and their
couplings to collinear subgraphs. One is simply that soft gluon connected to collinear
subgraphs give leading-power contributions. As we will see in Sec. 5.5.10, another compli-
cation arises because soft loop momenta circulate through collinear subgraphs, so that the
power-counting for Ag depends non-trivially on properties of the collinear subgraphs and
the relative sizes of the components of soft momenta.

We first derive a basic scaling argument for the integral near the PSS Ry for the one-
loop vertex graph. It applies for generic values of the angular variables k, i.e., when any
considered combination of the components of k is of order unity. Later, in Sec. 5.5.10, we
will consider the relatively small Glauber region, where the argument needs to be changed.
For the generic case:

1. The integration measure is dAg A’S‘_l d"~'k, which gives a power A%, where n is the
dimension of space-time.

2. The gluon denominator K2 — m§ is )@Ez — mé, i.e., its size is O(A§ +m?). In the
massless limit, or when m, is negligible, this is simply O(1%). The gluon mass becomes
important when A is around m,.

3. The lower quark denominator is

— —2
(pa — k> —my = pi —my —2py - khs + 25k . (5.47)

Since we treat all the components of k as comparable, the biggest k-dependent term
is —2p}k As, so that the denominator is O(AsQ + m?). In the massless limit, the
dominant term is —2p}k A, i.e., O(AsQ).

4. The upper antiquark denominator is treated similarly, with its dominant part in the
massless limit being 2p§§+kg, also O(A50Q).
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As regards the massless limit, this gives an overall result of order

/dks Ag_] %@ X numerator = /0 ¢ dAg A’;‘SQ’z X numerator. (5.48)
When we set n = 4, the physical space-time dimension, and restore the mass cutoff, we
find a logarithmic enhancement multiplying the explicit power 1/ Q2.

The dependence on the spin of the soft line is rather interesting. The boost argument
of Sec. 5.5.4 shows that the numerator gains a factor of Q%, where s is the spin of the
exchanged soft line. This is an enhancement relative to the power obtained for coupling the
collinear graphs to the hard subgraphs. Hence:

e For the case of both ¢ and Yukawa theory, the exchanged gluon is a scalar. There-
fore the explicit power 1/Q? in (5.48) shows that the region Rg gives a non-leading
power.

e For a vector gluon, the boost argument shows that the case k = + and A = — gives an
extra factor of Q2. So the soft region Ry is leading, independently of the space-time
dimension n.

We have now seen that in a gauge theory all of the regions R4, R, and Ry for the vertex
graph are of leading power. In contrast, none is leading in theories without a gauge field.
The remaining regions R4 and R are always non-leading. In the absence of a vector field,
only the hard region Ry could be leading. Hence a large number of complications in the
parton physics of QCD result from QCD being a gauge theory.

5.5.9 Where are the vertices in space-time for the soft region?

Although the virtualities are different for soft and collinear lines ()\g and Ag Q respectively),
both kinds of line give the same time scale 1/)g in the center-of-mass frame. This arises
from time dilation of the collinear lines, and can be deduced from (5.36).

When we work with more complicated regions, it is useful for the time scale to match
the one in (5.37) for the collinear region. So we define A by As = A2/ Q, so that

2y
Soft: = —k . (5.49)
0
Then the time scale is the same as for the collinear region, i.e., Q/ A2, to the extent that we
neglect masses. It is naturally appropriate to use the A as a redefined radial variable for the
soft region.

The effect of masses is different for collinear and soft momenta. For the collinear case,
masses give a lower cutoff of m on A. For the soft region, this also applies to the quark
mass. But the gluon mass implies a more stringent cutoff, at A ~ ,/m, Q. So for the soft
region we replace (5.37) by

0

At ~ . 5.50
max(A%, mg Q, m?) (5-50)
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Of course this makes no difference if the gluon is massless. But in real QCD there is some
kind of non-perturbative infra-red cutoff due to confinement, so in real QCD physics m, in
the above equation should be replaced by A.

Even so, the two widely different scales of cutoff indicate that when we go to higher-
order diagrams there can be complications. It will turn out that most of these will be avoided
after we use Ward identities to sum over different ways of attaching soft lines to collinear
subgraphs. Moreover the non-perturbative cutoff does not apply directly to Feynman graphs,
so there will be some interesting issues in the leading regions and their interpretation in
Feynman graphs with massless gluons and massive quarks, that will involve us with regions
that are not really physical.

5.5.10 “Glauber” region

Just as with the collinear regions, there are certain parts of the integration over angular
variables k where denominators get much smaller than the estimates used above. Again we
need to investigate to what extent contour deformation can rescue them, but the conclusions
will now be less trivial. The necessary contour deformations work for some situations like
the vertex graph, but fail for others.

This issue does not concern only the determination of the power law associated with
the soft region. More importantly, it gives a danger of violating the Grammer-Yennie
approximation that is essential in deriving factorization, by allowing us to apply Ward
identities to the sum over soft gluon connections to collinear subgraphs. The approximation
is a simple generalization of (5.41):

(coll. A) N, (coll. BY* ~ (coll. A)* N=F (coll. B)~
Nt

~ (coll. A) - k = k - (coll. B). (5.51)
Here, our aim is a formula in which the gluon momentum k is contracted with each
collinear factor, so that we can apply Ward identities. The critical step is in the second
line, where we use the following approximations that are valid to the leading power of
Q if the components of k are not too much different: k - (coll. A) >~ k~(coll. A)* and
(coll. B) - k ~ (coll. B)"k™.

When these approximations are valid, we will find that in our actual applications further
approximations of k in the collinear factors are useful and valid: to replace k inside the
collinear-B part by its plus component and to replace k inside the collinear-A part by its
minus component.

These approximations rely on all components of k£ being comparable. Thus one or more
of the approximations fails when k= and/or k* gets too small with respect to the other
components. By examining the relative sizes of components of collinear momenta, we find
that the approximations are accurate under the following conditions:

m? kt (ph)?

—_ — , 5.52
TR <= €55 (3.52)
kt m - m
-— —, — > —. (5.53)
kt Pa kT PA
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The first line simply states that the rapidity of the gluon must be well inside the range
between the collinear rapidities, which is essentially the simplest definition of the soft
region. The conditions on the second line are that the longitudinal components of k should
not be too much smaller than the transverse momentum. Where the approximations and
standard power-counting hold for the soft region, we deduce that

m?

o (5.54)

|k"kF| > ki

We now ask when the conditions fail. If the failure is only of the conditions on the rapidity
of k, that simply takes us to one of the collinear regions; this does not concern us here since
we treat the collinear regions separately. However, a failure of (5.54) is problematic. When
this condition fails, we have |kTk™| < k%. This puts k in a region called the Glauber region
(Bodwin, Brodsky, and Lepage, 1981) in view of its importance in final-state interactions in
high-energy scattering. The same region was also termed the “Coulomb region” in Collins
and Sterman (1981).

In the case we are currently treating, the vertex function, we can perform a contour
deformation on either or both of k™ and k™ to get out of the Glauber region. Consider
first the k™ integral in the Glauber region. We can neglect k* compared with p} in the
pa — k denominator; this is generally true when k is soft. We can also neglect k™ in the
gluon denominator, specifically because of the Glauber-region condition [k*k~| < k3. This
leaves the denominator (pg + k)*> — m? 4+ i0 ~ 2ppkt — k% + p% — m? +i0, and we can
therefore deform k% into the upper half plane. Similarly we can deform k™ into the lower
half plane.

The limits of the deformation on k* are given by other poles, notably that of the gluon.
The deformed contour no longer goes through the Glauber region. So on the deformed
contour in the soft region, the standard power-counting and the Grammer-Yennie approx-
imation are valid. However, the denominators in the Grammer- Yennie approximation give
extra singularities at k* = 0 and k= = 0, i.e., in the Glauber region close to the poles on
the quark propagators. Thus the denominators must be equipped with {0 prescriptions that
do not block the contour deformation:

(coll. AY* Ny, (coll. B)* ~ (coll. A) - k p= l—iO Nt p i_ m k- (coll. B). (5.55)

In the previous paragraphs, there is a change of the kind of pole avoidance under
discussion compared with the earlier part of this chapter. Initially, we viewed momenta
relative to the large scale O, and determined whether or not momentum components were
forced go through regions where they are much smaller than Q. Now we are examining a
soft momentum, of size Ay < Q, and are determining whether or not its plus and/or minus
components are forced to go through regions where they are much smaller than Ag.

Although we derived it only for the one-loop graph, the contour deformation applies
very generally to avoid the Glauber region in our process. Consider a general reduced
graph (Fig. 5.29) for the vertex, and let £k be a momentum flowing down on a soft line
from the upper collinear graph B. We know that the flow of minus momentum in the B
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Fig. 5.29. Reduced graph for vertex.
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Fig. 5.30. Contour deformations out of Glauber region for (a) k*, (b) k. The crosses near
the origin are final-state Glauber-region poles in collinear subgraphs. The crosses near the
edges are other poles that limit the contour deformation.

subgraph is all towards the future, from the hard subgraph H to the final-state particle
pp- There must be a sequence of lines in B that gets to the vertex with line k from H by
going forward with the flow of the minus component of momentum. We can choose to set
up k as a loop momentum that goes along these lines, and completes its loop through H
and A.

If k* is small enough for k to be in the Glauber region, then the only important depen-
dence on kT is in B. Since k goes with the flow of collinear minus momentum, all the
nearby poles are in the lower half plane, as in

1 1
(kg +k)> —m?+i0 ~ 2kzkt — D +i0

(5.56)

Here kg is a generic collinear momentum on a line of subgraph B, and D does not depend
on k. Thus the same contour deformation into the upper half plane works as for the
one-loop graph. A similar argument applies to a Glauber momentum attaching to the A
subgraph.

This situation is illustrated in Fig. 5.30, and we characterize it by saying that all singu-
larities in subgraphs A and B are in the final state; the lines in A and B all go out to the
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future from the hard scattering. To see a direct relation to a space-time picture, we simply
Fourier-transform (5.56) into coordinate space, with the soft-gluon approximation that only
the k™ dependence of the propagator is retained:

d4k —ik-x 7 L _
¢ ~ L s(h)s@(xr) O(x e PICkE - (557)

TO= | ey sk —D1io %

When x~ < 0, we get zero, because the integrand decreases rapidly to zero in the upper
half plane of k™, so that we can close the k™ contour in the upper half plane. But when
x~ > 0 we close the contour in the lower half plane and pick up the residue of the pole.
More generally, for any function whose singularities in k™ are only in the lower half plane,
its Fourier transform is non-zero only for positive values of x ~. This is so general a property
that the contour-deformation result applies beyond perturbation theory.

The delta functions in (5.57) show that, from the point of view of a soft gluon, the
collinear subgraph is a line going to the future in a light-like direction from the hard
scattering, so that the soft gluon does not resolve any internal structure of the collinear
system.

5.5.11 Soft-quark regions, R, and Ry

The remaining PSSs for the one-loop vertex graph are R4 and Rp where one of the
fermion lines is soft. Power-counting like that for the soft-gluon case, Rg, gives a sup-
pression by at least one power of Q. Our general treatment, Sec. 5.8, will show that this
happens because one end of a soft-quark line is at the hard subgraph instead of a collinear
subgraph.

5.6 Which reactions have a pinch in the Glauber region?

For the vertex graph, the ability to deform out of the Glauber region is tied to the collinear
lines all being final-state lines. We now ask for situations in which we cannot perform
this deformation. This requires reactions in which both initial-state and final-state collinear
lines are present. See Ch. 14 for some of the resulting complications. The reduced-diagram
technique enables us to diagnose these cases very readily, and in fact we already have a
supply of interesting examples.

Reactions for hadron production in e*e™ annihilation via a single virtual photon will
always have the hadrons in the final state. Hence these reactions are always safe from the
Glauber region.

For DIS (Figs. 5.13 and 5.14) the jets are always outgoing, so contour deformation out
of the Glauber region is possible for k~. Target-collinear lines can be in both the initial
and final state (Fig. 5.13(b)) so k™ is trapped. But to avoid the Glauber region, it turns out
to be sufficient that a deformation can be made on k~ (Collins, 1998b; Collins and Metz,
2004). This applies equally to variations on DIS, like deeply virtual Compton scattering
and exclusive meson production in DIS.
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Fig. 5.31. (a) Simple Feynman graph for DY process. (b) The same with addition of a gluon
exchanged between the spectator lines; the gluon’s momentum is trapped in the Glauber
region.

5.6.1 Remnant-remnant interactions in Drell-Yan

The situation changes for the Drell-Yan (DY) process,’ since the initial state has two

oppositely moving hadrons, and the final state contains the beam remnants (Fig. 5.17).

Physically, what happens can be seen in the microscopic view of a scattering reaction
in Fig. 5.18. One parton out of each hadron collides at the short-distance hard interaction
indicated by the star. The transverse separation of these two active partons is of order
1/Q, corresponding to the scale of the hard collision. Inside the hadrons, partons are
spread out over a transverse area proportional to 72, where » ~ 1 fm is the size of a
hadron. The transverse area is not changed under a boost. The probability that a pair of
partons is within 1/Q of each other in the transverse direction is therefore proportional
to 1/(Qr)?, which corresponds to a hard-scattering cross section decreasing with 1/Q? at
large Q.

But when the active partons collide, the remnants of the two hadrons overlap, and can
therefore interact. Remnant-remnant interactions of small momentum transfer occur with
high probability, since such hadronic interactions are strong. One direct manifestation is
that the total hadron-hadron cross section is of order 2 (Amsler et al., 2008). Thus we
know experimentally that interactions happen with high probability whenever the impact
parameter of a pair of hadrons is less than about r. The strong remnant interactions involve
momentum exchanges in the Glauber region.

5.6.2 Glauber pinch in momentum space

We now verify from an example that spectator-spectator interactions are trapped in the
Glauber region for the Drell-Yan process, and that they give a leading power. In Fig. 5.31
are shown two graphs for the Drell-Yan amplitude when the beam particles are modeled by
elementary particles. In both graphs, each beam particle splits into a quark-antiquark pair.
A quark out of one beam annihilates with an antiquark out of the other to make a high-mass

5 And generally for hard processes in hadron-hadron collisions.
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virtual photon. Graph (a) gives an example of pure parton-model physics, but graph (b) has
a gluon exchanged between the beam remnants, and I will show that the gluon is trapped
in the Glauber region.

The value of graph (a) is

—kp+m e Katm
kz —m2+i0" kg —m?+i0

—IZB FB FA va. (558)

Here up and v, are the Dirac wave functions for the final-state fermions. The matrices I'p
and "4 give the coupling between the beam particles and quarks. We choose the kinematic
region where the fermions are prototypically collinear, with transverse momenta of order m,
as is appropriate for the parton model. The large components of kg and k4 are determined
by the virtual photon momentum (5.15), so that

ka = (xaP;.0,01)+ (0(m*/Q), O(m*/Q), O(m)), (5.59)
kg = (0, x5 Py, 0r) + (O(m*/ Q). O(m*/Q), O(m)). (5.60)
Graph (b) gives
o [ d% 1 o Ps—kg—Kk+m

) et e =m0 Py — ks — k2 —m?+i0
_kB_k+m © kA—k+m
xI'p 5 T4 5 >
(kg + k)> —m? +1i0 (kx — k)? —m?+i0
wr, Patka—ktm (5.61)

A Py—kat kP —m2+i0”
where the gluon couplings are replaced by their dominant minus and plus components.
The gluon has transverse momentum of order the usual radial variable Ag for the soft
PSS, and the most characteristic value to model non-perturbative hadronic interactions is
)\S ~m.

We first make approximations that are always valid when the gluon is soft, independently
of whether it is in the Glauber subregion. So we neglect k= with respect to k in the
collinear-to- B denominators, and similarly for k™ in the collinear-to-A denominators. Thus

(kg + k) —m? +i0 = 2(k* + kp)ky — (kt + kgt)* —m* +i0
= 2kTky + k3 —m? — 2ky - kgt — k3 + i0
= 2kTky + O(m?, mhs, A%) + i0. (5.62)

This approximation needs the assumption that all components of k are much less than Q,
but it needs no assumption on the relative sizes of the components.

If k£ were in the generic part of the soft region we could further approximate by noting
that k*k; would be of order A5 Q, so that

(kg +k)* —m? +i0 ~ 2kTky + k3 —m? +i0. (k not Glauber) (5.63)

But this further approximation fails in the Glauber region, |k Tk~ | < k3.
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The relevant part of the integral (5.61) now becomes
dkt dk™ numerator
Qn)? 2ktk~ — ki —m2 40
1
2k Py — k)t 4 0] 2k hy + . 4 0]
1
2k kL 4 02k (Pr — kD) + ...+ i0]

(5.64)

i)

where the terms indicated by “...” are independent of k™ and k~, and are of order
m?, mhg, A% In the Glauber region, |k*k~| < |kr|?, only the poles on the collinear
lines are relevant. We see immediately that k* and k~ are trapped there, with k% =
O(m?*, mhs, 23)/ Q, to be compared to kt = O(Ls).

The dominant contribution is in fact where Ag = O(m). Smaller values are cut off by
the gluon mass, while there are enough powers of k% in the denominators to suppress larger
values, given our assumption about the collinear kinematics of k4 and kp.

The asymmetric sizes, k* = O(m? / Q) and kt = O(m), correspond to the momentum
exchanged in small-angle elastic scattering. They are therefore natural values for spectator-
spectator interactions. The sizes of k* correspond to the small components of collinear
momenta.

To obtain the power law in Q, we compute the size of the graph compared with the basic
graph, Fig. 5.31(a). The extra Glauber gluon brings in the following powers:

e integration measure: mb / 02, from the sizes of k* and kr;
e three denominators each of order 1/ m2;
e a numerator of order Q? because the gluon is a vector particle.

This is independent of Q, with the numerator canceling the small range of k*. If the
space-time dimension is changed from n = 4, we still get the same power of Q. The basic
graph, Fig. 5.31(a), has the power-counting of the parton model, which we use to define
the leading power for the process. Therefore, there is an unsuppressed contribution from
Glauber corrections. This result is unchanged if we make the collinear subgraphs arbitrarily
complicated.

5.6.3 Generalized Landau-equation analysis for Glauber region

The actual integrals for Feynman graphs are in a high dimension. So, as in the elementary
association between regions and massless PSSs, one can ask whether there is a possibility of
an unforeseen exotic deformation in the high-dimensional complex space, and one can ask
for a general characterization of Glauber regions. In a one-loop example, it was sufficient
to visualize the relevant one-dimensional contour integrals. I now give an appropriate
argument, generalized from the Libby-Sterman method.

In the first part of this chapter, we scaled all momentum components with Q. From this,
we showed that integration momenta are trapped at small virtualities in the vicinity of exact
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PSSs in the massless limit. The Landau method determined the locations of the PSSs quite
generally.

To determine the existence or non-existence of a Glauber pinch, we generalize this
strategy. We devise a scaling such that a trapping in a Glauber region corresponds to an
exact pinch in a certain limit. Then we use a variation of the Landau analysis to locate the
exact pinches systematically.

First I show that an exact Glauber pinch occurs when we replace the collinear denom-
inators by just the terms of the form that are the non-dotted terms in (5.64). These terms
are given by taking the asymptotics of large Q while holding the overall size of the soft
momentum fixed at order Ag, and treating the collinear scaling factor as Ag. (Thus the
transverse parts of collinear momenta are treated as order Xg.) For this limit we also require
that Lg is of order m or bigger. Asymptotically, the propagator of the soft line remains
unaltered, but the collinear denominators are simplified, so that they are just a factor of k™
or k™ times a large component of the collinear momentum, e.g.,

1 1
X
K2 —m2+i0 = [<2k*(Py — kp) +i0] [2k*ky + i0]
1

" [C2k—k} + 0] 2k~ (P} — k1) +i0]° (5.65)
The trapping of k* at k* « Ag has now become an exact pinch at k* = 0. The on-shell
condition for the collinear-to-B propagators is k* = 0, and for the collinear-to-A propa-
gators is k~ = 0. In the chosen scaling limit, the on-shell conditions apply independently
of kr, which represents a significant change from the standard Landau analysis. At the
singularities, at k™ = 0 and/or k= = 0, the gluon denominator is non-zero, so the gluon
line counts as part of a vertex of a reduced graph for this analysis: it is a hard subgraph
relative to the collinear propagators.

To determine allowed directions of contour deformation, we need derivatives of the
collinear propagators, as in (5.25). The derivatives of the collinear denominators are now
exactly light-like directions. In space-time, these correspond to propagation along a light-
like line, as in (5.57). For example, the collinear-to- B lines give

2P, —k,
dD(Py — kg — k) ( 5 5) 5.66)
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We have used column vectors for the derivatives, to distinguish them from the row vec-
tors we use for normal contravariant momentum vectors. In the asymptotic limit these
vectors are opposite in direction, so that when we apply a contour deformation, as in
(5.24), the imaginary parts generated by the deformation are opposite; the deformation
fails.
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Applying this analysis in general shows that the general Glauber-pinch configuration
is like having one or more extra hard scatterings (of the spectator collinear lines). The
condition for a classical scattering applies, and the only change with respect to the standard
hard-scattering case is the much lower momentum transfer.

5.7 Coordinates for a PSS

We now resume our general analysis. So far, we have used the Landau-equation/reduced-
diagram method to locate PSSs; this led to a catalog of important momentum regions. We
next formalize and systematize the variables we use for a general treatment, after giving a
general characterization of the class of problems we address.

For each PSS R we will define “intrinsic coordinates”, which parameterize location
on the PSS itself, and normal coordinates, which parameterize deviations off the PSS.
The normal coordinates are required to be zero on the PSS. From the normal coordinates, we
will define a radial coordinate X, with the dimensions of mass, to give a notion of distance
from the PSS. Then we will define what we term angular coordinates to parameterize
surfaces of fixed Az surrounding the PSS.

This gives us a language, which lets us perform power-counting in Sec. 5.8, to determine
which PSSs are leading. These results then support all the later work in this book.

For any of the reactions that we discuss, there is an intimidating multiplicity of regions,
and this comes from a genuine complexity: there are infinitely many graphs, and high-order
graphs have high-dimensional loop integrations, with a large number of leading regions. In
QCD, unadorned low-order perturbative calculations are not adequate for estimating cross
sections, except in very few cases, as in Ch. 4. So, to get a useful and productive analysis
of the behavior of some amplitude or cross section, we need general methods that do not
require detailed analysis of individual graphs.®

The general strategy is essentially a recursive divide-and-conquer. We discuss each
leading region separately, and arrange to analyze it in terms of diagrammatic decompositions
such as Fig. 5.17. By our choice of coordinates, the analysis of a general region can be
visualized by a diagram that appeared in one of our examples, Fig. 5.28. At the end, it will
(perhaps) be evident that there are structures here that go beyond the perturbatively based
situations in which we derive them.

5.7.1 Relations between regions

The key elements of a general discussion are the geometrical and topological relations
between different regions, as in (5.21) and in Fig. 5.28. We take a particular point on some
PSS R for a graph, and examine a neighborhood, parameterized by a radial variable Ag.

e Some propagators are off-shell at the PSS. For these, the effect of varying A is suppressed
by a power of Ag/Q, and the denominators have a fixed order of magnitude.
e Denominators of the other propagators go to zero when Ag and masses go to zero.

¢ But motivations can be obtained by analyzing suitable low-order graphs.



5.7 Coordinates for a PSS 131

A
X
A
AN

A A

AR

A

A XA
P
P

OSSN A

Fig. 5.32. Representation of line/surface of constant A surrounding a PSS R at a particular
value of the intrinsic coordinate(s), together with the relation to bigger and smaller PSSs.
See the text for details.

e At a generic point around a surface of fixed Ag, we perform elementary power-counting
for the order of magnitude of the graph at R.

e But close to certain submanifolds of a fixed Ag surface, some denominators get much
smaller than the power-counting estimate. The location of these submanifolds will be
obtained in Sec. 5.10 by iterating the Libby-Sterman analysis. With certain exceptions,
each such submanifold corresponds to the intersection of the surface of fixed A with the
PSS for another region R’ larger than the first one.

The general situation is illustrated in Fig. 5.32. The thick vertical line represents the
PSS R, and there may be smaller PSSs, represented by the dots at the ends of R. There
may be one or more larger PSSs, exemplified by the shaded plane at the left of the figure.
Surrounding R, at a fixed value of the intrinsic coordinate(s), is a line of constant Ag.
The integration contour, and therefore Fig. 5.32, is deformed in the space of complex
momenta to avoid non-pinch singularities.

In the figure the dimension of R is one, while the dimensions of the smaller and
larger PSSs are zero and two. But in general, R may have any dimension from zero for
a soft-gluon region in a one-loop vertex to a very high dimension in a multiloop graph,
with appropriate ranges for the smaller and bigger PSSs.

e There are exceptions to the rule that, in the integration over angular variables, intersec-
tions with larger PSSs determine the locations where the integrand gets much smaller than
the standard for R. These are typified by the Glauber region we met in Secs. 5.5.10 and
5.6. In processes without a Glauber pinch, we do not have to worry about the exceptions.

o After the intrinsic coordinates for R are integrated over, the integration includes smaller
PSSs, and we need to mesh the analysis of R with the analysis of the smaller PSSs.

e Factorization theorems generalizing the parton model are obtained by expanding in
powers of Ag about a PSS, and then (typically) taking the leading power. The previous
items will tell us how to modify this analysis to deal with multiple regions.

5.7.2 Formulation of problem

We denote by G(py, ... pusq1,...;m, iU, a;(n)) the Green function, amplitude or cross
section to be treated. It depends on external momenta py, ps,...;qi, ... We divide these
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into two classes, to be defined below, distinguished by the letters p and g. This gener-
alizes the usage in DIS, where p is the target momentum and ¢ is the virtual photon
momentum.

The asymptotic behavior to be treated is specified by a scalar variable Q that gets large.
We work in a particular frame like the center-of-mass frame for the DY process, or the Breit
frame for DIS. We call this the reference frame for the process. In this frame all the external
momenta have some components of order Q. The p; momenta have fixed masses, while
the g; momenta have invariant sizes of order 0?. [Here we mean ©((Q?) in the notation
of App. A.17.] The g;s are typically fixed vectors proportional to Q, or are obtained from
such a vector by at most a finite, bounded boost from the reference frame. We also rule out
the trivial but irrelevant case of giving a common large boost to a set of fixed momenta p;.
A Lorentz-invariant characterization is as follows.

1. Define scaled momenta by p; = p!'/Q, G = q!'/ Q.

2. We take Q large (i.e., much larger than particle masses) with each of the scaled external
momenta smoothly approaching a fixed limit as Q — oo.

3. The limit of each p; is a light-like vector, and the limit of each §; is a non-light-like
vector.

4. From the light-like limit vectors, we construct a set of unscaled light-like momenta
DA,00> PB,oos €IC., as in our examples, €.8., pa oo = Q limg_, o Pa. Associated with each
collinear subgraph is one such light-like momentum, which we will call the reference
momentum for the subgraph. At the PSS, the momenta of the lines of the collinear
subgraph are proportional to its reference momentum.

5. At least one of the Lorentz invariants g; - g, ¢; - pj, and p; - p; increases like Q? as
Q — o0; none increases more rapidly.

Since this is intended to be a universal characterization, the following caveats apply.

e Some of the limiting light-like vectors may be proportional to each other. This is the
case, for example, for the momenta p and p’ in the DVCS process. So we just pick one
of these to be in the set of p4 ., etc.

e Certain minor variations on the theme are also covered; for example:

— In the Drell-Yan cross section, the transverse momentum may range from very small
to order Q; it may also be integrated over. The key point for the asymptotic analysis
is that the invariants g2, p4 - ¢, ps - g, and p4 - pg are all of order Q2.

— Some quark and hadron masses may be large, of order Q or bigger.

e There may be no need for the g; momenta. This is the case for high-energy elastic
scattering at wide angle, where the momenta of the external particles are sufficient to
specify the process. The previously stated principles tell us to define Q = /s, up to
some constant factor.

o We take G to be connected. A disconnected amplitude can always be discussed in terms
of its connected components.

A more serious complication is when the invariants have a range of sizes. A typical
and important case is DIS at small x, when p - ¢ &< Q%/x > Q2. Another case would be
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high-energy elastic scattering at small angle, where |f| < s. A complete discussion of such
situations requires a generalization of our analysis.

5.7.3 Intrinsic and normal coordinates

We now show how to define intrinsic and normal coordinates for a PSS. These generalize
our earlier examples.

For the collinear-to-A PSS of the vertex graph, we used z = k™/p? as the sole intrinsic
coordinate, in (5.18), with k~ and kt as the normal coordinates. The smallest PSSs, Rg,
R4 and Rp/, were just points. Thus they had no intrinsic coordinates, while suitable normal
coordinates were 4-momentum deviations from the PSS, e.g., k for Ry.

Naturally, the choice for these coordinates is non-unique. But certain general guidelines
apply. Each coordinate system is particularly useful in a neighborhood of its own PSS. But
it must apply to the whole of loop-momentum space, or at the very least to a large region of
size of order Q including the PSS. The transformation from the local coordinates around
the PSS to ordinary momentum variables must be analytic, certainly near the PSS and its
smaller PSSs. The intrinsic coordinates extend uniquely beyond the boundaries of their
PSS. Without this requirement, artificial coordinate singularities would complicate all our
discussions.

Each line in a reduced diagram for a PSS in a massless theory has a momentum parallel
to one of the light-like limit momenta, or is zero. For the collinear lines we choose intrinsic
coordinates as fractional momenta, each with respect to the light-like limit momentum,
€.2., PA.oo, Of its collinear subgraph. The remaining intrinsic variables are the hard loop
momenta. Now each PSS is a segment of a flat hyperplane in loop-momentum space.
So with the definitions just given, the intrinsic coordinates of a PSS extend simply and
naturally to the whole of the hyperplanes, beyond the boundaries of the regions where
there is a pinch. Similarly we take the normal coordinates to be ordinary linear coordinates
in momentum space. Thus there is a unique natural extension of the coordinates to the
whole of loop-momentum space. (Our treatment of collinear regions for the vertex graph
illustrated this.)

5.7.4 Radial coordinates

We obtain the power-counting for a PSS from the integral over a radial coordinate X,
for which we now present a suitable definition. We choose A to have the dimensions of
mass.

To make the definition, we split the normal coordinates into two sets. One set consists of
soft loop momenta circulating through soft and possibly some collinear and hard subgraphs.
The other set consists of collinear loop momenta each circulating through a particular
collinear subgraph and possibly through hard subgraph(s).

We will write each individual normal component as a power of A times a dimensionless
angular variable and a possible Q-dependent normalizing factor, as in (5.29) and (5.49),
with a chosen normalization condition on the angular variables.
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General collinear momenta

We specify the scalings for a collinear momentum exactly as for a collinear region for
the vertex graph, but we need to define a light-front coordinate system separately for each
collinear subgraph.

Let k be a collinear momentum in a particular collinear subgraph, and let p, be the light-
like reference momentum for the subgraph. We define time and spatial parts of vectors in the
reference frame (e.g., center-of-mass) of the process as a whole. Plus and minus coordinates
relative to po, are

1
EE k0 +n- k). (5.68)
V2

Here n is a unit vector for the spatial direction of ps,. Then the transverse momentum is
+ -
ker €k — Ij/—i(l, n) — k—ﬁ(l, —n), (5.69)

where the representations of vectors are in normal time-space coordinates, in the reference
frame.

Then the scalings of k are defined by exactly (5.29), with p} replaced by pt, o Q; that
is, a scaling with A2 fork~ and a scaling A for kt.

Note that a covariant specification of the plus and minus coordinates needs two 4-vectors.
In effect, we have taken these as the light-like reference vector for the collinear subgraph,

and the rest vector of the overall reference frame for the process.

Soft momenta

As in Sec. 5.5.9, we define the scaling for soft momenta by

A
ks = Eks. (5.70)

Thus the power-counting of a soft momentum flowing through a collinear subgraph is the
same as the smallest component of a collinear momentum, and the time scales of the soft
and collinear lines are the same.

Normalization condition
A possible normalization condition on the angular variables is

> (F+ )+ YL (5.71)

collinear k soft k

which generalizes (5.31) and (5.46), with suitable homogeneity properties under rescaling
of A.

5.8 Power-counting

A basic issue in analyzing processes of the kind described in Sec. 5.7.2 is to understand the
general size of the cross section or amplitude. The primary complication is that propagator
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denominators vary widely in size in the integration over loop momenta. To handle this
issue, we use the language of PSSs in the massless theory.

In this section, for each PSS R, we categorize by a power of Q the contribution from
integration over a neighborhood of R. We will identify those PSSs that give the leading
power for the processes we consider. For deriving factorization, we normally only retain
the leading power, e.g., for DIS the power Q°, which corresponds to Bjorken scaling. The
restriction to the leading power is important because PSSs with a non-leading power often
have a much more complicated structure than those for the leading power.

In deriving the power laws, we will see that logarithmic enhancements arise from
integrations between different nested regions. But logarithms do not affect the utility of
dropping non-leading power terms.

The derivation involves estimates of the sizes of propagator denominators near a PSS.
In later chapters a consequence will be the construction of an appropriate approximation
for each leading PSS. These approximations enable the derivation of useful factorization
theorems.

We will vary terminology between “PSS” and “region”. Precise formulations use PSSs
in the massless theory. But we talk about a region, rather than the associated PSS, when we
wish to emphasize, for example, that the associated power of Q concerns the contribution
from a neighborhood of the PSS in the real theory.

The present formulation originates in the work of Sterman (1996), but with improve-
ments, closely following the treatment of Collins, Frankfurt, and Strikman (1997). This
treatment relies on general properties of dimensional analysis and of Lorentz transforma-
tions rather than on a detailed analysis of the numbers of loops, lines and vertices of graphs
and subgraphs. Using such general properties, in particular the transformation of collinear
subgraphs under large boosts, gives the results a validity beyond strict perturbation theory.
Although much of the treatment concerns Feynman graphs, the collinear and soft factors
should really be non-perturbative.

Much earlier work used an axial gauge (e.g., A" =0,43=0,or AT = 0) or the Coulomb
gauge. However, the unphysical singularities in the gluon propagator for such “physical
gauges” prevent us from using contour deformation arguments. Thus we prefer to work in a
covariant gauge — see the discussion of the Glauber region in Sec. 5.5.10, where unphysical
singularities in physical gauges would have obstructed a contour deformation out of the
Glauber region.

Therefore we normally use a covariant gauge, like the Feynman gauge. The price is that
leading regions (e.g., Fig. 5.7(c) for DIS) have arbitrarily many extra gluons joining the
collinear and hard subgraphs. But these gluons have a particular “scalar” polarization for
which Ward identities apply to convert the sum over all possibilities to a factorized form.

5.8.1 Comments on power of Q and dimensions

A danger in formulating general results is that one misses nuances of particular cases.
Consider the simplest general statement of the leading power of Q, that it corresponds
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Fig. 5.33. Elementary contribution to Drell-Yan with single spectator.

to the dimension of the cross section or amplitude under consideration, as in (5.5). This
rule is indeed correct for the DIS structure functions F; or F;, with their power Q0 that
corresponds to Bjorken scaling. But modifications are needed for certain other cases. For
example, in Sec. 5.8.2 we will find that a different power is needed for the Drell-Yan cross
section, in the case that the transverse momentum gt is much less than Q.

The culprit is a delta function for transverse-momentum conservation. Essentially the
derivations of power-counting are at their most straightforward when applied to ordinary
functions, not to delta functions.

In general, a reliable strategy for dealing with such issues is to start by analyzing very
simple graphs for the process under consideration, e.g., graphs such as Fig. 5.20 that gives
the parton model for the Drell-Yan process, or, better still, just the lowest-order case,
Fig. 5.33. A general region for the process can have more-complicated region subgraphs,
and can have more lines joining the subgraphs. The changes relative to the simplest graph are
robustly handled by our general derivation of the power-counting rules, in later sections.
It is just the most basic situation that needs to be treated in a more process-specific
fashion.

5.8.2 Power-counting for DY

To see these issues concretely, consider the fully differential cross section for the Drell-
Yan process (5.14). This can be written as do / d*q dQ2, where ¢ is the momentum of the
lepton pair and d€2 is for the polar angles 6 and ¢ that give the directions of the individual
leptons. Since the lepton pair results from a single virtual photon, the angular distribution
is a second-order polynomial in the sine and cosine of the polar angles; thus no special
issues arise that depend on different regions of 8 and ¢. The cross section has an energy
dimension of —6, and the natural power law is Q~%, where Q is the mass of the lepton pair
0= \/c? , assumed to be comparable with the center-of-mass energy.

This power law is in fact correct when the transverse momentum gt of the lepton pair is
comparable with Q. But I will now illustrate, by examining graphs of the form of Fig. 5.33,
that when gt is much smaller than Q, the power law must be changed to the much bigger
value 1/(Q* q%). This power is cut off by the effects of hadronic masses when gr is of order
a hadronic mass.
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Let us write the graph as
/ d*ka d*kp B(kp, Pg) Alka, Pa) H(ka, kg, q)8(q — ka — kp), (5.72)

where A and B represent the upper and lower bubbles, while H represents the product of
the amplitudes for the ¢§ — ut ™ amplitude. Initially, we assume that the initial particles
P4 and Pg are elementary, and for the purposes of understanding the power-counting it is
sufficient to take the subgraphs A and B to be the simplest tree graphs, as in Fig. 5.33.

We must now investigate the following regions for Fig. 5.33, which can be distinguished
by the values of the transverse components of the loop momenta:

e the purely hard region, where the whole graph forms the hard subgraph, so that both k4 1
and kg are of order Q;

o the single-collinear regions where only one transverse momentum is of order Q; the
other is power-counted as order A <K Q;

e the double-collinear region, where both k4 r and k1t are much less than Q; they are both
counted as order A.

In the purely hard region, dimensional analysis applies unambiguously to give the basic
1/ Q% power. There are delta functions in A and B to put the spectator particles on-shell.
But these set the sizes of momentum components that are of order O, and the dimensional
analysis argument still works. In this region of loop momenta, the 1/Q% power law applies
independently of the value of the external transverse momentum gr. The hadronic final
state contains two jets of high transverse momentum, corresponding to the remnant partons,
which have large transverse momentum.

Next, consider a single-collinear region; for definiteness let us choose k4 to be collinear
to P4, so that k47 is of order A. The other transverse momentum kgt is large and must
therefore flow out into the virtual photon. Hence this region only exists when the lepton pair
has transverse momentum of order Q. This large transverse momentum is approximately
balanced by a final-state jet formed by a remnant parton on the B side.

We can think of the collinear subgraph as having an approximate rest frame in which
all components of its momenta are of order A. Given that parton A is a quark, the collinear
subgraph has dimension —3; the measure of the k4 integral has dimension +4, for a total
dimension of +1. This corresponds to a power A, instead of a power Q which we would
obtain for the same subgraph in the purely hard region. But the subgraph is boosted from its
rest frame. Each of the lines connecting it to the hard subgraph has spin-%, so that largest
components of the spinors on each line gain a factor of (Q/A)!/? from the boost, for a
total of Q/A. Thus the complete power law is (A/ Q)" relative to the purely hard case; that
is, the overall power remains unchanged. Thus we still get the overall power Q~° for a
single-collinear region, but this region only exists for the large-gr region.

It is worth noting that although the detailed argument depends on the spin of the quark,
the power law does not. If we were to use a model with a scalar quark, then there would be
no Q/X enhancement from the boost, but the collinear subgraph, complete with its integral,
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has dimension 0. So the overall power is unchanged. The same argument applies to gluons
with transverse polarization. But a virtual gluon can also have a polarization in the direction
of the large momentum, and boosting each of two gluons gives an enhancement by a factor
(Q/1)%. But a Ward-identity argument will show that this part cancels after a sum over all
possible hard subgraphs: see Ch. 11 for the simplest such derivation.

Finally, we examine the double-collinear region. The virtual photon has transverse
momentum k4t + kpt, which is of order A. The separate collinear subgraphs give an
unchanged power of Q just as in the single-collinear region. However, in the delta function
for transverse momentum conservation, 8% (gr — kat — k1), all the momenta are of order
A. So the delta function power counts as 1/A? instead of 1/ Q2. As previously announced,
the result is an enhanced overall power of 1/ (Q4q%) instead of 1/ Q5.

The phenomenological result is a strong enhancement at small gr, as we will see in
the data in Fig. 14.13. Evolution effects, to be treated in Chs. 13 and 14, will strongly
modify the actual power law, so the power law just derived has exact applicability only for
individual graphs. Of course the decrease is cut off at small enough X that mass effects need
to be taken into account.

We made an initial assumption, for simplicity, that the initial-state particles are elemen-
tary. But the dimensional-analysis argument applies to the collinear subgraphs even when
the initial particles are composite. So we get the same power laws when the initial-state
particles are normal hadrons, which entails the use of bound-state wave functions.

It is also useful to examine the cross section integrated over the transverse momentum
g of the pair and also over the angle of the leptons, to give do /dQ?dy, where y is the
rapidity of the lepton pair relative to the center-of-mass. In the small-gt region, a factor
A? arises from the integration measure d>q, which compensates the 1/A2 factor in the
differential cross section. Hence the integrated cross section power counts as Q~* in all
regions. Naturally there is a logarithmic enhancement from the integral to small transverse
momentum, which leaves the power law itself unchanged.

We can summarize the source of the enhancement in the differential cross section at
small gt as being in the creation of virtual photon from two oppositely moving collinear
partons, without production of extra jets. Technically the enhancement is associated with
the transverse-momentum delta function in this situation, so that the collinear transverse-
momentum integrals are linked. In regions with production of jets of high transverse
momentum, as in Fig. 5.19, there is no enhancement. We therefore see a simplification
of the leading regions relative to the case that gt is of order Q. In compensation, the
linking of the collinear transverse-momentum integrals introduces some very interesting
extra features in the derivation and formulation of factorization, as we will see in Chs. 13
and 14.

5.8.3 Powers of Q and )

We consider a generic point in the intrinsic variable(s) z, and examine the integral over the
radial variable A. There is an angular integral, represented by the ellipse in Fig. 5.32. Over
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most of the angular integration, the sizes of the denominators (with masses neglected for
now) obey the standard power-counting, Sec. 5.5.8:

Hard: 02,
Collinear: A2, (5.73)
Soft: A0 = A%

These sizes are not exceeded. Much smaller values may be obtained, but only close to
certain submanifolds of the intrinsic variables or of the angular integration. These are
where z gets close to the PSS for a smaller region than or where the angular variables get
close to a larger region: Sec. 5.10.

Our basic strategy is to use dimensional analysis to convert these estimates for single
lines to estimates for the whole hard, collinear and soft subgraphs. This is supplemented
by factors implementing boosts of collinear subgraphs from their rest frame: these produce
enhancements that increase with the spin of the lines connecting the collinear to hard and
soft subgraphs.

For small A all the denominators participating in the PSS R get small. For large A ~ Q,
they all become hard, i.e., they all have virtualities of order 02. (Of course, this is holds
except for neighborhoods of PSSs R’ that are bigger than R. In neighborhoods of these,
some denominators remain small. But this happens only in a small part of the angular
integration.)

To obtain the power of Q for a region, we start from an estimate of the A-dependent part
of the integral in the form

0(0) 43
on / AP, (5.74)
o A

or some variation thereof, with the exponents p; and p, to be determined. At small A, we
should cut off the integral by the effects of masses, and at large . we get to a purely hard
region when A ~ Q. We distinguish three different cases:

e The power of A is zero: p, = 0. Then the integral is logarithmic and each order of
magnitude in A contributes equally. The resulting Q dependence is Q' modified by
logarithms, a very typical situation in QCD.

e The power of XA is negative. Then the integral would have a power-law divergence
at A = 0 were it not for mass effects. The physical result is therefore dominated by
small A, and we must examine the cutoff provided by masses. If the dominant cutoff
is on collinear lines, then it is at A ~ m, and the power law is still Q7'. If the dom-
inant cutoff is on soft lines, then the cutoff on A is «/mQ, and the power of Q is
Qpritr/?,

e The power of A is positive. Then the integral is dominated by its upper end, A ~ Q,
i.e., by a hard region rather than R. The power of Q for this hard region is Q7172
The contribution of the region R for a particular size of X is of order Q7' P2, which is
a power of Q less than the contribution of the hard region. Thus the region R itself is
non-leading.



140 Libby-Sterman analysis and power-counting

5.8.4 Overall form of power law

We now derive the power law for a general PSS R in the form

a(R) B(R) s..(H) s..(C) s..(S)
o(g) (3) (G () (&) - om
0 0 0 A As

The first factor is the characteristic power of Q for the process, e.g., the dimensional-
analysis power for the Sudakov form factor or for DIS. As such, it is independent of the
particular PSS R. The exponents in the second and third factors indicate how the power
is modified by collinear and soft subgraphs. We will obtain formulae for the exponents in
terms of the numbers of external lines of the various subgraphs defining the process and
the regions.

The last three factors arise if there are super-renormalizable couplings in the theory.
Although super-renormalizable couplings do not exist in QCD, it is useful to work with
models with extra couplings. First, they allow us to see the result for a general QFT. Second,
they do arise when we dimensionally regulate QCD. Finally, they help to give insight into
the physical phenomena associated with the power-counting theorems. Furthermore, some
equivalents of super-renormalizable couplings occur when external particles are bound
states and collinear subgraphs contain their wave functions.

The above power law is intended to apply when we integrate over A of some order
of magnitude. Similarly, we assume that we have integrated over a range of the intrinsic
variables that is of order their typical size, all the while staying away from smaller PSSs.
Notice that, to let us easily read off the different effects of masses in the collinear and
soft subgraphs, we wrote some factors in terms of A and some in terms of the soft scaling
variable A5 = A%/ Q. Factors involving Ag are associated with the soft subgraph.

5.8.5 Basic power Q7

Subject to the caveat in Sec. 5.8.1, the first factor Q7 in (5.75) is the dimensional analysis
power for the amplitude or cross section under discussion. For a connected amplitude,
dimensional analysis gives

p = 4 — #(ext. lines), (5.76)

where #(ext. lines) is the number of external particles and external hard currents. In this
estimate are included Dirac wave functions for external spin-% fermions, which grow with
energy like Q'/2; the exponent is independent of the types of the external particles.

For example, for the current-quark-antiquark vertex of Fig. 5.1, we have three external
lines, and therefore the power is Q'. In the case of a scalar quark, at lowest order the power
is from the factor of momentum at the photon-quark-quark vertex. In the case of an ordinary
Dirac quark, the vertex is a Q-independent Dirac matrix y*; the two external Dirac wave
functions give the overall power Q'.

Another example is the DIS structure tensor W*", for which there are four external lines.
This gives QY, i.e., Bjorken scaling.
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5.8.6 Formulae for the other exponents

I first state the formulae for the exponents o(R) and B(R):

a(R) = #(C H) — #(scalar pol. glue C H) — #(ext. lines) , 5.77)
3. 1 1
B(R)=#0Oorl, SH) + 5#(5, SH) + 5#(0 or 3, SC) , (5.78)

and explain the meanings of the terms on the r.h.s.; these give the exponents in terms of
the numbers of external lines of the different subgraphs for the PSS. Then I will state the
formulae for the remaining exponents. In later sections I will derive the formulae.

In (5.77), #(C H) is the number of lines joining the collinear and hard subgraphs. When
a(R)isusedin (5.75) there is therefore a power suppression as the number of collinear lines
joining the subgraphs is increased. We will see in Sec. 5.8.8 that, in the polarization sum for a
gluon connecting a collinear to the hard subgraph, there is no power suppression when gluon
has what we call scalar polarization. The second term on the right, #(scalar pol. glue CH),
provides the necessary compensation to the first term. Finally #(ext. lines) is the number of
external particles of collinear subgraphs (e.g., a total of two for the two collinear subgraphs
in a PSS for the Sudakov form factor).

The power B(R) in (5.78) depends on the numbers of lines connecting the soft subgraph
to the other subgraphs. The value depends on the spin of the lines, so we write, for example,
#(O or %, SC ) for the number of lines of spin 0 or % connecting the soft to collinear
subgraphs, and similarly for the other terms.

Notice that the formula for B(R) implies that there is generally a suppression by a
power of Q whenever lines join the soft to the collinear or hard subgraphs, the suppression
increasing with the number of lines. But there is an exception, that there is no penalty for
gluons joining soft to collinear subgraphs. Thus B(R) is zero when the connections of the
soft subgraph consist only of gluons to the collinear subgraphs. In all other cases B(R) > 0.

Finally, the other exponents in (5.75), s.r.(H), s.r.(C), and s.r.(S), are the dimensions
of the super-renormalizable couplings in the hard, collinear and soft subgraphs. In the
corresponding factors, we use m to denote a mass scale for the typical size for these
couplings.

5.8.7 Exponent for hard subgraph

Let the hard subgraph H have Ng external fermionic (Dirac) lines and Ny external boson
lines. In normal QCD processes, this means that Ng is the number of quark plus antiquark
external lines, while Np is the number of external gluon lines, plus the number of external
photon, W, Z, and Higgs lines. We always take the hard part to be one-particle irreducible
in its external lines, so the dimension of H isdy = 4 — %NF — Ng. In the usual case that
all the couplings are dimensionless, the power associated with the hard subgraph is just the
usual UV power from dimensional counting with all momenta of order Q:

Qi = Q* 3 Ne=Ns, (5.79)
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The use of dimensional analysis shows that this power depends only on the external lines
of the subgraph, not on the internal details. We will combine the above exponent with the
results for collinear and soft subgraphs to give (5.75), (5.77), and (5.78).

If there are super-renormalizable couplings with combined mass-dimension D, they
count as mP? instead of QP. This gives a correction factor relative to (5.79) of (m/Q)P,
i.e., the fourth factor in (5.75).

5.8.8 Exponents for collinear subgraph

Rest frame

The region may have one or more collinear subgraphs C, as in Figs. 5.7 and 5.16. For
each collinear subgraph, we express the momenta of its lines in the light-front coordinates
defined in (5.68) and (5.69). Our definition of the radial variable A in Sec. 5.7.4 gives
exactly the same power-counting as in the one-loop example in Sec. 5.5.2, so that both the
integration measure for a generic collinear momentum k& and denominators for collinear
propagators count according to their dimensions, A* and A? respectively. In a collinear
subgraph we include any collinear loop momenta that circulate through the hard subgraph.

In the collinear subgraphs, we also include the wave functions for external particles of
the relevant collinearity class, and numerator factors. Their effect is assessed by boosting
from (an approximate) rest frame.

Now in the rest frame of the collinear momenta, the power of A is just given by its
dimension: Adimofsuberaph " ahart from super-renormalizable couplings. The dimension of a
connected collinear subgraph, including external Dirac wave functions, is

1 1
#(C to H) + E#(%: CtoH) —#(StoC) — 5#(%: StoC) —#(Ctoext),  (5.80)

with a notation like that in (5.77), and with #(C to ext.) representing the number of external
lines connecting to the collinear subgraph. The different signs of the terms in (5.80) arises
from the differences between amputated and unamputated lines at the edge of the subgraph,
and from the loop integrals coupling the graph to the hard subgraph. If there are super-
renormalizable couplings, they give a correction factor which is the fifth factor in (5.75),
similarly to the case of the hard subgraph.

We sum (5.80) over all the connected collinear subgraphs, and obtain the same formula,
with the terms like #(C to H) now denoting the number of lines connecting all collinear
subgraphs to the hard subgraph.

Boost of collinear subgraph

Next we boost each collinear subgraph to the overall center-of-mass frame. The result
depends on the spins of the lines connecting the subgraph to the hard and soft subgraphs.
For a field of spin-s, standard properties of representations of the Lorentz group show that
its biggest component increases under the boost like (Q/A)*. For a Dirac field we have a
power (Q/A)'/2, while for a gluon” we have Q/A. For a whole collinear subgraph, we need

7 Any result for a gluon applies also to any other spin-1 field, e.g., for the photon.



5.8 Power-counting 143

the product of one such power for each line joining it to the hard subgraph, and for each
line joining it to the soft subgraph. (We have included external Dirac wave functions in the
collinear subgraph(s), so they do not need to be allowed for separately.) Combining all the
powers so far gives (5.75) except for soft-subgraph associated factors:

—#(S)—$#(3:5)

Result in (5.75) x Ag (5.81)

With one exception, the exponents, p, «(R), and S(R) in the referenced formula (5.75) are
given by (5.76)—(5.78), while #(S) is the number of all external lines of the soft subgraph,
and #(% : §) is its number of spin—% external lines [which also count in #(S)]. We wrote the
second factor in (5.81) in terms of As = A2/ Q, since that is the natural variable for the soft
factor.

The exception about (5.81) concerns the gluons, where the derivation so far gives

Preliminary: a(R) = #(CH) — #(spin 1: C H) — #(ext. lines) . (5.82)

This is the exponent of A/ Q, so it implies that we have a penalty for every extra line joining
the collinear and hard subgraphs, except for the gluons. The non-suppression of gluons
arises from the plus component of the gluon polarization (in the direction of the collinear
group it belongs to), because of the corresponding boost factor Q/A.

But we will also use the transverse components, which do not undergo this boost. We
now examine how to separate the contributions.

Collinear gluon polarization

We have already seen this phenomenon in examples. So let us examine a general decom-
position of a connection of a gluon of momentum k from a collinear subgraph C to the
hard subgraph H. We have a factor C(k) - H (k), where there is a contraction of the Lorentz
index at the H end of the gluon. The gluon is collinear, so we define the collinear factor
C to include the gluon’s propagator. We decompose C - H with respect to the light-front
components for C:

C-H=C"H +C H'-Cr-Hr. (5.83)

After the boost from the rest frame for the collinear subgraph, the largest component of
C* is the Ct component, which increases like Q/A. Next is the transverse component Cr,
which is boost invariant, and finally C~, which decreases like 1/ Q.

The largest term is therefore C™ H ™, and this gives the power derived above, in (5.81)
and (5.82). So we define a Grammer-Yennie decomposition:

k+ kt
The highest power Q /A for C* is in the first term alone, which we call the scalar polarization
term, since it has a polarization vector proportional to the momentum of the gluon. Itis of a
form suitable for applying a Ward identity. The second term, a transverse polarization term,
has the highest power removed: the quantity in parentheses is exactly zero when u = +.
Therefore this term power counts as 1 instead of Q/A.

ct c+
H.C=H-k—+H,L<C’“‘—k“—). (5.84)
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We now apply this decomposition to every gluon joining the collinear subgraphs and H.
Each gluon line gives a scalar polarization term and a transverse polarization term. This
converts the exponent «(R) from the one in (5.82) to the one in (5.77).

The importance of this operation is as follows. We start with a case like the parton model
for DIS where the hard scattering is induced by fermion lines, and to get a leading power,
we use the minimum possible number of such lines, which is two for the structure function
in DIS. Replacing the fermions by scalar polarized gluons increases the power of Q to
Q?, giving a super-leading contribution. The super-leading contribution in fact cancels, as
shown by the use of Ward identities (Labastida and Sterman, 1985). The remaining term is
leading, and involves transversely polarized gluons.

Similar decompositions can be applied on fermion lines, but we will not need them here,
because we will not have the same cancellation of the highest power.

5.8.9 Derivation of exponent for soft subgraph

We now bring in the soft subgraph S. All its external lines attach to the collinear and hard
subgraphs. We include in S the integrals over loop momenta that circulate from S through
the hard and collinear subgraphs, since these loop momenta are necessarily soft. The soft
subgraph S may have one or more connected components.

A complication we have already noticed is that of choosing an appropriate scaling of the
momenta. We let Ag be the scaling factor for all the components of soft momenta. We have
seen that to match the time scales of soft and collinear graphs, we need to take A5 = A%/ Q,
where A is the overall radial variable for the region under discussion. This contrasts with
the treatment in Sterman (1996) where As and A were taken to be the same.

Without super-renormalizable couplings, our usual dimensional analysis argument
applies in terms of A g to give a power

1 1.

A#;(S)+2#<2.S)’ (5.85)
where the exponent is the dimension of the soft subgraph, including its loop integrals to the
collinear and hard subgraph. This power applies independently of the number of connected
components of the soft subgraph. This power evidently cancels the second factor in (5.81),
so the final power law is (5.75), with the exponents defined in (5.76), (5.77), and (5.78).
If there are super-renormalizable couplings, they give the last factor in (5.75), by the same
reasoning as for the other subgraphs.

5.8.10 Other scalings

The derivation of the power law assumed what we can call the canonical scaling of momenta
for aregion R —(5.29), (5.49), which led to (5.73) for the denominators. Could other cases
matter? We have cataloged all pinch-singular surfaces of massless graphs for our process.
The scalings parameterize a neighborhood of each region by a radial variable. To the extent
that the estimates of the denominators in (5.73) are correct, our derivations are correct.
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Where the denominators are much smaller than the estimates, our derivation is incom-
plete. We will see in detail later that these situations occur in three ways. One is around
an intersection of a surface of constant A with the PSS for a bigger region than R, as in
Fig. 5.32. The second is where the intrinsic variables of R approach a smaller PSS. The
final possibility is where there is a trap of the integration region in a Glauber-type region.

We will show that the power laws remain correct in the first two cases, but if there
is logarithmic behavior in A, i.e., a power A% then logarithmic enhancements in the Q
dependence occur relative to the basic power. This is quite common.

For many processes of interest, the Glauber region does not contribute or cancels after
a sum over allowed final-state cuts.

One complication arises when some particle masses are actually zero, and we have
an actual infra-red or collinear divergence at A = 0. In a theory of confined quarks and
gluons these divergences are not genuinely physical, but they do appear in Feynman
graphs. They are handled by a sufficiently careful treatment of the soft region as we have
defined it.

5.8.11 Power of Q

From (5.75), we derive the power of Q associated with a region after integration over A.
An important case is that all the exponents «(R), . . ., s.1.(S) are zero, which corresponds to
leading regions for processes like DIS and Drell-Yan. Then we simply get O, which is the
power corresponding to the dimension of the amplitude or cross section under consideration.
There is no A dependence in (5.75), so the integral (5.74) gives a logarithm of Q divided by
a mass scale. When we discuss nested regions, in Sec. 5.10, we will find an extra logarithm
for every level of nesting where power-counting gives a logarithmic radial integral. The
actual result is then

Standard leading power: Q7 x logarithms. (5.86)

When one or more of the exponents is non-zero, the precise power of Q will depend on
how masses cut off the integral at small A. If there is no soft subgraph, then the cutoff is
dominated by masses on collinear lines, so that the power of Q is determined by setting
A ~ m and we get

Coll. cutoff: QP R)=s.r(H) pa(®FstlH) o 1ogarithms. (5.87)
If there is a soft subgraph, then the cutoff is at Ag ~ m, i.e., A ~ /mQ, and we get

Softcutoff: QP 2R AR s~ 355(C)

1 1 .
x m 20 RFPRIFSLIT351C) 5 Jooarithms. (5.88)

If there are both collinear and soft loops, the cutoffs can be different on the collinear and soft
loops. This will result in an important contribution where the k variables [see (5.29)] are
particularly small on collinear lines. This will refer to a small part of the angular integral.
In our discussion of nested regions, we will assign this part to another region.
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5.9 Catalog of leading regions

We now obtain general rules for determining the leading regions for a process.

5.9.1 General principles

The general power law was given in (5.75). Rather than presenting a power of Q alone, we
have have included powers of A and Ag. Thus we can read off the effects of masses that cut
off the integrals at their lower ends.

For each process there is a minimum number of collinear lines entering the hard scattering
if the process is to occur kinematically. For example, this is one on each side of the final-
state cut in DIS, and two on each side of the final-state cut for Drell-Yan. In all these
cases this is the same as the number of external hadrons for the process as a whole. With
this minimum number of lines, we get «(R) = 0. This is provided that we exclude gluons
of scalar polarization in the minimally connected graphs; as will be proved later, we get
zero after summing over graphs when all the lines joining a collinear subgraph to the hard
scattering are zero.

Thus with the minimal number of connections between the collinear and hard subgraphs,
the power of Q is the same as the pure UV power, Q7 = Q*#ext1ines) "which we define to
be the leading power for the process, e.g., Q° for DIS.

After this we read off from (5.75)—(5.78) that we get a power suppression, when we do
any of the following:

e attach extra collinear lines to the hard scattering, except for scalar polarized gluons;
e attach any soft lines to the hard scattering;
e attach the soft subgraph to the collinear subgraphs by anything but gluons.

But there is no penalty for extra scalar-polarized collinear gluons attaching to the hard
scattering, and there is no penalty for soft subgraphs that attach to collinear subgraphs by
gluon lines only.

As to super-renormalizable couplings, they always give a penalty in the hard scattering.
But in the collinear and soft subgraphs, there is no penalty as long as the momenta are
at the lower end of their range, near the mass cutoff. Note that in the limit of zero mass,
super-renormalizable couplings convert otherwise logarithmic IR singularities to power-law
singularities.

It is worth observing that our rules give no penalty for having quark loops inside the
soft subgraph. This is a fact that is sometimes forgotten, because in the corresponding
IR-divergence problem in QED, no loops of massive fermions need to be considered.

One complication that sometimes arises is that when one actually does a particular
calculation, the coefficient of the leading power might be zero. Typically this arises
because of some symmetry. A simple example is the polarization dependence of DIS.
The power-counting argument permits a Q° behavior in W*" for the dependence on both
longitudinal and transverse polarization. In fact only longitudinal polarization gives this
behavior, in the structure function g; —see (2.20). But for transverse polarization, there is a
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power suppression — see Sec. 6.1.4 for the parton-model case — which results from the
chiral symmetry of QCD and QED perturbation theory for hard scattering.

5.9.2 Prescription for leading regions

From the results just derived, the leading regions in the examples earlier in this chapter are
indeed those stated: e.g., Fig. 5.5 for the quark-quark-current vertex, Fig. 5.7(c) for DIS
and DVCS. The general principles are:

1. The soft subgraph connects only to collinear subgraphs and only by gluons.

2. The collinear subgraph(s) each connect to the hard subgraph(s) by the minimum number
of lines consistent with the desired process or reaction occurring at all.

3. In addition, arbitrarily many gluons of scalar polarization may connect a collinear
subgraph to a hard subgraph.

Thus in DIS, two quarks, one on each side of the final-state cut, can join the target-collinear
subgraph to the hard subgraph. This exactly corresponds to the idea that motivated the
parton model. But the rules just stated show that it is possible to replace the quark lines
by transversely polarized gluon lines. This corresponds to a short-distance scattering off
a gluon constituent in the target, compatible with the basic short-distance scattering idea.
However, the minimal hard scattering is the reaction y* + g — ¢4, for which the amplitude
is one order higher in QCD perturbation theory than for scattering off a quark.

5.9.3 Possibility of multiple hard scatterings

A particularly non-trivial example is elastic scattering of protons at wide angle. The reaction
is Py + P» — p3 + ps. The incoming protons are in opposite directions, and the outgoing
protons are in very different (and again opposite) directions. Thus there are four collinear
directions, two in the initial state and two in the final state.

If we restrict our attention to reduced graphs with collinear and hard subgraphs, then
one possibility is a single hard subgraph, as in Fig. 5.34(a). Now a single quark has baryon
number %, so a minimum of three quarks out of the collinear subgraph for each proton must
attach to the hard scattering; otherwise, for example, remnants of the incoming protons
would be left in the final state, approximately parallel to the incoming hadrons.

The connected hard scattering subgraph has 12 quark lines, which, from (5.76), cor-
responds to a power 1/Q% in the amplitude, or equivalently 1/s*. Converting to a cross
section gives do /dt oc 1/s'9, as first found by Brodsky and Farrar (1973).

But it is also possible to have three separate quark-quark hard scatterings: Fig. 5.34(b).
As shown by Landshoff (1974), this results in less of a suppression, giving do / d oc 1/s8.
The derivation needs a generalization of the results earlier in this section, both because
the hard scattering is disconnected, and because of the associated momentum-conservation
delta functions.

There are also a number of other possibilities that need to be examined, including a single
quark-quark hard scattering, with the other quarks being soft. Soft quarks normally give
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Fig. 5.34. Possible reduced graphs for wide-angle elastic proton-proton scattering: (a)
with connected hard subgraph, (b) with three separate hard subgraphs. The elliptical blobs
labeled C; are collinear, and the unlabeled circular blobs are hard.
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Fig. 5.35. Side views of the spatial structure corresponding to the reduced graphs
of Fig. 5.34.

a power-suppression, but here this is compensated by not needing so many lines entering
the hard-scattering subgraph(s). A correct analysis also needs to account for the Sudakov
suppression of the hard scattering in the Landshoff graph, because each subgraph involves
isolated color.

The difference between the mechanisms can be understood in space-time. With a single
hard scattering, all the quarks in each proton must come down to within a transverse distance
1/Q of each other: Fig. 5.35(a). This gives a strongly power-suppressed probability, since
the normal transverse separation of the quarks is of the order of 1 fm.

For the Landshoff process, it is merely necessary that each quark in one hadron comes
within 1/ Q of one of the quarks in the other hadron, Fig. 5.35(b), which is more probable.
In order for this to match the same picture for the outgoing protons, the three intersections
must line on a line transverse to the scattering plane, which gives a further suppression in
the final result in Landshoff (1974).

5.10 Power-counting with multiple regions

The power-counting scheme of the preceding section arose from estimates of the sizes
of propagator denominators around any given region R. We call this the canonical power
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estimate. It not only gives us the power of Q associated with the region; it also indicates what
kind of approximator is appropriate, where we neglect certain components of momentum
on a line. Such approximators are critical to deriving factorization theorems.

So we must ask where the estimates fail. As we will now show, with a certain exception,
the failures occur in two situations: (a) where the particular values of the intrinsic variables
for R approach a smaller PSS; and (b) where the angular variables take us to the vicinity
of a larger PSS. The true results in these cases are essentially obtained from the canonical
power-counting for these other regions. The canonical power law of Q will be modified by
logarithmic corrections. The one exception to the above statements concerns regions of the
Glauber type, which are avoided by contour deformation in many cases, or otherwise need
special discussion.

For high-order graphs there are many possible PSSs which intersect in many ways.
An important feature of the following discussion will be to reduce the general case to a
collection of a very few generic situations.

5.10.1 Locations of failures of power-counting

Consider a region R, with its radial variable A. We use (5.29), (5.49) for the scaling
of collinear and soft momenta, which gives the canonical sizes (5.73) for propagator
denominators. Because of the normalization condition on the angular variables, the size of
each momentum component is limited by its canonical scaling value, apart from a constant
factor. Numerators are all bounded by their canonical values. Thus the only possibility of a
failure of the power-counting is for one (or more) denominators to be much less than their
canonical values.

To determine where this happens, we use a variation on the Libby-Sterman scaling
argument. It involves the ratios of the propagator denominators to their canonical values:

denominator, (5.89)

rp =

canonical;

where [ labels the line. Our concern is the minimum value of these ratios. First, suppose
there is a non-zero lower bound to all the ratios: r; > ry, # 0, that applies uniformly over
all propagators, over all the angular variables, over A from zero to order Q, and for all large
enough Q. Then the canonical value of the denominator is unambiguously correct for our
power-counting.

Next we locate failures of such a bound by integrating around a surface of constant A
(Fig. 5.36) with the intrinsic coordinate(s) fixed. We call this surface X (A, R). Often the
minimum value of the ratio is set by mass effects, so that the ratio is very small when
A is increased, thereby wrecking the power-counting. We therefore set masses to zero to
give an appropriate diagnostic. If the minimum value of one or more ratios is zero in the
massless theory, then the power-counting has failed, and we must examine a neighborhood
of the subsurface where the minimum is zero. In this situation we have a singularity in the
integrand in the massless theory.

Naturally, as in all our arguments, if it is possible to deform the contour of integration
away from a singularity, we do so. Thus we only need treat cases where one or more of
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Fig. 5.36. The dashed line represents a surface X (A, R) of constant A surrounding the PSS
for R. The dot in the center represents the PSS R, and the three solid lines represent other
PSSs. Although the surface (X, R) is diagrammed as having radius A, some momentum
components may scale differently, e.g., as A2/ Q.

the ratios r; is pinched at zero. This is exactly the condition for a PSS, and in fact that the
surface of constant A intersects another PSS R’. There are now two cases, depending on
whether or not the second PSS intersects the first.

If R’ is like the upper solid line in Fig. 5.36, it does not intersect the original PSS R. In
this case we reduce the maximum value of A under consideration to avoid R’. The maximum
value of A is still of order Q, leaving our methodology unaltered. The region around R’ can
be treated by power-counting methods adapted to R’ without the need to consider R. Any
leftover gaps involve purely hard momenta.

The other case is that R’ intersects the original PSS R, as for the lower two solid lines
in Fig. 5.36. Then we must examine a neighborhood of R’, and use its power-counting
to modify our original estimate — which we will do in Sec. 5.10.2. We can treat each
such R’ separately. In angular sectors not near these PSSs, the original estimate applies
unchanged.

So one possible failure of the simple power-counting occurs at the intersection of £ (A, R)
with a PSS R’ bigger than R.

But there are other possibilities for the intersection of the new surface R” with R. One
is that the intersection R’ N R is a lower-dimension surface. In that case, we reorient the
discussion. The intersection is itself a PSS, which we will call R;. Our power-counting
applies for a fixed value of the intrinsic coordinates of R, in which case we treat R’ and R
as non-intersecting. We will separately treat the situation the intrinsic coordinates approach
the position of a sub-PSS, of which R; will be a typical example.

A final possibility is that the intersection of R’ with R has the same dimension as R,
but is not the whole of R. There are possibly several such intersections. In that case we
consider each of the intersections as a separate PSS. That is, we replace R by a set of PSSs
which combine to form R. The edges of these small PSSs, particularly where they abut, are
themselves lower-dimension PSSs.

It is also possible that the minimum value of one or more of the 7; ratios is non-zero on
(A, R) when A is fixed, but that the minimum decreases to zero as . — 0. In other words
the non-zero lower bound is not uniform in 1.8 This is behavior that we term Glauber-like,
whose general criteria we will determine in Sec. 5.11.

8 We take for granted that if it is possible to deform the contour of integration to avoid such a situation, then we do so.
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To see that the name is appropriate, we examine the quark and gluon propagators in
Fig. 5.31(b). For a normal soft region, a soft denominator is of order A*/Q?, while a
collinear denominator is of order A2, for a large ratio

collinear denom. Q2
-  ~ = 5.90
soft denom. A2 (5:30)

In our discussion of the Glauber pinch for Fig. 5.31(b), we used a soft transverse momentum
of order m, which we now translate to A ~ /m Q. In the Glauber region k* ~ m?/Q, so
collinear denominators are of order m?2, i.e., A* / Q2 instead of A2. Thus for a given gluon
virtuality the collinear denominators are much smaller in the Glauber region than in the
normal soft region.

The above discussion covers the case of fixed intrinsic coordinate(s) for the PSS R. A
further issue occurs when we integrate over the intrinsic coordinate(s) of R, and approach a
smaller PSS R;. This case is handled by observing that it involves the treatment of power-
counting for the smaller region R;. If we change to the viewpoint of integrating around R;,
we have treated that case already.

In summary, there are just two situations we need to cover: (a) the intersection of R with
a bigger PSS R’ at a generic point on R, which by a change of point-of-view also includes
the approach on R to a smaller PSS; and (b) a Glauber-type situation.

5.10.2 Intersection of (A, R) with PSS bigger than R

Relations between regions and subgraphs

Let R’ be a PSS bigger than R, like one of the lower solid lines in Fig. 5.36, or the shaded
surface in Fig. 5.32. We consider the integral over the constant A surface (X, R) near its
intersection with R’, and we let A be the radial variable for R’.

Some of the propagators are not trapped at R’. Their denominators retain their powers
from the first region, i.e., 0? for a hard line, A2 for a collinear line, and A* / 0? for a soft line.
As we have already seen, the time scale for these lines is Q/ A2 for the soft and collinear
lines, or 1/Q for the hard lines; in all cases this is at most Q/Az.

Since these lines are not pinched at R’, they constitute the hard subgraph H’ for R’.
When A — 0, the intersection of X (A, R) and R’ approaches the original PSS R, which
we can think of as an endpoint of R’. Thus in the situation we consider, i.e., A < Q, the
virtualities of some lines of H' are much smaller than the standard value Q2 for a hard
subgraph, the smallness being controlled by A.

In contrast, the denominators of those lines that are pinched at R’ have arbitrarily much
smaller denominators, governed by A’ rather than A. The time scale for these lines is Q/ A2
much longer than that for the non-pinched lines. In the case of a graph for the Sudakov
form factor, this is illustrated in Fig. 5.37. There, the placement of the collinear and soft
subgraphs is meant to be like the space-time diagram Fig. 5.2(b).

With respect to each PSS, each line of the graph can be assigned a category: soft,
collinear with respect to an external line, or hard. There are corresponding subgraphs: e.g.,
for the vertex graph we have subgraphs S, A, B, H with respect to R, and subgraphs §’,
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Q / )\Zj
B/
QNE——

Fig. 5.37. Reduced graph for region R’ near a smaller region R. The time scales for the

different subgraphs are indicated.

(b)

Fig. 5.38. Decomposition of graph into subgraphs for momentum classes, according to PSS
(a) R and (b) R’ > R. The subgraphs for R are delimited by the dotted lines and those for
R’ by solid lines.

A’, B', H' with respect to R’. Now lines with energy of order Q on R retain approximately
this energy near R’, while lines that are far off-shell at R are also far off-shell near R’. Thus
we have the following possible transitions relating the categories of a line with respect to
the different regions:

S— S, A, B, H;

A— A, H
B— B, H e
H — H;

as illustrated in Fig. 5.38.
As we integrate around (A, R), A’ varies from zero to a maximum. We need to know

the order of magnitude of the maximum value of A’, which is in fact A. To see this, we
assign to the momentum components in §’, A’ and B’ their canonical power-counting with
respect to R’ and match with the powers with respect to region R. The powers agree when
A" ~ A. The only exception concerns the minus components for momenta in S N B’ and
similarly for S N A’. These components would be of order Q for a fully collinear region,
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Fig. 5.39. Two-loop vertex graph.

but are now of order A: the smallness of A causes these momenta to be close to an endpoint
of a collinear region by the standards of R’.

Example

A convenient illustration uses the two-loop graph in Fig. 5.39, with its two gluons of
momenta k and /. Let region R be where £ is soft and [ is collinear to A. Thus the canonical
sizes of (4, —, T) components are

Az A2 a2 A2
R: k~ =, =, =), I~(0, =, »}. 5.92
(oo a) (e a9

To avoid issues with IR problems, we assume the gluon is massive. Then the effective cutoff
on A is /m Q. We let the region R’ be where k is collinear to B and [ is hard:

, )\‘/2 ,
R: k”(z’ Q7A>, I~(Q, 0, 0). (5.93)
Now consider the particular orders of magnitude:
m*? 12, 1)2 12,12 A3/4. 1/4
kN<Q1/2’Q/m/vm>s Z’V(Q,Q/m/,Q'/m/). (5.94)

We could consider this as near to PSS R with A ~ Q¥*m!/4: the components of / have
exactly the standard sizes (Q, A2 /Q, A) for a collinear-to-A momentum. All components
of k are much less than Q, with a maximum size 1>/ Q, so k is soft. But notice that the
plus and transverse components of k are much smaller than the standard A2/ Q for a soft
momentum.

But we can also consider the configuration as near to R’ with A’ ~ m3*Q'/*: we can
treat k as collinear-to- B, since it has large negative rapidity: y; ~ —% In(Q/m), although
[~ is much less than Q. We can consider / hard since its virtuality is much bigger than 22

It can be checked that the time scales of the lines are

1

pB—k—l:a
Y 1
I, pa+k+1, pA+l.ﬁ~W, (5.93)
0 0'?

k,pB—k:ﬁ’\’W.
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Thus we have a clear separation of scales, and the configuration has characteristics of both
the regions R and R’. It can be verified that (5.94) gives a leading-power contribution. We
must ensure that our treatment of factorization correctly handles it and the obvious myriad
of similar possibilities in this and higher-order graphs.

In the above case, we assumed the gluon was massive, so the lower cutoff on transverse
momentum was of order m, a typical mass. To keep k of low energy with respect to O we
were forced to keep its rapidity well short of that of pp, and to put the lower quark lines
far off-shell.

But if the gluon is massless, a rather more extreme situation arises. For example,

try
m4 m2 m3 m2
e~ (2 Y i~ (o, B m). 5.96
<Q3 0 Q2) (Q 0 m) (590

In the sense of rapidities, k is fully collinear to B: y; ~ —In(Q/m), and [ is fully collinear
to A: y; ~ In(Q/m). But k is also very soft by having its maximum component much less
than Q. This configuration has A’ ~ m?/Q, A ~ m.

Obviously, we should not treat all such configurations separately, if at all possible,
otherwise we could easily have much too complicated a problem to solve systematically.
In fact we will be able to treat all such situations by a combination of methods that directly
deal with the canonical scalings only.

But when we derive factorization, we will need to apply approximators suitable for
neighborhoods of the different regions. Awareness of situations such as we have examined
will inform our choice of approximators.

The physical property that will keep the situation under control is that the time scales
associated with different lines are widely different, unlike the canonical case for the soft
and collinear lines: we can treat one scale at a time and examine directly only the relations
to neighboring time scales. Thus we only need to treat the relation between pairs of regions,
each treated quite generically.

Effect on power-counting

To get the correct power-counting near the intersection of the constant A surface X (A, R)
and the PSS R’, we integrate over a range of A of some particular order of magnitude, and
then we decompose the result by the variable A’, which measures the approach to R’. There
will be powers of Q, A and A"

QAP (5.97)

appropriate to the strongly ordered situation A << A’ < Q. To obtain the exponents we
match to the canonical power-counting for the regions R and R’. The canonical power for
region R’ applies to the case that A ~ Q with A" < Q. Thus we have

power for R’ = Q). (5.98)
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The canonical power for R applies when A’ has it maximum value, i.e., of order A, so
power for R = Q%A\f17. (5.99)

This determines the powers in (5.97) from the canonical ones for R and R’.°

As in (5.75), the powers are those for the situation that we integrate over a range of a
radial variable comparable to its size. Thus they are the sizes of integrands to be used in
integrals with respect to In A and In 1

InQ InA
/ dln)\/ dlnx’ QYA\PAY. (5.100)

The lower limits of the integrals are either Inm or In/mQ, depending on whether the
cutoff is governed by masses on collinear lines or masses on soft lines.

We now read off the results for the Q dependence of the integration over X (A, R).

The most common case we use is for the leading regions in QCD, for which 8 = y = 0.
Then the leading power of Q is Q%, and the integrals over A and A’ give logarithmic
enhancements. Naturally we can have multiply nested regions. Iterating our argument gives
the general rule that there is one logarithm of Q for each nesting. Thus for the one-loop
Sudakov form factor, we have the nestings of leading regions: H > A > S,H > B > S.In
(5.21), which depicts the hierarchy of regions, these nestings give ordered paths of length
two and hence two logarithms. When we make the decomposition around the soft region,
the two collinear regions A and B occur at distinct places in the angular integral. Thus the
logarithms associated with the two different ordered paths add, rather than giving a more
complicated situation.

In the other cases, one end or the other wins, which greatly simplifies the extraction of
the leading power. There are several cases:

e If B > 0, then the top end A ~ Q of the X integral wins. Then for the highest power of Q,
the situation is the same as for region R’.

e If y > 0, then the top end A’ ~ A of the A’ integral wins. Then for the highest power
of O, the situation is the same as for region R.

Note that if both 8 > 0 and y > 0, the integral is dominated by A ~ 1" ~ Q, i.e., by
the hard region; both R and R’ are non-leading by a power of Q.

e If both B <0 and y < O, then the integral is dominated by the lower ends of both
integrals. If they both have the same lower cutoff, then at the cutoff we have A’ ~ A,
which is just reproduces the generic situation for region R.

It is possible that the lower cutoffs are different: m for A’ and /m Q for A. This needs
special discussion.

o If 8 <0 and y = 0, then the lower end of the A integral wins and there is at most a
logarithm from the A" integral. The power for R remains correct.

9 Situations where there is an apparent mismatch of power laws between regions were found in Bacchetta et al. (2008).

These situations concern certain spin-dependent cross sections, and they can be handled by a generalization of our
argument by allowing for powers of quark mass as well as of Q, A, and A".
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e If  =0and y < 0, then the lower end of the A integral wins and there is a logarithm
from the A integral. The power for R’ remains correct.

Aside from the case 8 < 0 and y < 0, the general rule is that the overall power of Q is
the highest power of Q as determined from the pure canonical powers for the individual
regions.

5.11 Determination of Glauber-like regions

For each PSS, we found a canonical scaling law, and we saw that modifications to the
canonical values of propagators were generally associated with canonical scaling for other
intersecting PSSs. The only exception was what we called Glauber-like. This is where at
some locations on the surface X (A, R) surrounding a PSS R, some denominators get much
smaller than their canonical sizes, but that the ratio r; on these lines only goes to zero at
A=0.

We now show how to determine where the Glauber-like situation arises. We use another
variation on the Libby-Sterman scaling argument, after first showing in an example how
the Glauber region can be obtained from the standard scaling for a region by taking some
of the angular coordinates to be very small.

5.11.1 Example

Consider Fig. 5.31(b) for the Drell-Yan process in the region where the quarks are collinear
and the gluon is soft. With the canonical scalings, we parameterize the momenta of the
gluon and the collinear momenta by

k=(StA%/0, S"A%/0, STA?/0), (5.101a)
ka = (zapf, A"A2/Q, ATL), (5.101b)
kg = (BT2*/Q, zzpy. B™A). (5.101c)

Here S*, A*, and B give the angular coordinates for the soft and collinear momenta. Our
usual normalization conditions show that the angular coordinates are at most about unity,
and that the biggest is of order unity.

The canonical power-counting for this region applies when all the angular coordinates
are of order unity. Note that in the interesting case that the transverse momentum of the
Drell-Yan pair is of order m, a leading power is obtained only for A ~ m, not for higher A.
When the gluon has a non-zero mass, the lowest effective value of A is O(y/mQ), and we
get a power-suppression.

But we can also have a different scaling, the Glauber scaling, for which

k~M?%0, 220, 1), (5.102a)
ka ~(Q, A%/0Q, M), (5.102b)
ke ~(2/0, 0, W), (5.102¢)
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A

Fig. 5.40. Reduced diagram for Fig. 5.31(b) in Glauber region. The dots are the reduced
vertices, and the lines are collinear to either p, (in the bottom half of the diagram) or pp
(in the top half).

where we take all the coefficients of order unity. This can be obtained from the stan-
dard soft parameterization by making all the angular coefficients sufficiently small except
for ST:

S*, A7, BT ~ 2?02, AT, BT~ /0, ST~ 1. (5.103)

We follow this by the change of variable A’ = 1%/ Q.

From the point of view of the canonical soft scaling, this is a region where the soft
denominator retains it canonical size, A* / 0% = A’z, but the collinear denominators are also
of this size instead of their canonical value A> = A’ Q. This is actually the minimum possible
for the ratio of the collinear denominators to their canonical values, and approaches zero
as A — 0.

We have seen that the integration contour is trapped in this region, unlike the case of
DIS and e™e™ annihilation

5.11.2 Application of Libby-Sterman argument

In the general case, with many loop momenta, there appears to be an explosion of the
number of possible cases for different scalings of the momentum components, with a
corresponding difficulty in determining the cases that are relevant. We overcome this
problem by the Libby-Sterman method.

For some alternative scaling, we define a reduced diagram in which the vertices are
obtained from those denominators with the canonical scaling. The lines of the reduced
diagram are those with denominators that are much smaller than canonical. For the Glauber
region of Fig. 5.31(b), the reduced diagram is obtained by shrinking the gluon to a point,
to give Fig. 5.40.

We now apply the Landau criterion for a pinch in the massless version of the reduced
diagram. This works just as in the standard Libby-Sterman argument. The only difference
is in the interpretation of the vertices of the reduced graph: in the original argument, the
vertices corresponded to subgraphs whose internal momenta are hard, with virtuality Q2.
It is now possible to have vertices with much smaller internal virtualities. The common
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feature is that the time and distance scales of the vertices of the reduced graph are much
smaller than those for the lines.

The result is of the form of a possible PSS for the original graph. But the power-counting
may have changed.

For a general starting region, some of the new PSSs are the same as leading PSSs of the
original massless graph, so we can cover them by the original argument.

In Fig. 5.40 we have acquired a second hard scattering. The generic case would be to
have multiple extra hard scatterings. These would be non-leading if all the hard scatterings
had large virtuality. They are all covered by the original space-time diagram, Fig. 5.17(b),
where the diagonal lines correspond to the on-shell lines in the reduced graph. What has
changed with respect to the standard regions is that at the origin we have multiple colliding
lines. Since each extra hard collision needs a minimum of two incoming and two outgoing
on-shell lines, such a situation cannot arise in eTe™ annihilation and DIS; in the hadronic
part of these processes there is zero or one incoming hadron (respectively).

Viewing the space-time structure of the collision, Fig. 5.18, gives further intuition. Each
incoming hadron contains multiple constituents which are located at a longitudinal distance
1/ Q of each other, but with a transverse separation 1/M. The single genuine hard collision
has a quark out of one hadron getting within a transverse distance 1/Q of each other. The
remaining constituents undergo soft collisions over a transverse range 1/M; since these are
soft collisions, the momentum transfer is restricted to small values, and the partons remain
approximately collinear to their parent beams.

These situations are exactly of the kind that corresponds to spectator-spectator inter-
actions with exchanged Glauber momentum. Therefore the Glauber region represents the
general alternative scaling that we need to consider. The power-counting used for the Drell-
Yan example readily generalizes to show that these situations contribute at leading power.
Part of the factorization proof for the Drell-Yan process, in Ch. 14, will be to show a
cancellation of the Glauber region.

Naturally, interesting variations on this theme can arise, e.g., if the transverse radius for
the scattering differs substantially from the size of the hadron. This happens for nuclei.
Similar adjustments to the picture are needed if the hard collision is at very large or small
x, so that the size 1/Q of the hard collisions substantially differs from the longitudinal size
of the fast-moving beam hadrons.

Exercises

5.1 (¥**) From the coordinate-space representation of Feynman graphs (or otherwise),
determine the regions in coordinate space that correspond to the regions Ry, Ry,
Rp, Rs, Ry, and Rp for the vertex graph. As far as possible determine the locations
quantitatively.

There are some non-trivial complications in this problem because the final answer
involves integrals over oscillating functions, with a lot of cancellation. A good answer
probably involves significant original research.
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If possible, verify the validity of estimates such as those given in Secs. 5.5.3 and
5.5.9, and that were used in the caption of Fig. 5.24.

(***) The standard Landau-type analysis of singularities of Feynman graphs and of
associated asymptotic problems is in momentum space. Reformulate it in coordinate
space. The Coleman-Norton (Coleman and Norton, 1965) paper shows how the internal
momentum configurations correspond to classical scattering processes. Show that this
is literally true in a coordinate-space analysis.

Extend this result to treat asymptotics governed by nearby pinch singularities to
show what regions of coordinate space dominate. Be as quantitative as possible. You
should, for example, be able to recover the intuitive picture of the parton model, with
its hard scattering on a short time scale on a constituent of a Lorentz-contracted,
time-dilated hadron.

Are any corrections to this picture needed?

(***) Find in the published literature, or construct for yourself, a proof that the Landau
equations are actually necessary and sufficient for a PSS of a Feynman graph. To see
that this is a non-trivial exercise, critically examine the accounts given in a standard
textbook, e.g., Bogoliubov and Shirkov (1959); Eden et al. (1966); Itzykson and Zuber
(1980); Peskin and Schroeder (1995); Sterman (1993). Are full proofs actually given?
Do they actually work, and cover both necessity and sufficiency? Do they apply to
the massless case, or do they make implicit assumptions only valid in the massive
case?

You should also find or devise a proof that extends to certain modified integrals that
occur in perturbative QCD. Such cases include graphs with eikonal propagators for
Wilson lines: Ch. 10. These do not mesh particularly well with the Feynman-parameter
representations often used in the treatments of the Landau equations.

For applications to pQCD, as we will see, it is important not merely to know
that there is a PSS, but also to know exactly which lines participate in a particular
pinch and which not, and to know exactly which loop-momentum variables actu-
ally participate in the pinch. Extend results in the literature to cover these issues
explicitly.

Preferably any proof should be comprehensible by ordinary students of QFT.

Catalog the most general leading regions for graphs for the following processes.

Describe the corresponding space-time structure.

(@) q(Pa)+ v*(q) — q(pp), i.e., the space-like version of the process treated in Sec.
5.3.1, with the state of momentum Py in the initial state instead of the final state.

(b) H(P4)+ H(Pg) — H(pc) + X, i.e., inclusive production of hadrons of large
transverse momentum in hadron-hadron collisions.

For elastic hadron-hadron scattering, derive the power law given in Sec. 5.9.3 when
there are multiple hard scatterings. Pay careful attention to the effects of momentum
conservation at the hard scattering on the collinear loop integrals.
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5.6 Extend the power-counting analysis given in Sec. 5.5 to the following cases:
(a) other vertices replace the external electromagnetic current, e.g., a Y H vertex
that might be for the interaction of a fermionic quark with a Higgs field;
(b) scalar quark in gauge theory.
These represent possible variations on the basic ideas that might occur in applications of
the Standard Model, or in extensions of it (e.g., scalar quarks appear in supersymmetric
extensions).

5.7 Verify that the general rules given for power-counting apply in these specific cases. If
not, improve the rules.

5.8 (**) Prove that the PSSs for a massless Feynman graph are flat surfaces.
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Parton model to parton theory: simple model theories

Basic ideas on the space-time structure of deeply inelastic scattering (DIS), symbolized in
Figs. 2.2 and 2.5, led us to the parton model in Sec. 2.4. However, as we saw in Ch. 5,
the leading regions can be more general than those that give the parton model. Indeed, the
properties needed for the literal truth of the parton model are violated in any QFT that needs
renormalization or that is a gauge theory, or both, like QCD.

Even so, the ideas that led to the parton model (the distance scales, time dilation and
Lorentz contraction) are such basic properties that one should expect the parton model to
be some kind of approximation to real QCD.

Because of the complications inherent to a sound treatment in QCD, it is useful to build
up methodologies step by step. In this chapter, we treat situations where the parton model
is correct, which happens in suitable model field theories. For these we will construct a
strict field-theoretic implementation of the parton model.

One key result will be operator definitions of the parton distribution functions (parton
densities or pdfs). Another result will be light-front quantization, whereby a probability
interpretation of a pdf can be completely justified, in those model theories where the parton
model is exact.

6.1 Field theory formulation of parton model

DIS concerns electron scattering off a hadronic target, e + P — e + X, to lowest order
in electromagnetism, with kinematic variables and structure functions defined in Sec. 2.3.
Our aim is to understand the asymptotics when the momentum transfer Q is much larger
than a typical hadronic scale, with the Bjorken variable x held fixed, away from O and 1.

In the parton model (Sec. 2.4), the process is treated as being caused by a short-distance
scattering of an electron off a parton, i.e., a quasi-free constituent of the target, with the
electron-quark scattering taken to lowest order.

We implement the parton-model idea field-theoretically by an assertion that the dominant
contribution arises from cut graphs of the form of the “handbag diagram” of Fig. 6.1, with
the virtualities of the explicitly drawn quark lines being much less than Q2. The methods
of Ch. 5 tell us that this is equivalent to the statement that the only leading regions are those
also symbolized by Fig. 6.1, where now the lower subgraph consists of lines collinear to
the target, and the upper subgraph consists of lines collinear in another direction.

161
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Fig. 6.1. Parton model in field theory starts from “handbag graphs” of this form. The
assertion that the parton model is exactly valid is that all leading regions correspond to
reduced graphs of the handbag form with the two bubbles being collinear subgraphs.

From the power-counting results in Sec. 5.8 and especially Sec. 5.8.11, we find the
conditions that Fig. 6.1 gives all the leading regions: (a) there are no gauge fields, so
that no extra gluons connect the hard scattering and the collinear subgraphs, and (b) the
theory is super-renormalizable, so that higher-order terms in the hard scattering are power-
suppressed.

Evidently, these conditions do not hold in QCD. It is nevertheless useful to investigate
the consequences of assuming that Fig. 6.1 gives the whole leading-power behavior of the
structure functions.

Even with this restriction, the power-counting results show that leading regions include
those with non-trivial corrections on the struck quark line, i.e., that we should use Fig. 6.1
rather than Fig. 2.5(b), where we omitted the upper bubble. The final state for quark &’
must therefore be considered a jet of hadrons, in agreement with experiment. The quark &’
does not need to give a single particle in the final state; it can only be treated as a single
particle over distance scales of order 1/Q. Of course, if Fig. 6.1 were the whole story, then
we would have particles in the final state with fractional electric charge. But Fig. 6.1 is not
the whole story, because there are other leading regions in QCD.

6.1.1 Analysis of parton kinematics

We now analyze regions of the form of Fig. 6.1 on the hypothesis that they are the only
leading regions. Our aim is to make a formal derivation of the parton model, and to obtain
a definition of the parton densities.

It is convenient to use light-front coordinates (App. B) in the Breit frame, as described
in Sec. 2.4. (A finite boost will not greatly affect the derivation.) In the Breit frame, the
(space-like) photon has zero energy and its large 3-momentum is in the —z direction. Then,
as we saw in Sec. 2.4, the big light-front component of the target’s momentum P is the
plus component. We define the fractional plus momentum of the incoming quark to be &
relative to the target, and write

2
q" = (—xP+, XQ—,0T>, 6.1)

M?
— +
Pt = (P ,—2P+,0T), (6.2)
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kb= (§P* k™, k), (6.3)

Q2
2x P+

K" = k" 4 gt = ((S —x)PT, + k7, kT> , (6.4)

withx Pt = Q/+/2inthe Breit frame. The collinear property of the momenta is that the only
large component of k is its plus component and the only large component of &’ is its minus
component. From the analysis in Secs. 5.7 and 5.8, we find that the leading contribution
is from where the transverse momentum kr is of order m, and the small components of
longitudinal momentum, £~ and k', are of order m? / Q, where m characterizes the particle
masses of the theory. Thus & — x is of order xm?/Q>.

The contribution of Fig. 6.1 to W*” is

e d*k
WHY = -—L‘/i Try* U;(k VL i(k, P), 6.5
ijém Gy TV Uitk + @)y Lk, P) (6.5)

where U;(k) and L ;(k, P) are the upper and lower bubbles, which are color- and Dirac-
matrix-valued functions of their external momentum and quark flavor. The sum over j
is over quark flavors and antiflavors, with e; being the charge of the struck quark. The
trace is over color as well as Dirac indices, and the factor 1/(4m) is from the definition
of WHY,

For the leading power in m/Q, a suitable approximation is to neglect the small compo-
nents of momentum, k~, kT, and (§ — x) P, withrespect to Q where possible. A convenient
way to do this is:

1. Apply a Lorentz transformation to U so that its quark £ has zero transverse momentum,
and then neglect Kk~ with respect to g ~:

2

k2
<k++q+—2(q—_T|_k),q_+k_,0T> =~ <k++q+——T,q_,0T>- (6.6)

2q

The matrix for the Lorentz transformation approaches unity as kt/Q — O.

2. Change the integration variable for the plus component of momentum from k* to
It =kt 4+q* —k}/2q, so that kT = —g* + 1" + k% /2g . In the region of interest
kT ~ —g* = xP™, up to a small fractional correction.

3. Therefore, in the lower part of the graph, L, we approximate k™ by the fixed value x P™.
For this we need to assume that L is a smooth function of k™ /P, which is normally
true in QCD, as evidenced by the smooth dependence of structure functions on x in
Fig. 2.6. When the smoothness assumption is false, we can instead apply the derivation
to a local average of the x dependence of a structure function, as a generalization of
Secs. 4.1.1 and 4.4.

4. Project out the leading part of the Dirac matrix trace.
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After the first three steps, we find

&2 i+ dk~ d*k
W“”:Z—’T u —U;d%,q~,0 v /—TL Pt k™, kr), P)|.
a7 U 2 i T)}V[ a1 o)
(6.7)

The leading-power approximation has short-circuited the integrations, so that the integra-
tions over k~ and kr are restricted to L, and the [T integration is restricted to U. So we have
two factors coupled by a trace in Dirac spinor space, and a trivial trace over color indices.

6.1.2 Projection of Dirac matrix structure

Projectors on matrix space

To project out the leading part of the Dirac trace, we apply (A.23) to write L in terms of
numerical basis matrices:

L=A+ysB+y,C"+y,ysD" + 0, EM, (6.8)

where we temporarily drop the flavor index j. Now L is highly boosted from the target rest
frame, and we know the transformation properties of the coefficients, which are a Lorentz
scalar A, pseudo-scalar B, vector C, etc. In the target rest frame, each of the coefficients
A, ..., E* has a fixed order of magnitude. Boosting to the Breit frame increases plus
components and decreases minus components by a large factor. The large terms are C™,
DT and E™, which multiply y ~ factors. Only these can give leading-power contributions
to (6.5). They may be obtained from L by, for example, C* = jTTr yTL. Note that the
antisymmetry of o, removes the possibility of an otherwise dominant term with E**. A
similar decomposition applies to U, for which the coefficients of y* are biggest.

Projectors on spinor space

The above method works for the quantities L and U as a whole. We now show an alternative
method that works more locally in the Feynman graphs: to extract the large Q asymptote,
it applies projectors on the individual lines joining the electromagnetic vertices to L and
U. This method will show that the hard scattering is computed with Dirac wave functions
for on-shell massless quarks, exactly as in the parton model.

Now each of L and U is obtained by a large boost from a rest frame. Since Dirac
spinors are in the (%, 0) @ (0, %) representation of the Lorentz group, spinors in one two-
dimensional subspace increase like Q'/2, and those in the other subspace decrease like
Q2. The first subspace is the part that gives the leading power as Q/m — 0c. The same
subspace is also obtained by taking the zero mass limit, and is the space of Dirac wave
functions for the appropriate massless momentum, in the plus direction for L and the minus
direction for U.

To project the leading power in the Dirac trace, we therefore use a matrix that projects
onto the space of massless wave functions. Let u;(p.) be a Dirac wave function for a
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massless particle of momentum p, and spin label s. A covariantly defined projection onto
their space is

def Z; Us(Poo)its(Poo)y + 11 PV - 1
Ppso) = == = .

U(poo)y - ni(poc) 2poo -1
Here n is any vector such that p, - n # 0.

How do we resolve the ambiguity from the choice of n? Notice first that P(pso) is
invariant when n is simply scaled by a factor. We actually need a projection matrix for
each external line of the hard scattering. The primary constraint on the vector n in each
projector is that the projection matrix should not upset the power-counting. Thus if in the
center-of-mass frame the largest components of p and n are of order E and np,y, then
Poo - 11 1s at most approximately Enp,y. Preserving the power-counting requires that p, - n
should not be a large factor smaller than Eny,y. Since the largest component of a on-shell
momentum is the energy, it is easiest to satisfy the requirement by setting n to be the rest
vector of the center-of-mass.

In the case of DIS, we need two projectors, onto the wave functions for target and jet
sides in (6.7). We can choose the n vectors in the (0, z) plane, e.g., the rest vector of the
Breit frame. The results are then unique, and the two projectors are

(6.9)

+

— + -
PaEPUF0.0n =T Py EPO.g. 0= (6.10)
For projections onto the conjugate spinors u we use
— . s U n-
Ppo) & 1LY L llPI D) _ 1 VP iy e
U(Poo)tt - Y Poo) 2n - Poo
so that
Pa=Ps.  Pys=Pa (6.12)
Using these in (6.7) to project the leading-power terms gives
Wi 3 L gy /dl+7> Uit g™, 0P
- - 47 14 27 BYj »q 5, VUT) I A
; dk~ d’kr v
Xy [/ W7>AL,-((xP Lk, k), P)PB:|. (6.13)

Notice that P4LPg projects out exactly the terms in L involving C*, D* and E*.
Thus the projection-matrix technique reproduces the results of the first method in this
section.

6.1.3 Parton densities: unpolarized and polarized

We now show how to organize (6.13) into a form involving parton densities and what we
will call hard-scattering coefficients. The hard scattering corresponds, as we will see, to
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DIS on a free quark target, i.e., the process y* 4+ g — g with the quarks on-shell and of
Zero transverse momentum.

Definitions

First we define quantities f;, A; and b;T by!

li dk— d*k +
fi® =" / (QT)JTr%L,-(k, P), 6.14)
prelim dk~ dzk’]‘ )/+
A fi(€) = WTITVSLj(k7 P), (6.15)
i prelim dk~ dsz y+ ;
by i) "= WTITV ysLj(k, P), (6.16)

with the traces being over both color and Dirac indices. We have a sum over quark colors,
and it is not useful to define separate quark densities for different colors. The variable & is
k™ /P7, and is equal to x in the use of these definitions in the parton-model approximation
for WH¥. We keep the more general variable & to emphasize that it is not in the first instance
to be identified with the Bjorken x variable of DIS.

These definitions correspond to the leading terms C™, D™ and E*' in (6.8). But there
is a change in normalization that lets f;(£) etc. have simple interpretations when we use
light-front quantization. We will find that f;(£) is the number density in & of quarks of
flavor j. The terminology “parton density”, “parton distribution” or “parton distribution
function” (pdf) is therefore appropriate — all three names are in common use.

We will also find that A ; is the longitudinal quark polarization and bt is the transverse
quark polarization, both normalized to maximum values of unity. For a spin-% parton these
variables suffice to specify the most general spin state, pure or mixed; see Sec. 6.5. We will
also see that the quark polarizations are functions of £ times the corresponding variables
specifying target polarization. We therefore define the polarized parton densities Af;(§)
and dt f;(§) as the coefficients of proportionality:

Marg ASj(8) = A £(8), (6.17)
brigdr fi(§) = br; £ (6). (6.18)

An interpretation will be that Af; is the number density of parallel-helicity quarks minus
that of antiparallel-helicity quarks of flavor j in a target of maximal right-handed helicity,
i.e., itis the helicity asymmetry. Similarly, 8t f;(§) is an asymmetry in transverse spin.

Notation and terminology The transverse spin density is also called the transversity density
and the symbols §f, At f, ht, Ay f and h; are also used.

I The notation ™2™ indicates that these definitions are preliminary. In full QCD, modified definitions will be necessary.

The definitions given here are exactly correct only when all of the leading regions in a theory are of the kind depicted
in Fig. 6.1.
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Parton-model factorization

We now write (6.13) in terms of quark densities and polarization:

e?
Wltv:Zﬁfj(x)/
J

dit . _ , K i i
pn Ir [V‘ PeU;", g7, 00)Pay E(I_VS)‘j_VSbJ‘TV )]-

(6.19)
Here £ is an approximate version of k,
k=Pt 0, 0p), (6.20)

which is massless and of zero transverse momentum. In (6.19), we choose the trace with
U to be only over Dirac indices (subscript “D”); a color average is assumed, a triviality
since U is a unit matrix in color space. This formula is of the form of a parton density
times a structure tensor for DIS on a massless quark target of momentum £. It still has an
integral over the jet factor U}, which we will convert to the Dirac matrix for a spin sum for
a final-state quark in Sec. 6.1.4.

6.1.4 Result for structure functions; including polarization

We now analyze the jet factor, obtained from the upper part U; of the graphs. The result
will be a cancellation of all but the lowest-order graph, after which we will get exactly the
standard parton model result, complete with its generalization to polarized scattering.

To do this, we use an argument from our discussion of eTe™ annihilation, around
Figs. 4.13 and 4.14, applied to the integral over [ of

PeU;(I", g, 00)Pa=q ytTU,;2ITq), (6.21)

which is a cut 2-point function and therefore a discontinuity of an ordinary uncut propagator.
In this equation, we have noted that the projectors pick out the coefficient of y* in U, and
have observed that its coefficient is ¢~ times a function U of the virtuality of the quark.
Terms proportional to y +ys or to y Ty 1 are absent because of parity invariance and because
of rotational invariance of the integral over final states at zero transverse momentum.

Initially we have a contour integral in [* around the cut of the propagator. We deform
the contour out into complex plane, to where the quark has virtuality 2/*¢ ™, i.e., of order
Q2. Here we may correctly approximate all masses in the propagator by zero. Moreover,
as usual, the decrease of the projected U (or of the uncut projected propagator) at large I+
is the decrease of U in (6.21) at large virtuality, which is governed by dimensional analysis
of Feynman-graph integrands.

For the moment, we are working under the hypothesis that the parton model is exact, in
which case our theory is super-renormalizable. Then all graphs for U beyond lowest order
decrease by a power faster than 1//™, and thus they provide a contribution to the integral
suppressed by a power of Q. This leaves the lowest-order propagator, which decreases
only as 1/[%. Therefore, we replace U by the lowest-order cut massless propagator
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PeUP, =g yT (2m)8(2ITq ™) to obtain

dr+ _ ¥ o
/ P ’ll;r |:y" PeU;I", g )Pay" 3 (1—ysh; — yss}Ty'):|

2 4 o
= Q_7T2 Try" (k+¢)y" 5 (U= wshy = yssjv') - (6.22)

Then the parton-model approximation to W*" is

| B — of - /PR — 'k - /g
J

k-q

4 L M} : (6.23)
2 k-q
To relate this to our original statement of the parton model, we first recognize the last
factor in (6.22) as the numerator factor for DIS on a free massless quark target, i.e., for the
process y* +q; k) — ¢ I (k 4+ ¢). Next we observe that if we assign the incoming quark
a fractional momentum £, i.e., if we replace k by (6P, 0, 0r), then the final-state cut
propagator gives a factor

218((k + ¢)*) = T S(E —x). (6.24)

Q2
The first factor appears on the right of (6.22), and the delta function sets the parton
momentum fraction equal to x.

Comparison of (6.23) with the definitions of the structure functions in (2.20) gives the
parton-model results for all four structure functions:

FIM Ze x fi(x), FIM = Ze fi(x), (6.25a)

eI = Z AAfi(x), e M — . (6.25b)

The first two agree with the previous results, Bjorken scaling being a prediction. But now
we have a concrete derivation, which is susceptible to improvement. We also have a definite
definition of the parton densities, and an extension to polarized DIS.

6.1.5 Parton transverse momentum and virtuality

The quark lines entering and leaving the hard scattering have momenta that we approximated
as being of zero transverse momentum, massless and on-shell. However, it is important that
this is an approximation applied only in a certain part of the diagrams. The actual quarks
have non-zero transverse momentum, are off-shell, and have non-zero masses. Thus, in
the definition, (6.14) etc., of the parton densities, the parton transverse momentum and
virtuality are non-negligible and are actually integrated over. Failure to recognize this
important distinction can lead to all kinds of unphysical paradoxes.
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Fig. 6.2. Interference between left-handed and right-handed initial quark in DIS is prevented
by helicity conservation at the electromagnetic vertex.

6.1.6 Parton densities vs structure functions

The parton density for transverse spin drops out of the result for WV, so that the g,
structure function is zero in the parton-model approximation. This is associated with helicity
conservation at the electromagnetic vertex in massless electron-quark scattering, in (6.22).
To see this, observe that a transversely polarized state is a linear combination of states of
left-handed and right-handed helicity, with a relative phase dependent on the azimuthal
angle ¢ of the transverse spin vector around the direction of motion of the particle:

Getting a transverse-spin dependence of a cross section, i.e., a dependence on ¢, requires
interference between amplitudes for a left-handed and a right-handed initial state that
produce some common final state. But helicity conservation at the electromagnetic coupling
of massless particle implies that the final-state quark has the same helicity as the initial
state, so that there is no interference (Fig. 6.2).

Because the unpolarized and the longitudinal-polarization quark densities have simple
relations to structure functions in the parton model, one often sees a confusion between the
concepts of parton density and structure function, with parton densities sometimes being
called structure functions. The error of confusing the concepts must be strongly avoided.
The structure functions are properties of cross sections, needing only elementary properties
of electroweak interactions for their definition. But parton densities are more abstract
theoretical constructs in QCD, with definite definitions; they are only related to experiment
because factorization theorems can be derived to relate structure functions and other cross
sections to parton densities in certain approximations. An excellent example of confusion
between parton distributions and structure functions is in Jaffe and Ji (1991), where even the
same notation is used for some structure functions and their corresponding parton densities.

The issue becomes particularly noticeable in the case of transverse polarization (Barone,
Drago, and Ratcliffe, 2002), since transverse spin dependence drops out of W*" (at leading
power). While the formalism clearly allows for a possible transverse spin dependence, it
is the dynamics of a particular theory that determine whether or not there is a non-zero
transverse spin dependence for a particular reaction. A reaction other than fully inclusive
DIS is needed for a non-zero effect. This has been a topic of intense study in recent
years — see Secs. 13.16 and 14.5.4 for examples.

Confusion has arisen from incorrect results in the older literature which apparently
indicate that transverse-polarization effects are universally suppressed in hard collisions,
contrary to reality. One example is in Feynman (1972), where on p. 157 an incorrect
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derivation related a combination of the g; and g, structure functions to the transverse spin
densities. Another example is in Wandzura and Wilczek (1977), where we read (p. 196):

For a highly relativistic quark, the quark spin is, of course, nearly always parallel to its momen-
tum.

and (p. 197):

In the parton model combination g;(x) + g»(x) is equal to the difference k. (x) — k_(x) of
distribution functions for a parton with momentum fraction x in the infinite momentum frame to
be spinning up (k4 (x)) or down (k_(x)) in a nucleon spinning up (perpendicular to the infinite
momentum). Now, again, if the parton is moving rapidly we expect that with overwhelming
probability it is spinning along its direction of motion, and therefore

ki(x)~k_(x)...

Their notation follows that of Feynman (1972), and k4 (x) — k_(x) is to be identified with
81 f(x). The problem is that the large size of the longitudinal component of a boosted spin
vector is entirely misleading.

This can be seen in the formula (A.26) for the expression of a spin state in Dirac spinor
state. The spin vector appears in the combination § /M, whose biggest component is of order
E /M for a particle of high energy. However the effect of the big component disappears,
because it is multiplied by p + M.

This can be seen from the non-singular massless limit (A.27). Thus for our purposes, it
is generally preferable to use a helicity density matrix to parameterize the spin state of a
particle or a parton (Sec. 6.5). The helicity variable A is invariant under boosts along the
direction of motion. It is true that DIS structure functions on a spin-% target are defined,
(2.20), in terms of the spin vector; but in a more general situation, the density matrix gives
a better route to correct power-counting.

6.2 When is the parton model valid?

The word “valid” in the title of this section means “correct to the leading power of Q.

6.2.1 Properties needed to derive parton model

To understand the generalization of the parton model to QCD, it is useful to pinpoint the
assumptions used to derive the parton model. Then we can determine QFTs in which the
assumptions are derivable or easily repairable. The inter-related assumptions are as follows.

1. The dominant contributions have the structure of Fig. 6.1, i.e., the hard scattering occurs
off a single parton, with no final-state interactions between the outgoing parton and the
spectator part of the target.

Note that final-state collinear interactions of the struck quark are explicitly allowed
for, and they cancel, as we showed, so that the final-state quark can be treated as if it
were free.
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struck quark target remnant

target

Fig. 6.3. The Libby-Sterman analysis associates these world lines of massless particles in
the Breit frame with the leading region that gives the parton model.

2. The hadronic amplitude L falls off sufficiently rapidly at large kr that the integrals
defining the parton densities are convergent.

3. The corrections to U at large virtuality of k" fall more rapidly than the free-field term.
Thus when we integrate over the virtuality of k', as in Sec. 6.1.4, all but the free-field
term drop out. This leaves us with an effectively free final-state quark: we can replace
Fig. 6.1 by Fig. 2.5(b).

4. The parton density is smooth and slowly varying on a scale of x.

6.2.2 When are they true?

In Secs. 5.8 and 5.9, we found rules that determine all the regions that contribute at the
leading power of Q. If all the leading regions are those represented in Fig. 6.1, then we need
a super-renormalizable model theory without gauge fields. The lack of gauge fields removes
the possibility of a soft subgraph, and of extra gluons connecting the collinear subgraphs
to the hard subgraph. Super-renormalizability implies that higher-order corrections to the
hard scattering are power-suppressed.

In such a theory (e.g., Yukawa theory in three space-time dimensions) it is also true that
the decrease of L at large kr and of U at large virtuality is sufficient to give convergence
of the integrals on the right of (6.13). To see this, we observe that if the integrals did not
converge, there would be an unsuppressed contribution from large values of the integration
momenta. Then there would be extra leading regions beyond those of Fig. 6.1.

Related to the Libby-Sterman analysis is that the trajectories of the target and its con-
stituents, including the struck quark and the target remnant, are in the vicinity of the
light-like world line from bottom left to top right in Fig. 6.3. At the origin, the virtual
photon injects negative momentum to make the struck quark go to the left. Near its world
line are the collinear interactions that convert the outgoing quark into a jet.

6.2.3 Smoothness or otherwise of parton density

It was known, even in the earliest days, that to derive exactly the parton model from QFT
one needs a sufficiently fast decrease of U and L, and that this assumption is violated
in typical QFTs in a four-dimensional space-time. However, a less obvious assumption is
that the L factor and hence the parton densities are smooth functions of &, so that one
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Fig. 6.4. Notation for parton-model approximation to the graph in Fig. 6.1.

can replace k* by xP*, given that |k* — xP*| = O(xm?/Q?) <« xP*. The necessary
quantitative property is that the x derivative of a parton density should obey

af (x) < o). 6.27)

If this condition is badly violated, the relative errors in the parton-model approximation
are much bigger than m?/Q? When we generalize the parton model to the standard
factorization theorems of QCD, the same smoothness property is needed.

From experimental measurements, the smoothness property in fact holds at moderate
and small x for the real strong interaction, and hence for QCD. This is seen from the plots of
the F, structure function in Fig. 2.6, or from many successful fits of factorization formulae
to data that give measured values for parton densities.

However, the smoothness assumption is not universally true. In the first place, par-
ton densities decrease to zero at x = 1 roughly like a power: f ~ (1 — x)", where the
exponent is around 3 to 6, depending on the flavor of parton. Then (6.27) is violated as
x — 1:

xd(1 — x)'ox
(1 —=xy
In the second place, we can apply parton-model methods to other theories. For example

in electromagnetic interactions at high energies it can be useful to apply parton methods (and

the associated factorization theorems). In that case we need parton densities for electrons
and photons in on-shell electron and photon states. As is readily seen in model calculations,
these have delta-function terms at x = 1. This is the epitome of non-smoothness.

. onx n 6.28)
T l—-x 1-x '

6.2.4 Notation for parton-model approximation

A diagrammatic notation for the approximations used in (6.19) is useful. For an unapprox-
imated graph, Fig. 6.1, we represent the approximation by Fig. 6.4. Crossing the quark
lines entering and leaving the hard scattering are thin bent lines (“hooks”) denoting where
approximations are applied. The approximations are as follows. On the hard-scattering
side, i.e., the concave sides of the hooks, the momenta k and k" = k + ¢ are replaced by
(k*,0,07) and (0, k= + g, Op) respectively, and masses are set to zero (which for this
graph is a triviality). Momentum conservation then requires the approximated momenta to
equal (—g™, 0, 0) and (0, ¢, Or). The approximation also includes the insertion of Dirac
projection matrices, P4 or Pg, as appropriate.
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These operations are all applied on the concave, hard-scattering sides of the hooks.
Further operations are applied outside the hard scattering, to change the momentum of the
quark in the target bubble from k* to x P = —g™*, and to change the momentum of the
final-state quark so that it has no transverse momentum.

One way of implementing the approximations on momenta is as a replacement of the
hard vertex and the associated momentum conservation delta function. Let us use Tpy, L.
and Tpy, r to denote the application of the approximator on, respectively, the left-hand and
right-hand sides of the final-state cut. Because of the Dirac projection matrices, these have
slightly different formulae:

Tom L ¥ 8P(q +k — k) =Pay " Padlgt + k) 8(qg~ — k') 8Pk, (6.29a)
Tomr Y“8W(q +k —K) = Ppy"Pp 8(qgt + k") 8(g~ — k) 8P(ky).  (6.29b)

Thus we formulate the approximations locally at the places indicated by the hooks, rather
than as global operations on a complete Feynman graph.

6.2.5 Shift of final-state momentum

Our parton-model approximation employed a shift of the plus component of k and the minus
component of k’. This implies a shift of the momenta of both parts of the final state, i.e.,
the target remnant and the struck quark’s jet. The approximation is certainly valid under the
conditions we consider, i.e., in the parton-model kinematic region, when the parton density
is a smooth function of x, and for the fully inclusive structure function, i.e., integrated over
hadronic final states.

However, there are more general situations. For example, Monte-Carlo event generators
generate complete simulated events for processes like DIS. When they are based on the
usual partonic methods, the standard kinematic approximations result in events that violate
momentum conservation. Thus it is necessary to adjust (Bengtsson and Sjostrand, 1988)
the parton kinematics so that generated events obey 4-momentum conservation.

In this and similar cases, if one wishes to obtain a more systematic treatment, there is a
conflict between the need to maintain exact kinematics and the kinematic approximations
used in standard factorization. This has been particularly emphasized by Watt, Martin, and
Ryskin (2003, 2004); Collins and Zu (2005); Collins and Jung (2005); Collins, Rogers,
and Stasto (2008). These authors show that more general methods are needed. One case,
to be treated in this book in Chs. 13 and 14, concerns cross sections sensitive to partonic
transverse momentum.

For our immediate purposes, of treating inclusive cross sections, the standard kinematic
approximations are appropriate. But it is important to be aware of the flexibility of adjusting
the approximations to the actual situations under discussion. Thus it is useful to make very
explicit the form of the approximations, with an aim of recognizing situations where changes
are needed. The form of the kinematic approximations is closely tied to the detailed structure
of the corresponding factorization theorem, and to the definitions of the parton densities
(or their generalizations used with different approximations).
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6.3 Parton densities as operator matrix elements
6.3.1 Unpolarized quark density

The parton density defined in (6.14) is an integral over the lower bubble in Fig. 6.4, together
with a trace with y1/2:

IClm dk d k
Fin(® PE" Tr —/ (2n)4T i > (6.30)

where h denotes the type of the target hadron, and k* = & P*. The diagram is a certain
amplitude times its conjugate, with the amplitude involving one off-shell quark, the target
state, and a final state. When the quark line on the left of the final-state cut is directed away
from the lower bubble, then its top end corresponds to annihilation of a quark by the field
¥;. Itis left as an exercise (problem 6.2) to derive an explicit formula for the quark density
as a matrix element of a bilocal operator:

prelim [ AW”_jepey [ Nl
S "2 [ S <P|1/f,»<o,w ,0T>7wj<0>|P> . 63D
T Cc
With standard conventions, it is the 7ight-hand part of the matrix element, with the /; field,
that corresponds to the part of the diagram to the left of the final-state cut, and the left-hand
part of the matrix element corresponds to the complex conjugated amplitude on the right
of the cut. Only the contribution with the quark fields connected to the target state | P) are
to be included, and this is indicated by the subscript “c”

The field v/;(0) represents the extraction of a quark by the hard scattering. Because we
integrate over all momentum in the minus and transverse directions, the antiquark field
in the complex conjugate amplitude has zero relative position in wt and wr; note that
w™ is Fourier conjugate to the opposite light-front component X~ in momentum space.
The average position of the quark and antiquark fields is irrelevant, since the definition is
actually applied to a momentum eigenstate, i.e., a target state uniformly spread out over all
space. The space-time locations of the fields are shown in Fig. 6.5.

We have again tagged the definitions as preliminary, in view of the adjustments that will
be needed in QCD.

The restriction to connected amplitudes can be implemented by subtracting disconnected
graphs, Fig. 6.6, i.e., as subtraction of the vacuum expectation value (VEV) of the operator.
This can be written as

(P'1Y ;Y ¥, (OIP), =

def

(P'1y ;)Y ¥ (0| P) — (P'[P) (Ol ;(»)y ¥, (0)]0) .
(6.32)

An off-diagonal matrix is used here, since momentum eigenstates are non-normalizable.
After the subtraction, the diagonal matrix element can be taken: i.e., with P’ = P. Without
this manoeuvre, we would subtract an unquantified infinity proportional to (P|P).
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Fig. 6.5. The space-time location of the fields Fig. 6.6. Disconnected graphs, of this
is along a light-like line. The shaded region  form, must be removed from the defini-
represents the approximate location of the tar- tion of the parton density when extended
get hadron in its rest frame. to negative &.

6.3.2 Anftiquark density

For the density of an antiquark, whose flavor we denote by j, we have similarly

relim d +
Fin® P2 /2“; —igptom Y (lej(ow 0DV ;(0)| P)_, (6.33)

where the trace is over the Dirac and color indices of the fields. In the parton model, the
antiquark density appears in contributions to the structure function where the direction of
the quark line in Figs. 6.1 and 6.4 is reversed.

6.3.3 Lorentz-covariant definition

The definitions of parton densities are not Lorentz invariant, but they have Lorentz-covariant
expressions in terms of a single light-like vector n* o (0, 1, 07) = 8",sothaté =k -n/P -
n. Thus:

B @™ [ SZ e el an™ Lol p) (634

Here the right-hand side is a scalar, so it is a function of Lorentz invariants only, i.e., of k - n
and P - n, with n? fixed at zero. The formula is invariant under scaling of n by a positive
factor, so that only the combination k -n/P - n, i.e., €, is allowed. Hence, as a function
of &, the numerical values of the quark density are independent of n, provided only that
it is light-like and future-pointing. But for deriving factorization a suitable choice of n is
needed, which is determined by the directions of the external momenta p and q.

6.3.4 Relation to wave function?

A parton density can be thought of as some property of the target. But since it is an integral
along the light-like line in Fig. 6.5, there can be no simple relation to an ordinary wave
function as used in non-relativistic physics, which corresponds to properties of the target
at a fixed time in the target rest frame. The transformation to a light-like line involves the
interactions of the theory.
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We will need to use light-front quantization to interpret parton densities in terms of wave
functions (Secs. 6.6 and 6.7).

6.3.5 Support properties

The intermediate state in the parton density, between the two fields, has momentum P — k.
For it to be physical, it must have non-negative energy, so that P* —kt > 0,i.e., & < 1.
Thus the parton density is zero if § > 1.

In the parton-model factorization formula, (6.19) and Fig. 6.4, the final state in the upper
part of the graph has plus momentum & P + g+ = (§ — x) P™. This must be positive, in
order that the state have positive energy, so that & > x > 0. This restriction applies quite
generally in standard factorization formulae for cross sections. Thus we will use parton
densities only in the range 0 < £ < 1.

However, the matrix element for the parton density is generally non-vanishing for
negative £. We will see later that we can relate f;,,(§) for negative £ to the antiquark
density with the opposite sign of &: f;;,(§) = — fj/»(—§). This will be critical to the
derivation of sum rules. But to make it work, it will be important that we have removed
disconnected graphs, Fig. 6.6, from the definition; the disconnected graphs are non-zero
for negative values of &.

6.3.6 Polarized quark densities

We defined polarized quark densities in (6.15) and (6.16). By the same methods as we used
for the unpolarized densities, these can be re-expressed as expectation values in a target

state of the operators ¥ (z)y *ys¥(0) and ¥ (2)y ty! sy (0):

dw™
Mg ASj(§) = / 7e-’”*w <P S|y

V)/s

%(O)‘ P, S> . (6.35)

Al VJ_)/S

Y0, w™, 0r)

dw™
thargSTfj(S)=/%e*’” v <P S xpj(O)‘P, S> . (6.36)

Here | P, S) denotes a state with normalized helicity A,¢ and normalized transverse spin
bt These definitions presuppose proportionalities between quark and target spin vari-
ables, to be proved in Sec. 6.4. Then the quantities A f;(§) and dt f;(£) are independent of
target polarization, i.e., they are parton densities par excellence.

6.3.7 Polarized antiquark densities

Similarly, definitions of polarized antiquark densities are

dw™
2

+ J/s

Marg AS7(8) = —/ e 5P <P S‘%(O w™, 00y 0

,S> , (6.37)

e <P S‘w,(o w007 AT

dw
leargaT fj(s) = /

P . (6.38
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Note the extra minus sign in (6.37) compared with the other antiquark densities. For the
moment, we can regard this as purely a strange convention. Later we will see that the signs
are those needed to give a number-density interpretation.

6.4 Consequences of rotation and parity invariance: polarization dependence

In this section, we examine how parton densities depend on the polarization of the particles
and the quarks. This will introduce us to techniques for analyzing the consequences for
parton physics of symmetries of QCD, and will justify the definitions given in Secs. 6.3.6
and 6.3.7.

Mental health warning: There are no fixed conventions for the normalizations of many
of the objects discussed in this section. The objects concerned range from the definitions
even of basic mathematical quantities, like €., through the definitions of various kinds
of spin vector, to the definitions of structure functions and parton densities. Quantities of
the same name and symbol change their normalizations between different papers, even
by the same authors. If one needs to make numerical results, it is important to check all
conventions very carefully.

The conventions used in this book are defined in Apps. A.7 and A.10.

6.4.1 Polarization state

The target can be polarized, and in the most general case a spin density matrix is needed
to specify the polarization state. So the target state | P, §) has an extra argument specifying
the polarization. For the general case, this argument can be the density matrix, with respect
to some basis. But for massive spin-% hadron, like a proton, we can use the covariant spin
vector S*, as defined in App. A.7. Although our notation, as in (6.35) etc., is as if we are
working with pure states, there is actually an implicit trace with a helicity density matrix,
as defined in (A.8) and (A.13), to allow the target to be in a mixed state.

A helicity basis is rather natural when we work with high-energy particles or with a
massless limit. Helicity states are obtained in the theory of irreducible representations
of the Poincaré group for massless particles. Moreover, the chiral symmetry ubiquitous
in the massless limit of QCD perturbation theory effectively tells us to treat left-handed
and right-handed quarks as if they were separate particles. Even so, transversely polarized
quarks, i.e., states that are linear combinations of equal amounts of left- and right-handed
components, are allowed physically, and have interesting properties.

When we obtain the most general dependence on target spin, it is important that expec-
tation values as defined by (A.13) have a spin dependence that is linear in the spin vector
S, Equally, it is linear in the normalized helicity A and normalized transverse spin br, as
defined in App. A.7. Helicity and transverse spin are well behaved in the massless limit
unlike the covariant spin vector, and they apply also to the spin state of a quark parton.

The formula (A.12) for S in terms of bt and A exhibits some oddities in the zero-mass
limit. In the rest frame of a massive spin—% particle, the spin vector has only a spatial
component, which unproblematically corresponds to standard usage in non-relativistic
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physics. Boosting along the z axis does not change the transverse component of S, but
increases its longitudinal components. In contrast, A and by are invariant under the boost
(except for the obvious change of sign when the direction of motion is reversed!).

But a massless particle has no rest frame. Instead one works either with the helicity den-
sity matrix or with its decomposition (A.9) in terms of (br, A). The spin vector is useful for
a proton but not for an on-shell massless quark such as we use in hard scattering. In contrast,
the density matrix and the Bloch vector formalisms work for both quarks and protons.

6.4.2 Rotations about 7 axis

The definition of what we called the unpolarized quark density f;(£§) makes no reference
to any azimuthal direction, in the (x, y) plane. Therefore we expect this parton density to
be independent of the direction of the transverse spin vector of the target. Since matrix
elements are linear in the target’s spin vector, this implies that there is no dependence even
on the size of the transverse spin vector.

To derive this and similar properties formally, we define an operator U (¢) on state space
that corresponds to a rotation by an angle ¢ around the z axis; its action on a helicity
eigenstate is

U@)|P,a)=e"?|P,a). (6.39)
Hence the matrix element of an operator between helicity eigenstates obeys
(P.o| op |P,a) = &« (P.o/| U@) 0p U(@) |P. ). (6.40)

The combination U(¢) op U(¢) is the rotated operator. Of the operators defining
the parton densities the following two are rotation invariant: E(O, w™, 07)y Ty (0) and
E(O, w™, 07)y T y5v(0). From (6.40) follows that their matrix elements are diagonal in
helicity eigenstates of the target.

For the case of a spin-% target, we can apply the rotation to the spin vector S of a general
spin state, (A.13), to get

(P, rotated S| op | P, rotated S) = (P, S| rotated op |P, S) . (6.41)

6.4.3 Implications for unpolarized quark density
Spin-% target

‘We now show that the unpolarized quark density f;(&) defined by (6.31) is independent of
the polarization state of a spin—% target.

We already proved that the matrix elements of the operator defining the unpolarized
parton density are diagonal in helicity. But the transverse part of the spin vector only results
in off-diagonal terms in the density matrix, so the unpolarized density is independent of
transverse spin.

Now a parity transformation reverses the helicity of a state, but also reverses the 3-
momentum. A rotation can then be applied to bring the momentum of the state back to its
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original value, and makes no change to the already reversed helicity. Thus we can apply
the same method as above, but with U(¢) replaced by a unitary operator Up that reverses
helicity while preserving P:

UplP,j)=IP,—=]). (6.42)

Since the operator in (6.31) is invariant under Up, it follows that the unpolarized parton
density is the same in states of opposite helicity, in a parity-invariant theory.

For a spin-% target there are only two helicity states, so we now have shown that the
unpolarized parton density f;(§) is independent of the polarization state.

Higher spin

When the target has spin higher than %, there is a wider range of possibilities. For exam-
ple, in a spin-1 target, there is one unpolarized quark density for targets of helicity +1
and one for targets of helicity zero. There are corresponding generalizations for the
DIS structure functions. See problem 6.8 for an exercise to fill in the details, and see
Hoodbhoy, Jaffe, and Manohar (1989) for results on DIS, including several new structure
functions.

6.5 Polarization and polarized parton densities in spin-% target

To treat the polarized densities in a spin-% target, we use its helicity density matriX puq(S)
from (A.9), now written as

1
p(S) = 3 (I + MargOz + bToarg - 0) (6.43)

where the label “targ” is used to distinguish the spin variables for the target from those for
the quark. Expectation values of operators are linear in A and learg.

The operator defining the polarized parton density Af;(&) in (6.35) is invariant under
rotations around the z axis. Therefore its matrix elements are diagonal in helicity and hence
independent of transverse spin, just like the unpolarized density. But unlike that case, the
operator has the reversed sign under a parity transformation, as does normalized helicity
Atarg- S0 the analog of (6.41) used with the operator Up of (6.42) shows that the matrix
element of the operator is linear in Ay, as asserted in the matrix element representation
(6.35). Thus all the dependence on target polarization is in the explicit factor of A, SO
that Af;(&) is polarization independent.

Finally, the remaining parton density dtf;(§) in (6.36) is obtained from the matrix
element of an operator i 0, w™, OT)%V/ ;(0) that transforms as a (two-dimensional
transverse) vector. Because of the ys factor, it actually transforms as a pseudo-vector, i.e.,
under a parity transformation it acquires a minus sign relative to the transformation of an
ordinary momentum. The transverse spin vector is also a pseudo-vector.

To get the correct rotation properties, the matrix element of the operator must be a
coefficient times the transverse spin vector, but possibly with the application of a rotation
of some angle around the z axis. This rotation, as a function of &, would be a property
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of the target; it would represent some analog of optical rotation phenomena in a chiral
medium. But let us apply a parity transformation followed by a 180° rotation about the x
axis (say). This preserves the momentum and the x component of spin of the target, but it
reverses the y component of spin. The same transformation applies to the operator. Thus a
spin in the x direction gives only a non-zero x component to the matrix element, and
similarly for the y component. Thus parity invariance requires there to be exactly no
rotation between the spin vector and the matrix elements. (Actually a 180° rotation is also
allowed, but for the two transverse directions in question, this is equivalent to a reversal of
sign, i.e., to an overall coefficient.) Thus all the dependence on target polarization is in the
explicit factor of br,,, so that 8t f;(£) is polarization independent.

6.6 Light-front quantization

A standard method of formulating quantum field theory uses the usual canonical quanti-
zation rules for a quantum theory: equal-time commutation (or anticommutation) relations
are obtained from the Lagrangian density, and then the Heisenberg equations of motion
determine the fields at all times from their values at one particular time. An alternative, first
proposed by Dirac (1949), is to use a light-like surface ¢ + z = 0 as the initial surface on
which (anti)commutation relations are fixed. This is called light-front quantization, with
the terms “light-cone quantization” and “null-plane quantization” being synonyms.

Light-front quantization is useful for DIS and other processes where a target system
is probed along an almost light-like surface. Inspired by initial approaches using the so-
called “infinite momentum frame”, Bardakci and Halpern (1968) developed light-front
quantization in field theories. Then Kogut and Soper (1970) made a very clear fundamental
treatment. See Brodsky, Pauli, and Pinsky (1998) and Heinzl (2001) for reviews. See also
Heinzl and Werner (1994) for a careful treatment of the issue that in solving the equations
of motion, it is not sufficient to specify initial conditions on a light-like surface.

As we will now show, light-front quantization gives a direct probability interpretation
of parton densities and yields a convenient decomposition of hadronic states in terms of
partonic states. Further advantages are explained in the literature just quoted. In extending
the method to theories like QCD that are renormalizable or have gauge fields, there are a
number of complications that imply that light-front quantization must be used with care.
Nevertheless, it provides important insights.

6.6.1 Formulation

To understand the general principles of light-front quantization, we examine the simple
case of a Yukawa field theory with Lagrangian density

i — — — 1, m* ., — h o5 x o,
L=y 0 —@u)y V] — MYy + 2 (0¢)° — —-¢" — g¥pd — ¢ — 14"
(6.44)
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This theory is renormalizable at space-time dimension n = 4, and is super-renormalizable
when n < 4. We use the scalar rather than the pseudo-scalar coupling for the Yukawa
interaction, to avoid complications with ys in dimensional regularization.

We use light-front coordinates (x*, x~, xt) as defined in App. B. Then the equations of
motion are

0=idy — My — gvo, (6.45)
2 2 e h 2 A 3
0=20,0_¢ — Vig +m’¢p +gUV +¢° + 5;¢°. (6.46)

In light-front quantization we treat these equations as giving evolution in x* from fields on
the initial surface x* = 0.

Now the term with an x* derivative of the Dirac field is iy "9, which only affects
two independent components of . Therefore we project onto what are called “good” and
“bad” components of ¥ by the matrices

1 _ 1 _

Po=5vr"  Ps=5r'y" (6.47)

2 2
These are exactly the same as we used in projecting out the leading power of Q in the
Dirac trace in the parton-model approximation to DIS, but now they appear with a more
fundamental significance. In view of the jargon of this part of the subject, I replaced the
subscript “A” by “G” for good: P = P4. These matrices obey the usual properties of
projectors (Pg + Pp =1, Pé = Pg, etc., and especially PgPs = PsPp = 0). Then we
define the good and bad parts of the fermion field by

Y = Pc, Yp = Pr, (6.48)

so that ¥g = ¥ Pp.
The equation of motion for i then separates into two separate two-dimensional
pieces:

0=2id4v6 + v~ (iy/V; = M — ) Vs, (6.49a)
0=2i0_y5 +yT(iy/V;, — M — g¢)yg. (6.49b)

where the sums over j are over transverse components. The first equation gives the evolution
of ¥ in x™, while we treat the second equation as a constraint: it fixes ¥p at a given value
of x* in terms of ¥, up to boundary conditions. So we treat ¥ as the independent set of
components. The solution of the constraint equation is

Vpx) = y*z’K(z‘yfV,- — M — gd)vc

[e¢]

iyt . _ fe i _
=2 ay sign(x ™ — y ) (iy/V; = M — g¢)¥e(x™, y~, x1) + Cy(x™, x1).
—00

4
(6.50)
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There is a term Cy, independent of x~ that is not determined by the equation of motion.
When a Fourier transform over x~ and xt is made, to momentum variables k™ and kr,
the Cy term is proportional to a delta function at k™ = 0. It is therefore characterized as
contributing to the zero mode only. A similar zero mode arises in using the equation of
motion (6.46) for the ¢ field to determine d¢/dx™ in terms of the fields on a surface of
fixed x .

The zero-mode issue is quite important to the vacuum structure, and it is not clear to
me that it has been properly treated in the literature. But much of what we do will not
need a professional treatment of the zero modes. The primary issue is that the equations of
motion alone are not sufficient to determine the evolution in x ™. Extra boundary conditions
must be imposed. In contrast, for equal-time quantization, the Euler-Lagrange equations are
sufficient to determine the time derivatives of the fields in terms of the independent fields
and canonical momentum fields. A related complication concerns the 1/k" singularity
in mode sums like (6.59). For treatments of these and related issues, see Nakanishi and
Yamawaki (1977), Yamawaki (1998), Heinzl (2003), Heinzl and Ilderton (2007, Sec. 4),
and Steinhardt (1980).

We now arrange to form the quantum mechanics of our system by using Hamilton
methods, but with evolution in the variable xT instead of conventional time.2 For this we
need commutation relations on surfaces of constant x, and a Hamilton to control the
evolution by the standard Heisenberg equation

. 9A(x)

: axt
which applies to any field operator A(x). Now the Lagrangian is linear in derivatives with
respect to xT, so the standard elementary rules of quantization need generalization, for
which we use the simple formulation given by Faddeev and Jackiw (1988).

The appropriate Hamilton is just the Noether charge for translations in the x* direction,
i.e., the appropriate component of momentum:

= [A(x), P4], (6.51)

P, = /dx‘ d*xr [W(—W‘a—y —iyIV+ M+ gp)y
(6.52)
L g Ly +)
2 2 3! 4!
As with conventional equal-time quantization, for which the founding papers are Born
and Jordan (1925); Dirac (1926) and Born, Heisenberg, and Jordan (1926), the equal-x*
commutation/anticommutation are to be such that the equation of motion in the Heisenberg

form (6.51) and in the Euler-Lagrange form (6.46) and (6.49) are equivalent. Thus we
have

ai— [p(T, x7, x1), dxF, w™, wr)] = ;5(;(* —w)8Pxr —wr), (6.53)
X

[Vl x7 x1), Y™ w™, wp)], = §6<x* —w) 8Py —wr),  (6.54)

2 For this reason, x* and the evolution operator P, are sometimes called “light-front time” and “light-front Hamiltonian”.
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with the other commutators involving ¢, ¥/ and Y/ being zero. The subscript +in [y, ¥ |,
etc. denotes the anticommutator appropriate for fermionic fields. Now the first of the above
equations is the derivative of the commutator of the scalar field. From it we obtain the
commutator of the field with itself:

[T x7 x7), pxT W™, wr)] = _Tl sign(x~ — w™) 8P (et — wy), (6.55)

with the boundary condition for inverting d/0x~ being determined by the antisymmetry of
the commutator of two ¢ fields under exchange of the position arguments.

To verify the correctness of this setup, one applies the (anti)commutation relations (6.53)
and (6.54) to the the right-hand side of the Heisenberg equations of motion (6.51), for the
fields ¢ and . In this calculation we do not need the (anti)commutators of ¢» and ¢ with
Y. For example, the term involving [¢(x), ¥(x™, y~, yp)] is

5P,
81//B(x+5 y77 yT)’

where 8 P, /8¢ 5(y) denotes a functional derivative. This functional derivative is zero by
the constraint equation of motion. It follows from elementary algebra that the Heisenberg
equations are also valid for sums and products of fields. Unitary evolution implies that the
(anti)commutation relations are true at all x™ when they are true at x™ = 0.

Since {5 is determined from the other fields by the interaction-dependent (6.50), the
commutators and anticommutators of ¥z are interaction dependent. Therefore, because
the right-hand side of (6.50) is non-linear in fields, the equal-x* (anti)commutators of 13
are field dependent. That is, they are not simply numerical-valued functions times the unit
operator. This is the primary reason for the jargon of calling {5 the bad components of
the fermion field. For example, in current algebra one deals with operators constructed
out of the elementary fields of a theory. Only for operators constructed solely out of good
components at a given value of x™ can one obtain their commutators directly from the
canonical (anti)commutators of the elementary fields, without investigating how to solve
the theory.

A similar issue arises with the quark densities. Because of the factor of ¥ in their
defining operators (see (6.31) etc.) only the good components are used:

/ dy” @y [@), ve(xt,y™, yp)] (6.56)

YO, w™, 0n)y Y (0) = Y60, w™, 0r) y " Y (0). (6.57)

In Sec. 6.7, we will show that this operator can be represented in terms of light-front
annihilation and creation operators for the quark, and this directly gives an interpretation
of the quark density as a number density, i.e., as a probability density. This interpretation
requires commutation relations for the annihilation and creation operators, which in turn
arise from the anticommutation relation (6.54).

It is possible to treat quark correlators constructed from bad components of fields.
But the resulting (anti)commutation relations for the Fourier-transformed quantities would
be interaction dependent, and hence would be not those of conventional creation and
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annihilation operators. Therefore we do not expect any simple interpretation as number
densities for parton-density-like quantities constructed using the bad components of the
fields.

6.6.2 Light-front annihilation and creation operators

We now obtain annihilation and creation operators in terms of light-front fields (Kogut and
Soper, 1970), and derive their commutators.

The annihilation and creation operators are defined by Fourier-transforming the scalar
field and the good components of the fermion field:

d)(x) — Z (ak(x+)e—ik+x7+ikT~xT + ak(x+)Teik+X7_ikT.xT> , (6.588.)
k

Yo @) = 3 (brax g ae™ T i () g oo TETIT) (6.580)
k,a

The sum over « is over the two possible values o = :t% for the “light-front helicity” for
the fermion, as defined below. The integral over momentum modes is denoted by Zk, and
is restricted to kT > O:

def 1 o dkt )
Z"‘Z(zn)3/0 2k—+/dkT... (6.59)

k

This is just the normal Lorentz-invariant form for the integral over a single particle
momentum:

1 fwdw/dzk 1
Qr3 )y 2kt T T 2n)y

but without the need to specify the value of the mass. This is an advantage since the
physical mass is an interaction-dependent quantity, not known before solving the theory,
and moreover the formula applies to quarks and other confined particles that do not have a
definite physical mass.

Although the integral is restricted to positive k*, Fourier modes with the opposite sign
of k™ are allowed for by using terms with a complex-conjugated exponential in (6.58).
The distinction between annihilation operators a; etc. and creation operators ag etc. is
made by the sign of the exponential of x . (This contrasts with the situation in the Fourier
decomposition of fields in equal-time quantization.)

The Dirac wave functions u; , are defined to be wave functions for massless particles
with zero transverse momentum, which span the space of good components (because
¥ “ugo = 0). They are normalized to obey

/ d*k (k> — m*)e(k°). . ., (6.60)

Uk oy e =2k 84, 6.61)
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and hence

> upalina =kTy. (6.62)
o

The label « corresponds to “light-front helicity” in the sense that
0V Up g = 200Uy o, (6.63)

which is exactly normal helicity for particles of zero transverse momentum. (Note that
200 = %1, that ™Y = %[y", y 7], and that the wave function for an antiquark of helicity o
iS Uy, _q, with argument —c.)

In (6.58), the x™ dependence is in the annihilation and creation operators, not in the
exponential factor, since the x™ dependence depends on solution of the interacting theory,
which is not a simple linear problem.

Unlike the case of the corresponding decomposition at equal time, the annihilation
and creation operators correspond to different Fourier components. Thus we obtain these
operators simply by inverting the Fourier transform:

ap(xt) = 2k / dx~ dPxp e* Y TRTET gy, (6.64a)
bro(x) = / dx~ dxp* TR oy (x), (6.64b)
dio(x) = / dx~ dxr e® R T ooy tuy . (6.64c)

Values of masses do not appear in these formulae, in contrast to the corresponding formulae
in equal-time quantization, which involve E; = v/k* + m2. Which value of a mass to use
would be unobvious and ambiguous. The possibilities include: the physical mass, the bare
mass, and the MS renormalized mass, none of which are equal, with the relationships only
known after the theory is solved. But we are formulating the Fourier transform before
solving the theory.

From (6.64) follow the (anti)commutation relations appropriate for annihilation and
creation operators:

[ak, (1;] = 81(1’ [bkou blTa’]+ = [dkoz’ le[x’]Jr = 5](1(30“1/, (665)

where 8y means (27)32kt8(kT —I1)8P (kr — I1). The other (anti)commutators are
zZero.

6.7 Parton densities as number densities

From the operator definitions (6.31) etc., we now derive the interpretation of parton densities
as number densities, as found by Bouchiat, Fayet, and Meyer (1971) and by Soper (1977).
See problem 6.6 for corresponding results for the parton density for a scalar field.
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6.7.1 Statement of result

Our field-theoretic analysis of DIS structure functions led us to the formal definition of
a parton density by (6.31). But previously, in Sec. 2.4, we had introduced the concept of
a parton density rather intuitively as a number density. We now complete the picture by
showing that the abstract field-theoretic definition is exactly a number density, defined with
the aid of light-front annihilation and creation operators:

:
. pre_lim 1 2 (P, hlbk,a,.]‘bk,a,jlpa h)
50" ey 2 [ e e (6.66)

Here we have inserted labels j and / for the quark and target type. The prefactor 1/[2£(27)?]
is present merely to correspond to our chosen continuum normalization of b and b’ oper-
ators: The (anti)commutation relations in (6.65) imply that the right-hand side of (6.66) is
exactly the number density in & of quarks of flavor j in hadron 4; its unweighted integral
over £ is a number of quarks.

In the previous section, we explained light-front quantization in the context of a simple
model, whereas in the present section our notation is intended to cover more general theories
with more than one flavor of quark. We use the terminology “hadron” for the target state,
as is appropriate in QCD. In a general field theory, the target state | P, &) can be any stable
single-particle state of definite momentum P, the label A serving to distinguish different
stable particles. Similarly the parton label j just refers to any particular field in the theory’s
Lagrangian.

We explicitly flag (6.66) as preliminary because of important modifications needed in
QCD. Even within a super-renormalizable non-gauge model QFT, where the unmodified
parton model is valid, there are two important complications:

e Momentum eigenstates have infinite normalization, so the quotient in (6.66) needs inter-
pretation, in terms of an expectation value in a wave packet state, in the limit of a state
of definite momentum — see below.

e Our original operator definition had a subtraction of the VEV of the operator, as indicated
by the subscript “c” in (6.31). This will not be relevant for the normal situation of
positive &.

The number density interpretation immediately suggests several sum rules that we
will derive. Simple generalizations of the derivation of (6.66) will give corresponding
interpretations for the polarized parton densities, and for the parton densities for antiquarks
and for scalar (spin-0) partons.

Finally, this result shows that a parton density is an integral of a number density over
parton transverse momentum. It is natural to define an unintegrated density, a density in &
and krt, by simply deleting the integral over k. This we will do in Sec. 6.8. Unintegrated
densities are important to the treatment of reactions with sensitivity to partonic transverse
momentum — see Chs. 13 and 14. The original kind of parton density naturally gets
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called an “integrated parton density” whenever the distinction with unintegrated densities is
needed.

6.7.2 Wave-packet state

Now we return to the derivation of the number density formula (6.66). We first replace
the non-normalizable momentum eigenstate | P, i) by a wave-packet state | P, h; A) whose
central value of momentum is P and whose momentum-space width, A, we will eventually
take to zero. The state is a linear combination of momentum eigenstates:

|P.h; A) =" |P',h)F(P'; P, A), (6.67)

P’

which we assume to be normalized:

(P.h;A|P h; Ay =Y |F(P'; P, A} = 1. (6.68)

P’

A suitable form for the wave function is a Gaussian in rapidity and transverse
momentum

F(P;P,A) = (6.69)

4M'/2(2n)3/4 (y/ _ y)2M2 P/T2
A3/2 - A2 TAZ |

where M is the mass of the target, and we choose the central value P of momentum to have
zero transverse component, as usual. To give the wave function a trivial transformation
under boosts in the z direction, it is written as a function of rapidity y = % In(P*/P~). The
exact form of the wave function will be irrelevant for our work; all that will matter is the
peak value and the width. The theorem to be proved is:

relim . 1
IIGLETSY / P 5y (P AlbL b | PR A) . (670)

with f;,,(§) defined by (6.31).

6.7.3 Derivation

First we verify that the right-hand side is indeed correctly normalized for a number

density in & and kt. To do this, we integrate the operator b/i,a, jbk o /[26(2m)?] with a

smooth function #(&, kt) and then check its commutation relation with the b,:m j- So we
define

o (6.71)

def 2
N, = | dé d°kt t(E, k) ———b;,  bro ;-
f / &Edkr t(&, kr) 28 i bhas
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Then

1
[N:, b kozj /dé' &’k 1(€, ker) E ) b}:’a’jakl

=1kt /P k) b], ;. (6.72)

One implication is that when we set the function ¢ to be unity everywhere, the resulting
operator N; counts the total number of partons of type j. To see this, we apply bk @)
an eigenstate of N;. The commutation relation (6.72) shows that the resulting state is an
eigenstate of N, with an eigenvalue increased by unity.

For the main proof, we first use (6.64b) to express the right-hand side of (6.70) in terms
of field operators. Before the integral over quark transverse momentum this gives

to

5 (P, Alb], brajlP. A)
o 25(27T)3

=> 25(2 < ————F(P")"F(P) / dw™dz” d*wrdzr

P", P’

x e—ik+(w’—z’)+ikT.(WT—ZT) P//‘ E(O: w™, wr) ]/+ l//j(O, 27, 71) ‘P/)

=)

PP

Jr

(2m)?

F(P")* F(P) / dw™dz~ d*wrd’zr

x ¢ Kbk PP (P (w — 2)y  5(0) | P)

JF
= Zzw(zn)3 e /dw o
e~ ik (w™ =2 )tiky-(wr—z1) (p/‘ Jj(w -2yt y;0) \P’). (6.73)

In the first step, we used D, y Tup ollkoy™ = 2kTy ™. In the third step we performed the
integrals over z~ and zt with w — z held fixed; the resulting delta function between P’ and
P” removed the P” integral except for a factor 1/(2P"*) implicit in ) ,,. In the above
manipulations observe the different kinds of momentum label for the target state. The fixed
central value is P and this is used to define & = k™ /P ™. The other variables P’ and P” are
dummy variables of integration.

Taking the limit that the wave function is very narrow gives

' (P, A|bka] e |P A)
lim
A=0 & 25(271)3

dw‘dzw i& Prw +ikr-w — _ +
Z/(ZTPTe_M w4ikr T<p|1pj(0,w ,wT)%¢j(0)|P>, (6.74)
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whose right-hand side we will take as the definition, (6.79) below, of a quantity f;,,(§, k1)
that we call the unintegrated quark density, or the transverse-momentum-dependent (TMD)
quark density.

Integrating the TMD quark density over kt reproduces the definition (6.31) of the
integrated density. Thus we obtain both the desired theorem, (6.70), and the natural relation
that the integrated density is the integral over kt of the unintegrated density:

prelim

Fin(e) f @k fyn(E. k). 6.75)

Our derivation does not result in the restriction to connected graphs that was implied by
the subscript c in (6.31). We will repair this omission when we discuss support properties
of parton densities in Sec. 6.9.3.

In view of the particularly significant complications that arise in QCD in the relation
between integrated and unintegrated parton densities, please note that assuming any typical
naive generalization of (6.75) to QCD will result in conceptually and phenomenologically
wrong results. The literature is rife with such results. See Ch. 13, where we will show how
the above derivations are to be generalized.

6.7.4 Interpretation of polarized parton densities

The above derivations can readily be generalized to the polarized quark and antiquark
densities. The results are as follows.

The quantity Af/; is the helicity asymmetry of quarks of flavor j. That is, in a target
spin—% state of definite helicity,

Afj/n(x) = density of quark j of helicity parallel to target

— density of quark j of helicity antiparallel to target. (6.76)

This applies also to the antiquark helicity density defined by (6.37). The minus sign in
(6.37) compensates the reversed sign for the helicity dependence in the matrix elements of

YT ys:
ﬁk,ay+y5uk,a’ = 4ak+8aoﬂ, vk,oty+y5vk,a’ = _4ak+8aa’~ (677)

For transverse-spin dependence, there is no such minus sign in the matrix elements of
yTyiys, and therefore no minus sign is needed in the transverse-spin asymmetry of the
antiquarks, (6.38). Again it can be checked that

Ot fj/n(x) = density of quark j of spin parallel to target

— density of quark j of spin antiparallel to target, (6.78)

where the spin—% target is now chosen to be fully polarized transversely to its direction of
motion.
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6.8 Unintegrated parton densities

Equations (6.74) and (6.75) show that it is natural to define an unintegrated quark density
by

- 32
dw™ d wr —iE Ptw +ikt-wr

+
fin€ k) = / <P’$j(0v w_,wT)%wj(O)’P>

2m)3
k
k- v" p
S 6.79
Qnf 2 T > (6.79)

to be interpreted as a TMD number density dN /(d€ d*kr). This has a Fourier transform on
the relative transverse position of the two fields as well as on w™, to give a two-argument
function of a longitudinal momentum fraction £ and a quark transverse momentum kr.
The last line of this formula is an expression in terms of momentum-space matrix elements
from which Feynman rules immediately follow — see Sec. 6.10.

Particularly non-trivial modifications to (6.79) will be needed in QCD: Ch. 13. Butin a
simple theory — which means a super-renormalizable non-gauge theory — the modifications
are absent. In this case it is trivial that an unintegrated density gives the integrated density
by an integral over all kt, as in (6.75).

There are natural generalizations for polarized densities and other kinds of parton. But
because of the presence of an extra vector in the problem, kr, the polarization dependence of
the unintegrated parton densities is more complicated and interesting than that of integrated
parton densities. No longer are the quark transverse and longitudinal polarizations simply
proportional to those of the target (in the spin-% case). See Secs. 13.16 and 14.5.4 for details.

6.9 Properties of parton densities

In this section we derive some basic properties of the pdfs. The proofs are non-perturbative,
and many of the results apply, with only small changes, to the correctly defined parton den-
sities of QCD. See Collins and Soper (1982b) and Jaffe (1983) for the original treatments.

6.9.1 Positivity

The number operator formulae (6.66) and (6.74) show that, up to normalization, the matrix
element in a parton number density is of the form

(PlatalP) = |alP) ",

(6.80)
i.e., the square of the length of a state vector. So all parton densities are non-negative:

fi©&), fi, kr) = 0. (6.81)

Note that this particular result will not hold exactly in renormalizable theories, because of
the need for renormalization of the parton densities; see Sec. 8.3.
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6.9.2 Lorentz invariance/covariance

The definitions of the pdfs depend on a choice of a coordinate system, where the axes
are determined by the scattering process being treated. As we saw in (6.34), integrated
parton densities can be given explicitly Lorentz-covariant definitions, by use of an auxiliary
light-like vector n.

Unintegrated densities need a second vector for a covariant definition. For this, we let ng
be a future-pointing light-like vector with ng - n # 0. Up to irrelevant factors, we interpret
n and np as defining light-front coordinates: k™ = n - k and k= = np - k. Thus n and np
point in the minus and plus directions respectively. Then we define longitudinal momentum
fraction and covariant transverse momentum by

k-n k-n k-ng
= . K=k —n* —nt , 6.82
§ P-n T anB-n " ng-n ( )
so that
2k - ngk -
2= 2 g MR (6.83)
np-n

The unintegrated density (6.79) is

d*w —iwk - y-n
Firn(&, k) = /Wﬁ(w “ne <P‘ w;(w)T ¥;(0) )P>C- (6.84)
This is invariant when k is shifted in the n direction: k — k + cn.
It is interesting that np does not enter this definition, but only in the definition of the
variables in (6.82). This situation changes in a gauge theory, where, as we will see in Ch. 13,
the definition of unintegrated densities needs Wilson lines in the operators. (Wilson lines

are exponentials of integrals of the gauge field along particular lines.)

6.9.3 Support properties, negative &

Between the fields in the definition of a parton density, there is a sum over final states,
notated by the cut in (6.30). The states have momentum P — k, and physical eigenvalues of
the plus momentum are positive, so that P+ > k™. Thus pdfs vanish for £ > 1, no matter
whether they are integrated pdfs f(&) or unintegrated pdfs f(&, kr).

This argument, by itself, provides no restriction for negative £. However, we can
(anti)commute the two fields in the definition of the pdfs. Since they are at light-like
or space-like separation, their (anti)commutator is just the unit operator times a coefficient
(localized at w™ = wt = 0). Since we subtract the vacuum expectation value to get the
connected matrix element for the pdf, the unit operator from the (anti)commutator gives
no contribution. Thus we get a relation between the quark densities at negative x and the
antiquark densities at positive x.

The actual relation has an extra minus sign:

fin@&) = —fi/n(=8), fipn&, k) = — f/n(=§, —k1). (6.85)
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When the parton is a fermion (e.g., a normal quark), the minus sign arises because we
applied an anticommutator. When the parton corresponds to a scalar, the minus sign arises
from an explicit factor of £ in the definition of the scalar-parton density; see problem 6.6.
As an example of a derivation, here is the one for the unintegrated densities of a charged
scalar parton:

*® dw~ dsz P& pt
At k= —gpt [ ST e
fit ke = —ep* [ S
e dw7 dsz iEP+
@2n)

w™ —ikp-wr (P] ¢,T(O, w™, wr) $(0) |P>c

w—ikrwr (p| g (0) T (0, w™, 0r) | P),

[l
|
e
~
+
—
3

o - 32
_sP+/ % Pk (P (0, —w, —wr) ¢7(0) |P),

—f5(&, kr). (6.86)

Since antiparton densities vanish for £ > 1, it immediately follows that all parton densities
also vanish for & < —1.

When the scalar field is a hermitian scalar field, the relation is between the parton density
and itself, e.g.,

Jo14) = —f3,4(=8) when ¢ is hermitian. (6.87)

A further insight is from the derivation of the probability interpretation. Let us reverse the
order of the steps in (6.73), and apply them for negative &. Then in place of an annihilation
operator by , j We get a creation operator dt k,—a,; At the opposite momentum and helicity
and for the opposite quark. But we get the operators in the order d d. To get them in
the standard order for a number operator, we must anticommute them, leaving the matrix
element of the operator for the number of antiquarks (apart from a sign). To this is added
the expectation value of the anticommutator, which is a ¢ number, and therefore removed
by subtraction of the vacuum expectation value.

6.9.4 Time-ordered bilocal operators

The definitions given so far for the parton densities involved a fixed ordering of the operators.
In Feynman-graph calculations, there is a sum and integral over the final states between two
operators, as indicated by the vertical line in the cut-graph notation. Now ordinary Green
functions and Feynman-graph calculations involve a matrix element between an in-state
and an out-state. So with the final states made explicit, as in

dw™ d w TwTtikrw
f]/h(s kT) Z/ o )3 T —lSP +ikr-wr

+
X (P;in] Jj(O, w™, wr) | X; out) % (X;out| ¥;(0)| P;in), (6.88)
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for the TMD quark density, we see the density as an integral over amplitude times complex-
conjugated amplitude (on its left in the formula, on the right in a cut diagram).

However, the two fields may be (anti)commutated through each other without changing
the value of the parton density. Hence we can replace the fixed-order operator product by
a time-ordered product:

fin€ kr) = — frn(—&, —kt)

dw™ W _pryis -yt
:/TPTe &P +kTwT<P‘TWj(0,w ,wT)7¢j(0)‘P>

dk~ yt k
— T 6.89
CR NSy o

with similar formulae for the integrated densities and for unpolarized densities. Feynman-
graph calculations then involve uncut amplitudes, and use exactly the same Feynman graphs
for a quark density as for an antiquark density (except for the labeling of the momentum
direction). As we will see in explicit calculations, in Sec. 6.11, application of contour
integration to the k~ integral gives relations between the two methods of calculation,
between the uncut and the cut Feynman graphs. In particular, when a particular graph gives
a zero contribution in the cut-graph method for a certain range of &, we will find that the
poles in k™ in the uncut graph will either all be in the upper half plane or the lower half plane
of k~. Thus the uncut-graph method also gives zero, by use of contour integration for k.

Normal Feynman-graph methods apply when the states (P| and |P) in (6.89) are,
respectively, out- and in-states. But because stable single-particle states are the same for
both in- and out-states, this change makes no difference. But it could affect potential
generalizations to use hadronic resonances instead of stable single-particle states.

To show that the cut-graph and uncut-graph methods give the same result, we used the
fact that the (anti)commutators of the relevant fields are proportional to the unit operator.
This applies only to the good components of fields. In contrast, the bad components of the
fields have non-trivial (anti)commutators. Thus if we imagined generalizing the definitions
of parton densities to correlators of other components of quark fields, the equality between
definitions with fixed ordering and with time-ordering will no longer hold. Thus it is a good
idea to transform such definitions by use of the equations of motion to write them in terms
of the good components of fields.

One use of the definition using time-ordered operator products and uncut graphs is to
relate ordinary parton densities to limits of what are called generalized parton densities
(GPDs). GPDs are used to analyze the amplitudes for certain exclusive reactions; for a
review, see Diehl (2003). The definitions of GPDs generalize those of parton densities, by
having off-diagonal matrix elements but with the same operators. Since GPDs are applied
to amplitudes, the operators are naturally time-ordered:

dw™ _ipiy- _ 1 + 1
/Zle—’“’ v <P’ TV, (0,§w—,0T) y—wj (0,——u)_,()T> ‘P> , (6.90)
J
C

2 2
where the position arguments of the fields are in the symmetric form used in Diehl (2003).
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6.9.5 Number sum rules

Suppose there is a conserved quark number, as is the case for each flavor (u, d, etc.) in
QCD. Then the total number of quarks minus the number of antiquarks of that flavor should
equal the value determined by the flavor content of the target state. In QCD we therefore
expect the following sum rules for a proton target:

1

/0 A& [fup®) = farp(®)] =2, (6.91a)
I

/O d& [ fa/p®) — f1,,®)] =1, (6.91b)
1

/0 d& [fj/,,(i;') — fj/p(é)] =0 (other flavors); (6.91¢c)

and of course a baryon number sum rule:
1
Z/ d€ [fi/p&) = fi/p®)] = 3. (6.91d)
— Jo
J

Obvious changes apply for other target states (e.g., a neutron or a particular nucleus).
We now show how these rules (and similar ones in model QFTs) are derived when the
parton-model hypotheses are obeyed. The full proof in QCD will involve using the correct
definitions and treating renormalization effects, but the final answer is the same.

The basic observation is that when we integrate over all £ in the definition of a pdf, we
get a delta function that sets w~ = 0, and the operator becomes a component of the Noether
current for quark number. Then we use the fact that parton densities vanish for |£]| > 1 and
the relation between parton and antiparton densities to get the sum rule

> dw™ _pey |- +
/ dé/%e"“’ w <P‘1/fj(o, w—,oT)’%w,-(O)’P>

1
fo de [£,6) — £©)]

1 —
o
pT (PY;(0)y "4 (O) P), . (6.92)
We now have the expectation value of the plus component of the Noether current for the
number of quarks of flavor j. From standard properties of currents, this expectation value is
the charge of the state times a factor of twice the momentum of the state, which is canceled
in the last line. From this result all the above-listed sum rules follow. The subtraction of the

VEYV implies that the number density is relative to the vacuum.

6.9.6 Momentum sum rule

A very similar argument gives the momentum sum rule:

1
> /O de&f;() = 1. (6.93)

all j
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Here we weight the number densities of partons by &, to give a density of fractional
momentum. So the sum rule says that the total fractional momentum carried by partons is
unity. Note that the sum is over all flavors of parton, including separate terms for antipartons
as well as partons. In our Yukawa model this means fermion, antifermion and scalar partons.

The proof is left as an exercise (problem 6.15). It simply involves converting the sum
and integral over parton densities to an expectation value of a certain component of the
energy-momentum tensor (relative to the vacuum).

6.9.7 Isospin and charge conjugation relations

Consider a theory with an SU(2) isospin symmetry and quarks, like QCD, where we have u
and d quarks, which form an isodoublet, and s and heavier quarks, which are all isosinglet.

In real QCD, isospin symmetry is slightly broken by the different masses of the u and
d quarks. By neglecting this breaking, we can obtain relations between parton densities in
different targets, which hold to the accuracy that isospin symmetry holds. Unlike the sum
rules, these relations are valid point-by-point in x.

We will illustrate this for the important cases of the proton and neutron and for the pions.
(Scattering experiments are done with all of these particles.) We will obtain a further set
of relations for pions using charge conjugation invariance. The general form of all of these
arguments is to insert a symmetry transformation operator U times its inverse next to the
target state in the definition of a parton density:

(P,hUTU AUTU|P,h) = (P, K| A" |P,}). (6.94)

Here h' 1abels the state obtained by transforming the target, label /, by transformation U, A
is the operator whose matrix element is the parton density, and A’ denotes the transformed
operator.

Since only the transformation properties under simple symmetries are involved in our
derivation, the results apply equally to unintegrated parton densities, as well as the more
usual integrated parton densities. As explained in Sec. 6.9.8, the results apply equally to the
correct QCD definitions of parton densities, so they are presented in their QCD applications.

Proton and neutron

Physical targets are always eigenstates of I,. So let us take U to be an operator that
exchanges the I, = :l:% elements of an isodoublet. We then get the following relations
between parton densities on a neutron and a proton:

fu/p(x) = fd/n(x)a fd/p(x) = fu/n(x)a (6953)
Jarp() = fam ), fap,(X) = fayn(x), (6.95b)
fj/p(x) = fj/n(x)v fj/p(x) = fj/n(x) (] is s, C, etc.). (6950)

In electromagnetic DIS, the structure functions are dominated by the density of the u quark,
since it has the larger charge. The above relations allow the use of scattering on a nuclear
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target to gain information on f,,, and hence on fz,,, the density of the lower-charge
quark.

Antiproton

One standard beam particle is the antiproton. Parton densities in the antiproton are related
to those in the proton by letting U be the charge conjugation operator. This gives f7,;(x) =
fi/p(x) for all species of parton. Particular cases are

Jurp@) = fap(0)s Sfayp(x) = fasp0). (6.96)

These relations are very important for the phenomenology of data from the Tevatron, which
uses proton-antiproton collisions.

Gluon in proton, neutron and antiproton

Since the gluon is its own antiparticle as well as being isosinglet, the gluon density is the
same in all the targets we have mentioned:

fg/p(x) = fg/n(x) = fg/ﬁ(x)- (6.97)

Proton target is default

The combination of all the above results means that we can express results for all kinds
of nucleon target in terms of parton densities in the proton. So for real QCD applications,
when we write a parton density without a hadron label, e.g., f,(x), it is to be understood
that a proton target is intended.

Densities of definite isospin

It is sometimes convenient to use combinations of parton densities that correspond to
isotriplet and isosinglet operators, e.g.,

fr=0(x) = fu(x) + fa(x), (6.98)
fi=1(x) = fu(x) — fa(x), (6.99)

with a proton target understood.

Nuclear targets

Data on non-trivial larger nuclei are often analyzed in terms of parton densities in the
constituent proton and neutron; this needs a compensation for nuclear-physics effects in
nuclear binding. But it is also possible to treat parton densities on the nucleus as a whole.
It is often possible to treat nuclei as approximately or exactly isosinglet, notably for the
deuteron. In that case isospin relates u and d quark densities, e.g.,

Jup(xX) = fayp(x),  fayp(x) = fayp(x). (6.100)

(See Schienbein et al., 2009; Eskola, Paukkunen, and Salgado, 2009.)
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Pion

The three pions, 7+, 7, and 7°, are related by both isospin and charge conjugation. We
leave as an exercise to derive

Jupet(X) = fajm-(%) = fajn+(x) = fajn-(x), (6.101a)
Jaja+ () = fupr-(X) = fajzr(X) = fa/z-(0), (6.101b)

Soymt(X) = foyn-(x), (6.101c)
Ssja+r () = fsyn-(X) = fs/nr(X) = fi/n-(x). (6.101d)

It can be seen that there are very few independent densities, which considerably assists the
analysis of data with pion beams. The parton densities in the 77 are determined in terms of
the above:

1
Jujro @) = Sajn0(X) = Japmo () = fajzolx) = 5 (furmt @) + faper (), (6.102a)

fg/rr"(x) = fg/rr*(x)v (6.102b)
fv/rro(x) = ff/n“(x) = fs/rr*(x)' (6.102¢)

These last relations are of relatively little use, since we do not normally deal with beams of
neutral pions.

6.9.8 Are the sum rules etc. valid in QCD?

The derivations just presented apply as they stand to a theory which is super-renormalizable
and contains only fields of spin zero and spin half. Evidently, QCD violates both prerequi-
sites, and later in the book we will make the necessary improvements. But here it is possible
to assess the difficulties and to state the extent to which the results presented continue to
apply in QCD.

Our specific model field theory was a very simple Yukawa theory with one field of each
type, but the principles immediately generalize when there are multiple fields. Thus we
were able to conceive of a theory with the same flavor symmetries as QCD, and to prove
certain sum rules.

Isospin relations preserved

In Sec. 6.9.7, we derived relations between parton densities for different flavors of parton
and hadron. The only properties that were used of the operators defining parton densities
were their transformations under charge conjugation and isospin. These properties are
entirely unaffected by the changes needed to accommodate renormalization and the use of
gauge fields. This will become fully evident when we construct the definitions of parton
densities in QCD.
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Renormalization

A renormalizable theory, as opposed to a super-renormalizable theory, is exemplified by the
Yukawa theory in four space-time dimensions, n = 4. All of the above derivations apply
when a UV cutoff is applied, for example dimensional regularization with n = 4 — 2¢. The
fields in the derivations should be bare fields, i.e., the ones with canonical commutation
relations. The bare fields are those for which the coefficients of the first term in each line
for the right-hand side of (6.44) is exactly as given. We then remove the UV cutoff after
applying renormalization.

To implement renormalization, we first relabel all the fields and parameters in (6.44)
with a subscript 0, to denote bare quantities, e.g., go. Then we write the bare fields as
renormalized fields times “wave-function-renormalization factors”, e.g., Yo = ¥+/Z, with
a conventional notation. Thus the Lagrangian density defining the theory becomes

17y — _ _
L= 72 [Vy a0 — @)y "v] — MoZoy ¥
(6.103)
V4 m2Z _ hoZ2? Ao Z2
+ S 097 — =02 — 022y YYg — =gt~ !

Finally we adjust the bare parameters, gy, Z», etc., in an eé-dependent way to remove the
divergences. In perturbation theory, this is implemented by using renormalized couplings
and masses, gg, Mg, etc., and using an expansion of the bare parameters in powers of the
renormalized coupling, with coefficients adjusted to cancel the divergences order-by-order.

It is Green functions of the renormalized fields i and ¢ that are finite rather than those
of the bare fields. So we should define the light-front annihilation and creation operators in
terms of the renormalized fields. Then the (anti)commutation relations of these operators
are changed by wave function renormalization, as in

lar, /1= 8uZ7",  [bras by 1o = [dias d) )y = Subue Z5 ", (6.104)

since itis the bare fields that obey the canonical (anti)commutation relations. An RG analysis
can be used to investigate/compute the true value of the renormalization coefficients when
the UV cutoff is removed. Generally, the coefficients in (6.104) diverge to +oo in this limit,
with the (rare) exceptions being if the anomalous dimension of a field vanishes strongly
enough at the UV fixed point of the theory. The Kallen-Lehmann representation of the
propagator tells us that 0 < Z; < 1 when an on-shell renormalization prescription is used,
so we expect Z; ! to go to infinity rather than zero in the UV limit.

As we will see later, there are further UV divergences in the integrated parton densities,
beyond those removed by wave-function renormalization. We will also see that renormal-
ized integrated parton densities can be defined by a further kind of renormalization, which
is completely analogous to what is done for local composite operators.

Since the finite operators no longer have the standard generalized-harmonic-oscillator
(anti)commutation relations, and since renormalization of the integrated parton densities is
needed, the strict probability interpretation of the parton densities is lost.
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Nevertheless, we will show in Sec. 8.6 that the UV divergences cancel in the sum rules,
which remain true in a renormalizable theory.

Gauge theories

We will examine the light-front quantization of gauge theories in Sec. 7.4.

Extending the definitions of parton densities to QCD will require significant modifica-
tions to the definitions. These involve insertion of what are called Wilson lines to make
them gauge invariant: Sec. 7.5. These will further complicate the probability interpretation
of parton densities and their renormalization. Nevertheless, the derivation of the sum rules
will still work.

6.9.9 Axial currents; Bjorken sum rule

We derived sum rules that related certain integrals over unpolarized parton densities to
expectation values of conserved vector currents. Axial currents are also of interest in QCD,
so we now discuss the associated sum rules. Even though our discussion of QCD is only
later in this book, we can explain the sum rules without this discussion. We simply assume
that the definitions given for parton densities can still be used, and then apply them in a
theory with the same flavor symmetries as QCD.

The use of axial currents is rather more tricky than vector currents. One reason is that
for the SU(2) ® SU(2) symmetry of QCD (broken in the Lagrangian only by light quark
masses) there is spontaneous symmetry breaking of the axial part of the symmetry. So the
expectation values of the axial currents and hence the right-hand sides of the equivalents of
(6.91) are determined by the dynamics of QCD, not by the charges of the target. Some of the
currents appear in the coupling of quarks to weak gauge bosons, and the matrix elements
can be measured, for example, in semi-leptonic decays of hadrons. A second complication
is that the isosinglet axial current has an anomaly and is not prone to easy measurement
or prediction. A third complication is that whereas there are conserved vector currents in
QCD for each of the heavy quarks, resulting in (6.91d), the conservation laws for the axial
currents for heavy quarks are badly broken by quark masses.

An elementary generalization of (6.92) leads to the following result for each quark
flavor:

1
/0 dé [Af;E) + Af5(5)] = % (P[Y;(0)yTysyr;(0)| P). . (6.105)
Note that the antiquark term now has a plus sign instead of the minus sign in the number
sum rules. In some sense the left-hand side measures the total contribution of quarks and
antiquarks of flavor j to the spin of the target. Unlike the case of the quark number currents,
the current does not correspond to a conserved charge. So there is no direct determination
of the right-hand side (although one can well imagine calculating it non-perturbatively by
lattice QCD methods).
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For the non-singlet combination, we get

2P+

where 73 is a Pauli matrix acting on the doublet of fields for the u and d quarks. We used
the quark symbols to denote their parton densities. The current on the right-hand side is
one of the generators of the approximate chiral SU(2) ® SU(2) symmetry of QCD. It is
also related by an isospin transformation for the axial part of the current which couples the
W boson to u and d quarks. The matrix element can therefore be deduced from the rate
and angular distribution of neutron decay (to p + eb), presented as a value conventionally
denoted by G4/ Gy, whose measured value (Amsler et al., 2008) is 1.2695 % 0.0029.

Roughly speaking, the sum rule can be probed in the difference between g; structure
function on the proton and neutron, for which recent data and an analysis related to the
sum rule can be found in Airapetian et al. (2007). To indicate the idea, we observe that the
parton model approximation to g; is

1 B 1 o
/0 dé [Au() + Ad(E) — Ad(E) — Ad(E)] = == (PIYO)y T yst3¥(0)| P).,  (6.106)

1
816, 0) = 7 ¢ IAG() + AG)]. (6.107)
q

Using the isospin relations between the polarized parton densities in the neutron and proton,
which are immediate generalizations of (6.95), and then using the sum rule (6.106) we
get

Gy
6Gy

This is one of two results due to Bjorken that are both called Bjorken sum rules.

1
/ dx[gf(x, 0)—gix, 0= ~0.21 (parton model). (6.108)
0

6.9.10 Moments

The derivation of (6.92) can be readily extended to general integer moments of parton
densities by inserting a factor of £”~! on the left-hand side and a suitable sign with the
antiquark density. The factor of £”~! gives n — 1 derivatives with respect to the position
w~ and we obtain a matrix element of a local operator:

in—1
2( P+)n
In the early days of the study of DIS, the operator product expansion was used to express
moments of the DIS in terms of perturbative coefficients times expectation values of local
operators, exactly like those on the right-hand side of the above equation; see Ch. 14 of
Collins (1984). (Of course, in QCD we need renormalized, gauge-invariant versions of the
operators.)

Equation (6.109) shows how these operators are related to parton densities. The expecta-
tion values of local operators are susceptible to calculation by Euclidean lattice Monte-Carlo
methods, unlike parton densities, whose operators are strictly Minkowski-space objects.

1
/0 dg &7 [f;6) + (=1 f;6)] = (PIY;0y @) '¥;(0IP), . (6.109)
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Thus the equation also provides a way that lattice Monte-Carlo methods can be used to give
predictions for properties of parton densities.

6.10 Feynman rules for pdfs

In this section, I show how the definitions of parton densities are to be applied in Feynman-
graph calculations, by defining special rules for vertices corresponding to the operators in
the definitions of the parton densities. Motivated by applications in QCD, I use the word
“quark” to refer to the fermion field in our Yukawa model theory, and to its associated
particle.

In (6.30), we saw that a quark density can be expressed as an integral over a cut amplitude.
A convenient notation is to write

k
dk— d2—2€kT J/+
1®=p - e
(6.110)
k

d472ek V+ 4 N
= | — =T s+ —¢P

(277)4725 2 ( é )P

which gives the Feynman rule for the operator vertices in an infegrated unpolarized quark
density, in 4 — 2¢ space-time dimensions. The crosses in the first part indicate the operations
that are to be applied to the quark fields to obtain the actual pdf. They denote the integrals
over k= and kt and the trace with y* /2. The plus component of the momentum at the
quark vertices is fixed to be & P™. In view of the extensive use that is made of dimensional
regularization, the vertex is given for a general space-time dimension. Were there a color
degree of freedom, there would be an unweighted sum over the colors of the field. The
bubble indicates the basic matrix element of the quark fields in an on-shell target state of
momentum P.

Generalizations to the polarized parton densities are simply made by changing the factor
yT/2 to the appropriate Dirac matrix in the definition of the parton density. Similarly,
the definitions for the antiquark densities are made simply by changing the direction of
the arrow on the quark line. These are all illustrated in Fig. 6.7. Note that the minus sign
in the definition of the helicity density of an antiquark requires a corresponding minus sign
in the Feynman rule for the antiquark helicity density.

Further generalizations to TMD densities, e.g., Fig. 6.8, are trivially obtained by deleting
the integral over transverse momentum. Generally the context will indicate whether we are
using integrated or unintegrated densities, so we make no distinction in the graphical
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Fig. 6.7. Gamma matrix factors for all the unpolarized and polarized quark and antiquark
densities. For the helicity densities, the target should be in a state of maximum right-handed
polarization. For the transversity densities, the target should be in a state of maximum
transverse spin, and the rules listed above will give the transversity densities times a unit
vector in the direction of the transverse spin of the target. Note the minus sign in the
definition of the helicity density of an antiquark. Note also that the quark momentum is
assumed to be in the direction of the arrow of the quark line. Thus the momentum for the
line at the antiquark density is written as —k.

(TMD) P
k _ T
i [§- o

Fig. 6.8. The rule for the vertex, as in (6.110), but for a TMD, or unintegrated, quark density.
Note that we have not made any notational distinction between the vertices for integrated
and unintegrated densities; generally the distinction can be determined from the context.

notation. The common feature of all the definitions is the unweighted integral over all k~,
so that the field operators in the parton density definition are at equal values of x ™.

The change to the definition with time-ordered products can be made simply by deleting
the symbol for the final-state cut.

6.11 Calculational examples

In QCD, parton densities with hadronic targets are strictly non-perturbative objects. But
it is useful to examine low-order Feynman-graph calculations of parton densities with the
target being an elementary particle of a theory.

So in this section, I present some calculations in the model Yukawa theory used in
our treatment of light-front quantization. The calculations introduce the methods in their
simplest form, and they enable us to see basic principles without being confused by many
of the complications — one might almost say pathologies — that arise in QCD. Moreover,
such calculations can be used as self-consistent models for interesting effects in QCD —
e.g., Brodsky, Hwang, and Schmidt (2002); Collins (2002). In our model calculations, we
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AN

Fig. 6.9. Lowest-order quark density in quark.

will be introduced to the UV divergences of parton densities in renormalizable theories.
Perturbative calculations of parton densities also appear as components of perturbative
calculations of hard-scattering coefficients.

In the calculations, the target state is a physical on-shell elementary-particle state cor-
responding to one of the basic field of the theory like the quark. Our calculations in the
Yukawa theory of (6.44) are of the density of a quark in a quark, f,,,(&), and of a scalar in
a quark fy,,(§).

The concept of the “density of a quark in a quark” is confusing, initially: Why should
this not be a trivial delta function at £ = 1? In fact, the word “quark” in that phrase has
two meanings. One is for the target state, which is an on-shell physical state. The second
meaning is for a state created by the corresponding light-front creation operator. Thus the
different instances of the word “quark”, as well as the two instances of the symbol “g”
in f,,4(8), refer to different bases of theory’s state space. In an interacting QFT, on-shell
single-particle states, as used in scattering theory, are normally non-trivial combinations of
multiparticle states when expressed in the basis given by the creation operators.

6.11.1 Tree approximation

In an expansion in powers of the coupling(s) for f;/,(&), the first term is of zeroth order
(Fig. 6.9). This is deceptively similar to the representation of just the vertices for the parton
density. It is intended to denote the combination of those vertices with the lowest-order
amplitude for the bubble in (6.110). The lowest-order bubble consists of (277 )*2¢54 26 (k —
P) for momentum conservation in a disconnected graph, and a factor of the on-shell wave
function for the target. We allow the most general polarization state for the target, which
can be specified by a spin vector S, as in (A.26). We therefore obtain

0 o [ KPR e, 1 S\r'
fan® = | =i @S = PYTp My (1 sy )
=8(€ — 1). (6.111)

Here we use the superscript “[0]” to denote the lowest-order value with zero loops. This
calculation provides a basic verification of the normalization of our definition. Without
interactions the single on-shell quark is also a single particle in the light-front creation
operator basis, and it carries the whole momentum of the target, i.e., ithas § = 1.

6.11.2 One-loop quark in quark

At one-loop order, there are two kinds of graph for f,,, (Fig. 6.10): (a) self-energy correc-
tions on the external line, and (b) a graph with a scalar particle emitted into the final state.
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j\\ .

a

Fig. 6.10. One-loop graphs for density of quark in quark.

(We consider graph (b) a loop graph since there is a momentum integral through the vertex
for the parton density.)

Self-energy graph

The full effects of self-energy corrections for external on-shell lines are given by the LSZ
method. This tells us that for each external particle we need a factor of the square root
of the residue of the pole of the propagator. To calculate this, we start from the one-loop
self-energy of the quark:

g_zz['l = igZMZE/ Tk P—k+M (6.112)
1672 (2m)*2€ [(P — k)2 — M2 +i0](k2 — m2 + i0)’ '

The superscript “[1]” denotes the coefficient of the one-loop approximation. As usual,
the coupling is written as gu¢, where g is dimensionless and w is the unit of mass for
dimensional regularization.

Now the full quark propagator is i/(p — M — X). So the one-loop contribution to the
residue is given by differentiating ©!!! with respect to p and by then setting p on-shell.
After performing the & integral by the Feynman parameter method, we find that to one-loop
order, the residue is

2 2 1 At 112 €
g residue!!l = 1 — g F(e)/ dx T
1672 1672 0 m2x + M2(1 — x)?

n 2e M*x(1 — x?)
X .
m2x + M2(1 — x)?

I+

(6.113)

We have a factor of the square root of the residue for both external quark lines, so that the
resulting one-loop contribution to the quark density is

'S [1,v1 §
— 1 =38 —-1) x
s fy (@) =06~ 1) x o
The “V” in the superscript denotes “virtual correction”. Equation (6.113) shows that this
contribution is negative. This reduces the size of the one-light-front-particle component in
the normalized target state, leaving room for a multiparton component.
Of course, when we go to four space-time dimensions, € = 0, this term is UV divergent.
We will explain what happens for the parton density, when we discuss its renormalization.

residue!!!, (6.114)
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Real emission
The integral for the real-emission term (Fig. 6.10(b)) is readily written down from the
Feynman rules:
dk= d> 2k 278((P — k)* — m?)
(27-[)4—26 (kz _ M2)2

e =

X O(PT — k*)Tr L— (k +M)(P+ M)= (1 + ys ﬁ) K+ M). (6.115)

We set k™ = £ PT, and then use the delta function to perform the k~ integral, whereby

k2 4+m? — M*(1 - &)

_optkT =
2PTkT = T—f . (6.116)
This gives

2 2 2 22g2
[1.R] (4JTM / A=) [kt + A +E)"M]
16n2f s &)= 6 1672 T(1 —€) kitkn” [k2 +Em? 4 (1 - §)2M2)?

g’I'(€) 4’ [ gy A =DEM —m?)

1672 [ Em? 4+ (1 — §)2M? Em? 4+ (1 —§)>°M?

6.117)

Here, we have used a standard result, (A.34), to perform the angular part of the transverse-
momentum integral. The restriction of the final-state momentum P — k to physical positive
energy implies that the above formula should have an implicit theta function that restricts
it to £ < 1. In addition, for negative &, as we will see, the calculation is not the complete
one; a correct calculation (Sec. 6.11.6) for & < 0 gives zero. Thus there should also be a
restriction to positive £. Then in the physical range, we have a non-singular function.

Notice that the denominator is identical to the one in the self-energy. This is related to a
cancellation needed to verify sum rules.

Naturally the real-emission contribution is positive, since parton densities are positive,
and for the situation that £ is not equal to unity, our calculation gives the lowest-order
contribution.

When the theory is super-renormalizable, in less than four space-time dimensions, i.e.,
for € > 0, the kr integral is convergent. But at the physical space-time dimension, with
€ = 0, there arises a logarithmic divergence at k; — oo. This in fact should be considered a
conventional UV divergence, since the virtual line k goes far off-shell, and masses become
negligible in the region that gives the divergence. We will discuss the UV divergences later
in Sec. 8.3.

6.11.3 One-loop scalar in quark

The remaining one-loop contribution to parton densities in an on-shell quark is the density
of the scalar. For this, we need the Feynman rule for the density of a scalar parton (Fig. 6.11).
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Fig. 6.11. Feynman rule for operator for the density of a scalar parton.

Fig. 6.12. Scalar density in quark.

It has a factor & P™ in place of the y* /2 for the quark density. The derivation is left as an
exercise (problem 6.6), and it results in the definition in (6.124) below.
Then we readily find the one-loop scalar density from Fig. 6.12:

82 fm ) = gz,u?f'/ dk= d* k¢ 27‘[8((P —k)? — MZ)
16727 ¢/4 (27.[)4—25 (kz _ m2)2

XEPTTIP — K+ MY(P + M)3 (14 55/ M)
g (4m )

o0
= "7 dkA(k2)~¢
1672 (1 —€) Jo 1kr)

£ [k + 2= &M’
(ki + (1 — §)m> + §2M?*]?

_g'TE© dm ‘ eE(1 = §)M? —m?)
~ len? [(1—€)m2+52M2] [$+ (1 —&m>+&2M>

] (6.118)

Notice that the denominator is obtained from the denominator in the quark density by
changing & to 1 — &, as is appropriate now that the scalar line has its plus component of
momentum equal to k* instead of P+ — k™. Again, we have a positive contribution, with
a UV divergence when € = 0.

The above calculation is valid when 0 < £ < 1. As usual, the positive-energy condition
on P — k ensures that parton densities are zero if £ > 1. For negative £, a more elaborate
argument, with extra graphs, is needed, and is given in Sec. 6.11.6.

6.11.4 Sum rules

We now check that the number and momentum sum rules are obeyed by our calculation.
Naturally the lowest-order term contributes unity to both the quark number and to the
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Fig. 6.13. Real-emission contribution to one-loop quark density in quark when the definition
with time-ordered operators is used.

momentum sum rules. So to confirm the sum rules at order gz, we must show that the
one-loop contributions to each sum rule are zero.
For the number sum rule we have

[ e s+ [ae e
= residue!'! + / dg £10&)

1 2 € 2 _ B - 5
= F(e)/dx[ 4 i| [1 —ox+ eM=x(1 —x)[2(1 —x)M" —m ]i|
0
=0.

m2x + M2(1 — x)? m2x + M2(1 — x)?
(6.119)

The zero in the last line can be easily calculated by using the fact that the integrand in
the previous line is proportional to the derivative with respect to x of x(1 — x)[m?x +
M*(1 — x)*]<.

The momentum sum rule is checked similarly.

6.11.5 Uncut graphs

We saw in Sec. 6.9.4 that because the fields in the definition of a parton density commute
or anticommute, except for an irrelevant “c-number” term, the operator product in the
definition of a parton density can be replaced by a time-ordered product, as in (6.89). So
we now examine how this alternative definition can be used and verify in an example that
it gives the same results as when the original definition is used.

When a time-ordered product is used the Feynman rules for parton densities are simply
given by deletion of the final-state cut in (6.110) and all its relatives. For the case of
the one-loop calculation of the density of a quark in a quark that we examined earlier,
this results in the replacement of Fig. 6.10(b) by Fig. 6.13. Applying the Feynman rules
gives

dk= a2k Tr 5ok 4+ MY(P + M)L (1 + 58/ M) (k + M)

(2m )+ (k2 = M2 +i0)* [(P — k)? — m? + 0]
(6.120)
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Fig. 6.15. Extra cuts of the one-loop graph for the quark density in a quark. These contribute
only for negative &, and then cancel the contribution of the standard term Fig. 6.10(b). To
avoid a division by zero in the uncut quark propagator, the matrix element is temporarily
made off-diagonal in the target momentum.

All the lines now have regular propagators. Notice the overall factor of i compared with
(6.115). In terms of light-front coordinates, the denominator factor is

1
(26 Pk — K2 — M2 +i0)°[2(1 — £)P+(P~ —k~) — k3 —m? +i0]

(6.121)

We now perform the integral over £~ by the residue theorem. This works in almost exactly
the same way as in Sec. 5.4.2 for the collinear-to-A contribution to the Sudakov form factor.
As illustrated in Fig. 6.14, when & < 0 and when & > 1 all the poles are in either the upper
or lower half plane, so that we can deform the contour to infinity away from the poles and
get zero.

The only non-zero contribution is when 0 < £ < 1. Closing on the single pole at
(P — k)* = m? sets this line on-shell, and exactly reproduces the previous result, (6.117).

6.11.6 Negative &

One additional feature of the calculation in the previous section is that a vanishing value
is obtained when £ is negative. From the relation (6.85), this corresponds to a vanishing
density of antiquarks in the quark at this order of perturbation theory.

In contrast, in the formalism with fixed ordering for the operators. the cut graph
(Fig. 6.10(b)) gives a non-zero value. This appears paradoxical until we observe that
there are two further cuts of the same graph, as shown in Fig. 6.15, where the quark prop-
agator is cut, to give a final state consisting of the target and an antiquark of momentum
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—k. When £ is positive, the cut lines in Fig. 6.15 do not obey the positive-energy condi-
tion for physical particles, and therefore these diagrams give zero. But for negative £ the
positive-energy condition is satisfied, and we get a non-zero contribution from the extra
cuts.

A further problem now arises: when we set k> = M? in one quark propagator, the other
quark propagator is exactly at its pole and gives infinity. How is one to show in a principled
way that the infinities cancel between the two cut graphs in Fig. 6.15 and that the finite
part cancels against Fig. 6.10(b)? We could solve this by using a wave-packet state as
we did in finding the probability interpretation of parton densities. An alternative, which
we will use here, is to start with the matrix element defining the parton density being
off-diagonal in target momentum: (P|...|P) — (P’|...|P). We only take the diagonal
limit P’ — P after summing over cuts. The off-diagonal matrix element shifts one of the
quark propagators from momentum k to k + P’ — P, thereby taking the uncut propagator
slightly away from its pole. As a function of k~, the pole and delta function structure for
the three cuts is of the form

—i —i

Sk~ — A) (—ig) — - (—ig)—
( ) ( lg)k——B—iO( lg)k——A/—iO
i —i
' ig)8(k — B) (—ig) — 6.122
+k——A+i0(lg)( ) ( lg)k——A/—iO ( )
i i
' o) (k™ — A,
T a0 U a0 8 )

up to a common overall factor. The quantities A, B and A’ are functions of masses, of &
and the difference between P’ and P. The diagonal-matrix-element limit P’ — P gives
A" — A.Integrating over kK~ gives

, 1 Lo Lo ] 1
8 A_BA—A "  B_AB—A S A_AA_B

, (6.123)

which sums to zero, even before taking the limit A" — A.

This calculation is a verification in an example of a general result that we proved using
operator (anti)commutation relations. The cancellation corresponds to the fact that in the
time-ordered-operator formalism, all the poles in the propagators are on one side of the real
axis, as in Fig. 6.14(a).

An interesting variant of this problem occurs when we try computing the density of a
scalar parton in the fermion target. Exactly the argument we have just given shows that the
graph in Fig. 6.12 has two extra cuts and that the sum vanishes for negative £. However, we
have also shown that, since the scalar particle is its own antiparticle, its density at negative
& is the negative of the density at positive &, (6.87), and therefore is non-zero.

To recover this result, we observe that there are other possible graphs, Fig. 6.16, in
which the vertices of the scalar line on the fermion line are reversed. For positive &, these
graphs are zero, and so do not affect the calculation we have already done. But when £ is in
the range —1 < & < 0, similar arguments to those we gave earlier in this section show that
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Fig. 6.16. Cut graphs at one-loop order when £ < 0 for the density of scalar partons. Graph
(a) is in fact zero, because the coupling of the three on-shell particles violates 4-momentum
conservation. Graph (b) only contributes when £ < —1, by the positive-energy condition
on the particles on the cut.

the sum of these extra graphs is non-zero, and in fact they result in (6.87). When £ < —1 the
graphs sum to zero. Verification of these statements is left as an exercise.

Exercises
6.1 Find a/the kt-dependent Lorentz transformation that converts k to k" in (6.6).
6.2 Derive (6.31) from (6.14).
6.3 Similarly derive (6.33).

6.4 (a) Derive the corresponding results for polarized antiquark densities. Pay careful
attention to signs.
(b) Fill in any other missing details in Sec. 6.5.

6.5 What would happen if the theory were parity violating?

6.6 (a) Using the methods of this chapter, derive the parton model when the quarks have
spin 0. Then derive a formula for the corresponding parton density:

o0 —

f&) =¢&P" / %e*f“’“f (P70, w™, 07)$(0) |P),, (6.124)

including the, perhaps unexpected, factor £ P*. [Note: A scalar quark might
appear in a model field theory or an extension to QCD, notably a super-symmetric
extension. ]

(b) Obtain the corresponding formulae for the unintegrated density.

6.7 Carefully derive the signs in the exponents in (6.26).
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Exercises 211

Generalize whatever needs to be generalized in this chapter to deal with DIS on a
spin-1 target like the deuteron. [See Hoodbhoy, Jaffe, and Manohar (1989) for an
account of some of the theory, one of the features of which is a new structure function
b;. See Airapetian et al. (2005) for the first measurement of b .]

Check the statement given in the text that, in light-front quantization in the theory
specified by (6.44), the standard field equations (6.45) and (6.46) do indeed follow
from the canonical (anti)commutation relations (6.53) and (6.54) and the Heisenberg
equations of motion (6.51).

Check that the other equations in the sections on light-front quantization and their
relations to parton densities are correctly derived, notably (6.65).

Verify the results (6.76) and (6.78) for the interpretation of the polarized parton
densities. Do this for both quarks and antiquarks. [Note: There are some subtleties in
discussing the spin states needed in the wave-packet derivation that may impinge on
this discussion. See Bakker, Leader, and Trueman (2004).]

Generalize the relation between quark for negative £ and antiquark densities with
positive £ to the polarized case.

Derive the relations (6.101) and (6.102) for parton densities in pions.
Extend these results to kaons.

Generalize the proof in Sec. 6.9.5 to derive the momentum sum rule (6.93). You
will need to convert the left-hand side of the sum rule to a matrix element of the
energy-momentum tensor.

At one-loop order verify the momentum sum rule (6.93) for a quark target in the
Yukawa model theory. The sum over j is over the fermion, the antifermion, and the
scalar.

Perform the one-loop calculation of the parton densities for a target that corresponds to
the scalar field in our Yukawa field theory. Again verify the momentum sum rule. (The
number sum rule is trivially satisfied, since, as you can verify, f7,4(§) = f4/6(£).)

Verify by explicit calculations the statements at the end of Sec. 6.11.6.

(**) (This problem is quite hard, probably very difficult, and might even deserve
three stars.) Suppose we take field theory to be defined by Feynman graphs for Green
functions. Derive equal-time and equal-x* commutation relations. Thus Feynman
perturbation theory does in fact correctly solve the operator formulation of the theory,
despite any doubts one might have about the rigor of the derivation of perturbation
theory.

Note that there is quite a bit of literature on obtaining commutation relations
from time-ordered Green functions, but that most of this dates from the heyday of
current algebra and therefore pre-dates QCD. These techniques have not propagated to
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modern textbooks. I refer here to the Bjorken-Johnson-Low (BJL) method (Bjorken,
1966; Johnson and Low, 1966).

6.20 (***) What happens in the previous problem if you apply it in the presence of
renormalization and/or of gauge fields? [Note: Either or both of these conditions is
liable to need techniques from the later part of this book, but probably in their simpler
forms.]
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Parton theory: further developments

In the previous chapter, we formalized the parton model in a simple quantum field theory.
A number of further developments follow fairly simply, and this chapter’s purpose is to
give an account of them, before we go on to the full QCD treatment.

We first extend the parton model for DIS to the very important case of charged-current
weak-interaction processes. Then we examine a particularly influential form of perturbation
theory: light-front (or x*-ordered) perturbation theory. After that I present the light-front
quantization of gauge theories, a natural extension of what we did earlier for non-gauge
theories. We will thereby be able to introduce appropriate definitions for parton densities
in a gauge theory, and to convert them to a gauge invariant form with the aid of what are
known as Wilson-line operators.

7.1 DIS with weak interactions, neutrino scattering, etc.

We have extensively discussed DIS for the case of virtual photon exchange. The same
principles apply equally to all lepto-production processes [ + N —> I’ 4+ X, and thus they
apply whether the exchanged electroweak boson is a W, Z or photon. There are a large
number of different cases, and, as far as the theory by itself is concerned, all are a minor
variation on the purely electromagnetic case, both at the parton-model level, and with all
the QCD modifications. The structure-function review in Amsler et al. (2008, Ch. 16) is an
authoritative source for the relevant results including corrections of errors in the literature
and commonly used standards for notations, the bulk of which we follow. See also Hobbs
and Melnitchouk (2008) for a recent treatment of the role of y—Z interference in the
parity-violating part of neutral current DIS.

7.1.1 Structure functions

In view of its particular importance to the determination of the flavor-separated quark
densities, we restrict our attention to the charged-current processes in neutrino scattering on
unpolarized nucleons. These are the processes v+ N — pu+ X andv+ N — e + X,
with the exchanged boson being the W . The hadronic tensor is

WH (g, P) = %/d“z (P, S| JMz/2) IV (—z/2)|P, S), (7.1)
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where J is now the non-hermitian hadronic current coupling to the W boson. We normalize
this charge-changing current to
Jt =yt (1 —ys)d + eyt (1 — ys)s' + iy (1 — ys)f

d

@ ¢ f)y"(d—ys) Uckm|s |- (7.2)
b

Here u, ¢, and ¢ are the fields for the corresponding quarks, and d’, s’, and b’ are for the
down-type quarks that are associated with them in multiplets of weak isospin. The fields
for mass-eigenstate quarks, d, etc., are obtained by a CKM rotation, reviewed in Amsler
et al. (2008, Ch. 11), and implemented in the above equation by the matrix Ucgm, Which
acts on quark flavor indices.

We next decompose WV in scalar structure functions. There are two differences com-
pared with the pure electromagnetic case, both of which increase the number of structure
functions. First is that parity is not conserved and second is that the currents are not con-
served because the quark masses are non-zero. A thorough analysis was given by Ji (1993),
who found 14 structure functions on a spin-% hadron target, of which 5 appear when the
hadron is unpolarized and 9 concern hadron-polarization dependence.

For most purposes we can neglect the structure functions allowed by non-conservation of
the current. Normally, we neglect quark masses compared with Q within the hard scattering,
so that the extra structure functions are suppressed by a power of m,/Q. This of course
does not always work for heavy quarks, notably the b and ¢.

Thus the extra structure functions could be significant when there is a heavy quark in
the hard scattering. However, the associated tensors almost all have a factor of g* or ¢, the
one exception being in polarized scattering. Now a factor g* or g” times the leptonic tensor
is non-zero only because a lepton mass is non-zero, and therefore we obtain a suppression
by a power of a small lepton mass divided by Q.

The result is that for neutrino scattering on an unpolarized target, we have one extra
relevant structure function F5:

(P* —q"P-q/q*)(P" —q"P -q/q%)
P-q

W = (-g"" +4"q"/q%) Fi(x, Q%) + Fy(x, 0%)

o P .
- ie“”“ﬂq—'g F5(x, Q%) + irrelevant. (7.3)
2P -q

See Amsler et al. (2008, Ch. 16) for a definition that includes structure functions for
polarized scattering.

7.1.2 Parton model with low-mass quarks

The parton model and its derivation work equally well with neutrino scattering at large
Q. As before, the parton-model approximation to the hadronic tensor is just a sum over
parton densities times the tensor computed to lowest order on an on-shell quark target, as
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q(Ww™)

Fig. 7.1. Examples of lowest-order parton-model processes for charged-current DIS with a
W™ ora W~ exchanged.

in (2.27). Let ki* = (x P, 0, O1) be the approximated quark momentum. Then the partonic
tensor (2.28) is simply replaced by

11, 5 A N
Ci' = 5 Tk (L= y)(g +By" (1 = y5) 278((q + b)), (7.4)

with the restriction to the allowed partonic subprocesses, e.g.,d — u, i — d, etc. for W+
exchange. Note that the formula must be slightly changed on an antiquark. It is readily
deduced that the parton-model structure functions are

FEMYT = 20 [d(x) + () + s() + 600 + .. ], (7.5a)
+ 1

FIQPM,W _ ﬂFz’ (7.5b)

FEMYT = 21d(x) — a(x) + s(x) — &) + ... 1. (7.3¢)

For processes like 7p — e™ X with W~ exchange, the roles of the quarks in each isospin
doublet are exchanged, to give

FY = 2 [u(0) + d00) + 500 + (0 + .. (7.62)

FIMW — LY (7.6b)
2x

FEMYT =2 [u(x) — d(x) — 5(x) + () +....]. (7.6¢)

Only those heavy quarks whose mass is low enough to participate in the process should
be included. Notice the restricted set of quark flavors allowed in each structure function
(Fig. 7.1). Notice also the reversal of sign for the antiquark terms in the F3 structure
function. These properties indicate how important charged-current scattering is for the
flavor separation of quark and antiquark densities from data.

7.1.3 Quark masses

So far our arguments have relied on Q being much larger than all the particle masses of
a theory; the reduced diagram analysis concerned the zero-mass limit m/Q — 0. But the
wide range of quark masses in QCD shows that there is an interesting region where Q is
much larger than the lightest masses, but less than or comparable to some of the heavy
quark masses. A full and systematic treatment in QCD will appear in Sec. 11.7.
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Charged-current DIS, where heavy quarks can be produced off light quarks, provides a
useful place to initiate the discussion of heavy quarks. The basic methodology is to treat
the heavy quark masses as a large scale, just like Q. Then we apply the Landau analysis
to locate the PSSs only for the light partons. The heavy quarks appear only inside the
hard scattering, and the parton densities used are for light partons only. Naturally, when
Q is increased sufficiently above the mass of a particular quark, the status of the quark
changes.

For neutral-current processes, heavy quarks are made in pairs, and the hard scattering
analysis is closely tied to the higher-order corrections to the hard scattering, to be studied
later. But for charged-current processes, the production of a heavy quark can occur at lowest
order,e.g., W~ +5 — ¢, W + s — c. Then the parton-model approximation for the hard
scattering retains the massless approximation for the incoming quark, but we insert the
mass my, for the outgoing heavy quark. Thus we replace the parton-level structure function
(7.4) by

Cj'w —

11 ~ ~ ~
15 TR (L= (g + R+ ma)y (1= y3)276((q + kK —m3),  (1.7)

applicable to a process W + g; — g, with a transition from a light quark of flavor j to a
heavy quark /. The mass shell condition now sets the parton momentum fraction to

£=x(1+mi/0% (7.8)

rather than simply x. It can readily be checked that the contributions to the hadronic structure
functions are

R =f©. BT =uh6. BT =260, 79)

This should be used to replace the relevant terms in (7.5) and (7.6).

In addition there are terms in (7.7) proportional to g*¢"/Q? and (P*q" + q"* P")/P - q,
which are allowed because of non-conservation of the currents when quark masses are
non-zero. As already stated, the factors of g/ or ¢” multiply the leptonic tensor, and give a
suppression by a power of /lepton mass divided by Q.

There is in principle a sharp structure in the structure functions at the threshold for
production of a heavy quark, at

1

[+ (M2, — M2/ Q% (7.10)

Xexact threshold =

where M, is the lowest-mass final state in W* 4+ P — X thatincludes a hadron containing
a particular heavy quark. For a b quark this might be the lightest B-flavored baryon, Ag. In
contrast the partonic calculation gives a threshold in x given by setting & = 1 in (7.8), i.e.,
at
1

1+mi/0%
This differs from the exact threshold because the heavy baryon’s mass is not exactly
equal to the heavy quark’s mass and because there is an effect due to the proton mass,

(7.11)

Xparton threshold =
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both effects being neglected in the partonic calculation. For practical purposes the differ-
ence is not important because the parton densities vanish strongly at £ = 1 and the main
contributions arise from small &. Thus the main numerical contributions to the structure
functions from heavy quark occur for values of x well beyond the threshold for heavy quark
production.

Even so, the disagreement between the thresholds in x illustrates a principle mentioned
in our derivation of the parton model in Sec. 6.1.1. This is that the approximations only
apply to a local average of the structure functions, which would smear out sharp structures.
Observe that the exact and parton-model thresholds in x differ by an amount proportional to
hadronic-mass-squared divided by Q2, a power-suppressed quantity. This is an important
principle to remember whenever thresholds appear in partonic calculations. Improvements
can only be made by treating parton kinematics better.

7.2 Light-front perturbation theory

In analyzing a collinear region, a number of interesting simplifications arise when we
integrate over the minus components of loop momenta. A simple example was in Sec.
6.11.5 for a one-loop calculation of a parton density, where it gave the restriction that
fractional momenta for internal lines correspond to forward-moving particles: the target
splits into two forward-moving partons, both with positive plus momentum, and one of the
partons initiates the hard scattering.

In the example, and as we will now see quite generally for any Feynman graph, integrating
over the minus momenta led to restrictions on plus momenta that correspond to to the
restrictions imposed by the reduced graph analysis of Ch. 5. This leads to an interesting
generalization of the method of time-ordered perturbation theory (Sterman, 1993, Sec. 9.5).
In this older method, in contrast to Feynman perturbation theory, the effect of interactions
is to cause transitions from one state to another, the interactions occur as a sequence in
time, and there are energy denominators corresponding to the intermediate states. Time-
ordered perturbation theory gives a useful intuition as to the time evolution of the system’s
state. But in relativistic theories time-ordered perturbation theory is inefficient (Heinzl,
2007), because a Feynman graph with n vertices has n! time orderings. If time ordering is
replaced by ordering in x™, it turns out that many of the orderings of the vertices give zero.
This formulation corresponds to a natural version of perturbation theory within light-front
quantization, when the role of time in ordinary quantum-mechanical evolution equations is
replaced by evolution in x*.

The method arose first — see Brodsky, Pauli, and Pinsky (1998) for a review — in the use
of what was called the “infinite-momentum” frame for understanding the parton model. The
systematization in terms of light-front variables and then x*-ordered perturbation theory
was made by Chang and Ma (1969) and Kogut and Soper (1970). Chang and Ma also
showed how the rules arise by performing the k~ integrals in Feynman graphs.

Naturally, if one wishes to discuss collinear regions with the high-energy particle(s)
moving in some direction other than the +z direction, a different definition of light-front
coordinates is appropriate.
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k
w z
Y z
p—k

Fig. 7.2. (a) Self-energy graph. (b) An x* ordering that gives zero.

7.2.1 Example

The basic principles are illustrated by the simple example of the propagator correction graph
in ¢ theory, shown in Fig. 7.2(a). We first examine the case that the external momentum
obeys p* > 0. Since we need to consider also the graphs in coordinate space, each vertex
is labeled with a position variable. The value of the graph is

2
—g 1
r = d'k
P = T = 2ny / Uk —K—m? 410

1
X .
2(pt —kN)p~ — k™) — (pp — kr)* —m? 400

(7.12)

We perform the integral over kK~ by closing the contour in the upper or lower half plane.
This gives zero except when k™ is between 0 and p*, with the result

L'(p) = i/f dk+/d"’2k 1
20271 J T @ptR 2kt 2pt — kT)

l'3

2 2 2 K2 2 k) 2 )
[p—m—i-iO} |:p— r+m°  (pr—kp) +m +i0:|

X

2pt 2%+ 2p+ —kT)
(7.13)

This has been organized so as to correspond to the general form we will find in x*-ordered
perturbation theory. The relevant ordering is given in Fig. 7.2(a). This has three intermediate
states, between the vertices w and x, between x and y, and between y and z. The last line of
(7.13) is a product of an energy denominator factor for each intermediate state. Each of these
factors is i /(p~ — on-shell 4+ i0), where “on-shell” denotes the value of minus momentum
the state would have if the particles were on-shell. Note that two of the denominators, for
the first and last intermediate states, are equal. In common with the Feynman-graph method,
there are the factors of —i g for each vertex and a symmetry factor % The integration is only
over the plus and transverse momenta, and for each line there is a factor of one divided by
twice its plus momentum. This corresponds to the denominator in the light-front version of
the “Lorentz-invariant phase-space” measure, (6.59). At each internal vertex are conserved
the independent components of momentum needed to specify physical states, i.e., the plus
and transverse components.



7.2 Light-front perturbation theory 219

In advance of their general proof, we can use this graph as an illustration of the results
that yield the main simplifications given by light-front perturbation theory. Each line has
to carry a physical positive value of plus momentum, when considered flowing from left
to right. Because p*™ > 0, the x vertex is to the right of the w vertex, and similarly for z
relative to y, i.e.,, x* > w™, z* > y™. This still leaves one other possible ordering, shown
in Fig. 7.2(b), where y™* is earlier than x*. However, this ordering does not give an allowed
situation, since at the x vertex we have three positive plus momenta coming in from the left
and none going out to the right. This is how the simplification compared with time-ordered
perturbation theory occurs. With time-ordered perturbation theory, the ordinary energy k°
would have been integrated over, and the independent variables for each line would be the
ordinary spatial momentum, none of whose components has any constraint on its sign.

For this one Feynman graph we have one x™ ordering that gives a non-zero result. In
contrast, time-ordered perturbation theory would have 4! = 24 time orderings for the same
Feynman graph.

One can readily verify that the above calculation reproduces the standard result for the
Feynman graph by performing the kt integral. After a change of variable to x = k*/p™,
an integral is obtained that is the same as is obtained when the momentum integral in (7.12)
is performed by the conventional Feynman parameter method.

7.2.2 Paradox at p* =0

We obtained (7.13) for the case that p* was positive, and observed that it gives the correct
value. Similarly when p* is negative, we also get the correct value, but with a reversed
ordering for the vertices.

But if p* is exactly zero, the poles in k™ in the original integral (7.12) are either both
in the lower half plane (if k™ > 0) or both in the upper half plane (if k* < 0). Completing
the contour of k= away from the poles then gives zero for all values of k™. This disagrees
with the definite non-zero limit of (7.13) as p* — 0, and hence with the non-zero value of
the ordinary Feynman graph.

This issue is rather important, because the same method can be used to show that
disconnected vacuum bubbles are apparently all zero in light-front perturbation theory
e.g., Weinberg (1966) and the introduction (but not the later sections) of Chang and Ma
(1969). This has contributed to a general impression (e.g., Brodsky, Pauli, and Pinsky,
1998) that the vacuum is trivial in light-front quantization, unlike the case for equal-time
quantization; i.e., the interactions do not change the vacuum state. Now, although vacuum
bubbles are normally discarded, they physically give an energy density to the vacuum,
which can be related to the energy-momentum tensor in the vacuum. Vacuum energy-
momentum is equivalent (Weinberg, 1989) to a contribution to the cosmological constant
in general relativity, i.e., it has observable consequences. (There is, of course, an infinite
renormalization of the cosmological constant to cancel UV divergences in vacuum bubbles.)
Evidently, when different results are obtained for the same graph by different methods of
calculation in the same theory, at least one method is wrong.
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Fig. 7.3. Partially deformed contour for evaluation of integral at zero external p*. Note that
the axes are the real part of k™ and the imaginary part of the other variable k~, and that
there are therefore two other dimensions not shown, for 9ik~ and Ik ™.

Our propagator calculation indicates that there must be a problem with the derivation
of a zero value for the propagator correction at zero external plus momentum, since that
disagrees with the limit from non-zero p*, and propagators are analytic functions of external
momentum. This problem was recognized and solved, at least in examples, by Chang and
Ma (1969). A more general solution was provided by Yan (1973) with generalizations by
Heinzl (2003).

At zero external p* we need the integral over k= and k™ of

1
[2k+k— — k2 —m? +i0] [2k*(k— — p~) — (pr — kr)> —m? +i0]

(7.14)

We deform the (two-real-dimensional) contour of integration so that the imaginary part
of k™ is infinite and positive when k™ > 0, but infinite and negative when k* < 0. As
illustrated in Fig. 7.3, the contour of integration is a connected manifold and so at k™ close
to zero, the deformed contour has to pass through small values of Jk~. This leaves the
possibility of a non-zero contribution, where k* is very small and k™ is very large, leaving
kTk~ of a fixed size. (Such a contribution does not arise when the external plus momentum
is non-zero, because there is then a large denominator containing a p™k~ term.)

Contour integration shows that the integral over k~ of (7.14) is zero whenever k* is non-
zero. On the other hand the integral of (7.14) over both k™ and k™ is definitely non-zero.
This indicates that the integral over the one variable K~ must be treated as a generalized
function of the other variable k™", e.g., a coefficient times §(k™): it is zero everywhere except
at one point, but with a non-zero integral. In fact, Yan (1973) and Heinzl (2003) showed that

dk™ 1 — i) 7.15
/ (M2 =2kTk =0y (v = (M2 71>

This formula can be used to calculate the integral of (7.14) with the aid of a Feyn-
man parameter combination for the denominators, and results in agreement with the
Feynman-graph calculation and with the limit from p* # 0. The paradox is now resolved.

For disconnected vacuum diagrams, this solves the disagreement between light-front
perturbation theory and regular Feynman perturbation theory; Feynman perturbation theory
is correct, and there is in this case little notable advantage to use of light-front perturbation
theory.
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But for graphs with non-zero external momenta, we can choose the external momenta
to avoid the problematic situations, as was shown quite generally by Chang and Ma (1969).
We avoid the problems if no subgraph is forced by the configuration of external momenta
to have exactly zero for its external plus momentum.

Certain other complications arise when there are numerator factors with dependence
on k~. These can affect the convergence of the k™ integrals, and a naive application of
light-front methods to a Feynman graph can give a wrong result. This is particularly the
case for calculations in a massless on-shell approximation.

7.2.3 General rules

Statement

The general rules for perturbation theory in the x *-ordered form can be found in Chang and
Ma (1969), Kogut and Soper (1970), and Yan (1973), but with a different normalization.
There are some complications associated with momentum dependence in vertices and in
propagator numerators, so we first state and derive the rules for scalar theories.

1. The graphs are like Feynman graphs except that the vertices are assigned an ordering in
xt, which in drawing diagrams we will take to increase from left to right. All possible
graphs and orderings are to be used.

2. Coupling factors at vertices and symmetry factors are the same as in Feynman graphs.

3. Each line/ is assigned a plus and transverse momentum: k,+, k;t, and these components
of momentum are subject to conservation at the vertices.

4. The sign of each line momentum is chosen to correspond to propagation from lower to
higher x*, and then k/+ is always physical, i.e., positive.

5. For each loop there is an integral 2of a loop momentum, but only over its plus and

dkt d"%ky

transverse components:
(27-[ )n -1

6. For each line [ there is a factor —-
2k,
7. For each intermediate state « there is a factor
i

Py — P

. (7.16)
o « on-shell + i0

Here P, is the total external minus momentum entering the graph to the left (earlier
xT) than the intermediate state o, while P, .., is the value of the minus momentum
of the particles contained in the state when they are on-shell. That is,

_ k2. 4+ m?
POl on-shell — Z o + L . (717)
2k,
lea

These rules can be derived by normal time-dependent perturbation theory, with the
change that light-front quantization is used and the evolution variable is x* instead of
ordinary time (Kogut and Soper, 1970). What we will do here instead is to derive them
from Feynman perturbation theory in the coordinate-space representation, with the integrals
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over the positions of the vertices split up according to their ordering in x*. This second
method directly shows the equivalence with Feynman perturbation theory; it will also
provide techniques for analyzing Feynman graphs in terms of particles propagating in
space-time.

Derivation

See also Ligterink and Bakker (1995) for a derivation.

We start with the momentum-space representation for Feynman graphs and perform
appropriate Fourier transforms to obtain the coordinate-space representation, but only as
regards plus components of vertex positions. In all of the following, we will use x; to
represent the position of a vertex j in a graph.

First we Fourier-transform a free propagator to plus position, and decompose according
to the ordering of its vertices:

~ / dk™ ot i
G= | —e" ViTH
2 2kTk— — k% —m?+i0
O™ - - O(—k*) ., .- .
= 9()6: _ x;")%elkonfshe]l(xf—xk ) + 9(xj+ _ x:)%e’(_k%mshen@k —x;) (7.18)

Here k is regarded as flowing from x; to xi, and the explicit minus signs in the second
term serve to indicate that we always have physical (positive) plus momentum flowing
from the earlier vertex to the later vertex. The above formula is readily derived by contour

integration.
So we decompose the free momentum-space propagator as
0T i n O(—k™) i
2kt k— — (k2 —m?)/Q2kT) +i0 =2kt —k= — (k3 —m?)/(=2k*) +i0’

(7.19)

with each term being associated with one of the two possible x™ orderings of the ends of
the line.

A common textbook derivation of Feynman rules starts from the coordinate representa-
tion (from Wick’s theorem or a similar result from the functional integral), and then writes
the result in terms of Fourier transforms into momentum space. Here we first partially
reverse the derivation by writing the delta function for conservation of minus momentum
at a vertex j as

27.[5(171_ + Z kl_ln - Z kl_out) == / dxj— eix.?—(ipf_izkl_in+zkl_au[)’ (7.20)

where p; is the external momentum entering at the vertex, the k;;, are the momenta on
lines coming to the vertex from earlier vertices, and k;_,, are the momenta on lines leaving
the vertex on lines to later vertices. In this formulation we have an integral over the minus
momentum of each and every line, with explicit delta functions at the vertices.

We next obtain the contribution from a particular ordering of the xj*. We choose the

vertex labels to correspond to the ordering x;” < xJ < xJ ..., and we implement this by
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Fig. 7.4. Momentum-space representation of an x* ordering of a Feynman graph. See the
text for explanation.

+

multiplying the original Feynman graph by theta functions: [ | 6(x [

a momentum-space representation for the theta functions:

x;.“). Then we write

di> . . . i
9 + _ + — / _] llf (xf _le) . 721
(X —x)) 2 € I; +i0 (720

We represent this in Fig. 7.4, where the dotted lines represent minus momenta flowing from
each vertex to the next, together with the factor i /(I; + i0) in the above equation. Next to
each vertex is a label for its position.

The integral over the vertex positions now gives us back conservation of minus momen-
tum at each vertex, but with the momenta on the dotted theta-function lines included. We
treat the minus momenta on the regular (non-dotted) lines as the independent variables
of integration, with the vertex delta functions determining the l; variables. If a line of
momentum k goes from vertex j to a later vertex j’, then k~ gets routed back along all the
dotted lines from j' to j.

Finally, we apply contour integration on each k£~ integral, closing in the lower half
plane on the poles of the regular propagators. This then sets £~ in each of the dotted-line
factors between j and j’ to be the on-shell value. Repeating this for every line then results
in the dotted line joining two vertices having a contribution of the on-shell k= in the
corresponding intermediate state. The momentum-conservation delta functions also route
the external momenta along the dotted lines. Thus the final result is to turn the dotted-line
factors into exactly the energy denominators we announced in the rules for x*-ordered
perturbation theory.

This completes the derivation.

Fermion lines

The numerator factor for a free fermion propagator G  has k~ dependence, and this entails
an extension to the decomposition (7.19) that we wrote for a scalar field propagator. We
write the k~ dependence of the numerator as iy "k~ = iy Yk, g + 1¥ (kT — Koy ghen)
where the first term works just as in the scalar propagator, but the second term cancels the
on-shell pole, to give

Gr— 9(k+) i(kon—shell + m) 9(_k+) i(kon—shell + m)
P70 ke — (2 —m?)JQkT)+i0 | =2kt —k— — (k2 — m2)/(=2k*) + i0

iyt
Teay (7.22)
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.y TS

il

Fig. 7.5. Instantaneous interaction for fermion, denoted by the line with a bar across it. It
has the value of iy ™ /(2k™) times the attached interaction vertices.

After the x~ integrals are performed, the last term Fourier-transforms to a delta function in
x™T, giving an instantaneous interaction (Kogut and Soper, 1970) denoted diagrammatically
by a line with a bar across it, as in Fig. 7.5. Naturally there is no associated intermediate
state.

Similar issues arise with momentum-dependent vertices, as for the 3-gluon vertex in
QCD and with couplings of gauge bosons to scalar fields.

7.2.4 Interpretation for pdf; time scales

Originally, the methods of x ™ -ordered perturbation theory and its predecessor, the infinite-
momentum technique, were applied to scattering processes at high energy. But as factor-
ization theorems became systematized, the applications of x-ordered perturbation theory
shifted more to treating the properties of a collinear region; more specifically, they became
of use in analyzing the state of a fast-moving particle, e.g., the target in DIS.

An example is the calculation of a parton density, e.g., from Fig. 6.13. The two vertices
defining the parton density are at equal x*, and thus there is no intermediate state between
them. In x*-ordered perturbation theory the target splits into two particles. There is an
intermediate state of the partons k and P — k which propagates until one of the partons
gets to the parton-density vertex. In the application of a pdf to DIS, this corresponds to
where the virtual photon knocks out the parton, over a short time scale. Then the amplitude
is squared to make a probability density. In the space-time picture of DIS, Fig. 6.3, the
outgoing struck quark goes almost exactly in the x~ direction.

In the paradigmatic parton-model region, the incoming quark has transverse momentum
of order a normal hadronic mass M. Then the denominator for the intermediate state in
light-front perturbation theory is of order M?/P™, i.e., of order M?x/Q in the Breit frame.
We expect the typical lifetime of the state to be the inverse of this. This gives a typical
intrinsic hadronic time scale 1/M times a time-dilation factor P*/M. Thus x*-ordered
perturbation theory nicely and quantitatively implements the parton-model intuition. We
can summarize the parton-model approximation as neglecting the duration of the hard
collision compared with this long time scale P*/M?>.

DIS exhibits the situation that in the interesting cases one always has at least two
different directions of motion for the high-energy particles. While x*-ordered perturbation
theory is very natural for discussing the target state and its evolution, including that of the
target remnant, a corresponding discussion of the outgoing struck quark is more naturally
made with ordering with respect to the other light-front variable x~. Naturally in more
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complicated situations one has even more relevant directions for collinear sets of particles,
and a correspondingly appropriate light-front variable for each set. Observe that discussion
of the struck quark jet in DIS involves lines with plus momentum of order M?/Q at large
Q. Thus in the version of light-front perturbation theory appropriate to the farget, the lines
of the outgoing struck quark have close to zero plus momentum, i.e., they are close to the
zero modes.

A unified description of the whole process is best made using ordinary Feynman per-
turbation theory, with light-front methods being applied separately to each collinear group
(e.g., the target, or the outgoing struck quark together with its associated jet).

7.2.5 Frame dependence of ordering of x and x~ in DIS

Consider the struck quark in DIS before it collides with the virtual photon in the parton-
model region of low transverse momentum. In a Feynman graph its longitudinal momen-
tum components have opposite signs: k™ > 0, k= < 0. This has the following interesting
consequence.

In x*-ordered perturbation theory, the parton travels forward from its last interaction
inside the target, precisely because k* > 0. The value of k~ was integrated over to obtain this
form of perturbation theory. Viewed in the Breit frame, this shows that the last interaction
in the target happens earlier than the hard collision with the virtual photon.

Suppose instead we used x~-ordered perturbation theory. This would appropriate for
discussing physics in the target rest frame, in which case the virtual photon is moving with
large momentum in the negative z direction. The longitudinal variable parameterizing the
parton state is now k. Since this is negative, the propagation is from the photon vertex to
an interaction with the target. Thus the ordering of the events is reversed. This is illustrated
in Fig. 7.6. We have thus found that the time-ordering of the ends of the line of momentum
k gets reversed in different frames. This requires the separation of the ends to be space-like,
and is specifically associated with the opposite signs of k™ and k~, and thus with the fact
that the momentum of the line is space-like.

7.3 Light-front wave functions
7.3.1 Definitions

The treatment in this section is based on Brodsky and Lepage (1989) and Brodsky, Pauli,
and Pinsky (1998), but the normalizations of the states and wave functions are adjusted to
be Lorentz invariant.

In any quantum field theory, the states of the theory can be obtained by applying products
of fields to the true vacuum and then taking linear combinations. A convenient basis with
a Fock-space structure is made by using the creation operators obtained in light-front
quantization.

Let us define basis states by applying bare creation operators to the true vacuum. We
label the states by the particle type, their plus and transverse momenta, and helicities. For
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B [ S

Fig. 7.6. x* and x~ ordering and DIS viewed in (a) the Breit frame, and (b) the target rest
frame. The top line shows Feynman graphs organized for x*- and x ~-ordered perturbation
theory, and the bottom line shows the positions of the vertices in space-time.

example, in the Yukawa theory treated in the previous chapter, the list of basis states would
start as

10,
|f @k, o) = b/, 10),
s : k) = “Z 0},
! (7.23)
[ff ki arka, ) = bz,,md/jzm 10
| fs ki, o k) =bll,alazl 10),

Here f and s denote the fermion and the scalar particles, and « is for fermion helicity. The
momentum label for each particle is of the form k; = (k;L, k ;7). Naturally, this generalizes
to any theory, simply by the use of suitable particle labels. In a theory with color confine-
ment, like QCD, it is necessary to restrict to color singlet states. (At this point we gloss
over complications that happen in real QCD.)

We use bare creation operators, i.e., those obtained from the bare fields, so that they obey
the standard (anti)commutation relations (6.65), and the states have standard orthonormality
conditions, e.g.,

(f ko f k) = Qr)' " 2k 8, 8K — kD)8 DKy — k). (7.24)

A general single-particle state |4 : P) of momentum P, with Pt = 0, is expanded as

|h . P> = Z /d[{x,kT}] ‘F . {ijJr,ij,aj}) Iﬂp/h({x]‘,kj'r,olj}), (725)
}

F {a;
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where the sum is over the numbers of particles, and their types and helicities. The notation
{...} denotes an array of single-particle quantities. The measure for the integral is

g def 1 dx; dn_zka>
s bl = S ! U ( 2xjQmr !

x 5(1 -3 xj)z(zn)"—‘am—”(z k_,T>, (7.26)
J J

with the factorials in the prefactor chosen to compensate the multiple counting of configu-
rations of identical partons.

The decomposition (7.25) of a state |k : P) was defined to apply at Pt = 0. It is left as
an exercise (problem 7.4) to show that to obtain the state with non-zero Pt one makes the
replacement

YrmUxj, ki, o) = Yepn(x;, kit — x; Pr, o }). (7.27)

The coefficients ¥ r/,({x;, kT, ot;}) are called the light-front wave functions,' and they
obey the normalization condition (to be proved in problem 7.4)

> [ dttekat ety kel = 1. (7.28)
F{aj}
A projection onto basis states gives the wave functions
(F: {ij+,ij,otj}‘h : P)=vru({x;, k.o o)))
X 2(2n)”*13(1 - Zx,)é“*”(Zkﬂ), (7.29)
J J

where we now assume Pt = 0 again.

7.3.2 Uses

Light-front wave functions are directly used in factorization theorems for exclusive scat-
tering. The parton densities can be expressed in terms of light-front wave functions
(problem 7.6).

7.4 Light-front quantization in gauge theories

We have seen the value of light-front quantization in gaining understanding and intuition
for the parton model. So in this section we examine its application to QCD. At first sight, if
we use the light-cone gauge AT = 0, all the same considerations as we used above seem to
apply. Notably, the same results about the number density interpretation of parton densities

I In (7.25) the measure was normalized to match the covariant normalization (7.24) for partonic states. Thus the
normalization of the wave functions differs from those in Brodsky, Pauli, and Pinsky (1998) and Heinzl (2001).
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appear to apply. However, a number of complications are caused by the use of light-cone
gauge, symptomized by important divergences, as we will see strongly in later chapters.

Nevertheless, it is useful to make a start by ignoring the complications and divergences.
Such an approach has been enormously influential. Among other things one gains candidate
definitions of parton densities, of light-front wave functions, and of related quantities, not
to mention substantial intuition and insight. The true results will be distortions of those
presented here.

7.4.1 Light-cone gauge

For treating light-front quantization, on a null plane of constant x™, it is convenient (Kogut
and Soper, 1970; Srivastava and Brodsky, 2001) to use the gauge-fixing condition AT = 0:
only transverse degrees of freedom propagate, and there are no Faddeev-Popov ghosts. This
is the “light-cone gauge” or “light-like axial gauge”.

The determining issue for using this gauge to treat parton physics is that the leading
regions for DIS are then the same as in non-gauge theories. In contrast, in a general
gauge, there are extra gluon lines attaching to the hard subgraph H in Fig. 5.7(c), and the
leading part involves the plus component of gluon polarization, which vanishes in A* =0
gauge.

We first examine this gauge (Bassetto et al., 1985; Leibbrandt, 1987) independently of
the issues of light-front quantization and of parton physics. This can be done in a coordinate-
independent and Lorentz covariant fashion by introducing a future-pointing light-like vector
n* = 8", so that for any vector V we have V* = n - V. The gauge conditionisn - A = 0,
and a fractional longitudinal momentum is § = k*/P* =n -k/n - P. Results for Green
functions etc. are invariant under scaling of n by a positive real number.

There are no ghost fields in this gauge. The Feynman rules (Bassetto et al., 1985;
Leibbrandt, 1987) are obtained from those in covariant gauges (Fig. 3.1) by making two
changes: the Faddeev-Popov fields are removed, and the free gluon propagator is changed
to

84 Nyy
k? 40’

(7.30)

where the numerator is

kyn, +n,k,

— (7.31)

Ny = —gu +
The singularity at k* = k - n = 0 causes problems. It is (Bassetto ef al., 1985; Leibbrandt,
1987) to be defined as a principal value in loop integrals. In many cases this works and
gives physical results equivalent to those in covariant gauge, despite some complications
in renormalization (Bassetto, Dalbosco, and Soldati, 1987).
However, the gauge gives some non-trivial divergences in TMD parton densities, etc.
See Ch. 13 for the non-trivial details and how this is related to physically observable
effects.
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inu ny,
(k-n)*

Fig. 7.7. Instantaneous interaction for gluon, when x*-ordered perturbation theory in light-
cone gauge is used. This barred gluon connects two regular interaction vertices at equal
values of x*. The ends of the line are connected to any normal gluon-containing vertices.

7.4.2 Light-front perturbation theory for gauge theory

For the derivation of the x*-ordered rules for perturbation theory, the k~ dependence of the
numerator of the gluon propagator causes a complication. Just as with the fermion propa-
gator, we will find we need an extra interaction, now with instantaneous gluon exchange.
We derive it by extracting from the gluon numerator a term that contains the k~ depen-
dence and that is proportional to the denominator, i.e., k>. Thus we obtain a modified gluon
numerator:

kyn, +nuk,  K*nyn,

If pert.
lep = —guw +

k-n (k- n)?
= g+ Fum ik . (7.32)
" k-n k= k3 2k

This does not affect the k> = 0 pole of the free gluon propagator, and is the appropriate
form for making the transition to light-front perturbation theory (Srivastava and Brodsky,
2001). To keep the physical predictions of the theory the same, the extra term in the gluon
propagator is compensated by an extra instantaneous interaction (Kogut and Soper, 1970).
The new element in the Feynman rules, Fig. 7.7, corresponds to extra terms in the light-front
Hamiltonian (Srivastava and Brodsky, 2001). See the quoted references for details. Note
that in ordinary Feynman perturbation, the correct numerator is not (7.32), but is (7.31),
with the ordinary interactions.

7.5 Parton densities in gauge theories

Initially we defined the parton density for a fermion as an expectation value of a certain
bilocal operator, (6.31). This was motivated by the derivation of the parton model in a model
field theory. We then saw that this parton density is an expectation value of a light-front
number operator, (6.66), which is a natural implementation of the intuition embodied in the
picture of scattering off constituents of the target.

For QCD, we could apply this same operator definition in A* = 0 gauge, because of the
already mentioned simplification of the leading regions in this gauge. We simply modify
the definition to include a sum over the three quark colors.

But we wish also to be able to use a general gauge. For this we need to find a gauge-
invariant definition that agrees with (6.31) in A™ = 0 gauge. As I now explain, this is
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done (Collins and Soper, 1982b) by inserting between the v and ¥ operators a suitable
path-ordered exponential of the gluon field. Such an exponential is called a Wilson line.

7.5.1 Wilson lines

A general Wilson line? is defined as a path-ordered exponential of the integral of the gluon
field (times generating matrix) along a line (or path) joining two points. If we parameterize
a path C by a function x*(s) where s goes from O to 1, then the associated Wilson
line is

1
def . dxt(s)
wW(C) = P{exp[—zgofo ds TA(O)M(X(S)) ta]} , (7.33)
which is more compactly written as
W(C) = P{exp[—igof dx” Ay, {x) ta]} . (7.34)
c

Here ¢, are generating matrices of the gauge group, in the fundamental representation.
The path-ordering symbol P means that when the exponential is expanded, the fields with
higher values of s are to the left. The Wilson line is invariant if the path is reparameterized,
but it does change if the location of the path is changed even with fixed endpoints.

Under a gauge transformation, the Wilson line transforms as

W(C) — e 180t wa(x(1) W(C) eigot“wa(x(o))’ (7.35)

which involves only the transformations at the ends of the path. Note that it is the bare
field and coupling that appear in the formula for W(C), since the transformations giving
invariance of the Lagrangian are those in (2.4) with bare gauge fields and couplings.

From the transformation of W(C) it follows that if C is a path from v to w then the
combination v (w)W(C)v(v) is gauge invariant.

A simple generalization is to replace f, by the generating matrices in another represen-
tation. We use this for the gluon density, where the fields at the ends of the Wilson line are
gluon field-strength tensors, and the Wilson line uses the adjoint representation.

7.5.2 Path dependence of Wilson line

In general ¥ (w)W(C)y (v) depends not only on the endpoints v and w of the Wilson line,
but also on the exact path used to join them.

However, for the case of the standard parton densities, a simplification occurs, because
we use a light-like separation in the minus direction: v = 0 and w = (0, w™, Op), and it
is appropriate to take the Wilson line along the x~ axis. In that case, we now show that
the Wilson line depends only on the endpoints. This will enable us to obtain a useful
simplification in the Feynman rules for the Wilson line.

2 Another commonly used name is a “gauge link”.
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Fig. 7.8. (a) Example of possible path for Wilson line along a single line, as in an ordinary
pdf, but with possible backtracking. The vertical axis denotes the coordinate A along the
line. (b) The path altered by changing one of the extreme points. The original coordinate of
the altered point is marked by the dotted line. (c) The path after removal of all backtracking.
The corresponding Wilson-line factor is unchanged.

We now prove the following general result:

Let C be a path restricted to a line in a fixed direction n, so that points on the line can be written
wh = An*. The path is a sequence of N segments joined by direct lines:

N
W) =Wk 2. (7.36)
j=1
where
def Aj
Wi, kj—1) = P{exp| —igo f dan" Al )ty | ¢ (7.37)
Ajo1

Then W(C) depends only on the endpoints:
W(C) = W(n, o). (7.38)

We illustrate the proof in Fig. 7.8, where the path oscillates on its way from the start to the
end, and does some backtracking.

The proof is made by differentiating W (A1, A;) W(A;, A ;_) with respect to A j, which
gives zero. Thus the product is independent of A ;, so that we can replace A; by A;_;, and
we can remove the W(A;, A;_) factor. Repeating this N — 2 times gives the desired result.

Notice that this proof would not work if we tried to deform the path off the chosen line.
For example, moving one of the break points A ;jn off the line would shift positions of the
gauge fields in the neighboring segments, and the differentiation would involve more than
the endpoints of the factors W(A;, A;_y).

A particular case used in the parton densities, is to replace the direct line joining the
endpoints by a trip to infinity and back:

W(kn, 2o) = W(ky, +00)W (400, o) = [W(+00, Ax)]TW (400, A9). (7.39)

7.5.3 Time ordering v. path ordering

Feynman rules apply to time-ordered Green functions, so conflicts can arise between the
path ordering defining Wilson lines and the time ordering used for Green functions. In a
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covariant gauge, the fields commute at space-like separation, so no conflict arises if we use
Wilson lines in space-like directions. This will be the case for TMD densities (Ch. 13) and
for the Sudakov form factor (Ch. 10).

For normal integrated parton densities, one uses light-like lines in the direction n =
(0, 1, Op). If any serious difficulty arises, we take the line as the limit from a space-like
direction. We can also use the canonical commutation relations in light-front quantization,
in which case the relevant field component n - A = A™ has zero commutator with the same
field at different positions along the line.

Such issues can be problematic in a non-covariant gauge, where the commutators of
elementary fields may be non-vanishing at space-like separation.

7.5.4 Gauge-invariant quark density in QCD

To define a quark density gauge-invariantly, we use (Collins and Soper, 1982b) a Wilson line
exactly along the light-like line joining the quark and antiquark fields. Then the Wilson line
uses only A™ component of the gauge field, and is unity in AT = 0 gauge; thus the gauge-
invariant definition reduces to the basic definition (6.31) in this gauge. The gauge-invariant
definition is

d - . I — +
fo i@ = f S <P‘x/f§»‘”<0, w,oT)W(w,O)%¢§°>(O)'P> . (740)

where
W(w™,0) = P{em®0 i & Apu0y™ 0} (7.41)

Here we have written the bare parton density, in which all the fields are bare fields, since
this is the object to which the probability interpretation applies. In real QCD, in four space-
time dimensions, there are UV divergences, so a complete definition requires us to apply
renormalization to obtain our final and correct definition of the parton densities. The same
applies in more elementary theories, as we will discuss later in Sec. 8.3.

The gluon operators in the Wilson line commute, so a time ordering can be applied to the
definition without changing the value of the quark density, just as in Sec. 6.9.4. If we use
a fixed ordering for the quark operators, with a final-state cut, then it is better to use a path
that goes out to infinity on the left of the final-state cut and back to (0, w™, Ot) on the right,
as in (7.39). This does not change the value of the quark density, as shown in Sec. 7.5.2.

Antiquark densities are defined by exchanging the roles of the ¥ and v fields, as in
(6.33), or equivalently by going to negative & in the quark density and using (6.85). Gauge-
invariant polarized quark densities are naturally defined by replacing '+ by the appropriate
Dirac matrix, exactly unchanged from (6.35) and (6.36).

7.5.5 Gluon density

In light-cone gauge, A% is zero, while A~ is a field expressed in terms of other fields
by a constraint equation. Therefore the independent components of the gluon field are its
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transverse components A/ . Their free-field action is % > j g’”BMAj 9, A7, the same as for
two independent scalar fields. Thus the operator quantization conditions are the same as
for scalar fields. In particular, the expression relating A/ to the light-front creation and
annihilation operators is the same, as are the commutation relations. So the gluon density
is the same as for a scalar field, (6.124), with a sum over colors and transverse indices:

dw_ _ w . _ .
fo&) =Y / §PT— e T PIAQ (0, wT 0D A O P), . (7:42)
J.o

See below for the polarized densities

To convert this to a gauge-invariant expression that has the same value in light-cone
gauge, it is not enough just to insert a Wilson-line factor, because of the derivative term
in the gauge transformation of the gluon field. Instead we observe that the bare field-
strength tensor Gégz transforms without a derivative, so that a gauge-invariant operator
can be constructed by joining two field-strength tensors by a Wilson line. Naturally, the
representation matrices in the Wilson line must be those for the adjoint representation. Next
we observe that in light-cone gauge G(J(r){ = 8+A{0). In momentum space, this is A{O) times
a factor of a plus component of momentum (up to a phase). Thus the gauge-invariant form
of the bare gluon density is (Collins and Soper, 1982b)

dw™ . _ . )
fos@® =3 f e PIGHL 0 WA 00 G O)P),
J.o

(7.43)

where the subscript A on W4 denotes that the Wilson line is in the adjoint representation.

Just as with a quark, the gluon has a polarization state described by a 2 x 2 density
matrix. But because the gluon has spin 1 instead of spin %, the decomposition in terms of
a Bloch vector is not appropriate, because of the different transformation properties under
rotations. Proofs of the many unproved statements in the following discussion are left as
an exercise (problem 7.10).

A convenient method starts by modifying (7.42) and (7.43) to provide the gluon density
matrix pg

dw™ . pr, -
Pe.i'i (&, 8) f0)g(§) = XQ:SP+[ %e*lfl’ w

X (P, SIG 50, w™, 0 Wa(w™, 0)asGiil 4O P, S) . (7.44)

Here we have simply removed the sum over the transverse spin index of the gluon field and
allowed the two fields to have independent indices. Naturally we now allow a polarization
specified by S for the target state. Notice the reversal of the order of the indices j and j'
between the left- and right-hand sides of the equation. The factor f(g), on the left-hand
side ensures that p has the unit trace appropriate to a density matrix. The density matrix
is a function of the longitudinal momentum fraction of the gluon and of the spin state
of the target. But the gluon density f{g), is independent of the spin state of the target,
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because it is the expectation value of an azimuthally symmetric operator, just like a quark
density.

We next note that a gluon with a polarization vector € has a density matrix €7€;, and
in At =0 gauge, € is a 2-component transverse vector. Important pure states can be
made with linear polarization, where both components are relatively real, and with circular
polarization. A convenient decomposition of a general density matrix is in terms of a helicity

« and a linear polarization L:
L +L: -1 2L,Ly—ia
T 2\2L,Ly +ia 1-L;+1L3

_ L (14|LPcos2¢  |L|*sin2¢ — i
|L|?>sin2¢ +io 1 —|L|?>cos2¢

(7.45)

where ¢ is the azimuthal angle of the linear polarization relative to the x axis, and there
is a positivity restriction |L|* + «? < 1. The helicity terms give the imaginary part of the
off-diagonal elements of p, and their sign arises from the polarization vectors (e, €,)
(1,1)/+/2 for helicity +1 and (e,, €,) o (—1,i)/+/2 for helicity —1.

We can project the helicity part of p by using the matrix?

pPl=pPi =0,  P¥'=-i P¥=i (7.46)
to give
_ hel omiEPT W
e fore(®) [ e
Js 1—1
x (P, S|G(J(r)§(0 w, 0 Wa(w™ O)G(O) (0)|P S). (7.47)

We can use parity invariance (actually parity and a 180° rotation in the (x, y) plane) to
relate the parton densities in target states of opposite helicity. As with a quark, it follows
thatin a spin-% target, like a proton, the gluon helicity is proportional to the target helicity,
so that we can define the bare gluon helicity density A fig), by

Qg f(O) g ¢é) = target Af(O) g(S) (7.48)

Then in a target state of maximal helicity, Afq), has the interpretation of a helicity
asymmetry: the number density of gluons polarized parallel to the target minus the number
polarized antiparallel.

The linear polarization of a gluon can also be defined, but there is no standard definition
of a corresponding parton density. It would have little practical use, because the linear
polarization of a gluon is zero in the most important case of a spin-% hadron, as follows
from conservation of angular momentum about the z axis (Artru and Mekhfi, 1990). (Linear
polarization is measured by an operator that flips helicity by two units. Since no helicity

3 Note that the formula for this matrix in Brock et al. (1995) is incorrect.
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Overall factors (case of unpolarized distribution):
'V+/2 6‘jj//<€P+)
(a) (b)
Fig. 7.9. Feynman-graph notation for gauge-invariant (a) quark density, (b) gluon density.
The double lines are for the Wilson lines, whose rules are in Figs. 7.10, 7.11, and 7.12. The

short line at the top merely represents the flow of external momentum at the parton density
vertex. The overall factors in the case of a quark are the same as in Fig. 6.7.

is absorbed by the azimuthally symmetric space-time part of the definition of the parton
densities, the helicity flip in the operator equals the helicity flip in the density matrix for
the hadron.)

In the occasionally used case of a spin-0 target (pion), the gluon is unpolarized, as
follows by combining the above two arguments.

7.6 Feynman rules for gauge-invariant parton densities

To represent gauge-invariant parton densities in Feynman graphs, we notate the Wilson line
by a double line joining the fields at the ends of the Wilson line, as in Fig. 7.9. Any number
of gluons (zero or more) connect the Wilson line to the rest of the graph. An overall trace
with a Dirac matrix in a quark density is independent of the presence of the Wilson line.
To derive Feynman rules for the Wilson lines we expand the exponential of the field in
powers of its argument. Each term gives a target matrix element of several gluon fields (and
the fields at the ends of the Wilson line), integrated over certain positions. The factors of
—i goA?('))a ty = —igon - A(oyuly result in the rules for vertices on the Wilson lines shown in
Fig. 7.10. The rules are first written for bare fields. If we calculate with renormalized fields,
the factor Z31/ ? in the relation between bare and renormalized gluon fields requires that we
associate a factor Zé/ * with each of the gluon fields in the rules for the parton density and
the Wilson line, as shown in Fig. 7.10. The generating matrices f, are those for the color
representation of the quark or gluon whose density is being used, and these are multiplied
along the Wilson line.

Next we write the Wilson line in the form of exponentials going to infinity, (7.39),
we expand each exponential in a power series in its argument, and write the necessary
coordinate-space Green function in terms of momentum-space Green function. The order
g¢ term has an integral over n coordinates. We express each integral as an integral over
ordered variables, which cancels the factor 1/n! in the series expansion, and then we have
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« «
Quark pdf, bare fields: —igon (to)r; igon’ (to )k
Quark pdf, renorm. fields: figoZ.l/zn” (ta)kj igOZfl/Qn“ (ta)kj
Gluon pdf, bare fields: gon“ fra; gon“’ fra;

Gluon pdf, renorm. fields: -1/2 " fraj ‘1/2 " fraj

Fig. 7.10. Feynman rules for vertex on Wilson lines in parton densities. Here, n* = 8 =
(0, 1, Or). In the Wilson line for a gluon pdf, the generating matrix for the adjoint represen-
tation was used: (T, )r;j = ifi«;- The sign of the vertex is reversed compared with Collins
and Soper (1982b), and corresponds to the sign of the coupling in our Lagrangian, whose
Feynman rules are in Fig. 3.1.

an integral of the form

d472€kj ) o 00 e
1_[ Gy G(ky, pr, an3..0) n(—lgota/.n ) A dy; dyn He iV,
g j T

r
(7.49)

where G represents the rest of the graph, i.e., a shaded bubble in Fig. 7.9, including the lines
connecting it to the Wilson line. This particular formula applies on the left of the final-state
cut, with the gluon momenta k; directed down, into the bubble. Applying the standard result

* ik i ik
dye™ = " 7.50
/Z U T (7:30)
gives a value for each double line segment shown in the left part of Fig. 7.11. Thus for the
Wilson line on the left of the cut

O

= (_igOtannMn)

i
ki +k, +i0

l .
k+ + io(_lgotol,,,]nM’PI )

i
o+ k400

X oo X (—igolyn" ) (7.51)
So the double lines in Fig. 7.9 behave like normal lines in a Feynman graph, with circulating
loop momenta etc., but with a propagator that is the Fourier transform of a theta function.
Of course the whole Wilson-line structure occurs once in the parton density and therefore
once in the Feynman graph. There is naturally a hermitian conjugation of the above rules
in the part of graphs to the right of the final-state cut, as usual, and as indicated in the
figures.

In the definition of a parton density there is an integral over the external k~ and k. Since
the Wilson-line propagator is independent of these momentum components, the integral



7.7 Interpretation of Wilson lines within parton model 237

e

276 (k- n)
k;+ + 10 k+ —10

1
O (e 11 -
verall o—

Fig. 7.11. Feynman rules for the line part of a Wilson line.
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Fig. 7.12. Feynman rules for attachment of gluon at end of Wilson line in gluon density.
The indices « and B are for color, u is the Lorentz index of the gluon, and j and ;' are as
in (7.44).

over them can be conveniently notated by routing them along the Wilson line and across the
final-state cut. We give the cut line the natural delta function 277 §(k™) for a cut propagator,
and then we simply have to extract plus momentum & PV at the end of the Wilson line. We
also have to cancel the 27 in the cut-line propagator, as indicated in Fig. 7.11. This in fact
results from the explicit factor 1/(2m) in the definitions of the parton density, e.g., (7.40).

The above completes the definition of the quark density. For the gluon density, we also
need the vertex with G:B;a = 8+A(Jo)a 0/ A(O)a gofa/syA(o),gA(o)y, shown in Fig. 7.12.
The derivatives give factors of —ig* and —ig/, with g being the momentum of the gluon
line. We apparently also need a two-gluon coupling at the end of the Wilson line. But we
remove it (Collins and Soper, 1982b) by using the identity

9+ (A{O)a(w_)WA(w_)) _ (3+A{O)a(u}—) _ gofaﬁyA(o)ﬁA(O)y) Waw™), (752

which accounts for the appearance of k - n rather than ¢ - n in Fig. 7.12.
The application of the above rules will be illustrated by calculational examples in
Sec. 9.4.

7.7 Interpretation of Wilson lines within parton model

Our first definition of a quark density was without a Wilson line and it arose from exam-
ining a theory in which DIS structure functions are dominated by the handbag diagram,
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(a) (b)

Fig. 7.13. Handbag graph: (a) standard, (b) with extra gluon exchanges.

Fig. 7.13(a), with the exchanged quark collinear to the target. Making suitable approxima-
tions converted the top of the diagram to a coefficient times the vertex for the quark density.
In a gauge theory, this procedure gives the term in the quark density that has no gluons
attached to the Wilson line.

We now show how there arise the terms with gluons attached to the Wilson line, as
in Fig. 7.9. In a gauge theory in Feynman gauge, we have leading regions in which extra
gluons couple the collinear subgraph to the hard subgraph. So we examine the generalized
handbag diagrams shown in Fig. 7.13(b), where arbitrarily many gluons are exchanged
between the top rung and the lower bubble. This provides a gauge-invariant extension
of the parton model. In real QCD, we will also need more complicated hard-scattering
graphs.

The extra gluons are to be collinear to the target, just like the exchanged quark, and we
now show that to the leading power of Q, each of these graphs gives a corresponding term in
the quark density, Fig. 7.9(a), times the same coefficient as with the handbag diagram. That
this result is expected, since in A = 0 gauge, the gluon-exchange graphs in the structure
function are suppressed, and the gluon couplings to the Wilson line are zero.

To formalize the result, let Fiy (x, Q) be the contribution to a structure function from
graphs of the form of Fig. 7.13(b) with N gluons attached to the upper line. Similarly, let
finy,j(x) be contribution to the parton density for a quark of flavor j with N gluons attached
to the Wilson line. Then the result to be proved is that

Fini(x, Q) =Y Cj fim.j(x) + ps.c. (7.53)
J

The important property is that the coefficient C; is the same no matter how many gluons
are exchanged. By “p.s.c.” are denoted power-suppressed corrections, i.e., corrections
suppressed by a power of Q. When we sum over N, on the left-hand side we get the
full structure function ) 5_, Fix; = F. The sum of the right-hand side gives the full
gauge-invariant parton density: Y 5, fin1,; = fj, multiplied by C;. Thus we recover the
standard parton-model formulae for the structure functions (6.25). The independence of
the coefficient from N implies that it is correctly calculated from the case N = 0, and that
it is the same as in the simple parton model, e.g., C; = e?x for the F; structure function in
electromagnetic DIS.
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I+k +- +ky !

k\l kll

Fig. 7.14. Attachment of collinear gluons to hard quark.

Fig.7.15. Result of applying collinear approximation to Fig. 7.14. The double lines represent
Feynman rules for a Wilson line on the left and for a conjugate Wilson line on the right.

The proof of (7.53) uses a result of Collins and Soper (1981) illustrated in Figs. 7.14
and 7.15. We write an upper quark line, Fig. 7.14, for the generalized handbag graph, as

i i

i
Uy =[] (—igote, m syt :
N ,-( g0 ’)l—m+i0y Ttk —m+i0 " T4k+. Fy—m+i0

(7.54)

Since all the gluons are target-collinear, we can replace each gluon momentum by its plus

A def . . . .
component: k; > k; = (k;r, 0, 07), and we can restrict the Dirac matrices at the vertices
to their minus components: y*/ +— n*/y~, where n = (0, 1, Or), as defined earlier. The

resulting approximation to the quark line is
Oy =[] (—igon"ta,) Wy. (1.55)
J
where
i i i

Wy = - Ty . (7.56
: l_m+i0y l+%1—m+i0y Y J+k+- +ky—m+i0 (7.56)

With a proof summarized below, this can be rewritten as

N

Wy =Y RyM,Ly,. (7.57)
J=0
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which we write as a diagram in Fig. 7.15, where the left-side factor is

i i

Ly = .. , 7.58
P kG 0Tk ek 400 729
the middle factor is
i
M; = , (7.59)
J+k+--+k —m+i0

and the right-side factor is

R, ! ! (7.60)

Tk A0 K o+ k400
Note that because of the standard conventions for lines for Dirac particles, the ordering of
the objects is reversed between the equation and the diagram. “Right” and “left” refer to
the sides of the diagram, not the formula.

The proof of (7.57) is by induction on N. The formula is trivially true for N = 0.
Suppose that (7.57) is true for Wy_;. Then

Wy = Wn_1y My

= 1 1 i
= RyM;Ln—1, <— - —) — My
; My Mj) ki +-+kj+i0
N-—1 N—-1
=Y R/MyLy;— Y RyLyj My. (7.61)
J=0 J=0

In the second line, we replaced y~ by (4 +--- + I%N)/(k}'“ +-- 4+ k?\,'), and then
wrote £;,1 + - - - + Ey as the difference of two inverse propagators. To complete the proof
of (7.57), we use the result

N
ZR,LN_, =0 ifN>1, (7.62)
J=0

also proved by induction.

The double lines in Fig. 7.15 have the Feynman rules for a Wilson line on the left and a
conjugate Wilson line on the right, with the Wilson lines going in the minus direction out
to infinity.

We now apply (7.57) to the upper quark line on the left of the final-state cutin Fig. 7.13(b).
Since the quark at the final-state end is on-shell, the only surviving term in Fig. 7.15 is
where the Wilson-line factor is at the left, next to the current vertex. Similarly, applying
(7.57) to the upper quark line on the right of the final-state cut gives a Wilson-line factor at
the right of the line (again, next to the current vertex).

The result is to give a factor of the lowest-order hard scattering times a factor correspond-
ing to the rules for the gauge-invariant quark density defined in (7.40), with the application
of (7.39) to write the Wilson line as one that goes out to infinity and comes back. The i0
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Fig. 7.16. Gauge-invariant form of the parton model.

prescription is chosen to be compatible with a deformation out of the Glauber region away
from final-state poles. This is the appropriate direction, as we will see in Ch. 13.

We have now completed the derivation of the parton-model approximation in its gauge-
invariant form, illustrated in Fig. 7.16. The coefficient function is the same as without the
gluon exchanges.

7.1

7.2

7.3

74

7.5

7.6

Exercises

Verify that performing the kt integral in (7.13) does reproduce the result of applying
the Feynman parameter method to (7.12).

Find in the literature or derive the full rules for x*-ordered perturbation theory in
a general renormalizable gauge theory, including a proper treatment of the 3-gauge
field vertex and the coupling of gauge fields to scalar fields.

Verify that (7.28) follows from (7.25), the (anti)commutation relations (6.65), and
the standard covariant normalization of a single particle state |k : P). Suggestion:
investigate (h : P'|h : P).

(a) Find the general form of Lorentz transformations that preserve the plane x* = 0.
Use one such transformation to transform the state |4 : P) in (7.25) with Pt =0
to a general value of P with non-zero Pr.

(b) The wave-function decomposition (7.25) of a state |k : P) was intended to apply
at Pt = 0. Show that it also applies at non-zero P if the replacement (7.27) is
made.

(c) Obtain (h, P’|h, P), and deduce the normalization condition (7.28) from the
Lorentz-invariant normalization (A.14) for single-particle states.

Express the lelt-hand side of (7.29) in terms of field operators in momentum space,
integrated over k.

Derive an expression for the unintegrated parton densities f,,(§, kr) in terms of
the light-front wave functions in (7.25). The result should be of the form of an
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7.7

7.8

7.9

7.10

7.11

7.12
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2. .
, with the values of one of the x;, k ;1 pairs set to

integral over [y ({x;, k1, o)}
&, kr.

Obtain Feynman rules for computing light-front wave functions in perturbation the-
ory; these will generalize the rules we constructed for parton densities in Sec. 6.10.

Apply them to the first non-trivial order in the Yukawa field theory we have used
for examples. Verify the normalization condition (7.28). (Warning: Use dimensional
regularization, so that the calculations can be done in the UV-regulated bare theory.)

In the parton model for CC processes with production of a heavy quark, in Sec. 7.1.3,
we effectively assumed that the quark flavor and mass eigenstates coincided. In other
words we assumed that the CKM matrix is unity. Correct the calculation to use a
non-trivial CKM matrix.

Derive all the statements about polarized gluon densities in Sec. 7.5.5. Check carefully
the signs in the polarization vectors for gluons of definite light-front helicity. You
should be able to verify that there is a sign error in the formula for P! in Brock et al.
(1995), and hence in the formula in that paper for Af,. [Thanks are due to Markus
Diehl (private communication) for pointing out the error.]

As mentioned in Sec. 7.5.5, a linear polarization is possible for the gluon (although
not in a spin-% target). Work out the appropriate generalization of the work in this
chapter to deal with this. An alternative formulation is in a helicity-density-matrix
formalism, where linear polarization corresponds to a term with a gluon helicity flip
of 2 units. If you get stuck, consult Artru and Mekhfi (1990).

Complete the derivations of (7.57) and (7.62).
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Factorization for DIS, mostly in simple field theories

In this chapter, I treat the complications caused by renormalizability of the underlying field
theory when one analyzes the asymptotics of processes like DIS. There are four inter-related
issues:

e The leading regions include hard-scattering subgraphs that can be of arbitrarily high
order in the coupling.

o There are logarithmic unsuppressed contributions from momenta that interpolate between
the different regions for a graph.

o The definitions of the parton densities are modified to remove their UV divergences. This
we do by renormalization.

e The parton densities acquire a scale argument w, the dependence on which is governed by
renormalization-group (RG) equations, the famous Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equations. In applications, we set u of order Q, the large scale in the
hard scattering.

I will give a derivation of factorization that in the absence of gauge fields is complete and
satisfactory, and is also reasonably elementary. In QCD, the same factorization theorem is
also valid for simple processes, like DIS, but its derivation needs enhancement, to be given
in later chapters.

8.1 Factorization: overall view

To motivate the factorization idea, we still use the ideas about the space-time structure of
DIS that motivated the parton model. As illustrated in the spatial diagram of Fig. 8.1, an
electron undergoes a wide-angle hard scattering off a single parton in a high-energy target
hadron. In the center-of-mass frame, the target is time-dilated and Lorentz contracted.
Thus over the short time and distance scale 1/Q of the hard scattering, the struck parton’s
interactions with the rest of the target can be neglected; in the hard scattering, the incoming
parton can be approximated as a free particle. A single struck parton dominates, because
the other partons are separated from it by a hadronic scale of ~1fm, large compared with
1/0.

Relative to the parton model, an important change in a renormalizable theory is that
the dimensionlessness of the coupling allows multiple particles to be created in the hard

243
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Fig. 8.1. Deeply inelastic scattering of an electron on a hadron. This is like Fig. 2.2, but with
more partons exiting the short-distance hard scattering. The struck parton and the partons
resulting from the hard scattering are indicated by dashed lines.

collinear

(a) (b)

Fig. 8.2. Most general leading regions for DIS. The lines in the lower bubble are collinear
to the target hadron, and the lines in the upper bubble have large transverse momentum, of
order Q. (a) In a theory without gauge fields, exactly one line on each side of the final-state
cut joins the two bubbles. The labels w and «’ are for the flavor, color and spin of the
intermediate parton lines. (b) In a theory with gauge fields, arbitrarily many extra gauge-
field lines may join the bubbles. The solid lines may be quarks or transversely polarized
gluons. In a gauge theory there may also be a soft subgraph at leading power.

scattering without a power-law suppression. This is manifested experimentally in events
like that in Fig. 5.10. Naturally, an appropriate coupling for the short-distance scattering is
as(Q), whose smallness in QCD allows the use of perturbation theory.

Our calculations in Sec. 6.11 showed another consequence of a dimensionless coupling,
that the number density of partons only falls off in transverse momentum roughly as 1/ k%.
Therefore the number of partons, integrated over kr, and naively interpreted, diverges. The
picture of limited transverse momentum for the constituents, implicit in Fig. 8.1, therefore
needs to be distorted.

The formalization of these ideas starts from the Libby-Sterman analysis in Ch. 5, which
determines that the leading regions for DIS are those illustrated in Fig. 8.2.

8.1.1 Leading-power regions without gauge fields

In a model field theory without gauge fields, all the leading regions are of the form of
Fig. 8.2(a). The lower bubble consists of lines whose momenta are collinear to the target.
The upper bubble consists of lines with very different directions than the target or that are
far off-shell. On each side of final-state cut, one line connects the collinear subgraph to
the hard subgraph. This corresponds to the single struck parton in Fig. 8.1. Scattering off
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multiple partons would correspond to extra lines connecting the upper and lower bubbles
in Fig. 8.2(a), and is power-suppressed, by Libby and Sterman’s power-counting.

While keeping the restriction to this single pair of connecting lines, the upper subgraph
can be arbitrarily complicated. This gives the possibility of multijet production, as seen
experimentally in Fig. 5.10. Associated with this is an essential complication, that a single
graph for DIS can have multiple decompositions of the form of Fig. 8.2(a).

The upper bubble, the “hard subgraph”, has on-shell final-state lines, but we will nev-
ertheless treat it as if it is a short-distance object, with all internal lines off-shell by order
0?. The demonstration uses arguments given in Secs. 4.1.1, 4.4, and 5.3.3, where the
short-distance property applies to a local average in the cross section (e.g., an average in
x). Further details are found later in Secs. 11.2 and 12.7.

8.1.2 Leading-power regions with gauge fields

In a gauge theory, like QCD, leading regions can also have extra target-collinear gluons
attaching to the hard scattering, as in Fig. 8.2(b). In the methodology where we treat the
upper bubble as a pure hard scattering, this exhausts the leading regions; this applies, for
example, to the uncut hadronic tensor and the structure functions averaged in x, as in
Sec. 5.3.3. But it is also possible to consider the actual on-shell final states in the upper
bubble; in that case there are final-state jet subgraphs, and a soft subgraph that connects
any or all of the collinear subgraphs.

We now use the first methodology. The leading part of each extra gluon exchange
involves the product of the minus component of the vertex at the upper end of the gluon line
and a plus component at the lower end, schematically U~ L™. Thus the extra gluons can
be eliminated by the use of the light-cone gauge, A* = 0: in light-cone gauge, the leading
regions have the same form, Fig. 8.2(a), as in a non-gauge theory.

Therefore once we have proved factorization in a non-gauge theory, which is done in an
elementary fashion in this chapter, we can copy the proof in light-cone-gauge QCD. To take
it literally, one must be concerned about problems with the 1/k* singularities in the light-
cone-gauge gluon propagator, (7.30) and (7.31). These problems will become particularly
apparent when we work with TMD distributions in Ch. 13. Nevertheless, divergences due
to the 1/k™ singularities cancel in the treatment of DIS, although giving a full satisfactory
proof is non-trivial.

For a fully satisfactory treatment, it will be better to return to Feynman gauge. We have
already seen, in Sec. 7.7, that at the level of the parton model, the extra gluons can be
extracted from the hard scattering to give the Wilson lines in gauge-invariant definitions of
the parton densities. This is a result that generalizes, but I postpone a treatment to Ch. 11.

8.2 Elementary treatment of factorization

Before going to a strict derivation of factorization in non-gauge theories, it is useful to give
an approximate proof. Its inspiration is a naive interpretation of the diagram Fig. 8.2(a)
for the leading regions. This is that the momenta of lines can be unambiguously split into
two classes, corresponding to the two subgraphs in the figure. Hard momenta, in the upper
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subgraph U, have virtualities of order Q2. Collinear momenta, in the lower subgraph L,
have orders of magnitude typical for target momenta, i.e., (k*, k~, k1) ~ (Q, m? /0, m),
where m is a typical light hadron scale; their virtualities stay fixed when Q becomes large.

This supposition enables a simple proof to be given, and gives a mental picture linking
the leading-region diagram Fig. 8.2(a) with the factorization formula. We will take the
opportunity to introduce notation that will be useful more generally.

But a clear division between the regions of momenta does not exist; there are important
contributions from intermediate momenta. We will overcome this problem by the use of a
subtractive formalism, in Sec. 8.9.

8.2.1 Decomposition by regions

‘We now start from an assumption that there is a clear decomposition of momenta by regions.
Then we can decompose each graph into a sum of terms of the form of Fig. 8.2(a), each
term corresponding to a particular assignment of momentum types to subgraphs. Let F
denote a structure function or the hadronic tensor. Then we have

F = Z I" + non-leading power
2PR graphs I’
= Z Z U(R) L(R) + non-leading power, (8.1)

2PR graphs I'  leading regions R

where the summation over I is restricted to those graphs that are two-particle reducible in
the 7 channel and that therefore have at least one decomposition of the form of Fig. 8.2(a). A
region R corresponds to assignments of momentum types to subgraphs, and is determined
by the subgraphs: U(R) for the upper bubble, restricted to hard momenta, and L(R) for
the lower bubble, restricted to collinear momenta. We define L(R) to include the full
propagators for the two lines that join the L and U subgraphs, since these lines carry
collinear momenta.

The product U(R) L(R) is defined as a convolution product, with an integral over the
momentum k flowing between U and L, and with summations over the color, spin and
flavor indices for the fields. So we write U = Uk, w, @’;q) and L = L(k, w, o’; P, S),
where w and ' are composite indices for the flavor, color and spin of the fields, while P
and S are the momentum and spin vector of the target state. Then

d4 25k ,
UL = 2/ Gy Uk 0. i) Lk 0,0 P.S). (8.2)

A region is completely specified by its hard and target subgraphs, so we replace the sum
over graphs and regions by independent sums over graphs for U(R) and L(R). So we write

F = UL + non-leading power, (8.3)

where U and L, without a region specifier, are the sum over all possibilities for the hard
and target-collinear subgraphs of Fig. 8.2(a), with the momenta being restricted to the
appropriate regions.



8.2 Elementary treatment of factorization 247
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Fig. 8.3. Graph with three decompositions of the form of Fig. 8.2(a).

In (8.3) we have a multiplicative structure: the structure function is a product of a
hard part and a collinear part. In contrast, at the level of individual graphs for the structure
function, we have an additive structure: in the second line of (8.1) there is a sum over regions
for a given graph. An illustration is given by Fig. 8.3. The possible regions are: where the
top rung alone is hard, where the top two rungs are hard, and where all three rungs are hard.

Diagonality in flavor and color

In the convolution of U and L, there is a sum over indices w and w', which we now simplify.
For QCD, each index has 88 independent values: There are 6 flavors of quark, of antiquark,
and a gluon. The quarks and antiquarks each have 3 colors, the gluons have 8, and each
flavor-color combination has 2 spin values. We can separate the parts of the index w as j,
¢ and «, for flavor, color and spin. Here we refer to the QCD version even though in this
chapter we will only present proofs in a non-gauge theory: the ideas are general.

In principle, there are separate sums over the indices @ and ' for the two parton lines
connecting U and L. I now show that the sums over flavor and color indices are diagonal
in the cases of interest; i.e., the flavor and color parts of w and o’ are equal.

We choose the flavor label to correspond to the different types of mass eigenstate for the
partons (e.g., u, d, etc.). Normal targets (nucleons and pions) are flavor eigenstates, so the
lower subgraph L is flavor-diagonal. An exception would be DIS on a K¢ or K 2, which
is not a likely experiment. Note that, for charged-current weak-interaction processes, the
upper subgraph U can be flavor changing. Thus, in neutrino DIS, we can have the sequence
of quark flavor transitions d + u +> s. Butdiagonality of L implies that off-diagonal terms
in U do not contribute.

As for color, all electroweak currents are color-singlet. Therefore U is diagonal in color,
and all the diagonal color components of U are equal.

In contrast the spin-sum need not be diagonal. So we rewrite (8.2) as

d4 Zek
Z / (27[)4 2¢ k j’ o, a/;q) ZL(’C, j’ Cc, o, a/; P’ S)

+ non-leading power. (8.4)

Here we have left a single flavor label j on U and L, and a single color label ¢ on L. The
remaining sum, over « and «’, is for Dirac spin indices. The U part can be considered a
color average, as will fit its later interpretation in terms of a parton-level cross section.
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8.2.2 Parton approximator

To get the factorization theorem, we use exactly the same method we applied in Sec. 6.1
for the parton model. (a) In U we neglect the small components of momenta, k~ and kr,
entering it from L, and we also neglect particle masses. (b) In the sum over Dirac indices,
we project onto those parts that give the leading power. This operation, which we call the
parton approximator, results in an error that is suppressed by one or two powers of Q.

We notate the result as

e dé§
U T |VL Creglon ® freglon d—t Zf ? Cj, region(xa E) fj, region(é)7 (85)
J

which is a factorized form for the cross section. Here we have defined a fractional momen-
tum variable &€ = k*/P™. The tripartite symbol (YT| V denotes the parton approximator, for
which we will give a precise definition below. The arrow in 7' implies that the kinematic
part of the approximation is applied to the object to its left, i.e., to U. The quantity V sym-
bolizes the vertex for a parton density that is a factor in the approximator. We separate these
symbols by a vertical bar, which will be a useful notation in treating renormalization of the
parton densities. Although the above formula makes it appear that the parton approximator
is a linear operator, certain features of the approximator, notably that it sets to zero the
parton masses in U, take us beyond ordinary linear algebra. Even so, many of the rules of
linear algebra still apply.

The parton approximator will give a factor that has a vertex for a parton density integrated
with the L factor. Therefore on the right-hand side of (8.5), we have used a notation to
express this. The resulting object has the standard definition of a parton density, except
that the momenta inside L are restricted to be collinear. So f is equipped with a subscript
“region”, to label this variation in the definition. A parton density is a function of just
one kinematic argument &, so we represent the corresponding kind of convolution by the
symbol ®, which is defined as on the rightmost part of the equation. The quantity C is the
approximated U, but with a particular normalization. It goes by several names: coefficient
function, short-distance partonic scattering, Wilson coefficient. To save extra notational
complication, only the unpolarized terms are written explicitly.

Kinematic approximation

The first, kinematic, part of the approximator gives

1+
F_Z/ ﬁUkJaaqm_O)

j.aa

dk~ d*> 2%k + ) , .
X Z an )4 5 EPTL(k, j,c,a,a; P, S)+ non-leading power.  (8.6)

Here, we have changed variable from k™ to &, and we have defined k= (&Pt,0,0p), for
the approximated parton momentum in U. The integral over £~ and kt is now confined to
the L factor, as in a parton density, and we included with it a factor of & P™ for the sake of
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boost invariance. The upper limit on £ is imposed by the parton density, for positivity of the
energy in its final state, P™ — & P* > 0. The lower limit is set from positivity of the energy
in the hard part of the graph, g™ + & P™ > 0. In general, the integrand can be a generalized
function (distribution) with singularities at the endpoints. For example, there can be delta
functions at £ = 1 in L, and at £ = x in U (after approximation). The singularities are
properly treated if we take the range of integration over £ to extend beyond the kinematic
limits, so I notate the limits as x— and 1+.

Approximator for scalar parton

When J denotes a scalar parton, there are no spin labels, so (8.4) gives the definition of
U T |V L for a scalar quark:

- af ['Fdg
(UT|VL)scalarj= ?U( k ] m—O)

dk— 42 2%k
Z/ TQuye S EPTL(K, j, ¢ P, ). (8.7)

The second line, including the color sum and the factor & PT, reproduces exactly the
definition of the density of a scalar quark, (6.124). The first factor, the approximated U,
has the normalization appropriate to DIS on an on-shell massless parton target, but with
internal momenta restricted to being in the hard region. The integral joining the two factors
is a convolution with measure d¢ /&, which we choose as its standard form.

Approximator for spin—% parton

When j denotes a fermion quark, we have two formulations. One involves projection
matrices P4 and Py on each line, as in (6.13). The other reorganizes this, as in (6.19), into
terms involving different kinds of spin-projected parton density. Thus we have

<«
(U T |VL)Diracj

Z /dk+U(qk] a,a';m =0)
a, B B

dk~ d> %k
X (P1)ap(PB)par Z/ o ———— Lk, j.c.p. B P.S)

_ E dk— d?>~ 2ekT y+
_/?Tr U(qkjm_O) Z G Tr —-L(k, j,¢; P, S)
+ terms with polarized parton densities. (8.8)

The factor £/2 is exactly the external line factor for U that corresponds to a spin-averaged
on-shell Dirac particle. See (6.19) and the preceding definitions (6.17) and (6.18) for the
form of the polarized terms. They can be allowed for by replacing the factor #/2 by the
form (A.27) with polarization for the quark.
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Fig. 8.4. One-loop graph for DIS in a model theory. The lines may represent any kind
of field.

8.2.3 Factorization

We have now completed the definition of the parton approximator, and the result is a
factorization of the form shown in (8.5).

8.2.4 Why the simple derivation does not work

The above derivation of the factorization theorem would be valid if one could use a fixed
decomposition of momentum space into regions appropriate for U and L, at least up to
power-suppressed terms. But in renormalizable theories, no clear separation of scales can
be made. The issue is quite generic, so I illustrate it by examining a one-loop graph related
to the calculations, in Sec. 6.11, of UV divergences in parton densities.

Consider a one-loop graph for DIS with an elementary-particle target, Fig. 8.4. We
perform the k* integrals by the mass-shell delta functions for the two final-state particles,
to leave only an integral over k3. By the Libby-Sterman analysis, we obviously have
leading-power contributions when k3 is comparable to m? and when it is comparable to
Q?; these correspond, respectively, to regions where only the top rung is the hard subgraph,
and where the whole graph is the hard subgraph.

But, as we now show, there is also a leading contribution from intermediate momenta,
i.e., where m < kr < Q. Since kr < O, we can apply the parton-model approximation
to the top rung, and replace the calculation by the calculation of a parton density, as in
Sec. 6.11. Then because, m < kt, we can neglect m, thereby obtaining a logarithmic
integral:

NQZ 2

constant x / ) % (8.9)
~m?> KT

That this is a logarithmic integral follows from the fact that the couplings are dimensionless.

The whole graph has the same dimension as a lowest-order graph. Hence the momentum

integral is dimensionless. Corrections to this formula are suppressed by powers of kr/Q

and of m/kr.

Each range of a factor of 2 (say) in k2 gives the same contribution. This contribution
is also comparable in size to that from the hard range, kt ~ Q, and from the collinear
range, kt ~ m. There is therefore no power-suppression (in m/Q) of the intermediate
region. Indeed the intermediate region is slightly enhanced, i.e., logarithmically, by a factor

In(Q/m).
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The elementary proof in Secs. 8.2.1-8.2.3 relied on a strict separation of scales: some
momenta have kr ~ m and some have high virtuality, O(Q?), with unimportant contri-
butions from intermediate momenta. When this is valid, errors of order m/Q result from
neglecting kr relative to Q. But the logarithmic contribution from the intermediate region
violates the initial assumption.

One could try rescuing the argument by using an intermediate scale p to separate
collinear and hard momenta. In a one-loop graph this would result in errors of order ©/Q
and of order m/u: the first is from neglecting collinear transverse momenta relative to Q,
and the second error is from neglecting masses with respect to hard momenta. The minimum
error is of order /m/Q, obtained when u ~ +/m Q. This is very non-optimal compared
with the m/Q error (modified by logarithms) that is obtained from a better derivation of
factorization.

Moreover in higher-order graphs, like Fig. 8.3, the errors from using a simple cutoff to
separate the regions are actually unsuppressed. To see this consider a configuration in which
the transverse momentum It in the lower loop of Fig. 8.3 is slightly below the cutoff, while
kt in the upper loop is slightly above the cutoff. Then [ is target-collinear while k is hard.
The elementary derivation tells us to neglect k1 with respect to /1, producing a 100% error.

So we need a more powerful method, which we will come to in due course.

8.3 Renormalization of parton densities

We saw in calculations, Sec. 6.11, that parton densities have UV divergences at or above
the space-time dimension n = 4 where the theory has a dimensionless coupling. This is one
symptom that the parton model is not strictly correct. The Feynman graphs and momentum
region that give the parton model still exist in such theories, but there are additional
contributions.

In such a situation parton densities continue to be useful, but we have to adjust the
definitions to make the parton densities finite. Motivated by what happens with the operator
product expansion (OPE), reviewed in Collins (1984), we now construct such a definition
by applying conventional UV renormalization. This gives renormalized parton densities
as theoretical constructs, which can be studied in and of themselves, without regard to
applications. Of course, it is the applications that provide post hoc motivation for studying
parton densities.

8.3.1 Cutoff or renormalization?

An alternative to renormalization is to impose a cutoff in transverse momentum, e.g., to
modify (6.75) to

def

Fon(®) /k a2k f3(E, ko). (8.10)
T<H

This definition has been particularly advocated by Brodsky and his collaborators (e.g.,
Lepage and Brodsky, 1980; Brodsky et al., 2001) and clearly has certain advantages. Both
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kinds of definition, by a cutoff and by renormalization, are legitimate, and there is a choice
between them influenced by practicalities and by actual practice, not by absolute necessity.
Recall the calculation in Sec. 3.4, where we showed that renormalization with a scale u
is similar to a cutoff at approximately the same scale. Thus the two kinds of definition
of finite parton densities have similar properties and intuitive meanings. But one must
not take the equivalence between renormalization and a cutoff as a strict mathematical
property.

Serious work beyond leading order, or beyond leading-logarithm approximation,
requires us to take the definitions rather literally. Here certain disadvantages of the cutoff
method appear that lead us to use the renormalization method. One is simply that although
the cutoff method lends itself very nicely to getting an overall view, detailed calculations
can be harder. A second rather severe disadvantage is that the definition with a cutoff relies
on the definition of the unintegrated or TMD density. Now, in a gauge theory, the basic
definition of the unintegrated parton density entails the use of light-front gauge At = 0.
But this results in further divergences even before the kt integral, and therefore requires
even more complicated redefinitions (Ch. 13). This problem is often hidden in elemen-
tary discussions, but comes to the forefront once higher-order corrections are considered
correctly and is a continuing topic of research and debate.

8.3.2 Statement of renormalization of parton densities

In the theory of renormalization (e.g., Collins, 1984) there are two ways of viewing the
renormalization of composite operators. One is the multiplicative view, where renormalized
operators are factors times the bare operators. The other view is the counterterm view, where
for each Feynman graph a series of counterterms is subtracted to remove the divergences.
It is very useful to switch between the views as the occasion demands; we will see their
equivalence.

For the parton densities, the multiplicative view will result in the following formula:

I+ 4
fu@® =3 /E = 2,208, fio 1ym €/ 8.11)
).

On the right-hand side is a bare parton density for a parton of flavor j’. Here a bare
parton density is defined directly by whichever of operator formulae like (6.31) is appro-
priate, with the convention that the field operators are bare fields (i.e., that have canonical
(anti)commutation relations). The theorem of renormalization is that one can obtain UV-
finite parton densities f;,y (&) by a proper choice of the renormalization factor Z; in (8.11).
The multiplication is in the sense of a convolution in the longitudinal momentum fraction
and of matrix multiplication on the flavor indices. In the MS scheme, the renormalization
factor is a function only of the ratio of the momentum fractions, the renormalized coupling
and the dimension of space-time.

We have written limits £ — and 14 in the integral over z in (8.11), with the same meaning
as in factorization formulae, such as (8.7). The upper limit is set by the renormalization
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kernel (which includes a delta function at z = 1). The lower limit is set by the bare parton
density, which is non-zero only for £ /z < 1.

8.3.3 Polarization dependence

Formula (8.11) applies both to the unpolarized densities and to the various kinds of polarized
densities (helicity, transversity, etc.). The transformations of the densities under rotations
and parity imply that there is no mixing between the different kinds of polarized density.
That is, one copy of (8.11) applies to the unpolarized densities, a second copy, with different
renormalization factors, applies to the helicity densities, and a third copy, with yet different
renormalization factors, applies to the transversity densities.

8.3.4 Regions giving UV divergences

An ordinary UV divergence (such as is canceled by renormalization of the Lagrangian)
comes from regions where all the components of momenta in a subgraph get large. It might
appear that the divergences in parton densities are different because they involve large
values only for the minus and transverse components of loop momentum, as we saw in a
calculational example. The momentum components are power-counted as (k*, k™, k) ~
(P*, A2/P*, A) where A — oco. However, this appearance that the divergence is of a
new kind is misleading. We see this in light-front perturbation theory. Plus momenta are
restricted to fractions of the external momenta, and even ordinary UV divergences also arise
from large minus and transverse momenta, again with the power-counting (P+, A2/ P+, A).
An example is given by the self-energy graph that we calculated at (7.13).

The apparent difference arises because of a different choice of contour deformation: a
Wick rotation of energy integrals in the usual case, and a contour integral in k~ for the
light-front case. Of course, in a parton density with its integral over k£, the light-front view
is natural.

So the large kt divergences in parton densities are actually genuine UV divergences to
which we can apply normal methods of renormalization.

Further analysis proceeds by examining the momentum regions that give the UV diver-
gence. We use the formalism in which the operators defining the parton density are time-
ordered and the graphs are uncut. We take it for granted that renormalization has been
applied in the Lagrangian, so that all UV divergences in self-energies and vertex correc-
tions, etc., are canceled by counterterms. The remaining divergences involve loop momen-
tum integrals that include the vertices that define the parton densities. Thus we represent
the regions giving divergences by diagrams such as Fig. 8.5(a). In the upper part, labeled
“UV”, the minus and transverse components of all momenta get large, with plus momenta
obeying their normal restrictions (in particular not to be bigger than P ). In the lower part,
labeled “collinear”, the momenta stay finite. The collinear part includes the connecting
lines of momentum [/, while the UV part includes the lines of momentum k that go to the
parton density vertices. In addition to being far off-shell, the momenta in the UV part have
large negative rapidity relative to the target.
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Fig. 8.5. (a) Regions giving UV divergence for pdf in renormalizable non-gauge theory or
in a gauge theory (in light-cone gauge, A™ = 0). The lines joining the UV and collinear
subgraphs can be of any type, e.g., flavor of quark, antiquark or (transverse) gluon. (b) In
a gauge theory arbitrary gluon connections between the collinear and UV subgraphs also
give divergences.

We now do power-counting to determine the strength of the divergence and to determine
what external lines are allowed for the UV part. For this we use the appropriate general-
ization of the rules for ordinary UV divergences given that we treat the components of UV
momenta as having sizes (P*, A>/P*, A). By observing that such a momentum configu-
ration can be obtained by a boost from a frame in which all the components of UV momenta
are of order A, we readily see that the power-counting works just like the power-counting
for hard scattering in DIS: Ch. 5. In the rest frame of a UV momentum, the collinear lines
are indeed collinear to the fast-moving target. The basic degree of divergence for a graph
with two lines connecting the UV and collinear subgraphs is logarithmic. We saw this
in an example, and the property extends to higher-order graphs for the UV subgraph. The
reason is that this subgraph is dimensionless, and so the power-counting of a UV divergence
follows dimensional analysis in a renormalizable theory.

The estimate of the power can equally well be done in a fixed frame. In that case the key
point in relating dimensional analysis to the size of the divergence of the integral is that in
Lorentz-invariant quantities, a minus momentum k—, which has two powers of A, always
appears multiplied by a plus momentum k%, which has zero powers of A; thus the power
of A is the dimension of K™k~

Therefore adding external collinear lines to the UV subgraph generally reduces its degree
of divergence, and therefore gives convergence. The one exception, just as in our discussion
of hard scattering in Ch. 5, is in a gauge theory when there are gluon lines with a minus
index in the UV subgraph and a plus index at the attached gluon line. Thus in addition to
regions of the form Fig. 8.5(a), we also have divergences with extra gluons joining the UV
and collinear subgraphs, Fig. 8.5(b).

For this chapter we restrict our attention to a non-gauge theory, for which the catalog of
divergent regions is Fig. 8.5(a). (This set of leading regions also applies to a gauge theory
in A* = 0 gauge. But this chapter’s treatment of renormalization does not genuinely apply,
because of problems with divergences associated with the 1/k™ singularities in the gluon
propagator.)

The details of constructing a renormalized parton density follow very closely the con-
struction of matrix elements of renormalized local operators in conventional renormalization
theory (e.g., Collins, 1984).
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8.3.5 Momentum dependence of counterterms

There is one new feature, which concerns the dependence of the counterterms on external
momenta. In conventional operator renormalization, when there is a logarithmic divergence,
the counterterm can be chosen to be independent of momentum and mass. One general
method of proof is to differentiate graphs with respect to the external momenta and/or
masses. This reduces the degree of divergence, and thus for a logarithmic divergence shows
that after differentiation there is no overall divergence, and therefore no counterterm is
needed. There can be subdivergences in multiloop graphs, but these are canceled by their
own counterterms; the overall divergence is what determines the need for a counterterm for
a whole graph. In general, the counterterms are polynomials in momentum and mass with
the degree of the polynomial equal to the degree of divergence.

We now apply the differentiation argument to the UV divergences in parton densities.
The examples in Sec. 6.11 provide illustrations of the general principles. We will now show
that differentiating with respect to a mass, or an external minus or transverse momentum,
does reduce the degree of divergence. But differentiating with respect to an external plus
momentum leaves the degree of divergence unchanged. Thus the divergence is allowed to be
afunction of plus momenta. This gives the convolution formin (8.11) for the renormalization
of parton densities, rather than the multiplicative form that applies to local operators.

Differentiating a graph with respect to an external momentum gives a sum over terms
where particular propagator (or numerator) factors are differentiated. So we consider a
generic propagator, carrying an internal momentum k and an external momentum P:

1 1
(P—k2—M2 _ 2(P¥ — k") (P~ —k-)— (Pr —kr)? — M2

(8.12)

The external momentum may be off-shell and may have non-zero transverse momentum.
The UV divergence concerns the situation where kt and k~ go to infinity with k™ fixed.
There are three cases:

1. Differentiation of (8.12) with respectto P reduces the dimension by one, but introduces
a factor of a minus momentum:
d 1 —2(P~ —k7)

AP (P =k =M~ P —kP -k )= (Pr—kp —mp &)

In power-counting for the degree of divergence, the factor k™~ in the numerator is treated
as ki rather than as the single power kt that matches its dimension. Thus the degree of
divergence is unaffected by differentiating with respect to P+,

This is a general result: in Lorentz-invariant quantities, a plus momentum always
appears multiplied by a minus momentum. Thus the unchanged degree of divergences
is effectively a consequence of invariance under boosts in the z direction.

2. Differentiation with respect to a mass M or transverse momentum P brings no extra
factor; this reduces the degree of divergence by one unit, just as with local operators.

3. Differentiation with respect to an external minus momentum P~ gives an extra reduction
of the degree of divergence, by two units instead of one unit.
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Fig. 8.6. Ladder decomposition of graphs for a bare parton density in terms of two-particle
irreducible subgraphs.

When we use MS renormalization, the counterterms are just the divergent pole parts, so
the coefficients of the poles obey the above rules for lack of dependence on minus momenta,
transverse momenta and masses. In a general renormalization scheme, it is permitted to
perform a further finite renormalization which does depend on these momentum components
and masses. We choose not to.

We now summarize the form of the divergence in a parton density as

drr e — 12-2¢
/l—+H(1 Jk )fdl d It L, P), (8.14)
where H denotes the divergence of a UV subgraph. Since the divergence is independent
of [~ and Ir, the integral over these variables can be confined to the collinear subgraph,
corresponding to the rules for a parton density, in fact. But the UV and collinear parts are
linked by an integral over [T,

Now parton densities are invariant under boosts in the z direction. Generally we will
arrange for the factors in formulae such as (8.14) to be boost invariant. Notice that this is
the case for the measure d/™ /™ of the convolution. Then the UV divergence factor H must
be a function, not of k™ and /" separately, but only of their ratio. This gives the kinematic
dependence of the renormalization factor Z;;: it is a function of the ratio between the
fractional momentum £ of the renormalized parton density and the fractional momentum
of the bare parton density.

8.3.6 Ladder graphs and renormalization

In this section, we will prove the renormalization theorem for parton densities, and we will
see how the subtractive counterterm formalism is set up. The methodology (Collins, 1998a)
is inspired by Curci, Furmanski, and Petronzio (1980).

The issue that makes the discussion quite non-trivial is that the characterization of UV
divergences just given is somewhat incomplete. It assumed that we could assign the estimate
(P*, A?/P*, A) uniformly to all the different momenta in the UV subgraph. But in fact
there can be a variety of sizes.

Notation

A given graph for a bare parton density can have many decompositions of the form of
Fig. 8.5(a). Given that they all have the two subgraphs connected by two lines, a convenient
way to enumerate all possibilities is to perform a ladder decomposition, as in Fig. 8.6.
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Fig. 8.7. Examples of topologies of graphs for the ladder rung K in Fig. 8.6. The lines and
vertices are of any type allowed by the theory. The shortness of the lines at the lower end
indicates that these propagators are amputated.

Each of the objects B and K is a sum over two-particle irreducible (2PI) graphs multiplied
by full propagators for the upper two lines. Typical examples of graphs for K are shown
in Fig. 8.7. They are connected and have two upper external lines and two lower external
lines. Propagators with all possible corrections are used for the upper lines, but the lower
lines are amputated. The two-particle irreducibility of the core part of K means that its top
cannot be disconnected from the bottom by cutting only two lines; at least three lines must
be cut. The base of the ladder, B, similarly has two propagators on its upper side times
a 2PI amplitude, but it is now connected to the target state, including a bound state wave
function if needed. The types of the lines can be any that is allowed in the theory.

We therefore represent the bare parton density for a parton of type j as a sum over ladder
graphs with different numbers of rungs:

o0
foi=2Z;V(j))_ K"B
n=0

=Z;V())

B. 8.15
T & (8.15)

The products are in the sense of a convolution, i.e., an integral over the momentum of the
loop joining the factors, and sums over the flavor, color and spin indices, just as in (8.2).

At the top of the ladder we have the vertex defining the parton density, and in (8.15) we
denote it by the factor V. A complete notation is cumbersome:

V(§P+s j1 s; kv jlv C, C/, a’ a/) = 8(§P+ - k+)sd,l¥’8jj166(?’1 (8'16)

which is set up to be used in the convolution notation, as in (8.2). The color and spin indices
on the two attached parton lines are (c, «) and (¢, @’). There is a common flavor index j
for the two lines. We let s, v be the matrix with which the vertex couples the spin indices,
e.g., ¥y /2 for an unpolarized quark density.

We require that both of K and B are Green functions of renormalized fields, so that
they are UV finite. Since we define the bare parton density by an expectation value of bare
operators, we inserted in (8.15) a factor of the wave function renormalization Z; for the
field for parton j.

The rung factor is

K(ki, j1,c1, ¢}, an, a1 ka, jo, €2, €y, 02, @5). (8.17)

Here, k; is the momentum of each of the upper lines, and j; is the flavor, while (¢, «1) and
(¢}, a}) are color and spin indices for the upper lines. The other variables are for the lower
lines. There is also dependence on the coupling etc which is not indicated. Similarly for the
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base of the ladder we write
B(k, ji,c1, cl, a1, ap; P, S). (8.18)

Note that if the target is an elementary particle, as in our calculational examples in Sec. 6.11,
then the base factor B will be just a delta function, e.g.,

B(k, ji c.c' o,y P,S) = m)* 264720 = P)3j, e
X spin density matrix. (Elementary target) (8.19)

Just as in (8.4), the two lines joining neighboring rungs (V, K, or B) have equal flavors. But
we have allowed unequal values for the spin and color indices. But then we observe that V
times any number of Ks is color singlet, and so gives a coefficient times a unit matrix in
color space. Hence we only use K and B in combinations with a diagonal sum over colors
at their upper end, and so we write, for example,

ZK(kl, Ji et e an, oy ka, o, €2, €y a0, @) = K(ky, i, an, o ko, ja, o, 05) 8y -
“ (8.20)

In the mathematical manipulations that follow, K is to be thought of as a matrix, with
two composite indices, V as a row vector, and B as a column vector.

Divergences, subtractions, renormalization

We now define a renormalized parton density by the standard procedure of subtracting
counterterms for each subgraph with an overall UV divergence. We first remove the wave-
function renormalization factor Z;. Then we consider the UV divergences in one term
VK" B. Each possible divergent subgraph in Fig. 8.5(a) is associated with a subgraph
consisting of V and some number N; > 0 of the nearest rungs.

A zero-rung graph V B therefore has no UV divergences. A one-rung graph V K B has
one divergence, in the V K subgraph. We can cancel the divergence in V K by subtracting,
for example, its pole part at e = 0, VK P, to give a finite result VK (1 — P )B. The left
arrow in (’[3 signifies that the pole part is taken of everything to its left. The significance
of the pole part is that it is independent of the external /[~ and I1 of VK, since this is
a property of the elementary UV divergence derived above. Thus VK <73 is of the form
of a vertex for a parton density at momentum fraction [*/P* times a function of & P™
and [*. This will enable us to obtain multiplicative renormalization after we sum over all
graphs and UV-divergent subgraphs. Naturally, the pole part may be replaced by any other
operation that achieves the same effect, of canceling the divergence with a counterterm that
is a coefficient times a vertex for a parton density.

From now on we will define <7; to denote whatever such definition we choose to use, and
the choice defines the renormalization scheme for the parton density. The standard choice
is the MS scheme, Sec. 3.2.6, with its extra factor S, for each loop in a counterterm; see
(3.16) and (3.18).

For a two-rung ladder, V K K B, we first cancel the divergence in the V K subgraph, to
get VK(1 — <73)K B. The remaining divergence is in the two-rung part, and to cancel it we
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can subtract VK (1 — (73)K (733. Here the second pole part is the pole part of everything to
its left, i.e., the pole part of VK (1 — (73)1( . After these subtractions the UV-finite result is
VK(1 - <73)K 1- <73)B . It is straightforward to extend this result to bigger ladders: we
simply insert a factor 1 — <73 to the right of every factor of K.

We now convert this into a form that we use to demonstrate multiplicative renormaliz-
ability:

fj=V(j)[1+K(1—<73)+K(1—(73)K(1—<73)+...]B

- V(j)i [K(l - (73)]”B

n=0
VYK E-VHY Y [ka-P)]" kPxrs
n=0 n=1 n;=1
v KB-vip Y [Ka-P)]" kP Y k"B
n=0 ni=1 ny=0
. 1 . > P LA |
= V() B~ V(ng [ka-P)] kP ——5. (8.21)

To get from the second to the third line, we expanded all the products and classified the
P <«

result by where the rightmost P is. There is one term with no P factors at all. The last line

is in fact of the form of a coefficient convoluted with the bare parton density, (8.11). To see

this, we first observe that the term V () B is of the desired form, giving a contribution

1-K
Z;'8;8(z — 1) (8.22)

to Z;;. Now a renormalization pole part is a coefficient times a vertex for a parton density.

So the last term in (8.21) is a pole part times the B factor in the bare parton density.

Thus we also get something of the form of the rig]lt-hand side of (8.11). In fact we can
write the renormalization coefficient as

L1 e S
ZjpV(j) = 7z |:8jj’8(z -1 - V(J)Z[K(l — PI"KP(j )] , (8.23)
i

n=0

where the (j") argument of the last <73 indicates that we restrict to graphs whose rightmost
line pair has flavor j'.

This completes the proof of the renormalization theorem for parton densities, at least
when the theory has no gauge fields. The proof also applies in a gauge theory (e.g., QCD) in
AT = 0 gauge, if we assume that the non-trivial complications in this gauge do not matter.

For performing calculations, it is useful that the proof also applies to off-shell Green
functions of the parton vertex operator, with the actual on-shell parton densities being
obtained by applying LSZ reduction.
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Nature of subtractive approach

The starting point of (8.21) was a modification of the definition of a parton density where
all UV divergences were subtracted out. Then this was converted to a form that exhibited
multiplicative renormalization of bare parton densities.

Now methods using subtractions are fundamental to all aspects of perturbative QCD,
as we will see. So in the next few paragraphs I give further insights into the subtrac-
tive approach, with renormalization of parton densities giving an example of a general
methodology.

Let us focus attention on the third line in (8.21). It starts with a sum over all graphs for
the parton density partitioned by the number n of rungs; a generic term is V K" B. Note
that K and B themselves are sums of graphs of the appropriate irreducibility properties.
Possible ways of getting UV divergences are enumerated by partitioning the product of
rungs into two factors:

[VK™][K"™™" B], (8.24)

where n; can range from 1 to n. Applying this to a single graphical structure, we have n
ways of doing the partition. For each partition, there is a divergence where the momenta
in the left part of (8.24) get large while the momenta in the right-hand part stay finite. The
left factor corresponds to the upper part of Fig. 8.5(a).

An initial idea for removing the divergence is simply to subtract the UV pole part of the
subdiagram V K"'. We can notate the subtraction diagrammatically as

) (8.25)

where the box denotes the taking of the pole part, as in MS renormalization.! Such subtrac-
tions do not actually remove the divergences correctly, for two related reasons. The first
is the possibility of subdivergences: if n; > 1, the K™ ~! factor has a pole from subdiver-
gences, where only some of the rungs inside the box are in a UV region. The second is
that of double counting: there can be further UV divergences when not only the momenta
inside the box are UV, but also some momenta further down are also UV, which situation
occurs if n; < n.

Both problems are solved by applying the pole-part operation only after subtractions
have been made for subdivergences. In the third line of (8.21), this is done by the (1 — (73)
factors inside the V K™ part.

To see this as a prevention of double counting, we imagine constructing the counterterms
one by one, starting with the smallest, n; = 1. Let C,,,(V K" B) be the counterterm for the
ni-rung graph. It is made by applying minus the pole part to the original graph together

! Or the corresponding operation in some other renormalization scheme.
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with the counterterms for smaller numbers of rungs:

ni—1
C, (VK"B)y=—| VK™ +ZCnr](VK”‘) %K”‘”'B. (8.26)
n=1
The internal counterterms C,, remove subdivergences. As for double counting, consider
the sum over n;: Zzlzl C,,(VK"B). For the overall UV divergence in a particular V K",
there will be contributions both from the original graph and from the counterterms for
subdivergences in the set of terms VK™ + ZZ;} C, (VK"™). The use of (8.26) to define
C,,, deals with this problem.
Equation (8.26) is an example of the Bogoliubov operation in renormalization theory,
and it provides a recursive definition of the counterterm. The recursion starts at n; = 1
where there are no subdivergences:

n 5 -1
Ci(VK"B)=—VKP K" 'B. (8.27)
It is not too hard to prove by induction that
n P ni—1 by n—ny
C,(VK"B)=—[VK( - P)" "KPK"™™B, (8.28)

which gives the counterterms in the third line of (8.21).
An illustration of the box notation for counterterms is the case n = 2:

(8.29)

=VK’B ~ VKP KB — (VK
— —
—VK(1-7P)K1-P)B.

8.4 Renormalization group, and DGLAP equation

Renormalized quantities depend on the renormalization scale .. When we apply the factor-
ization theorem we will enable the effective use of perturbative theory in the hard scattering
by setting u to be of order Q. Therefore to make predictions, we need to transform parton
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densities between different values of u, for which we need their renormalization-group
(RG) equations.

These are obtained by applying d/dInu to (8.11) and using the RG invariance of
the unrenormalized parton density. The resulting equation are known as the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations® (Altarelli and Parisi, 1977; Gribov
and Lipatov, 1972; Dokshitzer, 1977). They have the form

LI —22/(1210»- : : 8.30
dlanJ/H(E,M)— . - (2 8) fim(§ /2 1), (8.30)

where, with its standard normalization, the (finite at € = 0) DGLAP evolution kernel P;;
obeys

d dz , '
mz,k(z, g.e)=2%" 7ijr(z .8, 6Zin(z/7, g, €), (8.31)
J' '

i.e., essentially

1 d
T 2dlnp

InZ, (8.32)

with algebra (multiplication in particular) for Z being interpreted in the sense of convolu-
tions on z, and in the sense of matrices on the partonic indices. Recall that the RG derivative
when applied to such counterterms is just the beta function for a coupling times a derivative
with respect to the coupling, and then summed over couplings. In the model Yukawa theory,
this is
1 d g2 1 8ij A 1 0 Z,‘k
——Zy=|—¢€ S —€ S —_—
2dlnp i ( 1672 TS5 by 0g2/(1672) + 1672 +Sh ar/(16m2)
(8.33)

Here B, &f % dg? / dIn p, etc., with the normalizations like those of Sec. 3.5.2. Each 8 is a

function of S.A and S, g2, but not of € separately (in the MS scheme). In QCD there would
only be the B, term.

8.5 Moments and Mellin transform

The connection to the renormalization of local operators can be exhibited by taking an
integral with a power of &. We define

1+
Fin(J) = /0 de &7 fim(®), (8.34)

1+
Zjp(J) = / dzz’7'Z;(2), (8.35)
0

2 The original derivations were rather different to the strict RG one presented here.
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and similarly for the unrenormalized parton densities and the DGLAP kernels. Then (8.11)
gives a matrix-multiplication form for the moments:

Firn() =" Ziy (D foyyu (). (8.36)
Iz
The DGLAP equation similarly becomes
d - ~
T i = JZ 2P ()5 9) fyym (5 0)- (837)

If J is allowed to range over general (complex) values, then we have constructed the
Mellin transform of the parton density and shown that renormalization looks particularly
simple for the Mellin transform. The Mellin transformation can be inverted to recover the
parton densities in £ space. In numerical calculations, it can be an advantage of the Mellin-
transformed formulation that equations like (8.37) involve matrix multiplication rather than
convolutions.

If J is restricted to non-negative integer value, and the combinations of parton and
antiparton densities are used that correspond to local operators, as in (6.109), then we have
the formula for renormalization of the local operators used in the OPE for DIS.

8.6 Sum rules for parton densities and DGLAP kernels, including in QCD

In Secs. 6.9.5 and 6.9.6, we derived number and momentum sum rules in a theory where
no renormalization of parton densities was needed. We now extend the treatment to a
renormalizable theory. The derivation will also apply to QCD, but only after we show that
the renormalization theorems also apply to QCD.

Before renormalization we have bare parton densities in the UV-regulated theory. For a
bare quark density, we derived a number sum rule in (6.92); the derivation applies also in
QCD, since the Wilson line now needed between the quark and antiquark fields becomes
unity when the fields are at the same position. The derivation must be applied to the bare
parton densities in order to get the correctly normalized Noether current. In contrast, for
the derivation of the momentum sum rule in QCD, the Wilson line requires a slight change
in the derivation. Because of the extra factor £ in the integrand of the sum rule (6.93), a
derivative is needed with respect to the position of one of the fields in the quark density def-
initions. The derivative applies to both the field and the Wilson line, and the result is to give
a covariant derivative of the quark field, and so to give the correct quark term in the energy
momentum tensor. The gluon term also comes out correctly. After that the derivation is as
before.

Each of these derivations applies to a particular moment of parton densities and results
in a target matrix element of a Noether current, whose value we know exactly and which
is finite. We now need to show that the sum rules also apply to renormalized densities and
to obtain corresponding constraints on the renormalization coefficients. We first take the
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inverse transformation to (8.36):

Forin() =Y Z; M) Fiyu(), (8.38)
J

where Z~! is the matrix inverse of Z. The number sum rule for a quark g is that fig),,u(1) —
f(o)g/ g (1) is the number of this type of quark in the target H. Since this is finite, the
corresponding renormalization coefficients are also finite: Z;].I(l) — Z; jl(l). Let us use the
MS scheme, in which case finiteness only happens if the counterterms are zero, leaving
the lowest-order terms. Thus we get the following sum rules for the first moments of the
renormalization coefficients:

Z )= Z(1) = 8,5 — &, (8.39a)

Zgi(1) = Zg;(1) = 845 — g5, (8.39b)

where the second line follows using the definition of the inverse matrix Z~'Z = I. From

(8.39b) and the sum rule for the bare parton densities follows the corresponding sum rule for

the renormalized densities. Hence (6.91) applies to both bare and renormalized densities,
provided the MS scheme is used.

The same argument applies to the momentum sum rule. It also leads to a sum rule for
the renormalization coefficients:

D 7= 2@ =1, (8.40)
J j

where the sum is over all flavors of parton: quarks, antiquarks, and gluon.
Combining the sum rules for Z with the definition of the DGLAP kernels (8.31) gives
sum rules for the kernels:

B,;i(1) — P;;(1) =0, (8.41)

Z Pi(2)=0. (8.42)
J

These sum rules have important testable consequences for the evolution of parton densities;
they also provide useful checks on calculations.

8.7 Renormalization calculations: model theory

In this section we show how to calculate the renormalization of parton densities in the
model Yukawa theory used earlier, to illustrate the principles without any confusion by the
complications that arise in QCD.

8.7.1 Renormalization of the theory

The Lagrangian of the theory with renormalization for the interactions was given in (6.103).
We use dimensional regularization and the MS scheme. We will express all quantities in
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terms of renormalized couplings g, etc. As usual, to keep the dimension of the coupling
fixed, we write the bare couplings in terms of the renormalized couplings with the unit
of mass as go = u€g(l + counterterms), etc. We will use a counterterm approach, as in
Sec. 3.2. Thus we write the Lagrangian as the sum of a free Lagrangian that gives the free
propagators, a basic set of interactions, with renormalized couplings, and a counterterm
Lagrangian.

Of the renormalization factors in the Lagrangian, the ones that we will need in our
calculations are for the self-energy, for which completely standard calculations give

%S 2SS M

Zy—1=— rs ZaMo—M =
2 32m2€ 270 1672¢

+..., (8.43)

where the dots indicate terms of yet higher order.

8.7.2 Unintegrated density

First we examine unintegrated, i.e., transverse-momentum-dependent, parton densities. The
bare densities in the UV-regulated theory are, e.g.,

dw™ Pwr epiyire — - al
T)fe PR P10, wL w) T Yo(0) | P). (8.44)

foyg/uE, k) = /
These have an immediate probability interpretation.
Since there are no extra divergences beyond those renormalized in the Lagrangian, the
renormalized unintegrated quark density is obtained simply by using renormalized fields:

fouE ki) = Z5" foyg/u (&, kr). (8.45)

To get its RG equation, we observe that the bare parton density is a matrix element of
bare fields with physical states, and hence is RG invariant. Taking a total derivative of the
renormalized density with respect to the renormalization scale p gives the RG equation of
the renormalized density:

d
qu/H('i:’ krip) = =2y, fa/u (€, kr; ). (8.46)

Here y; is the anomalous dimension associated with the fermion field:

1dlnZz, g>S.
= - =— 8.47
2 dlnp 3272 + (8.47)

V2

which has a finite limit at e = 0.

8.7.3 Integrated density

For renormalization of the integrated densities, we use a counterterm approach with
subtractions applied in Green functions of renormalized fields. Therefore we first write
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(8.11) as

dz _1
fia&) = Z/ ?[Zj’(g’é)zjj’(za 8. NIZ; fojuE/D) (8.48)
J

Here the factor Z;l S j/u 1s the parton density with renormalized rather than bare fields
used in its definition. Thus it is calculated using the standard Feynman rules for the theory
and for the parton density; counterterms from the Lagrangian are used as needed. In
compensation for the Zj_,' factor the Z;» factor is combined with a factor of Z ;.

The renormalization factor gives UV-finite parton densities independently of the target
state H. For calculations of Z;/, it is therefore convenient to choose the state to correspond
to any of the elementary fields of the theory (as opposed to a bound state). To obtain the
perturbation expansion of Z;;; from Feynman graphs, we expand (8.48) in powers of the
renormalized couplings, and identify the necessary counterterms. We use the following
expansions:

[ 2 n
8 [n]
Sfia(§) = ( ) HTLC) I (8.49a)
I HXZ(; 1672 ird
o0 2 n
foin®=3" (%) fol a4+ (8.49b)
n=0
0 2 n
Zjjz.g.6)=Y (12#) ZMz g+ ... (8.49¢)
n=0

To avoid complicated formulae, we have written only the terms with the Yukawa coupling
g, and the dots indicate terms involving the other couplings. The lowest-order term in Z is
unity in the sense of a matrix in parton type and of a convolution in z:

7102 = 88 — 1), (8.50)

When the target is elementary, the lowest-order renormalized and bare parton densities are
simply

FIE) = fio) ;&) = 8¢ — 13 (8.51)

Note the notational distinction between “[0]” in a superscript to denote “lowest order”, and
“(0)” to denote “bare” (normally in a subscript). Note also a shift of notation from Sec. 6.11:
there we did not treat renormalization, so the expansion parameter was actually the bare
coupling; now the expansion parameter is strictly the finite renormalized coupling.

The key equation for calculations of the renormalization factor is the n-loop expansion
of the renormalization equation (8.48):

n dz , »
=323 / = ZflGs 0 [ e ). (8.52)

=0 j
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8.7.4 One-loop renormalization calculations in model theory

Quark in quark
The one-loop case of (8.52) for the density of a quark in a quark is

fun®)= 2. [ 1@z, 802 oo

+ (22 Z,)M(z, g, 6)(Z{1ﬁ0)j/q)[0]($/2)]
=(Z;" f0q/)"E) + (Z2Z ) (€. 5. ©). (8.53)

We carried out the calculations of the bare version of fI!! in Sec. 6.11, and we now read
off the necessary modifications to renormalize the parton densities.

Virtual correction to quark in quark

The one-loop virtual correction to the parton density Fig. 6.10(a) is to be modified by
adding wave function and mass renormalization counterterms to the self-energy, so that we
replace (6.114) by

8
f;}q”@ =8¢~ 1) 1 —

« [ “ax fem I p M=) gy
0 m2x + M?(1 — x)? m2x + M2(1 — x)?

in the limit that the UV regulator is removed, € = 0. Since this is finite by itself, no delta
function contribution to Z,Z,, is needed: the UV divergence in the self-energy is removed
by a counterterm from the interaction, and so does not affect renormalization of the parton
density.

162

Real correction to quark in quark

For the real emission term, we need

8>S

1672

2
(Z22)})(z, 8. €) =

= (1-2) (8.55)

to cancel the UV divergence in (6.117), with the result that the real-emission contribution
for the renormalized density € = 0 is

2 ) 2 2
- ) “ £(1 — §)AM> — m?)
f &) = 16 > {(1 5)1“[5m2+(1—g)2M2}+ Em? 4+ (1 - £)°M? }

(8.56)

162
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Renormalization of quark in quark

The renormalization coefficient times Z is therefore

2
g5
(Z2Z)qq(za 8, 6) == 8(2 - 1) - ]67‘[26(1 - Z) + ..., (857)
so that
&S
Z4q(2, 8,0 =8z =1 + J—- [360—2)—14z]+... (8.58)

It is easily verified at order g2 that this obeys the sum rule f01+ dz Zy() =1, as is
necessary so that the number sum rule is obeyed. From (8.31) and (8.33) then follows the
one-loop gg term in the DGLAP kernel:

&

Fag@) = 1672

[-18(0 -2 +1—z]+... (8.59)

Scalar in quark

Similarly we can renormalize the first off-diagonal term, in the distribution of a scalar
parton in a quark from (6.118). The renormalization coefficient and the DGLAP kernel
are

2
s
Zpy(D) = —Soz 4 (8.60)
gZ
Pyy(2) = @Z—F..., (8.61)

with a corresponding renormalized value for fg /4.

Verification of sum rules

It is readily checked that the quark number and momentum sum rules are obeyed at this
order:

1+
/0 dz[Pyy(2) = Pgy(2)] = 0, (8.62)

1+
/ 422 [Pyg(2) + Pyyl2) + Pyy(2)] = 0. (8.63)
0

Note that these sum rules are written in their complete form, including a term for evolution
of a quark to an antiquark P, . Of course this last term is zero at one-loop order; the lowest
order in which the ¢ — g occurs is order g*, from the graphs of Fig. 8.8.

Support properties

The continuum terms in all the above calculations of Z;;; and P;;: should be considered to
have an implicit theta function to restrict z to lie between zero and one: (0 < z < 1).
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Fig. 8.8. Lowest-order graphs, order g*, for evolution of quark to antiquark.

8.8 Successive approximation method

I now outline an approach that creates a factorization formula like (8.5) as a series of
successive approximations, with the parton model as the first term. This will motivate the
technical proof, and will suggest a route for generalization in more complicated situations.

The parton model for the hadronic tensor W*" for electromagnetic DIS was derived from
the handbag diagram as an approximation valid in the momentum region where the struck
quark is collinear to the target. We call this the leading-order (LO) approximation to the
WY notated in Fig. 6.4(b). The graph and region continue to exist in the complete theory.
Of course, the approximation breaks down when the transverse momentum or virtuality of
the struck quark gets large, and there are graphs other than the handbag diagram. Let us
regard the complete W*" as the LO approximation plus a remainder:

W =W + (W =W

(8.64)

The hooks on the quark line of momentum k in the first term denote a parton-model
approximator. This means that k= and k1 are replaced by zero in the part of the diagram
above the hook, and that projectors onto the leading power of the Dirac algebra are inserted.
The result is a good approximation in the collinear region. We define the approximator to
include an integral over all k, thereby obtaining a parton density, exactly as we defined
it. Although not explicitly notated, we define the parton density to be renormalized, so
that the LO approximation is finite. The unrestricted integral over k and the associated
renormalization are the only changes from the parton approximator defined in Sec. 8.2.2.

We now analyze the remainder term, in parentheses. The most general leading-power
contributions still have the form summarized in Fig. 8.2(a). However, if we take the hard-
scattering subgraph to be lowest order, i.e., to be the top rung only, then in the parenthesized
term in (8.64) this lowest-order case no longer gives a leading-power contribution, precisely
because the subtraction cancels the relevant region.
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Fig. 8.9. Topologies of graphs needed for NLO approximation. The hermitian conjugate of
graph (c) is also needed. UV counterterms are added to (c) and (d), as appropriate for the
interaction and the current.
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Fig. 8.10. Graphs like this with self-energy correc- Fig. 8.11. Subtraction graph.
tions are in in the handbag category, and are not
used in Fig. 8.9.

-
L

For the leading approximation to the remainder term, we examine graphs of the form
of Fig. 8.9. At the bottom, we have a complete parton-target amplitude, and at the top, we
have a one-loop quantity. We are concerned with the case that the top loop is hard and the
lower bubble is target-collinear. There is a sum over the flavors of the lines of the graphs.
Notice that graph (a) is also among those included in the basic handbag diagram. Since
the lower bubble represents an infinite sum over all graphs with the given external lines,
it continues to represent the same quantity as in the handbag diagram. We do not include
the case that there is a self-energy on the vertical parton lines, as in Fig. 8.10: these are
included in the handbag category, for this part of the argument. To obtain the contribution
to the parenthesized term in (8.64), we must subtract the parton-model approximation to
graph (a), as symbolized in Fig. 8.11.

The graphs of Fig. 8.9 all have leading-power contributions when the momentum / of
the line from the lower bubble to the upper one-loop subgraph, is collinear to the target.
Contributions when / is larger will be dealt with in even higher-order corrections to the
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hard scattering. The first graph (a) also has a leading-power contribution when the line &
is target-collinear. But the subtraction, Fig. 8.11, cancels this contribution (to the leading
power of kt/Q). Thus the upper one-loop subgraph in all cases is dominated by large loop
momenta.

We therefore apply a parton-model approximation on the line /, and obtain the following
form for the NLO contribution to the structure tensor:

q
W(‘f\lT/LO) = + etec. +
P l
(8.65)
WS WS
. Ll Ll
+ _ k
LLJ Ll Ll Ll
P l P l

The lower part again is a parton density, which we define to be renormalized. The definition
of the approximator is that, in the upper part of the graph, [ is replaced by just its plus
component: [ — (I*, 0, 07), with appropriate Dirac-algebra projectors. Thus the upper
factor is essentially the one-loop approximation for DIS on an on-shell parton of longitudinal
momentum /*. But there is a subtraction, to remove whatever was already taken care of
at LO.

Further improvements can be made simply by iterating the procedure. In place of (8.64)
we use

W = Wio) + Wto) + (W = Wilo, = Winio)) » (8.66)

from which we obtain a further parton-model-like correction by analyzing the parenthesized
term. This is the next-to-next-to-leading order (NNLO) approximation to DIS. Repeating
the above procedure leads to a series of successive approximations that in fact correspond
to an expansion in powers of o (Q).

8.9 Derivation of factorization by ladder method

We now make a complete derivation (Collins, 1998a) of factorization by using a decompo-
sition in terms of 2PI subgraphs just as we did in Sec. 8.3.6 to discuss renormalization of
parton densities.

8.9.1 Ladder expansion

The ladder decomposition is shown in Fig. 8.12, where B at the base of the ladders and
K for the rungs are the same as in Fig. 8.6. There are two new features. The first is that
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Fig. 8.12. Ladder decomposition of graphs for DIS. Each shaded bubble is 2PI in the vertical
channel, except that K and B include the two full propagators on their upper side.
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e

Fig. 8.13. Examples of topologies of graphs for the top A of ladder graphs for DIS in
Fig. 8.12. The lines and vertices are of any type allowed by the theory. The shortness of the
lines at the lower end indicates that these propagators are defined to be amputated.

because each current has two partonic lines we can have completely 2PI graphs. Their

sum we denote by D, and these graphs are power-suppressed in Q because they have no

decomposition of the generalized ladder form. The second new feature is that at the upper

end of the ladder graphs we have, not a vertex for a parton density, but the sum A of 2PI

graphs with two currents. Its expansion up to one-loop order is shown in Fig. 8.13.
Therefore we write a structure function (or the hadronic tensor W*") as

1
W = Al—B + D, (8.67)
with exactly the same notation as in (8.15). The factor connected to the current has the
functional dependence A = A(q;k, j, c, ¢, a, '), where k is the momentum of the parton
on the lower side of A, j is its flavor, and ¢, ¢/, & and «’ are indices for the color and spin
of the parton, ¢ and « on the left, and ¢’ and o’ on the right of the final-state cut.

8.9.2 Application of parton-model approximator

The proof of factorization generalizes to all orders the method of successive approximation
of Sec. 8.8. Its implementation is by an algebraic method using the parton approximator
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<T_ defined in (8.7) and (8.8), and the pole-part extractor <73 used in Sec. 8.3 in the
renormalization of parton densities.

To explain the algebraic method, I first apply it to low-order terms in the method
of successive approximation, but applying it to the ladder sum (8.67). The first term is
obtained by applying the parton approximator at the lower end of A:

P 1
Weo =AT |V—B. (8.68)
1-K(1—-P)
The parton approximator is applied to the complete top rung of the ladder, i.e., to A, rather
than just to the lowest-order rung. So to label the resulting approximation, [ use “ELO” for
“extended leading order” rather than just “LO”. Unlike the use of the parton approximator
in Sec. 8.2, there are no longer any restrictions on the internal momentum of any of the
factors. But the parton densities are renormalized. This is accomplished by replacing the
1/(1 — K)factorby 1/(1 — K(1 — <7;)) as already derived for the renormalization of parton
densities. To use this definition, we require that the pole-part operation is only applied within
the parton density, i.e., only between the | symbol and the <73 symbol. The reason for the
emphasizing this is that the hard part A T | can have (finite) dependence on the UV regulator,
which should not affect the pole-part operation; the pole-part operation is concerned only
with defining the parton density, i.e., only with the objects to the right of the | symbol.
The Wgo term correctly treats the region where the parton below the A bubble is
collinear. So in the remainder W — Wgp g, this region is suppressed. Therefore the region
giving the first leading contribution to W — Wgr o is where the hard subgraph consists of
both A and one neighboring rung K. To obtain the associated contribution, we exhibit this
first rung by writing the 1/(1 — K) factor as

1 1
e l+K——. 8.69
—xk T8k (8.69)
Then the contribution in question is
<~ «— 1<« 1
WenLo = [AK —AT|VK(Q — 7?)] TW——— B
1—K(1—P)
«— «—
= [A(l -7 |V)K+c.t.] T\W——— B (8.70)
1—K(1—P)

This is of the form of an EN(I;O coefficient convoluted with a complete renormalized parton
density. The factor of 1 — T |V between A and the first rung K suppresses the collinear
region for the connecting momentum. A UV counterterm removes the UV divergence that
is thereby introduced.

8.9.3 General case

The organization of the full proof is first to construct what we call the remainder, in which
all leading behavior is subtracted out, and then to show that this remainder is the difference
between the exact hadronic tensor W and a factorized form.
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Remainder

The remainder is defined by the insertion of a 1 — (fl V factor between each rung in (8.67):

r:iA(l—‘ﬂV) [K(l — ?W)]n B+D

n=0
1 <~
=A———————(1-T|V)B+D
1—(1—TI|V)K
<~ 1
—AU-T|V)— B+ D. (8.71)

<~
1—K(1—=T|V)

We now show that this is power suppressed. We also show that there are no extra UV
divergences, unlike the case in (8.68) and (8.70), so that no UV subtractions need to be
applied.

Before inserting 1 — T |V, we recall that leading-power contributions come from
regions symbolized in Fig. 8.2(a). Thus inserting 7T |V between the hard and colhnear
subgraphs gives a good approximation in this region. Hence, inserting a factor 1 — T |V
gives a power suppression. In the general case, where we extend the loop-momentum inte-
grations out of the core of the region, the factor 1 — T |V gives a suppression which we
can represent as

highest virtuality i 1li p
( ighest virtuality in co 1near> (8.72)

lowest virtuality in hard

Furthermore, in the rung A, closest to the virtual photon, we have virtualities of order
Q?, while in the rung B, closest to the target, we have virtualities of order M?. Within
a given rung, the leading-power contribution comes where all the lines have comparable
virtualities, since leading-power contributions with regions of very different virtualities
involve the structure of Fig. 8.2(a), with subgraphs connected by just two lines. Given
that in (8.71) we have a factor 1 — T |V between every 2PI rung, there is a suppression
whenever there is a strong decrease of virtuality in going from one rung to its neigh-
bor to the right. Thus we find the ladder part of (8.71) has an overall suppression of

order
M p
— 8.73
< Q> ®:79)

when it is compared to the structure function itself. The 2PI term D is power-suppressed
by itself, and thus the whole of r is power-suppressed, as appropriate for what we wish to
consider as a remainder.

This suppression of course gets degraded as one goes to higher order for the rungs,
since the lines within K can have somewhat different virtualities. The larger a graph we
have for K, the wider the range of virtualities we can have without meeting a significant
suppression.
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A potential problem arises because T removes kinematic restrictions and thereby allows
UV divergences to be induced, just as in the lowest-order approximation, (8.68). However,
the UV divergences arise from the same kind of two-particle reducible structures as the
leading regions, and the 1 — T |V factors in r are just as effective at canceling the UV-
divergence regions as they are at canceling leading-power contributions. Thus in fact r is
finite and power suppressed. The UV divergences, with their attendant renormalization,
only need to be treated when we expand the products.

Factorized form for W —r

I now show that W — r factorizes. To present the algebra cleanly, I will first present the
proof without renormalization of the parton densities, in the UV-regulated theory.
From (8.67) and (8.71), we find

1 1 «—
W—r=A - — (1—-T|V)|B
I-K 1_-a1-T|VK

1 «— «— 1
:A—(_[l—(l— TIVK — (1 — T|V)(1—K)]—B
1—(—T|V)K 1-K
1 «— 1
—A — T |V B. (8.74)
1—(—T|VK 1-K

This proof looks like straightforward linear algebra. In fact, there is a subtlety that T is
defined to set masses to zero on its left. The quotient 1 /[1 — (1 — T |V)K]is fundamentally
defined as the infinite sum Z,fozo[( 1 — T |V)K]", and the manipulations in (8.74) apply to
this definition just as they do in ordinary linear algebra.

The last factor on the last line, V[1/(1 — K)]B is exactly a bare parton density, so we
see that W — r is of the form of some coefficient convoluted with a parton density. This is
a form of factorization, so we write

I+ 4
W= Z/ ECu Q£ 6500

+ terms with polarized parton densities + power-suppressed

= Cp ® fp + polarized terms + p.s.c. (8.75)

Here, “p.s.c.” denotes “power-suppressed correction”, and we have defined a parton density
by

1
f8.j(§) = V—K B, (8.76)

when the parton at V has flavor j and k* = &£ P*. For simplicity, we only indicate explic-
itly the term with unpolarized densities; the polarized terms are similar in structure. The
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coefficient function is
1 <~
T.

Cpj(Q/u,§/x) = A ——Fp——
1-1-T|V)K

(8.77)
We use the “®” notation to indicate a convolution in £ and a sum over parton flavor, defined
by the structure on the first line of (8.75).

We have one remaining complication, that of UV divergences. There are divergences
in the parton density factor and in the coefficient function. Of course, these divergences
cancel, since the left-hand side of (8.74) is finite, as we have already proved. As a first step,
let us apply a UV regulator, e.g., dimensional regularization. We have defined all the rung
factors as Green functions with renormalized fields. Thus the parton density fz ;(§) used
in the above equations is a factor 1/Z; times the bare parton density defined in terms of
bare fields.

We now reorganize the (8.74) in terms of UV-finite quantities. From earlier work we
know that the renormalized parton density is the convolution of a renormalization factor
with the parton density fp

fF=G6® fs. (8.78)
So we simply define the renormalized coefficient function to be
C=Cs®G", (8.79)

where the inverse in G~! is in the sense of convolutions over & and matrix multiplica-
tion for parton flavor. Then, trivially Cp ® fp = C ® f, and the factorization theorem
becomes

Wt = C*" ® f + p.s.c.

1+
= 2/ dg—SCj.“’(Q/u, £, x) f;(€; ) + polarized terms + p.s.c. (8.80)
i T

8.10 Factorization formula for structure functions

In this section, we will convert the general structure of factorization, (8.80), into several
forms directly suitable for practical calculations, to be carried out in Ch. 9. The formulae
are also true in QCD, although their proof needs the enhancements to be given in Ch. 11.
So the treatment will be presented with reference to its QCD applications.

8.10.1 Factorization for hadronic tensor

Polarization dependence appears in the trace over spin indices between the parton density
and the hard-scattering factor. Exactly as in the parton model, Sec. 6.1, polarization can be
allowed for by introducing a helicity density matrix p;(&) for the parton initiating the hard
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scattering. Then factorization of the hadronic tensor has the form:

1+
Z/ ETrC“”(q EPsag, ) pi(E; ) fi (& 1) + psc.

=C" Q pf +p.s.c. (8.81)

With a slight change of notation, the hard-scattering coefficient, C 7 ’, has acquired helicity
indices, and is traced with the partonic helicity density matrix. It is to be thought of as
giving DIS on a parton target of flavor j and fractional longitudinal momentum &. There
is a sum over all parton flavors j and an integral over all kinematically accessible £. A
convenient notation for the integral over &, the sum over j and the trace with p is the
convolution symbol ® in the last line.

As explained in Sec. 6.5, the combination of p; f; can be written in terms of the
unpolarized densities f; and asymmetry densities A f; and t f; for helicity and transversity,
for the case of a spin—% target. (A generalization is needed for higher spin targets like the
deuteron.)

We express C;f " in terms of scalar coefficient functions F; ; by relations like those for
the regular structure functions, (2.20), except for the use of the momentum of the struck
(massless) parton instead of the momentum of the target hadron:

TeCp; = (—¢" +4"q"/q%) F1j(x/&, Q)

(EP" —q"EP - q/g>)EP" —q"EP - q/q?)
EP g

Fj(x/€, Q%)
+i ’”""3%5“3 81:(x, ) + F3 term + extra gluon term (8.82)
Pq 81j 3 g . .

Here P = (P, 0, 0p) is a massless projection of the target momentum, so that & &t EP is
the momentum of the struck parton, in the approximation that is used in the hard scattering.
An exact transcription of (2.20) would also include a g, structure function associated with
transverse quark spin. We omit it since g, is zero to all orders of perturbation theory
(Sec. 8.10.5). Therefore we need only the longitudinal polarization of the parton, and we
assign it a spin vector S; , = A jlgu, where 1 is the parton’s helicity. This is used with the
81 structure function.

In QCD, the gluon has spin 1, and when the hadronic target has spin greater than 1,
there is a possible term in the gluon’s density matrix that flips helicity by two units: see
Artru and Mekhfi (1990) and problem 7.11. This results in the “extra gluon term” in (8.82).
I have left it as a (probably academic) exercise, to sort out the details (problem 8.3).

8.10.2 Factorization for structure functions

To get factorization formulae for the structure functions, we insert (8.82) in the factorization
formula (8.81). Then we use the results from Sec. 6.5 that a parton in an unpolarized target
is itself unpolarized and that its helicity is proportional to the target helicity. These results
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were derived in a simple model theory, but they depend only on symmetry properties of the
theory, and are therefore generally true. Hence

I+ 4
Fi= Z / —éFu(Q/u,x/%‘ &) f(&: 1) + psec. (8.830)
+ A
B [ a8 fay(Q/m /s & + pac (8.83b)
i v
H— g
g = Z / TR0/ x 65 A ) + e (8.83¢)

The second formula also applies to the longitudinal structure function Fy, &ef F, —2xF,.
Notice that:

F| and F, only involve the unpolarized number densities;

g1 only involves the helicity asymmetry density;

in the formula for F; the integration measure is d£ instead of d&¢ /£;

the coefficients are functions of x /&, rather than £ and x separately;

the transversity density 87 f; does not appear;

the structure function g, does not have a formula. As we will see, its contribution to W*¥
is power suppressed, and therefore its leading-power approximation is zero.

The first two items depend on the parity invariance of the theory. In a parity non-invariant
theory, it would be possible, for example, for partons to be polarized even when the parent
hadron is unpolarized. We now give derivations of the other items.

8.10.3 Integration measure for F,

The changed integration measure for F; is associated with its transformation under boosts
of the target momentum. In the hadronic tensor (2.20), it multiplies the tensor (P* —
g"P -q/q*>)(P' —q"P -q/q*)/P - g, which is linear in P. Now the coefficient function
depends only on the momenta £P and ¢, but not on P or & separately. Then in the
part associated with the F, structure function, there appears the tensor (£ P* — gH&P -
q/qHEP’ — g EP - q/q?)/E P - g, which scales linearly with &. To obtain the correctly
normalized structure function F,, we extract the factor &, which cancels the 1/& in the
integration measure in (8.80). (There is further slight mismatch between the tensors, by a
factor 1 4+ x>M?/Q?, which is irrelevant to leading power in Q.)

8.10.4 Functional dependence of partonic structure functions

Both the hadronic tensor W#" and its hard-scattering counterpart Cj‘ " are dimensionless.
Each of the partonic structure functions in (8.82) is also dimensionless, and the tensors



8.10 Factorization formula for structure functions 279

multiplying them are independent of Q2. Power-counting in a renormalizable theory there-
fore shows that order-by-order in perturbation theory all these quantities behave like Q°
times logarithms of Q.

Each of the partonic structure functions in (8.82) is a Lorentz scalar, so the only kinematic
variables it depends on are the invariants constructed out of its external momenta, i.e., Q2
and £P - g = £Q?/(2x). The structure functions are also dimensionless. Therefore their
independent arguments can be taken as Q/u and x/§.

8.10.5 Transverse polarization

For the polarized structure functions, we first examine their scaling properties. In the Breit
frame, the proton is highly boosted, so we count its momentum P as of order Q. When it
has a longitudinal polarization A, the spin vector S scales approximately as P, so that S is of
order Q also. The tensor ie""*f g, Sg / P - q associated with g therefore scales as the zeroth
power of Q, just like the tensors associated with F| and F,. But the tensor multiplying g»
has the longitudinal part subtracted, in the Sg — PgS - ¢/ P - g factor; it is suppressed in
fact by order M?/Q? for longitudinal polarization. Thus to leading power, for longitudinal
polarization, we have a contribution to g; times its tensor, and this is proportional to the
longitudinal polarization A of the target. Correspondingly, the factorization formula (8.83c)
for g uses the helicity parton density Af.

There remains the case of transverse spin, and associated with it the transversity distribu-
tions 8t f. First we observe that the transverse components of the spin vector are invariant
under boosts in the z direction. For this case, the tensors multiplying both of g; and g, are
of order M/ Q.

Now the only way transverse-spin dependence enters into the factorization (8.80) is
through the transversity density, and thus through a transverse polarization for quarks
entering the hard scattering and the coefficient function. But we set masses to zero in
the hard scattering, and as we now show, there is then exactly zero contribution from
transverse quark polarization. (As shown in Sec. 7.5.5, rotation invariance prohibits a gluon
distribution that is transverse-spin dependent.)

In the case of the lowest-order calculation, in Sec. 6.1.4, the reason for the zero contribu-
tion of transverse spin is quite elementary. In the parton-model hard scattering (6.19), spin
dependence arises from the factor £(1 — ysA i ysbéTyi). The transverse-spin dependent
term, with b1, gives a trace of an odd number of elementary Dirac matrices which is always
zero. (Recall that y5 = iy°y'y?y? so that it counts as four elementary Dirac matrices.)

The same property generalizes to higher order. This is particularly clear in QCD. Let us
go around the quark loop in which the struck quark is involved. There is an equal number
of propagator numerators and vertices for gluons and photons. Except for the external line
factor, each vertex and propagator numerator contains one Dirac matrix, giving a total
number that is even. (This is where the masslessness of the calculation enters.) This is
modified only on the external line factor with its extra odd number of Dirac matrices. Thus
we get zero for the transverse spin dependence, as claimed.
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The presence of subtractions in the hard scattering [see (8.77)] does not affect this
argument. The subtractions involve kinematic approximants and the insertion of spinor
projection matrices P4 and Pp. The spinor projections each have two elementary Dirac
matrices, so that they leave unchanged the evenness or oddness of the number of Dirac
matrices.

With couplings to a scalar field, as in a Yukawa theory, there is no Dirac matrix at
the scalar vertex. Thus we can get an even number of Dirac matrices in the trace with a
transversely polarized quark provided that we have an odd number of scalar vertices on the
quark line. But for the leading power in Q, we must keep only those interactions with a
dimensionless coupling. All such couplings (in a four-dimensional theory) involve an even
number of scalar fields, as in a ¢* coupling or an interaction between a scalar field and a
gauge field. If there is an odd number of scalar vertices on the quark loop including the
external line, then some other quark loop also has an odd number of scalar vertices. This
other loop has no transverse polarization matrix, and therefore an odd number of Dirac
matrices, and therefore its Dirac trace vanishes.

The result is that in all cases the coefficient function with the transversity distribution
is zero at the leading power of Q. Now transverse-spin dependence of the hard scattering
arises from off-diagonal terms in the helicity density matrix. So the result on g, can be
expressed by saying that in the hard scattering there is helicity conservation, i.e., there is
no interference between a left-handed quark and a right-handed quark:

(8.84)

L R

Note that helicity is defined in only at space-time dimension 4. But our derivation used only
the evenness or oddness of the number of Dirac matrices along quark lines, so the derivation
applies without an anomaly when we use dimensional regularization in calculations.

Discussion of g, and of transverse-spin dependence in fully inclusive DIS therefore
requires us to go beyond the leading power of Q, in fact to twist-3 operator contributions
in the jargon of the subject. This is beyond the subject matter of this book. Unlike the case
for the unpolarized and helicity parton densities, DIS is not a good place to measure the
transversity density.

The whole of the above discussion assumed the target had spin %, in which case the
target’s spin state is completely specified by the spin vector S*. More general cases, notably
spin 1, as for a deuteron target, can be discussed. But the results are of mostly lesser interest.

8.11 Transverse-spin dependence at leading power?

An interesting line of research over the past two decades has found useful observables
that depend on transverse spin at the leading power. In this section, we give a general
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Fig. 8.14. At leading power, LO Drell-Yan has a double-transverse spin asymmetry from
amplitudes such as this. Both hadrons are transversely polarized.

characterization of these observables. See, e.g., Boer (2008) for a detailed review, and see
Sec. 13.16 for examples.

The whole discussion is conditioned by chirality conservation in the massless limit and
hence in the hard scattering. Chirality conservation is the correct generalization of helicity
conservation when we include antiquarks; it means the helicity of a quark and the negative
of helicity for an antiquark. Thus the vertices of gauge bosons couple a left-handed quark
to a left-handed quark or to a right-handed antiquark, but not to a right-handed quark or a
left-handed antiquark.

There are two ways of getting dependence on transverse spin. One is to find a more
general hard scattering that has off-diagonal helicity dependence. The other is to find parton-
density-like objects with more general spin dependence than ordinary parton densities.

8.11.1 Hard scattering with transverse spin

Transverse spin gives one unit of helicity flip in a parton density, and this must be matched in
the hard scattering to get a leading-power effect. To avoid violating chirality conservation,
we need a hard scattering with (at least) another pair of external quark lines, so that we
have two compensating helicity flips (Artru and Mekhfi, 1990). Such processes are needed
to measure transversity densities.

One possibility is in hadron-hadron collisions, where the hard scattering is initiated by
two partons, one out of each hadron (to be treated in detail in Ch. 14). A classic example is
the Drell-Yan process, Sec. 5.3.7, where the lowest-order hard scattering is quark-antiquark
annihilation to a virtual photon. If both initial-state hadrons are transversely polarized, then
(Ralston and Soper, 1979) we can have a leading-power double-spin asymmetry, as shown
in Fig. 8.14.

Another similar possibility is in semi-inclusive DIS, where the cross section is differential
in a final-state hadron. In Ch. 12, we will generalize factorization to include a fragmentation
function that parameterizes the conversion of an outgoing quark to a jet containing the
detected hadron(s). Then the interference diagram Fig. 6.2, which gave zero in ordinary
DIS, gets a fragmentation function inserted into it, Fig. 8.15. The fragmentation function
needs to be off-diagonal in helicity for our purposes. It could be that the outgoing hadron
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Fig. 8.15. Interference between left-handed and right-handed initial quark in DIS with the
fragmentation providing the necessary helicity flip.

has its polarization measured; a practical example (Efremov, 1978; Artru and Mekhfi,
1990) is production of the A°, whose decay allows its polarization to be measured. In
addition, since fragmentation is non-perturbative, the chiral symmetry breaking of full
QCD allows the fragmentation function to break chirality conservation while keeping
leading-power behavior (Collins, Heppelmann, and Ladinsky, 1994), provided a suitable
final-state distribution is measured.

8.11.2 Transverse-momentum-dependent densities, etc.

Finally, some reactions require the use of transverse-momentum-dependent (TMD) parton
densities (and/or fragmentation functions). As we will see in Ch. 13, a TMD number density
can have a correlation between the azimuthal angle of a parton and transverse spin of the
target. Thus at leading power, we can have dependence on the transverse spin of a target
hadron without needing transverse-spin dependence in the hard scattering.

A considerable number of variations on this idea exist, especially when fragmentation
functions are included (Boer, 2008).

Exercises

8.1 (¥***) In a renormalizable theory, it is natural to define the light-front creation and
annihilation operators by Fourier transformation of the renormalized fields instead of
bare fields, since it is the renormalized fields that have finite Green functions. For a
field with wave function renormalization factor Z, the commutation relations of the
creation and annihilation operators are enhanced by a factor 1/Z, which is infinite
unless the anomalous dimension of the field is zero at the UV fixed point. This messes
up the normalizations of the basis states (7.23) by an infinite amount, in the limit that
the UV cutoff is removed.

Find a good way of specifying basis states in the renormalized theory in the limit
that the UV cutoff is removed. What is the relation between these states and the
standard basis states in the cutoff theory? [Conjectures and suggestions: 1. Some of
the techniques used in treating factorization later in this book may be useful. 2. Fourier-
transforming at fixed x corresponds to maximal uncertainty on k~. It may help to
perform a local average over x*. 3. Useful references include: Yamawaki (1998);
Nakanishi and Yamawaki (1977); Heinzl (2003); Sec. 4 of Heinzl and Ilderton (2007);
Nakanishi and Yabuki (1977); Steinhardt (1980).]
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8.2 (****) Find the relation between parton densities and the basis found in problem 8.1.

8.3 (¥*¥) Extension of problem 6.8 to full QCD: Generalize the work in this chapter to
deal with DIS on a polarized spin-1 target like the deuteron. What is the form of the
extra gluonic term indicated in (8.82)? What is the corresponding NLO hard-scattering
coefficient corresponding to this extra term? Notes:

Much of the necessary work on defining structure functions has been done by
Hoodbhoy, Jaffe, and Manohar (1989). But it is good to check their results. Note
that they used the OPE rather than factorization for their QCD analysis. But they
restricted their attention to the quark operators, and did not indicate what to do with
gluon operators.

Since the gluon has spin 1, their analysis definitely needs generalization to deal with a
gluon-induced hard scattering. You will need to work out a version of their analysis
to the hard-scattering coefficient for a gluon Cj". This will result in significant
changes, since there are no gluons of helicity zero. Hoodbhoy, Jaffe, and Manohar
(1989) also normalized the polarization vector E* of a spin-1 particle of mass M to
E? = —M?, which is clearly a bad idea for a massless particle.

You should find another polarized gluon density related to linear gluon polarization
(so that its operator gives a helicity flip of 2 units); see Artru and Mekhfi (1990).
You should match the results of this problem with your solution of problem 7.11
and the results in Artru and Mekhfi (1990).

In the light of the above, you may find better characterizations of the structure
functions on a spin-1 target.

I do not guarantee the phenomenological importance of the results of solving this
problem.
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Corrections to the parton model in QCD

In Ch. 8, factorization was formulated for DIS. The proofs were, however, restricted to
non-gauge theory. But the results remain true in QCD, with some complications to be
treated in Ch. 11.

So in this chapter we will simply assume factorization holds in QCD, and on that basis
introduce methods of applying it phenomenologically. In QCD, with an unpolarized target,
we will calculate: (a) the first correction terms to the hard scattering for DIS, and (b) the
leading term in the kernel for DGLAP evolution of quark and gluon densities. These are
the primary phenomenological tools for quantitatively analyzing DIS in QCD.

The calculations also provide an opportunity to introduce some of the complications
that arise in QCD and that must be taken into account in a correct proof of factorization.

The results on which this chapter depends are: factorization for the hadronic tensor,
(8.81); factorization for the structure functions (8.83); the decomposition of the partonic
hard scattering tensor in terms of parton structure functions (8.82); the definition of parton
densities in QCD in Sec. 7.5; the structure of their renormalization (8.11); the corresponding
DGLAP evolution equations, from Sec. 8.4.

9.1 Lowest order

The parton-model calculation in (2.28) gives the first terms in the expansion of the partonic
structure functions in powers of «;:

2

Fij(0% x /& 04, ) = %a(x/s — 1)+ 0(ay), (9.1a)
Fyj(Q%, x/&; a5, ) = €5 8(x /€ — 1) + O(ay), (9.1b)

and of course F iL =0+ O(ay). These are the lowest-order (LO) terms, and they apply to
quarks; the gluonic coefficients start at order «;.

9.2 Projections onto structure functions

In Feynman-graph calculations we will use projectors of a hadronic or partonic tensor onto
corresponding structure functions. In the partonic case these follow simply from (8.82). It

284
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is convenient to use the longitudinal structure function:

A def p X A 8(x/E)y - 1 vy

FLj é FZJ —_ nglj = Tkuz TerL kua (923)
. x/E 1 v\, 324

By= 25 (g, —TrC* T F, 9.2b
5 1_€< g”Z T j>+2_2€ jL ( )

where we give the result for a general space-time dimension 4 — 2¢, as needed later. The
factor % Tr projects onto the partonic tensor for an unpolarized parton.

9.3 Complications in QCD
9.3.1 Use of on-shell quarks and gluons

It would be possible to obtain hard-scattering coefficients and DGLAP kernels from direct
use of the subtractive methods of Ch. 8. Instead we use a method where we start from
calculations of structure functions and parton densities with massless quarks and gluons
used as the target states.

Now starting from calculations of structure functions and parton densities on some set
of target states, we can use the factorization and renormalization formulae to deduce the
hard-scattering coefficient functions and the renormalization factors (of parton densities).
From the renormalization factors, we deduce the DGLAP kernels. It is the coefficient
functions and the DGLAP kernels that are of actual phenomenological interest, since they
are perturbative.

Because these quantities are independent of the target state, we are entitled to use what-
ever targets are convenient for calculations. This leads us to use single on-shell quarks
and gluons as the target states, with all calculations done in low-order perturbation the-
ory. Moreover, the quantities to be calculated are independent of mass, so we also set
masses to zero everywhere, since this considerably simplifies calculations of Feynman
graphs.

Thus a noteworthy feature of many QCD calculations is that they use on-shell quarks
and gluons as the target state. This is in striking contrast to the fact that (as far as is currently
known) all true particle states in QCD are composites, i.e., bound states like the proton.
Moreover there are IR and collinear divergences in perturbative calculations with on-shell
massless target states. These can be regulated satisfactorily and cancel in the calculations
of the coefficients, which are all short-distance dominated.

9.3.2 Choice of gauge

Another complication in QCD concerns the choice of gauge. We could use A* = 0 gauge,
in which case the structure of the leading regions, for renormalization and for factorization,
appears to be simplified to be the same as in a non-gauge theory (Ch. 8). However,
calculations are plagued by divergences associated with the 1/k* singularity in the gluon
propagator. The divergences cancel, but in a non-trivial manner. This of course indicates
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that extensions are needed for the proofs of factorization and renormalization that we gave
in Secs. 8.3.6 and 8.9.

The alternative, which we will adopt here, is to use Feynman gauge (or a standard
covariant gauge). The necessary proofs will come later. For the purposes of calculations,
we simply rely on the full statement of renormalization (and factorization) applied with
gauge-invariant parton densities. We will in fact still find extra divergences, characterized
as rapidity divergences. We will see that the rapidity divergences cancel, non-trivially. The
Feynman gauge lends itself better to good derivations of renormalization and factorization
than the AT = 0 gauge.

It is interesting that there was a long-standing disagreement for calculations at two-
loop order for the DGLAP kernels. This was between a calculation in light-cone gauge
(Furmanski and Petronzio, 1980), and ones in Feynman gauge (Floratos, Ross, and Sachra-
jda, 1979; Gonzalez-Arroyo and Lopez, 1980; Floratos, Lacaze, and Kounnas, 1981). It
turned out that the light-cone gauge calculation is the correct one. The actual calculations are
done with massless quarks and gluons; one has a choice between on-shell calculations and
off-shell calculations. As we will see, on-shell calculations are much easier algorithmically,
but suffer from various kinds of IR and collinear divergence that need to be disentangled
from the UV divergences of interest. Off-shell, there are extra parton-density-like objects
defined by operators other than the gauge-invariant ones needed in physical matrix ele-
ments. A subtle interaction between the IR problems and the non-gauge-invariant operators
needed to be sorted out (Hamberg and van Neerven, 1992; Collins and Scalise, 1994), over
a decade later than the original calculations. See Sec. 11.4 for some more details.

These problems will not affect our one-loop calculations.

9.4 One-loop renormalization calculations in QCD

In this section, we calculate the one-loop renormalization of the parton densities in QCD,
starting from the definitions (7.40) and (7.43) for the bare parton densities. Then we
will deduce one-loop values for the DGLAP kernels, which are phenomenologically very
important in determining the evolution of parton densities with scale. The results are also
essential to calculations of the hard-scattering coefficient functions.

9.4.1 General principles of calculation

Just as in our calculations in Yukawa theory, Sec. 8.7, we work with target states that
are in turn a gluon or any flavor of quark. The primary new feature is that each parton
density has a Wilson line, for which the Feynman rules were given in Figs. 7.10-7.12. The
renormalization coefficients are adjusted so that the renormalized parton densities defined
by (8.11) have no UV divergences. The general notation for the expansions in oy was given
in (8.49), and the relation between the n-loop expansion of the bare and renormalized parton
densities was given in (8.52).
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Fig. 9.1. (a) One-loop graph for renormalization of density of quark in gluon. (b)—(d)
Graphs that are zero when the gluon polarization is chosen to obey ej =0.

At one loop this is simple, because of the trivial zero-loop terms (8.50) and (8.51)
for the renormalization and the parton densities. The factorized form for renormaliza-
tion thus shows that the one-loop renormalized parton density in a quark or gluon tar-
get is the sum of the one-loop bare parton density and the one-loop renormalization
coefficient:

FULE) = (Z3] Dig; &) + (20, 2))(E. g €)
= (Z3] Digy &) + 25886 — 1)+ 2. 5. €). 9.3)

To obtain this, we wrote the bare parton density as Z, j(Zz_jl f0j/1), where Z,; is the wave
function renormalization for the field for parton j. Then we separated out the one-loop
terms for the Z,; and for (Zz_j1 f(0)j/x)- The reason is that (Zz_jl f)j/x) is the parton density
defined with renormalized fields instead of bare fields, so that it is a natural object to
compute in perturbation theory.

We now apply the above formula to each possibility for j and k.

9.4.2 Quark in gluon

The simplest calculation is for the order g2 off-diagonal gluon-to-quark term, i.e., in (9.3)
we set k to a gluon and j to any quark flavor. The target state is a on-shell gluon with
a physical polarization vector ¢}, that has zero plus and minus components. The single
graph we need is shown in Fig. 9.1(a). Since e?,’ = 0, graphs (b)—(d), in which the gluon
attaches to the Wilson line, are zero. [Generally the polarization vector of a on-shell gluon
(or photon) of momentum p must obey p - e, =0, and ¢, - €, = —1. It is arbitrary up to
a gauge transformation, i.e., up to the addition of a multiple of p. The choice of a gauge
condition on the polarization vector may be made separately for each on-shell gluon. We
have chosen the condition e; =0.]
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A straightforward application of the Feynman rules gives the value of the bare graph

(before renormalization):

dk~ d> 2k 278((p — k)* —mg)
(27-’:)4726 (kZ — m(Z])Z

2
8
@f(%l)],q/g(g) = _TnglbLZG/

+
X Te D+ my)é, (k= p+mo)éyk +m,).
_ gZTF(47TM2)6 00 de kT—2e
S8 —e) Sy T (k4 m2)?
fwemp 1 B0 2020)

1—¢ 7 1—¢

—ngF m_é - g2 2
= g2 <4Mz) L@ [ -8+ (9.4)

The overall minus sign in the first line arises because of the fermion loop. For information
about 7 and other group theory coefficients, see Sec. A.11. The dependence on the direction
of the polarization vector has dropped out because of invariance under rotations around the
z axis. Unlike the case of our later calculations we have kept a non-zero mass.
The renormalization counterterm Zt[llg] in (9.3) is added to give a finite result at e = 0. In
the MS scheme
g Z(z) = _gZTF %
1672 48 8?2 €

[(1—2)%+2%]. 9.5)
From the QCD version of (8.33), the corresponding term in the DGLAP kernel is

e
1672

[ 8 Tr 2., .2
qu(Z)Zw[(l—Z) +2%]. (9.6)
To this order the finite renormalized density of a quark in a gluon is

g Tr
8n2

g (1]
167T2 fq/g(S) =

2
[(1— &7+ ln’%. ©.7)

This calculation, with its non-zero quark mass, will appear as a subtraction component
in calculations of hard-scattering coefficients for heavy quark production. But the MS
renormalization coefficient is independent of mass, so its calculation can equally well be
performed with a zero quark mass. Moreover hard-scattering calculations, which we will
examine later, are considerably simplified when masses are neglected with respect to the
hard scale Q. So we now examine what happens when we set m, = 0. The bare graph’s
integral is now

2 I\e 00 —2e€ _
g Tr(4mus) ak2 kr [1 . 28(1 S):| ) 9.8)

8nr(l—e) Jo " K2 l—¢
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Fig. 9.2. One-loop graphs for renormalization of density of quark in quark. Hermitian
conjugates of (a) and (b) should be added. As explained in the text, graphs with a quark
self-energy graph need not be considered explicitly, and graphs where the gluon connects
the Wilson line to itself are zero.

The integral is of a simple power of kt, which is elementary compared to (9.4), with its
beta function. However, the integral has an extra divergence at kt = 0. This is a collinear
divergence, since it happens when the quark and antiquark are parallel to the gluon. Dimen-
sional regularization regulates both the UV and the collinear divergence, but only by going
in opposite directions in €. Even so, such integrals can be consistently defined (e.g., Collins,
1984, Ch. 4) and it is a theorem that integrals of a power of the integration variable are
zero in dimensional regularization. Thus the collinear and UV divergences are equal and
opposite. The UV pole can be obtained by examining the part of the integral in (9.8) from
a non-zero value of kr to infinity. Then the renormalized value of the graph is the negative
of the UV pole:

g Lm 8 L g [
1672 Jarg(&3m =0) = 1672 f(O)q/g(g;m =0)+ 1672 Z4s(2)
2
g Tr S
—0- 87T2F?€[(1 — &) +&7]. 9.9)

That the renormalized value is collinear divergent reflects the masslessness of both the
quark and the gluon, and that the asymptotic scattering states do not obey the standard
rules. Of course, neither the massless limit (for quarks) nor the existence of an isolated
gluon (or quark) is a feature of real QCD. As already stated, such massless calculations are
useful as components of calculations of hard-scattering coefficients, for which the massless
limit does exist, as we will verify explicitly. Thus the existence of a collinear (or other kind
of IR) divergence in a renormalized partonic matrix element is not a fundamental problem.

9.4.3 Quark in quark

We next apply the same principles to the density of a quark in a quark, for which the
one-loop graphs are shown in Fig. 9.2, with virtual gluon emission in graph (a) and real
gluon emission in graphs (b) and (c). There is, in principle, a term where both ends of the
gluon attach to the Wilson line. But as we will review below, this term is effectively zero.
We do not include a self-energy correction for the incoming quark, since its renormal-
ization is done by a counterterm in the Lagrangian. Indirectly its effects will appear, in the
renormalization factor of the parton density, because of the Z, term in (9.3).
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Gluon polarization sum

In the graphs with real gluon emission, we use a physical gluonic final state, so that the sum
over gluon polarizations, is a sum over physical (transverse) polarizations for the gluon.
However, very generally, the sum over physical final states can be extended to a sum over
all final states (including when necessary ghost-antighost pairs, which will not concern
us here). This is shown in field theory textbooks (e.g., Ch. 11 of Sterman, 1993) under
the heading of “Unitarity of the S-matrix”. Thus we may replace the sum over transverse
gluon polarizations in Figs. 9.2(b) and (c) by the same numerator —g*# that appears in the
Feynman-gauge gluon propagator. Since g** = 0, graphs where both ends of the gluon
attach to the Wilson line are zero, so we omit these graphs.

The proof at the level of the emission of one gluon of momentum [ goes as follows.
Representatives of physical polarizations obey / - ¢ = 0, and it is easy to check that the
polarization sum obeys

Z e (ePy = —g® +1°bP 4+ b*1P = —g* + terms giving zero by WI,  (9.10)
phys pols.

where b is some vector. The terms with a factor [ give zero by a Ward identity, after a sum
over graphs.

Virtual correction

The virtual gluon correction in Fig. 9.2(a) (with its hermitian conjugate) gives

2 * 52 2e
8 (a+aT) _ + + —1g CF//L
1672 (0),4/11(%_) =28(p" —é&p") (27 )42
n
14
@ +i0)[(p — D2 +i0l(—p* + I+ +i0)

2C 4 2\€ 1 00 1*26
gCrlnp)y [y @ f a2 T ©.11)
0

= —s(1 — ,
= mra—o J, ¥“1T=% T2

where o = [*/p*. The missing steps are to express the integral in light-front coordinates,

and then to perform the [~ integral by contour methods. We have chosen to do the calculation

with all masses set to zero. As before, the transverse-momentum integral is of the scale-free

kind that gives zero. The negative of the UV divergence gives the graph’s contribution to

the renormalization:
e

1672

2CES. ! o
(zzz)gﬂ”(z,g,e) = g4n§€€ s(1 —z)/ do o 9.12)
A _

Notice that we have now explicitly needed to show the factor of Z, in the renormalization
factor.

An important new feature is that there is an unregulated divergence in the integral over
a at @ = 1. We will see that the divergence cancels against a similar divergence in graph
(b), but it is first worth examining the source of the divergence. There are multiple sources
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of divergence in the integral in the last line of (9.11), and they each have a different status
for our ultimate phenomenological uses of the results of our calculations. So we need to
make their nature apparent. We first insert non-zero quark and gluon masses, m, and mg,
in the calculation to regulate with the IR problems. It is readily checked that the effect is to
replace the 1/13 factor in (9.11) by

1
12 + méa + m?](l —a)?

9.13)

Now, when the gauge symmetry is non-abelian, as in QCD, a non-zero gluon mass is
not allowed. However, to understand the divergences we temporarily consider the same
calculation in an abelian theory, where a non-zero gauge boson mass can be used.

With the non-zero masses, there is no longer a divergence at /; = 0, but we still have a
divergence at « — 1. Relative to the simpler parton densities which we calculated earlier,
the 1/(1 — «) singularity arises from the Wilson-line denominator. After a contour defor-
mation, the divergence occurs when the (+, —, T) components of the gluon momentum
are of order (1 — a)p™, l%/((l —a)p™h), It), for fixed It. The rapidity of the gluon goes
to —oo; the gluon can in fact be regarded as collinear to the Wilson line, which has rapidity
y = % In(n*/n~) = —o0. The quark goes far off-shell here.

So we call the divergence at o« = 1 a rapidity divergence. The region evidently has
nothing to do with the parton-model physics that a parton density is supposed to capture.
When we investigate transverse-momentum-dependent parton densities, we will need to
use a Wilson line with a finite rapidity to get an appropriate definition with no rapidity
divergence. But for an integrated density we will see a cancellation.

Notice from the denominator in (9.13) that if the gluon mass is zero, there is in addition
a divergence at It = 0 and o = 1. This is just like the IR divergence in QED. Finally, if
also the quark mass is zero, there is also a divergence when the gluon is collinear to the
initial state (at It = O and o # 0, 1).

Real correction, first part

Figure 9.2(b) plus its hermitian conjugate give

2 2 2¢ NI |
8 Lodhy e o8 Cri 222 - o e ky ™5
16n2f<o>,q/q(5)—2W/d hr k2P = 5 T
2C 4 2\€ o0 k—Ze
_ s Crlmpy 8 k2 o1 (9.14)

C 4nT(l—e) 1—£ ) k2

The minus sign in the first line arises from the gluon numerator, which is —g®® in accordance
with the discussion around (9.10). Notice that this formula is almost the same as the
integrand for the virtual correction, which comes from a graph related by moving the final-
state cut. In fact, we can get the virtual term from the above formula by: (1) changing & to
« and integrating over it; (2) changing the label of the transverse momentum; (3) inserting
a delta function; (4) reversing the sign. If we integrated over £ (from O to 1 of course), there
would be a perfect cancellation.
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The corresponding contribution to the renormalization is

g2 (b+bT)( ) _ _g2CFS€ Z
1672 Zaq 4r2e 1—7

9.15)

9.4.4 Cancellation of divergence: the plus distribution

All of the quantities involved — parton densities, renormalization factors, DGLAP kernels —
have rapidity divergences in individual graphs. For a systematic treatment, we must regard
all of these quantities not as ordinary functions, but as a generalized functions. That is, they
only have numerical values when integrated with a smooth test function. After this, we will
see a cancellation of the rapidity divergences.

So we integrate the sum of graphs (a) and (b) (plus conjugates) with a smooth function
T (¢), to obtain

2
Lorsmren £ e o e

§Crdm ) / gsm@ T<1> / ae ke
T 4r(1l-e) ok

162

(9.16)

To obtain the contribution from the virtual graph, we used the §(§ — 1) factor to perform
the £ integral, and then changed the name of the variable « to &. The divergence at § — 1
has now canceled.

To express these graphs directly in £ space, it is convenient to define the so-called plus

distribution:
1 1 _
/ dx( 1 ) T(x )dif/ IO =T 9.17)
0 I—x 0 1—x

We will often meet this distribution multiplied by polynomials in &, in which case we will
put the 4 subscript on the denominator:

9.18)

1—x

| |
/ dy A®) A(x) T(x )dif/ A(X)T(X)—A(l)T(l)'
0 (I—x)y 0

Then the combination we need in the sum of graphs is

T T 1 TE) —TA
/dg[ (E)l—g( )]SZ/O dg[é (?—E ( )+T(1)}

1+ é
= d S&E—-D|T 9.19
[0 3 [(1 ~ 5, +3(§ )} ), 9.19)

so that the sum of graphs (a) and (b) is

a < 2Cr(4m )¢ k_ze
fé»Z"/Zh ' = g4n21;((lnite)) [(1 _Z)+ +o(5 - 1)}/ dkg — a0

162
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Real correction, second part

Figure 9.2(c) gives no such complications. Its value is

2 2¢ r* ?
¢ -8 Crp 2 _ Tr 5 ky" Syvuk
o zf(g;q/q(g): W/dz 2kr dk 2m3((p—k)2)2(k—2)22“
2C 4 2\€ k 2¢
=%( —s>(1—e)/ ai; = 9:21)

Total one-loop value for renormalization and DGLAP kernel

We can now combine the UV divergences from the various graphs with the Z, termin (9.3),
whose value is in (3.23). Then the one-loop renormalization of the quark density is

2 2 2
8 g CF5jk Se[ 14z 3
: =— 8 -1 9.22
T672 2 872 (=2, T2°¢= D] ©-22)
From (8.31) and (8.33), the resulting DGLAP kernel is
2 2
g g CF(SJ']( 14z 3
p = 6 -1
1672 Ik 872 [(1 —o, T2
2
g CFSjk 2 3
= —1- =8(z—-1]. 9.23
= [(l—z)+ z+2(z ) (9.23)

9.4.5 Gluon-in-gluon and gluon-in-quark

Similar calculations can be done for the case of a gluon in a gluon, and for a gluon in a
quark. The actual calculations we leave as an exercise, with the results being (Altarelli and
Parisi, 1977)

2 2
8 (1] 8 z 1-z 11Cy —4n;Tg
PG =2 toc, | —— + —2 4200 - Sz — Hh—A— TSR
Tor2 5 (@) 8712{ A[(l—z)++ PR Z)]+ (€1 6
(9.24)
2
plu gCF I+ -2
16 T2 Dea @) = [ . : (9.25)

9.5 One-loop renormalization by subtraction of asymptote

We saw in Sec. 3.4 that UV renormalization, at least at one-loop order, could be imple-
mented by subtraction of the asymptotic large transverse-momentum asymptote of a Feyn-
man graph. This enabled us to give a strictly four-dimensional interpretation of minimal
subtraction.
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In this section we show how to apply this method to the renormalization of parton
densities. This will serve two aims. One is to show how to make a physically appropriate
choice of the renormalization scale . The second aim concerns calculations of hard-
scattering coefficients, which normally employ massless quarks and gluons. At intermediate
stages of the calculations, collinear and soft divergences appear, which cancel in the final
result. Generally dimensional regularization is used to regulate the divergences, but it is
useful to show how to work with a purely four-dimensional integral. One virtue of this
method is to allow the immediate use of the compendium of purely four-dimensional
amplitudes in Gastmans and Wu (1990).

It is important that our results have extra finite counterterms compared with the illustra-
tive example in Sec. 3.4.

9.5.1 Quark in gluon

The unsubtracted one-loop integral for the density of a quark in a gluon is (9.4). The
renormalized value is given by adding an MS counterterm, obtained from the renormaliza-
tion term (9.5) by substituting z > &. We write the counterterm as the integral over the
asymptote of the original integrand plus a finite correction R, to be determined:

2
8 TF Se
— —[1-2(1 -
a1 =20 = )8
Urpd) &Tr [ dkt 2(1 - §)8
== / 2 - + Ry/g
I'(l—e) 872 J,2 (ky)'te 1—¢
2 €
g Tr (4m) 2(1 —§)§
=— 1-— R 2
872 er(l—e)[ 1—¢ ]+ as: (9:26)
where S¢ is given in (A.41). Hence
2 2
g TF Sg e~>0 & TF
Ryjo = —=—= 2(1 — — 2(1 — . 9.27
we = gy T2 )6 S =T 21— b 9.27)

Only the value of R, at € = 0 is needed in a purely four-dimensional formula.
With this method the renormalized density at € = 0 is

g _82TF{/°° 2[1—25(1—5) m22(1 — £)
i@ =g\, | T T iy
1 —-2&(1 —
Oy — m%} — 21— s>s}. 9.28)
T

It can be checked that this is the same as the previously calculated value (9.7), but the
integrals are algorithmically simpler, because they do not involve the beta functions that
arise with the dimensionally regulated integrals. Because of the extra term 2(1 — £)§, it
cannot be literally said that the integrated parton density is the integral of the unintegrated
density with a cutoff at kt = u, even for large w. This is contrary to statements that appear
in the literature (e.g., Watt, Martin, and Ryskin, 2003).
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9.5.2 Other cases

The remaining cases are left as an exercise (problem 9.3) with the results:

g:C
Ryjqle = 0) = —"— T 4, (9.29)
2
Ryjq(e =0) = gg 41 -%), (9.30)
Ry/e(e = 0) = 0. (9.31)

9.6 DIS on partonic target

To calculate the hard-scattering coefficients for DIS, we observe that the factorization the-
orem applies to any target state, while the coefficient functions C*" are target independent.
Therefore we apply the factorization theorem in perturbation theory with targets that are
on-shell quark or gluon states. Computing both the structure functions and the parton den-
sities on partonic targets up to some order in perturbation theory enables us to deduce the
hard-scattering coefficients to the same order. Moreover, since the coefficient functions are
independent of masses, we will set masses to zero everywhere.

We organize perturbation expansions as we did for the renormalization of parton densities
in Sec. 8.7.3. Define W;L " to be the hadronic tensor for DIS with a massless on-shell partonic
target of flavor j. We write perturbation expansions of W} and C}/" as

o0 2 n

W (x, Q) = 2% (1;2) Wit (x, 0), (9.32a)
o0 2 n

CH(x, Q) = 2(; (%) " (x, Q). (9.32b)

The nth order term in the factorization theorem (8.81) is

d v n—n
W )= 3 Y / éc“”H e, 0o e, 933)

n'=0 j’

Since masses are set to zero, the power-suppressed corrections in (8.81) are not present.
Throughout our calculations we will work with the unpolarized case, so the partonic density
matrix p is dropped.

We deduce a formula for the nth order hard-scattering coefficient:

C[n] Mz, Q) = W[n] "z, 0) — Z Zf C[n] e /L, Q)f[n n ](C). (9.34)
n'=0 ] Z
Here, to avoid confusion with symbols used when the coefficient function is substituted in
the factorization formula (8.81) for a hadronic target, the names of partonic variables were
changed to z and ¢. In the factorization formula, z would be replaced by x /£.
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tag £ s

A + -

=,

(a) (b) (c)

Fig. 9.3. Graphs for NLO gluon coefficient function for DIS. There are, in addition, three
other graphs with the direction of the arrow on the quark loop reversed. The hooks on the
quark lines in the subtraction graph (c) indicate where a parton-model approximation is
made.

Equation (9.34) provides an effective recursive procedure for calculating the nth order
term in C starting from the case n = 0, for which the result was given in (2.28), with
corresponding structure functions in (9.1). At next-to-leading order (NLO) we have

1+
Mz, Q)= WM, Q) =) / d?';cﬁ?]’““@/;, Q) f1(©). (9.35)
j/ -

Our calculations in Sec. 9.4 of renormalized one-loop parton densities gave the values of
£,

Perturbation theory for W and f in massless QCD suffers from IR and collinear diver-
gences. So the radius of convergence! in g for these quantities goes to zero as the IR
regulator € goes to zero. But this is sufficient to obtain the perturbation expansion of the
hard-scattering coefficients C. Since divergences cancel in the coefficient functions, their
radius of convergence remains non-zero as € — 0.

9.7 Computation of NLO gluon coefficient function

Applied to the NLO gluon coefficient, (9.35) requires us to compute the graphs of Fig. 9.3.
The external gluons are massless and on-shell, with zero transverse momentum, and the
internal quarks are massless and have a sum over flavors. Figure 9.3(c) implements the
subtraction in (9.35), and we will call it a double-counting-subtraction graph, since it
cancels the contribution in the first two graphs that is taken into account in the lowest-order
parton model.

9.7.1 Kinematics

Let k; and k, be the momenta of the final-state quark and antiquark, and let / be the
momentum (T, 0, Or) of the gluon, so that k; = g + [ — k;. The scalar kinematic variables

! Strictly speaking, perturbation series are expected to be asymptotic series but not convergent, so the term “radius of
convergence” should be replaced by some better terminology concerning the region of coupling where perturbation
theory has some chosen accuracy.
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relevant to the problem are Q and

B QZ _ _q+

i (9.36a)
201

§=( +k) = M, (9.36b)

Z

2

F=(— k) = _M, (9.36¢)

Z

201

d=(—k)P= —%josm, (9.36d)

where 0 is the scattering angle in the photon-gluon center of mass. Of these variables, only
three are independent, of course.

9.7.2 Calculation of unsubtracted graphs
Graph (a) of Fig. 9.3 gives

B Z g’ e; 2Tk <167r2M )e/@ Trkiy (I — k2)¢(—k)¢* (] — Kyt
327‘[2 4 [(l _ k2)2]2

, (9.37)

~

where d€2 represents the integration over the angle of the quarks in the photon-gluon center

of mass, and e” is the (transverse) polarization vector of the gluon. The overall minus sign

is for a fermion loop, and the normalization arises from the 1/(4s) in the definition of W*¥,

and from two-body phase space (A.43). We choose the sum over j to be over flavors of quark

only (not over antiquarks). Then we must add, to this and the terms for the other graphs, the

contribution with the quark line reversed; this is obtained simply by exchanging k; and k.
Similarly graph (b) gives

_ Z §2Tr <16n ) e Teky ' — K¢~y (s — D
22 i (kR (ki) '

(9.38)

We are only treating unpolarized processes, so we average over gluon polarizations:
1 P N
2_2€Ze(e) =55 (9.39)
with a Kronecker delta in the transverse dimensions. Then we use standard Dirac algebra,
and use (9.2) to project the sum of the terms for the two graphs onto the tensor structures for
l:"Lg and ﬁgg. The integrands are now independent of the azimuthal direction of the quark
momenta, so we use (A.36) and (A.37) to give

22 2\ € 2 I

. g esT 16 , 2z*°(1 -z .

Fi, = Z i ( e ) -2 dcos6 (sin@)~>
- -1
j

472 01 —-2)) (1—-e(1—e¢)

2,2

—0 8 e T

=Y o 41—, (9.40)
J
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2,2 2 € 1
. g e;Tr ( 16mu’z Z .
Fre =Y =~ dcos6 (sinf) >
# T <Q2(1—z>> F(l—e)/_l cose (S

1 2z(1 — z2) —2 4 5¢ 3—2¢
sin? 0 1—c dd—er T (—ept

a —z)}

— term from graph (c), 9.41)

up to higher-order corrections (0(g4)). In FLg, we have omitted the subtraction from graph
(c), since that involves the lowest-order parton-model hard scattering, for which there is no
contribution to Fy,, with fermion quarks.

9.7.3 Double-counting-subtraction graph

The subtraction graph (c) is obtained from the rules for the quark density and the LO hard
scattering, which contributes only to F,. Using the integral from (9.4) at m, = 0, we get

2,2 2\¢€ o0 —2¢
- g e;Tr (Amp*)z k 2z(1 —2)
F. h = — J dk? =L 1—
2¢(graph (¢)) ; w Ta—o ) H -
2,2
g ejTFSez
—[1 —2z(1 — , 9.42
+ E An2e L z(1 —2)] (9.42)

where the second line is the MS counterterm for the UV divergence. As announced earlier,
both of (9.41) and (9.42) are collinear divergent, at 6 =0 and 6 = &, and at k7 = 0.
Dimensional regularization with € negative regulates the divergence. By making the change
of variable k% = (§/4)sin> 6, we can see that the collinear singularities in the integrands
are equal and opposite, and that the cancellation includes the explicit € dependence. The
cancellation is guaranteed by the construction of the subtraction term (c) to cancel the
collinear contribution in the other graphs, to prevent double counting with the parton-
model term. [When checking the cancellation, note that two values of 6 correspond to a
single value of k7. Note also that the maximum value of k% for graphs (a) and (b) is §/4,
whereas the integral for graph (c) extends to kt = 00.]

9.7.4 Total

The cos 6 integral in (9.41) gives a beta function, with a pole at e = 0 caused by the collinear
divergence. The kt integral in (9.42) gives zero, leaving the UV counterterm. So we get the
NLO gluonic coefficient function

F2g(Q27 X/S;Ols, :u')
2

2T 2 2 —
Dy z{ [(1 -2 +27] h{M} — 148201 — z)} +0(gh.
J

472 nz
(9.43)
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There is a somewhat complicated pattern of divergences at € = 0, which can be summarized
as follows:

Graph || Collinear | uv || total

(a) —1 0 —1

(b) 0 0 0

(c) graph +1 —1 0
(c) counterterm 0 +1 +1

where the coefficients apply to the factor > ;[ =2z(1 = 2)] gZTFE? /(4%€). Since the
transverse momentum integral in the subtraction term is exactly zero, it could be said that
the MS counterterm cancels the collinear divergence. It is, in fact, a common misconception
that this represents the true state of affairs. However, it is also profoundly misleading.

For example, suppose one retained the quark mass in the calculation, as might be
appropriate for a quark of large mass. Then the collinear region would no longer give an
actual divergence. Instead, graph (a) would be finite, but with a logarithmic enhancement
from the region of small transverse momentum. Graph (c) (without its counterterm) would
now be non-zero, with a UV divergence. The counterterm cancels the UV divergence. For
the dominant part of the collinear contributions (that give divergences at m, = 0) there
is a cancellation between graphs (a) and (c). The collinear cancellation is guaranteed by
the nature of the subtraction term: (c) is to prevent double counting of the parton-model
contribution.

9.7.5 Use of subtraction of asymptote for UV divergence

We can also use the method of subtraction of the asymptote for the renormalization of the
UV divergence, from Sec. 9.5. This gives

5 Trej ! 1-2z4222 1
Fzg(NLO); Zg FJZ/ dcosf [ﬁ——-i-&(l—z)}
-1

p 472 sin? 0 2
2 2 2 2
8 Tre; e dk
+Y ——tz|2z01 —z)—/ LA -2z+22) |, (944
;o 0o Kk

where the 2z(1 — z) on the second line is from R, /,(z) in (9.27). Each integral is separately
divergent, hence the query on the equality sign. To make the integrals correspond, we
convert them to use a common variable k% = (§/4) sin? 6. Then

g’ Tpe§

dk% e(k%,max - k’%)
472

2
kT Y, 1 k%/k%,max

—1+8z21—-2)¢, (9.45)

Fy(NLO) = ¥ S e / 0% — K2)
X 0
J
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where k7., = O*(1 — 2)/(42). It can be checked that this agrees with the previous result,
(9.43). The advantage of this integral is that it is a fundamentally an integral in the physical
space-time dimension. It also enables us to gauge the general order of magnitude of the

coefficient.

9.8 Choice of renormalization scale i

Itis necessary to choose the renormalization scale i when applying a factorization theorem.
As can be seen from an example calculation, e.g., (9.43), hard-scattering coefficients depend
logarithmically on Q/u. The general situation follows from the DGLAP equation for the
w dependence of parton densities. Since structure functions are RG invariant, the hard-
scattering coefficients obey an inverse DGLAP equation. It follows that at order « the
hard-scattering coefficients have dependence on In(Q /) that is polynomial with a highest
term In"(Q/w).

The effective expansion parameter of the hard scattering is therefore o;(10) In(Q /1), and
to make optimal use of perturbative calculations one should choose u of order Q. Then the
expansion parameter is o (Q).

However, we need more precise information about an appropriate value for the ratio i/ Q.
To see that this is a non-trivial problem, consider a change of scheme for renormalizing
QCD and the parton densities. A concrete example is to replace S, in the MS scheme by
S.e%¢ for some constant c. Call this the ¢ scheme. It is related to the MS scheme by a simple
substitution: uyg = (e, so that In(uys/ Q) = In(./ Q) + c. Then if we set . = Q, the
coefficients of the perturbative expansion are made arbitrarily large simply by making ¢
large.

Evidently we can remove these large coefficients by setting (. to a suitable factor times
0, e.g., e = Qe°. But this provokes the question of what is so special about the MS
scheme that in this scheme one should choose equality of ©« and Q (a common choice in
practice).

An answer is suggested by the method of renormalization subtraction of the asymptote
given in Sec. 9.5. We found that pgg is like a cutoff at kt = g, rather than some factor
times this.

The method was applied to a coefficient function in (9.45), where there is a subtraction of
the collinear region (e.g., by Fig. 9.3(c)), and then a renormalization of the UV divergence
in the subtraction. After that there remains only a contribution from transverse momenta of
some natural scale associated with Q, provided that z is not close to 0 or 1, and provided
that u is at this same scale. So the integral is of order unity, and is multiplied by the standard
prefactor g*/47?, and a group theory factor. This justifies the choice that puyg is within a
modest factor of Q.

If instead we used the ¢ scheme, then Sec. 9.5 shows that an appropriate choice would
now be u. = Qe . Naturally, there is no need to require exactly one particular value of
. The exact value of a structure function (or cross section) is independent of . Changing
u by a factor of 2 (for example) in a finite-order calculation of the hard scattering changes
the numerical value of a computed structure function by an amount corresponding to the
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expected truncation error of the perturbative calculation. Thus the effect of a modest change
in p is within the expected errors.

The simplest version of subtraction of the asymptote applies if there is no extra €
dependence in the integrand. If there is extra € dependence, then it results in an extra finite
term, as in the last line of (9.45). This can be regarded as being of a natural size for the
quantity under consideration, so it does not affect arguments about large logarithms.

The idea that the cutoff should be of the natural size of the transverse momentum for a
hard scattering (after subtraction of collinear and UV divergences) suggests that problems
can occur when z is close to 0 or 1. This is visible in the logarithm of (1 — z)/z. An
obvious choice of scale would then be u?> = Q*(1 — z)/z, corresponding to the range of
the transverse-momentum integral.

However, in this case there are (at least) two very different physical scales in the hard
scattering. Besides Q2 there is the (square of) the photon-parton center-of-mass energy,
0%(1 — z)/z . Even if we removed the large logarithm in this particular calculation, because
it is dominated by the second scale, there would be other graphs with a natural scale Q.
An example is the virtual vertex correction Fig. 9.4(d), in whose calculation the range of
final-state energies is irrelevant. When different graphs need very different scales, a single
choice of p cannot eliminate all large logarithms. Instead improved factorization theorems
are needed, for a genuinely fundamental solution of the problem.

When does this situation arise? Since z = x /& and actual parton densities decrease with
increasing &, one should not expect the case that z is small to be a concern. But when x gets
large, the maximum g4 mass is restricted: the kinematic limits on z are x < z < 1. This
phenomenon is enhanced by the fact that typical parton densities fall rather rapidly with &
above about a half, which disfavors the larger masses and keeps z close to unity.

This subject has been under active investigation, with improved factorization methods
and resummation techniques being discovered. In any case the outcome is that when
the typical value of z gets too close to unity, simple factorization is not an optimal
technique.

9.9 NLO quark coefficient

To compute the NLO quark coefficient, we again use (9.35), but now with a quark target.
The necessary graphs, including subtractions, are shown in Fig. 9.4. In all the calculations,
we use (9.10) to replace the gluon polarization sum in the real-emission graphs by —g®”.
Kinematics and normalization factors are the same as for the gluon-induced graphs (e.g.,
(9.36)) except for the replacement of the group theory factor Tr by Cp. We take the
quark to be unpolarized, and perform the integral over azimuthal angles, using (A.36)
and (A.37).

9.9.1 NLO quark coefficient for Fy j

The contribution to the longitudinal structure function is particularly simple. Because of
the factors of / in the projection (9.2a) onto FL j» graphs (b)—(e) all have a factor of ] next
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Fig. 9.4. Graphs for NLO quark coefficient function for DIS. Graphs with quark self-
energies on the incoming quark line are not needed, since they cancel completely and
exactly between the graphs for DIS on a quark target and the subtraction terms.

to the / factor for the incoming quark. Thus all these graphs give zero: (/)*> = I> = 0. The
subtraction graphs are also zero, because Fi. ; vanishes in the parton model. All that remains
is graph (a), which gives

. g2e3Cr [16mu®\° 1 ! e
(@)= — 64;2 ( 5 > F(l—e)/_ dcos6 (sinf)~>
813 Ty — kI — KV
Q2 [( — k2)*)?
2C
=0 ge—FZ/ dcosf (1 —cosf). (9.46)
812

This has no divergences, so the limit ¢ — 0 is safe, and we get
A gze Crz

>
_ 8¢
b= 472

2
+ 0(g"). (9.47)
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9.9.2 Real-gluon graphs for j
We apply (9.2b) to the real-gluon graphs for £, ;. For graph (a):

23Cr (16mp2\© 1 !
it jf“ / dcosf (sinf)~ %
82 3 ra—e J_

8 Z(I—=2)(1—¢€)
1+ cos@

Fyj(a) =
+43 = 26)z%(1 — cos 9)} ) (9.48a)

The second part of the factor in braces arises from the F 1 term in (9.2b). For graph (b), we
have

2,2 2\ € 1
. g esCr (16mp z o
Fyj(b+hec.) = 87112 ( B ) ST f_ldcose (sin@)~%¢
z 1—cosf
% — o8y , 9.48b
{l—zl~|—c059+€} ( )

where we include a factor 2 to allow for the hermitian conjugate graph. For graph (c)

2e2Cr (1671 1—
gei=r jf“ / dcosf (sinf) 2——~ Z( ©)
872 3 F(l —€)

Fj(c) = (1 cos 6).

(9.48¢c)

Positions of the divergences

Graph (a) simply has a divergence at 6 = m, i.e., cos# = —1. With the conventions by
which the momentum k; is defined, this is where the gluon is collinear to the initial-state
quark. Accordingly it will cancel against the same collinear divergence in the subtraction
graph (f).

The other graphs have a more complicated pattern of divergences, involving soft gluons
and gluons collinear to the outgoing quark, as is evidenced by the divergence in both graphs
at z — 1. Naturally, the divergence only fully manifests itself when we integrate over z.
To analyze this quantitatively, we use the principles explained in Sec. 9.4.4, where we
needed to treat parton densities as generalized functions. We now do the same for structure
functions and the coefficient functions. The existence of the extra divergence(s) indicates,
of course, that we will need to improve the proof of factorization. For the moment we just
examine the phenomena.

Since both the extra kinds of divergence occur at z = 1, some care is needed to identify
their kinematics correctly. The general nature of the divergences can be extracted, as always,
from the Libby-Sterman analysis. For this analysis, it is convenient to boost to the Breit
frame, where gt = —0/v/2, ¢~ = Q/~/2, and g1 = Or. Then:

e An initial-state collinear divergence is at @ — m (i.e., cos@ — —1) with z fixed and not
equal to unity.

e A final-state collinear divergence is at z — 1, with 6 fixed and away from 7. Each final-
state particle is in the minus direction with momentum fractions k; /¢~ = (1 — cos 8)/2
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and k; /g~ = (1 4 cos 8)/2. Notice that the quark and gluon form an outgoing system,
and that 6 is the polar angle of each particle in the Breit frame.
o A soft-gluon divergence is at & — 7w and z — 1.

It is misleadingly tempting to identify all of the z — 1 divergences as soft.

Graph (b) has all three types of divergence, evidenced by its singularities at both z — 1
and 6 — m. But graph (a) has only an initial-state collinear divergence, and graph (c) only
a final-state collinear divergence. As can be seen from (9.48), dimensional regularization
with € < 0 regulates all the divergences.

After integral

‘We know that after we average over x (or z), the final-state lines become effectively off-shell.
This will entail cancellation of final-state collinear and soft divergences between real and
virtual graphs. The initial-state collinear divergences cancel against the subtraction graphs.

We could exhibit the cancellation at the level of the integrands. Instead we will eval-
uate the graphs separately, with dimensional regularization, and see the cancellations
of the resulting poles at € = 0. The graphs give the following values, all multiplied by
g2e3Cr/(8m):

_z(l—z) 1—z

(a): +z2(1-2) [T +1n + 1] + 32, (9.49a)

b): 25 —1+2[5 T L }
()-E—Z(Z ) p (z—1)( ) m

2
+8(z—1)<T2—2T+4—%)+

1 1 In(1 —
+ 272 [—(T— - —= 4 ( n Z)> ] (9.49b)
(I—2)+ -z =z J,
©: = 3-8 = D+ 38— (T — 1)+ =— (9.49¢)
c): — —d8(z— =8(z — — —_—. A49c
20 2% 20— 2);
where we have dropped terms of order € and beyond, and we have defined

Q2

T =In— +y — In(4n). (9.50)
n

The integrals over cos 6 were performed using (A.49). Then an expansion in powers of € was
made using (A.47), (A.48), and (A.54). We again see the appearance of plus distributions,
which is very characteristic of QCD calculations.

The double pole in graph (b) is a result of the nesting between the soft and collinear
divergences.

9.9.3 Virtual-gluon graphs for F, j

We already calculated the on-shell vertex subgraph used in Fig. 9.4(d); see Sec. 4.2.3. But
now: (a) we have space-like instead of time-like ¢; (b) the trace with the external currents
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is slightly different. We add to the graph a counterterm for its UV divergence, which is
the lowest-order graph times —[gze§C £/ (167218, /€, times a factor of 2 to allow for the
hermitian conjugate graph. The result for graph (d) and its conjugate is

2 2
(d+hc): —=dz—D+-8z—-D(T —-2)
€ €

) Q2 7.[2
+8(z—1)(—T +4T—ln—2—8+—), (9.51)
% 6
again times gzeﬁC #/(87?). This has a double pole, a logarithm in the single pole, and a
double logarithm in the e-independent term, all due to the combination of soft and collinear
divergences. All of these terms cancel against the corresponding terms for graph (b), which
is the only graph related by moving the final-state cut.

Graph (e) just involves a self-energy times the lowest-order hard scattering. As we saw
in ete™ total cross section, in Sec. 4.1, we apply the LSZ prescription. The dimensionally
regulated massless self-energy gives a zero contribution. There remains the UV wave-
function renormalization counterterm, which gives
S,

“8(z—1) = iS(Z —1)4+68—1)AnM@r —y)+ O(e). (9.52)

h.c.):
(e +h.c) e

9.9.4 Subtraction graphs for F» J

The subtraction graphs (f)—(h) are simply a factor of e?z, for the parton-model coefficient
function, times the one-loop quark-in-quark density, with the external self-energies omitted,
all times a factor —1 because they are subtracted. As usual, the graphs themselves vanish
in the massless limit, by the use of dimensional regularization. So we just need the UV
counterterm, which is for Z,Z ;, the factor Z, arising because we use the counterterm that
allows the use of renormalized fields. With the same conventions as before we get

CSe[a1+2h) 5.
(t-hy: = [—(1 — +50G 1)]. (9.53)
9.9.5 Total

Adding the contributions of all the graphs and taking the € — O limit gives the quark
coefficient function. With the LO term, we have

sz(Qz, 7,0, W)

2.2C _
=1+ Fz[4(ln(l Z)> —3(
+

1672 1—z2

) —2(1 +2)In(1 —2)
1-z/,

2 2

I b 644 — (2%+9> 8(1—z)i| +0@gY.  (9.54)
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9.10 Hard scattering with quark masses

In the calculations so far, we have set quark masses to zero, and some of the methods
relied on the property of dimensional regularization that scale-free integrals are zero. It is
useful to see how to bring in non-zero quark masses. One purpose is to allow the effects of
quark masses to be computed, although we will not give a detailed treatment of the effects
of quark masses here. A second purpose is to show that calculations of hard-scattering
coefficients are not tied to properties of the dimensional regularization scheme with massless
particles.

A convenient method to allow for heavy quarks in the hard scattering is to always
set to to zero the masses of external particles of the hard scattering, but to allow heavy
particles to circulate inside the hard scattering (Collins, 1998a). We will not try to justify
this prescription here.

We will restrict our attention to the simplest case of the gluon-induced NLO coeffi-
cient functions. The structure of the calculation is unchanged from that with massless
quarks; i.e., we use (9.35) to determine the one-loop coefficient function, with a projec-
tion onto individual structure functions by (9.2). The actual graphs are Fig. 9.3, just as
before.

Analytic calculations of one-loop graphs with masses are harder than with zero masses.
We first quote the results for the unsubtracted graphs (a) and (b), which can be deduced
from Aivazis et al. (1994). First for Fy:

2,2 2 22

. geeiTrz 40%A 8m: Q0
Fio=Y 105 —4m> —L—- , 9.55
Lg ; A2 @ m]) [ (QZ +_§)2 (QZ +_§)2 ( )

where
VE+ §—4m§
L=2log| ——@8@8 |, (9.56)
2mj

A=,/5E— 4m%), (9.57)

and § = Q*(1 — z)/z, as usual. There is a theta function implementing the quark-flavor-
dependent threshold in §. In the general factorization formulae, like (8.83), the threshold
restricts £ to the range x(1 + 4m3/Q2) <&< 1.

Note that there are some differences in conventions for defining structure functions in
Aivazis et al. (1994), and that there appears to be a factor of 7 missing from their formulae.
The result for FLg reduces to the previous one, (9.40), in the limit that the quark masses are
Zero.
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As for F>, we get

2,27 4, a2 28 _ (o _ N2\
ﬁ2g=2g€j FZ{9(§_4m§)|:LQ+S [408 — (§ — O°)° 1A

— 4n (0> +38) $(0* + 5

4m§(§ —-20% — 2m§) 4m§A
(02 +5)? (Q2+§)2]
Mz 4
—[1—=2z(1 —2)]In —2} + 0(g"), (9.58)

mnj
where the logarithmic term in the last line is for the subtraction graph (c), calculated at (9.7),
here multiplied by 2 to include both the quark and antiquark contributions. The remaining
terms are for graphs (a) and (b), and were obtained from Aivazis et al. (1994). In the
massless limit, the logarithmic divergences cancel, and the limit reproduces the previous
calculation (9.43).

Observe the mismatch between the allowed ranges of z in the integrand. The term from
graphs (a) and (b) obeys a threshold condition, but the subtraction term allows z to go up to
unity, where § = 0, i.e., to an unphysical value. The parton-model approximation applied
to a quark line is responsible for the mismatch. The approximation changes final-state
momenta, so that the approximated final state violates conservation of 4-momentum. The
same violation is present in the integrand for the parton-model formula, i.e., the LO cross
section.

Strictly speaking our formalism was derived for the inclusive cross section, integrated
over hadronic final states, and the results correctly apply to that situation. But if one wishes
to extend the formalism to observables more differential in the final state, the violation of
momentum conservation can have important consequences. Genuinely solving this issue
requires the avoidance of approximations on parton momenta when they are related to
final-state momenta. As seen in recent work (Collins and Jung, 2005; Collins, Rogers,
and Stasto 2008), one must rethink the whole formalism; new methods do not use parton
densities, but more general quantities, parton correlation functions, which do not have the
integral over k~ and k7 in their definition.

Note that the above calculation applies when the MS scheme is used. This is appropriate
for quarks whose mass is at most of order Q. For heavier quarks, a change in scheme is
appropriate. There are various ways proposed to do this. A method I prefer is a generalization
of the CWZ scheme of Sec. 3.10 to deal with parton densities and factorization; this is the
ACOT scheme of Aivazis et al. (1994), which is probably best used in a modified version
as given in Kretzer et al. (2004); Kramer, Olness, and Soper (2000). See Thorne and Tung
(2008) for a wider ranging review.

9.11 Critique of conventional treatments

Compared with our presentation so far, a very different approach to factorization is found in
much of the literature (e.g., Dissertori, Knowles, and Schmelling, 2003; Ellis, Stirling, and
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Webber, 1996). It involves a strong emphasis on the mass divergences in massless on-shell
partonic reactions, and it asserts that factorization is a method of absorbing mass divergences
into a redefinition of parton densities. In contrast, in our presentation the divergences were
canceled by subtraction terms that were needed to avoid double counting between, for
example, NLO contributions to hard-scattering coefficients and LO contributions.

In this section, we assess the other approach and see that it is physically misleading,
if not actually wrong. As such, it is a profound obstacle to further progress in applying
perturbative methods to more complicated situations in QCD. Luckily from a practical
point of view, the two approaches give the same results for hard-scattering coefficients
when parton masses are set to zero. Thus the physical errors do not propagate to numerical
results in phenomenology, at least for the simplest reactions.

The approach can be traced back to certain of the early literature on factorization, notably
Ellis et al. (1979) and Curci, Furmanski, and Petronzio (1980), and it can be summarized
as follows:

1. Assert that the structure function (or cross section) under consideration is a convolution
of a partonic structure function and parton densities:

W = partonic struct fn. @ bare parton density

— Wparton g fbare_ (9.59)

The convolution is defined in (8.81). In view of later steps in the presentation, the parton
densities are called “bare parton densities”.
2. All parton masses in the partonic structure function are set to zero. The parton(s) entering
it from the parton density are set on-shell and massless, with zero transverse momentum.
3. There are IR/collinear divergences in the parton cross section. It was shown (Ellis et al.,
1979; Curci et al., 1980) that the partonic cross sections are a convolution of a divergence
factor and a finite cross section.

WP — C @ D. (9.60)

4. The final factorization formula is obtained by use of the associativity of convolution to
allow the divergences to be absorbed into a redefinition of the parton densities.

W=(C®D)® ™ =C (DR f™)=CQ f*, 9.61)
where fren =D® fbare.

The final result is of the same form as the factorization formula in (8.81). Moreover, if the
collinear divergences are quantified by poles in dimensional regularization, their removal is
by the same formula as in our approach. This can be obtained from the remarks at the end of
Sec. 9.7.4. The factorization of collinear divergences in massless parton scattering, (9.60),
can in fact be obtained from factorization applied to a massless parton target, assisted by
the observation that loop graphs for massless parton densities in partonic targets are exactly
zero in dimensional regularization.
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However, the identity of the results should not obscure the profound problems with the
argument just presented.

The first problem is that the starting point, (9.59), is not given a proof. In Ellis et al.
(1979) a reference is given to the classic book on the parton model by Feynman (1972),
which very much predates knowledge of the complications caused by QCD. The bare parton
densities are also not defined; they cannot coincide with any of the parton densities we have
defined.

A serious physics issue is that the partonic structure function in (9.59) is exactly a
structure function initiated by an on-shell parton with zero transverse momentum. For
example, the first gluonic term has the form

ELTEE

+ l ® Bare gluon density (9.62)

l l

Here, the gluon is set on-shell, just as in our calculations in Sec. 9.7. There the justification
was that there was a subtraction in the coefficient function and therefore it is dominated
by wide-angle scattering. We could therefore neglect small components of / with respect
to large components. But in (9.59) and (9.62) this is no longer justified, since there is no
subtraction. Indeed a gluon confined inside a hadron is not exactly on-shell, and therefore
the collinear divergence is cut off.

Similarly in a model theory where all the fields have mass, there are no true collinear
divergences. An approximation in which partons are made massless in unsubtracted NLO
graphs therefore introduces spurious divergences. In such a theory, parton densities defined
by the standard operator formulae have no collinear divergences, before or after renormal-
ization, so the idea of absorbing collinear divergences into a redefinition is not tenable.

Note carefully that there is terminological ambiguity between the two approaches. In
our approach “bare parton density” refers to a parton density before renormalization; renor-
malization is then strictly an issue of eliminating UV divergences by a suitable redefinition,
commonly with the MS scheme. In the other approach, “bare parton density” refers to the
undefined quantities in (9.59). The renormalization-like procedure applied in (9.61) is a
different procedure, even when the MS scheme is said to be used.

We conclude that it is entirely unphysical to describe the basis of factorization in terms
of moving collinear divergences from partonic structure functions or cross sections into
redefined parton densities. Naturally, attempting to extend an incorrect method to more
general situations leads to a conceptual morass. It is more by luck than good physics that
the same hard-scattering coefficients are obtained for standard reactions.

9.12 Summary of known higher-order corrections

Here I summarize the available information on the higher-order terms in the DGLAP kernels
and the coefficient functions for DIS. They are both known to order o].
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The non-singlet part of DGLAP kernels was calculated to this order by Moch, Ver-
maseren, and Vogt (2004), and the singlet part by Vogt, Moch, and Vermaseren (2004). The
order o? kernel was found by Furmanski and Petronzio (1980). See also Hamberg and van
Neerven (1992) for some issues concerning the gauge invariance of the calculation. We
have already given the order o kernels in (9.6), (9.23), (9.24), and (9.25).

The DIS coefficient functions were calculated by Vermaseren, Vogt, and Moch (2005)
to . The order ? calculation was by Zijlstra and van Neerven (1992) and by Moch and
Vermaseren (2000). We have already given the order o coefficients in (9.40), (9.43), (9.47),
and (9.54), with the parton model («?) at (9.1).

Itis also worth mentioning the results at order a2 for the Drell-Yan process, in Anastasiou
et al. (2003, 2004), which are relevant to the same kind of precision phenomenology.

9.13 Phenomenology

Much of the predictive power of QCD is from factorization properties, both for inclusive
DIS and for many other reactions. The equations used are for factorization of structure
functions and cross sections, and for DGLAP evolution:

c0=6Qf o0=/fi®6® f, (9.63)
df
—— =2PQ f. (9.64)
dlnpu

Here o is a measurable cross section or structure function, 6 is a corresponding hard-
scattering coefficient, while f, f; and f, are parton densities. Factorization is accurate up
to power-law corrections in a hard scale Q. The second form of factorization applies to
hard reactions in hadron-hadron collisions, where there is a parton density in each hadron.

The hard-scattering coefficients and the DGLAP kernel P are perturbative calculable in
powers of the small coupling o;(Q), and so we regard them as approximately calculable
from first principles. The non-perturbative information is contained in the parton densities at
some chosen fixed large scale, since the evolution to other large scales is perturbatively con-
trolled. However, at present there is little ability to estimate or model the non-perturbative
parton densities from first principles.

The predictive power lies in the universality of the parton densities. Parton densities are
the same in all reactions, and, apart from the perturbative DGLAP evolution, they are the
same at all values of Q. Thus essentially the following scheme works:

o Fit parton densities for some value of the scale  from data on a limited set of experiments
at one energy, using perturbatively calculated hard-scattering coefficients and DGLAP
kernels.

e Evolve the parton densities to other scales.

e Predict cross sections at other energies and for other reactions.

In reality, data is of limited precision, and data on each individual reaction is only useful
in determining some particular flavor combinations of parton densities. Therefore global
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Fig. 9.5. Jet cross section and QCD predictions at CDF experiment (Abe et al., 1996). The
figure is copyright (1996) by The American Physical Society, and reproduced by courtesy
of the CDF collaboration.

analyses are made to a wide variety of data, chosen for situations where the likely errors
on both theory and experiment are judged to be sufficiently small. Thus the global analyses
simultaneously fit parton densities and test QCD through measures of the goodness of fit.
The amount of data is large, so this is a non-trivial undertaking.

Currently the main global analyses are:

e by the members of the CTEQ collaboration (Tung et al., 2007);

e by a group in the UK going under the acronyms MRST and recently MSTW (Martin
et al., 2007);

e by Alekhin and collaborators (Alekhin, Melnikov, and Petriello, 2006).

In addition, the two ep collider experiments at DESY have made fits to their own data:
ZEUS (Chekanov et al., 2005) and H1 (Adloff ef al., 2003). They have taken advantage of
the availability of charged-current processes to gain flavor separation of the parton densities.

Another group (Del Debbio er al., 2007) is working towards a global fit using rather
different calculational technique based on neural-network methods.

An example of the predictive power is shown in Fig. 9.5. Here a measurement (Abe et al.,
1996) by the CDF collaboration is shown for the production of jets of high transverse energy,
Er, in proton-antiproton collisions, and it is compared with QCD predictions. Although
this is now a rather old comparison, its importance is that there is a genuine prediction.
Parton densities at that period were measured in other processes and the perturbative hard-
scattering calculations are, of course, from QCD first principles.
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The agreement is good, except possibly at the largest values of Et, but even there
not outside the rather large errors. Since then it has been realized that this reaction is
a most sensitive one for measuring the gluon density at large parton &. Therefore later
work has frequently used jet data from hadron-hadron collisions in making global fits for
parton densities. Thus the QCD calculations presented with the latest data can no longer be
considered pure predictions. Results are available from both CDF (Abulencia et al., 2007)
and DO (Abazov et al., 2008) collaborations.

There are many other processes where QCD predictions have been made, by and large
with success.

Exercises

9.1 Finish the calculations of the one-loop renormalization of parton densities by doing
the calculations for gluon-in-quark and gluon-in-gluon, thereby verifying (9.24) and
(9.25).

9.2 Verify the sumrules (8.41) and (8.42) for quark number and for momentum at one-loop
order.

9.3 Verify the results in Sec. 9.5.2.
9.4 Find the gluon-induced NLO correction in a version of QCD where quarks are scalars.

9.5 (***) Using pdfs from some standard fit, obtain some estimates of the typical value
of z in integrals of parton densities and hard scattering like those in (9.43), etc. You
can probably do this by obtaining diagnostics from a numerical quadrature, although
it should also be possible to obtain some order-of-magnitude results more analytically.
Draw some conclusions about the reliability of standard perturbative QCD calculations
under various kinematic conditions.

9.6 Consider the graph of Fig. 9.3(a) for the photon-gluon process, and suppose that
the quarks are given a mass m,. Show that the minimum fractional plus momentum
of the intermediate quark line is y = x(1 + 4mf] /Q?). Fractional plus momentum
of the intermediate quark means (k;” — ¢*)/P*. [See the definition given in Tung,
Kretzer, and Schmidt (2002) for the ACOT(x) scheme for treating heavy quarks in
factorization.]

9.7 Generalize the result of problem 9.6 to the case that the current is flavor changing
between quarks of different masses, m; and m,.

9.8 Verify the calculations giving the NLO quark contribution to F3, i.e., (9.48).
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Factorization and subtractions

In Sec. 9.13 we saw how factorization theorems give a lot of predictive power to QCD.
They are essential in the analysis of data at high-energy colliders, not just for understanding
the QCD aspects but also in searches for new physics, for example.

So far we have seen a genuine proof (Sec. 8.9) only for inclusive DIS, and only in a
model theory without gauge fields. In this chapter we will formulate the principles that
apply very generally, to other reactions, and when dealing with the full complications of a
gauge theory.

The general class of problem concerns the extraction of the asymptotic behavior of
amplitudes and cross sections as some external parameter, like a momentum, gets large. In
general discussions, we denote the large parameter by Q. As well as factorization theorems
in their broadest sense, such asymptotic problems also encompass simpler situations like
renormalization, the operator product expansion (OPE), and the IR divergence issue'
QED.

There is a common and general mathematical structure in these different problems that
could undoubtedly use further codification. Perhaps methods based on Hopf algebras, or
some generalization, would provide an appropriate mathematical structure. So far these
methods have been applied to renormalization (e.g., Connes and Kreimer, 2000, 2002).

In this chapter, [ interleave a general formal treatment with its application to the Sudakov
form factor, including explicit calculations at one-loop order. The general treatment will
underlie all further work in this book. The Sudakov form factor illustrates the issues that
are characteristic of asymptotic problems in Minkowski space, especially in a gauge theory.
Factorization for the Sudakov form factor is a prototype for many important applications.

First I will give an overview of the method, which is a general subtractive procedure
generalizing Bogoliubov’s procedure for renormalization. The Libby-Sterman analysis is
used to determine the leading regions R for a graph I" for the process under consideration.
For each region R of a graph I there is defined an approximator Tg. From Tk, with the aid
of subtractions to cancel double counting between regions, is constructed the contribution
CgT associated with the region.

Then I will define an implementation of these ideas for the Sudakov form factor, complete
with a specific calculation for a one-loop graph. After that will be a proof that the general

in

! Which concerns a small photon mass instead of a large scale Q.
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subtraction method works. This will require that the region approximators Tk obey certain
conditions, that will be especially critical in QCD. The one-loop example will help to
explain the rationale for these conditions and to show how to satisfy them in general.

Then I will derive factorization and evolution equations for the Sudakov form factor.

Many elements of the proofs given here can be found in the literature. However, the
presentation as a whole represents a new treatment, which is intended to be a substantial
improvement on previous work.

Although the methods presented here apply to perturbation theory, it should be evident,
just as in Sec. 8.9, that much structure is seen that has a reality beyond perturbation theory.
But exactly how to capture this structure in a strict deductive framework is not so clear, and
there are some important open problems.

10.1 Subtraction method

To understand the rationale for a subtraction procedure, recall the successive approximation
method outlined in Sec. 8.8. This starts from the smallest region for a graph for some process,
for which we find a useful approximation. The approximation typically corresponds to a
product or convolution of a lowest-order partonic subgraph and a matrix element of some
operator. The operator in the matrix element determines the definition of, for example, a
parton density.

We then sequentially construct approximations suitable for successively larger regions.
When constructing the contribution Cg associated with some region R, subtractions must
be applied to compensate double counting of the contributions C ' from smaller regions R,
contributions that have already been constructed. Finally, we sum over the regions for each
graph I', and over graphs. This results in factorization, by an argument with the pattern
given in Sec. 8.2.

A simple example was given by the derivation of leading-twist factorization for DIS in
a non-gauge theory in Sec. 8.9. It is a useful exercise to show how the formulae in that
section, like (8.70) and (8.74), give particular cases of the more general formulae in the
present chapter.

In a gauge theory like QCD, the basic argument will need to be supplemented, notably
by an application of Ward identities to extract gluons of scalar polarization from the hard
scattering, to convert them to attachments to Wilson lines. Further issues concern the exact
nature of the leading regions and the accuracy of the approximators Tk. These are much
harder than for relatively simple Euclidean asymptotic problems like the OPE.

10.1.1 Overall view

We let Q denote the large scale for the process under consideration. Each graph I" has a
set of leading regions, and up to power-suppressed terms, we aim to write I" as a sum over
terms for its leading regions:

= Z CgI" 4+ power-suppressed. (10.1)
RofT
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For the processes of interest, the regions and the associated powers of Q are determined
by the Libby-Sterman analysis (Ch. 5). Normally we treat only the leading power. As
explained in Ch. 5, each region is specified by a skeleton in loop-momentum space, i.e., the
position of the associated pinch-singular surface (PSS) in a massless theory. Each region
also corresponds to a decomposition of the whole graph I' into subgraphs (e.g., Fig. 5.17)
where each subgraph has momenta of a particular kind: hard, collinear in some direction,
or soft. There can be finer decompositions needed under some circumstances, but that does
not affect the principles.

The general definition of the contribution CgI" associated with a region R of a graph
I will be made in (10.4) in terms of an “approximator” T, together with subtractions
to eliminate double counting between regions. A key element in applying (10.1) and in
enabling factorization to be derived is the construction of suitable approximators T.

10.1.2 Regions: terminology

We review some terminology and definitions from Ch. 5.

e A region R of a graph I is specified by a PSS in the massless theory, as determined by
the Libby-Sterman method.

e A region is called leading if Libby-Sterman power-counting gives it a leading power,
usually defined by dimensional analysis, e.g., Q° for a DIS structure function.

e Some regions occur with a super-leading power in individual graphs, when all the gluons
exchanged between hard and collinear subgraphs are of scalar polarization. Since such
super-leading contributions cancel very generally after a sum over graphs, we choose the
definition of the leading power accordingly.

e Our factorization arguments will be applied to regions which give at least a certain chosen
power of Q. The term “power-suppressed” in (10.1) means with respect to the chosen
power of Q.

Typically, this is the power of Q we call leading. But extensions of our methods to
non-leading powers are possible. Since T is essentially a truncation of a Taylor series
expansion about a PSS, keeping more terms in the Taylor series corresponds to keeping
more non-leading powers of Q.

When we use dimensional regularization, with 4 — 2¢ dimensions, some exponents
in power laws have € dependence. In categorizing powers as leading or non-leading, we
generally work close to € = 0 and ignore changes in exponents that are of order €.

e At each PSS R we choose a set of intrinsic coordinates labeling points within the PSS,
and there is a set of normal coordinates labeling deviations off the surface (Sec. 5.7).

e We can convert the normal coordinates for a region R into a radial coordinate Az and
a set of angle-like coordinates specifying direction. We saw a number of examples in
Ch. 5. Power-counting is conveniently done using the one-dimensional integral over Ag.
We require Ay to have the dimensions of mass.

e Ordering between the regions is defined by set-theoretic inclusion on the skeletons
defined technically in Sec. 5.4.1, and reviewed in the next section, 10.1.3.
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10.1.3 Regions: properties

Relations between regions

In simple cases, all the leading regions for a graph are nested. A typical example is DIS in
a non-gauge theory (Sec. 8.9). For that case, the leading regions are where some number
of rungs at the top of a ladder graph, Fig. 8.12, form the hard subgraph, and the rest of
the graph is target-collinear. The hard subgraph corresponds to a graphical factor AK/ in
Fig. 8.12. If we use R; to denote the corresponding region, then the ordering of leading
regions can be represented along a line:

Ry <Ry <Ry <---<Rpn. (10.2)

This situation is called a total ordering, i.e., any two leading regions, R; and R;, obey
exactly one of Ry < Ry, Ry < Ry or R = R;.

But in general, the ordering is only a partial ordering. That is, between any two regions
R; and R;, exactly one of the following holds:

Ri < Ry: R, is smaller than R;.

Ri > Ry: R, is bigger than R;.

R = R;: they are the same region.

They overlap. That is, the intersection of their skeletons is non-empty, Ry N R, # @, but
none of the preceding three cases hold.”> Thus R; N R, is non-empty and strictly smaller
than both of R and R,. An example is given by R4 and Rp in (5.21). We denote this
situation by R; ovrlp R;.

e R; and R, do not intersect at all: Ry N R, = . An example is given by R4 and Rp in
(5.21).

Separation of non-intersecting regions

Suppose two regions R; and R, do not intersect. Then there is a non-zero separation
between them, because the (empty) intersection is of their skeletons, which are closed sets.
Thus if A; and X, are radial variables for the two regions, then there is a non-zero range
0 < A; < L; for which points around each PSS do not intersect the other. Since the PSS
are defined from the massless theory, each of these ranges in A is of order Q.

Minimal region(s)

We define a region R to be minimal if it has no smaller regions, i.e., if there is no R’ for
which R’ < Ry. One example is for a handbag diagram for DIS. Its minimal region gives
the parton model. A non-trivial example is for the one-loop vertex graph treated in Sec. 5.4.
It has three minimal regions R4/, Rz and Rg. (But only Ry is leading.)

Note that a minimal region R, cannot overlap with any region. For every other region,
either Ry is contained in it or does not intersect it.

2 @ denotes the empty set.
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Hierarchy

Ordering between the different regions of a graph allows them to be organized in a hierarchy
which can be diagrammed as in (5.21).

10.1.4 Definition of region term CrI’

Cr for minimal region

For a minimal region Ry, its contribution is simply defined to be the action of its approxi-
mator on the unapproximated graph:

Cr,T & Ty, T (10.3)
In DIS in a non-gauge theory in Ch. 8, a suitable approximator for a minimal leading region
was given in (8.68).

As that equation illustrates, a natural definition of the approximator can lead to extra
UV divergences, which are to be removed by renormalization of parton densities (and of
similar objects, in the general case). Therefore we define the approximator to include such
renormalization.

Alternatively, the approximator can be defined to include a suitable cutoff. The com-
parative advantages and disadvantages of the renormalization and cutoff approaches were
discussed in Sec. 8.3.1.

Cr for larger regions

In the contributions from larger regions, we use subtractions to avoid double counting of
the contributions from smaller regions. So we define

Cxl ¥ 7 <r -3 CR/F>. (10.4)
R'<R
For a minimal region, (10.4) reduces to (10.3). Thus (10.4) gives a valid recursive definition
of CgI', starting from the minimal region(s).

The factor in parentheses is the original graph minus subtractions for regions sgaller than
R. For the case treated in Ch. 8, this factor was found in (8.74);itis A[l — (1 — T |V)K]™!
on the last line of that equation.? In that situation, it was evident that the factor is power-
suppressed in regions smaller than R. Thus the smallest region where CgI is leading is
actually R.

But in more general cases, like the Sudakov form factor, such statements will need some
modifications.

It is also possible to start from an approximation for a maximal region, and then work
to smaller regions, as in Tkachov (1994). But starting from the smaller regions, as we have
done, gives a more direct relation to the parton model and makes clearer the relation to a
non-perturbative definition of the parton densities.

3 That formula does not explicitly include the needed parton-density renormalization.
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collinear

(a) (b)

Fig. 10.1. Leading regions for DIS: (a) in a theory without gauge fields, (b) in a gauge
theory.

10.1.5 Remainder

We define the remainder of a graph to be

r) ¥ Y Gl (10.5)
RofI'
It is essential to prove that this is actually power-suppressed, given a particular implemen-
tation of the region approximators TgI".

10.1.6 Relation to factorization

The above formalism focuses on an additive structure for a particular graph. To get a
factorized form, we sum over graphs. As observed in Sec. 8.2, the sum over regions and
graphs corresponds to independent sums over subgraphs associated with the regions, e.g.,
independent sums over the hard and collinear subgraphs for DIS in Fig. 10.1.

In the simplest cases, exemplified by Fig. 10.1(a), we have a fixed number of lines
joining the subgraphs, and the graphical structure directly corresponds to a factorization
formula. Then to prove factorization we need to prove that (1) the approximators Tk respect
the factorized structure, (2) UV renormalization needed on the parton densities respects the
factorized structure, and (3) the subtractions in (10.4) actually have their intended effect of
removing double counting between the terms for different regions.

But as illustrated in Fig. 10.1(b), the situation is more complicated in a gauge theory,
because arbitrarily many gauge-field lines can connect the collinear and hard subgraphs,*
without any power-suppression.

Therefore the graphical representation of the regions does not directly correspond to
factorization.

An example of the necessary argument was given in Sec. 7.7 for a gauge-theory version
of the parton model. We applied Ward identities to convert the extra gluons into attachments
to the Wilson line in the definition of a gauge-invariant quark density. To do this requires an
appropriate choice of the approximators T, together with a demonstration that the Wilson

4 And also soft and collinear subgraphs in a general case
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lines are actually obtained. Only after this work do we find that

Z CrI" = factorized form. (10.6)

R,

We could conceive that Fig. 10.1(b) itself represents a generalized factorization
structure. But the structure would involve an infinite collection of parton-density-like
objects, each with a different number of gluon lines, and each with a different hard-
scattering factor. Without further information, such a factorization would not be useful for
phenomenology.

10.1.7 Which formulation for calculations?

Often in realistic QCD calculations, there are many graphs to consider. The decomposi-
tion (10.1) produces multiple terms for each graph, resulting in an apparently even more
elaborate structure. Is it actually necessary to use it?

An alternative calculational approach was described in Sec. 9.6, and corresponds to many
practical calculations. The aim is to compute the hard-scattering coefficient in a factorization
formula, and the method uses the observation that the hard scattering does not depend on
the type of particle used for the target. One first makes a direct computation of Feynman
graphs for the process under consideration, but with a partonic target. Then one computes
the densities of partons in partons to the relevant order, and then applies factorization on a
partonic target to deduce the hard-scattering coefficients. Because factorization has taken
account of simplifications due to the use of Ward identities, there are generally fewer terms
to calculate than by a direct use of (10.1), which requires a listing of all the leading regions
for every graph computed.

This would appear to relegate the subtraction formalism to a key tool in a careful
derivation of factorization.

However, direct calculation of partonic Feynman graphs involves the cancellation of
various kinds of collinear and soft divergences between different graphs; it thereby entails
the use of a regulator. This is satisfactory if calculations are done analytically rather than
numerically. But if numerical calculations are used, the cancellation of divergences between
graphs is tricky to implement; it is a classic situation where rounding errors can dominate
a numerical calculation. To set up a numerical integral for the hard scattering one can
apply subtractions directly to the integrand of a hard-scattering subgraph. All necessary
cancellations of divergences are then in the integrand, and the integral can be evaluated
directly in four dimensions, without a regulator. We saw a very simple example in Sec. 9.7.5.

There is much recent work in implementing subtractions numerically, e.g., Binoth et al.
(2008); Dittmaier, Kabelschacht, and Kasprzik (2008); Frederix, Gehrmann, and Greiner
(2008); Hasegawa, Moch, and Uwer (2008); Seymour and Tevlin (2008).

Since there are many regions involved in high-order graphs, practical application of a
subtraction procedure must be automated. If the subtractions are not formulated correctly,
there can remain divergences, which manifest themselves in badly behaved numerical
integrals over a high-dimensional space.
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P

Fig. 10.2. One-loop graph for DIS on elementary target.

10.2 Simple example of subtraction method

With suitable definitions of the region approximators Tk, we will derive factorization
for many processes of interest from the structure of the sum over regions and graphs,
> 1.z CrT. So to prove factorization is accurate up to a power-law error, we need to prove
that for each individual graph the sum over regions, >, CgT', itself approximates I", up to
a power-law error, i.e., that the remainder r(I") is power-suppressed.

Now the approximator Tk is always designed so that TxI" gives an accurate approxi-
mation when the momentum configuration is both close to the PSS defining the region R,
and away from the intersections with the PSSs for regions that are smaller than or overlap
with R. The complications in making a satisfactory proof that »(I") is power-suppressed
arise from the combination of multiple regions, with the possibility of double counting, and
from the fact that there are intermediate configurations of momenta where the individual
approximations degrade in accuracy.

The simplest proof is when all the relevant regions are nested, as in Sec. 8.9. Our aim in
this chapter is to construct better methods that also work when there are more complicated
relations between regions, e.g., (5.21).

But first I illustrate the general notation with a simple mathematical example motivated
by a one-loop graph for DIS in a model theory, Fig. 10.2. There are two leading regions:
Ry, where the top rung is hard and the bottom rung collinear, and R;, where the whole loop
is hard. They obey Ry < R;. The simple example is obtained by replacing the full Feynman
graph by the following one-dimensional integral

0 1
OQ+k+mbk+P+m

o0 [o.¢]
1(Q, P,m) = / dkT'(k, Q, P,m) = / dk (10.7)
0 0
The factor of Q in the numerator makes the integral dimensionless, and gives an overall
leading power of Q°.
If our general subtraction method works, then the leading-power asymptote for the graph
is

Cr,T 4 CgT = Tg,T" + Tg,(1 — Tg,)T. (10.8)

We define the approximators T to be applied to the integrand, I', rather than to the integral
as a whole. Each Ty sets to zero the (lower) external momentum and the internal mass of
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the hard scattering. Thus

0 1 1
Cp =T = —= s 10.9
Ro Ro Qk+P+m T k+P+m (1092)
1
1 —Tp ) = —1 , 10.9b
(1= T,) < Tk+m )k+P+m (10.95)
T, T = —§ (10.9¢)
Cp,T = Tg,(1 — Tg,)T = < ) , (10.9d)

so that the remainder is

F(F) =T — CRUF — CRIF = (1 — TR])(I — TRO)F

= (L_ 1) ! —( e _ 1> 1. (10.10)
Q+k+m k+P+m 0+k k

Applying 1 — Tk, gives a suppression by k/Q or m/Q, whichever is larger, in the factors
in parentheses on the last line of (10.10). This has a minimum of m/Q, which is the desired
overall error, but the error degrades as k increases towards Q.

Applying 1 — Tk, gives a suppression by m/Q or m/k. (We assume P is of order m.)
The intrinsic variable of the large region R; is k, and T%, is designed to give an accurate

approximation when k ~ Q. But as k approaches R the accuracy of an approximation of
I' by T, I" degrades to m/ k. But multiplying this error by the previously determined factor
of k/ Q compensates this, to leave an overall relative error of m/Q.

Notice that the error in (1 — T¢,)I" gets even worse if k <« m, because Tk, makes a
massless approximation, replacing 1/(k + P + m) by 1/k. By itself, this would give an
actual divergence in the integral at k = 0. But the 1 — Ty, factor applied in this same
massless approximation gives a k/Q factor to kill the divergence.

10.3 Sudakov form factor

The fundamental object in our method is the approximator 7xI" for a region R of a graph
. We let Ay be the radial variable, we let k z be the angular variables surrounding R, and
we let zg be the intrinsic variables for R (Secs. 5.5 and 5.7). The approximator must give
a good approximation to I in the core of the region R, i.e., where A is small and the k
variables are not close to larger regions.

In simple examples, as in Sec. 10.2, the accuracy of Tk only degrades when the intrinsic
variable(s) of R approach the PSS of a smaller region. However, when we treat soft gluons,
the accuracy of Ty also degrades when the angular variables k approach larger PSSs
than R. This issue is responsible for complications in many QCD processes, when they are
compared with simple Euclidean problems, like the OPE.

A simple case to illustrate these issues is the Sudakov form factor, i.e., the electro-
magnetic form factor of an elementary particle at high Q. We defined the Sudakov form
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Fig. 10.3. (a) Sudakov form factor. (b) Its leading regions with loop momenta connecting the
subgraphs. The dots indicate arbitrarily many gluons exchanged between the neighboring
subgraphs. Note that the soft subgraph S may be empty or may have more than one connected
component. The complete amplitude is approximated by a sum over regions and graphs
when the contribution of each region is interpreted as CgI.

factor and its kinematics in Sec. 5.1.1. Our aims now are to make suitable definitions of the
approximators T, and to derive factorization. The form factor and its leading regions are
shown in Fig. 10.3.

10.3.1 Factorization

We will obtain a factorization property in which the form factor F is the product of a hard
factor H, collinear factors A and B for each external quark, and a soft factor S:

F = HABS + power-suppressed, (10.11)

each with dependence on only some parameters of F. Later we will redefine the factors so
that a square root of S is absorbed into each collinear factor. (We will accompany this by
some further redefinitions of A and B.) Then S will not appear in the final factorization
formula.

10.3.2 Overall motivation for factorization approach

At this point, I review the rationale for using the factorization approach in QCD. This will
indicate the kinds of theorem we need to formulate.

Typically, multiple regions contribute to an amplitude or cross section when there are
large momenta. In perturbative calculations, this gives rise to large logarithms which prevent
a straightforward use of perturbation theory in QCD. The two logarithms per loop present
in many cases like the Sudakov form factor are particularly bothersome.

Moreover, in almost all interesting cases in QCD, some momenta in leading regions
have low virtualities, where the effective coupling is large, so that low-order perturbative
calculations are inapplicable.

In a factorized formula like (10.11), the different factors are each concerned with a
particular kind of 4-momentum. Besides dependence on external kinematic variables, each
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Fig. 10.4. One-loop graph for Sudakov form factor, and the hierarchy of its leading regions.
In each case, the name of the region, e.g., “Ry”, refers to the category of the gluon’s
momentum. A line connecting two regions denotes that they are ordered, with the bigger
region on the left. Thus the diagram component R, — R; means that R, > R; in the sense
defined in Sec. 10.1.2.

factor has dependence on one or more auxiliary parameters (like a renormalization scale).
The auxiliary parameters can be roughly characterized as setting the boundaries between
kinematic regions. The logarithms can be tamed by deriving evolution equations for the
dependence on the auxiliary parameters. The kernels of the evolution equations are free of
logarithms in the parameter whose dependence is governed by the evolution equation, and
thus the kernels are susceptible to perturbative calculations (and hence prediction from first
principles).

After the application of evolution equations, we need the individual factors, each at
appropriate reference values of the auxiliary parameters. Some factors depend on low
momentum scales, and are therefore genuinely non-perturbative in QCD. Others depend
only on a single large scale, and therefore are perturbatively calculable in QCD. The
non-perturbative quantities in QCD are typified by parton densities. They will be proved
to be universal, i.e., the same parton densities appear in many different reactions. As
explained in Sec. 9.13, universality underlies much of the predictive power of QCD: The
non-perturbative quantities can be measured from a limited set of data, and then predictions
are made for a wide variety of other experiments, with the aid of perturbative calculations
for hard-scattering coefficients and evolution kernels.

10.3.3 Sudakov: regions for one- and two-loop graphs

As explained in Secs. 5.4.1 and 10.1.3, the regions for a graph can be organized as a
hierarchy. To illustrate this, Figs. 10.4 and 10.5 show some important one- and two-loop
graphs for the Sudakov form factor together with a representation of the hierarchies of their
leading regions. A useful exercise is to check the hierarchies.

10.4 Region approximator Ty for Sudakov form factor

The definition in this section of the region approximator Tk uses the methods of Collins,
Rogers, and Stasto (2008).

10.4.1 Decomposition of graph for one region

Consider a particular graph I" for the Sudakov form factor. A leading region R corresponds
to a graphical decomposition of the form of Fig. 10.3(b), with subgraphs which we label H,
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l“ /RHB\RBL?RB@\
(a) HH\ RHS\ /

.y Ry RM Rug

l /RHE\RBB RbB\
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g RAH Rax—Ras

Fig. 10.5. Some two-loop graphs for the Sudakov form factor, and their leading-region
hierarchies. The two-lettered code for a region, e.g., in “Rpys”, refers to the categories of
gluon k and gluon /.

A, B, and S.> We choose loop momenta coupling the subgraphs as follows. Momenta on
external lines of the soft subgraph circulate into one collinear subgraph, round through the
hard subgraph and back by the other collinear subgraph. Remaining loops involve momenta
from each collinear subgraph entering the hard subgraph and circulating back to the same
collinear subgraph. Thus we write the integral for the graph as

I = / dkasdkpsdkpyadkyp H(q, kua + kpas, kup + kups, m)

X A(pa,kra, kas) B(pp, kup, kps) Stkps, kas). (10.12)

Here k45 denotes the array of momenta flowing from the A subgraph into the S subgraph,
and similarly for kzg. These momenta flow through the hard subgraph, with kg 45 and kg s
denoting how the circulating soft momenta are apportioned among lines entering H. The
remaining momenta circulating between the H and A subgraphs are kp 4, and similarly for
kp . Thus to denote the full set of momenta entering the hard subgraph from each collinear
subgraph we use kg4 + kyas and kyp + kpps.

The soft factor is defined to include a momentum-conservation factor for each of its
connected components. All loops contained entirely within the separate subgraphs do not
need to be indicated explicitly. Although the integrals in (10.12) are commonly of high

> Note that the use of these symbols is different than in Figs. 10.4 and 10.5, where the symbols refer to particular
categories of gluon momentum instead of subgraphs with momenta in a category.



10.4 Region approximator Tg for Sudakov form factor 325

dimension, it is possible that some or all are absent, for example when the soft subgraph is
empty, or when only a single line connects a collinear graph to the hard subgraph.

Although to construct the definition of Tr we will examine properties of the graph when
the values of momenta correspond to the region under consideration, we do not intend the
loop momenta in (10.12) to be restricted to the region. In that sense, (10.12) is an exact
expression for the whole Feynman graph. The purpose of this decomposition is simply to
provide a convenient notation for use in a general definition of Tg.

When the momenta are near the PSS of R, some propagator denominators are particularly
small. In general, we can make a suitable approximant by expanding in powers of small
variables compared with large variables. Since we are concerned here only with the leading
power of Q, the first term in the series suffices, i.e., we simply neglect the small variables
compared with the large variables.

One complication now arises. As follows from the discussion in Sec. 5.10.2, there are
two clashing characterizations of a collinear momentum. One is that it has energy of order
Q and low virtuality. The other is that it has high center-of-mass rapidity. The distinction
is particularly important when we deal with graphs with a massless gluon, as in QCD, and
it is the second, more general, characterization that is more appropriate.

The use of this second definition strongly influences our construction of the region
approximator Ty, since it affects the characterization of large and small variables. There
can be leading contributions when some gluons are simultaneously soft and collinear, in the
sense that all their momentum components are much less than Q and that their rapidities
are large.

10.4.2 Definition of Ty

We consider the region R of a graph I' associated with the decomposition (10.12). We
also label momenta of particular lines by their category (soft, collinear-to-A, etc.) at the
PSS for the region. The power-counting for the momentum components was given in
Sec. 5.7.4.

The basic method to construct the region approximator 7T is to expand to leading power
in the radial variable A » for the region. This will tend to introduce divergences. Some of the
divergences are endpoint divergences, associated with regions R’ that are smaller than R;
these we will find to be canceled by the subtractions in the definition (10.4) of the region’s
contribution CxI". Other divergences arise when we extend loop-momentum integration
beyond the immediate neighborhood of R. These are essentially UV divergences removed
by conventional renormalization that we include in the definition of T.

For simple Euclidean asymptotic problems like the OPE, there are no further divergences.
But characteristic of asymptotic problems in Minkowski space with soft gluons are further
divergences, which we term rapidity divergences; see the discussion around (10.35) below.
We will modify the definition of Ty to cut off rapidity divergences. The evolution equations
with respect to the cutoffs are essential to using the factorization theorem, and we will
see important applications in Ch. 13. The only place where a modification is needed is in
the approximation of soft momenta entering the collinear subgraphs. Later, in Sec. 10.11,
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we will reorganize the factorization formula into a form where the cutoffs on rapidity
divergences can be removed.

The approximator’s definition is made in three stages. The first is to extract the leading
power of A in the numerators and denominators of the subgraphs, with modifications to cut
off rapidity divergences, and to improve properties of the hard scattering. It is implemented
by defining linear projectors on loop momenta: P,g, Pgs for soft loop momenta in the A
and B subgraphs, and Py 4, Pyp for collinear and soft loop momenta in the H subgraph.
Then certain adjustments of the momenta in H are implemented by non-linear functions
Ry 4 and Ry p, so that the following replacement is made:

I — /dkASdkBSdkHA dkHB H(L],I,C\HA,]GHB,O)

x A(pa.kua. kas) B(ps. kus. kps) S(kss. kas). (10.13)
where
kas = Pas(kas), (10.14a)
kgs = Pps(kss), (10.14b)
kia = RuaPua (kHA + PAs(kHAs)) = RyaPuatkya), (10.14c¢)
kup = RupPus (ks + Ppstkups)) = RupPup(knp). (10.14d)

It will be a considerable convenience that soft momenta are approximated by exactly
zero in the hard subgraph H, which is enforced by defining projectors so that Py Pas =
PypPps = 0.

The second stage of the definition of T is to apply corresponding approximations to the
numerator factors in the lines connecting the subgraphs. The final stage is renormalization
of UV divergences.

The approximator makes use of some auxiliary vectors to define particular directions in
the (¢, z) plane:

w; =(1,0,01), wy=(0,1,07), (10.15a)
n = (L, —e?,01), ny=(—e",1,0p). (10.15b)

Thus w; and w, are light-like vectors corresponding to the external momenta p4 and pg,
while n; and n, are similar vectors that are slightly space-like. The rapidity parameters y;
and y, are among the auxiliary parameters referred to earlier, for which evolution equations
will be derived; initially they are chosen to be comparable to the rapidities y,, and y,, of
the external on-shell lines. The vectors in (10.15) specify directions, and all their uses will
be unchanged if any of the vectors is scaled by a positive non-zero number.

I now present the detailed definitions that make up T, leaving some details of the
justification to Sec. 10.6.

1. Soft to collinear-A: Consider a momentum k 45 flowing from A into S. The denominator
for a line in A has the form (k4 + k%) — m? = k3 — m? + 2k4 - kas + ki, where k4
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is a momentum classified as collinear-to-A. From Sec. 5.7.4, the leading power of
AR is A%, for the terms k3 and 2k}k,,. So the basic leading-power approximation
for subgraph A is to neglect all but the minus component of k,g, i.e., to make the
replacement k45 > (0, kg, 07). To cut off rapidity divergences we then modify the
minus component slightly, and define Tk to use the following projector:

kas > kas = Pas(kas) = (0, 1, 07) (kyg — e 2"k}) . (10.16)

In covariant form this is

"
W, kAS~Vl1

kas = Pas(kas) = (10.17)

Wy - N
where n; and w; are defined in (10.15), with y; in the definition of n; being a large
positive rapidity appropriate to the p 4 particle. But the precise value of y; is not critical;
the effect of changes in y; will cancel in the complete factorization formula.

The use of k45 in (10.12) treats k45 as the array of loop momenta flowing from A
into S. So the above definition is to be applied separately to each of the momenta in the
array.

The justification of the exact form of the above projector will be given in Sec. 10.6,
including the choice that n| is space-like.

2. Soft to collinear-B: A similar replacement is applied to soft momenta in the B subgraph,
with the roles of plus and minus components exchanged:

I
w| kps - na

ks > kps = Pps(kps) = (10.18)

w1 - Ny
Naturally y, in the definition of n, should be a large negative rapidity appropriate to pp.
3. Collinear-A and collinear-B to H: In the hard subgraph H, the basic approximation
is to replace momenta kp 4 + kg as from the A subgraph by their plus components and
momenta kyp + kpps from the B subgraph by their minus components:
wy (kpga + kias) - wa

Puatkya) = — = (k};,.0,07), (10.19a)
1 - W2

k k .
Prphyy) = 22 &ne £ Russ) wi k5 Op). (10.19b)

wy - Wq

Hence soft momenta are replaced by zero in the hard subgraph.

4. Masses in H: We also normally replace masses by zero in H. Under some circumstances,
it is appropriate to retain masses. In that case it is normally appropriate to put on-shell
the external massive quark lines of the hard subgraph by modifying Py 4 and Pyp.

5. Alternative for H: In applications, like QCD, where the gluon is massless, there can be
important contributions from gluons that are soft in the sense of having very low energy,
but collinear in the sense of having rapidity comparable to that of p4 or pp. Such gluons
we call “soft-collinear”. From the point of view of regions and approximations, we will
treat them as collinear. They can be external lines of the hard scattering.
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To treat them adequately, we modify the definition of the approximator for a hard
subgraph: masses are left unapproximated, and the external quark lines of the hard
scattering are put on-shell, but now massive. The projectors for Dirac matrix connec-
tions between collinear and hard subgraphs are modified to project onto massive wave
functions.

After use of Ward identities to extract the extra collinear gluons from the hard
subgraph, the modified H subgraph can be replaced by the standard one.

6. Numerators connecting subgraphs: We project on the leading-power part of the numer-
ators for Dirac lines and for gluons connecting the H, A, B and S subgraphs as follows:

(a)

(b)

(©)

For the attachment of a gluon from S to A, insert the following matrix to implement
a Grammer-Yennie approximation (modified from (5.51)):

)
Kysny

— (10.20)
kAS -ny + i0

Note that kag - n; = ka s - n1. The i0 prescription is correct when k4 is defined to
flow out of the collinear subgraph. The p index is contracted with the A subgraph
and v with S. We will see that because the approximated A subgraph is contracted
with the approximated momentum IEA s, exact Ward identities can be applied to
convert the S-to-A couplings to a Wilson line in direction n;.

Thus the following replacement is made on the product of the A and §
subgraphs:

A(paskas 1, kas W)Y S(kas, 1y kas, N

= A(pA, IEAS,I, ey ]EAS,N)MI"'MN
al IEAS i ni
Lo y;
X #Sk ,...,k Ulva’ 1021
11':11 kas.j-ni +1i0 (kas. AS.N) ( )

where the individual momenta of the array ks are denoted by kg, ;. It can be
verified that the approximation is accurate to leading power when the k4§ momenta
are in the soft region: i.e., all components are much less than Q, their rapidities are
much lower than those of the collinear-to-A lines, and they are not in the Glauber
region.

Similarly, for the attachment of a gluon from $ to B, insert

LY
kggny

— (10.22)
ks -ny +i0

where the momentum is flowing out of B.
For a gluon of momentum kpya + kpas out of H into the A subgraph, make the
insertion

Pyatkpa)wy

2 (10.23)
kpa-wy 410
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(d) For a gluon of momentum kgp + kg pgs out of H into the B subgraph, make the
insertion

Pyalkyp)*wy

L (10.24)
kHB swp + i0

(e) For a Dirac line entering H from B, and for a Dirac line leaving H to A, insert
the projector Pp = %y*y’. This and the next item are cases of the Dirac spinor
projector derived for the parton model in Sec. 6.1.2.

(f) But for a quark line in the reverse direction, use P4 = %y’y*.

(g) If a version of the approximator is used in which approximated quark momenta are
massive (and on-shell), then the projectors need to be modified, but in such a way
that their massless limits exist. See problem 10.8 for possible definitions.

7. Slightly scaled H : The approximated hard scattering will generally not obey momentum
conservation:

Z(kﬂ a0, 0T)+Z(o, kyp ;- 0r)#q.  (Prerescaling)  (10.25)
J
Here j labels the lines carrying the relevant momenta. To correct momentum

conservation, we apply overall scaling factors separately to the plus and minus
components:

+

kia j = kira s =kia S k : (10.26a)
HA,j

kg, i+ kg ; = kg ; Z k (10.26b)
HB, |

areplacement to be made in H alone. Since we defined ¢ to have ¢ = 0, no correction
of approximated transverse momenta is needed. After the rescaling, we have exact
momentum conservation:

> kg 50.00) + > (0. k5 ;. 01) =gq.  (Post-rescaling) (10.27)
J J

The correction factors in (10.26) differ from unity by order m?/Q?. This is because the
sums of the unapproximated collinear momenta are the external momenta: )| jkna,j =
pa> Y kup. j = ps, while p /p and pj;/py are of order m*/ Q*.

8. Renormalization of extra UV divergences: As in our treatment of DIS in a non-gauge
theory, the approximator short-circuits certain loop-momentum components, thereby
inducing UV divergences beyond those renormalized in the Lagrangian. These are
removed by UV counterterms defined, for example, in the MS scheme with the use of
dimensional regularization. After we obtain factorization, renormalization will behave
much like that for the local operators used in the OPE (e.g., Collins, 1984), but now
applied to the operators defining the soft and collinear factors. We will generally leave
this renormalization implicit until we do actual calculations.
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PB
> Y2
q
- = Ly x
—> N
Pa

(a) (b)

Fig. 10.6. Representation of soft term (10.29) for vertex graph, (a) before and (b) after use
of Ward identities.

10.5 One-loop Sudakov form factor

We now illustrate the general definitions given in Sec. 10.4 by applying them to the one-loop
graph, Fig. 10.4. The external fermions are on-shell, and the gluon has a non-zero mass
m,. But some issues will be illustrated by taking m, to zero and/or taking the fermions
off-shell.

The graph is

ig* /dnk —8h Ay (py —k+my*(—py —k+m)y*vp
1
k

@y = m +i0) [(pa — k7 — m? + 01 [(pp + k7 = m? + 0]’
(10.28)

where u4 and vp are the Dirac wave functions for the outgoing quark and antiquark. Its
leading regions are Ry, R4, Rp and Ry, where the subscripts indicate the type of gluon
momentum. For a compact notation, the region approximators and the region contributions

. def def
are written Ts = Tg,, Cs = Cg,, etc.

10.5.1 Soft-gluon term Cy
The soft region Ry is a minimal region, so its term is obtained by applying the region’s
approximator, as defined in the list starting on p. 326:
: 52 A

ig n —8ih ny )
CsIy =TT = d"k
strT st (271)"/ (k2 —m2 +i0) —n; -k +i0 ny -k +i0

y da(=k)(p, — ki +m)Pey P (=py — ko + m)kyup
[(pa —k1)*> —m? +i0][(pp + k2)*> — m? +i0]

_ g / 0 ni-ny iiaPgy"Ppug
Q) (k2 —m2 +i0) (=ny - k 4 i0) (n3 - k +i0)’

(10.29)

which we write diagrammatically in Fig. 10.6. The hard scattering is just the factor y#; it is
surrounded by factors of Pp = %y*y‘, to project onto the appropriate on-shell massless
Dirac wave functions. This is indicated by the hooks in Fig. 10.6(a), just as for the parton
model in Fig. 6.4.
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From (10.17) and (10.18), the projected gluon momenta in the collinear subgraphs are
ki =0,k —e2k*,0r) and k= (kT — ek, 0, 0p). (10.30)

At the ends of the gluon line are applied the Grammer-Yennie approximants (10.20) and
(10.22). The result is notated by the arrows at the ends of the gluon in Fig. 10.6(a).

To get the last line of (10.29), we applied the identities ¥, = (p, + k2 +m) — (p, +
m) and ¥, = (p, —m) — (p, — ki —m). For each of these, one term gives zero on a
Dirac wave function and the other cancels the neighboring quark propagator. The result is
represented in Fig. 10.6(b). On the left is a lowest-order vertex

FQ:IZAPB)/”,PBUB. (103])

On the right, the two double lines represent the gn;/(—n; - k +i0) and —gn,/(n, - k +i0)
factors in (10.29). With two changes, these factors are just as the first-order application
of the Feynman rules, Figs. 7.10 and 7.11, for Wilson lines, as in the gauge-invariant
definition of a parton density, (7.40). One change is that we have two Wilson-line segments
in different directions. The other is that the Wilson line in direction 7, has a reversed sign
of the coupling; physically this is because it approximates an outgoing antiquark, with the
opposite charge to a quark.

We therefore identify CsI"; as 'y times the one-loop value of the vacuum matrix element
of two Wilson lines of opposite charge, joined at the origin:

soft factorye, | = (0] W(o0, 0, n)t W(eo, 0, n1) 10), (10.32)
where W is defined by
W(oo, 0:m) = Plemion i timdouonr e (1033)

Notice that this definition uses the bare coupling and field, as needed to get the correct
gauge-transformation properties. A factor of a representation matrix #, of the gauge group
appears in the exponent to give a formula that is also appropriate for a non-abelian theory. In
the simpler case of an abelian gauge theory, one omits the #, factor, and one can replace the
coupling and field by their renormalized counterparts, since goA ) = gucA in an abelian
theory. The opposite charge of the Wilson line for direction n, is implemented by a hermitian
conjugation in (10.32).

After we formulate a factorization theorem, we will see that the formula for the one-loop
soft factor, CsI"y, is sufficient to determine almost completely the Wilson-line definition.
However, we will modify some details of the definition. Hence we include a version
subscript on the left-hand side of (10.32). The matrix element in (10.33) is a primary
ingredient in the later redefinitions.

The approximations used to give CsI'; are valid in the soft region, provided we deform
the integration contour out of the Glauber region. As we will show in Sec. 10.6.4, the choice
of space-like vectors (10.15b) for n and n,, and of the {0 prescriptions in (10.29) is needed
to be compatible with the contour deformation.
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kT/m
A
AN pA
ypA |
( ): Graph Ty (b): CsTy
\ | N
! |
(c): Ty, (d): =Ty TsI'y (e) CAF1
/ | M
! |
(f): TgI'y (g): —TpTsI'y : C’BFl
|
(i): Oyl

Fig. 10.7. Main regions in y and kr for one-loop Sudakov form factor. The shaded areas
indicate where there are leading-power contributions, and the thick lines show where there
is a cutoff. A lack of a thick edge to a shaded area indicates that the area goes to infinity.
These diagrams are for the original graph and for various terms in the decomposition of
the graph by regions, with subtractions. The — signs on a shaded region indicate a negative
contribution. The top of the triangle in graph (a) is at In(kt/m) = In(Q/m).

10.5.2 (Double) leading-logarithm approximation

To understand the nature of the approximation, we make plots in the space of Inky and y,
where y is the gluon rapidity y = % In|k*/k™|, and examine where the main contributions

arise, both for the original graph and for terms contributing to each CgI"|. These are shown
in Fig. 10.7.
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The variables are logarithmic in ordinary momentum components. With respect to these
variables, we will find that the original integral I'; has a uniform integrand in the interior of
the triangle in Fig. 10.7(a). This uniform value is in fact that of the soft approximation CI';.
Outside of the triangle, the integrand falls off, so that a first approximation to the original
graph is the uniform integrand times the area of the triangle, which is a coefficient times
In? Q. This gives the double leading-logarithm approximation (LLA) to I';. The edges and
corners of the triangle give non-leading logarithms, and remaining contributions are in fact
power-suppressed.

We will see that the soft term, CsI'j, also has important contributions from outside
the triangle. But we will find that these other contributions cancel corresponding parts of
the terms CgI"; for other regions R; see Fig. 10.7(b—i). The total reproduces I'; up to a
power-suppressed remainder.

In the core of the soft region the original graph I'; is correctly approximated by the
soft term CsI'y, and the approximation remains correct when n; and n, are replaced by
light-like vectors, to give

ig? o iusPpy"Ppup
(27[)4 core of soft region (k2 - mﬁ + 10) (_k_ + lO) (k+ + l()) '
where we now work in four-dimensional space-time. We apply contour integration to the
k™ integral,® which gives a non-zero result only for k* > 0. By closing the contour on

the gluon pole and changing variables from k* to y = % In|k*/k~| and from kt to Inkr,
we obtain:

(10.34)

—g? k.

_5_ dInkrdy a,Ppy"Ppvp ———

47t2 \/cnre of soft region k% + mé
. =8

~ 2 f dlnkrdy @sPsy"Pyvs. (10.35)
4 core of soft region

The right-hand form is obtained by restricting attention, for reasons that will soon be
apparent, to large enough kr that we can neglect the gluon mass.

Original graph

The result has a uniform integrand, and so we estimate the size of the original unapproxi-
mated graph by the area of the relevant part of the plane of In k1 and y. We will find that the
integrand falls off relative to (10.35) near the edges of the triangle in Fig. 10.7(a), so the
area is that of the triangle. We examine the limits provided by each propagator denominator
in turn.

In the gluon propagator, the gluon mass effectively cuts off the kr integral at m,, and
this gives the lower boundary of the triangle, at In(kt/m,) 2~ 0. This is a fuzzy cutoff, not
a sharp cutoff. Given that the dimensions of the triangle are of order In(Q/m), the width of
the fuzzy edge relative to the triangle is small, of order 1/ In(Q/m).

6 Strictly speaking, this application of contour integration includes values of k~ all the way to infinity, i.e., outside the
soft region. To see that this is not a problem, observe that the contribution we use in later equations is from the gluon
pole. The errors, i.e., the non-pole terms, are from a non-soft region which does not concern us here.
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The A-quark denominator (after setting k on the gluon mass-shell from the contour
integration and after setting p% = m?) is

(pa—k) —m* = =2pik™ —2p k" +m;. (10.36)

We write 2pfk~ in terms of rapidities as m,/k3 + mgeym ~Y, where y,, is the rapidity of
the A quark, also taken as the rapidity of the n; vector. The simplest soft approximation
replaces the denominator by —2 pj{k’ . The second term in the denominator becomes equally
important when the rapidity of the gluon is comparable to that of py4, thereby providing
a cutoff requiring y < y,,. Next, in the unapproximated graph, the k~ poles are all in the
lower half plane if kT > pX; this limits k™ to be less than pj. The mg term in (10.36)
provides no stronger constraint.

Similar limits are associated with the B quark.

If the gluon mass is comparable to the quark mass, as we will assume for the moment, then
the limits kt > m,k* < pX,andk~ < pj dominate, giving the triangle in Fig. 10.7(a). The
two diagonal lines give y,, + In(kr/m) Sy S yp, — In(kr/m), which intersect atkr ~ Q.

But when the gluon mass is made small or zero (as in QCD perturbation theory), the
range of kt extends down, and other limits become important.

Finally, the graph has a renormalized UV divergence for kT >> Q. We assign this to the
line going vertically up from the top vertex of the triangle.

The area of the triangle is 1(y,, — yp,) In(Q?/m?*) = 1 1n*(Q?/m?), which gives the
leading-logarithm approximation

2102( 02 /12
=8I QM) Py Ppvs. (10.37)

1672
This has two logarithms for a one-loop graph, unlike the case for ordinary renormalization-
group (RG) logarithms, which are one per loop. At high energy the approximated ver-
tex i Ppy*Ppup equals the unapproximated vertex it4y*vg, up to a power-suppressed

LLAof I') =

correction.

The effects of the cutoffs are important only in a finite range of y and In kt near the edges
of the triangle. Thus they do not affect the double logarithm. At large Q2, the sides of the
triangle contribute single logarithms, while the vertices contribute constants. The vertical
line above the triangle gives an RG single logarithm. Further contributions are suppressed
by a power of Q.

All-orders sum of LLA

This line of argumentation can be extended to higher loops, to give the leading logarithms
(Sudakov, 1956; Jackiw, 1968) for every order of perturbation theory. These form an
exponential series. If the assumption is made that it is sufficient to retain the leading
logarithm in each order, then one obtains the LLA for the form factor:

F o 78 0@ /mD/06T) g Py P, (10.38)

We will derive this from our general factorization approach in Sec. 10.11.5. The result given
above is for the case of a massive gluon with on-shell external quarks, and was first found
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(a) (b) (c)

Fig. 10.8. Modifications to Fig. 10.7(a) when: (a) the gluon mass is zero;
(b) the gluon mass is zero but the external quarks are off-shell; (c) the quark and the
gluon masses are both zero, and the external quarks are on-shell.

by Jackiw (1968). As we will see below, the case of a massless gluon with off-shell external
quarks has double the coefficient of the double logarithm, and this was what Sudakov
(1956) actually calculated.

At large Q the LLA form factor drops faster than any power of Q. This obviously
indicates that power-law corrections might dominate, for sufficiently large Q. However,
without further information, there is no guarantee that non-leading logarithms have to fall
into the same pattern of summing to a strongly decreasing function of Q. For example,
as a hypothetical example, if the non-leading logarithms consisted of a single term g2,
this would be non-vanishing at large Q, and would dominate the LLA. In some analogous
problems in QCD (Ch. 13) such a phenomenon does occur, a standard example being the
Drell-Yan cross section at small transverse momentum; the LLA does not even get correct
the qualitative behavior of the cross section. The factorization approach provides a much
more systematic and powerful approach to dealing with these issues.

10.5.3 Massless gluon; off-shell external quarks

The above estimates assumed that the gluon and quark masses are comparable, and that the
external quarks are on-shell. But in QCD the gluon is massless. Although a massive gluon
might be considered more representative of the real physics of a theory with quark and
gluon confinement, perturbative calculations definitely need a massless gluon. Moreover
applications to QED require a massless photon instead. We will also need to consider vertex
graphs embedded in bigger graphs, so it is also useful to understand the effect of taking the
external quarks off-shell.

Figure 10.8(a) shows the effect of setting m, = 0, which is to remove the lower cutoff
on kt. Thus a leading contribution occurs all the way to k = 0, or minus infinity on a
logarithmic scale. As for the rapidity range at low k, the dominant restriction is caused by
the rapidities of the external quarks, which give the lower vertical lines. The integral has a
divergence, which is a conventional IR divergence, as in QED, with a coefficient that grows
with energy like y,, — yp,.

The IR divergence arises from the 1/(k~k™) factor in the soft approximation. If we now
set the external quarks off-shell, there is an extra term in the quark denominators. This
cuts off the kr integral at the lower end. If the external quark virtuality is of the order of
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the quark mass, i.e., m?, the result is shown in Fig. 10.8(b). There are effective cutoffs at
k= and k* of order m?/Q. The leading-logarithm result comes from the diamond-shaped
region, which has twice the area of the triangle in the massive gluon case, thereby doubling
the coefficient of the double logarithm.

The general factorization theory we will establish requires the use of Ward identities. In
a real physical quantity, we must combine the off-shell form factor with the contributions
from other graphs, so the off-shell form factor does not represent the final result for a
physical quantity.

Finally there is the case of the on-shell form factor with all particles massless. In that
case, there is no longer a cutoff caused by the rapidities of the external lines, so we have the
region shown in Fig. 10.8(c), where we effectively have a doubly logarithmic divergence
composed of both IR and collinear divergences.

10.5.4 Region for CsT"y

In contrast to the actual denominators of the quark propagators, the approximated eikonal
denominators (n; - kK +i0) (—n; - k +i0) in the soft term Cy provide cutoffs only at the
rapidities of the Wilson line. As illustrated in Fig. 10.7(b), the limits on gluon rapidity,
v2 < v < yi, arethe same at all kt. We choose the rapidities of n; and n; to be approximately
the same as the rapidities of the external quark lines p4 and pg. The soft term forms a
good approximation at small y and k. It is most accurate at the center of the bottom line
in Fig. 10.7(a) and (b), and in fact is equally good for even smaller kt. The approximation
degrades as one approaches the upper lines of the triangle; one can characterize these lines
as where the error in the soft term is around 100%.

The soft term obviously contributes in a region where the original graph does not. This
is above the triangle, and therefore where at least one of the following holds: the energy
of the gluon is large, its rapidity is large, and/or its transverse momentum is large. These
all concern other regions than the soft region. Compensation for the extra area for the soft
term will be obtained from subtraction terms in the terms for regions bigger than the soft
region.

We can apply the same area argument as we used for the LLA for the original graph.
There is evidently an infinity (multiplied by y; — y,) for the infinite range of kt. This can
be regulated dimensionally and renormalized, although we will not exhibit the calculation
yet.

Our general proof will require us to understand the errors in the soft approximation
more systematically. To do this we return to ordinary non-logarithmic momentum space.
The PSSs forming the skeletons of the leading regions are shown in Fig. 10.9(a). The
relative error in approximating the integrand is

— + -
|CSI] 11| _ 0<|k_+|’ |k_7|’ 872(}'” 7y)’ eZ(yy,,B)> ) (1039)
ICs il Py Pg

Here I; denotes the integrand. One might expect the denominator to be just the absolute
value |Cs1|. But we use the double bars, ||Cs I ||, to indicate that in a more general situation
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kO
B fl
.

Fig. 10.9. (a) Leading PSSs for one-loop Sudakov form factor. (b) Neighborhood of S for
evaluating errors in soft approximation. (c) Neighborhood of A for evaluating errors in
collinear-to-A approximation. The squashing on the left indicates that we restrict attention
to positive rapidity.

a modification is needed. The problem is that there may be what we can term accidental
cancellations; for example, a numerator might have a variable sign, with necessarily a
zero at some place in the integration. We wish to use the general order of magnitude of
the integrand, for which we use the power-counting estimate of Cg/;, obtained by the
methods of Sec. 5.8, with avoidance of any accidental cancellations. The result is denoted
ICs1;||. We also use the approximated integrand Cs/; in ||Csl, ||, rather than the original
integrand /;.

The right-hand side of (10.39) simply comes from listing the sources of error in the soft
approximation, i.e., from examining the terms in the quark denominators and numerators
that were neglected in making the soft approximation. The first two terms simply measure
distance from the center of the soft region, viewed in the center-of-mass frame; these
sources of error are roughly constant on surfaces such as those in Fig. 10.9(b) surrounding
S. In a purely Euclidean asymptotic problem, this would be the whole story.

But in a Minkowski-space problem, such as ours, the errors worsen as the rapidity of
the gluon gets large, and approaches the A and B lines. The errors are given quantitatively
by the last two terms in (10.39). These are of order m?/Q? when the gluon rapidity y is
small. But when the gluon rapidity is comparable to that of one of the external quarks, the
errors become of order unity.

10.5.5 Why integrate CsI'y, etc., over all k?

Given that CgI'| has important contributions from a much broader range of loop momentum
than has Ty, it is natural to want to restrict the integration to, for example, the triangular
range in Fig. 10.7(a). Nevertheless we define CsI"; (and all other Cg) to have an integral
over all loop momenta. The combination of CgI'; with terms for other leading regions
will not only cancel the large excess regions, but will correct the inaccuracies in the soft
approximation at the edges of the triangle. Then the sum over CgI'; will give a complete
and useful representation of the leading-power part of I';.

The reasons for not using cutoffs (beyond those given by the finite rapidities of the
Wilson lines) are as follows. To get a systematic treatment, we need to have operator
definitions for the factors in the factorization theorem. An example definition is (10.32),
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whose main one-loop graph gives CsI';. A cutoff on the loop momentum k would require
an unpleasantly complicated operator. It is not known how to do this and combine it with
the Ward identities that we use later. Proving Ward identities needs shifts in loop momenta
and uses gauge-invariance properties of the operators; these are difficult to make consistent
with a cutoff. Instead, without cutoffs we are led directly to simple Wilson-line operators
whose gauge-invariance properties are obvious.

10.5.6 Collinear-A term Cy4

We now construct C4I", corresponding to the gluon being collinear to p4. First we just
apply the approximator for region R 4. Using the definitions in the list starting on p. 326 we
get

) . A
T,T) = =% /d"k o T2
@y (K2 —m2 +0) ws -k +10

« iay* (PA - ’% +m) ,PBVM (—PE)/+ — )/_k+))/_k+PBUB
[(pa — k) —m? +i0] 2pgk™ +i0]
_ lg2 /dnk — 8k ﬁAVK (pA —k+m)7337/”773(—w§)v3
T Qny (K2 —m2 +i0) [(pa —k)> —m?+i0] (w - k +i0)

(10.40)

The collinear approximant changes the quark denominator (pg + k)*> —m? to 2pzk™,
because in the hard subgraph it replaces pp and k by massless vectors in the minus and
plus directions, and sets masses to zero. Examining the neglected terms 2p 4k~ and k2,
with the knowledge that 2k*k~ and k% are comparable shows that the relative errors in
this approximation are of order e > ~Ys) and ¢~ ~»s)kr/m. Thus the approximant is
accurate when the gluon rapidity is much larger than the rapidity of the B line. There is
also a degradation for large k1t >> m, but that concerns the hard-gluon region, to be treated
later.

The region of (y, kt) space for T4I"; is shown in Fig. 10.7(c). Since the eikonal denom-
inator w, - k is k*, without an additional k™ term, the integral has a rapidity divergence,
where the rapidity of the gluon goes to negative infinity.

Our aim is to construct a term for the collinear-to-A region such that C4I'y + CsT'; is
accurate over the whole of the soft and collinear-to-A regions. Observe both of the soft
term and the collinear approximation contribute in each other’s regions. So we compensate
the double counting by subtracting

TTsT) =

ig? fd"k — 8k ni(—w)) iiaPpy"Ppus (10.41)
(k '

Q) 2—m2 +i0) (=ny -k +i0) (wy - k +i0)

The n,/(n, - k + i0) factor of TsI'; is in the hard subgraph with respect to the collinear-to- A
approximator T4. Hence applying T4, defined by (10.19a) and (10.23), changes n, to the
light-like vector wy,.
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We therefore define the term for the A region by

Call'i =To(1 = To)T'y

ig? /d"k —8x sy (p, — k+m) iant
(k?

~ Qay —m2+i0) [ (pa— k2 —m>+i0  —nj -k +i0
(—w}
2 pLyRPhug. 10.42
X (02 k£ 70) Y Ppup ( )

This results in the cancellation of the rapidity divergence, justifying our use of a light-like
vector in the collinear approximant. The cancellation is because the soft approximant on
the A side is accurate when the gluon has large negative rapidity relative to p4. Thus we
get a cancellation in the square-bracket term in (10.42) with the result going to zero as the
gluon’s rapidity goes to minus infinity.

The placement of the Dirac projectors Pp is also critical to making the formalism work
correctly.

The result is that the C4I'; term is power-suppressed in the soft region; Fig. 10.7(e). The
combination of the terms constructed so far, CsI"y + C4T'y, gives a good approximation to
') over the whole of the soft and the collinear-A regions, with a restriction to the positive
rapidity side.

We can see this by observing that the remainder is I'j — CsI'y — CaT'y = (1 — Tx)(1 —
Ts)I'y. The 1 — T factor gives a suppression basically by a power of |k|/Q but with a
degradation to e~©»4~Y) as we go around the soft PSS and approach the PSS A, given
that y; is close to y,,. At this point we restrict to positive gluon rapidity, leaving negative
rapidity to our treatment of CgI"y. The 1 — T4 factor gives a suppression e, when kr < m.
At the soft end of the A region, this compensates the worsening of 1 — Ty factor. It also
gives a power-suppression over the rest of the A region, a power of kr/Q. Thus we get
surfaces of constant error for CsI"; + C4I"; as symbolized in Fig. 10.9(c).

The collinear-to-A term itself is suppressed in the soft region, because of the 1 — T
factor, as illustrated in Fig. 10.7(e). Thus for central rapidity only the Cg term is needed to
get a good approximation to I'j, which it was constructed to do.

Furthermore, the soft subtraction has ensured that the C4 term is also suppressed in the
whole of the opposite collinear region. This is an example of a general result critical to our
general treatment of overlapping regions: C,4 is suppressed both in regions smaller than A,
i.e., S, and in regions that overlap with it, in this case the B region.

A generally applicable argument is that in applying 74 we made the first term in the
expansion of the B propagator in powers of k= and kt. In T4(1 — Ts)I'y, the 1 — Ty factor
gives a suppression for small k™ and kt from its application to the A side. Going to the
B region involves extrapolating the common B-side factor to large k~. The suppression at
small k™ and kt continues to apply.

Effectively, once the approximator for the A region, T}, is applied, the power-counting
in the B region corresponds to that for the intersection of the two overlapping regions, i.e.,
ANB=S.
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In contrast to these cancellations, there is a contribution in the upper region in
Fig. 10.7(e), where the gluon rapidity is positive, but its k* is much larger than p}. Such a
contribution is not present in the original graph, but is an artifact of the soft subtraction, in
the term —T4TsI'y, as is the divergence when kt — oo. Strange though this contribution
might appear, it will allow us to derive convenient evolution equations by differentiating
with respect to the rapidity cutoffs associated with the vertical lines in Fig. 10.7(b), (e),
and (h). When we add Cg, C4, and Cp, there is a cancellation of these extra contributions
for the case that kr < Q. This leaves only the region kT 2 @, which is the province of
the hard region H, which we have yet to treat, and whose double-counting subtractions
will compensate for the incorrect value of Cs + C4 + Cp in the hard region. There is also
an actual divergence as kt — 0o, which we remove by UV renormalization, which will
correspond to conventional UV renormalization defining the operators used to construct
the soft and collinear factors in the factorization property.

Note that when the transverse momentum is large, kt > Q, there is also an important
region of negative gluon rapidity. This is surprising given that C4I'; is intended to deal with
gluons that are collinear to p,, i.e., of positive rapidity. But the problematic region is of
hard momenta, and so its full treatment will also bring in the term Cy I"|, whose subtraction
terms will correct the apparently problematic regions.

10.5.7 Collinear-B term Cpg
The collinear-to-B term is constructed exactly similarly to the collinear-to-A term:
Cpl'y = Tp(1 — Ts)I'y

_ig? /d”k —8&ich iaaPpy"Ppwi
Q2ny (2 —m2+i0) —w; -k +i0

N [(—Pg—k+m))/va —n} vp ]

(ps + kP2 —m>+i0  ny-k+i0
The contributing regions for this term and its components, shown in Fig. 10.7(f)—(h), are,
naturally, a mirror image of those for the A region.
Just as before, the sum of the soft and collinear-to-B terms, i.e., CsI'; + CpI'y, gives
a good approximation in the combination of the S and B regions. We next observe that
each of C4I'} and CpI'; is suppressed in both the central soft region and the opposite
collinear region. Thus we can add all three terms to get CsI"; + C4I'; 4+ CpI' and the
result provides a good approximation to I'; over all three regions, including both positive
and negative rapidity.

(10.43)

10.5.8 Hard term Cy

The only degradation in CsI"y + C4I'y + CgI'y as an approximation to I'; occurs as we
move away from the combined S U A U B regions, i.e., as we go into the hard region H of
large transverse momenta and of virtualities of order Q*. We define the approximator Ty
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for this region to make a massless approximation. As before, we avoid double counting in
the Cy term specific to this region by applying the approximator to I'; only after subtracting
the contributions from smaller regions, i.e.,

Cyl'y =Ty — CsI'y — Ca'y — CINy)
= Ty(l — Ty — Tp)(1 — To)T;. (10.44)

We have seen that CsI'y + C4I'y + CpI'y gives a good approximation to I'; near the
combined S, A, and B regions, so that 'y — CsI'; — C4I'; — CpI'; is power-suppressed in
the distance to any of these regions. Thus the remaining contribution is when the momenta
are hard, i.e., for k1 of order Q or larger, i.e., in the H region. So we define the approximator
Ty for this region to set masses to zero, and to make p4 and pp massless. It also replaces
the n and n, vectors (in the definition of Ts) by light-like versions: n; +— w; = (1, 0, Or),
and n, — wy = (0, 1, 01). The soft term T5I"; and the soft subtractions in C4I'y and CgI';
now have the same light-like vectors, so they combine to a single added term, and we get

ig? -1 K - Byt (=pavt — By
Cul'y = i/d”k fﬁAPB{ 14 ipAJ/ k))f ( PsY by '
(k* +1i0) [—2pf k= + k% +i0] [2pzk* + k2 +i0]

Qn)y
ALV S B S (—=psv* =By~
—2pfk=+k24+i0" kTt +i0  —k=4+i0" 2pgpkt +k2+i0

1 -1

n : 10.45
T et k++i0}PBUB (1045)

10.5.9 UV divergences

The original graph I'j has a UV divergence. This is canceled in a complete calculation of
the one-loop vertex when the correct definition is used for the current at the photon vertex.
The current is a Noether current for a conserved charge, with unit coefficient when the
current is expressed in terms of bare fields: j* = Yoy *. In terms of renormalized fields,
it has a factor Z: j* = Zyyry*, and this factor of Z, cancels the divergences in the loop
calculations. This is a well-known standard result in renormalization theory.” This results
in a non-zero anomalous dimension associated with the one-loop graph. In the full form
factor calculation, we must also allow for the LSZ residue factors for the external on-shell
quarks. These are also associated with Z,, but inversely, so that the complete form factor
is RG invariant.

However, the hard, collinear and soft factors in (10.11) all have their own UV renor-
malization and need renormalization that is different from that in the current itself. This
is illustrated by the one-loop quantities computed above, CsI', C4I"|, CgT'j, and CyT'y.
Their UV divergences are associated with new vertices: where a Wilson line attaches to
an ordinary field (in C4I"; and CpI"}) and where two Wilson lines attach to each other (in

7 However, there are some complications beyond the ones seen in most textbooks. See Collins, Manohar, and Wise
(2006) for a correct treatment.
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CsT'y and the subtractions in C4I'; and CpI"y). As we will see, all these divergences are
logarithmic. Our ultimate definitions of the region contributions include renormalization
counterterms to remove the UV divergences.

Finally, Cy " is formed from the original graph together with subtractions for the
smaller regions, all taken in the massless limit. Therefore, in the sum over all regions, i.e.,
CsT'1 4+ C4T'y + CpI'y + CxTTy, the extra UV divergences cancel to leave just the same
UV divergence as in I';. This is necessary if this sum is to give a correct large-Q asymptote
for I'y.

We will treat the extra UV divergences and their renormalization in more detail later.

But for now we just examine one simple case, the UV divergence for CsI";, and indicate
some interesting properties, notably that it depends on the directions of the Wilson lines,
and more specifically on the hyperbolic angle between them.

In the formula (10.29) for CsI"y, the integrals over the longitudinal momenta are readily
performed, e.g., by contour integration over k~ followed by an elementary integral over
k™. Without the UV counterterm

CSFI noc.t. —g2(27T,U~)26 / 2.2, 1
= — th(y; — & “kr ——
Ty = (y1 — y2) coth(yr — y2) TEy 2
2 42 €
= % (31 — ) coth(y; — y)T(e) ( ). (10.46)
8 my
where Iy is given by (10.31). The UV counterterm in the MS scheme is
2
8-S
S2c 1 — y2)coth(yy — y2), (10.47)

so that the renormalized CgI'; is

CsT'1 renorm. _82 [Lz
= —=(y1 — y2)coth(y; — y)In —..
I = (y1 — y2) coth(yr — y2) "

(10.48)
g

Observe the dependence on the difference in rapidities between the lines. (Lorentz
invariance requires that the dependence is on the rapidity difference, not on the rapidities
separately, since we can always transform to a frame in which one rapidity, y, say, is zero,
in which case the other line’s rapidity is changed to y; — y,.)

Since e~ ~ m?/Q? atlarge Q, a correct leading-power approximation is to replace
coth(y; — y) by unity. This leaves the remaining factor of y; — y,. Therefore, there is a
further divergence if we take the Wilson lines light-like, an explicit example of a rapidity
divergence.

We call y; — y, the hyperbolic angle between the two vectors. The name is appropriate
because if we continue y; and y, to imaginary values, with y; — y, = i6, then n; and n,
are vectors in Euclidean space, and 6 is the ordinary angle between them. (Actually 6 is
the angle between n; and —n5,.)

We have seen that CsI"; is a one-loop term in the vacuum expectation value (10.32) of
a Wilson line composed of two straight line segments in directions n; and n,, joined at a
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Fig. 10.10. Notation for derivative of CsI"; with respect to y;. The crossed vertex is defined
as a rapidity derivative of the Wilson line, in (10.49).

cusp. Our calculation has shown that there is a UV divergence associated with the cusp and
that both the divergence and the associated anomalous dimension depend on the hyperbolic
angle between the two lines.

10.5.10 Evolution with respect to Wilson-line rapidity

To illustrate evolution of the soft factor with respect to the direction of a Wilson line,
consider the derivative of the one-loop soft term CgI'; with respect to y;. This is obtained
by differentiating the n-dependent factor:

3 n 9 (1, —e 21, 0r)
oyy \—ny-k+i0)  dy; \—k— + e 21k+ +i0

SR i — (10.49)

= def . . . .
where k = (kT, —k™, 01). Let us represent this object by a vertex with a cross, as in

Fig. 10.10. Then the derivative of CsI'; is

aCsIy  ig? / . 1 —ntk - ny T

oy Q) (k2 —m2 +i0) (—n; -k + 02 (ny - k + i0)

+ UVt

(10.50)

The key to further simplifications in the full evolution equation is that the derivative with
respect to y; restricts the integral over k to rapidities near y;, to leading power, so that
we can take the limit y, — —oo without a rapidity divergence. To see this, we observe
that in the integrand of (10.50), when the rapidity y of the gluon is much less than y;, the
factor 1/(—n - k)*> becomes 1/(k~)* o %, which gives a suppression. So (10.50) concerns
gluons of rapidity close to y;.

Therefore in (10.50) we replace n, by a light-like vector w, in the minus direction.
The numerator and denominator factors 1, - k and n, - k both become wy k™, and therefore
cancel, so that

dCsTy  ig? /d”k 1 2T
Iy @my (k2 —m?2 +i0) (k= + e~ V1k* +i0)?

+UVet + 0(e 2 ?). (10.51)
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The unsuppressed first term is independent of y;. The k= and k" integrals are easy to
evaluate, giving

aCsl'y —g2 / d"2k

dyr Q!

T =2(y1—y2)

'y + UVet. 4+ O(e 27, 10.52
k2 + m? 0 ( ) ( )
consistent with (10.46) and (10.48).

We will see that the evolution equation for the soft factor S in the factorization property
(10.11) has the form

dInS 1 !
Gy = 2 K0 1,8 + 020 7), (10.53)

with the kernel K being independent of y; and y,. The right-hand side of (10.52) is in fact
the first term in the perturbation expansion of %K . In accordance with the convention in
Collins (1989); Collins and Soper (1981); Collins, Soper, and Sterman (1985b), a factor %
is defined to accompany K. The lowest-order value of K, from (10.52), is

2
—8
K=—21n

,U~2
=+ 0(g™h. (10.54)
4 A

m2
It follows from (10.53) that § depends exponentially on y; — y»:
S(yr —y) = Soe%()'l—)’z)’( [1 + O(e—z(yl—)’z))] , (10.55)

with Sy independent of y; — y,.

The quantity K also plays a key role in the evolution of the other factors in (10.11), and
analogous results hold for factorization theorems for other processes, like Drell-Yan with
measured transverse momentum for the lepton pair. In using the factorization theorems, it
will be necessary to use different values of the renormalization scale y in different factors,
e.g., 4 ~ Q in the hard factor H, but it ~ mass in the soft and collinear factors. Thus the
RG equation for K is also important. This has the form

dK

T = ~7K©: (10.56)

From (10.52), we read off the one-loop term in the anomalous dimension:

g2

=55+ 0(g", (10.57)

YK

which plays a central role in applications.
This anomalous dimension has two roles, of the kernel of the RGE for K, and as
controlling the rapidity dependence of the anomalous dimension ys of the soft factor S:

dK __ d amS _ 9 dinS _ oy

Yk = (10.58)

Tding . Cdinpg dyi  dyidlnp T ay’

where we have dropped power-suppressed terms of order e ~2(1—32),
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10.6 Rationale for definition of T

The definition of the region approximator Tk in Sec. 10.4.2 is obtained from the first
term in an expansion in powers of small variables. However, the actual soft-to-collinear
approximators were modified, to use space-like auxiliary vectors in (10.17) and (10.18),
and to have specific i 0 prescriptions in (10.20)—(10.24). We now justify these modifications.
The modifications are unique, given some mild assumptions which are used to ensure the
proofs are relatively simple.

Some of the justifications are more readily understood by referring to the one-loop
example in Sec. 10.5.

The Grammer and Yennie (1973) paper gives a general approach to obtaining a leading
approximation for soft gluons (and for related situations). But their approximator (in their
K term) differs significantly in form from what we wrote in Sec. 10.4.2. This indicates that
a variety of alternative approximators are conceivable, and we should justify a particular
choice of approximator.

The Grammer-Yennie method was constructed to deal with IR divergences in QED;
it concerns regions where photon momenta go to zero. In that situation IR photons do
not interact with each other, even via loops of lines for electrons and any other matter
fields. The Ward identities are particularly simple in an abelian theory. Not only do the IR
divergences factorize from the rest of the cross section, but it was shown that the complete
IR factor is the exponential of its one-loop value. The correctly computed divergence
includes contributions from IR photons with rapidities comparable to that of an external
charged line.

In the asymptotic problems treated in this book, what we mean by soft momenta is
much broader; we include momenta whose absolute size may be large, but still much less
than Q. Thus interactions of soft lines are important: the S factor in Fig. 10.3(b) is an
arbitrary multigluon graph. However, we do not require the soft factor to correctly treat
low-energy gluons of high rapidity; these belong in the collinear factors with other high-
rapidity phenomena. The soft factor becomes a matrix element of Wilson lines, as do the
collinear-to-hard gluon couplings. Furthermore the non-abelian Ward identities used in
QCD are more complicated than the Ward identities in QED.

Consider our soft-to-A approximant, (10.21). In comparison, the original Grammer-
Yennie approach would use no approximation of k45 on the A subgraph, and would have
a more complicated non-linear function in place of our denominator kg, ; - n1. We will
also need to justify the particular {0 prescriptions used in the denominators in (10.20)—
(10.24).

10.6.1 Structure of soft and collinear approximants

The structure of all our generalized Grammer-Yennie approximants is

Ak S(k),, = Ak

v . ]’é v
Ui sy, = AR S sk, (10.59)
u k-v

-V
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where

A ut kv

k= ———. (10.60)

u-v
Here u and v are fixed vectors chosen so as to extract the leading behavior of A - S in
the design region of the approximant. (That means, for example, that a soft-to-collinear-
A approximant should give an approximation that is accurate to leading power when the
momenta in S are soft and the momenta in A are collinear-to- A.) The names of the vectors in
(10.59) are changed from our original formula, to indicate that we address general structural
issues, allowing possible modifications of the formalism.
In general, multiple applications of (10.59) are used, one for each gluon joining A and S,

as in (10.21). All the considerations in this section apply equally if the pair AS is replaced
by BS, HA, or H B, merely needing a choice of appropriate auxiliary vectors u and v.

10.6.2 Requirements on soft and collinear approximants

To show that this form is required, and to determine further restrictions on the auxiliary
vectors wy, np, etc., we apply the requirements on region approximators 7.

1. Tg should give an approximation correct to leading power at its design region R.
2. It should be compatible as necessary with contour deformations applied to the original
graph.

We have already dealt with the consequences of this requirement.

3. The conversion of the sum over graphs and regions to a Wilson-line form should be
exact. Compare the derivation of the gauge-invariant parton model in Sec. 7.7.

That is, in applying the Ward identities to Grammer-Yennie approximants, there
should be no remainder terms. Typically such remainder terms are power-suppressed
and hence innocuous in the design region of Tk, but can be unsuppressed elsewhere.
These terms are not in principle undesirable, but they make it hard to construct complete
proofs of factorization.

4. The approximant should be exact when applied to the Wilson lines derived from it.

Ward identities applied to the approximated Wilson line give back exactly the Wilson
line, as required by item 3. So the remainders between the graph and approximant must
sum to zero. It avoids a probably hard subsidiary proof if the remainders are not zero
term-by-term.

5. Summing the gluon attachments should actually give a Wilson line with a straight path,
rather than some more general object, at least if this is possible consistently.®

One can imagine more general ways of constructing gauge-invariant operators, e.g.,
by having Wilson lines with non-rectilinear paths, or by having an integral or sum over
Wilson lines with different paths and given endpoints. All such cases are even more
complicated than what we are already dealing with, so we should avoid them if possible.

8 In the applications treated in Ch. 13, the definition of gauge-invariant transverse-momentum-dependent parton densities
will require a minor modification to this assumption, with an extra segment of a Wilson line at infinity. The effects of
the modification will cancel in the ultimate results.
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(a) (b)

Fig. 10.11. Hard factor times (a) normal local soft factor, (b) conceivable non-local
soft factor.

6. After applying Tk, the hard subgraph should not depend on soft momenta.

Close to the design region of T, the hard subgraph obviously has a power-suppressed
dependence on soft momenta. But if the dependence is not removed exactly in the
definition of T, there will be significant dependence of H on soft momenta, and this
will introduce a complicated non-locality in the operator defining the soft factor. From
the sum over Fig. 10.3(b), we will derive a factorization with soft factors defined by the
vacuum matrix element of two Wilson lines joined at a point, so that the hard factor times
soft factor is as in Fig. 10.11(a). But if the hard subgraph H had dependence on momenta
circulating from the soft factor, the hard subgraph would give non-locality between the
otherwise-joined ends of the Wilson lines, as in Fig. 10.11(b). We could avoid this by a
subsidiary expansion of H after the use of Ward identities, but at the expense of hard-
to-control remainders in diagrammatic treatments: the subtraction formalism would not
correspond exactly to factorization. There would also be issues with gauge invariance
of H. It is simpler if we avoid the extra step, as we will be able to.

7. An approximated momentum % is a linear function of the unapproximated momentum
k= P). Applying the approximator a second time reproduces k,ie., P(P(k)) = P(k).

One can find other requirements, but these are the ones that impinge most directly on the
issues we wish to discuss. Evidently some of the requirements are not absolute, but are
to prevent us from going outside known general ideas on gauge-invariant parton densities,
etc. unless we are absolutely forced to.

10.6.3 General form of Grammer-Yennie-type approximation

The different cases of a Grammer-Yennie-type approximant are very similar. So to obtain
its general form from the above requirements, it is sufficient to treat the case of a gluon of
momentum k connecting the S to the A subgraph. The relevant approximant is the approxi-
mated A subgraph multiplied by a special factor and the unapproximated S subgraph, as in
(10.59). We regard this as the approximated A subgraph (which is 1PI in the gluon) times
the matrix element with a gluonic operator that defines S. To connect this to the Wilson-line
formulation, the result is to be expressed by a Fourier transformation in terms of an integral
over the coordinate-space gluon field.

The Wilson-line requirement implies that the coordinate-space integral is along a straight
line, of some direction v, which we will identify with the same vector in (10.59) and (10.60).
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That is, in coordinate space the product of S and the approximated A subgraph has the form

/ dA Fa(A) X(\v), (10.61)
for some function F,, with X(x) being the Fourier transform of S(k),
d*k
Xx)= | — 5 Sk). 10.62
) /(2n)4e (k) (10.62)
In momentum space the product of S and approximated A is
[ dk falk - v)Sk) (10.63)
_ -V s .
Qmt "
where
falk -v) = / dr e* P FL (). (10.64)

Hence the approximated A is a function of v - k. Since £ is a linear function of , it is a
fixed vector times v - k. Reapplication of the approximator reproduces &, so k must be of
the form (10.60).

The exactness of the Ward identities in a non-abelian theory requires the vectors u to be
the same at all gluons connecting S to A.

At each gluon between S and A, the approximant therefore has the form

A(K)“S(k), > Ay M (k)" S(k),, (10.65)

where M is some matrix to be determined. The approximant is exact if A* is obtained from
a Wilson line in direction v; in that case A is some function of k - v times the vector v.
The function is unchanged by the approximant, since & - v = k - v. So the requirement of
exactness of approximating a Wilson line gives

v M), = v, (10.66)

from which we find that M,," is of the form a,,v"/(a - v) for some vector a. For the Ward
identities to work exactly, we need a* k*. The structure in (10.59) follows.

10.6.4 Auxiliary vectors in soft approximation

In setting up the soft-to-collinear approximators, (10.21) etc., the natural expansion in small
variables would make the vectors n and n, light-like, in the plus and minus directions. But
to cut off rapidity divergences, we made them non-light-like with rapidities y; and y,.

We now derive the i0 prescription in (10.20) and (10.22), and determine that n; and
n, are space-like. Examination of one-loop examples is sufficient for this. As we saw in
Sec. 5.5.10, the soft approximation fails in the Glauber region, i.e., when |[kTk™| < k%.
We avoid the Glauber region by deforming the k™ and k~ integrals away from the poles
on the quark propagators. The approximators are applied on the deformed contours, so
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the denominators in (10.20) and (10.22) must use i0 prescriptions compatible with the
deformed contours.

In (10.28), the simplest deformation is symmetric. Where the real parts of k* and k~
are in the Glauber region, we deform k% into the upper half plane away from the pp + k
pole, and we deform k™ into the lower half plane away from the p4 — k pole:

kt = kT +iA, k= k™ —iA, (10.67)

where A is positive and of order k. The signs reflect that both the quark and antiquark
are in the final state relative to the hard interaction, and the reversed sign between k*
and k~ is because k flows into the A subgraph but out of the B subgraph. In (10.29), the
Grammer-Yennie denominators are

1 1

= . 10.68
(—ny -k +i0)(ny -k +i0)  (—k= 4+ e 2k+ +i0)(k* — €22k~ +i0) ( )

Not obstructing the contour deformation determines the k™ + i0 and —k~ + 0 parts to be
as written, since e>*> and e~ are much less than one.

Fourier transformation of the Feynman rules for the Wilson lines shows that in coordi-
nate space they are future-pointing, corresponding to the fact that the external quark and
antiquark are in the final state.

We will also use factorization for other processes, and it is important that, if possible,
we have universality of the collinear and soft factors between processes. Now, as explained
by Collins and Metz (2004), other processes require an asymmetric contour deforma-
tion. As we will see in Sec. 12.14.3, in DIS we would use a contour deformation in k™
only:

kP kT Hi0(Q), ke k. (10.69)

The large k™ deformation is away from final-state singularities, but k~ is generally trapped
at small values by a combination of initial- and final-state singularities associated with the
hadron target in DIS. This asymmetric deformation takes k from a Glauber configuration to
a collinear-to-A configuration, and hence out of the soft region. But the soft approximant
is to be integrated over all momenta, and it is used in a subtraction in collinear terms, so
auxiliary denominators must not obstruct the contour deformation.

To get maximum universality of the soft and collinear factors, we should avoid changing
the Wilson lines when we change processes, if possible. This requires (Collins and Metz,
2004) that our soft approximant for the Sudakov form factor also be compatible with the
asymmetric deformation (10.69). This is achieved if the relative signs between the i0s and
the k* terms in (10.68) all be the same, and therefore as written. A similar argument applies
to the £~ terms. This determines all the signs in (10.68), from which we deduce that n; and
n, are space-like, in agreement with our definitions.

An important advantage is that, since gluon fields commute at space-like separation, the
use of space-like Wilson lines ensures automatic compatibility between the path ordering
defining the Wilson lines and the time ordering used to define Green functions.
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A disadvantage arises when one extends the use of the approximations to cases with
emission of real gluons. Then singularities at k - n = 0 with n space-like occur in the
region of physical gluon emission. But with a time-like vector, the singularity is restricted
to k = 0, because of the positive energy condition on a physical state. (In the rest frame of
n, k -n = k°, which is positive for a physical state.)

If one gave up the argument about universality, one could use time-like auxiliary vectors.
In the Sudakov form factor (and generally in reactions in e™e~ — hadrons) one could use
time-like future-pointing vectors. In DIS one would still need a future-pointing vector on
the struck quark side, but a pasz-pointing vector on the target side. The issues of universality
in this context need further investigation.

10.6.5 Auxiliary vectors in the collinear approximants

As for the collinear-to-hard approximants, subtractions for soft regions cancel the possible
rapidity divergences; we will see this as general result. Therefore it is sufficient to use
light-like vectors in the collinear approximants, as given in (10.19), (10.23), and (10.24).

The i0 prescriptions in (10.23) and (10.24) are determined in the same way as in the soft
approximants. The signs are in fact the same, and correspond to future-pointing Wilson
lines. Although the Glauber region appears to have nothing to do with a collinear region,
the approximators are applied to the graph as a whole with a deformed momentum contour.
The momentum denominators in the collinear approximant must therefore be compatible
with the contour deformation out of the Glauber region.

10.6.6 Alternative definition of the collinear-to-hard approximants

In our definitions in Sec. 10.4.2, we chose all the approximated momenta to be light-like.
Thus in (10.59), the vector u is light-like. Although this is generally the most convenient
choice, other choices are conceivable. However, constraints arise from other requirements.
In the case of the hard-scattering factor, gauge invariance is most conveniently assured, if
its external lines are on-shell. This implies that these lines are light-like given that they are
massless. Practical perturbative calculations are enormously much simpler when masses
are zero and external lines on-shell.

We also used a light-like Wilson-line vector in the hard scattering, i.e., w, in (10.19a)
and w; in (10.19b).

A constraint now arises from the requirement that the hard factor does not depend on
the soft momenta, after application of an approximator. This ensures that the hard factor
completely factors from the soft factor. In the notation of (10.59), let u 45 and v be the
vectors for the soft-to-A approximant, and let u 54 and vy 4 be the vectors for the A-to-H
approximant. In this general case, the approximated momentum in H is

. k k .
e =“l;1A( HA +kpas) - vma (10.70)

UHA - VHA
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Since & HAs 18 proportional to u 45, we only get independence of I%H 4 from kg if
UpS *VHA =0, (1071)

i.e., if the approximated soft momentum is orthogonal to the Wilson-line vector for the
A-to-H connections.

This is obviously satisfied for our actual choice, in (10.17) and (10.19a), that u 45 and
vy 4 both equal wy, a light-like vector in the minus direction.

What other possibilities are there? We restrict to vectors in the (4, —) plane, otherwise
we break azimuthal rotation symmetry in our approximators, without having a transverse
vector in the process’s kinematics to give a preferred transverse direction.

If vy 4 stays light-like, this requires u 45 to be light-like in the same direction, which is
our original choice.

Given our results on i0 prescriptions, the other choice is a space-like vector vg4. An
orthogonal vector is time-like. A simple and natural case is to put vgy4 in the z direction
in the center-of-mass frame. The corresponding Wilson line restricts gluon rapidity in the
A factor to be approximately positive, which is very natural; it gives a natural cutoff of
the rapidity divergence in T4I"; before subtraction. Then we would need u 45 o g*, a not
unnatural choice.

As far as I can see, this is an legitimate alternative possibility.

However, as we will see, it is generally preferable to avoid non-light-like Wilson lines
whenever possible: It makes calculations easier and avoids inhomogeneous terms in evo-
lution equations.

10.7 General derivation of region decomposition

In this section, we prove the main result needed to apply the subtraction formalism. This
is that, for a general Feynman graph for any of the many processes that we consider, the
remainder, (10.5), is actually power-suppressed. That is, it is a power of Q smaller than the
leading power for the process (which is, for example, Q° for DIS structure functions). This
then demonstrates (10.1), which is the key formula for our later derivations of factorization
of various kinds.

The derivation uses certain properties of the region approximators Ty, so effectively we
are finding and using a set of requirements on good approximators.

A general treatment involves regions in a loop-momentum space of arbitrarily high
dimension, and thus necessarily has a high degree of abstraction. As we will see, a recursive,
or inductive, strategy enormously simplifies the proof by reducing it to considering relations
between two generic regions. These can be visualized in a space of two dimensions, and
simple examples, like those in Secs. 10.2 and especially 10.5, give the main ideas for the
generic situation. It would be useful to read those sections concurrently with the present
section to gain better understanding, visualization, and motivation.

Even so, it will become apparent that the rigor of the derivations is insufficient. Mathe-
matically inclined readers are strongly urged to do better; the literature on deriving factor-
ization leaves much to be desired.
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10.7.1 Results so far

So far, we have explicitly defined the main ingredients of the method. The region contribu-
tions CgI" were defined in (10.4) in terms of region approximators 7x I". Then the asymptotic
behavior of I' is intended to be correctly given by the sum over regions: XgCrI". Explicit
definitions of the region approximators were given in Sec. 10.4 for the Sudakov form factor;
these definitions apply with at most minor changes to the many other processes we will
treat.

10.7.2 Overall view

It is important to keep in mind the main motivations for the subtraction formalism. First,
the region approximant TxI" is intended to give a good approximation to I" near the PSS

R; that is,
A p
F—TRF=(’)<< Rg'”) )||r||, (10.72)

with some qualifications that I will explain in Sec. 10.7.3. Here, A is the radial variable
for region R. Naturally the approximators we use are such that the soft, collinear and
hard subgraphs of a region correspond to contributions to factors in a phenomenologically
useful factorization property. The error specified in (10.72) improves as A decreases, but
only until Ag becomes of order m. There are additional sources of error in neglecting m
with respect to O when appropriate. So all these issues are covered by adding m to Ag
in (10.72).

The approximant contributes in regions larger than R, but with an inaccurate value. To
handle the consequent double counting, we defined the region contribution CrI" by (10.4),
where T is applied after subtraction of the contributions from smaller regions. This is
also intended to solve the problem that the accuracy of the approximator 7k degrades close
to PSSs smaller than R: the region contribution CgI is intended to be leading power at
region R but suppressed in smaller regions. Including the contributions of smaller regions,
Crl' + ) p_r CrT, is intended to give a correct leading-power approximation near the
whole of R, including smaller regions.

As we saw in Ch. 8, this setup works quite straightforwardly to give factorization, if
the relevant regions are just nested inside each other, i.e., if they have a total ordering.
But, in general, the regions can have more general relations involving overlaps and non-
intersection, as in (5.21). This is responsible for the main complications in the proof. They
are a non-trivial generalization of those involved in dealing with overlapping divergences
in renormalization theory.

The most fundamental problem solved by the subtraction formalism is that the accuracy
of a region approximant 7" degrades in certain places, associated with other regions. An
example is at the approach to a smaller region R; < R. As we have seen in examples, the
worsening of the accuracy of TgI" is compensated in the subtraction formalism. In forming
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CRrT', Ty is applied to I' only after subtractions are used for all the smaller regions. Then it
is the sum CgI" + ) " _p Cp T that gives an accurate approximation to I" over the whole
of R, including smaller regions.

Another problem is the large multiplicity of regions, as in Fig. 10.5, a problem that
obviously gets much worse for even higher-order graphs. Our proofs will be inductive, i.e.,
recursive, and a generic step of a proof will only involve a single region and its nearest
neighbors in the region hierarchy. Then the most complicated relation between regions that
we need to discuss explicitly is Fig. 5.32. Most of the time, the relation we treat will be
essentially of the form of Fig. 5.28. So with an appropriate viewpoint, the most general
situation can be reduced to many copies of what happens in one-loop graphs, or at most
two-loop graphs.

Now, our aim is to derive power-law estimates of the accuracy of a factorization state-
ment, i.e., to obtain results that are accurate to some given power of a small ratio (e.g.,
m/ Q). But we often have logarithmic integrals interpolating between different regions, and
these worsen basic power-law estimates by some number of logarithms. So it is convenient
to define the following notation:

fx)=A,(x)glx) asx — 0, (10.73)
which means that
fx)=O(x"|Inx|*) g(x) asx — 0, (10.74)

for some value of the power « of the logarithm. That is, there are constants C, o and x,
such that

[f(x)] < Clx|? [Inx|*|g(x)| forall |x| < xq. (10.75)

Normally, p is fixed for the problem we are analyzing (e.g., graphs for the Sudakov form
factor to leading power), but & depends on the graph, being up to two times the number of
loops.

10.7.3 Accuracy of approximator Ty

The basic form of the accuracy of a region approximator 7 was given in (10.72). We now
modify it to obtain a strictly correct error estimate which will form the basis of the rest of
our work.

Basic error estimate

The accuracy of the approximator for a leading region can be read off from the accuracy
of its individual components, as defined in Sec. 10.4. Since we are working to leading-
power accuracy, the exponent p of the power law is p = 1. Often such errors involve
some transverse momentum relative to Q: kt/Q, and these commonly vanish after an
integral over angle. Then the actual error is one power better: p = 2. We can also imagine
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improved region approximators with an expansion to more orders in small momentum
components, with a correspondingly larger value of p. The precise value of p will not
matter.

There are also non-leading regions, such as R4 defined in Sec. 5.4 for the one-loop
Sudakov form factor. Since the graph is already non-leading in such a region, we can define
the associated approximator to be zero, e.g., Tk, I = 0. But the use of the integrand I" on
the r.h.s. of error estimates such as (10.72) is then not appropriate; rather we need a value
characteristic of the graph integrated over all regions. Thus we replace I" on the r.h.s. of

(10.72) by
‘/ F” (10.76)
all

Here the double-bar notation has the same meaning as in (10.39). That is, it is a power-
counting estimate of the size of the integral arranged to avoid dynamical cancellations.
(Thus for DIS, we would write | W*”|| = O(1), even though some specific components
vanish.)

Correspondingly, we should use an integral for the Lh.s., but now over a range near the
PSS R:

(' — TgD). (10.77)
local

Then Ag on the r.h.s. of an error estimate should be interpreted as the maximum value
of the radial variable in the range of integration. The integration is over some range of
all variables, not just Ax but also the angular and intrinsic coordinates for R. Naturally,
the integral should be on a deformed contour if we need to avoid a Glauber region. Since
there is the possibility of logarithmic enhancements in such integrals, we must replace the
power-law estimate on the r.h.s. by

A,,(’\R;m) (10.78)

Situations needing adjustment

We now quantify that for a given value of Ag, the error estimates need modification for
two situations, as can be obtained from the definitions in Sec. 10.4. First, they generally
degrade when the intrinsic coordinates approach the positions of any particular smaller
PSS R < R, since then the conditions for neglecting a small momentum component with
respect to a large component become weaker.

The second issue concerns lines with soft-collinear momenta, as in the example in
Sec. 10.5.4. These lines have both a small energy and a high rapidity. The small energy
allows them to be considered as soft, and the high rapidity allows them to be considered as
collinear. Let R be a region in which the soft-collinear lines are part of the soft subgraph.
Let R, be the larger region obtained from it by changing the category of the soft-collinear
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lines to the appropriate collinear category. We notate this relation by
R > R. (10.79)

In terms of the underlying PSSs, this relation is defined to mean that certain collinear lines
at the PSS R; are changed to zero momentum to obtain the PSS R.

Soft-collinear lines are at an end of their collinear range in fractional momentum. But
their high rapidity implies that the approximator T, continues to be valid, removing the
degradation that would otherwise occur near the smaller region R.

In the approximator T, the soft-collinear lines are treated as soft, but then their high
rapidity implies that the approximators where they attach to the corresponding collinear
subgraph degrade in accuracy. The errors become of order e=*”, where Ay is the rapidity
difference between the soft and collinear lines, with the soft line always being taken as
having rapidity between the two collinear groups of the whole process.

Generalizing our proof from the example in Sec. 10.5.4, we will find that these effects
combine to give correctness of the subtraction method to extract the asymptotics of the
graphs.

Generic degradation near smaller PSSs

The accuracy of the approximator Tk defined in Sec. 10.4 degrades when the intrinsic
coordinates appropriate for PSS R approach the positions of any particular smaller PSS
Ry < R. For example, in a hard subgraph, we neglect a collinear transverse momentum
with respect to a large momentum component of order Q. But near R; we may need
to replace Q by the smaller value Ag,. So in our error estimate we insert a degradation
factor

0
Wr g =1 +A,,<m>, (10.80)
1

with one term for each smaller region. Here, I added 1 to the basic degradation factor, so
that the factor Wg, r can be applied universally: close to Ry, the A ,(...) term dominates,
but away from Rj, it decreases, leaving Wg, g to relax to unity.

Soft-collinear problem
Surrounding PSS R, consider integrating around a surface of fixed A, as in Fig. 5.28. Close

to each larger PSS R, that obeys the soft-collinear relation R, S R, we get degradation of
the approximation by a factor Vg, r. This factor replaces A ,(Ag/Q) by A (e‘Ay ), where
Ay is the rapidity difference between the soft-collinear lines in the soft subgraph of R and
lines in the collinear subgraph of R to which they attach.

Consider next these same lines in the same momentum region in the other approximator
Tg,T'. Relative to R;, the configuration is close to the smaller region R, where there is
a default degradation factor Wy g,. But the approximator applies accurately to the soft-
collinear lines, so we multiply the degraded error estimate by the inverse of the large Vi, r
factor.
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10.7.4 Overall error estimate

Putting all these components together, we have shown that the error in T% is characterized
by

AR+m
=T = A
\/local( . ) I’( Q )

1
x |14+ E W —— | |1+ E VR, R ‘
Ri<R 1+ VR’R‘ sc
! Ry>R

/ FH . (10.81)
all

The 1/(1 + Vg g,) factors only appear for subregions obeying R, LR

10.7.5 Theorems to be proved

I now state some theorems to be proved inductively. They generalize properties we have
seen in examples. The first three theorems are properties labeled by a region.

Theorem 1; Define [, Cgrl’ def JiocatT = X g—g CrT) which has subtractions for

smaller regions than R. It is suppressed in all regions R; smaller than R, but with
degradation for soft-collinear situations that concern regions R or bigger:

/ r H . (10.82)

all

Theorem 2z The same property applies to CxI" = TrCgI .

Theorem 3 When we also subtract CgI", there is a suppression at R, and the soft-collinear
degradation only applies on regions strictly bigger than R:

/ (F—CRF— > C,ﬂ‘) =/ (1 — Tg)CgD'
local at R local at R

R' <R

- )VR +m
CrI'=A (—‘ ) 1+ VR,.R, ‘
/localatR1 b Q XSC: ?

Ry>R

AR+ m
=AP<R ) 1+ ) Vg ‘
0 RER
2>

firl

(10.83)

The suppression is uniform over the whole of R including smaller regions.
Theorem 4 The sum of CgI" over all regions approximates I to power-law accuracy:

m
r — Crl' ) =A,| — ry. 10.84
/a11< XR: . ) p(Q) /au H ( )
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10.7.6 Proofs of theorems 1, to 3

min min

We will first prove these theorems for a minimal region, and then prove them for larger
regions given that they hold for all smaller regions.

Minimal regions

For a minimal region Ry, theorems 1 . and 2p . are trivial because there are no smaller
regions. Theorem 3p . follows directly from the approximation property (10.81); because
of the lack of smaller regions Cx . I =T.

Theorem 1

For a general region R, we make the inductive hypothesis that theorems 1-3 have already
been proved for regions smaller than R. Then to prove the suppression (10.82), we partition
the terms in Cg T into three sets according to the relation of the relevant regions to R, and
then consider each set separately.

First, we note the following structural properties of CxI" that follow directly from its
definition.

e CiI is a sum of terms, each of which involves a product of —7T% operations applied to
I". Each product involves a sequence of strictly ordered regions, since subtractions in the
definition of any particular region contribution Cg I" only involves yet smaller regions.

e A factor Tk only appears in combinations that combine to form a Cx I" factor.

The partitioning of CxI" is as follows.

e The first set consists of terms in which all the Tk factors are for regions that are ordered
relative to R;. The sum gives an object of the form:

S T =Tw) = Tr,)Cr, T (10.85)
7

The sum is over the ways in which can appear Tg~ factors for regions R” bigger than R,
(and necessarily smaller than R). The two terms in the middle parentheses account for
all the terms in which —T%, does not or does appear.

e The second set has at least one — Tk overlapping with R}, but none that fail to intersect
Ry. We group these terms by the minimal such R’

Z H(—TRv)CR/F, (10.86)
o

where R’ overlaps Ry, i.e., the intersection R’ N R; is non-empty and strictly smaller
than both R’ and R;.

e The third set is where there is at least one — T factor for a region that does not intersect
at all with R;. We group these terms by the minimal such R’:

Z H(—TRn)CR/F, (10.87)
o

where the R” regions are larger than R’.
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For the first set, the factor (1 — TRI)C_'R] I" is suppressed by theorem 3z, , which is true
by the inductive hypothesis. But this has the soft-collinear degradation at any R, obeying

el .
R, > R,. For those R, that are also smaller than R, i.e., that obey R, < R, there are
subtractions in (10.85). By an inductive application of theorem 3 to region R;, we find a

suppression by the 1/ Vg, g, factor. There remain the cases R; = R, and R, S>C R, which
are allowed in (10.82).

For the second set, (10.86), our treatment uses the ideas given in Sec. 10.5.6. There we
found for the one-loop Sudakov form factor that the collinear term C4I" was suppressed
in the opposite collinear region Rp. In this term, the factor T4 acts by first projecting the
loop-momentum configuration down to the intersection Rg of the two regions. Then it
extrapolates in the normal coordinates for A, preserving the value of the intrinsic coordi-
nates. A momentum close to R gives an intrinsic coordinate close to the endpoint Ry of the
R4 PSS. We then get a suppression because of the suppression of C4I' at regions smaller
than R 4. This idea applies generally, by changing R4 to R’, Rp to Ry, and Rg to R’ N R;.
The approximator Tk coerces a momentum configuration near R; to be effectively near
TrnR,-

For the third set, R” and R; do not intersect at all. Again the Tx operation coerces the
momentum configuration to be changed from R;-like to R’-like. The lack of intersection of
R’ and R, implies that the coerced configuration is a generic one for R’ and that the radial
variable is of order Q. More propagators are off-shell without a change in the integration
measure, SO we get a suppression.

This completes the proof of theorem 1.

Theorem 2 g

The application of the approximator 7k does not change the suppressions and degradations
in (10.82). So theorem 2 follows.

Theorem 3 g

The 1.h.s. of (10.83) differs from that of (10.82) by a factor 1 — Tk. From the basic approxi-
mation property, (10.81), this gives a factor A ,((Ag + m)/Q) on the r.h.s. The suppression
factors for CI" at smaller regions on the r.h.s. of (10.82) cancel the corresponding degrada-
tion terms in (10.81), while the 1/(1 4 Vg g,) factors cancel the effect of the Vi, g, factors
in (10.82) for the case that R, = R.

This gives (10.83).

Theorem 4

Theorem 4, (10.84) is the actual theorem we need to use in proving factorization, since it
states that to power-law accuracy, I' is given by the sum of CgI" over regions. It is just
theorem 3 applied to the largest possible region Ry, where all momenta are hard. For this
region all coordinates are intrinsic, so we must set the radial coordinate to zero: Ay = 0.
There are no larger regions, so we need no Vg, r terms. Thus theorem 4 is just an application
of (10.83) for R = Ry.
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10.8 Sudakov form factor factorization: first version

The general leading region for the Sudakov form factor was depicted in Fig. 10.3(b). For
each region R of each graph I', we defined a corresponding contribution CxI", and the sum
over I" and R gives a correct leading-power approximation to the form factor:

F = Z CrI" 4 power-suppressed. (10.88)

'R

The sum can be specified by independent sums over the region subgraphs H, A, B, and S
in Fig. 10.3 (subject to the constraint that there is a match of the numbers of gluon lines
connecting the different subgraphs). We must convert this sum into the factorized form of
hard, collinear and soft factors, as in (10.11), with definite definitions for the factors as
matrix elements of certain operators containing Wilson lines.

The basis of our method is that the region approximators Tk allow Ward identities to
be applied to the connections of gluons from S to the collinear subgraphs A and B, and
to the gluons from A and B to the hard subgraph H. In each case there is a factor of the
gluon momentum contracted with one of the subgraphs, which we will call the destination
subgraph (A, B or H respectively). It is this contraction that allows Ward identities to be
used, generalizing the results of Sec. 7.7.

Elementary Ward identities in an abelian gauge theory are for ordinary Green functions
or matrix elements. Relative to these cases, we have two primary complications. The first
is that our Green functions have subtractions for smaller regions. The second is that the
graphs for A, B, and H are restricted by certain irreducibility requirements: Each collinear
subgraph A and B is one-particle-irreducible (1PI) in the soft lines, while the hard subgraph
H is 1PI separately in the A lines and the B lines.

10.8.1 Statement of definitions of factors

The Ward identities entail definitions for the soft and collinear factors that we state in this
section.
The soft factor is

s ) {01 W(eo. 0, n2)t W(00,0,n1) [0) (10.89)
Ny = W.L. self-energies for n, and 7 5 ’

Here the Wilson-line operators are defined in (10.33), with directions n; and n,, while Zg
is a UV renormalization factor defined by, say, the MS scheme. The denominator will be
defined in (10.101); it removes graphs that contribute to the numerator but that are not
produced from the Ward-identity argument. Applying Lorentz invariance shows that the
dependence of S and Zs on the Wilson-line rapidities y; and y, is only on the difference
y1 — y». However, it is sometimes convenient to write separate y; and y, arguments:
S(y1, y2) instead of S(y; — y2).
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As for the collinear factors, I first define an unsubtracted collinear factor for the A side:

unsub <pA| &O(O) W (o0, 0, MZ)T Pg |0) unsub
A (ypA - yug) = . _
(W.L. self-energies for u,) it 4 Pp

_ {pal ¥(0) W(00,0, uy)t Pg |0)
T (WL. self-energies for u,) it o Pp

zumib 712, (10.90)

In the first line, the numerator has a matrix element of a bare quark field and a Wilson
line in a space-like direction u, = (—e®= 1, 07). The vector u, is just like n, except for
a different rapidity y,,, and we will later use a limit with y,, — —oo. There is also a
UV renormalization factor. The second line is simply the first line written in terms of the
renormalized quark field, as appropriate for calculations. As in the soft factor, there is a
denominator to cancel Wilson-line self-energy graphs.

The numerator is actually a Dirac spinor, and contains the factor Pz = y+y~/2 which
is used to connect the collinear and hard factors. As I now show, the numerator is just a
factor times it 4 Pg. Therefore we include in the denominator in (10.90) a factor to divide out
the spinor dependence, so that the quantity A" is a numerical-valued scalar quantity. To
derive the spinor structure, we observe that the only vector variables on which the collinear
factor depends are in the (4, —) plane. After the use of parity invariance, the most general
Dirac structure for A“ is

iia(al + by )Ps. (10.91)

Because of the Py factor, all other combinations of Dirac matrices can either be reduced
to this by anticommutation relations or give zero. By use of iis(p, —m) = 0, it is easily
checked that the most general form is actually proportional to it 4 Pp.

An unsubtracted B factor is defined exactly similarly:

(Pl W(00,0, u1) Pg ¥0(0) |0) unsub
(W.L. self-energies for u;) Pgvp B
(pgl W(00,0,u1)Pp ¥(0)|0)

- Zunsub 7112 10.92
(W.L. self-energies for u;) Pgvp B 2 ( )

Bunsub(yul _ y]?B) —

with a Wilson line in the direction u; = (1, —e™ 21, Or).

Not only do soft and collinear factors like S, A"*®, and B"""> depend on the rapidities
of their non-light-like Wilson line(s), but so do their renormalization factors Zg, ZK“S”b,
and Z4™"*. For S and Zj this is simply a dependence on y; — y», as in (10.47).

The renormalization factors ZX“S“b, and Z};“S“b are mass independent and so variables to
parameterize their dependence on the Wilson-line rapidities must use the massless limit of
pa and pp. Appropriate variables for Z4"*, and Z4™"" are, respectively,

Cau Z 2AphYe Ve = meX0m ), (10.93a)

Loy Z 2py)PePn = mPeX0u ), (10.93b)

Next we define subtracted collinear factors. Their names, A and B, are decorated with
a superscript “basic” to indicate that the definitions are in a sense preliminary, since in
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later sections we will construct an improved factorization with modified definitions of the
factors. Each subtracted collinear factor is defined by dividing the unsubtracted collinear
factor by a version of the soft factor, and then taking the light-like limits #; and u, in a
certain way. Thus the subtracted A factors are
Abusic _ (pal Yo(0) W(00, 0, wa)t Pp |0) (W.L. self-energies for nl)Zbasic
(0] W(00, 0, wa)t W(00,0,m1)|0) @aPs !
(pal ¥(0) W(o0, 0, wy)t Pp10) (W.L. self-energies for 1)

= ZbasicZ1/2
(0] W(o0, 0, wa)T W(o0, 0,n1)|0) iiaPg 4T

(10.94a)

pl W(oo, 0, wi) Pg ¥o(0)|0) (W.L. self-energies for n,)
(0] W(00, 0, n2)T W(00, 0, wi)|0) Ppug
(psl W(00,0, wy) Pg ¥(0)|0) (W.L. self-energies for n,) 12

_ zbsiez /2 (10.94b
(0] W(o0, 0, n2)t W(oo, 0, w;) [0) Pgug 5o h )

The above definitions agree with our one-loop calculations in (10.42) and (10.43). The
renormalization factors ZZaSiC and Z%aSic depend on L4,/ w? and LB,/ w? respectively, as
well as on g and €. Here the ¢ variables are defined by (10.93).

We will see that the denominators (10.94) are obtained as a result of the subtractions in
CRT for smaller regions; they have the effect of compensating double counting between the
collinear and soft factors. Closely related to this is that we will find that rapidity divergences
associated with the Wilson lines in light-like directions cancel between the numerators and
denominators. In effect,

basic __ < basic
B = z%

. Aunsub(ypA _ yuz)
Yuy = =00 S — yuz)

AP = : (10.95)
and similarly for B**°. However, there is a non-uniformity in taking the infinite rapidity
limits and removing the UV regulator, which impacts calculations. As indicated by the
quotation marks, the limit in (10.95) is taken in a special way to be defined in Sec. 10.8.2.

Finally, the hard factor is essentially whatever is left over, in the limit that masses are
neglected:

F

H = Abasic BbasicS

. (10.96)
mg=m=0,pa,n1,pp,ny light-like
Originally we choose n; and n, to be vectors with approximately the rapidities of p4 and
pg- So taking the massless limit for p4 and pp implies that we replace n; and n; by their
light-like limits, i.e., w; and w,. Our definition of the collinear factors implies that H
includes factors of spinors it 4 Pg and Ppvg with a Dirac matrix between them.

10.8.2 Limit of infinite rapidity Wilson lines

The limit y,, = —oo on the Wilson-line rapidity in (10.95) needs a little care in its
definition concerning the hard region of large transverse momenta: there is non-uniformity
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in combining the limits of infinite rapidities with the removal of a UV regulator. We use
the following procedure to define A®®¢ and B®ic.

e For A" and S, apply a UV regulator, e.g., dimensional regularization with n < 4.

o Take the limit y,, — —oo on the r.h.s. of (10.95).

e Apply UV counterterms.

e Remove the UV regulator, e.g., take n — 4.

This corresponds to our procedure for calculating C4I'; and CpI'; in (10.42) and (10.43).
If we reversed the limits, we would need to compensate by an extra hard factor, e.g.,

AunSUb(y[?A - yuz) =

AP = im |:lim ZA(;A,m//szyl_yuz’g(/‘b)’e)il' (10.97)

Y=o =4 S(Y1 = Yu,)
The factor Z, is to be adjusted so that we get the same results as in (10.94a). Now the
non-uniformity of the limits #» — 4 and of infinite Wilson-line rapidities only concerns
the limit of infinitely large transverse momentum; for n < 4, the limits can be exchanged.
Thus the factor Z4 is a pure UV factor, and can be regarded as a kind of generalized UV
renormalization factor, chosen to make a renormalization prescription that agrees with the
combination of MS renormalization and the opposite order of the limits.
Within the context of low-order perturbation theory, especially at one loop, the first
description works; an example is in the calculation of the one-loop collinear term at (10.42).
An exactly similar procedure applies to the B factor.

10.8.3 Elements of diagrammatic Ward identities

Ward identities can be derived without perturbation theory, as properties of Green functions.
From these we could try to derive identities for the factors, H, A, B, and S in Fig. 10.3, which
are modified Green functions, with appropriate irreducibility properties and subtractions.’
For our present work, it is considerably easier just to give a perturbative proof, valid to
all orders, where we will take full account of the necessary subtractions and irreducibility
properties. The general approach was seen in Sec. 7.7, where we derived a gauge-invariant
parton model in a full non-abelian theory, i.e., QCD with a limited set of graphs.

Here we handle the full set of graphs, but restrict to an abelian theory in a covariant
gauge. In deriving factorization, it will be important to understand which subgraphs are
allowed and which are not, for A, for B, and particularly for H, in Fig. 10.3(b), given a
specification of their external lines. This will modify the derivation of the Ward identities
from the standard derivation, e.g., Sterman (1993, p. 334-340).

Consider one gluon from subgraph S to subgraph A, and its attachment to a quark line,
as in the left-hand side of Fig. 10.12(a). The triangle at the vertex denotes the application
of the soft approximation. For the moment we ignore the subtraction terms.

° Here Fig. 10.3(b) is treated as specifying the term CxI", with the subgraphs H, A, B, S being those the specify the
region R.
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: I: ﬁp 3+ p+;;=|§

(b) + | = 0
é) 3

Fig. 10.12. Graphical elements of Ward identity: (a) application to line, (b) sum at vertex
(in abelian gauge theory).

Let k be the gluon momentum, and let & be its approximant defined in (10.16). We apply
the following identity:

%
n} i . i
. — (—igh) —————
k-ny+i0 p—m+i0 pHEk—m+io0
_ iign) P i . (10.98)
k-ny+i0| p—m+i0 l;j+l%—m+i0

Thus one or other quark propagator is canceled, as pictured on the right-hand side of
Fig. 10.12(a). The gluon is now attached to a special vertex that is at one or other end of
the quark line. At this special vertex,'? the double line denotes a factor of a Wilson-line
propagator with an accompanying vertex, and the diagonal single line codes an overall sign.
The sign essentially concerns the charge of the quark field.

We now sum over all places where the gluon can attach to the quark line. Now, when an
S gluon attaches to an A quark, an equally allowed graph is where the S gluon attaches to
the opposite side of a neighboring gluon vertex, as in Fig. 10.13. Note that the other gluon,
of momentum /, may either be part of the A subgraph or the S subgraph; the argument
works equally in both cases. This gives pairs of canceling terms, at each other gluon vertex
on the quark, as illustrated in Fig. 10.12(b). If the quark line goes around in a loop inside
the collinear graph, we get zero. But if the quark line goes out of the collinear graph, we
are left with only the special vertices at the outside end(s) of the quark line. At the on-shell
p4 end we in fact get zero, exactly as in the standard textbook case.!! There remains one
term, at the end of the quark line where it enters the hard scattering. The result is just as in
the lowest-order case, (10.29), and is equivalent to a gluon attaching to a Wilson line.

In certain model calculations, we might use a scalar quark. In that case, we must take
account of the vertex with two gluons. The necessary vertex identity is Fig. 10.14, which
replaces Fig. 10.12(b) for spin—% quarks. It is readily verified from the form of the two-
quark—-two-gluon vertex.

10 In the context of diagrammatic proofs of Ward identities (e.g., Sterman, 1993, p. 351) the vertex represents the BRST
transformation of the field at the end of the quark propagator, but in our work it is multiplied by an eikonal denominator.
' However, the details are not always made explicit in the textbooks!
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Fig. 10.13. Example of graphical structure which leads to the canceling terms in
Fig. 10.12(b).

T N

Fig. 10.14. Vertex sum as in Fig. 10.12(b), but for scalar quark.

10.8.4 Extraction of soft lines from collinear subgraphs

Now consider all the gluons entering collinear subgraph A from the soft subgraph S,
continuing to omit the subtractions. We apply the Ward-identity argument of Sec. 10.8.3
to each gluon in turn, summing over allowed graphs for the A subgraph, given a particular
set of external lines for the subgraph. Then we apply the same argument to the gluons from
S to the other collinear subgraph B, and represent the result in Fig. 10.15(a) and (b). Each
external gluon of the S subgraph now attaches to a Wilson-line factor of the form

s s I ey n
—l( igm) on A side, iligny)

U8 o0 B side, 10.99
k; - ni+i0 kiomp+io 00N (10.59)

where k; is the gluon momentum, defined to flow info the S subgraph.
We convert the result to exactly the Wilson-line form by using the following identity for
the product of elementary Wilson-line propagators:

i i i
Nim7= 2 5 % -
kj-n+1i0 ki-n+i0 ki-n+ky-n+i0

Jj=1 permutations
X e X ! _ (10.100)
ki-n+ky-n+...ky-n+i0

This identity is readily proved by induction on N, and is applied separately to the parts of
the diagram with n = n; and n = n,. The right-hand side is exactly the product of lines
resulting from the Feynman rules for a Wilson line (Sec. 7.6). Wilson-line vertex factors
are exactly the —ign; and ign, factors in (10.99).

Next we observe that, with the region approximator Tk defined in Sec. 10.4.2, the
approximated hard subgraph H is independent of the soft momenta. Thus we can contract
the free ends of the Wilson lines together to give Fig. 10.15(c). The right-hand factor
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Fig. 10.15. Application of Ward identities to extract S gluons from the collinear subgraph
with the soft approximation in (a). After use of Ward identities we get graph (b), and after
use of (10.100), we get graph (c).

(a) (b)

Fig. 10.16. (a) Example of Wilson-line self-energy graph. (b) Denominator of (10.89).

(summed over graphs for S) is just what we already stated as the definition (10.89) of the
soft factor; there is one complication in the proof that I now explain.

Each connected component of an S subgraph joins the A and B sides. So no graph
arises in Fig. 10.15(b) where a component of S just connects n; lines to themselves, or n;
lines to themselves. However, such graphs do arise from the matrix element of the Wilson
line, the numerator of (10.89), giving for example Fig. 10.16(a). If we were to sum over
all such graphs, they would form extra factors in Fig. 10.15(b), which we call Wilson-line
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self-energy factors. Converting these factors to the Wilson-line form gives the general form
of Fig. 10.16(b), which has the operator form

W.L. self-energy factor = (0| W (o0, 0, 1n2)110) (0|W (o0, 0, n1)[0) . (10.101)

Since these graphs are not produced by our Ward-identity argument, they must be removed
from the definition of the soft factor. Thus (10.101) is the denominator in the definition
(10.89) of the soft factor.

A careful examination of calculations of the self-energy factor shows that it has a
divergence as the length of the Wilson line goes to infinity. No such divergence arises from
graphs that connect the n; to the n, lines. So for a correct definition of the soft factor, we
first replace the occurrences of “co0” in (10.89) and (10.101) by some large finite length L.
Then the soft factor (10.89) is defined with a limit L — oo.

Finally, there are UV divergences in many of the relevant graphs. Just as in the textbook
treatment of conventional Ward identities (e.g., Collins, 1984, Ch. 9) we define these to be
canceled by UV counterterms. Just as in that case, the counterterms preserve the derivation
of the Ward identities, provided that an appropriate renormalization scheme is used, like MS.

10.8.5 Subtractions and the derivation of the soft factor

We have extracted soft gluons from their attachments to the collinear factors. But our
derivation so far has applied to TgI', i.e., to the approximator for region R of graph I',
followed by a sum over graphs. We now examine the effect of the subtractions that convert
TgrT to the region term CrI", defined in (10.4). These prevent double counting with the
terms for smaller regions R’ < R. Note that for a general region and graph, the subtraction
terms —CgrI" themselves contain subtractions, recursively applied. We now show how
the fundamental elements, Figs. 10.12 and 10.14, in the derivation of the Ward identities
continue to apply in the presence of subtractions.

We represent the relation between a pair of relevant regions in Fig. 10.17. There, diagram
(a) depicts the division of a graph into the hard, collinear, and soft subgraphs associated
with a region R; it is a more abstract representation of Fig. 10.3(b). In a smaller region
R’ < R, either the soft subgraph is bigger than in R, or the hard subgraph is smaller, or
both, as in Fig. 10.17(b).

A generic term in CgI" corresponds to a set of nested regions R; that obey R; < R,
< -+ < R, < R, and the corresponding contribution to CgI" is

(—1)'Tx ]‘[ Tg,T. (10.102)
j=1

The Tk, operations are applied from inside out, smallest region to largest. Then CgrI’
is the sum over possibilities for (10.102), including the case n = 0. This follows from
the definition (10.4) of CgI", exactly as in the theory of renormalization (Collins, 1984).
The differences with renormalization are only in the specification of the regions and in
the definitions of the region approximators.
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(b)

Fig. 10.17. (a) Partition of graph for Sudakov form factor by subgraphs for a region R.
(b) Partition for a smaller region R’ < R. The dotted lines indicate the boundaries of the
subgraphs for the first region.

Now each region R; corresponds to a pinch-singular surface (PSS) in the massless
limit. Its approximator T, is obtained from the leading power of the integrand expanded
in powers of the radial variable A, for the region, with masses treated as an appropriate
power of Ag,. This expansion is then slightly modified by the following replacements for
soft loop momenta in the collinear subgraphs:

kas - wy = kas - ny, kps - wy = kpg - na, (10.103)

as in (10.17) and (10.18). We now show that the Ward identities we use for extracting the
soft factor continue to apply in the presence of the subtractions.

Let a gluon of momentum k from the S subgraph of R attach to an A quark. The line
identity, (10.98) and Fig. 10.12(a), has the structure

Ail(Al_AZ)ALQZALZ_ALI’ (10.104)
up to an overall factor of a phase and a coupling. Here 1/A; and 1/A, are the quark
propagators, and A; — A, is the vertex factor, K~y .

Now, to get from TxI" to CgI" we sum (10.102) over all possibilities for nested sets of
smaller regions. Each term in (10.102) has region approximator(s) applied to the graph,
which contains the Lh.s. of (10.104) as a factor. Each region approximator replaces each
factor in the graph by (the first term) in its expansion in powers of Ag,, supplemented by
the replacements like (10.103). All of these operations can be applied equally well when
the Lh.s. of (10.104) is replaced by one or other of the terms on the r.h.s. Furthermore,
the same collection of operations can be applied to each of the terms in the vertex identity
Fig. 10.12(b) or Fig. 10.14.

This indicates that the Ward identities that apply to »_, . Tz are also valid in the
presence of subtractions, so that the Ward-identity result should also apply to » - CgT".
However, there is a potential problem that to use the vertex identity, we are combining
terms obtained from different graphs, and these could have different regions. To see the
difficulty, observe that the canceling terms at a vertex arise from different graphs, e.g.,
from Fig. 10.13. To make the vertex identity work in the presence of subtractions, we must
use a correspondence between the regions for the different graphs. We need to determine
the situations where the correspondence fails to exist, and to deal with the consequences.
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Another related complication is that the region approximator Tk, takes the leading power
in Ag; of the factors in the graph; we must investigate what happens if an approximator
gives'a different power of Ag, when applied to A; and A; on the r.h.s. of (10.104).

Consider the application of Tg; to (10.104). It takes the leading power in A, of each
factor on the L.h.s. For the quantities A; and Ay, let the leading-most terms be Al and Az.
In the most general context, there are three possible cases for the power laws:

e The power of Ag, is the same for both quantities, and for Ay — A;. The line identity
applies equally to the leading-power expansion

LAy — Ay 4 S 10.105

Al(l 2)A2—A2 % (10.105)
The left-hand side gives the effect of T, on the left-hand side of (10.104), and the two
terms on the right are the effect of applying Tk, to the terms on the right-hand side of
(10.104). Effectively, Tk, is a linear operation that commutes with the manipulations
giving the Ward identity. If T, had been defined to make different operations on the
vertex factor and the propagato'rs, this result need not be true. The quantity on the left-
hand side and the two terms on the right-hand side have the same power-counting and
therefore do not change the necessary set of subregions.

The above situation is always the case for a soft line connected to a collinear line,
with the one trivial exception that one line, e.g., A,, is an external line. Then we omit
the 1/A, factor, and replace A, by zero.

e Another possibility is that the power of Ag, for one line, A, say, is larger than for the
other line A;. Thus A>/A; — 0 in the limit of Az, — 0. Then the leading power of the
vertex factor A| — A, is just A, and we must replace (10.105) by

1.1 1
— A —=—. (10.106)
A A A

At the PSS R}, the Az line can be viewed as on-shell, and we get exactly one term on the
right-hand side, just as when such a line is exactly on-shell. The term 1/A, is smaller by
a power of A ; than 1/ A,, and so is correctly neglected.

o A final possibility is that A, and A; are comparable, but A} — A, is much smaller. In
that case, no subtraction associated with R; is actually needed for the original graph. But
for the individual terms on the right-hand side we do need subtractions. Even though R;
is not actually a leading region for the original graph, we add it to the catalog of leading
regions.

The above treatment applies literally for scalar quarks, for then the quantities A; and A, are
scalars, and the definition of their power is unambiguous. For fermions, each is a matrix,
whose inverse is taken in the propagators. A slightly more complicated version of the
argument leads to the same outcome.

Finally we apply the vertex identity. This relates graphs with the same set of denomina-
tors, and hence with the same subtractions. So the vertex identities continue to apply after
all the subtractions for subregions have been applied.
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When applying the vertex identity, we will have canceling terms obtained from applying
the line identity to neighboring lines. In the above derivations we have only examined the
vertex and lines in question. It is important that everything else in the graphs remains the
same. For example, in defining the soft (and collinear) factors, we inserted Wilson-line
denominators with non-light-like directions to cut off rapidity divergences. The success of
the vertex identities depends on these non-light-like lines being the same everywhere they
are encountered, e.g., always the same n; for a soft gluon connecting to a collinear-to-A
quark.

The final result is that Ward identities apply in the presence of subtractions just as they
did in the elementary case we examined where we ignored subtractions. However, we must
take care to apply subtractions to the resulting factors.

So far we have extracted the soft factor. Since there are no smaller momentum classes
than soft, this factor needs no subtraction. Thus we have completed the proof that the soft
part of the form factor factorizes, and that the soft factor can be defined by (10.89). That
is, after summing over graphs and regions, we get Fig. 10.15(c).

But subtractions are needed in the remaining parts of the graphs, and our next task is to
convert them into hard and collinear factors (which will have subtractions).

10.8.6 Extraction of collinear factors from hard scattering,
without effect of subtractions

We now extract the collinear gluon attachments from the hard scattering and convert them
to attachments to Wilson-line operators, as in (10.94a) and (10.94b). As before, we start
by examining the part of CxI" without subtractions, and extract the collinear gluons one-
by-one. The argument will be somewhat modified from that for soft gluons attaching to
a collinear subgraph, because the allowed subgraphs for H have important restrictions by
being 1PI in each set of collinear lines.

Of the two graphical elements for the Ward identity, a line identity like Fig. 10.12(a)
continues to apply, with only the caveat that one of the lines p and p + £, inside the H
subgraph, may be set on-shell by the approximator applied to a quark line at the collinear
edge of H. But for the vertex identity, Fig. 10.12(b), we can miss one of the graphs it
implicates.

An example is shown in Fig. 10.18, where we sum over the possible attachments of a B
gluon of momentum k to a one-loop hard subgraph. In graph (a), there is an on-shell quark
to the right of the vertex with the gluon, so that one term in the line identity gives zero, as
usual for an on-shell quark.'? There is then the usual chain of cancellations, with graphs
(b) and (c). But we do not have the graph where gluon k attaches one place to the right
of where it is in (¢), i.e., we are missing graph (d). This is because in graph (d), gluon k
attaches to another B line at its lower end, so that vertex is not part of the hard subgraph;

12 Note that in the general case, with a non-trivial collinear-to- B subgraph, the quark in question is on-shell not because it
is an external quark, but because it is the outermost quark line of the hard scattering. Our definition of the approximator
for a region replaces the (possibly off-shell) external quarks of the hard scattering by exactly on-shell quarks.
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(d)

Fig. 10.18. Example of sum over attachments of gluon from collinear subgraph to hard
subgraph. The gluon / is in subgraph H, and the gluon k is in subgraph B. The hooks on
the quark lines indicate lines that are approximated as on-shell in the hard subgraph H.
The big arrow at the bottom of line & has the same meaning as in Fig. 10.6(a), except that
it uses the vector w, instead of n;. Graphs (a)—(c) are summed, while graph (d) is excluded
by the condition that the hard subgraph is 1PI in collinear-to-B lines.

we see here an example of the general result that a hard subgraph is 1PI in lines that are
collinear to a particular direction.

The result is shown in Fig. 10.19, and it shows that the sum over attachments of gluon k
to a hard subgraph has extracted the gluon from the hard scattering and attached it instead
to a Wilson line. The Wilson line has exactly the form that results from the definition,
(10.94b), of the collinear-to- B factor. The remaining factor is a one-loop graph for the hard
subgraph without any extra gluons.

In the general case of a B gluon connecting to any H subgraph, what possibilities are
there? They are when one but not the other of the two graphs in Fig. 10.13 is not allowed,
given that gluon & is in the B subgraph, and that, at least on one side, the quark line is in
the H subgraph. It is easily checked that there are two cases, each where one of the two
subgraphs would have a collinear quark line.

One corresponds to Fig. 10.19(a), where the quark on one side of the vertex for k is in
the B subgraph. This gives the expected Wilson-line vertex.

The other case is where the other gluon / and the quark line on one side are in the A
subgraph, as in Fig. 10.20. We get an extra term in the sum over attachments of the k gluon,
Fig. 10.20(c). This graph is in fact zero. The reason, which applies generally, is that at
the attachment of gluon / the approximator picks out exactly the minus component of the
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L ¥

Fig. 10.19. Result of sum in Fig. 10.18: (a) in the notation of Fig. 10.12, (b) as an attachment
to a Wilson line.

4K ¢

2
(b) ()

Fig. 10.20. Simplest example of the other case that the vertex cancellation in the Ward
identity has a missing term. Approximators are applied for the case that & is collinear to B,
and / is collinear to A.

(a

vertex; see (10.23), where the H subgraph is contracted with P 4(kp 4), which is exactly in
the w; direction. But the vertex is now exactly at the edge of the hard subgraph where there
is a quark that is exactly in the plus direction. It has a projection onto on-shell massless
wave functions for the quark, by the matrix Pp. Therefore multiplying by the vertex factor
y~ gives zero; this is essentially from the Dirac equation for a massless quark in the plus
direction:

0= ﬁAmasslessy_pX~ (10107)

Although we have formulated this argument for one graph, and for Dirac quarks, the
argument is actually general. It concerns an approximation where both the quark and the
gluon / have been made exactly massless and collinear in the plus direction in one part of
the hard subgraph. The minus component of the vertex goes to zero under an infinite boost
from a rest frame.

We now repeat the above arguments for all gluons entering the H subgraph from the
collinear subgraphs, first from the collinear-to- B subgraph and then from the collinear-to-A
subgraph. After a sum over all graphs, we get two collinear factors times a hard factor. As
with the soft factor, each collinear factor has a product of one-gluon Wilson-line factors,
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Pa

Fig. 10.21. Factorized structure for Sudakov form factor. The double lines are Wilson lines
with the following rapidities: —oo for A, +oo for B, y; and y, for S. Subtractions in H, A,
and B are not indicated explicitly.

and we use (10.100) to convert them to exactly a Wilson-line matrix element. Again, just
as with the soft factor, Wilson-line self-energies are missing. So we must divide by a
Wilson-line self-energy factor. The Wilson lines are exactly those with light-like directions
that are in the numerators of the previously stated definitions of the collinear factors,
(10.94).

10.8.7 Collinear factors, with subtractions

Subtractions arise in a more complicated way than for the soft factor, and specific examples
in multiloop graphs can become quite elaborate.

The most general method of dealing with subtractions is to appeal to the argument given
in Sec. 10.8.5, which applies quite generally. This is that subtractions apply whenever a
graph would have singularities in the massless limit, and that they are obtained from the
analytic structure of the denominators, together with power-counting. We showed that the
Ward identities apply in the presence of subtractions.

Therefore all we have to do to convert the unsubtracted result is to apply subtractions.
Without the subtractions, the arguments so far give the factorized structure shown in
Fig. 10.21. We have separate hard, collinear and soft factors multiplied together. The
correct formula is obtained simply by applying subtractions to the factors.

For the soft factor, as already explained, no subtractions are needed, because there are
no momentum regions smaller than a soft configuration. (Beyond this we also need the
Wilson-loop denominator in (10.89), to remove the Wilson-line self-energies, which do not
arise from the Ward-identity argument.)

For each collinear factor we have soft subtractions and for the hard factor we have soft
and collinear subtractions.

The easiest way to obtain an operator form for a subtracted collinear factor is to apply
the factorization argument to the unsubtracted collinear factor, e.g., to the limit y,, — —o0
of (10.90), which has a non-light-like Wilson line, of rapidity y,,. The leading regions
have the form shown in Fig. 10.22(a). These each have a collinear-to-A subgraph and a
soft graph that connects the Wilson line to the collinear subgraph, by arbitrarily many
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Fig. 10.22. (a) Regions for unsubtracted collinear matrix element (10.90). Here A" is an
abbreviation for A", (b) After applying Ward identities to the gluons attaching the soft
subgraph to the collinear subgraph, we get this factorized form. Here A% denotes the
subtracted collinear factor. Next to each Wilson line is a label indicating its rapidity.

gluons. We define the soft region with respect to u, rather than the overall center-of-
mass. In accordance with the order of limits specified in Sec. 10.8.2, we take the limit
Yu, — —oo with fixed space-time dimension 4 — 2¢ < 4, so that loop corrections to the
hard subgraph are power-suppressed, and we need no hard subgraph, just the connections
from the collinear subgraph to the Wilson line.

Since the collinear-B part is already in a Wilson-line form, it is enough to combine the
soft factor and the collinear- B factor in a new soft factor, denoted S in Fig. 10.22. The usual
Ward-identity argument is applied to gluons entering the collinear- A subgraph from S. The
same argument that we applied to the whole form factor now applies here, and results in a
soft factor times a subtracted collinear factor:

Aunsub(ypA _ yuz) — Asub x S(yl _ yuz)’ (10108)

up to terms that are power-suppressed in the limit y,, — —oc. The soft factor is the same
as in factorization for the form factor itself, except that the direction of the Wilson line on
the B side is u; instead of n,. This is depicted in Fig. 10.22(b).

Dividing by the soft factor on both sides of the above equation gives the subtracted A
factor as the unsubtracted matrix element (10.90) divided by the relevant soft factor. Taking
the limit y,, — 00, i.e., up — wy, gives our definition of the subtracted soft factor Abasic iy
(10.94a). The subtractions are the same as in the collinear factor used for the form factor,
so it has the same definition. Thus A" is to be identified with the graphical factor A both
in Fig. 10.21, and in the factorization formula (10.11).

An exactly similar argument applies to the collinear-to-B factor, of course.

10.8.8 Hard factor

At this point, we have actually proved a form of factorization, (10.11), given in diagrams
in Fig. 10.21, and we have given explicit definitions of the soft and collinear factors.

Now we obtain an explicit formula (10.96) for the hard factor H. The graphs for H
are the same as for the form factor itself, i.e., for the reaction y* — ¢¢g, but they have
subtractions for soft and collinear regions. The graphs are to be 1PI in the external quark
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and antiquark, since external propagator corrections are always part of a collinear subgraph.
The formula (10.96) is obtained simply by observing that the power-suppressed corrections
in (10.11) go to zero as masses are taken to zero. Taking the massless limit means not only
setting the quark and gluon masses to zero in graphs, but also taking the light-like limits
for the vectors n; and n, in the Wilson lines associated with the quark and antiquark. The
one-loop expansion of (10.96) reproduces the result (10.45) which we already obtained
from the subtraction formalism.

Later, we will find a slightly simpler formula (10.120), after we examine the evolution
equations of the soft factor S with respect to the rapidities of its Wilson lines.

In addition to the kinematic variable Q, the hard factor depends on the renormalization
scale p. As usual, the u dependence is governed by an RGE. So we can use the RGE
to set w of order Q, and then the hard factor would be perturbatively calculable (in
a QCD problem). For the evolution, anomalous dimension are generally perturbatively
calculable.

10.9 Factorization in terms of unsubtracted factors

To compensate double counting between soft and collinear regions, we implemented sub-
tractions in the collinear factors. We then saw that after summing over graphs and regions,
the subtractions were implemented by dividing out a certain factor.

We can write the factorized form factor in terms of the unsubtracted matrix elements:

o ARG ) BTG, ) SO )
Yuy —>+00 S(yul - )’2) S(yl - yuz)

Yup —> =00

(10.109)

Here, we have indicated the dependence of the factors on the directions of the Wilson lines.
Of course, the dependence on the Wilson-line rapidities must disappear after taking the
product HABS, at least to leading power in Q, since the Wilson lines do not appear in the
original form factor. If the rapidity limits in (10.109) are taken after the UV regulator is
removed, then the definition of the hard factor must be modified, as follows from Sec. 10.8.2.

In the definitions of A''™, BUnsW and S, Wilson-line self-energies are canceled by
dividing each quantity by the appropriate version of (10.101). When we combine all the
factors in (10.109) the self-energies exactly cancel, since there are equal numbers of each
direction of Wilson line in the numerator and denominator of (10.109).

After deriving evolution equations, it will be convenient to reorganize this formula to
give it more convenient properties; see Sec. 10.11.

10.10 Evolution

We need evolution equations for the dependence of the soft and collinear factors on the
rapidities of their Wilson lines. Evolution equations provide much of the predictive power
of factorization.
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+ 3 others > 5 loops
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Fig. 10.23. Graphs for the connected part of the derivative of the soft factor, up to four
loops. The blob on the gluon line in (a) denotes all corrections to the gluon propagator. The
crossed vertex is the same as in Fig. 10.10, and is defined from (10.49). The left-hand ends
of the Wilson lines are intended to be joined together, to implement the Lh.s. of (10.100).

Without the evolution equations, we would have no better predictive power than from
direct perturbative calculations of the form factor, and accuracy would be particularly
compromised by the two logarithms per loop. With the evolution equations including
the RGEs, we can obtain all the factors in terms of quantities that are free of large
logarithms.

The evolution equations given below were first obtained by Collins (1980), but by
different and less general methods, and with different, but closely related, gauge-dependent
definitions of the factors.

10.10.1 Evolution of basic soft factor

We start with the dependence on y; or y, of S(y; — ). Deriving its evolution equation is
a fairly simple generalization of our one-loop calculation in Sec. 10.5.10.

Since we are in an abelian theory, we use the identity (10.100) to write the value of a
Wilson line as the product of elementary one-vertex Wilson lines. Then S is the exponential
of its irreducible connected part:

S(y1 — y2) = exp(Sconn)- (10.110)

Differentiating with respect to y; gives

3S(y1 - yZ) _ Sasconn

(10.111)
8y1 8)71

As illustrated in Fig. 10.23, graphs for 9.Scon/0y; have one vertex for a differentiated
Wilson line, just as in the lowest-order case, Fig. 10.10, together with at least one Wilson-line
vertex on the other side, and any number of extra Wilson-line vertices, but no Wilson-line
self-energies. Notice that the corrections at two- and three-loop order only arise from
corrections to the gluon propagator.

We now perform a region analysis for 9 S¢onn /9y1. Because of the restriction to connected
graphs and because of the differentiated vertex, this analysis is very simple. As usual, graphs
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for 0Sconn/0y1 can have H, A, B, and S subgraphs.13 These subgraphs must be connected
to each other, and this must occur through one or more quark loops, since the connections
to the Wilson line are to single line segments, after we used (10.100).'* Therefore, if a
region for d.S.onn/0y; has more than one of the subgraphs H, A, B, and S, we get zero,
after applying a Ward identity to the sum over graphs. Exactly as in the one-loop case,
the differentiation with respect to y; at the crossed vertex forces the gluon line at the
differentiated vertex to have rapidity close to y;; thus it is either collinear-to-A (i.e., to ny)
or hard. It follows that the only two leading regions are where the whole of 9Scon /9y is
collinear-to-A or where it is all hard.

Thus the situation we saw for the one-loop case in Sec. 10.5.10 immediately generalizes
to all orders:

e The limit y, — —oo can be taken, so that we can write the evolution equation in terms
of a rapidity-independent kernel
def o . 0Scomn
K(mg,m,u,,g(,u)) =2 lim ——, (10.112)
n—>—00 Jy;
plus power-suppressed corrections. Thus in Fig. 10.23, the upper Wilson line can be
taken light-like in the minus direction without encountering any divergence.

The above definition of K is asymmetric between the two Wilson lines of S, and we
will later make a symmetric definition in (10.122), which leads to the same numerical
results for calculations in a covariant gauge.

e The kernel K has an additive anomalous dimension yk, as in (10.56).

Hence the previously stated results (10.53) and (10.56) apply generally.
It follows that at large y; — y», the y; — y, and u dependence of the soft factor has the
form

S = SO(mgv m, Lo, g(MO))

yi— ¥
2

Hdu )
[/ Y vr(g(un)) — K(mg,m,uo,g(uo))“, (10.113)
y

0

X exp{—

where L is a fixed reference value of the renormalization scale, and S is independent of
y1 — y2. Because of power-suppressed corrections, Sy does not equal the value of S when
y1 =y and p = pyo.

Naturally, we could equally well have performed the differentiation with respect to y,
instead of y;. In that case there would be a change of sign, and the Feynman rules would
have the crossed vertex in Fig. 10.23 on the opposite Wilson line. We will redefine K
more symmetrically later, in Sec. 10.11.3; the redefinition also remedies a lack of gauge
independence of K when one uses a non-covariant gauge.

13 Tt should be possible to simplify this by a classification of lines by rapidity: collinear-to-B, and 1 -rest-frame.
14 An example would be Fig. 10.23(b), when the quark loop and the lines to the lower Wilson lines are collinear-to-A,
but one or both of the upper gluons are soft.
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(b)

Fig. 10.24. Leading regions for d B(y; — y,,)/9y1, (10.114). In (b), the soft subgraph has
at least one gluon attachment to the main Wilson line, but we do not show this, to avoid
complicating the graph.

10.10.2 Evolution of collinear factor

We now obtain an equation for the derivative with respect to y; of the unsubtracted collinear
factor B (y,, y p)- The effect of differentiating the Wilson line is

PB
—

aBunsub(yl _ yl’B) _
a1 :

\k (10.114)

As in Fig. 10.23, the left-hand end of the differentiated Wilson-line element is attached to
the main quark-Wilson-line vertex, and we used (10.100) to allow us to treat each vertex
of the Wilson line independently.

We now apply the same arguments as we used for factorization. But we simplify the
argument by using a frame where n; has zero rapidity, so that the momentum categories are
soft, hard, and collinear-to-B. A soft momentum has rapidity comparable to y;, and there
is now no separate collinear-to-A category. As usual, the momentum k at the differentiated
vertex is restricted to have a rapidity close to y;, so that it is either soft or hard. There
correspond two types of leading region, shown in Fig. 10.24(a) and (b) respectively.

For the case that & is soft, graph (a), we examine the component of the soft subgraph to
which is attaches, and apply Ward identities for all the gluons that couple it to the collinear
subgraph. This gives a factor of exactly the kernel %K for the evolution of the soft factor,
and it multiplies the original collinear factor.

When k attaches to the hard subgraph, we use Ward identities to extract the collinear
gluon attachments. The result is a factor times the original collinear factor. To this must
be applied subtractions for the soft-gluon part. Since there are now no collinear or soft
contributions to the hard factor, we can apply the massless limit to it. This gives the
following evolution equation (Collins, 1980):

B "™ (y, — Vp,)
0y,

1
= 5 [Km,mg, 1) + Gy, W] B™

+ non-leading power of ¢p 4, , (10.115)
where {p ,, is defined in (10.93b).
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Since G only involves hard momenta, it can be defined in terms of Bunsub by a massless
limit as

91 Bunsub u
G =2 lim [n—@P) _ K} . (10.116)
-l el

Here the massless limit is taken with &,, ,, fixed, and thus with pj fixed. (Note that
¥p, Would not be a good variable to use, since the rapidity of a massless momentum is
infinite.)

If we dimensionally regulate, G decreases like a power of ¢z, /u*. But the power-
suppression goes away when n — 4. This gives another view of how, in defining A"
and B, we took the y,, — oo and y,, — —oo limits. The limits are of A"*(y, —
Yu,)/S(Y1 — yu,) and B”“S“b(yul — ¥ps)/S(Yu, — ¥2). In accordance with Sec. 10.8.2, these
limits are taken with n < 4. With n < 4 the evolution equations only involve the K terms
in the infinite rapidity limit. Since the u, (or u;) Wilson line appears in both numerator
and denominator, the evolution equation shows that the K terms cancel, so that the infinite
rapidity limits exist. This is consistent with and confirms what we earlier derived by another
method.

The companion equation for A has a reversed sign:

A" (y, — Yu,)
OYu,

1
-3 [K(m,mg, 1) + G(Eauy, )] A

+ non-leading power of Q and ¢4 ,,, (10.117)

where ¢4, was defined in (10.93a).

These equations bring under control the dependence of the collinear factors on the
Wilson-line rapidities. We then use the RG to tame the logarithms of w: to set u to be
a fixed scale in K and in the collinear factors, but to be of order Q in G and H. We
will discuss this in more detail after we perform a final reorganization of the factorization
formula.

10.11 Sudakov: redefinition of factors

The above formalism has some defects, particularly in its generalization to measurable
cross sections in QCD:

1. The soft factor has no independent experimental consequences. It always appears mul-
tiplied by two collinear factors.

In QCD applications of factorization, the soft factor is non-perturbative. Although the
values of non-perturbative quantities are in principle predicted by QCD, our ability to
actually calculate them is currently close to zero. So generally we have to measure them
from experiment, and rely on universality to make predictions for the same reactions at
different energies and for different reactions. But there is no experimental probe of the
soft factor by itself.
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2. Feynman rules for the soft factor involve non-light-like Wilson lines. Perturbative cal-
culations of such quantities are more difficult than when at least one Wilson line is
light-like. (But, of course, with light-like Wilson lines, there must be subtractions to
cancel rapidity divergences.)

3. Associated with the non-light-like Wilson lines in S are power-suppressed corrections
to the evolution equation (10.53).

4. The definitions of the factors involve removal of Wilson-line self-energies (10.101).
However, these cancel in the complete factorization formula, which suggests a non-
optimality in the formulation.

5. The removal of Wilson-line self-energies makes the factors gauge-dependent.

6. Related to this is that although the evolution kernel K defined in (10.112) is gauge inde-
pendent when restricted to covariant gauges, it changes when the gauge is transformed
to an axial or Coulomb gauge. See problem 10.9.

These defects are to be regarded not as errors in the formalism, but as practical problems
that make the formalism more complicated to use.

We will now perform a redefinition of the soft, collinear, and hard factors to remove
these defects as much as possible. A useful starting point is (10.109), where factorization
is given in terms of unsubtracted collinear factors and three occurrences of the basic soft
factor § with different rapidity arguments. We can use (10.113), which shows that S has
exponential rapidity dependence, to reorganize the factors of S.

Then we will absorb the S factor(s) into redefined collinear factors, to give a new
factorization formula with no soft factor:

F = HAB + power-suppressed. (10.118)

This overcomes the lack of experimental probes of the soft factor.

The definitions of the new collinear factors are at first sight surprisingly complicated. I
will first state the definitions (which supersede those proposed by Collins and Hautmann,
2000). Then I will show how they correspond to the previous factorization formula in the
form (10.109). After that I will give the rationale for the new definitions; they are unique
given certain reasonable requirements.

10.11.1 Collinear factors

The redefined collinear factors A and B involve an arbitrary rapidity parameter y,. We
assign y, the physical significance of separating left- and right-moving quanta; the A factor
contains the effects of right-movers and B the effects of left-movers. The new collinear
factors depend on the difference in rapidity between their particle (p4 or pp) and y,.

We will find that the dependence of each collinear factor on y, is governed by an
exactly homogeneous evolution equation involving the kernel K. Thus we can express each
collinear factor in terms of its value when its particle has the same rapidity as y,. This gives
an optimal form of factorization.
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The redefined collinear factors are

A(m,mg, g, 4y Yp, — Yn)

R Sbaxe — Y
& im  lim Z4 A”“S”b’bare(ym - O - Vi)
€—0 y—+00 Sbare(y — yy) SPae(y, — o)
Yo—>—00
S s Jn
— Aunsub(yp/“ —OO) (+OO Y ) , (10119&)
S(+00, —00) S(yn, —00)
unsu S(yna _OO)

B(m, mg. 8., Yu = Yp,) = B (400, )’I’B)\/SH-OO —o0) S(roo, . TR

As in Sec. 10.8.2, we first take the limits of infinite rapidity, and then we remove the UV
regulator ¢ — 0, with the aid of renormalization factors Z4 and Zg. This order of limits
entails adjusting the renormalization coefficients relative to our previous definitions. Thus
it is convenient to write the new definitions in terms of bare soft and collinear factors,
i.e., quantities defined without the renormalization factors Zg, Z4{"", and Z}{™** used in
(10.89), (10.90), and (10.92). It is convenient to use a notation with infinite rapidities for
the Wilson lines, as in the third and fourth lines of (10.119). It implies the limits given on
the second line.

Each of the factors on the r.h.s. of (10.119) was originally defined to have Wilson-
line self-energies divided out. It can be shown that the self-energy factors cancel in the
combinations used in (10.119). (The total power of self-energy factors for each direction
of Wilson line is zero. The only complication is that the Wilson lines for direction n are
for opposite charges, but charge-conjugation invariance can be used to show that this is
irrelevant.)

I now show that the product of A and B defined in (10.119) equals the product of the
soft and collinear factors in our first form of factorization, when it is expressed in terms of
unsubtracted collinear factors in (10.109).

First we examine the limits y,, — oo and y,, — —o0in (10.109), by using the evolution
equations (10.53), (10.115) and (10.117). The K terms cancel for the y,, and y,, dependence
in (10.109). This leaves just the G terms from (10.115) and (10.117). These concern a
hard momentum region, and are effectively absorbed in UV renormalization factors. From
(10.53), we see that the y; and y, dependence also cancels in (10.109). Thus the unsubtracted
collinear factors are the same in (10.109) and in the product of (10.119a) and (10.119b).

After that, we apply the solution (10.113) for S, to show that the combination of S
factors in (10.109) agrees with the combination of S factors in the product of (10.119a) and
(10.119b).

Hence the two forms of factorization agree.

Notice that Wilson-line self-energies cancel for each of the different types of Wilson
line in (10.119), so we do not need to insert any Wilson-loop factor to cancel Wilson-line
self-energies, unlike our previous definitions. In fact, the definitions above are unique given
the following requirements:
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Fig. 10.25. Directions of Wilson lines in the factors in (10.119a): the solid lines are the
Wilson lines (which should extend to infinity), which are either light-like or in the direction
n, which is here drawn with a slightly positive rapidity y,. The shaded part of (a) is intended
to suggest the final-state quark itself, which moves in a time-like direction.

1. A collinear factor is a product of an unsubtracted collinear factor and powers of S-type
objects.

2. Non-light-like Wilson lines only appear in S factors with one light-like and one non-
light-like line.

3. Rapidity divergences cancel.'?

4. Only one light-like direction y, is used.

5. The definitions obey charge-conjugation symmetry; thus the definition of B is obtained
from the definition of A, simply by changing AU"SuP-bare ¢ gunsub.bare 5 hy exchanging
the roles of y; and y;,.

6. The factorization formula is H A B, without any soft factor.

The actual directions of the Wilson lines are shown in Fig. 10.25. In all the S objects,
the two Wilson lines are at space-like separations. All the Wilson lines are either space-like
or are obtained from a limit of space-like lines. Thus we do not have to be concerned with
the ordering of the gauge-field operators on the Wilson lines. At least in covariant gauge,
the fields commute at space-like separation. Thus the path ordering on the lines creates
no conflict with the time ordering needed to define Green functions that use time-ordered
fields. There is also maximum compatibility with Euclidean lattice gauge theory, which is
important for attempts to compute non-perturbative collinear factors in QCD.

One perhaps unexpected feature is that the Wilson lines of rapidity y, in the numer-
ator and denominator of each collinear factor have opposite directions. For example, in
(10.119a), y, in the numerator factor S(y; — y,) corresponds to a Wilson line related to the
antiquark. Therefore it has the charge of the antiquark and goes in the direction of a vector
ng = (—e’, e7*, 07) whose minus component is positive. But y, in the denominator factor
S(y, — y2) corresponds to a Wilson line with the charge of the quark and in the direction
of a vector ny = (e, —e™7, Op) whose plus component is positive. Thus the cancellation
of Wilson-line self-energies for the y, lines in (10.119a) is not as transparent as it would
be if the lines were in exactly the same direction. This should be investigated.

In Sec. 10.8.2 was mentioned a non-uniformity of the limits of infinite rapidity and of
n — 4. For the newly defined collinear factors, we can see this from Fig. 10.26, which

15 Except for regions of kr — oo, which can be canceled by UV renormalization.
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Fig. 10.26. Like Fig. 10.7, but showing the main regions for the one-loop contributions
to (10.119a), with y, chosen slightly positive. The diagrams are written before the limits
y1 — oo and y, — —oo are taken. The scale is reduced from Fig. 10.7.

shows the regions in gluon kt and rapidity that contribute at one-loop order to the factors
in (10.119a). In the region of low transverse momentum, the S terms combine to give a
negative contribution running between y;, and y, that cancels the corresponding contribution
from the one-loop term in the A term. This cancels the rapidity divergence as y, — —oo.
But as the transverse momentum increases, the upper limit on gluon rapidity decreases in
the A term, but not in the sum of the S terms. This weakens the cancellation, leaving an
uncanceled contribution from a triangular region above the diagonal line in Fig. 10.26(d).
With a UV regulator applied (e.g., n < 4) the integral is convergent at large kt, so the limit
Yy — —OQ exists.

When the UV regulator is removed, the contribution of the triangle is a doubly logarith-
mic infinity, to be canceled by a UV counterterm. As in Sec. 10.8.2 the limits are applied
in the order y, — —oo and then n — 4. Because of the doubly logarithmic divergence,
the UV divergence has the two poles of € = 2 — n/2 per loop instead of the conventional
single pole, and it is energy dependent. See (10.139).

10.11.2 Factorization and re-examination of hard factor

The new collinear factors (10.119a) and (10.119b) are obtained from the original collinear
and soft factors by reorganizing the S factors. Changes are only by power-suppressed
corrections. Thus the hard factor H is unchanged. But we can convert the old formula for
H, (10.96), to use the new version of factorization:

F F S(+00, —
H(Q, pn,g(w)= lim — = (400, —00)

im . (10.120)
massless A B massless AunSUb(—OO)BunSUb(+OO)
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As before, the notation of infinite rapidity for the Wilson lines includes the definition that
the infinite rapidity limit is applied before the removing the UV regulator by € — 0.

10.11.3 Evolution kernel K

The final versions of the collinear factors A and B in (10.119) depend on the rapidity
parameter y,, only via the factors S(y; — y,) and S(y, — ¥2), in the limit y; — oo, y, —
—o0. So to get an equation for the dependence on y,, we need the kernel K defined earlier.
This earlier definition was appropriate for differentiating S(y; — y,) with respect to yj,
and thus the diagrammatic definition was not symmetric between the positive and negative
rapidity directions. However, since S depends on the difference of the two rapidities an
equal result is obtained by differentiating with respect to the other rapidity argument, except
for a sign. For use with the new collinear factors, we now make a more symmetric definition
of K, and we put it into an operator form. We first define the vector n = (e, —e™*, Op),
and define a differentiated vector
def dn

)
8 dyn

= (e, e, Op). (10.121)

Then we redefine
def a S()’n,—OO)
K(m,, m, u, = In——
( ¢ H g(ﬂ)) ayn S(+ooa yn)
B (0] T W(o0, 0, wa)T W(o0,0,n) (—igo) [y~ di Ay(nd)|0)
(0| TW(o0, 0, wy)f W (oo, 0,n)|0)

(0| T W(oo, 0, —n)t W(o0, 0, wy) (igo) [y~ dA Ax(—nh)|0)
(0| TW(o0,0, —n)tW(o0, 0, wy)|0)

with renormalization, (10.122)

where w; and w; are the light-like vectors defined in (10.15a), and

o IAO(x) .
Ay(x) = 6n*AQ(x) + A8nvn”a— with x = An, (10.123a)
xl)
0 A (x) .
As(x) = 8n* AD(x) — Aén"n* g with x = —in. (10.123b)
xV

The Feynman rules for the special vertices are given in Fig. 10.27.
See problem 10.9 for the gauge independence of K with the new definition.

10.11.4 Factorization, evolution equations: Final form

In this section, we collect all the results in their final form: the factorization formula,
and the evolution equations for the dependence on the Wilson-line rapidity and on the
renormalization scale. The evolution equations are the key to practical applications. We
will refer back to the definitions of all the factors.
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Fig. 10.27. Feynman rules for special vertices for K. See Fig. 10.23 for examples using the
vertex labeled 1. The first rule agrees with that in (10.49).

The factorization equation is

F=H(Q, 1, g(1)) A(Ypy — Yn-mg, m, 1, g(11))
X B(yn — Ypy, Mg, M, UL, g(,u)) + power-suppressed, (10.124)

where A and B are defined in (10.119) and H in (10.120).

Initially, the rapidity y, might be taken to be zero in the overall center-of-mass frame, so
that the collinear factors A and B can be characterized as giving the contribution of quanta
of, respectively, positive and negative rapidities. Then both the rapidity difference arguments
Ypa — Yu and y, — y,, are In(Q/m). Evolution equations, that we now summarize, enable
us to adjust the values of y, differently for each collinear factor, and thereby express them
in terms of values with fixed rapidity-difference arguments. Similarly, we will use RG
equations to make suitable (and different) choices for the scale p in each factor.

From the results in Sec. 10.11.3, it follows that the evolution equations with respect to
v, for the collinear factors are

o4 1K( (10) A (10.1252)
= -3 mg, s My ’ . a

3y, = K (mem. i gu

0B 1

= = K (g g(0) B. (10.125)

Yn

where K is defined by (10.122). It follows that the product A B that appears in the factor-
ization formula is independent of y,,.
The RG equations have the form

dK

dnn —vk(g(w), (10.126a)
nu

M _ 2 A 10.126b

A ya(Sa/p’, g(w) A, (10.126b)
dB )

dnp ve(¢s/n’, g(1)) B. (10.126¢)

The anomalous dimensions can be obtained from the renormalization counterterms for
K, A and B. Now, the renormalization factors for the two collinear factors are energy
dependent, for reasons explained earlier with the aid of Fig. 10.26. This causes energy
dependence in the anomalous dimensions. Since the anomalous dimensions are determined
by UV phenomena, they involve only the large components of quark momenta, i.e., p{ and



10.11 Sudakov: redefinition of factors 385

D - So we write the energy dependence in terms of

ta Eo(phe v = m2e20ra ), (10.127a)

ts = 2pp)2e®n = m2eOn ), (10.127b)

which are versions of (10.93a) and (10.93b), but now defined relative to the single rapidity

v,. Note that these differ by power-suppressed corrections from the corresponding defini-

tions in Collins and Soper (1981) and Soper (1979), which are {4 cs = |4pa - nz/n2|, and
4

¢cs = |4pp - n?/n*|. Notealso that {4 = (2p) pp)* = Q4<% +1J/1- 4m2/Q2> ~
0.

Since the collinear factors differ only by an exchange of plus and minus coordinates and
by a charge-conjugation transformation, the anomalous dimensions y4 and yg of A and B
are the same.

The final ingredient we need is an equation for the energy dependence of y4. This is
obtained by applying d/d In u to (10.125a) and then exchanging the order of differentiation:

d 94 _ 1 4 lk,a (10.128a)
dinpway, 27K4 T At S
9 dA 9 1
= AN KyA. (10.128b)
dy,dInp 9y, 2
Hence
dya(Ca/m?, g(1) dy 1
( ) __ = 2vk(ew), (10.129)
ayn alné'A 2

thereby completely determining the energy dependence of y4 (and yp):

1
ya(¢/u?, g(w) = va(¢/1, g(w) = va(l, g(w) — 7768 In % (10.130)

The above equations, together with the definitions of A, B, H, and K, are a complete
formulation of factorization.

10.11.5 Solution

We now use the evolution equations to set the arguments of H, A and B to avoid large
logarithms.

In H, we set p proportional to Q: u = C, Q.

In A, B, and K we set p to a fixed value 11, of order the particle masses.
In A, we set y, = y,,.

In B, we set y, = y,,.

In y, and yp, we set the ¢ /u? argument to 1/C2, as with H.

For the coefficient of proportionality C, between p and Q, the notation Cj is that of Collins
and Soper (1981).
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It can be readily deduced from the evolution equations that
F=H(1/C2 g(C20)) A(yp, — Y, mg,m, C20,8(C>0))
X B(yn = Ypg-mg.m, C20, g(C20))
= H(1/C3, 8(C2Q)) A0, mg, m, o, g(ito)) B(0, mg, m, po, g(10))

©0 4 C
B eXp{—/ R [ln 20 vk (g(n) — 2J/A(1/C§,g(u))“
w M %

0

1
Xexpliz(yplx _yPB)K(mgvma MO? g(“o))}v (]0]31)

where power-suppressed corrections are ignored.

10.11.6 Properties and use of solution

Results of the same structure appear in many important problems in QCD (Chs. 13 and
14). So we now examine the solution (10.131) with a view to QCD applications.16 In QCD,
the effective coupling is large at small momenta, and is small at large momenta. Thus
perturbative calculations are not valid for collinear factors for light particles in QCD.

By setting the renormalization scale proportional to Q in the hard scattering H, we
removed large logarithms in the perturbative expansion of H. This enables effective pertur-
bative predictions to be made for H.'7 But then the collinear factors have Q dependence;
see the first line of (10.131).

We remedied this by using the evolution equations to give different values of i and y,
in the different factors, in the lower three lines of (10.131). There, each of the collinear
factors has a Q-independent value of the renormalization mass and of the rapidity difference
argument. In a weak-coupling situation, this enables a perturbative calculation to be made
without logarithms. In QCD, it allows us to use universality to make predictions: the same
collinear factors appear at all values of Q and in all processes with the same kind of
factorization. Thus determination of a collinear factor can be made from experimental data
in one process at one energy, and the value used for the otherwise unknown quantity both
in the same process at other energies, and in different processes.

The exponential in (10.131) shows that our solution radically differs from a straightfor-
ward use of perturbation theory, in a way that is much stronger than in cases containing
only ordinary RG logarithms. The anomalous dimensions yx and y4 are to be used in
the weak-coupling regime, so that low-order perturbation calculations are effective. The
generally biggest term in the exponent is the yx term; it has a logarithm relative to y4.

There remains the term involving K in the exponent. It gives a substantially energy-
dependent factor:

2 %K(mg,m,/tu,g(/’«u))
) (10.132)

1
exp[z()’m - yPu)K(mg, m, Wo, g(MO)):| — (W

16 But (10.131) is also useful in a QED-like theory with a coupling that is weak at all relevant scales.
17" The coefficient C, can be adjusted to further optimize perturbative coefficients.
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In QCD this would give a power-law dependence on Q with a non-perturbative exponent.
The exponent K (o) can be determined from the derivative of the amplitude with respect
to energy, at one value of energy. Then the same exponent is used at all energies and
in other processes. Determination of generalizations of K to other process appear as a
critical element of good phenomenology (e.g., Landry et al., 2003) for the Drell-Yan and
other processes. It gives a substantial and characteristic energy dependence to the shape of
Drell-Yan cross sections differential in transverse momentum.

If the IR coupling were weak, as in QED, the exponent K would be perturbatively
calculable.

10.11.7 Asymptotic large Q behavior

The biggest term in the exponent in (10.131) is the one with yk. It implies that at large
enough Q, the factorized formula for the form factor goes to zero faster than any power
of Q; this happens both for our form factor in an abelian theory (at least if we stay in a
weak-coupling regime), and for analogous quantities in an asymptotically free theory.

However, the derivation ignored power-suppressed corrections, which therefore have
the potential to be asymptotically larger than the final factorized answer: the leading-power
contributions have undergone a strong cancellation. Thus beyond some energy, the precise
numerical result of the factorization formula is phenomenologically irrelevant.

To assess the significance of such a factorization in QCD, we observe that in e
annihilation to hadrons, the Sudakov form-factor graphs give the component of the cross
section that has a pure quark-antiquark final state. But in the fotal cross section we found
a cancellation of all IR-sensitive regions, with the total cross section going to a constant
at large Q; see Ch. 4. This cancels the strong decrease of the Sudakov form factor in
the quark-antiquark component. At high energy the cross section for e*e~ — hadrons is
dominantly highly inelastic.

In Chs. 13 and 14, we will investigate reactions where the amount of cancellation of
IR-sensitive effects depends on the value of a measurable transverse-momentum variable.
In these situations, a generalization of the factorization derived in this chapter will be very
useful.

+o

10.11.8 Relation of factorization to LLA

From (10.131), we see systematically how all logarithms arise. We derive the leading-
logarithm approximation (LLA) as follows: (a) expand yx to lowest order in coupling;
(b) ignore the running of the coupling; (c) neglect the other terms in the exponent; (d) set
the outside H, A and B factors to their lowest-order values (i.e., unity). This reproduces
(10.38), when u is of the order of particle masses.

There are important gains from the factorization formalism relative to the LLA, partic-
ularly in generalizations in QCD. In the first place the factorization formalism shows how
corrections arise, and how they may be made systematically. The corrections are in the
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Fig. 10.28. One-loop graphs for K. The vertical heights of the graphs are adjusted to

symbolize the rapidities of the light-like lines. The rules for the vertices with a cross are
given in Fig. 10.27.

exponent, and also in non-logarithmic corrections to the H, A and B factors preceding the
exponential.

In contrast, the logic of the LLA alone gives no information on non-leading logarithms.
For example, the LLA itself does not prevent there from being an additive correction, e.g.,

g2 X constant, (10.133)

which does not vanish as Q9 — oo. This would completely change the qualitative behavior.
Such a phenomenon actually occurs for the Drell-Yan and related cross sections at zero
transverse momentum. There the LLA gives a cross section that vanishes at zero transverse
momentum, but the true result from a correct factorization theorem is non-zero (Collins
and Soper, 1982a).

An important result is that the factorization method indicates how non-perturbative
effects should affect the O dependence in analogous QCD problems, by the factor (10.132).
Of course our formal derivation stayed within perturbation theory. But the structures we
use have a much more general appearance.

10.12 Calculations for Sudakov problem

In this section we show how the Feynman rules for H, A, B and K work out at one-loop
order.

10.12.1 Evolution kernel K

First we calculate the evolution kernel K. From the rules given in Fig. 10.27, we have the
one-loop graphs shown in Fig. 10.28. They give

_ ig2lu26 / 42 1
(27 )4-2¢ (k> —m2 +i0) (—n - k +i0)?

n+8n~k—8n+n-k+n_8n-k—8n_n-k LUVt + 0%
X C.tl.
K+ +i0 k- +i0 &
. 2.2 2
18K 4—2¢ —2n 4
N S UVet 40
(22 / k2 —m2 +i0) (—n - k + i0)2 tUVet +0()
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g2 T(e) [ 4mp? ‘ g2 s.
=- +5- +0(gh
4

472 mg, €

g u?
5 A
472 mf,

+ 0(gh. (10.134)

(In obtaining this, note the reversal of the direction of k compared with Fig. 10.27, and
remember the reversed sign of the ordinary vertex on a Wilson line that corresponds to
an antiquark.) The calculation of the integral can be done by contour integration on k~
followed by an elementary integral for k*. Then the kt integral gives a beta function. The
result agrees with our previous calculation at (10.54), but now we used our updated Feynman
rules. Note that the evolution equation has no power corrections, in contrast with (10.53).
As an exercise the reader can show that the sole two-loop graph gives the O(g*) term in

YK:

2 10 2 2
e :%_E<g_> +0(s"). (10.135)

10.12.2 Collinear factor A

We now calculate the collinear factor A at one-loop order. This will illustrate the peculiar
energy dependence of the counterterm. The graphs, obtained from the definition (10.119a),
are shown in Fig. 10.29. To this is to be added a term associated with the external propagator
correction.

The graphs in Fig. 10.29(a) give

c 52 ,,2€ 1 1
A, = &R _ /d4’2€ S —
(27)*2€ i 4 Pg (k* —m3 +i0)

y { yr(py—k+m) N e
[(pa — k)2 —m2+i0] (kT +i0) = (—k— +i0) (kTe— — k—e¥ + i0)
!
(ke +kte v +i0) (kT +i0) (—k— +i0)(k+ + iO)} Py, (10.136)

to which is to be added a UV counterterm. The e®”» factors in the exponents arise from the
vertices for the Wilson lines of rapidity y,. As usual, we use the residue theorem to perform
the k™~ integral. This gives

52 2 3
Ay, = g Qmu) /dzfzng
8x3

{/l dx|: 1—x + 1 j|
X —
o X Lkf4+m2(1 —x)+m2x?  —ky —m2 +2(xpie)? +i0

+/oo dx ! } + UVt (10.137)
— c.t., .
| X —kg—m2+2(xpfem)? +i0
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Fig. 10.29. Graphs for A at one-loop, including subtractions and the counterterm for
canceling the UV divergence. Next to each double line representing a Wilson line is a
label for its rapidity, —oo, 400 or y,. The factors of % multiplying the Wilson-line terms
arise from the one-loop expansion of the factors in the square root in (10.119a). The upper
Wilson lines have the charge of an antiquark. The LSZ term is a self-energy graph for the
on-shell quark.

where the potential divergence at x = 0 has canceled. Much of the x integral, including all
the Wilson-line terms, can be performed by very elementary methods to give

_g2(2nu)2e / dZ—ZekT { B /ld k%+m2x
0

x
873 ki + m? ki +m2(1 — x) + m2x?

A =

L Xpie™y —if} + UVet  (10.138)
2 ki+m? 2 - '
The remaining x integral is well behaved.

A simple computation of the UV counterterm in the MS scheme uses the techniques of
Sec. 3.4. The UV divergence is governed by the leading large k1 behavior of the integrand,
which is therefore independent of the masses:

UV c.t. = —MS pole part of integral in (10.138)

- o2 2 2e d2—25k 1 2 + ,—vn\2
= —MS pole part of g @n i) / 5 T _1+_1HL;)_I»Z
83 kr>up kT 2 kT 2
2 + V)2
85 [ —1 1 1. 2(pye™™) T
=37 [262 + . < 1+ 2ln 2 i) (10.139)

As in Sec. 3.4, the use of the lower limit 1 on the ky integral gives exactly the MS pole
part with its accompanying factor of S, with no further finite part. This relies on exactly
our specific definition of S, in (3.18).

The kt integral in (10.138) is readily performed. To get the complete one-loop contri-
bution to the collinear factor, the LSZ reduction formula tells us to add half the one-loop
residue of the quark propagator:

1 2 (1 | m3(1 — x) + m*x? 1 20(] — x2

—Elzg— —+/ dx =(1 —x)In s : —+—/ dx mx( *) .

2 &qz2 |4 Jo 2 w2 0 m2(1 — x) + m?x?
(10.140)
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Then the full one-loop contribution to A at n = 4 is

2 1
— d
A1=gg2{—/0 —xln(l—x—l—xzmz/m;)

X
| m2(1 — x) + m*x? ! 2x(1 — x?
+/ dx =(1 +x)In =& —/ X mx( *)
0 2 u? 0 m2(1 — x) + m?x?
1 1 2 + ,—yn)2 1 2 + ,—yn)2 m2
b L 2eae ™ by p2pae T T el g0 140
4 4 mﬁ 4 u? 2

We can now check the evolution and RG equations. First, we see from (10.94a), and
its generalization to the new definition of A, that the counterterm in (10.139) gives the
one-loop contribution to Z4 Zzl/ 2 With the aid of (3.23) for Z,, we find that

2 )2
g°S. [ —1 1 3 1. 2pye™) T 4
Zay=14+"—~|—S+-|—-+z-Ih————i— 0(g"). 10.142
A +87‘[2|:2€2 e<4+2n 12 7)o (0l
From this we get the anomalous dimension:
_dlnA  dInZ,
VAT Qg ding
_0InZy dg?/16m* 9lnZy,
T dlnp dlnp  9g2/1672
2 3 2 t o= w)2
T SR V0 D i By (ate = 0), (10.143)
8w |2 u?

where the first line uses A = Z 4 A( and the RG invariance of A, defined in terms of bare
fields, while the third line uses (3.44) for d(g?/167%) /d In u. The explicit . dependence
of the single-pole counterterm was needed to get finiteness of y,4. It is readily checked that
the dependence on y, is as predicted from (10.129) with the calculated value of yx from
(10.135).

10.12.3 Hard factor

From the definition, (10.120), we find that the one-loop hard-scattering coefficient arises
from the graphs in Fig. 10.30. This gives

. 2 2¢ —
—ig°u 4—ze; UaPp Ig(k) Ppup
=——— | d"k , 10.144
"7 @nytE f K2+ 00 (10.144)
where
IH(k) — )/K(pj{]/7 - k)yu(_pEer - k)yl( _VM
(—ijgk— + k> +i0)2pgkt + k2 +i0)  (—k= +i0) (kT +i0)
+ - _ m(i—1 H(_p=yt _ -
Yy (pay™ —BHy*(=1) Yy (=pgy" =By (10.145)

C(=2pk + K2+ i0) (kT +i0)  (—k +i0) QpykT + k2 +i0)
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Fig. 10.30. Graphs for one-loop hard coefficient.

The factors of (—1) in two of the numerators are for the negative charges of the upper
Wilson lines. To (10.144) is to be added a UV counterterm, as usual.
The integrals over k~ and k™ can be performed analytically, to give
H = —g2 (A u®)iiaPpy" Ppusp /oo dk?
! 8720(1 — €) o (KBl

K2 1+ (G +20k2/0% 1 +4ki/0F +1
nol 4 O+ 20kt/ 0k ks , (10.146)
O J1+ag/0r  J1+4k3/05 -1
where Q2 = —Q? — i0: the integral is defined by continuing from a positive value of Q%
to —Q? approaching from the appropriate side of the real axis. Observe that the Wilson-line
terms combine to remove the divergence at kt = 0.

From the behavior of the integrand at large kr, it can be computed that the necessary
MS counterterm is

2S.i # 1 1 23
8 SeitAPpy"Ppup 1. —ln&+—
872 12

Hl,c.t. ==

€ € 2

_ §2S4Psy " Pave [i + 1 (— L fin s E)} .
8x2 u? 2
This is exactly equal and opposite to the sum of the one-loop contributions to Z4 and Zg, so
that for the one-loop contribution to H AB the total counterterm is zero. This corresponds
to the non-renormalization theorem for matrix elements of a conserved current. Notice
that the counterterm has a logarithm, just as for the collinear factors. Thus the one-loop
anomalous dimension of H is also momentum dependent:

difdlnH
T dlnp

. (10.147)
€ €

yu(Q* /1, g)

2 2
_ 8 0 . 4

—ya(Ca/?, g(w) — ve(¢a/1*, g(1)). (10.148)

with the last line being a general result following from the RG invariance of the whole form
factor, and hence of its factorized form H AB. Observe that the dependence of yy on the
ratio Q%/u? can be derived from the ¢ dependence of y4 and yg. Thus from (10.129) we
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have

dyu(0Q*/u?,8) 1
Moyl EJ/K(g), (10.149)

so that

1 2
yu(Q*/1, 8) = vu(l, &) + Svx(g)n %. (10.150)

10.13 Deduction of some non-leading logarithms

Our formalism gives a lot of information on the structure of non-leading logarithms even
in the absence of explicit Feynman-graph calculations beyond lowest order. To see some
of the results, we examine the perturbation series for the logarithm of the form factor.
We keep the logarithmic dependence on Q, expressing the coefficients as polynomials in
t = In(—Q?/u?), with power corrections dropped:

g2

InF =—
472

(Crat* + Ciit + Cyo)

2\ 2
+ <4g?> (Cost® + Coat? + Copt® + Coit 4+ Co9) + O(1/Q%),  (10.151)

where the coefficients may depend on m, M and w, but not on Q.

The leading logarithm results imply that C»4 = 0. But we can deduce considerable more
from the factorization formula (10.124) and the evolution equations (10.125). We do this
by deducing an equation for the Q dependence of In F:

dlnF . dln Jy +81nJB +81nH
dnQ 9lnQ dlnQ dInQ

= K(m,,m, g, ) + G(Q/u; g) + power correction, (10.152)

+ power correction

where G is a purely UV quantity that obeys dG /dInu = —yg. Now, from (10.151) we
have

2

dln F I's g : 5
@Ciat +2C1) + ( (6C23t> +4Cxnt +2C1) + ... (10.153)

dInQ  4n?

2

In order that G in (10.152) be independent of the masses m and M, C},, C3 and Cy, must
be independent of m and M (and hence of w). Furthermore, once one puts in the one-loop
values, the requirement that G satisfies its RG equation implies that

1
Cy=——. 10.154
23 36 ( )
Hence the new information for the form factor F at two loops is two logarithms down
from the leading logarithm, i.e. it is in C;; and the less leading coefficients, C,; and Cyg. The

double logarithm coefficient Cy; is related to the two-loop term in yx, given in (10.135);
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this was the result of a relatively easy calculation. Hence

5
Cyp=—. 10.155
2=z ( )
The remaining information, for which a full two-loop calculation of the form factor is
needed, is in the terms with one and no logarithms of Q. These are three and four logarithms

down from the leading In* Q term.

10.14 Comparisons with other work

In this section, I give a brief comparison between the present treatment of the Sudakov
and other work on the same and related problems. I restrict attention to work that aims at
something like a complete factorization theorem, rather than just obtaining a LLA.

The first treatment in a similar fashion was in Collins (1980). There I used Coulomb
gauge in a frame with a time-like rest vector n, where the numerator of the gluon propagator
is

av | (kY +kEn")n -k k*k"n?
-8+ - .
n-k? —k*n? n-k* —k*n?

The collinear factors are defined by formulae like (10.90) and (10.92) except that the Wilson
lines are removed, so that the matrix elements are {p4|¥(0)[0) and (pz|¥o(0)|0). Thus
the rapidity of the vector n plays the same role as y, in our final definitions (10.119).
Factorization and evolution equations of a similar kind were derived, differing from those
in Sec. 10.11 essentially by a change of scheme. But the old evolution equations had power-
suppressed corrections, rather than being exactly homogeneous. There was also a separate
soft factor, which we have now eliminated.

A treatment in covariant gauge with Wilson lines was given in Collins (1989). The
collinear factors were now defined as what are here called the “unsubtracted” collinear
factors (10.90) and (10.92), but with the Wilson lines now having a rapidity y, corresponding
to that in our final definitions (10.119). In this formalism, it is the soft factor that has
the subtractions, which is harder to justify from a systematic approach. The evolution
equations continue to have power-suppressed corrections, and the factorization formula
has a separate soft factor. They also have not only the K we use, but also a G term, as
in (10.117).

An earlier approach is found in Mueller (1979), but the methods are less general,
particularly as regards their extension to inclusive processes in QCD.

When the methods of Collins (1980) were extended (Collins and Soper, 1981) to inclu-
sive processes in QCD, it was found convenient to replace Coulomb gauge by a non-light-

(10.156)

like axial gauge, where the numerator of the gluon propagator is
k*n® 4+ ntk¥  kPkHn?
k-n (k-n)?’

This gives definitions (Collins and Soper, 1982b; Soper,