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1

Introduction

The theory of the strong interaction of hadrons – quantum chromodynamics, or QCD – is
in many ways the most perfect and non-trivial of the established microscopic theories of
physics. It is, as far as is known, a self-consistent relativistic quantum field theory. But,
unlike the case of the electromagnetic and weak interactions, many primary phenomena
governed by QCD are not amenable to direct calculation by weak-coupling perturbation
theory. Moreover, QCD has few parameters.

To understand these assertions, first recall the classification of known microscopic
interactions into strong, electromagnetic, weak, and gravitational. Precisely because the
strong interaction is strong, it is useful to study QCD by itself, the other interactions being
perturbations.

QCD is a quantum field theory of the kind called a non-abelian gauge theory (or
a Yang-Mills theory). It has two types of field: quark fields and the gluon field. Parti-
cles corresponding to the quark fields form the basic constituents of hadrons, like the
proton, with the gluon field providing the binding between quarks. There appear to
be no states for isolated quarks and gluons; these particles are always confined into
hadrons. This contrasts with quantum electrodynamics (QED), where instead of quarks
and gluons, we have electrons and photons, which do exist in isolated single-particle
states.

One key feature of QCD is “asymptotic freedom”: the effective coupling of QCD goes to
zero at zero distance. Thus short-distance processes yield to the highly developed methods
of Feynman perturbation theory. Among other things, this allows a perturbative analysis to
give a correct renormalization of the ultra-violet divergences of QCD. The theory therefore
exists in a way that the electroweak theory may not. Thus QCD contains no hints of its own
breakdown.

On the other hand, unlike the case of QED, where perturbative methods give (first
principles) predictions of spectacular accuracy, many apparently simple phenomena in
QCD are difficult and non-perturbative, for example, its simplest bound states, like the pion
and proton. Although Monte-Carlo lattice calculations have made enormous progress, they
are limited both in achievable accuracy and in the observables that can be predicted, and
these include no hadronic high-energy scattering processes, for example. So QCD is highly
non-trivial.

1



2 Introduction

Moreover, its consequences are enormous. Of course, QCD underlies the whole of
nuclear physics and it creates most of the mass of ordinary matter, as contained in the
proton and neutron.

Despite the non-perturbative nature of the particle states in QCD, there is a vast domain
where perturbative methods can actually be applied to realistic scattering processes in
QCD. The purpose of this book is to give a systematic account of these methods and their
justification.

At present these are the methods that show the power of QCD most strongly. They have
an almost universal impact on experiments in high-energy physics, particular with hadron
beams. This ranges from the long-range planning of experiments to the analysis of data,
even when the primary subject of study is a non-QCD phenomenon, such as the weak
interaction, the Higgs boson, supersymmetry, etc.

It is easy to state the characteristic method, hard-scattering factorization, that enables
perturbative QCD to be systematically applied to these reactions. As an example, consider
production of the predicted Higgs boson in proton-proton collisions at the Large Hadron
Collider (LHC), which at the time of completion of this book (2010) was starting operation
at the European Organization for Nuclear Research (CERN). In the factorization approach,
the proton beams are treated as collections of so-called partons: quasi-free quarks and
gluons, whose (non-perturbative) distributions, the parton densities, have been measured
in other experiments, and are used at the LHC with the aid of the perturbative evolution
equations of Dokshitzer, Gribov, Lipatov, Altarelli, and Parisi (DGLAP). The cross sections
for collisions of partons of the various types to make the Higgs boson are calculated
perturbatively given its expected couplings. A provable consequence of QCD is that many
useful physical cross sections are predicted by convoluting measured parton densities with
short-distance partonic cross sections. It is the proved universality (or, more generally,
modified universality) of the non-perturbative parton densities, etc., between different
experiments that gives perturbative QCD its predictive power.

Among other things, factorization allows an extrapolation of the physics by an order
of magnitude or more in center-of-mass energy from previous experiments. Many cross
sections of interest are so minute (down to femtobarns at the LHC) compared with the
total cross section (close to 100 mb) that considerable quantitative understanding of QCD
physics is necessary for a good analysis of experimental data.

There are many places where one can learn how to perform perturbative QCD calcula-
tions. But a newcomer or an outsider can be forgiven for questioning the logical founda-
tions of the subject. For example, why should calculations be made with on-shell massless
partons, as is commonly done? There seems to be an essential use of actual collinear
singularities associated with on-shell massless partons; how can these be so routinely and
cavalierly manipulated when we know that quarks and gluons are confined inside hadrons
and are clearly not free particles and are therefore definitely not on-shell?

Therefore the purpose of this book is to give a connected logical account of the methods
of perturbative QCD. The intended audience includes not only graduate students in high-
energy physics, but also established researchers, both in high-energy physics and elsewhere,
who want a clear account of the subject.



1.1 Factorization and high-energy collisions 3

Readers are assumed to have a knowledge1 of relativistic quantum field theory, up to
non-abelian gauge theories and the elements of renormalization theory, together with a
basic knowledge of elementary particle physics. Beyond this I try to keep the treatment
self-contained.

There is a clear danger that the treatment gets bogged down in mathematical minutiae
without getting to the practically applicable meat of the subject. But without a sufficiently
clear and precise treatment, the concepts get muddied, further development is stymied, and
the construction of new innovative and correct concepts is hindered.

Indeed, not everything in perturbative QCD is properly clear and established. One
reason for such problems is the way in which much knowledge in perturbative QCD has
been constructed.2 It is common in science to induce theoretical ideas from a pattern
perceived in a body of experimental data. But in QCD, we also often induce new higher-
level theoretical ideas from calculations within QCD. For example, on the basis of a set
of Feynman-graph calculations, one might see a pattern that can be formalized in the
statement of a factorization property together with a definition of parton densities. The
induced property can be tested both by further theoretical calculations and by comparison
of its predictions with experiment.

Such a factorization property has the form of a statement of a mathematical theorem, and
the soundest method of establishing the property is by proving it mathematically. Naturally
researchers try to do so. But because of the difficulty of perturbative QCD, there are often
interesting gaps in the proofs.

The theorems of perturbative QCD are supported not only by proofs, but also by a
combination of agreement with the results of particular Feynman-graph calculations and
agreement with experimental data. So a gap in a proof does not imply that a theorem is
actually wrong. But the gaps can be frustrating to a newcomer learning the subject. They are
suggestive of things that are difficult and not fully explicitly understood; the understanding
in the collective consciousness of the workers in the field is quite non-verbal.3 Such gaps
could become particularly important in generalizations of the theorems.

In this book I try to make the gaps explicit. I will point out some of the danger areas,
and suggest targets for research. I was also able to fill in or reduce many of the gaps.

1.1 Factorization and high-energy collisions

Since the idea of hard-scattering factorization is so central to the applications of QCD, it is
useful at this point to formulate it quantitatively in a particular example. The results in this
section are stated without any attempt at justification, the aim being to give a hint of the
landscape we will explore in detail in the rest of the book. The section may be somewhat
mysterious to a reader without any exposure to the general subject matter, and it can be
skipped if necessary.

1 Standard references include: Sterman (1993); Peskin and Schroeder (1995); Weinberg (1995, 1996); Srednicki (2007).
2 These issues actually apply more generally in quantum field theory and in high-energy theory.
3 A classic case of a similar situation is with Dirac’s delta function.
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Fig. 1.1. (a) Drell-Yan cross section at lowest order in hard scattering. This represents an
amplitude times its complex conjugate, with a sum and integral over the final state, at the
vertical line. (b) Same as diagram (a) with interactions between the hadron remnants that
fill in the gap between the remnants.

Let us choose the Drell-Yan process, the inclusive production of a high-mass muon pair,
HAHB → μ+μ−X. Here HA and HB are incoming hadrons of momenta PA and PB in
a collision with a large center-of-mass energy

√
s. The muon pair is produced through a

virtual photon (or other electroweak boson).4 The symbol X denotes that the rest of the
final state is summed/integrated over, and is treated as unobserved.

In factorization, the μ+μ− pair is formed in the interaction of one constituent out of
each hadron, with the lowest-order case being simple quark-antiquark annihilation, as in
Fig. 1.1(a). In the center of the figure, a quark out of one hadron and an antiquark out of the
other annihilate at a vertex with a line for a highly virtual photon. At the other end of the
photon line are the detected muon and antimuon. The shaded blobs represent the remnants
of the incoming hadrons.

Factorization applies when the μ+μ− pair has high mass. In this context the constituents
are called partons, and the possible types correspond to the fields in QCD: the quarks of
various types (called “flavors”), and gluons.

In a sense to be made precise in Ch. 6, the partons are approximately aligned with their
parent hadrons, and we will define a momentum fraction ξ of a parton with respect to its
parent. We will define “parton densities”, fi/H (ξ ). Here i labels the type of parton, and H

the parent hadron. Then fi/H (ξ ) is treated as the number density of partons of type i in
hadron H . The factorized cross section is

dσ

dQ2 dy
=
∑
ij

∫ 1

0
dξa

∫ 1

0
dξb fi/HA

(ξa)fj/HB
(ξb)

dσ̂ (ξa, ξb, i, j )

dQ2 dy
, (1.1)

where y is the rapidity5 of the μ+μ− pair, and Q is its invariant mass. We have chosen to
integrate over qT , the transverse momentum of the pair relative to the collision axis. The
errors in the factorization formula are suppressed by a power of a hadronic mass divided
by Q or

√
s. We have a sum over the types of the parton that are involved, one out of

4 Any other type of lepton pair may be similarly treated, e.g., e+e− or μ+νμ.
5 See Sec. B.3 for a definition.
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each beam hadron, and we have an integral over the possible momentum fractions. The
partons themselves undergo a collision, and this gives the μ+μ− pair, with an effective cross
section denoted by dσ̂ (ξa, ξb, i, j )/dQ2 dy. This we call a “short-distance cross section”
or a “hard-scattering coefficient”. It differs conceptually from an ordinary cross section in
that it is arranged to be not a complete cross section for partonic scattering, but to contain
only short-distance contributions.

The short-distance partonic cross section can be usefully calculated in powers of the
coupling αs(Q), which is small when Q is large, because of the asymptotic freedom
of QCD. The lowest-order hard-scattering for the Drell-Yan process is the tree diagram
for quark-antiquark annihilation to μ+μ−, at the center of Fig. 1.1(a). At this order, the
parton momentum fractions are determined from the muon-pair kinematics: ξa = eyQ/

√
s,

ξb = e−yQ/
√

s, in the center-of-mass frame. Thus the Drell-Yan cross section gives a direct
probe of the underlying quark and antiquark.

The correct definition of a parton density depends on a resolution scale, which can be
usefully set equal to Q. There is an equation, the DGLAP (Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi) equation, which governs the scale dependence. It is a linear integro-
differential equation – (8.30) below – whose kernel is also perturbatively computable.

There are many similar factorization formulae for a wide variety of processes, typified
by the production of a high-mass electroweak system (μ+μ− pair, and W , Z and Higgs
bosons), or by the production of particles with large transverse momentum. There are,
in addition, many further developments, characterized by more complicated kinematic
situations.

We can now appreciate some of the issues that make the derivation and understanding
of factorization very non-trivial. One is that in Fig. 1.1(a) there are beam remnants going
into the final state. We can treat each of these as each being boosted from the rest frame
of its parent hadron to a high energy, so that the final state appears to have two oppositely
highly boosted systems, with a distinctive large rapidity gap between them. Such a state
is in fact sometimes seen experimentally, and is called a “diffractive” configuration. But
diffractive events are only a small fraction of the total. Therefore experiment suggests that
the beam remnants interact with high probability, as notated in Fig. 1.1(b). We will need
to understand whether or not factorization gets violated. For the fully inclusive Drell-Yan
process, we will show that a quite non-trivial cancellation applies, so that factorization
actually works: Ch. 14.

Moreover, the beam remnants in Fig. 1.1(a) appear to have quantum numbers, e.g.,
fractional electric charge, that correspond to beam hadrons with a quark or antiquark
removed. This is not observed in actual diffractive events.

Another issue that we will solve is that the colliding partons are often treated as being free
and on-shell, even though they are bound inside their hadrons. In addition, the partons are
treated as having certain fractions of their parent hadrons’ momenta, even though the parton
and hadron momenta cannot always be exactly parallel; there is certainly a distribution over
the components of parton momentum transverse to the collision axis. We will see how this
is allowed for in defining parton densities, and how in some situations we need to treat it
more explicitly. One standard example is the Drell-Yan process when we take the cross
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section differential in the transverse momentum qT of the μ+μ− pair instead of integrating
over it as we did in (1.1).

1.2 Why we trust QCD is correct

QCD is generally regarded as the correct theory of the strong interaction. The reasons
are not just that it makes successful quantitative predictions. Also important are structural
arguments, as summarized in Ch. 2. These arguments start from high-level abstractions
from data, and make a quite rigid deduction of QCD as the theory of the strong interaction.
There does not appear to be an underdetermination of theory by data. The arguments are like
those that led Einstein to the theories of special and general relativity, and to those that led
Heisenberg, Born, Jordan, and Dirac to founding the current formulation of quantum theory.
Once QCD and asymptotic freedom were discovered, there was a positive feedback loop
where successful experimental predictions confirmed QCD. But the structural arguments
are also critical in giving the realization that QCD applies generally to strong-interaction
phenomena, including those that not yet derived from QCD, e.g., the bulk of conventional
nuclear physics.

As with many modern theories of physics, QCD and its applications have many elements
that do not in any immediate sense correspond to tangible real-world entities. Parton
densities are a good example. These elements, and the associated mathematics, provide
links between many different kinds of experimental data.

Indeed it is in the links between experiments that many of the predictions of QCD
arise. Perturbative calculations alone do not predict any cross sections in hadron-hadron
scattering and lepton-hadron scattering. Factorization gives us cross sections in terms of
non-perturbative parton densities, which we currently cannot compute from first principles.
But from QCD we deduce that the parton densities are universal between different reactions,
with energy-dependent modifications of universality caused by the evolution of parton
densities with a scale parameter. So we can fit parton densities from some limited set of
data, and use them to predict other cross sections, with the aid of perturbatively calculated
coefficients like dσ̂ in (1.1).

No single experiment really provides a critical test of QCD. But a sufficiently large
collection of experiments does simultaneously provide measurements of non-perturbative
factors, tests of the factorization structure, and tests of QCD itself. There are some interesting
issues in statistics and in the philosophy of science here, which do not appear to arise in
such a strong form in other areas of science.

1.3 Notation

As regards normalization conventions and the like, I generally follow the conventions of the
Particle Data Group (PDG) (Amsler et al., 2008), since this forms a standard for our field.
I point out exceptions explicitly. For a collection of many notations and standard results,
see App. A. For acronyms and abbreviations, see Sec. A.3.
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For the most part, I use the “natural units” conventional to the field, where h̄ = c = ε0 =
1, and the GeV is used as the unit of energy. See Sec. A.2 for common conversion factors.

I have found some variations on the standard symbol for equality to be useful. First, to
flag the definition of something, I put “def” over the “=”, as in

Q
def=
√
−q2. (1.2)

Quite often, it is convenient to explain the definition of some conceptually difficult object
by first proposing a simplified candidate definition based on a naive picture of the physics,
and then building up to the correct definition, e.g., with parton densities, starting in Ch. 6.
So I use the notation

Quantity
prelim= preliminary candidate definition, (1.3)

for the early incorrect definitions. This avoids having several apparently incompatible
definitions of the same quantity, with the wrong ones prone to being taken out of context.

Similarly there are situations where I motivate proofs and statements of difficult results
by first formulating them in a simplified situation. For example, before formulating and
deriving true factorization theorems, I examine the parton model, an intuitive approximation
to real physics that is relatively easy to motivate. So I flag these suggestive but ultimately
incorrect results with a question mark over an equality sign, e.g.,

FL
?= 0. (1.4)

1.4 Problems and exercises

I have devised a number of chapter-end exercises. Some of these are relatively elementary
and should be tackled by anyone learning the subject. Among these are exercises to complete
derivations in the text; some others explore the conceptual framework by the derivation
of further results. There are also harder exercises, rated with one to five stars. Those with
three or more stars are really research problems. I do not necessarily have any answers or
even suggestions for approaches to the research problems; a good solution could easily be
suitable for journal publication.
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Why QCD?

A possible approach to a theory like QCD is just to state its definition, and then immediately
proceed deductively. However, this begs the question of why we should use this theory and
not some other. Moreover, the approach is quite abstract, and the initial connection to the
real physical world is missing.

Instead, I will take a quasi-historical approach, after first stating the theory. Such an
approach is suitable for newcomers since their background in QCD is like that of its
inventors/discoverers, i.e., little or none. There were several lines of development, all of
which powerfully converged on a unique theory from key aspects of experimental data. Of
course, we see this much more readily in retrospect than was apparent at the time of the
original work, and my account is selective in focusing on the issues now seen to be the
most significant. A historical approach also enables the introduction of ideas and methods
that do not specifically depend on QCD: e.g., deeply inelastic scattering and the parton
model.

I have tried to make the presentation self-contained, in summarizing the relevant exper-
imental phenomena and their consequences for theory. The reader is only assumed to have
a working knowledge of relativistic quantum field theory. Inevitably there are issues, ideas,
experiments, and historical developments which will be unfamiliar to many readers, and for
which a complete treatment needs much more space. I give references for many of these. In
addition, there are several references that are global to the whole chapter and that the reader
should refer to for more detail. A detailed historical account from the point of view of a
physicist is given in the excellent book by Pais (1986). A good account of the phenomena
is given by Perkins (2000). Standard books on quantum field theory also refer to them;
see, for example, Sterman (1993); Peskin and Schroeder (1995); Weinberg (1995, 1996);
Srednicki (2007). A comprehensive account of experimental results is given by the Particle
Data Group in Amsler et al. (2008); this includes up-to-date authoritative summaries of
measurements and their theoretical interpretation.

Naturally, QCD is not the whole story; there are known electromagnetic, weak and
gravitational interactions, and presumably if we examine phenomena at short enough dis-
tances, beyond the reach of current experimental probes, we are likely to need new theories.
But within the domain of the strong interaction at accessible scales, there is an amazing
uniqueness to the structure of QCD.

8
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2.1 QCD: statement of the theory

An expert in quantum field theory could simply define QCD as a standard Yang-Mills
theory with a gauge group SU(3) and several multiplets of Dirac fields in the fundamental
(triplet) representation of SU(3).

In more detail, QCD is specified by its set of field variables and its Lagrangian density
L. The Dirac fields ψρaf are called quark fields, and the gauge fields Aα

μ are called gluon
fields. On the quark fields the indices ρ, a, and f are respectively a Dirac index, a “color”
index taking on three values, and a “flavor” index. The gauge group acts on the color index.
Currently the flavor index has six known values u, d, s, c, b, t (or “up”, “down”, “strange”,
“charm”, “bottom”, and “top”). On the gluon field, the color index α has eight values,
for the generators of SU(3), and μ is a Lorentz vector index. The important role played
by the color charge leads to the theory’s name, “quantum chromodynamics” or QCD. Of
course, the names “color” and “flavor”, and the names of the quark flavors, are whimsical
inventions unrelated to their everyday meanings.

To deal with the renormalization of the UV divergences of QCD (Sec. 3.2) we distinguish
between bare and renormalized quantities (fields, coupling and masses). We define QCD
by a Lagrangian written in terms of bare quantities, which are distinguished by a subscript
0 or (0). The gauge-invariant Lagrangian is the standard Yang-Mills one:

LGI = ψ̄0(i /D −m0)ψ0 − 1

4
(Gα

(0) μν)2. (2.1)

The full Lagrangian used for perturbation theory will add to this some terms to implement
gauge fixing by the Faddeev-Popov method; see Sec. 3.1. The covariant derivative is given
by

Dμψ0
def= (

∂μ + ig0t
αAα

(0) μ

)
ψ0, (2.2)

where tα are the standard generating matrices1 of the SU(3) group, acting on the color
indices of ψ . The gluon field strength tensor is

Gα
(0) μν

def= ∂μAα
(0) ν − ∂νA

α
(0) μ − g0fαβγ A

β
(0) μA

γ
(0) ν, (2.3)

where fαβγ are the (fully antisymmetric) structure constants of the gauge group, defined so
that [tα, tβ] = ifαβγ tγ . The Lagrangian is invariant under local (i.e., space-time-dependent)
SU(3) transformations:

ψ(0) ρaf (x) �→ [
e−ig0ωα(x)tα

]
ab

ψ(0) ρbf (x), (2.4a)

Aα
(0) μ(x)tα �→ −i

g0
e−ig0ωα(x)tαDμeig0ωα(x)tα . (2.4b)

The quark fields have been redefined, as is always possible (Weinberg, 1973a), so that
the mass matrix is diagonal:

ψ̄0m0ψ0 = m0 uū0u0 +m0 d d̄0d0 +m0 s s̄0s0 + . . . (2.5)

1 tα = 1
2 λα , where the standard λα are given in, e.g., Amsler et al. (2008, p. 338).
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Here separate symbols are used for the fields for different flavors of quark: u0 ρa = ψ0 ρau,
etc.

The renormalized masses of the quarks are given in Table 2.2 below, along with the
masses of the other elementary particles of the Standard Model. Large fractional uncertain-
ties for the light quark masses arise because quarks are in fact confined inside color-singlet
hadrons, which gives considerable complications in relating the mass parameters to data.

For their electromagnetic interactions, we need the quark charges:

ed = es = eb = −1/3, eu = ec = et = 2/3, (2.6)

in units of the positron charge.
The only significant freedom in specifying QCD is in the set of matter fields, the quarks.

At the time of discovery of QCD, only the u, d and s quarks were known; the c quark came
slightly later. The discovery of the b and t quarks needed high enough collision energies
to produce them. There have been many conjectures about possible new heavy quarks,
both scalar and fermion, possibly in non-triplet color representations, but searches so far
have been unsuccessful (Amsler et al., 2008). The decoupling theorem (Appelquist and
Carazzone, 1975) for heavy fields ensures that we can ignore the heavy fields if experimental
energies are too low to make the corresponding particles.

A complete theory of strong, electromagnetic, and weak interactions is made by com-
bining QCD with the Weinberg-Salam theory to form the Standard Model of elementary
particle physics, summarized in Sec. 2.7.

2.2 Development of QCD

Why we should postulate the QCD Lagrangian and study QCD as the unique field theory
for the strong interaction? An answer to this question should be at a high level and broad,
since QCD is a high-level theory, intended to cover a broad range of phenomena, i.e., all of
the strong hadronic interaction.

Starting in the 1950s, as accelerator energies increased, elementary particle physics
gradually became a separate subject, distinct from nuclear physics. Several, not entirely
distinct, strands of research led to the discovery of QCD in 1972–1973:

1. The quark model of hadron states.
2. The (successful) search for a theory of the weak interactions of leptons, including the

weak interactions of hadrons.
3. Current algebra, i.e., the analysis of the currents for the (approximate) flavor symmetries

of the strong interaction, including their relationships to the electroweak interactions of
hadrons.

4. The theoretical development of non-abelian gauge theories.
5. Deeply inelastic lepton scattering and the measurement that the strong interaction is

quite weak at short distances.
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It is almost paradoxical that many of the key issues involved the weak and electromagnetic
interactions; much of the research on pure strong-interaction phenomena was not critical
to the discovery of QCD.

2.2.1 Quantum fields

Always present was the notion of quantum field theory. Soon after the discovery of quantum
mechanics, it was apparent that quantum fields formed an appropriate candidate framework
in a search for an all-encompassing underlying theory of known interactions.

First, the basic dynamical variables are local in a field theory, so that there are separate
variables to discuss, for example, an experiment in Illinois yesterday and an experiment
in Switzerland tomorrow. This happens even in non-relativistic quantum theory. A theory
of interacting quantum Schrödinger fields is readily constructed; this theory can be shown
(Fetter and Walecka, 1980; Brown, 1992) to be equivalent to a collection of ordinary
quantum mechanical theories in terms of N -body wave functions, but now for any N and
with specified inter-particle interactions. In contrast, an ordinary Schrödinger equation
for a wave function concerns, for example, only one particular electron and proton. But
a quantized field theory can be formulated to describe all possible electrons and nuclei.
Thus it encompasses all of atomic and molecular physics, not to mention chemistry, etc.
Of course to take account of radiative phenomena, one also needs the electromagnetic
field.

Since quantum field theories are intrinsically many-body theories, they are suitable for
the construction of quantum theories that obey Einstein’s special relativity. Once sufficient
energy is available in a collision, particles can be created, so that a framework where
particles are conserved is wrong. Fig. 2.3 below serves as an icon of this: it shows the
multiparticle outcome of one particular positron-proton collision.

Furthermore, it is natural in relativity that fields obey local field equations, written in
terms of fields and their derivatives. A non-local interaction would involve action at a
distance, and would require enormous conspiracies to avoid faster-than-light propagation,
etc.

To obtain a quantum field theory, it is sensible to start by postulating fields that correspond
to observed particles, and then asking what interactions, governed by non-linear terms
in the field equations, give observed phenomena. This approach was successful for the
electromagnetic interaction and gave us the theory called QED. With a long delay to allow
the full formulation of the needed non-abelian gauge theories, this approach was also
successful for the weak interaction. Considerable restrictions were applied to the candidate
theories, concerning self-consistency and renormalizability.

But for the strong interaction, there was a failure of this obvious approach, where one
searches for a theory written in terms of fields for observed hadrons, initially the nucleons
and pions. In retrospect, the reason is obvious: hadrons are composite, with the size of the
bound states (Hofstadter, Bumiller, and Yearian, 1958), around 1 fm = 1× 10−15 m, being
much less than the range of the strong nucleon-nucleon potential and the inter-nucleon
separation in atomic nuclei (Hofstadter, 1956).
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During the 1960s it became conventional, instead, to suppose that something other than
a quantum field theory was needed for the strong interaction, an ultimately fruitless quest.2

See the later chapters of Pais (1986) for a historical account.

2.2.2 Quark model

In strong-interaction physics very many unstable particle-like states, or resonances, have
been discovered (Amsler et al., 2008). They are generically termed hadrons. No fundamental
distinction between the unstable and stable hadrons appeared to exist, stable hadrons simply
being those that have no available decay channels. One natural hypothesis is that these
states are bound states of more elementary particles, which turned out to be the actual
case. The establishment of this view, starting in the 1950s, was quite non-trivial, however.
Tightly coupled with these developments was the discovery that the strong interaction is
approximately invariant under an internal symmetry, called SU(3) flavor symmetry; see,
e.g., Gell-Mann (1962).

Within QCD, SU(3) flavor transformations are applied to the u, d and s quark fields,
and would give an exact symmetry if the masses of the u, d and s quarks were equal. We
get a useful approximate symmetry because the masses (and hence the mass differences) of
these lightest three quarks are substantially less than a “normal hadronic mass scale”, char-
acterized by the proton mass. The c, b and t quarks (not known until after the construction
of QCD) are singlets under SU(3) flavor transformations.

Flavor SU(3) symmetry is to be carefully distinguished from the later-discovered color
symmetry group, which is also mathematically SU(3).

Gell-Mann (1964) and Zweig (1964a, b) constructed the quark model, in which baryons
(like the proton and neutron) are bound states of three quarks, and mesons are bound states
of a quark and antiquark. For the hadrons known at the time, they used three spin- 1

2 quarks
(u, d and s), with the fractional charge assignments of (2.6).

Now the u, d and s quarks are in the triplet representation of flavor SU(3). It follows
(Gell-Mann, 1964) that baryons can be classified into multiplets that are singlet, octet and
decuplet under SU(3), while the mesons are singlets and octets. Prior to the discovery of
a satisfactory theory of the strong interaction, i.e., QCD, it was useful to investigate the
consequences of the flavor symmetry abstractly, independently of any assumptions about
a quark substructure or a Hamiltonian; see Sec. 2.2.4. Patterns of mass splitting within
hadron multiplets can be understood quantitatively by using perturbation theory applied to
symmetry-breaking terms in the strong-interaction Hamiltonian, with the hypothesis that
symmetry-breaking terms are in an SU(3) octet. These terms are now identified with quark
mass terms in QCD. See Amsler et al. (2008, Ch. 14) for a recent review and further
references.

Each flavor of quark appeared to need three varieties (called “colors”) in order
for the spin-statistics theorem to hold. This is seen most easily for the �++(1232)

2 Although the quest for a non-QFT theory of the strong interaction failed, it did lead to the invention of string theory,
which now leads a prominent life as a candidate fundamental theory of everything including gravity.
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baryon.3 It is a ground-state baryon of spin 3
2 consisting of three u quarks, so both the

space and spin wave functions are totally symmetric.4 But a side effect of the color hypoth-
esis is that each meson (e.g., π+) has an extra eight color states, which are not observed.
An extra assumption is needed to prohibit the extra states.

Furthermore, there is a complete failure to detect isolated quarks in high-energy col-
lisions, which requires the hypothesis that quarks are permanently confined in hadrons.
Quark confinement obviously makes it harder to deduce from data the correct bound-state
structure.

Thus there was a continued introduction of new hypotheses, which led to great scepticism
(Zweig, 1980). Nevertheless, the situation was the unusual one of a correct general idea
being forced by data into a unique implementation. In favor of the quark model, calculations
with phenomenological interquark potentials allowed calculations for the energies of excited
hadrons (non-ground-state hadrons), in essential agreement with data.

Around 1972, Fritzsch and Gell-Mann (1972) and Fritzsch, Gell-Mann, and Leutwyler
(1973) had the inspiration that a non-abelian gauge theory, with an SU(3) gauge symmetry
applied to the color degree of freedom, could not only give all these properties of the
quark model, but could also solve other puzzles involving current algebra and the weak
interactions of hadrons: Secs. 2.2.3 and 2.2.4.

Somewhat tentatively they proposed exactly the theory now known as QCD, missing only
the heavy quarks, which in any event decouple from lower-energy physics and therefore do
not affect the arguments. Understanding of the dynamics of the theory was still missing, in
particular for the observations in deeply inelastic scattering: Sec. 2.3.

As regards the quark model, the unifying hypothesis suggested by the structure of QCD
is that of “color confinement”, that all observed states are color singlet. It simultaneously
solves the quark confinement problem and the lack of extra meson states, and it is a
natural conjecture, since gluons couple to color charge. Already in lowest-order pertur-
bation theory it can be seen that the gluon exchange energy for a quark-antiquark pair is
attractive for the color singlet state and repulsive for the color octet state: problem 2.1.
Of course, perturbation theory for a generic strong-interaction quantity is at best a rough
approximation. Even so, although a real demonstration of color confinement from QCD
has still not been found, the hypothesis is consistent with all the evidence, theoretical and
experimental.

The terms in the QCD Lagrangian that correspond to differences of quark masses give
an operator in the Hamiltonian that transforms as an octet under flavor SU(3). This is
exactly what had previously been assumed to explain mass splittings in the hadronic flavor
multiplets.

3 In this notation, the number denotes the mass in MeV, i.e., 1232 MeV, while the �++ denotes the quark and isospin
content of the state (Amsler et al., 2008, Ch. 8), which in this case corresponds to a baryon of isospin 3/2 with charge
+2.

4 The possibility that there are other types of particle statistics than Bose or Fermi was considered under the names
of “para-statistics” or “quark statistics”. But it was shown by Doplicher, Haag, and Roberts (1974) that all these
possibilities are equivalent to ordinary Bose or Fermi statistics supplemented by selection rules on the allowed states.
See also Drühl, Haag, and Roberts (1970). So the color solution is generic.
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2.2.3 Weak interactions

By the early 1970s there was a leading candidate for electroweak interactions of leptons,
the Weinberg-Salam theory (Weinberg, 1967; Salam, 1968). This theory used spontaneous
symmetry breaking to give mass to the weak gauge-bosons. It became a genuine candidate
theory after it was shown how to successfully quantize and renormalize non-abelian gauge
theories, and has since become fully established. This work solved severe consistency
problems of theories with massive charged vector fields.

How is the theory to be extended to include hadrons? We treat the situation perturbatively
in the electroweak interactions, using a decomposition of the complete Hamiltonian as

H = HSI +H0, lept +HI, EW +HSI-EW. (2.7)

Here HSI is the full strong-interaction Hamiltonian, not yet known around 1970, H0, lept

is the free Hamiltonian for non-hadronic fields, HI, EW is the interaction Hamiltonian for
electroweak interactions, and HSI-EW gives the coupling between hadronic fields and the
electroweak fields.

We now do time-dependent perturbation theory with the unperturbed Hamiltonian
including the full strong-interaction part, i.e., H0 = HSI +H0, lept. Useful information can
be extracted without either knowing or solving the full strong-interaction theory. The rea-
son is that the couplings between the strong-interaction fields and the electroweak gauge
fields were found from phenomenological evidence to involve currents for hadronic flavor
symmetries. We write these in the form

HSI-EW =
∫

d3x
∑
A

j
μ
AWA,μ + Higgs terms, (2.8)

where WA,μ are the electroweak gauge fields W±, Z and γ , while j
μ
A are the hadronic

currents to which they couple. For consistency of the electroweak theory, the hadronic
currents must be conserved, apart from the effects of their couplings to the electroweak
fields. In fact, the currents, within the strong-interaction sector, are not quite conserved,
which appears to be somewhat inconsistent. The inconsistency is solved retrospectively
by the full Standard Model, where the non-conservation is caused by quark mass terms in
QCD. Since quark masses arise from the vacuum expectation value of the Higgs field in
the Yukawa couplings for the quarks, the lack of conservation of the flavor currents within
QCD is essentially associated with weak interactions.

This form of perturbation theory, where the unperturbed Hamiltonian contains the full
strong-interaction Hamiltonian leads to normal Feynman perturbation theory only for the
electroweak fields (leptons, photon, etc.). In the strong-interaction part, the electroweak
gauge fields are coupled to matrix elements of currents. For example, the decay of the
neutron to p + e + ν̄e (Fig. 2.1) has an amplitude

〈
p, out j

μ
−(0) n, in

〉 −igμλ

q2 −m2
W

ūeγ
λ(1− γ5)vν × couplings, (2.9)
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n
p

e

Fig. 2.1. Lowest-order weak interaction for neutron decay.

where j
μ
− is the hadronic current to which the W+ couples, ue and vν are standard Dirac

spinors for the states of the leptons, q = pn − pp is the momentum transfer, and pn and
pp are the 4-momenta of the neutron and proton.

2.2.4 Current algebra

For further references and for a more detailed historical account of the issues treated in this
section, see Pais (1986, Ch. 21).

Initially, with no known theory of the strong interaction, and with no complete theory
of the weak interaction, it was measured that the weak interactions of hadrons involved
current matrix elements as in (2.9). This led to the subject of current algebra, i.e., the study
of hadronic current operators. The current coupled to the W boson appears as one of the
currents for an approximate symmetry group of the strong interactions. This group, a chiral
SU(3)⊗ SU(3) group, will be discussed further in the context of QCD in Sec. 3.8, together
with its more exact SU(2)⊗ SU(2) subgroup. Explicit breaking of the symmetry is caused
by the relatively small mass terms for the u, d and s quarks in QCD.

It was found that the symmetries are spontaneously broken to a “vector” SU(3) or
SU(2), with the pions being the Goldstone bosons for the SU(2)⊗ SU(2) case. The explicit
symmetry breaking by quark masses implies that the pion is not massless but simply much
lighter than other hadrons. The residual vector SU(3) symmetry is the one that is prominent
in the quark model: Sec. 2.2.2.

Many consequences of the Ward identities for these symmetries were derived, in particu-
lar soft pion theorems. See, e.g., Treiman, Jackiw, and Gross (1972). One dramatic example
is the Goldberger-Treiman relation that gives a relation between the matrix element in (2.9)
and the long-distance part of the pion exchange contribution to the nucleon-nucleon poten-
tial; it thus relates a measurement of a weak-interaction quantity to an apparently very
different quantity in pure strong-interaction physics.

Studies of symmetries require understanding of commutators of currents. This led to the
study of matrix elements of two currents, like 〈P jμ(x)jν(0) P 〉, which are investigated
experimentally in deeply inelastic scattering: Sec. 2.3.

A natural problem was now to find a theory that supports current algebra, i.e., a theory
in which the currents are ordinary Noether currents and have the commutation relations
postulated in current algebra. What excited Fritzsch and Gell-Mann (1972) and Fritzsch,
Gell-Mann, and Leutwyler (1973) was that their proposed QCD Lagrangian not only could
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explain the quark model but naturally gave current algebra. The symmetry properties of
the quark mass terms are exactly those used for the symmetry-breaking part of the strong-
interaction Hamiltonian in current algebra.

Around 1970 it was found that the derivation of certain Ward identities for products of
three currents fails in real field theories. It was found, moreover, that the resulting anomalies
are correctly calculated within lowest-order perturbation theory; higher-order corrections
are exactly zero according a theorem due to Adler and Bardeen. The methods of current
algebra then enabled the decay rate for π0 → γ γ to be calculated to the extent that the
masses of the u and d quarks are small. Agreement with the observed decay rate is obtained
if each flavor of quark has three color states. See Peskin and Schroeder (1995, Ch. 19).

Another line of argument related to current algebra was by Weinberg (1973a, b), who
considered weak-interaction corrections to strong-interaction phenomena. In a generic can-
didate theory for the strong interaction, loop graphs have unsuppressed contributions from
momenta around the W mass. The resulting violations of strong-interaction symmetries
(e.g., parity) would be electromagnetic in strength, contrary to observation. Weinberg
showed that this problem is avoided if the strong interaction is mediated by exchange of
bosons whose symmetries commute with those for the electroweak bosons. This is the case
for QCD, where color SU(3) commutes with the electroweak gauge group. The revolu-
tionary consequence is that flavor symmetries were demoted from fundamental properties
of the strong interaction to apparently accidental and approximate symmetries that occur
because of the small size of the Yukawa couplings of the Higgs field to the light quarks.

2.2.5 Non-abelian gauge theories

The discovery of QCD needed a parallel track of purely theoretical work to formulate non-
abelian gauge theories and establish their consistency. The initial formulation was by Yang
and Mills (1954), who beautifully generalized the concept of local gauge invariance from
the abelian symmetry of QED to a non-abelian group. Their attempt to apply their theory
to the actual strong interaction foundered on the prejudice that the fields in the Lagrangian
should correspond to observed particles, contrary to the now-known reality.

But the theoretical idea remained. With the discovery of the concept of spontaneous
symmetry breaking, Weinberg (1967) and Salam (1968) found what is in fact the correct
theory of electroweak interactions. At about the same time, Faddeev and Popov (1967)
showed how to quantize such theories consistently. After this, it was quickly found how
to derive Ward identities and thence to show that Yang-Mills theories, possibly including
spontaneous symmetry breaking, are renormalizable.

With this, non-abelian gauge theories became fully fledged consistent field theories,
setting the stage for the developments outlined in the preceding sections.

2.3 Deeply inelastic scattering

In parallel with work just described, the remaining developments that led to the
establishment of QCD as the theory of strong interactions concerned deeply inelastic
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scattering of leptons (DIS). Since this process remains an important subject of study in
QCD, we now examine those aspects that do not depend on knowing the strong-interaction
Lagrangian.

We consider scattering of a lepton of momentum lμ on a hadron N of momentum P μ to
an outgoing lepton of momentum l′μ plus anything:

l +N (P ) −→ l′ +X. (2.10)

The symbol X has a standard connotation, that we work with an inclusive cross section,
i.e., a cross section differential in lepton momentum l′, with a sum and integral over all
possible states for the X part of the final state. Effectively only the lepton is treated as being
detected.

There are a number of cases with different types of lepton for which there is experimental
data: e +N −→ e +X, e +N −→ ν +X, μ+N −→ μ+X, ν +N −→ ν +X, ν +
N −→ (e or μ)+X. When the momentum transfer at the lepton side is large, as we will
see, we effectively have a powerful microscope into the initial-state hadron N . In actual
data, N is either a proton or a heavier nucleus. Scattering on a nucleus is often approximated
as scattering on an incoherent mixture of protons and neutrons. For more accurate work,
“nuclear corrections” are applied to obtain cross sections relative to independent protons
and neutrons.

In this section we will only treat the electron-to-electron case, for which the current
state of the art for high energy is at the recently shut-down HERA accelerator at the DESY
laboratory. There an electron (or positron) beam of energy 27.5 GeV was collided against
a proton beam of energy 920 GeV, with a center-of-mass energy of

√
s = 318 GeV.

2.3.1 General considerations

Consider a wide-angle scattering of the electron in the center-of-mass frame, Fig. 2.2. The
large space-like momentum transfer, qμ = lμ − l′μ, for the (essentially point-like) electron
suggests that a short-distance scattering is necessary, which would naturally occur off a
small constituent of the hadron. If we let the invariant momentum transfer be Q =

√
−q2,

then a natural distance scale is 1/Q (in units with h̄ = c = 1). At HERA there is data to
above Q = 100 GeV, with a corresponding distance of less than 10−2 fm.

An enormous simplification occurs because, at high energy, the hadron is Lorentz-
contracted and time-dilated5 by a large factor, which is about 150 in the center-of-mass
at HERA. A hadron like a proton has a size (Hofstadter, Bumiller, and Yearian, 1958)
of around 1 fm, so it is reasonable to say that in the hadron’s rest frame the constituents
interact with each other on a time scale of order 1 fm/c. In the boosted hadron, as seen in
the center-of-mass frame of the scattering, time dilation implies that the last interaction of
the constituents typically occurred a long distance upstream. In the HERA center-of-mass
frame, this is of order 100 fm, which is much larger than the scale of the electron scattering.

5 These concepts are non-trivial (Gribov, 1973, p. 12) for microscopic particles in a quantum field theory, but that does
not affect the motivational issues for this section.
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Fig. 2.2. Deeply inelastic scattering of an electron on a proton. The electron comes from
the left and the proton from the right. In the diagram, the electron (solid line) is depicted as
point-like and the hadron as a Lorentz-contracted extended object. The three dots inside the
proton symbolize the three quarks that are its constituents in the quark model. The struck
parton is indicated by a dashed line. Drawing a realistic Lorentz contraction would result
in a much thinner proton than shown here.

This suggests (Feynman, 1972) that in the short-distance electron-constituent collisions
it is a useful approximation to neglect the interactions that bind the constituents into a
hadron. Quantitative development of this idea leads first to the “parton model”, to be
explained in Sec. 2.4, and then to the factorization theorems of QCD, which give a precise
and correct mathematical formulation of the intuitive ideas.

In the original DIS experiments at SLAC, in the early 1970s, only the outgoing electron
was detected; there was no sensitivity to the rest of the final state. Moreover the electron
beam energy was at most 21 GeV on a fixed target. Modern experiments, like the ZEUS
and H1 detectors at HERA, can see the hadronic final state. An example event with
Q = 158 GeV is shown in Fig. 2.3. It supports the intuitive picture: an isolated wide-angle
electron recoils against a narrow group of particles, called a jet, which is reminiscent of the
scattered constituent. The scattered constituent (the “parton” in Feynman’s terminology)
does not retain its identity as a single particle except at sufficiently microscopic distances;
this is of course compatible with the idea that quarks are permanently confined in hadrons
and never appear as isolated single particles. The standard view (Andersson, 1998) is that
many quark-antiquark pairs are created by the intense gluon field between an outgoing
struck quark and the proton remnant. These form into color-singlet hadrons, mostly pions,
that go in roughly the direction of the outgoing quark. The remnants of the proton continue
in motion, with excitation and only a small deflection: these cause hits in the detector
segments around the beam pipe, at the left of Fig. 2.3(a). Much of the remnant energy is
too close to the beam direction to be detected.

2.3.2 Kinematics; structure functions

We work to lowest order in electromagnetism and in this section we will ignore weak
interactions.6 Then the amplitude for a contributing process is represented diagrammatically

6 Unless Q is at least of order the masses of the W and Z bosons, weak-interaction effects are suppressed, by a factor
of Q2/m2

W . Higher-order electromagnetic corrections are smaller by a factor of roughly α/π , except for infra-red
dominated terms associated with the masslessness of the photon. It is conventional to present data “with the effects
of radiative corrections removed”, so that higher-order electromagnetic corrections are effectively absent in published
data. The formalism is readily extended, with only notational complications, to deal with exchange of weak-interaction
bosons. See Sec. 7.1.
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(a)

(b)

Fig. 2.3. Scattering event in an positron-proton collision in the H1 detector (H1 website,
2010) at a center-of-mass energy of about 320 GeV. The detector is approximately cylin-
drically symmetric about the center line which contains the beam pipes. Both a side view
(a) and an end view (b) are shown. In (a), electrons come from the left, and protons from
the right. One isolated track was identified as an electron, and there is a recoiling jet,
approximately back-to-back in azimuth. The kinematic variables are Q2 = 25 030 GeV2

and y = 0.56 (see Sec. 2.3.2).

in Fig. 2.4(a), and is a product of a lowest-order leptonic vertex, a photon propagator,
and a hadronic matrix element of the electromagnetic current, 〈X, out jμ P 〉. The two

independent Lorentz invariants for the hadron system are Q2 def= −q2 ≥ 0 and P · q, both
of which can be computed from the measured momenta l, l′ and P , with the momentum
of the exchanged photon being qμ = lμ − l′μ. The mass of the hadronic final state is
then

m2
X = (P + q)2 = M2 + 2P · q −Q2, (2.11)

where M is the mass of the initial-state hadron. A convenient combination of variables is
Q and the Bjorken variable

x
def= Q2

2P · q . (2.12)
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Fig. 2.4. (a) DIS amplitude to lowest order in electromagnetism. (b) Hadronic part squared
and summed over final states. For the meaning of the vertical “final-state cut”, see the
discussion below (2.19).

Kinematically x is restricted to the range Q2/(s +Q2) ≤ x ≤ 1 (with fractional corrections
of order M2/Q2 being neglected). In the parton model we will find that x gives an estimate
of the fraction of the initial hadron’s momentum that is carried by the struck parton. That
the term “momentum fraction” has a useful meaning depends on the relativistic kinematics
of the process: Sec. 2.4.

The term “deeply inelastic scattering” (DIS) applies to the region where both Q and mX

are large, so that there is a large momentum transfer and the hadron target is very much
excited, inelastically.

Another commonly used variable is

y
def= q · P

l · P . (2.13)

It lies between 0 and 1. In the rest frame of the hadron, this is the fractional energy loss of
the lepton: (E − E′)/E, so that it is simple to measure in a fixed target experiment. But it
is not an independent variable, since

Q2 = xy(s −M2 −m2
e). (2.14)

The Lorentz-invariant inclusive cross section is then

E′
dσ

d3l′
� πe4

2s

∑
X

δ(4)(pX − P − q)

∣∣∣∣〈l′|j lept
λ |l〉

1

q2
〈X, out|jλ|P 〉

∣∣∣∣
2

= 2α2

sQ4
LμνW

μν. (2.15)

In the prefactor, we have neglected the electron mass me and the hadron mass M compared
with
√

s, while the fine-structure constant is α = e2/(4π ). The sum over X denotes the
usual Lorentz-invariant sum and integral over all hadronic final states. The currents j

lept
λ

and jλ are respectively the electromagnetic currents for the leptons and for the hadronic
fields. In QCD the electromagnetic current involves a sum over quark flavors:

jλ =
∑
f

ef ψ̄f γ λψf = 2
3 (ūγ λu+ . . .)− 1

3 (d̄γ λd + . . .). (2.16)
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In the second line of (2.15), we have separated out factors for the leptonic and hadronic
parts. The leptonic tensor is obtained from lowest-order Feynman graphs, and in the unpol-
arized case is

Lμν = 1
2 Tr γν/lγμ/l

′ = 2(lμl′ν + l′μlν − gμνl · l′). (2.17)

The hadronic tensor is defined as a complete matrix element,

Wμν(q, P )
def= 4π3

∑
X

δ(4)(pX − P − q) 〈P, S jμ(0) X〉 〈X jν(0) P, S〉

= 1

4π

∫
d4z eiq·z 〈P, S jμ(z) jν(0) P, S〉 (2.18)

in the full strong-interaction theory. The normalization is a standard convention, and the
variable S labels the spin state of the target. In general, this may be a mixed state, and the
notation 〈P, S . . . P , S〉 is a shorthand for a trace with a spin density matrix: see App.
A.7, and especially (A.8) and (A.13), for details. For the usual case of a spin- 1

2 target,
the spin state is determined by its (space-like) spin vector Sμ, which obeys S · P = 0. We
normalize Sμ as in Amsler et al. (2008), so that S2 = −M2 for a pure state.

To obtain the last line of (2.18), we used a standard result for the transformation of fields
under space-time translations:

〈P, S jμ(z) X, out〉 = 〈P, S jμ(0) X, out〉 ei(P−pX)·z. (2.19)

This allows the conversion of the momentum-conservation delta function to an integral
over position. Then we used the completeness relation:

∑
X |X, out〉 〈X, out| = I .

Diagrammatically, we use the cut-diagram notation of Fig. 2.4(b) to represent Wμν . There
the vertical line is called a “final-state cut”. It represents the final state |X, out〉, and implies
a sum and integral over all possible out-states |X, out〉. The part of the diagram to the left of
the final-state cut is an ordinary amplitude 〈X, out|jν(0)|P, S〉; in perturbation theory it is
a sum over ordinary Feynman graphs with the appropriate on-shell conditions. The part to
the right of the cut is a complex-conjugated amplitude, in this case 〈P, S jμ(0) X, out〉 =
〈X, out|jμ(0)|P, S〉∗.

The Particle Data Group’s definition (Amsler et al., 2008) of Wμν differs in replacing
jμ(z) jν(0) by the commutator [jμ(z), j ν(0)], but I find it better to use the more obvious
definition with the simple product. The other definition is a relic from the period when
the commutator was a dominant topic of research. The second term in their commutator
−jν(0) jμ(z) gives a contribution equal to −Wνμ(−q, P ), so the commutator version can
be reconstructed from knowledge of Wμν . In fact, for a given value of q, only one of
the two terms in the commutator contributes, since, when P is the momentum of a stable
single-particle state, only one of P + q and P − q is the momentum of a physical state that
can be used for |X, out〉.

We now decompose Wμν into fixed tensors times scalar functions. For this we observe
that:

• The electromagnetic current is conserved, ∂ · j = 0, so that qμWμν = Wνμqμ = 0.
• Wμν is linear in the spin vector, which is an axial vector.
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• The strong interactions are parity invariant.
• Wμν is a hermitian matrix, i.e., (Wμν)∗ = Wνμ.

Then the most general form of the tensor is

Wμν =
(
−gμν + qμqν

q2

)
F1(x,Q2)+ (P μ − qμP · q/q2)(P ν − qνP · q/q2)

P · q F2(x,Q2)

+ iεμναβ qαSβ

P · q g1(x,Q2) + iεμναβ
qα

(
Sβ − Pβ

S·q
P ·q

)
P · q g2(x,Q2). (2.20)

The scalar coefficients F1, F2, g1, and g2 are called structure functions. The invariant
antisymmetric tensor εκλμν obeys ε0123 = +1, i.e., ε0123 = −1, a convention that is not
universal.

2.3.3 Breit/brick-wall frame; helicity analysis

For much of our work, it will be convenient to use the so-called Breit frame, where
the incoming proton is in the +z direction, and the photon’s momentum is all in the −z

direction: q = (0, 0, 0,−Q). In the parton-model approximation, we will see that the struck
quark gets its 3-momentum exactly reversed in this frame, which is therefore also called
the brick-wall frame.

In the Breit frame we define structure functions with simple transformation proper-
ties under rotations about the z axis. These are the longitudinal and transverse structure
functions:

FL
def= F2 − 2xF1; FT

def= F1. (2.21)

Then FL corresponds to the components of Wμν in the energy direction, while FT corre-
sponds to the components transverse to q and P .

2.3.4 Cross sections and measurements of structure functions

In the case of unpolarized scattering, which is the most usual situation, we set Sμ = 0.
Then (2.15) and (2.20) give

d2σ unpol

dx dy
� 4πα2

xyQ2

[(
1− y − x2y2M2

Q2

)
F2(x,Q2)+ y2xF1(x,Q2)

]

= 4πα2s

Q4

[(
1− Q2

xs
− Q2M2

s2

)
F2(x,Q2)+ Q4

xs2
F1(x,Q2)

]
. (2.22)

The errors in this formula are due only to the neglect of the electron and hadron masses with
respect to

√
s, of the electron mass with respect to Q, and to the use of lowest-order pertur-

bation theory for the electromagnetic interaction. The form of the kinematic dependence
multiplying the structure functions is due to the established form of the electromagnetic
interaction. Thus measurements of the structure functions are equivalent to measurements
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of the cross section. Without further knowledge of the strong interaction, a measurement at
a single energy

√
s only determines the x and Q dependence of a combination of structure

functions, as is made clear on the second line. Measurements at a minimum of two different
energies are needed to separate the structure functions. After that the cross section for all
other energies is predicted for values of x and Q that are within the kinematic limits of the
first measurements.

The remaining structure functions g1 and g2 can be measured with polarized electron
beams on a polarized target; see Leader and Predazzi (1982, p. 256).

This finishes the summary of those results and definitions that apply independently of
the theory of the strong interactions.

2.4 Parton model

The parton model was formulated by Feynman (1972) and formalized by Bjorken and
Paschos (1969) as an idea for understanding DIS in the absence of knowledge of an
underlying microscopic theory of the strong interaction. It relies on an intuition stated in
Sec. 2.3.1 and symbolized in Fig. 2.2.

Feynman proposed that the photon vertex couples to a single constituent of the target
hadron, and that it is useful to neglect the strong interactions of the constituents during the
collision with the lepton. The word “parton” is a generic term for one of the constituents
under the conditions in which it participates in the short-distance part of a collision. In QCD
it is therefore often treated as a collective name for quarks and gluons (and antiquarks).

A quantitative formulation is greatly helped by the relativistic kinematics of the process.
Consider a parton of momentum k inside its parent hadron of momentum P . To get from
the rest frame of the hadron to the frame of Fig. 2.2, we apply a large boost. We use
light-front coordinates (App. B) with the positive z axis in the direction of the hadron; we
therefore write kμ = (k+, k−, kT), P μ = (P+,M2/(2P+), 0T), where k± = (k0 ± kz)/

√
2.

We assume that in the rest frame of the hadron, the components of k are appropriate for
a constituent of a bound state whose typical scale is M , i.e., that all components of k are
of order M (or smaller) in the hadron rest frame. Then after the large boost, k+ is by far
the biggest: it is of order Q, while k− and kT are of order M2/Q and M . The ratio of the
plus momenta is boost invariant, so we define the fractional momentum of the parton by
ξ = k+/P+.

Based on the space-time structure of the reaction, the parton model asserts that we
should approximate the inclusive DIS cross section as incoherent scattering of electrons
on quasi-free partons. The partons have a probability distribution in fractional momentum
ξ and in parton flavor, and the shape of the distribution is determined by the proton’s
bound state wave function. For the electron-parton interaction, the momentum transfer Q

is large, so we approximate the incoming and outgoing partons as massless free particles,
and neglect the transverse momentum of the incoming parton. The outgoing parton also
has high energy, so the interactions converting it to a hadron final state are also time-
dilated, thereby justifying its approximation as a free particle. Most importantly, the strong
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interaction is neglected, and only the lowest-order electromagnetic scattering interaction is
used.

Contrary to the impression that might be gained from the literature, the parton model does
not require that partons are genuinely free massless particles. They are only approximately
free, and only for the purposes of estimating a short-distance cross section.

It is by no means obvious, a priori, that the parton model is actually valid. In Ch. 6
and later chapters, we will formulate the parton model in real quantum field theories, and
show that modifications are generally needed, because of singularities in the short-distance
interactions. Moreover, the concept of a wave function and how to apply Lorentz boosts to
it are quite unobvious in relativistic quantum field theories. Nevertheless the parton model
has intuitive appeal, so it provides an excellent framework for motivating and organizing a
proper treatment. In fact, we will even justify the parton model, in a certain sense, because
QCD is asymptotically free; a dimensionless measure of its interactions decreases with
distance. The true results are a distorted parton model.

2.4.1 Elementary formulation of parton model; parton densities

We now make a quantitative formulation of the parton model. The logic, as presented here
following the original work, involves certain intuitively motivated jumps, the quality of
which we can best assess after the more strictly deductive treatment in later chapters.

The hard scattering, i.e., the short-distance scattering of the electron and parton, occurs
at a particular time. The proton is in a state consisting of some number of partons, whose
fractional plus momenta are ξ1, ξ2, . . . , which sum to unity:

∑
ξi = 1. There is a probability

distribution over states and the hard scattering samples any one particular parton. So
we postulate that there is a number distribution of partons fj (ξ ). Thus fj (ξ ) dξ is the
expectation of the number of partons of flavor j with fractional momentum ξ to ξ + dξ .
Standard terminology is to call fj (ξ ) a “parton density” or a “parton distribution function”.
In QCD, the flavor index takes on values for up-quark, anti-up-quark, gluon, etc. If the two
u quarks and the d quark in a proton shared its energy roughly equally, we would expect the
quark densities to be peaked at around ξ ∼ 1/3 and the u quark density to be approximately
twice the d quark density. We would expect the other quark and antiquark densities to be
smaller. In a real QFT, these other densities are in fact non-zero, because of the presence
of quark-antiquark pairs from the interaction terms of the Hamiltonian, as can be seen later
from the formal operator definitions of parton densities.

We can interpret the initial insight for the parton model in Feynman-graph notation with
the aid of Fig. 2.5(a). A parton of momentum k scatters off the virtual photon; it then goes
into the final state, undergoing “hadronization” interactions that convert it to observable
hadrons. Topologically this diagram is in fact the most general one possible. The parton
model consists of an assertion of the typical momenta involved and that the final-state
hadronization interactions cancel. In the parton model, the struck quark momentum k has a
large plus component, and relatively small minus and transverse components (in the Breit
frame), while the outgoing parton k + q has low invariant mass. The final-state interactions
rearrange the content of the final state, but time dilation of the outgoing parton suggests that
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Fig. 2.5. Parton scattering in DIS. (a) Including hadronization and final-state interactions
of struck parton. (b) Handbag diagram obtained after cancellation of hadronization and
final-state interactions in graph (a). (c) Parton model with parton density and lowest-order
DIS on partonic target.

these happen on a long time-scale, and therefore do not greatly affect the probability that a
scattering has occurred. That is, the final-state interactions cancel to a first approximation
in the inclusive cross section. Thus we can approximate graph (a) by the “handbag” graph
(b), where the final-state interactions of the quark are ignored.

An analysis can be made from the handbag diagram itself, but that is postponed to Ch. 6.
Here we just work with the parton-model assertion of incoherent lowest-order electromag-
netic scattering on partons governed by parton densities, as embodied in Fig. 2.5(c).

2.4.2 Quark-parton model calculation

It is convenient to use the Breit frame, and to write the light-front coordinates of q and P

as

qμ =
(
−xNP+,

Q2

2xNP+
, 0T

)
, P μ =

(
P+,

M2

2P+
, 0T

)
. (2.23)

In this equation, xN is the Nachtmann variable (Nachtmann, 1973)

xN = 2xBj

1+
√

1+ 4M2x2
Bj/Q

2
, (2.24)

which differs from the Bjorken variable xBj = Q2/2P · q by a power-suppressed correction.
In the partonic scattering we replace k by its plus component: k �→ (ξP+, 0, 0T), in

accordance with our discussion of the sizes of the components of k. We also approximate
the outgoing parton as massless and on-shell. We let dσ

partonic
lj be the differential cross

section for lepton-parton scattering with the following kinematics:

l + (ξP+, 0, 0T)→ l′ + k′, (2.25)
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where the outgoing parton momentum k′ is massless and on-shell. Within the parton model,
the partonic cross section is computed at lowest order. Then the parton model asserts that
the inclusive DIS cross section is

dσ =
∑

j

∫
dξ fj (ξ ) dσ

partonic
lj , (2.26)

where the sum is over parton flavors. This formula relates a cross section with a hadron
target to a cross section with a calculable partonic cross section. Naturally, these two kinds
of cross section should be chosen to be differential in the same variables.

There now follow corresponding formulae for the structure tensor and for the structure
functions. Now, in (2.15), we see a factor 1/s in converting the hadronic structure tensor
to a cross section. But at the partonic level, there is instead a factor 1/ξs, because the
lepton-parton scattering has a squared center-of-mass energy (ξP + q)2 � 2ξP · q, up to
power-law corrections. Then the parton model approximation for Wμν is

W
μν
PM =

∑
j

∫
dξ

ξ
fj (ξ ) C

μν
j, partonic, (2.27)

with a factor 1/ξ compared with (2.26). Here C
μν
j, partonic is like Wμν but computed on a

free massless parton of type j and momentum k̂μ = (ξP+, 0, 0T), and with neglect of all
interactions.

When the partons are quarks of spin 1
2 , we have

C
μν
j,partonic = e2

j

1

4π

1

2
Tr /̂kγ μ(/q + /̂k)γ ν 2πδ((q + k̂)2)

= e2
j

(
2k̂μk̂ν + qμk̂ν + k̂μqν − gμνq · k̂) x

Q2
δ(ξ − x), (2.28)

where ej is the electric charge of quark j (in units of the positron charge). It immediately
follows that

F
QPM
2 =

∑
j

e2
j x fj (x), F

QPM
1 = 1

2x
F

QPM
2 , (2.29)

where “QPM” means “quark-parton model” (to distinguish these formulae from the correct
factorization formulae in QCD). In this calculation, the incoming and outgoing quarks are
approximated as massless and on-shell. The on-shell condition for the outgoing parton
results in the parton momentum fraction ξ being set to the measurable Bjorken variable x

(up to ignored power-law corrections). The measured variable y, defined in (2.13), equals
(1− cos θ )/2 in the parton model, where θ is the scattering angle of the lepton-parton
collision. Thus, a measurement of x and Q in an event immediately gives an estimate of
the parton kinematics, Fig. 2.3 providing an illustration of a typical event.

2.4.3 Bjorken scaling

A prediction of the parton model embodied in (2.29) is that at fixed x the structure functions
are independent of Q (at large Q of course). This is called “Bjorken scaling”, and, as we
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Fig. 2.6. Compilation by the Particle Data Group of data on F2 on a proton target. For the
purpose of separating the different sets of data the values of F2 have been multiplied by
2ix , where ix is the number of the x bin, ranging from ix = 1 for x = 0.85 to ix = 28 for
x = 0.000 063. Reprinted from Amsler et al. (2008), with permission from Elsevier.

will see in Chs. 8 and 11, it is violated after allowing for QCD interactions. We will see
that measurements of scaling violation allow a deduction of the strength of the strong
interaction. Current data are shown in Fig. 2.6. It can be seen that Bjorken scaling is
approximately true at moderate x, for example between 0.1 and 0.5. This region is relevant
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AfterBefore

Fig. 2.7. Initial state and final state for QPM, with conserved right-handed helicity for the
quark. The small arrows indicate the spin.

to a model where a substantial amount of the momentum of the proton is carried by three
similar quarks, with a typical x of around 1/3. One might expect the intuitive picture to be
less reliable at extreme values of x, so the greater scaling violations as x gets close to 1 or
0 are not in violation of the spirit of the parton model.

2.4.4 Callan-Gross relation and parton spin

Observe that the longitudinal structure function is F
QPM
L = 0 in the QPM, a result first

obtained by Callan and Gross (1969). It is a simple consequence of conservation of angular
momentum about the z axis in the brick-wall frame, as in Fig. 2.7. The electromagnetic
interaction preserves the helicity of the massless quark (Sterman, 1993, p. 215), i.e., its spin
relative to its direction of motion. The quark’s 3-momentum is reversed in the collision,
so relative to a fixed axis its spin is reversed. There are no transverse momenta in this
calculation, so there is no orbital angular momentum about the z axis. So one unit of spin is
transferred from the virtual photon, which must therefore be transverse, not longitudinal.

2.4.5 Field theory implementation of parton model

In Ch. 6 we will show how to convert the parton-model idea into formal statements in QFT,
with definitions of parton densities as expectation values of certain operators. We will find
that the parton model is exactly correct only in certain simple field theories. In more general
cases, notably QCD, modifications are needed: Chs. 8 and 11.

Particularly in retrospect the parton model was a natural conjecture, but when first
formulated, in the absence of an underlying microscopic theory, it was controversial. The
need for modifying it in real QCD underscores the basis for the initial scepticism.

Some of the first parts of this development were obtained before the discovery of QCD,
and provided important hints that pointed uniquely to the structure of QCD.

2.5 Asymptotic freedom

A powerful argument by Callan and Gross (1973) used the operator product expansion
and the renormalization group to show that exact Bjorken scaling in DIS requires there to
be an ultra-violet fixed point of the strong-interaction theory at zero coupling. Hence the
observed approximate Bjorken scaling implies that the strong interaction is relatively weak
at short distances.

Since the strong interaction is strong at large distances, this led to a search for theories
that are asymptotically free, i.e., for which the effective coupling goes to zero at zero
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distance. One result was the demonstration by Coleman and Gross (1973) that no field
theory constructed using only scalar, Dirac, and abelian gauge fields can be asymptotically
free. This left only non-abelian gauge theories, which just slightly earlier had been quantized
and proved renormalizable. If these theories also failed to give asymptotic freedom, then it
would be strong evidence that no quantum field theory could describe strong interactions,
a view that was quite popular at the time: there were indeed absolute arguments by Landau
and Pomeranchuk based on apparently universally fundamental principles that the effective
coupling always had to increase at short distances; see ’t Hooft (1999).

Then Gross and Wilczek (1973a, b) and Politzer (1973) calculated the lowest-order
renormalization-group β function for the Yang-Mills theory, and demonstrated its asymp-
totic freedom, even with quark fields present.7 The previously formulated QCD Lagrangian
is therefore able to explain (approximate) Bjorken scaling. The rising coupling in the infra-
red, even if it does not by itself imply color confinement, is compatible with it and is a
precondition that the standard connection between fields and particles can be completely
destroyed for quarks and gluons.

The result then is that for the first time there was a unique viable and complete theory of
the strong interaction, QCD. Previously mysterious phenomena were direct consequences
of the Lagrangian (2.1). From now on we can proceed deductively.

2.6 Justification of QCD

I now summarize the powerful arguments that pick out QCD as the unique field theory of
the strong interaction. The following list involves a rearrangement and even a reversal of
the historical logic.

1. We can treat any theory of currently known physics as a low-energy effective theory
(Weinberg, 1995, p. 499) obtained from some more exact theory. In the normal quantum
field theory framework it is a theorem that the low-energy theory is renormalizable.
This applies to leading power in the ratio of a large mass scale for the exact theory to
currently available energies. To agree with observations, the theory is Poincaré invariant
to a very good approximation (Liberati and Maccione, 2009).

2. Bjorken scaling implies either actual asymptotic freedom, or at least a decreasing cou-
pling at currently accessible energies. Hence the theory must be a non-abelian gauge
theory with not too many matter fields. See Fig. 3.6 below for a recent plot of measured
values of the strong coupling.

3. It must be possible to combine the theory with the known Weinberg-Salam theory of
electroweak interactions. Since the couplings are very different, we cannot have anything
except a direct product of the SI gauge group and the EW gauge group. Let us call the
SI gauge fields “gluon” fields and the SI matter fields “quark” fields (which could be
Dirac and/or scalar).

7 In fact, the calculation of this coefficient had already been made slightly earlier by ’t Hooft (see ’t Hooft, 1999) and
in 1969 by Khriplovich (1970). Even earlier, Vanyashin and Terentyev (1965) computed a negative beta function in
Yang-Mills theory, but their calculation did not include the not-yet-known ghost contribution. But these authors did
not immediately recognize the significance of their results for a theory of strong-interaction physics.
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4. Because the electroweak and strong-interaction gauge groups commute, there are no
direct gluon couplings to W , Z, and Higgs fields.

5. Thus the strong-interaction theory is the QCD Lagrangian, possibly supplemented only
by extra quark fields. It is the original Yang-Mills Lagrangian, but with a different gauge
group and with extra fermion fields. No further terms are permitted in the gauge-invariant
Lagrangian without violating renormalizability.

6. We now identify the gauge group and the matter fields:
(a) Asymptotic freedom together with the masslessness of the gluons implies that the

effective coupling increases out of the perturbative range for low mass scales or
large distances. This allows the connection between fields and directly observable
particles to be lost.

(b) It also indicates that under suitable conditions, quarks and gluons have approxi-
mately free-particle behavior for short distances.

(c) Colored states tend to be unbound or of higher energy.
(d) The approximation of the quark model indicates that an SU(3) color group together

with three light flavors of Dirac quark is needed to explain the observed spectrum
of hadrons.

(e) Extra quarks, in whatever representation of the color group, are a matter for dis-
covery at higher energy, and of obtaining a suitably consistent structure for the
electroweak theory. Consistency requirements concern the lack of anomalies in the
electroweak theory.

(f) Certain measurements are key ones in confirming the determination of the color
group, and in the measurement of the number of flavors, during and after the
discovery of QCD:
i. the π0 → γ γ decay rate, which is obtained from an anomaly in the vacuum

matrix element of three currents;
ii. the total cross section for e+e− annihilation to hadrons at high energy gives

a measure of the sum of the charges squared of the accessible quarks – see
Ch. 4;

iii. More detailed jet cross sections in e+e− give quite direct measurements of the
color-group theory coefficients CA and CF , etc. – again, see Ch. 4.

These arguments are primarily structural. They do not depend, for the most part, on detailed
numerical predictions of the theory. Such predictions are used mainly in determining which
gauge group is needed.

Once we have confidence that the theory is a good approximation to reality, we (i.e.,
people working on the strong interaction) change our attitude. The mathematics is hard, and
when useful, we appeal to the real world as a realization of QCD to help us to determine
what results are true. A failure of agreement between theory and experiment is expected to
indicate that there is an error either in the theoretical methods or their application, or in the
experiments, but it does not normally indicate an error in the theory itself. (An extension
of the theory, to add another quark, for example, is not regarded as a breakdown in the
theory.)
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2.7 QCD in the full Standard Model

Many applications of perturbative QCD concern the interaction of hadrons with non-QCD
particles, e.g., DIS, and all kinds of production processes for leptons, the Higgs boson, and
many hypothesized particles. To put these in context, I now review the definition of the
Standard Model (SM). For details, see any standard textbook, such as Halzen and Martin
(1984); Peskin and Schroeder (1995); Quigg (1997).

The SM Lagrangian is

LSM = −1

4

∑
α

(
Gα μν

)2 + i
∑
f

ψ̄f /Dψf +Dφ† ·Dφ +M2φ†φ

− λ

4
(φ†φ)2 −

∑
ij

hij ψ̄i Rφψj,L + gauge-fixing terms, etc., (2.30)

with the usual modifications for renormalization. Structurally this is like QCD, except for
the addition of a scalar “Higgs” field φ, with its self-interaction and its Yukawa couplings
to the fermion fields. The main features are as follows.

• In the first line, the sum over α is over the 12 generators of the gauge group SU(3)⊗
SU(2)⊗ U(1). We let the gauge fields for the three commuting components of the
gauge group be Aα

μ(x), Wj
μ and Bμ. The renormalized couplings of the three commuting

component groups are gs , g and g′ respectively, and the SU(3) subgroup is the QCD group.
• When we are working with pure QCD, without any mention of electroweak interactions,

we will often replace the notation gs by g.
• The fermion fields ψρaf carry different representations of the gauge group, unlike the

case of simple QCD.
• The covariant derivative is

Dμ = ∂μ + igs

8∑
α=1

T α
colA

α
μ + ig

3∑
j=1

Wj
μT

j
W + ig′Bμ

Y

2
, (2.31)

where for any given multiplet of fields Tcol and TW are the generating matrices for the
color SU(3) and the SU(2) groups, while Y is the weak hypercharge of the multiplet.

• The fermion fields are arranged in multiplets of left-handed fields and right-handed
fields. “Left-handed” fields are 1

2 (1− γ5) times the Dirac field, and “right-handed”
fields have a 1

2 (1+ γ5) factor.
• All known left-handed fields are doublets under SU(2), and all known right-handed

fields are singlets under SU(2).
• There are three generations of fermion, and the assignments of quantum numbers to

fields are specified in Table 2.1. Here we have extended the Standard Model slightly
beyond its original definition to include right-handed neutrino fields, as needed to
accommodate the measured neutrino mixing.

• The vacuum expectation value of the Higgs field is given by 〈0 φ 0〉 = (0, v/
√

2)T,
with v = 246 GeV. This breaks three of the electroweak symmetries, with the Z and
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Table 2.1 Quantum numbers of field multiplets in the Standard Model. The
symbols for the fields correspond to the particle names.

First generation:

Color singlet Y Color triplet Y(
νe L
eL

)
−1

(
uL
dL

)
1
3(

eR
) −2

(
uR
)

4
3(

νe R
)

0
(
dR
) − 2

3

The next two generations (νμ, μ, s, c) and (ντ , τ , b, t) are exactly similar.

Higgs field:

Color singlet Y(
φ+
φ0

)
1

photon fields being

Zμ = cos θW W 3
μ − sin θW Bμ, Aμ = sin θW W 3

μ + cos θW Bμ, (2.32)

where the measured Weinberg angle obeys sin2 θW = 0.22± 0.02.
• The electroweak couplings are given in terms of the QED coupling and θW by

g = e

sin θW
, g′ = e

cos θW
.

• The fermion masses are then obtained from the Yukawa couplings. From global fits to
data (Amsler et al., 2008) estimates of the masses of the elementary fields are found
(Table 2.2).

• All the formulae for masses, etc., are subject to higher-order electroweak corrections.
• The flavor and mass eigenstates of the two components of the fermion doublets are not

aligned, but have mixing given by the CKM and MNS matrices; see, e.g., Amsler et al.
(2008).

2.8 Beyond the Standard Model

All theories of physics are ultimately approximate, and many possibilities for theories that
are better than the SM are under active discussion. To keep agreement with known results,
the QFTs considered are generally extensions of the SM, except for the Higgs sector on
which there is as yet little direct data. Extensions include both the simple addition of field
multiplets and the embedding of the symmetry groups in bigger symmetries, as in Grand
Unified Theories and in supersymmetry.

Once gravity enters the picture, space-time becomes dynamical, and so any QFT, includ-
ing QCD, becomes only an effective low-energy approximation to a radically different kind
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Table 2.2 Standard Model masses for elementary fields, from Amsler et al. (2008).

Leptons and quarks (spin 1/2):

ν ∼ 0 d 3.5 to 6 MeV
e 0.511 MeV u 1.5 to 3.3 MeV

s ∼ 104 +26
−34 MeV

μ 106 MeV c ∼ 1.27 +0.07
−0.11 GeV

b ∼ 4.20 +0.17
−0.07 GeV

τ 1.78 GeV t 171.2± 2.1 GeV

Gauge bosons:

W± 80.398± 0.025 GeV Z 91.1876± 0.0021 GeV

Higgs:

100 to 300 GeV (indirect)

of theory (e.g., string theory), with a very different understanding of space-time. Factor-
ization in QCD remains a vital tool in phenomenological discussions of such theories,
because it separates treatment of the ultra-microscopic physics of the new theories from
the longer-distance physics which is an integral part of a full scattering process.

For current work in this area, see the proceedings of recent conferences and workshops,
e.g., Allanach et al. (2006).

2.9 Relation between fields and particles

In a free QFT, there is a direct correspondence between the types of single particle and
the fields, and in fact with the normal modes of the corresponding classical field theory. In
simple interacting QFTs, this correspondence continues to hold, but it is clear from both
QCD and the full Standard Model, that the particle-field correspondence is not general:

• With interactions some of these particles can be become unstable, as exemplified by the
muon, with its decay to eνμν̄e.

• There may be bound states, e.g., atoms. These are not related in a simple way to normal
modes of the elementary fields.

• It is also possible that there is no particle, stable or unstable, that corresponds to a
particular elementary field of a theory. QCD is an excellent example with its quark and
gluon fields. Any corresponding particles are permanently confined, and only behave
approximately like particles on short enough distance scales inside collisions. Before the
advent of QCD, this possibility was hardly recognized, if at all.

• Moreover, low-energy effective theories approximating a more exact microscopic theory
may use fields corresponding to bound states. This is the case for a Schrödinger QFT for
atomic physics, which might have fields for atomic nuclei.
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Moreover, one must be careful about what is meant by a particle. One standard definition
is from the single-particle states that are used to build up the asymptotic in- and out-states
of scattering theory. For this purpose completely stable bound states, like the ground state
of a hydrogen atom or even of a large macroscopic object like a planet, are particles. But
unstable particles, even relatively long-lived ones like the muon and the neutron, are not
particles under this definition.

It is clear that the connection between particles and interacting fields is somewhat
impressionistic. Even the usage of the word “particle” is quite fuzzy in the real world.
Which objects are called particles, which bound states, and which resonances is essentially
a linguistic matter: a matter of convention, and usage, and even of context.

Some confusions in the recent literature should be noted. For example, Weinberg in
his excellent textbooks on quantum field theory (Weinberg, 1995, p. 110) bases his logic
on the concept of a particle in the strict sense of scattering theory. Then his derivation of
perturbation theory requires that the set of one-particle states be unchanged after turning
on the interaction in a theory. If this were really necessary, it would immediately rule out
conventional Feynman perturbation theory for all known interactions.

Weinberg’s derivation of perturbation theory is for the S-matrix. Instead, if one bases the
logic on perturbation theory for (off-shell) Green functions, one no longer has to assume
that the particle spectrum is unchanged under perturbations. The particle spectrum and
the S-matrix are derived objects involving examination of poles in the Green functions.
Thus, for example, the stability or instability of a particular particle can be an accidental
consequence of the particular values of parameters of the theory.

It is evidently important to dispose of this issue at the outset, for otherwise most of
our work in perturbative QCD would be without a foundation. An account of the logic
for perturbation theory that is suitable from our perspective is given in Sterman’s textbook
(Sterman, 1993).

Exercises

2.1 (a) Show how to compute a particle-particle potential from the non-relativistic limit
of a first-order 2 −→ 2 scattering amplitude. You might do this by comparing
the Born approximation in QED with the Born approximation in non-relativistic
potential scattering. Consider both the case of spin- 1

2 and spin-0 particles.
(b) Apply this method to QCD to find the lowest-order approximation to the quark-

antiquark potential with massive quarks. Separately consider the case that the
system is a color singlet and a color octet. You should find that the potential is
only attractive for a color-singlet bound state.

2.2 Review problem: Define the concept of a structure function. Why is it a useful concept?

2.3 In the parton model approximation, compute the electromagnetic structure functions
for a scalar quark (i.e., for a spin-0 quark).
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2.4 Formulation of the structure function method for scalar field exchange instead of
vector field: Suppose you wanted to investigate the consequences of a hypothetical
theory with an extra neutral scalar field φ that has Yukawa couplings to quarks and to
leptons:

Lint = φ ×
(

heēe +
∑

i

hi q̄iqi

)
, (2.33)

where he and hi are the couplings to electrons and to quarks of flavor i. (a) What would
be an appropriate definition of structure function(s) in this problem? (b) What would
be the parton model formula?

Review and revise your answer to problem 2.2 in the light of your answer this
problem.

2.5 How do you extend the analysis of problem 2.4 in the presence of interference between
scalar and vector exchange?

2.6 Examine the state of the knowledge about current algebra just before the discovery
of QCD, e.g., in Treiman, Jackiw, and Gross (1972). How does this compare with the
description in this chapter?

The rest of this problem is best done after finishing learning about QCD. During
your studies of QCD, determine the extent to which the work in Treiman et al. (1972)
is (a) true in QCD, (b) needs modification, or (c) still needs proof. How much remains
relevant to current research and/or to understanding QCD and the strong interaction?
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Basics of QCD

In this chapter, we review some basic properties of QCD that directly follow from its
definition. This material is completely standard, and will form a foundation for the rest
of the book. More details can be found in a standard textbook on quantum field theory,
e.g., Peskin and Schroeder (1995), Srednicki (2007), Sterman (1993) and Weinberg (1995,
1996). For specific information on renormalization and the renormalization group see also
my book on renormalization (Collins, 1984).

I first review how the theory is quantized and renormalized. Then I discuss the renormal-
ization group (RG) and the calculation of the asymptotic freedom of QCD. A brief review
of the flavor symmetries follows. Finally I show some of the complications that arise in
perturbative calculations because some of the fields are much more massive than others.

3.1 Quantization

3.1.1 Definition; functional integral

A list of the fields of QCD and the formula for its gauge-invariant Lagrangian density
(2.1) are sufficient to specify the theory, with the aid of general principles. Although there
are some mathematical issues that have not been solved properly, it is standard to assume
that the theory can be constructed (with some complications) through a functional integral.
This gives Green functions, i.e., vacuum expectation values of time-ordered products of
fields, as 〈

0 Tf [A,ψ, ψ̄] 0
〉 = N

∫
DADψ Dψ̄ eiS[A,ψ,ψ̄] f [A,ψ, ψ̄]. (3.1)

Here f [A,ψ, ψ̄] is a functional of the fields, e.g., a product G2(x) ψ̄ψ(y). On the left-hand
side, the fields are the quantum fields of QCD, time-ordered, while |0〉 is the true vacuum
state. But on the right-hand side the fields are corresponding classical fields (Grassmann-
valued in the case of the fermion fields ψ and ψ̄). The normalization factor N is set so that
〈0 0〉 = 1.

From the Green functions can be reconstructed the state space and the operators. This
includes an extraction of the particle content of the theory, from an examination of the
positions of the poles in propagators and other Green functions. The S-matrix and scattering
theory follow by the Lehmann-Symanzik-Zimmermann (LSZ) method. Note that the poles

36
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of Green functions need not be the same as in free field theory, and so the particle content
can be different from a free field theory of quarks and gluons.

3.1.2 Faddeev-Popov method; Feynman rules

The rules for Feynman perturbation theory are readily derived from the functional integral,
with the Faddeev-Popov technique being used for gauge fixing. In this technique, a change
of variables is used on sets of field configurations equivalent under gauge transformations.
The implementation involves fermion scalar “ghost” fields, ηα and η̄α . See most modern
textbooks on QFT for details.

In the covariant gauges we will normally use, the gauge-invariant Lagrangian of (2.1) is
replaced by

L = LGI from (2.1) + LGF + LGC, (3.2)

where the gauge-fixing and “gauge-compensating” terms are

LGF = − 1

2ξ0
(∂ · A(0) α)2, (3.3)

LGC = ∂μη̄0 α∂μη0 α + g0∂
μη̄0 γ fαβγ A

β
(0) μη0 α, (3.4)

in terms of bare quantities. This gives

L = ψ̄0(i /D −m0)ψ0 − 1

4
(Gα

(0) μν)2 − 1

2ξ0
(∂ · Aα

(0))
2

+ ∂μη̄0 α∂μη0 α + g0∂
μη̄0 γ fαβγ A

β
(0) μη0 α. (3.5)

Feynman rules for Green functions are derived in the usual way. In Sec. 3.2, we will
formulate Feynman rules for renormalized Green functions with a counterterm method.
Rules for elementary perturbation theory in terms of bare quantities can be obtained from
those listed in Fig. 3.1 below by replacing each occurrence of gμε in that figure by the bare
coupling g0, and each renormalized quark mass mf by the bare mass m0 f .

Note that without gauge fixing in the Lagrangian, Green functions of the elementary
gauge-variant field operators are zero (Elitzur, 1975).

3.1.3 BRST symmetry

The full Lagrangian (3.2) is not gauge invariant, which considerably complicates the
derivation and formulation of generalized Ward identities. The appropriate identities for
non-abelian gauge theories were first found by Slavnov (1972) and Taylor (1971). The
derivations were greatly simplified by Becchi, Rouet, and Stora (1975, 1976) and by Tyutin
(1975), who discovered a new symmetry of the full Lagrangian.

This BRST symmetry is a supersymmetry, i.e., one that relates Bose and Fermi fields. It
uses a parameter δλ0 that takes its value in the fermionic part of some Grassmann algebra.
For the gauge and matter fields, the BRST transformations are gauge transformations (2.4)
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with ωα(x) = η0 α(x)δλ0. Thus any gauge-invariant operator is also BRST invariant. The
linear terms in the variation of the bare fields are

δBRSTψ0 = −ig0η0 αδλ0t
αψ0 = ig0η0 αtαψ0δλ0, (3.6a)

δBRSTψ̄0 = ig0ψ̄0t
αη0 αδλ0, (3.6b)

δBRSTAα
(0) μ =

(
∂μη0 α + g0fαβγ η0 βA

γ
(0) μ

)
δλ0. (3.6c)

The ghost and antighost fields transform as

δBRSTη0 α = − 1
2g0fαβγ η0 βη0 γ δλ0, (3.6d)

δBRSTη̄0 α = 1

ξ0
∂ · A0 αδλ0. (3.6e)

It can readily be checked that the full Lagrangian is BRST invariant, up to a total derivative.
With a slight exception, BRST transformations are also nilpotent. That is, applying suc-
cessive BRST transformations with different anticommuting parameters δλ1 and δλ2 gives
zero: (

δBRST

δλ0

)2

field = 0. (3.7)

The exception is that the second variation of η̄0 only vanishes after using the equation
of motion for A(0); a third variation of the field is needed to get zero without use of the
equations of motion.

A good formulation of the quantum theory associated with Faddeev-Popov quantization
and BRST transformations is given by Nakanishi and Ojima (1990). In particular they
give a full formulation of the conditions to be applied to physical quantum-mechanical
states.

3.1.4 Relation to Euclidean lattice gauge theory

The functional integral contains an oscillating functional eiS , and it can be defined by
analytically continuing to Euclidean space-time, where the time coordinate becomes imag-
inary, t = −iτ , and by then putting the theory on a lattice in a finite volume of space-time.
The functional integral is then an ordinary finite-dimensional convergent integral (with
suitable modifications for the fermion integrations). Numerical evaluation of these inte-
grals by Monte-Carlo methods is the core of lattice gauge theory, a key technique for
non-perturbative calculations in QCD (DeGrand and Detar, 2006).

The infinite-volume limit is an ordinary thermodynamic limit, but the continuum limit
of zero lattice spacing is non-trivial, needing the use of renormalization: Sec. 3.2. However,
there is not yet a completely rigorous proof that the limit exists.

The continuation back to real time is potentially problematic. Typical time dependence
associated with high-energy states at large times, e−iEt , corresponds to strongly suppressed
exponentials e−Eτ in Euclidean time. Small errors in the Euclidean calculation, e.g., due
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to the neglect of weak-interaction effects or purely numerical errors, do not automatically
continue to small errors in the real-time formalism. Further research is clearly needed here.
Euclidean lattice methods are not suitable for high-energy scattering problems.

For our purposes, it suffices to assume that some method exists to construct real-time
functional integrals, as in (3.1).

3.2 Renormalization

Ultra-violet (UV) divergences appear in QCD (and in most other relativistic quantum
field theories) when the continuum limit is taken. These were first found in perturbative
calculations, but the divergences are a property of the exact theory, as is shown by a
renormalization-group analysis, particularly using Wilsonian methods (Polchinski, 1984).
The divergences are from large loop momenta, or, equivalently, from where interaction
vertices approach each other in space-time. In renormalizable theories, like QCD, the
divergences can be proved to be removed by a modification of the continuum limit, at least
in perturbation theory.

1. The theory is first defined with a regulator1 (or cutoff) of the UV divergences. Standard
UV regulators are a non-zero lattice spacing or dimensional regularization.

2. All parameters of the theory consistent with its symmetries are made adjustable as
functions of the cutoff. The parameters include the coefficients of terms like iψ̄∂μψ .

3. When the limit of no UV cutoff is taken, the cutoff dependence of the parameters is
chosen so as to remove the UV divergences and to obtain a non-trivial limiting theory.

Note that an entirely different status is to be given to the infra-red (IR) divergences
that appear in perturbation theory for the S-matrix in theories such as QCD and QED that
have massless fields. The S-matrix is derived given certain hypotheses about the large-time
behavior of Green functions. But in a theory like QED with actual massless particles, these
hypotheses are violated, while in QCD the particle content does not even correspond to the
elementary fields. In either case, perturbative calculations must be adapted to the correct
physics. But IR divergences do not affect the definition of the theory, only the interpretation
of its solution, unlike the case of UV divergences.

The general ideas and methods of renormalization are explained in almost any modern
QFT textbook, and a more specialized reference is Collins (1984), which is compatible
with the presentation here.

3.2.1 Reformulating L: bare parameters

To obtain finite Green functions, we use the freedom not only to change g0 and m0 in (3.5),
but also to change the normalization of the fields, i.e., to do field strength renormalization.

1 For mathematicians: In much of the mathematical literature, the word “regularization” has a different meaning,
equivalent to physicists’ “renormalization”.
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We therefore define the bare fields to be (square roots of) “wave-function renormalization”
factors times renormalized fields: A(0)μ = Z

1/2
3 Aμ, ψ0 = Z

1/2
2 ψ , and η0 = Z̃1/2η. It is

Green functions of the renormalized fields that are to be finite after removal of the UV
cutoff. This gives the following formula for L:

L = Z2ψ̄(i /∂ −m0)ψ − Z2Z
1/2
3 g0ψ̄tα /A

α
ψ

− Z3

4
(∂μAα

ν − ∂νA
α
μ)2 + Z

3/2
3 g0

2
fαβγ

(
∂μAα

ν − ∂νA
α
μ

)
Aβ

μAγ
ν

− Z2
3g

2
0

4

(
fαβγ Aβ

μAγ
ν

)2 − Z3

2ξ0
(∂ · Aα)2

+ Z̃∂μη̄α∂μηα + Z̃Z
1/2
3 g0∂

μη̄γ fαβγ Aβ
μηα. (3.8)

Note that Z2 could be a matrix relating bare and renormalized quark fields, diagonal in
quark flavor, but color-independent.

Both of the formulae (3.5) and (3.8) define the same Lagrangian density; they differ
only by a change of variables; the physical predictions are the same. Thus, provided that
the correct LSZ prescription is used, the S-matrix and cross sections are unchanged under
the field redefinitions.

The first form (3.5), with the bare fields, has unit coefficients for the terms iψ̄0 /∂ψ0,
etc., which implies that the bare fields obey canonical (anti)commutation relations. This is
a natural standard which then gives an invariant meaning to the normalization of the bare
coupling and mass.

We have restricted the change of parameters to those that preserve gauge-invariance
properties, admittedly with a renormalization of the definition of the gauge transformations.
It is a theorem that this is sufficient to obtain finite Green functions. It can also be proved
that ξ0/Z3 is finite, so that we can define ξ0 = ξZ3 with ξ a finite renormalized gauge-
fixing parameter; thus the gauge-fixing term in (3.8) has coefficient 1/ξ . For proofs, see,
for example, Collins (1984).

3.2.2 Renormalized BRST symmetry

The BRST transformations also need renormalization. This is done by a multiplicative
renormalization of the parameter δλ0:

δλ0 = δλZ
1/2
3 Z̃1/2. (3.9)

In the resulting formulae (Collins, 1984, p. 297) for the renormalized BRST transformations
of the renormalized fields, it is convenient to define

X = Z̃Z
1/2
3 g0/gR, (3.10)

where gR is a finite parameter that is a version of the renormalized coupling to be introduced
later. (The actual formula is gR = gμε ; see (3.14).) The resulting renormalized BRST
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transformations are finite:

δBRST, Rψ = −igRηαδλtαψ X, (3.11a)

δBRST, Rψ̄ = igRψ̄tαηα X δλ, (3.11b)

δBRST, RAα
μ =

(
∂μηαZ̃ +X gRfαβγ ηβAγ

μ

)
δλ. (3.11c)

The ghost and antighost fields transform as

δBRST, Rηα = − 1
2gRXfαβγ ηβηγ δλ, (3.11d)

δBRST, Rη̄α = 1

ξ
∂ · Aαδλ. (3.11e)

The finite operators on the right-hand sides of these equations are used in Slavnov-Taylor
identities.

3.2.3 Counterterms, renormalized parameters, dimensional regularization

To implement renormalization in perturbation theory, we use a counterterm approach. The
Lagrangian is split into three parts:

L = Lfree + Lb.i. + Lc.t.. (3.12)

Free propagators correspond to the free Lagrangian Lfree, which has the standard form
in which appear derivative terms with unit coefficient, and mass terms with renormal-
ized masses. The “basic interaction” Lagrangian Lb.i. contains interaction terms, but with
coefficients constructed using only finite renormalized couplings. Graphs constructed with
only the basic interaction contain divergences in some of their one-particle-irreducible
(1PI) subgraphs. The divergences are canceled by graphs in which divergent subgraphs
are replaced by counterterm vertices derived from the counterterm Lagrangian Lc.t.. The
rules for perturbation theory ensure that subdivergences in multiloop graphs are correctly
canceled, order-by-order in an expansion in powers of the renormalized coupling.

Since the counterterms cancel the divergent contributions to loop graphs from UV
momenta, it does not matter how UV divergences are regulated. After removal of the
regulator, the same results are obtained for renormalized Green functions expressed in
terms of renormalized parameters. The only requirement is a suitable adjustment of the
finite parts of the counterterms when the method of UV regulation is changed.

For QCD perturbation theory, the most convenient UV regulator is often dimensional
regularization, where the dimension n of space time is a continuous complex parameter, also
written2 as n = 4− 2ε. Although it is not known how to apply dimensional regularization
to the exact theory, there are no problems in perturbation theory. A concrete mathematical

2 Warning: Although this is the most common definition of ε, other definitions also appear in the literature, notably
ε = n− 4 and ε = 4− n.
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definition can be made (Wilson, 1973; Collins, 1984) by using an infinite dimensional space
for momenta (and coordinates), and by using pathologies of infinite dimensional spaces
to define integration so that it gives the scaling properties appropriate for a non-integer
dimension.

3.2.4 Implementation in QCD

The free and basic interaction Lagrangians are defined to be

Lfree = ψ̄(i /∂ −m)ψ − 1

4

(
∂μAα

ν − ∂νA
α
μ

)2 − 1

2ξ
(∂ · Aα)2 + ∂μη̄α∂μηα, (3.13)

Lb.i. = −gμεψ̄tα /A
α
ψ + gμεfαβγ AβμAγν∂μAα

ν −
g2μ2ε

4

(
fαβγ Aβ

μAγ
ν

)2

+ gμεfαβγ ∂μη̄γ Aβ
μηα. (3.14)

Here is introduced the well-known unit of mass μ for dimensional regularization, so that
the renormalized coupling is gμε , with g dimensionless for all ε. The Feynman rules that
follow from these parts of L are listed in Fig. 3.1.

The counterterm Lagrangian is everything else in the full Lagrangian (3.8):

Lc.t. = (Z2 − 1)ψ̄i /∂ψ −
(
g0Z2Z

1/2
3 − gμε

)
ψ̄ /A

α
tαψ + . . . (3.15)

In renormalized perturbation theory, the counterterm Lagrangian is treated as part of the
interaction. We therefore have an extra set of vertices, the counterterm vertices, listed in
Fig. 3.2. These are like those in the basic interaction, Fig. 3.1, but with modified coefficients,
together with extra two-point vertices.

3.2.5 Mass-dependence and gauge-invariance relations for counterterms

In renormalization theory (e.g., Collins, 1984) the following is shown:

• The Ward identities that follow from gauge invariance imply that independent renormal-
ization of the different interaction vertices is not needed; a single renormalization factor
applied to g0 is suitable. Thus gauge invariance is preserved.

• No counterterm proportional to the gauge-fixing term is needed. That is, ξ0 = Z3ξ , within
the class of gauges we are using.

• With the exception of the mass parameters, the renormalization counterterms can be
chosen to be independent of the quark masses.

• Renormalization of the bare coupling g0 and the bare mass m0 can be chosen to be
independent of the gauge-fixing parameter ξ .

• The bare quark mass is linear in the renormalized mass: m(0)f = Zmmf +m00, with Zm

and m00 independent of mass. With dimensional regularization, we can set m00 = 0, so
that m(0)f = Zmmf .

• Z2 and Zm can be chosen to be independent of quark flavor. (But other choices of scheme
can be useful in treating heavy quarks: Secs. 3.9 and 3.10.)
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Fig. 3.1. Basic Feynman rules of QCD. The coupling has been replaced by gμε , according to
the standard convention for use in 4− 2ε dimensions. Propagators and vertices are diagonal
in any indices (flavor or color) that are not explicitly indicated. For the renormalization
counterterm vertices, see Fig. 3.2.

• Minimal subtraction (Sec. 3.2.6) is among the schemes to which the above statements
on the lack of mass, flavor and gauge dependence apply.

3.2.6 Minimal subtraction

In a calculation order-by-order in the renormalized coupling, the requirement that a coun-
terterm cancels its corresponding divergence determines the part of the counterterm that
diverges as the UV regulator is removed, but not the finite part. A rule for determining the
finite part is called a renormalization prescription. The most common in QCD calculations
is minimal subtraction in its modified form, the MS scheme due to Bardeen et al. (1978).
When dealing with heavy quarks, it is convenient to apply a different scheme for graphs
with heavy quark lines: Sec. 3.10.
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Fig. 3.2. Counterterm vertices in QCD. The 2-point counterterms have diagonal dependence
on all but Dirac indices for quarks and Lorentz indices for gluons. The other counterterm
vertices simply correspond to vertices in Fig. 3.1 with the indicated modified coefficients
for the coupling factors.

Definition

In the MS scheme, counterterms are pure poles at ε = 0, except for unit-of-mass factors
and a special factor Sε for each loop:

g0 = gμε

[
1+ g2Sε

B11

ε
+ g4S2

ε

(
B22

ε2
+ B21

ε

)
+ . . .

]
, (3.16)

Z2 = 1+ g2Sε

Z2,11

ε
+ g4S2

ε

(
Z2,22

ε2
+ Z2,21

ε

)
+ . . . , (3.17)

etc. The rationale for the factor Sε and its value are explained below. For normal UV
divergences, the strength of the pole is at most 1/εL in an L-loop counterterm. The only
parameter on which the coefficients depend is the gauge-fixing parameter ξ , and this is
absent for the bare coupling: the coefficients Bij are pure numbers. In particular, the
coefficients are independent of mass and of μ (’t Hooft, 1973; Collins, 1974).

The role played in renormalization by the unit of mass μ is quite central. It is commonly
called the “renormalization mass” or “renormalization scale”.

The MS scheme differs from the simplest minimal subtraction scheme by inserting a
factor Sε for each loop in the counterterms. This was motivated (Bardeen et al., 1978) by
the observation that in a one-loop calculation, there is an ε-dependent factor that naturally
arises from an angular integration in 4− 2ε dimensions, and that would lead to certain
universally occurring extra terms in renormalized Green functions. These are eliminated
by choosing Sε suitably. I define

Sε = (4π )ε

�(1− ε)
= 1+ ε[ln(4π)− γE]+O(ε2) � 1+ 1.954ε +O(ε2). (3.18)

Here γE = 0.5772 · · · is the Euler constant, and � is the gamma function.
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Although there are several ways in which the MS scheme has been defined in the
literature, it can be proved (see problem 3.3) that all these definitions lead to identical
renormalized Green functions at ε = 0. For example, there are different formulae for Sε ,
but only the order ε part of Sε affects renormalized Green functions.3 The equivalence of
the definitions, to all orders of perturbation theory, applies to conventional Green functions,
where the UV divergences give at most one pole per loop. But in Chs. 10 and 13, we
will define quantities that have a double UV pole per loop. For these, it is the particular
definition, (3.18), that gives the maximal simplification.

Advantages

Among the advantages of minimal subtraction is that it automatically preserves simple
symmetries. For example, the counterterms for the 4-gluon interaction and for the 3-gluon
interaction, etc., will automatically give counterterms with the correct gauge-invariance
relations. Counterterms have their minimal mass dependence.

Mathematically, some care is needed in understanding the expansion about g = ε = 0.
Perturbative renormalization is done by first expanding in g and then analyzing the ε

dependence. Real physics is defined with ε → 0 taken at fixed g. The direct perturbative
calculation of the counterterms is really only valid in a region of g that shrinks to zero
as ε → 0. This is enough to obtain the coefficients for renormalized perturbation theory,
whose radius of applicability is not expected to shrink with ε.

As we will see in Sec. 3.5, renormalization-group methods can be used to calculate the
true behavior of the bare parameters when the UV regulator (e.g., dimensional regulariza-
tion, or a lattice) is removed with the renormalized couplings and mass fixed.

Renormalization group

A change of renormalization scheme, including a change of the unit of mass, can be
compensated by a change in the numerical values of the renormalized parameters. All
that changes is the parameterization of the set of renormalized theories by coupling(s) and
masses. This is the subject of the renormalization group (RG) – Sec. 3.5 – which is a vital
technique in perturbative QCD.

Minimal subtraction with other regulators

Although minimal subtraction is normally defined using dimensional regularization, the
concept applies to any regularization method. With regularization by a lattice spacing a,
one could define the counterterms in each order to be a polynomial in ln(aμ) with no
constant term. This would define a different scheme, related by a RG transformation to the
standard MS scheme, which uses dimensional regularization.

3.3 Renormalization counterterms of QCD

Renormalization plays an essential role in perturbative QCD calculations. Not only does
renormalization enable finite results to be obtained, but the counterterms themselves

3 Warning: In comparing formulae for Sε , note that some authors use a different convention for ε than this book.
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i /p(Z2 − 1) − (Z2Zm − 1)mf

)b()a(

Fig. 3.3. (a) Quark self-energy graph. (b) Counterterm.

determine the renormalization-group coefficients that we will see are vital to predicting
the scale dependence of measurable quantities. This is useful, since counterterms are much
simpler to calculate than the finite parts of graphs.

This section reviews the renormalization of QCD at the one-loop level, giving a complete
calculation for some parts and leaving the rest as an exercise. In Sec. 3.5, this will enable
us to verify the key result of asymptotic freedom of QCD.

3.3.1 Wave-function renormalization

The wave-function and mass renormalization factors are obtained from propagator cor-
rections, the “self-energy graphs”. For the case of the quark, the one-loop graph and its
counterterm are shown in Fig. 3.3. The graph’s value is

g2μ2εCF

(2π )4−2ε

∫
d4−2εk

γ μ(/p − /k +m)γ ν
[−gμν + (1− ξ )kμkν/(k2 + i0)

]
[
(p − k)2 −m2 + i0

] (
k2 + i0

) , (3.19)

where the CF factor is from the color matrices
∑

α tαtα , which gives 4/3 in QCD. We
combine the denominators using the Feynman parameter method (A.55), after which the
momentum integral can be shifted so that the denominator loses its linear term in k. The
use of standard Dirac algebra gives

g2μ2εCF

(2π )4−2ε

∫ 1

0
dx

∫
d4−2εk

{
(2− 2ε)/p(1− x)− (4− 2ε)m+ (1− ξ )(m− /px)[−k2 − p2x(1− x)+m2x − i0

]2

− 2(1− x)(1− ξ )(p2 /px2 + /k/p/k)[−k2 − p2x(1− x)+m2x − i0
]3 + terms odd in k

}
. (3.20)

A Wick rotation gives a spherically symmetric integral in a Euclidean k variable in 4− 2ε

dimensions, which can be performed analytically by using (A.34) and (A.50) and �(1+ ε)
= ε�(ε) to give

ig2(4πμ2)εCF

16π2
�(ε)

∫ 1

0
dx

[−p2x(1− x)+m2x − i0
]−ε

×
{

(2− 2ε)/p(1− x)− (4− 2ε)m+ (1− ξ )
[
m− /px − /p(1− x)(1− ε)

]
− εx2(1− x)(1− ξ )p2 /p[−p2x(1− x)+m2x − i0

]
}

. (3.21)
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Fig. 3.4. (a) and (b) One-loop graphs for quark-gluon vertex. (c) Counterterm graph.

The pole at ε = 0 is easy to extract, since �(ε) = 1/ε + finite, so that

pole part of graph (a) = ig2CF

16π2ε

[−3m+ ξ (/p −m)
]
. (3.22)

We require the pole part plus the order g2 part of the counterterm in Fig. 3.3(b) to be finite.
This gives

Z2 = 1− ξCF

αsSε

4πε
+O(α2

s ), (3.23)

Zm = 1− 3CF

αsSε

4πε
+O(α2

s ). (3.24)

Here, αs = g2/(4π ), a commonly used definition analogous to the fine-structure constant
in electromagnetism. The quantity Sε is defined in (3.18), used to define the MS scheme.

Similar calculations for the gluon and ghost give

Z3 = 1− αsSε

4πε

[(
ξ

2
− 13

6

)
CA + 4

3
TF nf

]
+O(α2

s ), (3.25)

Z̃ = 1+ αsSε

4πε
CA

(
3

4
− ξ

4

)
+O(α2

s ). (3.26)

In QCD, with its SU(3) gauge group and quarks in the triplet representation, the group
theory coefficients used here are CA = 3 and TF = 1/2. See Sec. A.11 for more details.
The quantity nf is the number of quark flavors in QCD.

3.3.2 Quark-gluon vertex

To obtain g0, we need to calculate one of the vertex functions. The simplest is the quark-
gluon vertex, because it is only logarithmically divergent. The one-loop graphs and the
counterterm are shown in Fig. 3.4. Now the UV divergence is independent of masses and
external momenta. So we simplify the calculation by setting these variables to zero, and by
ignoring any ε dependence that does not affect the pole. From the first graph we need

Va = tαgμεSε

g2

16π4
(CF − 1

2CA) PP
∫

UV

d4−2εk

(k2)3

[
−γ ν/kγ μ/kγν + 1− ξ

k2
/k/kγ μ/k/k

]
,

(3.27)
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where “PP” means “pole part at ε = 0”. The subscript “UV” on the integration means that
we restrict the integration to the UV region; we cut out a neighborhood of k = 0. The
prefactors are those present in the lowest-order vertex. A Wick rotation and elementary
spherically symmetric integrals over Euclidean k give the integral in terms of∫

UV

d4−2εk

(k2)2
= π2−ε

�(2− ε)

∫ ∞
finite

d|k2|
|k2|1+ε

, (3.28)

so that

Va = −itαγ μgμεSε

g2

16π2ε
ξ (CF − CA/2). (3.29)

Similarly, graph (b) gives

Vb = −tαgμεSε

g2

16π4
( 1

2CA)

× PP
∫

UV
d4−2εk

γ κ ′/kγ ν ′

(k2)3
(−2kμgκν + kνgκμ + kκgνμ)

×
(
−gν ′ν + (1− ξ )

kν ′kν

k2

)(
−gκ ′κ + (1− ξ )

kκ ′kκ

k2

)

= −itαγ μgμεSε

g2

16π2ε
CA

(
3

4
+ 3

4
ξ

)
. (3.30)

From these, we deduce the one-loop counterterm and, hence, from the previously cal-
culated values of Z2 and Z3 we get the bare coupling:

g0 = gμε

[
1− αsSε

4πε

(
11

6
CA − 2

3
TF nf

)
+O(α2

s )

]
. (3.31)

Note that the manipulations to obtain the coupling are performed with only the first two
terms in a strict expansion in powers of g.

The results for the counterterms to higher order, up to four loops, can be deduced from
the published values (Tarasov, Vladimirov, and Zharkov, 1980; Larin and Vermaseren,
1993; van Ritbergen, Vermaseren, and Larin, 1997; Czakon, 2005) of the RG coefficients,
the primary ones being given in Sec. 3.7. See problem 3.2.

3.4 Meaning of unit of mass, renormalization scale

The unit of mass μ is a rather abstract concept seemingly tied to the use of dimensional
regularization. It appears as a renormalization scale in renormalized quantities. We will see
later (Sec. 3.5) that the value of the renormalization scale can be freely chosen, provided that
the numerical value of the coupling and masses are adjusted in compensation. Perturbative
calculations can be optimized in accuracy by a suitable choice of μ.

To understand how to choose μ, I now present a simple example that gives μ an intuitive
meaning as approximating a cutoff in the physical dimension at a certain value of transverse
momentum.
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Now, in many of our calculations for scattering, there will be preferred coordinates
determined by the momenta of two of the particles. The Breit frame for DIS is a good
example. Let us use these directions to fix a plane of t and z. Then for an integration
over a momentum k, we first perform the k0 and kz integrals. After that we have a two
(or 2− 2ε) dimensional integral over a transverse momentum kT, which is often rota-
tionally symmetric. A generic one-loop integral, relative to a lowest-order calculation,
is then

I0 = g2πμ2ε

(4π )4−2ε

∫
d2−2ε kT

1

k2
T +M2

= g2

16π2

(
4πμ2

)ε
�(1− ε)

∫ ∞
0

dk2
T

(k2
T)−ε

k2
T +M2

. (3.32)

The factor π in the first line is typical for a two-dimensional integral over the two lon-
gitudinal components of k. In an actual application, M would be a function of external
longitudinal kinematic variables as well as of masses of particles and fields. For examples,
see (9.4) and (10.137).

Using (A.50), we express the integral in terms of � functions, and then obtain the pole
and finite part using (A.47):

I0 = g2

16π2
�(ε)

(
4πμ2

M2

)ε

= g2Sε

16π2

(
1

ε
+ ln

μ2

M2
+O(ε)

)
. (3.33)

Subtraction of the MS pole gives the renormalized value

IR = lim
ε→0

(
I0 − g2Sε

16π2ε

)
= g2

16π2
ln

μ2

M2
. (3.34)

Without the Sε factor in the definition of the MS counterterm, we would get an extra term
containing ln(4π )− γE. The simple logarithmic dependence on the unit of mass μ is a
general expectation, but for a more general integral the rest of the result will not be so
simple and will not always have a simple analytic form.

To obtain an interpretation, we now rewrite the counterterm as a subtraction at the level
of the integrand. Since the divergence is associated with the asymptotic large kT behavior
of the integrand, we consider an integral over this asymptotic behavior:

g2πμ2ε

(4π )4−2ε

∫
k2

T>Cμ2

d2−2ε kT

k2
T

= g2

16π2

(
4πμ2

)ε
�(1− ε)

∫ ∞
Cμ2

dk2
T

(k2
T)1+ε

. (3.35)

The integral is of a power of kT, so it is trivial to calculate. Since the extraction of
the asymptotic behavior would otherwise expose an IR divergence, we put a lower limit
proportional to μ2 on the integration, with a coefficient C that is to be adjusted to obtain
the correct finite part of the counterterm. The integral is

g2Sε

16π2ε

eγEε

�(1− ε)
C−ε . (3.36)
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Fig. 3.5. (a) Integrand times k2
T of ((3.37) when μ� M . (b) Same when μ is close to M .

Since the second factor is 1+O(ε2), we can reproduce the renormalized graph by using
(3.36) in place of the true MS counterterm, provided that we set C = 1. Then the renor-
malized graph is an integral in the physical dimension with a subtracted integrand:

IR = g2

16π3

∫
d2kT

(
1

k2
T +M2

− θ (|kT| > μ)

k2
T

)
. (3.37)

The integrand is plotted in Fig. 3.5. Because of the logarithmic behavior at large kT, it
is convenient to multiply the integrand by k2

T and to plot it against ln k2
T, to correspond to

the integrand on the r.h.s. of an integral of the form∫
dk2

T f (kT) =
∫

d ln k2
T

[
k2

Tf (kT)
]
. (3.38)

We now interpret (3.37), with a view to generalization.

• The natural expansion parameter for perturbation theory is g2/16π2, which arises as the
product of the coupling, the factor 1/(2π)4 for a loop integral, and π2 for an angular
integration in four dimensions.

• This is multiplied by a group-theory factor and the number of graphs.
• In simple cases, renormalization can be performed by a subtraction of the asymptote of

the integrand. The lower bound on kT in the subtraction is commonly exactly μ.
• The coefficient Sε defining the MS scheme is responsible for the cutoff being μ rather

than a factor times μ. This gives a direct connection to the physical scale M in the
integrand.

• In a more general graph, finite terms with modest, typically rational, numbers must be
added. The need for this can be seen in the quark self-energy calculation, where the ε

dependence of the numerator algebra enters.
• To get perturbative corrections of a natural size, μ should be close to the scale that is set

by the transverse momentum dependence of the integrand, i.e., a scale characterizing the
change from 1/k2

T behavior at large kT to constant behavior at small kT.
• Although our example integral is exactly zero when μ = M , this is not true in general;

also M will generally be a function of external momentum. The best general statement
is that for a single graph without a group-theory coefficient, the expected coefficient of
g2/16π2 is a modest number of typical size unity if μ is close to a natural scale.

• For large values of μ, μ behaves like a cutoff on kT in the unsubtracted integral.
• The rationale for these results suggests that they should approximately generalize to

higher orders. In a well-behaved L-loop calculation, we can expect the result to be



3.5 Renormalization group 51

roughly (g2/16π2)L times an effective number of graphs times a typical group-theory
factor, provided again that μ is of the order of the physically relevant scale in transverse
momentum.

• When we meet badly behaved situations, it is a good idea to search for explanations for
large perturbative corrections in terms of the sizes of integrands in relevant kinematic
regions.

3.5 Renormalization group

The general idea of renormalization prescribes only that counterterms cancel divergences;
thus the finite parts of counterterms can be chosen freely. Within many schemes, like MS,
there is also a parameter μ that can be chosen freely. At first sight, the choices remove
predictive power from the theory since any numerical value can be obtained from a one-
loop integral with given external momenta. In reality, as explained more fully in textbook
accounts of renormalization, this is not so. Instead we exploit the freedom in choosing μ

to optimize the accuracy of finite-order perturbative calculations.
The complete theory is exactly invariant if when changing μ (or, more generally, the

renormalization prescription) we also change the numerical values of the renormalized
parameters of the theory. This is the renormalization-group (RG) invariance of the theory. An
RG transformation amounts to a change in the partitioning of the full Lagrangian L into the
three terms in (3.12). Thus it corresponds to a rearrangement of the perturbation expansion.
The most important case for us is the transformation of the renormalized coupling and
masses when the renormalization mass μ is changed.

3.5.1 RG evolution

When we perform RG transformations for changes of μ, keeping observable quantities fixed,
each numerical value of μ corresponds to particular numerical values of the renormalized
parameters g(μ), mf (μ). When we change μ to another value μ′, not only do the coupling
and masses change, but also the normalization of the renormalized fields. So we write

φi(x; μ) = ζi(μ,μ′)φi(x; μ′). (3.39)

Here i labels the different types of field (gluon, quark, etc.). A Green function therefore
transforms as

G(p; μ, g(μ),m(μ)) =
∏

e

ζie (μ,μ′)G(p; μ′, g(μ′),m(μ′)), (3.40)

where p is the collection of external momenta of G, m is the set of renormalized masses,
and the product is over the external lines, e, of G, with ie labeling the corresponding types
of field.

The S-matrix and hence cross sections are RG invariant. This is because an S-matrix
element is obtained by applying to the corresponding off-shell Green function the following
operations: (a) divide out a full external propagator; (b) multiply by the square root of the
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residue of the particle pole; (c) put the external momenta on-shell. In this process there is a
cancellation of the ζ factors for each external line. Exactly the same idea applies to Green
functions of the composite external fields needed to obtain the S-matrix for composite
particles.

We now determine equations for μ dependence of g(μ). The coefficients in the equations
are obtained from the counterterms in the bare parameters, the starting point being RG
invariance of the bare parameters, as is necessary to keep the physics unchanged. The
normalizations of the bare parameters and the bare fields are fixed because terms like
iψ̄0 /∂ψ0 have unit coefficients. Our discussion is tailored to the MS scheme, but the main
principles and methods are general.

3.5.2 Coupling and mass

With a UV cutoff applied (ε �= 0), we hold the bare parameters g0 and m(0)f fixed and vary
μ. For g0, we get

0 = d

d ln μ
g0(μ, g(μ), ε) = ∂g0

∂ ln μ
+ dg

d ln μ

∂g0

∂g
= εg0 + dg

d ln μ

∂g0

∂g
. (3.41)

We distinguish between a total derivative d/ dμ, with respect to all the μ dependence,
and a partial derivative ∂/∂μ, for which the renormalized parameters g(μ), etc., are fixed.
It is convenient to use a logarithmic derivative, given that renormalized graphs have a μ

dependence that is polynomial in ln μ.
For the masses

0 = d

d ln μ
m0(m(μ), g(μ), ε) = dg

d ln μ

∂m0

∂g
+ dm

d ln μ

m0

m
, (3.42)

where we used the lack of explicit μ dependence of m0 in minimal subtraction.
It is convenient to use as the expansion parameter αs/4π = g2/16π2. Then from (3.41)

we find

dαs/4π

d ln μ
= g

8π2

dg

d ln μ
= − εg

8π2

g0

∂g0/∂g
. (General ε) (3.43)

The left-hand side is finite at ε = 0, and therefore the right-hand side is finite also; all poles
in ε must cancel. In the MS scheme each αs in the counterterms is accompanied by a factor
Sε and all the terms in g0 have negative powers of ε. We therefore find that the right-hand
side has the form4

−2ε
αs

4π
+ S−1

ε 2β(αsSε/(4π )), (3.44)

where the only ε dependence is in the −εαs term and in the explicit factors of Sε .
At the physical space-time dimension, i.e., at ε = 0, we use the perturbatively calculable

β function to give an equation for the scale dependence of the coupling:

dαs/4π

d ln μ
= 2β(αs/4π). (ε = 0) (3.45)

4 The factor of 2 multiplying β is to correspond to the definition in Larin and Vermaseren (1993); this arises because
these authors use derivatives with respect to ln μ2 instead of ln μ.
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The one-loop value of the bare coupling, in (3.31), immediately gives

β(αs/4π) = −
(

11

3
CA − 4

3
TF nf

)
α2

s

16π2
+O(α3

s ) (for general group)

= −
(

11− 2

3
nf

)
α2

s

16π2
+O(α3

s ). (for SU(3)) (3.46)

Provided there are at most 16 quark flavors, which is true in currently known strong
interactions, the coupling decreases with increasing scale, at least when it is small enough
at the outset. The coupling does in fact go to zero as μ→∞, as we will see, so that QCD
is asymptotically free. The importance of this is clear from the previous chapter.

The results at higher order will be quoted in Sec. 3.7. Here we just note that β can be
obtained from the single pole terms in g0. With the conventions of (3.16), we get:

β(αs/4π) =
∞∑

n=1

g2n+2

8π2
nBn1. (3.47)

The finiteness conditions for dαs/d ln μ enable the higher poles in g0 to be computed in
terms of the single poles.

The RG dependence of the mass is similarly obtained. A dimensionless function is
obtained by using logarithmic derivatives:

γm(αsSε/4π)
def= d ln m

d ln μ

= (
2εαsSε/4π − 2β(αsSε/4π)

) ∂ln Zm

∂αsSε/4π

= −6CF

αs

4π
Sε +O(α2

s ). (3.48)

Again, the divergences present in Zm must cancel in this derivative in order that γm is
finite. This time, it can be shown that the only ε dependence is in the Sε multiplying αs .
This RG coefficient is usually less important in practice, since most pQCD calculations are
performed with masses set to zero, or with a different scheme for heavy quarks.

The lack of mass dependence in the renormalization group coefficients β and γm follows
from the mass-independence property of MS counterterms.

3.5.3 Anomalous dimensions and RG equations for Green functions

To unify the treatment of the RG transformation for renormalized fields, let us use the
notation φi for the renormalized fields, with the label i denoting the type of field (gluon,
flavor of quark, etc.). We define its anomalous dimension by

γi(αsSε/4π, ξ )φi = − dφi

d ln μ
. (3.49)

Given that the corresponding bare field is φ(0)i = Z
1/2
i φi , it follows that

γi(αsSε/4π, ξ ) = 1

2

d ln Zi

d ln μ
. (3.50)
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A complication arises in gauge theories, from the gauge dependence of wave-function
renormalization. Because of the relation ξ0 = ξZ3, the gauge-fixing parameter obeys

d ln ξ

d ln μ
= −d ln Z3

d ln μ
= −2γ3. (3.51)

Then the definition of γ3 gives

γ3 =
(
−ε

αsSε

4π
+ β(αsSε/4π)

)
d ln Z3

dαsSε/4π
− γ3

∂ ln Z3

∂ξ
. (3.52)

Hence

γ3 =
(−ε αs

4π
Sε + β(αsSε/4π)

)
d ln Z3/d(αsSε/4π)

1+ ∂ ln Z3/∂ξ
. (3.53)

For the other anomalous dimensions, we have equations of the form

γ2 =
(
−ε

αsSε

4π
+ β(αsSε/4π)

)
d ln Z2

dαsSε/4π
− γ3

∂ ln Z2

∂ξ
. (3.54)

See Sec. 3.7 for the values of the anomalous dimensions.
From the above results follows the renormalization-group equation (RGE) for a renor-

malized Green function G. If G has n2 external quark fields (and the same number of
antiquarks) and n3 external gluons, then

dG

d ln μ
= −(2n2γ2 + n3γ3) G. (3.55)

Exactly similar equations can be derived for other operator matrix elements, where the
states can be other than the vacuum and the fields not simple products of the elementary
fields of QCD at different space-time points. A simple example is the hadronic tensor Wμν

of DIS, (2.18). The electromagnetic current is a symmetry current of QCD and can be
shown to have zero anomalous dimension. Hence Wμν is RG invariant:

dWμν

d ln μ
= 0. (3.56)

3.6 Solution of RG equations

3.6.1 General form of solution

The RG equations for the coupling, mass, and Green functions are readily solved to relate
these quantities at different values of the MS, with the aid of integrals of β, γm and the
anomalous dimensions:

ln
μ

μ0
=
∫ αs (μ)/4π

αs (μ0)/4π

dα/4π

2β(α/4π )
, (3.57)

ln
m(μ)

m(μ0)
=
∫ μ

μ0

dμ′

μ′
γm(αs(μ

′)/4π ) =
∫ αs (μ)/4π

αs (μ0)/4π

dα/4π
γm(α/4π )

2β(α/4π )
, (3.58)

ln
G(μ)

G(μ0)
= −

∫ μ

μ0

dμ′

μ′
γG(αs(μ

′)/4π, ξ (μ′)) = −
∫ αs (μ)/4π

αs (μ0)/4π

dα/4π
γG(α/4π, ξ (μ′))

2β(α/4π )
.

(3.59)
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Fig. 3.6. QCD effective coupling. With kind permission from Springer Science+Business
Media: Bethke (2009, Fig. 6). The lines represent the solution of the RGE for αs(μ) with the
±1σ limits on the constant of integration. The scheme used is MS with a variable number
of active quarks, as in Sec. 3.10. The data are, in increasing order of μ, from fits to the
τ width, ϒ decays, DIS, e+e− event shapes at 22 GeV at JADE, shapes at TRISTAN at
58 GeV, Z width, and e+e− event shapes at 91–208 GeV.

Here γG = 2n2γ2 + n3γ3 is the anomalous dimension of the Green function G, all of whose
momentum and mass arguments we have suppressed.5

Since β(α/4π ) is negative and O(α2) at small coupling, (3.57) shows that αs(μ)→ 0
as μ→∞, i.e., that QCD is asymptotically free.

3.6.2 Effective coupling; scale parameter �

The μ dependence of the coupling underlies all other RG calculations in QCD, so a detailed
analysis is useful. There is a one-parameter family of solutions of (3.45) for αs(μ), and the
physical solution is specified, for example, by the value of coupling at a given scale (e.g.,
“αs(MZ) = 0.1184± 0.0007 in the MS scheme with five active flavors”). The physical
solution is obtained by fitting the one parameter to data, with a result shown in Fig. 3.6.

One often-used procedure is the following, which is particularly useful for assessing the
errors due to the limited accuracy with which RG functions are known. It was obtained
(Buras et al., 1977) basically by expanding αs(μ) in powers of 1/ ln μ2 at large μ.

Let us write the expansion of β as

β(as)
def= das

d ln μ2
= −β0a

2
s − β1a

3
s − β2a

4
s − β3a

5
s +O(a6

s ), (3.60)

where as = αs/4π = g2/16π2. (The normalizations of all but β0 differ from the less
systematic conventions of the PDG; Amsler et al., 2008.) In the solution (3.57) the integral

5 Thus G(μ0) means G
(
p; μ0, g(μ0),m(μ0), ξ (μ0)

)
.
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is of 1/β, so we first separate out the singular parts of 1/β, and represent the general
solution of the RGE for as(μ) as

ln
μ2

�2
= 1

β0as

+ β1

β2
0

ln(β0as)− f (as), (3.61)

where

f (as)
def=
∫ as

0
da

(
− 1

β(a)
− 1

β0a2
+ β1

β2
0a

)
. (3.62)

Here the constant of integration is represented by a parameter �, of the dimension of mass;
it has an experimentally determined value6 of around 200 MeV. The constant β0 in the
logarithm in the second term on the r.h.s. of (3.61) merely amounts to a standard convention
for the definition of � whose rationale will become apparent below. When it is necessary
to distinguish � from other similar parameters, we will add a subscript, as in �QCD.

For small coupling, β is approximately −β0a
2
s , so that as(μ) behaves like 1/(β0 ln μ2)

at large μ. To improve this estimate, we expand in powers of 1/ ln(μ2/�2) (with some
modifications as required). This gives

αs

4π
= 1

β0 ln(μ2/�2)
− β1 ln ln(μ2/�2)

β3
0 ln2(μ2/�2)

+O

(
ln2 ln(μ2/�2)

ln3(μ2/�2)

)
. (3.63)

Normally we would expect a term constant/ ln2(μ2/�2), and the absence of this term is
effectively the definition of �, and is exactly correlated with the use of ln(β0as) rather than
ln as in (3.61). This convention is due to Buras et al. (1977). Then � can, in principle, be
extracted from the large μ asymptote of as(μ):

�2 = lim
μ→∞μ2 exp

[
− 1

β0as

− β1

β2
0

ln(β0as)

]
. (3.64)

Notice that this formula requires only the use of the known one- and two-loop terms in β,
not any of the higher terms not all of which are known. Of course the higher terms will
improve the accuracy of the measurement of � since as(μ) is only known at finite μ.

3.6.3 Dimensional transmutation

Suppose we were to approximate quark masses of QCD by zero. Since the masses of the light
quarks are considerably smaller than the proton mass, this is in fact a useful approximation,
for low-energy processes, if we keep only two (u, d) or three flavors (u, d, s), with the
heavier quarks being removed according to the decoupling theorem. Then the mass of any
particle, like the proton, would be a function of αs and μ only. But by dimensional analysis
it is μ times a function of αs :

mp = μF (αs) in massless QCD. (3.65)

6 Details depend on a treatment of heavy quark masses which we will present later (Sec. 3.10). The current best value
with five active quarks is (Bethke, 2009) � = (213± 9) MeV.
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Since mp is a physical mass, it is RG invariant, which fixes αs(μ) up to a multiplicative
factor. It follows that mp equals � times a pure number, Kp, which is a property of the
solution of massless QCD: mp = �Kp. The number Kp is non-perturbative and can be
obtained from lattice QCD calculations.

Instead of specifying the theory by the numerical value of its dimensionless coupling
g, we can instead specify a fixed mass parameter �. This is the property of dimensional
transmutation (Coleman and Weinberg, 1973).

In fact, there is a certain sense in which even this parameter is illusory. Suppose we
consider pure strong interactions with massless quarks. To completely define a measure-
ment of the numerical value of �, we must specify a system of units, i.e., specify what
a mass of numerical value unity means.7 But with only the strong interaction under con-
sideration, this can only mean some physical mass like the proton mass, which can be
taken as a physical definition of a standard mass. So a measurement of � is really a
measurement of the dimensionless ratio �/mP , whose value is a unique prediction of the
theory.

This is the sense in which massless QCD has no parameters. All real predictions of the
theory are pure numbers. For example, a cross section as a function of center-of-mass energy
σ (E) is of the form m−2

p S(E/mp), where S is a dimensionless function of a dimensionless
variable. This function is in principle predicted with no parameters by massless QCD.

Since the masses of the three light quarks are known to give only a relatively small
contribution to the nucleon mass, the above statements are approximately true in real QCD.
The real intrinsic parameters of QCD are the quark masses, expressed in terms of a suitable
chosen unit, e.g., � or mp.

There is a contrast with QED, because of the different physics of its classical long-
distance limit. For simplicity consider QED of a photon and electron field only. Then, again
by dimensional transmutation, there is only one true parameter me/�QED. As with its QCD
analog, �QED is in a region where the coupling is strong. In contrast to the QCD coupling,
the QED coupling increases at large scales, and in fact �QED is around the Planck scale. At
low energies compared to me, the electron decouples, giving a free Maxwell field theory
which we can solve completely and exactly. It therefore becomes much more sensible
than in QCD to use an on-shell renormalization prescription, and to define the expansion
parameter of the theory as the usual α � 1/137. Within pure single-lepton QED, we can
take the unit of mass to be me.

Of course, weak coupling methods are very useful and accurate for normal phenomena
in QED, including its bound states, in contrast to QCD, where perturbation theory has a
more restricted range of applicability.

Although dimensional transmutation has reduced the number of genuine parameters in a
quantum field theory by one compared with the apparent number, the parameter is regained
when the theory is treated as a component of a more complete theory. For example, we
can combine QED and QCD to get a complete theory underlying all nuclear, atomic and

7 The last sentence was carefully worded to avoid confusion between the concept of unit of mass in dimensional
regularization and the concept of the unit of mass in a system of units.
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molecular phenomena. Then me/�QCD is a parameter of the combined theory in addition
to the intrinsic parameters of the separate theories.

3.6.4 Bare coupling

We used (3.41) to obtain the (finite) β function from the divergent perturbation expansion
for the bare coupling. But we can also use it to obtain a formula for the bare coupling as a
function of � and ε. From the ε-dependent β function given in (3.44) we get

∂ ln a0

∂as

= ε

εas − S−1
ε β(asSε)

, (3.66)

where again as = g2/(16π2), while a0 = g2
0/(16π2) is the bare equivalent of asμ

2ε , with
mass dimension 2ε. The solution is

ln a0 = ln(asμ
2ε)+

∫ asSε

0
da

[
ε

εa − β(a)
− 1

a

]
, (3.67)

where the boundary condition is set by requiring a0/(asμ
2ε)→ 1 as as → 0 at fixed ε.

An important formula is obtained by expressing this in terms of �, and then taking the
limit ε → 0 at fixed as . This gives

g2
0

16π2
= 1

β0
ε1+εβ1/β

2
0

(
�2eβ1/β

2
0+γE

4π

)ε [
1+O(ε2)

]
. (3.68)

When ε → 0, the O(ε2) fractional correction can be dropped, since it is equivalent to a
change in � by a fraction of order O(ε): since � determines the coupling in the renormalized
theory, the correction does not affect renormalized Green functions at ε = 0. From the β

function, only the scheme-independent coefficients β0 and β1 are needed; the scheme choice
is manifested in the numerical coefficient multiplying �2. To provide a full specification of
the renormalization of the theory, only the one- and two-loop renormalization counterterms
in the coupling need to be known.

Similar results can be obtained when any regularization scheme is used. With a lattice
regulator, we would have

g2
0

16π2
= 1

−β0 ln(a2�2)
− β1 ln(− ln(a2�2))

β3
0 ln2(a2�2)

− A

ln2(a2�2)
, (3.69)

where a is the lattice spacing, and the coefficient A can be computed (Hasenfratz and
Hasenfratz, 1980; Dashen and Gross, 1981) from the perturbative expansion of the bare
coupling computed to two-loop order, with the renormalized coupling being in the MS
scheme.

Other bare parameters and renormalization factors may be treated similarly.

3.7 Values of RG coefficients

The β function has been calculated in the MS scheme up to three loops by Tarasov,
Vladimirov, and Zharkov (1980) and by Larin and Vermaseren (1993), and to four loops by
van Ritbergen, Vermaseren, and Larin (1997). The results have been confirmed by Czakon
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(2005). The first three coefficients in β are rational numbers. With the notation of (3.60),

β0 = 11

3
CA − 4

3
TF nf , (3.70a)

β1 = 34

3
C2

A − 4CF TF nf − 20

3
CATF nf , (3.70b)

β2 = 2857

54
C3

A + 2C2
F TF nf − 205

9
CF CATF nf − 1415

27
C2

ATF nf

+ 44

9
CF T 2

F n2
f +

158

27
CAT 2

F n2
f . (3.70c)

The expression for the four-loop coefficient β3 is more complicated and includes the irra-
tional number ζ3; the full expression is given in van Ritbergen, Vermaseren, and Larin
(1997). The fact that even the three-loop coefficient is a rational number indicates a funda-
mental simplicity in the theory and in minimal subtraction that is certainly not apparent in
straightforward calculations of Feynman diagrams. In the case of SU(3), i.e., for QCD, the
coefficients are

β0 = 11− 2

3
nf , (3.71a)

β1 = 102− 38

3
nf , (3.71b)

β2 = 2857

2
− 5033

18
nf + 325

54
n2

f , (3.71c)

β3 =
(

149 753

6
+ 3564ζ3

)
−
(

1 078 361

162
+ 6508

27
ζ3

)
nf

+
(

50 065

162
+ 6472

81
ζ3

)
n2

f +
1093

729
n3

f

≈ 29 243.0− 6946.30nf + 405.089n2
f + 1.499 31n3

f . (3.71d)

The anomalous dimensions have been computed by Larin and Vermaseren (1993) up
to three loops, and by Czakon (2005) to four loops. The full results can be found in these
papers.8 Up to two-loop order, where the coefficients are rational, the values are

γ2(αs/4π, ξ ) = αs

4π
CF ξ

+
( αs

4π

)2
(
−3

2
C2

F +
25

4
CF CA − CF nf + 2ξCF CA + ξ 2 1

4
CF CA

)
+ . . . ,

(3.72)

γ3(αs/4π, ξ ) = αs

4π

[
−13

6
CA + 2

3
nf + ξ

1

2
CA

]

+
( αs

4π

)2
[
−59

8
C2

A + 2CF nf + 5

2
CAnf + ξ

11

8
C2

A + ξ 2 1

4
C2

A

]
+ . . .

(3.73)

In these equations, the value TF = 1/2 was used.

8 The definition of γ has different normalization conventions in different books and papers. The conventions of this book
agree with those of Larin and Vermaseren (1993).
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3.8 Symmetries and approximate symmetries of QCD

In this section, I summarize the standard set of exact and approximate symmetries of QCD.
See Narison (2002, Chs. 53 and 54) for a recent account of many of their consequences,
especially those that are not further referenced in this section.

3.8.1 Exact symmetries

The QCD Lagrangian is exactly invariant when any one of the quark fields is multiplied
by a phase. By Noether’s theorem this gives rise to conservation of the number of quarks
(minus antiquarks) of each flavor: u-quark number, d-quark number, etc. The sum of all of
these, the total quark number, is particularly important because it is not broken by flavor-
changing weak interactions. Baryon number is simply one-third of total quark number, and
its invariance was established long before QCD.

QCD is also invariant under each of the discrete symmetries of parity, charge conjugation,
and time-reversal.

3.8.2 Note on “strong CP problem”

If QCD is specified simply as a renormalizable gauge theory, with an SU(3) gauge group
and some set of quark fields in the triplet representation, then one extra term is permitted
beyond those in the Lagrangian (2.1). In a standard normalization, the extra term has the
form

θ

16π2
Gα

μνG̃
α μν, (3.74)

where G̃α
μν = 1

2εμνρσGα ρσ . The extra term breaks CP invariance, and there is a stringent
observational bound on its coupling, θ � 10−9. It is considered problematic as to why θ is
so small. This is the strong CP problem, which is reviewed along with possible solutions
in Dine (2000).

3.8.3 Isospin and flavor SU(3)

If the up and down quarks were exactly equal in mass, QCD would be invariant under
the isospin symmetry of SU(2) transformations on the u- and d-quark fields. This sym-
metry is quite accurate; we will apply it to the flavor dependence of parton densities and
fragmentation functions in Secs. 6.9.7 and 12.4.8.

Rather less accurate is the flavor SU(3) symmetry that would be exact if the masses of
the lightest three quarks, u, d , and s, were equal. SU(3) breaking is described by the quark
mass terms, which correspond to the Q3 and Q8 terms of an operator transforming as an
octet under flavor SU(3). Treated to first order in perturbation theory, these give a good
description of the mass splittings within the well-known flavor-SU(3) octet and decuplet
multiplets of hadrons.
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3.8.4 Symmetries at zero mass

The masses of the u and d quarks are quite small. When these masses are neglected, the
QCD Lagrangian is further symmetric under separate SU(2) transformations on left- and
right-handed quark fields defined by

ψL = 1

2
(1− γ5)ψ, ψR = 1

2
(1+ γ5)ψ. (3.75)

Then chiral SU(2)L ⊗ SU(2)R transformations have six parameters ωL and ωR for two
commuting SU(2) groups, and the quark fields transform as(

uL

dL

)
�→ e−iωL·σ/2

(
uL

dL

)
,

(
uR

dR

)
�→ e−iωR ·σ/2

(
uR

dR

)
. (3.76)

The other fields (gluons, other quark flavors) are invariant. This symmetry is in fact sponta-
neously broken down to isospin SU(2). The low mass of the pions (about 140 MeV) relative
to other hadrons is indicative of the expectation that they would be Goldstone bosons for
spontaneously broken chiral symmetry in the limit of zero quark mass. Consequences can
be successfully derived by the use of Ward identities together with the chiral transfor-
mation properties of the quark mass terms. These form much of the subject of current
algebra.

3.8.5 Anomalies

When the u and d quarks are massless, the symmetry of their part of the Lagrangian
appears also to include separate U(1) transformations on the left- and right-handed fields.
(The quark-number symmetry corresponds to the same U(1) to both the left- and the
right-handed fields.)

This symmetry is in fact anomalously broken. Thus, unlike the case of SU(2)L ⊗ SU(2)R ,
there is no approximate Goldstone boson.

3.8.6 Chiral symmetry, hard scattering and factorization

When applying a factorization theorem like (1.1) there is a hard-scattering factor
dσ̂ (ξa, ξb, i, j ). This is normally computed with quark masses set to zero, and thus chiral
symmetry applies to it.

Many consequences arise because at the quark-quark-gluon vertex, the coupling is only
between quarks of the same helicity, and between quarks and antiquarks of the opposite
helicities. That is, only the following transitions are possible:

qL ↔ qL + g, qR ↔ qR + g, qL + q̄R ↔ g, qR + q̄L ↔ g. (3.77)

This produces many restrictions on the polarization dependence, as we will see in Secs.
11.6 and 13.16.
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3.9 Dealing with quark masses

Our basic technique for exploiting perturbation theory in QCD is to find quantities whose
calculation has internal lines of Feynman graphs far off-shell, i.e., with some large virtuality
Q2. In these quantities we set the renormalization scale of order Q, so that the weakness of
αs at large scales allows the use of low-order perturbation theory, and we normally neglect
quark masses.

However, there are quarks whose masses are not always negligible in these calculations,
so that the general procedure needs modification to deal with heavy quarks. These are
defined to be those quarks for which the coupling is small when the renormalization scale is
of order the mass: αs(mq)� 1. The known heavy quarks are c, b and t , with the remaining
quarks and the gluon being called “light”. The charm quark, of mass 1 to 1.5 GeV, is only
marginally heavy, but, for robust observables, perturbation theory may be applicable at
scales around the charm mass.

Clearly we need improved methods whenever Q, the physical of the process under
consideration, is comparable to or smaller than the mass of one or more heavy quarks.
First, we should not automatically neglect the mass. Second, the use of a mass-independent
scheme, like MS, becomes unsuitable whenever the scale is much less than one of the quark
masses.

The main issues are manifested in a calculation of the one-loop quark contribution to
the gauge-field self-energy:

�
μν

MS
=
∑

j

−g2μ2εδαβTF

(2π )4−2ε

∫
d4−2εk

Tr (/k +mj )γ μ(/p + /k +mq)γ ν(
k2 −m2

j + i0
) [

(p + k)2 −m2
j + i0

]
+ counterterm, with ε → 0

=
∑

j

−2iαsδαβTF

π
(−gμνp2 + pμpν)

∫ 1

0
dx x(1− x) ln

m2
j − p2x(1− x)

μ2
.

(3.78)

The following properties apply to this graph and more generally.

• If |p2| is large compared with m2
j , then mj can be neglected, with relative errors of order

m2
j /|p2|.

• Furthermore, in the same situation, |p2| � m2
j , there is logarithmic dependence on p2.

The large logarithm can be removed by taking μ2 of order |p2|.
• If |p2| is much less than m2

j , the integral approaches a constant, ln(m2
j /μ

2). In (3.78),
this multiplies a factor quadratic in p, of the same momentum dependence as the UV
counterterm.

The last item exemplifies the non-trivial part of the decoupling theorem for heavy parti-
cles (Appelquist and Carazzone, 1975). This theorem concerns a situation where we hold
fixed the external scales of a Green function and make some internal mass much larger.
Then the contributions of convergent graphs with the large internal mass are suppressed.
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The suppression fails whenever the heavy internal lines are in a divergent loop, but the
unsuppressed contributions are equivalent to a contribution to renormalization coun-
terterms. Thus the unsuppressed contributions can be eliminated by a choice of
counterterm.

Suppose that we have the real-world situation that the quark masses are widely different.
Then we can have a conflict in the choice of μ that eliminates large logarithms, whenever
|p|2 lies between two heavy quark masses, e.g., m2

t � |p2| � m2
b, which is common in

practice. Different graphs for the same process involve different heavy quarks.
If we use MS renormalization, then, for the quarks that are heavy on a scale of p2, we

have logarithms ln(m2
j /μ

2), which can be removed by setting μ ∼ mj . For the quarks that
are light on a scale of p2, we have logarithms ln(−p2/μ2), which are removed by setting
μ2 ∼ |p2|. When the quark masses and |p2| cover a wide range, we have incompatible
conditions on μ.

The original way of using the decoupling theorem was to define a second theory in
which all fields are omitted whose masses are much larger than the external scales. This is
the low-energy effective theory (LEET) for a given set of heavy quarks. The renormalized
parameters of the LEET have numerical values that, in general, differ from those of the
full theory. These numerical values can be computed by comparing calculations of Green
functions in the two theories and requiring that they give equivalent results.

A LEET removes from calculations quarks whose masses are much larger than the
external scales. There can remain quarks with masses comparable to the external scales.
For example, in a calculation at Q ∼ 5 GeV, we would decouple the t quark, but none of
the others, so that the LEET has five quark fields. But we could not neglect the mass of the
b quark. Depending on the situation and required accuracy, we might be able to neglect the
charm quark mass or might need to retain its mass. One normally neglects all three light
quark masses in standard perturbative calculations.

For a full set of QCD calculations, we need to successively decouple the top, bottom
and charm quarks. This gives us a series of effective theories with three, four and five
quarks, with corresponding values of their MS couplings. Non-perturbative calculations at
low scales are normally done in the 3-flavor effective theory; these include the well-known
lattice Monte-Carlo simulations.

However, the method of LEETs has certain disadvantages, and in the next section I
present a better method. The primary disadvantage of a LEET is that it is limited in the
ultimate accuracy that it can achieve. For example, consider the 3-flavor effective theory.
We could obtain it by sequential decoupling of the three heavy quarks. Now, the decoupling
of the charm quark, to get the final 3-flavor LEET, assumes that it is much lighter than the
previously decoupled bottom quark; so we have the leading term in an expansion in powers
of mc/mb. But this ratio is only about 1/3, so the errors could be quite large relative to a
desirable accuracy. If instead we decouple both the charm and bottom quarks in one step,
then the matching conditions would include logarithmic dependence on mb/mc, which
would also reduce the accuracy.

A more general approach is to change the renormalization scheme to make decoupling
more manifest. The simplest of such schemes is momentum-space subtraction, in which the
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counterterms are chosen to set certain 1PI Green functions (and/or appropriate derivatives)
to zero at a particular point in momentum space. For the quark self-energy, we could choose
the renormalization point to be p2 = −μ2, obtaining

�
μν
MOM =

∑
j

−2iαsδαβTF

π
(−gμνp2 + pμpν)

×
∫ 1

0
dx x(1− x) ln

m2
j − p2x(1− x)

m2
j + μ2x(1− x)

. (3.79)

This scheme solves the difficulty of removing all large logarithms; these are eliminated
by setting μ2 of order |p2|, independently of the size of mj . Thus the scheme satisfies
manifest decoupling, which means that we obtain the low-energy effective theory simply
by deleting all graphs containing quarks much heavier than the external scale. The errors
in doing this are a power of p2 divided by the square of the mass of the lightest deleted
quark.

But the scheme has two technical disadvantages. One is that gauge invariance is not
automatically preserved. The defined momentum-space subtractions can only be applied
to a limited set of 1PI Green functions, sufficient to determine an independent set of
renormalization factors. The counterterms for the remaining 1PI divergent graphs are
determined by gauge invariance, and will generally not have an obvious momentum-space
definition. Indeed, a separate argument will be necessary to prove decoupling.

The second disadvantage is the practical one that the counterterms are mass dependent,
so that the renormalization-group equations for the coupling and mass will be compli-
cated and coupled. So the solution will be much more complicated and more difficult to
overview. Moreover, the calculations of counterterms become algorithmically much more
complicated: the exact values of off-shell Green functions are needed instead of just the pole
part at ε = 0. Calculation of on-shell Green functions is generally simpler than when they
are off-shell, and calculations of the pole parts are even easier. This was nicely illustrated
in our calculation of the quark-quark-gluon vertex graph in Sec. 3.3. This is an impor-
tant issue, since high-order calculations are extremely expensive in time and effort, which
rapidly increases with the order of the calculation. Moreover, for a given desired accuracy in
a final phenomenological result, it is generally necessary to compute RG coefficients to one
order higher than everything else, because the RG coefficients get integrated over a large
range of scales, thereby increasing the effect of an error due to uncalculated higher-order
corrections.

3.10 CWZ (ACOT) method for heavy quarks

A method that overcomes these complications was constructed by Collins, Wilczek, and
Zee (1978) (CWZ). This method is actually a composite scheme, composed of a sequence
of subschemes. The subschemes are parameterized by what is called the number of active
quarks, Nact. The active quarks are the Nact lightest, and the inactive are the remaining,
heavier quarks. Since the gluon has zero mass, it is always treated as active. For a 1PI graph
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containing only active quarks, normal MS counterterms are used. But zero-momentum
subtractions are used for any 1PI graph that has at least one internal line for an inactive
quark.

Normally, zero-momentum counterterms would have undesirable IR divergences in a
theory with massless fields, like the gluons in QCD. But the presence of at least one massive
line removes these divergences, to all orders of perturbation theory.

The CWZ scheme has the following advantages.

• Each subscheme automatically satisfies gauge invariance. That is, if the counterterms in
the Lagrangian are determined by some minimal set of 1PI Green functions, then the
remaining 1PI Green functions, with their counterterms determined by gauge invariance
of L also obey the CWZ renormalization condition. No extra finite counterterms are
needed.

• Manifest decoupling is satisfied in each scheme. In particular, the numerical value of the
coupling in the LEET with Nact flavors and pure MS renormalization is the same as in
the CWZ subscheme with Nact active quarks.

• The RG coefficients in each subscheme are mass independent and in fact exactly identical
to those in the theory obtained by deleting the inactive quarks.

• This apparently violates the theorem that we have scheme independence of the one- and
two-loop terms in β, and of the one-loop terms in the other RG coefficients. But the
theorem only applies if the counterterms are mass independent, which is not the case
here, when the number of active quarks changes.

• Normally, calculations of Green functions at zero external momentum are much easier
than with a general external momentum.

• No IR divergences are induced by the use of zero-momentum subtractions.

Since there is a sequence of subschemes, relations must be derived between the renormalized
parameters in the subschemes. This is quite straightforward, with some results listed below.
Moreover, there are no large logarithms in relating the subscheme with N1 active quarks
to the scheme with N1 + 1 active quarks, provided only that μ is of order the mass of the
single quark that is making the transition between active and inactive. We will see examples
later.

This scheme has become a standard, e.g., Bethke (2009). It extends quite simply to
the treatment of parton densities, etc., in which case it is called the ACOT scheme, as
expounded by Aivazis et al. (1994). It is the one I will use throughout this book, unless
otherwise specified.

An important misapprehension needs to be eliminated from the beginning. This is that
the MS scheme only applies to massless quarks. It is true that RG coefficients (and their
generalizations) do not depend on the quark masses. For this and other reasons, it is often
best to do many calculations with massless quarks. But there is no intrinsic reason for
it to be restricted to massless quarks. The misapprehension is coupled with some severe
conceptual misunderstandings concerning the factorization theorems of QCD, as we will
see in later chapters.
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Fig. 3.7. Range of scales for which particular numbers of active flavors are appropriate.
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Fig. 3.8. Possible choice of switching points between CWZ subschemes.

3.11 Relating CWZ subschemes with different numbers of active quarks

For a particular CWZ subscheme with a given number, N , of active quarks, the vacuum
polarization in (3.78) is replaced by

�
μν
CWZ =

−2iαs,NδαβTF

π
(−gμνp2 + pμpν)

∫ 1

0
dx x(1− x)

×
⎡
⎣ ∑

active j

ln
m2

j − p2x(1− x)

μ2
+

∑
inactive j

ln
m2

j − p2x(1− x)

m2
j

⎤
⎦ , (3.80)

where αs,N (μ) is the coupling appropriate to the subscheme. For a particular value of p2, to
eliminate large logarithms, we should (a) take μ2 of order |p2|, (b) make inactive all quarks
with m2

j � |p2|, and (c) make active all quarks with m2
j � |p2|. Obviously, for quarks

with m2
j ∼ |p2| we have a choice of whether to make them active or inactive, as illustrated

in Fig. 3.7. In the past, there was a tendency to make a definite switching point between
subschemes: quark j was considered active if μ > mj , and inactive otherwise. But this is
now seen as undesirable.

At one-loop, the relations between the subschemes are readily computed from the
vacuum polarization graphs, as we will now see. Let us define Z3,N to be the value of Z3

when the lightest N quarks are active, and similarly for Z̃ and the renormalized masses and
coupling. Let Z2,N,j be the field strength renormalization for quark j .

3.11.1 Field-strength renormalization

At one-loop, the self-energies of the first N quarks and the ghost have no inactive quark lines,
so MS counterterms apply in both of the subschemes we are relating. Similar considerations
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apply to the quarks which are inactive in both schemes.

Z̃N = Z̃N+1 +O(α2
s ), (3.81)

Z2,N,j = Z2,N+1,j +O(α2
s ), if j ≤ N or j ≥ N + 2, (3.82)

Zm,N,j = Zm,N+1,j +O(α2
s ), if j ≤ N or j ≥ N + 2. (3.83)

Here, we use a notation in which the quark label j equals its sequence number in order of
mass.

However, the counterterm for the gluon self-energy changes. From the earlier calcula-
tions we have

Z3,N = Z3,MS +
αsSε

3π
TF (nf −N )

∑
j>N

[
�(ε)

e−γEε

(
μ2

m2
j

)ε

− 1

ε

]
+O(α2

s ). (3.84)

Bare quantities, including fields, are the same in all schemes. We therefore obtain the
following relations between the fields and masses in the two subschemes:

AN = AN+1

[
1+ αs

6π
TF ln

μ2

m2
N+1

+O(α2
s )

]
, (3.85a)

ηN = ηN+1[1+O(α2
s )], (3.85b)

ψj,N = ψj,N+1[1+O(α2
s )], if j ≤ N or j ≥ N + 2, (3.85c)

mj,N = mj,N+1[1+O(α2
s )], if j ≤ N or j ≥ N + 2, (3.85d)

3.11.2 Coupling

Now consider the vertex for the ghost to a gluon. Its counterterm is pure MS in both
subschemes, and the counterterm is computed from g0 and the Z factors as proportional to
g0Z̃Z3,N − μεgN +O(g5). The bare coupling is the same in both subschemes, so it follows
that the renormalized coupling has the relation

αs,N = αs,N+1

[
1− αs

2π
TF ln

μ2

m2
N+1

+O(α2
s )

]
. (3.86)

Evidently, at the one-loop order, it is sufficient to compute the vacuum polarization.
Higher-order corrections to these relations have been made. For two-loop calculations,

see Bernreuther and Wetzel (1982); Bernreuther (1983a, b). For three-loop calculations,
see Chetyrkin, Kniehl, and Steinhauser (1997, 1998).

Exercises

3.1 Complete the calculation of the renormalization of QCD at one-loop order. The most
economical method is probably to calculate the gluon, quark and ghost self-energies
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in addition to the quark-gluon vertex.9 You will have thus verified for yourself the
asymptotic freedom of QCD.

3.2 Given the values of the renormalization-group coefficients, reconstruct formulae for
the MS renormalization factors for the coupling, and for the fields to at least two-
loop order. You may find the results useful if you ever do serious perturbative QCD
calculations.

(One method is to treat (3.41), etc., as differential equations determining renormal-
ization factors from the RG coefficients. Solve these order-by-order in powers of the
renormalized coupling. Then apply the boundary conditions that the Z factors and
g0/gμε go to unity at zero renormalized coupling.)

3.3 (**) There are competing definitions of the MS scheme. Show that these definitions
all agree in the values of renormalized Green functions at ε = 0, provided that Sε in
the different definitions agree to order ε.

3.4 Find the next term in the expansion (3.63) of the effective coupling. This will be
1/ ln3(μ2/�2) times a quadratic polynomial in ln ln(μ2/�2). To check your answer,
see (9.5) of Amsler et al. (2008), but beware of different conventions for defining the
βj coefficients.

9 The calculation of the three- and four-point gluon gluon functions is substantially more complicated, and should only
be attempted if you have much time and wish to verify the general theorems on the renormalizability of non-abelian
gauge theories. It is also possible to work with the ghost-gluon coupling, although this is a little more complicated,
because it has a derivative coupling.
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Infra-red safety and non-safety

In this chapter we examine the simplest measurable quantity that can be computed purely
perturbatively in QCD: the total cross section for e+e− annihilation at high energy Q to
hadrons. This is the paradigm of physical single-scale problems: when the renormalization
scale μ is of order Q, low-order perturbation theory in αs(Q) gives a valid estimate of the
cross section.

Since the calculation involves quark and gluon final states in a confining theory, we will
examine how to justify the use of perturbation theory with apparently incorrect states. There
are divergences in individual terms in the calculation. But, in the total cross section, the
divergences cancel after a sum over all terms of a given order of αs . This property is called
“infra-red (IR) safety”, and in this case is a version of the theorem of Kinoshita (1962) and
Lee and Nauenberg (1964) (KLN theorem).

More general situations need a systematic analysis of non-IR-safe situations, and are the
primary concern of the rest of this book.

4.1 e+e− total cross section

We consider the process e+e− → hadrons, to lowest order in electromagnetism.1 The
amplitude, Fig. 4.1, involves an s-channel exchange of a photon of momentum qμ, and an
incoming electron and positron of momenta l1 and l2, with the center-of-mass energy being
Q =

√
q2. The leptonic and hadronic parts of the cross section factorize, as in DIS:

σ = e4

2Q6
LμνW

μν, (4.1)

where (with neglect of the electron mass, and with unpolarized beams)

Lμν = l
μ
1 lν2 + l

μ
2 lν1 − gμνl1 · l2, (4.2)

and

Wμν(q) =
∫

d4x eiq·x 〈0 jμ(x) jν(0) 0〉 . (4.3)

1 There can be large IR-dominated higher-order electromagnetic corrections when the cross section is rapidly varying,
e.g., near a narrow resonance. The techniques for unfolding such radiative corrections are standard, and we will not
treat them here. A full treatment needs the addition to the amplitude of the Z exchange graph. This does not change
the principles, so the reader is referred elsewhere, e.g., Ellis, Stirling, and Webber (1996), for details.

69
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q
l1

l2

Fig. 4.1. Amplitude for e+e− −→ hadrons.

Conservation of jμ gives qμWμν = 0, so that we can decompose Wμν in terms of a
scalar structure function R(Q2) as

Wμν = (−gμνq2 + qμqν
) 1

6π
R(Q2)θ (q0). (4.4)

Hence the cross section is

σ = 4πα2

3Q2
R(Q2). (4.5)

The normalization coefficient in (4.4) is chosen so that R is the ratio of σ to the lowest-order
cross section e+e− −→ μ+μ−:

R = σ (e+e− −→ hadrons)

σ (e+e− −→ μ+μ−, LO, em)
. (4.6)

Some authors define the denominator to be the complete cross section for e+e− −→ μ+μ−;
the definition here is the PDG one.

A compilation of the data is shown in Fig. 4.2. At low energies, there are several large
peaks, resonances corresponding to mesons made of light quarks. After that, the cross
section generally decreases with energy, approximately as 1/Q2 as is generic for processes
involving a large virtuality like the photon in Fig. 4.1. The trends are easier to see in the
plot of R, whose basically constant value is interrupted at around 4 GeV and 10 GeV
by jumps that correspond to the thresholds for production of charm and bottom quarks,
preceded by sharp peaks for the bound states of these quarks with their antiquarks. Finally,
the addition of a graph with the exchange of a Z instead of a photon in Fig. 4.1 gives rise
to the prominent peak at Q = mZ � 91 GeV that interrupts the fall of the cross section.

4.1.1 Short-distance dominance in averaged cross section

When Q is large, the high virtuality of the photon in Fig. 4.1 suggests that it has a short
lifetime, of order 1/Q in its rest frame, and hence that the process occurs over a short scale
in time and distance. This makes it suitable for exploiting asymptotic freedom, so that a
first approximation is obtained from the lowest-order graph, Fig. 4.3, for e+e− → qq̄.

However, the two currents in (4.3) need not actually have a small space-time separation.
Consider a semi-classical approximation in which a quark and antiquark are assigned
trajectories after their creation at a particular time and position. Suppose that the quark-
antiquark force were such that they repeatedly bounce back to their creation position,
as in Fig. 4.4. Now the incoming electron and positron have almost definite momenta
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Fig. 4.2. (a) Total cross section and (b) R, for e+e− −→ hadrons. Reprinted from Amsler
et al. (2008), with permission from Elsevier. The dashed line is the lowest-order “parton-
model” prediction, and the solid line is the 3-loop pQCD prediction from equations (1)–(3)
of Chetyrkin, Harlander, and Kuhn (2000).

(in a normal experiment), so that their states can be represented by long wave packets,
Fig. 4.5. Therefore their collision and the production of quark-antiquark pairs occurs over
an extended time.

Now a pair produced late in the collision is in the same spatial position as a pair that
is produced early but that has bounced back, and we get interference when we add the
quantum-mechanical amplitudes for pair production at different times. At certain energies
the phases of the interfering terms could all be the same, giving constructive interference,
and a resonance peak. Off-resonance, the phases vary, giving destructive interference. Thus
we can get sharp resonances, as seen at certain energies in the data in Fig. 4.2. These
correspond to interference between quark-antiquark pairs produced at very different values
of space-time positions.

For example, the sharp J/ψ and ϒ peaks occur just below the thresholds for the
production of c and b quark pairs, respectively; there, the heavy quarks are slowly moving
and are easy to bring back to the production point. However, resonances are not present
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q
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z

Fig. 4.3. Lowest-order diagram for
e+e− → qq̄ (or e+e− → μ+μ−).

Fig. 4.4. Space-time evolution of semi-classical
trajectory of a qq̄ pair created at the origin, if the
quark-antiquark force caused them to bounce back.

Fig. 4.5. Representation of wave packets for incoming electron and positron.

much above the heavy-quark thresholds, so that we deduce from the data that fast-moving
quarks and antiquarks do not bounce back.

Unfortunately, the relevant long-distance phenomena in QCD are non-perturbative, and
not readily susceptible to a first-principles analysis. So we ask what properties of the cross
section are predicted purely perturbatively without any need to understand long-distance
phenomena. A solution (Poggio, Quinn, and Weinberg, 1976) is to use a local average of
the cross section in energy.

To understand this idea, we investigate the relation between the space-time structure
of the scattering and the momentum spread in a physical initial state. This exemplifies a
general issue that intuition and understanding can be obtained by studying the evolution
of states in coordinate space, even though actual calculations are typically performed in
momentum space.

Now a physical incoming e+e− state cannot be exactly a state with particles of defi-
nite momenta. We must use a superposition of momentum eigenstates corresponding to
coordinate-space wave packets, as in Fig. 4.5:

|ψ〉 =
∑

l ′1,l
′
2,λ1,λ2

∣∣l ′1, λ1, l ′2, λ2; in
〉

ψ1(l ′1, λ1) ψ2(l ′2, λ2). (4.7)

Here l′1 and l′2 are the momenta of the incoming electron and positron, and λ1 and λ2

label their spin states. The momentum-space wave functions ψ1(l ′1, λ1) and ψ2(l ′2, λ2)
are narrowly peaked around central values of momentum l1 and l2. We let q = l1 + l2
be the corresponding central value of total momentum. The notation

∑
l ′1,l
′
2

is the usual
Lorentz-invariant integral over a particle’s momentum, (A.15).

As in (4.1) and (4.3), we treat electroweak interactions perturbatively. The initial state
|ψ〉 evolves to a slightly depleted version of |ψ〉 plus a hadronic component |φ〉, plus
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1/Δ

Fig. 4.6. A component of the wave function φμ for the state in (4.9), as a function of a
component of position x in the overall center-of-mass.

components with scattered leptons:

|final state〉 = |φ〉 + |ψ〉 (1− . . .)+ |leptonic part〉 . (4.8)

In the graph Fig. 4.1, the hadronic factor is a vacuum-to-X matrix element of the electro-
magnetic current, 〈X, out|jμ(x)|0〉, for a general hadronic out-state X.

Hence the hadronic final state |φ〉 is jμ(x) |0〉 integrated with an x-dependent factor to
be computed from the Feynman rules for Fig. 4.1, and the wave packet state (4.7). Now the
creation of the hadronic final state occurs in the space-time region where the beams collide.
So at later times, the QCD part |φ〉 of the state in e+e− → hadrons is a time-independent
Heisenberg state. We write this as

|φ〉 def=
∫

d4x jμ(x) |0〉 e−iq·xφμ(x), (4.9)

where we have extracted a factor e−iq·x , anticipating that it is the dominant oscillatory
factor in the coefficient, with q being the central value of the total momentum. Lowest-
order electromagnetic perturbation theory gives

φμ(x) =
∑

l ′1,l
′
2,λ1,λ2

−ie2v̄l ′2λ2
γμul ′1λ1

(l′1 + l′2)2 + i0
ψ1(l ′1, λ1) ψ2(l ′2, λ2) ei(q−l′1−l′2)·x. (4.10)

Here the e−i(l′1+l′2)·x factor arises from Fourier-transforming the leptonic part of the Feynman
graph, and the eiq·x factor compensates the corresponding factor in (4.9).

The beams have approximately definite momenta, centered at l1 + l2 = q, so the oscilla-
tory factor mostly cancels. Let the states be localized to within � in momentum. Then each
component φμ is a smooth function with little oscillation, as in Fig. 4.6. Correspondingly
the position x in (4.9) is localized to about 1/�.

Once the hadronic state |φ〉 has been created by the current and the current is no longer
acting because the coefficients φμ(x) have become zero, the state cannot be destroyed, to
lowest order in electroweak interactions. Thus the probability of the transition e+e− →
hadrons is just 〈φ φ〉. This is genuinely a scattering probability, not a cross section. The
concept of a cross section arises when one observes that experiments are done with beams
of particles which are distributed over an area that is large compared with the scattering
region. The relative transverse separation of the beam particles has a broad distribution.
The cross section is obtained by displacing one beam transversely with respect to the other,
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and then integrating over the displacement bT. Let the hadronic state with a displaced beam
be |φ

bT
〉, with wave function φμ(x; bT). The cross section is

σ =
∫

d2bT 〈φbT
|φ

bT
〉 =

∫
d4x eiq·x 〈0 jμ(x) jν(0) 0〉 t̃μν(x), (4.11)

where

t̃μν(x) =
∫

d2bT

∫
d4w φμ

(
w + 1

2
x; bT

)∗
φν

(
w − 1

2
x; bT

)
, (4.12)

which is localized in x to within 1/�. After a Fourier transformation

t̃μν(x) =
∫

d4k

(2π )4
tμν(k)ei(k−q)·x, (4.13)

we find that the cross section is a weighted average in momentum space:

σ =
∫

d4k

(2π )4
tμν(k)Wμν(k) = 1

6π

∫ ∞
0

dM2 R(M2) f (M2), (4.14)

where

f (M2) = −
∫

d4k

(2π )4
tμμ (k)θ (k0)δ(k2 −M2). (4.15)

We now see one result of the wave-packet construction: that a local average of R(Q) over a
range of Q of width � corresponds to a localization of the positions of the current operators
to x ∼ 1/�. Of course, real particle beams are very narrow in momenta. But a broader
averaging applied to the measured cross section gives a quantity with better localization in
position and therefore with better perturbative calculability.

The standard momentum-space analysis gives the cross section in terms of R, from
which we deduce the correct normalization of the averaging function f without needing
the detailed wave-packet analysis:∫ ∞

0
dM2 f (M2) = 8π2α2

Q2
, (4.16)

up to terms that vanish when �/Q→ 0.
It is convenient to consider as a standardized quantity, one particular normalized local

average of R:

R̄(Q2,�2)
def=
∫

ds F (s −Q2,�2) R(s). (4.17)

Here F (s −Q2,�2) is one particular averaging function, of unit integral, centered at
s = Q2, and of width �2. I choose

F (s −Q2,�2) = �2

π
[
(s −Q2)2 +�4

] . (4.18)

We assume � is somewhat less than Q2, but not enormously so. If R is smooth in a region
of Q, as is the case experimentally for most large values of Q, then the local average R̄ is
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almost equal to R; the averaging does nothing. But where R has sharp features, e.g., near
the thresholds for c and b quark production, the average smooths out the sharp peaks and
the thresholds.

4.1.2 When is perturbation theory good?

To put the concept of perturbative calculability in a general context, current ideas can be
summarized in the following assertion:

Consider a situation where all vertices in a perturbative calculation are dominantly separated
by small distances, of order 1/M , and that we set μ ∼ M . Then QCD perturbation theory in
powers of the weak coupling αs(M) provides a good approximation.

That is, short-distance-dominated quantities are perturbatively computable. The integration
over the positions of vertices is, of course, unrestricted. What matters for the above assertion
is whether the vertices are dominantly close to some external vertices determined by the
problem.

A similar assertion could be made about momentum-space Green functions, where the
premise would be about the lines of the graph being dominated by high virtualities, of order
M2. However, this assertion is not so general. This can be seen from the matrix element
(4.3) defining Wμν . The currents have fixed ordering and perturbation theory gives final
states with on-shell quarks and gluons, so that not all propagators are far off-shell, even
when the positions of the current operators are arbitrarily close, a situation that is different
for the time-ordered product of operators.

4.2 Explicit calculations

Since the locally averaged quantity R̄ is short-distance-dominated, we can use perturbation
theory to predict it reliably. Therefore, to the extent we are away from resonances, we
predict the unaveraged R(Q2), in both cases at large Q. The electromagnetic current has
zero anomalous dimension within pure QCD.2 So we change the renormalization scale μ

to be of order Q, without changing R, and then expand in powers of the small coupling.
We also approximate light-quark masses by zero. Thus:

R(Q2, μ, g(μ),m(μ)) = R(Q2, cQ, g(cQ),m(cQ))

� R(Q2, cQ, g(cQ), 0)

=
∑
n≥0

αs(cQ)nR[n](c). (4.19)

If we truncate the series at order N , then the error is of order αN+1
s , so that we have

an effective method of calculation given that αs(cQ) is small. From Sec. 3.4, we expect
(in the MS scheme) optimal applicability of perturbation theory when μ2 is of order a

2 This is not true beyond QCD (Collins, Manohar, and Wise, 2006), contrary to many statements in the literature.
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Fig. 4.7. Lowest-order graph for amplitude used in R.

typical internal virtuality. This could be governed by the width of the smoothing function,
so in (4.19) μ is a constant c times Q, and a good value could be c = 1

2 or 1
4 . RG

invariance implies that the value of c is irrelevant in an exact calculation, while in a truncated
perturbation calculation the effect of a modest change in c is of order the expected truncation
error.

In the remainder of this section, we perform the perturbative calculation of R to
order αs .

4.2.1 Lowest order

The single graph for the lowest-order calculation, Fig. 4.7, is the same as for μ+μ−

production, with the replacement of a muon line by a quark line. So with the neglect of
quark particle masses, the lowest-order value of R is

R[0] = 3
∑
f

e2
f . (4.20)

The factor 3 is for the sum over quark colors, and the sum is over the accessible flavors of
quark, which depends on the value of Q relative to the quark masses.

Some complications now occur because of the non-negligible masses of the c, b and t

quarks. Any quark that is not accessible kinematically, i.e., for which mf > Q/2, should
certainly be dropped from the sum. The remaining quarks we term “accessible”. Provided
that Q is much larger than the other quark masses, these masses may be neglected, as in
the calculation giving (4.20).

The remaining case is when Q is comparable to 2mf for one of the quarks. As regards
perturbation theory, there is a threshold at Q = 2mf for production of quark f . Since
there are sharp resonances just below threshold (Fig. 4.2) we should apply the averaging
procedure in Q before using the elementary perturbative prediction.

Hence we deduce that it is a good first approximation to restrict the sum in (4.20) to
those quarks with 2mf < Q, and to otherwise ignore the effects of quark masses. The
known quark charges and masses then give a first prediction of R:

R[0] =

⎧⎪⎪⎨
⎪⎪⎩

2 if Q � 3 GeV,

3 1
3 if 3 GeV � Q � 10 GeV,

3 2
3 if 10 GeV � Q.

(4.21)

Once Z exchange effects become important, this prediction needs changing, so we do not
include a possible last line, to include the t quark. For the inclusion of masses at lowest
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Fig. 4.8. NLO graphs for amplitudes for R.
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Fig. 4.9. Momentum configuration for 3-body final state.

order, see problem 4.2. For masses and the effects of Z at higher order, see Chetyrkin,
Harlander, and Kuhn (2000).

4.2.2 Next-to-leading order: real gluon

The next-to-leading order (NLO) terms arise from the graphs of Fig. 4.8. One contribution
is from the real-gluon emission graphs, (a) and (b), with a qq̄g final state:∫

dfsps |(a)+ (b)|2 , (4.22)

with dfsps given by (A.17). The other contribution is from the virtual corrections, (c) and
(d), with a qq̄ final state.

All of the terms individually have divergences which we regulate by using a space-time
dimension 4− 2ε.

Provided that the integrand involves only Lorentz scalars, the (5− 4ε)-dimensional
integral for real-gluon emission can be simplified to a two-dimensional integral, so that
angular averages can be performed to give (A.44). So we calculate the trace of Wμν :

W
def= −gμνWμν = (3− 2ε)

Q2

6π
R(Q2). (4.23)

In the overall center-of-mass, the 3-momenta of the final state form a triangle – Fig. 4.9,
whose perimeter is

∑
i |ki | = Q, from energy conservation. The integration variables in

(A.44) are the relative deficits of the spatial momenta relative to their maximum Q/2:

yi = 1− 2|ki |
Q

. (4.24)

The integral is over positive values subject to
∑

i yi = 1. We have

(k1 + k2)2 = y3Q
2, (k2 + k3)2 = y1Q

2, (k3 + k1)2 = y2Q
2. (4.25)
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It is also convenient to factor out the lowest-order calculation in 4− 2ε dimensions,
derived from (A.43) for the 2-body phase space:

W [0] = R0
Q−2ε

24−4επ1/2−ε�( 3
2 − ε)

(−gμν) Tr γ μ/k1γ
ν/k2

= R0
Q2−2ε(1− ε)

22−4επ1/2−ε�( 3
2 − ε)

. (4.26)

After a standard application of Feynman rules, etc., we find that the contribution of
graphs (a) and (b) to W is

W [1](qq̄g) = W [0] αsCF

4π�(1− ε)

(
Q2

4πμ2

)−ε ∫ 1

0
dy1

∫ 1−y1

0
dy2 (y1y2y3)−ε

× 4(y3 + y1y2ε)+ 2(1− ε)(y2
1 + y2

2 )

y1y2
. (4.27)

The sum over flavors and a factor e2
f are the same as in lowest order, and are in the factor

W [0]. Thus, the order-αs correction factor is the same for all flavors of massless quark.
The integrand is singular when y1 and/or y2 is zero, and gives a divergence in the

integral for space-time dimension 4 or less, i.e., when ε > 0. In Ch. 5, we will analyze the
physics of these and other divergences more generally. But for calculational purposes, it
suffices that the divergence can be regulated and hence quantified by using a space-time
dimension above 4, i.e., ε < 0. In the ultimate result, for R, we will find a cancellation
against divergences from the virtual-gluon graphs. The configuration of momenta at the
singularities is easily deduced from the geometry of Fig. 4.9:

y1 = 0 gluon parallel to k2,
y2 = 0 gluon parallel to k1,

y1 = y2 = 0 gluon of zero momentum.
(4.28)

In Ch. 5, we will analyze such singularities. The first two give “collinear divergences”, where
two final-state massless particles are parallel, and the last one gives a “soft divergence”,
where the gluon has zero momentum.

The integral is readily computed in terms of � functions. Its expansion in powers of ε

exhibits the divergence quantitatively:

W [1](qq̄g) = W [0] αsCF

π

(
Q2

4πμ2

)−ε
�(−ε)2

�(2− 3ε)

[
1− ε(3− 5ε)

2− 3ε

]

= W [0] αsCF

4π

(
4πe−γE

)ε [ 4

ε2
+ 1

ε

(
−4 ln

Q2

μ2
+ 6

)
+ 2 ln2 Q2

μ2

− 6 ln
Q2

μ2
+ 19− 7π2

3
+O(ε)

]
. (4.29)

That we obtain a relatively simple analytic result is associated with the masslessness of the
quarks and gluons in the calculation.
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4.2.3 Next-to-leading order: virtual gluon

For the virtual-gluon corrections, from Fig. 4.8(c) and (d), it is convenient to compute the
matrix elements from Green functions with bare fields, rather than using the full counterterm
structure of (3.13)–(3.15). One reason is that the electromagnetic current is simplest in
terms of bare fields: j

μ
em =

∑
f ef ψ̄f,0γ

μψf,0. Another is that the implementation of LSZ
reduction for massless theories is trivial.

The LSZ reduction formula tells us that to get an on-shell matrix element, we amputate
complete external propagators and replace each by the square root of the residue of the
particle pole. Let z2 = 1+ g2z

[1]
2 + . . . be the residue of the pole in the propagator of a

bare quark field. The one-loop term is

g2z
[1]
2 = lim

p2−→0

i /p

p2

g2CF (2πμ)2ε

16π4

∫
d4−2εk

−γ ν/kγν

(k2 + i0) [(p − k)2 + i0]

= coefficient× lim
p2−→0

(−p2)−ε

= 0. (4.30)

Since dimensional regularization is used here to regulate infra-red-related divergences, we
take ε negative, which gives the zero result in the last line. No UV counterterm is applied,
since we work with bare fields.

The result (4.30) generalizes to all orders: an N -loop calculation gives a factor of
g2Nμ2Nε , and hence dimensional analysis shows that the power of p2 is (−p2)−Nε . Thus
to all orders in perturbation theory the residue of the pole in the bare propagator is exactly
z2 = 1.

The only non-zero one-loop virtual contribution to R is therefore from the vertex graph
(d). To get its contribution at order αs to W , we multiply the graph by the complex conjugated
LO graphs, then we add the complex conjugate, we take the trace of Wμν with −gμν and
perform the angular integral in 3− 2ε spatial dimensions. This gives

W [1](qq̄) = W [0]� ig2CF (2πμ)2ε

32π4Q2(1− ε)

∫
d4−2εk

Tr /k1γ
κ (/k1 − /k)γμ(/k2 + /k)γκ/k2γ

μ

(k2 + i0) [(k1 − k)2 + i0] [(k2 + k)2 + i0]
.

(4.31)

There is an extra factor of 4Q2(1− ε) in the denominator of the prefactor because of the
normalization to W [0]. Standard manipulations give

W [1](qq̄) = W [0]�αsCF

4π

(−Q2 − i0

4πμ2

)−ε
�(1+ ε)�(1− ε)2

ε2�(1− 2ε)

[ −4

1− 2ε
+ 2ε

]

= W [0] αsCF

4π

(
4πe−γE

)ε [− 4

ε2
+ 1

ε

(
4 ln

Q2

μ2
− 6

)
− 2 ln2 Q2

μ2

+ 6 ln
Q2

μ2
− 16+ 7π2

3
+O(ε)

]
. (4.32)
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4.2.4 Leading and next-to-leading order: total

In the total for R[1], the divergences cancel, and at ε = 0 we find

R = R[0]

[
1+ 3αs(μ)

4π
CF +O(α2

s )

]
= R[0]

[
1+ αs(μ)

π
+O(α2

s )

]
, (4.33)

with the physical value of CF . Notice that both logarithms of Q/μ have canceled. This
follows from the RG invariance of R, which implies that a logarithm of Q/μ first appears
in the coefficient of α2

s (problem 4.5). We have left the renormalization scale μ arbitrary,
but, as explained earlier, a value for μ of order Q should be used to ensure that higher-order
calculations do not get large logarithms. Thus O(α2

s ) correctly represents the expected size
of the error due to omission of higher-order perturbation theory.

This result is both reassuring and disturbing. It is reassuring that the divergences cancel
in a quantity that was supposed to have a valid perturbation expansion. But it is also
disturbing: the intermediate steps involve totally unphysical states. In another arena, QED,
there are somewhat similar IR divergences because of the masslessness of the photon; but
at least electrons and photons are actual identifiable particles. See Sec. 4.3 for a detailed
analysis.

The calculation evidently makes important predictions. Among these is that measuring
the ratio R gives an estimate of the sum of the squared charges of the accessible quarks.
When first obtained, this was a rather dramatic result, and the data (Fig. 4.2) confirm the
charge assignments of the quarks. Deviations from this value can be used to measure the
strong coupling and to test its evolution with scale.

4.2.5 Full result, and phenomenological implications

The currently most accurate calculations may be traced from Chetyrkin, Harlander, and
Kuhn (2000), where the calculation is extended at order α3

s to include quartic mass correc-
tions (i.e., of order m4/Q4). With massless quarks the current results are

R

R[0]
= 1+ αs

π
+
(αs

π

)2
[

365

24
− 11 ζ3 + nf

(
−11

12
+ 2

3
ζ3

)]

+
(αs

π

)3
[

87 029

288
− 121

8
ζ2 − 1103

4
ζ3 + 275

6
ζ5

+ nf

(
−7847

216
+ 11

6
ζ2 + 262

9
ζ3 − 25

9
ζ5

)
+ n2

f

(
151

162
− 1

18
ζ2 − 19

27
ζ3

)]

+O
(αs

π

)4

≈ 1+ αs

π
+
(αs

π

)2 (
1.985 71− 0.115 295nf

)
+
(αs

π

)3 (−6.636 94− 1.200 13nf − 0.005 178 36n2
f

)+O
(αs

π

)4
. (4.34)
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Fig. 4.10. (a) Matrix element of qq̄qq̄ fields used to obtain two-pion production. (b) An
example of a perturbative graph for the matrix element.

Here, the MS unit of mass was set to μ = Q, so that αs = αs(Q). The logarithmic depen-
dence on Q/μ can be restored with the aid of the renormalization group (problem 4.5).

4.3 Evolution of state

Individual terms in the perturbative calculation of R involve quarks and gluons rather than
the hadrons that actually appear in the final state. To understand better why we nevertheless
obtain a valid prediction of QCD, we examine the evolution of the hadronic final state,
between the jμ(x) and jν(0) operators in (4.11). The arguments in this section are not
intended to be precise and rigorous.

Although the hadronic Heisenberg-picture state, |φ〉, is time independent, its interpre-
tation in terms of localized particle content does evolve. It can be analyzed by matrix
elements of products of field operators between |φ〉 and the vacuum. For example, consider
[Fig. 4.10(a)] 〈

0 T ū(w1)d(w2)d̄(w3)u(w4) φ
〉
, (4.35)

where the fields annihilate ū, d , d̄ , and u quarks respectively. Fourier transformation gives
a function of momenta p1, p2, p3, p4. Poles in this function correspond to particles in the
asymptotic out-states. For example, a state with a π− and a π+ gives a pole in the exact
matrix element at (p1 + p2)2 = m2

π and at (p3 + p4)2 = m2
π . The poles are related to the

coordinate-space asymptotics when the times of all the four fields are taken to +∞; in the
π−π+ example, the spatial components of w1 and w2 are close together and in the direction
of the π−, and similarly for w3 and w4 and the π+.

In finite-order perturbation theory, we have diagrams like Fig. 4.10(b). This has no poles
for pions, but only for quarks and gluons, for example at p2

1 = p2
4 = m2

u and p2
2 = p2

3 = m2
d .

Such poles give a large-time behavior for the individual graph that corresponds to a state
that does not exist in a theory with color confinement; fixed-order perturbation theory gives
an entirely incorrect approximation to asymptotic large-time Green functions and matrix
elements. However, if the times are not too large, perturbation theory should approximate
the true results. Thus the poles in fixed-order graphs imply that we do have, but only
approximately, the propagation of the corresponding quarks and gluons.

Returning to the lowest-order graph for R, Fig. 4.7, we deduce in a rough fashion that
at the earliest times we have predominantly an outward-moving q and q̄, as at the lower
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Fig. 4.11. Three semi-classical scenarios for evolution of qq̄ system: (a) approximately
free, (b) string, (c) spring. In case (b), extra qq̄ pairs are produced in the middle.

end of Fig. 4.4. We can reasonably assign them a virtuality of some size M2 that is much
less than Q2. The Lorentz boost to energy Q/2 implies that the lifetime of the qq̄ state
is of order Q/M2. Perturbative corrections, like those in Fig. 4.8 or Fig. 4.10(b), alter the
state, for example by changing the probability of the qq̄ state and by adding a component
with a gluon. At late times, QCD perturbation theory is entirely inapplicable, in the domain
where, in the real world, the system non-perturbatively hadronizes into a set of isolated
color-singlet hadrons.

4.3.1 String model for hadronization

If we ignored any knowledge of the real world we could imagine at least three scenarios
for the time development, as illustrated in Fig. 4.11:

• The quarks and gluons continue basically unhindered into the observed final state, as in
QED, where there is no confinement. Let us call this the “unconfined” or “free-quark-
and-gluon” picture.

• In the gluon field between the quark and antiquark, extra qq̄ pairs are made. We call
this the “breakable string” picture. The qq̄ pairs combine into color-singlet hadrons,
mostly pions. Nothing returns to the production point, and the general momentum flow
corresponds to the system at short times, which is little deflected. But the space between
the ends of the kinematic range is filled in with particles, and the detected particles are
hadrons, not quarks and gluons.

• A confining potential exists, which brings the quarks and gluons back. We can call this
the “unbreakable elastic spring” picture. The final states form a sequence of bound states.
After multiple bounces, it may be that the states decay, perhaps in the style of the string
picture, but the directions of the decay products need not be very correlated with the
initial qq̄ direction.

Purely perturbative calculations in QCD cannot decide between these scenarios. But we
can appeal to experiment, semi-classical intuition, modeling, and lattice gauge theory
calculations, at least. The unconfined scenario is ruled out experimentally. The increase in
αs in the infra-red is a precondition for a rising potential. But the bound states or resonances
in the spring picture do not appear to be relevant except close to quark thresholds, where
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there is little energy for producing extra particles, and where the initial q and q̄ are moving
slowly.

It is the string picture that seems to be approximately correct. Embodied quantitatively
in the semi-classical Lund string model (Andersson, 1998), it rather successfully describes
the hadronization of quarks and gluons. In this model, when the qq̄ separation is large
enough, the gluon field collapses to a flux tube (“string”) with a fixed cross-sectional area,
and with a constant energy per unit length. Without qq̄ production, this would correspond
to a linearly rising potential, which has significant phenomenological support from quark
models of hadrons, etc.

The Lund model postulates that creation of light qq̄ pairs occurs in the string with a
constant rate per unit length and unit time; this is the only Lorentz-invariant possibility. In a
strong coupling, strong field situation such as we have here, the string therefore breaks, we
have inelastic scattering, and the description in terms of a genuine potential breaks down.

A more detailed investigation shows that the string breaking and the hadronization occur
along a hyperbolic region t2 − z2 ∼ 1/�2. The fastest particles, with energies of order Q,
are generated at the ends of the string in a time of order Q/�2, while the slowest particles
are generated in the middle in a time of order 1/�.

The Lund model is plausible and natural as a first approximation to real QCD dynamics
in situations such as e+e− annihilation at high energies. For each outgoing parton, the
model leads to the production of a jet of hadrons with approximately the 4-momentum of
the parton. This can be seen in event pictures like Fig. 2.3 for a similar situation in DIS.

The validity of the string model depends on specific dynamical properties of real
QCD, with its light u and d quarks. In contrast, there is the solvable model of
’t Hooft (1974), pedagogically reviewed in Manohar (1998). This model is QCD but
in 1+ 1 space-time dimensions with a gauge group U(N ) taken in the limit N →∞.
This model provides an example of the “elastic spring” scenario;3 the large N limit
suppresses the qq̄ production that causes string breaking in the Lund model. In the
’t Hooft model, the final states in e+e− → hadrons form an infinite sequence of meson
bound states with no continuum, whereas a simple perturbative calculation gives a con-
tinuum. It is a local average of the true cross section that agrees with the perturbative
calculation, as we saw earlier. Explicit calculations support the general result, as was par-
ticularly clearly shown by Einhorn (1976), where the result was also extended to other
cases, like DIS.

4.3.2 Analysis in terms of final states

We decompose the averaged cross section (4.11) in terms of a basis for the hadronic final
states:

σ =
∑
X

∫
d4x eiq·x 〈0 jμ(x) X〉 〈X jν(0) 0〉 t̃μν(x), (4.36)

3 The ’t Hooft model is normally said to give an example of a string model. But I use the name “elastic spring” to
emphasize its unbreakability, to contrast with the fragility of the string in real QCD.
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and analyze the states in three bases:

• a momentum basis for the true out-states (involving hadrons);
• a spatially localized basis obtained using quark and gluon fields not too long after the

creation of |φ〉;
• a momentum basis for quark and gluon out-states, as seen in dimensionally regularized

weak coupling perturbation theory. Here we must go to a space-time dimension above
4, i.e., to ε < 0, so that the IR behavior is mild enough that the ordinary S-matrix
exists.

The first basis gives the true distribution of observed final-state particles, but its use in
calculations requires an unavailable non-perturbative solution of QCD. The second basis
is most fundamentally suited to perturbative calculations, by working only with objects
involving short distances. It completely justifies short-distance dominance for averaged
cross section, but there is no known formulation explicit enough for actual calculations.
The third basis, involving a momentum-space decomposition, is the easiest calculationally,
but it involves a basis constructed from the t →∞ behavior of Green functions when a
regulator is applied.

The low-order calculation of the individual terms in the ratio R in the third basis is only
appropriate when the coupling is small enough that higher-order terms are not larger than
lower-order terms. Given the double poles in ε that occur per loop, this implies that we
should only apply the calculation when αs � ε2 (with ε negative). When the IR regulator
is removed, the range of validity of the calculation shrinks to zero. So the cancellation of
divergences in R is not sufficient by itself to justify the use of the result for R at non-zero
αs(Q).

But the result for R is independent of the basis for the completeness sum
∑

X |X〉 〈X|,
so we can use the short-distance quark-gluon basis to justify the validity of perturbation
theory for R for non-zero αs(Q).

4.4 Dispersion relation and effective virtuality of
final-state quarks and gluons

A perturbative calculation of R(Q) involves cut graphs with an on-shell final state. In
this section, I show that after a local average in Q, R(Q) is given by an integral over an
uncut graph, in which the final-state quarks and gluons are effectively off-shell by order
Q2. The derivation provides general principles that we will frequently generalize to other
situations.

We consider a Green function �μν that is defined like Wμν , but with time-ordered
current operators. It has an associated scalar function �(q2):

�μν(q) = (−gμνq2 + qμqν
)
�(Q2) = i

∫
d4x eiq·x 〈0 T jμ(x) jν(0) 0〉 . (4.37)

Note the factor i in the last part. Diagrammatically, �μν and Wμν are notated in Fig. 4.12 .
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Fig. 4.12. (a) Uncut and (b) cut diagrams for the hadronic part of the photon self-energy,
i.e., for �μν and Wμν .

q
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physical region

Fig. 4.13. Analyticity in Q2 for �(Q2). Fig. 4.14. Contour to relate R̄ to �. The
off-real-axis singularities are those in the
averaging function F (s −Q2, �2). The
dots represent the singularities of F .

Now, �(Q2) is an analytic function of Q2 with a cut and singularities along the positive
real axis, as in Fig. 4.13. When Q2 is below the threshold for physical final states, � is
real, in particular for space-like qμ. When Q2 is above threshold, the physical region is on
the upper side of the cut. Moreover, the cut amplitude is twice the imaginary part, as is
provable from a dispersion relation. Hence

R(Q2) = 2�(Q2 + i0)

i
= �(Q2 + i0)−�(Q2 − i0)

i
. (4.38)

Hence we can relate the averaged R to the uncut amplitude �:

R̄(Q2,�2) = 6π

i

∫
�

ds F (s −Q2,�2) �(s) [general F ]

= 6π

i

[
�(Q2 + i�2)−�(Q2 − i�2)

]
[standard F ]. (4.39)

In the first line, the contour � loops around the positive real axis inside of the singularities
of the averaging function F , as in Fig. 4.14. In the second line, F is chosen to have the
standard form in (4.18) and the contour is closed on the two poles of F .

Thus we have expressed R̄ in terms of � evaluated at non-physical values of the
momentum. If the averaging range � is large, then the momentum is correspondingly far
from the physical region. The Landau analysis of the singularities of Feynman graphs
(Ch. 5) shows that the contour for the loop-momentum integrals in � can then be chosen
to avoid the poles of the internal propagators. If � is of order Q, the internal lines have
(typically complex) virtualities of order Q2.
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Therefore in the calculation of R̄, we can treat the internal quark and gluon lines as far
off-shell, thereby justifying its perturbative treatment in an asymptotically free theory.

4.5 Generalizations

One simple generalization of the work in this chapter is to allow for Z exchange as well
as photon exchange. This is needed for fits to the high-energy parts of the data in Fig. 4.2.
Another generalization (Baikov, Chetyrkin, and Kuhn, 2008) is to the hadronic part of the
decay rate of the τ lepton, where the initiating boson is the W .

For these cases, the same principles apply as to the case we treated: There is a cancellation
of IR-sensitive regions, leaving a quantity for which perturbation theory is applicable. Such
quantities we call “IR-safe”.

To analyze more general situations, we use the Libby-Sterman argument to be explained
in Ch. 5; this determines both the nature and power-counting of the IR-sensitive regions.
The most interesting cases are where the cancellations of divergences fail to occur. For
many of these, we will be able to derive factorization theorems, where only part of an
amplitude or cross section is IR-safe.

One outcome will be a discussion of IR-safe jet cross sections in Sec. 12.13.4.

Exercises

4.1 Compute the contribution of a scalar quark to R, to lowest order. What is the angular
distribution of the qq̄ final state in both the spin-0 and spin- 1

2 cases?

4.2 Compute the value of R[0] with quark masses taken into account. You should get

R[0] =
∑

i: mi<Q/2

3e2
i

(
1− 2m2

i

Q2

)√
1− 4m2

i

Q2
. (4.40)

4.3 (**) Compute the order αs correction to R for scalar quarks.

4.4 (*) I wrote that near a resonance in e+e− annihilation, the outgoing state is obtained
by quantum-mechanical interference involving sources at a large range of time scales.
Despite a large value of Q, the separation x of the currents in (4.3) is not small, of order
1/Q. Verify these statements explicitly. You could use the following approximation to
the cross section near the resonance of mass M and width �:

C

(Q2 −M2)2 + �2M2
. (4.41)

4.5 (*) Using the RG β function for the effective coupling, find the Q/μ dependence of
the coefficients in the formula for R, equation (4.34).
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Libby-Sterman analysis and power-counting

Central assertions in setting up the parton model for DIS (Sec. 2.4) were that hard scattering
occurs off a single parton constituent of the target, and that the hard scattering is just the Born
approximation for electron-quark scattering. In fact, both assertions fail if taken literally. So
in this chapter I show how to derive correct statements about the dominant configurations
in DIS and the many other cases of interest. I will interleave a general treatment with a
detailed discussion of specific examples.

Key insights were found by Sterman (1978) and Libby and Sterman (1978b), who
systematized a correspondence between divergences in massless perturbative calculations
and important configurations for high-energy processes. For any suitable process (like
DIS) with an energy scale Q much larger than relevant particle masses, the main results
are:

1. A one-to-one correspondence between mass divergences1 in massless perturbation the-
ory and non-UV regions in loop-momentum space that give the large Q asymptote.

2. That mass divergences are at surfaces where the integral over loop momenta cannot
be deformed away from singularities of propagators. These surfaces are called pinch-
singular surfaces (PSSs).

3. Simple and very general geometrical arguments in four-dimensional momentum space
to locate the PSSs for a massless theory. The PSSs are in the typically higher-dimension
space of all loop momenta.

4. Simple power-counting results for the strengths of the possible PSSs, and for the power
dependence on Q of the contribution of the region associated with each PSS.

5. From the derivation of the power-counting results it is made evident what approximations
are appropriate to each region, as needed to derive factorization theorems.

6. Hence error estimates are also obtained for the difference between an exact graph and
its approximation in any of the regions.

These results form the logical basis of most further work in perturbative QCD, and in
particular for the derivation of factorization theorems. The methods apply not only to QCD
but to a general QFT.

1 That is, divergences that appear when fields or particles are made massless, to be distinguished from ultra-violet (UV)
divergences, for example.
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pA

pB

q

Fig. 5.1. Green function for e+e− annihilation to a quark-antiquark pair.

Practical calculations in QCD, as in Sec. 4.2, involve the facile manipulation of mass
divergences, so that it is easy to attribute to the divergences an existence in the real world.
But this is definitively incorrect: some of the fields have a non-zero mass, so that many of
the mass divergences are not actually present. Moreover, even though QCD does have a
massless gluon field, color confinement cuts off the divergences and prevents there from
being asymptotic quark and gluon states in the exact theory.

The true relation between mass divergences and asymptotic behavior is that the PSSs for
the divergences form a skeleton for important regions of momentum space. We use PSSs
to label the regions, with the regions being neighborhoods of the PSSs.

As one gains experience with the methodology, the results gain a reality whose intuitive
justification goes far beyond the Feynman-graph domain to which the strict mathematical
justification is currently restricted. We have already explored some of these issues in
Sec. 4.3, and we will see more in the generalization of the parton model to full QCD. Many of
the issues have not been properly formalized. As a symptom, consider the Lund string model
(Andersson, 1998), summarized in Sec. 4.3.1. This model gives a useful account of the
hadronization of high-energy systems of quarks and gluons. To connect it to the fundamental
underlying QCD theory, one needs to formulate the quantum-mechanical evolution of states
locally in space-time in highly relativistic situations. A complete appropriate formalism
is not yet available. This problem is closely related to important foundational issues in
quantum mechanics and QFT.

5.1 High-energy asymptotics and mass singularities

5.1.1 Sudakov form factor, γ ∗ → qq̄

Many of the general principles can be discerned from a paradigmatic example, which is
termed the Sudakov form factor, from its discussion by Sudakov (1956). We use the Green
function for a quark field, an antiquark field, and a current (Fig. 5.1):

�μ def=
∫

d4x d4y eipA·x+ipB ·y 〈0 T ψ(x)ψ̄(y)jμ(0) 0
〉

= G
μ
irred × full external quark propagators.

(5.1)

Here jμ is the electromagnetic current, and ψ and ψ̄ are fields for some flavor of quark.

The photon momentum is q = pA + pB , with invariant size Q
def=
√

q2. Our aim is to
understand the asymptotics when Q gets large with p2

A and p2
B fixed, but not necessarily
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on-shell. Factoring out external propagators gives the definition of the irreducible amplitude
indicated in the last line. The off-shell amplitude appears in high-energy e+e− annihilation,
as a subgraph of the full amplitude for the process.

In fixed-order perturbation theory, taking pA and pB on-shell gives IR divergences
because the gluon is massless. Beyond perturbation theory, we expect color confinement in
QCD to force on-shell quark amplitudes to be zero, and to cut off the IR divergences. But
these issues are quite separate from the association we wish to make between properties of
the large Q limit and divergences in a completely massless theory.

In setting up methods for factorization later in this book, a convenient model example is
the Sudakov form factor with on-shell quarks treated in an abelian gauge theory, normally
with a massive gluon (Ch. 10).

We work in the overall center-of-mass frame, oriented so that the external 4-momenta
in ordinary Cartesian coordinates are

pA = Q

2

(
1, 0, 0,

√
1− 4p2

A/Q2

)
, (5.2a)

pB = Q

2

(
1, 0, 0,−

√
1− 4p2

B/Q2

)
, (5.2b)

q = Q (1, 0) . (5.2c)

5.1.2 Scaling in units of Q

Consider a particular L-loop graph G for the 1PI factor Girred. Let k denote its loop
momenta, and let I denote the integrand, so that

G = g2L

∫
dnLk I (k, pA, pB ; m)+ UV counterterms. (5.3)

Imagine first that we were in a situation where all internal momenta have components
of order Q, and have virtuality of order Q2. After using the renormalization group to set
the renormalization scale to Q, we could use weak-coupling perturbation theory, and, to
the leading power in Q, we could neglect masses. Errors in the massless approximation,
from an expansion in powers of m/Q, p2

A/Q2, and p2
B/Q2, would be asymptotically much

less than corrections from higher orders in αs(Q).
Of course our initial supposition on the sizes of the internal momenta is in general false.

Nevertheless, the region of k that it covers forms a useful standard for treating the general
situation.

Relatively benign alternative regions are where some or all components of k are much
bigger than Q. Since the external momenta are much smaller than these large components,
this is the situation handled by renormalization. So let us add renormalization counterterms
and then apply an RG transformation to set the renormalization scale μ of order Q. As we
saw in Sec. 3.4, this procedure effectively cuts off the integration at around Q.

Therefore the interesting regions are where relevant components of momenta are of
size Q or smaller, and where some lines have small virtuality, i.e., their momenta l obey
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|l2| � Q2. For these lines, a lowest-order Taylor expansion in masses compared with
virtuality fails. Such regions form a small part of the whole of loop-momentum space, but
they can give large contributions to the integral, because of small propagator denominators.

To systematically locate relevant regions with low virtuality, we use an analysis with
momenta and masses scaled in units of Q. Thus we define

p̃A
def= pA

Q
→ 1

2 (1, 0, 0, 1) , (5.4a)

p̃B
def= pB

Q
→ 1

2 (1, 0, 0,−1) , (5.4b)

q̃
def= q

Q
= (1, 0) , (5.4c)

where the limits apply as Q→∞. The scaled external quark and antiquark momenta
become light-like, while q̃ is a fixed time-like vector. Similarly we have scaled loop

momenta, k̃
def= k/Q, and mass(es), m̃

def= m/Q→ 0.
Dimensional analysis applied to (5.3) gives

G = QD(G)g2L

∫
dnLk̃ I (k̃, p̃A, p̃B ; m̃)+ UV counterterms. (5.5)

Here D(G) is the dimension of the integral (in powers of energy), with the coupling
excluded. In a space-time dimension n = 4− 2ε, we have

D(G) = nL+ dim I = dim G− 2L dim g = −2Lε. (5.6)

Equations (5.4) and (5.5) show that the infinite Q limit at fixed mass is closely linked
to the zero-mass limit at fixed Q, in the scaled integral on the right-hand side of (5.5).
As observed earlier, if there were no singularities in the zero-mass limit, we could just
set p2

A = p2
B = m2 = 0 to obtain an elementary RG-controlled calculation of the large Q

behavior. Moreover, the Q dependence would just be QD(G). From (5.6), we see that because
of the dimensionless of a gauge theory coupling at the physical space-time dimension, the
power of Q is the same for all graphs, viz. zero.

5.1.3 Importance of pinch-singular surfaces in massless limit

We now need to locate the situations where the zero-mass limit fails. These situations arise
from regions where one or more lines have virtuality much less than Q2. But often the
contour of integration can be deformed away from such regions, and the above scaling
arguments work equally well on a deformed contour for k. So our concern is regions where
there is an obstacle to any possible deformation to where the lines have virtuality of order
Q2. In fact, as we now show, the only obstacles are those that give a pinch-singular surface
(PSS) in the massless limit.

Consider first some region of scaled loop momentum k̃ where certain propagator denom-
inators are not part of a pinch in the massless theory. Then in the scaled integral and on
some deformed contour, these denominators have a non-zero minimum size. In the original
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integral, before scaling, the same denominators have a minimum size proportional to Q2 in
the corresponding region of k. Then the simple massless limit applies for the contribution
to the large Q asymptote by these denominators.

Next we consider unscaled momenta in a neighborhood of a PSS of the massless theory.
Even with a massless PSS, the minimum virtuality of unscaled lines often stays finite as
Q gets large, even on a deformed contour. Typically, this virtuality would be of order a
mass-squared. But in some cases the minimum virtuality may grow with Q, but less rapidly
than Q2, for example, it might be of order Qm. Even so, in all these cases, the scaled
virtuality, i.e., relative to Q2, goes to zero as Q→∞. This corresponds to an exact pinch
in the massless theory: that is, with masses set to zero, the scaled momenta k̃ in (5.5) have
a minimum distance of zero from the lines participating in the PSS.

In the actual case, with non-zero masses and finite Q, the relevant momenta are forced
to go close to the PSS, the closeness in units of Q decreasing as Q increases. I summa-
rize this by saying that the PSSs of the massless theory form a skeleton for the impor-
tant non-UV regions of loop momentum space. This can happen even in a field theory
where all the fields have non-zero mass, so that the exact massive theory has no literal
PSS.

5.1.4 Location of pinch-singular surfaces: Landau criterion

Therefore we now have to find all possible PSSs in the massless limit and determine their
strengths. The general task of locating PSSs is made quite simple by the Landau criteria
(e.g., Eden et al., 1966) in the form particularly emphasized by Coleman and Norton (1965):
The PSSs (for the physical region, which is all that concerns us) are where the on-shell
propagators and momenta correspond to classically allowed scattering processes treated in
coordinate space.

Each point on a PSS (in loop momentum space) corresponds to a space-time diagram
obtained as follows. First we write a reduced graph by contracting to points all of the lines
whose denominators are not pinched. Then we assign space-time points to each vertex
of the reduced graph so that the pinched lines and their momenta correspond to classical
particles. That is, to each line we assign a particle propagating between the space-time
points corresponding to the vertices at its ends. The momentum of the particle is exactly
the on-shell momentum carried by the line, correctly oriented to have positive energy. If,
for some set of momenta, it is not possible to construct such a reduced graph, then we are
free to deform the contour of integration.

Although our argument to this point was presented in the context of the Sudakov form
factor, it is in fact a general argument and can be applied to many processes with a
large scale Q.

5.2 Reduced graphs and space-time propagation

The construction of the most general reduced graph becomes extremely simple in the zero-
mass limit, since at a PSS all pinched lines must carry either a light-like momentum or zero



92 Libby-Sterman analysis and power-counting

momentum. Moreover, each light-like momentum must be parallel to one of the light-like
external lines.

To understand this, we just need to obtain the simple rules for how massless on-shell
momenta combine at vertices of a reduced graph.

1. First, adding zero momentum to anything leaves the second momentum unaltered. So a
zero-momentum line can attach anywhere.

2. Two non-zero light-like momenta in the same direction are proportional to each other
and add to make another parallel light-like momentum, with a special case of giving
zero when they are equal and opposite. If we orient the momenta of the lines for a
particular light-like direction so that they all have positive energy, then as we follow
them forward, the momenta can split and recombine arbitrarily, but the total momentum
is fixed.

3. Adding two non-zero light-like momenta with different directions produces a non-light-
like momentum, necessarily off-shell in a massless theory. Either the non-light-like
momentum is external or it is on an internal line. An external non-light-like momentum
would be like the virtual photon in the form factor or in DIS. An internal line is off-
shell, so it is internal to a reduced vertex, i.e., it does not participate in the pinch under
discussion.

4. It is possible for a reduced vertex to correspond to a non-trivial wide-angle scattering
of massless particles. But for the classical scattering condition to hold, the other ends
of the light-like lines are a long way from the reduced vertex. So further rescattering of
the same particles is not possible. See the discussion of Fig. 5.3 below on p. 94 for an
example.

The results for massless PSSs can be presented in two forms: (a) the structure of the
reduced graphs, with a labeling of lines by momentum type, and (b) the locations of the
vertices of the corresponding classical processes in space-time; see the illustrative examples
in Sec. 5.3 below.

It is convenient to present the results with the aid of massless but unscaled momenta
corresponding to high-energy external lines. For example, in the case of Fig. 5.1, from the
limits in (5.4a), we define unscaled massless momenta by

pA,∞
def= Q

2
(1, 0, 0, 1) , (5.7a)

pB,∞
def= Q

2
(1, 0, 0,−1) . (5.7b)

5.3 Examples of general reduced graphs

5.3.1 Vertex graph

For the vertex graph of Fig. 5.1, a typical reduced graph and the corresponding space-time
diagram are shown in Fig. 5.2. In the reduced graph, there is a subgraph H which includes
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Fig. 5.2. Typical (a) reduced graph, and (b) space-time diagram, for a general PSS for the
vertex graph.

the vertex for the current jμ. This subgraph is intended to be a vertex of the reduced graph,
i.e., none of its lines participate in the pinch. Thus, in the space-time diagram all of the
lines and Feynman-graph vertices that compose H are contracted to a single point.

From H exit two sets of lines in what we call collinear subgraphs. One collinear
subgraph, A, has lines in the pA,∞ direction, and the other, subgraph B, has lines in the
pB,∞ direction. Finally the soft subgraph S, not necessarily connected, consists of lines of
zero momentum at the PSS, and it can connect to any of the other subgraphs. Notice that
we labeled the collinear graphs by the light-like momenta pA,∞ and pB,∞ rather than the
actual external momenta pA and pB , since we are discussing PSSs in the massless limit.

In the space-time picture the hard subgraph corresponds to a single point at the origin,
and the collinear subgraphs A and B correspond to propagation outward along light-like
directions. Within each collinear subgraph, there can be arbitrary splitting and recombina-
tion of the collinear momenta. Any number of lines can join the A and B subgraphs to the
H subgraph. Finally the S subgraph corresponds to zero momentum and so to arbitrarily
large separations in space and time. The zero-momentum lines can interact arbitrarily with
each other, and any number of lines can connect their subgraph to the other subgraphs.

From the reduced diagram point of view, the collinear and soft subgraphs contain lines
of the stated kind, i.e., parallel to pA,∞, pB,∞, or zero. But it should be noted that the
reduced-graph vertices that join them within each subgraph may comprise non-trivial (one-
particle-irreducible) graphs from the Feynman graph point-of-view.

The collinear lines go outward from the hard vertex and eventually combine to form the
momenta pA,∞ and pB,∞ of the outgoing external lines of the vertex, treated as massless
momenta. There can be no other massless lines propagating in other directions, or from
the past. Any such line would just give a dangling end with no external line(s) to absorb or
generate the non-zero momentum.

These conclusions depend not only on the on-shell condition for the lines of the reduced
graph, but, critically, also on the condition that they correspond to a physical scattering. As
an example, consider the configuration illustrated in Fig. 5.3. Here there are two intermediate
massless on-shell lines with 3-momenta not along the z axis:

pC,∞ = Q

2
(1, n), pD,∞ = Q

2
(1,−n). (5.8)
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pD ,∞

pC ,∞

pB ,∞

pA ,∞

Fig. 5.3. Non-pinched on-shell configuration for Sudakov form factor.

t

z
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S

Fig. 5.4. Space-time diagram for PSSs for the vertex graph when the A line is incoming,
so that the momentum transfer is space-like.

These rescatter at the right-hand reduced vertex to make the standard external lines. This
reduced vertex is for elastic scattering with large momentum transfer. The on-shell con-
figuration obeys momentum conservation, and does contribute in a computation of the
imaginary part of the amplitude from on-shell intermediate states. But for the rescattering
to be classical, in the sense used for the Landau criterion, the two wide-angle particles have
to meet at a single point to rescatter. Thus they would travel only a zero distance from their
generation at the electromagnetic vertex, and not the arbitrary non-zero distance needed for
classicality. Hence this configuration does not participate in a pinch.

A minor variation can be made by letting the pA line be incoming rather than outgoing,
with the momentum transfer now being space-like. This would be appropriate for a subgraph
inside a deeply inelastic scattering amplitude. The general reduced graphs stay the same,
except for the orientation of the momenta in the A subgraph. Correspondingly, the space-
time structure changes to that shown in Fig. 5.4.

5.3.2 Leading regions for vertex graph

Comparing Fig. 5.2(a) to the structure Fig. 2.5(b) that was used to obtain the parton-model
formula for DIS, we see a lot of extra connections between the subgraphs. This endangers
the derivation of a factorization theorem. In the parton-model ansatz for DIS, the hard
scattering involves only a single parton, and the target and outgoing collinear subgraphs
are not otherwise coupled. Similar remarks evidently apply to all other processes.

When we derive rules for power-counting, later in this chapter, we will find that for
many of the massless PSSs, the corresponding contributions to the actual vertex are in
fact suppressed by a power of Q. Generally, we will neglect these power-suppressed
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Fig. 5.5. Typical reduced graphs for the vertex graph, but now restricted to those PSSs
relevant for the leading power.

contributions. Then we will find that the leading regions for the Sudakov form factor are
restricted to those of Fig. 5.5. Compared with the general PSS, Fig. 5.2(a), the changes are
that: no lines connect S to H , only gluons connect S to the collinear subgraphs, and exactly
one fermion but arbitrarily many gluons connect the collinear subgraphs A and B to the
hard subgraph.

The arbitrary number of gluons linking the different subgraphs of a reduced graph still
leaves us with an apparent difficulty for proving factorization. A final power-counting
result will come to the rescue, concerning the dominant polarization for the extra gluon
connections.

Here we only summarize what we will prove later. The relevant polarizations are such
as to allow us to use Ward identities to sum over the ways of connecting the extra collinear
gluons to the hard subgraph and of connecting the soft gluons to the collinear subgraphs.
The end product will be a factorized form, with definitions of parton densities and other
non-perturbative quantities as matrix elements of certain non-local operators. Without
the extra gluon connections, the operators would not be gauge invariant. Summing the
extra gluon connections between the subgraphs converts the operators to a gauge-invariant
form.

5.3.3 DIS from uncut amplitude

A very straightforward application of the Landau analysis is to DIS, if we apply the same
trick as we used in Sec. 4.4 for the e+e− −→ hadrons cross section.

Instead of the hadronic tensor Wμν defined by (2.18), we use the corresponding uncut
amplitude2 where the current operators are time-ordered:

T μν(q, P ) = 1

4π

∫
d4z eiq·z 〈P, S T Jμ(z/2) J ν(−z/2) P, S〉 . (5.9)

This amplitude is analytic in the plane of ν = p · q, with cuts along the positive and
negative real axis starting from ν = ±Q2/2 (Fig. 5.6). The ordinary hadronic tensor is the

2 Warning: Definitions in the literature disagree on the normalization.
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Q2/2

Fig. 5.6. Complex plane in ν = P · q for T μν , with its cuts.
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Fig. 5.7. (a) Typical general reduced graph, and (b) space-time diagram, for the most general
PSS for the uncut amplitude for DIS. (c) For a leading PSS, there is no soft part, and beyond
the main partons, an arbitrary number of gluons connect the collinear and hard subgraphs.

discontinuity

Wμν(q, P ) = T μν(ν + i0)− T μν(ν − i0). (5.10)

See Ch. 14 of Collins (1984) for more details and an account of earlier work on DIS.
There the analyticity properties of T μν were exploited to allow the use of the short-distance
operator product expansion to analyze integer moments of DIS structure functions.

Just in e+e− annihilation (Sec. 4.4), a local averaging should be applied, after which we
only need to treat T μν away from its singularities in the complex plane.

The massless PSSs for the amplitude are illustrated by the reduced graph in Fig. 5.7(a).
There is a single collinear subgraph C, where the target comes in and undergoes arbitrary
collinear splittings and recombinations until the target is reconstituted. The hard scattering
H is at the origin in space-time, and there is a soft subgraph S. In a general PSS, there are
arbitrarily many lines joining the subgraphs. The graphical structure, Fig. 2.5(b), that we
used to formulate the parton model is the simplest example. It corresponds to a minimal
PSS where only two lines join the collinear and hard subgraphs, where there is no soft
subgraph, and where the hard subgraph is a lowest-order Feynman graph.

The Landau analysis has now indicated, in Fig. 5.7(a), the maximum complication to
be considered in the general case. We can again anticipate the power-counting results, in
Fig. 5.7(c). At leading power, the soft subgraph is absent. The connections between the
collinear and hard subgraphs consist of the primary pair of parton lines, just as in the
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Fig. 5.8. A graph for uncut amplitude for DIS with multiple PSS.
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Fig. 5.9. The three leading regions for Fig. 5.8 correspond to these decompositions into
hard and collinear subgraphs.

parton model, but they are now accompanied by any number of gluon lines with the special
polarization that allows the use of Ward identities to give a factorization theorem.

5.3.4 Higher-order corrections to hard scattering

The following consequence of the general region analysis contains a critical difference
between the true results of QCD and the parton model: This is that there are higher-order
perturbative corrections to the hard scattering.

Although we will work out the details only in later chapters, it is possible to understand
the basic ideas from our analysis so far. First we observe that any particular Feynman graph
might have multiple leading PSSs. For example, consider Fig. 5.8, which can appear in a
model for DIS in which the target is treated as elementary. This graph, of the form of what
is often called a “ladder graph”, has three decompositions of the form of Fig. 5.7(c), but,
in this particular case, without any of the extra gluonic connections. In one of its PSSs all
the quark lines on the sides of the ladder are collinear to the target, i.e., the momenta k

and l are target-collinear. This corresponds to the decomposition of Fig. 5.9(a), where the
hard subgraph Ha is the smallest possible, and is indeed exactly the same as in the parton
model.

A second PSS corresponds to Fig. 5.9(b), where the upper loop momentum k is of high
virtuality, while the lower momentum l is still target-collinear. This has a one-loop hard
subgraph Hb. Physically it corresponds to production of two jets in the hard scattering, as
in the experimental event shown in Fig. 5.10. A third PSS corresponds to Fig. 5.9(c), where
both k and l are of high virtuality; this situation corresponds to production of three jets.
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(a)

(b)

Fig. 5.10. Scattering event with two high-transverse-momentum jets in an ep collision in
the H1 detector (H1 website, 2010). The final state contains an electron track (to the right
in the side view), and two jets of hadrons.

Fig. 5.11. Another graph for uncut amplitude for DIS in which some of the same hard
subgraphs occur as for the previous graph.

Each of these hard-scattering subgraphs can occur in other graphs for T μν . For example,
the hard subgraphs Ha and Hb also appear in PSSs for Fig. 5.11.

The momentum regions associated with the three PSSs are represented in Fig. 5.12,
where the smaller PSSs are boundaries of the bigger ones. Disentangling the contributions
associated with different PSSs gives interesting mathematical and technical issues, which
occupy much of this book.

We will see that larger hard subgraphs Hb, etc., can be treated as higher-order corrections
to the lowest-order subgraph Ha , but with subtractions to compensate for double counting
between different contributions.
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Fig. 5.12. Momentum regions associated with the PSSs in Fig. 5.9. Each axis corresponds
to the deviation of the associated momentum from exact collinearity, and the labels “(a)”,
“(b)” and “(c)” correspond to the PSSs associated with the graphical decompositions in
Fig. 5.9.

The idea of higher-order corrections to the hard scattering is readily accommodated by
the original space-time motivation for the parton model. This asserted that the cross section
was governed by a short-distance scattering of the electron and a single constituent of the
target, as in Fig. 2.2. The true hard scattering is the short-distance structure at the origin in
the space-time representation, Fig. 5.7(b), but it need not be a lowest-order graph.

A scaling argument of the kind given in (5.5) shows that the power of Q is determined
only by the number of external lines of the hard scattering, in any renormalizable theory
like QCD, since then the coupling is dimensionless. Thus there is no power-law suppression
of higher-order hard scattering. The only suppression is from the smallness of the effective
coupling αs(Q) at large Q. The appropriate scale for the coupling in the hard scattering is
of order Q, so that the asymptotic freedom of QCD allows low-order perturbation theory
to give useful predictions of the hard scattering.

Physically, the hard subgraph H is not literally at a single point, but is spread over
a space-time range of order 1/Q. Similarly, the collinear subgraph is not exactly on the
light-like line indicated in Fig. 5.7(b), but is spread out as appropriate for a highly boosted
composite particle. Lorentz contraction indicates that the width of the collinear lines is
of order 1/Q in the t-z plane, but of order 1/M transversely, while time dilation gives a
large longitudinal scale to Fig. 5.7(b), of order Q/M2. This interpretation is another way
of explaining the statement that the massless PSSs form a skeleton for the location of the
actual physical phenomena. A formal derivation from first principles within QFT of the
detailed space-time interpretation would be very useful.

5.3.5 DIS from cut amplitude

To understand how the final states in DIS arise, we now restore the final-state cut. It is
evident from our calculations of e+e− annihilation that there is a close connection between
divergences from virtual gluon emission and those from real gluon emission. Therefore, it
is useful to extend our analysis with reduced graphs and space-time diagrams to include
the integrals over final states.
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Fig. 5.13. (a) Reduced graphs and (b) space-time diagram, for DIS amplitude, in the case
that only one jet arises from the hard scattering. The lighter hatching at the top of (b)
corresponds to the low momentum or soft particles from the soft subgraph S.

The basic idea is unchanged: taking Q→∞ at fixed mass is equivalent to a massless
limit at fixed Q, and we need to know where propagator denominators fail to have virtuality
of order Q2. Just as before, it is the locations of PSSs in the massless theory that label
all the interesting regions. But for final-state lines, we no longer have to appeal to a
technical argument as to whether or not a contour deformation is possible. Final-state
lines are necessarily on-shell, so they have to be considered always pinched. Since final-
state particles can be observed, it is appropriate not to even consider deforming any of
the integrals over final-state momenta. Some lines are not part of any loop, as in the real
emission graphs considered in Ch. 4; their virtuality is entirely determined by the external
lines. At a collinear singularity, it is simply from the topology of the graph plus the simple
rules for combining light-like momenta that we get the condition of a classical process. We
supplement this by the Landau criterion for lines that are part of a loop.

In the case that we only have one direction for the particles from the hard scattering,
the reduced diagrams and space-time picture are shown in Fig. 5.13, for an amplitude
〈X, out|j |0〉. These correspond quite directly to the picture shown in Fig. 2.2, and the
actual scattering event in Fig. 2.3. The collinear subgraph A corresponds to the target
hadron, its evolution and its remnants after a quark has been struck out of it. The remnants
are around the beam pipe in the actual event. The subgraph B corresponds to collinear
evolution of the struck partonic system into an observed jet. Some lines can go out to the
final state from the S subgraph; at the exact mass singularity, these have zero momentum.
The corresponding actual particles, all of whose momentum components are much less
than Q to be close to the PSS, are those that fill in the rapidity gap between the jet and the
beam remnant.

Other PSSs arise when there are two or more groups of parallel lines emerging from the
hard scattering, as in Fig. 5.14. In experiments one manifestation of momentum configura-
tions near to such singularities are events with extra jets, as in Fig. 5.10.

Naturally, the full DIS cross section has an integral over all accessible final states.
This integral includes all intermediate configurations between the extremes given by the
reduced diagrams and their associated massless PSSs. Proper factorization theorems, and
their proofs, handle the intermediate cases once the extremes are dealt with.
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Fig. 5.14. Reduced graph for DIS, in the case that partons in more than one direction arise
from the hard scattering. For clarity the connections between the soft subgraph and the
other subgraphs have been omitted.
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Fig. 5.15. (a) The double deeply virtual Compton scattering process, including the attached
leptons. (b) The Bethe-Heitler pair production process that also contributes to the scattering.

5.3.6 Deeply virtual Compton scattering, etc.

So far, we have treated the uncut hadronic tensor T μν merely as a tool for analyzing DIS,
whose true cross section arises from the discontinuity, i.e., from the cut amplitude.

But it is also interesting to examine this quantity in its own right as the hadronic part
of an appropriate scattering amplitude. It actually provides the conceptually simplest of all
QCD factorization theorems. We therefore take the opportunity to introduce the relevant
processes. For this, we attach leptons at the other ends of virtual photon lines. To obtain a
realizable scattering, one of the virtual photons is time-like, creating a lepton pair. Thus the
relevant process is lP → l′p′e+e− or lP → l′p′μ+μ−; Fig. 5.15(a). Since one photon has
space-like momentum q and the other has time-like momentum q ′, the hadronic amplitude
is not diagonal, unlike the case for DIS. A complication for the analysis of data is that
one needs to separate the contribution where the lepton pair arises from a virtual photon
attaching to the other leptons: Fig. 5.15(b).

This leads (Müller et al., 1994; Blümlein and Robaschik, 2000) to the study of
the process γ ∗(q)+ P → γ ∗(q ′)+ p′, which corresponds to the off-diagonal hadronic
tensor

Aμν
(
γ ∗(q)+ p→ γ ∗(q ′)+ p′

)
= 1

4π

∫
d4z eiz·(q+q ′)/2

〈
p′ T Jμ(z/2) J ν(−z/2) P

〉
. (5.11)
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Fig. 5.16. (a) Reduced graphs and (b) space-time diagram, for DVCS and exclusive elec-
troproduction of mesons. (c) Extra reduced graphs for DVCS, but not exclusive meson
electroproduction, with photon directly connected to H.

This was investigated by Berger, Diehl, and Pire (2002), who called it “timelike Compton
scattering”, and then by Guidal and Vanderhaeghen (2003), who called it “double deeply
virtual Compton scattering” (DDVCS), the term we use here. The analysis closely corre-
sponds to the DIS case, when we take a generalized Bjorken limit. In this limit q2, q ′2, etc.
are large, and the hadron momenta P and p′ become parallel.

Thus the analysis in terms of massless PSSs is identical to that for T μν for DIS; the
reduced graphs and space-time picture are exactly the same. DDVCS has great fundamental
importance as the simplest quantity to which factorization methods can be applied. However
the cross sections at the leptonic level are high order in electromagnetism and thus very
small; see Berger, Diehl, and Pire (2002); Guidal and Vanderhaeghen (2003).

What is studied experimentally at present is the case that the outgoing photon is real.
This is deeply virtual Compton scattering (DVCS): Müller et al. (1994); Blümlein and
Robaschik (2000); Belitsky, Müller, and Kirchner (2002):

γ ∗(q)+ P → γ (pB)+ p′. (5.12)

The outgoing photon is light-like in what we can choose to be approximately the −z

direction. Thus it is convenient to change notation to use pB for the photon momentum; this
corresponds to our notation for other processes with two high-energy particles. Another
closely related process has the photon replaced by a meson:

γ ∗(q)+ P → M(pB)+ p′, (5.13)

the measured meson being typically a ρ. This is actually an exclusive two-body subprocess
of DIS, called exclusive electroproduction of mesons. The reduced graphs now acquire a
collinear-B subgraph going out from the hard scattering, Fig. 5.16(a), with a corresponding
space-time diagram. The power-counting is a bit more subtle, and depends on the
polarization of the meson (Brodsky et al., 1994; Collins, Frankfurt, and Strikman, 1997).

For the case of a photon, i.e., DVCS, there are also reduced graphs without the B

subgraph, i.e., with the photon connecting directly to the hard subgraph. These are, of
course, the same as for a highly virtual photon; it is these reduced graphs that turn out to
be the leading ones (Müller et al., 1994; Blümlein and Robaschik, 2000; Belitsky, Müller,
and Kirchner, 2002).
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5.3.7 Drell-Yan process

Another important process is the Drell-Yan (DY) process, i.e., inclusive production of
high-mass lepton pairs in hadron-hadron collisions:

PA + PB → (γ ∗ → l+l−)+X, (5.14)

where we have indicated that in lowest order in electromagnetism, the lepton pair arises
from a virtual photon. Essentially all the same theoretical considerations apply to the
production of high-mass electroweak bosons, like the W , Z, and Higgs particle, as well as
innumerable conjectured particles in extensions of the Standard Model.

In light-front coordinates, we write the momenta as

PA =
(
P+A , m2

A/2P+A , 0T
)
, (5.15a)

PB =
(
m2

B/2P−B , P−B , 0T
)
, (5.15b)

q =
(

xAP+A
√

1+ q2
T/Q2, xBP−B

√
1+ q2

T/Q2, qT

)
. (5.15c)

Here the scaling variables are defined by

xA = Qey/
√

s, xB = Qe−y/
√

s, (5.16)

where y = 1
2 ln q+P−B

q−P+A
is the center-of-mass rapidity of the lepton pair, and Q =

√
q2 is its

invariant mass. In the center-of-mass, the large components of the hadron momenta are
P+A and P−B , both equal to

√
s/2 up to power-suppressed corrections. Frequently, the cross

section is integrated over qT , and is presented as d2σ/(dQ2 dy).
We first discuss the DY amplitude. Its reduced graphs are constructed by an elementary

generalization of the construction for DIS. We now have two collinear subgraphs, A and B,
associated with each incoming particle. As in DIS, we classify the reduced graphs by the
number of outgoing directions of lines from the hard scattering H . Now H has incoming
lines from each of the A and B subgraphs, and has the virtual photon taking out momentum.
This allows the minimal situation, illustrated in Fig. 5.17, with no extra collinear groups at
all going out from H . The soft subgraph can create particles in the final state that fill in the
rapidity gap between the beam remnants.

This is illustrated by the microscopic view of a collision shown in Fig. 5.18 (which
corresponds to Fig. 2.2 for DIS). Here we have shown the simplest possibility: a single
parton from each parent hadron collides over a short distance scale, of order 1/Q at the
position indicated by a star, and we have not depicted the possible soft interactions.

One new possibility is that we could have a second hard part, disconnected from the first
in which other collinear lines from A and B collide to undergo a wide-angle scattering.
Physically, this corresponds to a second partonic collision in Fig. 5.18, typically occurring
at about the same time as the one that creates the DY pair, but at a different transverse
separation. Later, from the power-counting rules, we will see that this case is power-
suppressed.
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Fig. 5.17. (a) An important reduced graph for the amplitude for the Drell-Yan process.
(b) Space-time diagram for collinear subgraphs.

Fig. 5.18. Microscopic view of a DY process, corresponding to Fig. 2.2 for DIS.
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Fig. 5.19. A reduced graph for the amplitude for Drell-Yan process when one extra jet of
high transverse momentum is produced.

After this, we will find the usual situation for the leading power that only one main
parton from each beam hadron enters a single hard scattering. Each is accompanied only by
extra gluons of the longitudinal polarization that can be reorganized by Ward identities into
gauge-invariant parton densities. Also the soft subgraph at leading power only connects to
the collinear subgraphs and by gluons.

It is possible for the single hard scattering to produce, in addition to the lepton pair, one
or more extra partons of high transverse momentum, Fig. 5.19. These manifest themselves
as jets in the hadronic final state, just as in the corresponding situation for e+e− annihilation
or DIS.

If instead we restrict to a minimal reduced graph, and then multiply by the com-
plex conjugate amplitude, we get the cut graph shown in Fig. 5.20. This is the natural



5.4 One-loop vertex graph 105

PB

PA

q

kB

kA

Fig. 5.20. Minimal reduced graph for cross section for the Drell-Yan process.
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Fig. 5.21. One-loop vertex graph.

generalization of the corresponding structure that led to the parton model in DIS,
Fig. 2.5(b). The most elementary treatment of this situation leads to the parton model
formula for lepton-pair production, first worked out by Drell and Yan (1970). Here the
lepton pair is produced in the lowest-order annihilation of a quark out of one hadron, and
an antiquark out of the other, with the same parton densities as in DIS.

We thus see a general pattern: Libby and Sterman’s insight leads to the reduced diagram
analysis. Approximating the situation by configurations corresponding to the simplest
reduced graphs gives us the parton model, with the natural space-time interpretation. The
general reduced graph plus the restriction to leading power delimits the maximum way in
which we have to distort the parton model to get the results of real QCD.

5.4 One-loop vertex graph

To illustrate the properties of the regions associated with PSSs, we examine the PSSs for
the one-loop vertex graph of Fig. 5.21:

G1 = ig2

(2π )n

∫
dnk

numerator

(k2 −m2
g + i0) [(pA − k)2 −m2

q + i0] [(pB + k)2 −m2
q + i0]

.

(5.17)

The numerator factor is irrelevant for determining the positions of the PSSs. But it is impor-
tant in computing their strengths, for which different field theory models give interesting
characteristic effects. We also allow a gluon mass, which is zero in QCD, but not necessarily
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(a) (b) (c)

Fig. 5.22. Reduced graphs for PSSs RA, RB , and RS of Fig. 5.21. The dot represents the
short-distance reduced graph, the diagonal lines are collinear in the appropriate directions,
and the dashed line is soft (zero momentum).
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Fig. 5.23. Location of massless PSSs of Fig. 5.21 in the space of the gluon momentum. The
singularities are all in the plane of zero transverse momentum, so we just show the plane
of k0 and kz, with the 2− 2ε transverse dimensions out of the paper.
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Fig. 5.24. Space-time description of PSSs of Fig. 5.22. For all three plots, the scale for the
separation of the vertices is Q/λ2, where λ is the radial integration variable in (5.29) for a
collinear region, but λ2/Q is the radial variable in (5.49) for the soft region.

in other model theories. Generally, I will assume that the external quark lines are on-shell,
equipped with Dirac wave functions as appropriate.

5.4.1 Geometry and topology of PSSs

Useful insights are obtained from each of several ways of examining the PSSs: in
terms of reduced graphs (Fig. 5.22), in terms of PSSs’ locations in the space of loop
momenta (Fig. 5.23), and in terms of the locations of the graph’s vertices in space-time
(Fig. 5.24).
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The criterion, of a classically allowed process in the massless limit, gives the following
PSSs, which I label by the nature of the gluon’s momentum, (RA, RB , etc.3):

1. Gluon collinear to A: We label this PSS RA. It has two massless on-shell lines: k and
pA,∞ − k, each parallel to pA,∞:

RA :

{
k = zpA,∞,

pA,∞ − k = (1− z)pA,∞,
(5.18)

with z between 0 and 1. The line pB + k has virtuality of order Q2: (pB,∞ + k)2 = Q2z.
In the reduced graph, Fig. 5.22(a), the far off-shell line pB + k is contracted with

the current vertex to form a composite reduced vertex. Out of this come two massless
on-shell momenta in the pA,∞ direction, which later combine to make a single massless
on-shell momentum pA,∞.

The momentum fraction variable z must be between 0 and 1, since other values of z

do not give a classical scattering configuration. For example, if z is negative, the quark
goes out to the future from the current vertex, but the gluon comes in from the past.
Thus they are unable to meet at the recombination point if z < 0.

2. Gluon collinear to B: This PSS, labeled RB , with reduced graph Fig. 5.22(b), is exactly
like the first PSS, but with the roles of the quark lines exchanged:

RB :

{−k = zpB,∞,

pB,∞ + k = (1− z)pB,∞.
(5.19)

3. Soft gluon: k has zero momentum on this PSS, which we call RS . Its reduced graph is
Fig. 5.22(c), and the quark lines have massless momenta pA,∞ and pB,∞. The quark and
antiquark come out of the electromagnetic vertex and a soft gluon is exchanged. This is
a rather special case of the Landau-Coleman-Norton criterion.

4. Soft quark: Here it is the internal quark instead of the gluon that is soft. Since the gluon
now has a maximal collinear momentum k = pA,∞, we label this region RA′ .

5. Soft antiquark: Here the internal antiquark is soft, and the gluon has k = −pB,∞. The
PSS’s label is RB ′ .

The locations of the PSSs in loop-momentum space are shown in Fig. 5.23, from
which can be seen some topological relations between the different PSSs. For example,
RS is at the intersection of RA and RB , while RA′ is an endpoint of RA. When we derive
factorization theorems, we will find contributions and approximations associated with each
PSS. The topological relations between different PSSs will determine subtractions that
prevent double counting between different contributions. There will also be a contribution
from the region RH where all internal lines are far off-shell. We therefore will speak about
regions; intuitively a region connotes a particular part of loop-momentum space. But as a
precise mathematical notion we will use the PSSs supplemented by the hard region RH .
The intuitive notion of a region means, roughly, momenta near the corresponding PSS.

3 The subscripts should not be confused with the same symbols used to denote the various subgraphs of a reduced
graph.
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To formalize the relations between regions we first define a manifold for each PSS:

Name Manifold Dimension
RS {k = 0} 0
RA′ {k = pA,∞} 0
RB ′ {k = −pB,∞} 0
RA {k = zpA,∞ : 0 < z < 1} 1
RB {k = −zpB,∞ : 0 < z < 1} 1
RH {all k such that k /∈ RA,RB,RS, RA′ , RB ′ } 4

(5.20)

Each manifold excludes the manifolds for smaller PSSs. For example, in the regions RA

and RB we exclude the point z = 0, i.e., k = 0, since this does not give a collinear gluon
momentum.

There is evidently a hierarchy of sizes of region:

RA

RB

RS

RA

RB

RH (5.21)

where the biggest region is on the left. A formal definition of the hierarchy is not by simple
set-theoretic inclusion, since the manifolds for smaller regions are not part of those for the
bigger ones. Instead we define the hierarchy in terms of the topological closures R̄ of the
manifolds R for the various regions. For example, R̄A = {k = zpA,∞ : 0 ≤ z ≤ 1}, with
the endpoints at z = 0 and z = 1 included. Then we define the statement that a PSS R1 is
bigger than a PSS R2, R1 > R2, to mean that R̄1 ⊃ R̄2.

For the actual graph with massive propagators, and possibly off-shell external quarks,
we have already argued that there are important contributions from momenta close to the
PSSs. This suggests a coordinate-space interpretation in terms of the relative positions of
the vertices. For example, near the PSS RA, the upper quark line pB + k has virtuality
of order Q2, and therefore the vertices at its ends are separated by order 1/Q. The other
two lines, k and pA − k, have low virtuality, so the invariant separation of their ends is
much larger than 1/Q. Moreover, the lines are highly boosted in the +z direction. This
gives typical locations for the vertices as shown in Fig. 5.24(a), which corresponds closely
to the classical scattering picture given by the Coleman-Norton criterion. Corresponding
situations for the PSSs RB and RS are also shown in Fig. 5.24(b) and (c). The arguments
just given are quite heuristic, and it is left as an exercise to derive them more formally
(problem 5.1).

5.4.2 Pinch- and non-pinch-singular surfaces: collinear-to-A

PSS RA was restricted to k = zpA,∞ with z between 0 and 1. But the massless limit of the
integrand in (5.17) is singular for any value of z; it is the criterion of a pinch that restricts z,
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Fig. 5.25. The k− plane, showing the singularities for the lines k and pA − k for the three
cases 0 < z < 1, z < 0, and z > 1, together with appropriate choices of contour. The scale
of the diagram is roughly (k2

T +m2)/p+A ; the pole for the pB + k line is far off-scale, at
k− = −O(Q2/p+A ).

as we now verify explicitly. We use light-front coordinates, as is natural for collinear PSSs,
to give

G1 = ig2

(2π )n

∫
dnk

numerator

[2(p−B + k−)(zp+A + p+B )− k2
T −m2

q + i0]

× 1

(2zp+Ak− − k2
T −m2

g + i0) [2(1− z)p+A (p−A − k−)− k2
T −m2

q + i0]
. (5.22)

Here we wrote k+ = zp+A , so that dnk = dz p+A dk− dn−2kT.
In the following discussion, there are order-of-magnitude estimates for denominators,

and it is convenient to use the symbol m as a generic size for all masses in the problem.
To understand the RA region, we choose kT to be much less than Q, and we examine

the contour integral for k−. In the center-of-mass frame, the large components of external
momenta are p+A and p−B , of order Q, while the small components, p−A and p+B , are of order
m2/Q. The poles on the collinear lines k and pA − k are at small values of |k−|, of order
(k2

T +m2)/Q, and, when 0 < z < 1, they are on opposite sides of the real axis, trapping the
contour, as in Fig. 5.25(a). In contrast, the remaining pole, from the pB + k line, is much
further away, at k− � −p−B = −O(Q), corresponding to the line’s large virtuality in the
RA region.

Naturally, when z approaches 0 or 1, the accuracy of this argument degrades. For
example, the separation of the poles in k− is of order

k2
T +m2

p+A

(
1

z
+ 1

1− z

)
, (5.23)

and this gets large close to the endpoints of RA, i.e., near the RS and RA′ regions. This
formula also exhibits the exact pinch in the massless limit. That is, when m = 0, the
minimum distance between the poles is zero, obtained at kT = 0.

Outside the PSS region, i.e., for z below 0 or above 1, the two collinear denominators
are on the same side of the real axis: Fig. 5.25(b) and (c). Then we can deform k− to
be of order Q, so that all the denominators are of order Q2, i.e., the momenta are in the
hard region. Note that we cannot deform the contour all the way to infinity, to give a zero
integral, because of the singularity on the pB + k line.
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5.4.3 Multidimensional contour deformation

For one variable, like k−, the analysis of the pinch condition is straightforward, because the
contour deformation is visualizable. But the actual integral is multidimensional, and thus
hard to visualize. Is there a cunning deformation of the contour in z and/or kT that would
allow the four-complex-dimensional4 contour to avoid the poles? The Landau criterion
asserts in complete generality that this cannot be done.

A devil’s advocate would search for a proof in the literature that the Landau equations
are both necessary and sufficient for a PSS, and would be rewarded by not finding a
published explicit and complete proof. Textbook treatments, when examined closely, are
incomplete. For example, in the authoritative book on analyticity properties in QFT, by
Eden et al. (1966), we read (p. 48): “A proper proof needs the use of topology; . . . We
shall be content with plausibility arguments.” The reference given for a real proof is an
unpublished paper, by Fotiadi, Froissart, Lascoux, and Pham; the paper, as far as I can find
out, is still unpublished forty years later. Devil’s advocates are recommended to investigate
further (problem 5.3); there is something in this subject that is not fully understood.

I now present some techniques to help formalize issues about contour deformation in
the general case, with the momentum integral for L loops having nL dimensions. The aim
is to make very transparent the concepts that relate exact PSSs in the massless theory to
properties of actual integrals with non-zero masses but large Q.

First we write the loop momentum in terms of real and imaginary parts:

k = kR + iκ kI (kR). (5.24)

Here a contour deformation is characterized by increasing the real parameter κ from 0
to 1, with each point on the contour labeled by its (nL-dimensional) real part kR . The
imaginary part is some function of the real part, and naturally dnLk includes a Jacobian for
the transformation between k and kR . An allowed contour deformation is one for which no
poles are crossed in going from κ = 0 to κ = 1. We also require a uniform upper bound on
the derivatives ∂kIa/∂kRb, so that the Jacobian stays finite; otherwise, an arbitrarily large
size for Jacobian would ruin our derivation of power-counting. Thus in a one-dimensional
contour integral we might require the deformed contour to have an angle of at most 45◦ to
the real axis. The precise bound does not matter, but having an angle close to 90◦ would
give a very big Jacobian.

Next consider a denominator D(k)+ i0 at a zero of D(k). Our aim is to determine
whether this denominator participates in a pinch at this value of momentum, or whether
the contour of k can be deformed away. We avoid the corresponding pole if D acquires a
positive imaginary part when κ becomes slightly positive, i.e., if

kI · ∂D

∂k
> 0 pole avoidance criterion (5.25)

at the zero of D. We have an exact pinch if, no matter what choice we make for kI , (5.25)
fails for at least one of the on-shell lines.

4 Or 4− 2ε-dimensional contour.
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The criterion just stated applies to determining whether there is an exact pinch. In our
context, the PSSs we are cataloging are those of the massless theory. But our use of these
PSSs is also in the massive theory, where we are concerned not with whether or not there
is an exact pinch, but with whether or not the integration contour is forced to be close to
particular propagator poles. So we now ask: What are the appropriate criteria for avoiding
or not avoiding poles in the massive theory?

We do not consider a particular pole to be avoided unless the minimum value of |D(k)| on
the deformed contour is of order Q2 in a whole neighborhood of some candidate for a PSS.
The neighborhood should be of a size of order Q in the components of loop momentum
kR . Now all the momentum components of interest are at most of order Q, and similarly
for the derivatives ∂D/∂k. For the denominator to be of order Q2 when the real part of k

is at a zero of D(k), it must be true that the imaginary part has a component of order Q.
It also follows that the first-order term in an expansion in powers of kI , i.e., the l.h.s. of

(5.25), must itself be of order Q2. Otherwise the first derivative would change sign near our
initially chosen kR , since the second derivative is of order unity, and then we would find
places where, as we deform the contour, the denominator gets a negative imaginary part.
Because of the limit on the gradient of kI with respect to kR , the pole avoidance condition
(5.25) is obeyed, not just exactly at the PSS, but in a neighborhood. It also follows that the
component of ∂D/∂k in the direction kI is of order Q.

In the example of the two collinear denominators for region RA of the vertex graph, the
derivatives are

∂(k2 −m2
g)

∂k
= 2k � 2zpA,∞,

∂((pA − k)2 −m2)

∂k
� −2(1− z)pA,∞. (5.26)

On PSS RA, these two vectors are opposite in direction, so that the pole avoidance criterion
(5.25) cannot be simultaneously satisfied by both denominators. The exact PSS is in the
massless theory, but small changes in the pole positions, to allow for masses, do not
break this argument. As just explained, any contour deformation that successfully avoids
a singularity has to work over a large neighborhood of the propagator poles. If we tried
deforming another component of k than k−, its imaginary part would multiply a small
derivative on the l.h.s. of (5.25), and would not make this l.h.s. of order Q2.

In contrast, when we extrapolate the PSS to z < 0 or to z > 1, the two derivative vectors
have the same direction. Therefore if we choose kI to give one denominator a large positive
imaginary part, then the other denominator also gets an imaginary part of the same sign.
Thus we can avoid the pole. Since kI · pA,∞ = k−I p+A,∞, it is the minus component of kI

that needs to be made large to avoid the pole; this again justifies our choice to examine
contour integration only over k−. Therefore the singular surfaces at z < 0 and z > 1 are
not PSSs.

5.5 Power-counting for vertex graph

I next use the one-loop vertex graph to motivate the primary tools for power-counting.
In addition, we will encounter the so-called Glauber region of gluon momenta. Glauber
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momenta form a subset of soft momenta, but require a different treatment than generic soft
momenta; in particular standard factorization is only obtained after a contour deformation
away from momenta in the Glauber region.

For the power-counting, I will usually set the space-time dimension to n = 4. But to
discuss properties of regulated integrals, I will sometimes change to n = 4− 2ε.

Characteristic differences between QFTs are controlled by the numerator factor in (5.17),
and we can see the spectrum of possibilities from specific examples:

• A φ3-type theory where both the quarks and gluons are scalar fields, and the vertex for
the electromagnetic current is replaced by one for a φ2 operator. It gives a numerator
factor of unity.

• A Yukawa theory with a scalar “gluon” and fermionic quarks. It gives a numerator
ūA

[
γ · (pA − k)+mq

]
γ μ

[− γ · (pB + k)+mq

]
vB , where uA and vB are Dirac wave

functions.
• A gauge theory with fermion quarks. The numerator factor is

ūAγ κ
[
γ · (pA − k)+mq

]
γ μ

[− γ · (pB + k)+mq

]
γ λvB Nκλ. (5.27)

In Feynman gauge, the gluon part of numerator is Nκλ = −gκλ.

(Further cases are left as an exercise; problem 5.6.) In addition, we will examine how the
power laws change with the dimension of space-time.

Our main interest is in the size and power law of the loop graph relative to the lowest-
order graph. For the φ3 theory, the lowest-order graph is unity, but for the other two theories,
the lowest-order graph is of order Q, since the largest component of a Dirac wave function
grows like Q1/2.

5.5.1 Hard region RH : power corresponds to UV divergence

In region RH , all momentum components are of order Q and all virtualities are of order
Q2. As we found around (5.6), the power of Q is given by dimensional analysis, and is the
same as for UV divergences. Thus in φ3 theory at n = 4, region RH ’s contribution to
the vertex graph is of order 1/Q2. In Yukawa and gauge theories, which are renormalizable,
the numerators provide factors of Q2 times Dirac wave functions, so the contribution is
of the same power as the lowest-order vertex, and we call RH a leading region. Of course,
if we increased the space-time dimension to 6 in φ3 theory we also get leading behavior.
These arguments apply after UV renormalization, provided we apply an RG transformation
to set the renormalization scale μ of order Q.

In any of the renormalizable theories, we therefore write the contribution of region RH

as

G1 in RH = O(1)× LO. (5.28)

This simply means that we have a bound. That is, for large Q/m, the size of this contribution
is less than some constant number times the lowest-order graph. In QCD (for example), a
useful bound is the product of
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k0

kz

(a) (b) (c)

Fig. 5.26. (a) Integration domain used for region H ; it excludes the blanked-out area around
the PSSs. The size of the regions shown is a modest factor less than Q. This diagram
should be treated as having two more dimensions perpendicular to the ones shown. (b)
Integration domain used for region A, the cross-hatched area. (c) Integration domain used for
region S.

• a factor of a few, from the approximations on the denominators and from the multiple
terms in the Dirac algebra;

• a factor g2/(16π4) explicitly in the Feynman rules; and
• π2 from an angular integral in four space-time dimensions.

This gives a modest factor times g2/16π2. In principle there could be cancellations, since the
sign and complex phase of the integrand are not fixed. But, in general, if such cancellations
occur frequently and are strong, we should expect this to have a specific cause.

The integration domain for an actual numerical estimate should be like that in
Fig. 5.26(a). Here we cut out pieces surrounding each of the (smaller) PSSs, perhaps
of size Q/2. The precise positions of the borders will not bother us. But we must insist
that a contour deformation is applied to stay away from all propagator poles where there
is not a PSS. For example, suppose k is close to a negative number times pA,∞. Without
the contour deformation, we would have two low-virtuality denominators, which falsifies
the derivation of the estimate. A convenient way of interpreting Fig. 5.26(a) is to treat the
variables plotted there as the real parts kR . Imaginary parts, as in (5.24), give denominators
of order Q2, for example from the contour deformation in Fig. 5.25(b).

5.5.2 Basic treatment of collinear region RA

Next we integrate around the PSS for region RA, Fig. 5.26(b), excluding neighborhoods of
the smaller PSSs, RS and RA′ . The dimensionless variable z parameterizes the PSS; we call
it an intrinsic variable for the PSS. At fixed z, consider the integral over k− and kT, which
parameterize the deviation from the PSS, and which we therefore term normal variables for
the PSS. Near the PSS the momentum pB + k is off-shell by approximately zQ2. On the
other hand, the momenta k and pA − k, which we call collinear, are approximately parallel
to pA.

To understand the integral’s behavior near the PSS as an example of a general case, we
change to a set of dimensionless variables k parameterizing a surface surrounding the PSS,
together with a radial variable λ with the units of mass that scales this surface and is chosen
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Fig. 5.27. Surface of fixed λ surrounding a collinear PSS. The surface is drawn asymmet-
rically, to correspond to the scalings defined in (5.29).

to lie in the range 0 ≤ λ ≤ Q. Observe that the collinear denominators are quadratic in kT

but linear in k−. So we choose different scalings for k− and kT:

Collinear to A: k− = λ2k
−
/p+A, kT = λkT, (5.29)

as illustrated in Fig. 5.27. These variables should be thought of as generalized polar
coordinates, with k being treated as two-dimensional angular variables. The definition is
non-unique, and we can specify it by giving λ as a function of k− and kT:

λ = f (|k−|, |kT|, p+A ), (5.30)

of a form consistent with the scaling law (5.29). I choose

f (|k−|, |kT|, p+A ) =
√
|p+Ak−| + |kT|2. (5.31)

Such a definition is not Lorentz invariant, but is intended to be applied in a natural frame
for the process, which is the center of mass. I have arranged for the definition to be invariant
under z boosts, and for the angular variables k

−
and kT to be dimensionless. Given (5.29)

and (5.31), the angular variables satisfy the normalization condition |k−| + |kT|2 = 1.
To understand the size of the integrand, and the consequent power-counting, we examine

the dependence on λ. In each collinear denominator there are terms of order λ2 and of

order m2, e.g.,−λ2 × 2(1− z)k
− − λ2 k

2
T + p2

A(1− z)−m2 for pA − k. Since the angular
variables parameterize a (two-dimensional) surface surrounding a point on the PSS, they
cover over a finite range independent of λ, and only one of p+Ak

−
and kT can go to

zero simultaneously. Thus in estimating sizes, we write the collinear denominators as
λ2O(1)+m2O(1), where “O(1)” denotes a quantity that goes over a finite range, never
approaching infinity.

However, this is not sufficient to obtain a result for the integral. The problem is that the
argument so far only gives us an upper bound on the denominators, and the denominators
can and do get arbitrarily small. Thus for the integral itself we cannot directly deduce an
upper bound. But we can limit the closest approach to the poles by applying a contour
deformation like that in Fig. 5.25(a), where the separation of the poles is given by (5.23).
On the deformed contour there is a minimum size for each denominator, and a minimum
size for k−, for a given value of kT.

Now the definition of λ in (5.30) was deliberately written with absolute values of the
momentum components. Thus it can be applied on the deformed contour, and the integration
over the purely real-valued radial variable λ can be regarded as a slicing of the k integral.
We now find that on the deformed contour we can always treat the denominator as being
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of order λ2 +m2, but in a much stricter sense. The size of each collinear denominator
obeys C1(λ2 +m2) < |denom.| < C2(λ2 +m2), where C1 and C2 are two constants with
C1 strictly non-zero and C2 finite. These bounds apply uniformly for all values of k on the
contour and for all relevant values of λ. We could use separate bounds for the λ2 and m2

terms, but we would not gain anything useful.
There is in fact a notation for this which has become standard in some areas, and which

is defined in App. A.17:

|collinear denominator| = �
(
λ2 +m2

)
. (5.32)

The use of �
(
λ2 +m2

)
instead of O

(
λ2 +m2

)
indicates that we have a lower as well as

an upper bound, so that we can deduce a similar result also for the inverse∣∣∣∣ 1

collinear denominator

∣∣∣∣ = �

(
1

λ2 +m2

)
. (5.33)

This lets us obtain the power law associated with the RA region. We have the following
sizes, in the sense of the � notation:

• 1/Q2 for the far off-shell denominator;
• dλ λ3 for the radial integration;
• 1/(λ2 +m2) for each of the two collinear denominators;
• unity for the integral over the angular variables k;
• a numerator factor.

First, we ignore the numerator, and provide an estimate for the φ3 theory:

RA region = g2

Q2

∫ Q

0

dλ λ3

�
(
λ2 +m2

)2 (5.34)

= O

(
g2 ln(Q2/m2)

Q2

)
. (5.35)

Since the integrand has a variable complex phase, there is a possibility of a cancellation, so
that we must use the symbol O(. . .) rather than �(. . .) for our estimate of the integral.

From (5.34), we see that for large λ, of order Q, the estimate matches our result
1/Q2 for the hard region RH in φ3 theory. For small λ, when m is set to zero, we get a
logarithmic (collinear) divergence at λ = 0, i.e., the degree of collinear divergence is zero.
This symptomizes two properties of the actual massive integral: (a) for λ of order m, we
get the same size as in the hard region RH ; (b) there there is a logarithmic enhancement
from the region m� λ� Q. This is an example of a general result, that if the two regions
have the same power law, then there is a logarithmic enhancement from the integral between
the extremes, with the exponent of the power being unchanged.

If we change the space-time dimension from 4 to n, the power for λ ∼ m is changed
to g2mn−4/Q2. Thus in φ3 theory, i.e., without the numerator factor, the collinear region
always has a 1/Q2 suppression independent of space-time dimension; i.e., this region is
never leading. There is a contribution from the hard region of order g2Qn−6.
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5.5.3 Where are the vertices in space-time?

We did not associate the space-time picture of a classical space-time process at a PSS
with any specific distance scale. We now remedy this defect. The argument is sketchy, and
making a more detailed argument is left for problem 5.1.

It is reasonable that the typical time between two ends of a line of a Feynman graph is
the inverse of the deviation of its energy from being on-shell:

�t ∼ 1

|k0 − Ek| =
|k0 + Ek|
|k2 −m2| ∼

Ek

|k2 −m2| . (5.36)

Naturally, we assume that the integration contour has been deformed as far away as possible
from propagator poles.

For a collinear line, with its momentum scaled as in (5.29), we find a time of order Q/λ2.
This can be interpreted as a time 1/λ in the rest-frame of the collinear system multiplied
by a time-dilation factor Q/λ. The boost argument shows that this is also the separation of
the vertices in x+, and that the separation in the other light-front coordinate x− is of order
1/Q, the same as the size of the hard scattering. The separation in transverse position is
invariant under a boost in the z direction, and is therefore 1/λ.

This therefore gives a scale for the drawings in Figs. 5.24(a) and (b), and for their
generalizations to higher-order graphs.

One caveat is needed. When λ becomes less than the quark and gluon masses, the
virtuality of the lines remains of order m2 instead of scaling down like λ2, so we should
really equip the estimate with a minimum:

�t ∼ Q

max(λ2,m2)
, (5.37)

from the pole separation value given in (5.23). Naturally, if both the quark and gluon have
zero mass, then the time scale goes to infinity as λ goes to zero; this corresponds to the
actual collinear divergence in the massless case.

5.5.4 Collinear region boosted from rest frame

We now consider a general case of a collinear subgraph, and more generally a non-
perturbative amplitude for a collinear subgraph, as in the lower bubble in Fig. 2.5(b)
for the parton model for DIS. We can regard a collinear subgraph or amplitude as being
obtained by a boost from its rest frame. We always define a collinear subgraph to include
all its attached collinear lines and the integral over all the small components of the collinear
momenta.

For scalar fields, a collinear subgraph is boost invariant. Thus the collinear subgraph
counts as Q0, and the power law for the whole graph is just that for the hard part of the
graph, i.e., 1/Q2 in our one-loop example, independent of the space-time dimension.

For a field with spin s, the biggest component of a matrix element of its field grows like
(Q/m)s under a boost to energy of order Q from a rest frame associated with mass m. This



5.5 Power-counting for vertex graph 117

gives enhancements that we now investigate. We will find them to be particularly notable
for the exchange of a field of the highest spin, i.e., for the gluon.

5.5.5 Yukawa theory, region RA

First we examine the on-shell electromagnetic vertex of a fermion in Yukawa theory. The
Dirac wave functions for a spin- 1

2 fermion grows like Q1/2 in the center-of-mass frame, so
the tree-graph amplitude grows like Q.

For the one-loop graph in the Yukawa theory in a collinear region, the boost argument
of Sec. 5.5.4 shows that the same Q1/2 growth applies to the whole collinear subgraph
(lines k and pA − k) as to the Dirac wave function. Thus the power of Q for the whole
graph in the RA region is given by the off-shell propagator i[−γ · (pB + k)+m]/[(pB +
k)2 −m2]. This now has dimension −1, so it contributes 1/Q, and we get a power
suppression.

From the overall numerator factor,
[
γ · (pA − k)+mq

]
γ μ

[− γ · (pB + k)+mq

]
, this

is not quite so obvious, since it contains two factors with momentum components of order
Q. These might compensate the 1/Q2 suppression from the pB + k denominator. But the
large part of the pA − k numerator can be eliminated by the equations of motion for a Dirac
spinor:

ūAγ−(p+A − k+) = (1− z)ūAγ−p+A = (1− z)ūA(m− γ+p−A ). (5.38)

The boost argument shows that this is part of a general result, not an accident of a one-loop
calculation.

5.5.6 Gauge theory, region RA

The situation changes when the exchanged line is for a vector field, as in QCD. The collinear
part of the graph is proportional to∫

d4k
ūAγ κ

[
γ · (pA − k)+mq

]
γ μ

(k2 −m2
g + i0)

[
(pA − k)2 −m2

q + i0
] . (5.39)

Under a boost, the κ = + component gains a factor of order Q relative to the size in a
Yukawa theory; this removes the 1/Q suppression from the off-shell pB + k line. The gluon
collinear region is therefore leading, independently of the space-time dimension. The same
leading power applies to any graph in which arbitrarily many gluons go from a collinear
subgraph to a hard subgraph. This immediately implies that substantial modifications are
needed to the derivation of even the elementary parton model. Instead of considering
graphs like Fig. 2.5(b), we must allow extra gluon exchanges to the hard subgraph, as in
Fig. 5.7(c).

The resulting complications are tamed, as we will see in later chapters, by noticing that
the enhancement is associated with the one component, κ = +, of the gluon field that scales
like Q/m under the boost to the collinear-to-A direction. In (5.27), the dominant part of
the gluon numerator is N+−. This dominance can be eliminated by a gauge transformation,
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e.g., by a suitable choice of axial gauge n · A = 0, for which the gluon numerator is

N
axial-gauge
κλ = −gκλ + kκnλ + nκkλ

k · n − kκkλn
2

(k · n)2
. (5.40)

If we choose n at rest in the center-of-mass, say n ∝ pA + pB , the all-important N+−
component is−k−k+n2/(k · n)2. It is readily checked that when k is a collinear momentum,
this is of order m2/Q2; the contribution of region RA in this gauge is thus suppressed by
two powers of Q.

Another common choice is the light-front gauge: n · A = A+ = 0; in that case N+− is
exactly zero. However, this gauge is not symmetric between pA and pB , so that it causes
difficulties in a general treatment. Even the non-light-like case, with n2 �= 0, is not adequate
for our later work, because the singularity at k · n = 0 breaks standard analyticity rules for
propagators that are needed in proofs of factorization; see Ch. 14.

Therefore we will generally stay in the Feynman gauge, with the implication that regions
with collinear gluon exchange, such as region RA, will be leading. However, the fact that
these regions can be made non-leading by a certain choice of gauge, implies that important
simplifications can be made by the use of Ward identities.

We can see the basic idea of the argument by the following chain of approximations for
the numerator. We consider a general situation in which one gluon connects a collinear-to-A
subgraph to a hard subgraph:

collinear-Aκ Nκλ hardλ � collinear-Aκ Nκ− hard−

= collinear-AκNκ−
1

k+
k+hard−

� collinear-Aκ Nκ−
1

k+
k · hard. (5.41)

All the approximations are accurate at the leading power of Q. In the first line, we replaced
the hard subgraph by its minus component, that dominates in the contraction with the
collinear-to-A subgraph. Then we multiplied and divided by k+, which allows us in the last
line to replace k+ . . . by k · . . . for the gluon connecting to the hard scattering, accurate to
the leading power of Q. Having k contracted with the hard subgraph is exactly of the form
to which a Ward identity applies. This method was obtained by generalizing the argument
of Grammer and Yennie (1973) that was devised for treating IR divergences in QED.

5.5.7 Effect of different degree of divergence

The above calculations exhibit some quite general phenomena in the estimation of the sizes
of the contributions of different regions. For each PSS, we parameterize the approach to
the PSS by a radial variable λ. The general structure of the momentum-space integrands
for Feynman graphs is of products of very simple rational functions. This generally gives
a power-law behavior in λ as λ→ 0, with a cutoff provided by masses.

Because the power-law dependence gives useful order-of-magnitude estimates all the
way from λ = 0 to λ = Q, we can now obtain some interesting relations between the power
laws for different regions. The basic general form of the size of the contribution from a
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region is

1

Qα

∫ Q

0

dλ λβ

�
(
λ2 +m2

)γ , (5.42)

where we now allow general exponents. Situations with nested leading regions often require
us to modify these estimates by logarithmic corrections from integrals over the angular
variables, but this will not change the basic power laws and exponents. See p. 115 for an
explanation of the � notation.

For order-of-magnitude estimates we have a power-law integral dλ λβ−2γ cutoff at the
lower end by mass effects. Let us define the infra-red degree of divergence in the massless
limit by � = 2γ − β − 1.

A common, but not universal, situation in QCD and other theories in four-dimensional
space-time is that we have a logarithmic divergence, � = 0. Then, as we have seen, the
total contribution has the same power 1/Qα as the contribution from the hard region, i.e.,
from λ ∼ Q, but there is a logarithmic enhancement. If the integrand is modified by a
logarithm, then the number of logarithms increases by one after integration, e.g.,

1

Qα

∫ Q

0

dλ λ2γ−1

�
(
λ2 +m2

)γ lnδ

(
Q

λ

)
= O

(
lnδ+1(Q/m)

Qα

)
. (5.43)

In this situation all scales between m and Q are important.
In contrast, if we have a power-law divergence � > 0, then the lower end of the integral,

λ ∼ m, dominates, and the power there is 1/Qα (times O(1/m�)). The power from the
hard region λ ∼ Q is weaker: 1/Qα+�. From a UV-centric point of view, we can say that
in this situation there are power-law enhancements as we go from large to small momenta.
Alternatively we can take an IR-centric view: momenta near the IR scale dominate, and
there is a convergent extrapolation of the integral to infinite λ. This situation is typical in a
model super-renormalizable QFT in a space-time of dimension less than 4.

The reverse holds if � is negative. In that case the hard region λ ∼ Q dominates and we
can legitimately neglect masses.

In all cases, the power law for the region for the PSS at λ = 0 is 1/Qα and the power for
the hard region is 1/Qα+�, with the proviso that we may have logarithmic enhancement(s)
associated with IR degree of divergence zero.

5.5.8 Soft-gluon region RS

For the soft-gluon region RS we integrate over a domain like that in Fig. 5.26(c) that
surrounds RS (a single point in this case). To parameterize the approach to RS , we use the
same scaling for all components of k:

kμ = λSk
μ
. (5.44)

Again the radial variable λS has the dimensions of mass and is specified by a (non-Lorentz-
covariant) function

λS = fS(kμ), (5.45)
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S

k0

kz

RA
RB

Fig. 5.28. Surface of fixed λS surrounding the soft PSS RS . In contrast to the collinear case,
Fig. 5.27, we have the same scaling on all components of k. The diagonal lines are the soft
ends of the PSSs RA and RB .

with an appropriate scaling property. We choose

fS(kμ) =
∑

μ

|kμ|. (5.46)

(Three-dimensional) surfaces of fixed λS surround the point k = 0, which is the PSS for
RS (Fig. 5.28). From (5.46), the angular variables are normalized to

∑
μ |k

μ| = 1.
Many interesting complications in perturbative QCD arise from soft gluons and their

couplings to collinear subgraphs. One is simply that soft gluon connected to collinear
subgraphs give leading-power contributions. As we will see in Sec. 5.5.10, another compli-
cation arises because soft loop momenta circulate through collinear subgraphs, so that the
power-counting for λS depends non-trivially on properties of the collinear subgraphs and
the relative sizes of the components of soft momenta.

We first derive a basic scaling argument for the integral near the PSS RS for the one-
loop vertex graph. It applies for generic values of the angular variables k, i.e., when any
considered combination of the components of k is of order unity. Later, in Sec. 5.5.10, we
will consider the relatively small Glauber region, where the argument needs to be changed.
For the generic case:

1. The integration measure is dλS λn−1
S dn−1k, which gives a power λn

S , where n is the
dimension of space-time.

2. The gluon denominator k2 −m2
g is λ2

Sk
2 −m2

g , i.e., its size is O(λ2
S +m2). In the

massless limit, or when mg is negligible, this is simply O(λ2
S). The gluon mass becomes

important when λS is around mg .
3. The lower quark denominator is

(pA − k)2 −m2
q = p2

A −m2
q − 2pA · kλS + λ2

Sk
2
. (5.47)

Since we treat all the components of k as comparable, the biggest k-dependent term
is −2p+Ak

−
λS , so that the denominator is O(λSQ+m2). In the massless limit, the

dominant term is −2p+Ak
−
λS , i.e., O(λSQ).

4. The upper antiquark denominator is treated similarly, with its dominant part in the
massless limit being 2p−B k

+
λS , also O(λSQ).
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As regards the massless limit, this gives an overall result of order∫
dλS λn−1

S

1

λ2
S

1

(λSQ)2
× numerator =

∫ ∼Q

0
dλS λn−5

S Q−2 × numerator. (5.48)

When we set n = 4, the physical space-time dimension, and restore the mass cutoff, we
find a logarithmic enhancement multiplying the explicit power 1/Q2.

The dependence on the spin of the soft line is rather interesting. The boost argument
of Sec. 5.5.4 shows that the numerator gains a factor of Q2s , where s is the spin of the
exchanged soft line. This is an enhancement relative to the power obtained for coupling the
collinear graphs to the hard subgraphs. Hence:

• For the case of both φ3 and Yukawa theory, the exchanged gluon is a scalar. There-
fore the explicit power 1/Q2 in (5.48) shows that the region RS gives a non-leading
power.

• For a vector gluon, the boost argument shows that the case κ = + and λ = − gives an
extra factor of Q2. So the soft region RS is leading, independently of the space-time
dimension n.

We have now seen that in a gauge theory all of the regions RA, RB , and RS for the vertex
graph are of leading power. In contrast, none is leading in theories without a gauge field.
The remaining regions RA′ and RB ′ are always non-leading. In the absence of a vector field,
only the hard region RH could be leading. Hence a large number of complications in the
parton physics of QCD result from QCD being a gauge theory.

5.5.9 Where are the vertices in space-time for the soft region?

Although the virtualities are different for soft and collinear lines (λ2
S and λSQ respectively),

both kinds of line give the same time scale 1/λS in the center-of-mass frame. This arises
from time dilation of the collinear lines, and can be deduced from (5.36).

When we work with more complicated regions, it is useful for the time scale to match
the one in (5.37) for the collinear region. So we define λ by λS = λ2/Q, so that

Soft: kμ = λ2

Q
k

μ
. (5.49)

Then the time scale is the same as for the collinear region, i.e., Q/λ2, to the extent that we
neglect masses. It is naturally appropriate to use the λ as a redefined radial variable for the
soft region.

The effect of masses is different for collinear and soft momenta. For the collinear case,
masses give a lower cutoff of m on λ. For the soft region, this also applies to the quark
mass. But the gluon mass implies a more stringent cutoff, at λ ∼ √

mgQ. So for the soft
region we replace (5.37) by

�t ∼ Q

max(λ2,mgQ,m2)
. (5.50)
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Of course this makes no difference if the gluon is massless. But in real QCD there is some
kind of non-perturbative infra-red cutoff due to confinement, so in real QCD physics mg in
the above equation should be replaced by �.

Even so, the two widely different scales of cutoff indicate that when we go to higher-
order diagrams there can be complications. It will turn out that most of these will be avoided
after we use Ward identities to sum over different ways of attaching soft lines to collinear
subgraphs. Moreover the non-perturbative cutoff does not apply directly to Feynman graphs,
so there will be some interesting issues in the leading regions and their interpretation in
Feynman graphs with massless gluons and massive quarks, that will involve us with regions
that are not really physical.

5.5.10 “Glauber” region

Just as with the collinear regions, there are certain parts of the integration over angular
variables k where denominators get much smaller than the estimates used above. Again we
need to investigate to what extent contour deformation can rescue them, but the conclusions
will now be less trivial. The necessary contour deformations work for some situations like
the vertex graph, but fail for others.

This issue does not concern only the determination of the power law associated with
the soft region. More importantly, it gives a danger of violating the Grammer-Yennie
approximation that is essential in deriving factorization, by allowing us to apply Ward
identities to the sum over soft gluon connections to collinear subgraphs. The approximation
is a simple generalization of (5.41):

(coll. A)κ Nκλ (coll. B)λ � (coll. A)+ N−+ (coll. B)−

� (coll. A) · k N−+

k+ k−
k · (coll. B). (5.51)

Here, our aim is a formula in which the gluon momentum k is contracted with each
collinear factor, so that we can apply Ward identities. The critical step is in the second
line, where we use the following approximations that are valid to the leading power of
Q if the components of k are not too much different: k · (coll. A) � k−(coll. A)+ and
(coll. B) · k � (coll. B)−k+.

When these approximations are valid, we will find that in our actual applications further
approximations of k in the collinear factors are useful and valid: to replace k inside the
collinear-B part by its plus component and to replace k inside the collinear-A part by its
minus component.

These approximations rely on all components of k being comparable. Thus one or more
of the approximations fails when k− and/or k+ gets too small with respect to the other
components. By examining the relative sizes of components of collinear momenta, we find
that the approximations are accurate under the following conditions:

m2

(p−B )2
�

∣∣∣∣k+k−
∣∣∣∣� (p+A )2

m2
, (5.52)∣∣∣∣k+kT

∣∣∣∣� m

p−B
,

∣∣∣∣k−kT

∣∣∣∣� m

p+A
. (5.53)
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The first line simply states that the rapidity of the gluon must be well inside the range
between the collinear rapidities, which is essentially the simplest definition of the soft
region. The conditions on the second line are that the longitudinal components of k should
not be too much smaller than the transverse momentum. Where the approximations and
standard power-counting hold for the soft region, we deduce that

∣∣k−k+∣∣� k2
T
m2

Q2
. (5.54)

We now ask when the conditions fail. If the failure is only of the conditions on the rapidity
of k, that simply takes us to one of the collinear regions; this does not concern us here since
we treat the collinear regions separately. However, a failure of (5.54) is problematic. When
this condition fails, we have |k+k−| � k2

T. This puts k in a region called the Glauber region
(Bodwin, Brodsky, and Lepage, 1981) in view of its importance in final-state interactions in
high-energy scattering. The same region was also termed the “Coulomb region” in Collins
and Sterman (1981).

In the case we are currently treating, the vertex function, we can perform a contour
deformation on either or both of k+ and k− to get out of the Glauber region. Consider
first the k+ integral in the Glauber region. We can neglect k+ compared with p+A in the
pA − k denominator; this is generally true when k is soft. We can also neglect k+ in the
gluon denominator, specifically because of the Glauber-region condition |k+k−| � k2

T. This
leaves the denominator (pB + k)2 −m2 + i0 � 2p−B k+ − k2

T + p2
B −m2 + i0, and we can

therefore deform k+ into the upper half plane. Similarly we can deform k− into the lower
half plane.

The limits of the deformation on k± are given by other poles, notably that of the gluon.
The deformed contour no longer goes through the Glauber region. So on the deformed
contour in the soft region, the standard power-counting and the Grammer-Yennie approx-
imation are valid. However, the denominators in the Grammer-Yennie approximation give
extra singularities at k+ = 0 and k− = 0, i.e., in the Glauber region close to the poles on
the quark propagators. Thus the denominators must be equipped with i0 prescriptions that
do not block the contour deformation:

(coll. A)κ Nκλ (coll. B)λ � (coll. A) · k 1

k− − i0
N−+

1

k+ + i0
k · (coll. B). (5.55)

In the previous paragraphs, there is a change of the kind of pole avoidance under
discussion compared with the earlier part of this chapter. Initially, we viewed momenta
relative to the large scale Q, and determined whether or not momentum components were
forced go through regions where they are much smaller than Q. Now we are examining a
soft momentum, of size λS � Q, and are determining whether or not its plus and/or minus
components are forced to go through regions where they are much smaller than λS .

Although we derived it only for the one-loop graph, the contour deformation applies
very generally to avoid the Glauber region in our process. Consider a general reduced
graph (Fig. 5.29) for the vertex, and let k be a momentum flowing down on a soft line
from the upper collinear graph B. We know that the flow of minus momentum in the B
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pApA

pB

k

Fig. 5.29. Reduced graph for vertex.

Fig. 5.30. Contour deformations out of Glauber region for (a) k+, (b) k−. The crosses near
the origin are final-state Glauber-region poles in collinear subgraphs. The crosses near the
edges are other poles that limit the contour deformation.

subgraph is all towards the future, from the hard subgraph H to the final-state particle
pB . There must be a sequence of lines in B that gets to the vertex with line k from H by
going forward with the flow of the minus component of momentum. We can choose to set
up k as a loop momentum that goes along these lines, and completes its loop through H

and A.
If k+ is small enough for k to be in the Glauber region, then the only important depen-

dence on k+ is in B. Since k goes with the flow of collinear minus momentum, all the
nearby poles are in the lower half plane, as in

1

(kB + k)2 −m2 + i0
� 1

2k−B k+ −D + i0
. (5.56)

Here kB is a generic collinear momentum on a line of subgraph B, and D does not depend
on k+. Thus the same contour deformation into the upper half plane works as for the
one-loop graph. A similar argument applies to a Glauber momentum attaching to the A

subgraph.
This situation is illustrated in Fig. 5.30, and we characterize it by saying that all singu-

larities in subgraphs A and B are in the final state; the lines in A and B all go out to the
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future from the hard scattering. To see a direct relation to a space-time picture, we simply
Fourier-transform (5.56) into coordinate space, with the soft-gluon approximation that only
the k+ dependence of the propagator is retained:

f (x) =
∫

d4k

(2π )4

e−ik·x

2k−B k+ −D + i0
� −i

2k−B
δ(x+)δ(2)(xT) θ (x−)e−ix−D/(2k−B ). (5.57)

When x− < 0, we get zero, because the integrand decreases rapidly to zero in the upper
half plane of k+, so that we can close the k+ contour in the upper half plane. But when
x− > 0 we close the contour in the lower half plane and pick up the residue of the pole.
More generally, for any function whose singularities in k+ are only in the lower half plane,
its Fourier transform is non-zero only for positive values of x−. This is so general a property
that the contour-deformation result applies beyond perturbation theory.

The delta functions in (5.57) show that, from the point of view of a soft gluon, the
collinear subgraph is a line going to the future in a light-like direction from the hard
scattering, so that the soft gluon does not resolve any internal structure of the collinear
system.

5.5.11 Soft-quark regions, RA′ and RB ′

The remaining PSSs for the one-loop vertex graph are RA′ and RB ′ where one of the
fermion lines is soft. Power-counting like that for the soft-gluon case, RS , gives a sup-
pression by at least one power of Q. Our general treatment, Sec. 5.8, will show that this
happens because one end of a soft-quark line is at the hard subgraph instead of a collinear
subgraph.

5.6 Which reactions have a pinch in the Glauber region?

For the vertex graph, the ability to deform out of the Glauber region is tied to the collinear
lines all being final-state lines. We now ask for situations in which we cannot perform
this deformation. This requires reactions in which both initial-state and final-state collinear
lines are present. See Ch. 14 for some of the resulting complications. The reduced-diagram
technique enables us to diagnose these cases very readily, and in fact we already have a
supply of interesting examples.

Reactions for hadron production in e+e− annihilation via a single virtual photon will
always have the hadrons in the final state. Hence these reactions are always safe from the
Glauber region.

For DIS (Figs. 5.13 and 5.14) the jets are always outgoing, so contour deformation out
of the Glauber region is possible for k−. Target-collinear lines can be in both the initial
and final state (Fig. 5.13(b)) so k+ is trapped. But to avoid the Glauber region, it turns out
to be sufficient that a deformation can be made on k− (Collins, 1998b; Collins and Metz,
2004). This applies equally to variations on DIS, like deeply virtual Compton scattering
and exclusive meson production in DIS.



126 Libby-Sterman analysis and power-counting

PB

PA

kB

kA

PB − kB

PA − kA

PB

PA

k

PB − kB − k

PA − kA + k

kB + k

kA − k

)b()a(

Fig. 5.31. (a) Simple Feynman graph for DY process. (b) The same with addition of a gluon
exchanged between the spectator lines; the gluon’s momentum is trapped in the Glauber
region.

5.6.1 Remnant-remnant interactions in Drell-Yan

The situation changes for the Drell-Yan (DY) process,5 since the initial state has two
oppositely moving hadrons, and the final state contains the beam remnants (Fig. 5.17).

Physically, what happens can be seen in the microscopic view of a scattering reaction
in Fig. 5.18. One parton out of each hadron collides at the short-distance hard interaction
indicated by the star. The transverse separation of these two active partons is of order
1/Q, corresponding to the scale of the hard collision. Inside the hadrons, partons are
spread out over a transverse area proportional to r2, where r � 1 fm is the size of a
hadron. The transverse area is not changed under a boost. The probability that a pair of
partons is within 1/Q of each other in the transverse direction is therefore proportional
to 1/(Qr)2, which corresponds to a hard-scattering cross section decreasing with 1/Q2 at
large Q.

But when the active partons collide, the remnants of the two hadrons overlap, and can
therefore interact. Remnant-remnant interactions of small momentum transfer occur with
high probability, since such hadronic interactions are strong. One direct manifestation is
that the total hadron-hadron cross section is of order r2 (Amsler et al., 2008). Thus we
know experimentally that interactions happen with high probability whenever the impact
parameter of a pair of hadrons is less than about r . The strong remnant interactions involve
momentum exchanges in the Glauber region.

5.6.2 Glauber pinch in momentum space

We now verify from an example that spectator-spectator interactions are trapped in the
Glauber region for the Drell-Yan process, and that they give a leading power. In Fig. 5.31
are shown two graphs for the Drell-Yan amplitude when the beam particles are modeled by
elementary particles. In both graphs, each beam particle splits into a quark-antiquark pair.
A quark out of one beam annihilates with an antiquark out of the other to make a high-mass

5 And generally for hard processes in hadron-hadron collisions.
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virtual photon. Graph (a) gives an example of pure parton-model physics, but graph (b) has
a gluon exchanged between the beam remnants, and I will show that the gluon is trapped
in the Glauber region.

The value of graph (a) is

−ūB �B

−/kB +m

k2
B −m2 + i0

γ μ
/kA +m

kA −m2 + i0
�A vA. (5.58)

Here uB and vA are the Dirac wave functions for the final-state fermions. The matrices �B

and �A give the coupling between the beam particles and quarks. We choose the kinematic
region where the fermions are prototypically collinear, with transverse momenta of order m,
as is appropriate for the parton model. The large components of kB and kA are determined
by the virtual photon momentum (5.15), so that

kA = (xAP+A , 0, 0T)+ (O(m2/Q),O(m2/Q),O(m)
)
, (5.59)

kB = (0, xBP−B , 0T)+ (O(m2/Q),O(m2/Q),O(m)
)
. (5.60)

Graph (b) gives

ig2
∫

d4k

(2π )4

1

k2 −m2
g + i0

ūB γ−
/P B − /kB − /k +m

(PB − kB − k)2 −m2 + i0

×�B

−/kB − /k +m

(kB + k)2 −m2 + i0
γ μ

/kA − /k +m

(kA − k)2 −m2 + i0

×�A

− /P A + /kA − /k +m

(PA − kA + k)2 −m2 + i0
γ+ vA, (5.61)

where the gluon couplings are replaced by their dominant minus and plus components.
The gluon has transverse momentum of order the usual radial variable λS for the soft
PSS, and the most characteristic value to model non-perturbative hadronic interactions is
λS ∼ m.

We first make approximations that are always valid when the gluon is soft, independently
of whether it is in the Glauber subregion. So we neglect k− with respect to k−B in the
collinear-to-B denominators, and similarly for k+ in the collinear-to-A denominators. Thus

(kB + k)2 −m2 + i0 � 2(k+ + k+B )k−B − (kT + kB T)2 −m2 + i0

= 2k+k−B + k2
B −m2 − 2kT · kB T − k2

T + i0

= 2k+k−B +O(m2,mλS, λ
2
S)+ i0. (5.62)

This approximation needs the assumption that all components of k are much less than Q,
but it needs no assumption on the relative sizes of the components.

If k were in the generic part of the soft region we could further approximate by noting
that k+k−B would be of order λSQ, so that

(kB + k)2 −m2 + i0 � 2k+k−B + k2
B −m2 + i0. (k not Glauber) (5.63)

But this further approximation fails in the Glauber region, |k+k−| � k2
T.
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The relevant part of the integral (5.61) now becomes∫
dk+ dk−

(2π )2

numerator

2k+k− − k2
T −m2

g + i0

× 1

[−2k+(P−B − k−B )+ . . .+ i0] [2k+k−B + . . .+ i0]

× 1

[−2k−k+A + . . .+ i0] [2k−(P+A − k+A )+ . . .+ i0]
,

(5.64)

where the terms indicated by “. . .” are independent of k+ and k−, and are of order
m2,mλS, λ

2
S . In the Glauber region, |k+k−| � |kT|2, only the poles on the collinear

lines are relevant. We see immediately that k+ and k− are trapped there, with k± =
O(m2,mλS, λ

2
S)/Q, to be compared to kT = O(λS).

The dominant contribution is in fact where λS = O(m). Smaller values are cut off by
the gluon mass, while there are enough powers of k2

T in the denominators to suppress larger
values, given our assumption about the collinear kinematics of kA and kB .

The asymmetric sizes, k± = O(m2/Q) and kT = O(m), correspond to the momentum
exchanged in small-angle elastic scattering. They are therefore natural values for spectator-
spectator interactions. The sizes of k± correspond to the small components of collinear
momenta.

To obtain the power law in Q, we compute the size of the graph compared with the basic
graph, Fig. 5.31(a). The extra Glauber gluon brings in the following powers:

• integration measure: m6/Q2, from the sizes of k± and kT;
• three denominators each of order 1/m2;
• a numerator of order Q2 because the gluon is a vector particle.

This is independent of Q, with the numerator canceling the small range of k±. If the
space-time dimension is changed from n = 4, we still get the same power of Q. The basic
graph, Fig. 5.31(a), has the power-counting of the parton model, which we use to define
the leading power for the process. Therefore, there is an unsuppressed contribution from
Glauber corrections. This result is unchanged if we make the collinear subgraphs arbitrarily
complicated.

5.6.3 Generalized Landau-equation analysis for Glauber region

The actual integrals for Feynman graphs are in a high dimension. So, as in the elementary
association between regions and massless PSSs, one can ask whether there is a possibility of
an unforeseen exotic deformation in the high-dimensional complex space, and one can ask
for a general characterization of Glauber regions. In a one-loop example, it was sufficient
to visualize the relevant one-dimensional contour integrals. I now give an appropriate
argument, generalized from the Libby-Sterman method.

In the first part of this chapter, we scaled all momentum components with Q. From this,
we showed that integration momenta are trapped at small virtualities in the vicinity of exact
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PSSs in the massless limit. The Landau method determined the locations of the PSSs quite
generally.

To determine the existence or non-existence of a Glauber pinch, we generalize this
strategy. We devise a scaling such that a trapping in a Glauber region corresponds to an
exact pinch in a certain limit. Then we use a variation of the Landau analysis to locate the
exact pinches systematically.

First I show that an exact Glauber pinch occurs when we replace the collinear denom-
inators by just the terms of the form that are the non-dotted terms in (5.64). These terms
are given by taking the asymptotics of large Q while holding the overall size of the soft
momentum fixed at order λS , and treating the collinear scaling factor as λS . (Thus the
transverse parts of collinear momenta are treated as order λS .) For this limit we also require
that λS is of order m or bigger. Asymptotically, the propagator of the soft line remains
unaltered, but the collinear denominators are simplified, so that they are just a factor of k+

or k− times a large component of the collinear momentum, e.g.,

1

k2 −m2
g + i0

× 1

[−2k+(P−B − k−B )+ i0] [2k+k−B + i0]

× 1

[−2k−k+A + i0] [2k−(P+A − k+A )+ i0]
. (5.65)

The trapping of k± at k± � λS has now become an exact pinch at k± = 0. The on-shell
condition for the collinear-to-B propagators is k+ = 0, and for the collinear-to-A propa-
gators is k− = 0. In the chosen scaling limit, the on-shell conditions apply independently
of kT, which represents a significant change from the standard Landau analysis. At the
singularities, at k+ = 0 and/or k− = 0, the gluon denominator is non-zero, so the gluon
line counts as part of a vertex of a reduced graph for this analysis: it is a hard subgraph
relative to the collinear propagators.

To determine allowed directions of contour deformation, we need derivatives of the
collinear propagators, as in (5.25). The derivatives of the collinear denominators are now
exactly light-like directions. In space-time, these correspond to propagation along a light-
like line, as in (5.57). For example, the collinear-to-B lines give

∂D(PB − kB − k)

∂kμ
−→

⎛
⎝−2(P−B − k−B )

0
0T

⎞
⎠ , (5.66)

∂D(kB + k)

∂kμ
−→

⎛
⎝2k−B

0
0T

⎞
⎠ . (5.67)

We have used column vectors for the derivatives, to distinguish them from the row vec-
tors we use for normal contravariant momentum vectors. In the asymptotic limit these
vectors are opposite in direction, so that when we apply a contour deformation, as in
(5.24), the imaginary parts generated by the deformation are opposite; the deformation
fails.
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Applying this analysis in general shows that the general Glauber-pinch configuration
is like having one or more extra hard scatterings (of the spectator collinear lines). The
condition for a classical scattering applies, and the only change with respect to the standard
hard-scattering case is the much lower momentum transfer.

5.7 Coordinates for a PSS

We now resume our general analysis. So far, we have used the Landau-equation/reduced-
diagram method to locate PSSs; this led to a catalog of important momentum regions. We
next formalize and systematize the variables we use for a general treatment, after giving a
general characterization of the class of problems we address.

For each PSS R we will define “intrinsic coordinates”, which parameterize location
on the PSS itself, and normal coordinates, which parameterize deviations off the PSS.
The normal coordinates are required to be zero on the PSS. From the normal coordinates, we
will define a radial coordinate λR , with the dimensions of mass, to give a notion of distance
from the PSS. Then we will define what we term angular coordinates to parameterize
surfaces of fixed λR surrounding the PSS.

This gives us a language, which lets us perform power-counting in Sec. 5.8, to determine
which PSSs are leading. These results then support all the later work in this book.

For any of the reactions that we discuss, there is an intimidating multiplicity of regions,
and this comes from a genuine complexity: there are infinitely many graphs, and high-order
graphs have high-dimensional loop integrations, with a large number of leading regions. In
QCD, unadorned low-order perturbative calculations are not adequate for estimating cross
sections, except in very few cases, as in Ch. 4. So, to get a useful and productive analysis
of the behavior of some amplitude or cross section, we need general methods that do not
require detailed analysis of individual graphs.6

The general strategy is essentially a recursive divide-and-conquer. We discuss each
leading region separately, and arrange to analyze it in terms of diagrammatic decompositions
such as Fig. 5.17. By our choice of coordinates, the analysis of a general region can be
visualized by a diagram that appeared in one of our examples, Fig. 5.28. At the end, it will
(perhaps) be evident that there are structures here that go beyond the perturbatively based
situations in which we derive them.

5.7.1 Relations between regions

The key elements of a general discussion are the geometrical and topological relations
between different regions, as in (5.21) and in Fig. 5.28. We take a particular point on some
PSS R for a graph, and examine a neighborhood, parameterized by a radial variable λR .

• Some propagators are off-shell at the PSS. For these, the effect of varying λR is suppressed
by a power of λR/Q, and the denominators have a fixed order of magnitude.

• Denominators of the other propagators go to zero when λR and masses go to zero.

6 But motivations can be obtained by analyzing suitable low-order graphs.
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z

R

Fig. 5.32. Representation of line/surface of constant λ surrounding a PSS R at a particular
value of the intrinsic coordinate(s), together with the relation to bigger and smaller PSSs.
See the text for details.

• At a generic point around a surface of fixed λR , we perform elementary power-counting
for the order of magnitude of the graph at R.

• But close to certain submanifolds of a fixed λR surface, some denominators get much
smaller than the power-counting estimate. The location of these submanifolds will be
obtained in Sec. 5.10 by iterating the Libby-Sterman analysis. With certain exceptions,
each such submanifold corresponds to the intersection of the surface of fixed λ with the
PSS for another region R′ larger than the first one.

The general situation is illustrated in Fig. 5.32. The thick vertical line represents the
PSS R, and there may be smaller PSSs, represented by the dots at the ends of R. There
may be one or more larger PSSs, exemplified by the shaded plane at the left of the figure.
Surrounding R, at a fixed value of the intrinsic coordinate(s), is a line of constant λR .
The integration contour, and therefore Fig. 5.32, is deformed in the space of complex
momenta to avoid non-pinch singularities.

In the figure the dimension of R is one, while the dimensions of the smaller and
larger PSSs are zero and two. But in general, R may have any dimension from zero for
a soft-gluon region in a one-loop vertex to a very high dimension in a multiloop graph,
with appropriate ranges for the smaller and bigger PSSs.

• There are exceptions to the rule that, in the integration over angular variables, intersec-
tions with larger PSSs determine the locations where the integrand gets much smaller than
the standard for R. These are typified by the Glauber region we met in Secs. 5.5.10 and
5.6. In processes without a Glauber pinch, we do not have to worry about the exceptions.

• After the intrinsic coordinates for R are integrated over, the integration includes smaller
PSSs, and we need to mesh the analysis of R with the analysis of the smaller PSSs.

• Factorization theorems generalizing the parton model are obtained by expanding in
powers of λR about a PSS, and then (typically) taking the leading power. The previous
items will tell us how to modify this analysis to deal with multiple regions.

5.7.2 Formulation of problem

We denote by G(p1, . . . pn; q1, . . . ; m,μ, as(μ)) the Green function, amplitude or cross
section to be treated. It depends on external momenta p1, p2, . . . ; q1, . . . We divide these
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into two classes, to be defined below, distinguished by the letters p and q. This gener-
alizes the usage in DIS, where p is the target momentum and q is the virtual photon
momentum.

The asymptotic behavior to be treated is specified by a scalar variable Q that gets large.
We work in a particular frame like the center-of-mass frame for the DY process, or the Breit
frame for DIS. We call this the reference frame for the process. In this frame all the external
momenta have some components of order Q. The pj momenta have fixed masses, while
the qj momenta have invariant sizes of order Q2. [Here we mean �(Q2) in the notation
of App. A.17.] The qj s are typically fixed vectors proportional to Q, or are obtained from
such a vector by at most a finite, bounded boost from the reference frame. We also rule out
the trivial but irrelevant case of giving a common large boost to a set of fixed momenta pj .
A Lorentz-invariant characterization is as follows.

1. Define scaled momenta by p̃
μ
i = p

μ
i /Q, q̃

μ
i = q

μ
i /Q.

2. We take Q large (i.e., much larger than particle masses) with each of the scaled external
momenta smoothly approaching a fixed limit as Q→∞.

3. The limit of each p̃i is a light-like vector, and the limit of each q̃i is a non-light-like
vector.

4. From the light-like limit vectors, we construct a set of unscaled light-like momenta
pA,∞, pB,∞, etc., as in our examples, e.g., pA,∞ = Q limQ→∞ p̃A. Associated with each
collinear subgraph is one such light-like momentum, which we will call the reference
momentum for the subgraph. At the PSS, the momenta of the lines of the collinear
subgraph are proportional to its reference momentum.

5. At least one of the Lorentz invariants qi · qj , qi · pj , and pi · pj increases like Q2 as
Q→∞; none increases more rapidly.

Since this is intended to be a universal characterization, the following caveats apply.

• Some of the limiting light-like vectors may be proportional to each other. This is the
case, for example, for the momenta p and p′ in the DVCS process. So we just pick one
of these to be in the set of pA,∞, etc.

• Certain minor variations on the theme are also covered; for example:
– In the Drell-Yan cross section, the transverse momentum may range from very small

to order Q; it may also be integrated over. The key point for the asymptotic analysis
is that the invariants q2, pA · q, pB · q, and pA · pB are all of order Q2.

– Some quark and hadron masses may be large, of order Q or bigger.
• There may be no need for the qj momenta. This is the case for high-energy elastic

scattering at wide angle, where the momenta of the external particles are sufficient to
specify the process. The previously stated principles tell us to define Q = √s, up to
some constant factor.

• We take G to be connected. A disconnected amplitude can always be discussed in terms
of its connected components.

A more serious complication is when the invariants have a range of sizes. A typical
and important case is DIS at small x, when p · q ∝ Q2/x � Q2. Another case would be
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high-energy elastic scattering at small angle, where |t | � s. A complete discussion of such
situations requires a generalization of our analysis.

5.7.3 Intrinsic and normal coordinates

We now show how to define intrinsic and normal coordinates for a PSS. These generalize
our earlier examples.

For the collinear-to-A PSS of the vertex graph, we used z = k+/p+A as the sole intrinsic
coordinate, in (5.18), with k− and kT as the normal coordinates. The smallest PSSs, RS ,
RA′ and RB ′ , were just points. Thus they had no intrinsic coordinates, while suitable normal
coordinates were 4-momentum deviations from the PSS, e.g., k for RS .

Naturally, the choice for these coordinates is non-unique. But certain general guidelines
apply. Each coordinate system is particularly useful in a neighborhood of its own PSS. But
it must apply to the whole of loop-momentum space, or at the very least to a large region of
size of order Q including the PSS. The transformation from the local coordinates around
the PSS to ordinary momentum variables must be analytic, certainly near the PSS and its
smaller PSSs. The intrinsic coordinates extend uniquely beyond the boundaries of their
PSS. Without this requirement, artificial coordinate singularities would complicate all our
discussions.

Each line in a reduced diagram for a PSS in a massless theory has a momentum parallel
to one of the light-like limit momenta, or is zero. For the collinear lines we choose intrinsic
coordinates as fractional momenta, each with respect to the light-like limit momentum,
e.g., pA,∞, of its collinear subgraph. The remaining intrinsic variables are the hard loop
momenta. Now each PSS is a segment of a flat hyperplane in loop-momentum space.
So with the definitions just given, the intrinsic coordinates of a PSS extend simply and
naturally to the whole of the hyperplanes, beyond the boundaries of the regions where
there is a pinch. Similarly we take the normal coordinates to be ordinary linear coordinates
in momentum space. Thus there is a unique natural extension of the coordinates to the
whole of loop-momentum space. (Our treatment of collinear regions for the vertex graph
illustrated this.)

5.7.4 Radial coordinates

We obtain the power-counting for a PSS from the integral over a radial coordinate λ,
for which we now present a suitable definition. We choose λ to have the dimensions of
mass.

To make the definition, we split the normal coordinates into two sets. One set consists of
soft loop momenta circulating through soft and possibly some collinear and hard subgraphs.
The other set consists of collinear loop momenta each circulating through a particular
collinear subgraph and possibly through hard subgraph(s).

We will write each individual normal component as a power of λ times a dimensionless
angular variable and a possible Q-dependent normalizing factor, as in (5.29) and (5.49),
with a chosen normalization condition on the angular variables.
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General collinear momenta

We specify the scalings for a collinear momentum exactly as for a collinear region for
the vertex graph, but we need to define a light-front coordinate system separately for each
collinear subgraph.

Let k be a collinear momentum in a particular collinear subgraph, and let p∞ be the light-
like reference momentum for the subgraph. We define time and spatial parts of vectors in the
reference frame (e.g., center-of-mass) of the process as a whole. Plus and minus coordinates
relative to p∞ are

k± def= 1√
2

(k0 ± n · k). (5.68)

Here n is a unit vector for the spatial direction of p∞. Then the transverse momentum is

kT
def= k − k+√

2
(1, n)− k−√

2
(1,−n), (5.69)

where the representations of vectors are in normal time-space coordinates, in the reference
frame.

Then the scalings of k are defined by exactly (5.29), with p+A replaced by p+∞ ∝ Q; that
is, a scaling with λ2 for k− and a scaling λ for kT.

Note that a covariant specification of the plus and minus coordinates needs two 4-vectors.
In effect, we have taken these as the light-like reference vector for the collinear subgraph,
and the rest vector of the overall reference frame for the process.

Soft momenta

As in Sec. 5.5.9, we define the scaling for soft momenta by

kS = λ2

Q
kS. (5.70)

Thus the power-counting of a soft momentum flowing through a collinear subgraph is the
same as the smallest component of a collinear momentum, and the time scales of the soft
and collinear lines are the same.

Normalization condition

A possible normalization condition on the angular variables is∑
collinear k

(
|k−| + |kT|2

)
+
∑
soft k

∑
μ

|kμ|, (5.71)

which generalizes (5.31) and (5.46), with suitable homogeneity properties under rescaling
of λ.

5.8 Power-counting

A basic issue in analyzing processes of the kind described in Sec. 5.7.2 is to understand the
general size of the cross section or amplitude. The primary complication is that propagator
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denominators vary widely in size in the integration over loop momenta. To handle this
issue, we use the language of PSSs in the massless theory.

In this section, for each PSS R, we categorize by a power of Q the contribution from
integration over a neighborhood of R. We will identify those PSSs that give the leading
power for the processes we consider. For deriving factorization, we normally only retain
the leading power, e.g., for DIS the power Q0, which corresponds to Bjorken scaling. The
restriction to the leading power is important because PSSs with a non-leading power often
have a much more complicated structure than those for the leading power.

In deriving the power laws, we will see that logarithmic enhancements arise from
integrations between different nested regions. But logarithms do not affect the utility of
dropping non-leading power terms.

The derivation involves estimates of the sizes of propagator denominators near a PSS.
In later chapters a consequence will be the construction of an appropriate approximation
for each leading PSS. These approximations enable the derivation of useful factorization
theorems.

We will vary terminology between “PSS” and “region”. Precise formulations use PSSs
in the massless theory. But we talk about a region, rather than the associated PSS, when we
wish to emphasize, for example, that the associated power of Q concerns the contribution
from a neighborhood of the PSS in the real theory.

The present formulation originates in the work of Sterman (1996), but with improve-
ments, closely following the treatment of Collins, Frankfurt, and Strikman (1997). This
treatment relies on general properties of dimensional analysis and of Lorentz transforma-
tions rather than on a detailed analysis of the numbers of loops, lines and vertices of graphs
and subgraphs. Using such general properties, in particular the transformation of collinear
subgraphs under large boosts, gives the results a validity beyond strict perturbation theory.
Although much of the treatment concerns Feynman graphs, the collinear and soft factors
should really be non-perturbative.

Much earlier work used an axial gauge (e.g., A0 = 0, A3 = 0, or A+ = 0) or the Coulomb
gauge. However, the unphysical singularities in the gluon propagator for such “physical
gauges” prevent us from using contour deformation arguments. Thus we prefer to work in a
covariant gauge – see the discussion of the Glauber region in Sec. 5.5.10, where unphysical
singularities in physical gauges would have obstructed a contour deformation out of the
Glauber region.

Therefore we normally use a covariant gauge, like the Feynman gauge. The price is that
leading regions (e.g., Fig. 5.7(c) for DIS) have arbitrarily many extra gluons joining the
collinear and hard subgraphs. But these gluons have a particular “scalar” polarization for
which Ward identities apply to convert the sum over all possibilities to a factorized form.

5.8.1 Comments on power of Q and dimensions

A danger in formulating general results is that one misses nuances of particular cases.
Consider the simplest general statement of the leading power of Q, that it corresponds
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Fig. 5.33. Elementary contribution to Drell-Yan with single spectator.

to the dimension of the cross section or amplitude under consideration, as in (5.5). This
rule is indeed correct for the DIS structure functions F1 or F2, with their power Q0 that
corresponds to Bjorken scaling. But modifications are needed for certain other cases. For
example, in Sec. 5.8.2 we will find that a different power is needed for the Drell-Yan cross
section, in the case that the transverse momentum qT is much less than Q.

The culprit is a delta function for transverse-momentum conservation. Essentially the
derivations of power-counting are at their most straightforward when applied to ordinary
functions, not to delta functions.

In general, a reliable strategy for dealing with such issues is to start by analyzing very
simple graphs for the process under consideration, e.g., graphs such as Fig. 5.20 that gives
the parton model for the Drell-Yan process, or, better still, just the lowest-order case,
Fig. 5.33. A general region for the process can have more-complicated region subgraphs,
and can have more lines joining the subgraphs. The changes relative to the simplest graph are
robustly handled by our general derivation of the power-counting rules, in later sections.
It is just the most basic situation that needs to be treated in a more process-specific
fashion.

5.8.2 Power-counting for DY

To see these issues concretely, consider the fully differential cross section for the Drell-
Yan process (5.14). This can be written as dσ / d4q d�, where q is the momentum of the
lepton pair and d� is for the polar angles θ and φ that give the directions of the individual
leptons. Since the lepton pair results from a single virtual photon, the angular distribution
is a second-order polynomial in the sine and cosine of the polar angles; thus no special
issues arise that depend on different regions of θ and φ. The cross section has an energy
dimension of−6, and the natural power law is Q−6, where Q is the mass of the lepton pair
Q =

√
q2, assumed to be comparable with the center-of-mass energy.

This power law is in fact correct when the transverse momentum qT of the lepton pair is
comparable with Q. But I will now illustrate, by examining graphs of the form of Fig. 5.33,
that when qT is much smaller than Q, the power law must be changed to the much bigger
value 1/(Q4q2

T). This power is cut off by the effects of hadronic masses when qT is of order
a hadronic mass.
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Let us write the graph as∫
d4kA d4kB B(kB, PB ) A(kA, PA) H (kA, kB, q) δ(4)(q − kA − kB), (5.72)

where A and B represent the upper and lower bubbles, while H represents the product of
the amplitudes for the qq̄ → μ+μ− amplitude. Initially, we assume that the initial particles
PA and PB are elementary, and for the purposes of understanding the power-counting it is
sufficient to take the subgraphs A and B to be the simplest tree graphs, as in Fig. 5.33.

We must now investigate the following regions for Fig. 5.33, which can be distinguished
by the values of the transverse components of the loop momenta:

• the purely hard region, where the whole graph forms the hard subgraph, so that both kA T

and kB T are of order Q;
• the single-collinear regions where only one transverse momentum is of order Q; the

other is power-counted as order λ� Q;
• the double-collinear region, where both kA T and kB T are much less than Q; they are both

counted as order λ.

In the purely hard region, dimensional analysis applies unambiguously to give the basic
1/Q6 power. There are delta functions in A and B to put the spectator particles on-shell.
But these set the sizes of momentum components that are of order Q, and the dimensional
analysis argument still works. In this region of loop momenta, the 1/Q6 power law applies
independently of the value of the external transverse momentum qT. The hadronic final
state contains two jets of high transverse momentum, corresponding to the remnant partons,
which have large transverse momentum.

Next, consider a single-collinear region; for definiteness let us choose kA to be collinear
to PA, so that kA T is of order λ. The other transverse momentum kB T is large and must
therefore flow out into the virtual photon. Hence this region only exists when the lepton pair
has transverse momentum of order Q. This large transverse momentum is approximately
balanced by a final-state jet formed by a remnant parton on the B side.

We can think of the collinear subgraph as having an approximate rest frame in which
all components of its momenta are of order λ. Given that parton A is a quark, the collinear
subgraph has dimension −3; the measure of the kA integral has dimension +4, for a total
dimension of +1. This corresponds to a power λ, instead of a power Q which we would
obtain for the same subgraph in the purely hard region. But the subgraph is boosted from its
rest frame. Each of the lines connecting it to the hard subgraph has spin- 1

2 , so that largest
components of the spinors on each line gain a factor of (Q/λ)1/2 from the boost, for a
total of Q/λ. Thus the complete power law is (λ/Q)0 relative to the purely hard case; that
is, the overall power remains unchanged. Thus we still get the overall power Q−6 for a
single-collinear region, but this region only exists for the large-qT region.

It is worth noting that although the detailed argument depends on the spin of the quark,
the power law does not. If we were to use a model with a scalar quark, then there would be
no Q/λ enhancement from the boost, but the collinear subgraph, complete with its integral,
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has dimension 0. So the overall power is unchanged. The same argument applies to gluons
with transverse polarization. But a virtual gluon can also have a polarization in the direction
of the large momentum, and boosting each of two gluons gives an enhancement by a factor
(Q/λ)2. But a Ward-identity argument will show that this part cancels after a sum over all
possible hard subgraphs: see Ch. 11 for the simplest such derivation.

Finally, we examine the double-collinear region. The virtual photon has transverse
momentum kA T + kB T, which is of order λ. The separate collinear subgraphs give an
unchanged power of Q just as in the single-collinear region. However, in the delta function
for transverse momentum conservation, δ(2)(qT − kA T − kB T), all the momenta are of order
λ. So the delta function power counts as 1/λ2 instead of 1/Q2. As previously announced,
the result is an enhanced overall power of 1/(Q4q2

T) instead of 1/Q6.
The phenomenological result is a strong enhancement at small qT, as we will see in

the data in Fig. 14.13. Evolution effects, to be treated in Chs. 13 and 14, will strongly
modify the actual power law, so the power law just derived has exact applicability only for
individual graphs. Of course the decrease is cut off at small enough λ that mass effects need
to be taken into account.

We made an initial assumption, for simplicity, that the initial-state particles are elemen-
tary. But the dimensional-analysis argument applies to the collinear subgraphs even when
the initial particles are composite. So we get the same power laws when the initial-state
particles are normal hadrons, which entails the use of bound-state wave functions.

It is also useful to examine the cross section integrated over the transverse momentum
qT of the pair and also over the angle of the leptons, to give dσ / dQ2 dy, where y is the
rapidity of the lepton pair relative to the center-of-mass. In the small-qT region, a factor
λ2 arises from the integration measure d2qT, which compensates the 1/λ2 factor in the
differential cross section. Hence the integrated cross section power counts as Q−4 in all
regions. Naturally there is a logarithmic enhancement from the integral to small transverse
momentum, which leaves the power law itself unchanged.

We can summarize the source of the enhancement in the differential cross section at
small qT as being in the creation of virtual photon from two oppositely moving collinear
partons, without production of extra jets. Technically the enhancement is associated with
the transverse-momentum delta function in this situation, so that the collinear transverse-
momentum integrals are linked. In regions with production of jets of high transverse
momentum, as in Fig. 5.19, there is no enhancement. We therefore see a simplification
of the leading regions relative to the case that qT is of order Q. In compensation, the
linking of the collinear transverse-momentum integrals introduces some very interesting
extra features in the derivation and formulation of factorization, as we will see in Chs. 13
and 14.

5.8.3 Powers of Q and λ

We consider a generic point in the intrinsic variable(s) z, and examine the integral over the
radial variable λ. There is an angular integral, represented by the ellipse in Fig. 5.32. Over
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most of the angular integration, the sizes of the denominators (with masses neglected for
now) obey the standard power-counting, Sec. 5.5.8:

Hard: Q2,

Collinear: λ2,

Soft: λ4/Q2 = λ2
S.

(5.73)

These sizes are not exceeded. Much smaller values may be obtained, but only close to
certain submanifolds of the intrinsic variables or of the angular integration. These are
where z gets close to the PSS for a smaller region than or where the angular variables get
close to a larger region: Sec. 5.10.

Our basic strategy is to use dimensional analysis to convert these estimates for single
lines to estimates for the whole hard, collinear and soft subgraphs. This is supplemented
by factors implementing boosts of collinear subgraphs from their rest frame: these produce
enhancements that increase with the spin of the lines connecting the collinear to hard and
soft subgraphs.

For small λ all the denominators participating in the PSS R get small. For large λ ∼ Q,
they all become hard, i.e., they all have virtualities of order Q2. (Of course, this is holds
except for neighborhoods of PSSs R′ that are bigger than R. In neighborhoods of these,
some denominators remain small. But this happens only in a small part of the angular
integration.)

To obtain the power of Q for a region, we start from an estimate of the λ-dependent part
of the integral in the form

Qp1

∫ O(Q)

0

dλ

λ
λp2 , (5.74)

or some variation thereof, with the exponents p1 and p2 to be determined. At small λ, we
should cut off the integral by the effects of masses, and at large λ we get to a purely hard
region when λ ∼ Q. We distinguish three different cases:

• The power of λ is zero: p2 = 0. Then the integral is logarithmic and each order of
magnitude in λ contributes equally. The resulting Q dependence is Qp1 modified by
logarithms, a very typical situation in QCD.

• The power of λ is negative. Then the integral would have a power-law divergence
at λ = 0 were it not for mass effects. The physical result is therefore dominated by
small λ, and we must examine the cutoff provided by masses. If the dominant cutoff
is on collinear lines, then it is at λ ∼ m, and the power law is still Qp1 . If the dom-
inant cutoff is on soft lines, then the cutoff on λ is

√
mQ, and the power of Q is

Qp1+p2/2.
• The power of λ is positive. Then the integral is dominated by its upper end, λ ∼ Q,

i.e., by a hard region rather than R. The power of Q for this hard region is Qp1+p2 .
The contribution of the region R for a particular size of λ is of order Qp1λp2 , which is
a power of Q less than the contribution of the hard region. Thus the region R itself is
non-leading.
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5.8.4 Overall form of power law

We now derive the power law for a general PSS R in the form

Qp

(
λ

Q

)α(R)(
λS

Q

)β(R)(
m

Q

)s.r.(H )(
m

λ

)s.r.(C)(
m

λS

)s.r.(S)

. (5.75)

The first factor is the characteristic power of Q for the process, e.g., the dimensional-
analysis power for the Sudakov form factor or for DIS. As such, it is independent of the
particular PSS R. The exponents in the second and third factors indicate how the power
is modified by collinear and soft subgraphs. We will obtain formulae for the exponents in
terms of the numbers of external lines of the various subgraphs defining the process and
the regions.

The last three factors arise if there are super-renormalizable couplings in the theory.
Although super-renormalizable couplings do not exist in QCD, it is useful to work with
models with extra couplings. First, they allow us to see the result for a general QFT. Second,
they do arise when we dimensionally regulate QCD. Finally, they help to give insight into
the physical phenomena associated with the power-counting theorems. Furthermore, some
equivalents of super-renormalizable couplings occur when external particles are bound
states and collinear subgraphs contain their wave functions.

The above power law is intended to apply when we integrate over λ of some order
of magnitude. Similarly, we assume that we have integrated over a range of the intrinsic
variables that is of order their typical size, all the while staying away from smaller PSSs.
Notice that, to let us easily read off the different effects of masses in the collinear and
soft subgraphs, we wrote some factors in terms of λ and some in terms of the soft scaling
variable λS = λ2/Q. Factors involving λS are associated with the soft subgraph.

5.8.5 Basic power Qp

Subject to the caveat in Sec. 5.8.1, the first factor Qp in (5.75) is the dimensional analysis
power for the amplitude or cross section under discussion. For a connected amplitude,
dimensional analysis gives

p = 4− #(ext. lines), (5.76)

where #(ext. lines) is the number of external particles and external hard currents. In this
estimate are included Dirac wave functions for external spin- 1

2 fermions, which grow with
energy like Q1/2; the exponent is independent of the types of the external particles.

For example, for the current-quark-antiquark vertex of Fig. 5.1, we have three external
lines, and therefore the power is Q1. In the case of a scalar quark, at lowest order the power
is from the factor of momentum at the photon-quark-quark vertex. In the case of an ordinary
Dirac quark, the vertex is a Q-independent Dirac matrix γ μ; the two external Dirac wave
functions give the overall power Q1.

Another example is the DIS structure tensor Wμν , for which there are four external lines.
This gives Q0, i.e., Bjorken scaling.
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5.8.6 Formulae for the other exponents

I first state the formulae for the exponents α(R) and β(R):

α(R) = #(CH )− #(scalar pol. glue CH )− #(ext. lines) , (5.77)

β(R) = #(0 or 1, SH )+ 3

2
#
(

1
2 , SH

)+ 1

2
#
(
0 or 1

2 , SC
)
, (5.78)

and explain the meanings of the terms on the r.h.s.; these give the exponents in terms of
the numbers of external lines of the different subgraphs for the PSS. Then I will state the
formulae for the remaining exponents. In later sections I will derive the formulae.

In (5.77), #(CH ) is the number of lines joining the collinear and hard subgraphs. When
α(R) is used in (5.75) there is therefore a power suppression as the number of collinear lines
joining the subgraphs is increased. We will see in Sec. 5.8.8 that, in the polarization sum for a
gluon connecting a collinear to the hard subgraph, there is no power suppression when gluon
has what we call scalar polarization. The second term on the right, #(scalar pol. glue CH ),
provides the necessary compensation to the first term. Finally #(ext. lines) is the number of
external particles of collinear subgraphs (e.g., a total of two for the two collinear subgraphs
in a PSS for the Sudakov form factor).

The power β(R) in (5.78) depends on the numbers of lines connecting the soft subgraph
to the other subgraphs. The value depends on the spin of the lines, so we write, for example,
#
(
0 or 1

2 , SC
)

for the number of lines of spin 0 or 1
2 connecting the soft to collinear

subgraphs, and similarly for the other terms.
Notice that the formula for β(R) implies that there is generally a suppression by a

power of Q whenever lines join the soft to the collinear or hard subgraphs, the suppression
increasing with the number of lines. But there is an exception, that there is no penalty for
gluons joining soft to collinear subgraphs. Thus β(R) is zero when the connections of the
soft subgraph consist only of gluons to the collinear subgraphs. In all other cases β(R) > 0.

Finally, the other exponents in (5.75), s.r.(H ), s.r.(C), and s.r.(S), are the dimensions
of the super-renormalizable couplings in the hard, collinear and soft subgraphs. In the
corresponding factors, we use m to denote a mass scale for the typical size for these
couplings.

5.8.7 Exponent for hard subgraph

Let the hard subgraph H have NF external fermionic (Dirac) lines and NB external boson
lines. In normal QCD processes, this means that NF is the number of quark plus antiquark
external lines, while NB is the number of external gluon lines, plus the number of external
photon, W , Z, and Higgs lines. We always take the hard part to be one-particle irreducible
in its external lines, so the dimension of H is dH = 4− 3

2NF −NB. In the usual case that
all the couplings are dimensionless, the power associated with the hard subgraph is just the
usual UV power from dimensional counting with all momenta of order Q:

QdH = Q4− 3
2 NF−NB . (5.79)
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The use of dimensional analysis shows that this power depends only on the external lines
of the subgraph, not on the internal details. We will combine the above exponent with the
results for collinear and soft subgraphs to give (5.75), (5.77), and (5.78).

If there are super-renormalizable couplings with combined mass-dimension D, they
count as mD instead of QD . This gives a correction factor relative to (5.79) of (m/Q)D ,
i.e., the fourth factor in (5.75).

5.8.8 Exponents for collinear subgraph

Rest frame

The region may have one or more collinear subgraphs C, as in Figs. 5.7 and 5.16. For
each collinear subgraph, we express the momenta of its lines in the light-front coordinates
defined in (5.68) and (5.69). Our definition of the radial variable λ in Sec. 5.7.4 gives
exactly the same power-counting as in the one-loop example in Sec. 5.5.2, so that both the
integration measure for a generic collinear momentum k and denominators for collinear
propagators count according to their dimensions, λ4 and λ2 respectively. In a collinear
subgraph we include any collinear loop momenta that circulate through the hard subgraph.

In the collinear subgraphs, we also include the wave functions for external particles of
the relevant collinearity class, and numerator factors. Their effect is assessed by boosting
from (an approximate) rest frame.

Now in the rest frame of the collinear momenta, the power of λ is just given by its
dimension: λdim of subgraph, apart from super-renormalizable couplings. The dimension of a
connected collinear subgraph, including external Dirac wave functions, is

#(C to H )+ 1

2
#
(

1
2 : C to H

)− #(S to C)− 1

2
#
(

1
2 : S to C

)− #(C to ext.) , (5.80)

with a notation like that in (5.77), and with #(C to ext.) representing the number of external
lines connecting to the collinear subgraph. The different signs of the terms in (5.80) arises
from the differences between amputated and unamputated lines at the edge of the subgraph,
and from the loop integrals coupling the graph to the hard subgraph. If there are super-
renormalizable couplings, they give a correction factor which is the fifth factor in (5.75),
similarly to the case of the hard subgraph.

We sum (5.80) over all the connected collinear subgraphs, and obtain the same formula,
with the terms like #(C to H ) now denoting the number of lines connecting all collinear
subgraphs to the hard subgraph.

Boost of collinear subgraph

Next we boost each collinear subgraph to the overall center-of-mass frame. The result
depends on the spins of the lines connecting the subgraph to the hard and soft subgraphs.
For a field of spin-s, standard properties of representations of the Lorentz group show that
its biggest component increases under the boost like (Q/λ)s . For a Dirac field we have a
power (Q/λ)1/2, while for a gluon7 we have Q/λ. For a whole collinear subgraph, we need

7 Any result for a gluon applies also to any other spin-1 field, e.g., for the photon.
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the product of one such power for each line joining it to the hard subgraph, and for each
line joining it to the soft subgraph. (We have included external Dirac wave functions in the
collinear subgraph(s), so they do not need to be allowed for separately.) Combining all the
powers so far gives (5.75) except for soft-subgraph associated factors:

Result in (5.75)× λ
−#(S)− 1

2 #( 1
2 :S)

S . (5.81)

With one exception, the exponents, p, α(R), and β(R) in the referenced formula (5.75) are
given by (5.76)–(5.78), while #(S) is the number of all external lines of the soft subgraph,
and #( 1

2 : S) is its number of spin- 1
2 external lines [which also count in #(S)]. We wrote the

second factor in (5.81) in terms of λS = λ2/Q, since that is the natural variable for the soft
factor.

The exception about (5.81) concerns the gluons, where the derivation so far gives

Preliminary: α(R) = #(CH )− #(spin 1: CH )− #(ext. lines) . (5.82)

This is the exponent of λ/Q, so it implies that we have a penalty for every extra line joining
the collinear and hard subgraphs, except for the gluons. The non-suppression of gluons
arises from the plus component of the gluon polarization (in the direction of the collinear
group it belongs to), because of the corresponding boost factor Q/λ.

But we will also use the transverse components, which do not undergo this boost. We
now examine how to separate the contributions.

Collinear gluon polarization

We have already seen this phenomenon in examples. So let us examine a general decom-
position of a connection of a gluon of momentum k from a collinear subgraph C to the
hard subgraph H . We have a factor C(k) ·H (k), where there is a contraction of the Lorentz
index at the H end of the gluon. The gluon is collinear, so we define the collinear factor
C to include the gluon’s propagator. We decompose C ·H with respect to the light-front
components for C:

C ·H = C+H− + C−H+ − CT · HT. (5.83)

After the boost from the rest frame for the collinear subgraph, the largest component of
Cμ is the C+ component, which increases like Q/λ. Next is the transverse component CT,
which is boost invariant, and finally C−, which decreases like λ/Q.

The largest term is therefore C+H−, and this gives the power derived above, in (5.81)
and (5.82). So we define a Grammer-Yennie decomposition:

H · C = H · kC+

k+
+ Hμ

(
Cμ − kμ C+

k+

)
. (5.84)

The highest power Q/λ for Cμ is in the first term alone, which we call the scalar polarization
term, since it has a polarization vector proportional to the momentum of the gluon. It is of a
form suitable for applying a Ward identity. The second term, a transverse polarization term,
has the highest power removed: the quantity in parentheses is exactly zero when μ = +.
Therefore this term power counts as 1 instead of Q/λ.
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We now apply this decomposition to every gluon joining the collinear subgraphs and H .
Each gluon line gives a scalar polarization term and a transverse polarization term. This
converts the exponent α(R) from the one in (5.82) to the one in (5.77).

The importance of this operation is as follows. We start with a case like the parton model
for DIS where the hard scattering is induced by fermion lines, and to get a leading power,
we use the minimum possible number of such lines, which is two for the structure function
in DIS. Replacing the fermions by scalar polarized gluons increases the power of Q to
Q2, giving a super-leading contribution. The super-leading contribution in fact cancels, as
shown by the use of Ward identities (Labastida and Sterman, 1985). The remaining term is
leading, and involves transversely polarized gluons.

Similar decompositions can be applied on fermion lines, but we will not need them here,
because we will not have the same cancellation of the highest power.

5.8.9 Derivation of exponent for soft subgraph

We now bring in the soft subgraph S. All its external lines attach to the collinear and hard
subgraphs. We include in S the integrals over loop momenta that circulate from S through
the hard and collinear subgraphs, since these loop momenta are necessarily soft. The soft
subgraph S may have one or more connected components.

A complication we have already noticed is that of choosing an appropriate scaling of the
momenta. We let λS be the scaling factor for all the components of soft momenta. We have
seen that to match the time scales of soft and collinear graphs, we need to take λS = λ2/Q,
where λ is the overall radial variable for the region under discussion. This contrasts with
the treatment in Sterman (1996) where λS and λ were taken to be the same.

Without super-renormalizable couplings, our usual dimensional analysis argument
applies in terms of λS to give a power

λ
#(S)+ 1

2 #( 1
2 :S)

S , (5.85)

where the exponent is the dimension of the soft subgraph, including its loop integrals to the
collinear and hard subgraph. This power applies independently of the number of connected
components of the soft subgraph. This power evidently cancels the second factor in (5.81),
so the final power law is (5.75), with the exponents defined in (5.76), (5.77), and (5.78).
If there are super-renormalizable couplings, they give the last factor in (5.75), by the same
reasoning as for the other subgraphs.

5.8.10 Other scalings

The derivation of the power law assumed what we can call the canonical scaling of momenta
for a region R – (5.29), (5.49), which led to (5.73) for the denominators. Could other cases
matter? We have cataloged all pinch-singular surfaces of massless graphs for our process.
The scalings parameterize a neighborhood of each region by a radial variable. To the extent
that the estimates of the denominators in (5.73) are correct, our derivations are correct.
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Where the denominators are much smaller than the estimates, our derivation is incom-
plete. We will see in detail later that these situations occur in three ways. One is around
an intersection of a surface of constant λ with the PSS for a bigger region than R, as in
Fig. 5.32. The second is where the intrinsic variables of R approach a smaller PSS. The
final possibility is where there is a trap of the integration region in a Glauber-type region.

We will show that the power laws remain correct in the first two cases, but if there
is logarithmic behavior in λ, i.e., a power λ0, then logarithmic enhancements in the Q

dependence occur relative to the basic power. This is quite common.
For many processes of interest, the Glauber region does not contribute or cancels after

a sum over allowed final-state cuts.
One complication arises when some particle masses are actually zero, and we have

an actual infra-red or collinear divergence at λ = 0. In a theory of confined quarks and
gluons these divergences are not genuinely physical, but they do appear in Feynman
graphs. They are handled by a sufficiently careful treatment of the soft region as we have
defined it.

5.8.11 Power of Q

From (5.75), we derive the power of Q associated with a region after integration over λ.
An important case is that all the exponents α(R), . . . , s.r.(S) are zero, which corresponds to
leading regions for processes like DIS and Drell-Yan. Then we simply get Qp, which is the
power corresponding to the dimension of the amplitude or cross section under consideration.
There is no λ dependence in (5.75), so the integral (5.74) gives a logarithm of Q divided by
a mass scale. When we discuss nested regions, in Sec. 5.10, we will find an extra logarithm
for every level of nesting where power-counting gives a logarithmic radial integral. The
actual result is then

Standard leading power: Qp × logarithms. (5.86)

When one or more of the exponents is non-zero, the precise power of Q will depend on
how masses cut off the integral at small λ. If there is no soft subgraph, then the cutoff is
dominated by masses on collinear lines, so that the power of Q is determined by setting
λ ∼ m and we get

Coll. cutoff: Qp−α(R)−s.r.(H )mα(R)+s.r.(H ) × logarithms. (5.87)

If there is a soft subgraph, then the cutoff is at λS ∼ m, i.e., λ ∼ √mQ, and we get

Soft cutoff: Qp− 1
2 α(R)−β(R)−s.r.(H )− 1

2 s.r.(C)

× m
1
2 α(R)+β(R)+s.r.(H )+ 1

2 s.r.(C) × logarithms. (5.88)

If there are both collinear and soft loops, the cutoffs can be different on the collinear and soft
loops. This will result in an important contribution where the k variables [see (5.29)] are
particularly small on collinear lines. This will refer to a small part of the angular integral.
In our discussion of nested regions, we will assign this part to another region.
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5.9 Catalog of leading regions

We now obtain general rules for determining the leading regions for a process.

5.9.1 General principles

The general power law was given in (5.75). Rather than presenting a power of Q alone, we
have have included powers of λ and λS . Thus we can read off the effects of masses that cut
off the integrals at their lower ends.

For each process there is a minimum number of collinear lines entering the hard scattering
if the process is to occur kinematically. For example, this is one on each side of the final-
state cut in DIS, and two on each side of the final-state cut for Drell-Yan. In all these
cases this is the same as the number of external hadrons for the process as a whole. With
this minimum number of lines, we get α(R) = 0. This is provided that we exclude gluons
of scalar polarization in the minimally connected graphs; as will be proved later, we get
zero after summing over graphs when all the lines joining a collinear subgraph to the hard
scattering are zero.

Thus with the minimal number of connections between the collinear and hard subgraphs,
the power of Q is the same as the pure UV power, Qp = Q4−#(ext. lines), which we define to
be the leading power for the process, e.g., Q0 for DIS.

After this we read off from (5.75)–(5.78) that we get a power suppression, when we do
any of the following:

• attach extra collinear lines to the hard scattering, except for scalar polarized gluons;
• attach any soft lines to the hard scattering;
• attach the soft subgraph to the collinear subgraphs by anything but gluons.

But there is no penalty for extra scalar-polarized collinear gluons attaching to the hard
scattering, and there is no penalty for soft subgraphs that attach to collinear subgraphs by
gluon lines only.

As to super-renormalizable couplings, they always give a penalty in the hard scattering.
But in the collinear and soft subgraphs, there is no penalty as long as the momenta are
at the lower end of their range, near the mass cutoff. Note that in the limit of zero mass,
super-renormalizable couplings convert otherwise logarithmic IR singularities to power-law
singularities.

It is worth observing that our rules give no penalty for having quark loops inside the
soft subgraph. This is a fact that is sometimes forgotten, because in the corresponding
IR-divergence problem in QED, no loops of massive fermions need to be considered.

One complication that sometimes arises is that when one actually does a particular
calculation, the coefficient of the leading power might be zero. Typically this arises
because of some symmetry. A simple example is the polarization dependence of DIS.
The power-counting argument permits a Q0 behavior in Wμν for the dependence on both
longitudinal and transverse polarization. In fact only longitudinal polarization gives this
behavior, in the structure function g1 – see (2.20). But for transverse polarization, there is a
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power suppression – see Sec. 6.1.4 for the parton-model case – which results from the
chiral symmetry of QCD and QED perturbation theory for hard scattering.

5.9.2 Prescription for leading regions

From the results just derived, the leading regions in the examples earlier in this chapter are
indeed those stated: e.g., Fig. 5.5 for the quark-quark-current vertex, Fig. 5.7(c) for DIS
and DVCS. The general principles are:

1. The soft subgraph connects only to collinear subgraphs and only by gluons.
2. The collinear subgraph(s) each connect to the hard subgraph(s) by the minimum number

of lines consistent with the desired process or reaction occurring at all.
3. In addition, arbitrarily many gluons of scalar polarization may connect a collinear

subgraph to a hard subgraph.

Thus in DIS, two quarks, one on each side of the final-state cut, can join the target-collinear
subgraph to the hard subgraph. This exactly corresponds to the idea that motivated the
parton model. But the rules just stated show that it is possible to replace the quark lines
by transversely polarized gluon lines. This corresponds to a short-distance scattering off
a gluon constituent in the target, compatible with the basic short-distance scattering idea.
However, the minimal hard scattering is the reaction γ ∗ + g→ qq̄, for which the amplitude
is one order higher in QCD perturbation theory than for scattering off a quark.

5.9.3 Possibility of multiple hard scatterings

A particularly non-trivial example is elastic scattering of protons at wide angle. The reaction
is P1 + P2 → p3 + p4. The incoming protons are in opposite directions, and the outgoing
protons are in very different (and again opposite) directions. Thus there are four collinear
directions, two in the initial state and two in the final state.

If we restrict our attention to reduced graphs with collinear and hard subgraphs, then
one possibility is a single hard subgraph, as in Fig. 5.34(a). Now a single quark has baryon
number 1

3 , so a minimum of three quarks out of the collinear subgraph for each proton must
attach to the hard scattering; otherwise, for example, remnants of the incoming protons
would be left in the final state, approximately parallel to the incoming hadrons.

The connected hard scattering subgraph has 12 quark lines, which, from (5.76), cor-
responds to a power 1/Q8 in the amplitude, or equivalently 1/s4. Converting to a cross
section gives dσ / dt ∝ 1/s10, as first found by Brodsky and Farrar (1973).

But it is also possible to have three separate quark-quark hard scatterings: Fig. 5.34(b).
As shown by Landshoff (1974), this results in less of a suppression, giving dσ / dt ∝ 1/s8.
The derivation needs a generalization of the results earlier in this section, both because
the hard scattering is disconnected, and because of the associated momentum-conservation
delta functions.

There are also a number of other possibilities that need to be examined, including a single
quark-quark hard scattering, with the other quarks being soft. Soft quarks normally give
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Fig. 5.34. Possible reduced graphs for wide-angle elastic proton-proton scattering: (a)
with connected hard subgraph, (b) with three separate hard subgraphs. The elliptical blobs
labeled Cj are collinear, and the unlabeled circular blobs are hard.
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Fig. 5.35. Side views of the spatial structure corresponding to the reduced graphs
of Fig. 5.34.

a power-suppression, but here this is compensated by not needing so many lines entering
the hard-scattering subgraph(s). A correct analysis also needs to account for the Sudakov
suppression of the hard scattering in the Landshoff graph, because each subgraph involves
isolated color.

The difference between the mechanisms can be understood in space-time. With a single
hard scattering, all the quarks in each proton must come down to within a transverse distance
1/Q of each other: Fig. 5.35(a). This gives a strongly power-suppressed probability, since
the normal transverse separation of the quarks is of the order of 1 fm.

For the Landshoff process, it is merely necessary that each quark in one hadron comes
within 1/Q of one of the quarks in the other hadron, Fig. 5.35(b), which is more probable.
In order for this to match the same picture for the outgoing protons, the three intersections
must line on a line transverse to the scattering plane, which gives a further suppression in
the final result in Landshoff (1974).

5.10 Power-counting with multiple regions

The power-counting scheme of the preceding section arose from estimates of the sizes
of propagator denominators around any given region R. We call this the canonical power
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estimate. It not only gives us the power of Q associated with the region; it also indicates what
kind of approximator is appropriate, where we neglect certain components of momentum
on a line. Such approximators are critical to deriving factorization theorems.

So we must ask where the estimates fail. As we will now show, with a certain exception,
the failures occur in two situations: (a) where the particular values of the intrinsic variables
for R approach a smaller PSS; and (b) where the angular variables take us to the vicinity
of a larger PSS. The true results in these cases are essentially obtained from the canonical
power-counting for these other regions. The canonical power law of Q will be modified by
logarithmic corrections. The one exception to the above statements concerns regions of the
Glauber type, which are avoided by contour deformation in many cases, or otherwise need
special discussion.

For high-order graphs there are many possible PSSs which intersect in many ways.
An important feature of the following discussion will be to reduce the general case to a
collection of a very few generic situations.

5.10.1 Locations of failures of power-counting

Consider a region R, with its radial variable λ. We use (5.29), (5.49) for the scaling
of collinear and soft momenta, which gives the canonical sizes (5.73) for propagator
denominators. Because of the normalization condition on the angular variables, the size of
each momentum component is limited by its canonical scaling value, apart from a constant
factor. Numerators are all bounded by their canonical values. Thus the only possibility of a
failure of the power-counting is for one (or more) denominators to be much less than their
canonical values.

To determine where this happens, we use a variation on the Libby-Sterman scaling
argument. It involves the ratios of the propagator denominators to their canonical values:

rl =
∣∣∣∣denominator l

canonical l

∣∣∣∣ , (5.89)

where l labels the line. Our concern is the minimum value of these ratios. First, suppose
there is a non-zero lower bound to all the ratios: rl ≥ rmin �= 0, that applies uniformly over
all propagators, over all the angular variables, over λ from zero to order Q, and for all large
enough Q. Then the canonical value of the denominator is unambiguously correct for our
power-counting.

Next we locate failures of such a bound by integrating around a surface of constant λ

(Fig. 5.36) with the intrinsic coordinate(s) fixed. We call this surface �(λ,R). Often the
minimum value of the ratio is set by mass effects, so that the ratio is very small when
λ is increased, thereby wrecking the power-counting. We therefore set masses to zero to
give an appropriate diagnostic. If the minimum value of one or more ratios is zero in the
massless theory, then the power-counting has failed, and we must examine a neighborhood
of the subsurface where the minimum is zero. In this situation we have a singularity in the
integrand in the massless theory.

Naturally, as in all our arguments, if it is possible to deform the contour of integration
away from a singularity, we do so. Thus we only need treat cases where one or more of
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R

Surface
surrounding

R
λ

Fig. 5.36. The dashed line represents a surface �(λ, R) of constant λ surrounding the PSS
for R. The dot in the center represents the PSS R, and the three solid lines represent other
PSSs. Although the surface �(λ,R) is diagrammed as having radius λ, some momentum
components may scale differently, e.g., as λ2/Q.

the ratios rl is pinched at zero. This is exactly the condition for a PSS, and in fact that the
surface of constant λ intersects another PSS R′. There are now two cases, depending on
whether or not the second PSS intersects the first.

If R′ is like the upper solid line in Fig. 5.36, it does not intersect the original PSS R. In
this case we reduce the maximum value of λ under consideration to avoid R′. The maximum
value of λ is still of order Q, leaving our methodology unaltered. The region around R′ can
be treated by power-counting methods adapted to R′ without the need to consider R. Any
leftover gaps involve purely hard momenta.

The other case is that R′ intersects the original PSS R, as for the lower two solid lines
in Fig. 5.36. Then we must examine a neighborhood of R′, and use its power-counting
to modify our original estimate – which we will do in Sec. 5.10.2. We can treat each
such R′ separately. In angular sectors not near these PSSs, the original estimate applies
unchanged.

So one possible failure of the simple power-counting occurs at the intersection of �(λ,R)
with a PSS R′ bigger than R.

But there are other possibilities for the intersection of the new surface R′ with R. One
is that the intersection R′ ∩ R is a lower-dimension surface. In that case, we reorient the
discussion. The intersection is itself a PSS, which we will call R1. Our power-counting
applies for a fixed value of the intrinsic coordinates of R, in which case we treat R′ and R

as non-intersecting. We will separately treat the situation the intrinsic coordinates approach
the position of a sub-PSS, of which R1 will be a typical example.

A final possibility is that the intersection of R′ with R has the same dimension as R,
but is not the whole of R. There are possibly several such intersections. In that case we
consider each of the intersections as a separate PSS. That is, we replace R by a set of PSSs
which combine to form R. The edges of these small PSSs, particularly where they abut, are
themselves lower-dimension PSSs.

It is also possible that the minimum value of one or more of the rl ratios is non-zero on
�(λ,R) when λ is fixed, but that the minimum decreases to zero as λ→ 0. In other words
the non-zero lower bound is not uniform in λ.8 This is behavior that we term Glauber-like,
whose general criteria we will determine in Sec. 5.11.

8 We take for granted that if it is possible to deform the contour of integration to avoid such a situation, then we do so.
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To see that the name is appropriate, we examine the quark and gluon propagators in
Fig. 5.31(b). For a normal soft region, a soft denominator is of order λ4/Q2, while a
collinear denominator is of order λ2, for a large ratio

collinear denom.

soft denom.
∼ Q2

λ2
. (5.90)

In our discussion of the Glauber pinch for Fig. 5.31(b), we used a soft transverse momentum
of order m, which we now translate to λ ∼ √mQ. In the Glauber region k± ∼ m2/Q, so
collinear denominators are of order m2, i.e., λ4/Q2 instead of λ2. Thus for a given gluon
virtuality the collinear denominators are much smaller in the Glauber region than in the
normal soft region.

The above discussion covers the case of fixed intrinsic coordinate(s) for the PSS R. A
further issue occurs when we integrate over the intrinsic coordinate(s) of R, and approach a
smaller PSS R1. This case is handled by observing that it involves the treatment of power-
counting for the smaller region R1. If we change to the viewpoint of integrating around R1,
we have treated that case already.

In summary, there are just two situations we need to cover: (a) the intersection of R with
a bigger PSS R′ at a generic point on R, which by a change of point-of-view also includes
the approach on R to a smaller PSS; and (b) a Glauber-type situation.

5.10.2 Intersection of �(λ,R) with PSS bigger than R

Relations between regions and subgraphs

Let R′ be a PSS bigger than R, like one of the lower solid lines in Fig. 5.36, or the shaded
surface in Fig. 5.32. We consider the integral over the constant λ surface �(λ,R) near its
intersection with R′, and we let λ′ be the radial variable for R′.

Some of the propagators are not trapped at R′. Their denominators retain their powers
from the first region, i.e., Q2 for a hard line, λ2 for a collinear line, and λ4/Q2 for a soft line.
As we have already seen, the time scale for these lines is Q/λ2 for the soft and collinear
lines, or 1/Q for the hard lines; in all cases this is at most Q/λ2.

Since these lines are not pinched at R′, they constitute the hard subgraph H ′ for R′.
When λ→ 0, the intersection of �(λ,R) and R′ approaches the original PSS R, which
we can think of as an endpoint of R′. Thus in the situation we consider, i.e., λ� Q, the
virtualities of some lines of H ′ are much smaller than the standard value Q2 for a hard
subgraph, the smallness being controlled by λ.

In contrast, the denominators of those lines that are pinched at R′ have arbitrarily much
smaller denominators, governed by λ′ rather than λ. The time scale for these lines is Q/λ′2,
much longer than that for the non-pinched lines. In the case of a graph for the Sudakov
form factor, this is illustrated in Fig. 5.37. There, the placement of the collinear and soft
subgraphs is meant to be like the space-time diagram Fig. 5.2(b).

With respect to each PSS, each line of the graph can be assigned a category: soft,
collinear with respect to an external line, or hard. There are corresponding subgraphs: e.g.,
for the vertex graph we have subgraphs S, A, B, H with respect to R, and subgraphs S ′,
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Fig. 5.37. Reduced graph for region R′ near a smaller region R. The time scales for the
different subgraphs are indicated.
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Fig. 5.38. Decomposition of graph into subgraphs for momentum classes, according to PSS
(a) R and (b) R′ > R. The subgraphs for R are delimited by the dotted lines and those for
R′ by solid lines.

A′, B ′, H ′ with respect to R′. Now lines with energy of order Q on R retain approximately
this energy near R′, while lines that are far off-shell at R are also far off-shell near R′. Thus
we have the following possible transitions relating the categories of a line with respect to
the different regions:

S → S ′, A′, B ′, H ′;

A→ A′, H ′;

B → B ′, H ′;

H → H ′;

(5.91)

as illustrated in Fig. 5.38.
As we integrate around �(λ,R), λ′ varies from zero to a maximum. We need to know

the order of magnitude of the maximum value of λ′, which is in fact λ. To see this, we
assign to the momentum components in S ′, A′ and B ′ their canonical power-counting with
respect to R′ and match with the powers with respect to region R. The powers agree when
λ′ ∼ λ. The only exception concerns the minus components for momenta in S ∩ B ′ and
similarly for S ∩ A′. These components would be of order Q for a fully collinear region,
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Fig. 5.39. Two-loop vertex graph.

but are now of order λ: the smallness of λ causes these momenta to be close to an endpoint
of a collinear region by the standards of R′.

Example

A convenient illustration uses the two-loop graph in Fig. 5.39, with its two gluons of
momenta k and l. Let region R be where k is soft and l is collinear to A. Thus the canonical
sizes of (+,−, T) components are

R : k ∼
(

λ2

Q
,

λ2

Q
,

λ2

Q

)
, l ∼

(
Q,

λ2

Q
, λ

)
. (5.92)

To avoid issues with IR problems, we assume the gluon is massive. Then the effective cutoff
on λ is

√
mQ. We let the region R′ be where k is collinear to B and l is hard:

R′ : k ∼
(

λ′2

Q
, Q, λ′

)
, l ∼ (Q, Q, Q) . (5.93)

Now consider the particular orders of magnitude:

k ∼
(

m3/2

Q1/2
, Q1/2m1/2, m

)
, l ∼ (

Q, Q1/2m1/2, Q3/4m1/4
)
. (5.94)

We could consider this as near to PSS R with λ ∼ Q3/4m1/4: the components of l have
exactly the standard sizes (Q,λ2/Q, λ) for a collinear-to-A momentum. All components
of k are much less than Q, with a maximum size λ2/Q, so k is soft. But notice that the
plus and transverse components of k are much smaller than the standard λ2/Q for a soft
momentum.

But we can also consider the configuration as near to R′ with λ′ ∼ m3/4Q1/4: we can
treat k as collinear-to-B, since it has large negative rapidity: yk ∼ − 1

2 ln(Q/m), although
l− is much less than Q. We can consider l hard since its virtuality is much bigger than λ′2.

It can be checked that the time scales of the lines are

pB − k − l :
1

Q
,

l, pA + k + l, pA + l :
Q

λ2
∼ 1

Q1/2m1/2
,

k, pB − k :
Q

λ′2
∼ Q1/2

m3/2
.

(5.95)
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Thus we have a clear separation of scales, and the configuration has characteristics of both
the regions R and R′. It can be verified that (5.94) gives a leading-power contribution. We
must ensure that our treatment of factorization correctly handles it and the obvious myriad
of similar possibilities in this and higher-order graphs.

In the above case, we assumed the gluon was massive, so the lower cutoff on transverse
momentum was of order m, a typical mass. To keep k of low energy with respect to Q we
were forced to keep its rapidity well short of that of pB , and to put the lower quark lines
far off-shell.

But if the gluon is massless, a rather more extreme situation arises. For example,
try

k ∼
(

m4

Q3
,

m2

Q
,

m3

Q2

)
, l ∼

(
Q,

m2

Q
, m

)
. (5.96)

In the sense of rapidities, k is fully collinear to B: yk ∼ −ln(Q/m), and l is fully collinear
to A: yl ∼ ln(Q/m). But k is also very soft by having its maximum component much less
than Q. This configuration has λ′ ∼ m2/Q, λ ∼ m.

Obviously, we should not treat all such configurations separately, if at all possible,
otherwise we could easily have much too complicated a problem to solve systematically.
In fact we will be able to treat all such situations by a combination of methods that directly
deal with the canonical scalings only.

But when we derive factorization, we will need to apply approximators suitable for
neighborhoods of the different regions. Awareness of situations such as we have examined
will inform our choice of approximators.

The physical property that will keep the situation under control is that the time scales
associated with different lines are widely different, unlike the canonical case for the soft
and collinear lines: we can treat one scale at a time and examine directly only the relations
to neighboring time scales. Thus we only need to treat the relation between pairs of regions,
each treated quite generically.

Effect on power-counting

To get the correct power-counting near the intersection of the constant λ surface �(λ,R)
and the PSS R′, we integrate over a range of λ of some particular order of magnitude, and
then we decompose the result by the variable λ′, which measures the approach to R′. There
will be powers of Q, λ and λ′:

Qαλβλ′γ (5.97)

appropriate to the strongly ordered situation λ� λ′ � Q. To obtain the exponents we
match to the canonical power-counting for the regions R and R′. The canonical power for
region R′ applies to the case that λ ∼ Q with λ′ � Q. Thus we have

power for R′ = Qα+βλ′γ . (5.98)
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The canonical power for R applies when λ′ has it maximum value, i.e., of order λ, so

power for R = Qαλβ+γ . (5.99)

This determines the powers in (5.97) from the canonical ones for R and R′.9

As in (5.75), the powers are those for the situation that we integrate over a range of a
radial variable comparable to its size. Thus they are the sizes of integrands to be used in
integrals with respect to ln λ and ln λ′:∫ ln Q

d ln λ

∫ ln λ

d ln λ′ Qαλβλ′γ . (5.100)

The lower limits of the integrals are either ln m or ln
√

mQ, depending on whether the
cutoff is governed by masses on collinear lines or masses on soft lines.

We now read off the results for the Q dependence of the integration over �(λ,R).
The most common case we use is for the leading regions in QCD, for which β = γ = 0.

Then the leading power of Q is Qα , and the integrals over λ and λ′ give logarithmic
enhancements. Naturally we can have multiply nested regions. Iterating our argument gives
the general rule that there is one logarithm of Q for each nesting. Thus for the one-loop
Sudakov form factor, we have the nestings of leading regions: H > A > S, H > B > S. In
(5.21), which depicts the hierarchy of regions, these nestings give ordered paths of length
two and hence two logarithms. When we make the decomposition around the soft region,
the two collinear regions A and B occur at distinct places in the angular integral. Thus the
logarithms associated with the two different ordered paths add, rather than giving a more
complicated situation.

In the other cases, one end or the other wins, which greatly simplifies the extraction of
the leading power. There are several cases:

• If β > 0, then the top end λ ∼ Q of the λ integral wins. Then for the highest power of Q,
the situation is the same as for region R′.

• If γ > 0, then the top end λ′ ∼ λ of the λ′ integral wins. Then for the highest power
of Q, the situation is the same as for region R.

Note that if both β > 0 and γ > 0, the integral is dominated by λ ∼ λ′ ∼ Q, i.e., by
the hard region; both R and R′ are non-leading by a power of Q.

• If both β < 0 and γ < 0, then the integral is dominated by the lower ends of both
integrals. If they both have the same lower cutoff, then at the cutoff we have λ′ ∼ λ,
which is just reproduces the generic situation for region R.

It is possible that the lower cutoffs are different: m for λ′ and
√

mQ for λ. This needs
special discussion.

• If β < 0 and γ = 0, then the lower end of the λ integral wins and there is at most a
logarithm from the λ′ integral. The power for R remains correct.

9 Situations where there is an apparent mismatch of power laws between regions were found in Bacchetta et al. (2008).
These situations concern certain spin-dependent cross sections, and they can be handled by a generalization of our
argument by allowing for powers of quark mass as well as of Q, λ, and λ′.
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• If β = 0 and γ < 0, then the lower end of the λ′ integral wins and there is a logarithm
from the λ integral. The power for R′ remains correct.

Aside from the case β < 0 and γ < 0, the general rule is that the overall power of Q is
the highest power of Q as determined from the pure canonical powers for the individual
regions.

5.11 Determination of Glauber-like regions

For each PSS, we found a canonical scaling law, and we saw that modifications to the
canonical values of propagators were generally associated with canonical scaling for other
intersecting PSSs. The only exception was what we called Glauber-like. This is where at
some locations on the surface �(λ,R) surrounding a PSS R, some denominators get much
smaller than their canonical sizes, but that the ratio rl on these lines only goes to zero at
λ = 0.

We now show how to determine where the Glauber-like situation arises. We use another
variation on the Libby-Sterman scaling argument, after first showing in an example how
the Glauber region can be obtained from the standard scaling for a region by taking some
of the angular coordinates to be very small.

5.11.1 Example

Consider Fig. 5.31(b) for the Drell-Yan process in the region where the quarks are collinear
and the gluon is soft. With the canonical scalings, we parameterize the momenta of the
gluon and the collinear momenta by

k = (S+λ2/Q, S−λ2/Q, STλ2/Q), (5.101a)

kA = (zAp+A, A−λ2/Q, ATλ), (5.101b)

kB = (B+λ2/Q, zBp−B , BTλ). (5.101c)

Here Sμ, Aμ, and Bμ give the angular coordinates for the soft and collinear momenta. Our
usual normalization conditions show that the angular coordinates are at most about unity,
and that the biggest is of order unity.

The canonical power-counting for this region applies when all the angular coordinates
are of order unity. Note that in the interesting case that the transverse momentum of the
Drell-Yan pair is of order m, a leading power is obtained only for λ ∼ m, not for higher λ.
When the gluon has a non-zero mass, the lowest effective value of λ is O(

√
mQ), and we

get a power-suppression.
But we can also have a different scaling, the Glauber scaling, for which

k ∼ (λ′2/Q, λ′2/Q, λ′), (5.102a)

kA ∼ (Q, λ′2/Q, λ′), (5.102b)

kB ∼ (λ′2/Q, Q, λ′), (5.102c)
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PB

PA

Fig. 5.40. Reduced diagram for Fig. 5.31(b) in Glauber region. The dots are the reduced
vertices, and the lines are collinear to either pA (in the bottom half of the diagram) or pB

(in the top half).

where we take all the coefficients of order unity. This can be obtained from the stan-
dard soft parameterization by making all the angular coefficients sufficiently small except
for ST:

S±, A−, B+ ∼ λ2/Q2, AT, BT ∼ λ/Q, ST ∼ 1. (5.103)

We follow this by the change of variable λ′ = λ2/Q.
From the point of view of the canonical soft scaling, this is a region where the soft

denominator retains it canonical size, λ4/Q2 = λ′2, but the collinear denominators are also
of this size instead of their canonical value λ2 = λ′Q. This is actually the minimum possible
for the ratio of the collinear denominators to their canonical values, and approaches zero
as λ→ 0.

We have seen that the integration contour is trapped in this region, unlike the case of
DIS and e+e− annihilation

5.11.2 Application of Libby-Sterman argument

In the general case, with many loop momenta, there appears to be an explosion of the
number of possible cases for different scalings of the momentum components, with a
corresponding difficulty in determining the cases that are relevant. We overcome this
problem by the Libby-Sterman method.

For some alternative scaling, we define a reduced diagram in which the vertices are
obtained from those denominators with the canonical scaling. The lines of the reduced
diagram are those with denominators that are much smaller than canonical. For the Glauber
region of Fig. 5.31(b), the reduced diagram is obtained by shrinking the gluon to a point,
to give Fig. 5.40.

We now apply the Landau criterion for a pinch in the massless version of the reduced
diagram. This works just as in the standard Libby-Sterman argument. The only difference
is in the interpretation of the vertices of the reduced graph: in the original argument, the
vertices corresponded to subgraphs whose internal momenta are hard, with virtuality Q2.
It is now possible to have vertices with much smaller internal virtualities. The common
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feature is that the time and distance scales of the vertices of the reduced graph are much
smaller than those for the lines.

The result is of the form of a possible PSS for the original graph. But the power-counting
may have changed.

For a general starting region, some of the new PSSs are the same as leading PSSs of the
original massless graph, so we can cover them by the original argument.

In Fig. 5.40 we have acquired a second hard scattering. The generic case would be to
have multiple extra hard scatterings. These would be non-leading if all the hard scatterings
had large virtuality. They are all covered by the original space-time diagram, Fig. 5.17(b),
where the diagonal lines correspond to the on-shell lines in the reduced graph. What has
changed with respect to the standard regions is that at the origin we have multiple colliding
lines. Since each extra hard collision needs a minimum of two incoming and two outgoing
on-shell lines, such a situation cannot arise in e+e− annihilation and DIS; in the hadronic
part of these processes there is zero or one incoming hadron (respectively).

Viewing the space-time structure of the collision, Fig. 5.18, gives further intuition. Each
incoming hadron contains multiple constituents which are located at a longitudinal distance
1/Q of each other, but with a transverse separation 1/M . The single genuine hard collision
has a quark out of one hadron getting within a transverse distance 1/Q of each other. The
remaining constituents undergo soft collisions over a transverse range 1/M; since these are
soft collisions, the momentum transfer is restricted to small values, and the partons remain
approximately collinear to their parent beams.

These situations are exactly of the kind that corresponds to spectator-spectator inter-
actions with exchanged Glauber momentum. Therefore the Glauber region represents the
general alternative scaling that we need to consider. The power-counting used for the Drell-
Yan example readily generalizes to show that these situations contribute at leading power.
Part of the factorization proof for the Drell-Yan process, in Ch. 14, will be to show a
cancellation of the Glauber region.

Naturally, interesting variations on this theme can arise, e.g., if the transverse radius for
the scattering differs substantially from the size of the hadron. This happens for nuclei.
Similar adjustments to the picture are needed if the hard collision is at very large or small
x, so that the size 1/Q of the hard collisions substantially differs from the longitudinal size
of the fast-moving beam hadrons.

Exercises

5.1 (***) From the coordinate-space representation of Feynman graphs (or otherwise),
determine the regions in coordinate space that correspond to the regions RH , RA,
RB , RS , RA′ , and RB ′ for the vertex graph. As far as possible determine the locations
quantitatively.

There are some non-trivial complications in this problem because the final answer
involves integrals over oscillating functions, with a lot of cancellation. A good answer
probably involves significant original research.
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If possible, verify the validity of estimates such as those given in Secs. 5.5.3 and
5.5.9, and that were used in the caption of Fig. 5.24.

5.2 (***) The standard Landau-type analysis of singularities of Feynman graphs and of
associated asymptotic problems is in momentum space. Reformulate it in coordinate
space. The Coleman-Norton (Coleman and Norton, 1965) paper shows how the internal
momentum configurations correspond to classical scattering processes. Show that this
is literally true in a coordinate-space analysis.

Extend this result to treat asymptotics governed by nearby pinch singularities to
show what regions of coordinate space dominate. Be as quantitative as possible. You
should, for example, be able to recover the intuitive picture of the parton model, with
its hard scattering on a short time scale on a constituent of a Lorentz-contracted,
time-dilated hadron.

Are any corrections to this picture needed?

5.3 (***) Find in the published literature, or construct for yourself, a proof that the Landau
equations are actually necessary and sufficient for a PSS of a Feynman graph. To see
that this is a non-trivial exercise, critically examine the accounts given in a standard
textbook, e.g., Bogoliubov and Shirkov (1959); Eden et al. (1966); Itzykson and Zuber
(1980); Peskin and Schroeder (1995); Sterman (1993). Are full proofs actually given?
Do they actually work, and cover both necessity and sufficiency? Do they apply to
the massless case, or do they make implicit assumptions only valid in the massive
case?

You should also find or devise a proof that extends to certain modified integrals that
occur in perturbative QCD. Such cases include graphs with eikonal propagators for
Wilson lines: Ch. 10. These do not mesh particularly well with the Feynman-parameter
representations often used in the treatments of the Landau equations.

For applications to pQCD, as we will see, it is important not merely to know
that there is a PSS, but also to know exactly which lines participate in a particular
pinch and which not, and to know exactly which loop-momentum variables actu-
ally participate in the pinch. Extend results in the literature to cover these issues
explicitly.

Preferably any proof should be comprehensible by ordinary students of QFT.

5.4 Catalog the most general leading regions for graphs for the following processes.
Describe the corresponding space-time structure.
(a) q(PA)+ γ ∗(q)→ q(pB), i.e., the space-like version of the process treated in Sec.

5.3.1, with the state of momentum PA in the initial state instead of the final state.
(b) H (PA)+H (PB)→ H (pC)+X, i.e., inclusive production of hadrons of large

transverse momentum in hadron-hadron collisions.

5.5 For elastic hadron-hadron scattering, derive the power law given in Sec. 5.9.3 when
there are multiple hard scatterings. Pay careful attention to the effects of momentum
conservation at the hard scattering on the collinear loop integrals.
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5.6 Extend the power-counting analysis given in Sec. 5.5 to the following cases:
(a) other vertices replace the external electromagnetic current, e.g., a ψ̄ψH vertex

that might be for the interaction of a fermionic quark with a Higgs field;
(b) scalar quark in gauge theory.
These represent possible variations on the basic ideas that might occur in applications of
the Standard Model, or in extensions of it (e.g., scalar quarks appear in supersymmetric
extensions).

5.7 Verify that the general rules given for power-counting apply in these specific cases. If
not, improve the rules.

5.8 (**) Prove that the PSSs for a massless Feynman graph are flat surfaces.
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Parton model to parton theory: simple model theories

Basic ideas on the space-time structure of deeply inelastic scattering (DIS), symbolized in
Figs. 2.2 and 2.5, led us to the parton model in Sec. 2.4. However, as we saw in Ch. 5,
the leading regions can be more general than those that give the parton model. Indeed, the
properties needed for the literal truth of the parton model are violated in any QFT that needs
renormalization or that is a gauge theory, or both, like QCD.

Even so, the ideas that led to the parton model (the distance scales, time dilation and
Lorentz contraction) are such basic properties that one should expect the parton model to
be some kind of approximation to real QCD.

Because of the complications inherent to a sound treatment in QCD, it is useful to build
up methodologies step by step. In this chapter, we treat situations where the parton model
is correct, which happens in suitable model field theories. For these we will construct a
strict field-theoretic implementation of the parton model.

One key result will be operator definitions of the parton distribution functions (parton
densities or pdfs). Another result will be light-front quantization, whereby a probability
interpretation of a pdf can be completely justified, in those model theories where the parton
model is exact.

6.1 Field theory formulation of parton model

DIS concerns electron scattering off a hadronic target, e + P → e +X, to lowest order
in electromagnetism, with kinematic variables and structure functions defined in Sec. 2.3.
Our aim is to understand the asymptotics when the momentum transfer Q is much larger
than a typical hadronic scale, with the Bjorken variable x held fixed, away from 0 and 1.

In the parton model (Sec. 2.4), the process is treated as being caused by a short-distance
scattering of an electron off a parton, i.e., a quasi-free constituent of the target, with the
electron-quark scattering taken to lowest order.

We implement the parton-model idea field-theoretically by an assertion that the dominant
contribution arises from cut graphs of the form of the “handbag diagram” of Fig. 6.1, with
the virtualities of the explicitly drawn quark lines being much less than Q2. The methods
of Ch. 5 tell us that this is equivalent to the statement that the only leading regions are those
also symbolized by Fig. 6.1, where now the lower subgraph consists of lines collinear to
the target, and the upper subgraph consists of lines collinear in another direction.

161
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P

q
k

k

Fig. 6.1. Parton model in field theory starts from “handbag graphs” of this form. The
assertion that the parton model is exactly valid is that all leading regions correspond to
reduced graphs of the handbag form with the two bubbles being collinear subgraphs.

From the power-counting results in Sec. 5.8 and especially Sec. 5.8.11, we find the
conditions that Fig. 6.1 gives all the leading regions: (a) there are no gauge fields, so
that no extra gluons connect the hard scattering and the collinear subgraphs, and (b) the
theory is super-renormalizable, so that higher-order terms in the hard scattering are power-
suppressed.

Evidently, these conditions do not hold in QCD. It is nevertheless useful to investigate
the consequences of assuming that Fig. 6.1 gives the whole leading-power behavior of the
structure functions.

Even with this restriction, the power-counting results show that leading regions include
those with non-trivial corrections on the struck quark line, i.e., that we should use Fig. 6.1
rather than Fig. 2.5(b), where we omitted the upper bubble. The final state for quark k′

must therefore be considered a jet of hadrons, in agreement with experiment. The quark k′

does not need to give a single particle in the final state; it can only be treated as a single
particle over distance scales of order 1/Q. Of course, if Fig. 6.1 were the whole story, then
we would have particles in the final state with fractional electric charge. But Fig. 6.1 is not
the whole story, because there are other leading regions in QCD.

6.1.1 Analysis of parton kinematics

We now analyze regions of the form of Fig. 6.1 on the hypothesis that they are the only
leading regions. Our aim is to make a formal derivation of the parton model, and to obtain
a definition of the parton densities.

It is convenient to use light-front coordinates (App. B) in the Breit frame, as described
in Sec. 2.4. (A finite boost will not greatly affect the derivation.) In the Breit frame, the
(space-like) photon has zero energy and its large 3-momentum is in the−z direction. Then,
as we saw in Sec. 2.4, the big light-front component of the target’s momentum P is the
plus component. We define the fractional plus momentum of the incoming quark to be ξ

relative to the target, and write

qμ =
(
−xP+,

Q2

2xP+
, 0T

)
, (6.1)

P μ =
(

P+,
M2

2P+
, 0T

)
, (6.2)
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kμ = (
ξP+, k−, kT

)
, (6.3)

k′μ = kμ + qμ =
(

(ξ − x)P+,
Q2

2xP+
+ k−, kT

)
, (6.4)

with xP+ = Q/
√

2 in the Breit frame. The collinear property of the momenta is that the only
large component of k is its plus component and the only large component of k′ is its minus
component. From the analysis in Secs. 5.7 and 5.8, we find that the leading contribution
is from where the transverse momentum kT is of order m, and the small components of
longitudinal momentum, k− and k′+, are of order m2/Q, where m characterizes the particle
masses of the theory. Thus ξ − x is of order xm2/Q2.

The contribution of Fig. 6.1 to Wμν is

Wμν =
∑

j

e2
j

4π

∫
d4k

(2π )4
Tr γ μ Uj (k + q) γ ν Lj (k, P ), (6.5)

where Uj (k′) and Lj (k, P ) are the upper and lower bubbles, which are color- and Dirac-
matrix-valued functions of their external momentum and quark flavor. The sum over j

is over quark flavors and antiflavors, with ej being the charge of the struck quark. The
trace is over color as well as Dirac indices, and the factor 1/(4π ) is from the definition
of Wμν .

For the leading power in m/Q, a suitable approximation is to neglect the small compo-
nents of momentum, k−, kT, and (ξ − x)P+, with respect to Q where possible. A convenient
way to do this is:

1. Apply a Lorentz transformation to U so that its quark k′ has zero transverse momentum,
and then neglect k− with respect to q−:

(
k+ + q+ − k2

T

2(q− + k−)
, q− + k−, 0T

)
�
(

k+ + q+ − k2
T

2q−
, q−, 0T

)
. (6.6)

The matrix for the Lorentz transformation approaches unity as kT/Q→ 0.
2. Change the integration variable for the plus component of momentum from k+ to

l+ = k+ + q+ − k2
T/2q−, so that k+ = −q+ + l+ + k2

T/2q−. In the region of interest
k+ � −q+ = xP+, up to a small fractional correction.

3. Therefore, in the lower part of the graph, L, we approximate k+ by the fixed value xP+.
For this we need to assume that L is a smooth function of k+/P+, which is normally
true in QCD, as evidenced by the smooth dependence of structure functions on x in
Fig. 2.6. When the smoothness assumption is false, we can instead apply the derivation
to a local average of the x dependence of a structure function, as a generalization of
Secs. 4.1.1 and 4.4.

4. Project out the leading part of the Dirac matrix trace.
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After the first three steps, we find

Wμν �
∑

j

e2
j

4π
Tr γ μ

[∫
dl+

2π
Uj (l+, q−, 0T)

]
γ ν

[∫
dk− d2kT

(2π )3
Lj

(
(xP+, k−, kT), P

)]
.

(6.7)

The leading-power approximation has short-circuited the integrations, so that the integra-
tions over k− and kT are restricted to L, and the l+ integration is restricted to U . So we have
two factors coupled by a trace in Dirac spinor space, and a trivial trace over color indices.

6.1.2 Projection of Dirac matrix structure

Projectors on matrix space

To project out the leading part of the Dirac trace, we apply (A.23) to write L in terms of
numerical basis matrices:

L = A+ γ5B + γμCμ + γμγ5D
μ + σμνE

μν, (6.8)

where we temporarily drop the flavor index j . Now L is highly boosted from the target rest
frame, and we know the transformation properties of the coefficients, which are a Lorentz
scalar A, pseudo-scalar B, vector C, etc. In the target rest frame, each of the coefficients
A, . . . , Eμν has a fixed order of magnitude. Boosting to the Breit frame increases plus
components and decreases minus components by a large factor. The large terms are C+,
D+ and E+i , which multiply γ− factors. Only these can give leading-power contributions
to (6.5). They may be obtained from L by, for example, C+ = 1

4 Tr γ+L. Note that the
antisymmetry of σμν removes the possibility of an otherwise dominant term with E++. A
similar decomposition applies to Uj , for which the coefficients of γ+ are biggest.

Projectors on spinor space

The above method works for the quantities L and U as a whole. We now show an alternative
method that works more locally in the Feynman graphs: to extract the large Q asymptote,
it applies projectors on the individual lines joining the electromagnetic vertices to L and
U . This method will show that the hard scattering is computed with Dirac wave functions
for on-shell massless quarks, exactly as in the parton model.

Now each of L and U is obtained by a large boost from a rest frame. Since Dirac
spinors are in the ( 1

2 , 0)⊕ (0, 1
2 ) representation of the Lorentz group, spinors in one two-

dimensional subspace increase like Q1/2, and those in the other subspace decrease like
Q−1/2. The first subspace is the part that gives the leading power as Q/m→∞. The same
subspace is also obtained by taking the zero mass limit, and is the space of Dirac wave
functions for the appropriate massless momentum, in the plus direction for L and the minus
direction for U .

To project the leading power in the Dirac trace, we therefore use a matrix that projects
onto the space of massless wave functions. Let us(p∞) be a Dirac wave function for a
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massless particle of momentum p∞ and spin label s. A covariantly defined projection onto
their space is

P(p∞)
def=

∑
s us(p∞)us(p∞)γ · n
u(p∞)γ · nu(p∞)

= /p∞γ · n
2p∞ · n . (6.9)

Here n is any vector such that p∞ · n �= 0.
How do we resolve the ambiguity from the choice of n? Notice first that P(p∞) is

invariant when n is simply scaled by a factor. We actually need a projection matrix for
each external line of the hard scattering. The primary constraint on the vector n in each
projector is that the projection matrix should not upset the power-counting. Thus if in the
center-of-mass frame the largest components of p and n are of order E and nmax, then
p∞ · n is at most approximately Enmax. Preserving the power-counting requires that p∞ · n
should not be a large factor smaller than Enmax. Since the largest component of a on-shell
momentum is the energy, it is easiest to satisfy the requirement by setting n to be the rest
vector of the center-of-mass.

In the case of DIS, we need two projectors, onto the wave functions for target and jet
sides in (6.7). We can choose the n vectors in the (0, z) plane, e.g., the rest vector of the
Breit frame. The results are then unique, and the two projectors are

PA
def= P(k+, 0, 0T) = γ−γ+

2
, PB

def= P(0, q−, 0T) = γ+γ−

2
. (6.10)

For projections onto the conjugate spinors u we use

P(p∞)
def= n · γ ∑s us(p∞)us(p∞)

u(p∞)n · γ u(p∞)
= n · γ /p∞

2n · p∞ = 1− P(p∞), (6.11)

so that

PA = PB, PB = PA. (6.12)

Using these in (6.7) to project the leading-power terms gives

Wμν �
∑

j

e2
j

4π
Tr γ μ

[∫
dl+

2π
PBUj (l+, q−, 0T)PA

]

× γ ν

[∫
dk− d2kT

(2π )3
PALj

(
(xP+, k−, kT), P

)
PB

]
. (6.13)

Notice that PALPB projects out exactly the terms in L involving C+, D+ and E+i .
Thus the projection-matrix technique reproduces the results of the first method in this
section.

6.1.3 Parton densities: unpolarized and polarized

We now show how to organize (6.13) into a form involving parton densities and what we
will call hard-scattering coefficients. The hard scattering corresponds, as we will see, to
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DIS on a free quark target, i.e., the process γ ∗ + q → q with the quarks on-shell and of
zero transverse momentum.

Definitions

First we define quantities fj , λj and bi
jT by1

fj (ξ )
prelim=

∫
dk− d2kT

(2π )4
Tr

γ+

2
Lj (k, P ), (6.14)

λjfj (ξ )
prelim=

∫
dk− d2kT

(2π )4
Tr

γ+

2
γ5Lj (k, P ), (6.15)

bi
Tj fj (ξ )

prelim=
∫

dk− d2kT

(2π )4
Tr

γ+

2
γ iγ5Lj (k, P ), (6.16)

with the traces being over both color and Dirac indices. We have a sum over quark colors,
and it is not useful to define separate quark densities for different colors. The variable ξ is
k+/P+, and is equal to x in the use of these definitions in the parton-model approximation
for Wμν . We keep the more general variable ξ to emphasize that it is not in the first instance
to be identified with the Bjorken x variable of DIS.

These definitions correspond to the leading terms C+, D+ and E+i in (6.8). But there
is a change in normalization that lets fj (ξ ) etc. have simple interpretations when we use
light-front quantization. We will find that fj (ξ ) is the number density in ξ of quarks of
flavor j . The terminology “parton density”, “parton distribution” or “parton distribution
function” (pdf) is therefore appropriate – all three names are in common use.

We will also find that λj is the longitudinal quark polarization and bjT is the transverse
quark polarization, both normalized to maximum values of unity. For a spin- 1

2 parton these
variables suffice to specify the most general spin state, pure or mixed; see Sec. 6.5. We will
also see that the quark polarizations are functions of ξ times the corresponding variables
specifying target polarization. We therefore define the polarized parton densities �fj (ξ )
and δTfj (ξ ) as the coefficients of proportionality:

λtarg�fj (ξ ) = λjfj (ξ ), (6.17)

bTtargδTfj (ξ ) = bTj fj (ξ ). (6.18)

An interpretation will be that �fj is the number density of parallel-helicity quarks minus
that of antiparallel-helicity quarks of flavor j in a target of maximal right-handed helicity,
i.e., it is the helicity asymmetry. Similarly, δTfj (ξ ) is an asymmetry in transverse spin.

Notation and terminology The transverse spin density is also called the transversity density
and the symbols δf , �Tf , hT, �1f and h1 are also used.

1 The notation
prelim= indicates that these definitions are preliminary. In full QCD, modified definitions will be necessary.

The definitions given here are exactly correct only when all of the leading regions in a theory are of the kind depicted
in Fig. 6.1.
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Parton-model factorization

We now write (6.13) in terms of quark densities and polarization:

Wμν �
∑

j

e2
j

4π
fj (x)

∫
dl+

k̂+
Tr
D

[
γ μ PBUj (l+, q−, 0T)PA γ ν

/̂k

2

(
1− γ5λj − γ5b

i
jTγ i

)]
.

(6.19)

Here k̂ is an approximate version of k,

k̂ = (xP+, 0, 0T), (6.20)

which is massless and of zero transverse momentum. In (6.19), we choose the trace with
U to be only over Dirac indices (subscript “D”); a color average is assumed, a triviality
since U is a unit matrix in color space. This formula is of the form of a parton density
times a structure tensor for DIS on a massless quark target of momentum k̂. It still has an
integral over the jet factor Uj , which we will convert to the Dirac matrix for a spin sum for
a final-state quark in Sec. 6.1.4.

6.1.4 Result for structure functions; including polarization

We now analyze the jet factor, obtained from the upper part Uj of the graphs. The result
will be a cancellation of all but the lowest-order graph, after which we will get exactly the
standard parton model result, complete with its generalization to polarized scattering.

To do this, we use an argument from our discussion of e+e− annihilation, around
Figs. 4.13 and 4.14, applied to the integral over l+ of

PBUj (l+, q−, 0T)PA = q−γ+Ũj (2l+q−), (6.21)

which is a cut 2-point function and therefore a discontinuity of an ordinary uncut propagator.
In this equation, we have noted that the projectors pick out the coefficient of γ+ in U , and
have observed that its coefficient is q− times a function Ũ of the virtuality of the quark.
Terms proportional to γ+γ5 or to γ+γ T are absent because of parity invariance and because
of rotational invariance of the integral over final states at zero transverse momentum.

Initially we have a contour integral in l+ around the cut of the propagator. We deform
the contour out into complex plane, to where the quark has virtuality 2l+q−, i.e., of order
Q2. Here we may correctly approximate all masses in the propagator by zero. Moreover,
as usual, the decrease of the projected U (or of the uncut projected propagator) at large l+

is the decrease of Ũ in (6.21) at large virtuality, which is governed by dimensional analysis
of Feynman-graph integrands.

For the moment, we are working under the hypothesis that the parton model is exact, in
which case our theory is super-renormalizable. Then all graphs for U beyond lowest order
decrease by a power faster than 1/l+, and thus they provide a contribution to the integral
suppressed by a power of Q. This leaves the lowest-order propagator, which decreases
only as 1/l+. Therefore, we replace U by the lowest-order cut massless propagator
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PBUPA = q−γ+ (2π )δ(2l+q−) to obtain∫
dl+

k̂+
Tr
D

[
γ μ PBUj (l+, q−)PA γ ν

/̂k

2

(
1− γ5λj − γ5s

i
jTγ i

)]

= 2π

Q2
Tr γ μ (/̂k + /q)γ ν

/̂k

2

(
1− γ5λj − γ5s

i
jTγ i

)
. (6.22)

Then the parton-model approximation to Wμν is

Wμν =
∑

j

e2
j fj (x)

[
1

2

(−gμν + qμqν/q2)+ (k̂μ − qμk̂ · q/q2)(k̂ν − qνk̂ · q/q2)

k̂ · q

+1

2
iεμναβ qαλj k̂β

k̂ · q

]
. (6.23)

To relate this to our original statement of the parton model, we first recognize the last
factor in (6.22) as the numerator factor for DIS on a free massless quark target, i.e., for the
process γ ∗ + qj (k̂)→ qj (k̂ + q). Next we observe that if we assign the incoming quark
a fractional momentum ξ , i.e., if we replace k̂ by (ξP+, 0, 0T), then the final-state cut
propagator gives a factor

2πδ
(
(k̂ + q)2

) = 2π

Q2
xδ(ξ − x). (6.24)

The first factor appears on the right of (6.22), and the delta function sets the parton
momentum fraction equal to x.

Comparison of (6.23) with the definitions of the structure functions in (2.20) gives the
parton-model results for all four structure functions:

F
QPM
2 =

∑
j

e2
j x fj (x), F

QPM
1 = 1

2

∑
j

e2
j fj (x), (6.25a)

g
QPM
1 = 1

2

∑
j

e2
j�fj (x), g

QPM
2 = 0. (6.25b)

The first two agree with the previous results, Bjorken scaling being a prediction. But now
we have a concrete derivation, which is susceptible to improvement. We also have a definite
definition of the parton densities, and an extension to polarized DIS.

6.1.5 Parton transverse momentum and virtuality

The quark lines entering and leaving the hard scattering have momenta that we approximated
as being of zero transverse momentum, massless and on-shell. However, it is important that
this is an approximation applied only in a certain part of the diagrams. The actual quarks
have non-zero transverse momentum, are off-shell, and have non-zero masses. Thus, in
the definition, (6.14) etc., of the parton densities, the parton transverse momentum and
virtuality are non-negligible and are actually integrated over. Failure to recognize this
important distinction can lead to all kinds of unphysical paradoxes.
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L R

L R

Fig. 6.2. Interference between left-handed and right-handed initial quark in DIS is prevented
by helicity conservation at the electromagnetic vertex.

6.1.6 Parton densities vs structure functions

The parton density for transverse spin drops out of the result for Wμν , so that the g2

structure function is zero in the parton-model approximation. This is associated with helicity
conservation at the electromagnetic vertex in massless electron-quark scattering, in (6.22).
To see this, observe that a transversely polarized state is a linear combination of states of
left-handed and right-handed helicity, with a relative phase dependent on the azimuthal
angle φ of the transverse spin vector around the direction of motion of the particle:

|φ〉 = 1√
2

(
eiφ/2 |L〉 + e−iφ/2 |R〉) . (6.26)

Getting a transverse-spin dependence of a cross section, i.e., a dependence on φ, requires
interference between amplitudes for a left-handed and a right-handed initial state that
produce some common final state. But helicity conservation at the electromagnetic coupling
of massless particle implies that the final-state quark has the same helicity as the initial
state, so that there is no interference (Fig. 6.2).

Because the unpolarized and the longitudinal-polarization quark densities have simple
relations to structure functions in the parton model, one often sees a confusion between the
concepts of parton density and structure function, with parton densities sometimes being
called structure functions. The error of confusing the concepts must be strongly avoided.
The structure functions are properties of cross sections, needing only elementary properties
of electroweak interactions for their definition. But parton densities are more abstract
theoretical constructs in QCD, with definite definitions; they are only related to experiment
because factorization theorems can be derived to relate structure functions and other cross
sections to parton densities in certain approximations. An excellent example of confusion
between parton distributions and structure functions is in Jaffe and Ji (1991), where even the
same notation is used for some structure functions and their corresponding parton densities.

The issue becomes particularly noticeable in the case of transverse polarization (Barone,
Drago, and Ratcliffe, 2002), since transverse spin dependence drops out of Wμν (at leading
power). While the formalism clearly allows for a possible transverse spin dependence, it
is the dynamics of a particular theory that determine whether or not there is a non-zero
transverse spin dependence for a particular reaction. A reaction other than fully inclusive
DIS is needed for a non-zero effect. This has been a topic of intense study in recent
years – see Secs. 13.16 and 14.5.4 for examples.

Confusion has arisen from incorrect results in the older literature which apparently
indicate that transverse-polarization effects are universally suppressed in hard collisions,
contrary to reality. One example is in Feynman (1972), where on p. 157 an incorrect
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derivation related a combination of the g1 and g2 structure functions to the transverse spin
densities. Another example is in Wandzura and Wilczek (1977), where we read (p. 196):

For a highly relativistic quark, the quark spin is, of course, nearly always parallel to its momen-
tum.

and (p. 197):

In the parton model combination g1(x)+ g2(x) is equal to the difference k+(x)− k−(x) of
distribution functions for a parton with momentum fraction x in the infinite momentum frame to
be spinning up (k+(x)) or down (k−(x)) in a nucleon spinning up (perpendicular to the infinite
momentum). Now, again, if the parton is moving rapidly we expect that with overwhelming
probability it is spinning along its direction of motion, and therefore

k+(x) ≈ k−(x) . . .

Their notation follows that of Feynman (1972), and k+(x)− k−(x) is to be identified with
δTf (x). The problem is that the large size of the longitudinal component of a boosted spin
vector is entirely misleading.

This can be seen in the formula (A.26) for the expression of a spin state in Dirac spinor
state. The spin vector appears in the combination /S/M , whose biggest component is of order
E/M for a particle of high energy. However the effect of the big component disappears,
because it is multiplied by /p +M .

This can be seen from the non-singular massless limit (A.27). Thus for our purposes, it
is generally preferable to use a helicity density matrix to parameterize the spin state of a
particle or a parton (Sec. 6.5). The helicity variable λ is invariant under boosts along the
direction of motion. It is true that DIS structure functions on a spin- 1

2 target are defined,
(2.20), in terms of the spin vector; but in a more general situation, the density matrix gives
a better route to correct power-counting.

6.2 When is the parton model valid?

The word “valid” in the title of this section means “correct to the leading power of Q”.

6.2.1 Properties needed to derive parton model

To understand the generalization of the parton model to QCD, it is useful to pinpoint the
assumptions used to derive the parton model. Then we can determine QFTs in which the
assumptions are derivable or easily repairable. The inter-related assumptions are as follows.

1. The dominant contributions have the structure of Fig. 6.1, i.e., the hard scattering occurs
off a single parton, with no final-state interactions between the outgoing parton and the
spectator part of the target.

Note that final-state collinear interactions of the struck quark are explicitly allowed
for, and they cancel, as we showed, so that the final-state quark can be treated as if it
were free.
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target

struck quark target remnant
t

z

Fig. 6.3. The Libby-Sterman analysis associates these world lines of massless particles in
the Breit frame with the leading region that gives the parton model.

2. The hadronic amplitude L falls off sufficiently rapidly at large kT that the integrals
defining the parton densities are convergent.

3. The corrections to U at large virtuality of k′ fall more rapidly than the free-field term.
Thus when we integrate over the virtuality of k′, as in Sec. 6.1.4, all but the free-field
term drop out. This leaves us with an effectively free final-state quark: we can replace
Fig. 6.1 by Fig. 2.5(b).

4. The parton density is smooth and slowly varying on a scale of x.

6.2.2 When are they true?

In Secs. 5.8 and 5.9, we found rules that determine all the regions that contribute at the
leading power of Q. If all the leading regions are those represented in Fig. 6.1, then we need
a super-renormalizable model theory without gauge fields. The lack of gauge fields removes
the possibility of a soft subgraph, and of extra gluons connecting the collinear subgraphs
to the hard subgraph. Super-renormalizability implies that higher-order corrections to the
hard scattering are power-suppressed.

In such a theory (e.g., Yukawa theory in three space-time dimensions) it is also true that
the decrease of L at large kT and of U at large virtuality is sufficient to give convergence
of the integrals on the right of (6.13). To see this, we observe that if the integrals did not
converge, there would be an unsuppressed contribution from large values of the integration
momenta. Then there would be extra leading regions beyond those of Fig. 6.1.

Related to the Libby-Sterman analysis is that the trajectories of the target and its con-
stituents, including the struck quark and the target remnant, are in the vicinity of the
light-like world line from bottom left to top right in Fig. 6.3. At the origin, the virtual
photon injects negative momentum to make the struck quark go to the left. Near its world
line are the collinear interactions that convert the outgoing quark into a jet.

6.2.3 Smoothness or otherwise of parton density

It was known, even in the earliest days, that to derive exactly the parton model from QFT
one needs a sufficiently fast decrease of U and L, and that this assumption is violated
in typical QFTs in a four-dimensional space-time. However, a less obvious assumption is
that the L factor and hence the parton densities are smooth functions of ξ , so that one
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P

q

Fig. 6.4. Notation for parton-model approximation to the graph in Fig. 6.1.

can replace k+ by xP+, given that |k+ − xP+| = O(xm2/Q2)� xP+. The necessary
quantitative property is that the x derivative of a parton density should obey∣∣∣∣x ∂f (x)

∂x

∣∣∣∣ � f (x). (6.27)

If this condition is badly violated, the relative errors in the parton-model approximation
are much bigger than m2/Q2. When we generalize the parton model to the standard
factorization theorems of QCD, the same smoothness property is needed.

From experimental measurements, the smoothness property in fact holds at moderate
and small x for the real strong interaction, and hence for QCD. This is seen from the plots of
the F2 structure function in Fig. 2.6, or from many successful fits of factorization formulae
to data that give measured values for parton densities.

However, the smoothness assumption is not universally true. In the first place, par-
ton densities decrease to zero at x = 1 roughly like a power: f ∼ (1− x)n, where the
exponent is around 3 to 6, depending on the flavor of parton. Then (6.27) is violated as
x → 1: ∣∣∣∣x∂(1− x)n∂x

(1− x)n

∣∣∣∣ = nx

1− x
∼ n

1− x
. (6.28)

In the second place, we can apply parton-model methods to other theories. For example
in electromagnetic interactions at high energies it can be useful to apply parton methods (and
the associated factorization theorems). In that case we need parton densities for electrons
and photons in on-shell electron and photon states. As is readily seen in model calculations,
these have delta-function terms at x = 1. This is the epitome of non-smoothness.

6.2.4 Notation for parton-model approximation

A diagrammatic notation for the approximations used in (6.19) is useful. For an unapprox-
imated graph, Fig. 6.1, we represent the approximation by Fig. 6.4. Crossing the quark
lines entering and leaving the hard scattering are thin bent lines (“hooks”) denoting where
approximations are applied. The approximations are as follows. On the hard-scattering
side, i.e., the concave sides of the hooks, the momenta k and k′ = k + q are replaced by
(k+, 0, 0T) and (0, k− + q−, 0T) respectively, and masses are set to zero (which for this
graph is a triviality). Momentum conservation then requires the approximated momenta to
equal (−q+, 0, 0T) and (0, q−, 0T). The approximation also includes the insertion of Dirac
projection matrices, PA or PB , as appropriate.
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These operations are all applied on the concave, hard-scattering sides of the hooks.
Further operations are applied outside the hard scattering, to change the momentum of the
quark in the target bubble from k+ to xP+ = −q+, and to change the momentum of the
final-state quark so that it has no transverse momentum.

One way of implementing the approximations on momenta is as a replacement of the
hard vertex and the associated momentum conservation delta function. Let us use TPM, L

and TPM, R to denote the application of the approximator on, respectively, the left-hand and
right-hand sides of the final-state cut. Because of the Dirac projection matrices, these have
slightly different formulae:

TPM, L γ νδ(4)(q + k − k′) = PAγ νPA δ(q+ + k+) δ(q− − k′−) δ(2)(k′T), (6.29a)

TPM, R γ μδ(4)(q + k − k′) = PBγ μPB δ(q+ + k+) δ(q− − k′−) δ(2)(k′T). (6.29b)

Thus we formulate the approximations locally at the places indicated by the hooks, rather
than as global operations on a complete Feynman graph.

6.2.5 Shift of final-state momentum

Our parton-model approximation employed a shift of the plus component of k and the minus
component of k′. This implies a shift of the momenta of both parts of the final state, i.e.,
the target remnant and the struck quark’s jet. The approximation is certainly valid under the
conditions we consider, i.e., in the parton-model kinematic region, when the parton density
is a smooth function of x, and for the fully inclusive structure function, i.e., integrated over
hadronic final states.

However, there are more general situations. For example, Monte-Carlo event generators
generate complete simulated events for processes like DIS. When they are based on the
usual partonic methods, the standard kinematic approximations result in events that violate
momentum conservation. Thus it is necessary to adjust (Bengtsson and Sjöstrand, 1988)
the parton kinematics so that generated events obey 4-momentum conservation.

In this and similar cases, if one wishes to obtain a more systematic treatment, there is a
conflict between the need to maintain exact kinematics and the kinematic approximations
used in standard factorization. This has been particularly emphasized by Watt, Martin, and
Ryskin (2003, 2004); Collins and Zu (2005); Collins and Jung (2005); Collins, Rogers,
and Staśto (2008). These authors show that more general methods are needed. One case,
to be treated in this book in Chs. 13 and 14, concerns cross sections sensitive to partonic
transverse momentum.

For our immediate purposes, of treating inclusive cross sections, the standard kinematic
approximations are appropriate. But it is important to be aware of the flexibility of adjusting
the approximations to the actual situations under discussion. Thus it is useful to make very
explicit the form of the approximations, with an aim of recognizing situations where changes
are needed. The form of the kinematic approximations is closely tied to the detailed structure
of the corresponding factorization theorem, and to the definitions of the parton densities
(or their generalizations used with different approximations).



174 Parton model to parton theory

6.3 Parton densities as operator matrix elements

6.3.1 Unpolarized quark density

The parton density defined in (6.14) is an integral over the lower bubble in Fig. 6.4, together
with a trace with γ+/2:

fj/h(ξ )
prelim= Tr

γ+

2

∫
dk− d2kT

(2π )4
P

k

(6.30)

where h denotes the type of the target hadron, and k+ = ξP+. The diagram is a certain
amplitude times its conjugate, with the amplitude involving one off-shell quark, the target
state, and a final state. When the quark line on the left of the final-state cut is directed away
from the lower bubble, then its top end corresponds to annihilation of a quark by the field
ψj . It is left as an exercise (problem 6.2) to derive an explicit formula for the quark density
as a matrix element of a bilocal operator:

fj/h(ξ )
prelim=

∫
dw−

2π
e−iξP+w−

〈
P |ψj (0, w−, 0T)

γ+

2
ψj (0)|P

〉
c

. (6.31)

With standard conventions, it is the right-hand part of the matrix element, with the ψj field,
that corresponds to the part of the diagram to the left of the final-state cut, and the left-hand
part of the matrix element corresponds to the complex conjugated amplitude on the right
of the cut. Only the contribution with the quark fields connected to the target state |P 〉 are
to be included, and this is indicated by the subscript “c”.

The field ψj (0) represents the extraction of a quark by the hard scattering. Because we
integrate over all momentum in the minus and transverse directions, the antiquark field
in the complex conjugate amplitude has zero relative position in w+ and wT; note that
w+ is Fourier conjugate to the opposite light-front component k− in momentum space.
The average position of the quark and antiquark fields is irrelevant, since the definition is
actually applied to a momentum eigenstate, i.e., a target state uniformly spread out over all
space. The space-time locations of the fields are shown in Fig. 6.5.

We have again tagged the definitions as preliminary, in view of the adjustments that will
be needed in QCD.

The restriction to connected amplitudes can be implemented by subtracting disconnected
graphs, Fig. 6.6, i.e., as subtraction of the vacuum expectation value (VEV) of the operator.
This can be written as

〈P ′|ψj (y)γ+ψj (0)|P 〉
c

def= 〈P ′|ψj (y)γ+ψj (0)|P 〉 − 〈P ′|P 〉 〈0|ψj (y)γ+ψj (0)|0〉 .
(6.32)

An off-diagonal matrix is used here, since momentum eigenstates are non-normalizable.
After the subtraction, the diagonal matrix element can be taken: i.e., with P ′ = P . Without
this manoeuvre, we would subtract an unquantified infinity proportional to 〈P |P 〉.
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Fig. 6.5. The space-time location of the fields
is along a light-like line. The shaded region
represents the approximate location of the tar-
get hadron in its rest frame.

Fig. 6.6. Disconnected graphs, of this
form, must be removed from the defini-
tion of the parton density when extended
to negative ξ .

6.3.2 Antiquark density

For the density of an antiquark, whose flavor we denote by j̄ , we have similarly

fj̄/h(ξ )
prelim=

∫
dw−

2π
e−iξP+w− Tr

γ+

2

〈
P
∣∣ψj (0, w−, 0T)ψj (0)

∣∣P 〉
c
, (6.33)

where the trace is over the Dirac and color indices of the fields. In the parton model, the
antiquark density appears in contributions to the structure function where the direction of
the quark line in Figs. 6.1 and 6.4 is reversed.

6.3.3 Lorentz-covariant definition

The definitions of parton densities are not Lorentz invariant, but they have Lorentz-covariant
expressions in terms of a single light-like vector nμ ∝ (0, 1, 0T) = δ

μ
−, so that ξ = k · n/P ·

n. Thus:

fj/h(ξ )
prelim=

∫
dλ

2π
e−iξn·Pλ

〈
P
∣∣∣ψj (λn)

n · γ
2

ψj (0)
∣∣∣P 〉

c
. (6.34)

Here the right-hand side is a scalar, so it is a function of Lorentz invariants only, i.e., of k · n
and P · n, with n2 fixed at zero. The formula is invariant under scaling of n by a positive
factor, so that only the combination k · n/P · n, i.e., ξ , is allowed. Hence, as a function
of ξ , the numerical values of the quark density are independent of n, provided only that
it is light-like and future-pointing. But for deriving factorization a suitable choice of n is
needed, which is determined by the directions of the external momenta p and q.

6.3.4 Relation to wave function?

A parton density can be thought of as some property of the target. But since it is an integral
along the light-like line in Fig. 6.5, there can be no simple relation to an ordinary wave
function as used in non-relativistic physics, which corresponds to properties of the target
at a fixed time in the target rest frame. The transformation to a light-like line involves the
interactions of the theory.
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We will need to use light-front quantization to interpret parton densities in terms of wave
functions (Secs. 6.6 and 6.7).

6.3.5 Support properties

The intermediate state in the parton density, between the two fields, has momentum P − k.
For it to be physical, it must have non-negative energy, so that P+ − k+ ≥ 0, i.e., ξ ≤ 1.
Thus the parton density is zero if ξ > 1.

In the parton-model factorization formula, (6.19) and Fig. 6.4, the final state in the upper
part of the graph has plus momentum ξP+ + q+ = (ξ − x)P+. This must be positive, in
order that the state have positive energy, so that ξ ≥ x > 0. This restriction applies quite
generally in standard factorization formulae for cross sections. Thus we will use parton
densities only in the range 0 < ξ ≤ 1.

However, the matrix element for the parton density is generally non-vanishing for
negative ξ . We will see later that we can relate fj/h(ξ ) for negative ξ to the antiquark
density with the opposite sign of ξ : fj/h(ξ ) = −fj̄/h(−ξ ). This will be critical to the
derivation of sum rules. But to make it work, it will be important that we have removed
disconnected graphs, Fig. 6.6, from the definition; the disconnected graphs are non-zero
for negative values of ξ .

6.3.6 Polarized quark densities

We defined polarized quark densities in (6.15) and (6.16). By the same methods as we used
for the unpolarized densities, these can be re-expressed as expectation values in a target
state of the operators ψ(z)γ+γ5ψ(0) and ψ(z)γ+γ i

⊥γ5ψ(0):

λtarg�fj (ξ ) =
∫

dw−

2π
e−iξP+w−

〈
P, S

∣∣∣∣ψj (0, w−, 0T)
γ+γ5

2
ψj (0)

∣∣∣∣P, S

〉
c

, (6.35)

bTtargδTfj (ξ ) =
∫

dw−

2π
e−iξP+w−

〈
P, S

∣∣∣∣ψj (0, w−, 0T)
γ+γ i

⊥γ5

2
ψj (0)

∣∣∣∣P, S

〉
c

. (6.36)

Here |P, S〉 denotes a state with normalized helicity λtarg and normalized transverse spin
bTtarg. These definitions presuppose proportionalities between quark and target spin vari-
ables, to be proved in Sec. 6.4. Then the quantities �fj (ξ ) and δTfj (ξ ) are independent of
target polarization, i.e., they are parton densities par excellence.

6.3.7 Polarized antiquark densities

Similarly, definitions of polarized antiquark densities are

λtarg�fj̄ (ξ ) = −
∫

dw−

2π
e−iξP+w−

〈
P, S

∣∣∣∣ψj (0, w−, 0T)ψj (0)
γ+γ5

2

∣∣∣∣P, S

〉
c

, (6.37)

bTtargδTfj̄ (ξ ) =
∫

dw−

2π
e−iξP+w−

〈
P, S

∣∣∣∣ψj (0, w−, 0T)ψj (0)
γ+γ i

⊥γ5

2

∣∣∣∣P, S

〉
c

. (6.38)
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Note the extra minus sign in (6.37) compared with the other antiquark densities. For the
moment, we can regard this as purely a strange convention. Later we will see that the signs
are those needed to give a number-density interpretation.

6.4 Consequences of rotation and parity invariance: polarization dependence

In this section, we examine how parton densities depend on the polarization of the particles
and the quarks. This will introduce us to techniques for analyzing the consequences for
parton physics of symmetries of QCD, and will justify the definitions given in Secs. 6.3.6
and 6.3.7.

Mental health warning: There are no fixed conventions for the normalizations of many
of the objects discussed in this section. The objects concerned range from the definitions
even of basic mathematical quantities, like εκλμν , through the definitions of various kinds
of spin vector, to the definitions of structure functions and parton densities. Quantities of
the same name and symbol change their normalizations between different papers, even
by the same authors. If one needs to make numerical results, it is important to check all
conventions very carefully.

The conventions used in this book are defined in Apps. A.7 and A.10.

6.4.1 Polarization state

The target can be polarized, and in the most general case a spin density matrix is needed
to specify the polarization state. So the target state |P, S〉 has an extra argument specifying
the polarization. For the general case, this argument can be the density matrix, with respect
to some basis. But for massive spin- 1

2 hadron, like a proton, we can use the covariant spin
vector Sμ, as defined in App. A.7. Although our notation, as in (6.35) etc., is as if we are
working with pure states, there is actually an implicit trace with a helicity density matrix,
as defined in (A.8) and (A.13), to allow the target to be in a mixed state.

A helicity basis is rather natural when we work with high-energy particles or with a
massless limit. Helicity states are obtained in the theory of irreducible representations
of the Poincaré group for massless particles. Moreover, the chiral symmetry ubiquitous
in the massless limit of QCD perturbation theory effectively tells us to treat left-handed
and right-handed quarks as if they were separate particles. Even so, transversely polarized
quarks, i.e., states that are linear combinations of equal amounts of left- and right-handed
components, are allowed physically, and have interesting properties.

When we obtain the most general dependence on target spin, it is important that expec-
tation values as defined by (A.13) have a spin dependence that is linear in the spin vector
S, Equally, it is linear in the normalized helicity λ and normalized transverse spin bT, as
defined in App. A.7. Helicity and transverse spin are well behaved in the massless limit
unlike the covariant spin vector, and they apply also to the spin state of a quark parton.

The formula (A.12) for S in terms of bT and λ exhibits some oddities in the zero-mass
limit. In the rest frame of a massive spin- 1

2 particle, the spin vector has only a spatial
component, which unproblematically corresponds to standard usage in non-relativistic
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physics. Boosting along the z axis does not change the transverse component of S, but
increases its longitudinal components. In contrast, λ and bT are invariant under the boost
(except for the obvious change of sign when the direction of motion is reversed!).

But a massless particle has no rest frame. Instead one works either with the helicity den-
sity matrix or with its decomposition (A.9) in terms of (bT, λ). The spin vector is useful for
a proton but not for an on-shell massless quark such as we use in hard scattering. In contrast,
the density matrix and the Bloch vector formalisms work for both quarks and protons.

6.4.2 Rotations about z axis

The definition of what we called the unpolarized quark density fj (ξ ) makes no reference
to any azimuthal direction, in the (x, y) plane. Therefore we expect this parton density to
be independent of the direction of the transverse spin vector of the target. Since matrix
elements are linear in the target’s spin vector, this implies that there is no dependence even
on the size of the transverse spin vector.

To derive this and similar properties formally, we define an operator U (φ) on state space
that corresponds to a rotation by an angle φ around the z axis; its action on a helicity
eigenstate is

U (φ) |P, α〉 = e−iαφ |P, α〉 . (6.39)

Hence the matrix element of an operator between helicity eigenstates obeys

〈P, α′| op |P, α〉 = ei(α−α′)φ 〈P, α′| U (φ)† op U (φ) |P, α〉 . (6.40)

The combination U (φ)† op U (φ) is the rotated operator. Of the operators defining
the parton densities the following two are rotation invariant: ψ(0, w−, 0T)γ+ψ(0) and
ψ(0, w−, 0T)γ+γ5ψ(0). From (6.40) follows that their matrix elements are diagonal in
helicity eigenstates of the target.

For the case of a spin- 1
2 target, we can apply the rotation to the spin vector S of a general

spin state, (A.13), to get

〈P, rotated S| op |P, rotated S〉 = 〈P, S| rotated op |P, S〉 . (6.41)

6.4.3 Implications for unpolarized quark density

Spin- 1
2 target

We now show that the unpolarized quark density fj (ξ ) defined by (6.31) is independent of
the polarization state of a spin- 1

2 target.
We already proved that the matrix elements of the operator defining the unpolarized

parton density are diagonal in helicity. But the transverse part of the spin vector only results
in off-diagonal terms in the density matrix, so the unpolarized density is independent of
transverse spin.

Now a parity transformation reverses the helicity of a state, but also reverses the 3-
momentum. A rotation can then be applied to bring the momentum of the state back to its
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original value, and makes no change to the already reversed helicity. Thus we can apply
the same method as above, but with U (φ) replaced by a unitary operator UP that reverses
helicity while preserving P :

UP |P, j 〉 = |P,−j 〉 . (6.42)

Since the operator in (6.31) is invariant under UP , it follows that the unpolarized parton
density is the same in states of opposite helicity, in a parity-invariant theory.

For a spin- 1
2 target there are only two helicity states, so we now have shown that the

unpolarized parton density fj (ξ ) is independent of the polarization state.

Higher spin

When the target has spin higher than 1
2 , there is a wider range of possibilities. For exam-

ple, in a spin-1 target, there is one unpolarized quark density for targets of helicity ±1
and one for targets of helicity zero. There are corresponding generalizations for the
DIS structure functions. See problem 6.8 for an exercise to fill in the details, and see
Hoodbhoy, Jaffe, and Manohar (1989) for results on DIS, including several new structure
functions.

6.5 Polarization and polarized parton densities in spin- 1
2 target

To treat the polarized densities in a spin- 1
2 target, we use its helicity density matrix ραα′ (S)

from (A.9), now written as

ρ(S) = 1

2

(
I + λtargσz + bTtarg · σ

)
, (6.43)

where the label “targ” is used to distinguish the spin variables for the target from those for
the quark. Expectation values of operators are linear in λtarg and bTtarg.

The operator defining the polarized parton density �fj (ξ ) in (6.35) is invariant under
rotations around the z axis. Therefore its matrix elements are diagonal in helicity and hence
independent of transverse spin, just like the unpolarized density. But unlike that case, the
operator has the reversed sign under a parity transformation, as does normalized helicity
λtarg. So the analog of (6.41) used with the operator UP of (6.42) shows that the matrix
element of the operator is linear in λtarg, as asserted in the matrix element representation
(6.35). Thus all the dependence on target polarization is in the explicit factor of λtarg, so
that �fj (ξ ) is polarization independent.

Finally, the remaining parton density δTfj (ξ ) in (6.36) is obtained from the matrix

element of an operator ψj (0, w−, 0T) γ+γ i
⊥γ5

2 ψj (0) that transforms as a (two-dimensional
transverse) vector. Because of the γ5 factor, it actually transforms as a pseudo-vector, i.e.,
under a parity transformation it acquires a minus sign relative to the transformation of an
ordinary momentum. The transverse spin vector is also a pseudo-vector.

To get the correct rotation properties, the matrix element of the operator must be a
coefficient times the transverse spin vector, but possibly with the application of a rotation
of some angle around the z axis. This rotation, as a function of ξ , would be a property
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of the target; it would represent some analog of optical rotation phenomena in a chiral
medium. But let us apply a parity transformation followed by a 180◦ rotation about the x

axis (say). This preserves the momentum and the x component of spin of the target, but it
reverses the y component of spin. The same transformation applies to the operator. Thus a
spin in the x direction gives only a non-zero x component to the matrix element, and
similarly for the y component. Thus parity invariance requires there to be exactly no
rotation between the spin vector and the matrix elements. (Actually a 180◦ rotation is also
allowed, but for the two transverse directions in question, this is equivalent to a reversal of
sign, i.e., to an overall coefficient.) Thus all the dependence on target polarization is in the
explicit factor of bTtarg, so that δTfj (ξ ) is polarization independent.

6.6 Light-front quantization

A standard method of formulating quantum field theory uses the usual canonical quanti-
zation rules for a quantum theory: equal-time commutation (or anticommutation) relations
are obtained from the Lagrangian density, and then the Heisenberg equations of motion
determine the fields at all times from their values at one particular time. An alternative, first
proposed by Dirac (1949), is to use a light-like surface t + z = 0 as the initial surface on
which (anti)commutation relations are fixed. This is called light-front quantization, with
the terms “light-cone quantization” and “null-plane quantization” being synonyms.

Light-front quantization is useful for DIS and other processes where a target system
is probed along an almost light-like surface. Inspired by initial approaches using the so-
called “infinite momentum frame”, Bardakci and Halpern (1968) developed light-front
quantization in field theories. Then Kogut and Soper (1970) made a very clear fundamental
treatment. See Brodsky, Pauli, and Pinsky (1998) and Heinzl (2001) for reviews. See also
Heinzl and Werner (1994) for a careful treatment of the issue that in solving the equations
of motion, it is not sufficient to specify initial conditions on a light-like surface.

As we will now show, light-front quantization gives a direct probability interpretation
of parton densities and yields a convenient decomposition of hadronic states in terms of
partonic states. Further advantages are explained in the literature just quoted. In extending
the method to theories like QCD that are renormalizable or have gauge fields, there are a
number of complications that imply that light-front quantization must be used with care.
Nevertheless, it provides important insights.

6.6.1 Formulation

To understand the general principles of light-front quantization, we examine the simple
case of a Yukawa field theory with Lagrangian density

L= i

2
[ ψγ μ∂μψ−(∂μψ)γ μψ]−Mψψ + 1

2
(∂φ)2 − m2

2
φ2 − gψψφ − h

3!
φ3 − λ

4!
φ4.

(6.44)
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This theory is renormalizable at space-time dimension n = 4, and is super-renormalizable
when n < 4. We use the scalar rather than the pseudo-scalar coupling for the Yukawa
interaction, to avoid complications with γ5 in dimensional regularization.

We use light-front coordinates (x+, x−, xT) as defined in App. B. Then the equations of
motion are

0 = i /∂ψ −Mψ − gψφ, (6.45)

0 = 2∂+∂−φ −∇2
Tφ +m2φ + gψψ + h

2
φ2 + λ

3!
φ3. (6.46)

In light-front quantization we treat these equations as giving evolution in x+ from fields on
the initial surface x+ = 0.

Now the term with an x+ derivative of the Dirac field is iγ+∂+ψ , which only affects
two independent components of ψ . Therefore we project onto what are called “good” and
“bad” components of ψ by the matrices

PG = 1

2
γ−γ+, PB = 1

2
γ+γ−. (6.47)

These are exactly the same as we used in projecting out the leading power of Q in the
Dirac trace in the parton-model approximation to DIS, but now they appear with a more
fundamental significance. In view of the jargon of this part of the subject, I replaced the
subscript “A” by “G” for good: PG = PA. These matrices obey the usual properties of
projectors (PG + PB = 1, P2

G = PG, etc., and especially PBPG = PGPB = 0). Then we
define the good and bad parts of the fermion field by

ψG = PGψ, ψB = PBψ, (6.48)

so that ψG = ψPB .
The equation of motion for ψ then separates into two separate two-dimensional

pieces:

0 = 2i∂+ψG + γ−
(
iγ j∇j −M − gφ

)
ψB, (6.49a)

0 = 2i∂−ψB + γ+
(
iγ j∇j −M − gφ

)
ψG, (6.49b)

where the sums over j are over transverse components. The first equation gives the evolution
of ψG in x+, while we treat the second equation as a constraint: it fixes ψB at a given value
of x+ in terms of ψG, up to boundary conditions. So we treat ψG as the independent set of
components. The solution of the constraint equation is

ψB(x) = γ+
i

2∂−

(
iγ j∇j −M − gφ

)
ψG

= iγ+

4

∫ ∞
−∞

dy− sign(x− − y−)
(
iγ j∇j −M − gφ

)
ψG(x+, y−, xT)+ Cψ (x+, xT).

(6.50)
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There is a term Cψ independent of x− that is not determined by the equation of motion.
When a Fourier transform over x− and xT is made, to momentum variables k+ and kT,
the Cψ term is proportional to a delta function at k+ = 0. It is therefore characterized as
contributing to the zero mode only. A similar zero mode arises in using the equation of
motion (6.46) for the φ field to determine ∂φ/∂x+ in terms of the fields on a surface of
fixed x+.

The zero-mode issue is quite important to the vacuum structure, and it is not clear to
me that it has been properly treated in the literature. But much of what we do will not
need a professional treatment of the zero modes. The primary issue is that the equations of
motion alone are not sufficient to determine the evolution in x+. Extra boundary conditions
must be imposed. In contrast, for equal-time quantization, the Euler-Lagrange equations are
sufficient to determine the time derivatives of the fields in terms of the independent fields
and canonical momentum fields. A related complication concerns the 1/k+ singularity
in mode sums like (6.59). For treatments of these and related issues, see Nakanishi and
Yamawaki (1977), Yamawaki (1998), Heinzl (2003), Heinzl and Ilderton (2007, Sec. 4),
and Steinhardt (1980).

We now arrange to form the quantum mechanics of our system by using Hamilton
methods, but with evolution in the variable x+ instead of conventional time.2 For this we
need commutation relations on surfaces of constant x+, and a Hamilton to control the
evolution by the standard Heisenberg equation

i
∂A(x)

∂x+
= [A(x), P+], (6.51)

which applies to any field operator A(x). Now the Lagrangian is linear in derivatives with
respect to x+, so the standard elementary rules of quantization need generalization, for
which we use the simple formulation given by Faddeev and Jackiw (1988).

The appropriate Hamilton is just the Noether charge for translations in the x+ direction,
i.e., the appropriate component of momentum:

P+ =
∫

dx− d2xT

[
ψ
(−iγ−∂−γ − iγ j∇j +M + gφ

)
ψ

+ 1

2
(∇Tφ)2 + m2

2
φ2 + h

3!
φ3 + λ

4!
φ4

]
.

(6.52)

As with conventional equal-time quantization, for which the founding papers are Born
and Jordan (1925); Dirac (1926) and Born, Heisenberg, and Jordan (1926), the equal-x+

commutation/anticommutation are to be such that the equation of motion in the Heisenberg
form (6.51) and in the Euler-Lagrange form (6.46) and (6.49) are equivalent. Thus we
have

∂

∂x−
[
φ(x+, x−, xT), φ(x+, w−,wT)

] = −i

2
δ(x− − w−) δ(2)(xT − wT), (6.53)

[
ψG(x+, x−, xT), ψG(x+, w−,wT)

]
+ =

γ−

2
δ(x− − w−) δ(2)(xT − wT), (6.54)

2 For this reason, x+ and the evolution operator P+ are sometimes called “light-front time” and “light-front Hamiltonian”.
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with the other commutators involving φ, ψG and ψG being zero. The subscript+ in
[
ψ,ψ

]
+

etc. denotes the anticommutator appropriate for fermionic fields. Now the first of the above
equations is the derivative of the commutator of the scalar field. From it we obtain the
commutator of the field with itself:

[
φ(x+, x−, xT), φ(x+, w−,wT)

] = −i

4
sign(x− − w−) δ(2)(xT − wT), (6.55)

with the boundary condition for inverting ∂/∂x− being determined by the antisymmetry of
the commutator of two φ fields under exchange of the position arguments.

To verify the correctness of this setup, one applies the (anti)commutation relations (6.53)
and (6.54) to the the right-hand side of the Heisenberg equations of motion (6.51), for the
fields φ and ψG. In this calculation we do not need the (anti)commutators of φ and ψG with
ψB . For example, the term involving [φ(x), ψB(x+, y−, yT)] is∫

dy− d2 yT

[
φ(x), ψB (x+, y−, yT)

] δP+
δψB(x+, y−, yT)

, (6.56)

where δP+/δψB (y) denotes a functional derivative. This functional derivative is zero by
the constraint equation of motion. It follows from elementary algebra that the Heisenberg
equations are also valid for sums and products of fields. Unitary evolution implies that the
(anti)commutation relations are true at all x+ when they are true at x+ = 0.

Since ψB is determined from the other fields by the interaction-dependent (6.50), the
commutators and anticommutators of ψB are interaction dependent. Therefore, because
the right-hand side of (6.50) is non-linear in fields, the equal-x+ (anti)commutators of ψB

are field dependent. That is, they are not simply numerical-valued functions times the unit
operator. This is the primary reason for the jargon of calling ψB the bad components of
the fermion field. For example, in current algebra one deals with operators constructed
out of the elementary fields of a theory. Only for operators constructed solely out of good
components at a given value of x+ can one obtain their commutators directly from the
canonical (anti)commutators of the elementary fields, without investigating how to solve
the theory.

A similar issue arises with the quark densities. Because of the factor of γ+ in their
defining operators (see (6.31) etc.) only the good components are used:

ψ(0, w−, 0T)γ+ψ(0) = ψG(0, w−, 0T) γ+ ψG(0). (6.57)

In Sec. 6.7, we will show that this operator can be represented in terms of light-front
annihilation and creation operators for the quark, and this directly gives an interpretation
of the quark density as a number density, i.e., as a probability density. This interpretation
requires commutation relations for the annihilation and creation operators, which in turn
arise from the anticommutation relation (6.54).

It is possible to treat quark correlators constructed from bad components of fields.
But the resulting (anti)commutation relations for the Fourier-transformed quantities would
be interaction dependent, and hence would be not those of conventional creation and
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annihilation operators. Therefore we do not expect any simple interpretation as number
densities for parton-density-like quantities constructed using the bad components of the
fields.

6.6.2 Light-front annihilation and creation operators

We now obtain annihilation and creation operators in terms of light-front fields (Kogut and
Soper, 1970), and derive their commutators.

The annihilation and creation operators are defined by Fourier-transforming the scalar
field and the good components of the fermion field:

φ(x) =
∑

k

(
ak(x+)e−ik+x−+ikT·xT + ak(x+)†eik+x−−ikT·xT

)
, (6.58a)

ψG(x) =
∑
k,α

(
bk,α(x+)uk,αe−ik+x−+ikT·xT + dk,α(x+)†uk,−αeik+x−−ikT·xT

)
. (6.58b)

The sum over α is over the two possible values α = ± 1
2 for the “light-front helicity” for

the fermion, as defined below. The integral over momentum modes is denoted by
∑

k , and
is restricted to k+ > 0:

∑
k

. . .
def= 1

(2π )3

∫ ∞
0

dk+

2k+

∫
d2kT . . . (6.59)

This is just the normal Lorentz-invariant form for the integral over a single particle
momentum:

1

(2π )3

∫ ∞
0

dk+

2k+

∫
d2kT . . . = 1

(2π )3

∫
d4k δ(k2 −m2)θ (k0) . . . , (6.60)

but without the need to specify the value of the mass. This is an advantage since the
physical mass is an interaction-dependent quantity, not known before solving the theory,
and moreover the formula applies to quarks and other confined particles that do not have a
definite physical mass.

Although the integral is restricted to positive k+, Fourier modes with the opposite sign
of k+ are allowed for by using terms with a complex-conjugated exponential in (6.58).
The distinction between annihilation operators ak etc. and creation operators a

†
k etc. is

made by the sign of the exponential of x−. (This contrasts with the situation in the Fourier
decomposition of fields in equal-time quantization.)

The Dirac wave functions uk,α are defined to be wave functions for massless particles
with zero transverse momentum, which span the space of good components (because
γ−uk,α = 0). They are normalized to obey

uk,αγ+uk,α′ = 2k+δαα′ , (6.61)
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and hence ∑
α

uk,αuk,α = k+γ−. (6.62)

The label α corresponds to “light-front helicity” in the sense that

σxyuk,α = 2αuk,α, (6.63)

which is exactly normal helicity for particles of zero transverse momentum. (Note that
2α = ±1, that σxy = i

2 [γ x, γ y], and that the wave function for an antiquark of helicity α

is uk,−α , with argument −α.)
In (6.58), the x+ dependence is in the annihilation and creation operators, not in the

exponential factor, since the x+ dependence depends on solution of the interacting theory,
which is not a simple linear problem.

Unlike the case of the corresponding decomposition at equal time, the annihilation
and creation operators correspond to different Fourier components. Thus we obtain these
operators simply by inverting the Fourier transform:

ak(x+) = 2k+
∫

dx− d2xT eik+x−−ikT·xT φ(x), (6.64a)

bk,α(x+) =
∫

dx− d2xT eik+x−−ikT·xT uk,αγ+ψ(x), (6.64b)

dk,α(x+) =
∫

dx− d2xT eik+x−−ikT·xT ψ(x)γ+uk,−α. (6.64c)

Values of masses do not appear in these formulae, in contrast to the corresponding formulae

in equal-time quantization, which involve Ek =
√

k2 +m2. Which value of a mass to use
would be unobvious and ambiguous. The possibilities include: the physical mass, the bare
mass, and the MS renormalized mass, none of which are equal, with the relationships only
known after the theory is solved. But we are formulating the Fourier transform before
solving the theory.

From (6.64) follow the (anti)commutation relations appropriate for annihilation and
creation operators:[

ak, a
†
l

] = δkl,
[
bkα, b

†
lα′
]
+ =

[
dkα, d

†
lα′
]
+ = δklδαα′ , (6.65)

where δkl means (2π)32k+δ(k+ − l+)δ(2)(kT − lT). The other (anti)commutators are
zero.

6.7 Parton densities as number densities

From the operator definitions (6.31) etc., we now derive the interpretation of parton densities
as number densities, as found by Bouchiat, Fayet, and Meyer (1971) and by Soper (1977).
See problem 6.6 for corresponding results for the parton density for a scalar field.
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6.7.1 Statement of result

Our field-theoretic analysis of DIS structure functions led us to the formal definition of
a parton density by (6.31). But previously, in Sec. 2.4, we had introduced the concept of
a parton density rather intuitively as a number density. We now complete the picture by
showing that the abstract field-theoretic definition is exactly a number density, defined with
the aid of light-front annihilation and creation operators:

fj/h(ξ )
prelim= 1

2ξ (2π )3

∑
α

∫
d2kT

〈P, h|b†k,α,j bk,α,j |P, h〉
〈P, h|P, h〉 . (6.66)

Here we have inserted labels j and h for the quark and target type. The prefactor 1/[2ξ (2π )3]
is present merely to correspond to our chosen continuum normalization of b and b† oper-
ators: The (anti)commutation relations in (6.65) imply that the right-hand side of (6.66) is
exactly the number density in ξ of quarks of flavor j in hadron h; its unweighted integral
over ξ is a number of quarks.

In the previous section, we explained light-front quantization in the context of a simple
model, whereas in the present section our notation is intended to cover more general theories
with more than one flavor of quark. We use the terminology “hadron” for the target state,
as is appropriate in QCD. In a general field theory, the target state |P, h〉 can be any stable
single-particle state of definite momentum P , the label h serving to distinguish different
stable particles. Similarly the parton label j just refers to any particular field in the theory’s
Lagrangian.

We explicitly flag (6.66) as preliminary because of important modifications needed in
QCD. Even within a super-renormalizable non-gauge model QFT, where the unmodified
parton model is valid, there are two important complications:

• Momentum eigenstates have infinite normalization, so the quotient in (6.66) needs inter-
pretation, in terms of an expectation value in a wave packet state, in the limit of a state
of definite momentum – see below.

• Our original operator definition had a subtraction of the VEV of the operator, as indicated
by the subscript “c” in (6.31). This will not be relevant for the normal situation of
positive ξ .

The number density interpretation immediately suggests several sum rules that we
will derive. Simple generalizations of the derivation of (6.66) will give corresponding
interpretations for the polarized parton densities, and for the parton densities for antiquarks
and for scalar (spin-0) partons.

Finally, this result shows that a parton density is an integral of a number density over
parton transverse momentum. It is natural to define an unintegrated density, a density in ξ

and kT, by simply deleting the integral over kT. This we will do in Sec. 6.8. Unintegrated
densities are important to the treatment of reactions with sensitivity to partonic transverse
momentum – see Chs. 13 and 14. The original kind of parton density naturally gets
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called an “integrated parton density” whenever the distinction with unintegrated densities is
needed.

6.7.2 Wave-packet state

Now we return to the derivation of the number density formula (6.66). We first replace
the non-normalizable momentum eigenstate |P, h〉 by a wave-packet state |P, h; �〉 whose
central value of momentum is P and whose momentum-space width, �, we will eventually
take to zero. The state is a linear combination of momentum eigenstates:

|P, h; �〉 =
∑
P ′

∣∣P ′, h〉F (P ′; P,�), (6.67)

which we assume to be normalized:

〈P, h; �|P, h; �〉 =
∑
P ′
|F (P ′; P,�)|2 = 1. (6.68)

A suitable form for the wave function is a Gaussian in rapidity and transverse
momentum

F (P ′; P,�) = 4M1/2(2π )3/4

�3/2
exp

[
− (y ′ − y)2M2

�2
− P ′T

2

�2

]
, (6.69)

where M is the mass of the target, and we choose the central value P of momentum to have
zero transverse component, as usual. To give the wave function a trivial transformation
under boosts in the z direction, it is written as a function of rapidity y = 1

2 ln(P+/P−). The
exact form of the wave function will be irrelevant for our work; all that will matter is the
peak value and the width. The theorem to be proved is:

fj/h(ξ )
prelim= lim

�→0

∑
α

∫
d2kT

1

2ξ (2π )3
〈P, h; �|b†k,α,j bk,α,j |P, h; �〉 , (6.70)

with fj/h(ξ ) defined by (6.31).

6.7.3 Derivation

First we verify that the right-hand side is indeed correctly normalized for a number
density in ξ and kT. To do this, we integrate the operator b

†
k,α,j bk,α,j

/[2ξ (2π )3] with a

smooth function t(ξ, kT) and then check its commutation relation with the b
†
k,α,j . So we

define

Nt
def=
∫

dξ d2kT t(ξ, kT)
1

2ξ (2π )3
b
†
k,α,j bk,α,j . (6.71)
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Then

[Nt, b
†
k,α,j ] =

∫
dξ d2kT t(ξ, kT)

1

2ξ (2π )3
b
†
k,α,j δkl

= t(k+/P+, kT) b
†
k,α,j . (6.72)

One implication is that when we set the function t to be unity everywhere, the resulting
operator N1 counts the total number of partons of type j . To see this, we apply b

†
k,α,j to

an eigenstate of N1. The commutation relation (6.72) shows that the resulting state is an
eigenstate of N1, with an eigenvalue increased by unity.

For the main proof, we first use (6.64b) to express the right-hand side of (6.70) in terms
of field operators. Before the integral over quark transverse momentum this gives

∑
α

〈P,�|b†k,α,j bk,α,j |P,�〉
2ξ (2π )3

=
∑
P ′′,P ′

2k+

2ξ (2π )3
F (P ′′)∗ F (P ′)

∫
dw− dz− d2wT d2 zT

× e−ik+(w−−z−)+ikT·(wT−zT)
〈
P ′′ ψj (0, w−,wT) γ+ ψj (0, z−, zT) P ′

〉
=

∑
P ′′,P ′

P+

(2π )3
F (P ′′)∗ F (P ′)

∫
dw− dz− d2wT d2 zT

× e−ik+(w−−z−)+ikT·(wT−zT)+i(P ′′−P ′)·z 〈P ′′ ψj (w − z) γ+ ψj (0) P ′
〉

=
∑
P ′

P+

2P ′+(2π )3

∣∣F (P ′)
∣∣2 ∫ dw− d2wT

× e−ik+(w−−z−)+ikT·(wT−zT)
〈
P ′ ψj (w − z) γ+ ψj (0) P ′

〉
. (6.73)

In the first step, we used
∑

α γ+uk,αuk,αγ+ = 2k+γ+. In the third step we performed the
integrals over z− and zT with w − z held fixed; the resulting delta function between P ′ and
P ′′ removed the P ′′ integral except for a factor 1/(2P ′′+) implicit in

∑
P ′′ . In the above

manipulations observe the different kinds of momentum label for the target state. The fixed
central value is P and this is used to define ξ = k+/P+. The other variables P ′ and P ′′ are
dummy variables of integration.

Taking the limit that the wave function is very narrow gives

lim
�→0

∑
α

〈P,�|b†k,α,j bk,α,j
|P,�〉

2ξ (2π )3

=
∫

dw− d2wT

(2π )3
e−iξP+w−+ikT·wT

〈
P |ψj (0, w−,wT)

γ+

2
ψj (0) |P

〉
, (6.74)
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whose right-hand side we will take as the definition, (6.79) below, of a quantity fj/h(ξ, kT)
that we call the unintegrated quark density, or the transverse-momentum-dependent (TMD)
quark density.

Integrating the TMD quark density over kT reproduces the definition (6.31) of the
integrated density. Thus we obtain both the desired theorem, (6.70), and the natural relation
that the integrated density is the integral over kT of the unintegrated density:

fj/h(ξ )
prelim=

∫
d2kT fj/h(ξ, kT). (6.75)

Our derivation does not result in the restriction to connected graphs that was implied by
the subscript c in (6.31). We will repair this omission when we discuss support properties
of parton densities in Sec. 6.9.3.

In view of the particularly significant complications that arise in QCD in the relation
between integrated and unintegrated parton densities, please note that assuming any typical
naive generalization of (6.75) to QCD will result in conceptually and phenomenologically
wrong results. The literature is rife with such results. See Ch. 13, where we will show how
the above derivations are to be generalized.

6.7.4 Interpretation of polarized parton densities

The above derivations can readily be generalized to the polarized quark and antiquark
densities. The results are as follows.

The quantity �fj/h is the helicity asymmetry of quarks of flavor j . That is, in a target
spin- 1

2 state of definite helicity,

�fj/h(x) = density of quark j of helicity parallel to target

− density of quark j of helicity antiparallel to target. (6.76)

This applies also to the antiquark helicity density defined by (6.37). The minus sign in
(6.37) compensates the reversed sign for the helicity dependence in the matrix elements of
γ+γ5:

uk,αγ+γ5uk,α′ = 4αk+δαα′ , vk,αγ+γ5vk,α′ = −4αk+δαα′ . (6.77)

For transverse-spin dependence, there is no such minus sign in the matrix elements of
γ+γ iγ5, and therefore no minus sign is needed in the transverse-spin asymmetry of the
antiquarks, (6.38). Again it can be checked that

δTfj/h(x) = density of quark j of spin parallel to target

− density of quark j of spin antiparallel to target, (6.78)

where the spin- 1
2 target is now chosen to be fully polarized transversely to its direction of

motion.
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6.8 Unintegrated parton densities

Equations (6.74) and (6.75) show that it is natural to define an unintegrated quark density
by

fj/h(ξ, kT) =
∫

dw− d2wT

(2π )3
e−iξP+w−+ikT·wT

〈
P

∣∣∣∣ψj (0, w−,wT)
γ+

2
ψj (0)

∣∣∣∣P
〉

c

=
∫

dk−

(2π )4
Tr

γ+

2
P

k

(6.79)

to be interpreted as a TMD number density dN /(dξ d2kT). This has a Fourier transform on
the relative transverse position of the two fields as well as on w−, to give a two-argument
function of a longitudinal momentum fraction ξ and a quark transverse momentum kT.
The last line of this formula is an expression in terms of momentum-space matrix elements
from which Feynman rules immediately follow – see Sec. 6.10.

Particularly non-trivial modifications to (6.79) will be needed in QCD: Ch. 13. But in a
simple theory – which means a super-renormalizable non-gauge theory – the modifications
are absent. In this case it is trivial that an unintegrated density gives the integrated density
by an integral over all kT, as in (6.75).

There are natural generalizations for polarized densities and other kinds of parton. But
because of the presence of an extra vector in the problem, kT, the polarization dependence of
the unintegrated parton densities is more complicated and interesting than that of integrated
parton densities. No longer are the quark transverse and longitudinal polarizations simply
proportional to those of the target (in the spin- 1

2 case). See Secs. 13.16 and 14.5.4 for details.

6.9 Properties of parton densities

In this section we derive some basic properties of the pdfs. The proofs are non-perturbative,
and many of the results apply, with only small changes, to the correctly defined parton den-
sities of QCD. See Collins and Soper (1982b) and Jaffe (1983) for the original treatments.

6.9.1 Positivity

The number operator formulae (6.66) and (6.74) show that, up to normalization, the matrix
element in a parton number density is of the form

〈P |a†a|P 〉 = ∣∣ a|P 〉 ∣∣2, (6.80)

i.e., the square of the length of a state vector. So all parton densities are non-negative:

fj (ξ ), fj (ξ, kT) ≥ 0. (6.81)

Note that this particular result will not hold exactly in renormalizable theories, because of
the need for renormalization of the parton densities; see Sec. 8.3.
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6.9.2 Lorentz invariance/covariance

The definitions of the pdfs depend on a choice of a coordinate system, where the axes
are determined by the scattering process being treated. As we saw in (6.34), integrated
parton densities can be given explicitly Lorentz-covariant definitions, by use of an auxiliary
light-like vector n.

Unintegrated densities need a second vector for a covariant definition. For this, we let nB

be a future-pointing light-like vector with nB · n �= 0. Up to irrelevant factors, we interpret
n and nB as defining light-front coordinates: k+ = n · k and k− = nB · k. Thus n and nB

point in the minus and plus directions respectively. Then we define longitudinal momentum
fraction and covariant transverse momentum by

ξ = k · n
P · n, k

μ
T = kμ − n

μ
B

k · n
nB · n − nμ k · nB

nB · n, (6.82)

so that

k2
T = −k2 + 2k · nBk · n

nB · n . (6.83)

The unintegrated density (6.79) is

fj/h(ξ, kT) =
∫

d4w

(2π )3
δ(w · n)e−iw·k

〈
P

∣∣∣∣ψj (w)
γ · n

2
ψj (0)

∣∣∣∣P
〉

c

. (6.84)

This is invariant when k is shifted in the n direction: k �→ k + cn.
It is interesting that nB does not enter this definition, but only in the definition of the

variables in (6.82). This situation changes in a gauge theory, where, as we will see in Ch. 13,
the definition of unintegrated densities needs Wilson lines in the operators. (Wilson lines
are exponentials of integrals of the gauge field along particular lines.)

6.9.3 Support properties, negative ξ

Between the fields in the definition of a parton density, there is a sum over final states,
notated by the cut in (6.30). The states have momentum P − k, and physical eigenvalues of
the plus momentum are positive, so that P+ ≥ k+. Thus pdfs vanish for ξ > 1, no matter
whether they are integrated pdfs f (ξ ) or unintegrated pdfs f (ξ, kT).

This argument, by itself, provides no restriction for negative ξ . However, we can
(anti)commute the two fields in the definition of the pdfs. Since they are at light-like
or space-like separation, their (anti)commutator is just the unit operator times a coefficient
(localized at w− = wT = 0). Since we subtract the vacuum expectation value to get the
connected matrix element for the pdf, the unit operator from the (anti)commutator gives
no contribution. Thus we get a relation between the quark densities at negative x and the
antiquark densities at positive x.

The actual relation has an extra minus sign:

fj/h(ξ ) = −fj̄/h(−ξ ), fj/h(ξ, kT) = −fj̄/h(−ξ,−kT). (6.85)
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When the parton is a fermion (e.g., a normal quark), the minus sign arises because we
applied an anticommutator. When the parton corresponds to a scalar, the minus sign arises
from an explicit factor of ξ in the definition of the scalar-parton density; see problem 6.6.
As an example of a derivation, here is the one for the unintegrated densities of a charged
scalar parton:

fs(−ξ,−kT) = −ξP+
∫ ∞
−∞

dw− d2wT

(2π )3
eiξP+w−−ikT·wT 〈P |φ†(0, w−,wT) φ(0) |P 〉c

= −ξP+
∫ ∞
−∞

dw− d2wT

(2π )3
eiξP+w−−ikT·wT 〈P |φ(0) φ†(0, w−, 0T) |P 〉c

= −ξP+
∫ ∞
−∞

dw− d2wT

(2π )3
eiξP+w−−ikT·wT 〈P |φ(0,−w−,−wT) φ†(0) |P 〉c

= −fs̄(ξ, kT). (6.86)

Since antiparton densities vanish for ξ > 1, it immediately follows that all parton densities
also vanish for ξ < −1.

When the scalar field is a hermitian scalar field, the relation is between the parton density
and itself, e.g.,

fφ/q(ξ ) = −fφ/q(−ξ ) when φ is hermitian. (6.87)

A further insight is from the derivation of the probability interpretation. Let us reverse the
order of the steps in (6.73), and apply them for negative ξ . Then in place of an annihilation
operator bk,α,j we get a creation operator d

†
−k,−α,j at the opposite momentum and helicity

and for the opposite quark. But we get the operators in the order d d†. To get them in
the standard order for a number operator, we must anticommute them, leaving the matrix
element of the operator for the number of antiquarks (apart from a sign). To this is added
the expectation value of the anticommutator, which is a c number, and therefore removed
by subtraction of the vacuum expectation value.

6.9.4 Time-ordered bilocal operators

The definitions given so far for the parton densities involved a fixed ordering of the operators.
In Feynman-graph calculations, there is a sum and integral over the final states between two
operators, as indicated by the vertical line in the cut-graph notation. Now ordinary Green
functions and Feynman-graph calculations involve a matrix element between an in-state
and an out-state. So with the final states made explicit, as in

fj/h(ξ, kT) =
∑
X

∫
dw− d2wT

(2π )3
e−iξP+w−+ikT·wT

× 〈P ; in|ψj (0, w−,wT) |X; out〉 γ+

2
〈X; out|ψj (0) |P ; in〉c (6.88)
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for the TMD quark density, we see the density as an integral over amplitude times complex-
conjugated amplitude (on its left in the formula, on the right in a cut diagram).

However, the two fields may be (anti)commutated through each other without changing
the value of the parton density. Hence we can replace the fixed-order operator product by
a time-ordered product:

fj/h(ξ, kT) = −fj̄/h(−ξ,−kT)

=
∫

dw− d2wT

(2π )3
e−iξP+w−+ikT·wT

〈
P

∣∣∣∣T ψj (0, w−,wT)
γ+

2
ψj (0)

∣∣∣∣P
〉

c

=
∫

dk−

(2π )4
Tr

γ+

2 P

k
(6.89)

with similar formulae for the integrated densities and for unpolarized densities. Feynman-
graph calculations then involve uncut amplitudes, and use exactly the same Feynman graphs
for a quark density as for an antiquark density (except for the labeling of the momentum
direction). As we will see in explicit calculations, in Sec. 6.11, application of contour
integration to the k− integral gives relations between the two methods of calculation,
between the uncut and the cut Feynman graphs. In particular, when a particular graph gives
a zero contribution in the cut-graph method for a certain range of ξ , we will find that the
poles in k− in the uncut graph will either all be in the upper half plane or the lower half plane
of k−. Thus the uncut-graph method also gives zero, by use of contour integration for k−.

Normal Feynman-graph methods apply when the states 〈P | and |P 〉 in (6.89) are,
respectively, out- and in-states. But because stable single-particle states are the same for
both in- and out-states, this change makes no difference. But it could affect potential
generalizations to use hadronic resonances instead of stable single-particle states.

To show that the cut-graph and uncut-graph methods give the same result, we used the
fact that the (anti)commutators of the relevant fields are proportional to the unit operator.
This applies only to the good components of fields. In contrast, the bad components of the
fields have non-trivial (anti)commutators. Thus if we imagined generalizing the definitions
of parton densities to correlators of other components of quark fields, the equality between
definitions with fixed ordering and with time-ordering will no longer hold. Thus it is a good
idea to transform such definitions by use of the equations of motion to write them in terms
of the good components of fields.

One use of the definition using time-ordered operator products and uncut graphs is to
relate ordinary parton densities to limits of what are called generalized parton densities
(GPDs). GPDs are used to analyze the amplitudes for certain exclusive reactions; for a
review, see Diehl (2003). The definitions of GPDs generalize those of parton densities, by
having off-diagonal matrix elements but with the same operators. Since GPDs are applied
to amplitudes, the operators are naturally time-ordered:∫

dw−

2π
e−iξP+w−

〈
P ′
∣∣∣∣T ψj

(
0,

1

2
w−, 0T

)
γ+

2
ψj

(
0,−1

2
w−, 0T

) ∣∣∣∣P
〉

c

, (6.90)

where the position arguments of the fields are in the symmetric form used in Diehl (2003).
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6.9.5 Number sum rules

Suppose there is a conserved quark number, as is the case for each flavor (u, d, etc.) in
QCD. Then the total number of quarks minus the number of antiquarks of that flavor should
equal the value determined by the flavor content of the target state. In QCD we therefore
expect the following sum rules for a proton target:∫ 1

0
dξ

[
fu/p(ξ )− fū/p(ξ )

] = 2, (6.91a)

∫ 1

0
dξ

[
fd/p(ξ )− fd̄/p(ξ )

] = 1, (6.91b)

∫ 1

0
dξ

[
fj/p(ξ )− fj̄/p(ξ )

] = 0 (other flavors); (6.91c)

and of course a baryon number sum rule:

∑
j

∫ 1

0
dξ

[
fj/p(ξ )− fj̄/p(ξ )

] = 3. (6.91d)

Obvious changes apply for other target states (e.g., a neutron or a particular nucleus).
We now show how these rules (and similar ones in model QFTs) are derived when the
parton-model hypotheses are obeyed. The full proof in QCD will involve using the correct
definitions and treating renormalization effects, but the final answer is the same.

The basic observation is that when we integrate over all ξ in the definition of a pdf, we
get a delta function that sets w− = 0, and the operator becomes a component of the Noether
current for quark number. Then we use the fact that parton densities vanish for |ξ | > 1 and
the relation between parton and antiparton densities to get the sum rule∫ 1

0
dξ

[
fj (ξ )− fj̄ (ξ )

] = ∫ ∞
−∞

dξ

∫
dw−

2π
e−iξP+w−

〈
P

∣∣∣∣ψj (0, w−, 0T)
γ+

2
ψj (0)

∣∣∣∣P
〉

c

= 1

2P+
〈P |ψj (0)γ+ψj (0)|P 〉

c
. (6.92)

We now have the expectation value of the plus component of the Noether current for the
number of quarks of flavor j . From standard properties of currents, this expectation value is
the charge of the state times a factor of twice the momentum of the state, which is canceled
in the last line. From this result all the above-listed sum rules follow. The subtraction of the
VEV implies that the number density is relative to the vacuum.

6.9.6 Momentum sum rule

A very similar argument gives the momentum sum rule:

∑
all j

∫ 1

0
dξ ξfj (ξ ) = 1. (6.93)
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Here we weight the number densities of partons by ξ , to give a density of fractional
momentum. So the sum rule says that the total fractional momentum carried by partons is
unity. Note that the sum is over all flavors of parton, including separate terms for antipartons
as well as partons. In our Yukawa model this means fermion, antifermion and scalar partons.

The proof is left as an exercise (problem 6.15). It simply involves converting the sum
and integral over parton densities to an expectation value of a certain component of the
energy-momentum tensor (relative to the vacuum).

6.9.7 Isospin and charge conjugation relations

Consider a theory with an SU(2) isospin symmetry and quarks, like QCD, where we have u

and d quarks, which form an isodoublet, and s and heavier quarks, which are all isosinglet.
In real QCD, isospin symmetry is slightly broken by the different masses of the u and

d quarks. By neglecting this breaking, we can obtain relations between parton densities in
different targets, which hold to the accuracy that isospin symmetry holds. Unlike the sum
rules, these relations are valid point-by-point in x.

We will illustrate this for the important cases of the proton and neutron and for the pions.
(Scattering experiments are done with all of these particles.) We will obtain a further set
of relations for pions using charge conjugation invariance. The general form of all of these
arguments is to insert a symmetry transformation operator U times its inverse next to the
target state in the definition of a parton density:

〈P, h|U †U A U†U |P, h〉 = 〈P, h′| A′ |P, h′〉 . (6.94)

Here h′ labels the state obtained by transforming the target, label h, by transformation U , A
is the operator whose matrix element is the parton density, and A′ denotes the transformed
operator.

Since only the transformation properties under simple symmetries are involved in our
derivation, the results apply equally to unintegrated parton densities, as well as the more
usual integrated parton densities. As explained in Sec. 6.9.8, the results apply equally to the
correct QCD definitions of parton densities, so they are presented in their QCD applications.

Proton and neutron

Physical targets are always eigenstates of Iz. So let us take U to be an operator that
exchanges the Iz = ± 1

2 elements of an isodoublet. We then get the following relations
between parton densities on a neutron and a proton:

fu/p(x) = fd/n(x), fd/p(x) = fu/n(x), (6.95a)

fū/p(x) = fd̄/n(x), fd̄/p(x) = fū/n(x), (6.95b)

fj/p(x) = fj/n(x), fj̄/p(x) = fj̄/n(x) (j is s, c, etc.). (6.95c)

In electromagnetic DIS, the structure functions are dominated by the density of the u quark,
since it has the larger charge. The above relations allow the use of scattering on a nuclear
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target to gain information on fu/n and hence on fd/p, the density of the lower-charge
quark.

Antiproton

One standard beam particle is the antiproton. Parton densities in the antiproton are related
to those in the proton by letting U be the charge conjugation operator. This gives fj̄/p̄(x) =
fj/p(x) for all species of parton. Particular cases are

fu/p(x) = fū/p̄(x), fd/p(x) = fd̄/p̄(x). (6.96)

These relations are very important for the phenomenology of data from the Tevatron, which
uses proton-antiproton collisions.

Gluon in proton, neutron and antiproton

Since the gluon is its own antiparticle as well as being isosinglet, the gluon density is the
same in all the targets we have mentioned:

fg/p(x) = fg/n(x) = fg/p̄(x). (6.97)

Proton target is default

The combination of all the above results means that we can express results for all kinds
of nucleon target in terms of parton densities in the proton. So for real QCD applications,
when we write a parton density without a hadron label, e.g., fu(x), it is to be understood
that a proton target is intended.

Densities of definite isospin

It is sometimes convenient to use combinations of parton densities that correspond to
isotriplet and isosinglet operators, e.g.,

fI=0(x) = fu(x)+ fd (x), (6.98)

fI=1(x) = fu(x)− fd (x), (6.99)

with a proton target understood.

Nuclear targets

Data on non-trivial larger nuclei are often analyzed in terms of parton densities in the
constituent proton and neutron; this needs a compensation for nuclear-physics effects in
nuclear binding. But it is also possible to treat parton densities on the nucleus as a whole.
It is often possible to treat nuclei as approximately or exactly isosinglet, notably for the
deuteron. In that case isospin relates u and d quark densities, e.g.,

fu/D(x) = fd/D(x), fū/D(x) = fd̄/D(x). (6.100)

(See Schienbein et al., 2009; Eskola, Paukkunen, and Salgado, 2009.)
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Pion

The three pions, π+, π−, and π0, are related by both isospin and charge conjugation. We
leave as an exercise to derive

fu/π+(x) = fd/π− (x) = fd̄/π+ (x) = fū/π− (x), (6.101a)

fd/π+ (x) = fu/π− (x) = fū/π+ (x) = fd̄/π− (x), (6.101b)

fg/π+ (x) = fg/π− (x), (6.101c)

fs/π+ (x) = fs/π− (x) = fs̄/π+ (x) = fs̄/π− (x). (6.101d)

It can be seen that there are very few independent densities, which considerably assists the
analysis of data with pion beams. The parton densities in the π0 are determined in terms of
the above:

fu/π0 (x) = fd/π0 (x) = fd̄/π0 (x) = fū/π0 (x) = 1

2

(
fu/π+ (x)+ fd/π+ (x)

)
, (6.102a)

fg/π0 (x) = fg/π+ (x), (6.102b)

fs/π0 (x) = fs̄/π0 (x) = fs/π+ (x). (6.102c)

These last relations are of relatively little use, since we do not normally deal with beams of
neutral pions.

6.9.8 Are the sum rules etc. valid in QCD?

The derivations just presented apply as they stand to a theory which is super-renormalizable
and contains only fields of spin zero and spin half. Evidently, QCD violates both prerequi-
sites, and later in the book we will make the necessary improvements. But here it is possible
to assess the difficulties and to state the extent to which the results presented continue to
apply in QCD.

Our specific model field theory was a very simple Yukawa theory with one field of each
type, but the principles immediately generalize when there are multiple fields. Thus we
were able to conceive of a theory with the same flavor symmetries as QCD, and to prove
certain sum rules.

Isospin relations preserved

In Sec. 6.9.7, we derived relations between parton densities for different flavors of parton
and hadron. The only properties that were used of the operators defining parton densities
were their transformations under charge conjugation and isospin. These properties are
entirely unaffected by the changes needed to accommodate renormalization and the use of
gauge fields. This will become fully evident when we construct the definitions of parton
densities in QCD.
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Renormalization

A renormalizable theory, as opposed to a super-renormalizable theory, is exemplified by the
Yukawa theory in four space-time dimensions, n = 4. All of the above derivations apply
when a UV cutoff is applied, for example dimensional regularization with n = 4− 2ε. The
fields in the derivations should be bare fields, i.e., the ones with canonical commutation
relations. The bare fields are those for which the coefficients of the first term in each line
for the right-hand side of (6.44) is exactly as given. We then remove the UV cutoff after
applying renormalization.

To implement renormalization, we first relabel all the fields and parameters in (6.44)
with a subscript 0, to denote bare quantities, e.g., g0. Then we write the bare fields as
renormalized fields times “wave-function-renormalization factors”, e.g., ψ0 = ψ

√
Z2 with

a conventional notation. Thus the Lagrangian density defining the theory becomes

L = iZ2

2

[
ψγ μ∂μψ − (∂μψ)γ μψ

]−M0Z2ψψ

+ Z3

2
(∂φ)2 − m2

0Z3

2
φ2 − g0Z2Z

1/2
3 ψψφ − h0Z

3/2
3

3!
φ3 − λ0Z

2
3

4!
φ4.

(6.103)

Finally we adjust the bare parameters, g0, Z2, etc., in an ε-dependent way to remove the
divergences. In perturbation theory, this is implemented by using renormalized couplings
and masses, gR , MR , etc., and using an expansion of the bare parameters in powers of the
renormalized coupling, with coefficients adjusted to cancel the divergences order-by-order.

It is Green functions of the renormalized fields ψ and φ that are finite rather than those
of the bare fields. So we should define the light-front annihilation and creation operators in
terms of the renormalized fields. Then the (anti)commutation relations of these operators
are changed by wave function renormalization, as in

[ak, a
†
l ] = δklZ

−1
3 , [bkα, b

†
lα′ ]+ = [dkα, d

†
lα′ ]+ = δklδαα′Z

−1
2 , (6.104)

since it is the bare fields that obey the canonical (anti)commutation relations. An RG analysis
can be used to investigate/compute the true value of the renormalization coefficients when
the UV cutoff is removed. Generally, the coefficients in (6.104) diverge to+∞ in this limit,
with the (rare) exceptions being if the anomalous dimension of a field vanishes strongly
enough at the UV fixed point of the theory. The Källen-Lehmann representation of the
propagator tells us that 0 ≤ Zi ≤ 1 when an on-shell renormalization prescription is used,
so we expect Z−1

i to go to infinity rather than zero in the UV limit.
As we will see later, there are further UV divergences in the integrated parton densities,

beyond those removed by wave-function renormalization. We will also see that renormal-
ized integrated parton densities can be defined by a further kind of renormalization, which
is completely analogous to what is done for local composite operators.

Since the finite operators no longer have the standard generalized-harmonic-oscillator
(anti)commutation relations, and since renormalization of the integrated parton densities is
needed, the strict probability interpretation of the parton densities is lost.
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Nevertheless, we will show in Sec. 8.6 that the UV divergences cancel in the sum rules,
which remain true in a renormalizable theory.

Gauge theories

We will examine the light-front quantization of gauge theories in Sec. 7.4.
Extending the definitions of parton densities to QCD will require significant modifica-

tions to the definitions. These involve insertion of what are called Wilson lines to make
them gauge invariant: Sec. 7.5. These will further complicate the probability interpretation
of parton densities and their renormalization. Nevertheless, the derivation of the sum rules
will still work.

6.9.9 Axial currents; Bjorken sum rule

We derived sum rules that related certain integrals over unpolarized parton densities to
expectation values of conserved vector currents. Axial currents are also of interest in QCD,
so we now discuss the associated sum rules. Even though our discussion of QCD is only
later in this book, we can explain the sum rules without this discussion. We simply assume
that the definitions given for parton densities can still be used, and then apply them in a
theory with the same flavor symmetries as QCD.

The use of axial currents is rather more tricky than vector currents. One reason is that
for the SU(2)⊗ SU(2) symmetry of QCD (broken in the Lagrangian only by light quark
masses) there is spontaneous symmetry breaking of the axial part of the symmetry. So the
expectation values of the axial currents and hence the right-hand sides of the equivalents of
(6.91) are determined by the dynamics of QCD, not by the charges of the target. Some of the
currents appear in the coupling of quarks to weak gauge bosons, and the matrix elements
can be measured, for example, in semi-leptonic decays of hadrons. A second complication
is that the isosinglet axial current has an anomaly and is not prone to easy measurement
or prediction. A third complication is that whereas there are conserved vector currents in
QCD for each of the heavy quarks, resulting in (6.91d), the conservation laws for the axial
currents for heavy quarks are badly broken by quark masses.

An elementary generalization of (6.92) leads to the following result for each quark
flavor:

∫ 1

0
dξ

[
�fj (ξ )+�fj̄ (ξ )

] = 1

2P+
〈P |ψj (0)γ+γ5ψj (0)|P 〉

c
. (6.105)

Note that the antiquark term now has a plus sign instead of the minus sign in the number
sum rules. In some sense the left-hand side measures the total contribution of quarks and
antiquarks of flavor j to the spin of the target. Unlike the case of the quark number currents,
the current does not correspond to a conserved charge. So there is no direct determination
of the right-hand side (although one can well imagine calculating it non-perturbatively by
lattice QCD methods).
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For the non-singlet combination, we get

∫ 1

0
dξ

[
�u(ξ )+�ū(ξ )−�d(ξ )−�d̄(ξ )

] = 1

2P+
〈P |ψ(0)γ+γ5τ3ψ(0)|P 〉c , (6.106)

where τ3 is a Pauli matrix acting on the doublet of fields for the u and d quarks. We used
the quark symbols to denote their parton densities. The current on the right-hand side is
one of the generators of the approximate chiral SU(2)⊗ SU(2) symmetry of QCD. It is
also related by an isospin transformation for the axial part of the current which couples the
W boson to u and d quarks. The matrix element can therefore be deduced from the rate
and angular distribution of neutron decay (to p + eν̄), presented as a value conventionally
denoted by GA/GV , whose measured value (Amsler et al., 2008) is 1.2695± 0.0029.

Roughly speaking, the sum rule can be probed in the difference between g1 structure
function on the proton and neutron, for which recent data and an analysis related to the
sum rule can be found in Airapetian et al. (2007). To indicate the idea, we observe that the
parton model approximation to g1 is

g1(x,Q) = 1

2

∑
q

e2
q[�q(x)+�q̄(x)]. (6.107)

Using the isospin relations between the polarized parton densities in the neutron and proton,
which are immediate generalizations of (6.95), and then using the sum rule (6.106) we
get ∫ 1

0
dx[gp

1 (x,Q)− gn
1 (x,Q)] = GA

6GV

� 0.21 (parton model). (6.108)

This is one of two results due to Bjorken that are both called Bjorken sum rules.

6.9.10 Moments

The derivation of (6.92) can be readily extended to general integer moments of parton
densities by inserting a factor of ξn−1 on the left-hand side and a suitable sign with the
antiquark density. The factor of ξn−1 gives n− 1 derivatives with respect to the position
w− and we obtain a matrix element of a local operator:

∫ 1

0
dξ ξn−1 [fj (ξ )+ (−1)nfj̄ (ξ )

] = in−1

2(P+)n
〈P |ψj (0)γ+(∂+)n−1ψj (0)|P 〉

c
. (6.109)

In the early days of the study of DIS, the operator product expansion was used to express
moments of the DIS in terms of perturbative coefficients times expectation values of local
operators, exactly like those on the right-hand side of the above equation; see Ch. 14 of
Collins (1984). (Of course, in QCD we need renormalized, gauge-invariant versions of the
operators.)

Equation (6.109) shows how these operators are related to parton densities. The expecta-
tion values of local operators are susceptible to calculation by Euclidean lattice Monte-Carlo
methods, unlike parton densities, whose operators are strictly Minkowski-space objects.
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Thus the equation also provides a way that lattice Monte-Carlo methods can be used to give
predictions for properties of parton densities.

6.10 Feynman rules for pdfs

In this section, I show how the definitions of parton densities are to be applied in Feynman-
graph calculations, by defining special rules for vertices corresponding to the operators in
the definitions of the parton densities. Motivated by applications in QCD, I use the word
“quark” to refer to the fermion field in our Yukawa model theory, and to its associated
particle.

In (6.30), we saw that a quark density can be expressed as an integral over a cut amplitude.
A convenient notation is to write

f (ξ ) =

k

P
=
∫

dk− d2−2ε kT

(2π )4−2ε

γ+

2

k

P

=
∫

d4−2εk

(2π )4−2ε

γ+

2
δ(k+ − ξP+)

k

P

(6.110)

which gives the Feynman rule for the operator vertices in an integrated unpolarized quark
density, in 4− 2ε space-time dimensions. The crosses in the first part indicate the operations
that are to be applied to the quark fields to obtain the actual pdf. They denote the integrals
over k− and kT and the trace with γ+/2. The plus component of the momentum at the
quark vertices is fixed to be ξP+. In view of the extensive use that is made of dimensional
regularization, the vertex is given for a general space-time dimension. Were there a color
degree of freedom, there would be an unweighted sum over the colors of the field. The
bubble indicates the basic matrix element of the quark fields in an on-shell target state of
momentum P .

Generalizations to the polarized parton densities are simply made by changing the factor
γ+/2 to the appropriate Dirac matrix in the definition of the parton density. Similarly,
the definitions for the antiquark densities are made simply by changing the direction of
the arrow on the quark line. These are all illustrated in Fig. 6.7. Note that the minus sign
in the definition of the helicity density of an antiquark requires a corresponding minus sign
in the Feynman rule for the antiquark helicity density.

Further generalizations to TMD densities, e.g., Fig. 6.8, are trivially obtained by deleting
the integral over transverse momentum. Generally the context will indicate whether we are
using integrated or unintegrated densities, so we make no distinction in the graphical
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Fig. 6.7. Gamma matrix factors for all the unpolarized and polarized quark and antiquark
densities. For the helicity densities, the target should be in a state of maximum right-handed
polarization. For the transversity densities, the target should be in a state of maximum
transverse spin, and the rules listed above will give the transversity densities times a unit
vector in the direction of the transverse spin of the target. Note the minus sign in the
definition of the helicity density of an antiquark. Note also that the quark momentum is
assumed to be in the direction of the arrow of the quark line. Thus the momentum for the
line at the antiquark density is written as −k.

k

(TMD)

=
dk−

(2 )4−2

+

2
. . .

Fig. 6.8. The rule for the vertex, as in (6.110), but for a TMD, or unintegrated, quark density.
Note that we have not made any notational distinction between the vertices for integrated
and unintegrated densities; generally the distinction can be determined from the context.

notation. The common feature of all the definitions is the unweighted integral over all k−,
so that the field operators in the parton density definition are at equal values of x+.

The change to the definition with time-ordered products can be made simply by deleting
the symbol for the final-state cut.

6.11 Calculational examples

In QCD, parton densities with hadronic targets are strictly non-perturbative objects. But
it is useful to examine low-order Feynman-graph calculations of parton densities with the
target being an elementary particle of a theory.

So in this section, I present some calculations in the model Yukawa theory used in
our treatment of light-front quantization. The calculations introduce the methods in their
simplest form, and they enable us to see basic principles without being confused by many
of the complications – one might almost say pathologies – that arise in QCD. Moreover,
such calculations can be used as self-consistent models for interesting effects in QCD –
e.g., Brodsky, Hwang, and Schmidt (2002); Collins (2002). In our model calculations, we
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k

P

Fig. 6.9. Lowest-order quark density in quark.

will be introduced to the UV divergences of parton densities in renormalizable theories.
Perturbative calculations of parton densities also appear as components of perturbative
calculations of hard-scattering coefficients.

In the calculations, the target state is a physical on-shell elementary-particle state cor-
responding to one of the basic field of the theory like the quark. Our calculations in the
Yukawa theory of (6.44) are of the density of a quark in a quark, fq/q(ξ ), and of a scalar in
a quark fφ/q(ξ ).

The concept of the “density of a quark in a quark” is confusing, initially: Why should
this not be a trivial delta function at ξ = 1? In fact, the word “quark” in that phrase has
two meanings. One is for the target state, which is an on-shell physical state. The second
meaning is for a state created by the corresponding light-front creation operator. Thus the
different instances of the word “quark”, as well as the two instances of the symbol “q”
in fq/q(ξ ), refer to different bases of theory’s state space. In an interacting QFT, on-shell
single-particle states, as used in scattering theory, are normally non-trivial combinations of
multiparticle states when expressed in the basis given by the creation operators.

6.11.1 Tree approximation

In an expansion in powers of the coupling(s) for fq/q(ξ ), the first term is of zeroth order
(Fig. 6.9). This is deceptively similar to the representation of just the vertices for the parton
density. It is intended to denote the combination of those vertices with the lowest-order
amplitude for the bubble in (6.110). The lowest-order bubble consists of (2π )4−2εδ(4−2ε)(k −
P ) for momentum conservation in a disconnected graph, and a factor of the on-shell wave
function for the target. We allow the most general polarization state for the target, which
can be specified by a spin vector S, as in (A.26). We therefore obtain

f
[0]
q/q(ξ ) =

∫
dk− d2−2ε kT

(2π )4−2ε
(2π )4−2εδ(4−2ε)(k − P ) Tr( /P +M)

1

2

(
1+ γ5

/S

M

)
γ+

2

= δ(ξ − 1). (6.111)

Here we use the superscript “[0]” to denote the lowest-order value with zero loops. This
calculation provides a basic verification of the normalization of our definition. Without
interactions the single on-shell quark is also a single particle in the light-front creation
operator basis, and it carries the whole momentum of the target, i.e., it has ξ = 1.

6.11.2 One-loop quark in quark

At one-loop order, there are two kinds of graph for fq/q (Fig. 6.10): (a) self-energy correc-
tions on the external line, and (b) a graph with a scalar particle emitted into the final state.
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h.c.+
k

P − k

(b)(a)

Fig. 6.10. One-loop graphs for density of quark in quark.

(We consider graph (b) a loop graph since there is a momentum integral through the vertex
for the parton density.)

Self-energy graph

The full effects of self-energy corrections for external on-shell lines are given by the LSZ
method. This tells us that for each external particle we need a factor of the square root
of the residue of the pole of the propagator. To calculate this, we start from the one-loop
self-energy of the quark:

g2

16π2
�[1] = ig2μ2ε

∫
d4−2εk

(2π )4−2ε

/P − /k +M

[(P − k)2 −M2 + i0](k2 −m2 + i0)
. (6.112)

The superscript “[1]” denotes the coefficient of the one-loop approximation. As usual,
the coupling is written as gμε , where g is dimensionless and μ is the unit of mass for
dimensional regularization.

Now the full quark propagator is i/(/p −M −�). So the one-loop contribution to the
residue is given by differentiating �[1] with respect to /p and by then setting p on-shell.
After performing the k integral by the Feynman parameter method, we find that to one-loop
order, the residue is

1+ g2

16π2
residue[1] = 1− g2

16π2
�(ε)

∫ 1

0
dx

[
4πμ2

m2x +M2(1− x)2

]ε

×
[
x + 2εM2x(1− x2)

m2x +M2(1− x)2

]
. (6.113)

We have a factor of the square root of the residue for both external quark lines, so that the
resulting one-loop contribution to the quark density is

g2

16π2
f

[1,V ]
q/q (ξ ) = δ(ξ − 1) × g2

16π2
residue[1]. (6.114)

The “V ” in the superscript denotes “virtual correction”. Equation (6.113) shows that this
contribution is negative. This reduces the size of the one-light-front-particle component in
the normalized target state, leaving room for a multiparton component.

Of course, when we go to four space-time dimensions, ε = 0, this term is UV divergent.
We will explain what happens for the parton density, when we discuss its renormalization.
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Real emission

The integral for the real-emission term (Fig. 6.10(b)) is readily written down from the
Feynman rules:

g2

16π2
f

[1,R]
q/q (ξ ) = g2μ2ε

∫
dk− d2−2ε kT

(2π )4−2ε

2πδ
(
(P − k)2 −m2

)
(k2 −M2)2

× θ (P+ − k+) Tr
γ+

2
(/k +M)( /P +M)

1

2

(
1+ γ5

/S

M

)
(/k +M). (6.115)

We set k+ = ξP+, and then use the delta function to perform the k− integral, whereby

−2P+k− = k2
T +m2 −M2(1− ξ )

1− ξ
. (6.116)

This gives

g2

16π2
f

[1,R]
q/q (ξ ) = g2(4πμ2)ε

16π2 �(1− ε)

∫ ∞
0

dk2
T(k2

T)−ε (1− ξ ) [k2
T + (1+ ξ )2M2]

[k2
T + ξm2 + (1− ξ )2M2]2

= g2�(ε)

16π2

[
4πμ2

ξm2 + (1− ξ )2M2

]ε [
1− ξ + εξ (1− ξ )(4M2 −m2)

ξm2 + (1− ξ )2M2

]
.

(6.117)

Here, we have used a standard result, (A.34), to perform the angular part of the transverse-
momentum integral. The restriction of the final-state momentum P − k to physical positive
energy implies that the above formula should have an implicit theta function that restricts
it to ξ ≤ 1. In addition, for negative ξ , as we will see, the calculation is not the complete
one; a correct calculation (Sec. 6.11.6) for ξ < 0 gives zero. Thus there should also be a
restriction to positive ξ . Then in the physical range, we have a non-singular function.

Notice that the denominator is identical to the one in the self-energy. This is related to a
cancellation needed to verify sum rules.

Naturally the real-emission contribution is positive, since parton densities are positive,
and for the situation that ξ is not equal to unity, our calculation gives the lowest-order
contribution.

When the theory is super-renormalizable, in less than four space-time dimensions, i.e.,
for ε > 0, the kT integral is convergent. But at the physical space-time dimension, with
ε = 0, there arises a logarithmic divergence at kT →∞. This in fact should be considered a
conventional UV divergence, since the virtual line k goes far off-shell, and masses become
negligible in the region that gives the divergence. We will discuss the UV divergences later
in Sec. 8.3.

6.11.3 One-loop scalar in quark

The remaining one-loop contribution to parton densities in an on-shell quark is the density
of the scalar. For this, we need the Feynman rule for the density of a scalar parton (Fig. 6.11).
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Fig. 6.11. Feynman rule for operator for the density of a scalar parton.

k

P − k

Fig. 6.12. Scalar density in quark.

It has a factor ξP+ in place of the γ+/2 for the quark density. The derivation is left as an
exercise (problem 6.6), and it results in the definition in (6.124) below.

Then we readily find the one-loop scalar density from Fig. 6.12:

g2

16π2
f

[1]
φ/q(ξ ) = g2μ2ε

∫
dk− d2−2ε kT

(2π )4−2ε

2πδ
(
(P − k)2 −M2

)
(k2 −m2)2

×ξP+ Tr( /P − /k +M)( /P +M)
1

2

(
1+ γ5/S/M

)
= g2(4πμ2)ε

16π2 �(1− ε)

∫ ∞
0

dk2
T(k2

T)−ε ξ [k2
T + (2− ξ )2M2]

[k2
T + (1− ξ )m2 + ξ 2M2]2

= g2�(ε)

16π2

[
4πμ2

(1− ξ )m2 + ξ 2M2

]ε [
ξ + εξ (1− ξ )(4M2 −m2)

(1− ξ )m2 + ξ 2M2

]
. (6.118)

Notice that the denominator is obtained from the denominator in the quark density by
changing ξ to 1− ξ , as is appropriate now that the scalar line has its plus component of
momentum equal to k+ instead of P+ − k+. Again, we have a positive contribution, with
a UV divergence when ε = 0.

The above calculation is valid when 0 < ξ < 1. As usual, the positive-energy condition
on P − k ensures that parton densities are zero if ξ > 1. For negative ξ , a more elaborate
argument, with extra graphs, is needed, and is given in Sec. 6.11.6.

6.11.4 Sum rules

We now check that the number and momentum sum rules are obeyed by our calculation.
Naturally the lowest-order term contributes unity to both the quark number and to the
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k

P − kP

k

Fig. 6.13. Real-emission contribution to one-loop quark density in quark when the definition
with time-ordered operators is used.

momentum sum rules. So to confirm the sum rules at order g2, we must show that the
one-loop contributions to each sum rule are zero.

For the number sum rule we have∫
dξ f

[1,V ]
q/q (ξ )+

∫
dξ f

[1,R]
q/q (ξ )

= residue[1] +
∫

dξ f
[1,R]
q/q (ξ )

= �(ε)
∫ 1

0
dx

[
4πμ2

m2x +M2(1− x)2

]ε[
1− 2x + εM2x(1− x)[2(1− x)M2 −m2]

m2x +M2(1− x)2

]
= 0. (6.119)

The zero in the last line can be easily calculated by using the fact that the integrand in
the previous line is proportional to the derivative with respect to x of x(1− x)[m2x +
M2(1− x)2]−ε .

The momentum sum rule is checked similarly.

6.11.5 Uncut graphs

We saw in Sec. 6.9.4 that because the fields in the definition of a parton density commute
or anticommute, except for an irrelevant “c-number” term, the operator product in the
definition of a parton density can be replaced by a time-ordered product, as in (6.89). So
we now examine how this alternative definition can be used and verify in an example that
it gives the same results as when the original definition is used.

When a time-ordered product is used the Feynman rules for parton densities are simply
given by deletion of the final-state cut in (6.110) and all its relatives. For the case of
the one-loop calculation of the density of a quark in a quark that we examined earlier,
this results in the replacement of Fig. 6.10(b) by Fig. 6.13. Applying the Feynman rules
gives

g2

16π2
f

[1,R]
q/q (ξ ) = ig2μ2ε

∫
dk− d2−2ε kT

(2π )4−2ε

Tr γ+
2 (/k +M)( /P +M) 1

2

(
1+ γ5/S/M

)
(/k +M)(

k2 −M2 + i0
)2 [

(P − k)2 −m2 + i0
] .

(6.120)
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Fig. 6.14. Singularities in k− plane for (6.121).

P − k
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Fig. 6.15. Extra cuts of the one-loop graph for the quark density in a quark. These contribute
only for negative ξ , and then cancel the contribution of the standard term Fig. 6.10(b). To
avoid a division by zero in the uncut quark propagator, the matrix element is temporarily
made off-diagonal in the target momentum.

All the lines now have regular propagators. Notice the overall factor of i compared with
(6.115). In terms of light-front coordinates, the denominator factor is

1(
2ξP+k− − k2

T −M2 + i0
)2[

2(1− ξ )P+(P− − k−)− k2
T −m2 + i0

] . (6.121)

We now perform the integral over k− by the residue theorem. This works in almost exactly
the same way as in Sec. 5.4.2 for the collinear-to-A contribution to the Sudakov form factor.
As illustrated in Fig. 6.14, when ξ < 0 and when ξ > 1 all the poles are in either the upper
or lower half plane, so that we can deform the contour to infinity away from the poles and
get zero.

The only non-zero contribution is when 0 < ξ < 1. Closing on the single pole at
(P − k)2 = m2 sets this line on-shell, and exactly reproduces the previous result, (6.117).

6.11.6 Negative ξ

One additional feature of the calculation in the previous section is that a vanishing value
is obtained when ξ is negative. From the relation (6.85), this corresponds to a vanishing
density of antiquarks in the quark at this order of perturbation theory.

In contrast, in the formalism with fixed ordering for the operators. the cut graph
(Fig. 6.10(b)) gives a non-zero value. This appears paradoxical until we observe that
there are two further cuts of the same graph, as shown in Fig. 6.15, where the quark prop-
agator is cut, to give a final state consisting of the target and an antiquark of momentum
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−k. When ξ is positive, the cut lines in Fig. 6.15 do not obey the positive-energy condi-
tion for physical particles, and therefore these diagrams give zero. But for negative ξ the
positive-energy condition is satisfied, and we get a non-zero contribution from the extra
cuts.

A further problem now arises: when we set k2 = M2 in one quark propagator, the other
quark propagator is exactly at its pole and gives infinity. How is one to show in a principled
way that the infinities cancel between the two cut graphs in Fig. 6.15 and that the finite
part cancels against Fig. 6.10(b)? We could solve this by using a wave-packet state as
we did in finding the probability interpretation of parton densities. An alternative, which
we will use here, is to start with the matrix element defining the parton density being
off-diagonal in target momentum: 〈P | . . . |P 〉 �→ 〈P ′| . . . |P 〉. We only take the diagonal
limit P ′ → P after summing over cuts. The off-diagonal matrix element shifts one of the
quark propagators from momentum k to k + P ′ − P , thereby taking the uncut propagator
slightly away from its pole. As a function of k−, the pole and delta function structure for
the three cuts is of the form

δ(k− − A) (−ig)
−i

k− − B − i0
(−ig)

−i

k− − A′ − i0

+ i

k− − A+ i0
(ig) δ(k− − B) (−ig)

−i

k− − A′ − i0
(6.122)

+ i

k− − A+ i0
(ig)

i

k− − B + i0
(ig) δ(k− − A′),

up to a common overall factor. The quantities A, B and A′ are functions of masses, of ξ

and the difference between P ′ and P . The diagonal-matrix-element limit P ′ → P gives
A′ → A. Integrating over k− gives

g2 1

A− B

1

A− A′
+ g2 1

B − A

1

B − A′
+ g2 1

A′ − A

1

A′ − B
, (6.123)

which sums to zero, even before taking the limit A′ → A.
This calculation is a verification in an example of a general result that we proved using

operator (anti)commutation relations. The cancellation corresponds to the fact that in the
time-ordered-operator formalism, all the poles in the propagators are on one side of the real
axis, as in Fig. 6.14(a).

An interesting variant of this problem occurs when we try computing the density of a
scalar parton in the fermion target. Exactly the argument we have just given shows that the
graph in Fig. 6.12 has two extra cuts and that the sum vanishes for negative ξ . However, we
have also shown that, since the scalar particle is its own antiparticle, its density at negative
ξ is the negative of the density at positive ξ , (6.87), and therefore is non-zero.

To recover this result, we observe that there are other possible graphs, Fig. 6.16, in
which the vertices of the scalar line on the fermion line are reversed. For positive ξ , these
graphs are zero, and so do not affect the calculation we have already done. But when ξ is in
the range −1 < ξ < 0, similar arguments to those we gave earlier in this section show that
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Fig. 6.16. Cut graphs at one-loop order when ξ < 0 for the density of scalar partons. Graph
(a) is in fact zero, because the coupling of the three on-shell particles violates 4-momentum
conservation. Graph (b) only contributes when ξ < −1, by the positive-energy condition
on the particles on the cut.

the sum of these extra graphs is non-zero, and in fact they result in (6.87). When ξ < −1 the
graphs sum to zero. Verification of these statements is left as an exercise.

Exercises

6.1 Find a/the kT-dependent Lorentz transformation that converts k to k′ in (6.6).

6.2 Derive (6.31) from (6.14).

6.3 Similarly derive (6.33).

6.4 (a) Derive the corresponding results for polarized antiquark densities. Pay careful
attention to signs.

(b) Fill in any other missing details in Sec. 6.5.

6.5 What would happen if the theory were parity violating?

6.6 (a) Using the methods of this chapter, derive the parton model when the quarks have
spin 0. Then derive a formula for the corresponding parton density:

fs(ξ ) = ξP+
∫ ∞
−∞

dw−

2π
e−iξP+w− 〈P |φ†(0, w−, 0T) φ(0) |P 〉c , (6.124)

including the, perhaps unexpected, factor ξP+. [Note: A scalar quark might
appear in a model field theory or an extension to QCD, notably a super-symmetric
extension.]

(b) Obtain the corresponding formulae for the unintegrated density.

6.7 Carefully derive the signs in the exponents in (6.26).
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6.8 Generalize whatever needs to be generalized in this chapter to deal with DIS on a
spin-1 target like the deuteron. [See Hoodbhoy, Jaffe, and Manohar (1989) for an
account of some of the theory, one of the features of which is a new structure function
b1. See Airapetian et al. (2005) for the first measurement of b1.]

6.9 Check the statement given in the text that, in light-front quantization in the theory
specified by (6.44), the standard field equations (6.45) and (6.46) do indeed follow
from the canonical (anti)commutation relations (6.53) and (6.54) and the Heisenberg
equations of motion (6.51).

6.10 Check that the other equations in the sections on light-front quantization and their
relations to parton densities are correctly derived, notably (6.65).

6.11 Verify the results (6.76) and (6.78) for the interpretation of the polarized parton
densities. Do this for both quarks and antiquarks. [Note: There are some subtleties in
discussing the spin states needed in the wave-packet derivation that may impinge on
this discussion. See Bakker, Leader, and Trueman (2004).]

6.12 Generalize the relation between quark for negative ξ and antiquark densities with
positive ξ to the polarized case.

6.13 Derive the relations (6.101) and (6.102) for parton densities in pions.

6.14 Extend these results to kaons.

6.15 Generalize the proof in Sec. 6.9.5 to derive the momentum sum rule (6.93). You
will need to convert the left-hand side of the sum rule to a matrix element of the
energy-momentum tensor.

6.16 At one-loop order verify the momentum sum rule (6.93) for a quark target in the
Yukawa model theory. The sum over j is over the fermion, the antifermion, and the
scalar.

6.17 Perform the one-loop calculation of the parton densities for a target that corresponds to
the scalar field in our Yukawa field theory. Again verify the momentum sum rule. (The
number sum rule is trivially satisfied, since, as you can verify, fq̄/φ(ξ ) = fq/φ(ξ ).)

6.18 Verify by explicit calculations the statements at the end of Sec. 6.11.6.

6.19 (**) (This problem is quite hard, probably very difficult, and might even deserve
three stars.) Suppose we take field theory to be defined by Feynman graphs for Green
functions. Derive equal-time and equal-x+ commutation relations. Thus Feynman
perturbation theory does in fact correctly solve the operator formulation of the theory,
despite any doubts one might have about the rigor of the derivation of perturbation
theory.

Note that there is quite a bit of literature on obtaining commutation relations
from time-ordered Green functions, but that most of this dates from the heyday of
current algebra and therefore pre-dates QCD. These techniques have not propagated to
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modern textbooks. I refer here to the Bjorken-Johnson-Low (BJL) method (Bjorken,
1966; Johnson and Low, 1966).

6.20 (***) What happens in the previous problem if you apply it in the presence of
renormalization and/or of gauge fields? [Note: Either or both of these conditions is
liable to need techniques from the later part of this book, but probably in their simpler
forms.]
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Parton theory: further developments

In the previous chapter, we formalized the parton model in a simple quantum field theory.
A number of further developments follow fairly simply, and this chapter’s purpose is to
give an account of them, before we go on to the full QCD treatment.

We first extend the parton model for DIS to the very important case of charged-current
weak-interaction processes. Then we examine a particularly influential form of perturbation
theory: light-front (or x+-ordered) perturbation theory. After that I present the light-front
quantization of gauge theories, a natural extension of what we did earlier for non-gauge
theories. We will thereby be able to introduce appropriate definitions for parton densities
in a gauge theory, and to convert them to a gauge invariant form with the aid of what are
known as Wilson-line operators.

7.1 DIS with weak interactions, neutrino scattering, etc.

We have extensively discussed DIS for the case of virtual photon exchange. The same
principles apply equally to all lepto-production processes l +N −→ l′ +X, and thus they
apply whether the exchanged electroweak boson is a W , Z or photon. There are a large
number of different cases, and, as far as the theory by itself is concerned, all are a minor
variation on the purely electromagnetic case, both at the parton-model level, and with all
the QCD modifications. The structure-function review in Amsler et al. (2008, Ch. 16) is an
authoritative source for the relevant results including corrections of errors in the literature
and commonly used standards for notations, the bulk of which we follow. See also Hobbs
and Melnitchouk (2008) for a recent treatment of the role of γ –Z interference in the
parity-violating part of neutral current DIS.

7.1.1 Structure functions

In view of its particular importance to the determination of the flavor-separated quark
densities, we restrict our attention to the charged-current processes in neutrino scattering on
unpolarized nucleons. These are the processes ν +N −→ μ+X and ν +N −→ e +X,
with the exchanged boson being the W+. The hadronic tensor is

Wμν(q, P ) = 1

4π

∫
d4z eiq·z 〈P, S| Jμ(z/2)† J ν(−z/2) |P, S〉 , (7.1)

213
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where J is now the non-hermitian hadronic current coupling to the W boson. We normalize
this charge-changing current to

Jμ = ūγ μ(1− γ5)d ′ + c̄γ μ(1− γ5)s ′ + t̄γ μ(1− γ5)b′

= (
ū c̄ t̄

)
γ μ(1− γ5) UCKM

⎛
⎝d

s

b

⎞
⎠ . (7.2)

Here u, c, and t are the fields for the corresponding quarks, and d ′, s ′, and b′ are for the
down-type quarks that are associated with them in multiplets of weak isospin. The fields
for mass-eigenstate quarks, d , etc., are obtained by a CKM rotation, reviewed in Amsler
et al. (2008, Ch. 11), and implemented in the above equation by the matrix UCKM, which
acts on quark flavor indices.

We next decompose Wμν in scalar structure functions. There are two differences com-
pared with the pure electromagnetic case, both of which increase the number of structure
functions. First is that parity is not conserved and second is that the currents are not con-
served because the quark masses are non-zero. A thorough analysis was given by Ji (1993),
who found 14 structure functions on a spin- 1

2 hadron target, of which 5 appear when the
hadron is unpolarized and 9 concern hadron-polarization dependence.

For most purposes we can neglect the structure functions allowed by non-conservation of
the current. Normally, we neglect quark masses compared with Q within the hard scattering,
so that the extra structure functions are suppressed by a power of mq/Q. This of course
does not always work for heavy quarks, notably the b and t .

Thus the extra structure functions could be significant when there is a heavy quark in
the hard scattering. However, the associated tensors almost all have a factor of qμ or qν , the
one exception being in polarized scattering. Now a factor qμ or qν times the leptonic tensor
is non-zero only because a lepton mass is non-zero, and therefore we obtain a suppression
by a power of a small lepton mass divided by Q.

The result is that for neutrino scattering on an unpolarized target, we have one extra
relevant structure function F3:

Wμν = (−gμν + qμqν/q2
)
F1(x,Q2)+ (P μ − qμP · q/q2)(P ν − qνP · q/q2)

P · q F2(x,Q2)

− iεμναβ qαPβ

2P · q F3(x,Q2)+ irrelevant. (7.3)

See Amsler et al. (2008, Ch. 16) for a definition that includes structure functions for
polarized scattering.

7.1.2 Parton model with low-mass quarks

The parton model and its derivation work equally well with neutrino scattering at large
Q. As before, the parton-model approximation to the hadronic tensor is just a sum over
parton densities times the tensor computed to lowest order on an on-shell quark target, as
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Fig. 7.1. Examples of lowest-order parton-model processes for charged-current DIS with a
W+ or a W− exchanged.

in (2.27). Let k̂μ = (xP+, 0, 0T) be the approximated quark momentum. Then the partonic
tensor (2.28) is simply replaced by

C
μν
j =

1

4π

1

2
Tr /̂kγ μ(1− γ5)(/q + /̂k)γ ν(1− γ5) 2πδ((q + k̂)2), (7.4)

with the restriction to the allowed partonic subprocesses, e.g., d → u, ū→ d̄, etc. for W+

exchange. Note that the formula must be slightly changed on an antiquark. It is readily
deduced that the parton-model structure functions are

F
QPM,W+
2 = 2x [d(x)+ ū(x)+ s(x)+ c̄(x)+ . . .] , (7.5a)

F
QPM,W+
1 = 1

2x
F2, (7.5b)

F
QPM,W+
3 = 2 [d(x)− ū(x)+ s(x)− c̄(x)+ . . .] . (7.5c)

For processes like ν̄p→ e+X with W− exchange, the roles of the quarks in each isospin
doublet are exchanged, to give

F
QPM,W−
2 = 2x

[
u(x)+ d̄(x)+ s̄(x)+ c(x)+ . . .

]
, (7.6a)

F
QPM,W−
1 = 1

2x
F2, (7.6b)

F
QPM,W−
3 = 2

[
u(x)− d̄(x)− s̄(x)+ c(x)+ . . .

]
. (7.6c)

Only those heavy quarks whose mass is low enough to participate in the process should
be included. Notice the restricted set of quark flavors allowed in each structure function
(Fig. 7.1). Notice also the reversal of sign for the antiquark terms in the F3 structure
function. These properties indicate how important charged-current scattering is for the
flavor separation of quark and antiquark densities from data.

7.1.3 Quark masses

So far our arguments have relied on Q being much larger than all the particle masses of
a theory; the reduced diagram analysis concerned the zero-mass limit m/Q→ 0. But the
wide range of quark masses in QCD shows that there is an interesting region where Q is
much larger than the lightest masses, but less than or comparable to some of the heavy
quark masses. A full and systematic treatment in QCD will appear in Sec. 11.7.
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Charged-current DIS, where heavy quarks can be produced off light quarks, provides a
useful place to initiate the discussion of heavy quarks. The basic methodology is to treat
the heavy quark masses as a large scale, just like Q. Then we apply the Landau analysis
to locate the PSSs only for the light partons. The heavy quarks appear only inside the
hard scattering, and the parton densities used are for light partons only. Naturally, when
Q is increased sufficiently above the mass of a particular quark, the status of the quark
changes.

For neutral-current processes, heavy quarks are made in pairs, and the hard scattering
analysis is closely tied to the higher-order corrections to the hard scattering, to be studied
later. But for charged-current processes, the production of a heavy quark can occur at lowest
order, e.g., W− + s̄ → c̄, W+ + s → c. Then the parton-model approximation for the hard
scattering retains the massless approximation for the incoming quark, but we insert the
mass mh for the outgoing heavy quark. Thus we replace the parton-level structure function
(7.4) by

C
μν
j =

1

4π

1

2
Tr /̂kγ μ(1− γ5)(/q + /̂k +mh)γ ν(1− γ5) 2πδ((q + k̂)2 −m2

h), (7.7)

applicable to a process W + qj → qh, with a transition from a light quark of flavor j to a
heavy quark h. The mass shell condition now sets the parton momentum fraction to

ξ = x(1+m2
h/Q

2) (7.8)

rather than simply x. It can readily be checked that the contributions to the hadronic structure
functions are

F
j→h
1 = fj (ξ ), F

j→h
2 = 2ξfj (ξ ), F

j→h
3 = 2fj (ξ ). (7.9)

This should be used to replace the relevant terms in (7.5) and (7.6).
In addition there are terms in (7.7) proportional to qμqν/Q2 and (P μqν + qμP ν)/P · q,

which are allowed because of non-conservation of the currents when quark masses are
non-zero. As already stated, the factors of qμ or qν multiply the leptonic tensor, and give a
suppression by a power of lepton mass divided by Q.

There is in principle a sharp structure in the structure functions at the threshold for
production of a heavy quark, at

xexact threshold = 1

1+ (M2
min −M2)/Q2

, (7.10)

where Mmin is the lowest-mass final state in W± + P → X that includes a hadron containing
a particular heavy quark. For a b quark this might be the lightest B-flavored baryon, �0

b. In
contrast the partonic calculation gives a threshold in x given by setting ξ = 1 in (7.8), i.e.,
at

xparton threshold = 1

1+m2
h/Q

2
. (7.11)

This differs from the exact threshold because the heavy baryon’s mass is not exactly
equal to the heavy quark’s mass and because there is an effect due to the proton mass,
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both effects being neglected in the partonic calculation. For practical purposes the differ-
ence is not important because the parton densities vanish strongly at ξ = 1 and the main
contributions arise from small ξ . Thus the main numerical contributions to the structure
functions from heavy quark occur for values of x well beyond the threshold for heavy quark
production.

Even so, the disagreement between the thresholds in x illustrates a principle mentioned
in our derivation of the parton model in Sec. 6.1.1. This is that the approximations only
apply to a local average of the structure functions, which would smear out sharp structures.
Observe that the exact and parton-model thresholds in x differ by an amount proportional to
hadronic-mass-squared divided by Q2, a power-suppressed quantity. This is an important
principle to remember whenever thresholds appear in partonic calculations. Improvements
can only be made by treating parton kinematics better.

7.2 Light-front perturbation theory

In analyzing a collinear region, a number of interesting simplifications arise when we
integrate over the minus components of loop momenta. A simple example was in Sec.
6.11.5 for a one-loop calculation of a parton density, where it gave the restriction that
fractional momenta for internal lines correspond to forward-moving particles: the target
splits into two forward-moving partons, both with positive plus momentum, and one of the
partons initiates the hard scattering.

In the example, and as we will now see quite generally for any Feynman graph, integrating
over the minus momenta led to restrictions on plus momenta that correspond to to the
restrictions imposed by the reduced graph analysis of Ch. 5. This leads to an interesting
generalization of the method of time-ordered perturbation theory (Sterman, 1993, Sec. 9.5).
In this older method, in contrast to Feynman perturbation theory, the effect of interactions
is to cause transitions from one state to another, the interactions occur as a sequence in
time, and there are energy denominators corresponding to the intermediate states. Time-
ordered perturbation theory gives a useful intuition as to the time evolution of the system’s
state. But in relativistic theories time-ordered perturbation theory is inefficient (Heinzl,
2007), because a Feynman graph with n vertices has n! time orderings. If time ordering is
replaced by ordering in x+, it turns out that many of the orderings of the vertices give zero.
This formulation corresponds to a natural version of perturbation theory within light-front
quantization, when the role of time in ordinary quantum-mechanical evolution equations is
replaced by evolution in x+.

The method arose first – see Brodsky, Pauli, and Pinsky (1998) for a review – in the use
of what was called the “infinite-momentum” frame for understanding the parton model. The
systematization in terms of light-front variables and then x+-ordered perturbation theory
was made by Chang and Ma (1969) and Kogut and Soper (1970). Chang and Ma also
showed how the rules arise by performing the k− integrals in Feynman graphs.

Naturally, if one wishes to discuss collinear regions with the high-energy particle(s)
moving in some direction other than the +z direction, a different definition of light-front
coordinates is appropriate.
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Fig. 7.2. (a) Self-energy graph. (b) An x+ ordering that gives zero.

7.2.1 Example

The basic principles are illustrated by the simple example of the propagator correction graph
in φ3 theory, shown in Fig. 7.2(a). We first examine the case that the external momentum
obeys p+ > 0. Since we need to consider also the graphs in coordinate space, each vertex
is labeled with a position variable. The value of the graph is

�(p) = −g2

(p2 −m2)2 2(2π )n

∫
dnk

1

2k+k− − k2
T −m2 + i0

× 1

2(p+ − k+)(p− − k−)− ( pT − kT)2 −m2 + i0
. (7.12)

We perform the integral over k− by closing the contour in the upper or lower half plane.
This gives zero except when k+ is between 0 and p+, with the result

�(p) = (−ig)2

2(2π )n−1

∫ p+

0
dk+

∫
dn−2kT

1

(2p+)2 2k+ 2(p+ − k+)

× i3[
p− − p2

T +m2

2p+
+ i0

]2
[
p− − k2

T +m2

2k+
− ( pT − kT)2 +m2

2(p+ − k+)
+ i0

] .

(7.13)

This has been organized so as to correspond to the general form we will find in x+-ordered
perturbation theory. The relevant ordering is given in Fig. 7.2(a). This has three intermediate
states, between the vertices w and x, between x and y, and between y and z. The last line of
(7.13) is a product of an energy denominator factor for each intermediate state. Each of these
factors is i/(p− − on-shell+ i0), where “on-shell” denotes the value of minus momentum
the state would have if the particles were on-shell. Note that two of the denominators, for
the first and last intermediate states, are equal. In common with the Feynman-graph method,
there are the factors of−ig for each vertex and a symmetry factor 1

2 . The integration is only
over the plus and transverse momenta, and for each line there is a factor of one divided by
twice its plus momentum. This corresponds to the denominator in the light-front version of
the “Lorentz-invariant phase-space” measure, (6.59). At each internal vertex are conserved
the independent components of momentum needed to specify physical states, i.e., the plus
and transverse components.
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In advance of their general proof, we can use this graph as an illustration of the results
that yield the main simplifications given by light-front perturbation theory. Each line has
to carry a physical positive value of plus momentum, when considered flowing from left
to right. Because p+ > 0, the x vertex is to the right of the w vertex, and similarly for z

relative to y, i.e., x+ > w+, z+ > y+. This still leaves one other possible ordering, shown
in Fig. 7.2(b), where y+ is earlier than x+. However, this ordering does not give an allowed
situation, since at the x vertex we have three positive plus momenta coming in from the left
and none going out to the right. This is how the simplification compared with time-ordered
perturbation theory occurs. With time-ordered perturbation theory, the ordinary energy k0

would have been integrated over, and the independent variables for each line would be the
ordinary spatial momentum, none of whose components has any constraint on its sign.

For this one Feynman graph we have one x+ ordering that gives a non-zero result. In
contrast, time-ordered perturbation theory would have 4! = 24 time orderings for the same
Feynman graph.

One can readily verify that the above calculation reproduces the standard result for the
Feynman graph by performing the kT integral. After a change of variable to x = k+/p+,
an integral is obtained that is the same as is obtained when the momentum integral in (7.12)
is performed by the conventional Feynman parameter method.

7.2.2 Paradox at p+ = 0

We obtained (7.13) for the case that p+ was positive, and observed that it gives the correct
value. Similarly when p+ is negative, we also get the correct value, but with a reversed
ordering for the vertices.

But if p+ is exactly zero, the poles in k− in the original integral (7.12) are either both
in the lower half plane (if k+ > 0) or both in the upper half plane (if k+ < 0). Completing
the contour of k− away from the poles then gives zero for all values of k+. This disagrees
with the definite non-zero limit of (7.13) as p+ → 0, and hence with the non-zero value of
the ordinary Feynman graph.

This issue is rather important, because the same method can be used to show that
disconnected vacuum bubbles are apparently all zero in light-front perturbation theory
e.g., Weinberg (1966) and the introduction (but not the later sections) of Chang and Ma
(1969). This has contributed to a general impression (e.g., Brodsky, Pauli, and Pinsky,
1998) that the vacuum is trivial in light-front quantization, unlike the case for equal-time
quantization; i.e., the interactions do not change the vacuum state. Now, although vacuum
bubbles are normally discarded, they physically give an energy density to the vacuum,
which can be related to the energy-momentum tensor in the vacuum. Vacuum energy-
momentum is equivalent (Weinberg, 1989) to a contribution to the cosmological constant
in general relativity, i.e., it has observable consequences. (There is, of course, an infinite
renormalization of the cosmological constant to cancel UV divergences in vacuum bubbles.)
Evidently, when different results are obtained for the same graph by different methods of
calculation in the same theory, at least one method is wrong.
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k+

k−

Fig. 7.3. Partially deformed contour for evaluation of integral at zero external p+. Note that
the axes are the real part of k+ and the imaginary part of the other variable k−, and that
there are therefore two other dimensions not shown, for �k− and �k+.

Our propagator calculation indicates that there must be a problem with the derivation
of a zero value for the propagator correction at zero external plus momentum, since that
disagrees with the limit from non-zero p+, and propagators are analytic functions of external
momentum. This problem was recognized and solved, at least in examples, by Chang and
Ma (1969). A more general solution was provided by Yan (1973) with generalizations by
Heinzl (2003).

At zero external p+ we need the integral over k− and k+ of

1

[2k+k− − k2
T −m2 + i0] [2k+(k− − p−)− ( pT − kT)2 −m2 + i0]

. (7.14)

We deform the (two-real-dimensional) contour of integration so that the imaginary part
of k− is infinite and positive when k+ > 0, but infinite and negative when k+ < 0. As
illustrated in Fig. 7.3, the contour of integration is a connected manifold and so at k+ close
to zero, the deformed contour has to pass through small values of �k−. This leaves the
possibility of a non-zero contribution, where k+ is very small and k− is very large, leaving
k+k− of a fixed size. (Such a contribution does not arise when the external plus momentum
is non-zero, because there is then a large denominator containing a p+k− term.)

Contour integration shows that the integral over k− of (7.14) is zero whenever k+ is non-
zero. On the other hand the integral of (7.14) over both k+ and k− is definitely non-zero.
This indicates that the integral over the one variable k− must be treated as a generalized
function of the other variable k+, e.g., a coefficient times δ(k+): it is zero everywhere except
at one point, but with a non-zero integral. In fact, Yan (1973) and Heinzl (2003) showed that∫

dk−
1

(M2 − 2k+k− − i0)ν
= πi

δ(k+)

(ν − 1)(M2)ν−1
. (7.15)

This formula can be used to calculate the integral of (7.14) with the aid of a Feyn-
man parameter combination for the denominators, and results in agreement with the
Feynman-graph calculation and with the limit from p+ �= 0. The paradox is now resolved.

For disconnected vacuum diagrams, this solves the disagreement between light-front
perturbation theory and regular Feynman perturbation theory; Feynman perturbation theory
is correct, and there is in this case little notable advantage to use of light-front perturbation
theory.
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But for graphs with non-zero external momenta, we can choose the external momenta
to avoid the problematic situations, as was shown quite generally by Chang and Ma (1969).
We avoid the problems if no subgraph is forced by the configuration of external momenta
to have exactly zero for its external plus momentum.

Certain other complications arise when there are numerator factors with dependence
on k−. These can affect the convergence of the k− integrals, and a naive application of
light-front methods to a Feynman graph can give a wrong result. This is particularly the
case for calculations in a massless on-shell approximation.

7.2.3 General rules

Statement

The general rules for perturbation theory in the x+-ordered form can be found in Chang and
Ma (1969), Kogut and Soper (1970), and Yan (1973), but with a different normalization.
There are some complications associated with momentum dependence in vertices and in
propagator numerators, so we first state and derive the rules for scalar theories.

1. The graphs are like Feynman graphs except that the vertices are assigned an ordering in
x+, which in drawing diagrams we will take to increase from left to right. All possible
graphs and orderings are to be used.

2. Coupling factors at vertices and symmetry factors are the same as in Feynman graphs.
3. Each line l is assigned a plus and transverse momentum: k+l , kl T, and these components

of momentum are subject to conservation at the vertices.
4. The sign of each line momentum is chosen to correspond to propagation from lower to

higher x+, and then k+l is always physical, i.e., positive.
5. For each loop there is an integral of a loop momentum, but only over its plus and

transverse components:
∫

dk+ dn−2kT

(2π )n−1
.

6. For each line l there is a factor
1

2k+l
.

7. For each intermediate state α there is a factor

i

P−α − P−α on-shell + i0
. (7.16)

Here P−α is the total external minus momentum entering the graph to the left (earlier
x+) than the intermediate state α, while P−α on-shell is the value of the minus momentum
of the particles contained in the state when they are on-shell. That is,

P−α on-shell =
∑
l∈α

k2
l T +m2

l

2k+l
. (7.17)

These rules can be derived by normal time-dependent perturbation theory, with the
change that light-front quantization is used and the evolution variable is x+ instead of
ordinary time (Kogut and Soper, 1970). What we will do here instead is to derive them
from Feynman perturbation theory in the coordinate-space representation, with the integrals
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over the positions of the vertices split up according to their ordering in x+. This second
method directly shows the equivalence with Feynman perturbation theory; it will also
provide techniques for analyzing Feynman graphs in terms of particles propagating in
space-time.

Derivation

See also Ligterink and Bakker (1995) for a derivation.
We start with the momentum-space representation for Feynman graphs and perform

appropriate Fourier transforms to obtain the coordinate-space representation, but only as
regards plus components of vertex positions. In all of the following, we will use xj to
represent the position of a vertex j in a graph.

First we Fourier-transform a free propagator to plus position, and decompose according
to the ordering of its vertices:

G̃ ≡
∫

dk−

2π
eik−(x+j −x+k ) i

2k+k− − k2
T −m2 + i0

= θ (x+k − x+j )
θ (k+)

2k+
eik−on−shell(x

+
j −x−k ) + θ (x+j − x+k )

θ (−k+)

−2k+
ei(−k)−on−shell(x

+
k −x−j ). (7.18)

Here k is regarded as flowing from xj to xk , and the explicit minus signs in the second
term serve to indicate that we always have physical (positive) plus momentum flowing
from the earlier vertex to the later vertex. The above formula is readily derived by contour
integration.

So we decompose the free momentum-space propagator as

G = θ (k+)

2k+
i

k− − (k2
T −m2)/(2k+)+ i0

+ θ (−k+)

−2k+
i

−k− − (k2
T −m2)/(−2k+)+ i0

,

(7.19)

with each term being associated with one of the two possible x+ orderings of the ends of
the line.

A common textbook derivation of Feynman rules starts from the coordinate representa-
tion (from Wick’s theorem or a similar result from the functional integral), and then writes
the result in terms of Fourier transforms into momentum space. Here we first partially
reverse the derivation by writing the delta function for conservation of minus momentum
at a vertex j as

2πδ
(
p−j +

∑
k−l in −

∑
k−l out

)
=
∫

dx+j eix+j (−p−j −
∑

k−l in+
∑

k−l out), (7.20)

where p−j is the external momentum entering at the vertex, the k−l in are the momenta on
lines coming to the vertex from earlier vertices, and k−l out are the momenta on lines leaving
the vertex on lines to later vertices. In this formulation we have an integral over the minus
momentum of each and every line, with explicit delta functions at the vertices.

We next obtain the contribution from a particular ordering of the x+j . We choose the
vertex labels to correspond to the ordering x+1 < x+2 < x+3 . . ., and we implement this by
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l1 l2 l3

x1 x2 x3
x4

Fig. 7.4. Momentum-space representation of an x+ ordering of a Feynman graph. See the
text for explanation.

multiplying the original Feynman graph by theta functions:
∏

θ (x+j+1 − x+j ). Then we write
a momentum-space representation for the theta functions:

θ (x+j+1 − x+j ) =
∫ dl−j

2π
eil−j (x+j −x+j+1) i

l−j + i0
. (7.21)

We represent this in Fig. 7.4, where the dotted lines represent minus momenta flowing from
each vertex to the next, together with the factor i/(l−j + i0) in the above equation. Next to
each vertex is a label for its position.

The integral over the vertex positions now gives us back conservation of minus momen-
tum at each vertex, but with the momenta on the dotted theta-function lines included. We
treat the minus momenta on the regular (non-dotted) lines as the independent variables
of integration, with the vertex delta functions determining the l−j variables. If a line of
momentum k goes from vertex j to a later vertex j ′, then k− gets routed back along all the
dotted lines from j ′ to j .

Finally, we apply contour integration on each k− integral, closing in the lower half
plane on the poles of the regular propagators. This then sets k− in each of the dotted-line
factors between j and j ′ to be the on-shell value. Repeating this for every line then results
in the dotted line joining two vertices having a contribution of the on-shell k− in the
corresponding intermediate state. The momentum-conservation delta functions also route
the external momenta along the dotted lines. Thus the final result is to turn the dotted-line
factors into exactly the energy denominators we announced in the rules for x+-ordered
perturbation theory.

This completes the derivation.

Fermion lines

The numerator factor for a free fermion propagator Gf has k− dependence, and this entails
an extension to the decomposition (7.19) that we wrote for a scalar field propagator. We
write the k− dependence of the numerator as iγ+k− = iγ+k−on−shell + iγ+(k− − k−on−shell),
where the first term works just as in the scalar propagator, but the second term cancels the
on-shell pole, to give

Gf = θ (k+)

2k+
i(/kon−shell +m)

k− − (k2
T −m2)/(2k+)+ i0

+ θ (−k+)

−2k+
i(/kon−shell +m)

−k− − (k2
T −m2)/(−2k+)+ i0

+ iγ+

2k+
. (7.22)
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Fig. 7.5. Instantaneous interaction for fermion, denoted by the line with a bar across it. It
has the value of iγ +/(2k+) times the attached interaction vertices.

After the x− integrals are performed, the last term Fourier-transforms to a delta function in
x+, giving an instantaneous interaction (Kogut and Soper, 1970) denoted diagrammatically
by a line with a bar across it, as in Fig. 7.5. Naturally there is no associated intermediate
state.

Similar issues arise with momentum-dependent vertices, as for the 3-gluon vertex in
QCD and with couplings of gauge bosons to scalar fields.

7.2.4 Interpretation for pdf; time scales

Originally, the methods of x+-ordered perturbation theory and its predecessor, the infinite-
momentum technique, were applied to scattering processes at high energy. But as factor-
ization theorems became systematized, the applications of x+-ordered perturbation theory
shifted more to treating the properties of a collinear region; more specifically, they became
of use in analyzing the state of a fast-moving particle, e.g., the target in DIS.

An example is the calculation of a parton density, e.g., from Fig. 6.13. The two vertices
defining the parton density are at equal x+, and thus there is no intermediate state between
them. In x+-ordered perturbation theory the target splits into two particles. There is an
intermediate state of the partons k and P − k which propagates until one of the partons
gets to the parton-density vertex. In the application of a pdf to DIS, this corresponds to
where the virtual photon knocks out the parton, over a short time scale. Then the amplitude
is squared to make a probability density. In the space-time picture of DIS, Fig. 6.3, the
outgoing struck quark goes almost exactly in the x− direction.

In the paradigmatic parton-model region, the incoming quark has transverse momentum
of order a normal hadronic mass M . Then the denominator for the intermediate state in
light-front perturbation theory is of order M2/P+, i.e., of order M2x/Q in the Breit frame.
We expect the typical lifetime of the state to be the inverse of this. This gives a typical
intrinsic hadronic time scale 1/M times a time-dilation factor P+/M . Thus x+-ordered
perturbation theory nicely and quantitatively implements the parton-model intuition. We
can summarize the parton-model approximation as neglecting the duration of the hard
collision compared with this long time scale P+/M2.

DIS exhibits the situation that in the interesting cases one always has at least two
different directions of motion for the high-energy particles. While x+-ordered perturbation
theory is very natural for discussing the target state and its evolution, including that of the
target remnant, a corresponding discussion of the outgoing struck quark is more naturally
made with ordering with respect to the other light-front variable x−. Naturally in more
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complicated situations one has even more relevant directions for collinear sets of particles,
and a correspondingly appropriate light-front variable for each set. Observe that discussion
of the struck quark jet in DIS involves lines with plus momentum of order M2/Q at large
Q. Thus in the version of light-front perturbation theory appropriate to the target, the lines
of the outgoing struck quark have close to zero plus momentum, i.e., they are close to the
zero modes.

A unified description of the whole process is best made using ordinary Feynman per-
turbation theory, with light-front methods being applied separately to each collinear group
(e.g., the target, or the outgoing struck quark together with its associated jet).

7.2.5 Frame dependence of ordering of x+ and x− in DIS

Consider the struck quark in DIS before it collides with the virtual photon in the parton-
model region of low transverse momentum. In a Feynman graph its longitudinal momen-
tum components have opposite signs: k+ > 0, k− < 0. This has the following interesting
consequence.

In x+-ordered perturbation theory, the parton travels forward from its last interaction
inside the target, precisely because k+ > 0. The value of k−was integrated over to obtain this
form of perturbation theory. Viewed in the Breit frame, this shows that the last interaction
in the target happens earlier than the hard collision with the virtual photon.

Suppose instead we used x−-ordered perturbation theory. This would appropriate for
discussing physics in the target rest frame, in which case the virtual photon is moving with
large momentum in the negative z direction. The longitudinal variable parameterizing the
parton state is now k−. Since this is negative, the propagation is from the photon vertex to
an interaction with the target. Thus the ordering of the events is reversed. This is illustrated
in Fig. 7.6. We have thus found that the time-ordering of the ends of the line of momentum
k gets reversed in different frames. This requires the separation of the ends to be space-like,
and is specifically associated with the opposite signs of k+ and k−, and thus with the fact
that the momentum of the line is space-like.

7.3 Light-front wave functions

7.3.1 Definitions

The treatment in this section is based on Brodsky and Lepage (1989) and Brodsky, Pauli,
and Pinsky (1998), but the normalizations of the states and wave functions are adjusted to
be Lorentz invariant.

In any quantum field theory, the states of the theory can be obtained by applying products
of fields to the true vacuum and then taking linear combinations. A convenient basis with
a Fock-space structure is made by using the creation operators obtained in light-front
quantization.

Let us define basis states by applying bare creation operators to the true vacuum. We
label the states by the particle type, their plus and transverse momenta, and helicities. For
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Fig. 7.6. x+ and x− ordering and DIS viewed in (a) the Breit frame, and (b) the target rest
frame. The top line shows Feynman graphs organized for x+- and x−-ordered perturbation
theory, and the bottom line shows the positions of the vertices in space-time.

example, in the Yukawa theory treated in the previous chapter, the list of basis states would
start as

|0〉 ,
|f : k, α〉 = b

†
k,α |0〉 ,

|s : k〉 = a
†
k |0〉 ,

|f f̄ : k1, α1; k2, α2〉 = b
†
k1,α1

d
†
k2,α2
|0〉 ,

|f s : k1, α1; k2〉 = b
†
k1,α1

a
†
k2
|0〉 ,

. . .

(7.23)

Here f and s denote the fermion and the scalar particles, and α is for fermion helicity. The
momentum label for each particle is of the form kj = (k+j , kj T). Naturally, this generalizes
to any theory, simply by the use of suitable particle labels. In a theory with color confine-
ment, like QCD, it is necessary to restrict to color singlet states. (At this point we gloss
over complications that happen in real QCD.)

We use bare creation operators, i.e., those obtained from the bare fields, so that they obey
the standard (anti)commutation relations (6.65), and the states have standard orthonormality
conditions, e.g.,

〈f : k′, α′|f : k, α〉 = (2π )n−12k+δαα′δ(k′+ − k+)δ(n−2)(k′T − kT). (7.24)

A general single-particle state |h : P 〉 of momentum P , with PT = 0, is expanded as

|h : P 〉 =
∑

F,{αj }

∫
d[{x, kT}]

∣∣F : {xjP
+, kj T, αj }

〉
ψF/h

({xj , kj T, αj }
)
, (7.25)
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where the sum is over the numbers of particles, and their types and helicities. The notation
{. . . } denotes an array of single-particle quantities. The measure for the integral is

d[{xj , kj T}] def= 1

#(f )!#(f̄ )!#(s)!

∏
j

(
dxj dn−2kj T

2xj (2π )n−1

)

× δ
(

1−
∑

j

xj

)
2(2π )n−1δ(n−2)

(∑
j

kj T

)
, (7.26)

with the factorials in the prefactor chosen to compensate the multiple counting of configu-
rations of identical partons.

The decomposition (7.25) of a state |h : P 〉 was defined to apply at PT = 0. It is left as
an exercise (problem 7.4) to show that to obtain the state with non-zero PT one makes the
replacement

ψF/h({xj , kj T, αj }) �→ ψF/h({xj , kj T − xj PT, αj }). (7.27)

The coefficients ψF/h({xj , kj T, αj }) are called the light-front wave functions,1 and they
obey the normalization condition (to be proved in problem 7.4)∑

F,{αj }

∫
d[{x, kT}]

∣∣ψF/h({xj , kj T, αj })
∣∣2 = 1. (7.28)

A projection onto basis states gives the wave functions〈
F : {xjP

+, kj T, αj } h : P
〉 = ψF/h

({xj , kj T, αj }
)

× 2(2π )n−1δ
(

1−
∑

j

xj

)
δ(n−2)

(∑
j

kj T

)
, (7.29)

where we now assume PT = 0 again.

7.3.2 Uses

Light-front wave functions are directly used in factorization theorems for exclusive scat-
tering. The parton densities can be expressed in terms of light-front wave functions
(problem 7.6).

7.4 Light-front quantization in gauge theories

We have seen the value of light-front quantization in gaining understanding and intuition
for the parton model. So in this section we examine its application to QCD. At first sight, if
we use the light-cone gauge A+ = 0, all the same considerations as we used above seem to
apply. Notably, the same results about the number density interpretation of parton densities

1 In (7.25) the measure was normalized to match the covariant normalization (7.24) for partonic states. Thus the
normalization of the wave functions differs from those in Brodsky, Pauli, and Pinsky (1998) and Heinzl (2001).
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appear to apply. However, a number of complications are caused by the use of light-cone
gauge, symptomized by important divergences, as we will see strongly in later chapters.

Nevertheless, it is useful to make a start by ignoring the complications and divergences.
Such an approach has been enormously influential. Among other things one gains candidate
definitions of parton densities, of light-front wave functions, and of related quantities, not
to mention substantial intuition and insight. The true results will be distortions of those
presented here.

7.4.1 Light-cone gauge

For treating light-front quantization, on a null plane of constant x+, it is convenient (Kogut
and Soper, 1970; Srivastava and Brodsky, 2001) to use the gauge-fixing condition A+ = 0:
only transverse degrees of freedom propagate, and there are no Faddeev-Popov ghosts. This
is the “light-cone gauge” or “light-like axial gauge”.

The determining issue for using this gauge to treat parton physics is that the leading
regions for DIS are then the same as in non-gauge theories. In contrast, in a general
gauge, there are extra gluon lines attaching to the hard subgraph H in Fig. 5.7(c), and the
leading part involves the plus component of gluon polarization, which vanishes in A+ = 0
gauge.

We first examine this gauge (Bassetto et al., 1985; Leibbrandt, 1987) independently of
the issues of light-front quantization and of parton physics. This can be done in a coordinate-
independent and Lorentz covariant fashion by introducing a future-pointing light-like vector
nμ = δ

μ
−, so that for any vector V we have V + = n · V . The gauge condition is n · A = 0,

and a fractional longitudinal momentum is ξ = k+/P+ = n · k/n · P . Results for Green
functions etc. are invariant under scaling of n by a positive real number.

There are no ghost fields in this gauge. The Feynman rules (Bassetto et al., 1985;
Leibbrandt, 1987) are obtained from those in covariant gauges (Fig. 3.1) by making two
changes: the Faddeev-Popov fields are removed, and the free gluon propagator is changed
to

iδαβNμν

k2 + i0
, (7.30)

where the numerator is

Nμν = −gμν + kμnν + nμkν

k · n . (7.31)

The singularity at k+ = k · n = 0 causes problems. It is (Bassetto et al., 1985; Leibbrandt,
1987) to be defined as a principal value in loop integrals. In many cases this works and
gives physical results equivalent to those in covariant gauge, despite some complications
in renormalization (Bassetto, Dalbosco, and Soldati, 1987).

However, the gauge gives some non-trivial divergences in TMD parton densities, etc.
See Ch. 13 for the non-trivial details and how this is related to physically observable
effects.
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=
in n
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Fig. 7.7. Instantaneous interaction for gluon, when x+-ordered perturbation theory in light-
cone gauge is used. This barred gluon connects two regular interaction vertices at equal
values of x+. The ends of the line are connected to any normal gluon-containing vertices.

7.4.2 Light-front perturbation theory for gauge theory

For the derivation of the x+-ordered rules for perturbation theory, the k− dependence of the
numerator of the gluon propagator causes a complication. Just as with the fermion propa-
gator, we will find we need an extra interaction, now with instantaneous gluon exchange.
We derive it by extracting from the gluon numerator a term that contains the k− depen-
dence and that is proportional to the denominator, i.e., k2. Thus we obtain a modified gluon
numerator:

N lf pert.
μν = −gμν + kμnν + nμkν

k · n − k2nμnν

(k · n)2

= −gμν + kμnν + nμkν

k · n
∣∣∣∣
k−�→k2

T/2k+
. (7.32)

This does not affect the k2 = 0 pole of the free gluon propagator, and is the appropriate
form for making the transition to light-front perturbation theory (Srivastava and Brodsky,
2001). To keep the physical predictions of the theory the same, the extra term in the gluon
propagator is compensated by an extra instantaneous interaction (Kogut and Soper, 1970).
The new element in the Feynman rules, Fig. 7.7, corresponds to extra terms in the light-front
Hamiltonian (Srivastava and Brodsky, 2001). See the quoted references for details. Note
that in ordinary Feynman perturbation, the correct numerator is not (7.32), but is (7.31),
with the ordinary interactions.

7.5 Parton densities in gauge theories

Initially we defined the parton density for a fermion as an expectation value of a certain
bilocal operator, (6.31). This was motivated by the derivation of the parton model in a model
field theory. We then saw that this parton density is an expectation value of a light-front
number operator, (6.66), which is a natural implementation of the intuition embodied in the
picture of scattering off constituents of the target.

For QCD, we could apply this same operator definition in A+ = 0 gauge, because of the
already mentioned simplification of the leading regions in this gauge. We simply modify
the definition to include a sum over the three quark colors.

But we wish also to be able to use a general gauge. For this we need to find a gauge-
invariant definition that agrees with (6.31) in A+ = 0 gauge. As I now explain, this is
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done (Collins and Soper, 1982b) by inserting between the ψ̄ and ψ operators a suitable
path-ordered exponential of the gluon field. Such an exponential is called a Wilson line.

7.5.1 Wilson lines

A general Wilson line2 is defined as a path-ordered exponential of the integral of the gluon
field (times generating matrix) along a line (or path) joining two points. If we parameterize
a path C by a function xμ(s) where s goes from 0 to 1, then the associated Wilson
line is

W (C)
def= P

{
exp

[
−ig0

∫ 1

0
ds

dxμ(s)

ds
Aα

(0)μ(x(s)) tα

]}
, (7.33)

which is more compactly written as

W (C) = P

{
exp

[
−ig0

∫
C

dxμ Aα
(0)μ(x) tα

]}
. (7.34)

Here tα are generating matrices of the gauge group, in the fundamental representation.
The path-ordering symbol P means that when the exponential is expanded, the fields with
higher values of s are to the left. The Wilson line is invariant if the path is reparameterized,
but it does change if the location of the path is changed even with fixed endpoints.

Under a gauge transformation, the Wilson line transforms as

W (C) �→ e−ig0t
αωα(x(1)) W (C) eig0t

αωα (x(0)), (7.35)

which involves only the transformations at the ends of the path. Note that it is the bare
field and coupling that appear in the formula for W (C), since the transformations giving
invariance of the Lagrangian are those in (2.4) with bare gauge fields and couplings.

From the transformation of W (C) it follows that if C is a path from v to w then the
combination ψ̄(w)W (C)ψ(v) is gauge invariant.

A simple generalization is to replace tα by the generating matrices in another represen-
tation. We use this for the gluon density, where the fields at the ends of the Wilson line are
gluon field-strength tensors, and the Wilson line uses the adjoint representation.

7.5.2 Path dependence of Wilson line

In general ψ̄(w)W (C)ψ(v) depends not only on the endpoints v and w of the Wilson line,
but also on the exact path used to join them.

However, for the case of the standard parton densities, a simplification occurs, because
we use a light-like separation in the minus direction: v = 0 and w = (0, w−, 0T), and it
is appropriate to take the Wilson line along the x− axis. In that case, we now show that
the Wilson line depends only on the endpoints. This will enable us to obtain a useful
simplification in the Feynman rules for the Wilson line.

2 Another commonly used name is a “gauge link”.
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Fig. 7.8. (a) Example of possible path for Wilson line along a single line, as in an ordinary
pdf, but with possible backtracking. The vertical axis denotes the coordinate λ along the
line. (b) The path altered by changing one of the extreme points. The original coordinate of
the altered point is marked by the dotted line. (c) The path after removal of all backtracking.
The corresponding Wilson-line factor is unchanged.

We now prove the following general result:

Let C be a path restricted to a line in a fixed direction n, so that points on the line can be written
wμ = λnμ. The path is a sequence of N segments joined by direct lines:

W (C) =
N∏

j=1

W (λj , λj−1), (7.36)

where

W (λj , λj−1)
def= P

{
exp

[
−ig0

∫ λj

λj−1

dλ nμAα
(0)μ(λn) tα

]}
. (7.37)

Then W (C) depends only on the endpoints:

W (C) = W (λN, λ0). (7.38)

We illustrate the proof in Fig. 7.8, where the path oscillates on its way from the start to the
end, and does some backtracking.

The proof is made by differentiating W (λj+1, λj ) W (λj , λj−1) with respect to λj , which
gives zero. Thus the product is independent of λj , so that we can replace λj by λj−1, and
we can remove the W (λj , λj−1) factor. Repeating this N − 2 times gives the desired result.

Notice that this proof would not work if we tried to deform the path off the chosen line.
For example, moving one of the break points λjn off the line would shift positions of the
gauge fields in the neighboring segments, and the differentiation would involve more than
the endpoints of the factors W (λj , λj−1).

A particular case used in the parton densities, is to replace the direct line joining the
endpoints by a trip to infinity and back:

W (λN, λ0) = W (λN,+∞)W (+∞, λ0) = [W (+∞, λN )]†W (+∞, λ0). (7.39)

7.5.3 Time ordering v. path ordering

Feynman rules apply to time-ordered Green functions, so conflicts can arise between the
path ordering defining Wilson lines and the time ordering used for Green functions. In a
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covariant gauge, the fields commute at space-like separation, so no conflict arises if we use
Wilson lines in space-like directions. This will be the case for TMD densities (Ch. 13) and
for the Sudakov form factor (Ch. 10).

For normal integrated parton densities, one uses light-like lines in the direction n =
(0, 1, 0T). If any serious difficulty arises, we take the line as the limit from a space-like
direction. We can also use the canonical commutation relations in light-front quantization,
in which case the relevant field component n · A = A+ has zero commutator with the same
field at different positions along the line.

Such issues can be problematic in a non-covariant gauge, where the commutators of
elementary fields may be non-vanishing at space-like separation.

7.5.4 Gauge-invariant quark density in QCD

To define a quark density gauge-invariantly, we use (Collins and Soper, 1982b) a Wilson line
exactly along the light-like line joining the quark and antiquark fields. Then the Wilson line
uses only A+ component of the gauge field, and is unity in A+ = 0 gauge; thus the gauge-
invariant definition reduces to the basic definition (6.31) in this gauge. The gauge-invariant
definition is

f(0) j/h(ξ ) =
∫

dw−

2π
e−iξP+w−

〈
P

∣∣∣∣ψ (0)
j (0, w−, 0T)W (w−, 0)

γ+

2
ψ

(0)
j (0)

∣∣∣∣P
〉

c

, (7.40)

where

W (w−, 0) = P
{
e−ig0

∫ w−
0 dy− A+(0)α(0,y−,0T)tα

}
. (7.41)

Here we have written the bare parton density, in which all the fields are bare fields, since
this is the object to which the probability interpretation applies. In real QCD, in four space-
time dimensions, there are UV divergences, so a complete definition requires us to apply
renormalization to obtain our final and correct definition of the parton densities. The same
applies in more elementary theories, as we will discuss later in Sec. 8.3.

The gluon operators in the Wilson line commute, so a time ordering can be applied to the
definition without changing the value of the quark density, just as in Sec. 6.9.4. If we use
a fixed ordering for the quark operators, with a final-state cut, then it is better to use a path
that goes out to infinity on the left of the final-state cut and back to (0, w−, 0T) on the right,
as in (7.39). This does not change the value of the quark density, as shown in Sec. 7.5.2.

Antiquark densities are defined by exchanging the roles of the ψ and ψ̄ fields, as in
(6.33), or equivalently by going to negative ξ in the quark density and using (6.85). Gauge-
invariant polarized quark densities are naturally defined by replacing γ+ by the appropriate
Dirac matrix, exactly unchanged from (6.35) and (6.36).

7.5.5 Gluon density

In light-cone gauge, A+ is zero, while A− is a field expressed in terms of other fields
by a constraint equation. Therefore the independent components of the gluon field are its
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transverse components Aj . Their free-field action is 1
2

∑
j gμν∂μAj∂νA

j , the same as for
two independent scalar fields. Thus the operator quantization conditions are the same as
for scalar fields. In particular, the expression relating Aj to the light-front creation and
annihilation operators is the same, as are the commutation relations. So the gluon density
is the same as for a scalar field, (6.124), with a sum over colors and transverse indices:

f(0) g(ξ ) =
∑
j,α

∫
ξP+

dw−

2π
e−iξP+w− 〈P |Aj

(0) α(0, w−, 0T)Aj
(0) α(0)|P 〉

lcg
. (7.42)

See below for the polarized densities
To convert this to a gauge-invariant expression that has the same value in light-cone

gauge, it is not enough just to insert a Wilson-line factor, because of the derivative term
in the gauge transformation of the gluon field. Instead we observe that the bare field-
strength tensor G

μν
(0) transforms without a derivative, so that a gauge-invariant operator

can be constructed by joining two field-strength tensors by a Wilson line. Naturally, the
representation matrices in the Wilson line must be those for the adjoint representation. Next
we observe that in light-cone gauge G

+j
(0) = ∂+Aj

(0). In momentum space, this is A
j
(0) times

a factor of a plus component of momentum (up to a phase). Thus the gauge-invariant form
of the bare gluon density is (Collins and Soper, 1982b)

f(0) g(ξ ) =
∑
j,α

∫
dw−

2πξP+
e−iξP+w− 〈P |G+j

(0) α(0, w−, 0T)WA(w−, 0)αβG
+j
(0) β(0)|P 〉

c
,

(7.43)

where the subscript A on WA denotes that the Wilson line is in the adjoint representation.
Just as with a quark, the gluon has a polarization state described by a 2× 2 density

matrix. But because the gluon has spin 1 instead of spin 1
2 , the decomposition in terms of

a Bloch vector is not appropriate, because of the different transformation properties under
rotations. Proofs of the many unproved statements in the following discussion are left as
an exercise (problem 7.10).

A convenient method starts by modifying (7.42) and (7.43) to provide the gluon density
matrix ρg,j ′j :

ρg,j ′j (ξ, S)f(0) g(ξ ) =
∑

α

ξP+
∫

dw−

2π
e−iξP+w−

× 〈P, S|G+j
(0) α(0, w−, 0T)WA(w−, 0)αβG

+j ′
(0) β(0)|P, S〉

c
. (7.44)

Here we have simply removed the sum over the transverse spin index of the gluon field and
allowed the two fields to have independent indices. Naturally we now allow a polarization
specified by S for the target state. Notice the reversal of the order of the indices j and j ′

between the left- and right-hand sides of the equation. The factor f(0) g on the left-hand
side ensures that ρ has the unit trace appropriate to a density matrix. The density matrix
is a function of the longitudinal momentum fraction of the gluon and of the spin state
of the target. But the gluon density f(0) g is independent of the spin state of the target,
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because it is the expectation value of an azimuthally symmetric operator, just like a quark
density.

We next note that a gluon with a polarization vector ε has a density matrix ε∗j ′εj , and
in A+ = 0 gauge, ε is a 2-component transverse vector. Important pure states can be
made with linear polarization, where both components are relatively real, and with circular
polarization. A convenient decomposition of a general density matrix is in terms of a helicity
α and a linear polarization L:

ρ = 1

2

(
1+ L2

x − L2
y 2LxLy − iα

2LxLy + iα 1− L2
x + L2

y

)

= 1

2

(
1+ |L|2 cos 2φ |L|2 sin 2φ − iα

|L|2 sin 2φ + iα 1− |L|2 cos 2φ

)
, (7.45)

where φ is the azimuthal angle of the linear polarization relative to the x axis, and there
is a positivity restriction |L|4 + α2 ≤ 1. The helicity terms give the imaginary part of the
off-diagonal elements of ρ, and their sign arises from the polarization vectors (εx, εy) ∝
(1, i)/

√
2 for helicity +1 and (εx, εy) ∝ (−1, i)/

√
2 for helicity −1.

We can project the helicity part of ρ by using the matrix3

P hel
11 = P hel

11 = 0, P hel
12 = −i, P hel

21 = i, (7.46)

to give

αgf(0) g(ξ ) =
2∑

j,j ′=1

P hel
jj ′

∫
dw−

2πξP+
e−iξP+w−

× 〈P, S|G+j
(0) (0, w−, 0T)WA(w−, 0)G+j ′

(0) (0)|P, S〉 . (7.47)

We can use parity invariance (actually parity and a 180◦ rotation in the (x, y) plane) to
relate the parton densities in target states of opposite helicity. As with a quark, it follows
that in a spin- 1

2 target, like a proton, the gluon helicity is proportional to the target helicity,
so that we can define the bare gluon helicity density �f(0) g by

αgf(0) g(ξ ) = αtarget�f(0) g(ξ ). (7.48)

Then in a target state of maximal helicity, �f(0) g has the interpretation of a helicity
asymmetry: the number density of gluons polarized parallel to the target minus the number
polarized antiparallel.

The linear polarization of a gluon can also be defined, but there is no standard definition
of a corresponding parton density. It would have little practical use, because the linear
polarization of a gluon is zero in the most important case of a spin- 1

2 hadron, as follows
from conservation of angular momentum about the z axis (Artru and Mekhfi, 1990). (Linear
polarization is measured by an operator that flips helicity by two units. Since no helicity

3 Note that the formula for this matrix in Brock et al. (1995) is incorrect.
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Fig. 7.9. Feynman-graph notation for gauge-invariant (a) quark density, (b) gluon density.
The double lines are for the Wilson lines, whose rules are in Figs. 7.10, 7.11, and 7.12. The
short line at the top merely represents the flow of external momentum at the parton density
vertex. The overall factors in the case of a quark are the same as in Fig. 6.7.

is absorbed by the azimuthally symmetric space-time part of the definition of the parton
densities, the helicity flip in the operator equals the helicity flip in the density matrix for
the hadron.)

In the occasionally used case of a spin-0 target (pion), the gluon is unpolarized, as
follows by combining the above two arguments.

7.6 Feynman rules for gauge-invariant parton densities

To represent gauge-invariant parton densities in Feynman graphs, we notate the Wilson line
by a double line joining the fields at the ends of the Wilson line, as in Fig. 7.9. Any number
of gluons (zero or more) connect the Wilson line to the rest of the graph. An overall trace
with a Dirac matrix in a quark density is independent of the presence of the Wilson line.
To derive Feynman rules for the Wilson lines we expand the exponential of the field in
powers of its argument. Each term gives a target matrix element of several gluon fields (and
the fields at the ends of the Wilson line), integrated over certain positions. The factors of
−ig0A

+
(0)αtα = −ig0n · A(0)αtα result in the rules for vertices on the Wilson lines shown in

Fig. 7.10. The rules are first written for bare fields. If we calculate with renormalized fields,
the factor Z

1/2
3 in the relation between bare and renormalized gluon fields requires that we

associate a factor Z
1/2
3 with each of the gluon fields in the rules for the parton density and

the Wilson line, as shown in Fig. 7.10. The generating matrices tα are those for the color
representation of the quark or gluon whose density is being used, and these are multiplied
along the Wilson line.

Next we write the Wilson line in the form of exponentials going to infinity, (7.39),
we expand each exponential in a power series in its argument, and write the necessary
coordinate-space Green function in terms of momentum-space Green function. The order
gn

0 term has an integral over n coordinates. We express each integral as an integral over
ordered variables, which cancels the factor 1/n! in the series expansion, and then we have
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Fig. 7.10. Feynman rules for vertex on Wilson lines in parton densities. Here, nμ = δ
μ
− =

(0, 1, 0T). In the Wilson line for a gluon pdf, the generating matrix for the adjoint represen-
tation was used: (Tα)kj = ifkαj . The sign of the vertex is reversed compared with Collins
and Soper (1982b), and corresponds to the sign of the coupling in our Lagrangian, whose
Feynman rules are in Fig. 3.1.

an integral of the form

∏
j

∫
d4−2εkj

(2π )4−2ε
G(k1, μ1, α1; . . .)

∏
j

(−ig0tαj
nμj )

∫ ∞
0

dy−1

∫ ∞
y−1

dy−2 . . .

∫ ∞
y−n−1

dy−n
∏
j

eik+j y−j ,

(7.49)

where G represents the rest of the graph, i.e., a shaded bubble in Fig. 7.9, including the lines
connecting it to the Wilson line. This particular formula applies on the left of the final-state
cut, with the gluon momenta kj directed down, into the bubble. Applying the standard result∫ ∞

z

dy eiky = i

k + i0
eikz, (7.50)

gives a value for each double line segment shown in the left part of Fig. 7.11. Thus for the
Wilson line on the left of the cut

k2 knk1

= (−ig0tαn
nμn)

i

k+n + i0
(−ig0tαn−1n

μn−1 )
i

k+n + k+n−1 + i0

× · · · × (−ig0tα1n
μ1 )

i

k+n + · · · + k+1 + i0
. (7.51)

So the double lines in Fig. 7.9 behave like normal lines in a Feynman graph, with circulating
loop momenta etc., but with a propagator that is the Fourier transform of a theta function.
Of course the whole Wilson-line structure occurs once in the parton density and therefore
once in the Feynman graph. There is naturally a hermitian conjugation of the above rules
in the part of graphs to the right of the final-state cut, as usual, and as indicated in the
figures.

In the definition of a parton density there is an integral over the external k− and kT. Since
the Wilson-line propagator is independent of these momentum components, the integral
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k k

i

k+ + i0
2 (k · n)

−i

k+ − i0

Overall
1
2

Fig. 7.11. Feynman rules for the line part of a Wilson line.

k

q

β

α, μ

j

q

k

α, μ

β

j

−i(k · ngjμ − qj nμ)δαβ i(k · ng j
μ− qjnμ)δαβ

Fig. 7.12. Feynman rules for attachment of gluon at end of Wilson line in gluon density.
The indices α and β are for color, μ is the Lorentz index of the gluon, and j and j ′ are as
in (7.44).

over them can be conveniently notated by routing them along the Wilson line and across the
final-state cut. We give the cut line the natural delta function 2πδ(k+) for a cut propagator,
and then we simply have to extract plus momentum ξP+ at the end of the Wilson line. We
also have to cancel the 2π in the cut-line propagator, as indicated in Fig. 7.11. This in fact
results from the explicit factor 1/(2π ) in the definitions of the parton density, e.g., (7.40).

The above completes the definition of the quark density. For the gluon density, we also
need the vertex with G

+j
(0) α = ∂+Aj

(0) α − ∂jA+(0) α − g0fαβγ A+(0) βA
j
(0) γ , shown in Fig. 7.12.

The derivatives give factors of −iq+ and −iqj , with q being the momentum of the gluon
line. We apparently also need a two-gluon coupling at the end of the Wilson line. But we
remove it (Collins and Soper, 1982b) by using the identity

∂+
(
A

j
(0) α(w−)WA(w−)

)
=
(
∂+Aj

(0) α(w−)− g0fαβγ A+(0) βA
j
(0) γ

)
WA(w−), (7.52)

which accounts for the appearance of k · n rather than q · n in Fig. 7.12.
The application of the above rules will be illustrated by calculational examples in

Sec. 9.4.

7.7 Interpretation of Wilson lines within parton model

Our first definition of a quark density was without a Wilson line and it arose from exam-
ining a theory in which DIS structure functions are dominated by the handbag diagram,
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Fig. 7.13. Handbag graph: (a) standard, (b) with extra gluon exchanges.

Fig. 7.13(a), with the exchanged quark collinear to the target. Making suitable approxima-
tions converted the top of the diagram to a coefficient times the vertex for the quark density.
In a gauge theory, this procedure gives the term in the quark density that has no gluons
attached to the Wilson line.

We now show how there arise the terms with gluons attached to the Wilson line, as
in Fig. 7.9. In a gauge theory in Feynman gauge, we have leading regions in which extra
gluons couple the collinear subgraph to the hard subgraph. So we examine the generalized
handbag diagrams shown in Fig. 7.13(b), where arbitrarily many gluons are exchanged
between the top rung and the lower bubble. This provides a gauge-invariant extension
of the parton model. In real QCD, we will also need more complicated hard-scattering
graphs.

The extra gluons are to be collinear to the target, just like the exchanged quark, and we
now show that to the leading power of Q, each of these graphs gives a corresponding term in
the quark density, Fig. 7.9(a), times the same coefficient as with the handbag diagram. That
this result is expected, since in A+ = 0 gauge, the gluon-exchange graphs in the structure
function are suppressed, and the gluon couplings to the Wilson line are zero.

To formalize the result, let F[N](x,Q) be the contribution to a structure function from
graphs of the form of Fig. 7.13(b) with N gluons attached to the upper line. Similarly, let
f[N],j (x) be contribution to the parton density for a quark of flavor j with N gluons attached
to the Wilson line. Then the result to be proved is that

F[N](x,Q) =
∑

j

Cjf[N],j (x)+ p.s.c. (7.53)

The important property is that the coefficient Cj is the same no matter how many gluons
are exchanged. By “p.s.c.” are denoted power-suppressed corrections, i.e., corrections
suppressed by a power of Q. When we sum over N , on the left-hand side we get the
full structure function

∑∞
N=0 F[N] = F . The sum of the right-hand side gives the full

gauge-invariant parton density:
∑∞

N=0 f[N],j = fj , multiplied by Cj . Thus we recover the
standard parton-model formulae for the structure functions (6.25). The independence of
the coefficient from N implies that it is correctly calculated from the case N = 0, and that
it is the same as in the simple parton model, e.g., Cj = e2

j x for the F2 structure function in
electromagnetic DIS.
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ll + k1 + · · · + kN

kN k1

Fig. 7.14. Attachment of collinear gluons to hard quark.

N

J=0

l + k1 + · · · + kJ

kN

kJ +1 kJ

k1

Fig. 7.15. Result of applying collinear approximation to Fig. 7.14. The double lines represent
Feynman rules for a Wilson line on the left and for a conjugate Wilson line on the right.

The proof of (7.53) uses a result of Collins and Soper (1981) illustrated in Figs. 7.14
and 7.15. We write an upper quark line, Fig. 7.14, for the generalized handbag graph, as

UN =
∏
j

(−ig0tαj

) i

/l −m+ i0
γ μ1

i

/l + /k1 −m+ i0
. . . γ μn

i

/l + /k1 + . . . /kN −m+ i0
.

(7.54)

Since all the gluons are target-collinear, we can replace each gluon momentum by its plus

component: kj �→ k̂j
def= (k+j , 0, 0T), and we can restrict the Dirac matrices at the vertices

to their minus components: γ μj �→ nμj γ−, where n = (0, 1, 0T), as defined earlier. The
resulting approximation to the quark line is

ÛN =
∏
j

(−ig0n
μj tαj

)
WN, (7.55)

where

WN = i

/l −m+ i0
γ−

i

/l + /̂k1 −m+ i0
γ− . . . γ−

i

/l + /̂k1 + · · · + /̂kN −m+ i0
. (7.56)

With a proof summarized below, this can be rewritten as

WN =
N∑

J=0

RJ MJ LN,J , (7.57)
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which we write as a diagram in Fig. 7.15, where the left-side factor is

LN,J = i

k+J+1 + i0
. . .

i

k+J+1 + · · · + k+N + i0
, (7.58)

the middle factor is

MJ = i

/l + /̂k1 + · · · + /̂kJ −m+ i0
, (7.59)

and the right-side factor is

RJ = −i

k+J + i0
. . .

−i

k+1 + · · · + k+J + i0
, (7.60)

Note that because of the standard conventions for lines for Dirac particles, the ordering of
the objects is reversed between the equation and the diagram. “Right” and “left” refer to
the sides of the diagram, not the formula.

The proof of (7.57) is by induction on N . The formula is trivially true for N = 0.
Suppose that (7.57) is true for WN−1. Then

WN = WN−1γ
−MN

=
N−1∑
J=0

RJ MJ LN−1,J

(
1

MN

− 1

MJ

)
i

k+J+1 + · · · + k+N + i0
MN

=
N−1∑
J=0

RJ MJ LN,J −
N−1∑
J=0

RJ LN,J MN. (7.61)

In the second line, we replaced γ− by (/̂kJ+1 + · · · + /̂kN )/(k+J+1 + · · · + k+N ), and then
wrote /̂kJ+1 + · · · + /̂kN as the difference of two inverse propagators. To complete the proof
of (7.57), we use the result

N∑
J=0

RJ LN,J = 0 if N ≥ 1, (7.62)

also proved by induction.
The double lines in Fig. 7.15 have the Feynman rules for a Wilson line on the left and a

conjugate Wilson line on the right, with the Wilson lines going in the minus direction out
to infinity.

We now apply (7.57) to the upper quark line on the left of the final-state cut in Fig. 7.13(b).
Since the quark at the final-state end is on-shell, the only surviving term in Fig. 7.15 is
where the Wilson-line factor is at the left, next to the current vertex. Similarly, applying
(7.57) to the upper quark line on the right of the final-state cut gives a Wilson-line factor at
the right of the line (again, next to the current vertex).

The result is to give a factor of the lowest-order hard scattering times a factor correspond-
ing to the rules for the gauge-invariant quark density defined in (7.40), with the application
of (7.39) to write the Wilson line as one that goes out to infinity and comes back. The i0
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Fig. 7.16. Gauge-invariant form of the parton model.

prescription is chosen to be compatible with a deformation out of the Glauber region away
from final-state poles. This is the appropriate direction, as we will see in Ch. 13.

We have now completed the derivation of the parton-model approximation in its gauge-
invariant form, illustrated in Fig. 7.16. The coefficient function is the same as without the
gluon exchanges.

Exercises

7.1 Verify that performing the kT integral in (7.13) does reproduce the result of applying
the Feynman parameter method to (7.12).

7.2 Find in the literature or derive the full rules for x+-ordered perturbation theory in
a general renormalizable gauge theory, including a proper treatment of the 3-gauge
field vertex and the coupling of gauge fields to scalar fields.

7.3 Verify that (7.28) follows from (7.25), the (anti)commutation relations (6.65), and
the standard covariant normalization of a single particle state |h : P 〉. Suggestion:
investigate 〈h : P ′|h : P 〉.

7.4 (a) Find the general form of Lorentz transformations that preserve the plane x+ = 0.
Use one such transformation to transform the state |h : P 〉 in (7.25) with PT = 0
to a general value of P with non-zero PT.

(b) The wave-function decomposition (7.25) of a state |h : P 〉 was intended to apply
at PT = 0. Show that it also applies at non-zero PT if the replacement (7.27) is
made.

(c) Obtain 〈h, P ′|h, P 〉, and deduce the normalization condition (7.28) from the
Lorentz-invariant normalization (A.14) for single-particle states.

7.5 Express the lelt-hand side of (7.29) in terms of field operators in momentum space,
integrated over k−j .

7.6 Derive an expression for the unintegrated parton densities fj/h(ξ, kT) in terms of
the light-front wave functions in (7.25). The result should be of the form of an
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integral over
∣∣ψF/h

({xj , kj T, αj }
∣∣2, with the values of one of the xj , kj T pairs set to

ξ , kT.

7.7 Obtain Feynman rules for computing light-front wave functions in perturbation the-
ory; these will generalize the rules we constructed for parton densities in Sec. 6.10.

7.8 Apply them to the first non-trivial order in the Yukawa field theory we have used
for examples. Verify the normalization condition (7.28). (Warning: Use dimensional
regularization, so that the calculations can be done in the UV-regulated bare theory.)

7.9 In the parton model for CC processes with production of a heavy quark, in Sec. 7.1.3,
we effectively assumed that the quark flavor and mass eigenstates coincided. In other
words we assumed that the CKM matrix is unity. Correct the calculation to use a
non-trivial CKM matrix.

7.10 Derive all the statements about polarized gluon densities in Sec. 7.5.5. Check carefully
the signs in the polarization vectors for gluons of definite light-front helicity. You
should be able to verify that there is a sign error in the formula for P hel in Brock et al.
(1995), and hence in the formula in that paper for �fg . [Thanks are due to Markus
Diehl (private communication) for pointing out the error.]

7.11 As mentioned in Sec. 7.5.5, a linear polarization is possible for the gluon (although
not in a spin- 1

2 target). Work out the appropriate generalization of the work in this
chapter to deal with this. An alternative formulation is in a helicity-density-matrix
formalism, where linear polarization corresponds to a term with a gluon helicity flip
of 2 units. If you get stuck, consult Artru and Mekhfi (1990).

7.12 Complete the derivations of (7.57) and (7.62).
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Factorization for DIS, mostly in simple field theories

In this chapter, I treat the complications caused by renormalizability of the underlying field
theory when one analyzes the asymptotics of processes like DIS. There are four inter-related
issues:

• The leading regions include hard-scattering subgraphs that can be of arbitrarily high
order in the coupling.

• There are logarithmic unsuppressed contributions from momenta that interpolate between
the different regions for a graph.

• The definitions of the parton densities are modified to remove their UV divergences. This
we do by renormalization.

• The parton densities acquire a scale argument μ, the dependence on which is governed by
renormalization-group (RG) equations, the famous Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equations. In applications, we set μ of order Q, the large scale in the
hard scattering.

I will give a derivation of factorization that in the absence of gauge fields is complete and
satisfactory, and is also reasonably elementary. In QCD, the same factorization theorem is
also valid for simple processes, like DIS, but its derivation needs enhancement, to be given
in later chapters.

8.1 Factorization: overall view

To motivate the factorization idea, we still use the ideas about the space-time structure of
DIS that motivated the parton model. As illustrated in the spatial diagram of Fig. 8.1, an
electron undergoes a wide-angle hard scattering off a single parton in a high-energy target
hadron. In the center-of-mass frame, the target is time-dilated and Lorentz contracted.
Thus over the short time and distance scale 1/Q of the hard scattering, the struck parton’s
interactions with the rest of the target can be neglected; in the hard scattering, the incoming
parton can be approximated as a free particle. A single struck parton dominates, because
the other partons are separated from it by a hadronic scale of ∼1 fm, large compared with
1/Q.

Relative to the parton model, an important change in a renormalizable theory is that
the dimensionlessness of the coupling allows multiple particles to be created in the hard

243
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Fig. 8.1. Deeply inelastic scattering of an electron on a hadron. This is like Fig. 2.2, but with
more partons exiting the short-distance hard scattering. The struck parton and the partons
resulting from the hard scattering are indicated by dashed lines.
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Fig. 8.2. Most general leading regions for DIS. The lines in the lower bubble are collinear
to the target hadron, and the lines in the upper bubble have large transverse momentum, of
order Q. (a) In a theory without gauge fields, exactly one line on each side of the final-state
cut joins the two bubbles. The labels ω and ω′ are for the flavor, color and spin of the
intermediate parton lines. (b) In a theory with gauge fields, arbitrarily many extra gauge-
field lines may join the bubbles. The solid lines may be quarks or transversely polarized
gluons. In a gauge theory there may also be a soft subgraph at leading power.

scattering without a power-law suppression. This is manifested experimentally in events
like that in Fig. 5.10. Naturally, an appropriate coupling for the short-distance scattering is
αs(Q), whose smallness in QCD allows the use of perturbation theory.

Our calculations in Sec. 6.11 showed another consequence of a dimensionless coupling,
that the number density of partons only falls off in transverse momentum roughly as 1/k2

T.
Therefore the number of partons, integrated over kT, and naively interpreted, diverges. The
picture of limited transverse momentum for the constituents, implicit in Fig. 8.1, therefore
needs to be distorted.

The formalization of these ideas starts from the Libby-Sterman analysis in Ch. 5, which
determines that the leading regions for DIS are those illustrated in Fig. 8.2.

8.1.1 Leading-power regions without gauge fields

In a model field theory without gauge fields, all the leading regions are of the form of
Fig. 8.2(a). The lower bubble consists of lines whose momenta are collinear to the target.
The upper bubble consists of lines with very different directions than the target or that are
far off-shell. On each side of final-state cut, one line connects the collinear subgraph to
the hard subgraph. This corresponds to the single struck parton in Fig. 8.1. Scattering off
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multiple partons would correspond to extra lines connecting the upper and lower bubbles
in Fig. 8.2(a), and is power-suppressed, by Libby and Sterman’s power-counting.

While keeping the restriction to this single pair of connecting lines, the upper subgraph
can be arbitrarily complicated. This gives the possibility of multijet production, as seen
experimentally in Fig. 5.10. Associated with this is an essential complication, that a single
graph for DIS can have multiple decompositions of the form of Fig. 8.2(a).

The upper bubble, the “hard subgraph”, has on-shell final-state lines, but we will nev-
ertheless treat it as if it is a short-distance object, with all internal lines off-shell by order
Q2. The demonstration uses arguments given in Secs. 4.1.1, 4.4, and 5.3.3, where the
short-distance property applies to a local average in the cross section (e.g., an average in
x). Further details are found later in Secs. 11.2 and 12.7.

8.1.2 Leading-power regions with gauge fields

In a gauge theory, like QCD, leading regions can also have extra target-collinear gluons
attaching to the hard scattering, as in Fig. 8.2(b). In the methodology where we treat the
upper bubble as a pure hard scattering, this exhausts the leading regions; this applies, for
example, to the uncut hadronic tensor and the structure functions averaged in x, as in
Sec. 5.3.3. But it is also possible to consider the actual on-shell final states in the upper
bubble; in that case there are final-state jet subgraphs, and a soft subgraph that connects
any or all of the collinear subgraphs.

We now use the first methodology. The leading part of each extra gluon exchange
involves the product of the minus component of the vertex at the upper end of the gluon line
and a plus component at the lower end, schematically U−L+. Thus the extra gluons can
be eliminated by the use of the light-cone gauge, A+ = 0: in light-cone gauge, the leading
regions have the same form, Fig. 8.2(a), as in a non-gauge theory.

Therefore once we have proved factorization in a non-gauge theory, which is done in an
elementary fashion in this chapter, we can copy the proof in light-cone-gauge QCD. To take
it literally, one must be concerned about problems with the 1/k+ singularities in the light-
cone-gauge gluon propagator, (7.30) and (7.31). These problems will become particularly
apparent when we work with TMD distributions in Ch. 13. Nevertheless, divergences due
to the 1/k+ singularities cancel in the treatment of DIS, although giving a full satisfactory
proof is non-trivial.

For a fully satisfactory treatment, it will be better to return to Feynman gauge. We have
already seen, in Sec. 7.7, that at the level of the parton model, the extra gluons can be
extracted from the hard scattering to give the Wilson lines in gauge-invariant definitions of
the parton densities. This is a result that generalizes, but I postpone a treatment to Ch. 11.

8.2 Elementary treatment of factorization

Before going to a strict derivation of factorization in non-gauge theories, it is useful to give
an approximate proof. Its inspiration is a naive interpretation of the diagram Fig. 8.2(a)
for the leading regions. This is that the momenta of lines can be unambiguously split into
two classes, corresponding to the two subgraphs in the figure. Hard momenta, in the upper
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subgraph U , have virtualities of order Q2. Collinear momenta, in the lower subgraph L,
have orders of magnitude typical for target momenta, i.e., (k+, k−, kT) ∼ (Q,m2/Q,m),
where m is a typical light hadron scale; their virtualities stay fixed when Q becomes large.

This supposition enables a simple proof to be given, and gives a mental picture linking
the leading-region diagram Fig. 8.2(a) with the factorization formula. We will take the
opportunity to introduce notation that will be useful more generally.

But a clear division between the regions of momenta does not exist; there are important
contributions from intermediate momenta. We will overcome this problem by the use of a
subtractive formalism, in Sec. 8.9.

8.2.1 Decomposition by regions

We now start from an assumption that there is a clear decomposition of momenta by regions.
Then we can decompose each graph into a sum of terms of the form of Fig. 8.2(a), each
term corresponding to a particular assignment of momentum types to subgraphs. Let F

denote a structure function or the hadronic tensor. Then we have

F =
∑

2PR graphs �

� + non-leading power

=
∑

2PR graphs �

∑
leading regions R

U (R) L(R)+ non-leading power, (8.1)

where the summation over � is restricted to those graphs that are two-particle reducible in
the t channel and that therefore have at least one decomposition of the form of Fig. 8.2(a). A
region R corresponds to assignments of momentum types to subgraphs, and is determined
by the subgraphs: U (R) for the upper bubble, restricted to hard momenta, and L(R) for
the lower bubble, restricted to collinear momenta. We define L(R) to include the full
propagators for the two lines that join the L and U subgraphs, since these lines carry
collinear momenta.

The product U (R) L(R) is defined as a convolution product, with an integral over the
momentum k flowing between U and L, and with summations over the color, spin and
flavor indices for the fields. So we write U = U (k, ω, ω′; q) and L = L(k, ω, ω′; P, S),
where ω and ω′ are composite indices for the flavor, color and spin of the fields, while P

and S are the momentum and spin vector of the target state. Then

UL =
∑
ω,ω′

∫
d4−2εk

(2π )4−2ε
U (k, ω, ω′; q) L(k, ω, ω′; P, S). (8.2)

A region is completely specified by its hard and target subgraphs, so we replace the sum
over graphs and regions by independent sums over graphs for U (R) and L(R). So we write

F = UL+ non-leading power, (8.3)

where U and L, without a region specifier, are the sum over all possibilities for the hard
and target-collinear subgraphs of Fig. 8.2(a), with the momenta being restricted to the
appropriate regions.
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Fig. 8.3. Graph with three decompositions of the form of Fig. 8.2(a).

In (8.3) we have a multiplicative structure: the structure function is a product of a
hard part and a collinear part. In contrast, at the level of individual graphs for the structure
function, we have an additive structure: in the second line of (8.1) there is a sum over regions
for a given graph. An illustration is given by Fig. 8.3. The possible regions are: where the
top rung alone is hard, where the top two rungs are hard, and where all three rungs are hard.

Diagonality in flavor and color

In the convolution of U and L, there is a sum over indices ω and ω′, which we now simplify.
For QCD, each index has 88 independent values: There are 6 flavors of quark, of antiquark,
and a gluon. The quarks and antiquarks each have 3 colors, the gluons have 8, and each
flavor-color combination has 2 spin values. We can separate the parts of the index ω as j ,
c and α, for flavor, color and spin. Here we refer to the QCD version even though in this
chapter we will only present proofs in a non-gauge theory: the ideas are general.

In principle, there are separate sums over the indices ω and ω′ for the two parton lines
connecting U and L. I now show that the sums over flavor and color indices are diagonal
in the cases of interest; i.e., the flavor and color parts of ω and ω′ are equal.

We choose the flavor label to correspond to the different types of mass eigenstate for the
partons (e.g., u, d, etc.). Normal targets (nucleons and pions) are flavor eigenstates, so the
lower subgraph L is flavor-diagonal. An exception would be DIS on a K0

L or K0
S , which

is not a likely experiment. Note that, for charged-current weak-interaction processes, the
upper subgraph U can be flavor changing. Thus, in neutrino DIS, we can have the sequence
of quark flavor transitions d �→ u �→ s. But diagonality of L implies that off-diagonal terms
in U do not contribute.

As for color, all electroweak currents are color-singlet. Therefore U is diagonal in color,
and all the diagonal color components of U are equal.

In contrast the spin-sum need not be diagonal. So we rewrite (8.2) as

F =
∑
j,α,α′

∫
d4−2εk

(2π )4−2ε
U
(
k, j, α, α′; q

)∑
c

L(k, j, c, α, α′; P, S)

+ non-leading power. (8.4)

Here we have left a single flavor label j on U and L, and a single color label c on L. The
remaining sum, over α and α′, is for Dirac spin indices. The U part can be considered a
color average, as will fit its later interpretation in terms of a parton-level cross section.
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8.2.2 Parton approximator

To get the factorization theorem, we use exactly the same method we applied in Sec. 6.1
for the parton model. (a) In U we neglect the small components of momenta, k− and kT,
entering it from L, and we also neglect particle masses. (b) In the sum over Dirac indices,
we project onto those parts that give the leading power. This operation, which we call the
parton approximator, results in an error that is suppressed by one or two powers of Q.

We notate the result as

U
←−
T |V L = Cregion ⊗ fregion

def=
∑

j

∫
dξ

ξ
Cj, region(x, ξ ) fj, region(ξ ), (8.5)

which is a factorized form for the cross section. Here we have defined a fractional momen-
tum variable ξ = k+/P+. The tripartite symbol

←−
T |V denotes the parton approximator, for

which we will give a precise definition below. The arrow in
←−
T implies that the kinematic

part of the approximation is applied to the object to its left, i.e., to U . The quantity V sym-
bolizes the vertex for a parton density that is a factor in the approximator. We separate these
symbols by a vertical bar, which will be a useful notation in treating renormalization of the
parton densities. Although the above formula makes it appear that the parton approximator
is a linear operator, certain features of the approximator, notably that it sets to zero the
parton masses in U , take us beyond ordinary linear algebra. Even so, many of the rules of
linear algebra still apply.

The parton approximator will give a factor that has a vertex for a parton density integrated
with the L factor. Therefore on the right-hand side of (8.5), we have used a notation to
express this. The resulting object has the standard definition of a parton density, except
that the momenta inside L are restricted to be collinear. So f is equipped with a subscript
“region”, to label this variation in the definition. A parton density is a function of just
one kinematic argument ξ , so we represent the corresponding kind of convolution by the
symbol ⊗, which is defined as on the rightmost part of the equation. The quantity C is the
approximated U , but with a particular normalization. It goes by several names: coefficient
function, short-distance partonic scattering, Wilson coefficient. To save extra notational
complication, only the unpolarized terms are written explicitly.

Kinematic approximation

The first, kinematic, part of the approximator gives

F =
∑
j,α,α′

∫ 1+

x−

dξ

ξ
U
(
k̂, j, α, α′; q,m = 0

)

×
∑

c

∫
dk− d2−2ε kT

(2π )4−2ε
ξP+L(k, j, c, α, α′; P, S)+ non-leading power. (8.6)

Here, we have changed variable from k+ to ξ , and we have defined k̂ = (ξP+, 0, 0T), for
the approximated parton momentum in U . The integral over k− and kT is now confined to
the L factor, as in a parton density, and we included with it a factor of ξP+ for the sake of
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boost invariance. The upper limit on ξ is imposed by the parton density, for positivity of the
energy in its final state, P+ − ξP+ ≥ 0. The lower limit is set from positivity of the energy
in the hard part of the graph, q+ + ξP+ ≥ 0. In general, the integrand can be a generalized
function (distribution) with singularities at the endpoints. For example, there can be delta
functions at ξ = 1 in L, and at ξ = x in U (after approximation). The singularities are
properly treated if we take the range of integration over ξ to extend beyond the kinematic
limits, so I notate the limits as x− and 1+.

Approximator for scalar parton

When j denotes a scalar parton, there are no spin labels, so (8.4) gives the definition of
U
←−
T |V L for a scalar quark:

(U
←−
T |V L)scalar j

def=
∫ 1+

x−

dξ

ξ
U (q; k̂, j ; m = 0)

×
∑

c

∫
dk− d2−2ε kT

(2π )4−2ε
ξP+L(k, j, c; P, S). (8.7)

The second line, including the color sum and the factor ξP+, reproduces exactly the
definition of the density of a scalar quark, (6.124). The first factor, the approximated U ,
has the normalization appropriate to DIS on an on-shell massless parton target, but with
internal momenta restricted to being in the hard region. The integral joining the two factors
is a convolution with measure dξ /ξ , which we choose as its standard form.

Approximator for spin- 1
2 parton

When j denotes a fermion quark, we have two formulations. One involves projection
matrices PA and PB on each line, as in (6.13). The other reorganizes this, as in (6.19), into
terms involving different kinds of spin-projected parton density. Thus we have

(U
←−
T |V L)Dirac j

def=
∑

α,β,α′,β ′

∫
dk+ U (q; k̂, j, α, α′; m = 0)

× (PA)αβ(PB)β ′α′
∑

c

∫
dk− d2−2ε kT

(2π )4−2ε
L(k, j, c, β, β ′; P, S)

=
∫

dξ

ξ
Tr
D

[
U (q; k̂, j ; m = 0)

/̂k

2

]∑
c

∫
dk− d2−2ε kT

(2π )4−2ε
Tr
D

γ+

2
L(k, j, c; P, S)

+ terms with polarized parton densities. (8.8)

The factor /̂k/2 is exactly the external line factor for U that corresponds to a spin-averaged
on-shell Dirac particle. See (6.19) and the preceding definitions (6.17) and (6.18) for the
form of the polarized terms. They can be allowed for by replacing the factor /̂k/2 by the
form (A.27) with polarization for the quark.
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k

Fig. 8.4. One-loop graph for DIS in a model theory. The lines may represent any kind
of field.

8.2.3 Factorization

We have now completed the definition of the parton approximator, and the result is a
factorization of the form shown in (8.5).

8.2.4 Why the simple derivation does not work

The above derivation of the factorization theorem would be valid if one could use a fixed
decomposition of momentum space into regions appropriate for U and L, at least up to
power-suppressed terms. But in renormalizable theories, no clear separation of scales can
be made. The issue is quite generic, so I illustrate it by examining a one-loop graph related
to the calculations, in Sec. 6.11, of UV divergences in parton densities.

Consider a one-loop graph for DIS with an elementary-particle target, Fig. 8.4. We
perform the k± integrals by the mass-shell delta functions for the two final-state particles,
to leave only an integral over k2

T. By the Libby-Sterman analysis, we obviously have
leading-power contributions when k2

T is comparable to m2 and when it is comparable to
Q2; these correspond, respectively, to regions where only the top rung is the hard subgraph,
and where the whole graph is the hard subgraph.

But, as we now show, there is also a leading contribution from intermediate momenta,
i.e., where m� kT � Q. Since kT � Q, we can apply the parton-model approximation
to the top rung, and replace the calculation by the calculation of a parton density, as in
Sec. 6.11. Then because, m� kT, we can neglect m, thereby obtaining a logarithmic
integral:

constant×
∫ ∼Q2

∼m2

dk2
T

k2
T

. (8.9)

That this is a logarithmic integral follows from the fact that the couplings are dimensionless.
The whole graph has the same dimension as a lowest-order graph. Hence the momentum
integral is dimensionless. Corrections to this formula are suppressed by powers of kT/Q

and of m/kT.
Each range of a factor of 2 (say) in k2

T gives the same contribution. This contribution
is also comparable in size to that from the hard range, kT ∼ Q, and from the collinear
range, kT ∼ m. There is therefore no power-suppression (in m/Q) of the intermediate
region. Indeed the intermediate region is slightly enhanced, i.e., logarithmically, by a factor
ln(Q/m).
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The elementary proof in Secs. 8.2.1–8.2.3 relied on a strict separation of scales: some
momenta have kT ∼ m and some have high virtuality, O(Q2), with unimportant contri-
butions from intermediate momenta. When this is valid, errors of order m/Q result from
neglecting kT relative to Q. But the logarithmic contribution from the intermediate region
violates the initial assumption.

One could try rescuing the argument by using an intermediate scale μ to separate
collinear and hard momenta. In a one-loop graph this would result in errors of order μ/Q

and of order m/μ: the first is from neglecting collinear transverse momenta relative to Q,
and the second error is from neglecting masses with respect to hard momenta. The minimum
error is of order

√
m/Q, obtained when μ ∼ √mQ. This is very non-optimal compared

with the m/Q error (modified by logarithms) that is obtained from a better derivation of
factorization.

Moreover in higher-order graphs, like Fig. 8.3, the errors from using a simple cutoff to
separate the regions are actually unsuppressed. To see this consider a configuration in which
the transverse momentum lT in the lower loop of Fig. 8.3 is slightly below the cutoff, while
kT in the upper loop is slightly above the cutoff. Then l is target-collinear while k is hard.
The elementary derivation tells us to neglect kT with respect to lT, producing a 100% error.

So we need a more powerful method, which we will come to in due course.

8.3 Renormalization of parton densities

We saw in calculations, Sec. 6.11, that parton densities have UV divergences at or above
the space-time dimension n = 4 where the theory has a dimensionless coupling. This is one
symptom that the parton model is not strictly correct. The Feynman graphs and momentum
region that give the parton model still exist in such theories, but there are additional
contributions.

In such a situation parton densities continue to be useful, but we have to adjust the
definitions to make the parton densities finite. Motivated by what happens with the operator
product expansion (OPE), reviewed in Collins (1984), we now construct such a definition
by applying conventional UV renormalization. This gives renormalized parton densities
as theoretical constructs, which can be studied in and of themselves, without regard to
applications. Of course, it is the applications that provide post hoc motivation for studying
parton densities.

8.3.1 Cutoff or renormalization?

An alternative to renormalization is to impose a cutoff in transverse momentum, e.g., to
modify (6.75) to

fj/h(ξ )
def=
∫

kT<μ

d2kT fj/h(ξ, kT). (8.10)

This definition has been particularly advocated by Brodsky and his collaborators (e.g.,
Lepage and Brodsky, 1980; Brodsky et al., 2001) and clearly has certain advantages. Both
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kinds of definition, by a cutoff and by renormalization, are legitimate, and there is a choice
between them influenced by practicalities and by actual practice, not by absolute necessity.
Recall the calculation in Sec. 3.4, where we showed that renormalization with a scale μ

is similar to a cutoff at approximately the same scale. Thus the two kinds of definition
of finite parton densities have similar properties and intuitive meanings. But one must
not take the equivalence between renormalization and a cutoff as a strict mathematical
property.

Serious work beyond leading order, or beyond leading-logarithm approximation,
requires us to take the definitions rather literally. Here certain disadvantages of the cutoff
method appear that lead us to use the renormalization method. One is simply that although
the cutoff method lends itself very nicely to getting an overall view, detailed calculations
can be harder. A second rather severe disadvantage is that the definition with a cutoff relies
on the definition of the unintegrated or TMD density. Now, in a gauge theory, the basic
definition of the unintegrated parton density entails the use of light-front gauge A+ = 0.
But this results in further divergences even before the kT integral, and therefore requires
even more complicated redefinitions (Ch. 13). This problem is often hidden in elemen-
tary discussions, but comes to the forefront once higher-order corrections are considered
correctly and is a continuing topic of research and debate.

8.3.2 Statement of renormalization of parton densities

In the theory of renormalization (e.g., Collins, 1984) there are two ways of viewing the
renormalization of composite operators. One is the multiplicative view, where renormalized
operators are factors times the bare operators. The other view is the counterterm view, where
for each Feynman graph a series of counterterms is subtracted to remove the divergences.
It is very useful to switch between the views as the occasion demands; we will see their
equivalence.

For the parton densities, the multiplicative view will result in the following formula:

fj/H (ξ ) =
∑
j ′

∫ 1+

ξ−

dz

z
Zjj ′ (z, g, ε) f(0) j ′/H (ξ/z). (8.11)

On the right-hand side is a bare parton density for a parton of flavor j ′. Here a bare
parton density is defined directly by whichever of operator formulae like (6.31) is appro-
priate, with the convention that the field operators are bare fields (i.e., that have canonical
(anti)commutation relations). The theorem of renormalization is that one can obtain UV-
finite parton densities fj/H (ξ ) by a proper choice of the renormalization factor Zjj ′ in (8.11).
The multiplication is in the sense of a convolution in the longitudinal momentum fraction
and of matrix multiplication on the flavor indices. In the MS scheme, the renormalization
factor is a function only of the ratio of the momentum fractions, the renormalized coupling
and the dimension of space-time.

We have written limits ξ− and 1+ in the integral over z in (8.11), with the same meaning
as in factorization formulae, such as (8.7). The upper limit is set by the renormalization
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kernel (which includes a delta function at z = 1). The lower limit is set by the bare parton
density, which is non-zero only for ξ/z ≤ 1.

8.3.3 Polarization dependence

Formula (8.11) applies both to the unpolarized densities and to the various kinds of polarized
densities (helicity, transversity, etc.). The transformations of the densities under rotations
and parity imply that there is no mixing between the different kinds of polarized density.
That is, one copy of (8.11) applies to the unpolarized densities, a second copy, with different
renormalization factors, applies to the helicity densities, and a third copy, with yet different
renormalization factors, applies to the transversity densities.

8.3.4 Regions giving UV divergences

An ordinary UV divergence (such as is canceled by renormalization of the Lagrangian)
comes from regions where all the components of momenta in a subgraph get large. It might
appear that the divergences in parton densities are different because they involve large
values only for the minus and transverse components of loop momentum, as we saw in a
calculational example. The momentum components are power-counted as (k+, k−, kT) ∼
(P+,�2/P+,�) where �→∞. However, this appearance that the divergence is of a
new kind is misleading. We see this in light-front perturbation theory. Plus momenta are
restricted to fractions of the external momenta, and even ordinary UV divergences also arise
from large minus and transverse momenta, again with the power-counting (P+,�2/P+,�).
An example is given by the self-energy graph that we calculated at (7.13).

The apparent difference arises because of a different choice of contour deformation: a
Wick rotation of energy integrals in the usual case, and a contour integral in k− for the
light-front case. Of course, in a parton density with its integral over k−, the light-front view
is natural.

So the large kT divergences in parton densities are actually genuine UV divergences to
which we can apply normal methods of renormalization.

Further analysis proceeds by examining the momentum regions that give the UV diver-
gence. We use the formalism in which the operators defining the parton density are time-
ordered and the graphs are uncut. We take it for granted that renormalization has been
applied in the Lagrangian, so that all UV divergences in self-energies and vertex correc-
tions, etc., are canceled by counterterms. The remaining divergences involve loop momen-
tum integrals that include the vertices that define the parton densities. Thus we represent
the regions giving divergences by diagrams such as Fig. 8.5(a). In the upper part, labeled
“UV”, the minus and transverse components of all momenta get large, with plus momenta
obeying their normal restrictions (in particular not to be bigger than P+). In the lower part,
labeled “collinear”, the momenta stay finite. The collinear part includes the connecting
lines of momentum l, while the UV part includes the lines of momentum k that go to the
parton density vertices. In addition to being far off-shell, the momenta in the UV part have
large negative rapidity relative to the target.
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Fig. 8.5. (a) Regions giving UV divergence for pdf in renormalizable non-gauge theory or
in a gauge theory (in light-cone gauge, A+ = 0). The lines joining the UV and collinear
subgraphs can be of any type, e.g., flavor of quark, antiquark or (transverse) gluon. (b) In
a gauge theory arbitrary gluon connections between the collinear and UV subgraphs also
give divergences.

We now do power-counting to determine the strength of the divergence and to determine
what external lines are allowed for the UV part. For this we use the appropriate general-
ization of the rules for ordinary UV divergences given that we treat the components of UV
momenta as having sizes (P+,�2/P+,�). By observing that such a momentum configu-
ration can be obtained by a boost from a frame in which all the components of UV momenta
are of order �, we readily see that the power-counting works just like the power-counting
for hard scattering in DIS: Ch. 5. In the rest frame of a UV momentum, the collinear lines
are indeed collinear to the fast-moving target. The basic degree of divergence for a graph
with two lines connecting the UV and collinear subgraphs is logarithmic. We saw this
in an example, and the property extends to higher-order graphs for the UV subgraph. The
reason is that this subgraph is dimensionless, and so the power-counting of a UV divergence
follows dimensional analysis in a renormalizable theory.

The estimate of the power can equally well be done in a fixed frame. In that case the key
point in relating dimensional analysis to the size of the divergence of the integral is that in
Lorentz-invariant quantities, a minus momentum k−, which has two powers of �, always
appears multiplied by a plus momentum k+, which has zero powers of �; thus the power
of � is the dimension of k+k−.

Therefore adding external collinear lines to the UV subgraph generally reduces its degree
of divergence, and therefore gives convergence. The one exception, just as in our discussion
of hard scattering in Ch. 5, is in a gauge theory when there are gluon lines with a minus
index in the UV subgraph and a plus index at the attached gluon line. Thus in addition to
regions of the form Fig. 8.5(a), we also have divergences with extra gluons joining the UV
and collinear subgraphs, Fig. 8.5(b).

For this chapter we restrict our attention to a non-gauge theory, for which the catalog of
divergent regions is Fig. 8.5(a). (This set of leading regions also applies to a gauge theory
in A+ = 0 gauge. But this chapter’s treatment of renormalization does not genuinely apply,
because of problems with divergences associated with the 1/k+ singularities in the gluon
propagator.)

The details of constructing a renormalized parton density follow very closely the con-
struction of matrix elements of renormalized local operators in conventional renormalization
theory (e.g., Collins, 1984).
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8.3.5 Momentum dependence of counterterms

There is one new feature, which concerns the dependence of the counterterms on external
momenta. In conventional operator renormalization, when there is a logarithmic divergence,
the counterterm can be chosen to be independent of momentum and mass. One general
method of proof is to differentiate graphs with respect to the external momenta and/or
masses. This reduces the degree of divergence, and thus for a logarithmic divergence shows
that after differentiation there is no overall divergence, and therefore no counterterm is
needed. There can be subdivergences in multiloop graphs, but these are canceled by their
own counterterms; the overall divergence is what determines the need for a counterterm for
a whole graph. In general, the counterterms are polynomials in momentum and mass with
the degree of the polynomial equal to the degree of divergence.

We now apply the differentiation argument to the UV divergences in parton densities.
The examples in Sec. 6.11 provide illustrations of the general principles. We will now show
that differentiating with respect to a mass, or an external minus or transverse momentum,
does reduce the degree of divergence. But differentiating with respect to an external plus
momentum leaves the degree of divergence unchanged. Thus the divergence is allowed to be
a function of plus momenta. This gives the convolution form in (8.11) for the renormalization
of parton densities, rather than the multiplicative form that applies to local operators.

Differentiating a graph with respect to an external momentum gives a sum over terms
where particular propagator (or numerator) factors are differentiated. So we consider a
generic propagator, carrying an internal momentum k and an external momentum P :

1

(P − k)2 −M2
= 1

2(P+ − k+)(P− − k−)− (PT − kT)2 −M2
. (8.12)

The external momentum may be off-shell and may have non-zero transverse momentum.
The UV divergence concerns the situation where kT and k− go to infinity with k+ fixed.
There are three cases:

1. Differentiation of (8.12) with respect to P+ reduces the dimension by one, but introduces
a factor of a minus momentum:

d

dP+
1

(P − k)2 −M2
= −2(P− − k−)

[2(P+ − k+)(P− − k−)− (PT − kT)2 −M2]2
. (8.13)

In power-counting for the degree of divergence, the factor k− in the numerator is treated
as k2

T rather than as the single power kT that matches its dimension. Thus the degree of
divergence is unaffected by differentiating with respect to P+.

This is a general result: in Lorentz-invariant quantities, a plus momentum always
appears multiplied by a minus momentum. Thus the unchanged degree of divergences
is effectively a consequence of invariance under boosts in the z direction.

2. Differentiation with respect to a mass M or transverse momentum PT brings no extra
factor; this reduces the degree of divergence by one unit, just as with local operators.

3. Differentiation with respect to an external minus momentum P− gives an extra reduction
of the degree of divergence, by two units instead of one unit.
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Fig. 8.6. Ladder decomposition of graphs for a bare parton density in terms of two-particle
irreducible subgraphs.

When we use MS renormalization, the counterterms are just the divergent pole parts, so
the coefficients of the poles obey the above rules for lack of dependence on minus momenta,
transverse momenta and masses. In a general renormalization scheme, it is permitted to
perform a further finite renormalization which does depend on these momentum components
and masses. We choose not to.

We now summarize the form of the divergence in a parton density as∫
dl+

l+
H (l+, k+)

∫
dl− d2−2ε lT L(l, P ), (8.14)

where H denotes the divergence of a UV subgraph. Since the divergence is independent
of l− and lT, the integral over these variables can be confined to the collinear subgraph,
corresponding to the rules for a parton density, in fact. But the UV and collinear parts are
linked by an integral over l+.

Now parton densities are invariant under boosts in the z direction. Generally we will
arrange for the factors in formulae such as (8.14) to be boost invariant. Notice that this is
the case for the measure dl+ /l+ of the convolution. Then the UV divergence factor H must
be a function, not of k+ and l+ separately, but only of their ratio. This gives the kinematic
dependence of the renormalization factor Zjj ′ : it is a function of the ratio between the
fractional momentum ξ of the renormalized parton density and the fractional momentum
of the bare parton density.

8.3.6 Ladder graphs and renormalization

In this section, we will prove the renormalization theorem for parton densities, and we will
see how the subtractive counterterm formalism is set up. The methodology (Collins, 1998a)
is inspired by Curci, Furmanski, and Petronzio (1980).

The issue that makes the discussion quite non-trivial is that the characterization of UV
divergences just given is somewhat incomplete. It assumed that we could assign the estimate
(P+,�2/P+,�) uniformly to all the different momenta in the UV subgraph. But in fact
there can be a variety of sizes.

Notation

A given graph for a bare parton density can have many decompositions of the form of
Fig. 8.5(a). Given that they all have the two subgraphs connected by two lines, a convenient
way to enumerate all possibilities is to perform a ladder decomposition, as in Fig. 8.6.



8.3 Renormalization of parton densities 257

K
= + + + + · · ·

Fig. 8.7. Examples of topologies of graphs for the ladder rung K in Fig. 8.6. The lines and
vertices are of any type allowed by the theory. The shortness of the lines at the lower end
indicates that these propagators are amputated.

Each of the objects B and K is a sum over two-particle irreducible (2PI) graphs multiplied
by full propagators for the upper two lines. Typical examples of graphs for K are shown
in Fig. 8.7. They are connected and have two upper external lines and two lower external
lines. Propagators with all possible corrections are used for the upper lines, but the lower
lines are amputated. The two-particle irreducibility of the core part of K means that its top
cannot be disconnected from the bottom by cutting only two lines; at least three lines must
be cut. The base of the ladder, B, similarly has two propagators on its upper side times
a 2PI amplitude, but it is now connected to the target state, including a bound state wave
function if needed. The types of the lines can be any that is allowed in the theory.

We therefore represent the bare parton density for a parton of type j as a sum over ladder
graphs with different numbers of rungs:

f(0) j = ZjV (j )
∞∑

n=0

KnB

= ZjV (j )
1

1−K
B. (8.15)

The products are in the sense of a convolution, i.e., an integral over the momentum of the
loop joining the factors, and sums over the flavor, color and spin indices, just as in (8.2).

At the top of the ladder we have the vertex defining the parton density, and in (8.15) we
denote it by the factor V . A complete notation is cumbersome:

V (ξP+, j, s; k, j1, c, c
′, α, α′) = δ(ξP+ − k+)sα,α′δjj1δcc′ , (8.16)

which is set up to be used in the convolution notation, as in (8.2). The color and spin indices
on the two attached parton lines are (c, α) and (c′, α′). There is a common flavor index j1

for the two lines. We let sα,α′ be the matrix with which the vertex couples the spin indices,
e.g., γ+/2 for an unpolarized quark density.

We require that both of K and B are Green functions of renormalized fields, so that
they are UV finite. Since we define the bare parton density by an expectation value of bare
operators, we inserted in (8.15) a factor of the wave function renormalization Zj for the
field for parton j .

The rung factor is

K(k1, j1, c1, c
′
1, α1, α

′
1; k2, j2, c2, c

′
2, α2, α

′
2). (8.17)

Here, k1 is the momentum of each of the upper lines, and j1 is the flavor, while (c1, α1) and
(c′1, α

′
1) are color and spin indices for the upper lines. The other variables are for the lower

lines. There is also dependence on the coupling etc which is not indicated. Similarly for the
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base of the ladder we write

B(k, j1, c1, c
′
1, α1, α

′
1; P, S). (8.18)

Note that if the target is an elementary particle, as in our calculational examples in Sec. 6.11,
then the base factor B will be just a delta function, e.g.,

B(k, j1, c, c
′, α, α′; P, S) = (2π )4−2εδ(4−2ε)(l − P )δj1,target

× spin density matrix. (Elementary target) (8.19)

Just as in (8.4), the two lines joining neighboring rungs (V , K , or B) have equal flavors. But
we have allowed unequal values for the spin and color indices. But then we observe that V

times any number of Ks is color singlet, and so gives a coefficient times a unit matrix in
color space. Hence we only use K and B in combinations with a diagonal sum over colors
at their upper end, and so we write, for example,∑

c1

K(k1, j1, c1, c1, α1, α
′
1; k2, j2, c2, c

′
2, α2, α

′
2) = K(k1, j1, α1, α

′
1; k2, j2, α2, α

′
2) δc2,c

′
2
.

(8.20)

In the mathematical manipulations that follow, K is to be thought of as a matrix, with
two composite indices, V as a row vector, and B as a column vector.

Divergences, subtractions, renormalization

We now define a renormalized parton density by the standard procedure of subtracting
counterterms for each subgraph with an overall UV divergence. We first remove the wave-
function renormalization factor Zj . Then we consider the UV divergences in one term
V KnB. Each possible divergent subgraph in Fig. 8.5(a) is associated with a subgraph
consisting of V and some number N1 > 0 of the nearest rungs.

A zero-rung graph V B therefore has no UV divergences. A one-rung graph V KB has
one divergence, in the V K subgraph. We can cancel the divergence in V K by subtracting,

for example, its pole part at ε = 0, V K
←−P , to give a finite result V K(1−←−P )B. The left

arrow in
←−P signifies that the pole part is taken of everything to its left. The significance

of the pole part is that it is independent of the external l− and lT of V K , since this is

a property of the elementary UV divergence derived above. Thus V K
←−P is of the form

of a vertex for a parton density at momentum fraction l+/P+ times a function of ξP+

and l+. This will enable us to obtain multiplicative renormalization after we sum over all
graphs and UV-divergent subgraphs. Naturally, the pole part may be replaced by any other
operation that achieves the same effect, of canceling the divergence with a counterterm that
is a coefficient times a vertex for a parton density.

From now on we will define
←−P to denote whatever such definition we choose to use, and

the choice defines the renormalization scheme for the parton density. The standard choice
is the MS scheme, Sec. 3.2.6, with its extra factor Sε for each loop in a counterterm; see
(3.16) and (3.18).

For a two-rung ladder, V KKB, we first cancel the divergence in the V K subgraph, to

get V K(1−←−P )KB. The remaining divergence is in the two-rung part, and to cancel it we
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can subtract V K(1−←−P )K
←−P B. Here the second pole part is the pole part of everything to

its left, i.e., the pole part of V K(1−←−P )K . After these subtractions the UV-finite result is

V K(1−←−P )K(1−←−P )B. It is straightforward to extend this result to bigger ladders: we

simply insert a factor 1−←−P to the right of every factor of K .
We now convert this into a form that we use to demonstrate multiplicative renormaliz-

ability:

fj = V (j )
[
1+K(1−←−P )+K(1−←−P )K(1−←−P )+ . . .

]
B

= V (j )
∞∑

n=0

[
K(1−←−P )

]n

B

= V (j )
∞∑

n=0

KnB − V (j )
∞∑

n=1

n∑
n1=1

[
K(1−←−P )

]n1−1
K
←−P Kn−n1B

= V (j )
∞∑

n=0

KnB − V (j )
∞∑

n1=1

[
K(1−←−P )

]n1−1
K
←−P

∞∑
n2=0

Kn2B

= V (j )
1

1−K
B − V (j )

∞∑
n=0

[
K(1−←−P )

]n

K
←−P 1

1−K
B. (8.21)

To get from the second to the third line, we expanded all the products and classified the

result by where the rightmost
←−P is. There is one term with no

←−P factors at all. The last line
is in fact of the form of a coefficient convoluted with the bare parton density, (8.11). To see

this, we first observe that the term V (j )
1

1−K
B is of the desired form, giving a contribution

Z−1
j δjj ′δ(z− 1) (8.22)

to Zjj ′ . Now a renormalization pole part is a coefficient times a vertex for a parton density.

So the last term in (8.21) is a pole part times the
1

1−K
B factor in the bare parton density.

Thus we also get something of the form of the right-hand side of (8.11). In fact we can
write the renormalization coefficient as

Zjj ′V (j ′) = 1

Zj ′

[
δjj ′δ(z− 1)− V (j )

∞∑
n=0

[K(1−←−P )]nK
←−P (j ′)

]
, (8.23)

where the (j ′) argument of the last
←−P indicates that we restrict to graphs whose rightmost

line pair has flavor j ′.
This completes the proof of the renormalization theorem for parton densities, at least

when the theory has no gauge fields. The proof also applies in a gauge theory (e.g., QCD) in
A+ = 0 gauge, if we assume that the non-trivial complications in this gauge do not matter.

For performing calculations, it is useful that the proof also applies to off-shell Green
functions of the parton vertex operator, with the actual on-shell parton densities being
obtained by applying LSZ reduction.
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Nature of subtractive approach

The starting point of (8.21) was a modification of the definition of a parton density where
all UV divergences were subtracted out. Then this was converted to a form that exhibited
multiplicative renormalization of bare parton densities.

Now methods using subtractions are fundamental to all aspects of perturbative QCD,
as we will see. So in the next few paragraphs I give further insights into the subtrac-
tive approach, with renormalization of parton densities giving an example of a general
methodology.

Let us focus attention on the third line in (8.21). It starts with a sum over all graphs for
the parton density partitioned by the number n of rungs; a generic term is V KnB. Note
that K and B themselves are sums of graphs of the appropriate irreducibility properties.
Possible ways of getting UV divergences are enumerated by partitioning the product of
rungs into two factors:

[V Kn1 ] [Kn−n1B], (8.24)

where n1 can range from 1 to n. Applying this to a single graphical structure, we have n

ways of doing the partition. For each partition, there is a divergence where the momenta
in the left part of (8.24) get large while the momenta in the right-hand part stay finite. The
left factor corresponds to the upper part of Fig. 8.5(a).

An initial idea for removing the divergence is simply to subtract the UV pole part of the
subdiagram V Kn1 . We can notate the subtraction diagrammatically as

− K
n 1

K
n−n 1 B

, (8.25)

where the box denotes the taking of the pole part, as in MS renormalization.1 Such subtrac-
tions do not actually remove the divergences correctly, for two related reasons. The first
is the possibility of subdivergences: if n1 > 1, the Kn1−1 factor has a pole from subdiver-
gences, where only some of the rungs inside the box are in a UV region. The second is
that of double counting: there can be further UV divergences when not only the momenta
inside the box are UV, but also some momenta further down are also UV, which situation
occurs if n1 < n.

Both problems are solved by applying the pole-part operation only after subtractions

have been made for subdivergences. In the third line of (8.21), this is done by the (1−←−P )
factors inside the V Kn1 part.

To see this as a prevention of double counting, we imagine constructing the counterterms
one by one, starting with the smallest, n1 = 1. Let Cn1 (V KnB) be the counterterm for the
n1-rung graph. It is made by applying minus the pole part to the original graph together

1 Or the corresponding operation in some other renormalization scheme.
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with the counterterms for smaller numbers of rungs:

Cn1 (V KnB) = −
⎡
⎣V Kn1 +

n1−1∑
n′1=1

Cn′1 (V Kn1 )

⎤
⎦←−P Kn−n1B. (8.26)

The internal counterterms Cn′1 remove subdivergences. As for double counting, consider
the sum over n1:

∑n
n1=1 Cn1 (V KnB). For the overall UV divergence in a particular V Kn1 ,

there will be contributions both from the original graph and from the counterterms for
subdivergences in the set of terms V Kn1 +∑n1−1

n′1=1 Cn′1 (V Kn1 ). The use of (8.26) to define
Cn1 deals with this problem.

Equation (8.26) is an example of the Bogoliubov operation in renormalization theory,
and it provides a recursive definition of the counterterm. The recursion starts at n1 = 1
where there are no subdivergences:

C1(V KnB) = − V K
←−P Kn−1B. (8.27)

It is not too hard to prove by induction that

Cn1 (V KnB) = −[V K(1−←−P )]n1−1K
←−P Kn−n1B, (8.28)

which gives the counterterms in the third line of (8.21).
An illustration of the box notation for counterterms is the case n = 2:

P
B

K

K

−

P
B

K

K

−

⎛
⎜⎜⎜⎜⎜⎜⎝

P
B

K

K
−

P
B

K

K

⎞
⎟⎟⎟⎟⎟⎟⎠

= V K2B − V K
←−P KB − V K2 − V K

←−PK
←−P B

= V K(1 −←−P ) K(1 −←−P ) B.

(8.29)

8.4 Renormalization group, and DGLAP equation

Renormalized quantities depend on the renormalization scale μ. When we apply the factor-
ization theorem we will enable the effective use of perturbative theory in the hard scattering
by setting μ to be of order Q. Therefore to make predictions, we need to transform parton
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densities between different values of μ, for which we need their renormalization-group
(RG) equations.

These are obtained by applying d/d ln μ to (8.11) and using the RG invariance of
the unrenormalized parton density. The resulting equation are known as the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations2 (Altarelli and Parisi, 1977; Gribov
and Lipatov, 1972; Dokshitzer, 1977). They have the form

d

d ln μ
fj/H (ξ ; μ) = 2

∑
j ′

∫
dz

z
Pjj ′ (z, g)fj ′/H (ξ/z; μ), (8.30)

where, with its standard normalization, the (finite at ε = 0) DGLAP evolution kernel Pjj ′

obeys

d

d ln μ
Zjk(z, g, ε) = 2

∑
j ′

∫
dz′

z′
Pjj ′ (z

′, g, ε)Zj ′k(z/z′, g, ε), (8.31)

i.e., essentially

P = 1

2

d

d ln μ
ln Z, (8.32)

with algebra (multiplication in particular) for Z being interpreted in the sense of convolu-
tions on z, and in the sense of matrices on the partonic indices. Recall that the RG derivative
when applied to such counterterms is just the beta function for a coupling times a derivative
with respect to the coupling, and then summed over couplings. In the model Yukawa theory,
this is

1

2

d

d ln μ
Zjk =

(
−ε

g2

16π2
+ S−1

ε βg2

)
∂Zjk

∂g2/(16π2)
+
(
−ε

λ

16π2
+ S−1

ε βλ

)
∂Zjk

∂λ/(16π2)
.

(8.33)

Here βg2
def= 1

2 dg2 / d ln μ, etc., with the normalizations like those of Sec. 3.5.2. Each β is a
function of Sελ and Sεg

2, but not of ε separately (in the MS scheme). In QCD there would
only be the βg2 term.

8.5 Moments and Mellin transform

The connection to the renormalization of local operators can be exhibited by taking an
integral with a power of ξ . We define

f̃j/H (J ) =
∫ 1+

0
dξ ξJ−1fj/H (ξ ), (8.34)

Z̃jj ′(J ) =
∫ 1+

0
dz zJ−1Zjj ′ (z), (8.35)

2 The original derivations were rather different to the strict RG one presented here.
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and similarly for the unrenormalized parton densities and the DGLAP kernels. Then (8.11)
gives a matrix-multiplication form for the moments:

f̃j/H (J ) =
∑
j ′

Z̃jj ′ (J )f̃(0) j ′/H (J ). (8.36)

The DGLAP equation similarly becomes

d

d ln μ
f̃j/H (J ; μ) =

∑
j ′

2P̃jj ′ (J ; g)f̃j ′/H (J ; μ). (8.37)

If J is allowed to range over general (complex) values, then we have constructed the
Mellin transform of the parton density and shown that renormalization looks particularly
simple for the Mellin transform. The Mellin transformation can be inverted to recover the
parton densities in ξ space. In numerical calculations, it can be an advantage of the Mellin-
transformed formulation that equations like (8.37) involve matrix multiplication rather than
convolutions.

If J is restricted to non-negative integer value, and the combinations of parton and
antiparton densities are used that correspond to local operators, as in (6.109), then we have
the formula for renormalization of the local operators used in the OPE for DIS.

8.6 Sum rules for parton densities and DGLAP kernels, including in QCD

In Secs. 6.9.5 and 6.9.6, we derived number and momentum sum rules in a theory where
no renormalization of parton densities was needed. We now extend the treatment to a
renormalizable theory. The derivation will also apply to QCD, but only after we show that
the renormalization theorems also apply to QCD.

Before renormalization we have bare parton densities in the UV-regulated theory. For a
bare quark density, we derived a number sum rule in (6.92); the derivation applies also in
QCD, since the Wilson line now needed between the quark and antiquark fields becomes
unity when the fields are at the same position. The derivation must be applied to the bare
parton densities in order to get the correctly normalized Noether current. In contrast, for
the derivation of the momentum sum rule in QCD, the Wilson line requires a slight change
in the derivation. Because of the extra factor ξ in the integrand of the sum rule (6.93), a
derivative is needed with respect to the position of one of the fields in the quark density def-
initions. The derivative applies to both the field and the Wilson line, and the result is to give
a covariant derivative of the quark field, and so to give the correct quark term in the energy
momentum tensor. The gluon term also comes out correctly. After that the derivation is as
before.

Each of these derivations applies to a particular moment of parton densities and results
in a target matrix element of a Noether current, whose value we know exactly and which
is finite. We now need to show that the sum rules also apply to renormalized densities and
to obtain corresponding constraints on the renormalization coefficients. We first take the
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inverse transformation to (8.36):

f̃(0) i/H (J ) =
∑

j

Z̃−1
ij (J )f̃j/H (J ), (8.38)

where Z−1 is the matrix inverse of Z. The number sum rule for a quark q is that f̃(0) q/H (1)−
f̃(0) q/H (1) is the number of this type of quark in the target H . Since this is finite, the
corresponding renormalization coefficients are also finite: Z̃−1

qj (1)− Z̃−1
qj (1). Let us use the

MS scheme, in which case finiteness only happens if the counterterms are zero, leaving
the lowest-order terms. Thus we get the following sum rules for the first moments of the
renormalization coefficients:

Z̃−1
qj (1)− Z̃−1

qj (1) = δqj − δqj , (8.39a)

Z̃qj (1)− Z̃qj (1) = δqj − δqj , (8.39b)

where the second line follows using the definition of the inverse matrix Z−1Z = I . From
(8.39b) and the sum rule for the bare parton densities follows the corresponding sum rule for
the renormalized densities. Hence (6.91) applies to both bare and renormalized densities,
provided the MS scheme is used.

The same argument applies to the momentum sum rule. It also leads to a sum rule for
the renormalization coefficients:∑

j

Z̃−1
jj ′ (2) =

∑
j

Z̃jj ′ (2) = 1, (8.40)

where the sum is over all flavors of parton: quarks, antiquarks, and gluon.
Combining the sum rules for Z with the definition of the DGLAP kernels (8.31) gives

sum rules for the kernels:

P̃qj (1)− P̃qj (1) = 0, (8.41)∑
j

P̃jj ′ (2) = 0. (8.42)

These sum rules have important testable consequences for the evolution of parton densities;
they also provide useful checks on calculations.

8.7 Renormalization calculations: model theory

In this section we show how to calculate the renormalization of parton densities in the
model Yukawa theory used earlier, to illustrate the principles without any confusion by the
complications that arise in QCD.

8.7.1 Renormalization of the theory

The Lagrangian of the theory with renormalization for the interactions was given in (6.103).
We use dimensional regularization and the MS scheme. We will express all quantities in
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terms of renormalized couplings g, etc. As usual, to keep the dimension of the coupling
fixed, we write the bare couplings in terms of the renormalized couplings with the unit
of mass as g0 = μεg(1+ counterterms), etc. We will use a counterterm approach, as in
Sec. 3.2. Thus we write the Lagrangian as the sum of a free Lagrangian that gives the free
propagators, a basic set of interactions, with renormalized couplings, and a counterterm
Lagrangian.

Of the renormalization factors in the Lagrangian, the ones that we will need in our
calculations are for the self-energy, for which completely standard calculations give

Z2 − 1 = − g2Sε

32π2ε
+ . . . , Z2M0 −M = g2SεM

16π2ε
+ . . . , (8.43)

where the dots indicate terms of yet higher order.

8.7.2 Unintegrated density

First we examine unintegrated, i.e., transverse-momentum-dependent, parton densities. The
bare densities in the UV-regulated theory are, e.g.,

f(0) q/H (ξ, kT) =
∫

dw− d2wT

(2π )3
e−iξP+w−+ikT·wT〈P |ψ0(0, w−,wT)

γ+

2
ψ0(0) |P 〉. (8.44)

These have an immediate probability interpretation.
Since there are no extra divergences beyond those renormalized in the Lagrangian, the

renormalized unintegrated quark density is obtained simply by using renormalized fields:

fq/H (ξ, kT; μ) = Z−1
2 f(0) q/H (ξ, kT). (8.45)

To get its RG equation, we observe that the bare parton density is a matrix element of
bare fields with physical states, and hence is RG invariant. Taking a total derivative of the
renormalized density with respect to the renormalization scale μ gives the RG equation of
the renormalized density:

d

d ln μ
fq/H (ξ, kT; μ) = −2γ2fq/H (ξ, kT; μ). (8.46)

Here γ2 is the anomalous dimension associated with the fermion field:

γ2 = 1

2

d ln Z2

d ln μ
= − g2Sε

32π2
+ . . . , (8.47)

which has a finite limit at ε = 0.

8.7.3 Integrated density

For renormalization of the integrated densities, we use a counterterm approach with
subtractions applied in Green functions of renormalized fields. Therefore we first write
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(8.11) as

fj/H (ξ ) =
∑

j

∫
dz

z
[Zj ′(g, ε)Zjj ′(z, g, ε)] [Z−1

j ′ f(0) j ′/H (ξ/z)]. (8.48)

Here the factor Z−1
j ′ f(0) j ′/H is the parton density with renormalized rather than bare fields

used in its definition. Thus it is calculated using the standard Feynman rules for the theory
and for the parton density; counterterms from the Lagrangian are used as needed. In
compensation for the Z−1

j ′ factor the Zjj ′ factor is combined with a factor of Zj ′ .
The renormalization factor gives UV-finite parton densities independently of the target

state H . For calculations of Zjj ′ , it is therefore convenient to choose the state to correspond
to any of the elementary fields of the theory (as opposed to a bound state). To obtain the
perturbation expansion of Zjj ′ from Feynman graphs, we expand (8.48) in powers of the
renormalized couplings, and identify the necessary counterterms. We use the following
expansions:

fj/H (ξ ) =
∞∑

n=0

(
g2

16π2

)n

f
[n]
j/H (ξ )+ . . . , (8.49a)

f(0) j/H (ξ ) =
∞∑

n=0

(
g2

16π2

)n

f
[n]
(0) j/H (ξ )+ . . . , (8.49b)

Zjj ′ (z, g, ε) =
∞∑

n=0

(
g2

16π2

)n

Z
[n]
jj ′ (z, g, ε)+ . . . (8.49c)

To avoid complicated formulae, we have written only the terms with the Yukawa coupling
g, and the dots indicate terms involving the other couplings. The lowest-order term in Z is
unity in the sense of a matrix in parton type and of a convolution in z:

Z
[0]
jj ′ (z) = δjj ′δ(z− 1). (8.50)

When the target is elementary, the lowest-order renormalized and bare parton densities are
simply

f
[0]
j/j ′ (ξ ) = f

[0]
(0) j/j ′(ξ ) = δ(ξ − 1)δjj ′ . (8.51)

Note the notational distinction between “[0]” in a superscript to denote “lowest order”, and
“(0)” to denote “bare” (normally in a subscript). Note also a shift of notation from Sec. 6.11:
there we did not treat renormalization, so the expansion parameter was actually the bare
coupling; now the expansion parameter is strictly the finite renormalized coupling.

The key equation for calculations of the renormalization factor is the n-loop expansion
of the renormalization equation (8.48):

f
[n]
j/k(ξ ) =

n∑
n′=0

∑
j ′

∫
dz

z
Z

[n′]
jj ′ (z, g, ε) f

[n−n′]
(0) j ′/k(ξ/z). (8.52)
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8.7.4 One-loop renormalization calculations in model theory

Quark in quark

The one-loop case of (8.52) for the density of a quark in a quark is

f
[1]
q/q (ξ ) =

∑
j

∫
dz

z

[
(Z2Zqj )[0](z, g, ε) (Z−1

2 f(0) j/q)[1](ξ/z)

+ (Z2Zqj )[1](z, g, ε)(Z−1
2 f(0) j/q)[0](ξ/z)

]
= (Z−1

2 f(0) q/q)[1](ξ )+ (Z2Zqq )[1](ξ, g, ε). (8.53)

We carried out the calculations of the bare version of f [1] in Sec. 6.11, and we now read
off the necessary modifications to renormalize the parton densities.

Virtual correction to quark in quark

The one-loop virtual correction to the parton density Fig. 6.10(a) is to be modified by
adding wave function and mass renormalization counterterms to the self-energy, so that we
replace (6.114) by

g2

16π2
f

[1,V ]
q/q (ξ ) = −δ(ξ − 1)

g2

16π2

×
∫ 1

0
dx

{
x ln

[
μ2

m2x +M2(1− x)2

]
+ 2M2x(1− x2)

m2x +M2(1− x)2

}
, (8.54)

in the limit that the UV regulator is removed, ε = 0. Since this is finite by itself, no delta
function contribution to Z2Zqq is needed: the UV divergence in the self-energy is removed
by a counterterm from the interaction, and so does not affect renormalization of the parton
density.

Real correction to quark in quark

For the real emission term, we need

g2

16π2
(Z2Z)[1]

qq (z, g, ε) = − g2Sε

16π2ε
(1− z) (8.55)

to cancel the UV divergence in (6.117), with the result that the real-emission contribution
for the renormalized density ε = 0 is

g2

16π2
f

[1,R]
q/q (ξ ) = g2

16π2

{
(1− ξ ) ln

[
μ2

ξm2 + (1− ξ )2M2

]
+ ξ (1− ξ )(4M2 −m2)

ξm2 + (1− ξ )2M2

}
.

(8.56)
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Renormalization of quark in quark

The renormalization coefficient times Z2 is therefore

(Z2Z)qq (z, g, ε) = δ(z− 1) − g2Sε

16π2ε
(1− z)+ . . . , (8.57)

so that

Zqq (z, g, ε) = δ(z− 1) + g2Sε

16π2ε

[
1
2δ(1− z)− 1+ z

]+ . . . (8.58)

It is easily verified at order g2 that this obeys the sum rule
∫ 1+

0 dz Zqq (z) = 1, as is
necessary so that the number sum rule is obeyed. From (8.31) and (8.33) then follows the
one-loop qq term in the DGLAP kernel:

Pqq (z) = g2

16π2

[− 1
2δ(1− z)+ 1− z

]+ . . . (8.59)

Scalar in quark

Similarly we can renormalize the first off-diagonal term, in the distribution of a scalar
parton in a quark from (6.118). The renormalization coefficient and the DGLAP kernel
are

Zφq(z) = − g2Sε

16π2ε
z+ . . . , (8.60)

Pφq(z) = g2

16π2
z+ . . . , (8.61)

with a corresponding renormalized value for fφ/q .

Verification of sum rules

It is readily checked that the quark number and momentum sum rules are obeyed at this
order: ∫ 1+

0
dz
[
Pqq (z)− Pqq(z)

] = 0, (8.62)

∫ 1+

0
dz z

[
Pqq (z)+ Pφq(z)+ Pqq(z)

] = 0. (8.63)

Note that these sum rules are written in their complete form, including a term for evolution
of a quark to an antiquark Pqq . Of course this last term is zero at one-loop order; the lowest
order in which the q → q occurs is order g4, from the graphs of Fig. 8.8.

Support properties

The continuum terms in all the above calculations of Zjj ′ and Pjj ′ should be considered to
have an implicit theta function to restrict z to lie between zero and one: θ (0 ≤ z ≤ 1).
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(a) (b) (c)

Fig. 8.8. Lowest-order graphs, order g4, for evolution of quark to antiquark.

8.8 Successive approximation method

I now outline an approach that creates a factorization formula like (8.5) as a series of
successive approximations, with the parton model as the first term. This will motivate the
technical proof, and will suggest a route for generalization in more complicated situations.

The parton model for the hadronic tensor Wμν for electromagnetic DIS was derived from
the handbag diagram as an approximation valid in the momentum region where the struck
quark is collinear to the target. We call this the leading-order (LO) approximation to the
Wμν , notated in Fig. 6.4(b). The graph and region continue to exist in the complete theory.
Of course, the approximation breaks down when the transverse momentum or virtuality of
the struck quark gets large, and there are graphs other than the handbag diagram. Let us
regard the complete Wμν as the LO approximation plus a remainder:

Wμν = Wμν
(LO) + Wμν −Wμν

(LO)

=
P

k

q

+

⎛
⎜⎝P

q
−

P
k

q
⎞
⎟⎠ . (8.64)

The hooks on the quark line of momentum k in the first term denote a parton-model
approximator. This means that k− and kT are replaced by zero in the part of the diagram
above the hook, and that projectors onto the leading power of the Dirac algebra are inserted.
The result is a good approximation in the collinear region. We define the approximator to
include an integral over all k, thereby obtaining a parton density, exactly as we defined
it. Although not explicitly notated, we define the parton density to be renormalized, so
that the LO approximation is finite. The unrestricted integral over k and the associated
renormalization are the only changes from the parton approximator defined in Sec. 8.2.2.

We now analyze the remainder term, in parentheses. The most general leading-power
contributions still have the form summarized in Fig. 8.2(a). However, if we take the hard-
scattering subgraph to be lowest order, i.e., to be the top rung only, then in the parenthesized
term in (8.64) this lowest-order case no longer gives a leading-power contribution, precisely
because the subtraction cancels the relevant region.
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Fig. 8.9. Topologies of graphs needed for NLO approximation. The hermitian conjugate of
graph (c) is also needed. UV counterterms are added to (c) and (d), as appropriate for the
interaction and the current.

Not

P

q

−

P

k

q

l

Fig. 8.10. Graphs like this with self-energy correc-
tions are in in the handbag category, and are not
used in Fig. 8.9.

Fig. 8.11. Subtraction graph.

For the leading approximation to the remainder term, we examine graphs of the form
of Fig. 8.9. At the bottom, we have a complete parton-target amplitude, and at the top, we
have a one-loop quantity. We are concerned with the case that the top loop is hard and the
lower bubble is target-collinear. There is a sum over the flavors of the lines of the graphs.
Notice that graph (a) is also among those included in the basic handbag diagram. Since
the lower bubble represents an infinite sum over all graphs with the given external lines,
it continues to represent the same quantity as in the handbag diagram. We do not include
the case that there is a self-energy on the vertical parton lines, as in Fig. 8.10: these are
included in the handbag category, for this part of the argument. To obtain the contribution
to the parenthesized term in (8.64), we must subtract the parton-model approximation to
graph (a), as symbolized in Fig. 8.11.

The graphs of Fig. 8.9 all have leading-power contributions when the momentum l of
the line from the lower bubble to the upper one-loop subgraph, is collinear to the target.
Contributions when l is larger will be dealt with in even higher-order corrections to the
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hard scattering. The first graph (a) also has a leading-power contribution when the line k

is target-collinear. But the subtraction, Fig. 8.11, cancels this contribution (to the leading
power of kT/Q). Thus the upper one-loop subgraph in all cases is dominated by large loop
momenta.

We therefore apply a parton-model approximation on the line l, and obtain the following
form for the NLO contribution to the structure tensor:

W μν
(NLO) =

P

q

l

+ etc. +

+

P

k

q

l

−

P

k

q

l

(8.65)

The lower part again is a parton density, which we define to be renormalized. The definition
of the approximator is that, in the upper part of the graph, l is replaced by just its plus
component: l �→ (l+, 0, 0T), with appropriate Dirac-algebra projectors. Thus the upper
factor is essentially the one-loop approximation for DIS on an on-shell parton of longitudinal
momentum l+. But there is a subtraction, to remove whatever was already taken care of
at LO.

Further improvements can be made simply by iterating the procedure. In place of (8.64)
we use

Wμν = W
μν
(LO) +W

μν
(NLO) +

(
Wμν −W

μν
(LO) −W

μν
(NLO)

)
, (8.66)

from which we obtain a further parton-model-like correction by analyzing the parenthesized
term. This is the next-to-next-to-leading order (NNLO) approximation to DIS. Repeating
the above procedure leads to a series of successive approximations that in fact correspond
to an expansion in powers of αs(Q).

8.9 Derivation of factorization by ladder method

We now make a complete derivation (Collins, 1998a) of factorization by using a decompo-
sition in terms of 2PI subgraphs just as we did in Sec. 8.3.6 to discuss renormalization of
parton densities.

8.9.1 Ladder expansion

The ladder decomposition is shown in Fig. 8.12, where B at the base of the ladders and
K for the rungs are the same as in Fig. 8.6. There are two new features. The first is that
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Fig. 8.12. Ladder decomposition of graphs for DIS. Each shaded bubble is 2PI in the vertical
channel, except that K and B include the two full propagators on their upper side.
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Fig. 8.13. Examples of topologies of graphs for the top A of ladder graphs for DIS in
Fig. 8.12. The lines and vertices are of any type allowed by the theory. The shortness of the
lines at the lower end indicates that these propagators are defined to be amputated.

because each current has two partonic lines we can have completely 2PI graphs. Their
sum we denote by D, and these graphs are power-suppressed in Q because they have no
decomposition of the generalized ladder form. The second new feature is that at the upper
end of the ladder graphs we have, not a vertex for a parton density, but the sum A of 2PI
graphs with two currents. Its expansion up to one-loop order is shown in Fig. 8.13.

Therefore we write a structure function (or the hadronic tensor Wμν) as

W = A
1

1−K
B +D, (8.67)

with exactly the same notation as in (8.15). The factor connected to the current has the
functional dependence A = A(q; k, j, c, c′, α, α′), where k is the momentum of the parton
on the lower side of A, j is its flavor, and c, c′, α and α′ are indices for the color and spin
of the parton, c and α on the left, and c′ and α′ on the right of the final-state cut.

8.9.2 Application of parton-model approximator

The proof of factorization generalizes to all orders the method of successive approximation
of Sec. 8.8. Its implementation is by an algebraic method using the parton approximator
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←−
T defined in (8.7) and (8.8), and the pole-part extractor

←−P used in Sec. 8.3 in the
renormalization of parton densities.

To explain the algebraic method, I first apply it to low-order terms in the method
of successive approximation, but applying it to the ladder sum (8.67). The first term is
obtained by applying the parton approximator at the lower end of A:

WELO = A
←−
T |V 1

1−K(1−←−P )
B. (8.68)

The parton approximator is applied to the complete top rung of the ladder, i.e., to A, rather
than just to the lowest-order rung. So to label the resulting approximation, I use “ELO” for
“extended leading order” rather than just “LO”. Unlike the use of the parton approximator
in Sec. 8.2, there are no longer any restrictions on the internal momentum of any of the
factors. But the parton densities are renormalized. This is accomplished by replacing the

1/(1−K) factor by 1/(1−K(1−←−P )) as already derived for the renormalization of parton
densities. To use this definition, we require that the pole-part operation is only applied within

the parton density, i.e., only between the | symbol and the
←−P symbol. The reason for the

emphasizing this is that the hard part A
←−
T | can have (finite) dependence on the UV regulator,

which should not affect the pole-part operation; the pole-part operation is concerned only
with defining the parton density, i.e., only with the objects to the right of the | symbol.

The WELO term correctly treats the region where the parton below the A bubble is
collinear. So in the remainder W −WELO, this region is suppressed. Therefore the region
giving the first leading contribution to W −WELO is where the hard subgraph consists of
both A and one neighboring rung K . To obtain the associated contribution, we exhibit this
first rung by writing the 1/(1−K) factor as

1

1−K
= 1+K

1

1−K
. (8.69)

Then the contribution in question is

WENLO =
[
AK − A

←−
T |V K(1−←−P )

]←−
T |V 1

1−K(1−←−P )
B

=
[
A(1−←−T |V )K + c.t.

]←−
T |V 1

1−K(1−←−P )
B. (8.70)

This is of the form of an ENLO coefficient convoluted with a complete renormalized parton
density. The factor of 1−←−T |V between A and the first rung K suppresses the collinear
region for the connecting momentum. A UV counterterm removes the UV divergence that
is thereby introduced.

8.9.3 General case

The organization of the full proof is first to construct what we call the remainder, in which
all leading behavior is subtracted out, and then to show that this remainder is the difference
between the exact hadronic tensor W and a factorized form.
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Remainder

The remainder is defined by the insertion of a 1−←−T |V factor between each rung in (8.67):

r =
∞∑

n=0

A (1−←−T |V )
[
K(1−←−T |V )

]n

B +D

= A
1

1− (1−←−T |V )K
(1−←−T |V ) B +D

= A (1−←−T |V )
1

1−K(1−←−T |V )
B +D. (8.71)

We now show that this is power suppressed. We also show that there are no extra UV
divergences, unlike the case in (8.68) and (8.70), so that no UV subtractions need to be
applied.

Before inserting 1−←−T |V , we recall that leading-power contributions come from
regions symbolized in Fig. 8.2(a). Thus inserting

←−
T |V between the hard and collinear

subgraphs gives a good approximation in this region. Hence, inserting a factor 1−←−T |V
gives a power suppression. In the general case, where we extend the loop-momentum inte-
grations out of the core of the region, the factor 1−←−T |V gives a suppression which we
can represent as (

highest virtuality in collinear

lowest virtuality in hard

)p

. (8.72)

Furthermore, in the rung A, closest to the virtual photon, we have virtualities of order
Q2, while in the rung B, closest to the target, we have virtualities of order M2. Within
a given rung, the leading-power contribution comes where all the lines have comparable
virtualities, since leading-power contributions with regions of very different virtualities
involve the structure of Fig. 8.2(a), with subgraphs connected by just two lines. Given
that in (8.71) we have a factor 1−←−T |V between every 2PI rung, there is a suppression
whenever there is a strong decrease of virtuality in going from one rung to its neigh-
bor to the right. Thus we find the ladder part of (8.71) has an overall suppression of
order (

M

Q

)p

, (8.73)

when it is compared to the structure function itself. The 2PI term D is power-suppressed
by itself, and thus the whole of r is power-suppressed, as appropriate for what we wish to
consider as a remainder.

This suppression of course gets degraded as one goes to higher order for the rungs,
since the lines within K can have somewhat different virtualities. The larger a graph we
have for K , the wider the range of virtualities we can have without meeting a significant
suppression.
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A potential problem arises because
←−
T removes kinematic restrictions and thereby allows

UV divergences to be induced, just as in the lowest-order approximation, (8.68). However,
the UV divergences arise from the same kind of two-particle reducible structures as the
leading regions, and the 1−←−T |V factors in r are just as effective at canceling the UV-
divergence regions as they are at canceling leading-power contributions. Thus in fact r is
finite and power suppressed. The UV divergences, with their attendant renormalization,
only need to be treated when we expand the products.

Factorized form for W − r

I now show that W − r factorizes. To present the algebra cleanly, I will first present the
proof without renormalization of the parton densities, in the UV-regulated theory.

From (8.67) and (8.71), we find

W − r = A

[
1

1−K
− 1

1− (1−←−T |V )K
(1−←−T |V )

]
B

= A
1

1− (1−←−T |V )K

[
1− (1−←−T |V )K − (1−←−T |V )(1−K)

] 1

1−K
B

= A
1

1− (1−←−T |V )K

←−
T | V 1

1−K
B. (8.74)

This proof looks like straightforward linear algebra. In fact, there is a subtlety that
←−
T is

defined to set masses to zero on its left. The quotient 1/[1− (1−←−T |V )K] is fundamentally
defined as the infinite sum

∑∞
n=0[(1−←−T |V )K]n, and the manipulations in (8.74) apply to

this definition just as they do in ordinary linear algebra.
The last factor on the last line, V [1/(1−K)]B is exactly a bare parton density, so we

see that W − r is of the form of some coefficient convoluted with a parton density. This is
a form of factorization, so we write

W =
∑

j

∫ 1+

x−

dξ

ξ
CB,j (Q/μ, ξ/x)fB,j (ξ ; μ)

+ terms with polarized parton densities+ power-suppressed

= CB ⊗ fB + polarized terms+ p.s.c. (8.75)

Here, “p.s.c.” denotes “power-suppressed correction”, and we have defined a parton density
by

fB,j (ξ ) = V
1

1−K
B, (8.76)

when the parton at V has flavor j and k+ = ξP+. For simplicity, we only indicate explic-
itly the term with unpolarized densities; the polarized terms are similar in structure. The
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coefficient function is

CB,j (Q/μ, ξ/x) = A
1

1− (1−←−T |V )K

←−
T . (8.77)

We use the “⊗” notation to indicate a convolution in ξ and a sum over parton flavor, defined
by the structure on the first line of (8.75).

We have one remaining complication, that of UV divergences. There are divergences
in the parton density factor and in the coefficient function. Of course, these divergences
cancel, since the left-hand side of (8.74) is finite, as we have already proved. As a first step,
let us apply a UV regulator, e.g., dimensional regularization. We have defined all the rung
factors as Green functions with renormalized fields. Thus the parton density fB,j (ξ ) used
in the above equations is a factor 1/Zj times the bare parton density defined in terms of
bare fields.

We now reorganize the (8.74) in terms of UV-finite quantities. From earlier work we
know that the renormalized parton density is the convolution of a renormalization factor
with the parton density fB

f = G⊗ fB. (8.78)

So we simply define the renormalized coefficient function to be

C = CB ⊗G−1, (8.79)

where the inverse in G−1 is in the sense of convolutions over ξ and matrix multiplica-
tion for parton flavor. Then, trivially CB ⊗ fB = C ⊗ f , and the factorization theorem
becomes

Wμν = Cμν ⊗ f + p.s.c.

=
∑

j

∫ 1+

x−

dξ

ξ
C

μν
j (Q/μ, ξ, x)fj (ξ ; μ)+ polarized terms+ p.s.c. (8.80)

8.10 Factorization formula for structure functions

In this section, we will convert the general structure of factorization, (8.80), into several
forms directly suitable for practical calculations, to be carried out in Ch. 9. The formulae
are also true in QCD, although their proof needs the enhancements to be given in Ch. 11.
So the treatment will be presented with reference to its QCD applications.

8.10.1 Factorization for hadronic tensor

Polarization dependence appears in the trace over spin indices between the parton density
and the hard-scattering factor. Exactly as in the parton model, Sec. 6.1, polarization can be
allowed for by introducing a helicity density matrix ρj (ξ ) for the parton initiating the hard
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scattering. Then factorization of the hadronic tensor has the form:

Wμν =
∑

j

∫ 1+

x−

dξ

ξ
Tr C

μν
j (q, ξP ; αs, μ) ρj (ξ ; μ) fj (ξ ; μ) + p.s.c.

= Cμν ⊗ ρf + p.s.c. (8.81)

With a slight change of notation, the hard-scattering coefficient, C
μν
j , has acquired helicity

indices, and is traced with the partonic helicity density matrix. It is to be thought of as
giving DIS on a parton target of flavor j and fractional longitudinal momentum ξ . There
is a sum over all parton flavors j and an integral over all kinematically accessible ξ . A
convenient notation for the integral over ξ , the sum over j and the trace with ρ is the
convolution symbol ⊗ in the last line.

As explained in Sec. 6.5, the combination of ρjfj can be written in terms of the
unpolarized densities fj and asymmetry densities �fj and δTfj for helicity and transversity,
for the case of a spin- 1

2 target. (A generalization is needed for higher spin targets like the
deuteron.)

We express C
μν
j in terms of scalar coefficient functions F̂ij by relations like those for

the regular structure functions, (2.20), except for the use of the momentum of the struck
(massless) parton instead of the momentum of the target hadron:

Tr C
μν
j ρj =

(−gμν + qμqν/q2
)

F̂1j (x/ξ,Q2)

+ (ξP̂ μ − qμξP̂ · q/q2)(ξ P̂ ν − qνξ P̂ · q/q2)

ξP̂ · q F̂2j (x/ξ,Q2)

+ iεμναβ qαSj,β

P̂ · q ĝ1j (x,Q2)+ F3 term+ extra gluon term. (8.82)

Here P̂ = (P+, 0, 0T) is a massless projection of the target momentum, so that k̂
def= ξP̂ is

the momentum of the struck parton, in the approximation that is used in the hard scattering.
An exact transcription of (2.20) would also include a ĝ2 structure function associated with
transverse quark spin. We omit it since ĝ2 is zero to all orders of perturbation theory
(Sec. 8.10.5). Therefore we need only the longitudinal polarization of the parton, and we
assign it a spin vector Sj,μ = λj k̂μ, where λj is the parton’s helicity. This is used with the
ĝ1 structure function.

In QCD, the gluon has spin 1, and when the hadronic target has spin greater than 1
2 ,

there is a possible term in the gluon’s density matrix that flips helicity by two units: see
Artru and Mekhfi (1990) and problem 7.11. This results in the “extra gluon term” in (8.82).
I have left it as a (probably academic) exercise, to sort out the details (problem 8.3).

8.10.2 Factorization for structure functions

To get factorization formulae for the structure functions, we insert (8.82) in the factorization
formula (8.81). Then we use the results from Sec. 6.5 that a parton in an unpolarized target
is itself unpolarized and that its helicity is proportional to the target helicity. These results
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were derived in a simple model theory, but they depend only on symmetry properties of the
theory, and are therefore generally true. Hence

F1 =
∑

j

∫ 1+

x−

dξ

ξ
F̂1j (Q/μ, x/ξ ; αs) fj (ξ ; μ)+ p.s.c., (8.83a)

F2 =
∑

j

∫ 1+

x−
dξ F̂2j (Q/μ, x/ξ ; αs) fj (ξ ; μ)+ p.s.c., (8.83b)

g1 =
∑

j

∫ 1+

x−

dξ

ξ
ĝ1j (Q/μ, x/ξ ; αs) �fj (ξ ; μ)+ p.s.c. (8.83c)

The second formula also applies to the longitudinal structure function FL
def= F2 − 2xF1.

Notice that:

• F1 and F2 only involve the unpolarized number densities;
• g1 only involves the helicity asymmetry density;
• in the formula for F2 the integration measure is dξ instead of dξ /ξ ;
• the coefficients are functions of x/ξ , rather than ξ and x separately;
• the transversity density δT fj does not appear;
• the structure function g2 does not have a formula. As we will see, its contribution to Wμν

is power suppressed, and therefore its leading-power approximation is zero.

The first two items depend on the parity invariance of the theory. In a parity non-invariant
theory, it would be possible, for example, for partons to be polarized even when the parent
hadron is unpolarized. We now give derivations of the other items.

8.10.3 Integration measure for F2

The changed integration measure for F2 is associated with its transformation under boosts
of the target momentum. In the hadronic tensor (2.20), it multiplies the tensor (P μ −
qμP · q/q2)(P ν − qνP · q/q2)/P · q, which is linear in P . Now the coefficient function
depends only on the momenta ξP̂ and q, but not on P̂ or ξ separately. Then in the
part associated with the F2 structure function, there appears the tensor (ξP̂ μ − qμξP̂ ·
q/q2)(ξP̂ ν − qνξ P̂ · q/q2)/ξP̂ · q, which scales linearly with ξ . To obtain the correctly
normalized structure function F2, we extract the factor ξ , which cancels the 1/ξ in the
integration measure in (8.80). (There is further slight mismatch between the tensors, by a
factor 1+ x2M2/Q2, which is irrelevant to leading power in Q.)

8.10.4 Functional dependence of partonic structure functions

Both the hadronic tensor Wμν and its hard-scattering counterpart C
μν
j are dimensionless.

Each of the partonic structure functions in (8.82) is also dimensionless, and the tensors
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multiplying them are independent of Q2. Power-counting in a renormalizable theory there-
fore shows that order-by-order in perturbation theory all these quantities behave like Q0

times logarithms of Q.
Each of the partonic structure functions in (8.82) is a Lorentz scalar, so the only kinematic

variables it depends on are the invariants constructed out of its external momenta, i.e., Q2

and ξP̂ · q = ξQ2/(2x). The structure functions are also dimensionless. Therefore their
independent arguments can be taken as Q/μ and x/ξ .

8.10.5 Transverse polarization

For the polarized structure functions, we first examine their scaling properties. In the Breit
frame, the proton is highly boosted, so we count its momentum P as of order Q. When it
has a longitudinal polarization λ, the spin vector S scales approximately as P , so that S is of
order Q also. The tensor iεμναβqαSβ/P · q associated with g1 therefore scales as the zeroth
power of Q, just like the tensors associated with F1 and F2. But the tensor multiplying g2

has the longitudinal part subtracted, in the Sβ − PβS · q/P · q factor; it is suppressed in
fact by order M2/Q2 for longitudinal polarization. Thus to leading power, for longitudinal
polarization, we have a contribution to g1 times its tensor, and this is proportional to the
longitudinal polarization λ of the target. Correspondingly, the factorization formula (8.83c)
for g1 uses the helicity parton density �f .

There remains the case of transverse spin, and associated with it the transversity distribu-
tions δTf . First we observe that the transverse components of the spin vector are invariant
under boosts in the z direction. For this case, the tensors multiplying both of g1 and g2 are
of order M/Q.

Now the only way transverse-spin dependence enters into the factorization (8.80) is
through the transversity density, and thus through a transverse polarization for quarks
entering the hard scattering and the coefficient function. But we set masses to zero in
the hard scattering, and as we now show, there is then exactly zero contribution from
transverse quark polarization. (As shown in Sec. 7.5.5, rotation invariance prohibits a gluon
distribution that is transverse-spin dependent.)

In the case of the lowest-order calculation, in Sec. 6.1.4, the reason for the zero contribu-
tion of transverse spin is quite elementary. In the parton-model hard scattering (6.19), spin
dependence arises from the factor /̂k(1− γ5λj − γ5b

i
jTγ i). The transverse-spin dependent

term, with bjT, gives a trace of an odd number of elementary Dirac matrices which is always
zero. (Recall that γ5 = iγ 0γ 1γ 2γ 3 so that it counts as four elementary Dirac matrices.)

The same property generalizes to higher order. This is particularly clear in QCD. Let us
go around the quark loop in which the struck quark is involved. There is an equal number
of propagator numerators and vertices for gluons and photons. Except for the external line
factor, each vertex and propagator numerator contains one Dirac matrix, giving a total
number that is even. (This is where the masslessness of the calculation enters.) This is
modified only on the external line factor with its extra odd number of Dirac matrices. Thus
we get zero for the transverse spin dependence, as claimed.
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The presence of subtractions in the hard scattering [see (8.77)] does not affect this
argument. The subtractions involve kinematic approximants and the insertion of spinor
projection matrices PA and PB . The spinor projections each have two elementary Dirac
matrices, so that they leave unchanged the evenness or oddness of the number of Dirac
matrices.

With couplings to a scalar field, as in a Yukawa theory, there is no Dirac matrix at
the scalar vertex. Thus we can get an even number of Dirac matrices in the trace with a
transversely polarized quark provided that we have an odd number of scalar vertices on the
quark line. But for the leading power in Q, we must keep only those interactions with a
dimensionless coupling. All such couplings (in a four-dimensional theory) involve an even
number of scalar fields, as in a φ4 coupling or an interaction between a scalar field and a
gauge field. If there is an odd number of scalar vertices on the quark loop including the
external line, then some other quark loop also has an odd number of scalar vertices. This
other loop has no transverse polarization matrix, and therefore an odd number of Dirac
matrices, and therefore its Dirac trace vanishes.

The result is that in all cases the coefficient function with the transversity distribution
is zero at the leading power of Q. Now transverse-spin dependence of the hard scattering
arises from off-diagonal terms in the helicity density matrix. So the result on g2 can be
expressed by saying that in the hard scattering there is helicity conservation, i.e., there is
no interference between a left-handed quark and a right-handed quark:

L R

= 0. (8.84)

Note that helicity is defined in only at space-time dimension 4. But our derivation used only
the evenness or oddness of the number of Dirac matrices along quark lines, so the derivation
applies without an anomaly when we use dimensional regularization in calculations.

Discussion of g2 and of transverse-spin dependence in fully inclusive DIS therefore
requires us to go beyond the leading power of Q, in fact to twist-3 operator contributions
in the jargon of the subject. This is beyond the subject matter of this book. Unlike the case
for the unpolarized and helicity parton densities, DIS is not a good place to measure the
transversity density.

The whole of the above discussion assumed the target had spin 1
2 , in which case the

target’s spin state is completely specified by the spin vector Sμ. More general cases, notably
spin 1, as for a deuteron target, can be discussed. But the results are of mostly lesser interest.

8.11 Transverse-spin dependence at leading power?

An interesting line of research over the past two decades has found useful observables
that depend on transverse spin at the leading power. In this section, we give a general
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PB

PA

qL

LR

R

Fig. 8.14. At leading power, LO Drell-Yan has a double-transverse spin asymmetry from
amplitudes such as this. Both hadrons are transversely polarized.

characterization of these observables. See, e.g., Boer (2008) for a detailed review, and see
Sec. 13.16 for examples.

The whole discussion is conditioned by chirality conservation in the massless limit and
hence in the hard scattering. Chirality conservation is the correct generalization of helicity
conservation when we include antiquarks; it means the helicity of a quark and the negative
of helicity for an antiquark. Thus the vertices of gauge bosons couple a left-handed quark
to a left-handed quark or to a right-handed antiquark, but not to a right-handed quark or a
left-handed antiquark.

There are two ways of getting dependence on transverse spin. One is to find a more
general hard scattering that has off-diagonal helicity dependence. The other is to find parton-
density-like objects with more general spin dependence than ordinary parton densities.

8.11.1 Hard scattering with transverse spin

Transverse spin gives one unit of helicity flip in a parton density, and this must be matched in
the hard scattering to get a leading-power effect. To avoid violating chirality conservation,
we need a hard scattering with (at least) another pair of external quark lines, so that we
have two compensating helicity flips (Artru and Mekhfi, 1990). Such processes are needed
to measure transversity densities.

One possibility is in hadron-hadron collisions, where the hard scattering is initiated by
two partons, one out of each hadron (to be treated in detail in Ch. 14). A classic example is
the Drell-Yan process, Sec. 5.3.7, where the lowest-order hard scattering is quark-antiquark
annihilation to a virtual photon. If both initial-state hadrons are transversely polarized, then
(Ralston and Soper, 1979) we can have a leading-power double-spin asymmetry, as shown
in Fig. 8.14.

Another similar possibility is in semi-inclusive DIS, where the cross section is differential
in a final-state hadron. In Ch. 12, we will generalize factorization to include a fragmentation
function that parameterizes the conversion of an outgoing quark to a jet containing the
detected hadron(s). Then the interference diagram Fig. 6.2, which gave zero in ordinary
DIS, gets a fragmentation function inserted into it, Fig. 8.15. The fragmentation function
needs to be off-diagonal in helicity for our purposes. It could be that the outgoing hadron
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Fig. 8.15. Interference between left-handed and right-handed initial quark in DIS with the
fragmentation providing the necessary helicity flip.

has its polarization measured; a practical example (Efremov, 1978; Artru and Mekhfi,
1990) is production of the �0, whose decay allows its polarization to be measured. In
addition, since fragmentation is non-perturbative, the chiral symmetry breaking of full
QCD allows the fragmentation function to break chirality conservation while keeping
leading-power behavior (Collins, Heppelmann, and Ladinsky, 1994), provided a suitable
final-state distribution is measured.

8.11.2 Transverse-momentum-dependent densities, etc.

Finally, some reactions require the use of transverse-momentum-dependent (TMD) parton
densities (and/or fragmentation functions). As we will see in Ch. 13, a TMD number density
can have a correlation between the azimuthal angle of a parton and transverse spin of the
target. Thus at leading power, we can have dependence on the transverse spin of a target
hadron without needing transverse-spin dependence in the hard scattering.

A considerable number of variations on this idea exist, especially when fragmentation
functions are included (Boer, 2008).

Exercises

8.1 (****) In a renormalizable theory, it is natural to define the light-front creation and
annihilation operators by Fourier transformation of the renormalized fields instead of
bare fields, since it is the renormalized fields that have finite Green functions. For a
field with wave function renormalization factor Z, the commutation relations of the
creation and annihilation operators are enhanced by a factor 1/Z, which is infinite
unless the anomalous dimension of the field is zero at the UV fixed point. This messes
up the normalizations of the basis states (7.23) by an infinite amount, in the limit that
the UV cutoff is removed.

Find a good way of specifying basis states in the renormalized theory in the limit
that the UV cutoff is removed. What is the relation between these states and the
standard basis states in the cutoff theory? [Conjectures and suggestions: 1. Some of
the techniques used in treating factorization later in this book may be useful. 2. Fourier-
transforming at fixed x+ corresponds to maximal uncertainty on k−. It may help to
perform a local average over x+. 3. Useful references include: Yamawaki (1998);
Nakanishi and Yamawaki (1977); Heinzl (2003); Sec. 4 of Heinzl and Ilderton (2007);
Nakanishi and Yabuki (1977); Steinhardt (1980).]
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8.2 (****) Find the relation between parton densities and the basis found in problem 8.1.

8.3 (***) Extension of problem 6.8 to full QCD: Generalize the work in this chapter to
deal with DIS on a polarized spin-1 target like the deuteron. What is the form of the
extra gluonic term indicated in (8.82)? What is the corresponding NLO hard-scattering
coefficient corresponding to this extra term? Notes:
• Much of the necessary work on defining structure functions has been done by

Hoodbhoy, Jaffe, and Manohar (1989). But it is good to check their results. Note
that they used the OPE rather than factorization for their QCD analysis. But they
restricted their attention to the quark operators, and did not indicate what to do with
gluon operators.

• Since the gluon has spin 1, their analysis definitely needs generalization to deal with a
gluon-induced hard scattering. You will need to work out a version of their analysis
to the hard-scattering coefficient for a gluon C

μν
g . This will result in significant

changes, since there are no gluons of helicity zero. Hoodbhoy, Jaffe, and Manohar
(1989) also normalized the polarization vector Eμ of a spin-1 particle of mass M to
E2 = −M2, which is clearly a bad idea for a massless particle.

• You should find another polarized gluon density related to linear gluon polarization
(so that its operator gives a helicity flip of 2 units); see Artru and Mekhfi (1990).

• You should match the results of this problem with your solution of problem 7.11
and the results in Artru and Mekhfi (1990).

• In the light of the above, you may find better characterizations of the structure
functions on a spin-1 target.

• I do not guarantee the phenomenological importance of the results of solving this
problem.
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Corrections to the parton model in QCD

In Ch. 8, factorization was formulated for DIS. The proofs were, however, restricted to
non-gauge theory. But the results remain true in QCD, with some complications to be
treated in Ch. 11.

So in this chapter we will simply assume factorization holds in QCD, and on that basis
introduce methods of applying it phenomenologically. In QCD, with an unpolarized target,
we will calculate: (a) the first correction terms to the hard scattering for DIS, and (b) the
leading term in the kernel for DGLAP evolution of quark and gluon densities. These are
the primary phenomenological tools for quantitatively analyzing DIS in QCD.

The calculations also provide an opportunity to introduce some of the complications
that arise in QCD and that must be taken into account in a correct proof of factorization.

The results on which this chapter depends are: factorization for the hadronic tensor,
(8.81); factorization for the structure functions (8.83); the decomposition of the partonic
hard scattering tensor in terms of parton structure functions (8.82); the definition of parton
densities in QCD in Sec. 7.5; the structure of their renormalization (8.11); the corresponding
DGLAP evolution equations, from Sec. 8.4.

9.1 Lowest order

The parton-model calculation in (2.28) gives the first terms in the expansion of the partonic
structure functions in powers of αs :

F̂1j (Q2, x/ξ ; αs, μ) = e2
j

2
δ(x/ξ − 1)+O(αs), (9.1a)

F̂2j (Q2, x/ξ ; αs, μ) = e2
j δ(x/ξ − 1)+O(αs), (9.1b)

and of course F̂jL = 0+O(αs). These are the lowest-order (LO) terms, and they apply to
quarks; the gluonic coefficients start at order αs .

9.2 Projections onto structure functions

In Feynman-graph calculations we will use projectors of a hadronic or partonic tensor onto
corresponding structure functions. In the partonic case these follow simply from (8.82). It

284
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is convenient to use the longitudinal structure function:

F̂Lj
def= F̂2j − 2

x

ξ
F̂1j = 8(x/ξ )3

Q2
k̂μ

1

2
Tr C

μν
j k̂ν, (9.2a)

F̂2j = x/ξ

1− ε

(
−gμν

1

2
Tr C

μν
j

)
+ 3− 2ε

2− 2ε
F̂jL, (9.2b)

where we give the result for a general space-time dimension 4− 2ε, as needed later. The
factor 1

2 Tr projects onto the partonic tensor for an unpolarized parton.

9.3 Complications in QCD

9.3.1 Use of on-shell quarks and gluons

It would be possible to obtain hard-scattering coefficients and DGLAP kernels from direct
use of the subtractive methods of Ch. 8. Instead we use a method where we start from
calculations of structure functions and parton densities with massless quarks and gluons
used as the target states.

Now starting from calculations of structure functions and parton densities on some set
of target states, we can use the factorization and renormalization formulae to deduce the
hard-scattering coefficient functions and the renormalization factors (of parton densities).
From the renormalization factors, we deduce the DGLAP kernels. It is the coefficient
functions and the DGLAP kernels that are of actual phenomenological interest, since they
are perturbative.

Because these quantities are independent of the target state, we are entitled to use what-
ever targets are convenient for calculations. This leads us to use single on-shell quarks
and gluons as the target states, with all calculations done in low-order perturbation the-
ory. Moreover, the quantities to be calculated are independent of mass, so we also set
masses to zero everywhere, since this considerably simplifies calculations of Feynman
graphs.

Thus a noteworthy feature of many QCD calculations is that they use on-shell quarks
and gluons as the target state. This is in striking contrast to the fact that (as far as is currently
known) all true particle states in QCD are composites, i.e., bound states like the proton.
Moreover there are IR and collinear divergences in perturbative calculations with on-shell
massless target states. These can be regulated satisfactorily and cancel in the calculations
of the coefficients, which are all short-distance dominated.

9.3.2 Choice of gauge

Another complication in QCD concerns the choice of gauge. We could use A+ = 0 gauge,
in which case the structure of the leading regions, for renormalization and for factorization,
appears to be simplified to be the same as in a non-gauge theory (Ch. 8). However,
calculations are plagued by divergences associated with the 1/k+ singularity in the gluon
propagator. The divergences cancel, but in a non-trivial manner. This of course indicates
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that extensions are needed for the proofs of factorization and renormalization that we gave
in Secs. 8.3.6 and 8.9.

The alternative, which we will adopt here, is to use Feynman gauge (or a standard
covariant gauge). The necessary proofs will come later. For the purposes of calculations,
we simply rely on the full statement of renormalization (and factorization) applied with
gauge-invariant parton densities. We will in fact still find extra divergences, characterized
as rapidity divergences. We will see that the rapidity divergences cancel, non-trivially. The
Feynman gauge lends itself better to good derivations of renormalization and factorization
than the A+ = 0 gauge.

It is interesting that there was a long-standing disagreement for calculations at two-
loop order for the DGLAP kernels. This was between a calculation in light-cone gauge
(Furmanski and Petronzio, 1980), and ones in Feynman gauge (Floratos, Ross, and Sachra-
jda, 1979; Gonzalez-Arroyo and Lopez, 1980; Floratos, Lacaze, and Kounnas, 1981). It
turned out that the light-cone gauge calculation is the correct one. The actual calculations are
done with massless quarks and gluons; one has a choice between on-shell calculations and
off-shell calculations. As we will see, on-shell calculations are much easier algorithmically,
but suffer from various kinds of IR and collinear divergence that need to be disentangled
from the UV divergences of interest. Off-shell, there are extra parton-density-like objects
defined by operators other than the gauge-invariant ones needed in physical matrix ele-
ments. A subtle interaction between the IR problems and the non-gauge-invariant operators
needed to be sorted out (Hamberg and van Neerven, 1992; Collins and Scalise, 1994), over
a decade later than the original calculations. See Sec. 11.4 for some more details.

These problems will not affect our one-loop calculations.

9.4 One-loop renormalization calculations in QCD

In this section, we calculate the one-loop renormalization of the parton densities in QCD,
starting from the definitions (7.40) and (7.43) for the bare parton densities. Then we
will deduce one-loop values for the DGLAP kernels, which are phenomenologically very
important in determining the evolution of parton densities with scale. The results are also
essential to calculations of the hard-scattering coefficient functions.

9.4.1 General principles of calculation

Just as in our calculations in Yukawa theory, Sec. 8.7, we work with target states that
are in turn a gluon or any flavor of quark. The primary new feature is that each parton
density has a Wilson line, for which the Feynman rules were given in Figs. 7.10–7.12. The
renormalization coefficients are adjusted so that the renormalized parton densities defined
by (8.11) have no UV divergences. The general notation for the expansions in αs was given
in (8.49), and the relation between the n-loop expansion of the bare and renormalized parton
densities was given in (8.52).
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Fig. 9.1. (a) One-loop graph for renormalization of density of quark in gluon. (b)–(d)
Graphs that are zero when the gluon polarization is chosen to obey e+p = 0.

At one loop this is simple, because of the trivial zero-loop terms (8.50) and (8.51)
for the renormalization and the parton densities. The factorized form for renormaliza-
tion thus shows that the one-loop renormalized parton density in a quark or gluon tar-
get is the sum of the one-loop bare parton density and the one-loop renormalization
coefficient:

f
[1]
j/k(ξ ) = (Z−1

2j f )[1]
(0)j/k(ξ )+ (Z2jZ)[1]

jk (ξ, g, ε)

= (Z−1
2j f )[1]

(0)j/k(ξ )+ Z
[1]
2j δjkδ(ξ − 1)+ Z

[1]
jk (ξ, g, ε). (9.3)

To obtain this, we wrote the bare parton density as Z2j (Z−1
2j f(0)j/k), where Z2j is the wave

function renormalization for the field for parton j . Then we separated out the one-loop
terms for the Z2j and for (Z−1

2j f(0)j/k). The reason is that (Z−1
2j f(0)j/k) is the parton density

defined with renormalized fields instead of bare fields, so that it is a natural object to
compute in perturbation theory.

We now apply the above formula to each possibility for j and k.

9.4.2 Quark in gluon

The simplest calculation is for the order g2 off-diagonal gluon-to-quark term, i.e., in (9.3)
we set k to a gluon and j to any quark flavor. The target state is a on-shell gluon with
a physical polarization vector e

μ
p that has zero plus and minus components. The single

graph we need is shown in Fig. 9.1(a). Since e+p = 0, graphs (b)–(d), in which the gluon
attaches to the Wilson line, are zero. [Generally the polarization vector of a on-shell gluon
(or photon) of momentum p must obey p · ep = 0, and ep · e∗p = −1. It is arbitrary up to
a gauge transformation, i.e., up to the addition of a multiple of p. The choice of a gauge
condition on the polarization vector may be made separately for each on-shell gluon. We
have chosen the condition e+p = 0.]
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A straightforward application of the Feynman rules gives the value of the bare graph
(before renormalization):

g2

16π2
f

[1]
(0),q/g(ξ ) = −TF g2μ2ε

∫
dk− d2−2ε kT

(2π )4−2ε

2πδ
(
(p − k)2 −m2

q

)
(k2 −m2

q)2

× Tr
γ+

2
(/k +mq)/ep(/k − /p +mq)/e∗p(/k +mq).

= g2TF (4πμ2)ε

8π2�(1− ε)

∫ ∞
0

dk2
T

k−2ε
T

(k2
T +m2

q)2

×
{

(k2
T +m2

q)

[
1− 2ξ (1− ξ )

1− ε

]
+m2

q

2ξ (1− ξ )

1− ε

}

= g2TF

8π2

(
m2

q

4πμ2

)−ε

�(ε)
[
(1− ξ )2 + ξ 2

]
. (9.4)

The overall minus sign in the first line arises because of the fermion loop. For information
about TF and other group theory coefficients, see Sec. A.11. The dependence on the direction
of the polarization vector has dropped out because of invariance under rotations around the
z axis. Unlike the case of our later calculations we have kept a non-zero mass.

The renormalization counterterm Z[1]
qg in (9.3) is added to give a finite result at ε = 0. In

the MS scheme

g2

16π2
Z[1]

qg (z) = −g2TF

8π2

Sε

ε

[
(1− z)2 + z2

]
. (9.5)

From the QCD version of (8.33), the corresponding term in the DGLAP kernel is

g2

16π2
P [1]

qg (z) = g2TF

8π2

[
(1− z)2 + z2

]
. (9.6)

To this order the finite renormalized density of a quark in a gluon is

g2

16π2
f

[1]
q/g(ξ ) = g2TF

8π2

[
(1− ξ )2 + ξ 2

]
ln

μ2

m2
q

. (9.7)

This calculation, with its non-zero quark mass, will appear as a subtraction component
in calculations of hard-scattering coefficients for heavy quark production. But the MS
renormalization coefficient is independent of mass, so its calculation can equally well be
performed with a zero quark mass. Moreover hard-scattering calculations, which we will
examine later, are considerably simplified when masses are neglected with respect to the
hard scale Q. So we now examine what happens when we set mq = 0. The bare graph’s
integral is now

g2TF (4πμ2)ε

8π2�(1− ε)

∫ ∞
0

dk2
T

k−2ε
T

k2
T

[
1− 2ξ (1− ξ )

1− ε

]
. (9.8)
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Fig. 9.2. One-loop graphs for renormalization of density of quark in quark. Hermitian
conjugates of (a) and (b) should be added. As explained in the text, graphs with a quark
self-energy graph need not be considered explicitly, and graphs where the gluon connects
the Wilson line to itself are zero.

The integral is of a simple power of kT, which is elementary compared to (9.4), with its
beta function. However, the integral has an extra divergence at kT = 0. This is a collinear
divergence, since it happens when the quark and antiquark are parallel to the gluon. Dimen-
sional regularization regulates both the UV and the collinear divergence, but only by going
in opposite directions in ε. Even so, such integrals can be consistently defined (e.g., Collins,
1984, Ch. 4) and it is a theorem that integrals of a power of the integration variable are
zero in dimensional regularization. Thus the collinear and UV divergences are equal and
opposite. The UV pole can be obtained by examining the part of the integral in (9.8) from
a non-zero value of kT to infinity. Then the renormalized value of the graph is the negative
of the UV pole:

g2

16π2
f

[1]
q/g(ξ ; m = 0) = g2

16π2
f

[1]
(0)q/g(ξ ; m = 0)+ g2

16π2
Z[1]

qg (z)

= 0− g2TF

8π2

Sε

ε

[
(1− ξ )2 + ξ 2

]
. (9.9)

That the renormalized value is collinear divergent reflects the masslessness of both the
quark and the gluon, and that the asymptotic scattering states do not obey the standard
rules. Of course, neither the massless limit (for quarks) nor the existence of an isolated
gluon (or quark) is a feature of real QCD. As already stated, such massless calculations are
useful as components of calculations of hard-scattering coefficients, for which the massless
limit does exist, as we will verify explicitly. Thus the existence of a collinear (or other kind
of IR) divergence in a renormalized partonic matrix element is not a fundamental problem.

9.4.3 Quark in quark

We next apply the same principles to the density of a quark in a quark, for which the
one-loop graphs are shown in Fig. 9.2, with virtual gluon emission in graph (a) and real
gluon emission in graphs (b) and (c). There is, in principle, a term where both ends of the
gluon attach to the Wilson line. But as we will review below, this term is effectively zero.

We do not include a self-energy correction for the incoming quark, since its renormal-
ization is done by a counterterm in the Lagrangian. Indirectly its effects will appear, in the
renormalization factor of the parton density, because of the Z2 term in (9.3).
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Gluon polarization sum

In the graphs with real gluon emission, we use a physical gluonic final state, so that the sum
over gluon polarizations, is a sum over physical (transverse) polarizations for the gluon.
However, very generally, the sum over physical final states can be extended to a sum over
all final states (including when necessary ghost-antighost pairs, which will not concern
us here). This is shown in field theory textbooks (e.g., Ch. 11 of Sterman, 1993) under
the heading of “Unitarity of the S-matrix”. Thus we may replace the sum over transverse
gluon polarizations in Figs. 9.2(b) and (c) by the same numerator −gαβ that appears in the
Feynman-gauge gluon propagator. Since g++ = 0, graphs where both ends of the gluon
attach to the Wilson line are zero, so we omit these graphs.

The proof at the level of the emission of one gluon of momentum l goes as follows.
Representatives of physical polarizations obey l · e = 0, and it is easy to check that the
polarization sum obeys∑

phys pols.

eα(eβ)∗ = −gαβ + lαbβ + bαlβ = −gαβ + terms giving zero by WI, (9.10)

where b is some vector. The terms with a factor l give zero by a Ward identity, after a sum
over graphs.

Virtual correction

The virtual gluon correction in Fig. 9.2(a) (with its hermitian conjugate) gives

g2

16π2
f

(a+a†)
(0),q/q (ξ ) = 2δ(p+ − ξp+)

−ig2CF μ2ε

(2π )4−2ε

×
∫

d4−2ε l
Tr γ+

2
/lγ+ /p

2

(l2 + i0)[(p − l)2 + i0](−p+ + l+ + i0)

= −δ(1− ξ )
g2CF (4πμ2)ε

4π2�(1− ε)

∫ 1

0
dα

α

1− α

∫ ∞
0

dl2
T

l−2ε
T

l2
T

, (9.11)

where α = l+/p+. The missing steps are to express the integral in light-front coordinates,
and then to perform the l− integral by contour methods. We have chosen to do the calculation
with all masses set to zero. As before, the transverse-momentum integral is of the scale-free
kind that gives zero. The negative of the UV divergence gives the graph’s contribution to
the renormalization:

g2

16π2
(Z2Z)(a+a†)

qq (z, g, ε) = g2CF Sε

4π2ε
δ(1− z)

∫ 1

0
dα

α

1− α
. (9.12)

Notice that we have now explicitly needed to show the factor of Z2 in the renormalization
factor.

An important new feature is that there is an unregulated divergence in the integral over
α at α = 1. We will see that the divergence cancels against a similar divergence in graph
(b), but it is first worth examining the source of the divergence. There are multiple sources
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of divergence in the integral in the last line of (9.11), and they each have a different status
for our ultimate phenomenological uses of the results of our calculations. So we need to
make their nature apparent. We first insert non-zero quark and gluon masses, mq and mg ,
in the calculation to regulate with the IR problems. It is readily checked that the effect is to
replace the 1/l2

T factor in (9.11) by

1

l2
T +m2

gα +m2
q(1− α)2

. (9.13)

Now, when the gauge symmetry is non-abelian, as in QCD, a non-zero gluon mass is
not allowed. However, to understand the divergences we temporarily consider the same
calculation in an abelian theory, where a non-zero gauge boson mass can be used.

With the non-zero masses, there is no longer a divergence at lT = 0, but we still have a
divergence at α→ 1. Relative to the simpler parton densities which we calculated earlier,
the 1/(1− α) singularity arises from the Wilson-line denominator. After a contour defor-
mation, the divergence occurs when the (+,−, T) components of the gluon momentum
are of order ((1− α)p+, l2

T/((1− α)p+), lT), for fixed lT. The rapidity of the gluon goes
to−∞; the gluon can in fact be regarded as collinear to the Wilson line, which has rapidity
y = 1

2 ln(n+/n−) = −∞. The quark goes far off-shell here.
So we call the divergence at α = 1 a rapidity divergence. The region evidently has

nothing to do with the parton-model physics that a parton density is supposed to capture.
When we investigate transverse-momentum-dependent parton densities, we will need to
use a Wilson line with a finite rapidity to get an appropriate definition with no rapidity
divergence. But for an integrated density we will see a cancellation.

Notice from the denominator in (9.13) that if the gluon mass is zero, there is in addition
a divergence at lT = 0 and α = 1. This is just like the IR divergence in QED. Finally, if
also the quark mass is zero, there is also a divergence when the gluon is collinear to the
initial state (at lT = 0 and α �= 0, 1).

Real correction, first part

Figure 9.2(b) plus its hermitian conjugate give

g2

16π2
f

(b+b†)
(0),q/q (ξ ) = 2

−g2CF μ2ε

(2π )4−2ε

∫
d2−2ε kT dk− 2πδ((p − k)2)

Tr γ+
2

/kγ+ /p

2

k2(p+ − k+)

= g2CF (4πμ2)ε

4π2�(1− ε)

ξ

1− ξ

∫ ∞
0

dk2
T

k−2ε
T

k2
T

, (9.14)

The minus sign in the first line arises from the gluon numerator, which is−gαβ in accordance
with the discussion around (9.10). Notice that this formula is almost the same as the
integrand for the virtual correction, which comes from a graph related by moving the final-
state cut. In fact, we can get the virtual term from the above formula by: (1) changing ξ to
α and integrating over it; (2) changing the label of the transverse momentum; (3) inserting
a delta function; (4) reversing the sign. If we integrated over ξ (from 0 to 1 of course), there
would be a perfect cancellation.
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The corresponding contribution to the renormalization is

g2

16π2
Z(b+b†)

qq (z, g, ε) = −g2CF Sε

4π2ε

z

1− z
. (9.15)

9.4.4 Cancellation of divergence: the plus distribution

All of the quantities involved – parton densities, renormalization factors, DGLAP kernels –
have rapidity divergences in individual graphs. For a systematic treatment, we must regard
all of these quantities not as ordinary functions, but as a generalized functions. That is, they
only have numerical values when integrated with a smooth test function. After this, we will
see a cancellation of the rapidity divergences.

So we integrate the sum of graphs (a) and (b) (plus conjugates) with a smooth function
T (ξ ), to obtain

g2

16π2
f

(a+b+h.c.)
(0),q/q [T ]

def= g2

16π2

∫
dξ f

(a+b+h.c.)
(0),q/q (ξ ) T (ξ )

= g2CF (4πμ2)ε

4π2�(1− ε)

∫ 1

0
dξ

ξ [T (ξ )− T (1)]

1− ξ

∫ ∞
0

dk2
T

k−2ε
T

k2
T

. (9.16)

To obtain the contribution from the virtual graph, we used the δ(ξ − 1) factor to perform
the ξ integral, and then changed the name of the variable α to ξ . The divergence at ξ → 1
has now canceled.

To express these graphs directly in ξ space, it is convenient to define the so-called plus
distribution: ∫ 1

0
dx

(
1

1− x

)
+

T (x)
def=
∫ 1

0
dx

T (x)− T (1)

1− x
. (9.17)

We will often meet this distribution multiplied by polynomials in ξ , in which case we will
put the + subscript on the denominator:∫ 1

0
dx

A(x)

(1− x)+
T (x)

def=
∫ 1

0
dx

A(x)T (x)− A(1)T (1)

1− x
. (9.18)

Then the combination we need in the sum of graphs is∫ 1

0
dξ

[T (ξ )− T (1)]ξ

1− ξ
=
∫ 1

0
dξ

[
ξT (ξ )− T (1)

1− ξ
+ T (1)

]

=
∫ 1+

0
dξ

[
ξ

(1− ξ )+
+ δ(ξ − 1)

]
T (ξ ), (9.19)

so that the sum of graphs (a) and (b) is

g2

16π2
f

(a+b+h.c.)
(0),q/q (ξ ) = g2CF (4πμ2)ε

4π2�(1− ε)

[
ξ

(1− ξ )+
+ δ(ξ − 1)

] ∫ ∞
0

dk2
T

k−2ε
T

k2
T

. (9.20)
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Real correction, second part

Figure 9.2(c) gives no such complications. Its value is

g2

16π2
f

(c)
(0),q/q (ξ ) = −g2CF μ2ε

(2π )4−2ε

∫
d2−2ε kT dk− 2πδ((p − k)2)

Tr γ+
2

/kγ μ /p

2 γμ/k

(k2)2

= g2CF (4πμ2)ε

8π2�(1− ε)
(1− ξ )(1− ε)

∫ ∞
0

dk2
T

k−2ε
T

k2
T

. (9.21)

Total one-loop value for renormalization and DGLAP kernel

We can now combine the UV divergences from the various graphs with the Z2 term in (9.3),
whose value is in (3.23). Then the one-loop renormalization of the quark density is

g2

16π2
Z

[1]
jk (z; quark) = −g2CF δjk

8π2

Sε

ε

[
1+ z2

(1− z)+
+ 3

2
δ(z− 1)

]
. (9.22)

From (8.31) and (8.33), the resulting DGLAP kernel is

g2

16π2
P

[1]
jk (z; quark) = g2CF δjk

8π2

[
1+ z2

(1− z)+
+ 3

2
δ(z− 1)

]

= g2CF δjk

8π2

[
2

(1− z)+
− 1− z+ 3

2
δ(z− 1)

]
. (9.23)

9.4.5 Gluon-in-gluon and gluon-in-quark

Similar calculations can be done for the case of a gluon in a gluon, and for a gluon in a
quark. The actual calculations we leave as an exercise, with the results being (Altarelli and
Parisi, 1977)

g2

16π2
P [1]

gg (z) = g2

8π2

{
2CA

[
z

(1− z)+
+ 1− z

z
+ z(1− z)

]
+ δ(z− 1)

11CA − 4nf TR

6

}
,

(9.24)

g2

16π2
P [1]

gq (z) = g2CF

8π2

[
1+ (1− z)2

z

]
. (9.25)

9.5 One-loop renormalization by subtraction of asymptote

We saw in Sec. 3.4 that UV renormalization, at least at one-loop order, could be imple-
mented by subtraction of the asymptotic large transverse-momentum asymptote of a Feyn-
man graph. This enabled us to give a strictly four-dimensional interpretation of minimal
subtraction.
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In this section we show how to apply this method to the renormalization of parton
densities. This will serve two aims. One is to show how to make a physically appropriate
choice of the renormalization scale μ. The second aim concerns calculations of hard-
scattering coefficients, which normally employ massless quarks and gluons. At intermediate
stages of the calculations, collinear and soft divergences appear, which cancel in the final
result. Generally dimensional regularization is used to regulate the divergences, but it is
useful to show how to work with a purely four-dimensional integral. One virtue of this
method is to allow the immediate use of the compendium of purely four-dimensional
amplitudes in Gastmans and Wu (1990).

It is important that our results have extra finite counterterms compared with the illustra-
tive example in Sec. 3.4.

9.5.1 Quark in gluon

The unsubtracted one-loop integral for the density of a quark in a gluon is (9.4). The
renormalized value is given by adding an MS counterterm, obtained from the renormaliza-
tion term (9.5) by substituting z �→ ξ . We write the counterterm as the integral over the
asymptote of the original integrand plus a finite correction Rq/g , to be determined:

− g2TF

8π2

Sε

ε
[1− 2(1− ξ )ξ ]

=− (4πμ2)ε

�(1− ε)

g2TF

8π2

∫ ∞
μ2

dk2
T

(k2
T)1+ε

[
1− 2(1− ξ )ξ

1− ε

]
+ Rq/g

=− g2TF

8π2

(4π )ε

ε�(1− ε)

[
1− 2(1− ξ )ξ

1− ε

]
+ Rq/g, (9.26)

where Sε is given in (A.41). Hence

Rq/g = −g2TF

8π2

Sε

1− ε
2(1− ξ )ξ

ε→0→ −g2TF

8π2
2(1− ξ )ξ. (9.27)

Only the value of Rq/g at ε = 0 is needed in a purely four-dimensional formula.
With this method the renormalized density at ε = 0 is

g2

16π2
f

[1]
q/g(ξ ) = g2TF

8π2

{∫ ∞
0

dk2
T

[
1− 2ξ (1− ξ )

k2
T +m2

q

+ m2
q2ξ (1− ξ )

(k2
T +m2

q)2

− θ (kT − μ)
1− 2ξ (1− ξ )

k2
T

]
− 2(1− ξ )ξ

}
. (9.28)

It can be checked that this is the same as the previously calculated value (9.7), but the
integrals are algorithmically simpler, because they do not involve the beta functions that
arise with the dimensionally regulated integrals. Because of the extra term 2(1− ξ )ξ , it
cannot be literally said that the integrated parton density is the integral of the unintegrated
density with a cutoff at kT = μ, even for large μ. This is contrary to statements that appear
in the literature (e.g., Watt, Martin, and Ryskin, 2003).
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9.5.2 Other cases

The remaining cases are left as an exercise (problem 9.3) with the results:

Rg/q(ε = 0) = −g2CF

8π2
4ξ, (9.29)

Rq/q(ε = 0) = −g2CF

8π2
4(1− ξ ), (9.30)

Rg/g(ε = 0) = 0. (9.31)

9.6 DIS on partonic target

To calculate the hard-scattering coefficients for DIS, we observe that the factorization the-
orem applies to any target state, while the coefficient functions Cμν are target independent.
Therefore we apply the factorization theorem in perturbation theory with targets that are
on-shell quark or gluon states. Computing both the structure functions and the parton den-
sities on partonic targets up to some order in perturbation theory enables us to deduce the
hard-scattering coefficients to the same order. Moreover, since the coefficient functions are
independent of masses, we will set masses to zero everywhere.

We organize perturbation expansions as we did for the renormalization of parton densities
in Sec. 8.7.3. Define W

μν
j to be the hadronic tensor for DIS with a massless on-shell partonic

target of flavor j . We write perturbation expansions of W
μν
j and C

μν
j as

W
μν
j (x,Q) =

∞∑
n=0

(
g2

16π2

)n

W
[n], μν
j (x,Q), (9.32a)

C
μν
j (x,Q) =

∞∑
n=0

(
g2

16π2

)n

C
[n], μν
j (x,Q). (9.32b)

The nth order term in the factorization theorem (8.81) is

W
[n],μν
j (x,Q) =

n∑
n′=0

∑
j ′

∫ 1+

x−

dξ

ξ
C

[n′],μν
j ′ (x/ξ,Q)⊗ f

[n−n′]
j ′/j (ξ ). (9.33)

Since masses are set to zero, the power-suppressed corrections in (8.81) are not present.
Throughout our calculations we will work with the unpolarized case, so the partonic density
matrix ρ is dropped.

We deduce a formula for the nth order hard-scattering coefficient:

C
[n],μν
j (z,Q) = W

[n],μν
j (z,Q)−

n−1∑
n′=0

∑
j ′

∫ 1+

z−

dζ

ζ
C

[n′],μν
j ′ (z/ζ,Q)f [n−n′]

j ′/j (ζ ). (9.34)

Here, to avoid confusion with symbols used when the coefficient function is substituted in
the factorization formula (8.81) for a hadronic target, the names of partonic variables were
changed to z and ζ . In the factorization formula, z would be replaced by x/ξ .
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Fig. 9.3. Graphs for NLO gluon coefficient function for DIS. There are, in addition, three
other graphs with the direction of the arrow on the quark loop reversed. The hooks on the
quark lines in the subtraction graph (c) indicate where a parton-model approximation is
made.

Equation (9.34) provides an effective recursive procedure for calculating the nth order
term in C starting from the case n = 0, for which the result was given in (2.28), with
corresponding structure functions in (9.1). At next-to-leading order (NLO) we have

C
[1],μν
j (z,Q) = W

[1],μν
j (z,Q)−

∑
j ′

∫ 1+

z−

dζ

ζ
C

[0],μν
j ′ (z/ζ,Q)f [1]

j ′/j (ζ ). (9.35)

Our calculations in Sec. 9.4 of renormalized one-loop parton densities gave the values of
f

[1]
j ′/j (ζ ).

Perturbation theory for W and f in massless QCD suffers from IR and collinear diver-
gences. So the radius of convergence1 in g for these quantities goes to zero as the IR
regulator ε goes to zero. But this is sufficient to obtain the perturbation expansion of the
hard-scattering coefficients C. Since divergences cancel in the coefficient functions, their
radius of convergence remains non-zero as ε → 0.

9.7 Computation of NLO gluon coefficient function

Applied to the NLO gluon coefficient, (9.35) requires us to compute the graphs of Fig. 9.3.
The external gluons are massless and on-shell, with zero transverse momentum, and the
internal quarks are massless and have a sum over flavors. Figure 9.3(c) implements the
subtraction in (9.35), and we will call it a double-counting-subtraction graph, since it
cancels the contribution in the first two graphs that is taken into account in the lowest-order
parton model.

9.7.1 Kinematics

Let k1 and k2 be the momenta of the final-state quark and antiquark, and let l be the
momentum (l+, 0, 0T) of the gluon, so that k2 = q + l − k1. The scalar kinematic variables

1 Strictly speaking, perturbation series are expected to be asymptotic series but not convergent, so the term “radius of
convergence” should be replaced by some better terminology concerning the region of coupling where perturbation
theory has some chosen accuracy.
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relevant to the problem are Q and

z = Q2

2l · q =
−q+

l+
, (9.36a)

ŝ = (k1 + k2)2 = Q2(1− z)

z
, (9.36b)

t̂ = (l − k2)2 = −Q2(1+ cos θ )

2z
, (9.36c)

û = (l − k1)2 = −Q2(1− cos θ )

2z
, (9.36d)

where θ is the scattering angle in the photon-gluon center of mass. Of these variables, only
three are independent, of course.

9.7.2 Calculation of unsubtracted graphs

Graph (a) of Fig. 9.3 gives

−
∑

j

g2e2
j TF

32π2

(
16π2μ2

ŝ

)ε ∫
d�

4π

Tr /k1γ
ν(/l − /k2)/e(−/k2)/e∗(/l − /k2)γ μ[

(l − k2)2
]2 , (9.37)

where d� represents the integration over the angle of the quarks in the photon-gluon center
of mass, and eμ is the (transverse) polarization vector of the gluon. The overall minus sign
is for a fermion loop, and the normalization arises from the 1/(4π) in the definition of Wμν ,
and from two-body phase space (A.43). We choose the sum over j to be over flavors of quark
only (not over antiquarks). Then we must add, to this and the terms for the other graphs, the
contribution with the quark line reversed; this is obtained simply by exchanging k1 and k2.

Similarly graph (b) gives

−
∑

j

g2e2
j TF

32π2

(
16π2μ2

ŝ

)ε ∫
d�

4π

Tr /k1γ
ν(/l − /k2)/e(−/k2)γ μ(/k1 − /l )/e∗

(l − k2)2 (l − k1)2
. (9.38)

We are only treating unpolarized processes, so we average over gluon polarizations:

1

2− 2ε

∑
ei(ej )∗ = δij

2− 2ε
, (9.39)

with a Kronecker delta in the transverse dimensions. Then we use standard Dirac algebra,
and use (9.2) to project the sum of the terms for the two graphs onto the tensor structures for
F̂Lg and F̂2g . The integrands are now independent of the azimuthal direction of the quark
momenta, so we use (A.36) and (A.37) to give

F̂Lg =
∑

j

g2e2
j TF

4π2

(
16πμ2z

Q2(1− z)

)ε
2z2(1− z)

(1− ε)�(1− ε)

∫ 1

−1
d cos θ (sin θ )−2ε

ε→0→
∑

j

g2e2
j TF

4π2
4z2(1− z), (9.40)
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F̂2g =
∑

j

g2e2
j TF

4π2

(
16πμ2z

Q2(1− z)

)ε
z

�(1− ε)

∫ 1

−1
d cos θ (sin θ )−2ε

×
{

1

sin2 θ

[
1− 2z(1− z)

1− ε

]
+ −2+ 5ε

4(1− ε)2
+ 3− 2ε

(1− ε)2
z(1− z)

}

− term from graph (c), (9.41)

up to higher-order corrections (O(g4)). In F̂Lg , we have omitted the subtraction from graph
(c), since that involves the lowest-order parton-model hard scattering, for which there is no
contribution to FL, with fermion quarks.

9.7.3 Double-counting-subtraction graph

The subtraction graph (c) is obtained from the rules for the quark density and the LO hard
scattering, which contributes only to F2. Using the integral from (9.4) at mq = 0, we get

F̂2g(graph (c)) = −
∑

j

g2e2
j TF

4π2

(4πμ2)εz

�(1− ε)

∫ ∞
0

dk2
T

k−2ε
T

k2
T

[
1− 2z(1− z)

1− ε

]

+
∑

j

g2e2
j TF Sεz

4π2ε
[1− 2z(1− z)] , (9.42)

where the second line is the MS counterterm for the UV divergence. As announced earlier,
both of (9.41) and (9.42) are collinear divergent, at θ = 0 and θ = π , and at kT = 0.
Dimensional regularization with ε negative regulates the divergence. By making the change
of variable k2

T = (ŝ/4) sin2 θ , we can see that the collinear singularities in the integrands
are equal and opposite, and that the cancellation includes the explicit ε dependence. The
cancellation is guaranteed by the construction of the subtraction term (c) to cancel the
collinear contribution in the other graphs, to prevent double counting with the parton-
model term. [When checking the cancellation, note that two values of θ correspond to a
single value of kT. Note also that the maximum value of k2

T for graphs (a) and (b) is ŝ/4,
whereas the integral for graph (c) extends to kT = ∞.]

9.7.4 Total

The cos θ integral in (9.41) gives a beta function, with a pole at ε = 0 caused by the collinear
divergence. The kT integral in (9.42) gives zero, leaving the UV counterterm. So we get the
NLO gluonic coefficient function

F̂2g(Q2, x/ξ ; αs, μ)

ε=0=
∑

j

g2TF e2
j

4π2
z

{ [
(1− z)2 + z2

]
ln

[
Q2(1− z)

μ2z

]
− 1+ 8z(1− z)

}
+O(g4).

(9.43)
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There is a somewhat complicated pattern of divergences at ε = 0, which can be summarized
as follows:

Graph Collinear UV total

(a) −1 0 −1
(b) 0 0 0

(c) graph +1 −1 0
(c) counterterm 0 +1 +1

where the coefficients apply to the factor
∑

j [1− 2z(1− z)] g2TF e2
j /(4π2ε). Since the

transverse momentum integral in the subtraction term is exactly zero, it could be said that
the MS counterterm cancels the collinear divergence. It is, in fact, a common misconception
that this represents the true state of affairs. However, it is also profoundly misleading.

For example, suppose one retained the quark mass in the calculation, as might be
appropriate for a quark of large mass. Then the collinear region would no longer give an
actual divergence. Instead, graph (a) would be finite, but with a logarithmic enhancement
from the region of small transverse momentum. Graph (c) (without its counterterm) would
now be non-zero, with a UV divergence. The counterterm cancels the UV divergence. For
the dominant part of the collinear contributions (that give divergences at mq = 0) there
is a cancellation between graphs (a) and (c). The collinear cancellation is guaranteed by
the nature of the subtraction term: (c) is to prevent double counting of the parton-model
contribution.

9.7.5 Use of subtraction of asymptote for UV divergence

We can also use the method of subtraction of the asymptote for the renormalization of the
UV divergence, from Sec. 9.5. This gives

F̂2g(NLO)
?=
∑

j

g2TF e2
j

4π2
z

∫ 1

−1
d cos θ

[
1− 2z+ 2z2

sin2 θ
− 1

2
+ 3z(1− z)

]

+
∑

j

g2TF e2
j

4π2
z

[
2z(1− z)−

∫ μ2

0

dk2
T

k2
T

(1− 2z+ 2z2)

]
, (9.44)

where the 2z(1− z) on the second line is from Rq/g(z) in (9.27). Each integral is separately
divergent, hence the query on the equality sign. To make the integrals correspond, we
convert them to use a common variable k2

T = (ŝ/4) sin2 θ . Then

F̂2g(NLO) =
∑

j

g2TF e2
j

4π2
z

⎧⎨
⎩(1− 2z+ 2z2)

∫ ∞
0

dk2
T

k2
T

⎡
⎣ θ (k2

T,max − k2
T)√

1− k2
T/k2

T,max

− θ (μ2 − k2
T)

⎤
⎦

− 1+ 8z(1− z)

⎫⎬
⎭ , (9.45)
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where k2
T,max = Q2(1− z)/(4z). It can be checked that this agrees with the previous result,

(9.43). The advantage of this integral is that it is a fundamentally an integral in the physical
space-time dimension. It also enables us to gauge the general order of magnitude of the
coefficient.

9.8 Choice of renormalization scale μ

It is necessary to choose the renormalization scale μ when applying a factorization theorem.
As can be seen from an example calculation, e.g., (9.43), hard-scattering coefficients depend
logarithmically on Q/μ. The general situation follows from the DGLAP equation for the
μ dependence of parton densities. Since structure functions are RG invariant, the hard-
scattering coefficients obey an inverse DGLAP equation. It follows that at order αn

s the
hard-scattering coefficients have dependence on ln(Q/μ) that is polynomial with a highest
term lnn(Q/μ).

The effective expansion parameter of the hard scattering is therefore αs(μ) ln(Q/μ), and
to make optimal use of perturbative calculations one should choose μ of order Q. Then the
expansion parameter is αs(Q).

However, we need more precise information about an appropriate value for the ratio μ/Q.
To see that this is a non-trivial problem, consider a change of scheme for renormalizing
QCD and the parton densities. A concrete example is to replace Sε in the MS scheme by
Sεe

2cε for some constant c. Call this the c scheme. It is related to the MS scheme by a simple
substitution: μMS = μce

c, so that ln(μMS/Q) = ln(μc/Q)+ c. Then if we set μc = Q, the
coefficients of the perturbative expansion are made arbitrarily large simply by making c

large.
Evidently we can remove these large coefficients by setting μc to a suitable factor times

Q, e.g., μc = Qe−c. But this provokes the question of what is so special about the MS
scheme that in this scheme one should choose equality of μ and Q (a common choice in
practice).

An answer is suggested by the method of renormalization subtraction of the asymptote
given in Sec. 9.5. We found that μMS is like a cutoff at kT = μMS, rather than some factor
times this.

The method was applied to a coefficient function in (9.45), where there is a subtraction of
the collinear region (e.g., by Fig. 9.3(c)), and then a renormalization of the UV divergence
in the subtraction. After that there remains only a contribution from transverse momenta of
some natural scale associated with Q, provided that z is not close to 0 or 1, and provided
that μ is at this same scale. So the integral is of order unity, and is multiplied by the standard
prefactor g2/4π2, and a group theory factor. This justifies the choice that μMS is within a
modest factor of Q.

If instead we used the c scheme, then Sec. 9.5 shows that an appropriate choice would
now be μc = Qe−c. Naturally, there is no need to require exactly one particular value of
μ. The exact value of a structure function (or cross section) is independent of μ. Changing
μ by a factor of 2 (for example) in a finite-order calculation of the hard scattering changes
the numerical value of a computed structure function by an amount corresponding to the
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expected truncation error of the perturbative calculation. Thus the effect of a modest change
in μ is within the expected errors.

The simplest version of subtraction of the asymptote applies if there is no extra ε

dependence in the integrand. If there is extra ε dependence, then it results in an extra finite
term, as in the last line of (9.45). This can be regarded as being of a natural size for the
quantity under consideration, so it does not affect arguments about large logarithms.

The idea that the cutoff should be of the natural size of the transverse momentum for a
hard scattering (after subtraction of collinear and UV divergences) suggests that problems
can occur when z is close to 0 or 1. This is visible in the logarithm of (1− z)/z. An
obvious choice of scale would then be μ2 = Q2(1− z)/z, corresponding to the range of
the transverse-momentum integral.

However, in this case there are (at least) two very different physical scales in the hard
scattering. Besides Q2 there is the (square of) the photon-parton center-of-mass energy,
Q2(1− z)/z . Even if we removed the large logarithm in this particular calculation, because
it is dominated by the second scale, there would be other graphs with a natural scale Q.
An example is the virtual vertex correction Fig. 9.4(d), in whose calculation the range of
final-state energies is irrelevant. When different graphs need very different scales, a single
choice of μ cannot eliminate all large logarithms. Instead improved factorization theorems
are needed, for a genuinely fundamental solution of the problem.

When does this situation arise? Since z = x/ξ and actual parton densities decrease with
increasing ξ , one should not expect the case that z is small to be a concern. But when x gets
large, the maximum qq̄ mass is restricted: the kinematic limits on z are x < z < 1. This
phenomenon is enhanced by the fact that typical parton densities fall rather rapidly with ξ

above about a half, which disfavors the larger masses and keeps z close to unity.
This subject has been under active investigation, with improved factorization methods

and resummation techniques being discovered. In any case the outcome is that when
the typical value of z gets too close to unity, simple factorization is not an optimal
technique.

9.9 NLO quark coefficient

To compute the NLO quark coefficient, we again use (9.35), but now with a quark target.
The necessary graphs, including subtractions, are shown in Fig. 9.4. In all the calculations,
we use (9.10) to replace the gluon polarization sum in the real-emission graphs by −gαβ .
Kinematics and normalization factors are the same as for the gluon-induced graphs (e.g.,
(9.36)) except for the replacement of the group theory factor TF by CF . We take the
quark to be unpolarized, and perform the integral over azimuthal angles, using (A.36)
and (A.37).

9.9.1 NLO quark coefficient for F̂Lj

The contribution to the longitudinal structure function is particularly simple. Because of
the factors of l in the projection (9.2a) onto F̂Lj , graphs (b)–(e) all have a factor of /l next
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Fig. 9.4. Graphs for NLO quark coefficient function for DIS. Graphs with quark self-
energies on the incoming quark line are not needed, since they cancel completely and
exactly between the graphs for DIS on a quark target and the subtraction terms.

to the /l factor for the incoming quark. Thus all these graphs give zero: (/l )2 = l2 = 0. The
subtraction graphs are also zero, because F̂Lj vanishes in the parton model. All that remains
is graph (a), which gives

F̂Lj ((a)) = − g2e2
jCF

64π2

(
16πμ2

ŝ

)ε
1

�(1− ε)

∫ 1

−1
d cos θ (sin θ )−2ε

× 8z3

Q2

1
2 Tr /lγ α(/l − /k2)/l /k1/l (/l − /k2)γα

[(l − k2)2]2

ε→0= g2e2
jCF z2

8π2

∫ 1

−1
d cos θ (1− cos θ ). (9.46)

This has no divergences, so the limit ε → 0 is safe, and we get

F̂Lj =
g2e2

jCF z2

4π2
+O(g4). (9.47)
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9.9.2 Real-gluon graphs for F̂2j

We apply (9.2b) to the real-gluon graphs for F̂2j . For graph (a):

F̂2j (a) = g2e2
jCF

8π2

(
16πμ2

ŝ

)ε
1

�(1− ε)

∫ 1

−1
d cos θ (sin θ )−2ε

×
{

z(1− z)(1− ε)

1+ cos θ
+ 4(3− 2ε)z2(1− cos θ )

}
. (9.48a)

The second part of the factor in braces arises from the F̂L term in (9.2b). For graph (b), we
have

F̂2j (b+ h.c.) = g2e2
jCF

8π2

(
16πμ2

ŝ

)ε
z

�(1− ε)

∫ 1

−1
d cos θ (sin θ )−2ε

×
{

z

1− z

1− cos θ

1+ cos θ
+ ε

}
, (9.48b)

where we include a factor 2 to allow for the hermitian conjugate graph. For graph (c)

F̂2j (c) = g2e2
jCF

8π2

(
16πμ2

ŝ

)ε
1

�(1− ε)

∫ 1

−1
d cos θ (sin θ )−2ε z(1− ε)

1− z
(1+ cos θ ).

(9.48c)

Positions of the divergences

Graph (a) simply has a divergence at θ = π , i.e., cos θ = −1. With the conventions by
which the momentum k2 is defined, this is where the gluon is collinear to the initial-state
quark. Accordingly it will cancel against the same collinear divergence in the subtraction
graph (f).

The other graphs have a more complicated pattern of divergences, involving soft gluons
and gluons collinear to the outgoing quark, as is evidenced by the divergence in both graphs
at z→ 1. Naturally, the divergence only fully manifests itself when we integrate over z.
To analyze this quantitatively, we use the principles explained in Sec. 9.4.4, where we
needed to treat parton densities as generalized functions. We now do the same for structure
functions and the coefficient functions. The existence of the extra divergence(s) indicates,
of course, that we will need to improve the proof of factorization. For the moment we just
examine the phenomena.

Since both the extra kinds of divergence occur at z = 1, some care is needed to identify
their kinematics correctly. The general nature of the divergences can be extracted, as always,
from the Libby-Sterman analysis. For this analysis, it is convenient to boost to the Breit
frame, where q+ = −Q/

√
2, q− = Q/

√
2, and qT = 0T. Then:

• An initial-state collinear divergence is at θ → π (i.e., cos θ →−1) with z fixed and not
equal to unity.

• A final-state collinear divergence is at z→ 1, with θ fixed and away from π . Each final-
state particle is in the minus direction with momentum fractions k−1 /q− = (1− cos θ )/2
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and k−2 /q− = (1+ cos θ )/2. Notice that the quark and gluon form an outgoing system,
and that θ is the polar angle of each particle in the Breit frame.

• A soft-gluon divergence is at θ → π and z→ 1.

It is misleadingly tempting to identify all of the z→ 1 divergences as soft.
Graph (b) has all three types of divergence, evidenced by its singularities at both z→ 1

and θ → π . But graph (a) has only an initial-state collinear divergence, and graph (c) only
a final-state collinear divergence. As can be seen from (9.48), dimensional regularization
with ε < 0 regulates all the divergences.

After integral

We know that after we average over x (or z), the final-state lines become effectively off-shell.
This will entail cancellation of final-state collinear and soft divergences between real and
virtual graphs. The initial-state collinear divergences cancel against the subtraction graphs.

We could exhibit the cancellation at the level of the integrands. Instead we will eval-
uate the graphs separately, with dimensional regularization, and see the cancellations
of the resulting poles at ε = 0. The graphs give the following values, all multiplied by
g2e2

jCF /(8π2):

(a) : − z(1− z)

ε
+ z(1− z)

[
T + ln

1− z

z
+ 1

]
+ 3z2, (9.49a)

(b) :
2

ε2
δ(z− 1)+ 2

ε

[
δ(z− 1) (−T + 1)− z2

(1− z)+

]

+ δ(z− 1)

(
T 2 − 2T + 4− π2

2

)
+

+ 2z2

[
1

(1− z)+
(T − 1)− ln z

1− z
+
(

ln(1− z)

1− z

)
+

]
, (9.49b)

(c) : − 1

2ε
δ(z− 1)+ 1

2
δ(z− 1) (T − 1)+ z

2(1− z)+
. (9.49c)

where we have dropped terms of order ε and beyond, and we have defined

T = ln
Q2

μ2
+ γ − ln(4π ). (9.50)

The integrals over cos θ were performed using (A.49). Then an expansion in powers of ε was
made using (A.47), (A.48), and (A.54). We again see the appearance of plus distributions,
which is very characteristic of QCD calculations.

The double pole in graph (b) is a result of the nesting between the soft and collinear
divergences.

9.9.3 Virtual-gluon graphs for F̂2j

We already calculated the on-shell vertex subgraph used in Fig. 9.4(d); see Sec. 4.2.3. But
now: (a) we have space-like instead of time-like q; (b) the trace with the external currents
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is slightly different. We add to the graph a counterterm for its UV divergence, which is
the lowest-order graph times −[g2e2

jCF /(16π2)]Sε/ε, times a factor of 2 to allow for the
hermitian conjugate graph. The result for graph (d) and its conjugate is

(d+ h.c.) : − 2

ε2
δ(z− 1)+ 2

ε
δ(z− 1) (T − 2)

+ δ(z− 1)

(
−T 2 + 4T − ln

Q2

μ2
− 8+ π2

6

)
, (9.51)

again times g2e2
jCF /(8π2). This has a double pole, a logarithm in the single pole, and a

double logarithm in the ε-independent term, all due to the combination of soft and collinear
divergences. All of these terms cancel against the corresponding terms for graph (b), which
is the only graph related by moving the final-state cut.

Graph (e) just involves a self-energy times the lowest-order hard scattering. As we saw
in e+e− total cross section, in Sec. 4.1, we apply the LSZ prescription. The dimensionally
regulated massless self-energy gives a zero contribution. There remains the UV wave-
function renormalization counterterm, which gives

(e+ h.c.) :
Sε

2ε
δ(z− 1) = 1

2ε
δ(z− 1)+ δ(z− 1) (ln(4π − γ )+O(ε). (9.52)

9.9.4 Subtraction graphs for F̂2j

The subtraction graphs (f)–(h) are simply a factor of e2
j z, for the parton-model coefficient

function, times the one-loop quark-in-quark density, with the external self-energies omitted,
all times a factor −1 because they are subtracted. As usual, the graphs themselves vanish
in the massless limit, by the use of dimensional regularization. So we just need the UV
counterterm, which is for Z2Zjj , the factor Z2 arising because we use the counterterm that
allows the use of renormalized fields. With the same conventions as before we get

(f–h) :
Sε

ε

[
z(1+ z2)

(1− z)+
+ 5

2
δ(z− 1)

]
. (9.53)

9.9.5 Total

Adding the contributions of all the graphs and taking the ε → 0 limit gives the quark
coefficient function. With the LO term, we have

F̂2j (Q2, z; αs, μ)

= e2
j δ(z− 1)+ g2e2

jCF

16π2
z

[
4

(
ln(1− z)

1− z

)
+
− 3

(
1

1− z

)
+
− 2(1+ z) ln(1− z)

− 2
1+ z2

1− z
ln z+ 6+ 4z−

(
2π2

3
+ 9

)
δ(1− z)

]
+O(g4). (9.54)
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9.10 Hard scattering with quark masses

In the calculations so far, we have set quark masses to zero, and some of the methods
relied on the property of dimensional regularization that scale-free integrals are zero. It is
useful to see how to bring in non-zero quark masses. One purpose is to allow the effects of
quark masses to be computed, although we will not give a detailed treatment of the effects
of quark masses here. A second purpose is to show that calculations of hard-scattering
coefficients are not tied to properties of the dimensional regularization scheme with massless
particles.

A convenient method to allow for heavy quarks in the hard scattering is to always
set to to zero the masses of external particles of the hard scattering, but to allow heavy
particles to circulate inside the hard scattering (Collins, 1998a). We will not try to justify
this prescription here.

We will restrict our attention to the simplest case of the gluon-induced NLO coeffi-
cient functions. The structure of the calculation is unchanged from that with massless
quarks; i.e., we use (9.35) to determine the one-loop coefficient function, with a projec-
tion onto individual structure functions by (9.2). The actual graphs are Fig. 9.3, just as
before.

Analytic calculations of one-loop graphs with masses are harder than with zero masses.
We first quote the results for the unsubtracted graphs (a) and (b), which can be deduced
from Aivazis et al. (1994). First for FL:

F̂Lg =
∑

j

g2e2
j TF z

4π2
θ (ŝ − 4m2

j )

{
4Q2�

(Q2 + ŝ)2
− L

8m2
jQ

2

(Q2 + ŝ)2

}
, (9.55)

where

L = 2 log

⎡
⎣
√

ŝ +
√

ŝ − 4m2
j

2mj

⎤
⎦ , (9.56)

� =
√

ŝ(ŝ − 4m2
j ), (9.57)

and ŝ = Q2(1− z)/z, as usual. There is a theta function implementing the quark-flavor-
dependent threshold in ŝ. In the general factorization formulae, like (8.83), the threshold
restricts ξ to the range x(1+ 4m2

j /Q
2) < ξ < 1.

Note that there are some differences in conventions for defining structure functions in
Aivazis et al. (1994), and that there appears to be a factor of TF missing from their formulae.
The result for F̂Lg reduces to the previous one, (9.40), in the limit that the quark masses are
zero.
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As for F2, we get

F̂2g =
∑

j

g2e2
j TF z

4π2

{
θ (ŝ − 4m2

j )

[
L

Q4 + ŝ2

(Q2 + ŝ)2
+ [4Q2ŝ − (ŝ −Q2)2]�

ŝ(Q2 + ŝ)2

+ L
4m2

j (ŝ − 2Q2 − 2m2
j )

(Q2 + ŝ)2
− 4m2

j�

(Q2 + ŝ)2

]

− [1− 2z(1− z)] ln
μ2

m2
j

}
+O(g4), (9.58)

where the logarithmic term in the last line is for the subtraction graph (c), calculated at (9.7),
here multiplied by 2 to include both the quark and antiquark contributions. The remaining
terms are for graphs (a) and (b), and were obtained from Aivazis et al. (1994). In the
massless limit, the logarithmic divergences cancel, and the limit reproduces the previous
calculation (9.43).

Observe the mismatch between the allowed ranges of z in the integrand. The term from
graphs (a) and (b) obeys a threshold condition, but the subtraction term allows z to go up to
unity, where ŝ = 0, i.e., to an unphysical value. The parton-model approximation applied
to a quark line is responsible for the mismatch. The approximation changes final-state
momenta, so that the approximated final state violates conservation of 4-momentum. The
same violation is present in the integrand for the parton-model formula, i.e., the LO cross
section.

Strictly speaking our formalism was derived for the inclusive cross section, integrated
over hadronic final states, and the results correctly apply to that situation. But if one wishes
to extend the formalism to observables more differential in the final state, the violation of
momentum conservation can have important consequences. Genuinely solving this issue
requires the avoidance of approximations on parton momenta when they are related to
final-state momenta. As seen in recent work (Collins and Jung, 2005; Collins, Rogers,
and Staśto 2008), one must rethink the whole formalism; new methods do not use parton
densities, but more general quantities, parton correlation functions, which do not have the
integral over k− and kT in their definition.

Note that the above calculation applies when the MS scheme is used. This is appropriate
for quarks whose mass is at most of order Q. For heavier quarks, a change in scheme is
appropriate. There are various ways proposed to do this. A method I prefer is a generalization
of the CWZ scheme of Sec. 3.10 to deal with parton densities and factorization; this is the
ACOT scheme of Aivazis et al. (1994), which is probably best used in a modified version
as given in Kretzer et al. (2004); Krämer, Olness, and Soper (2000). See Thorne and Tung
(2008) for a wider ranging review.

9.11 Critique of conventional treatments

Compared with our presentation so far, a very different approach to factorization is found in
much of the literature (e.g., Dissertori, Knowles, and Schmelling, 2003; Ellis, Stirling, and
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Webber, 1996). It involves a strong emphasis on the mass divergences in massless on-shell
partonic reactions, and it asserts that factorization is a method of absorbing mass divergences
into a redefinition of parton densities. In contrast, in our presentation the divergences were
canceled by subtraction terms that were needed to avoid double counting between, for
example, NLO contributions to hard-scattering coefficients and LO contributions.

In this section, we assess the other approach and see that it is physically misleading,
if not actually wrong. As such, it is a profound obstacle to further progress in applying
perturbative methods to more complicated situations in QCD. Luckily from a practical
point of view, the two approaches give the same results for hard-scattering coefficients
when parton masses are set to zero. Thus the physical errors do not propagate to numerical
results in phenomenology, at least for the simplest reactions.

The approach can be traced back to certain of the early literature on factorization, notably
Ellis et al. (1979) and Curci, Furmanski, and Petronzio (1980), and it can be summarized
as follows:

1. Assert that the structure function (or cross section) under consideration is a convolution
of a partonic structure function and parton densities:

W = partonic struct fn. ⊗ bare parton density

= W parton ⊗ f bare. (9.59)

The convolution is defined in (8.81). In view of later steps in the presentation, the parton
densities are called “bare parton densities”.

2. All parton masses in the partonic structure function are set to zero. The parton(s) entering
it from the parton density are set on-shell and massless, with zero transverse momentum.

3. There are IR/collinear divergences in the parton cross section. It was shown (Ellis et al.,
1979; Curci et al., 1980) that the partonic cross sections are a convolution of a divergence
factor and a finite cross section.

W parton = C ⊗D. (9.60)

4. The final factorization formula is obtained by use of the associativity of convolution to
allow the divergences to be absorbed into a redefinition of the parton densities.

W = (C ⊗D)⊗ f bare = C ⊗ (D ⊗ f bare
) = C ⊗ f ren, (9.61)

where f ren = D ⊗ f bare.

The final result is of the same form as the factorization formula in (8.81). Moreover, if the
collinear divergences are quantified by poles in dimensional regularization, their removal is
by the same formula as in our approach. This can be obtained from the remarks at the end of
Sec. 9.7.4. The factorization of collinear divergences in massless parton scattering, (9.60),
can in fact be obtained from factorization applied to a massless parton target, assisted by
the observation that loop graphs for massless parton densities in partonic targets are exactly
zero in dimensional regularization.
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However, the identity of the results should not obscure the profound problems with the
argument just presented.

The first problem is that the starting point, (9.59), is not given a proof. In Ellis et al.
(1979) a reference is given to the classic book on the parton model by Feynman (1972),
which very much predates knowledge of the complications caused by QCD. The bare parton
densities are also not defined; they cannot coincide with any of the parton densities we have
defined.

A serious physics issue is that the partonic structure function in (9.59) is exactly a
structure function initiated by an on-shell parton with zero transverse momentum. For
example, the first gluonic term has the form

⎛
⎜⎜⎝

l

q
k1

+

q

k1

l

⎞
⎟⎟⎠ ⊗ Bare gluon density (9.62)

Here, the gluon is set on-shell, just as in our calculations in Sec. 9.7. There the justification
was that there was a subtraction in the coefficient function and therefore it is dominated
by wide-angle scattering. We could therefore neglect small components of l with respect
to large components. But in (9.59) and (9.62) this is no longer justified, since there is no
subtraction. Indeed a gluon confined inside a hadron is not exactly on-shell, and therefore
the collinear divergence is cut off.

Similarly in a model theory where all the fields have mass, there are no true collinear
divergences. An approximation in which partons are made massless in unsubtracted NLO
graphs therefore introduces spurious divergences. In such a theory, parton densities defined
by the standard operator formulae have no collinear divergences, before or after renormal-
ization, so the idea of absorbing collinear divergences into a redefinition is not tenable.

Note carefully that there is terminological ambiguity between the two approaches. In
our approach “bare parton density” refers to a parton density before renormalization; renor-
malization is then strictly an issue of eliminating UV divergences by a suitable redefinition,
commonly with the MS scheme. In the other approach, “bare parton density” refers to the
undefined quantities in (9.59). The renormalization-like procedure applied in (9.61) is a
different procedure, even when the MS scheme is said to be used.

We conclude that it is entirely unphysical to describe the basis of factorization in terms
of moving collinear divergences from partonic structure functions or cross sections into
redefined parton densities. Naturally, attempting to extend an incorrect method to more
general situations leads to a conceptual morass. It is more by luck than good physics that
the same hard-scattering coefficients are obtained for standard reactions.

9.12 Summary of known higher-order corrections

Here I summarize the available information on the higher-order terms in the DGLAP kernels
and the coefficient functions for DIS. They are both known to order α3

s .
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The non-singlet part of DGLAP kernels was calculated to this order by Moch, Ver-
maseren, and Vogt (2004), and the singlet part by Vogt, Moch, and Vermaseren (2004). The
order α2

s kernel was found by Furmanski and Petronzio (1980). See also Hamberg and van
Neerven (1992) for some issues concerning the gauge invariance of the calculation. We
have already given the order αs kernels in (9.6), (9.23), (9.24), and (9.25).

The DIS coefficient functions were calculated by Vermaseren, Vogt, and Moch (2005)
to α3

s . The order α2
s calculation was by Zijlstra and van Neerven (1992) and by Moch and

Vermaseren (2000). We have already given the order αs coefficients in (9.40), (9.43), (9.47),
and (9.54), with the parton model (α0

s ) at (9.1).
It is also worth mentioning the results at order α2

s for the Drell-Yan process, in Anastasiou
et al. (2003, 2004), which are relevant to the same kind of precision phenomenology.

9.13 Phenomenology

Much of the predictive power of QCD is from factorization properties, both for inclusive
DIS and for many other reactions. The equations used are for factorization of structure
functions and cross sections, and for DGLAP evolution:

σ = σ̂ ⊗ f, σ = f1 ⊗ σ̂ ⊗ f2, (9.63)

df

d ln μ
= 2P ⊗ f. (9.64)

Here σ is a measurable cross section or structure function, σ̂ is a corresponding hard-
scattering coefficient, while f , f1 and f2 are parton densities. Factorization is accurate up
to power-law corrections in a hard scale Q. The second form of factorization applies to
hard reactions in hadron-hadron collisions, where there is a parton density in each hadron.

The hard-scattering coefficients and the DGLAP kernel P are perturbative calculable in
powers of the small coupling αs(Q), and so we regard them as approximately calculable
from first principles. The non-perturbative information is contained in the parton densities at
some chosen fixed large scale, since the evolution to other large scales is perturbatively con-
trolled. However, at present there is little ability to estimate or model the non-perturbative
parton densities from first principles.

The predictive power lies in the universality of the parton densities. Parton densities are
the same in all reactions, and, apart from the perturbative DGLAP evolution, they are the
same at all values of Q. Thus essentially the following scheme works:

• Fit parton densities for some value of the scale μ from data on a limited set of experiments
at one energy, using perturbatively calculated hard-scattering coefficients and DGLAP
kernels.

• Evolve the parton densities to other scales.
• Predict cross sections at other energies and for other reactions.

In reality, data is of limited precision, and data on each individual reaction is only useful
in determining some particular flavor combinations of parton densities. Therefore global
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Fig. 9.5. Jet cross section and QCD predictions at CDF experiment (Abe et al., 1996). The
figure is copyright (1996) by The American Physical Society, and reproduced by courtesy
of the CDF collaboration.

analyses are made to a wide variety of data, chosen for situations where the likely errors
on both theory and experiment are judged to be sufficiently small. Thus the global analyses
simultaneously fit parton densities and test QCD through measures of the goodness of fit.
The amount of data is large, so this is a non-trivial undertaking.

Currently the main global analyses are:

• by the members of the CTEQ collaboration (Tung et al., 2007);
• by a group in the UK going under the acronyms MRST and recently MSTW (Martin

et al., 2007);
• by Alekhin and collaborators (Alekhin, Melnikov, and Petriello, 2006).

In addition, the two ep collider experiments at DESY have made fits to their own data:
ZEUS (Chekanov et al., 2005) and H1 (Adloff et al., 2003). They have taken advantage of
the availability of charged-current processes to gain flavor separation of the parton densities.

Another group (Del Debbio et al., 2007) is working towards a global fit using rather
different calculational technique based on neural-network methods.

An example of the predictive power is shown in Fig. 9.5. Here a measurement (Abe et al.,
1996) by the CDF collaboration is shown for the production of jets of high transverse energy,
ET, in proton-antiproton collisions, and it is compared with QCD predictions. Although
this is now a rather old comparison, its importance is that there is a genuine prediction.
Parton densities at that period were measured in other processes and the perturbative hard-
scattering calculations are, of course, from QCD first principles.
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The agreement is good, except possibly at the largest values of ET, but even there
not outside the rather large errors. Since then it has been realized that this reaction is
a most sensitive one for measuring the gluon density at large parton ξ . Therefore later
work has frequently used jet data from hadron-hadron collisions in making global fits for
parton densities. Thus the QCD calculations presented with the latest data can no longer be
considered pure predictions. Results are available from both CDF (Abulencia et al., 2007)
and D0 (Abazov et al., 2008) collaborations.

There are many other processes where QCD predictions have been made, by and large
with success.

Exercises

9.1 Finish the calculations of the one-loop renormalization of parton densities by doing
the calculations for gluon-in-quark and gluon-in-gluon, thereby verifying (9.24) and
(9.25).

9.2 Verify the sum rules (8.41) and (8.42) for quark number and for momentum at one-loop
order.

9.3 Verify the results in Sec. 9.5.2.

9.4 Find the gluon-induced NLO correction in a version of QCD where quarks are scalars.

9.5 (***) Using pdfs from some standard fit, obtain some estimates of the typical value
of z in integrals of parton densities and hard scattering like those in (9.43), etc. You
can probably do this by obtaining diagnostics from a numerical quadrature, although
it should also be possible to obtain some order-of-magnitude results more analytically.
Draw some conclusions about the reliability of standard perturbative QCD calculations
under various kinematic conditions.

9.6 Consider the graph of Fig. 9.3(a) for the photon-gluon process, and suppose that
the quarks are given a mass mq . Show that the minimum fractional plus momentum
of the intermediate quark line is χ = x(1+ 4m2

q/Q
2). Fractional plus momentum

of the intermediate quark means (k+1 − q+)/P+. [See the definition given in Tung,
Kretzer, and Schmidt (2002) for the ACOT(χ ) scheme for treating heavy quarks in
factorization.]

9.7 Generalize the result of problem 9.6 to the case that the current is flavor changing
between quarks of different masses, m1 and m2.

9.8 Verify the calculations giving the NLO quark contribution to F2, i.e., (9.48).
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Factorization and subtractions

In Sec. 9.13 we saw how factorization theorems give a lot of predictive power to QCD.
They are essential in the analysis of data at high-energy colliders, not just for understanding
the QCD aspects but also in searches for new physics, for example.

So far we have seen a genuine proof (Sec. 8.9) only for inclusive DIS, and only in a
model theory without gauge fields. In this chapter we will formulate the principles that
apply very generally, to other reactions, and when dealing with the full complications of a
gauge theory.

The general class of problem concerns the extraction of the asymptotic behavior of
amplitudes and cross sections as some external parameter, like a momentum, gets large. In
general discussions, we denote the large parameter by Q. As well as factorization theorems
in their broadest sense, such asymptotic problems also encompass simpler situations like
renormalization, the operator product expansion (OPE), and the IR divergence issue1 in
QED.

There is a common and general mathematical structure in these different problems that
could undoubtedly use further codification. Perhaps methods based on Hopf algebras, or
some generalization, would provide an appropriate mathematical structure. So far these
methods have been applied to renormalization (e.g., Connes and Kreimer, 2000, 2002).

In this chapter, I interleave a general formal treatment with its application to the Sudakov
form factor, including explicit calculations at one-loop order. The general treatment will
underlie all further work in this book. The Sudakov form factor illustrates the issues that
are characteristic of asymptotic problems in Minkowski space, especially in a gauge theory.
Factorization for the Sudakov form factor is a prototype for many important applications.

First I will give an overview of the method, which is a general subtractive procedure
generalizing Bogoliubov’s procedure for renormalization. The Libby-Sterman analysis is
used to determine the leading regions R for a graph � for the process under consideration.
For each region R of a graph � there is defined an approximator TR . From TR , with the aid
of subtractions to cancel double counting between regions, is constructed the contribution
CR� associated with the region.

Then I will define an implementation of these ideas for the Sudakov form factor, complete
with a specific calculation for a one-loop graph. After that will be a proof that the general

1 Which concerns a small photon mass instead of a large scale Q.
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subtraction method works. This will require that the region approximators TR obey certain
conditions, that will be especially critical in QCD. The one-loop example will help to
explain the rationale for these conditions and to show how to satisfy them in general.

Then I will derive factorization and evolution equations for the Sudakov form factor.
Many elements of the proofs given here can be found in the literature. However, the

presentation as a whole represents a new treatment, which is intended to be a substantial
improvement on previous work.

Although the methods presented here apply to perturbation theory, it should be evident,
just as in Sec. 8.9, that much structure is seen that has a reality beyond perturbation theory.
But exactly how to capture this structure in a strict deductive framework is not so clear, and
there are some important open problems.

10.1 Subtraction method

To understand the rationale for a subtraction procedure, recall the successive approximation
method outlined in Sec. 8.8. This starts from the smallest region for a graph for some process,
for which we find a useful approximation. The approximation typically corresponds to a
product or convolution of a lowest-order partonic subgraph and a matrix element of some
operator. The operator in the matrix element determines the definition of, for example, a
parton density.

We then sequentially construct approximations suitable for successively larger regions.
When constructing the contribution CR associated with some region R, subtractions must
be applied to compensate double counting of the contributions CR′ from smaller regions R′,
contributions that have already been constructed. Finally, we sum over the regions for each
graph �, and over graphs. This results in factorization, by an argument with the pattern
given in Sec. 8.2.

A simple example was given by the derivation of leading-twist factorization for DIS in
a non-gauge theory in Sec. 8.9. It is a useful exercise to show how the formulae in that
section, like (8.70) and (8.74), give particular cases of the more general formulae in the
present chapter.

In a gauge theory like QCD, the basic argument will need to be supplemented, notably
by an application of Ward identities to extract gluons of scalar polarization from the hard
scattering, to convert them to attachments to Wilson lines. Further issues concern the exact
nature of the leading regions and the accuracy of the approximators TR . These are much
harder than for relatively simple Euclidean asymptotic problems like the OPE.

10.1.1 Overall view

We let Q denote the large scale for the process under consideration. Each graph � has a
set of leading regions, and up to power-suppressed terms, we aim to write � as a sum over
terms for its leading regions:

� =
∑

R of �

CR� + power-suppressed. (10.1)
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For the processes of interest, the regions and the associated powers of Q are determined
by the Libby-Sterman analysis (Ch. 5). Normally we treat only the leading power. As
explained in Ch. 5, each region is specified by a skeleton in loop-momentum space, i.e., the
position of the associated pinch-singular surface (PSS) in a massless theory. Each region
also corresponds to a decomposition of the whole graph � into subgraphs (e.g., Fig. 5.17)
where each subgraph has momenta of a particular kind: hard, collinear in some direction,
or soft. There can be finer decompositions needed under some circumstances, but that does
not affect the principles.

The general definition of the contribution CR� associated with a region R of a graph
� will be made in (10.4) in terms of an “approximator” TR , together with subtractions
to eliminate double counting between regions. A key element in applying (10.1) and in
enabling factorization to be derived is the construction of suitable approximators TR .

10.1.2 Regions: terminology

We review some terminology and definitions from Ch. 5.

• A region R of a graph � is specified by a PSS in the massless theory, as determined by
the Libby-Sterman method.

• A region is called leading if Libby-Sterman power-counting gives it a leading power,
usually defined by dimensional analysis, e.g., Q0 for a DIS structure function.

• Some regions occur with a super-leading power in individual graphs, when all the gluons
exchanged between hard and collinear subgraphs are of scalar polarization. Since such
super-leading contributions cancel very generally after a sum over graphs, we choose the
definition of the leading power accordingly.

• Our factorization arguments will be applied to regions which give at least a certain chosen
power of Q. The term “power-suppressed” in (10.1) means with respect to the chosen
power of Q.

Typically, this is the power of Q we call leading. But extensions of our methods to
non-leading powers are possible. Since TR is essentially a truncation of a Taylor series
expansion about a PSS, keeping more terms in the Taylor series corresponds to keeping
more non-leading powers of Q.

When we use dimensional regularization, with 4− 2ε dimensions, some exponents
in power laws have ε dependence. In categorizing powers as leading or non-leading, we
generally work close to ε = 0 and ignore changes in exponents that are of order ε.

• At each PSS R we choose a set of intrinsic coordinates labeling points within the PSS,
and there is a set of normal coordinates labeling deviations off the surface (Sec. 5.7).

• We can convert the normal coordinates for a region R into a radial coordinate λR and
a set of angle-like coordinates specifying direction. We saw a number of examples in
Ch. 5. Power-counting is conveniently done using the one-dimensional integral over λR .
We require λR to have the dimensions of mass.

• Ordering between the regions is defined by set-theoretic inclusion on the skeletons
defined technically in Sec. 5.4.1, and reviewed in the next section, 10.1.3.
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10.1.3 Regions: properties

Relations between regions

In simple cases, all the leading regions for a graph are nested. A typical example is DIS in
a non-gauge theory (Sec. 8.9). For that case, the leading regions are where some number
of rungs at the top of a ladder graph, Fig. 8.12, form the hard subgraph, and the rest of
the graph is target-collinear. The hard subgraph corresponds to a graphical factor AKj in
Fig. 8.12. If we use Rj to denote the corresponding region, then the ordering of leading
regions can be represented along a line:

R0 < R1 < R2 < · · · < RN. (10.2)

This situation is called a total ordering, i.e., any two leading regions, R1 and R2, obey
exactly one of R1 < R2, R2 < R1 or R1 = R2.

But in general, the ordering is only a partial ordering. That is, between any two regions
R1 and R2, exactly one of the following holds:

• R1 < R2: R1 is smaller than R2.
• R1 > R2: R1 is bigger than R2.
• R1 = R2: they are the same region.
• They overlap. That is, the intersection of their skeletons is non-empty, R1 ∩ R2 �= ∅, but

none of the preceding three cases hold.2 Thus R1 ∩ R2 is non-empty and strictly smaller
than both of R1 and R2. An example is given by RA and RB in (5.21). We denote this
situation by R1 ovrlp R2.

• R1 and R2 do not intersect at all: R1 ∩ R2 = ∅. An example is given by RA′ and RB ′ in
(5.21).

Separation of non-intersecting regions

Suppose two regions R1 and R2 do not intersect. Then there is a non-zero separation
between them, because the (empty) intersection is of their skeletons, which are closed sets.
Thus if λ1 and λ2 are radial variables for the two regions, then there is a non-zero range
0 ≤ λj ≤ Lj for which points around each PSS do not intersect the other. Since the PSS
are defined from the massless theory, each of these ranges in λj is of order Q.

Minimal region(s)

We define a region R0 to be minimal if it has no smaller regions, i.e., if there is no R′ for
which R′ < R0. One example is for a handbag diagram for DIS. Its minimal region gives
the parton model. A non-trivial example is for the one-loop vertex graph treated in Sec. 5.4.
It has three minimal regions RA′ , RB ′ and RS . (But only RS is leading.)

Note that a minimal region R0 cannot overlap with any region. For every other region,
either R0 is contained in it or does not intersect it.

2 ∅ denotes the empty set.
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Hierarchy

Ordering between the different regions of a graph allows them to be organized in a hierarchy
which can be diagrammed as in (5.21).

10.1.4 Definition of region term CR�

CR for minimal region

For a minimal region R0, its contribution is simply defined to be the action of its approxi-
mator on the unapproximated graph:

CR0�
def= TR0�. (10.3)

In DIS in a non-gauge theory in Ch. 8, a suitable approximator for a minimal leading region
was given in (8.68).

As that equation illustrates, a natural definition of the approximator can lead to extra
UV divergences, which are to be removed by renormalization of parton densities (and of
similar objects, in the general case). Therefore we define the approximator to include such
renormalization.

Alternatively, the approximator can be defined to include a suitable cutoff. The com-
parative advantages and disadvantages of the renormalization and cutoff approaches were
discussed in Sec. 8.3.1.

CR for larger regions

In the contributions from larger regions, we use subtractions to avoid double counting of
the contributions from smaller regions. So we define

CR�
def= TR

(
� −

∑
R′<R

CR′�

)
. (10.4)

For a minimal region, (10.4) reduces to (10.3). Thus (10.4) gives a valid recursive definition
of CR�, starting from the minimal region(s).

The factor in parentheses is the original graph minus subtractions for regions smaller than
R. For the case treated in Ch. 8, this factor was found in (8.74); it is A [1− (1−←−T |V )K]−1

on the last line of that equation.3 In that situation, it was evident that the factor is power-
suppressed in regions smaller than R. Thus the smallest region where CR� is leading is
actually R.

But in more general cases, like the Sudakov form factor, such statements will need some
modifications.

It is also possible to start from an approximation for a maximal region, and then work
to smaller regions, as in Tkachov (1994). But starting from the smaller regions, as we have
done, gives a more direct relation to the parton model and makes clearer the relation to a
non-perturbative definition of the parton densities.

3 That formula does not explicitly include the needed parton-density renormalization.
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Fig. 10.1. Leading regions for DIS: (a) in a theory without gauge fields, (b) in a gauge
theory.

10.1.5 Remainder

We define the remainder of a graph to be

r(�)
def= � −

∑
R of �

CR�. (10.5)

It is essential to prove that this is actually power-suppressed, given a particular implemen-
tation of the region approximators TR�.

10.1.6 Relation to factorization

The above formalism focuses on an additive structure for a particular graph. To get a
factorized form, we sum over graphs. As observed in Sec. 8.2, the sum over regions and
graphs corresponds to independent sums over subgraphs associated with the regions, e.g.,
independent sums over the hard and collinear subgraphs for DIS in Fig. 10.1.

In the simplest cases, exemplified by Fig. 10.1(a), we have a fixed number of lines
joining the subgraphs, and the graphical structure directly corresponds to a factorization
formula. Then to prove factorization we need to prove that (1) the approximators TR respect
the factorized structure, (2) UV renormalization needed on the parton densities respects the
factorized structure, and (3) the subtractions in (10.4) actually have their intended effect of
removing double counting between the terms for different regions.

But as illustrated in Fig. 10.1(b), the situation is more complicated in a gauge theory,
because arbitrarily many gauge-field lines can connect the collinear and hard subgraphs,4

without any power-suppression.
Therefore the graphical representation of the regions does not directly correspond to

factorization.
An example of the necessary argument was given in Sec. 7.7 for a gauge-theory version

of the parton model. We applied Ward identities to convert the extra gluons into attachments
to the Wilson line in the definition of a gauge-invariant quark density. To do this requires an
appropriate choice of the approximators TR , together with a demonstration that the Wilson

4 And also soft and collinear subgraphs in a general case
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lines are actually obtained. Only after this work do we find that∑
R,�

CR� = factorized form. (10.6)

We could conceive that Fig. 10.1(b) itself represents a generalized factorization
structure. But the structure would involve an infinite collection of parton-density-like
objects, each with a different number of gluon lines, and each with a different hard-
scattering factor. Without further information, such a factorization would not be useful for
phenomenology.

10.1.7 Which formulation for calculations?

Often in realistic QCD calculations, there are many graphs to consider. The decomposi-
tion (10.1) produces multiple terms for each graph, resulting in an apparently even more
elaborate structure. Is it actually necessary to use it?

An alternative calculational approach was described in Sec. 9.6, and corresponds to many
practical calculations. The aim is to compute the hard-scattering coefficient in a factorization
formula, and the method uses the observation that the hard scattering does not depend on
the type of particle used for the target. One first makes a direct computation of Feynman
graphs for the process under consideration, but with a partonic target. Then one computes
the densities of partons in partons to the relevant order, and then applies factorization on a
partonic target to deduce the hard-scattering coefficients. Because factorization has taken
account of simplifications due to the use of Ward identities, there are generally fewer terms
to calculate than by a direct use of (10.1), which requires a listing of all the leading regions
for every graph computed.

This would appear to relegate the subtraction formalism to a key tool in a careful
derivation of factorization.

However, direct calculation of partonic Feynman graphs involves the cancellation of
various kinds of collinear and soft divergences between different graphs; it thereby entails
the use of a regulator. This is satisfactory if calculations are done analytically rather than
numerically. But if numerical calculations are used, the cancellation of divergences between
graphs is tricky to implement; it is a classic situation where rounding errors can dominate
a numerical calculation. To set up a numerical integral for the hard scattering one can
apply subtractions directly to the integrand of a hard-scattering subgraph. All necessary
cancellations of divergences are then in the integrand, and the integral can be evaluated
directly in four dimensions, without a regulator. We saw a very simple example in Sec. 9.7.5.

There is much recent work in implementing subtractions numerically, e.g., Binoth et al.
(2008); Dittmaier, Kabelschacht, and Kasprzik (2008); Frederix, Gehrmann, and Greiner
(2008); Hasegawa, Moch, and Uwer (2008); Seymour and Tevlin (2008).

Since there are many regions involved in high-order graphs, practical application of a
subtraction procedure must be automated. If the subtractions are not formulated correctly,
there can remain divergences, which manifest themselves in badly behaved numerical
integrals over a high-dimensional space.



320 Factorization and subtractions

Fig. 10.2. One-loop graph for DIS on elementary target.

10.2 Simple example of subtraction method

With suitable definitions of the region approximators TR , we will derive factorization
for many processes of interest from the structure of the sum over regions and graphs,∑

�,R CR�. So to prove factorization is accurate up to a power-law error, we need to prove
that for each individual graph the sum over regions,

∑
R CR�, itself approximates �, up to

a power-law error, i.e., that the remainder r(�) is power-suppressed.
Now the approximator TR is always designed so that TR� gives an accurate approxi-

mation when the momentum configuration is both close to the PSS defining the region R,
and away from the intersections with the PSSs for regions that are smaller than or overlap
with R. The complications in making a satisfactory proof that r(�) is power-suppressed
arise from the combination of multiple regions, with the possibility of double counting, and
from the fact that there are intermediate configurations of momenta where the individual
approximations degrade in accuracy.

The simplest proof is when all the relevant regions are nested, as in Sec. 8.9. Our aim in
this chapter is to construct better methods that also work when there are more complicated
relations between regions, e.g., (5.21).

But first I illustrate the general notation with a simple mathematical example motivated
by a one-loop graph for DIS in a model theory, Fig. 10.2. There are two leading regions:
R0, where the top rung is hard and the bottom rung collinear, and R1, where the whole loop
is hard. They obey R0 < R1. The simple example is obtained by replacing the full Feynman
graph by the following one-dimensional integral

I (Q,P,m) =
∫ ∞

0
dk �(k,Q,P,m) =

∫ ∞
0

dk
Q

Q+ k +m

1

k + P +m
. (10.7)

The factor of Q in the numerator makes the integral dimensionless, and gives an overall
leading power of Q0.

If our general subtraction method works, then the leading-power asymptote for the graph
is

CR0� + CR1� = TR0� + TR1 (1− TR0 )�. (10.8)

We define the approximators TR to be applied to the integrand, �, rather than to the integral
as a whole. Each TR sets to zero the (lower) external momentum and the internal mass of
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the hard scattering. Thus

CR0� = TR0� =
Q

Q

1

k + P +m
= 1

k + P +m
, (10.9a)

(1− TR0 )� =
(

Q

Q+ k +m
− 1

)
1

k + P +m
, (10.9b)

TR1� =
Q

Q+ k

1

k
, (10.9c)

CR1� = TR1 (1− TR0 )� =
(

Q

Q+ k
− 1

)
1

k
, (10.9d)

so that the remainder is

r(�) = � − CR0� − CR1� = (1− TR1 )(1− TR0 )�

=
(

Q

Q+ k +m
− 1

)
1

k + P +m
−
(

Q

Q+ k
− 1

)
1

k
. (10.10)

Applying 1− TR0 gives a suppression by k/Q or m/Q, whichever is larger, in the factors
in parentheses on the last line of (10.10). This has a minimum of m/Q, which is the desired
overall error, but the error degrades as k increases towards Q.

Applying 1− TR1 gives a suppression by m/Q or m/k. (We assume P is of order m.)
The intrinsic variable of the large region R1 is k, and TR1 is designed to give an accurate
approximation when k ∼ Q. But as k approaches R0 the accuracy of an approximation of
� by TR1� degrades to m/k. But multiplying this error by the previously determined factor
of k/Q compensates this, to leave an overall relative error of m/Q.

Notice that the error in (1− TR1 )� gets even worse if k � m, because TR1 makes a
massless approximation, replacing 1/(k + P +m) by 1/k. By itself, this would give an
actual divergence in the integral at k = 0. But the 1− TR0 factor applied in this same
massless approximation gives a k/Q factor to kill the divergence.

10.3 Sudakov form factor

The fundamental object in our method is the approximator TR� for a region R of a graph
�. We let λR be the radial variable, we let kR be the angular variables surrounding R, and
we let zR be the intrinsic variables for R (Secs. 5.5 and 5.7). The approximator must give
a good approximation to � in the core of the region R, i.e., where λR is small and the kR

variables are not close to larger regions.
In simple examples, as in Sec. 10.2, the accuracy of TR only degrades when the intrinsic

variable(s) of R approach the PSS of a smaller region. However, when we treat soft gluons,
the accuracy of TR also degrades when the angular variables kR approach larger PSSs
than R. This issue is responsible for complications in many QCD processes, when they are
compared with simple Euclidean problems, like the OPE.

A simple case to illustrate these issues is the Sudakov form factor, i.e., the electro-
magnetic form factor of an elementary particle at high Q. We defined the Sudakov form
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Fig. 10.3. (a) Sudakov form factor. (b) Its leading regions with loop momenta connecting the
subgraphs. The dots indicate arbitrarily many gluons exchanged between the neighboring
subgraphs. Note that the soft subgraph S may be empty or may have more than one connected
component. The complete amplitude is approximated by a sum over regions and graphs
when the contribution of each region is interpreted as CR�.

factor and its kinematics in Sec. 5.1.1. Our aims now are to make suitable definitions of the
approximators TR , and to derive factorization. The form factor and its leading regions are
shown in Fig. 10.3.

10.3.1 Factorization

We will obtain a factorization property in which the form factor F is the product of a hard
factor H , collinear factors A and B for each external quark, and a soft factor S:

F = HABS + power-suppressed, (10.11)

each with dependence on only some parameters of F . Later we will redefine the factors so
that a square root of S is absorbed into each collinear factor. (We will accompany this by
some further redefinitions of A and B.) Then S will not appear in the final factorization
formula.

10.3.2 Overall motivation for factorization approach

At this point, I review the rationale for using the factorization approach in QCD. This will
indicate the kinds of theorem we need to formulate.

Typically, multiple regions contribute to an amplitude or cross section when there are
large momenta. In perturbative calculations, this gives rise to large logarithms which prevent
a straightforward use of perturbation theory in QCD. The two logarithms per loop present
in many cases like the Sudakov form factor are particularly bothersome.

Moreover, in almost all interesting cases in QCD, some momenta in leading regions
have low virtualities, where the effective coupling is large, so that low-order perturbative
calculations are inapplicable.

In a factorized formula like (10.11), the different factors are each concerned with a
particular kind of 4-momentum. Besides dependence on external kinematic variables, each



10.4 Region approximator TR for Sudakov form factor 323

Fig. 10.4. One-loop graph for Sudakov form factor, and the hierarchy of its leading regions.
In each case, the name of the region, e.g., “RS”, refers to the category of the gluon’s
momentum. A line connecting two regions denotes that they are ordered, with the bigger
region on the left. Thus the diagram component R2 − R1 means that R2 > R1 in the sense
defined in Sec. 10.1.2.

factor has dependence on one or more auxiliary parameters (like a renormalization scale).
The auxiliary parameters can be roughly characterized as setting the boundaries between
kinematic regions. The logarithms can be tamed by deriving evolution equations for the
dependence on the auxiliary parameters. The kernels of the evolution equations are free of
logarithms in the parameter whose dependence is governed by the evolution equation, and
thus the kernels are susceptible to perturbative calculations (and hence prediction from first
principles).

After the application of evolution equations, we need the individual factors, each at
appropriate reference values of the auxiliary parameters. Some factors depend on low
momentum scales, and are therefore genuinely non-perturbative in QCD. Others depend
only on a single large scale, and therefore are perturbatively calculable in QCD. The
non-perturbative quantities in QCD are typified by parton densities. They will be proved
to be universal, i.e., the same parton densities appear in many different reactions. As
explained in Sec. 9.13, universality underlies much of the predictive power of QCD: The
non-perturbative quantities can be measured from a limited set of data, and then predictions
are made for a wide variety of other experiments, with the aid of perturbative calculations
for hard-scattering coefficients and evolution kernels.

10.3.3 Sudakov: regions for one- and two-loop graphs

As explained in Secs. 5.4.1 and 10.1.3, the regions for a graph can be organized as a
hierarchy. To illustrate this, Figs. 10.4 and 10.5 show some important one- and two-loop
graphs for the Sudakov form factor together with a representation of the hierarchies of their
leading regions. A useful exercise is to check the hierarchies.

10.4 Region approximator TR for Sudakov form factor

The definition in this section of the region approximator TR uses the methods of Collins,
Rogers, and Staśto (2008).

10.4.1 Decomposition of graph for one region

Consider a particular graph � for the Sudakov form factor. A leading region R corresponds
to a graphical decomposition of the form of Fig. 10.3(b), with subgraphs which we label H ,
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Fig. 10.5. Some two-loop graphs for the Sudakov form factor, and their leading-region
hierarchies. The two-lettered code for a region, e.g., in “RHS”, refers to the categories of
gluon k and gluon l.

A, B, and S.5 We choose loop momenta coupling the subgraphs as follows. Momenta on
external lines of the soft subgraph circulate into one collinear subgraph, round through the
hard subgraph and back by the other collinear subgraph. Remaining loops involve momenta
from each collinear subgraph entering the hard subgraph and circulating back to the same
collinear subgraph. Thus we write the integral for the graph as

I =
∫

dkAS dkBS dkHA dkHB H (q, kHA + kHAS, kHB + kHBS,m)

× A(pA, kHA, kAS) B(pB, kHB, kBS) S(kBS, kAS). (10.12)

Here kAS denotes the array of momenta flowing from the A subgraph into the S subgraph,
and similarly for kBS . These momenta flow through the hard subgraph, with kHAS and kHBS

denoting how the circulating soft momenta are apportioned among lines entering H . The
remaining momenta circulating between the H and A subgraphs are kHA, and similarly for
kHB . Thus to denote the full set of momenta entering the hard subgraph from each collinear
subgraph we use kHA + kHAS and kHB + kHBS .

The soft factor is defined to include a momentum-conservation factor for each of its
connected components. All loops contained entirely within the separate subgraphs do not
need to be indicated explicitly. Although the integrals in (10.12) are commonly of high

5 Note that the use of these symbols is different than in Figs. 10.4 and 10.5, where the symbols refer to particular
categories of gluon momentum instead of subgraphs with momenta in a category.
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dimension, it is possible that some or all are absent, for example when the soft subgraph is
empty, or when only a single line connects a collinear graph to the hard subgraph.

Although to construct the definition of TR we will examine properties of the graph when
the values of momenta correspond to the region under consideration, we do not intend the
loop momenta in (10.12) to be restricted to the region. In that sense, (10.12) is an exact
expression for the whole Feynman graph. The purpose of this decomposition is simply to
provide a convenient notation for use in a general definition of TR .

When the momenta are near the PSS of R, some propagator denominators are particularly
small. In general, we can make a suitable approximant by expanding in powers of small
variables compared with large variables. Since we are concerned here only with the leading
power of Q, the first term in the series suffices, i.e., we simply neglect the small variables
compared with the large variables.

One complication now arises. As follows from the discussion in Sec. 5.10.2, there are
two clashing characterizations of a collinear momentum. One is that it has energy of order
Q and low virtuality. The other is that it has high center-of-mass rapidity. The distinction
is particularly important when we deal with graphs with a massless gluon, as in QCD, and
it is the second, more general, characterization that is more appropriate.

The use of this second definition strongly influences our construction of the region
approximator TR , since it affects the characterization of large and small variables. There
can be leading contributions when some gluons are simultaneously soft and collinear, in the
sense that all their momentum components are much less than Q and that their rapidities
are large.

10.4.2 Definition of TR

We consider the region R of a graph � associated with the decomposition (10.12). We
also label momenta of particular lines by their category (soft, collinear-to-A, etc.) at the
PSS for the region. The power-counting for the momentum components was given in
Sec. 5.7.4.

The basic method to construct the region approximator TR is to expand to leading power
in the radial variable λR for the region. This will tend to introduce divergences. Some of the
divergences are endpoint divergences, associated with regions R′ that are smaller than R;
these we will find to be canceled by the subtractions in the definition (10.4) of the region’s
contribution CR�. Other divergences arise when we extend loop-momentum integration
beyond the immediate neighborhood of R. These are essentially UV divergences removed
by conventional renormalization that we include in the definition of TR .

For simple Euclidean asymptotic problems like the OPE, there are no further divergences.
But characteristic of asymptotic problems in Minkowski space with soft gluons are further
divergences, which we term rapidity divergences; see the discussion around (10.35) below.
We will modify the definition of TR to cut off rapidity divergences. The evolution equations
with respect to the cutoffs are essential to using the factorization theorem, and we will
see important applications in Ch. 13. The only place where a modification is needed is in
the approximation of soft momenta entering the collinear subgraphs. Later, in Sec. 10.11,
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we will reorganize the factorization formula into a form where the cutoffs on rapidity
divergences can be removed.

The approximator’s definition is made in three stages. The first is to extract the leading
power of λR in the numerators and denominators of the subgraphs, with modifications to cut
off rapidity divergences, and to improve properties of the hard scattering. It is implemented
by defining linear projectors on loop momenta: PAS , PBS for soft loop momenta in the A

and B subgraphs, and PHA, PHB for collinear and soft loop momenta in the H subgraph.
Then certain adjustments of the momenta in H are implemented by non-linear functions
RHA and RHB , so that the following replacement is made:

I �→
∫

dkAS dkBS dkHA dkHB H
(
q, k̂HA, k̂HB, 0

)
× A

(
pA, kHA, k̂AS

)
B
(
pB, kHB, k̂BS

)
S
(
kBS, kAS

)
, (10.13)

where

k̂AS = PAS(kAS), (10.14a)

k̂BS = PBS(kBS), (10.14b)

k̂HA = RHAPHA

(
kHA + PAS(kHAS)

) = RHAPHA(kHA), (10.14c)

k̂HB = RHBPHB

(
kHB + PBS(kHBS)

) = RHBPHB(kHB). (10.14d)

It will be a considerable convenience that soft momenta are approximated by exactly
zero in the hard subgraph H , which is enforced by defining projectors so that PHAPAS =
PHBPBS = 0.

The second stage of the definition of TR is to apply corresponding approximations to the
numerator factors in the lines connecting the subgraphs. The final stage is renormalization
of UV divergences.

The approximator makes use of some auxiliary vectors to define particular directions in
the (t, z) plane:

w1 = (1, 0, 0T), w2 = (0, 1, 0T), (10.15a)

n1 =
(
1,−e−2y1 , 0T

)
, n2 =

(−e2y2 , 1, 0T
)
. (10.15b)

Thus w1 and w2 are light-like vectors corresponding to the external momenta pA and pB ,
while n1 and n2 are similar vectors that are slightly space-like. The rapidity parameters y1

and y2 are among the auxiliary parameters referred to earlier, for which evolution equations
will be derived; initially they are chosen to be comparable to the rapidities ypA

and ypB
of

the external on-shell lines. The vectors in (10.15) specify directions, and all their uses will
be unchanged if any of the vectors is scaled by a positive non-zero number.

I now present the detailed definitions that make up TR , leaving some details of the
justification to Sec. 10.6.

1. Soft to collinear-A: Consider a momentum kAS flowing from A into S. The denominator
for a line in A has the form (kA + k2

AS)−m2 = k2
A −m2 + 2kA · kAS + k2

AS , where kA
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is a momentum classified as collinear-to-A. From Sec. 5.7.4, the leading power of
λR is λ2

R , for the terms k2
A and 2k+Ak−AS . So the basic leading-power approximation

for subgraph A is to neglect all but the minus component of kAS , i.e., to make the
replacement kAS �→ (0, k−AS, 0T). To cut off rapidity divergences we then modify the
minus component slightly, and define TR to use the following projector:

kAS �→ k̂AS = PAS(kAS) = (0, 1, 0T)
(
k−AS − e−2y1k+AS

)
. (10.16)

In covariant form this is

k̂AS = PAS(kAS) = w
μ
2 kAS · n1

w2 · n1
, (10.17)

where n1 and w2 are defined in (10.15), with y1 in the definition of n1 being a large
positive rapidity appropriate to the pA particle. But the precise value of y1 is not critical;
the effect of changes in y1 will cancel in the complete factorization formula.

The use of kAS in (10.12) treats kAS as the array of loop momenta flowing from A

into S. So the above definition is to be applied separately to each of the momenta in the
array.

The justification of the exact form of the above projector will be given in Sec. 10.6,
including the choice that n1 is space-like.

2. Soft to collinear-B: A similar replacement is applied to soft momenta in the B subgraph,
with the roles of plus and minus components exchanged:

kBS �→ k̂BS = PBS(kBS) = w
μ
1 kBS · n2

w1 · n2
. (10.18)

Naturally y2 in the definition of n2 should be a large negative rapidity appropriate to pB .
3. Collinear-A and collinear-B to H : In the hard subgraph H , the basic approximation

is to replace momenta kHA + kHAS from the A subgraph by their plus components and
momenta kHB + kHBS from the B subgraph by their minus components:

PHA(kHA) = w1 (kHA + k̂HAS) · w2

w1 · w2
= (k+HA, 0, 0T), (10.19a)

PHB(kHB) = w2 (kHB + k̂HBS) · w1

w2 · w1
= (0, k−HB, 0T). (10.19b)

Hence soft momenta are replaced by zero in the hard subgraph.
4. Masses in H : We also normally replace masses by zero in H . Under some circumstances,

it is appropriate to retain masses. In that case it is normally appropriate to put on-shell
the external massive quark lines of the hard subgraph by modifying PHA and PHB .

5. Alternative for H : In applications, like QCD, where the gluon is massless, there can be
important contributions from gluons that are soft in the sense of having very low energy,
but collinear in the sense of having rapidity comparable to that of pA or pB . Such gluons
we call “soft-collinear”. From the point of view of regions and approximations, we will
treat them as collinear. They can be external lines of the hard scattering.
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To treat them adequately, we modify the definition of the approximator for a hard
subgraph: masses are left unapproximated, and the external quark lines of the hard
scattering are put on-shell, but now massive. The projectors for Dirac matrix connec-
tions between collinear and hard subgraphs are modified to project onto massive wave
functions.

After use of Ward identities to extract the extra collinear gluons from the hard
subgraph, the modified H subgraph can be replaced by the standard one.

6. Numerators connecting subgraphs: We project on the leading-power part of the numer-
ators for Dirac lines and for gluons connecting the H , A, B and S subgraphs as follows:
(a) For the attachment of a gluon from S to A, insert the following matrix to implement

a Grammer-Yennie approximation (modified from (5.51)):

k̂
μ
ASn

ν
1

kAS · n1 + i0
. (10.20)

Note that kAS · n1 = k̂AS · n1. The i0 prescription is correct when kAS is defined to
flow out of the collinear subgraph. The μ index is contracted with the A subgraph
and ν with S. We will see that because the approximated A subgraph is contracted
with the approximated momentum k̂AS , exact Ward identities can be applied to
convert the S-to-A couplings to a Wilson line in direction n1.

Thus the following replacement is made on the product of the A and S

subgraphs:

A(pA, kAS, 1, . . . , kAS, N )μ1...μN S(kAS, 1, . . . , kAS, N )μ1...μN

�→ A(pA, k̂AS, 1, . . . , k̂AS, N )μ1...μN

×
N∏

j=1

k̂AS, j, μj
n1, νj

kAS, j · n1 + i0
S(kAS, 1, . . . , kAS, N )ν1...νN , (10.21)

where the individual momenta of the array kAS are denoted by kAS, j . It can be
verified that the approximation is accurate to leading power when the kAS momenta
are in the soft region: i.e., all components are much less than Q, their rapidities are
much lower than those of the collinear-to-A lines, and they are not in the Glauber
region.

(b) Similarly, for the attachment of a gluon from S to B, insert

k̂
μ
BSn

ν
2

kBS · n2 + i0
, (10.22)

where the momentum is flowing out of B.
(c) For a gluon of momentum kHA + kHAS out of H into the A subgraph, make the

insertion

PHA(kHA)μwν
2

kHA · w2 + i0
. (10.23)
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(d) For a gluon of momentum kHB + kHBS out of H into the B subgraph, make the
insertion

PHA(kHB)μwν
1

kHB · w1 + i0
. (10.24)

(e) For a Dirac line entering H from B, and for a Dirac line leaving H to A, insert
the projector PB = 1

2γ+γ−. This and the next item are cases of the Dirac spinor
projector derived for the parton model in Sec. 6.1.2.

(f) But for a quark line in the reverse direction, use PA = 1
2γ−γ+.

(g) If a version of the approximator is used in which approximated quark momenta are
massive (and on-shell), then the projectors need to be modified, but in such a way
that their massless limits exist. See problem 10.8 for possible definitions.

7. Slightly scaled H : The approximated hard scattering will generally not obey momentum
conservation:∑

j

(k+HA, j , 0, 0T)+
∑

j

(0, k−HB, j , 0T) �= q. (Pre-rescaling) (10.25)

Here j labels the lines carrying the relevant momenta. To correct momentum
conservation, we apply overall scaling factors separately to the plus and minus
components:

k+HA, j �→ k̃+HA, j = k+HA, j

q+∑
j ′ k
+
HA, j ′

, (10.26a)

k−HB, j �→ k̃−HB, j = k−HB, j

q−∑
j ′ k
−
HB, j ′

, (10.26b)

a replacement to be made in H alone. Since we defined q to have qT = 0, no correction
of approximated transverse momenta is needed. After the rescaling, we have exact
momentum conservation:∑

j

(k̃+HA, j , 0, 0T)+
∑

j

(0, k̃−HB, j , 0T) = q. (Post-rescaling) (10.27)

The correction factors in (10.26) differ from unity by order m2/Q2. This is because the
sums of the unapproximated collinear momenta are the external momenta:

∑
j kHA, j =

pA,
∑

j kHB, j = pB , while p−A/p+A and p+B /p−B are of order m2/Q2.
8. Renormalization of extra UV divergences: As in our treatment of DIS in a non-gauge

theory, the approximator short-circuits certain loop-momentum components, thereby
inducing UV divergences beyond those renormalized in the Lagrangian. These are
removed by UV counterterms defined, for example, in the MS scheme with the use of
dimensional regularization. After we obtain factorization, renormalization will behave
much like that for the local operators used in the OPE (e.g., Collins, 1984), but now
applied to the operators defining the soft and collinear factors. We will generally leave
this renormalization implicit until we do actual calculations.
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×

Fig. 10.6. Representation of soft term (10.29) for vertex graph, (a) before and (b) after use
of Ward identities.

10.5 One-loop Sudakov form factor

We now illustrate the general definitions given in Sec. 10.4 by applying them to the one-loop
graph, Fig. 10.4. The external fermions are on-shell, and the gluon has a non-zero mass
mg . But some issues will be illustrated by taking mg to zero and/or taking the fermions
off-shell.

The graph is

�1 = ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

ūAγ κ (/pA
− /k +m)γ μ(−/pB

− /k +m)γ λvB

[(pA − k)2 −m2 + i0] [(pB + k)2 −m2 + i0]
,

(10.28)

where uA and vB are the Dirac wave functions for the outgoing quark and antiquark. Its
leading regions are RS , RA, RB and RH , where the subscripts indicate the type of gluon
momentum. For a compact notation, the region approximators and the region contributions

are written TS
def= TRS

, CS
def= CRS

, etc.

10.5.1 Soft-gluon term CS

The soft region RS is a minimal region, so its term is obtained by applying the region’s
approximator, as defined in the list starting on p. 326:

CS�1 = TS�1 = ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

nκ
1

−n1 · k + i0

nλ
2

n2 · k + i0

× ūA(−/k1) (/pA
− /k1 +m)PBγ μPB (−/pB

− /k2 +m)/k2vB

[(pA − k1)2 −m2 + i0] [(pB + k2)2 −m2 + i0]

= ig2

(2π )n

∫
dnk

n1 · n2 ūAPBγ μPBvB

(k2 −m2
g + i0) (−n1 · k + i0) (n2 · k + i0)

, (10.29)

which we write diagrammatically in Fig. 10.6. The hard scattering is just the factor γ μ; it is
surrounded by factors of PB = 1

2γ+γ−, to project onto the appropriate on-shell massless
Dirac wave functions. This is indicated by the hooks in Fig. 10.6(a), just as for the parton
model in Fig. 6.4.
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From (10.17) and (10.18), the projected gluon momenta in the collinear subgraphs are

k1 = (0, k− − e−2y1k+, 0T) and k2 = (k+ − e2y2k−, 0, 0T). (10.30)

At the ends of the gluon line are applied the Grammer-Yennie approximants (10.20) and
(10.22). The result is notated by the arrows at the ends of the gluon in Fig. 10.6(a).

To get the last line of (10.29), we applied the identities /k2 = (/pB
+ /k2 +m)− (/pB

+
m) and /k1 = (/pA

−m)− (/pA
− /k1 −m). For each of these, one term gives zero on a

Dirac wave function and the other cancels the neighboring quark propagator. The result is
represented in Fig. 10.6(b). On the left is a lowest-order vertex

�0 = ūAPBγ μPBvB. (10.31)

On the right, the two double lines represent the gn1/(−n1 · k + i0) and−gn2/(n2 · k + i0)
factors in (10.29). With two changes, these factors are just as the first-order application
of the Feynman rules, Figs. 7.10 and 7.11, for Wilson lines, as in the gauge-invariant
definition of a parton density, (7.40). One change is that we have two Wilson-line segments
in different directions. The other is that the Wilson line in direction n2 has a reversed sign
of the coupling; physically this is because it approximates an outgoing antiquark, with the
opposite charge to a quark.

We therefore identify CS�1 as �0 times the one-loop value of the vacuum matrix element
of two Wilson lines of opposite charge, joined at the origin:

soft factorver. 1 = 〈0|W (∞, 0, n2)† W (∞, 0, n1) |0〉 , (10.32)

where W is defined by

W (∞, 0; n) = P
{
e−ig0

∫∞
0 dλ n ·A(0)α(λn) tα

}
. (10.33)

Notice that this definition uses the bare coupling and field, as needed to get the correct
gauge-transformation properties. A factor of a representation matrix tα of the gauge group
appears in the exponent to give a formula that is also appropriate for a non-abelian theory. In
the simpler case of an abelian gauge theory, one omits the tα factor, and one can replace the
coupling and field by their renormalized counterparts, since g0A(0) = gμεA in an abelian
theory. The opposite charge of the Wilson line for direction n2 is implemented by a hermitian
conjugation in (10.32).

After we formulate a factorization theorem, we will see that the formula for the one-loop
soft factor, CS�1, is sufficient to determine almost completely the Wilson-line definition.
However, we will modify some details of the definition. Hence we include a version
subscript on the left-hand side of (10.32). The matrix element in (10.33) is a primary
ingredient in the later redefinitions.

The approximations used to give CS�1 are valid in the soft region, provided we deform
the integration contour out of the Glauber region. As we will show in Sec. 10.6.4, the choice
of space-like vectors (10.15b) for n1 and n2, and of the i0 prescriptions in (10.29) is needed
to be compatible with the contour deformation.
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y
ypAypB

ln(kT/m)

k
− ∼ p

−
B k

+ ∼ p
+
A

(a): Graph Γ1 (b): CSΓ1

− =
−

(c): TAΓ1 (d): −TATSΓ1 (e): CAΓ1

− =
−

(f): TBΓ1 (g): −TBTSΓ1 (h): CBΓ1

(i): CHΓ1

Fig. 10.7. Main regions in y and kT for one-loop Sudakov form factor. The shaded areas
indicate where there are leading-power contributions, and the thick lines show where there
is a cutoff. A lack of a thick edge to a shaded area indicates that the area goes to infinity.
These diagrams are for the original graph and for various terms in the decomposition of
the graph by regions, with subtractions. The− signs on a shaded region indicate a negative
contribution. The top of the triangle in graph (a) is at ln(kT/m) = ln(Q/m).

10.5.2 (Double) leading-logarithm approximation

To understand the nature of the approximation, we make plots in the space of ln kT and y,
where y is the gluon rapidity y = 1

2 ln |k+/k−|, and examine where the main contributions
arise, both for the original graph and for terms contributing to each CR�1. These are shown
in Fig. 10.7.
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The variables are logarithmic in ordinary momentum components. With respect to these
variables, we will find that the original integral �1 has a uniform integrand in the interior of
the triangle in Fig. 10.7(a). This uniform value is in fact that of the soft approximation CS�1.
Outside of the triangle, the integrand falls off, so that a first approximation to the original
graph is the uniform integrand times the area of the triangle, which is a coefficient times
ln2 Q. This gives the double leading-logarithm approximation (LLA) to �1. The edges and
corners of the triangle give non-leading logarithms, and remaining contributions are in fact
power-suppressed.

We will see that the soft term, CS�1, also has important contributions from outside
the triangle. But we will find that these other contributions cancel corresponding parts of
the terms CR�1 for other regions R; see Fig. 10.7(b–i). The total reproduces �1 up to a
power-suppressed remainder.

In the core of the soft region the original graph �1 is correctly approximated by the
soft term CS�1, and the approximation remains correct when n1 and n2 are replaced by
light-like vectors, to give

ig2

(2π )4

∫
core of soft region

d4k
ūAPBγ μPBvB

(k2 −m2
g + i0) (−k− + i0) (k+ + i0)

, (10.34)

where we now work in four-dimensional space-time. We apply contour integration to the
k− integral,6 which gives a non-zero result only for k+ > 0. By closing the contour on
the gluon pole and changing variables from k+ to y = 1

2 ln |k+/k−| and from kT to ln kT,
we obtain:

−g2

4π2

∫
core of soft region

d ln kT dy ūAPBγ μPBvB

k2
T

k2
T +m2

g

� −g2

4π2

∫
core of soft region

d ln kT dy ūAPBγ μPBvB. (10.35)

The right-hand form is obtained by restricting attention, for reasons that will soon be
apparent, to large enough kT that we can neglect the gluon mass.

Original graph

The result has a uniform integrand, and so we estimate the size of the original unapproxi-
mated graph by the area of the relevant part of the plane of ln kT and y. We will find that the
integrand falls off relative to (10.35) near the edges of the triangle in Fig. 10.7(a), so the
area is that of the triangle. We examine the limits provided by each propagator denominator
in turn.

In the gluon propagator, the gluon mass effectively cuts off the kT integral at mg , and
this gives the lower boundary of the triangle, at ln(kT/mg) � 0. This is a fuzzy cutoff, not
a sharp cutoff. Given that the dimensions of the triangle are of order ln(Q/m), the width of
the fuzzy edge relative to the triangle is small, of order 1/ ln(Q/m).

6 Strictly speaking, this application of contour integration includes values of k− all the way to infinity, i.e., outside the
soft region. To see that this is not a problem, observe that the contribution we use in later equations is from the gluon
pole. The errors, i.e., the non-pole terms, are from a non-soft region which does not concern us here.



334 Factorization and subtractions

The A-quark denominator (after setting k on the gluon mass-shell from the contour
integration and after setting p2

A = m2) is

(pA − k)2 −m2 = −2p+Ak− − 2p−Ak+ +m2
g. (10.36)

We write 2p+Ak− in terms of rapidities as m
√

k2
T +m2

ge
ypA
−y , where ypA

is the rapidity of

the A quark, also taken as the rapidity of the n1 vector. The simplest soft approximation
replaces the denominator by−2p+Ak−. The second term in the denominator becomes equally
important when the rapidity of the gluon is comparable to that of pA, thereby providing
a cutoff requiring y � ypA

. Next, in the unapproximated graph, the k− poles are all in the
lower half plane if k+ > p+A ; this limits k+ to be less than p+A . The m2

g term in (10.36)
provides no stronger constraint.

Similar limits are associated with the B quark.
If the gluon mass is comparable to the quark mass, as we will assume for the moment, then

the limits kT � m, k+ � p+A , and k− � p−B dominate, giving the triangle in Fig. 10.7(a). The
two diagonal lines give ypB

+ ln(kT/m) � y � ypA
− ln(kT/m), which intersect at kT ∼ Q.

But when the gluon mass is made small or zero (as in QCD perturbation theory), the
range of kT extends down, and other limits become important.

Finally, the graph has a renormalized UV divergence for kT � Q. We assign this to the
line going vertically up from the top vertex of the triangle.

The area of the triangle is 1
2 (ypA

− ypB
) ln(Q2/m2) = 1

2 ln2(Q2/m2), which gives the
leading-logarithm approximation

LLA of �1 = −g2 ln2(Q2/m2)

16π2
ūAPBγ μPBvB. (10.37)

This has two logarithms for a one-loop graph, unlike the case for ordinary renormalization-
group (RG) logarithms, which are one per loop. At high energy the approximated ver-
tex ūAPBγ μPBvB equals the unapproximated vertex ūAγ μvB , up to a power-suppressed
correction.

The effects of the cutoffs are important only in a finite range of y and ln kT near the edges
of the triangle. Thus they do not affect the double logarithm. At large Q2, the sides of the
triangle contribute single logarithms, while the vertices contribute constants. The vertical
line above the triangle gives an RG single logarithm. Further contributions are suppressed
by a power of Q.

All-orders sum of LLA

This line of argumentation can be extended to higher loops, to give the leading logarithms
(Sudakov, 1956; Jackiw, 1968) for every order of perturbation theory. These form an
exponential series. If the assumption is made that it is sufficient to retain the leading
logarithm in each order, then one obtains the LLA for the form factor:

F � e−g2 ln2(Q2/m2)/(16π2) ūAPBγ μPBvB. (10.38)

We will derive this from our general factorization approach in Sec. 10.11.5. The result given
above is for the case of a massive gluon with on-shell external quarks, and was first found
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Fig. 10.8. Modifications to Fig. 10.7(a) when: (a) the gluon mass is zero;
(b) the gluon mass is zero but the external quarks are off-shell; (c) the quark and the
gluon masses are both zero, and the external quarks are on-shell.

by Jackiw (1968). As we will see below, the case of a massless gluon with off-shell external
quarks has double the coefficient of the double logarithm, and this was what Sudakov
(1956) actually calculated.

At large Q the LLA form factor drops faster than any power of Q. This obviously
indicates that power-law corrections might dominate, for sufficiently large Q. However,
without further information, there is no guarantee that non-leading logarithms have to fall
into the same pattern of summing to a strongly decreasing function of Q. For example,
as a hypothetical example, if the non-leading logarithms consisted of a single term g2,
this would be non-vanishing at large Q, and would dominate the LLA. In some analogous
problems in QCD (Ch. 13) such a phenomenon does occur, a standard example being the
Drell-Yan cross section at small transverse momentum; the LLA does not even get correct
the qualitative behavior of the cross section. The factorization approach provides a much
more systematic and powerful approach to dealing with these issues.

10.5.3 Massless gluon; off-shell external quarks

The above estimates assumed that the gluon and quark masses are comparable, and that the
external quarks are on-shell. But in QCD the gluon is massless. Although a massive gluon
might be considered more representative of the real physics of a theory with quark and
gluon confinement, perturbative calculations definitely need a massless gluon. Moreover
applications to QED require a massless photon instead. We will also need to consider vertex
graphs embedded in bigger graphs, so it is also useful to understand the effect of taking the
external quarks off-shell.

Figure 10.8(a) shows the effect of setting mg = 0, which is to remove the lower cutoff
on kT. Thus a leading contribution occurs all the way to kT = 0, or minus infinity on a
logarithmic scale. As for the rapidity range at low k, the dominant restriction is caused by
the rapidities of the external quarks, which give the lower vertical lines. The integral has a
divergence, which is a conventional IR divergence, as in QED, with a coefficient that grows
with energy like ypA

− ypB
.

The IR divergence arises from the 1/(k−k+) factor in the soft approximation. If we now
set the external quarks off-shell, there is an extra term in the quark denominators. This
cuts off the kT integral at the lower end. If the external quark virtuality is of the order of
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the quark mass, i.e., m2, the result is shown in Fig. 10.8(b). There are effective cutoffs at
k− and k+ of order m2/Q. The leading-logarithm result comes from the diamond-shaped
region, which has twice the area of the triangle in the massive gluon case, thereby doubling
the coefficient of the double logarithm.

The general factorization theory we will establish requires the use of Ward identities. In
a real physical quantity, we must combine the off-shell form factor with the contributions
from other graphs, so the off-shell form factor does not represent the final result for a
physical quantity.

Finally there is the case of the on-shell form factor with all particles massless. In that
case, there is no longer a cutoff caused by the rapidities of the external lines, so we have the
region shown in Fig. 10.8(c), where we effectively have a doubly logarithmic divergence
composed of both IR and collinear divergences.

10.5.4 Region for CS�1

In contrast to the actual denominators of the quark propagators, the approximated eikonal
denominators (n2 · k + i0) (−n1 · k + i0) in the soft term CS provide cutoffs only at the
rapidities of the Wilson line. As illustrated in Fig. 10.7(b), the limits on gluon rapidity,
y2 � y � y1, are the same at all kT. We choose the rapidities of n1 and n2 to be approximately
the same as the rapidities of the external quark lines pA and pB . The soft term forms a
good approximation at small y and kT. It is most accurate at the center of the bottom line
in Fig. 10.7(a) and (b), and in fact is equally good for even smaller kT. The approximation
degrades as one approaches the upper lines of the triangle; one can characterize these lines
as where the error in the soft term is around 100%.

The soft term obviously contributes in a region where the original graph does not. This
is above the triangle, and therefore where at least one of the following holds: the energy
of the gluon is large, its rapidity is large, and/or its transverse momentum is large. These
all concern other regions than the soft region. Compensation for the extra area for the soft
term will be obtained from subtraction terms in the terms for regions bigger than the soft
region.

We can apply the same area argument as we used for the LLA for the original graph.
There is evidently an infinity (multiplied by y1 − y2) for the infinite range of kT. This can
be regulated dimensionally and renormalized, although we will not exhibit the calculation
yet.

Our general proof will require us to understand the errors in the soft approximation
more systematically. To do this we return to ordinary non-logarithmic momentum space.
The PSSs forming the skeletons of the leading regions are shown in Fig. 10.9(a). The
relative error in approximating the integrand is

|CSI1 − I1|
‖CSI1‖ = O

( |k+|
p+A

,
|k−|
p−B

, e−2(ypA
−y), e−2(y−ypB

)

)
. (10.39)

Here I1 denotes the integrand. One might expect the denominator to be just the absolute
value |CSI1|. But we use the double bars, ‖CSI1‖, to indicate that in a more general situation
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Fig. 10.9. (a) Leading PSSs for one-loop Sudakov form factor. (b) Neighborhood of S for
evaluating errors in soft approximation. (c) Neighborhood of A for evaluating errors in
collinear-to-A approximation. The squashing on the left indicates that we restrict attention
to positive rapidity.

a modification is needed. The problem is that there may be what we can term accidental
cancellations; for example, a numerator might have a variable sign, with necessarily a
zero at some place in the integration. We wish to use the general order of magnitude of
the integrand, for which we use the power-counting estimate of CSI1, obtained by the
methods of Sec. 5.8, with avoidance of any accidental cancellations. The result is denoted
‖CSI1‖. We also use the approximated integrand CSI1 in ‖CSI1‖, rather than the original
integrand I1.

The right-hand side of (10.39) simply comes from listing the sources of error in the soft
approximation, i.e., from examining the terms in the quark denominators and numerators
that were neglected in making the soft approximation. The first two terms simply measure
distance from the center of the soft region, viewed in the center-of-mass frame; these
sources of error are roughly constant on surfaces such as those in Fig. 10.9(b) surrounding
S. In a purely Euclidean asymptotic problem, this would be the whole story.

But in a Minkowski-space problem, such as ours, the errors worsen as the rapidity of
the gluon gets large, and approaches the A and B lines. The errors are given quantitatively
by the last two terms in (10.39). These are of order m2/Q2 when the gluon rapidity y is
small. But when the gluon rapidity is comparable to that of one of the external quarks, the
errors become of order unity.

10.5.5 Why integrate CS�1, etc., over all k?

Given that CS�1 has important contributions from a much broader range of loop momentum
than has �1, it is natural to want to restrict the integration to, for example, the triangular
range in Fig. 10.7(a). Nevertheless we define CS�1 (and all other CR) to have an integral
over all loop momenta. The combination of CS�1 with terms for other leading regions
will not only cancel the large excess regions, but will correct the inaccuracies in the soft
approximation at the edges of the triangle. Then the sum over CR�1 will give a complete
and useful representation of the leading-power part of �1.

The reasons for not using cutoffs (beyond those given by the finite rapidities of the
Wilson lines) are as follows. To get a systematic treatment, we need to have operator
definitions for the factors in the factorization theorem. An example definition is (10.32),
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whose main one-loop graph gives CS�1. A cutoff on the loop momentum k would require
an unpleasantly complicated operator. It is not known how to do this and combine it with
the Ward identities that we use later. Proving Ward identities needs shifts in loop momenta
and uses gauge-invariance properties of the operators; these are difficult to make consistent
with a cutoff. Instead, without cutoffs we are led directly to simple Wilson-line operators
whose gauge-invariance properties are obvious.

10.5.6 Collinear-A term CA

We now construct CA�, corresponding to the gluon being collinear to pA. First we just
apply the approximator for region RA. Using the definitions in the list starting on p. 326 we
get

TA�1 = ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

wλ
2

w2 · k + i0

× ūAγ κ (/pA
− /k +m)PBγ μ (−p−B γ+ − γ−k+) γ−k+PBvB

[(pA − k)2 −m2 + i0] [2p−B k+ + i0]

= ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

ūAγ κ (/pA
− /k +m)PBγ μPB(−wλ

2 )vB

[(pA − k)2 −m2 + i0] (w2 · k + i0)
. (10.40)

The collinear approximant changes the quark denominator (pB + k)2 −m2 to 2p−B k+,
because in the hard subgraph it replaces pB and k by massless vectors in the minus and
plus directions, and sets masses to zero. Examining the neglected terms 2p+B k− and k2,
with the knowledge that 2k+k− and k2

T are comparable shows that the relative errors in
this approximation are of order e−2(y−ypB

) and e−(y−ypB
)kT/m. Thus the approximant is

accurate when the gluon rapidity is much larger than the rapidity of the B line. There is
also a degradation for large kT � m, but that concerns the hard-gluon region, to be treated
later.

The region of (y, kT) space for TA�1 is shown in Fig. 10.7(c). Since the eikonal denom-
inator w2 · k is k+, without an additional k− term, the integral has a rapidity divergence,
where the rapidity of the gluon goes to negative infinity.

Our aim is to construct a term for the collinear-to-A region such that CA�1 + CS�1 is
accurate over the whole of the soft and collinear-to-A regions. Observe both of the soft
term and the collinear approximation contribute in each other’s regions. So we compensate
the double counting by subtracting

TATS�1 = ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

nκ
1(−wλ

2 ) ūAPBγ μPBvB

(−n1 · k + i0) (w2 · k + i0)
. (10.41)

The n2/(n2 · k + i0) factor of TS�1 is in the hard subgraph with respect to the collinear-to-A
approximator TA. Hence applying TA, defined by (10.19a) and (10.23), changes n2 to the
light-like vector w2.
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We therefore define the term for the A region by

CA�1 = TA(1− TS)�1

= ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

[
ūAγ κ (/pA

− /k +m)

(pA − k)2 −m2 + i0
− ūAnκ

1

−n1 · k + i0

]

× (−wλ
2 )

(w2 · k + i0)
PBγ μPBvB. (10.42)

This results in the cancellation of the rapidity divergence, justifying our use of a light-like
vector in the collinear approximant. The cancellation is because the soft approximant on
the A side is accurate when the gluon has large negative rapidity relative to pA. Thus we
get a cancellation in the square-bracket term in (10.42) with the result going to zero as the
gluon’s rapidity goes to minus infinity.

The placement of the Dirac projectors PB is also critical to making the formalism work
correctly.

The result is that the CA�1 term is power-suppressed in the soft region; Fig. 10.7(e). The
combination of the terms constructed so far, CS�1 + CA�1, gives a good approximation to
�1 over the whole of the soft and the collinear-A regions, with a restriction to the positive
rapidity side.

We can see this by observing that the remainder is �1 − CS�1 − CA�1 = (1− TA)(1−
TS)�1. The 1− TS factor gives a suppression basically by a power of |k|/Q but with a
degradation to e−(ypA

−y) as we go around the soft PSS and approach the PSS A, given
that y1 is close to ypA

. At this point we restrict to positive gluon rapidity, leaving negative
rapidity to our treatment of CB�1. The 1− TA factor gives a suppression e−y , when kT � m.
At the soft end of the A region, this compensates the worsening of 1− TS factor. It also
gives a power-suppression over the rest of the A region, a power of kT/Q. Thus we get
surfaces of constant error for CS�1 + CA�1 as symbolized in Fig. 10.9(c).

The collinear-to-A term itself is suppressed in the soft region, because of the 1− TS

factor, as illustrated in Fig. 10.7(e). Thus for central rapidity only the CS term is needed to
get a good approximation to �1, which it was constructed to do.

Furthermore, the soft subtraction has ensured that the CA term is also suppressed in the
whole of the opposite collinear region. This is an example of a general result critical to our
general treatment of overlapping regions: CA is suppressed both in regions smaller than A,
i.e., S, and in regions that overlap with it, in this case the B region.

A generally applicable argument is that in applying TA we made the first term in the
expansion of the B propagator in powers of k− and kT. In TA(1− TS)�1, the 1− TS factor
gives a suppression for small k+ and kT from its application to the A side. Going to the
B region involves extrapolating the common B-side factor to large k−. The suppression at
small k+ and kT continues to apply.

Effectively, once the approximator for the A region, TA, is applied, the power-counting
in the B region corresponds to that for the intersection of the two overlapping regions, i.e.,
A ∩ B = S.
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In contrast to these cancellations, there is a contribution in the upper region in
Fig. 10.7(e), where the gluon rapidity is positive, but its k+ is much larger than p+A . Such a
contribution is not present in the original graph, but is an artifact of the soft subtraction, in
the term −TATS�1, as is the divergence when kT →∞. Strange though this contribution
might appear, it will allow us to derive convenient evolution equations by differentiating
with respect to the rapidity cutoffs associated with the vertical lines in Fig. 10.7(b), (e),
and (h). When we add CS , CA, and CB , there is a cancellation of these extra contributions
for the case that kT � Q. This leaves only the region kT � Q, which is the province of
the hard region H , which we have yet to treat, and whose double-counting subtractions
will compensate for the incorrect value of CS + CA + CB in the hard region. There is also
an actual divergence as kT →∞, which we remove by UV renormalization, which will
correspond to conventional UV renormalization defining the operators used to construct
the soft and collinear factors in the factorization property.

Note that when the transverse momentum is large, kT � Q, there is also an important
region of negative gluon rapidity. This is surprising given that CA�1 is intended to deal with
gluons that are collinear to pA, i.e., of positive rapidity. But the problematic region is of
hard momenta, and so its full treatment will also bring in the term CH�1, whose subtraction
terms will correct the apparently problematic regions.

10.5.7 Collinear-B term CB

The collinear-to-B term is constructed exactly similarly to the collinear-to-A term:

CB�1 = TB(1− TS)�1

= ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

ūAPBγ μPBwκ
1

−w1 · k + i0

×
[

(−/pB
− /k +m)γ λvB

(pB + k)2 −m2 + i0
− −nλ

2 vB

n2 · k + i0

]
. (10.43)

The contributing regions for this term and its components, shown in Fig. 10.7(f)–(h), are,
naturally, a mirror image of those for the A region.

Just as before, the sum of the soft and collinear-to-B terms, i.e., CS�1 + CB�1, gives
a good approximation in the combination of the S and B regions. We next observe that
each of CA�1 and CB�1 is suppressed in both the central soft region and the opposite
collinear region. Thus we can add all three terms to get CS�1 + CA�1 + CB�1 and the
result provides a good approximation to �1 over all three regions, including both positive
and negative rapidity.

10.5.8 Hard term CH

The only degradation in CS�1 + CA�1 + CB�1 as an approximation to �1 occurs as we
move away from the combined S ∪ A ∪ B regions, i.e., as we go into the hard region H of
large transverse momenta and of virtualities of order Q2. We define the approximator TH
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for this region to make a massless approximation. As before, we avoid double counting in
the CH term specific to this region by applying the approximator to �1 only after subtracting
the contributions from smaller regions, i.e.,

CH�1 = TH (�1 − CS�1 − CA�1 − CB�1)

= TH (1− TA − TB)(1− TS)�1. (10.44)

We have seen that CS�1 + CA�1 + CB�1 gives a good approximation to �1 near the
combined S, A, and B regions, so that �1 − CS�1 − CA�1 − CB�1 is power-suppressed in
the distance to any of these regions. Thus the remaining contribution is when the momenta
are hard, i.e., for kT of order Q or larger, i.e., in the H region. So we define the approximator
TH for this region to set masses to zero, and to make pA and pB massless. It also replaces
the n1 and n2 vectors (in the definition of TS) by light-like versions: n1 �→ w1 = (1, 0, 0T),
and n2 �→ w2 = (0, 1, 0T). The soft term TS�1 and the soft subtractions in CA�1 and CB�1

now have the same light-like vectors, so they combine to a single added term, and we get

CH�1 = ig2

(2π )n

∫
dnk

−1

(k2 + i0)
ūAPB

{
γ κ (p+Aγ− − /k)γ μ(−p−B γ+ − /k)γκ

[−2p+Ak− + k2 + i0] [2p−B k+ + k2 + i0]

− γ+(p+Aγ− − /k)

−2p+Ak− + k2 + i0
γ μ −1

k+ + i0
− 1

−k− + i0
γ μ (−p−B γ+ − /k)γ−

2p−B k+ + k2 + i0

+ 1

−k− + i0
γ μ −1

k+ + i0

}
PBvB. (10.45)

10.5.9 UV divergences

The original graph �1 has a UV divergence. This is canceled in a complete calculation of
the one-loop vertex when the correct definition is used for the current at the photon vertex.
The current is a Noether current for a conserved charge, with unit coefficient when the
current is expressed in terms of bare fields: jμ = ψ̄0γ

μψ0. In terms of renormalized fields,
it has a factor Z2: jμ = Z2ψ̄γ μψ , and this factor of Z2 cancels the divergences in the loop
calculations. This is a well-known standard result in renormalization theory.7 This results
in a non-zero anomalous dimension associated with the one-loop graph. In the full form
factor calculation, we must also allow for the LSZ residue factors for the external on-shell
quarks. These are also associated with Z2, but inversely, so that the complete form factor
is RG invariant.

However, the hard, collinear and soft factors in (10.11) all have their own UV renor-
malization and need renormalization that is different from that in the current itself. This
is illustrated by the one-loop quantities computed above, CS�1, CA�1, CB�1, and CH�1.
Their UV divergences are associated with new vertices: where a Wilson line attaches to
an ordinary field (in CA�1 and CB�1) and where two Wilson lines attach to each other (in

7 However, there are some complications beyond the ones seen in most textbooks. See Collins, Manohar, and Wise
(2006) for a correct treatment.
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CS�1 and the subtractions in CA�1 and CB�1). As we will see, all these divergences are
logarithmic. Our ultimate definitions of the region contributions include renormalization
counterterms to remove the UV divergences.

Finally, CH�1 is formed from the original graph together with subtractions for the
smaller regions, all taken in the massless limit. Therefore, in the sum over all regions, i.e.,
CS�1 + CA�1 + CB�1 + CH�1, the extra UV divergences cancel to leave just the same
UV divergence as in �1. This is necessary if this sum is to give a correct large-Q asymptote
for �1.

We will treat the extra UV divergences and their renormalization in more detail later.
But for now we just examine one simple case, the UV divergence for CS�1, and indicate

some interesting properties, notably that it depends on the directions of the Wilson lines,
and more specifically on the hyperbolic angle between them.

In the formula (10.29) for CS�1, the integrals over the longitudinal momenta are readily
performed, e.g., by contour integration over k− followed by an elementary integral over
k+. Without the UV counterterm

CS�1

�0

no c.t.= −g2(2πμ)2ε

8π2
(y1 − y2) coth(y1 − y2)

∫
d2−2ε kT

1

k2
T +m2

g

= −g2

8π2
(y1 − y2) coth(y1 − y2)�(ε)

(
4πμ2

m2
g

)ε

, (10.46)

where �0 is given by (10.31). The UV counterterm in the MS scheme is

g2Sε

8π2ε
(y1 − y2) coth(y1 − y2), (10.47)

so that the renormalized CS�1 is

CS�1

�0

renorm.= −g2

8π2
(y1 − y2) coth(y1 − y2) ln

μ2

m2
g

. (10.48)

Observe the dependence on the difference in rapidities between the lines. (Lorentz
invariance requires that the dependence is on the rapidity difference, not on the rapidities
separately, since we can always transform to a frame in which one rapidity, y2 say, is zero,
in which case the other line’s rapidity is changed to y1 − y2.)

Since e−(y1−y2) ∼ m2/Q2 at large Q, a correct leading-power approximation is to replace
coth(y1 − y2) by unity. This leaves the remaining factor of y1 − y2. Therefore, there is a
further divergence if we take the Wilson lines light-like, an explicit example of a rapidity
divergence.

We call y1 − y2 the hyperbolic angle between the two vectors. The name is appropriate
because if we continue y1 and y2 to imaginary values, with y1 − y2 = iθ , then n1 and n2

are vectors in Euclidean space, and θ is the ordinary angle between them. (Actually θ is
the angle between n1 and −n2.)

We have seen that CS�1 is a one-loop term in the vacuum expectation value (10.32) of
a Wilson line composed of two straight line segments in directions n1 and n2, joined at a
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Fig. 10.10. Notation for derivative of CS�1 with respect to y1. The crossed vertex is defined
as a rapidity derivative of the Wilson line, in (10.49).

cusp. Our calculation has shown that there is a UV divergence associated with the cusp and
that both the divergence and the associated anomalous dimension depend on the hyperbolic
angle between the two lines.

10.5.10 Evolution with respect to Wilson-line rapidity

To illustrate evolution of the soft factor with respect to the direction of a Wilson line,
consider the derivative of the one-loop soft term CS�1 with respect to y1. This is obtained
by differentiating the n1-dependent factor:

∂

∂y1

(
n1

−n1 · k + i0

)
= ∂

∂y1

(
(1,−e−2y1 , 0T)

−k− + e−2y1k+ + i0

)

= −n2
1k̃

(−n1 · k + i0)2
, (10.49)

where k̃
def= (k+,−k−, 0T). Let us represent this object by a vertex with a cross, as in

Fig. 10.10. Then the derivative of CS�1 is

∂ CS�1

∂y1
= ig2

(2π )n

∫
dnk

1

(k2 −m2
g + i0)

−n2
1k̃ · n2 �0

(−n1 · k + i0)2 (n2 · k + i0)
+ UV c.t.

(10.50)

The key to further simplifications in the full evolution equation is that the derivative with
respect to y1 restricts the integral over k to rapidities near y1, to leading power, so that
we can take the limit y2 →−∞ without a rapidity divergence. To see this, we observe
that in the integrand of (10.50), when the rapidity y of the gluon is much less than y1, the
factor 1/(−n1 · k)2 becomes 1/(k−)2 ∝ e2y , which gives a suppression. So (10.50) concerns
gluons of rapidity close to y1.

Therefore in (10.50) we replace n2 by a light-like vector w2 in the minus direction.
The numerator and denominator factors n2 · k̃ and n2 · k both become w−2 k+, and therefore
cancel, so that

∂ CS�1

∂y1
= ig2

(2π )n

∫
dnk

1

(k2 −m2
g + i0)

2�0

(−ey1k− + e−y1k+ + i0)2

+ UV c.t.+O
(
e−2(y1−y2)) . (10.51)
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The unsuppressed first term is independent of y1. The k− and k+ integrals are easy to
evaluate, giving

∂ CS�1

∂y1
= −g2

(2π )n−1

∫
dn−2kT

k2
T +m2

g

�0 + UV c.t.+O
(
e−2(y1−y2)

)
, (10.52)

consistent with (10.46) and (10.48).
We will see that the evolution equation for the soft factor S in the factorization property

(10.11) has the form

∂ ln S

∂y1
= 1

2
K(mg,m,μ, g(μ))+O

(
e−2(y1−y2)

)
, (10.53)

with the kernel K being independent of y1 and y2. The right-hand side of (10.52) is in fact
the first term in the perturbation expansion of 1

2K . In accordance with the convention in
Collins (1989); Collins and Soper (1981); Collins, Soper, and Sterman (1985b), a factor 1

2
is defined to accompany K . The lowest-order value of K , from (10.52), is

K = −g2

4π2
ln

μ2

m2
g

+O(g4). (10.54)

It follows from (10.53) that S depends exponentially on y1 − y2:

S(y1 − y2) = S0e
1
2 (y1−y2)K

[
1+O

(
e−2(y1−y2)

)]
, (10.55)

with S0 independent of y1 − y2.
The quantity K also plays a key role in the evolution of the other factors in (10.11), and

analogous results hold for factorization theorems for other processes, like Drell-Yan with
measured transverse momentum for the lepton pair. In using the factorization theorems, it
will be necessary to use different values of the renormalization scale μ in different factors,
e.g., μ ∼ Q in the hard factor H , but μ ∼ mass in the soft and collinear factors. Thus the
RG equation for K is also important. This has the form

dK

d ln μ
= −γK (g). (10.56)

From (10.52), we read off the one-loop term in the anomalous dimension:

γK = g2

2π2
+O(g4), (10.57)

which plays a central role in applications.
This anomalous dimension has two roles, of the kernel of the RGE for K , and as

controlling the rapidity dependence of the anomalous dimension γS of the soft factor S:

γK = − dK

d ln μ
= −2

d

d ln μ

∂ ln S

∂y1
= −2

∂

∂y1

d ln S

d ln μ
= −2

∂γS

∂y1
, (10.58)

where we have dropped power-suppressed terms of order e−2(y1−y2).
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10.6 Rationale for definition of TR

The definition of the region approximator TR in Sec. 10.4.2 is obtained from the first
term in an expansion in powers of small variables. However, the actual soft-to-collinear
approximators were modified, to use space-like auxiliary vectors in (10.17) and (10.18),
and to have specific i0 prescriptions in (10.20)–(10.24). We now justify these modifications.
The modifications are unique, given some mild assumptions which are used to ensure the
proofs are relatively simple.

Some of the justifications are more readily understood by referring to the one-loop
example in Sec. 10.5.

The Grammer and Yennie (1973) paper gives a general approach to obtaining a leading
approximation for soft gluons (and for related situations). But their approximator (in their
K term) differs significantly in form from what we wrote in Sec. 10.4.2. This indicates that
a variety of alternative approximators are conceivable, and we should justify a particular
choice of approximator.

The Grammer-Yennie method was constructed to deal with IR divergences in QED;
it concerns regions where photon momenta go to zero. In that situation IR photons do
not interact with each other, even via loops of lines for electrons and any other matter
fields. The Ward identities are particularly simple in an abelian theory. Not only do the IR
divergences factorize from the rest of the cross section, but it was shown that the complete
IR factor is the exponential of its one-loop value. The correctly computed divergence
includes contributions from IR photons with rapidities comparable to that of an external
charged line.

In the asymptotic problems treated in this book, what we mean by soft momenta is
much broader; we include momenta whose absolute size may be large, but still much less
than Q. Thus interactions of soft lines are important: the S factor in Fig. 10.3(b) is an
arbitrary multigluon graph. However, we do not require the soft factor to correctly treat
low-energy gluons of high rapidity; these belong in the collinear factors with other high-
rapidity phenomena. The soft factor becomes a matrix element of Wilson lines, as do the
collinear-to-hard gluon couplings. Furthermore the non-abelian Ward identities used in
QCD are more complicated than the Ward identities in QED.

Consider our soft-to-A approximant, (10.21). In comparison, the original Grammer-
Yennie approach would use no approximation of kAS on the A subgraph, and would have
a more complicated non-linear function in place of our denominator kAS, j · n1. We will
also need to justify the particular i0 prescriptions used in the denominators in (10.20)–
(10.24).

10.6.1 Structure of soft and collinear approximants

The structure of all our generalized Grammer-Yennie approximants is

A(k)μS(k)μ �→ A(k̂)μ
uμvν

u · v S(k)ν = A(k̂)μ
k̂μvν

k · v S(k)ν, (10.59)



346 Factorization and subtractions

where

k̂μ = uμ k · v
u · v . (10.60)

Here u and v are fixed vectors chosen so as to extract the leading behavior of A · S in
the design region of the approximant. (That means, for example, that a soft-to-collinear-
A approximant should give an approximation that is accurate to leading power when the
momenta in S are soft and the momenta in A are collinear-to-A.) The names of the vectors in
(10.59) are changed from our original formula, to indicate that we address general structural
issues, allowing possible modifications of the formalism.

In general, multiple applications of (10.59) are used, one for each gluon joining A and S,
as in (10.21). All the considerations in this section apply equally if the pair AS is replaced
by BS, HA, or HB, merely needing a choice of appropriate auxiliary vectors u and v.

10.6.2 Requirements on soft and collinear approximants

To show that this form is required, and to determine further restrictions on the auxiliary
vectors w1, n1, etc., we apply the requirements on region approximators TR .

1. TR should give an approximation correct to leading power at its design region R.
2. It should be compatible as necessary with contour deformations applied to the original

graph.
We have already dealt with the consequences of this requirement.

3. The conversion of the sum over graphs and regions to a Wilson-line form should be
exact. Compare the derivation of the gauge-invariant parton model in Sec. 7.7.

That is, in applying the Ward identities to Grammer-Yennie approximants, there
should be no remainder terms. Typically such remainder terms are power-suppressed
and hence innocuous in the design region of TR , but can be unsuppressed elsewhere.
These terms are not in principle undesirable, but they make it hard to construct complete
proofs of factorization.

4. The approximant should be exact when applied to the Wilson lines derived from it.
Ward identities applied to the approximated Wilson line give back exactly the Wilson

line, as required by item 3. So the remainders between the graph and approximant must
sum to zero. It avoids a probably hard subsidiary proof if the remainders are not zero
term-by-term.

5. Summing the gluon attachments should actually give a Wilson line with a straight path,
rather than some more general object, at least if this is possible consistently.8

One can imagine more general ways of constructing gauge-invariant operators, e.g.,
by having Wilson lines with non-rectilinear paths, or by having an integral or sum over
Wilson lines with different paths and given endpoints. All such cases are even more
complicated than what we are already dealing with, so we should avoid them if possible.

8 In the applications treated in Ch. 13, the definition of gauge-invariant transverse-momentum-dependent parton densities
will require a minor modification to this assumption, with an extra segment of a Wilson line at infinity. The effects of
the modification will cancel in the ultimate results.
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Fig. 10.11. Hard factor times (a) normal local soft factor, (b) conceivable non-local
soft factor.

6. After applying TR , the hard subgraph should not depend on soft momenta.
Close to the design region of TR , the hard subgraph obviously has a power-suppressed

dependence on soft momenta. But if the dependence is not removed exactly in the
definition of TR , there will be significant dependence of H on soft momenta, and this
will introduce a complicated non-locality in the operator defining the soft factor. From
the sum over Fig. 10.3(b), we will derive a factorization with soft factors defined by the
vacuum matrix element of two Wilson lines joined at a point, so that the hard factor times
soft factor is as in Fig. 10.11(a). But if the hard subgraph H had dependence on momenta
circulating from the soft factor, the hard subgraph would give non-locality between the
otherwise-joined ends of the Wilson lines, as in Fig. 10.11(b). We could avoid this by a
subsidiary expansion of H after the use of Ward identities, but at the expense of hard-
to-control remainders in diagrammatic treatments: the subtraction formalism would not
correspond exactly to factorization. There would also be issues with gauge invariance
of H . It is simpler if we avoid the extra step, as we will be able to.

7. An approximated momentum k̂ is a linear function of the unapproximated momentum
k̂ = P (k). Applying the approximator a second time reproduces k̂, i.e., P (P (k)) = P (k).

One can find other requirements, but these are the ones that impinge most directly on the
issues we wish to discuss. Evidently some of the requirements are not absolute, but are
to prevent us from going outside known general ideas on gauge-invariant parton densities,
etc. unless we are absolutely forced to.

10.6.3 General form of Grammer-Yennie-type approximation

The different cases of a Grammer-Yennie-type approximant are very similar. So to obtain
its general form from the above requirements, it is sufficient to treat the case of a gluon of
momentum k connecting the S to the A subgraph. The relevant approximant is the approxi-
mated A subgraph multiplied by a special factor and the unapproximated S subgraph, as in
(10.59). We regard this as the approximated A subgraph (which is 1PI in the gluon) times
the matrix element with a gluonic operator that defines S. To connect this to the Wilson-line
formulation, the result is to be expressed by a Fourier transformation in terms of an integral
over the coordinate-space gluon field.

The Wilson-line requirement implies that the coordinate-space integral is along a straight
line, of some direction v, which we will identify with the same vector in (10.59) and (10.60).
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That is, in coordinate space the product of S and the approximated A subgraph has the form∫
dλ FA(λ) X(λv), (10.61)

for some function FA, with X(x) being the Fourier transform of S(k),

X(x) =
∫

d4k

(2π )4
eik·x S(k). (10.62)

In momentum space the product of S and approximated A is∫
d4k

(2π )4
fA(k · v)S(k), (10.63)

where

fA(k · v) =
∫

dλ eik·vλFA(λ). (10.64)

Hence the approximated A is a function of v · k. Since k̂ is a linear function of k, it is a
fixed vector times v · k. Reapplication of the approximator reproduces k̂, so k̂ must be of
the form (10.60).

The exactness of the Ward identities in a non-abelian theory requires the vectors u to be
the same at all gluons connecting S to A.

At each gluon between S and A, the approximant therefore has the form

A(k)μS(k)μ �→ A(k̂)μM(k̂)μ
νS(k)ν, (10.65)

where M is some matrix to be determined. The approximant is exact if Aμ is obtained from
a Wilson line in direction v; in that case A is some function of k · v times the vector v.
The function is unchanged by the approximant, since k̂ · v = k · v. So the requirement of
exactness of approximating a Wilson line gives

vμM(k̂)μ
ν = vν, (10.66)

from which we find that Mμ
ν is of the form aμvν/(a · v) for some vector a. For the Ward

identities to work exactly, we need aμ ∝ k̂μ. The structure in (10.59) follows.

10.6.4 Auxiliary vectors in soft approximation

In setting up the soft-to-collinear approximators, (10.21) etc., the natural expansion in small
variables would make the vectors n1 and n2 light-like, in the plus and minus directions. But
to cut off rapidity divergences, we made them non-light-like with rapidities y1 and y2.

We now derive the i0 prescription in (10.20) and (10.22), and determine that n1 and
n2 are space-like. Examination of one-loop examples is sufficient for this. As we saw in
Sec. 5.5.10, the soft approximation fails in the Glauber region, i.e., when |k+k−| � k2

T.
We avoid the Glauber region by deforming the k+ and k− integrals away from the poles
on the quark propagators. The approximators are applied on the deformed contours, so
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the denominators in (10.20) and (10.22) must use i0 prescriptions compatible with the
deformed contours.

In (10.28), the simplest deformation is symmetric. Where the real parts of k+ and k−

are in the Glauber region, we deform k+ into the upper half plane away from the pB + k

pole, and we deform k− into the lower half plane away from the pA − k pole:

k+ �→ k+ + i�, k− �→ k− − i�, (10.67)

where � is positive and of order kT. The signs reflect that both the quark and antiquark
are in the final state relative to the hard interaction, and the reversed sign between k+

and k− is because k flows into the A subgraph but out of the B subgraph. In (10.29), the
Grammer-Yennie denominators are

1

(−n1 · k + i0)(n2 · k + i0)
= 1

(−k− + e−2y1k+ + i0)(k+ − e2y2k− + i0)
. (10.68)

Not obstructing the contour deformation determines the k+ + i0 and −k− + i0 parts to be
as written, since e2y2 and e−2y1 are much less than one.

Fourier transformation of the Feynman rules for the Wilson lines shows that in coordi-
nate space they are future-pointing, corresponding to the fact that the external quark and
antiquark are in the final state.

We will also use factorization for other processes, and it is important that, if possible,
we have universality of the collinear and soft factors between processes. Now, as explained
by Collins and Metz (2004), other processes require an asymmetric contour deforma-
tion. As we will see in Sec. 12.14.3, in DIS we would use a contour deformation in k+

only:

k+ �→ k+ + iO(Q), k− �→ k−. (10.69)

The large k+ deformation is away from final-state singularities, but k− is generally trapped
at small values by a combination of initial- and final-state singularities associated with the
hadron target in DIS. This asymmetric deformation takes k from a Glauber configuration to
a collinear-to-A configuration, and hence out of the soft region. But the soft approximant
is to be integrated over all momenta, and it is used in a subtraction in collinear terms, so
auxiliary denominators must not obstruct the contour deformation.

To get maximum universality of the soft and collinear factors, we should avoid changing
the Wilson lines when we change processes, if possible. This requires (Collins and Metz,
2004) that our soft approximant for the Sudakov form factor also be compatible with the
asymmetric deformation (10.69). This is achieved if the relative signs between the i0s and
the k+ terms in (10.68) all be the same, and therefore as written. A similar argument applies
to the k− terms. This determines all the signs in (10.68), from which we deduce that n1 and
n2 are space-like, in agreement with our definitions.

An important advantage is that, since gluon fields commute at space-like separation, the
use of space-like Wilson lines ensures automatic compatibility between the path ordering
defining the Wilson lines and the time ordering used to define Green functions.
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A disadvantage arises when one extends the use of the approximations to cases with
emission of real gluons. Then singularities at k · n = 0 with n space-like occur in the
region of physical gluon emission. But with a time-like vector, the singularity is restricted
to k = 0, because of the positive energy condition on a physical state. (In the rest frame of
n, k · n = k0, which is positive for a physical state.)

If one gave up the argument about universality, one could use time-like auxiliary vectors.
In the Sudakov form factor (and generally in reactions in e+e− → hadrons) one could use
time-like future-pointing vectors. In DIS one would still need a future-pointing vector on
the struck quark side, but a past-pointing vector on the target side. The issues of universality
in this context need further investigation.

10.6.5 Auxiliary vectors in the collinear approximants

As for the collinear-to-hard approximants, subtractions for soft regions cancel the possible
rapidity divergences; we will see this as general result. Therefore it is sufficient to use
light-like vectors in the collinear approximants, as given in (10.19), (10.23), and (10.24).

The i0 prescriptions in (10.23) and (10.24) are determined in the same way as in the soft
approximants. The signs are in fact the same, and correspond to future-pointing Wilson
lines. Although the Glauber region appears to have nothing to do with a collinear region,
the approximators are applied to the graph as a whole with a deformed momentum contour.
The momentum denominators in the collinear approximant must therefore be compatible
with the contour deformation out of the Glauber region.

10.6.6 Alternative definition of the collinear-to-hard approximants

In our definitions in Sec. 10.4.2, we chose all the approximated momenta to be light-like.
Thus in (10.59), the vector u is light-like. Although this is generally the most convenient
choice, other choices are conceivable. However, constraints arise from other requirements.
In the case of the hard-scattering factor, gauge invariance is most conveniently assured, if
its external lines are on-shell. This implies that these lines are light-like given that they are
massless. Practical perturbative calculations are enormously much simpler when masses
are zero and external lines on-shell.

We also used a light-like Wilson-line vector in the hard scattering, i.e., w2 in (10.19a)
and w1 in (10.19b).

A constraint now arises from the requirement that the hard factor does not depend on
the soft momenta, after application of an approximator. This ensures that the hard factor
completely factors from the soft factor. In the notation of (10.59), let uAS and vAS be the
vectors for the soft-to-A approximant, and let uHA and vHA be the vectors for the A-to-H
approximant. In this general case, the approximated momentum in H is

k̂
μ
HA = u

μ
HA

(kHA + k̂HAS) · vHA

uHA · vHA

(10.70)
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Since k̂HAS is proportional to uAS , we only get independence of k̂HA from kAS if

uAS · vHA = 0, (10.71)

i.e., if the approximated soft momentum is orthogonal to the Wilson-line vector for the
A-to-H connections.

This is obviously satisfied for our actual choice, in (10.17) and (10.19a), that uAS and
vHA both equal w2, a light-like vector in the minus direction.

What other possibilities are there? We restrict to vectors in the (+,−) plane, otherwise
we break azimuthal rotation symmetry in our approximators, without having a transverse
vector in the process’s kinematics to give a preferred transverse direction.

If vHA stays light-like, this requires uAS to be light-like in the same direction, which is
our original choice.

Given our results on i0 prescriptions, the other choice is a space-like vector vHA. An
orthogonal vector is time-like. A simple and natural case is to put vHA in the z direction
in the center-of-mass frame. The corresponding Wilson line restricts gluon rapidity in the
A factor to be approximately positive, which is very natural; it gives a natural cutoff of
the rapidity divergence in TA�1 before subtraction. Then we would need uAS ∝ qμ, a not
unnatural choice.

As far as I can see, this is an legitimate alternative possibility.
However, as we will see, it is generally preferable to avoid non-light-like Wilson lines

whenever possible: It makes calculations easier and avoids inhomogeneous terms in evo-
lution equations.

10.7 General derivation of region decomposition

In this section, we prove the main result needed to apply the subtraction formalism. This
is that, for a general Feynman graph for any of the many processes that we consider, the
remainder, (10.5), is actually power-suppressed. That is, it is a power of Q smaller than the
leading power for the process (which is, for example, Q0 for DIS structure functions). This
then demonstrates (10.1), which is the key formula for our later derivations of factorization
of various kinds.

The derivation uses certain properties of the region approximators TR , so effectively we
are finding and using a set of requirements on good approximators.

A general treatment involves regions in a loop-momentum space of arbitrarily high
dimension, and thus necessarily has a high degree of abstraction. As we will see, a recursive,
or inductive, strategy enormously simplifies the proof by reducing it to considering relations
between two generic regions. These can be visualized in a space of two dimensions, and
simple examples, like those in Secs. 10.2 and especially 10.5, give the main ideas for the
generic situation. It would be useful to read those sections concurrently with the present
section to gain better understanding, visualization, and motivation.

Even so, it will become apparent that the rigor of the derivations is insufficient. Mathe-
matically inclined readers are strongly urged to do better; the literature on deriving factor-
ization leaves much to be desired.
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10.7.1 Results so far

So far, we have explicitly defined the main ingredients of the method. The region contribu-
tions CR� were defined in (10.4) in terms of region approximators TR�. Then the asymptotic
behavior of � is intended to be correctly given by the sum over regions: �RCR�. Explicit
definitions of the region approximators were given in Sec. 10.4 for the Sudakov form factor;
these definitions apply with at most minor changes to the many other processes we will
treat.

10.7.2 Overall view

It is important to keep in mind the main motivations for the subtraction formalism. First,
the region approximant TR� is intended to give a good approximation to � near the PSS
R; that is,

� − TR� = O
((

λR +m

Q

)p)
‖�‖, (10.72)

with some qualifications that I will explain in Sec. 10.7.3. Here, λR is the radial variable
for region R. Naturally the approximators we use are such that the soft, collinear and
hard subgraphs of a region correspond to contributions to factors in a phenomenologically
useful factorization property. The error specified in (10.72) improves as λR decreases, but
only until λR becomes of order m. There are additional sources of error in neglecting m

with respect to Q when appropriate. So all these issues are covered by adding m to λR

in (10.72).
The approximant contributes in regions larger than R, but with an inaccurate value. To

handle the consequent double counting, we defined the region contribution CR� by (10.4),
where TR is applied after subtraction of the contributions from smaller regions. This is
also intended to solve the problem that the accuracy of the approximator TR degrades close
to PSSs smaller than R: the region contribution CR� is intended to be leading power at
region R but suppressed in smaller regions. Including the contributions of smaller regions,
CR� +∑R′<R CR′�, is intended to give a correct leading-power approximation near the
whole of R, including smaller regions.

As we saw in Ch. 8, this setup works quite straightforwardly to give factorization, if
the relevant regions are just nested inside each other, i.e., if they have a total ordering.
But, in general, the regions can have more general relations involving overlaps and non-
intersection, as in (5.21). This is responsible for the main complications in the proof. They
are a non-trivial generalization of those involved in dealing with overlapping divergences
in renormalization theory.

The most fundamental problem solved by the subtraction formalism is that the accuracy
of a region approximant TR� degrades in certain places, associated with other regions. An
example is at the approach to a smaller region R1 < R. As we have seen in examples, the
worsening of the accuracy of TR� is compensated in the subtraction formalism. In forming
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CR�, TR is applied to � only after subtractions are used for all the smaller regions. Then it
is the sum CR� +∑R′<R CR′� that gives an accurate approximation to � over the whole
of R, including smaller regions.

Another problem is the large multiplicity of regions, as in Fig. 10.5, a problem that
obviously gets much worse for even higher-order graphs. Our proofs will be inductive, i.e.,
recursive, and a generic step of a proof will only involve a single region and its nearest
neighbors in the region hierarchy. Then the most complicated relation between regions that
we need to discuss explicitly is Fig. 5.32. Most of the time, the relation we treat will be
essentially of the form of Fig. 5.28. So with an appropriate viewpoint, the most general
situation can be reduced to many copies of what happens in one-loop graphs, or at most
two-loop graphs.

Now, our aim is to derive power-law estimates of the accuracy of a factorization state-
ment, i.e., to obtain results that are accurate to some given power of a small ratio (e.g.,
m/Q). But we often have logarithmic integrals interpolating between different regions, and
these worsen basic power-law estimates by some number of logarithms. So it is convenient
to define the following notation:

f (x) = �p(x)g(x) as x → 0, (10.73)

which means that

f (x) = O
(
xp| ln x|α) g(x) as x → 0, (10.74)

for some value of the power α of the logarithm. That is, there are constants C, α and x0,
such that

|f (x)| < C |x|p |ln x|α |g(x)| for all |x| < x0. (10.75)

Normally, p is fixed for the problem we are analyzing (e.g., graphs for the Sudakov form
factor to leading power), but α depends on the graph, being up to two times the number of
loops.

10.7.3 Accuracy of approximator TR

The basic form of the accuracy of a region approximator TR was given in (10.72). We now
modify it to obtain a strictly correct error estimate which will form the basis of the rest of
our work.

Basic error estimate

The accuracy of the approximator for a leading region can be read off from the accuracy
of its individual components, as defined in Sec. 10.4. Since we are working to leading-
power accuracy, the exponent p of the power law is p = 1. Often such errors involve
some transverse momentum relative to Q: kT/Q, and these commonly vanish after an
integral over angle. Then the actual error is one power better: p = 2. We can also imagine
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improved region approximators with an expansion to more orders in small momentum
components, with a correspondingly larger value of p. The precise value of p will not
matter.

There are also non-leading regions, such as RA′ defined in Sec. 5.4 for the one-loop
Sudakov form factor. Since the graph is already non-leading in such a region, we can define
the associated approximator to be zero, e.g., TRA′� = 0. But the use of the integrand � on
the r.h.s. of error estimates such as (10.72) is then not appropriate; rather we need a value
characteristic of the graph integrated over all regions. Thus we replace � on the r.h.s. of
(10.72) by ∥∥∥∥

∫
all

�

∥∥∥∥ . (10.76)

Here the double-bar notation has the same meaning as in (10.39). That is, it is a power-
counting estimate of the size of the integral arranged to avoid dynamical cancellations.
(Thus for DIS, we would write ‖Wμν‖ = O(1), even though some specific components
vanish.)

Correspondingly, we should use an integral for the l.h.s., but now over a range near the
PSS R: ∫

local
(� − TR�). (10.77)

Then λR on the r.h.s. of an error estimate should be interpreted as the maximum value
of the radial variable in the range of integration. The integration is over some range of
all variables, not just λR but also the angular and intrinsic coordinates for R. Naturally,
the integral should be on a deformed contour if we need to avoid a Glauber region. Since
there is the possibility of logarithmic enhancements in such integrals, we must replace the
power-law estimate on the r.h.s. by

�p

(
λR +m

Q

)
. (10.78)

Situations needing adjustment

We now quantify that for a given value of λR , the error estimates need modification for
two situations, as can be obtained from the definitions in Sec. 10.4. First, they generally
degrade when the intrinsic coordinates approach the positions of any particular smaller
PSS R1 < R, since then the conditions for neglecting a small momentum component with
respect to a large component become weaker.

The second issue concerns lines with soft-collinear momenta, as in the example in
Sec. 10.5.4. These lines have both a small energy and a high rapidity. The small energy
allows them to be considered as soft, and the high rapidity allows them to be considered as
collinear. Let R be a region in which the soft-collinear lines are part of the soft subgraph.
Let R2 be the larger region obtained from it by changing the category of the soft-collinear
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lines to the appropriate collinear category. We notate this relation by

R2
SC
> R. (10.79)

In terms of the underlying PSSs, this relation is defined to mean that certain collinear lines
at the PSS R2 are changed to zero momentum to obtain the PSS R.

Soft-collinear lines are at an end of their collinear range in fractional momentum. But
their high rapidity implies that the approximator TR2 continues to be valid, removing the
degradation that would otherwise occur near the smaller region R.

In the approximator TR , the soft-collinear lines are treated as soft, but then their high
rapidity implies that the approximators where they attach to the corresponding collinear
subgraph degrade in accuracy. The errors become of order e−�y , where �y is the rapidity
difference between the soft and collinear lines, with the soft line always being taken as
having rapidity between the two collinear groups of the whole process.

Generalizing our proof from the example in Sec. 10.5.4, we will find that these effects
combine to give correctness of the subtraction method to extract the asymptotics of the
graphs.

Generic degradation near smaller PSSs

The accuracy of the approximator TR defined in Sec. 10.4 degrades when the intrinsic
coordinates appropriate for PSS R approach the positions of any particular smaller PSS
R1 < R. For example, in a hard subgraph, we neglect a collinear transverse momentum
with respect to a large momentum component of order Q. But near R1 we may need
to replace Q by the smaller value λR1 . So in our error estimate we insert a degradation
factor

WR1,R = 1+�p

(
Q

λR1 +m

)
, (10.80)

with one term for each smaller region. Here, I added 1 to the basic degradation factor, so
that the factor WR1,R can be applied universally: close to R1, the �p(. . .) term dominates,
but away from R1, it decreases, leaving WR1,R to relax to unity.

Soft-collinear problem

Surrounding PSS R, consider integrating around a surface of fixed λR , as in Fig. 5.28. Close

to each larger PSS R2 that obeys the soft-collinear relation R2
SC
> R, we get degradation of

the approximation by a factor VR2,R . This factor replaces �p(λR/Q) by �p

(
e−�y

)
, where

�y is the rapidity difference between the soft-collinear lines in the soft subgraph of R and
lines in the collinear subgraph of R to which they attach.

Consider next these same lines in the same momentum region in the other approximator
TR2�. Relative to R2, the configuration is close to the smaller region R, where there is
a default degradation factor WR,R2 . But the approximator applies accurately to the soft-
collinear lines, so we multiply the degraded error estimate by the inverse of the large VR2,R

factor.
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10.7.4 Overall error estimate

Putting all these components together, we have shown that the error in TR is characterized
by∫

local
(� − TR�) = �p

(
λR +m

Q

)

×
[

1+
∑
R1<R

WR1,R

1

1+ VR,R1

]⎡⎢⎣1+
∑

R2
SC
>R

VR2,R

⎤
⎥⎦
∥∥∥∥
∫

all
�

∥∥∥∥ . (10.81)

The 1/(1+ VR,R1 ) factors only appear for subregions obeying R1
SC
< R.

10.7.5 Theorems to be proved

I now state some theorems to be proved inductively. They generalize properties we have
seen in examples. The first three theorems are properties labeled by a region.

Theorem 1R Define
∫

local C̄R�
def= ∫

local(� −
∑

R′<R CR′�) which has subtractions for
smaller regions than R. It is suppressed in all regions R1 smaller than R, but with
degradation for soft-collinear situations that concern regions R or bigger:

∫
local at R1

C̄R� = �p

(
λR1 +m

Q

)⎡⎢⎣1+
∑

R2
SC≥R

VR2,R1

⎤
⎥⎦
∥∥∥∥
∫

all
�

∥∥∥∥ . (10.82)

Theorem 2R The same property applies to CR� = TRC̄R�.
Theorem 3R When we also subtract CR�, there is a suppression at R, and the soft-collinear

degradation only applies on regions strictly bigger than R:∫
local at R

(
� − CR� −

∑
R′<R

CR′�

)
=
∫

local at R

(1− TR)C̄R�

= �p

(
λR +m

Q

)⎡⎢⎣1+
∑

R2
SC
>R

VR2,R

⎤
⎥⎦
∥∥∥∥
∫

all
�

∥∥∥∥ .

(10.83)

The suppression is uniform over the whole of R including smaller regions.
Theorem 4 The sum of CR� over all regions approximates � to power-law accuracy:∫

all

(
� −

∑
R

CR�

)
= �p

(
m

Q

)∥∥∥∥
∫

all
�

∥∥∥∥ . (10.84)



10.7 General derivation of region decomposition 357

10.7.6 Proofs of theorems 1Rmin to 3Rmin

We will first prove these theorems for a minimal region, and then prove them for larger
regions given that they hold for all smaller regions.

Minimal regions

For a minimal region Rmin, theorems 1Rmin and 2Rmin are trivial because there are no smaller
regions. Theorem 3Rmin follows directly from the approximation property (10.81); because
of the lack of smaller regions C̄Rmin� = �.

Theorem 1R

For a general region R, we make the inductive hypothesis that theorems 1–3 have already
been proved for regions smaller than R. Then to prove the suppression (10.82), we partition
the terms in C̄R� into three sets according to the relation of the relevant regions to R1, and
then consider each set separately.

First, we note the following structural properties of C̄R� that follow directly from its
definition.

• C̄R� is a sum of terms, each of which involves a product of −TR′ operations applied to
�. Each product involves a sequence of strictly ordered regions, since subtractions in the
definition of any particular region contribution CR′� only involves yet smaller regions.

• A factor TR′ only appears in combinations that combine to form a CR′� factor.

The partitioning of C̄R� is as follows.

• The first set consists of terms in which all the TR′ factors are for regions that are ordered
relative to R1. The sum gives an object of the form:∑∏

R′′
(−TR′′ )(1− TR1 )C̄R1�. (10.85)

The sum is over the ways in which can appear TR′′ factors for regions R′′ bigger than R1

(and necessarily smaller than R). The two terms in the middle parentheses account for
all the terms in which −TR1 does not or does appear.

• The second set has at least one −TR′ overlapping with R1, but none that fail to intersect
R1. We group these terms by the minimal such R′:∑∏

R′′
(−TR′′)CR′�, (10.86)

where R′ overlaps R1, i.e., the intersection R′ ∩ R1 is non-empty and strictly smaller
than both R′ and R1.

• The third set is where there is at least one−TR′ factor for a region that does not intersect
at all with R1. We group these terms by the minimal such R′:∑∏

R′′
(−TR′′)CR′�, (10.87)

where the R′′ regions are larger than R′.
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For the first set, the factor (1− TR1 )C̄R1� is suppressed by theorem 3R1 , which is true
by the inductive hypothesis. But this has the soft-collinear degradation at any R2 obeying

R2
SC
> R1. For those R2 that are also smaller than R, i.e., that obey R2 < R, there are

subtractions in (10.85). By an inductive application of theorem 3 to region R2, we find a

suppression by the 1/VR2,R1 factor. There remain the cases R2 = R, and R2
SC
> R, which

are allowed in (10.82).
For the second set, (10.86), our treatment uses the ideas given in Sec. 10.5.6. There we

found for the one-loop Sudakov form factor that the collinear term CA� was suppressed
in the opposite collinear region RB . In this term, the factor TA acts by first projecting the
loop-momentum configuration down to the intersection RS of the two regions. Then it
extrapolates in the normal coordinates for A, preserving the value of the intrinsic coordi-
nates. A momentum close to RB gives an intrinsic coordinate close to the endpoint RS of the
RA PSS. We then get a suppression because of the suppression of CA� at regions smaller
than RA. This idea applies generally, by changing RA to R′, RB to R1, and RS to R′ ∩ R1.
The approximator TR′ coerces a momentum configuration near R1 to be effectively near
TR′∩R1 .

For the third set, R′ and R1 do not intersect at all. Again the TR′ operation coerces the
momentum configuration to be changed from R1-like to R′-like. The lack of intersection of
R′ and R1 implies that the coerced configuration is a generic one for R′ and that the radial
variable is of order Q. More propagators are off-shell without a change in the integration
measure, so we get a suppression.

This completes the proof of theorem 1R .

Theorem 2R

The application of the approximator TR does not change the suppressions and degradations
in (10.82). So theorem 2R follows.

Theorem 3R

The l.h.s. of (10.83) differs from that of (10.82) by a factor 1− TR . From the basic approxi-
mation property, (10.81), this gives a factor �p((λR +m)/Q) on the r.h.s. The suppression
factors for C̄R� at smaller regions on the r.h.s. of (10.82) cancel the corresponding degrada-
tion terms in (10.81), while the 1/(1+ VR,R1 ) factors cancel the effect of the VR2,R1 factors
in (10.82) for the case that R2 = R.

This gives (10.83).

Theorem 4

Theorem 4, (10.84) is the actual theorem we need to use in proving factorization, since it
states that to power-law accuracy, � is given by the sum of CR� over regions. It is just
theorem 3 applied to the largest possible region RH , where all momenta are hard. For this
region all coordinates are intrinsic, so we must set the radial coordinate to zero: λH = 0.
There are no larger regions, so we need no VR2,R terms. Thus theorem 4 is just an application
of (10.83) for R = RH .
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10.8 Sudakov form factor factorization: first version

The general leading region for the Sudakov form factor was depicted in Fig. 10.3(b). For
each region R of each graph �, we defined a corresponding contribution CR�, and the sum
over � and R gives a correct leading-power approximation to the form factor:

F =
∑
�,R

CR� + power-suppressed. (10.88)

The sum can be specified by independent sums over the region subgraphs H , A, B, and S

in Fig. 10.3 (subject to the constraint that there is a match of the numbers of gluon lines
connecting the different subgraphs). We must convert this sum into the factorized form of
hard, collinear and soft factors, as in (10.11), with definite definitions for the factors as
matrix elements of certain operators containing Wilson lines.

The basis of our method is that the region approximators TR allow Ward identities to
be applied to the connections of gluons from S to the collinear subgraphs A and B, and
to the gluons from A and B to the hard subgraph H . In each case there is a factor of the
gluon momentum contracted with one of the subgraphs, which we will call the destination
subgraph (A, B or H respectively). It is this contraction that allows Ward identities to be
used, generalizing the results of Sec. 7.7.

Elementary Ward identities in an abelian gauge theory are for ordinary Green functions
or matrix elements. Relative to these cases, we have two primary complications. The first
is that our Green functions have subtractions for smaller regions. The second is that the
graphs for A, B, and H are restricted by certain irreducibility requirements: Each collinear
subgraph A and B is one-particle-irreducible (1PI) in the soft lines, while the hard subgraph
H is 1PI separately in the A lines and the B lines.

10.8.1 Statement of definitions of factors

The Ward identities entail definitions for the soft and collinear factors that we state in this
section.

The soft factor is

S(y1 − y2) = 〈0|W (∞, 0, n2)† W (∞, 0, n1) |0〉
W.L. self-energies for n2 and n1

ZS. (10.89)

Here the Wilson-line operators are defined in (10.33), with directions n1 and n2, while ZS

is a UV renormalization factor defined by, say, the MS scheme. The denominator will be
defined in (10.101); it removes graphs that contribute to the numerator but that are not
produced from the Ward-identity argument. Applying Lorentz invariance shows that the
dependence of S and ZS on the Wilson-line rapidities y1 and y2 is only on the difference
y1 − y2. However, it is sometimes convenient to write separate y1 and y2 arguments:
S(y1, y2) instead of S(y1 − y2).
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As for the collinear factors, I first define an unsubtracted collinear factor for the A side:

Aunsub(ypA
− yu2 ) = 〈pA| ψ̄0(0) W (∞, 0, u2)† PB |0〉

(W.L. self-energies for u2) ūAPB

Zunsub
A

= 〈pA| ψ̄(0) W (∞, 0, u2)† PB |0〉
(W.L. self-energies for u2) ūAPB

Zunsub
A Z

1/2
2 . (10.90)

In the first line, the numerator has a matrix element of a bare quark field and a Wilson
line in a space-like direction u2 = (−e2yu2 , 1, 0T). The vector u2 is just like n2 except for
a different rapidity yu2 , and we will later use a limit with yu2 →−∞. There is also a
UV renormalization factor. The second line is simply the first line written in terms of the
renormalized quark field, as appropriate for calculations. As in the soft factor, there is a
denominator to cancel Wilson-line self-energy graphs.

The numerator is actually a Dirac spinor, and contains the factor PB = γ+γ−/2 which
is used to connect the collinear and hard factors. As I now show, the numerator is just a
factor times ūAPB . Therefore we include in the denominator in (10.90) a factor to divide out
the spinor dependence, so that the quantity Aunsub is a numerical-valued scalar quantity. To
derive the spinor structure, we observe that the only vector variables on which the collinear
factor depends are in the (+,−) plane. After the use of parity invariance, the most general
Dirac structure for Aunsub is

ūA(aI + b+γ−)PB. (10.91)

Because of the PB factor, all other combinations of Dirac matrices can either be reduced
to this by anticommutation relations or give zero. By use of ūA(/pA

−m) = 0, it is easily
checked that the most general form is actually proportional to ūAPB .

An unsubtracted B factor is defined exactly similarly:

Bunsub(yu1 − ypB
) = 〈pB |W (∞, 0, u1)PB ψ0(0) |0〉

(W.L. self-energies for u1) PBvB

Zunsub
B

= 〈pB |W (∞, 0, u1)PB ψ(0) |0〉
(W.L. self-energies for u1) PBvB

Zunsub
B Z

1/2
2 , (10.92)

with a Wilson line in the direction u1 = (1,−e−2yu1 , 0T).
Not only do soft and collinear factors like S, Aunsub, and Bunsub depend on the rapidities

of their non-light-like Wilson line(s), but so do their renormalization factors ZS , Zunsub
A ,

and Zunsub
B . For S and ZS this is simply a dependence on y1 − y2, as in (10.47).

The renormalization factors Zunsub
A , and Zunsub

B are mass independent and so variables to
parameterize their dependence on the Wilson-line rapidities must use the massless limit of
pA and pB . Appropriate variables for Zunsub

A , and Zunsub
B are, respectively,

ζA,u2

def= 2(p+A )2e−2yu2 = m2e2(ypA
−yu2 ), (10.93a)

ζB,u1

def= 2(p−B )2e2yu1 = m2e2(yu1−ypB
). (10.93b)

Next we define subtracted collinear factors. Their names, A and B, are decorated with
a superscript “basic” to indicate that the definitions are in a sense preliminary, since in



10.8 Sudakov form factor factorization: first version 361

later sections we will construct an improved factorization with modified definitions of the
factors. Each subtracted collinear factor is defined by dividing the unsubtracted collinear
factor by a version of the soft factor, and then taking the light-like limits u1 and u2 in a
certain way. Thus the subtracted A factors are

Abasic = 〈pA| ψ̄0(0) W (∞, 0, w2)† PB |0〉 (W.L. self-energies for n1)

〈0|W (∞, 0, w2)† W (∞, 0, n1) |0〉 ūAPB

Zbasic
A

= 〈pA| ψ̄(0) W (∞, 0, w2)† PB |0〉 (W.L. self-energies for n1)

〈0|W (∞, 0, w2)† W (∞, 0, n1) |0〉 ūAPB

Zbasic
A Z

1/2
2 ,

(10.94a)

Bbasic = 〈pB |W (∞, 0, w1)PB ψ0(0) |0〉 (W.L. self-energies for n2)

〈0|W (∞, 0, n2)† W (∞, 0, w1) |0〉 PBvB

Zbasic
B

= 〈pB |W (∞, 0, w1)PB ψ(0) |0〉 (W.L. self-energies for n2)

〈0|W (∞, 0, n2)† W (∞, 0, w1) |0〉 PBvB

Zbasic
B Z

1/2
2 . (10.94b)

The above definitions agree with our one-loop calculations in (10.42) and (10.43). The
renormalization factors Zbasic

A and Zbasic
B depend on ζA,n1/μ

2 and ζB,n2/μ
2 respectively, as

well as on g and ε. Here the ζ variables are defined by (10.93).
We will see that the denominators (10.94) are obtained as a result of the subtractions in

CR� for smaller regions; they have the effect of compensating double counting between the
collinear and soft factors. Closely related to this is that we will find that rapidity divergences
associated with the Wilson lines in light-like directions cancel between the numerators and
denominators. In effect,

Abasic = “lim”
yu2→−∞

Aunsub(ypA
− yu2 )

S(y1 − yu2 )
, (10.95)

and similarly for Bbasic. However, there is a non-uniformity in taking the infinite rapidity
limits and removing the UV regulator, which impacts calculations. As indicated by the
quotation marks, the limit in (10.95) is taken in a special way to be defined in Sec. 10.8.2.

Finally, the hard factor is essentially whatever is left over, in the limit that masses are
neglected:

H = F

AbasicBbasicS

∣∣∣∣
mg=m=0,pA,n1,pB ,n2 light-like

. (10.96)

Originally we choose n1 and n2 to be vectors with approximately the rapidities of pA and
pB . So taking the massless limit for pA and pB implies that we replace n1 and n2 by their
light-like limits, i.e., w1 and w2. Our definition of the collinear factors implies that H

includes factors of spinors ūAPB and PBvB with a Dirac matrix between them.

10.8.2 Limit of infinite rapidity Wilson lines

The limit yu2 →−∞ on the Wilson-line rapidity in (10.95) needs a little care in its
definition concerning the hard region of large transverse momenta: there is non-uniformity
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in combining the limits of infinite rapidities with the removal of a UV regulator. We use
the following procedure to define Abasic and Bbasic.

• For Aunsub and S, apply a UV regulator, e.g., dimensional regularization with n < 4.
• Take the limit yu2 →−∞ on the r.h.s. of (10.95).
• Apply UV counterterms.
• Remove the UV regulator, e.g., take n→ 4.

This corresponds to our procedure for calculating CA�1 and CB�1 in (10.42) and (10.43).
If we reversed the limits, we would need to compensate by an extra hard factor, e.g.,

Abasic = lim
yu2→−∞

[
lim
n→4

Aunsub(ypA
− yu2 )

S(y1 − yu2 )
Z̃A(ζA,n1/μ

2, y1 − yu2 , g(μ), ε)

]
. (10.97)

The factor Z̃A is to be adjusted so that we get the same results as in (10.94a). Now the
non-uniformity of the limits n→ 4 and of infinite Wilson-line rapidities only concerns
the limit of infinitely large transverse momentum; for n < 4, the limits can be exchanged.
Thus the factor Z̃A is a pure UV factor, and can be regarded as a kind of generalized UV
renormalization factor, chosen to make a renormalization prescription that agrees with the
combination of MS renormalization and the opposite order of the limits.

Within the context of low-order perturbation theory, especially at one loop, the first
description works; an example is in the calculation of the one-loop collinear term at (10.42).

An exactly similar procedure applies to the B factor.

10.8.3 Elements of diagrammatic Ward identities

Ward identities can be derived without perturbation theory, as properties of Green functions.
From these we could try to derive identities for the factors, H , A, B, and S in Fig. 10.3, which
are modified Green functions, with appropriate irreducibility properties and subtractions.9

For our present work, it is considerably easier just to give a perturbative proof, valid to
all orders, where we will take full account of the necessary subtractions and irreducibility
properties. The general approach was seen in Sec. 7.7, where we derived a gauge-invariant
parton model in a full non-abelian theory, i.e., QCD with a limited set of graphs.

Here we handle the full set of graphs, but restrict to an abelian theory in a covariant
gauge. In deriving factorization, it will be important to understand which subgraphs are
allowed and which are not, for A, for B, and particularly for H , in Fig. 10.3(b), given a
specification of their external lines. This will modify the derivation of the Ward identities
from the standard derivation, e.g., Sterman (1993, p. 334–340).

Consider one gluon from subgraph S to subgraph A, and its attachment to a quark line,
as in the left-hand side of Fig. 10.12(a). The triangle at the vertex denotes the application
of the soft approximation. For the moment we ignore the subtraction terms.

9 Here Fig. 10.3(b) is treated as specifying the term CR�, with the subgraphs H , A, B, S being those the specify the
region R.
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(a)
k

p
p + k̂

=

p

+

p + k̂

(b) + = 0

Fig. 10.12. Graphical elements of Ward identity: (a) application to line, (b) sum at vertex
(in abelian gauge theory).

Let k be the gluon momentum, and let k̂ be its approximant defined in (10.16). We apply
the following identity:

n
μ
1

k · n1 + i0

i

/p −m+ i0
(−ig/̂k)

i

/p + /̂k −m+ i0

= i(−ign
μ
1 )

k · n1 + i0

[
i

/p −m+ i0
− i

/p + /̂k −m+ i0

]
. (10.98)

Thus one or other quark propagator is canceled, as pictured on the right-hand side of
Fig. 10.12(a). The gluon is now attached to a special vertex that is at one or other end of
the quark line. At this special vertex,10 the double line denotes a factor of a Wilson-line
propagator with an accompanying vertex, and the diagonal single line codes an overall sign.
The sign essentially concerns the charge of the quark field.

We now sum over all places where the gluon can attach to the quark line. Now, when an
S gluon attaches to an A quark, an equally allowed graph is where the S gluon attaches to
the opposite side of a neighboring gluon vertex, as in Fig. 10.13. Note that the other gluon,
of momentum l, may either be part of the A subgraph or the S subgraph; the argument
works equally in both cases. This gives pairs of canceling terms, at each other gluon vertex
on the quark, as illustrated in Fig. 10.12(b). If the quark line goes around in a loop inside
the collinear graph, we get zero. But if the quark line goes out of the collinear graph, we
are left with only the special vertices at the outside end(s) of the quark line. At the on-shell
pA end we in fact get zero, exactly as in the standard textbook case.11 There remains one
term, at the end of the quark line where it enters the hard scattering. The result is just as in
the lowest-order case, (10.29), and is equivalent to a gluon attaching to a Wilson line.

In certain model calculations, we might use a scalar quark. In that case, we must take
account of the vertex with two gluons. The necessary vertex identity is Fig. 10.14, which
replaces Fig. 10.12(b) for spin- 1

2 quarks. It is readily verified from the form of the two-
quark–two-gluon vertex.

10 In the context of diagrammatic proofs of Ward identities (e.g., Sterman, 1993, p. 351) the vertex represents the BRST
transformation of the field at the end of the quark propagator, but in our work it is multiplied by an eikonal denominator.

11 However, the details are not always made explicit in the textbooks!
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Fig. 10.13. Example of graphical structure which leads to the canceling terms in
Fig. 10.12(b).

Fig. 10.14. Vertex sum as in Fig. 10.12(b), but for scalar quark.

10.8.4 Extraction of soft lines from collinear subgraphs

Now consider all the gluons entering collinear subgraph A from the soft subgraph S,
continuing to omit the subtractions. We apply the Ward-identity argument of Sec. 10.8.3
to each gluon in turn, summing over allowed graphs for the A subgraph, given a particular
set of external lines for the subgraph. Then we apply the same argument to the gluons from
S to the other collinear subgraph B, and represent the result in Fig. 10.15(a) and (b). Each
external gluon of the S subgraph now attaches to a Wilson-line factor of the form

i(−ign
μ
1 )

kj · n1 + i0
on A side,

i(ign
μ
2 )

kj · n2 + i0
on B side, (10.99)

where kj is the gluon momentum, defined to flow into the S subgraph.
We convert the result to exactly the Wilson-line form by using the following identity for

the product of elementary Wilson-line propagators:

N∏
j=1

i

kj · n+ i0
=

∑
permutations

i

k1 · n+ i0
× i

k1 · n+ k2 · n+ i0

× · · · × i

k1 · n+ k2 · n+ . . . kN · n+ i0
. (10.100)

This identity is readily proved by induction on N , and is applied separately to the parts of
the diagram with n = n1 and n = n2. The right-hand side is exactly the product of lines
resulting from the Feynman rules for a Wilson line (Sec. 7.6). Wilson-line vertex factors
are exactly the −ign1 and ign2 factors in (10.99).

Next we observe that, with the region approximator TR defined in Sec. 10.4.2, the
approximated hard subgraph H is independent of the soft momenta. Thus we can contract
the free ends of the Wilson lines together to give Fig. 10.15(c). The right-hand factor
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Fig. 10.15. Application of Ward identities to extract S gluons from the collinear subgraph
with the soft approximation in (a). After use of Ward identities we get graph (b), and after
use of (10.100), we get graph (c).

Fig. 10.16. (a) Example of Wilson-line self-energy graph. (b) Denominator of (10.89).

(summed over graphs for S) is just what we already stated as the definition (10.89) of the
soft factor; there is one complication in the proof that I now explain.

Each connected component of an S subgraph joins the A and B sides. So no graph
arises in Fig. 10.15(b) where a component of S just connects n1 lines to themselves, or n2

lines to themselves. However, such graphs do arise from the matrix element of the Wilson
line, the numerator of (10.89), giving for example Fig. 10.16(a). If we were to sum over
all such graphs, they would form extra factors in Fig. 10.15(b), which we call Wilson-line
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self-energy factors. Converting these factors to the Wilson-line form gives the general form
of Fig. 10.16(b), which has the operator form

W.L. self-energy factor = 〈0|W (∞, 0, n2)†|0〉 〈0|W (∞, 0, n1)|0〉 . (10.101)

Since these graphs are not produced by our Ward-identity argument, they must be removed
from the definition of the soft factor. Thus (10.101) is the denominator in the definition
(10.89) of the soft factor.

A careful examination of calculations of the self-energy factor shows that it has a
divergence as the length of the Wilson line goes to infinity. No such divergence arises from
graphs that connect the n1 to the n2 lines. So for a correct definition of the soft factor, we
first replace the occurrences of “∞” in (10.89) and (10.101) by some large finite length L.
Then the soft factor (10.89) is defined with a limit L→∞.

Finally, there are UV divergences in many of the relevant graphs. Just as in the textbook
treatment of conventional Ward identities (e.g., Collins, 1984, Ch. 9) we define these to be
canceled by UV counterterms. Just as in that case, the counterterms preserve the derivation
of the Ward identities, provided that an appropriate renormalization scheme is used, like MS.

10.8.5 Subtractions and the derivation of the soft factor

We have extracted soft gluons from their attachments to the collinear factors. But our
derivation so far has applied to TR�, i.e., to the approximator for region R of graph �,
followed by a sum over graphs. We now examine the effect of the subtractions that convert
TR� to the region term CR�, defined in (10.4). These prevent double counting with the
terms for smaller regions R′ < R. Note that for a general region and graph, the subtraction
terms −CR′� themselves contain subtractions, recursively applied. We now show how
the fundamental elements, Figs. 10.12 and 10.14, in the derivation of the Ward identities
continue to apply in the presence of subtractions.

We represent the relation between a pair of relevant regions in Fig. 10.17. There, diagram
(a) depicts the division of a graph into the hard, collinear, and soft subgraphs associated
with a region R; it is a more abstract representation of Fig. 10.3(b). In a smaller region
R′ < R, either the soft subgraph is bigger than in R, or the hard subgraph is smaller, or
both, as in Fig. 10.17(b).

A generic term in CR� corresponds to a set of nested regions Rj that obey R1 < R2

< · · · < Rn < R, and the corresponding contribution to CR� is

(−1)nTR

n∏
j=1

TRj
�. (10.102)

The TRj
operations are applied from inside out, smallest region to largest. Then CR�

is the sum over possibilities for (10.102), including the case n = 0. This follows from
the definition (10.4) of CR�, exactly as in the theory of renormalization (Collins, 1984).
The differences with renormalization are only in the specification of the regions and in
the definitions of the region approximators.



10.8 Sudakov form factor factorization: first version 367

Fig. 10.17. (a) Partition of graph for Sudakov form factor by subgraphs for a region R.
(b) Partition for a smaller region R′ < R. The dotted lines indicate the boundaries of the
subgraphs for the first region.

Now each region Rj corresponds to a pinch-singular surface (PSS) in the massless
limit. Its approximator TRj

is obtained from the leading power of the integrand expanded
in powers of the radial variable λRj

for the region, with masses treated as an appropriate
power of λRj

. This expansion is then slightly modified by the following replacements for
soft loop momenta in the collinear subgraphs:

kAS · w1 �→ kAS · n1, kBS · w2 �→ kBS · n2, (10.103)

as in (10.17) and (10.18). We now show that the Ward identities we use for extracting the
soft factor continue to apply in the presence of the subtractions.

Let a gluon of momentum k from the S subgraph of R attach to an A quark. The line
identity, (10.98) and Fig. 10.12(a), has the structure

1

A1
(A1 − A2)

1

A2
= 1

A2
− 1

A1
, (10.104)

up to an overall factor of a phase and a coupling. Here 1/A1 and 1/A2 are the quark
propagators, and A1 − A2 is the vertex factor, k̂−γ+.

Now, to get from TR� to CR� we sum (10.102) over all possibilities for nested sets of
smaller regions. Each term in (10.102) has region approximator(s) applied to the graph,
which contains the l.h.s. of (10.104) as a factor. Each region approximator replaces each
factor in the graph by (the first term) in its expansion in powers of λRj

, supplemented by
the replacements like (10.103). All of these operations can be applied equally well when
the l.h.s. of (10.104) is replaced by one or other of the terms on the r.h.s. Furthermore,
the same collection of operations can be applied to each of the terms in the vertex identity
Fig. 10.12(b) or Fig. 10.14.

This indicates that the Ward identities that apply to
∑

R,� TR� are also valid in the
presence of subtractions, so that the Ward-identity result should also apply to

∑
R,� CR�.

However, there is a potential problem that to use the vertex identity, we are combining
terms obtained from different graphs, and these could have different regions. To see the
difficulty, observe that the canceling terms at a vertex arise from different graphs, e.g.,
from Fig. 10.13. To make the vertex identity work in the presence of subtractions, we must
use a correspondence between the regions for the different graphs. We need to determine
the situations where the correspondence fails to exist, and to deal with the consequences.
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Another related complication is that the region approximator TRj
takes the leading power

in λRj
of the factors in the graph; we must investigate what happens if an approximator

gives a different power of λRj
when applied to A1 and A2 on the r.h.s. of (10.104).

Consider the application of TRj
to (10.104). It takes the leading power in λRj

of each
factor on the l.h.s. For the quantities A1 and A2, let the leading-most terms be Â1 and Â2.
In the most general context, there are three possible cases for the power laws:

• The power of λRj
is the same for both quantities, and for A2 − A1. The line identity

applies equally to the leading-power expansion

1

Â1
(Â1 − Â2)

1

Â2
= 1

Â2
− 1

Â1
. (10.105)

The left-hand side gives the effect of TRj
on the left-hand side of (10.104), and the two

terms on the right are the effect of applying TRj
to the terms on the right-hand side of

(10.104). Effectively, TRj
is a linear operation that commutes with the manipulations

giving the Ward identity. If TRj
had been defined to make different operations on the

vertex factor and the propagators, this result need not be true. The quantity on the left-
hand side and the two terms on the right-hand side have the same power-counting and
therefore do not change the necessary set of subregions.

The above situation is always the case for a soft line connected to a collinear line,
with the one trivial exception that one line, e.g., A2, is an external line. Then we omit
the 1/A2 factor, and replace A2 by zero.

• Another possibility is that the power of λRj
for one line, A2 say, is larger than for the

other line A1. Thus A2/A1 → 0 in the limit of λRj
→ 0. Then the leading power of the

vertex factor A1 − A2 is just Â1, and we must replace (10.105) by

1

Â1
Â1

1

Â2
= 1

Â2
. (10.106)

At the PSS Rj , the Â2 line can be viewed as on-shell, and we get exactly one term on the
right-hand side, just as when such a line is exactly on-shell. The term 1/Â1 is smaller by
a power of λj than 1/Â2, and so is correctly neglected.

• A final possibility is that A2 and A1 are comparable, but A1 − A2 is much smaller. In
that case, no subtraction associated with Rj is actually needed for the original graph. But
for the individual terms on the right-hand side we do need subtractions. Even though Rj

is not actually a leading region for the original graph, we add it to the catalog of leading
regions.

The above treatment applies literally for scalar quarks, for then the quantities A1 and A2 are
scalars, and the definition of their power is unambiguous. For fermions, each is a matrix,
whose inverse is taken in the propagators. A slightly more complicated version of the
argument leads to the same outcome.

Finally we apply the vertex identity. This relates graphs with the same set of denomina-
tors, and hence with the same subtractions. So the vertex identities continue to apply after
all the subtractions for subregions have been applied.
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When applying the vertex identity, we will have canceling terms obtained from applying
the line identity to neighboring lines. In the above derivations we have only examined the
vertex and lines in question. It is important that everything else in the graphs remains the
same. For example, in defining the soft (and collinear) factors, we inserted Wilson-line
denominators with non-light-like directions to cut off rapidity divergences. The success of
the vertex identities depends on these non-light-like lines being the same everywhere they
are encountered, e.g., always the same n1 for a soft gluon connecting to a collinear-to-A
quark.

The final result is that Ward identities apply in the presence of subtractions just as they
did in the elementary case we examined where we ignored subtractions. However, we must
take care to apply subtractions to the resulting factors.

So far we have extracted the soft factor. Since there are no smaller momentum classes
than soft, this factor needs no subtraction. Thus we have completed the proof that the soft
part of the form factor factorizes, and that the soft factor can be defined by (10.89). That
is, after summing over graphs and regions, we get Fig. 10.15(c).

But subtractions are needed in the remaining parts of the graphs, and our next task is to
convert them into hard and collinear factors (which will have subtractions).

10.8.6 Extraction of collinear factors from hard scattering,
without effect of subtractions

We now extract the collinear gluon attachments from the hard scattering and convert them
to attachments to Wilson-line operators, as in (10.94a) and (10.94b). As before, we start
by examining the part of CR� without subtractions, and extract the collinear gluons one-
by-one. The argument will be somewhat modified from that for soft gluons attaching to
a collinear subgraph, because the allowed subgraphs for H have important restrictions by
being 1PI in each set of collinear lines.

Of the two graphical elements for the Ward identity, a line identity like Fig. 10.12(a)
continues to apply, with only the caveat that one of the lines p and p + k̂, inside the H

subgraph, may be set on-shell by the approximator applied to a quark line at the collinear
edge of H . But for the vertex identity, Fig. 10.12(b), we can miss one of the graphs it
implicates.

An example is shown in Fig. 10.18, where we sum over the possible attachments of a B

gluon of momentum k to a one-loop hard subgraph. In graph (a), there is an on-shell quark
to the right of the vertex with the gluon, so that one term in the line identity gives zero, as
usual for an on-shell quark.12 There is then the usual chain of cancellations, with graphs
(b) and (c). But we do not have the graph where gluon k attaches one place to the right
of where it is in (c), i.e., we are missing graph (d). This is because in graph (d), gluon k

attaches to another B line at its lower end, so that vertex is not part of the hard subgraph;

12 Note that in the general case, with a non-trivial collinear-to-B subgraph, the quark in question is on-shell not because it
is an external quark, but because it is the outermost quark line of the hard scattering. Our definition of the approximator
for a region replaces the (possibly off-shell) external quarks of the hard scattering by exactly on-shell quarks.
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Fig. 10.18. Example of sum over attachments of gluon from collinear subgraph to hard
subgraph. The gluon l is in subgraph H , and the gluon k is in subgraph B. The hooks on
the quark lines indicate lines that are approximated as on-shell in the hard subgraph H .
The big arrow at the bottom of line k has the same meaning as in Fig. 10.6(a), except that
it uses the vector w1 instead of n1. Graphs (a)–(c) are summed, while graph (d) is excluded
by the condition that the hard subgraph is 1PI in collinear-to-B lines.

we see here an example of the general result that a hard subgraph is 1PI in lines that are
collinear to a particular direction.

The result is shown in Fig. 10.19, and it shows that the sum over attachments of gluon k

to a hard subgraph has extracted the gluon from the hard scattering and attached it instead
to a Wilson line. The Wilson line has exactly the form that results from the definition,
(10.94b), of the collinear-to-B factor. The remaining factor is a one-loop graph for the hard
subgraph without any extra gluons.

In the general case of a B gluon connecting to any H subgraph, what possibilities are
there? They are when one but not the other of the two graphs in Fig. 10.13 is not allowed,
given that gluon k is in the B subgraph, and that, at least on one side, the quark line is in
the H subgraph. It is easily checked that there are two cases, each where one of the two
subgraphs would have a collinear quark line.

One corresponds to Fig. 10.19(a), where the quark on one side of the vertex for k is in
the B subgraph. This gives the expected Wilson-line vertex.

The other case is where the other gluon l and the quark line on one side are in the A

subgraph, as in Fig. 10.20. We get an extra term in the sum over attachments of the k gluon,
Fig. 10.20(c). This graph is in fact zero. The reason, which applies generally, is that at
the attachment of gluon l the approximator picks out exactly the minus component of the
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Fig. 10.19. Result of sum in Fig. 10.18: (a) in the notation of Fig. 10.12, (b) as an attachment
to a Wilson line.
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Fig. 10.20. Simplest example of the other case that the vertex cancellation in the Ward
identity has a missing term. Approximators are applied for the case that k is collinear to B,
and l is collinear to A.

vertex; see (10.23), where the H subgraph is contracted with PHA(kHA), which is exactly in
the w1 direction. But the vertex is now exactly at the edge of the hard subgraph where there
is a quark that is exactly in the plus direction. It has a projection onto on-shell massless
wave functions for the quark, by the matrix PB . Therefore multiplying by the vertex factor
γ− gives zero; this is essentially from the Dirac equation for a massless quark in the plus
direction:

0 = ūA masslessγ
−p+A. (10.107)

Although we have formulated this argument for one graph, and for Dirac quarks, the
argument is actually general. It concerns an approximation where both the quark and the
gluon l have been made exactly massless and collinear in the plus direction in one part of
the hard subgraph. The minus component of the vertex goes to zero under an infinite boost
from a rest frame.

We now repeat the above arguments for all gluons entering the H subgraph from the
collinear subgraphs, first from the collinear-to-B subgraph and then from the collinear-to-A
subgraph. After a sum over all graphs, we get two collinear factors times a hard factor. As
with the soft factor, each collinear factor has a product of one-gluon Wilson-line factors,
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Fig. 10.21. Factorized structure for Sudakov form factor. The double lines are Wilson lines
with the following rapidities:−∞ for A,+∞ for B, y1 and y2 for S. Subtractions in H , A,
and B are not indicated explicitly.

and we use (10.100) to convert them to exactly a Wilson-line matrix element. Again, just
as with the soft factor, Wilson-line self-energies are missing. So we must divide by a
Wilson-line self-energy factor. The Wilson lines are exactly those with light-like directions
that are in the numerators of the previously stated definitions of the collinear factors,
(10.94).

10.8.7 Collinear factors, with subtractions

Subtractions arise in a more complicated way than for the soft factor, and specific examples
in multiloop graphs can become quite elaborate.

The most general method of dealing with subtractions is to appeal to the argument given
in Sec. 10.8.5, which applies quite generally. This is that subtractions apply whenever a
graph would have singularities in the massless limit, and that they are obtained from the
analytic structure of the denominators, together with power-counting. We showed that the
Ward identities apply in the presence of subtractions.

Therefore all we have to do to convert the unsubtracted result is to apply subtractions.
Without the subtractions, the arguments so far give the factorized structure shown in
Fig. 10.21. We have separate hard, collinear and soft factors multiplied together. The
correct formula is obtained simply by applying subtractions to the factors.

For the soft factor, as already explained, no subtractions are needed, because there are
no momentum regions smaller than a soft configuration. (Beyond this we also need the
Wilson-loop denominator in (10.89), to remove the Wilson-line self-energies, which do not
arise from the Ward-identity argument.)

For each collinear factor we have soft subtractions and for the hard factor we have soft
and collinear subtractions.

The easiest way to obtain an operator form for a subtracted collinear factor is to apply
the factorization argument to the unsubtracted collinear factor, e.g., to the limit yu2 →−∞
of (10.90), which has a non-light-like Wilson line, of rapidity yu2 . The leading regions
have the form shown in Fig. 10.22(a). These each have a collinear-to-A subgraph and a
soft graph that connects the Wilson line to the collinear subgraph, by arbitrarily many
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Fig. 10.22. (a) Regions for unsubtracted collinear matrix element (10.90). Here Aus is an
abbreviation for Aunsub. (b) After applying Ward identities to the gluons attaching the soft
subgraph to the collinear subgraph, we get this factorized form. Here Asub denotes the
subtracted collinear factor. Next to each Wilson line is a label indicating its rapidity.

gluons. We define the soft region with respect to u2 rather than the overall center-of-
mass. In accordance with the order of limits specified in Sec. 10.8.2, we take the limit
yu2 →−∞ with fixed space-time dimension 4− 2ε < 4, so that loop corrections to the
hard subgraph are power-suppressed, and we need no hard subgraph, just the connections
from the collinear subgraph to the Wilson line.

Since the collinear-B part is already in a Wilson-line form, it is enough to combine the
soft factor and the collinear-B factor in a new soft factor, denoted S in Fig. 10.22. The usual
Ward-identity argument is applied to gluons entering the collinear-A subgraph from S. The
same argument that we applied to the whole form factor now applies here, and results in a
soft factor times a subtracted collinear factor:

Aunsub(ypA
− yu2 ) = Asub × S(y1 − yu2 ), (10.108)

up to terms that are power-suppressed in the limit yu2 →−∞. The soft factor is the same
as in factorization for the form factor itself, except that the direction of the Wilson line on
the B side is u2 instead of n2. This is depicted in Fig. 10.22(b).

Dividing by the soft factor on both sides of the above equation gives the subtracted A

factor as the unsubtracted matrix element (10.90) divided by the relevant soft factor. Taking
the limit yu2 →∞, i.e., u2 → w2, gives our definition of the subtracted soft factor Abasic in
(10.94a). The subtractions are the same as in the collinear factor used for the form factor,
so it has the same definition. Thus Abasic is to be identified with the graphical factor A both
in Fig. 10.21, and in the factorization formula (10.11).

An exactly similar argument applies to the collinear-to-B factor, of course.

10.8.8 Hard factor

At this point, we have actually proved a form of factorization, (10.11), given in diagrams
in Fig. 10.21, and we have given explicit definitions of the soft and collinear factors.

Now we obtain an explicit formula (10.96) for the hard factor H . The graphs for H

are the same as for the form factor itself, i.e., for the reaction γ ∗ → qq̄, but they have
subtractions for soft and collinear regions. The graphs are to be 1PI in the external quark
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and antiquark, since external propagator corrections are always part of a collinear subgraph.
The formula (10.96) is obtained simply by observing that the power-suppressed corrections
in (10.11) go to zero as masses are taken to zero. Taking the massless limit means not only
setting the quark and gluon masses to zero in graphs, but also taking the light-like limits
for the vectors n1 and n2 in the Wilson lines associated with the quark and antiquark. The
one-loop expansion of (10.96) reproduces the result (10.45) which we already obtained
from the subtraction formalism.

Later, we will find a slightly simpler formula (10.120), after we examine the evolution
equations of the soft factor S with respect to the rapidities of its Wilson lines.

In addition to the kinematic variable Q, the hard factor depends on the renormalization
scale μ. As usual, the μ dependence is governed by an RGE. So we can use the RGE
to set μ of order Q, and then the hard factor would be perturbatively calculable (in
a QCD problem). For the evolution, anomalous dimension are generally perturbatively
calculable.

10.9 Factorization in terms of unsubtracted factors

To compensate double counting between soft and collinear regions, we implemented sub-
tractions in the collinear factors. We then saw that after summing over graphs and regions,
the subtractions were implemented by dividing out a certain factor.

We can write the factorized form factor in terms of the unsubtracted matrix elements:

F ∼ lim
yu1→+∞
yu2→−∞

H
Aunsub(ypA

− yu2 ) Bunsub(yu1 − ypB
) S(y1 − y2)

S(yu1 − y2) S(y1 − yu2 )
. (10.109)

Here, we have indicated the dependence of the factors on the directions of the Wilson lines.
Of course, the dependence on the Wilson-line rapidities must disappear after taking the
product HABS, at least to leading power in Q, since the Wilson lines do not appear in the
original form factor. If the rapidity limits in (10.109) are taken after the UV regulator is
removed, then the definition of the hard factor must be modified, as follows from Sec. 10.8.2.

In the definitions of Aunsub, Bunsub, and S, Wilson-line self-energies are canceled by
dividing each quantity by the appropriate version of (10.101). When we combine all the
factors in (10.109) the self-energies exactly cancel, since there are equal numbers of each
direction of Wilson line in the numerator and denominator of (10.109).

After deriving evolution equations, it will be convenient to reorganize this formula to
give it more convenient properties; see Sec. 10.11.

10.10 Evolution

We need evolution equations for the dependence of the soft and collinear factors on the
rapidities of their Wilson lines. Evolution equations provide much of the predictive power
of factorization.



10.10 Evolution 375

Fig. 10.23. Graphs for the connected part of the derivative of the soft factor, up to four
loops. The blob on the gluon line in (a) denotes all corrections to the gluon propagator. The
crossed vertex is the same as in Fig. 10.10, and is defined from (10.49). The left-hand ends
of the Wilson lines are intended to be joined together, to implement the l.h.s. of (10.100).

Without the evolution equations, we would have no better predictive power than from
direct perturbative calculations of the form factor, and accuracy would be particularly
compromised by the two logarithms per loop. With the evolution equations including
the RGEs, we can obtain all the factors in terms of quantities that are free of large
logarithms.

The evolution equations given below were first obtained by Collins (1980), but by
different and less general methods, and with different, but closely related, gauge-dependent
definitions of the factors.

10.10.1 Evolution of basic soft factor

We start with the dependence on y1 or y2 of S(y1 − y2). Deriving its evolution equation is
a fairly simple generalization of our one-loop calculation in Sec. 10.5.10.

Since we are in an abelian theory, we use the identity (10.100) to write the value of a
Wilson line as the product of elementary one-vertex Wilson lines. Then S is the exponential
of its irreducible connected part:

S(y1 − y2) = exp(Sconn). (10.110)

Differentiating with respect to y1 gives

∂S(y1 − y2)

∂y1
= S

∂Sconn

∂y1
. (10.111)

As illustrated in Fig. 10.23, graphs for ∂Sconn/∂y1 have one vertex for a differentiated
Wilson line, just as in the lowest-order case, Fig. 10.10, together with at least one Wilson-line
vertex on the other side, and any number of extra Wilson-line vertices, but no Wilson-line
self-energies. Notice that the corrections at two- and three-loop order only arise from
corrections to the gluon propagator.

We now perform a region analysis for ∂Sconn/∂y1. Because of the restriction to connected
graphs and because of the differentiated vertex, this analysis is very simple. As usual, graphs
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for ∂Sconn/∂y1 can have H , A, B, and S subgraphs.13 These subgraphs must be connected
to each other, and this must occur through one or more quark loops, since the connections
to the Wilson line are to single line segments, after we used (10.100).14 Therefore, if a
region for ∂Sconn/∂y1 has more than one of the subgraphs H , A, B, and S, we get zero,
after applying a Ward identity to the sum over graphs. Exactly as in the one-loop case,
the differentiation with respect to y1 at the crossed vertex forces the gluon line at the
differentiated vertex to have rapidity close to y1; thus it is either collinear-to-A (i.e., to n1)
or hard. It follows that the only two leading regions are where the whole of ∂Sconn/∂y1 is
collinear-to-A or where it is all hard.

Thus the situation we saw for the one-loop case in Sec. 10.5.10 immediately generalizes
to all orders:

• The limit y2 →−∞ can be taken, so that we can write the evolution equation in terms
of a rapidity-independent kernel

K
(
mg,m,μ, g(μ)

) def= 2 lim
y2→−∞

∂Sconn

∂y1
, (10.112)

plus power-suppressed corrections. Thus in Fig. 10.23, the upper Wilson line can be
taken light-like in the minus direction without encountering any divergence.

The above definition of K is asymmetric between the two Wilson lines of S, and we
will later make a symmetric definition in (10.122), which leads to the same numerical
results for calculations in a covariant gauge.

• The kernel K has an additive anomalous dimension γK , as in (10.56).

Hence the previously stated results (10.53) and (10.56) apply generally.
It follows that at large y1 − y2, the y1 − y2 and μ dependence of the soft factor has the

form

S = S0(mg,m,μ0, g(μ0))

× exp

{
−y1 − y2

2

[∫ μ

μ0

dμ′

μ′
γK (g(μ′))−K(mg,m,μ0, g(μ0))

]}
, (10.113)

where μ0 is a fixed reference value of the renormalization scale, and S0 is independent of
y1 − y2. Because of power-suppressed corrections, S0 does not equal the value of S when
y1 = y2 and μ = μ0.

Naturally, we could equally well have performed the differentiation with respect to y2

instead of y1. In that case there would be a change of sign, and the Feynman rules would
have the crossed vertex in Fig. 10.23 on the opposite Wilson line. We will redefine K

more symmetrically later, in Sec. 10.11.3; the redefinition also remedies a lack of gauge
independence of K when one uses a non-covariant gauge.

13 It should be possible to simplify this by a classification of lines by rapidity: collinear-to-B, and n1-rest-frame.
14 An example would be Fig. 10.23(b), when the quark loop and the lines to the lower Wilson lines are collinear-to-A,

but one or both of the upper gluons are soft.
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Fig. 10.24. Leading regions for ∂B(y1 − ypB
)/∂y1, (10.114). In (b), the soft subgraph has

at least one gluon attachment to the main Wilson line, but we do not show this, to avoid
complicating the graph.

10.10.2 Evolution of collinear factor

We now obtain an equation for the derivative with respect to y1 of the unsubtracted collinear
factor Bunsub(y1, ypB

). The effect of differentiating the Wilson line is

∂Bunsub(y1 − ypB
)

∂y1
= (10.114)

As in Fig. 10.23, the left-hand end of the differentiated Wilson-line element is attached to
the main quark-Wilson-line vertex, and we used (10.100) to allow us to treat each vertex
of the Wilson line independently.

We now apply the same arguments as we used for factorization. But we simplify the
argument by using a frame where n1 has zero rapidity, so that the momentum categories are
soft, hard, and collinear-to-B. A soft momentum has rapidity comparable to y1, and there
is now no separate collinear-to-A category. As usual, the momentum k at the differentiated
vertex is restricted to have a rapidity close to y1, so that it is either soft or hard. There
correspond two types of leading region, shown in Fig. 10.24(a) and (b) respectively.

For the case that k is soft, graph (a), we examine the component of the soft subgraph to
which is attaches, and apply Ward identities for all the gluons that couple it to the collinear
subgraph. This gives a factor of exactly the kernel 1

2K for the evolution of the soft factor,
and it multiplies the original collinear factor.

When k attaches to the hard subgraph, we use Ward identities to extract the collinear
gluon attachments. The result is a factor times the original collinear factor. To this must
be applied subtractions for the soft-gluon part. Since there are now no collinear or soft
contributions to the hard factor, we can apply the massless limit to it. This gives the
following evolution equation (Collins, 1980):

∂Bunsub(yu1 − ypB
)

∂yu1

= 1

2

[
K(m,mg,μ)+G(ζB,u1 , μ)

]
Bunsub

+ non-leading power of ζB,u1 , (10.115)

where ζB,u1 is defined in (10.93b).
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Since G only involves hard momenta, it can be defined in terms of Bunsub by a massless
limit as

G = 2 lim
m→0
mg→0

[
∂ ln Bunsub(ζpB,u1 )

∂yu1

−K

]
. (10.116)

Here the massless limit is taken with ζpB,u1 fixed, and thus with p−B fixed. (Note that
ypB

would not be a good variable to use, since the rapidity of a massless momentum is
infinite.)

If we dimensionally regulate, G decreases like a power of ζB,u1/μ
2. But the power-

suppression goes away when n→ 4. This gives another view of how, in defining Abasic

and Bbasic, we took the yu1 →∞ and yu2 →−∞ limits. The limits are of Aunsub(ypA
−

yu2 )/S(y1 − yu2 ) and Bunsub(yu1 − ypB
)/S(yu1 − y2). In accordance with Sec. 10.8.2, these

limits are taken with n < 4. With n < 4 the evolution equations only involve the K terms
in the infinite rapidity limit. Since the u2 (or u1) Wilson line appears in both numerator
and denominator, the evolution equation shows that the K terms cancel, so that the infinite
rapidity limits exist. This is consistent with and confirms what we earlier derived by another
method.

The companion equation for A has a reversed sign:

∂Aunsub(ypA
− yu2 )

∂yu2

= − 1

2

[
K(m,mg,μ)+G(ζA,u2 , μ)

]
Aunsub

+ non-leading power of Q and ζA,u2 , (10.117)

where ζA,u2 was defined in (10.93a).
These equations bring under control the dependence of the collinear factors on the

Wilson-line rapidities. We then use the RG to tame the logarithms of μ: to set μ to be
a fixed scale in K and in the collinear factors, but to be of order Q in G and H . We
will discuss this in more detail after we perform a final reorganization of the factorization
formula.

10.11 Sudakov: redefinition of factors

The above formalism has some defects, particularly in its generalization to measurable
cross sections in QCD:

1. The soft factor has no independent experimental consequences. It always appears mul-
tiplied by two collinear factors.

In QCD applications of factorization, the soft factor is non-perturbative. Although the
values of non-perturbative quantities are in principle predicted by QCD, our ability to
actually calculate them is currently close to zero. So generally we have to measure them
from experiment, and rely on universality to make predictions for the same reactions at
different energies and for different reactions. But there is no experimental probe of the
soft factor by itself.
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2. Feynman rules for the soft factor involve non-light-like Wilson lines. Perturbative cal-
culations of such quantities are more difficult than when at least one Wilson line is
light-like. (But, of course, with light-like Wilson lines, there must be subtractions to
cancel rapidity divergences.)

3. Associated with the non-light-like Wilson lines in S are power-suppressed corrections
to the evolution equation (10.53).

4. The definitions of the factors involve removal of Wilson-line self-energies (10.101).
However, these cancel in the complete factorization formula, which suggests a non-
optimality in the formulation.

5. The removal of Wilson-line self-energies makes the factors gauge-dependent.
6. Related to this is that although the evolution kernel K defined in (10.112) is gauge inde-

pendent when restricted to covariant gauges, it changes when the gauge is transformed
to an axial or Coulomb gauge. See problem 10.9.

These defects are to be regarded not as errors in the formalism, but as practical problems
that make the formalism more complicated to use.

We will now perform a redefinition of the soft, collinear, and hard factors to remove
these defects as much as possible. A useful starting point is (10.109), where factorization
is given in terms of unsubtracted collinear factors and three occurrences of the basic soft
factor S with different rapidity arguments. We can use (10.113), which shows that S has
exponential rapidity dependence, to reorganize the factors of S.

Then we will absorb the S factor(s) into redefined collinear factors, to give a new
factorization formula with no soft factor:

F = HAB + power-suppressed. (10.118)

This overcomes the lack of experimental probes of the soft factor.
The definitions of the new collinear factors are at first sight surprisingly complicated. I

will first state the definitions (which supersede those proposed by Collins and Hautmann,
2000). Then I will show how they correspond to the previous factorization formula in the
form (10.109). After that I will give the rationale for the new definitions; they are unique
given certain reasonable requirements.

10.11.1 Collinear factors

The redefined collinear factors A and B involve an arbitrary rapidity parameter yn. We
assign yn the physical significance of separating left- and right-moving quanta; the A factor
contains the effects of right-movers and B the effects of left-movers. The new collinear
factors depend on the difference in rapidity between their particle (pA or pB) and yn.

We will find that the dependence of each collinear factor on yn is governed by an
exactly homogeneous evolution equation involving the kernel K . Thus we can express each
collinear factor in terms of its value when its particle has the same rapidity as yn. This gives
an optimal form of factorization.



380 Factorization and subtractions

The redefined collinear factors are

A(m,mg, g, μ, ypA
− yn)

def= lim
ε→0

lim
y1→+∞
y2→−∞

ZA Aunsub, bare(ypA
− y2)

√
Sbare(y1 − yn)

Sbare(y1 − y2) Sbare(yn − y2)

= Aunsub(ypA
,−∞)

√
S(+∞, yn)

S(+∞,−∞) S(yn,−∞)
, (10.119a)

B(m,mg, g, μ, yn − ypB
) = Bunsub(+∞, ypB

)

√
S(yn,−∞)

S(+∞,−∞) S(+∞, yn)
. (10.119b)

As in Sec. 10.8.2, we first take the limits of infinite rapidity, and then we remove the UV
regulator ε → 0, with the aid of renormalization factors ZA and ZB . This order of limits
entails adjusting the renormalization coefficients relative to our previous definitions. Thus
it is convenient to write the new definitions in terms of bare soft and collinear factors,
i.e., quantities defined without the renormalization factors ZS , Zunsub

A , and Zunsub
B used in

(10.89), (10.90), and (10.92). It is convenient to use a notation with infinite rapidities for
the Wilson lines, as in the third and fourth lines of (10.119). It implies the limits given on
the second line.

Each of the factors on the r.h.s. of (10.119) was originally defined to have Wilson-
line self-energies divided out. It can be shown that the self-energy factors cancel in the
combinations used in (10.119). (The total power of self-energy factors for each direction
of Wilson line is zero. The only complication is that the Wilson lines for direction n are
for opposite charges, but charge-conjugation invariance can be used to show that this is
irrelevant.)

I now show that the product of A and B defined in (10.119) equals the product of the
soft and collinear factors in our first form of factorization, when it is expressed in terms of
unsubtracted collinear factors in (10.109).

First we examine the limits yu1 →∞ and yu2 →−∞ in (10.109), by using the evolution
equations (10.53), (10.115) and (10.117). The K terms cancel for the yu1 and yu2 dependence
in (10.109). This leaves just the G terms from (10.115) and (10.117). These concern a
hard momentum region, and are effectively absorbed in UV renormalization factors. From
(10.53), we see that the y1 and y2 dependence also cancels in (10.109). Thus the unsubtracted
collinear factors are the same in (10.109) and in the product of (10.119a) and (10.119b).

After that, we apply the solution (10.113) for S, to show that the combination of S

factors in (10.109) agrees with the combination of S factors in the product of (10.119a) and
(10.119b).

Hence the two forms of factorization agree.
Notice that Wilson-line self-energies cancel for each of the different types of Wilson

line in (10.119), so we do not need to insert any Wilson-loop factor to cancel Wilson-line
self-energies, unlike our previous definitions. In fact, the definitions above are unique given
the following requirements:
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Fig. 10.25. Directions of Wilson lines in the factors in (10.119a): the solid lines are the
Wilson lines (which should extend to infinity), which are either light-like or in the direction
n, which is here drawn with a slightly positive rapidity yn. The shaded part of (a) is intended
to suggest the final-state quark itself, which moves in a time-like direction.

1. A collinear factor is a product of an unsubtracted collinear factor and powers of S-type
objects.

2. Non-light-like Wilson lines only appear in S factors with one light-like and one non-
light-like line.

3. Rapidity divergences cancel.15

4. Only one light-like direction yn is used.
5. The definitions obey charge-conjugation symmetry; thus the definition of B is obtained

from the definition of A, simply by changing Aunsub, bare to Bunsub, bare and by exchanging
the roles of y1 and y2.

6. The factorization formula is HAB, without any soft factor.

The actual directions of the Wilson lines are shown in Fig. 10.25. In all the S objects,
the two Wilson lines are at space-like separations. All the Wilson lines are either space-like
or are obtained from a limit of space-like lines. Thus we do not have to be concerned with
the ordering of the gauge-field operators on the Wilson lines. At least in covariant gauge,
the fields commute at space-like separation. Thus the path ordering on the lines creates
no conflict with the time ordering needed to define Green functions that use time-ordered
fields. There is also maximum compatibility with Euclidean lattice gauge theory, which is
important for attempts to compute non-perturbative collinear factors in QCD.

One perhaps unexpected feature is that the Wilson lines of rapidity yn in the numer-
ator and denominator of each collinear factor have opposite directions. For example, in
(10.119a), yn in the numerator factor S(y1 − yn) corresponds to a Wilson line related to the
antiquark. Therefore it has the charge of the antiquark and goes in the direction of a vector
nB = (−eyn , e−yn , 0T) whose minus component is positive. But yn in the denominator factor
S(yn − y2) corresponds to a Wilson line with the charge of the quark and in the direction
of a vector nA = (eyn ,−e−yn , 0T) whose plus component is positive. Thus the cancellation
of Wilson-line self-energies for the yn lines in (10.119a) is not as transparent as it would
be if the lines were in exactly the same direction. This should be investigated.

In Sec. 10.8.2 was mentioned a non-uniformity of the limits of infinite rapidity and of
n→ 4. For the newly defined collinear factors, we can see this from Fig. 10.26, which

15 Except for regions of kT →∞, which can be canceled by UV renormalization.
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Fig. 10.26. Like Fig. 10.7, but showing the main regions for the one-loop contributions
to (10.119a), with yn chosen slightly positive. The diagrams are written before the limits
y1 →∞ and y2 →−∞ are taken. The scale is reduced from Fig. 10.7.

shows the regions in gluon kT and rapidity that contribute at one-loop order to the factors
in (10.119a). In the region of low transverse momentum, the S terms combine to give a
negative contribution running between y2 and yn that cancels the corresponding contribution
from the one-loop term in the A term. This cancels the rapidity divergence as y2 →−∞.
But as the transverse momentum increases, the upper limit on gluon rapidity decreases in
the A term, but not in the sum of the S terms. This weakens the cancellation, leaving an
uncanceled contribution from a triangular region above the diagonal line in Fig. 10.26(d).
With a UV regulator applied (e.g., n < 4) the integral is convergent at large kT, so the limit
y2 →−∞ exists.

When the UV regulator is removed, the contribution of the triangle is a doubly logarith-
mic infinity, to be canceled by a UV counterterm. As in Sec. 10.8.2 the limits are applied
in the order y2 →−∞ and then n→ 4. Because of the doubly logarithmic divergence,
the UV divergence has the two poles of ε = 2− n/2 per loop instead of the conventional
single pole, and it is energy dependent. See (10.139).

10.11.2 Factorization and re-examination of hard factor

The new collinear factors (10.119a) and (10.119b) are obtained from the original collinear
and soft factors by reorganizing the S factors. Changes are only by power-suppressed
corrections. Thus the hard factor H is unchanged. But we can convert the old formula for
H , (10.96), to use the new version of factorization:

H (Q,μ, g(μ)) = lim
massless

F

AB
= lim

massless

F S(+∞,−∞)

Aunsub(−∞)Bunsub(+∞)
. (10.120)
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As before, the notation of infinite rapidity for the Wilson lines includes the definition that
the infinite rapidity limit is applied before the removing the UV regulator by ε → 0.

10.11.3 Evolution kernel K

The final versions of the collinear factors A and B in (10.119) depend on the rapidity
parameter yn, only via the factors S(y1 − yn) and S(yn − y2), in the limit y1 →∞, y2 →
−∞. So to get an equation for the dependence on yn, we need the kernel K defined earlier.

This earlier definition was appropriate for differentiating S(y1 − y2) with respect to y1,
and thus the diagrammatic definition was not symmetric between the positive and negative
rapidity directions. However, since S depends on the difference of the two rapidities an
equal result is obtained by differentiating with respect to the other rapidity argument, except
for a sign. For use with the new collinear factors, we now make a more symmetric definition
of K , and we put it into an operator form. We first define the vector n = (eyn ,−e−yn , 0T),
and define a differentiated vector

δn
def= dn

dyn

= (eyn , e−yn , 0T). (10.121)

Then we redefine

K
(
mg,m,μ, g(μ)

) def= ∂

∂yn

ln
S(yn,−∞)

S(+∞, yn)

=
〈
0 T W (∞, 0, w2)† W (∞, 0, n) (−ig0)

∫∞
0 dλ �1(nλ) 0

〉
〈
0 T W (∞, 0, w2)†W (∞, 0, n) 0

〉
+
〈
0 T W (∞, 0,−n)† W (∞, 0, w1) (ig0)

∫∞
0 dλ �2(−nλ) 0

〉
〈
0 T W (∞, 0,−n)†W (∞, 0, w1) 0

〉
with renormalization, (10.122)

where w1 and w2 are the light-like vectors defined in (10.15a), and

�1(x) = δnμA(0)
μ (x)+ λδnνnμ

∂A(0)
μ (x)

∂xν
with x = λn, (10.123a)

�2(x) = δnμA(0)
μ (x)− λδnνnμ

∂A(0)
μ (x)

∂xν
with x = −λn. (10.123b)

The Feynman rules for the special vertices are given in Fig. 10.27.
See problem 10.9 for the gauge independence of K with the new definition.

10.11.4 Factorization, evolution equations: Final form

In this section, we collect all the results in their final form: the factorization formula,
and the evolution equations for the dependence on the Wilson-line rapidity and on the
renormalization scale. The evolution equations are the key to practical applications. We
will refer back to the definitions of all the factors.
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Fig. 10.27. Feynman rules for special vertices for K . See Fig. 10.23 for examples using the
vertex labeled 1. The first rule agrees with that in (10.49).

The factorization equation is

F = H (Q,μ, g(μ)) A
(
ypA
− yn,mg,m,μ, g(μ)

)
× B

(
yn − ypB

,mg,m,μ, g(μ)
)+ power-suppressed, (10.124)

where A and B are defined in (10.119) and H in (10.120).
Initially, the rapidity yn might be taken to be zero in the overall center-of-mass frame, so

that the collinear factors A and B can be characterized as giving the contribution of quanta
of, respectively, positive and negative rapidities. Then both the rapidity difference arguments
ypA
− yn and yn − ypB

are ln(Q/m). Evolution equations, that we now summarize, enable
us to adjust the values of yn differently for each collinear factor, and thereby express them
in terms of values with fixed rapidity-difference arguments. Similarly, we will use RG
equations to make suitable (and different) choices for the scale μ in each factor.

From the results in Sec. 10.11.3, it follows that the evolution equations with respect to
yn for the collinear factors are

∂A

∂yn

= −1

2
K
(
mg,m,μ, g(μ)

)
A, (10.125a)

∂B

∂yn

= 1

2
K
(
mg,m,μ, g(μ)

)
B, (10.125b)

where K is defined by (10.122). It follows that the product AB that appears in the factor-
ization formula is independent of yn.

The RG equations have the form

dK

d ln μ
= −γK (g(μ)) , (10.126a)

dA

d ln μ
= γA

(
ζA/μ2, g(μ)

)
A, (10.126b)

dB

d ln μ
= γB

(
ζB/μ2, g(μ)

)
B. (10.126c)

The anomalous dimensions can be obtained from the renormalization counterterms for
K , A and B. Now, the renormalization factors for the two collinear factors are energy
dependent, for reasons explained earlier with the aid of Fig. 10.26. This causes energy
dependence in the anomalous dimensions. Since the anomalous dimensions are determined
by UV phenomena, they involve only the large components of quark momenta, i.e., p+A and
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p−B . So we write the energy dependence in terms of

ζA
def= 2(p+A )2e−2yn = m2e2(ypA

−yn), (10.127a)

ζB
def= 2(p−B )2e2yn = m2e2(yn−ypB

), (10.127b)

which are versions of (10.93a) and (10.93b), but now defined relative to the single rapidity
yn. Note that these differ by power-suppressed corrections from the corresponding defini-
tions in Collins and Soper (1981) and Soper (1979), which are ζA,CS = |4pA · n2/n2|, and

ζB,CS = |4pB · n2/n2|. Note also that ζAζB = (2p+Ap−B )2 = Q4

(
1
2 + 1

2

√
1− 4m2/Q2

)4

�
Q4.

Since the collinear factors differ only by an exchange of plus and minus coordinates and
by a charge-conjugation transformation, the anomalous dimensions γA and γB of A and B

are the same.
The final ingredient we need is an equation for the energy dependence of γA. This is

obtained by applying d/d ln μ to (10.125a) and then exchanging the order of differentiation:

d

d ln μ

∂A

∂yn

= 1

2
γKA− 1

2
KγAA, (10.128a)

∂

∂yn

dA

d ln μ
= ∂γA

∂yn

A− 1

2
KγAA. (10.128b)

Hence

∂γA

(
ζA/μ2, g(μ)

)
∂yn

= − ∂γA

∂ ln ζ
1/2
A

= 1

2
γK

(
g(μ)

)
, (10.129)

thereby completely determining the energy dependence of γA (and γB):

γA

(
ζ/μ2, g(μ)

) = γB

(
ζ/μ2, g(μ)

) = γA(1, g(μ))− 1

4
γK (g(μ)) ln

ζ

μ2
. (10.130)

The above equations, together with the definitions of A, B, H , and K , are a complete
formulation of factorization.

10.11.5 Solution

We now use the evolution equations to set the arguments of H , A and B to avoid large
logarithms.

• In H , we set μ proportional to Q: μ = C2Q.
• In A, B, and K we set μ to a fixed value μ0, of order the particle masses.
• In A, we set yn = ypA

.
• In B, we set yn = ypB

.
• In γA and γB , we set the ζ/μ2 argument to 1/C2

2 , as with H .

For the coefficient of proportionality C2 between μ and Q, the notation C2 is that of Collins
and Soper (1981).
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It can be readily deduced from the evolution equations that

F = H (1/C2, g(C2Q)) A
(
ypA
− yn,mg,m,C2Q,g(C2Q)

)
× B

(
yn − ypB

,mg,m,C2Q,g(C2Q)
)

= H (1/C2, g(C2Q)) A
(
0,mg,m,μ0, g(μ0)

)
B
(
0,mg,m,μ0, g(μ0)

)
× exp

{
−
∫ C2Q

μ0

dμ

μ

[
ln

C2Q

μ
γK (g(μ)) − 2γA

(
1/C2

2 , g(μ)
)]}

× exp

[
1

2
(ypA
− ypB

) K
(
mg,m,μ0, g(μ0)

)]
, (10.131)

where power-suppressed corrections are ignored.

10.11.6 Properties and use of solution

Results of the same structure appear in many important problems in QCD (Chs. 13 and
14). So we now examine the solution (10.131) with a view to QCD applications.16 In QCD,
the effective coupling is large at small momenta, and is small at large momenta. Thus
perturbative calculations are not valid for collinear factors for light particles in QCD.

By setting the renormalization scale proportional to Q in the hard scattering H , we
removed large logarithms in the perturbative expansion of H . This enables effective pertur-
bative predictions to be made for H .17 But then the collinear factors have Q dependence;
see the first line of (10.131).

We remedied this by using the evolution equations to give different values of μ and yn

in the different factors, in the lower three lines of (10.131). There, each of the collinear
factors has a Q-independent value of the renormalization mass and of the rapidity difference
argument. In a weak-coupling situation, this enables a perturbative calculation to be made
without logarithms. In QCD, it allows us to use universality to make predictions: the same
collinear factors appear at all values of Q and in all processes with the same kind of
factorization. Thus determination of a collinear factor can be made from experimental data
in one process at one energy, and the value used for the otherwise unknown quantity both
in the same process at other energies, and in different processes.

The exponential in (10.131) shows that our solution radically differs from a straightfor-
ward use of perturbation theory, in a way that is much stronger than in cases containing
only ordinary RG logarithms. The anomalous dimensions γK and γA are to be used in
the weak-coupling regime, so that low-order perturbation calculations are effective. The
generally biggest term in the exponent is the γK term; it has a logarithm relative to γA.

There remains the term involving K in the exponent. It gives a substantially energy-
dependent factor:

exp

[
1

2
(ypA
− ypB

) K
(
mg,m,μ0, g(μ0)

)] = (
Q2

m2

) 1
2 K(mg,m,μ0,g(μ0))

. (10.132)

16 But (10.131) is also useful in a QED-like theory with a coupling that is weak at all relevant scales.
17 The coefficient C2 can be adjusted to further optimize perturbative coefficients.
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In QCD this would give a power-law dependence on Q with a non-perturbative exponent.
The exponent K(μ0) can be determined from the derivative of the amplitude with respect
to energy, at one value of energy. Then the same exponent is used at all energies and
in other processes. Determination of generalizations of K to other process appear as a
critical element of good phenomenology (e.g., Landry et al., 2003) for the Drell-Yan and
other processes. It gives a substantial and characteristic energy dependence to the shape of
Drell-Yan cross sections differential in transverse momentum.

If the IR coupling were weak, as in QED, the exponent K would be perturbatively
calculable.

10.11.7 Asymptotic large Q behavior

The biggest term in the exponent in (10.131) is the one with γK . It implies that at large
enough Q, the factorized formula for the form factor goes to zero faster than any power
of Q; this happens both for our form factor in an abelian theory (at least if we stay in a
weak-coupling regime), and for analogous quantities in an asymptotically free theory.

However, the derivation ignored power-suppressed corrections, which therefore have
the potential to be asymptotically larger than the final factorized answer: the leading-power
contributions have undergone a strong cancellation. Thus beyond some energy, the precise
numerical result of the factorization formula is phenomenologically irrelevant.

To assess the significance of such a factorization in QCD, we observe that in e+e−

annihilation to hadrons, the Sudakov form-factor graphs give the component of the cross
section that has a pure quark-antiquark final state. But in the total cross section we found
a cancellation of all IR-sensitive regions, with the total cross section going to a constant
at large Q; see Ch. 4. This cancels the strong decrease of the Sudakov form factor in
the quark-antiquark component. At high energy the cross section for e+e− → hadrons is
dominantly highly inelastic.

In Chs. 13 and 14, we will investigate reactions where the amount of cancellation of
IR-sensitive effects depends on the value of a measurable transverse-momentum variable.
In these situations, a generalization of the factorization derived in this chapter will be very
useful.

10.11.8 Relation of factorization to LLA

From (10.131), we see systematically how all logarithms arise. We derive the leading-
logarithm approximation (LLA) as follows: (a) expand γK to lowest order in coupling;
(b) ignore the running of the coupling; (c) neglect the other terms in the exponent; (d) set
the outside H , A and B factors to their lowest-order values (i.e., unity). This reproduces
(10.38), when μ0 is of the order of particle masses.

There are important gains from the factorization formalism relative to the LLA, partic-
ularly in generalizations in QCD. In the first place the factorization formalism shows how
corrections arise, and how they may be made systematically. The corrections are in the
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Fig. 10.28. One-loop graphs for K . The vertical heights of the graphs are adjusted to
symbolize the rapidities of the light-like lines. The rules for the vertices with a cross are
given in Fig. 10.27.

exponent, and also in non-logarithmic corrections to the H , A and B factors preceding the
exponential.

In contrast, the logic of the LLA alone gives no information on non-leading logarithms.
For example, the LLA itself does not prevent there from being an additive correction, e.g.,

g2 × constant, (10.133)

which does not vanish as Q→∞. This would completely change the qualitative behavior.
Such a phenomenon actually occurs for the Drell-Yan and related cross sections at zero
transverse momentum. There the LLA gives a cross section that vanishes at zero transverse
momentum, but the true result from a correct factorization theorem is non-zero (Collins
and Soper, 1982a).

An important result is that the factorization method indicates how non-perturbative
effects should affect the Q dependence in analogous QCD problems, by the factor (10.132).
Of course our formal derivation stayed within perturbation theory. But the structures we
use have a much more general appearance.

10.12 Calculations for Sudakov problem

In this section we show how the Feynman rules for H , A, B and K work out at one-loop
order.

10.12.1 Evolution kernel K

First we calculate the evolution kernel K . From the rules given in Fig. 10.27, we have the
one-loop graphs shown in Fig. 10.28. They give

K = ig2μ2ε

(2π )4−2ε

∫
d4−2εk

1

(k2 −m2
g + i0) (−n · k + i0)2

×
[

n+δn · k − δn+n · k
k+ + i0

+ n−δn · k − δn−n · k
−k− + i0

]
+ UV c.t.+O(g4)

= ig2μ2ε

(2π )4−2ε

∫
d4−2εk

−2n2

(k2 −m2
g + i0) (−n · k + i0)2

+ UV c.t.+O(g4)
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= −g2 �(ε)

4π2

(
4πμ2

m2
g

)ε

+ g2 Sε

4π2ε
+O(g4)

= − g2

4π2
ln

μ2

m2
g

+O(g4). (10.134)

(In obtaining this, note the reversal of the direction of k compared with Fig. 10.27, and
remember the reversed sign of the ordinary vertex on a Wilson line that corresponds to
an antiquark.) The calculation of the integral can be done by contour integration on k−

followed by an elementary integral for k+. Then the kT integral gives a beta function. The
result agrees with our previous calculation at (10.54), but now we used our updated Feynman
rules. Note that the evolution equation has no power corrections, in contrast with (10.53).

As an exercise the reader can show that the sole two-loop graph gives the O(g4) term in
γK :

γK = g2

2π2
− 10

9

(
g2

4π2

)2

+O
(
g6
)
. (10.135)

10.12.2 Collinear factor A

We now calculate the collinear factor A at one-loop order. This will illustrate the peculiar
energy dependence of the counterterm. The graphs, obtained from the definition (10.119a),
are shown in Fig. 10.29. To this is to be added a term associated with the external propagator
correction.

The graphs in Fig. 10.29(a) give

A1a = ig2μ2ε

(2π )4−2ε

1

ūAPB

∫
d4−2εk

1

(k2 −m2
g + i0)

ūA

×
{

γ+(/pA
− /k +m)

[(pA − k)2 −m2 + i0] (k+ + i0)
+

1
2e−yn

(−k− + i0) (k+e−yn − k−eyn + i0)

−
1
2eyn

(−k−eyn + k+e−yn + i0) (k+ + i0)
−

1
2

(−k− + i0) (k+ + i0)

}
PB, (10.136)

to which is to be added a UV counterterm. The e±yn factors in the exponents arise from the
vertices for the Wilson lines of rapidity yn. As usual, we use the residue theorem to perform
the k− integral. This gives

A1a = −g2(2πμ)2ε

8π3

∫
d2−2ε kT

×
{∫ 1

0

dx

x

[
1− x

k2
T +m2

g(1− x)+m2x2
+ 1

−k2
T −m2

g + 2(xp+Ae−yn )2 + i0

]

+
∫ ∞

1

dx

x

1

−k2
T −m2

g + 2(xp+Ae−yn )2 + i0

}
+ UV c.t., (10.137)
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Fig. 10.29. Graphs for A at one-loop, including subtractions and the counterterm for
canceling the UV divergence. Next to each double line representing a Wilson line is a
label for its rapidity, −∞, +∞ or yn. The factors of 1

2 multiplying the Wilson-line terms
arise from the one-loop expansion of the factors in the square root in (10.119a). The upper
Wilson lines have the charge of an antiquark. The LSZ term is a self-energy graph for the
on-shell quark.

where the potential divergence at x = 0 has canceled. Much of the x integral, including all
the Wilson-line terms, can be performed by very elementary methods to give

A1a = −g2(2πμ)2ε

8π3

∫
d2−2ε kT

k2
T +m2

g

{
−
∫ 1

0
dx

k2
T +m2x

k2
T +m2

g(1− x)+m2x2

+ 1

2
ln

2(p+Ae−yn )2

k2
T +m2

g

− i
π

2

}
+ UV c.t. (10.138)

The remaining x integral is well behaved.
A simple computation of the UV counterterm in the MS scheme uses the techniques of

Sec. 3.4. The UV divergence is governed by the leading large kT behavior of the integrand,
which is therefore independent of the masses:

UV c.t. = −MS pole part of integral in (10.138)

= −MS pole part of
−g2(2πμ)2ε

8π3

∫
kT>μ

d2−2ε kT

k2
T

[
−1+ 1

2
ln

2(p+Ae−yn )2

k2
T

− i
π

2

]

= g2Sε

8π2

[−1

2ε2
+ 1

ε

(
−1+ 1

2
ln

2(p+Ae−yn )2

μ2
− i

π

2

)]
. (10.139)

As in Sec. 3.4, the use of the lower limit μ on the kT integral gives exactly the MS pole
part with its accompanying factor of Sε with no further finite part. This relies on exactly
our specific definition of Sε in (3.18).

The kT integral in (10.138) is readily performed. To get the complete one-loop contri-
bution to the collinear factor, the LSZ reduction formula tells us to add half the one-loop
residue of the quark propagator:

1

2
�1 = g2

8π2

{
1

4
+
∫ 1

0
dx

1

2
(1− x) ln

m2
g(1− x)+m2x2

μ2
+
∫ 1

0
dx

m2x(1− x2)

m2
g(1− x)+m2x2

}
.

(10.140)
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Then the full one-loop contribution to A at n = 4 is

A1 = −g2

8π2

{
−
∫ 1

0

dx

x
ln
(
1− x + x2m2/m2

g

)

+
∫ 1

0
dx

1

2
(1+ x) ln

m2
g(1− x)+m2x2

μ2
−
∫ 1

0
dx

m2x(1− x2)

m2
g(1− x)+m2x2

− 1

4
+ 1

4
ln2 2(p+Ae−yn )2

m2
g

− 1

4
ln2 2(p+Ae−yn )2

μ2
+ i

π

2
ln

m2
g

μ2

}
. (10.141)

We can now check the evolution and RG equations. First, we see from (10.94a), and
its generalization to the new definition of A, that the counterterm in (10.139) gives the
one-loop contribution to ZAZ

1/2
2 . With the aid of (3.23) for Z2, we find that

ZA = 1+ g2Sε

8π2

[−1

2ε2
+ 1

ε

(
−3

4
+ 1

2
ln

2(p+Ae−yn )2

μ2
− i

π

2

)]
+O(g4). (10.142)

From this we get the anomalous dimension:

γA = d ln A

d ln μ
= d ln ZA

d ln μ

= ∂ ln ZA

∂ ln μ
+ dg2/16π2

d ln μ

∂ ln ZA

∂g2/16π2

= g2

8π2

[
3

2
− ln

2(p+Ae−yn )2

μ2
+ iπ

]
+O(g4) (at ε = 0), (10.143)

where the first line uses A = ZAA0 and the RG invariance of A0, defined in terms of bare
fields, while the third line uses (3.44) for d(g2/16π2) / d ln μ. The explicit μ dependence
of the single-pole counterterm was needed to get finiteness of γA. It is readily checked that
the dependence on yn is as predicted from (10.129) with the calculated value of γK from
(10.135).

10.12.3 Hard factor

From the definition, (10.120), we find that the one-loop hard-scattering coefficient arises
from the graphs in Fig. 10.30. This gives

H1 = −ig2μ2ε

(2π )4−2ε

∫
d4−2εk

ūAPB IH (k) PBvB

k2 + i0
, (10.144)

where

IH (k) = γ κ (p+Aγ− − /k)γ μ(−p−B γ+ − /k)γκ

(−2p+Ak− + k2 + i0) (2p−B k+ + k2 + i0)
+ −γ μ

(−k− + i0) (k+ + i0)

− γ+(p+Aγ− − /k)γ μ(−1)

(−2p+Ak− + k2 + i0) (k+ + i0)
− γ μ(−p−B γ+ − /k)γ−

(−k− + i0) (2p−B k+ + k2 + i0)
. (10.145)
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pBpB

pApA

q
k +

−∞

+∞

− k

pA − k

−∞

− k

pB + k

+∞

Fig. 10.30. Graphs for one-loop hard coefficient.

The factors of (−1) in two of the numerators are for the negative charges of the upper
Wilson lines. To (10.144) is to be added a UV counterterm, as usual.

The integrals over k− and k+ can be performed analytically, to give

H1 = −g2(4πμ2)ε ūAPBγ μPBvB

8π2�(1− ε)

∫ ∞
0

dk2
T

(k2
T)1+ε

×
⎧⎨
⎩ln

k2
T

Q2
E

+ 1+ (3+ 2ε)k2
T/Q2

E√
1+ 4k2

T/Q2
E

ln

√
1+ 4k2

T/Q2
E + 1√

1+ 4k2
T/Q2

E − 1

⎫⎬
⎭ , (10.146)

where Q2
E = −Q2 − i0: the integral is defined by continuing from a positive value of Q2

E

to−Q2 approaching from the appropriate side of the real axis. Observe that the Wilson-line
terms combine to remove the divergence at kT = 0.

From the behavior of the integrand at large kT, it can be computed that the necessary
MS counterterm is

H1, c.t. = g2SεūAPBγ μPBvB

8π2

[
1

ε2
+ 1

ε

(
− ln

Q2
E

μ2
+ 3

2

)]

= g2SεūAPBγ μPBvB

8π2

[
1

ε2
+ 1

ε

(
− ln

Q2

μ2
+ iπ + 3

2

)]
. (10.147)

This is exactly equal and opposite to the sum of the one-loop contributions to ZA and ZB , so
that for the one-loop contribution to HAB the total counterterm is zero. This corresponds
to the non-renormalization theorem for matrix elements of a conserved current. Notice
that the counterterm has a logarithm, just as for the collinear factors. Thus the one-loop
anomalous dimension of H is also momentum dependent:

γH (Q2/μ2, g)
def= d ln H

d ln μ

= g2

8π2

(
2 ln

Q2

μ2
− 2iπ − 3

)
+O(g4)

= −γA

(
ζA/μ2, g(μ)

)− γB

(
ζB/μ2, g(μ)

)
, (10.148)

with the last line being a general result following from the RG invariance of the whole form
factor, and hence of its factorized form HAB. Observe that the dependence of γH on the
ratio Q2/μ2 can be derived from the ζ dependence of γA and γB . Thus from (10.129) we
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have

∂γH

(
Q2/μ2, g

)
∂ ln(Q2/μ2)

= 1

2
γK (g), (10.149)

so that

γH

(
Q2/μ2, g

) = γH

(
1, g

)+ 1

2
γK (g) ln

Q2

μ2
. (10.150)

10.13 Deduction of some non-leading logarithms

Our formalism gives a lot of information on the structure of non-leading logarithms even
in the absence of explicit Feynman-graph calculations beyond lowest order. To see some
of the results, we examine the perturbation series for the logarithm of the form factor.
We keep the logarithmic dependence on Q, expressing the coefficients as polynomials in
t = ln(−Q2/μ2), with power corrections dropped:

ln F = g2

4π2

(
C12t

2 + C11t + C10
)

+
(

g2

4π2

)2 (
C24t

4 + C23t
3 + C22t

2 + C21t + C20
)+O(1/Q2), (10.151)

where the coefficients may depend on m, M and μ, but not on Q.
The leading logarithm results imply that C24 = 0. But we can deduce considerable more

from the factorization formula (10.124) and the evolution equations (10.125). We do this
by deducing an equation for the Q dependence of ln F :

∂ ln F

∂ ln Q
= ∂ ln JA

∂ ln Q
+ ∂ ln JB

∂ ln Q
+ ∂ ln H

∂ ln Q
+ power correction

= K(mg,m, g, μ)+G(Q/μ; g)+ power correction, (10.152)

where G is a purely UV quantity that obeys dG / d ln μ = −γK . Now, from (10.151) we
have

∂ ln F

∂ ln Q
= g2

4π2
(4C12t + 2C11)+

(
g2

4π2

)2 (
6C23t

2 + 4C22t + 2C21
)+ . . . (10.153)

In order that G in (10.152) be independent of the masses m and M , C12, C23 and C22 must
be independent of m and M (and hence of μ). Furthermore, once one puts in the one-loop
values, the requirement that G satisfies its RG equation implies that

C23 = − 1

36
. (10.154)

Hence the new information for the form factor F at two loops is two logarithms down
from the leading logarithm, i.e. it is in C22 and the less leading coefficients, C21 and C20. The
double logarithm coefficient C22 is related to the two-loop term in γK , given in (10.135);
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this was the result of a relatively easy calculation. Hence

C22 = 5

36
. (10.155)

The remaining information, for which a full two-loop calculation of the form factor is
needed, is in the terms with one and no logarithms of Q. These are three and four logarithms
down from the leading ln4 Q term.

10.14 Comparisons with other work

In this section, I give a brief comparison between the present treatment of the Sudakov
and other work on the same and related problems. I restrict attention to work that aims at
something like a complete factorization theorem, rather than just obtaining a LLA.

The first treatment in a similar fashion was in Collins (1980). There I used Coulomb
gauge in a frame with a time-like rest vector n, where the numerator of the gluon propagator
is

−gμν + (nμkν + kμnν)n · k
n · k2 − k2n2

− kμkνn2

n · k2 − k2n2
. (10.156)

The collinear factors are defined by formulae like (10.90) and (10.92) except that the Wilson
lines are removed, so that the matrix elements are 〈pA|ψ̄0(0)|0〉 and 〈pB |ψ0(0)|0〉. Thus
the rapidity of the vector n plays the same role as yn in our final definitions (10.119).
Factorization and evolution equations of a similar kind were derived, differing from those
in Sec. 10.11 essentially by a change of scheme. But the old evolution equations had power-
suppressed corrections, rather than being exactly homogeneous. There was also a separate
soft factor, which we have now eliminated.

A treatment in covariant gauge with Wilson lines was given in Collins (1989). The
collinear factors were now defined as what are here called the “unsubtracted” collinear
factors (10.90) and (10.92), but with the Wilson lines now having a rapidity yn corresponding
to that in our final definitions (10.119). In this formalism, it is the soft factor that has
the subtractions, which is harder to justify from a systematic approach. The evolution
equations continue to have power-suppressed corrections, and the factorization formula
has a separate soft factor. They also have not only the K we use, but also a G term, as
in (10.117).

An earlier approach is found in Mueller (1979), but the methods are less general,
particularly as regards their extension to inclusive processes in QCD.

When the methods of Collins (1980) were extended (Collins and Soper, 1981) to inclu-
sive processes in QCD, it was found convenient to replace Coulomb gauge by a non-light-
like axial gauge, where the numerator of the gluon propagator is

−gμν + kμnν + nμkν

k · n − kμkμn2

(k · n)2
. (10.157)

This gives definitions (Collins and Soper, 1982b; Soper, 1979) of parton densities and
fragmentation functions exactly like those in a non-gauge theory, i.e., without Wilson lines.
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Essentially these are equivalent to gauge-invariant definitions with Wilson lines in direction
n. Applied to the Sudakov form factor, these definitions amount to using our unsubtracted
definitions (10.90) and (10.92) as the actual collinear factors in the factorization formula,
but with the Wilson lines having rapidity yn. The factorization formula still has a subtracted
soft factor. Again the evolution equation for a collinear factors has power-suppressed
corrections and a G term. The use of a non-light-like vector rather than a light-like vector
in the collinear factors complicates calculations. The singularity in (10.157) at k · n = 0 is
defined as a principal value, which causes problems with the Glauber region; the definitions
are not exactly equivalent to the definition with a Wilson line going to infinity in a definite
direction. The difficulties have become particularly apparent when inclusive processes with
transversely polarized beams are treated (Secs. 13.16 and 13.17). Furthermore, it was not
realized that there is a need for the equivalent of what in Feynman gauge is the removal of
Wilson-line self-energies. A version of this formalism was applied to semi-inclusive DIS
in Meng, Olness, and Soper (1996), with a gauge-invariant version being given in Ji, Ma,
and Yuan (2005).

Exercises

10.1 Show explicitly how the formulae in Sec. 8.9, like (8.70) and (8.74), give particular
cases of the general formulae for the subtraction method in Sec. 10.1.

10.2 (**) This problem refers both to material in this chapter and related material in
Ch. 13. Work out more details of the comparison with other work summarized in
Sec. 10.14, and with any other papers you can find. Compare the various definitions
of the collinear and soft factors. To what extent do they agree up to an allowed
scheme change? Are there important differences or errors?

10.3 Assume that a solution of the form of (10.131) applies to some quantity in QCD,
with the standard results for the numerical value the effective coupling as a function
of μ. Deduce the form of the asymptotic large-Q behavior of the form factor. It
would be appropriate to use the same one-loop value of γK we derived above,
except for an insertion of a factor CF . This would arise exactly as in the calculations
of e+e− → hadrons in Sec. 4.1.

10.4 Estimate the fractional error in the LLA for the Sudakov form factor. When does the
LLA give a usefully accurate approximation to the true form factor, in the following
different types of theory?
(a) In the QED-like situation where the coupling is weak over the whole range of

scales involved, and the coupling is smallest in the infra-red.
(b) In the QCD-like asymptotically free situation when the coupling is small only

in the UV.
(c) In an asymptotically free situation, like QCD, except that the masses are large,

so that the largest relevant effective coupling is g(M), where M is a scale
characterizing the masses of the theory.
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10.5 In momentum space the renormalization of the collinear factor A is by a P+-
dependent multiplicative factor. What does this correspond to in coordinate
space?

10.6 In our standard definition of the soft approximations we used space-like auxiliary
vectors n1 and n2, for maximum universality with QCD factorization theories.
(a) Show that, for the Sudakov form factor, time-like vectors work.
(b) Take these vectors to be (proportional) to the external particle momenta (i.e.,

n1 = pA and n2 = pB). Examine the IR divergence when the gluon mass goes
to zero. Show that the divergence is completely contained in the soft factor.

(c) In contrast, examine the case that the auxiliary vectors are space-like or are
not proportional to the external momenta. Use the version of the definition of
H where masses are preserved, but collinear and soft subtractions are made.
Show that there is a power-suppressed divergence as mg → 0. (It should be
proportional to something like (m2/Q2) ln m2

g . The divergence is associated
with the gluon mass, but the power-suppression with the quark mass.)

10.7 Verify the two-loop term in (10.135) by explicit calculation.

10.8 When masses are retained in a hard scattering, the external lines are approximated
by massive on-shell lines. Show that appropriate choices of the projectors for Dirac
fields are as follows.

• For a Dirac particle of momentum k̂ leaving H to A:
γ+(/̂k +m)

2k̂+
. Here the

collinear function and the actual wave function ūA are on the left.

• For a Dirac antiparticle of momentum k̂ entering H from A:
(/̂k −m)γ+

2k̂+
. Here

the collinear function and the actual wave function vA are on the right.

• For a Dirac particle of momentum k̂ leaving H to B:
γ−(/̂k +m)

2k̂−
. Here the

collinear function and the actual wave function ūB are on the left.

• For a Dirac antiparticle of momentum k̂ entering H from B:
(/̂k −m)γ−

2k̂−
. Here

the collinear function and the actual wave function vB are on the right.
A general projector has to project onto an on-shell wave function from a general
spinor, and should be non-singular in the limit m→ 0.

10.9 A change of gauge condition in an abelian theory can be implemented by changing
the numerator of the gluon propagator by

−gμν �→ −gμν + fμkν + kμfν, (10.158)

for some vector function f of momentum. In a covariant gauge, f μ is proportional
to kμ times a function of the scalar k2. There are also more general gauges; such
non-covariant gauges are exemplified by the Coulomb and axial gauges.

It can be proved that physical matrix elements of gauge-invariant operators
are unchanged under such a change of gauge condition, i.e., that they are gauge
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independent.18 Our definitions of collinear and soft factors etc (S, Aunsub, Bunsub,
Abasic, Bbasic, A, B, and K) involve operators that are not exactly gauge invariant,
since the operators in them have open Wilson lines.

In this problem, investigate to what extent these quantities are gauge independent
at the one-loop level.

As an example, you should find that K with its first definition (10.112) is gauge
dependent, but with the second definition (10.122) it is gauge independent. But with
a restriction to covariant gauges, even the first definition is gauge independent, and
the two definitions agree.

10.10 (**) Consider those quantities that in the previous problem you found to be gauge
independent at one-loop order. Try to prove gauge independence to all orders of
perturbation theory.

18 Note carefully that gauge invariance and gauge independence are distinct concepts.
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DIS and related processes in QCD

In this chapter we complete our treatment of inclusive structure functions for DIS in QCD.
Our analysis so far started with the parton model, and we generalized it to a factorization
property, for which we found a complete proof in a non-gauge theory in Sec. 8.9. We
then formulated factorization in QCD (without a proof), using gauge-invariant definitions
of parton densities from Sec. 7.6. This enabled us to make low-order calculations of the
perturbative hard-scattering coefficients in Ch. 9

The methods of Ch. 10 allow us to complete the work for QCD. Compared with a
non-gauge theory, there is no change in the form of factorization, i.e., (8.81) and (8.83).
The DGLAP evolution equations, associated with the renormalization of parton densities,
are also unchanged in structure.

One change in QCD is that the operators defining the parton densities acquire Wilson
lines; we also need to justify the form of the gluon density. For the proof, the enhancements
relative to Sec. 8.9 are caused by the extra gluons joining the hard and collinear subgraphs
in leading regions. We need generalization beyond the related work in Ch. 10 because
the gauge group of QCD is non-abelian. The subtractions in the hard scattering are more
complicated than those with the ladder structures appropriate to a non-gauge theory. Finally,
in generalizing DIS to an off-shell Green function instead of an on-shell matrix element,
we need extra parton-density-like quantities involving gauge-variant operators.

11.1 General principles

The steps to obtain factorization are:

1. List the regions as specified by PSSs in the massless limit of the theory (Ch. 5). These
are labeled by subgraph decompositions like Fig. 11.1(b).

2. Find those regions that are leading, as in Sec. 5.8.
3. To leading power, write the amplitude as a sum over contributions for each region of

each graph:
∑

R,� CR� (Sec. 10.1). Subtractions in CR� compensate double counting
between regions.

4. Diagrams like Fig. 11.1(b) now acquire extra meanings:
• The subgraph decomposition can symbolize a particular CR�.
• The diagram can imply a sum over R and �, and hence a sum over the Feynman

graphs for each subgraph. Thus, it almost denotes the factorization property.

398
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Fig. 11.1. (a) Uncut amplitude T μν for DIS. (b) General reduced graph for T μν .
(c) Space-time structure of its massless PSSs when x �= 1.

5. The factors in CR� are defined from a power-series expansion in parameters/variables
that the region R labels as small. (But renormalization, etc. is applied as needed to
prevent divergences from momenta in larger regions.)

6. Finally we apply Ward identities. This, for example, extracts extra collinear gluons
attaching to the hard subgraph and converts them to a Wilson-line form, as in Sec. 10.8.
Methods from that section ensure that subtractions and renormalization are compatible
with the Ward identities.

Note that Ward identities are not compatible with a naive region analysis, i.e., one where
momentum space is partitioned into categories of hard, soft, etc., with boundaries between
the regions, and where each region subgraph is defined to have its momenta restricted to
the subgraph’s category. But a proof of a Ward identity involves shifts of loop-momentum
variables. Particularly when momenta are close to boundaries of regions, shifts of loop
momenta can take them across boundaries; thus the shifted momenta can be of different
categories. This was a primary motivation to define the region contributions CR� with
unrestricted integrals over loop momenta.

11.2 Regions and PSSs, with uncut hadronic amplitude

As we saw in Sec. 5.3.3, the analysis of regions for DIS is simpler for the uncut amplitude,
Fig. 11.1(a),

T μν(q, P ) = 1

4π

∫
d4z eiq·z 〈P, S T jμ(z/2) jν(−z/2) P, S〉 , (11.1)

from which the ordinary structure tensor is obtained as a discontinuity across the physical-
region cut: Wμν(q, P ) = T μν(ν + i0)− T μν(ν − i0).

As usual, the relevant regions are determined by PSSs corresponding to physical scat-
tering of massless particles, with a general reduced graph typified in Fig. 11.1(b). It has
collinear and hard subgraphs with a possible connecting soft subgraph. The space-time
structure is shown in Fig. 11.1(c): there is a short-distance scattering at the vertex for
the virtual photon, while the collinear subgraph and the target hadron correspond to the
diagonal (light-like) line.
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Fig. 11.2. (a) Reduced graph for T μν at x � 1. Not indicated are extra collinear lines
and a possible soft subgraph. (b) Space-time structure of its massless PSSs when x = 1.
(c) Same with massive intermediate state.

11.2.1 Local averaging

This picture fails when x is close to unity, i.e., where (P + q)2 � Q2(1− x)/x gets small.
In that case we can have a reduced graph like Fig. 11.2(a), where there is an intermediate
state whose mass is small compared with Q. For simplicity, a possible soft subgraph has
been omitted. The corresponding PSS has a massless system going in the minus direction,
Fig. 11.2(b). Possible intermediate states include a single proton (giving elastic scattering)
and low-mass resonances. If we work in perturbation theory with an elementary quark
target, instead of a hadron target, we have emission of soft and of final-state-collinear
quanta, as in the NLO calculations in Ch. 9.

A full analysis of this region needs more sophisticated methods than we use here. Instead,
we obtain the standard factorization formalism by the averaging method used in Secs. 4.1.1
and 4.4 for the total hadronic cross section for e+e− annihilation. In DIS we use an average
in x:

T μν[f ] =
∫

dx T μν(q, P ) f (x), (11.2)

with a smooth function f (x). In the uncut amplitude, the troublesome final-state singulari-
ties all lie on one side of the real x axis, e.g.,

i

Q2(1− x)/x −m2 + i0
= ix/Q2

1− x −m2/Q2 + i0
. (11.3)

Thus we can deform1 the integration contour away from the singularities. Then the rele-
vant propagators are off-shell by order Q2, and the leading regions return to the form of
Fig. 11.1(b), for all x, and our standard derivations will now apply. Then the difference
between T μν[f ] and its complex conjugate gives a valid prediction for the locally averaged
structure functions.

The averaging method also solves another conceptual problem. This is that in a theory
with confined quarks, the evolution of the final state might be more like that of an elastic
spring than of a fragile string, to use the terminology of Sec. 4.3.1. In that case a final state

1 Strictly, a test function f need not be an analytic function, which makes questionable a contour deformation. But a
basis set of analytic functions, e.g., Gaussians, suffices for our argument.
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of a high-energy struck quark and a target remnant would evolve not to a pair of connected
jets, but to a spectrum of bound states or of narrow resonances.

Standard factorization methods do not describe the bound-state structure. Thus, the true
predictions of factorization are only for locally averaged structure functions. This has been
verified by Einhorn (1976) in a model with elastic spring confinement: QCD in two space-
time dimensions in the limit of a large number of colors. Only if the structure functions are
already smooth does factorization apply point-by-point.

We already saw the need for local averaging in our NLO calculations in Ch. 9. There we
found a cancellation between real and virtual emission of gluons that are soft or are final-
state collinear. The cancellation was embodied in the plus distribution in the coefficient
functions, e.g., (9.20). At large x, the necessary average must be done by the local averaging
of the hadronic structure functions. But at smaller x, it suffices to use the integral over
parton momentum in the factorization formula (8.81), provided that the parton densities are
sufficiently smooth.

11.2.2 Parton-hadron duality

At large x and moderate Q2, there are many noticeable resonances in DIS structure func-
tions. That partonic methods can nevertheless be applied, but only to locally averaged
structure functions, is an instance of the concept called parton-hadron duality. It was first
found before the advent of QCD and factorization theorems in an analysis of data by
Bloom and Gilman (1971). Duality carries the implication that the partonic structure and
the resonance structure are parts of the same overall mechanism, rather than two distinct
mechanisms to be added to each other.

For a recent review, see Melnitchouk, Ent, and Keppel (2005). One of their comparisons
with recent data is shown in Fig. 11.3. As Q2 is increased, the resonances move to the right
in x, a necessary kinematic property. This is not compatible with the generally smooth
scaling violations given by DGLAP evolution. Naturally the spacing of the resonances in x

decreases as Q2 increases. But there is little or no decrease in the height of the resonances,
as a fraction of the structure function.

Much of the phenomenological application of duality is at low Q2, where the region
of noticeable resonances extends a long way down in x. But even at large Q2, resonances
remain, close to x = 1. According to duality, the smooth curves for F2 from factorization
should cross the resonance oscillations approximately midway between their peaks and
troughs. However, with the MRST fit shown in Fig. 11.3, this appears not to be the case,
at least for the larger values of Q2. The reasons are unclear; the CTEQ and MRST curves
disagree.

11.2.3 Leading and super-leading terms

We now restrict our attention to those regions that contribute at the leading power, Q0,
or larger, determined by the methods of Sec. 5.8. The basic rule is that increasing the
number of lines connecting the hard and collinear subgraphs gives a suppression, as does
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Fig. 11.3. Proton structure function F
p
2 measured at Jefferson Lab Hall C. Two of the smooth

curves are the results of QCD fits to other data by MRST (Martin et al., 1998) and CTEQ
(Lai et al., 2000), with target mass corrections included by the method of Barbieri et al.
(1976). The SLAC curve is a fit to DIS data (Whitlow et al., 1992). The arrows indicate the
positions of prominent resonances. Reprinted from Melnitchouk, Ent, and Keppel (2005),
with permission from Elsevier.

the presence of a soft subgraph. But, just as with the Sudakov form factor in Ch. 10, there
is an exception for collinear gluons of polarization in the plus direction; dealing with these
is the main difficulty in our proof. The proof will be organized differently than in Ch. 10,
in order to overcome the complications of working in a non-abelian gauge theory.

Of the lines entering the hard scattering H from the collinear subgraph C, let N be
gluons, for which we write the polarization sum as

H · C = Hμ1...μN

N∏
j=1

gμj νj Cν1...νN
. (11.4)

Let kj be the momentum of gluon j flowing into H . The largest term in its polarization
sum has μj = −, νj = +, and we manipulate it into a form suitable for the use of Ward
identities. Accordingly, we make a Grammer-Yennie decomposition

gμj νj = Kμj νj +Gμj νj , (11.5)

where

Kμj νj = k
μj

j w
νj

2

kj · w2 − i0
, and Gμj νj = gμj νj − k

μj

j w
νj

2

kj · w2 − i0
, (11.6)

and the vector w2 projects onto plus components of momentum: w2 = (0, 1, 0T). Then from
(11.4), we get a sum of terms which we label by saying that each of the gluons is a K gluon
or a G gluon according to which term in (11.5) is used.
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The denominators kj · w2 introduce singularities at k+j = 0, that have no corresponding
actual singularities in H . In the final result, we will find a cancellation of these artificial
singularities. We choose to equip the singularities with an i0 prescription appropriate for a
final-state pole; it must be the same in all terms for our Ward identities to work.

(Notice a contrast with the situation for the Sudakov form factor, for which hard-
scattering subgraphs often had singularities for soft and for opposite-side collinear con-
figurations. These were canceled by subtractions for smaller regions. To ensure contour-
deformation arguments for the Glauber region worked, we found that the i0 prescription
for the denominators kj · w2 had to correspond to that of the subtracted singularities in the
hard-scattering subgraph.)

The normal suppression for extra collinear lines entering the hard scattering applies to
the G gluons but not to the K gluons (Sec. 5.8). For a collinear gluon with radial coordinate
λ, the K term has a power Q/λ relative to the G term.

Complications now arise when all the lines connecting the hard and collinear subgraphs
are K gluons, because they give super-leading contributions from individual graphs, with
a power Q2/λ2 relative to the final result. This also permits there to be a soft subgraph
at leading power. There is in fact a cancellation (Labastida and Sterman, 1985) of super-
leading terms in the sum over graphs. Although in a model with an abelian gluon field the
cancellation of K gluons is exact, in QCD there are left-over leading-power terms (Collins
and Rogers, 2008), and these are needed for factorization.

After the Grammer-Yennie decomposition, we can define two classes of contribution.
The first has a pair of ordinary leading-power partons accompanied by any number of K

gluons. In these situations, the lines joining the collinear and hard subgraphs are:

1. two G gluons plus any number of K gluons;
2. or: a quark and an antiquark line plus any number of K gluons;
3. or: a ghost and an antighost line plus any number of K gluons. One of the simplest

graphs with such a region is shown in Fig. 11.4.

In all the above cases, there is no soft subgraph, and we have a leading-power (Q0)
contribution. Adding extra G gluons, quarks, ghosts, or a soft subgraph gives a power-
suppression.

The case with collinear ghost lines does not correspond to any term in the factorization
theorem. Instead we will find it combines with part of the next class of contributions to give
a result that vanishes in physical quantities.

A second class of terms covers the remaining possibilities for leading and super-leading
powers. In these, all the collinear lines entering the hard scattering are gluons:

1. If all of the gluons are K gluons and there is no soft subgraph, we have a super-leading
contribution of order Q2.

2. If all but one of the gluons is a K gluon, we have a super-leading contribution of
order Q1.

3. A soft subgraph contributes a suppression, but may leave the contribution leading.
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Fig. 11.4. Graph for DIS with Faddeev-Popov ghost loop.

All other cases give a power-suppression. From Sec. 5.8, the only case that a soft subgraph
allows a leading-power contribution is where all the collinear attachments to H are K

gluons, the external lines of the soft subgraph are gluons, and exactly one soft gluon
enters H .

11.3 Factorization for DIS

To obtain factorization, we apply the steps listed in Sec. 11.1. Now that we have determined
the leading and super-leading regions, it remains to apply Ward identities to sum over
attachments of K gluons to the hard subgraph H . This will determine the operators defining
parton densities.

As stated in Sec. 11.1, we now use Fig. 11.1(b) to refer to a generic term CR� in the sum
over regions and graphs, rather than just to specify a region. We also will generally impose
a sum over graphs and regions. It is important to be conscious of the shifts in meaning of
such a diagram.

It is convenient to combine the soft and collinear subgraphs into a single subgraph, and
then to decompose all the external gluons of the hard subgraph H into K and G gluons.
The Ward identities are applied to gluonic external lines of the H bubble, which is treated
as a sum over the possible graphs and equipped with subtractions for smaller regions.

Now the hard factor in C(R) is defined to be expanded in powers of small momentum
components, with retention of terms that contribute to the leading power or higher. Thus
for a leading term, e.g., two G gluons plus any number of K gluons, the hard factor is
simply taken with its external lines massless, on-shell at zero transverse momentum. As in
our examples in previous chapters, this short-circuits integrals over k−j and kj,T, so that the
coordinate-space fields at the edges of the collinear-soft subgraph (and hence in the parton
densities) are separated in the minus component of position, as in (7.40).

In situations where higher terms in the expansion of H in powers of k− and kT are used,
we get extra factors of these momentum components. In the operator definitions of the
collinear factors, these give derivatives with respect to the various xT and x+ coordinates
in the operators, with the derivatives taken at xT = x− = 0.
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11.3.1 Abelian gluon

We start with the case of a model theory with an abelian gluon field, since its Ward identities
are simple, as in Sec. 10.8.3.

We apply a Ward identity in turn to the attachment of each K gluon to the hard subgraph
H , defined as the sum over graphs with a given number of external lines, with appropriate
irreducibility properties, and with subtractions for smaller regions.

We get terms for attaching the K gluon to each of the external charged lines of the hard
scattering. Just as with the Sudakov form factor, the Ward identities are unaffected by the
presence of subtractions.

Case of all-gluon connection

When all the external lines of H are gluons, there are no external charged lines, so that
summed over graphs, the attachment of a K gluon is zero:

(11.7)

Here the solid triangle is the vertex for a K gluon, similarly to Fig. 10.6.
So we are left only with G gluons. For the leading power of Q, we keep the minimal

number of gluons exchanged between the collinear and hard subgraphs. Since the case
of one gluon gives exactly zero by charge-conjugation invariance, the minimum is two G

gluons. Summing over attachments of K gluons to the hard subgraph gives zero. So the
sum over all gluonic terms gives

(11.8)

In the main term on the r.h.s., the crosses denote what we now prove to be the vertices for
the gluon density, as defined in (7.44).

Each cross starts out as a vertex Gμj νj for a G gluon; (11.6). The μj = + case is zero,
while the μj = − term gives a power-suppressed contribution, by the boost argument in
Sec. 5.8.8. This leaves the transverse components. The two GT νj factors are each 1/k+

times the vertex for the gluon field strength tensor (Fig. 7.12). One factor of 1/k+ gives the
explicit 1/ξP+ in the definition of the gluon density (equation (7.44) and Fig. 7.9). The
only difference with those formulae and Feynman rules is that there is no Wilson line in the
gluon density in an abelian theory. The remaining 1/k+ factor goes with the integral over
k+ that joins the hard and collinear subgraphs, to give the dξ/ξ factor in (8.81). According
to the standard construction of a hard scattering, the external lines of the H subgraph are
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set on-shell with zero transverse momentum; kinematically this is just as in the parton
model. As in (7.44), we wrote the gluon density factor in the form ρg,j ′j (ξ, S) fg(ξ ), where
ρg,j ′j (ξ, S) is normalized to be a density matrix, i.e., it has trace unity.

As usual, renormalization is applied to the parton density. After we take the discontinuity
of the uncut amplitude, we get the gluon term in the factorization theorem (8.81)∫ 1+

x−

dξ

ξ
Cμν;j ′j

g (q, ξP ; αs, μ) ρg,j ′j (ξ, S; μ) fg(ξ ; μ). (11.9)

Here we have inserted two (summed) transverse spin indices. For the common case of
an unpolarized target, the gluon spin density matrix ρg,j ′j is half the unit matrix. The
normalization of the coefficient function Cg is exactly that of DIS on a transversely polarized
on-shell gluonic target, with subtractions applied to cancel collinear divergences. As usual,
the integral over gluon k− and kT is inside the standard definition of the gluon density.

Quark-antiquark plus K gluons

Since Faddeev-Popov ghosts are non-interacting in an abelian gauge theory in the gauges
we use, the only other case that gives a leading contribution is where a quark and an
antiquark line connect the collinear and hard subgraphs, together with any number of K

gluons.
The Ward-identity argument works exactly as for collinear-to-A gluons attaching to the

hard scattering in the Sudakov form factor (Sec. 10.8). There the sum over K gluons gave
a Wilson line at the collinear-to-A quark entering the hard scattering.

For DIS the essential difference is that the hard scattering has both a quark and an
antiquark external line, so that we get a Wilson line for each. The quark field ψ(0) in
the parton density therefore becomes W (∞, 0)ψ(0), while the antiquark field has a Wil-
son line of the opposite charge: ψ̄(w−)W (∞, w−)†. The Wilson lines have zero trans-
verse separation, so they can be combined to give a Wilson line between the two fields:
[W (∞, w−)]†W (∞, 0) = W (w−, 0). The Wilson lines are in the light-like direction w2,
and the operators defining the quark density are exactly the ones in (7.40).

We must also apply the same leading-power approximations on the quark polarization
as in the parton-model. Compared with the gauge-invariant parton model (Sec. 7.7), the
new features are that we have arbitrarily higher-order corrections to the hard factor H , with
subtractions as usual, and that the parton densities must be renormalized.

We write the overall result as

(11.10)

which gives the quark term in the factorization theorem.
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Cancellation of rapidity divergences

The key technical details of the full proof have involved a minor generalization of the
methods we applied to the Sudakov form factor.

One notable difference is that the Wilson lines are light-like, which gives rapidity
divergences graph-by-graph. But the divergences cancel in the final result. The easiest way
of seeing this in general is to work in coordinate space and use the identity (7.39). Now the
rapidity divergences are associated with on-shell Wilson-line denominators, and hence with
a situation in which the Wilson line is infinitely long, i.e., when we integrate the vertices all
the way to infinity. But (7.39) shows that the segment out to infinity cancels. As with our
argument about the pinch singularities of T μν , to use this argument in momentum space
requires that we take a local average of the parton density over longitudinal momentum
fraction. An example can be seen in our one-loop calculations in Sec. 9.4.3.

Because of the rapidity divergences at intermediate stages, it may be appropriate to use
a non-light-like denominator k · n until the all the K gluons are extracted and converted to
Wilson lines. After that one replaces n by a light-like vector w2.

Overall view

We now have completed the proof of factorization in the model theory. All the standard con-
sequences follow, including the ability to implement perturbative calculations as explained
in Ch. 9.

11.3.2 Non-abelian gluon

In a non-abelian gauge theory like QCD, we have Slavnov-Taylor identities instead of
simple Ward identities. They and their proof by direct diagrammatic methods are much more
complicated than in the abelian case. In much of the original work on proving factorization
the issues related to extracting K gluons from the hard scattering were glossed over.

Labastida and Sterman (1985) did give a diagrammatic proof of one critical result
that one gets zero when all or all but one of the external lines of the hard scattering are
K gluons. In Sec. 11.9, I will summarize an argument that generalizes to a non-abelian
theory the Ward-identity methods for K gluons that were obtained for an abelian theory in
Sec. 11.3.1.

But the proof only applies in the strictly collinear limit. Since individual contributing
graphs are super-leading, this leaves open the possibility that there is a non-zero remainder
of leading power. The remainder is power-suppressed with respect to the contributions of
individual graphs, but not with respect to the final result. In fact, Collins and Rogers (2008)
recently found by the simplest possible explicit calculation that the remainder is actually
non-zero; the pure K-gluon terms contribute to the gluon density, unlike the case in an
abelian gauge theory.

So more powerful methods are needed.
The ultimate result is standard factorization of the form (8.81), where each term is a

coefficient convoluted with the matrix element of a gauge-invariant operator, and all the
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relevant operators are the ones listed in (7.40) and (7.43) (generalized to include polarization
effects). Essentially identical issues arose in the short-distance OPE for moments of DIS
structure functions.

One possible approach to a proof is to generalize the diagrammatic arguments of
Sec. 10.8.3, as in Labastida and Sterman (1985) and Sec. 11.9.

Instead we now use an argument using BRST invariance that has been used in the
renormalization of gauge-invariant local operators; see Collins (1984, Sec. 12.6).

Without the use of gauge invariance, the structure of the leading regions, Fig. 11.1(b),
leads to a factorization in which there is an infinite collection of operators; each different
number of gluons gives a different pdf-like object, and for each extra gluon there is an extra
longitudinal-momentum argument to be convoluted with the associated hard-scattering
coefficient. If this were the whole story, the formalism would have little predictive power.
But, in reality, terms differing by extra gluons have the same coefficient function, and the
pdf-like objects all sum to a gauge-invariant pdf, with a single longitudinal-momentum
variable ξ .

BRST restrictions on operators

A natural initial idea for the proof is that because QCD is color-gauge invariant, so are all
the operators defining allowed parton densities. However, the actual QCD Lagrangian is
not gauge invariant, but only BRST invariant (Sec. 3.1.3).

It is useful to generalize DIS to treat an off-shell Green function corresponding to the
amplitude T μν :

T
μν

off-shell(q) = 1

4π

∫
d4z eiq·z 〈0 T fields jμ(z/2) jν(−z/2) 0〉 . (11.11)

Here, “fields” denotes a product of two (or more) fields that are Fourier-transformed to
be in a similar kinematic region to the target bra and ket, 〈P, S| and |P, S〉 in (11.1).
The derivation of leading regions works equally well for T

μν
off-shell(q) as it does for the

normal on-shell tensor. Therefore, to leading power we obtain a sum (and convolution)
over coefficients and pdf-like matrix elements:

T
μν

off-shell(q) =
∑

i

Ci ⊗ 〈0 T fieldsOi 0〉 + p.s.c. (11.12)

We have a sum over possible operatorsOi , and a convolution with the longitudinal-momenta
arguments of the operators. At this point in the argument there is the possibility that we
have arbitrarily complicated multilocal operators, as pointed out above.

Now from BRST symmetry of the Lagrangian, there arises a conserved Noether current,
and exactly as for an ordinary internal symmetry it follows that Green functions are BRST
invariant, i.e.,

δBRST 〈0 T any fields 0〉 = 0. (11.13)

(See, e.g., Collins, 1984; Nakanishi and Ojima, 1990.) The BRST variations of individual
fields are given in (3.6).
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We apply (11.13) to (11.11). The electromagnetic currents are gauge invariant and hence
BRST invariant. Therefore

〈0 T (δBRST fields) jμ(z/2) jν(−z/2) 0〉 = 0. (11.14)

Since the BRST variation adds a ghost field η (or removes an antighost field η̄), the
interesting cases of this equation have one more antighost than ghost fields in “fields”.

Exactly the same formula must apply to the factorized form, up to possible power-
suppressed terms: ∑

i

Ci(Q)⊗ 〈0 T (δBRST fields)Oi 0〉 = p.s.c. (11.15)

We remove the power-suppressed corrections by defining the coefficient functions to be
obtained from an expansion in powers of Q and ln Q, and by restricting to the leading
power of Q.2

Using (11.13), we get ∑
i

Ci ⊗ 〈0 T fields δBRSTOi 0〉 = 0. (11.16)

This is true no matter which set of fields is used, so the operators themselves are BRST
invariant:

δBRST

∑
i

Ci ⊗Oi = 0. (11.17)

Factorization follows, generalized from (8.81) to apply to the off-shell amplitude T
μν

off-shell,
and with the operators restricted to be BRST-invariant operators.

Up to here the derivation is identical to the one for the OPE, or for the renormalization
of gauge-invariant operators.

Gauge-invariant operators are BRST invariant, so the important question is what other
BRST-invariant operators exist. In the OPE, the operators Oi are local, i.e., they are poly-
nomials in elementary fields and their derivatives all at the same space-time point. In that
case, we have a theorem (Joglekar and Lee, 1976; Joglekar, 1977a, b; Nakanishi and Ojima,
1990) that all the other possible operators are one of the following classes:

A. operators that are BRST variations: A = δBRSTAsource;
B. operators that vanish by the equations of motion.

Operators in class B have vanishing matrix elements in on-shell states, but they contribute
(Collins, 1984, p. 14) in time-ordered Green functions, because of the peculiarities of
combining time-ordering of operators with derivatives of fields. The BRST invariance of
operators in class A follows from the nilpotence of BRST transformations (up to terms
vanishing by the equations of motion).

Operators in both of these classes vanish in on-shell matrix elements with physical
states. This is trivial for operators vanishing by the equations of motion, and follows

2 See Sect. 11.7 for variations on this expansion when quark masses may be non-negligible.
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simply (Collins, 1984, p. 318) from BRST invariance of physical states for operators in
class A.

A minor generalization of these results is that we also have vanishing contributions
of operators of classes A and B in Green functions with gauge-invariant operators, as
well as in matrix elements with physical scattering states. Equation-of-motion operators
give delta functions in coordinate space in Green functions with other operators, and we
can eliminate these by requiring the positions of the other operators to be away from the
operators Oi . The Green functions of BRST-variation operators with gauge-invariant (and
indeed BRST-invariant) operators vanish by a simple application of (11.13).

Unfortunately, the published proofs that BRST-invariant operators are either gauge
invariant or are in one of classes A or B apply as written to local operators. It is natural
that the result also applies to the non-local operators we use in factorization. But, as far as I
know, no proof has been given. For the purposes of the discussion, I will assume the result
is true, and leave the proof (or refutation) to future research.

An example of a BRST-variation operator is

δBRST
[
η̄α(0, x−, 0T) Aβ

μ(0)
]
/δλ

= [
∂ · Aα(0, x−, 0T) Aβ

μ(0)
]+ [η̄α(0, x−, 0T) Dβ

μη(0)
]
. (11.18)

The free Lorentz index μ could be a − index (corresponding to the A+ component), or it
could be a transverse index contracted with a transverse momentum somewhere.

I am not aware of an explicit calculation of the presence of such operators in calculations
of factorization with off-shell Green functions. But there are calculations in the analogous
case of the renormalization of local operators (Dixon and Taylor, 1974; Kluberg-Stern and
Zuber, 1975), which showed the occurrence of non-gauge-invariant operators as counter-
terms to local operators.

Gauge-invariant operators

We now have the result that all the operators needed to apply factorization in physical
matrix elements are gauge invariant. We call their matrix elements parton densities.

Obvious possibilities are the operators used to define gauge-invariant parton densities in
(7.40) and (7.43). In each case we have a pair of basic partonic fields (ψ̄ and ψ or two field
strength tensors) separated in the minus direction and connected by a Wilson line starting
at one partonic operator and ending at the other. The representation of the gauge group in
the Wilson line is the one appropriate to the partonic field. Each of the fields and the Wilson
lines transforms covariantly under gauge transformations, e.g., (7.35), without derivatives,
and it is then easy to deduce gauge invariance for the operators in the parton densities.

It is important to rule out other possibilities. Generalizations of this issue arise in
dealing with power-law corrections where more complicated operators get used, and they
also arise in treating transverse-momentum-dependent (TMD) parton densities, etc., where
the Wilson lines may be non-light-like. Gauge invariance alone does not determine the path
along which the gluon field is integrated in a Wilson line W (C): the transformation law
(7.35) involves only the endpoints of the path C, and is independent of which path is chosen
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between the endpoints. As we have seen with the Sudakov form factor, the path should be
one such that a factorization theorem can be derived.

For our case the requirements on the operators defining the parton densities are:

1. The operator is formed out of the elementary fields of the theory, and the elementary
fields correspond to the lines entering the hard scattering.

2. Since the hard scattering is expanded in powers of k− and kT, for each parton line
entering the hard-scattering subgraph, the parton density has the corresponding momen-
tum components integrated over. In coordinate space the operators therefore have zero
relative position in x+ and xT. Thus the operators are localized on a line in the x−

direction.
3. By power-counting all but at most two of the elementary fields are A+.

A simple way of dealing with this problem is to convert to light-cone gauge A+ = 0.
That eliminates all the extra gluons entering the hard scattering. The operators are now the
same as in the elementary parton model without gauge links. Since the standard gauge links
in the minus direction are unity in A+ = 0 gauge, one can insert the standard gauge links
and recover the standard gauge-invariant links.

But given the known problems with A+ = 0 gauge, it would be nice to have a proof that
does not rely on the gauge.

Since the Wilson line is restricted to a line in the x− direction, the results of Sec. 7.5.2
show that the results now depend only on the endpoints of the path, at 0 and at (0, x−, 0T).
So we can choose the path just as we did when we first defined gauge-invariant parton
densities, in Secs. 7.5.4 and 7.5.5.

We will see in Ch. 13 that the case of TMD densities shows a notable contrast, because
for TMD densities the path in the Wilson line has segments at different transverse positions.

11.4 Renormalization of parton densities, DGLAP evolution

We will also need the DGLAP equations for the evolution of the parton densities:

d

d ln μ
fj/H (ξ ; μ) =

∑
j ′

∫
dz

z
2Pjj ′ (z, g)fj ′/H (ξ/z; μ), (11.19)

As explained in Sec. 8.4, these equations are the RG equations for the parton densities, and
the kernels can be computed from the renormalization coefficients; see (8.31)–(8.33).

Compared with that section, the main difference in the derivations for QCD is the same
as for factorization in QCD compared with factorization in non-gauge theories. This is
that there can be arbitrarily many K gluons connecting the collinear subgraph to the hard
subgraph. For the case of renormalization, a hard subgraph is a subgraph whose loop
integration gives a UV divergence. The possible operators used in renormalization are
organized into the same classes: the standard gauge-invariant operators, BRST variations,
and operators that vanish by the equations of motion. For the same reasons as with the
local operators used in the OPE (Collins, 1984, p. 318), the renormalization matrix has a
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triangular form: ⎛
⎝O
A
B

⎞
⎠ =

⎛
⎝ZOO ZOA ZOB

0 ZAA ZAB

0 0 ZBB

⎞
⎠
⎛
⎝O(0)

A(0)

B(0)

⎞
⎠ . (11.20)

Here O denotes the collection of gauge-invariant operators for the parton densities, while
A and B denote the operators of classes A and B; see p. 409. The symbols O(0) etc. with
a subscript (0) denote the bare operators, and the unadorned symbols denote renormalized
operators.

In physical matrix elements, only the operators O are non-zero, so that the normal
DGLAP kernels can be computed from the ZOO factors alone. In physical calculations, we
can therefore replace (11.20) by O = ZOOO(0).

At one-loop order, all the necessary calculations can be performed (Sec. 9.4) with on-
shell matrix elements in quark and gluon states; hence there is no need to treat the extra
operators A and B. But a correct treatment of renormalization beyond one-loop order needs
to take account of the presence of other operators in renormalization of the operators in
off-shell Green functions. Cf. Hamberg and van Neerven (1992) and Collins and Scalise
(1994).

11.5 DIS with weak interactions

So far in this chapter, we have worked with DIS with photon exchange, so that there are
electromagnetic currents in the definition of Wμν . All the same methods and ideas work
identically for other processes, with Z and W boson exchange. See Sec. 7.1 for an account
of the structure functions and the application of the parton model, which corresponds to the
LO QCD approximation. Naturally, the parton model is supplemented by an application of
DGLAP evolution, and by the use of higher-order corrections to the hard scattering.

11.6 Polarized DIS, especially transverse polarization

So far, this chapter’s treatment has (mostly implicitly) allowed for general polarization
states for the target and the partons, so that factorization was derived in the form (8.81),
with a helicity density matrix for the parton initiating the hard scattering. In a non-gauge
theory, we projected this onto factorization for individual structure functions in (8.83).
There F1 and F2 use unpolarized parton densities fj (ξ ), g1 uses the helicity densities
�fj (ξ ), and g2 is zero at the leading-power level (so that the transversity densities δTfj (ξ )
do not appear).

The derivation of these results is entirely unchanged in QCD. First, there is the classi-
fication of parton densities into unpolarized densities, helicity densities, and transversity
densities (with a generalization for spin-1 gluons and for targets of spin other than 1

2 ).
The derivation of the classification in Secs. 6.4 and 6.5 used parity invariance and angular-
momentum conservation about the z axis. This derivation is affected neither by inserting
Wilson lines in the minus direction in the operator definitions of the parton densities nor
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by renormalization. As for the hard scattering, the derivation of the form of polarization
dependence is unchanged from that in a non-gauge theory in Sec. 8.10. Notably there is
no change in the proof in Sec. 8.10.5 that at leading power there is no contribution from
transverse spin.

11.7 Quark masses

We obtained factorization by an expansion to the leading power of an appropriate large
scale Q (with logarithms of Q being allowed for). This implies setting masses to zero in
the hard scattering, thereby entailing the assumption that masses are all much less than Q.
But in reality this is not always the case. Relevant experiments in DIS and other processes
currently range from Q below 2 GeV to many hundreds of GeV, which more than spans
the masses of the charm, bottom, and top quarks.

Evidently we must generalize our formulation of factorization to correctly treat heavy
quarks. I will not give a complete treatment, but just summarize the results. The essential
insights are in the decoupling theorem of Appelquist and Carazzone (1975) and in the work
of Witten (1976) on the contributions of heavy quarks to DIS in the framework of the OPE.
We saw the underlying ideas in Secs. 3.9–3.11.

The basic observation is that if the mass of a particular field in a QFT is much bigger
than the momentum scale of a process, then we can drop that field from consideration with
errors suppressed by a power of the heavy quark relative to the process’s scale. Because
of the need for renormalization, the decoupling theorem modifies this by showing that
the values of renormalized parameters may need to be adjusted after dropping the heavy
quarks.

Complications arise because in a reaction with a hard scale, like DIS, there are two
momentum scales: Q and �. For example, a mass mq may be small relative to Q, but
not relative to �. In that case, we might want to neglect mq with respect to Q, but also
we might want to perform the opposite operation, decoupling of the quark, with respect
to low-energy phenomena. Moreover, the simplest applications have errors of the order of
ratios like mq/Q, whereas we would like factorization to be valid up to power corrections
in the smallest ratio �/Q uniformly as we vary the relative sizes of Q and the heavy quark
masses.

We distinguish four cases with corresponding approximation methods:

• mq � Q. Then we simply decouple the heavy quark.
• mq ∼ Q. Then we must keep the heavy quark’s mass unapproximated in the hard scat-

tering. We can apply the decoupling theorem to the parton densities, in such a way
that the sum over quark flavors in the factorization theorem is restricted to the lighter
quarks.

• Q� mq � �. Then we can neglect mq in the hard scattering, and we treat the quark
like a light quark. But we apply a modified decoupling theorem to compute the evolved
heavy quark distribution in terms of the light-parton distributions.

• mq � �. The quark is a light parton, so that the methods we have derived so far are valid.
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To get the best accuracy uniformly in the relative sizes of Q and the heavy quark masses, a
combination of the basic approximation methods is needed, with possibly different methods
being applied to different quarks.

The solution is not unique, and a variety of methods can be found in the literature,
as reviewed in Thorne and Tung (2008), although not all are equally adequate. However,
the variety is much less if one insists that the methods apply to all cases rather than just
the limiting cases mq � Q and mq � Q, and if one insists that there must be a definite
gauge-invariant operator definition of every parton density. (An operator definition ensures
that one actually knows the meaning of the concept of a parton density.)

I adopt the scheme of Collins, Wilczek, and Zee (1978) (CWZ), as extended to par-
ton densities by Collins and Tung (1986); see Sec. 3.10. This involves a sequence of
renormalization subschemes, parameterized by the number of “active quark flavors” nact.
Counterterms for graphs containing only the lightest nact flavors are renormalized by the
MS method, and the heavier quarks by zero-momentum subtractions, which continue to
preserve gauge invariance automatically. Manifest decoupling occurs when the masses of
inactive quarks are much larger than the scale of the process; graphs containing the inac-
tive quarks are then power-suppressed, and can be simply dropped. Matching calculations
between the subschemes have been performed (Chetyrkin, Kniehl, and Steinhauser, 1997,
1998; Aivazis et al., 1994).

In a particular subscheme, the evolution equations, both the RGE for the QCD parameters
and the DGLAP equations for the parton densities, are exactly those in the MS scheme with
nact quarks. One then talks of a 3-flavor scheme, a 4-flavor scheme, etc.

A straightforward generalization of the factorization property is set up by choosing the
active flavors to be those for which mq � Q. The sum over flavors in (8.81) etc. is then
only over active flavors. Masses of heavy quarks, and especially of inactive quarks, are
not neglected in the hard scattering, unless mq � Q. This method was first proposed by
Aivazis et al. (1994) (ACOT). It has the following consequences:

• In the hard scattering, inactive quarks can appear as internal lines.
• Parton densities for inactive quarks are suppressed by a power of �/mq and are generally

dropped. But this is not required.
• When the mass of some heavy quark mq is much larger than Q, there is a power-

suppression of graphs containing this quark. Such graphs may be dropped, with an error
suppressed by a power of Q/mq .

• But when the mass is comparable with Q, there is no power-suppression.
• When the mass of a quark is much less than Q, its mass can be neglected in the hard

scattering; such a quark is always an active quark.

When the mass of some heavy quark (notably charm or bottom) is comparable to Q, that
quark may be legitimately treated either as active or as inactive, by a change of subscheme.
Equivalent accuracy is obtained provided that the mass of that quark is retained in the hard
scattering, at least when the quark is internal and the hard scattering is initiated by a lighter
parton (e.g., a gluon).
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Fig. 11.5. (a) Uncut amplitude for DVCS or DIS. (b) and (c) Leading regions.

However, it is generally best if the mass of the parton initiating the hard scattering
is replaced by zero. Also some kinematic modifications to the hard scattering improve
its match to the physics. Tung, Kretzer, and Schmidt (2002) have provided a suitable
implementation, which they call the ACOT(χ ) scheme.

11.8 DVCS and DDVCS

One quite simple extension of factorization for DIS is to a quantity like the DIS structure
tensor Wμν , but where the two target states have different momenta P and P ′ and where
the current operators are time ordered:

T μν(q, P, P ′) = 1

4π

∫
d4z eiz·(q+q ′)/2

〈
P ′ T Jμ(z/2) J ν(−z/2) P

〉
. (11.21)

Thus we have an uncut off-diagonal amplitude, Fig. 11.5(a), with incoming momentum q

on the photon at J ν(−z/2), and outgoing momentum q ′ = q + P − P ′ on the photon at
Jμ(z/2). The process is γ ∗(q)+ P → γ ∗(q ′)+ P ′.

Realizable physical processes using this amplitude are deeply virtual Compton scattering
(DVCS), and double deeply virtual Compton scattering (DDVCS):

• DVCS: e + P → e + γ + P ′;
• DDVCS: e + P → e + μ+μ− + P ′.

In both cases the incoming virtual photon in Fig. 11.5(a) is space-like and is exchanged
with the same kind of lepton as in ordinary DIS. In DVCS the outgoing photon is real,
while in DDVCS the outgoing photon is virtual and time-like, generating a lepton pair.

We obtain factorization by a minor generalization of the method used for the uncut
amplitude (11.1) for DIS. For DDVCS, the regions have exactly the same form, and so do
the leading regions.
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Fig. 11.6. Hard subgraph H with K gluons attached. The thick curved lines indicate where
an external quark is set on-shell in H . The triangle indicates the application of a Grammer-
Yennie K approximant, defined as in Sec. 10.4.2. Graph (a) is for DIS, with one collinear
subgraph. Graph (b) is for e+e− annihilation in the simplest case of two collinear groups.
Here the solid arrow denotes the approximant for collinear-A gluons and the open arrow
denotes the approximant for collinear-B gluons.

But for DVCS, it is possible to have regions with a group collinear to the outgoing
real photon, Fig. 5.16(a). After allowing for the usual Grammer-Yennie cancellation of K

gluons, all these extra regions are power-suppressed, and the leading regions are the same
as for DDVCS.

In both cases, the factorization theorem has the same form as for DIS except that the
parton density is replaced by a generalized parton density (GPD) (6.90), whose definition
differs from that for an ordinary parton density simply by being off-diagonal in the target
state. Equation (6.90) was written for the case of super-renormalizable non-gauge theory,
and for a quark. The structural modifications to treat renormalization, to insert a Wilson
line, and to define a gluon density are the same as in ordinary pdfs. The DGLAP kernels
have to be generalized, and include dependence on the longitudinal momentum transfer.
See Diehl (2003) for a review.

11.9 Ward identities to convert K gluons to Wilson line

This section gives a graphical proof of the conversion of K gluons from attachments to
a particular kind of subgraph to couplings to a Wilson line. It generalizes to non-abelian
gauge theories and to other processes the work done in Ch. 10 for the Sudakov form factor
in an abelian gauge theory.

11.9.1 Statement of general situation

In a gauge theory, we consider a subgraph for a particular momentum category to which
Grammer-Yennie K gluons attach from a subgraph for another momentum category.
One example is a hard scattering, where the K gluons come from collinear subgraph(s),
Fig. 11.6. Another example is a collinear subgraph with soft K gluons attached, Fig. 11.7.

Each K-gluon attachment, notated by a triangle, represents an approximant of the form

H (k)μ gμν A(k)ν �→ H (k̂)μ
k̂μnν

2

k · n2
A(k)ν, (11.22a)
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Fig. 11.7. Collinear subgraph B with K gluons attached. The subgraph is written for the
amplitude for a quark to produce a jet of hadrons in which a hadron of momentum p
is detected. The final state on the right consists of on-shell physical particles. The quark
has come out of the hard scattering, as in e+ + e− annihilation to hadrons; see Ch. 12.
Unlike the case of Fig. 11.6, the external left-hand quark line is off-shell and includes a full
propagator.

where the approximated momentum is

k̂μ = n
μ
1

k · n2

n1 · n2
. (11.22b)

The vector, n1, normally light-like, is the direction of the approximated momentum (e.g.,
(1, 0, 0T) in H in DIS). The vector n2 is either a conjugate light-like vector (e.g., (0, 1, 0T)
in DIS) or is close to such a vector, to regulate rapidity divergences.

11.9.2 Proof for H in DIS

In this section, we treat the hard-scattering subgraph H for DIS, Fig. 11.6(a). Subtrac-
tions have been applied, as in Sec. 10.8, to remove contributions from smaller regions.
We assume that the subtractions do not interfere with the Ward identities, as we saw
in Sec. 10.8.

In that section the Ward identities were for an abelian theory, and used the basic dia-
grammatic elements listed in Sec. 10.8.3. Our task now is to generalize that argument to a
non-abelian theory.

Consider first one K gluon. It has a factor of k̂ contracted into some Green function.
If this were a complete Green function, then, as explained in Sterman (1993, p. 351), we
obtain a ghost attachment to each gauge-variant external line of the Green function:

(11.23)

On the l.h.s., a full propagator is amputated for the K gluon. On the r.h.s. the sums are
over the gauge-variant external fields of the Green function, and the special vertices with
a thick diagonal line are the BRST variations of the external fields. In the first term, the
(amputated) gluon directly attaches to the BRST variation of the external field, exactly as
in an abelian theory. The thin diagonal line denotes the remaining factor −in2/(k · n2),
from (11.22a), together with a normalization factor −i. In the second term, the diagonal
line replaces the incoming ghost line at a ghost-gluon vertex. The ghost line continues to
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Fig. 11.8. Graphs such as these are not included in H because they are reducible in collinear
lines.

the BRST variation of an external field. This Slavnov-Taylor identity applies in the form
stated to ordinary Green functions, which are expectation values of time-ordered products
of fields.

But in our case the Green functions have particular irreducibility properties. The graphs
for H are irreducible in the collinear lines. Not only are the external collinear lines ampu-
tated, but any graphs in which collinear lines combine to a single line are omitted, as in
Fig. 11.8.

To understand the consequences, we use the diagrammatic method of ’t Hooft
and Veltman (1972), which generalizes the formulation used in an abelian theory, in
Sec. 10.8.3. This allows us to take account of missing items relative to the standard
Slavnov-Taylor identity.

In Fig. 11.9 are shown some of the main graphical identities used in the proof in ’t Hooft
and Veltman (1972); this generalizes Fig. 10.12. We start by applying the line identities
Fig. 11.9(a) and (b) to a K gluon. In an abelian theory, we completed the derivation of the
Ward identities by applying vertex identities like Fig. 11.9(c).

But in a non-abelian theory, the ghost line is interacting, giving the second and fourth
terms on the r.h.s. of Fig. 11.9(b). These require a recursive reapplication of the line
identities, together with a further complication with ghost loops. After that we get a chain
of cancellations at interaction vertices, from Fig. 11.9(c) and (d). With a regular Green
function and a single K gluon, we get (11.23).

Now consider Fig. 11.6(a), with N K gluons of incoming approximated momenta
k̂1, . . . , k̂N attaching to H . We apply the diagrammatic proof of the Slavnov-Taylor identity
to the first gluon. The standard chain of cancellations occurs except at vertices where the
external lines from the collinear subgraph attach. Collinear irreducibility of H prevents
certain terms from occurring. The missing terms are certain BRST-variation terms in a
vertex identity like Fig. 11.9(c). Now each BRST-variation term is obtained from a line
identity applied to a graph where the ghost field attaches at a vertex on the immediately
neighboring line. The term is missing if and only if the graph is one prohibited by the
irreducibility requirements.

The first case is where a term for the BRST variation of each quark line is missing. This
gives an external line coupling for the gluon, one term for each quark (or antiquark) that is
exactly of the Wilson-line form; this is no different than for an abelian theory. Application
of the argument multiple times will give terms of the form of Fig. 11.10 with multiple
external gluon attachments.
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Fig. 11.9. Graphical elements of Ward identity in non-abelian gauge theory. (a) Line identity
for quark. On the l.h.s., the arrow on the ghost line of momentum k represents a factor of k
contracted into a gluon vertex for the quark. On the r.h.s., the thick diagonal lines represent
a vertex for the BRST transformation on the field at the end of the quark line (multiplied by
a factor−i). (b) Line identity for gluon. (c) Vertex identity for quark-gluon vertex. There is
a term for the color transformation of each field at the vertex. (d) The remaining identities
can be found from ’t Hooft and Veltman (1972).

Fig. 11.10. Result after applying Ward identities to some K gluons. The little black blobs
denote a vertex whose form we do not need to specify.

But in a non-abelian theory, there are additional terms. First, we observe that in the
recursive application of the line identity of Fig. 11.9(b) there can be a term where one of
the gluons is another K gluon with momentum p. Then the corresponding term on the right
of the identity is zero. This is because the l.h.s. Fig. 11.9(b), with approximated momenta,
is proportional to

[(p̂ − k̂)μ(p̂ − k̂)ν − gμν(p̂ − k̂)2]− [p̂μp̂ν − gμνp̂2]. (11.24)

So contraction with p̂ν makes its term zero, and no special term arises here.
Next, for a normal Slavnov-Taylor identity we have cancellations by vertex identities

like Fig. 11.9(c). For a collinear-irreducible hard subgraph, there are some missing terms.
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Fig. 11.11. Missing term in elementary Ward identity for connection to another K gluon.
We will call these commutator terms between two K gluons.

Fig. 11.12. Two ways of attaching neighboring K gluons to a quark line. α and β are color
indices.

Beyond the external-line terms already noted, we have missing terms involving other K

gluons. The generic case is typified by Fig. 11.9(c), whenever the ghost line directly
corresponds to the k1 gluon without any interactions and the explicit gluon is a K gluon.
The missing term is the third term in Fig. 11.9(c); it would arise from attaching the two K

gluons together before they enter the H subgraph, which is one of the disallowed situations.
A possible notation for the general case is Fig. 11.11.

To see the meaning of the term, consider the example in Fig. 11.12. The first gluon, to
which we are applying Ward identities, is k1 and it attaches to a quark line. Next to it is
another K gluon, of momentum kj . The sum of the two (approximated) graphs is

i

/p + /̂k1 + /̂kj

[
−igtβ /̂kj

kj · n2

i

/p + /̂k1

−igtα /̂k1

k1 · n2
+ −igtα /̂k1

k1 · n2

i

/p + /̂kj

−igtβ /̂kj

kj · n2

]
i

/p
. (11.25)

We apply the basic line identity Fig. 11.9 to gluon k1, by writing /̂k1 = /p + /̂k1 − /p in the
first term and /̂k1 = (/p + /̂k1 + /̂kj )− (/p + /̂kj ) in the second. We retain only the terms where
the quark propagator between the gluons is canceled; this corresponds to a case of Fig.
11.11, and gives

i

/p + /̂k1 + /̂kj

ig2[tα, tβ ]/̂kj

k1 · n2 kj · n2

i

/p
= i

/p + /̂k1 + /̂kj

(−igtγ /̂kj )
i

/p

−igfαβγ

k1 · n2 kj · n2
. (11.26)

This term is of the form of a vertex for one gluon times some factor associated with the
gluon pair. This factor is the composite vertex in Fig. 11.11, and is the same in all these
situations.

We would like to apply a Ward identity to this new object. To do this we observe that
the approximated momenta are parallel, and that kj · n2 = k̂j · n2. Thus we can scale the
numerator and denominator at the vertex so that the gluon-quark interaction is contracted
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Fig. 11.13. After a sum over graphs in Fig. 11.6(a), the K gluons attach to a Wilson line
appropriate for a gauge-invariant parton density.

with k̂1 + k̂j instead of k̂j , to obtain

i

/p + /̂k1 + /̂kj

−igtγ (/̂k1 + /̂kj )

(k1 + kj ) · n2

i

/p

−igfαβγ

k1 · n2
. (11.27)

We now have exactly a factor for an effective K gluon of momentum k1 + kj times some
other factor, and the new H factor has one K gluon less than before. So we keep reapplying
the basic Ward-identity argument until all the K gluons have been extracted from H . At
each intermediate stage we have a result of the form of Fig. 11.10. At the final stage we
just have some external line factors, multiplying a version of H with no extra gluons at all.

However, we just know that the external-line factors are composed of many Wilson-line
denominators, of a factor g for each gluon, and a product of SU(3) structure constants. But
it could just be a complicated mess, not the desired Wilson line. What we do know is that
the external-line factors depend only on the color of the external lines; they do not depend
on the other details of H . So the same argument applies when we replace H by a Wilson
line in direction n2, and it gives the same external-line factors. Therefore the external-line
factors are exactly a Wilson line, i.e., we get Fig. 11.13, our final result.

11.9.3 Unapproximated gluon momenta

Notice that because the approximated momenta of the K gluons, k̂j , are all parallel, the
transition from (11.26) to (11.27) is exact, as are the Slavnov-Taylor-Ward identities. So
the conversion to a Wilson-line form is exact, with no left-over terms.

If instead we had chosen to leave the kj momenta unapproximated in H , as in the
original Grammer-Yennie paper, then we would have extra remainder terms. These would
be power-suppressed in the collinear limit for all the K gluons. But when we integrate over
all momenta, as in defining a parton density, then the remainder terms would be important
outside the collinear region and would have to be taken into account. This would evidently
be rather complicated if we tried to do it in general.

However, the use of unapproximated momenta can help at intermediate stages when
dealing with super-leading contributions. In that case we would replace the vertices in
(11.26) and (11.27) by

(−igtγ /kj )
−igfαβγ

k1 · n2 kj · n2
, (11.28)
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and

−igtγ (/k1 + /kj )

(k1 + kj ) · n2

−igfαβγ

k1 · n2
. (11.29)

The difference is the part of (11.28) which is not treated recursively as a K gluon. It has a
rather symmetrical form:

(−igtγ γμ)
−igfαβγ

(k1 + kj ) · n2

[
k

μ
j

kj · n2
− k

μ
1

k1 · n2

]
. (11.30)

It is easily checked that, in the collinear limit, this is suppressed relative to the main effective
K term (11.29) by a power of small components of k1 and kj relative to large components.
Expression (11.30) is written as a factor of a quark-gluon vertex times a factor. It can be
checked that this factor is just derived from the commutator term in Fig. 11.11, so it applies
in all situations, not just to the coupling to a quark, but to a gluon or a ghost.

11.9.4 Including the case of all-gluon connections to H

Our proof of Fig. 11.13 applied directly to the case that the hard scattering is initiated by a
quark and antiquark together with any number of K gluons.

The same principles apply when there are two G gluons plus any number of K gluons.
But we also have to deal with the cases with super-leading contributions graph-by-graph.
These are where (a) all the external lines of H are K gluons, and (b) one of the external
lines is a G gluons and the rest K gluons.

When all the external lines are all K gluons, we start by applying our argument as it
stands. Since there are no non-K gluons, we get exactly zero. Thus the strongest super-
leading term vanishes.

But there can be a leading remainder. In general, such a remainder is to be obtained
by differentiating the hard scattering with respect to the small components of the collinear
momenta, e.g., kj T. This would be complicated to deal with.

We rescue the situation by starting by applying the Ward-identity argument with unap-
proximated momenta. We start accumulating remainder terms (11.30) from the commuta-
tors. These we treat as generalizations to the G-gluon definition. Once we have two of them,
we have a suppression from the Q2 super-leading power back to an ordinary leading power.
At that point, the necessary suppression is exhibited in external factors, as in (11.30). From
that point on, we can restore the approximations for the kj s in the hard scattering, and drop
any further accumulation of remainder terms.

We apply the same argument when there is one G gluon.
The end product of the argument is a hard scattering with either one or two external

gluons containing factors appropriate for generalized G gluons. With one G gluon the hard
scattering after application of the Ward-identity argument has a single external gluon; it
therefore vanishes by color invariance. So we are left with two.

Application of the same argument to a product of two gluon field strength tensors joined
by a Wilson line gives the same external factors. So the result should agree with the Feynman
rules for an ordinary gluon density. A more explicit argument would be useful.
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B

A

Fig. 11.14. Example of graph for a hard scattering that is one-particle reducible. But it is
irreducible separately in the collinear group A of the lower two external lines and in the
collinear group B of the upper two external lines. All external lines are amputated.

11.9.5 Generalizations

The proof in Sec. 11.9.2 generalizes in a relatively elementary way. We will deal with the
modifications as needed. This notably concerns the soft-to-collinear case, which has some
interesting differences, and which we will deal with in Sec. 12.8.3.

Relatively elementary generalizations concern different kinds of hard subgraph, and we
summarize them here.

Trivial generalizations concern changing the nature or kinematics of the currents in
Fig. 11.6. As long as they are gauge invariant (or even just BRST invariant), no change in the
derivation is needed. Similarly, when we go to a collinear amplitude, we will generally have
some on-shell hadrons in the initial or final state. As long as no irreducibility requirements
are imposed, these give no contribution to the Ward identities.

The most important generalization is to hard scatterings where there are multiple
collinear groups. The Sudakov form factor treated in Ch. 10 gives one example. The
Drell-Yan process is another. The first case we will treat in QCD will be hadronic cross
sections in e+e− annihilation, in Ch. 12.

We now discuss the simplest case of its hard-scattering amplitude as shown in
Fig. 11.6(b). There is one (gauge-invariant) electromagnetic current, and two collinear
groups, A and B. In the particular case shown, the partonic lines (always on-shell) are a
quark and an antiquark, and any number of collinear K gluons.

The irreducibility requirements on H are now that it is irreducible in each group A and
B separately; otherwise there would be an internal line of H forced to be collinear. But
there is no restriction on combining lines from different collinear groups. An example is in
Fig. 11.14.

For Fig. 11.6(b), we will use K gluons defined with the same collinear approximants
that we defined in Sec. 10.4.2 for the Sudakov form factor. These have light-like auxiliary
vectors w1 and w2. The external quark and antiquark lines are defined so that they are
on-shell with appropriate Dirac wave functions.

We start by applying Ward identities to a first K gluon from group A. As in DIS, the
restriction to graphs irreducible in the A lines implies we obtain terms associated with the
other collinear-A lines. Repeated application of the Ward-identity argument converts these
gluons into couplings to a Wilson line. This gives the middle graph in Fig. 11.15.

Some of the would-be cancellations involve moving the K gluons so as to uncover
a graph irreducible in the B group. This is the same as for the Sudakov form factor in
Sec. 10.8.6 with the one change that we can also implicate graphs involving pairs of K
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Fig. 11.15. Result of applying Ward identities to the K gluons of the A group, and then to
the K gluons of the B group. The A gluons couple to a Wilson line in direction nB , i.e.,
with rapidity −∞. The B gluons couple to a Wilson line in direction nA, i.e., with rapidity
+∞.

gluons from the B side as well as a K gluon and a quark. A typical non-canceling term of
this kind is Fig. 10.20(c). But all of these terms are actually zero, because they involve a
light-like collinear-B momentum from a K gluon contracted into a non-singular subgraph
with momenta all in the B direction.

In the case that we use massive external quarks, the cancellation is good to order
m2/Q2, because the quark momentum differs by this much from being light-like. This is
good enough to leading power.

So there are no extra terms, and the K gluons convert to a Wilson line.
Exactly the same argument applies for the B group, finally giving Fig. 11.15. This is the

same result as with the Sudakov form factor, generalized to a non-abelian theory.
Most importantly, the same argument applies with minor changes when there are multiple

collinear groups, and it also applies when some of the groups consist of all gluons (up to
one G gluon). Each group α has its direction defined by a light-like vector wα , together
with a conjugate light-like vector w̃α . We can define

w̃μ
α =

qμ

wα · q −
wμ

α q2

2(wα · q)2
. (11.31)

This is a future-pointing light-like vector with its spatial component reversed compared to
wα . It is also arranged so that wα · w̃α = 1, which means that contracting a vector v onto
w̃α and wα can be regarded as giving light-front plus and minus coordinates appropriate
for the collinear group (i.e., v+ = v · w̃α and v− = v · wα).

The approximant for a K gluon of group α to couple to the hard subgraph is a case of
(11.22):

H (kαi)
μCα(k)μ = H (k̂αi)

μ k̂αi, μw̃ν
α

kαi · w̃α

Cα(k)ν, (11.32a)

where

k̂
μ
αi =

wμ
α kαi · w̃α

wα · w̃α

. (11.32b)

The end result is that we have a hard scattering with one external on-shell line for each
collinear group, and that we have a non-local vertex for each collinear group to attach to.
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The non-local vertex is a natural generalization of what we have already seen in particular
cases: a partonic field times a Wilson line that now goes out to infinity.

Exercises

11.1 (No stars to (***)) Examine the proofs for further weaknesses, and correct them as
best you can.

11.2 ((*) to (***)) One part of our proof of factorization for DIS in QCD relied on BRST
properties of operators used in defining parton densities. The published proofs of
these BRST properties (Joglekar and Lee, 1976; Joglekar, 1977a, b; Nakanishi and
Ojima, 1990) are restricted to local operators, i.e., those that are products of field
operators at a single space-time point. Work through these proofs (and check them!).
Do they apply more generally, to the non-local operators defining parton densities?
Why? If not, construct (and publish) a correct proof.

11.3 (***) Characterize the non-gauge-invariant operators that appear in DIS on an off-
shell target, with a particular emphasis on finding those that include Faddeev-Popov
ghost fields.

It might be worth starting with some sample Feynman-graph calculations to get
some inspiration. You should try to verify that the operators are BRST invariant.

From Fig. 11.4, you can see that the lowest-order graphs for ghost-induced hard
scattering in ordinary DIS have two loops, which will probably make calculational
examples hard. So you might also want to investigate a generalization of DIS in
which the electromagnetic current operators are replaced by a gauge-invariant gluon
operator, e.g., G2

μν . You could also examine renormalization of the gluon density,
since the counterterms generally use the operator matrix elements as those used for
parton densities in factorization.

11.4 (***) Particularly if you have a sufficiently good theory of the necessary operators, it
would be useful to examine renormalization, especially, one order beyond the lowest
order where Faddeev-Popov ghosts appear. Examine the implications for calculations
of the DGLAP kernel etc., and compare with Hamberg and van Neerven (1992) and
Collins and Scalise (1994).



12

Fragmentation functions: e+e− annihilation to
hadrons, and SIDIS

We now extend our treatment of factorization to cover the distribution of final-state hadrons
in hard processes.

The simplest process is the cross section for inclusive one-hadron production in e+e−

annihilation, Fig. 12.1,

e+e− → γ ∗(q)→ h(p)+X, (12.1)

where the hadron is typically a pion, and, as usual, we work to lowest order in electroweak
interactions. Kinematically the process is the same as inclusive DIS, except that certain
particles are crossed between the initial and final states. We will see that the structure of
the factorization theorem, (12.21), is the same as for DIS. The differences concern the time
ordering of the process: the hard scattering is for a virtual photon to make a partonic state
from a highly virtual time-like photon of momentum q. The place of a parton density is
taken by a new object, called a fragmentation function; it represents the distribution of the
final-state detected hadron resulting from an outgoing parton that originated in the hard
scattering.

Our proof of factorization will introduce two important conceptual changes relative to
DIS. The first is that we need a more detailed examination of soft gluon effects before
we prove they cancel. This is because the detected hadron in the final state prevents the
transition to an uncut amplitude that we used for DIS in Sec. 11.2. We will first use Ward
identities to factorize the soft part, as we did for the Sudakov form factor in Ch. 10. Only
after that can we employ the sum-over-cuts argument to obtain cancellation.

The second change relative to DIS arises from an issue we discussed in Ch. 4 that
concerns final-state interactions. Our proof of factorization relies on the structure of leading
regions as seen in Feynman graphs, which also correspond to certain regions in space-time.
For our arguments to apply to full QCD, we need to assume that these regions are also
correct after non-perturbative effects are included.

We will need to make the assumption that the “breakable string” picture of hadronization
rather than the “unbreakable elastic spring” applies to QCD; see Sec. 4.3.1. (Of course our
arguments would also apply if quarks and gluons were unconfined.) This assumption is
abundantly supported by experimental data, but it is not (yet) derived from QCD. Associated
with this will be a notable jump in the logic of the derivation.

426
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Fig. 12.1. Cross section for e+e− → h(p)+X.

If, instead, the unbreakable spring picture had been correct, then the partonic state from
the hard scattering would first form a resonance. In this case there would be no necessary
correspondence between the directions of the decay products and of the partons, contrary
to the measured situation with QCD jet physics.

For the DIS structure functions we evaded these issues by treating the uncut amplitude
T μν . But this option is no longer available to us now that we have a detected hadron in the
final state.

After our treatment for the single-hadron-inclusive cross section in e+e− annihilation,
we will have the methods necessary to treat other reactions. For example, factorization and
its proof can readily be generalized to inclusive cross sections with more than one detected
hadron. Another case is semi-inclusive deeply inelastic scattering (SIDIS). This is a cross
section for DIS in which one (or more) particles is detected in the final state. The label
SIDIS is generally applied to single particle production,

e + P → e + π (pB)+X, (12.2)

although the same ideas apply to more general cases.

12.1 Structure-function analysis of one-particle inclusive cross section

12.1.1 Hadronic tensor

As with DIS, the squared amplitude for our process, Fig. 12.1, factorizes into a leptonic
and a hadronic part. We use a structure-function analysis (Drell, Levy, and Yan, 1970) for
the hadronic tensor, which is defined by

Wμν(q, p)
def= 4π3

∑
X

δ(4)(pX + p − q) 〈0|jμ(0)|p,X, out〉 〈p,X, out|jν(0)|0〉

= 1

4π

∑
X

∫
d4z eiq·z 〈0|jμ(z/2)|p,X, out〉 〈p,X, out|jν(−z/2)|0〉 . (12.3)

The primary difference compared with DIS is that the selected hadron is in the final state, so
we cannot eliminate the

∑
X as we did for DIS in (2.18), and we need to explicitly indicate

that the states are out-states. The photon momentum q is now time-like. Our normalization
conventions, both for the states and for Wμν , differ from those of Drell, Levy, and Yan
(1970).

We define Q =
√

q2, and we define the equivalent of the Bjorken variable by

x = 2p · q/Q2. (12.4)
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We interpret x as the center-of-mass energy of the detected particle relative to its maximum
value Q/2 (when masses are neglected). The decomposition into structure functions is

Wμν =
(
−gμν + qμqν

q2

)
F1(x,Q2)+

(
pμ − qμp·q

q2

) (
pν − qνp·q

q2

)
p · q F2(x,Q2), (12.5)

which assumes current conservation, parity invariance, and that the detected hadron is either
spinless or has its polarization states summed over. An F3 structure function [cf. (7.3)] is
needed if Z boson exchange is included, since then parity is violated.

The inclusive cross section is

E
dσ

d3 p
= 2α2

Q6
LμνW

μν, (12.6)

where the leptonic tensor is

Lμν = l
μ
1 lν2 + l

μ
2 lν1 − gμνl1 · l2, (12.7)

where l1 and l2 are the momenta of the incoming electron and positron, and where the
electron mass is neglected. Hence

E
dσ

d3 p
= 2α2

Q4

√
1− 4m2

Q2x2

[
F1(x,Q)+ x

4

(
1− 4m2

Q2x2

)
sin2 θF2(x,Q)

]

� 2α2

Q4

[
F1(x,Q)+ x

4
sin2 θF2(x,Q)

]
. (12.8)

Here, m is the mass of the detected hadron, and θ is its angle relative to the electron in the
center-of-mass frame. In the last line, m was neglected.

A standard presentation is

dσ

dx d cos θ
= 3

8
(1+ cos2 θ )

dσT

dx
+ 3

4
sin2 θ

dσL

dx
, (12.9)

where

dσT

dx
= 4πα2

3Q2
xF1(x,Q), (12.10a)

dσL

dx
= πα2

3Q2

[
2xF1(x,Q)+ x2F2(x,Q)

]
. (12.10b)

12.1.2 Averaging with test function

To derive factorization, we will use certain cancellations generalizing those we saw in
Sec. 4.1.1, for the total cross section for e+e− → hadrons, and in Sec. 11.2.1, for DIS. The
cancellations involve terms that differ by whether particular lines are real or virtual, and
thus by change of final state. The proof is clearest if a loop integral involving the momentum
of a particular final-state particle can be routed out through the current vertex rather than
back through other final-state particles. This can be done by averaging the hadronic tensor
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with a test function f (q):

Wμν([f ], p)
def=
∫

d4q f (q) Wμν(q, p)

= 4π3
∑
X

f (pX + p) 〈0|jμ(0)|p,X, out〉 〈p,X, out|jν(0)|0〉 . (12.11)

Here, the square brackets in [f ] act as a reminder that the argument is a whole function, and
not just its value at one point. The integral over q has removed the momentum-conservation
delta function from (12.3), and therefore allows the desired routing of integrals of final-state
momenta.

The actual hadronic tensor is obtained by functional differentiation:

Wμν(q, p) = δWμν([f ], p)

δf (q)
. (12.12)

But the derivation of factorization only applies when the test function has a suitably
slow dependence on Q, so that factorization generally only applies to a locally averaged
quantity. If the actual hadronic tensor has smooth dependence on kinematic variables, the
local average is unnecessary.

12.2 Statement of factorization etc. for e+e− → h(p)+X

I now state the main results for factorization and fragmentation function evolution, all to
be derived in later sections.

12.2.1 Factorization for cross section

The factorized cross section has the form

E
dσ (e+e− → h(p)+X)

d3 p
=
∑

j

∫ 1+

x−

dz

z2
Ek

dσ̂j

d3k
dh/j (z; μ). (12.13)

As usual, this formula is valid up to corrections suppressed by a power of 1/Q. We
use dσ̂j to denote the perturbatively calculable hard-scattering factor, normalized like the
differential cross section for inclusive production of an on-shell massless parton of type j

and 3-momentum k. Like the hard scattering in DIS, it must contain subtractions to prevent
double counting between momentum regions. The 3-momenta, p and k, of the hadron and
parton are made parallel in the overall center-of-mass frame, with a ratio z: p = zk.

The quantity dh/j (z; μ) is the fragmentation function, whose exact definition we will
give later; we approximate its meaning as the number density to find hadron h in the jet
initiated by parton j , with the hadron having a fraction z of the parton’s momentum. The
reality of the jets is evidenced by pictures like Fig. 5.10, which shows an event in DIS.

As with parton densities, this intuitive meaning only applies literally in a super-
renormalizable non-gauge theory. After applying correct definitions and derivations in
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Fig. 12.2. Structure of factorization for one-hadron-inclusive cross section in e+e−

annihilation.

QCD, the factorization formula will remain correct, but the number/probability interpreta-
tion will not be really correct. As with parton densities, there is a DGLAP evolution equation
for the fragmentation function. It lets us set the scale μ of the fragmentation functions to be
of order the experimentally dependent quantity Q, so that the hard scattering is calculable
in fixed-order perturbation theory.

The factor 1/z2 in (12.13) arises because of the change of variable between the hadron
momentum on the l.h.s. and the parton momentum on the r.h.s.: with neglect of masses
d3 p /E p = z2 d3k /Ek. If we were to use n space-time dimensions, the factor 1/z2 would
be replaced by 1/zn−2.

The structure of factorization is illustrated in Fig. 12.2. The hard scattering H makes
two or more final-state partons. One of these of momentum k goes into the fragmentation
subgraph, which is labeled C(1) to be consistent with a notation used later. The details of
the proof of factorization will show that Fig. 12.2 is misleadingly simple. There will be
non-trivial cancellations to be proved before we obtain the factorized structure. The figure
also omits reference to the Wilson lines in the definitions of the fragmentation functions.

Where fragmentation functions get used

The most basic situation for using a fragmentation function is the one-hadron-inclusive
cross section in e+e− annihilation, just described.

Straightforward generalizations of the factorization theorem apply to semi-inclusive
DIS (e.g., e + p→ e + π +X), to multiple hadron production in e+e− annihilation, and
to production of hadrons of high transverse momentum in hadron-hadron collisions. All
of these factorization theorems use fragmentation functions for the detected final-state
hadrons; the same fragmentation functions for all these processes. Global fits have been
performed in de Florian, Sassot, and Stratmann (2007); Albino, Kniehl, and Kramer (2008).

Terminology

The Particle Data Group (Amsler et al., 2008, p. 202) uses the term “fragmentation function”
to refer to both a partonic fragmentation function, as in (12.13), and to the following
normalized cross section:

Fh(x,Q2) = 1

σtot

dσ

dx
(e+e− → hX). (12.14)
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I find it preferable to distinguish these concepts, for the same reasons that the concepts of
“structure function” and “parton density” should be distinguished in DIS. So I only use
“fragmentation function” to refer to a partonic fragmentation function.

12.2.2 Renormalization and DGLAP evolution of fragmentation functions

As in the case of parton densities, the basic definitions of fragmentation functions have UV
divergences. The factorization formula uses renormalized fragmentation functions obtained
from bare fragmentation functions by formulae of the form

dh/j (z; μ) = lim
ε→0

∑
j ′

∫ 1+

z−

dρ

ρ
d(0) h/j ′(z/ρ) Lj ′j (ρ; g(μ), ε). (12.15)

(Here, as usual ε = 2− n/2, where n is the space-time dimension.)
There follow DGLAP evolution equations, of the same form (8.30) as for parton

densities:

d

d ln μ
dh/j (z; μ) = 2

∑
j ′

∫ 1+

z−

dρ

ρ
dh/j ′ (z/ρ; μ) Pj ′j (ρ; g(μ)). (12.16)

See Sec. 12.10 below for a calculation that shows the LO kernels have the same value as for
parton densities. The finite evolution kernels are obtained from the renormalization factors:

d

d ln μ
Lj ′j (ρ; g(μ), ε) = 2

∑
j ′′

∫
dρ ′

ρ ′
Lj ′j ′′ (ρ/ρ ′; g, ε) Pj ′′j (ρ ′; g, ε). (12.17)

Just as with parton densities, the convolutions in the above equations turn into multipli-
cations for moments. Let us define

d̃h/j (n; μ) =
∫ 1

0
dz zn−1dh/j (z; μ), L̃j ′j (n; μ) =

∫ 1

0
dρ ρn−1Lj ′j (ρ; μ), (12.18)

etc. Then the renormalization and DGLAP equations are

d̃h/j (n; μ) = lim
ε→0

∑
j ′

d̃(0) h/j ′(n) L̃j ′j (n; g(μ), ε), (12.19)

d

d ln μ
d̃h/j (n; μ) = 2

∑
j ′

d̃h/j ′(n; μ) P̃j ′j (n; g(μ)). (12.20)

12.2.3 Factorization for hadronic tensor

We convert (12.13) to a factorization for Wμν :

Wμν(p, q) =
∑

j

∫ 1+

x−

dz

z2
dh/j (z; μ) C

μν
j (k̂, q; g(μ), μ). (12.21)

The hard-scattering tensor C
μν
j is just like Wμν , except that it is at the partonic level, and

is defined with double-counting subtractions to remove non-short-distance contributions.
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Fig. 12.3. Lowest-order partonic graph for e+e− → quarkj (k̂)+X.

It uses an approximated parton momentum

k̂ = (p+/z, 0, 0T), (12.22)

where we use light-front coordinates such that p = (p+,m2/2p+, 0T).

12.2.4 Projection onto structure functions

We define partonic structure functions F̂ij by applying (12.5) to C
μν
j :

C
μν
j =

(
−gμν + qμqν

q2

)
F̂1j (x/z,Q2)+

(
k̂μ − qμk̂·q

q2

) (
k̂ν − qν k̂·q

q2

)
k̂ · q F̂2j (x/z,Q2).

(12.23)

Hence we get factorization formulae for the structure functions:

F1(x,Q2) =
∑

j

∫ 1+

x−

dz

z2
dh/j (z; μ) F̂1j (x/z,Q2), (12.24a)

F2(x,Q2) =
∑

j

∫ 1+

x−

dz

z3
dh/j (z; μ) F̂2j (x/z,Q2), (12.24b)

and similarly for the transverse and longitudinal cross sections:

dσT

dx
=
∑

j

∫ 1+

x−

dz

z
dh/j (z; μ)

dσ̂T ,j (x/z)

d(x/z)
, (12.25a)

dσL

dx
=
∑

j

∫ 1+

x−

dz

z
dh/j (z; μ)

dσ̂L,j (x/z)

d(x/z)
. (12.25b)

12.3 LO calculation

Even without a proof of factorization we can see how to get the lowest order of the hard
scattering. As in DIS, we just need the LO calculation of one-parton-inclusive scattering,
from the graph of Fig. 12.3:

C
μν
j =

e2
jNc

4π

∫
d3k2

(2π )32|k2| (2π )4δ(4)(q − k̂ − k2) Tr γ μ/̂kγ ν/k2

= e2
jNcδ(x/z− 1)

[
−gμν − 2

Q2
(2k̂μk̂μ − qμk̂ν − k̂μqν)

]
. (12.26)
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We have included a factor Nc, since we always sum over parton color in the final state.
(The fragmentation function will have a color average.) In the first line, we integrate over
the momentum k2 of what we can term the unobserved parton, the one not associated
with the observed hadron. In the calculation of the hard scattering the external partons are
set on-shell, whereas the actual parton momenta are off-shell. In particular, k̂ denotes the
approximated on-shell momentum given in (12.22).

We deduce the partonic structure functions

F̂1j = e2
jNcδ(x/z− 1)+O(αs), F̂2j = −2e2

jNcδ(x/z− 1)+O(αs), (12.27)

which apply to both quarks and antiquarks.
From the factorization formula, we deduce that at the hadronic level

F1 = 1

x

∑
quarks j

e2
jNc

(
dh/j (x)+ dh/j̄ (x)

)+O(αs), (12.28a)

F2 = −2

x2

∑
quarks j

e2
jNc

(
dh/j (x)+ dh/j̄ (x)

)+O(αs). (12.28b)

We see that at lowest order an analog of the Callan-Gross relation applies: F2 = −2x−1F1.
Therefore the angular distribution of the hadron is given by the same 1+ cos2 θ factor as
for the elementary e+e− → qq̄ process:

E
dσ

d3 p
= α2

Q4x
(1+ cos2 θ )

∑
quarks j

e2
jNc

(
dh/j (x)+ dh/j̄ (x)

)+O(αs). (12.29)

From the inclusive cross section formula (12.8) and the total cross section formulae in
Sec. 4.1, we find that the normalized distribution in x directly reflects the values of the
fragmentation functions, weighted by quark charge squared:

dσ (e+e− → hX)/ dx

σ (e+e− → hadrons)
=
∑

quarks j e2
j

(
dh/j (x)+ dh/j̄ (x)

)
∑

quarks j e2
j

+O(αs). (12.30)

12.4 Introduction to fragmentation functions

The intuitive idea of a fragmentation function to represent the number density for hadrons
in the jet induced by a parton is quite natural. Light-front quantization, which we studied
in Sec. 6.6, gives a natural first attempt at a formal definition of fragmentation functions
that directly implements the desired distribution. We now present these definitions, which
are quite simple. They provide an orientation for the more complicated results in QCD.

Since the number interpretation depends on the use of the canonical commutation
relations for bare fields, the definitions in this section are for bare fragmentation functions.
Bare quantities are denoted by a subscript “(0)”. For a statement of the renormalization
properties, see Sec. 12.2.2.
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12.4.1 Kinematics

Our implementation uses two different coordinate frames, called the hadron and parton
frames, with components denoted by subscripts h and p respectively. Thus for a vector V ,
we write

Vh =
(
V +h , V −h , Ph T

)
, Vp =

(
V +p , V −p , Pp T

)
, (12.31)

in the hadron and parton frames. We will arrange that the plus components are the same in
both frames, so that for this component we can drop the frame’s subscripts: V +h = V +p =
V +.

The hadron frame is the one already used where the detected hadron has zero transverse
momentum: ph =

(
p+,m2/(2p+), 0T

)
. The actual parton momentum, as in Fig. 12.2, has

non-zero transverse momentum:

kh =
(
k+, k−h , kh T

) = (
p+/z, k−h , kh T

)
. (12.32)

Of course, the approximated parton has zero transverse momentum: k̂h = (k+, 0, 0T) =
(p+/z, 0, 0T).

For defining the number density of hadrons in the jet induced by a parton of momentum
k, we need a frame in which it is the parton that has zero transverse momentum, and the
hadron has non-zero transverse momentum. For this we use the parton frame, defined to be
obtained from the hadron frame by the following Lorentz transformation:

V +p = V +h ,

V −p =
k2
h T

2(k+)2
V +h + V −h −

kh T

k+
· V h T,

V p T = − kh T

k+
V +h + V h T,

(12.33)

a Lorentz transformation that changes as k varies. Hence the parton-frame components are

kp =
(
k+, k−p , 0T

) = (
k+, k−h − k2

h T/(2k+), 0T
)
, (12.34a)

pp =
(

zk+,
m2 + k2

h Tz2

2zk+
,−zkh T

)
. (12.34b)

Note carefully the factor of z and the reversed sign between the parton transverse momentum
in the one frame and the hadron transverse momentum in the other frame.

Although the parton frame is a natural one for defining fragmentation functions as
number densities, it is inconvenient for derivations of factorization. The problem is that,
in a physical process, there is an integral over parton momentum, and so the parton-
frame axes are not fixed. Neither parton momenta nor the resulting parton-frame axes can
be determined from experimentally measured quantities. Therefore we will express the
definitions of fragmentation functions in hadron-frame coordinates. In the derivation of
factorization, we will use a hadron frame defined in terms of measured quantities.



12.4 Introduction to fragmentation functions 435

12.4.2 General definition of fragmentation function

We define the fragmentation function as the number density for finding a hadron of flavor
h in a parton of flavor j , given the hadron’s fractional plus momentum, and its transverse
momentum:

d(0) h/j (z, pp T) 〈j ; k1|j ; k2〉 def= Trcolor

Nc,j

〈j ; k1|j ; k2〉 dNj/h

dz dn−2 pp T

= Trcolor

Nc,j

1

2z(2π )n−1

∑
X

〈j, k1|p,X, out〉 〈p,X, out|j, k2〉 .

(12.35)

Here |j, k1〉 denotes a partonic state created by a light-front creation operator, i.e.,
a
†
j,k+1,p,k1,p T

|0〉 . A number density is obtained from matrix elements of normalized states

for partons and hadrons. Since we wish to use momentum eigenstates, we bring in an
off-diagonal matrix element in (12.35). To cover the generalization to QCD, we define
the fragmentation function to include an average over parton color. We let Nc,j be the
number of colors for field φj ; in QCD it is 3 for a quark and 8 for a gluon. Then
the color average is implemented as 1/Nc,j times a trace over color indices for the
parton.

Next we use formulae like (6.64a) to express the annihilation and creation operators in
terms of fields, and use methods similar to those used for the pdf in Sec. 6.7.3.

12.4.3 Scalar quark

For a scalar quark we get

d(0) h/j (z, pp T) = Trcolor

Nc,j

∑
X

k+

z

∫ dx−p dn−2xp T

(2π )n−1
eik+x−p

× 〈0|φ(0)
j (x/2)|p,X, out〉 〈p,X, out|φ(0)

j (−x/2)†|0〉 , (12.36)

where xp = (0, x−p , xp T). In the hadron frame, we get

d(0) h/j (z,−zkh T) = Trcolor

Nc,j

∑
X

k+

z

∫
dx−h dn−2xh T

(2π )n−1
eik+x−h −ikh T·xh T

× 〈0|φ(0)
j (x/2)|p,X, out〉 〈p,X, out|φ(0)

j (−x/2)†|0〉

= Trcolor

Nc,j

k+

z

∫
dk−h

(2π )n
(12.37)
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where the vector x has hadron-frame components xh = (0, x−h , xh T). The integrated frag-
mentation function is

d(0) h/j (z)
def=

∫
dn−2 pp T dh/j (z, pp T)

= Trcolor

Nc,j

∑
X

k+zn−3
∫

dx−h
2π

eik+x−h

× 〈0|φ(0)
j (x/2)|p,X, out〉 〈p,X, out|φ(0)

j (−x/2)†|0〉

= Trcolor

Nc,j

k+zn−3
∫

dk−h dn−2kh T

(2π )n
(12.38)

where now xh = (0, x−h , 0T). The factor zn−3 is perhaps unexpected, given the corresponding
formula (6.124) for a parton density. It arises from the normalization of the hadron state,
and then from the change of variable from the parton to the hadron frame.

12.4.4 Unpolarized Dirac quark

For a Dirac field, the derivations are readily modified to give

d(0) h/j (z, pp T) = Trcolor

Nc,j

TrDirac

4

∑
X

1

z

∫
dx−h dn−2xh T

(2π )n−1
eik+x−h −ikT·xh T

× 〈0|γ+ψ (0)
j (x/2)|p,X, out〉 〈p,X, out|ψ̄ (0)

j (−x/2)|0〉

= Trcolor

Nc,j

TrDirac

4

1

z

∫
dk−h

(2π )n
γ+ (12.39)

Here we assume we work with an unpolarized situation, where there is a spin average on
the quark; this gives a factor TrDirac /2. There is another factor of 1

2 that arises in the same
way as for the pdf for a Dirac parton. The corresponding integrated fragmentation function
is

d(0) h/j (z) = Trcolor

Nc,j

TrDirac

4

∑
X

zn−3
∫

dx−h
2π

eik+x−h

× γ+ 〈0|ψ (0)
j (x/2)|p,X, out〉 〈p,X, out|ψ̄ (0)

j (−x/2)|0〉

= Trcolor

Nc,j

TrDirac

4
zn−3

∫
dk−h dn−2kh T

(2π )n
γ+ (12.40)
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12.4.5 Unpolarized Dirac antiquark

The same approach works for fragmentation functions in an antiquark. The result is that
(12.40) can be used to define the fragmentation function of an antiquark, just with the
positions of the ψ and ψ̄ field exchanged, and the natural change in the flow of indices.

12.4.6 Renormalization

In a renormalizable theory, the integral over k− and kT for an integrated fragmentation
function has a UV divergence quite similar to that of a parton density. Renormalization
works in the same way as for parton densities (Secs. 8.3 and 11.4). This leads to the
statement of renormalization already given in (12.15).

12.4.7 Polarized Dirac quark

The hard scattering can generate a polarized quark, whose state is parameterized (Sec. 6.4.1)
by a helicity λ and a transverse Bloch vector sT. To deal with the most general case, we
make the following replacement in the definition of the fragmentation function (integrated
or unintegrated):

1

4
Tr

Dirac
γ+ . . . �→ 1

4
Tr

Dirac
γ+(1+ γ5λ− γ5γ T · sT) . . . (quark), (12.41a)

1

4
Tr

Dirac
γ+ . . . �→ 1

4
Tr

Dirac
γ+(1− γ5λ− γ5γ T · sT) . . . (antiquark), (12.41b)

These projections are applied in the hadron frame. They arise from the wave functions used
in light-front quantization, which correspond to those for massless Dirac particles. They
are obtained from (A.27), which is surrounded by factors of γ+ from the formula (6.64b)
that gives the light-front annihilation operator. This reverses the sign of the helicity term
relative to (A.27). Note also the reversal of the sign of the helicity terms between the quark
and antiquark cases. The definitions of λ and sT are normalized to have a maximum value
of unity (for a pure state).

The effects of polarization depend on the situation:

• For an integrated fragmentation function, the situation is like that for the pdfs. From a
combination of parity invariance and conservation of angular momentum about the z

axis, we find the following.
– If the measured hadron is spinless, like a pion, or if its polarization is not detected,

then there is no dependence on λ and sT. Only the unpolarized fragmentation function
is non-zero; our original definition suffices. This is the most common case.

– If the measured hadron has spin 1
2 , then there are polarized fragmentation functions

comparable to the �f and δT f parton densities, with the analogous interpretations.
– It is possible to generalize the definition of the fragmentation function to have two

(or more) nearby measured hadrons instead of one. In dihadron fragmentation the
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azimuthal distribution of the hadrons can be correlated with the transverse spin of the
quark, and an appropriate fragmentation function is defined (Collins, Heppelmann,
and Ladinsky, 1994), for which measurements can be found in Airapetian et al. (2008);
Vossen et al. (2009); Wollny (2009).

– For a spin-1 gluon, further possibilities arise which have not been explored in the
literature.

• For a kT-dependent unintegrated fragmentation function, angular momentum can be
taken up by the azimuthal dependence of the measured hadron. The possibilities are
described by several fragmentation functions:
– The unpolarized fragmentation function defined above, which gives a uniform distri-

bution in the azimuthal angle of kT or pp T, i.e., this fragmentation function depends
only on the size of the transverse momentum.

– The Collins function. This is obtained from the γ+γ5γ T · sT part of the trace (Collins,
1993). It gives a characteristic sin φ dependence, where φ is the azimuthal angle of the
hadron relative to the quark spin. See Boer (2008) for a review of recent theoretical
and experimental work.

– Other possibilities involving a detected hardron polarization. These have undergone
little investigation.

See Sec. 13.4.1 for more details.

12.4.8 Sum rules and symmetry properties

Momentum sum rule

In a fragmentation function, we have a state created by a light-front creation operator:
a
†
j,k+,kT

|0〉, and we project it onto a particular final state |p,X, out〉. The total plus momen-
tum in the final state is k+. We can measure the plus momentum in the final state by
integrating the fragmentation function over all p, with a weight p+, and summing over all
hadron types. Dividing by k+ gives the momentum sum-rule:

∑
h

∫ 1

0
dz zd(0) h/j (z) =

∑
h

∫ 1

0
dz zdh/j (z) = 1. (12.42)

The derivation applies to the bare quantities. As with the sum rules for parton densities,
it implies that there is no UV divergence in the sum over h of the second moment, and
therefore that if we use a suitable renormalization scheme, like MS, the sum rule applies
also to the renormalized fragmentation functions, as indicated above.

Flavor relations

There is one fragmentation function for each combination of hadron type and parton
type. In QCD, even with just pions, and light quarks and antiquarks and gluons, this
gives 21 fragmentation functions. But many of these can be related by applying isospin
transformations and charge conjugation transformations. This leaves just four independent
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Fig. 12.4. Leading regions in gauge theory for one-hadron-inclusive cross section. The
subgraphs H are the hard subgraphs, and there can be any number (greater than 2) of
collinear subgraphs C(1), C(2), . . . , of which two examples are shown. The soft subgraph
may have any number of connected components, including zero. In (b), each gluon from
the soft subgraph may connect to any collinear subgraph.

fragmentation functions

dπ+/u(z) = dπ−/d (z) = dπ−/ū(z) = dπ+/d̄ (z), (12.43a)

dπ−/u(z) = dπ+/d (z) = dπ+/ū(z) = dπ−/d̄ (z), (12.43b)

dπ+/s(z) = dπ0/s(z) = dπ−/s(z) = dπ+/s̄(z) = dπ0/s̄(z) = dπ−/s̄(z), (12.43c)

dπ+/g(z) = dπ0/g(z) = dπ−/g(z). (12.43d)

From these we obtain π0 fragmentation functions of u and d quarks:

dπ0/u(z) = dπ0/ū(z) = dπ0/d (z) = dπ0/d̄ (z) = 1

2
[dπ+/u(z)+ dπ−/u(z)]. (12.43e)

by a Clebsch-Gordan decomposition of the final state. Only isospin 1
2 and 3

2 are possible
for the X part of the state when the initiating parton has I = 1

2 and the detected hadron has
I = 1.

12.5 Leading regions and issues in a gauge theory

In a gauge theory, like QCD, the power-counting rules of Ch. 5 show that the general leading
region (and its associated PSS) has the form specified by Fig. 12.4. Each electromagnetic
vertex is part of a hard-scattering subgraph H , and out of each H exit two or more groups of
lines of high energy and low virtuality. These groups each go into a collinear subgraph which
crosses the final-state cut. To the collinear subgraphs may be connected a soft subgraph S

(which consists of any number of connected components and can be absent).
We define the first collinear subgraph C(1) to be the one attached to the detected hadron.

Consequently the direction for the corresponding collinear singularity of the region’s PSS is
fixed by p. The distinctness of the collinear configurations implies that the different collinear
groups are treated as being at wide angle to each other. However, the angles of the other
collinear groups are to be integrated over. When two or more of the directions get close, the
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Fig. 12.5. Leading regions in non-gauge theory.

originally separate collinear configurations combine into a single collinear configuration,
i.e., the corresponding jets merge into a single jet. In defining the contribution CR� for a
region R with N collinear groups, there are subtractions for smaller regions, in particular for
regions with fewer collinear groups. This results in a suppression of CR� where the angles
of two or more collinear groups approach each other. Note that before subtractions there is
a logarithmic enhancement after angular integration between a separated jet configuration
and a merged jet.

The basic situation is more easily visualized by the leading regions in a model theory
without gauge fields, in Fig. 12.5. Then there is no soft subgraph, and each collinear
subgraph is initiated by a single parton, which can correspond to any of the fields in the
theory. For a leading power, only one collinear line on each side of the final-state cut
initiates each collinear subgraph, whose final state is essentially a jet.

To return to QCD, we have any number of extra gluons joining each collinear subgraph
to the hard subgraphs, and we have a possible soft subgraph with gluonic couplings to any
of the collinear subgraphs. Basically all these extra gluons have the polarization that we
characterize as a Grammer-Yennie K gluon, as defined in Sec. 11.2.3.

Initially, each diagram like Fig. 12.4 codes a particular region of momentum space for
some generic graph. According to the subtractive methods of Ch. 10, we reinterpret the
diagram as an actual Feynman graph with integrals over all internal momenta, but with
approximations applied that are appropriate for the region, and with subtractions to prevent
double counting. Thus to leading power, the complete hadronic tensor Wμν of (12.3) is a
sum over all cases of Fig. 12.4.

12.5.1 Complication 1: super-leading regions

But one annoying extra possibility is generated by collinear groups that are purely gluon ini-
tiated. The amplitude between a photon and two gluons is prohibited by charge-conjugation
invariance, so the smallest case is three collinear groups (Fig. 12.6). Just as we found with
DIS in Secs. 11.2.3 and 11.3, there are graph-by-graph super-leading contributions, when
all the external gluons of a collinear subgraph are K gluons. The Ward-identity arguments
of Sec. 11.9 show that there is a cancellation after a sum over all graphs for the hard
scattering. The result is that the gluons attaching to the hard subgraphs combine to give the
operator defining the collinear factor, with its Wilson line.
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Fig. 12.6. A possible leading region in gauge theory, where all the jets are gluon initiated.
Possible extra collinear gluons and a soft subgraph are not shown, for simplicity.

Fig. 12.7. To illustrate soft cancellation. The quarks and the pion (modeled by an elementary
scalar field) form two collinear groups. The gluon is soft, and emitted off an internal
line.

12.5.2 Complication 2: soft gluons and sum-over-cuts

Another complication is that to get the expected factorization theorem we need to show the
soft factor cancels. The basic tool for getting the necessary cancellations is a sum-over-cuts.
In the case of DIS, this was implemented in the conversion from a cut hadronic tensor Wμν

to the corresponding uncut quantity T μν , in Sec. 11.2. But this argument is insufficient
for our current process, because the final-state cut is restricted by being anchored at the
detected hadron. This prevents the basic sum-over-cuts argument from combining some
of cut graphs relevant to the cancellation of soft gluon effects, and we will need a more
powerful argument to be given later.

As a simple example, consider the graphs in Figs. 12.7 and 12.8. We have chosen a
model in which the pion is replaced by an elementary scalar field with a Yukawa coupling
to the quarks. The pion analog may or may not be color singlet. We choose kinematics in
which there is a quark and an antiquark jet, with the quark collinear to the pion, and then
we add a soft gluon.
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+ Graphs with gluon attached to the “pion” line ( ).

Fig. 12.8. The same as Fig. 12.7, but with soft gluon emission off the external quark in the
upper jet.

First consider graphs where the gluon is emitted off the internal quark line (Fig. 12.7).
Graphs (a) and (b) are related by moving the final-state cut, as are graphs (c) and (d). But
cancellation within each pair of graphs is not sufficient to get a soft gluon cancellation; see
problem 12.4 and Sec. 12.5.3. Graphs (c) and (d) are needed in the cancellation, but are not
related to (a) and (b) by moving the final-state cut. Moreover, the cancellation will need,
among others, a term that behaves as if the cut were moved to the leftmost quark-antiquark
pair in graph (a); but this cut does not keep the pion analog in the final state.

To demonstrate cancellation of the soft subgraphs, we first factorize the soft subgraph,
just as for the Sudakov form factor in Ch. 10. In our example this requires us to sum all
ways of attaching the soft gluon to the lines in the collinear graph, and thus to include the
diagrams with external-line emission of the soft gluon (Fig. 12.8). After applying the soft
approximation and Ward identities, we get a factorized result:

× (12.44)

Here the first factor is just as in a non-gauge theory, and is a product of two collinear
factors. The soft gluon is in second factor, where it is attached to eikonalized quark lines
(i.e., Wilson lines). The sum-over-cuts argument applies to the soft factor:

(12.45)

and as with the corresponding argument for the total cross section in Sec. 4.4, we will see
in Sec. 12.7 that this implies that the integration is not trapped in the soft region.
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12.5.3 KLN theorem is not sufficient

The above summary indicates that the cancellation of soft gluons is obtained somewhat
indirectly: first the soft part is factorized, and then the sum-over-cuts argument is applied.
Now the soft-gluon issue is a generalization of the IR-divergence problem in QED. It is
therefore tempting to suppose that a more direct proof of cancellation can be done by
appealing to the theorem of Kinoshita (1962) and Lee and Nauenberg (1964) (KLN theo-
rem). This theorem is well known in applications to QED, and it also applies to the e+e−

total cross section discussed in Sec. 4.1. The KLN theorem (together with minor gener-
alizations) applies when the canceling terms are related by a sum-over-cuts of individual
graphs.

With a massless gluon, the KLN theorem does indeed show that the actual IR divergences
cancel. These arise from where the gluon momentum goes to zero, and therefore only from
graphs like Fig. 12.8, where the IR gluons are emitted from external lines. In this case the
sum-over-cuts argument succeeds. But for merely soft gluons we use a much broader range
of gluon momenta: any that are much less than Q and central in rapidity. Then internal line
emission, Fig. 12.7, is also important.

To see this explicitly, we apply power-counting from Ch. 5 to the loop momenta defined
in Fig. 12.7(a). We characterize the relative transverse momentum of the upper collinear
lines by λ, so that the pion-quark invariant mass is of order λ2. We let the size of the soft
momentum l be of order λS in all components. The size of the denominator of an internal
line carrying soft and collinear momenta is then

(k + l)2 −m2
q = O(λ2)+O(QλS). (12.46)

For lines next to an external line attachment, the λ2 term is missing:

(k − p + l)2 −m2
q = O(QλS), (12.47)

because the momentum k − p is exactly on-shell.

IR gluon: λS � λ2/Q

When λS is sufficiently small, much less than λ2/Q, graphs with emission from external
lines give logarithmic power-counting, from the external line factors (12.47) and the gluon
line. This gives an IR divergence in the graphs of Fig. 12.8, if the gluon is massless. Internal
line emission, Fig. 12.7, is suppressed because a denominator of order QλS is replaced by
a much larger denominator of order λ2; see (12.46).

Hence in this region only external line emission is important, and the KLN theorem
applies.

Harder gluon: λS � λ2/Q

When the contrary situation holds, i.e., λS � λ2/Q, internal-line emission, Fig. 12.7,
dominates. In this case those collinear denominators that carry soft momentum are of order
λSQ; collinear denominators without a soft momentum have the much smaller value λ2.
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Relative to a graph without the soft gluon, internal line emission has two collinear
denominators of order λSQ, and we get logarithmic power-counting, and hence a contribu-
tion at leading power. But for external line emission, a second collinear denominator λ2 is
replaced by an extra larger λSQ denominator, which is much larger and therefore leads to
a suppression.

Borderline: λS ∼ λ2/Q

In the intermediate range of gluon momentum both internal and external emission are
equally important.

Combination is simple

The Ward-identity argument for soft gluons combines all the above contributions and
applies independently of the relative size of λS and λ. We get a coherent sum over gluon
emission from the whole jet, and the result is as if the gluon were emitted from a single
quark, as in the right-hand factor in (12.44). In this factor we have uniform power-counting
independently of the relative size of λS and λ.

12.6 Which gauge to use in a proof?

Our characterization of leading regions was appropriate to Feynman gauge. But, as we saw
in Sec. 5.5, the situation is gauge dependent.

The most notable effect is in the axial gauge, n · A = 0, for which numerator of the
gluon propagator is (5.40). We choose the gauge-fixing vector n proportional to q, i.e.,
to be at rest in the overall center-of-mass frame (Collins and Sterman, 1981). Then the
enhancement of gluons connecting a collinear subgraph to a hard subgraph is removed.
Regions with extra gluons connecting collinear to hard subgraphs, as in Fig. 12.4, are now
power-suppressed. Regions with gluon-generated jets, Fig. 12.6, are merely leading instead
of super-leading. To see this, we observe that in the rest frame of a collinear momentum, the
gauge-fixing vector n is approximately a light-like vector w2, and that the same light-like
vector can be used in the Grammer-Yennie K term, (11.6), when the gluon attaches to the
hard scattering. The K term then gives zero, because the w

νj

2 factor in (11.6) contracts with
a gluon propagator which is being treated as if it were in w2 · A = 0 gauge.

More formally, consider a collinear subgraph for a region R, and let w1 be the light-like
vector for the subgraph’s momenta on the PSS for the region. We let w2 be the conjugate
light-like vector used in the Grammer-Yennie decomposition (11.6) for the attachment of a
collinear gluon to the hard subgraph. Define light-front coordinates such that w

μ
1 = δ

μ
+ and

w
μ
2 = δ

μ
−. Then for a collinear momentum k, its contraction with the gauge-fixing vector

is k · n � k+n− = k · w2n · w1. By scaling n we can set n− = 1, and therefore to leading
power, k · n � k · w2, i.e., we can replace n by w2 on collinear gluons. The w2 factor in the
K-gluon definition gives zero when contracted into the approximated propagator.

In the n · A = 0 gauge, a Wilson line in direction n is simply unity. So if this Wilson
line were used in the definition of a fragmentation function or parton density, the Wilson
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Fig. 12.9. Leading regions in gauge theory for one-hadron-inclusive cross section, now in
n · A = 0 gauge for case of (a) two and (b) more collinear groups.

line could be ignored in the n · A = 0 gauge. Therefore such a definition has the same form
as in a non-gauge theory.

But we still have a soft subgraph, unlike the case in a non-gauge theory. The resulting
leading regions are illustrated in Fig. 12.9. A further advantage of an axial gauge is that
Ward identities in a non-abelian theory are simple: they are essentially the same as in an
abelian theory, without the terms involving Faddeev-Popov ghosts.

On all of these points, the axial gauge is superior to the Feynman gauge. However,
one issue reverses the situation. This is that the necessary contour deformation out of the
Glauber region is often obstructed in axial gauge.

Recall that the Glauber region is where the longitudinal momentum of a gluon is
much less than its transverse momentum. The Ward-identity method to extract soft gluons
from a collinear subgraph uses an approximation of the Grammer-Yennie type. But the
approximation fails in the Glauber region. In Feynman gauge, the normal causal structure
of Feynman denominators allows a deformation out of the Glauber region; the argument
in Sec. 5.5.10 applies to the process we are considering, since all the partons are outgoing
from a single interaction point.

But in the axial gauge there are unphysical singularities 1/k · n in the gluon propagator,
and these have the potential to obstruct the contour deformation.

Consider, for example, the vertex graph Fig. 5.21 for the Sudakov form factor, which
also appears as a subgraph in hadron production in e+e− annihilation. In Feynman gauge,
we get out of the Glauber regions the gluon momentum k, by using any deformation of the
form

k+ �→ k+ + iC, k− �→ k− − iD, (12.48)

where both C and D are non-negative, and at least one is positive. In an axial gauge, we
have 1/k · n singularities, which are principal value, and therefore prevent any deformation
on k · n = k+n− + k−n+. The non-deformation can be satisfied by setting C/D = n+/n−,
which requires that n be time-like. If we use the center-of-mass frame, and choose n ∝ q,
then we need C = D, so that on the deformed contour the imaginary parts of k obey
�k0 = 0 and �k3 > 0. The gauge condition in use here is A0 = 0.
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More generally, as in Fig. 12.9, we can have extra collinear subgraphs, and multiple soft
gluon loops. Consider a soft momentum k routed out through one collinear subgraph and
back through another. Let the light-like directions for the collinear subgraphs be w1 and
w2. Then in the collinear subgraphs we have propagators like

1

(k1 − k)2 −m2 + i0
= 1

−2k · w1 × positive+ · · · + i0
, (12.49a)

1

(k2 + k)2 −m2 + i0
= 1

2k · w2 × positive+ · · · + i0
. (12.49b)

We avoid these singularities by deforming with imaginary parts such that �k · w1 < 0 and
�k · w2 > 0. In addition, we require �k0 = 0 to avoid the axial gauge singularities, and
then �k3 > 0. The Coulomb gauge, (10.156), is also compatible with such a deformation:
its unphysical singularities are not operative in the Glauber region, where k± � kT.

While this all appears to work for inclusive processes in e+e− annihilation, it does not
help in other processes we consider. For example, for SIDIS (Sec. 12.14) the avoidance
of poles in collinear propagators will restrict the deformations incompatibly with the axial
gauge. In an equivalent of (12.48), we will need D to be zero: k+, but not k−, is not to
be deformed. In the Drell-Yan and other reactions in hadron-hadron collisions (Ch. 14)
we will need more elaborate arguments. Different parts of the proof will need different
deformations, some on plus-components and some on minus-components of loop momenta;
such different deformations are prevented by an axial gauge.

The offending singularities for the axial gauge are in a gauge-dependent part of the
propagator, so their effects should cancel in the final result for a gauge-invariant amplitude.
What is not clear is how to make this demonstration while at the same time preserving the
rest of a factorization proof, and to the best of my knowledge has not been done.

So we conclude that for fully general and reliable proofs one should use Feynman gauge.
Even if we can avoid the problems of axial (or Coulomb) gauge for a subset of processes,
the methods of proof do not extend to other important cases.

In summary, here is a list of possible approaches, including some not mentioned
above:

• Time-like axial gauge. This gave the first good approximation to a proof (Collins and
Sterman, 1981) of factorization in e+e− annihilation. The leading regions and the Ward
identities are relatively simple, but the Glauber region cannot be handled for more general
processes.

• Coulomb gauge. The extra singularities in the gluon propagator are 1/k2 instead of
1/n · k, which improves the Glauber problem, but not sufficiently for a general process.
In addition, there are complications in setting up the Coulomb gauge in a non-abelian
theory.

• A non-covariant generalization of the Feynman-type gauges proposed by Sterman (1978,
Sec. V). The extra gluon connections between collinear and hard subgraphs are sup-
pressed, but the unphysical singularities are now off the real axis, so at a first approxi-
mation this allows a contour deformation out of the Glauber region. But the singularities
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are such as not to allow all the needed contour deformations, and definitely not in
semi-inclusive DIS.

• Light-cone gauge, where n is light-like. This suppresses extra connections from a
collinear to a hard subgraph, but only for one collinear direction. So this gauge is
of use in ordinary fully inclusive DIS, where the only direction of collinearity is that
of the target hadron. But the light-cone gauge does not help when there are multiple
directions of collinearity. This gauge also has problems with rapidity divergences, which
fail to cancel in transverse-momentum-dependent parton densities and fragmentation
functions (Ch. 13).

• Covariant gauge.
• A more recent and very popular approach is that of soft-collinear effective theory (Flem-

ing, 2009). See Sec. 15.9 below for my comments.

12.7 Unitarity sum over jets/sum over cuts

Before we go to the proof of factorization for the process (12.1), it is useful to examine in
its simplest setting a method that is repeatedly used in proofs of factorization. The method
is that of summing over cuts of a region subgraph (for a collinear or soft region) when
there are no detected final-state particles. The result is that momenta in the region subgraph
are not trapped in regions of low virtuality after the sum-over-cuts, whereas momentum
integrations are trapped for individual cut diagrams.

In this section, we examine the simplest case, which is for the collinear subgraphs
C(2), . . . , C(N) in the leading regions, Fig. 12.5, for a non-gauge theory. Once we have
proved the momentum integrals are not trapped in these subgraphs, we can absorb these
subgraphs in the hard subgraph, so that the effective leading regions are those in Fig. 12.2.
It has a single collinear subgraph, C(1), the one containing the detected hadron. Precisely
because the cut of C(1) is anchored to include the detected hadron, the sum-over-cuts
argument fails for this one subgraph.

We combine as a group the sum of region graphs that are related by moving the final-state
cut to cross different parts of the collinear subgraphs in Fig. 12.5. The cuts can be applied
independently to each collinear subgraph C(α). We use a version of the Cutkosky (1960)
rules to relate the sum-over-cuts of C(α) to corresponding uncut amplitudes:

(12.50)

In the overall center-of-mass frame, we write the momenta of the subgraph’s lines as
lαi = (Eαi, lαi), with the index i labeling the lines.

First we convert the Feynman graphs to time-ordered graphs (exactly as for x+ pertur-
bation theory in Sec. 7.2). The integrand in each term in time-ordered perturbation theory
corresponds to a sequence of intermediate states with energy denominators:

I (b) =
b−1∏
a=1

[
i

E − Ea + iε
(ig)

]
2πδ(E − Eb)

n∏
c=b+1

[
(−ig)

−i

E − Ec − iε

]
. (12.51)
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Here there is a set of n intermediate states, with state number b being cut. The part to the
right of the final-state cut is a complex-conjugated amplitude. The energy of state a is Ea

when all its lines are on-shell, and the external energy entering from the hard scattering
is E = k0

α . Multiplying the above formula is a common factor that depends only on the
3-momenta of the lines, and is independent of the position of the cut.

It is easily proved that the sum-over-cuts gives

n∑
b=1

I (b) = (ig)n−1
n∏

a=1

i

E − Ea + iε
+ (−ig)n−1

n∏
c=1

−i

E − Ec − iε
. (12.52)

The proof is made by using the identity

2πδ(E − Eb) = i

E − Eb + iε
+ −i

E − Eb − iε
, (12.53)

and showing that in the sum over b, there is a cancellation of all the resulting terms except
for the two on the r.h.s. of (12.52). Converting back to Feynman perturbation theory gives
(12.50).

We now use the same idea as with the e+e− total cross section in Sec. 4.4. This uses
the property that all the poles in E are on one side of the real axis in each uncut collinear
subgraph on the r.h.s. of (12.52). We arrange to deform the integration over E, so that the
contour no longer goes close to the poles. The propagators are now far off-shell, and we can
treat the collinear graphs C(2) to C(N) as part of the hard scattering. Effectively the leading
regions are of the form of Fig. 12.2, where the only collinear subgraph is the one containing
the detected hadron.

To implement the contour deformation, we use the averaged hadronic tensor defined in
Sec. 12.1.2. This enables us to route the total momentum kα of each collinear subgraph
through the hard scattering and out at the virtual photon vertex. The averaging function
is then f (

∑N
α=1 kα), and we do not have to route each kα back through another collinear

subgraph. The averaging function is slowly varying as a function of Q, and the hard
scattering involves dominantly highly virtual momenta, so neither obstructs the contour
deformation.

In reality, the hard subgraph can have collinear and soft singularities, but these
are suppressed by subtractions. When we deform the E integration for a collinear
subgraph, singularities in the hard scattering must be crossed. But the resulting con-
tributions are power-suppressed because of the subtractions, and we therefore ignore
them.

12.8 Factorization for e+e− → h(p)+X in gauge theory

The proof of factorization in Feynman gauge uses the methods of Ch. 10 supplemented by
the non-abelian Ward-identity results for K gluons in QCD given in Sec. 11.9. Given these
techniques and the associated graphical notation, the proof can be given quite quickly. Any
issues about the accuracy of the proof really concern the earlier work.
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Fig. 12.10. Momentum routing for Fig. 12.7. The gluon is treated as soft, and the quarks as
collinear in one of two directions.

A new feature relative to DIS is that the cancellation of the soft subgraphs occurs at a
late stage. Therefore much of the proof will apply equally to situations (Ch. 13) where the
soft cancellation does not happen because of more stringent conditions on the final state.

The proof starts from the leading regions symbolized diagrammatically in Fig. 12.4.

12.8.1 Definition of approximators

We now apply the principles for making the approximator for a region that we formulated
in Secs. 10.4 and 10.6.

Momentum routing

Soft loop momenta flow between the soft subgraph into collinear subgraphs. We define
them to flow outwards to the electromagnetic vertex. As illustrated in Fig. 12.10, to avoid
routing soft momenta back through the final state of a collinear graph, we route them out of
the electromagnetic vertex. This takes advantage of our definition (12.11) of averaging the
hadronic tensor with a test function. We label the collinear subgraphs by α: 1 ≤ α ≤ N ;
we let the momenta of the lines from H to Cα be kαi .

Light-like auxiliary vectors wα and w̃α for collinear subgraph C(α)

Auxiliary vectors wα and w̃α are defined as follows:

• For each collinear subgraph C(α), we define a characteristic momentum pα . For the
collinear subgraph C(1) that contains the detected hadron, we use p1 = p, the momentum
of the detected hadron. For the other collinear subgraphs, pα is the total final-state
momentum of the collinear subgraph, i.e., pα =

∑
i kαi .

• For each C(α), the corresponding light-like direction is

wμ
α =

Q√
2pα · q

[
pμ

α − qμpα · q/q2√
1− p2

αQ2/(pα · q)2
+ qμpα · q

q2

]
. (12.54)

In the center-of-mass frame, the direction of the 3-vector part is that of pα .
• The conjugate auxiliary vector is defined by

w̃μ
α =

qμ

wα · q −
wμ

α q2

2(wα · q)2
. (12.55)
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• For each collinear group, the auxiliary vectors can be regarded as defining light-front
coordinates in which (wμ

α )frame α = δ
μ
+ and (w̃μ

α )frame α = δ
μ
−. Note carefully that this is a

different frame for each collinear group.
• For use in the soft approximation, we generalize the definitions (10.15b) of n1 and n2.

For each α, we choose a rapidity parameter yα , and define a space-like vector by

nμ
α = wμ

α − e−2yα w̃μ
α . (12.56)

As in Sec. 10.4.2, the letter w denotes a light-like vector and n denotes a non-light-like
vector.

Approximators

We split the gluons connecting different subgraphs into K and G terms, as in Sec. 11.2.3:

• For a K gluon attaching collinear subgraph α to a hard subgraph H , we copy (11.32).

Hμ(kαi) C(α),μ(kαi) = Hμ(k̂αi)
k̂αi, μw̃ν

α

kαi · w̃α + i0
C(α),ν(kαi), (12.57a)

where

k̂
μ
αi =

wμ
α kαi · w̃α

wα · w̃α

. (12.57b)

This projects the gluon’s momentum onto direction wα .
• For G gluons and quarks, we project the momentum by (12.57b).
• For a quark exiting the hard scattering to collinear subgraph α, we project its Dirac spinor

onto a massless on-shell wave-function multiplying H by inserting a factor γ−γ+/2.
This is made relative to light-front coordinates defined by wα and w̃α . In covariant form,
the projector is /wα

/̃wα/(2wα · w̃α).
• For an antiquark exiting the hard scattering, we use the projector /̃wα /wα/(2wα · w̃α).
• At the coupling of a K gluon of S to collinear subgraph C(α), we denote the line’s

momentum (out of C(α)) by kSαi , and define the soft approximant by

C
μ
(α)(kSαi) Sμ(kSαi) = C

μ
(α)(k̂Sαi)

k̂Sαi, μnν
α

kSαi · nα + i0
Sν(kSαi), (12.58a)

where

k̂
μ
Sαi =

w̃μ
α kSαi · nα

w̃α · nα

. (12.58b)

This projects the soft momentum onto our defined conjugate direction for C(α), and uses
the non-light-like vector nα to cut off the rapidity divergence that would otherwise occur
at kSαi · wα = 0.

• The approximated momenta are also used in the test function f (q) = f (p + pX) in
(12.11). Thus the approximant changes f (p + pX) to f (

∑
α k̂α), where k̂α is the total

approximated momentum for collinear subgraph C(α).
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• Finally we redefine the hard-scattering factor by an extra factor:

H = basic definition of H ×
N∏

α=2

(
|k̂α|
|kα|

)n−2

. (12.59)

Here kα is the total final-state momentum of collinear subgraph C(α), and n is the space-
time dimension.

At this point (12.59) is a totally unobvious redefinition. Note that, in the collinear
limit, k̂α → kα , and the extra factor goes to unity. Hence the redefinition is one that is
allowed; it is a change of factorization scheme. Appropriate versions of the redefinition
will also appear, applied to smaller hard subgraphs, in the double-counting subtractions
defining the region terms CR�. The result is that the redefinition does affect the correct-
ness of the factorization formula, but only the precise definition of the factors. Notice
also that the redefinition involves only collinear but not soft momenta.

The rationale for the redefinition will appear in Sec. 12.8.5, where to get the most
desirable form of factorization we will change the variables from kα to k̂α . The redefinition
factor will cancel a part of the Jacobian for the change of variable. We will see that we
only apply the redefinition to collinear subgraphs without an observed hadron, i.e., the
case α = 1 is omitted from the product in (12.59).

For the Sudakov form factor, we also rescaled the external momenta of H ; see p. 329. We
do not need to do this at this point in our case.

With these definitions, the approximated hard subgraph does not depend on the soft
momenta, because a soft momentum in collinear subgraph α is approximated to be in
direction w̃α . This gives a zero contribution in the projection (12.57b) onto an approximated
momentum in H , because w̃ is light-like.

12.8.2 Extraction of collinear gluons from hard subgraph

We first extract the collinear gluons from the hard subgraphs.
The necessary result was given in Sec. 11.9.5, and stated graphically for the case of two

collinear groups in Fig. 11.15. We apply this result on both sides of the final-state cut in
Fig. 12.4, to obtain Fig. 12.11.

For example, suppose collinear subgraph C(1) has a quark entering it from the hard
subgraph. When the accompanying K gluons are extracted from H , they couple to a
Wilson line at the end of the quark line. On the left side of the final-state cut, the color
matrices in the Wilson line are those appropriate to make a gauge-invariant operator with
the ψ̄ field that creates the quark entering C(1). The Wilson line extends out to infinity in
the direction w̃1. It represents a source of the opposite color to the parton initiating the
collinear subgraph. Thus the Wilson line is an approximation to the rest of the event, seen
as recoiling against collinear system C(1). In the mathematics, we get the Wilson line from
graphs omitted from H because of the irreducibility requirements.

For a collinear subgraph initiated by an antiquark or a G gluon, the Wilson line has the
corresponding color representation, and similarly on the right of the cut.
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Fig. 12.11. Result of extraction of collinear K gluons from hard subgraphs in Fig. 12.4.
There are Wilson lines for each subgraph in the directions shown. The soft subgraph S
still couples to the collinear subgraphs. The little thick arcs on the hard subgraphs indicate
on-shell partonic lines.

In accordance with our definitions, soft subtractions are applied in each collinear sub-
graph, and these remove rapidity divergences.

12.8.3 Factorization of soft subgraph

Similarly, we apply the Ward-identity argument to the connections of the soft subgraph to
each collinear subgraph, to obtain Fig. 12.12.

Now in the extraction of collinear K gluons from a hard subgraph H , the external lines of
H are on-shell. So the Wilson lines in Fig. 12.11 arose from the lack of collinear-reducible
graphs in H . But for soft K gluons attaching to Cα , the irreducibility only concerns the
K gluons themselves. As we saw in Sec. 11.9.5, these by themselves give no contribution;
from the terms “missing” in the Ward identity due to irreducibility requirement we obtain
commutator terms that are themselves of the K-gluon form. The on-shell external lines of
C(α) in the final state give no contribution to the Ward identity.

On each side of the final-state cut, each C(α) has an external off-shell quark (or G gluon),
with a Wilson line to make a gauge-invariant operator. But graphs are missing where
external soft gluons directly couple to the Wilson line, since these did not come out of the
argument that derived the Wilson lines. However, an approximated soft gluon gives zero
when it attaches to the Wilson line, because the vertex for the Wilson line is proportional
to w̃α . The K gluon specified in (12.58) multiplies this by k̂Sαi , and gives zero since k̂Sαi is
in the light-like direction w̃α .
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Fig. 12.12. Result of extraction of soft K gluons from collinear subgraphs in Fig. 12.11.
The soft factor has a Wilson line for each external parton of the hard scattering, with
the appropriate color charge, e.g., (“3”, “8”). There is a non-trivial flow of color indices
between the hard subgraph, the soft subgraph, and the collinear subgraphs; see Fig. 12.13
below.

So we can add to Fig. 12.11 all graphs where the soft gluons attach to the Wilson lines
of C(α). After applying the usual Ward-identity argument, we find that the soft gluons are
moved to Wilson-line factors external to C(α), as in Fig. 12.12.

12.8.4 Color flow

The Wilson lines are matrices in color space, and their color representation and color flow
need attention. Each Wilson line of S has the color representation corresponding to the
color charge of the outgoing parton initiating the associated jet.

The Wilson line for the gluons attaching S to C(α) interposes itself between H and C(α),
as indicated in Fig. 12.13. We make a concrete illustration from the particular graph given
in Fig. 12.14(a), which shows an extract from a particular diagram for the process we are
analyzing. Diagram (b) shows one of the unapproximated graphs that are combined to give
diagram (a) (after the use of approximators and Ward identities). Corresponding to diagram
(a) is the formula

C(1)(k1,1, k1,2)μ
i

k1,2 · w̃1 + i0
(igw̃

μ
1 tα)(−ignν

1tβ)S(kS)ν
i

kS · n1 + i0
H (w̃ · (k1 + k2)).

(12.60)
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Fig. 12.13. Color flow between the hard subgraph, the soft subgraph S, and the collinear
subgraphs. The vertical dots near S indicate that it has multiple Wilson lines, one on each
side of the final-state cut for each C(α).

Fig. 12.14. (a) Specific example of Fig. 12.13. Each gluon is labeled with its momentum
and color index. (b) A graph that, after approximants and Ward identities are applied, would
contribute to (a).

The color charge (quark or antiquark) on a Wilson line is coded both in the ordering of the
color matrices and in the sign of the vertices.

Now that all soft gluon lines have been extracted from the collinear subgraphs C(α), each
C(α) becomes diagonal in color. This implies that we can rearrange the color flow as in
Fig. 12.15. After rearrangement, there is an average over the color of each C(α), i.e., a trace
over colors divided by Ncα , the number of colors for the parton initiating C(α). That is, Ncα

is 3 for the case of a quark or antiquark, but 8 for a gluon.
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Fig. 12.15. Color flow of Fig. 12.13 after use of color-singlet property of C1, with Nc1

being the number of colors for the primary parton initiating C1, which is a quark in the case
shown, with Nc1 = 3.

Then the color flow for the Wilson lines of S is direct from a Wilson line on the left of
the cut to the Wilson line on the right; the collinear subgraphs are completely factored out.
But the color flow remains entangled with the color structure of the hard scattering.

12.8.5 Factorization

We now have a factorized form for the hadronic tensor averaged with a function f (q):

Wμν([f ], p) =
∑
N≥2

N∏
α=1

⎡
⎣∑

jα

∫
dnkα

(2π )n
C(α),jα

(kα)

⎤
⎦∫ dnkS

(2π )n
Sj1,...jN

(kS)

×Hj1,...jα
(k̂1, . . . , k̂N ) f (k̂1 + . . .+ k̂N )

N∏
α=2

(
|k̂α|
|kα|

)n−2

. (12.61)

Here jα is the flavor of the parton initiating collinear subgraph C(α), kα is the total momentum
entering C(α), and kS is the total momentum entering the soft subgraph S; these momenta
are also the total final-state momenta of the subgraphs. The hard subgraph H depends on
the parton flavors and on the approximated momenta. Recall that the approximated k̂α is kα

projected by (12.57b) in a light-like direction appropriate for collinear subgraph C(α). The
dependence of S on parton flavors jα is only through the color of the partons (3 v. 3̄ v. 8).

In the final form of factorization, (12.13), we treat the hard scattering as behaving like
a cross section at the partonic level. For this purpose it is convenient to change variables in
(12.61) from kα to k̂α , and so we need to take account of the Jacobian of the transformation.

For the first collinear group, the axes w1 and w̃1 are determined by the detected hadron,
so we simply write

dnk1 = dk+1 dk−1 dn−2k1 T = dk̂+1 dk−1 dn−2k1 T . (12.62)
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Here we define light-front coordinates with respect to w1 and w̃1: k+1 = k1 · w̃1 and k−1 =
k1 · w1. Now the only dependence in (12.61) on k−1 and k1 T is in the collinear subgraph
C(1) itself. So we can short-circuit the integrals over these variables, restricting them to
C(1). This will enable us to convert C(1) to a fragmentation function defined with light-front
annihilation and creation operators, just as we did for parton densities. The integral over k̂1

gives the integral over z in the final factorization formulae, (12.13) and (12.21).
In contrast, the other collinear graphs have no fixed axes; the direction wα is determined

by the total final-state momentum kα itself, which is an integration variable. So we perform
a change of variable:

dnkα = dn−1 k̂α

2|k̂α|
2k+α dk−α

( |kα|
|k̂α|

)n−2

, (12.63)

where the light-front variables are now those local to C(α):

k̂+α = k+α = kα · w̃α = k0
α + |kα|√

2
=
√

2|k̂α|, (12.64a)

k−α = kα · wα = k0
α − |kα|√

2
. (12.64b)

The first factor on the r.h.s. of (12.63) is just the Lorentz-invariant phase space for a
massless parton out of the hard scattering. We will use the integral over k−α to convert
C(α) into a light-cone object, similarly to the fragmentation function. The hard scattering
is independent of k−α . However, the final factor in (12.63) arises from the Jacobian for the
change of variables, and it introduces extra dependence on k−α .

We now see the reason for introducing the extra factor in the definition (12.59) of the hard
factor. It is to cancel the inverse factor in (12.63). At this point we functionally differentiate
with respect to the test function f , to obtain a factorized form

Wμν(q, p) =
∫

dk̂+1
∑
j1

[∫
dk−1 dn−2k1 T

(2π )n
C(1),j1 (k1, p)

]

×
N∏

α=2

∑
jα

∫
dn−1 k̂α

2|k̂α|(2π )n−1

N∏
α=2

[
2k+α

∫
dk−α
2π

C(α),jα
(kα)

]

×
∫

dnkS

(2π )4
Sj1,...jα

(kS)(2π )nδ(n)

(
q −

N∑
α=1

k̂α

)
Hj1,...jα

(k̂1, . . . , k̂N ).

(12.65)

12.8.6 Soft cancellation

The soft factor in (12.65) and Fig. 12.12 has an unrestricted sum over cuts, and an
unweighted integral over its external momentum kS . I will now show that the result is
zero. One possible argument uses the methods of Sec. 12.7. But instead, we use a simpler
argument relying on properties of the Wilson lines in the soft factor’s operator definition.
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There is a slight complication because of UV divergences. As we know from Ch. 10,
there is a multiplicative renormalization to make finite virtual graphs for the soft factor.
Because of the integral over all kS , in (12.65), real-emission graphs for the soft factor also
acquire logarithmic UV divergences, which need to be renormalized. Our proof that the
soft factor is unity will initially apply to the bare soft factor. The result for the bare factor
implies that the UV divergences also cancel between real and virtual corrections.

On each side of the final-state cut we have a product of Wilson lines all going out from
the same point to infinity. Because of the integral over all kS the common point is the same
on both sides of the cut. Thus the integrated soft factor is

S0,integrated
def=
∫

dnkS S =
〈

0|M1T

(∏
α

WR(jα )(+∞, 0; nα)

)

× T̄

⎛
⎝∏

β

WR(jβ )(+∞, 0; nβ )†

⎞
⎠M2|0

〉
. (12.66)

Here M1 and M2 are the color matrices coupling the soft factor to the hard factor. The
Wilson line WR(jα )(+∞, 0; nα) goes from the origin towards infinity in direction nα and
has the color representation R(jα) corresponding to collinear subgraph C(α) with its parton
of flavor jα . The color index at its right-hand end (at infinity) couples to the corresponding
index of the conjugate Wilson line WR(jα )(+∞, 0; nα)†.

The Wilson lines are space-like, so the time-ordering and anti-time-ordering prescrip-
tions give the same results, since gluon fields commute at space-like separation. Then the
Wilson lines cancel: WR(jα )(+∞, 0; nα)WR(jα)(+∞, 0; nα)† = 1, and the bare soft factor
(12.66) is unity. Although there are UV divergences in individual cut Feynman graphs,
the divergences cancel in the sum over all graphs and cuts. Therefore no overall minimal-
subtraction counterterms are needed, and the renormalized soft factor is also unity.

As explained in a similar case in Ch. 10, the collinear factors are equipped with soft
subtractions, and the collinear factor is the product of an unsubtracted collinear factor
and a soft factor related to (12.66). Again the complete soft factor is integrated over all
momentum, so it gives unity; thus the collinear factors are effectively unsubtracted.

12.8.7 Collinear cancellation

For each of the collinear factors C(2), . . . , C(N) without a measured hadron, we have an
unrestricted sum over cuts, and then an integral over k−α :

(12.67)

Here, k±α refers to components defined in local light-front coordinates, (12.64).
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We now show that there is a suppression of (12.67) in the collinear region it was designed
to treat. At first sight, it would be sufficient to appeal to the sum-over-cuts argument of
Sec. 12.7. Indeed this argument works in a non-gauge theory, where we just have cut graphs
for a full parton propagator, as in (12.50). We found that in each of the terms on the r.h.s. of
(12.50) the k−α contour is not trapped. Thus we could deform the integral over k−α to a
semicircle at infinity, to obtain a purely UV contribution.

This argument is broken by the Wilson lines in (12.67), for a somewhat non-trivial reason.
The Wilson lines on the left and right of the final-state cut carry any value of momentum;
loop momenta circulate freely through them. To make the sum-over-cuts argument work,
we must also include a double line to continue the Wilson line across the final-state cut:

(12.68)

But to agree with the calculation in (12.67), the cut Wilson line must carry exactly zero
4-momentum, i.e., a cut Wilson line with momentum k′ must be defined to have the
value (2π )nδ(n)(k′). In contrast, to apply the sum-over-cuts argument, the cut line needs to
obey

(12.69)

That is, although the delta function forces one component of k′, viz., k′ · w̃α , to be zero, the
other components can have any value.

We solve this problem in two stages. First we show that if the quantity defined in (12.67)
is integrated over kα T, then the cut Wilson line can be treated as being given by (12.69).
The resulting quantity, (12.68), is one to which the sum-over-cuts argument can be applied,
so that it gives no trap of the integration momentum in a non-UV region. The second
stage of the argument is to deduce that when the collinear quantity without the transverse-
momentum integral is inserted in the factorization formula, there is a power-suppression of
the collinear region.

When we use an integral over kα T as well as k−α applied to the cut graph in (12.67),
we can choose to route these momenta through the cut Wilson line. As we explained,
the cut Wilson line at this point is effectively replaced by (2π )nδ(n)(k′). We apply n− 1
dimensions of the delta functions to the integrations over kα T and k−α . The rest of the
Wilson line does not depend on these two variables. There remains in the cut Wilson line
the factor 2πδ(k′ · w̃α) = 2πδ

(
k′+

)
, which is just the rule (12.69) that we needed to use the

sum-over-cuts argument. What we have just shown is that the integral of (12.67) over kα T

is exactly the cut diagram (12.68) without any external integral at all. What was an external
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integral over kα T and k−α is now an internal loop integral routed from the C(α) part of the
graph back across the cut Wilson line.

The resulting quantity, which we will call D(α), depends only on k+α , and the sum-over-
cuts argument, as in Sec. 12.7, converts it to a difference of uncut amplitudes,

(12.70)

and for each term there is no trapping of the momentum integration in the collinear region.
But this result is not sufficient for our purposes, since we defined coordinates for the

collinear subgraph with respect to its final-state momentum (without the Wilson line). Thus
kα T is actually fixed at zero in the factor C(α) in the factorization result (12.65). Now, at an
exact collinear limit, transverse momenta are zero. The cancellation of collinear singularities
in the integrated quantity (12.70) is between terms that have final states that differ by a shift
in transverse momentum, which vanishes in the collinear limit. In the factorization formula
(12.65) there is an integral over the center-of-mass angles of the collinear graphs C(2), . . . ,
C(N), and the remaining angular dependence is smooth dependence in the hard factor. This
is sufficient to get the desired collinear cancellation.

The overall result is that the only genuinely collinear factor is C(1), which contains the
detected hadron. The rest of the graph can be treated as making a hard subgraph. A more
direct proof would be desirable.

12.8.8 Definitions of fragmentation functions

From the approximant for attaching the subgraph C(1) to the hard subgraph, we obtain the
operator definitions of the fragmentation functions. The operators are the same as in parton
densities (Sec. 7.5), since the approximants are the same. The normalizations are the same
as in non-gauge theories, and therefore correspond to a number density interpretation.

We define the bare fragmentation function for a quark of flavor j by

d(0) h/j (z) = Trcolor

Nc, j

TrDirac

4

∑
X

zn−3
∫

dx−

2π
eik+x−

× γ+ 〈0| T̄ W (∞, x−/2; w̃1) ψ
(0)
j (x/2) |p,X, out〉

× 〈p,X, out| T ψ̄
(0)
j (−x/2) W (∞,−x−/2; w̃1)† |0〉

= Trcolor

Nc,j

TrDirac

4
zn−3

∫
dk− dn−2kT

(2π )n
γ+ (12.71)

where xμ = (0, x−, 0T). The Fourier transform implements the integral over k1 T and k−1 ,
and we now drop the subscript “1” on the external momentum of C(1).
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This definition differs from that in a non-gauge theory, (12.40), only by having a Wilson
line going out to future infinity in the light-like direction w̃1 from the quark field. In
principle, there are rapidity divergences associated with the light-like Wilson line and
these are to be canceled by appropriate subtractions, which amount to a soft factor in the
fragmentation function. But according to Sec. 12.8.6 this soft factor is unity, so that rapidity
divergences cancel. This happens since we integrated over all transverse momentum.

When we go to the physical dimension n = 4, there are UV divergences, which we define
to be renormalized away. Thus the final definition of the finite renormalized fragmentation
function is given by (12.15), with the QCD definitions of bare fragmentation functions.

The antiquark fragmentation function is defined similarly.
The bare gluon fragmentation function is

d(0) h/g(z) = zn−3

Nc, gluon(n− 2)k+
∑
X

∫
dx−

2π
eik+x−

× (−gλλ′) 〈0| G+λ
(0), b(−x/2)

[
WA(∞,−x−/2; w̃1)†

]
bc
|p,X, out〉

× 〈p,X, out| [WA(∞, x−/2; w̃1)
]
cd

G+λ′
(0), d (−x/2) |0〉 , (12.72)

with again renormalization to be applied by (12.15). The field strength tensor G+λ is
used for the same reason explained in Sec. 11.3 for the gluon density: it corresponds to a
collinear G gluon, (11.6), attaching to the hard scattering. Since G++ = 0, the only terms
in the Lorentz trace are for transverse indices. Then the overall factor 1/(n− 2) in (12.72)
gives an average over transverse gluon polarizations. The Wilson lines WA are of course in
the adjoint representation appropriate for gluons.

Feynman rules for the above definitions can be read off those for parton densities, with
minor obvious variations. Renormalization is applied, leading to DGLAP equations, as
stated in Sec. 12.2.2, with the derivations being like those for parton densities, Sec. 11.4.

12.8.9 Final state in fragmentation function

The final state |p,X, out〉 in the fragmentation functions has non-zero color, because the
field that creates it has color. This is obviously a wrong situation non-perturbatively in a
confining theory. A full resolution of the issue has not appeared in the literature. But the
following remarks suggest a possible approach.

The Wilson line represents a color source moving in the opposite direction to the parton
initiating the fragmentation function. The color source is non-dynamical, moving along a
fixed line, so let us call it a pseudo-parton. In the definition of a fragmentation function we
treat the operator on the right as creating a state consisting of a parton and a pseudo-parton
in an overall color singlet state. The pseudo-parton propagates to future infinity in the
opposite direction to the jet that we can consider as being initiated by the regular parton.
Then the final state consists of the ordinary hadrons in the jet, and at the opposite end a
pseudo-meson consisting of the pseudo-parton and a regular parton. There are in addition
some hadrons of intermediate rapidity. In some sense we consider the state space of QCD
to include states of pseudo-partons.
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12.8.10 Final result for factorization

Using these definitions of the renormalized fragmentation functions, together with the
cancellation in the soft factor, we convert the factorization formula (12.65) to the form
already stated in (12.13), (12.21), and (12.24). The factorization formula has the same form
as in a non-gauge theory. However, the derivation was much more complicated.

12.9 Use of perturbative calculations

To apply the factorization formalism phenomenologically, we need perturbative calcula-
tions of the hard-scattering coefficients and of the evolution kernels of the fragmentation
functions. These are independent of the choice of the detected particle. So, as explained in
Sec. 9.3.1 for DIS, a convenient method of calculation is to choose the detected particle to
be an on-shell quark or gluon, and then to perform low-order perturbative calculations of
the hadronic tensor Wμν and of the fragmentation functions. The factorization formula and
the evolution equations allow us to deduce the hard-scattering coefficients and the evolution
kernels.

We perform these calculations with masses set equal to zero, and with dimensional
regularization applied. There are soft and collinear divergences at the physical space-time
dimension, but the divergences cancel in the hard scattering and the evolution kernels.

12.10 One-loop renormalization of fragmentation function

In this section I summarize one-loop calculations of the fragmentation functions for mass-
less partons. We will deduce the renormalization of the fragmentation functions, from
which follows the DGLAP kernels. At one-loop order, these are in fact equal to those for
the parton densities. The calculations will also be used in the subtractions in calculations
of the hard-scattering coefficients, Sec. 12.11.

12.10.1 Quark in gluon

There is one graph, Fig. 12.16, for the fragmentation function of a gluon into a quark. From
the Feynman rules (cf. Fig. 7.12) for (12.72) we get

g2

16π2
d

[1]
q/g(z) = g2μ2εz1−2ε

Nc, g(2− 2ε) (2π )4−2ε

∫
dk− d2−2ε kT

(2π )δ
(
(k − p)2

)
(k2)2

× Tr tαtα Tr

[
−k+/pγ μ(/k − /p)γμ + /p/k(/k − /p)γ+

+ /pγ+(/k − /p)/k − k2

k+ /pγ+(/k − /p)γ+
]
+ UV counterterm

= g2TF (4πμ2/z2)ε

8π2�(1− ε)

[
1− 2z(1− z)

1− ε

] ∫ ∞
0

dk2
T(k2

T)−1−ε + UV c.t. (12.73)
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Fig. 12.16. One-loop Feynman graph for fragmentation function of quark in gluon.

Here the superscript “[1]” denotes “one-loop”, and the group-theory factor is TF = 1
2 in

QCD. The integral in the last line is zero. Being scale-free, it has a cancellation between
equal and opposite divergences at zero and infinite kT. The counterterm is computed from
the large kT part, giving

g2

16π2
L

[1]
q/g(z) = −g2TF [z2 + (1− z)2]

8π2

Sε

ε
, (12.74)

in the notation of (12.15), with Sε given in (A.41).
This is also the UV-renormalized value of the fragmentation function:

g2

16π2
d

[1]
q/g(z) = −g2TF [z2 + (1− z)2]

8π2

Sε

ε
. (12.75)

This exhibits the collinear divergence in the massless fragmentation function, and will be
used in a subtraction term for the hard-scattering coefficient C

μν
g .

12.10.2 Quark in quark

The one-loop graphs for the fragmentation function of a quark into a quark are shown in
Fig. 12.17. All are diagonal in quark flavor.

Graph (a)

This is

g2

16π2
d

[1,a]
q(j ′)/q(j )(z) = g2μ2ε δj ′j z1−2ε

4Nc,q (2π )4−2ε

∫
dk− d2−2ε kT (2π )δ

(
(k − p)2

)

× −Tr γ+/kγ μ/pγμ/k

(k2)2
Tr tαtα + UV counterterm

= g2CF δj ′j (4πμ2)ε

8π2

(1− ε)(1− z)z−2ε

�(1− ε)

×
∫ ∞

0
dk2

T(k2
T)−1−ε + UV c.t. (12.76)

The minus sign in the Dirac trace is from the numerator of the gluon propagator. Again,
the value of the integral is zero, while canceling its UV divergence gives the counterterm:

UV c.t. of (a) = −g2CF δj ′j (1− z)

8π2

Sε

ε
. (12.77)
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Fig. 12.17. One-loop Feynman graphs for fragmentation function of quark in quark; “h.c.”
means “hermitian conjugate”.

Graph (b)

To make the relation to the Feynman rules for the Wilson line explicit, I write graph (b) in
more detail, listing the individual propagators and vertices.

g2

16π2
d

[1,b]
q(j ′)/q(j )(z) = g2μ2ε δj ′j z1−2ε

4Nc,q (2π )4−2ε

∫
dk− d2−2ε kT

× Tr
Dirac

Tr
color

γ+
i

k+ − p+
(igtαgμ+) /p (−igtα)†γ ν −i/k

k2 − i0

× (−gμν)(2π )δ
(
(k − p)2

)+ UV counterterm

= g2CF δj ′j (4πμ2)εz−2ε

8π2�(1− ε)

z

1− z

∫ ∞
0

dk2
T(k2

T)−1−ε + UV c.t. (12.78)

Notice that the Wilson line has a vertex igtα rather than −igtα , because it corresponds to
an outgoing anti-triplet object. There are reversed i0s on the right of the final-state cut, as
usual. The rapidity divergence of this graph manifests itself in the 1/(1− z) singularity,
which gives a divergence when the graph is integrated with a test function f (z). The
hermitian-conjugate graph gives the same value. The UV counterterm for the two graphs is

UV c.t. of (b)+(b)† = −g2δj ′jCF

4π2

z

1− z

Sε

ε
, (12.79)

Remainder of calculation

The virtual graph (c) involving the Wilson line has the same expression as the corresponding
graph in the parton-density calculation (9.11). The value of the graph is again zero. In the
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UV counterterm there is an integral over the momentum fraction α of the quark, and the
integral has a divergence at α = 1.

Finally, also exactly as in the parton-density calculation, the self-energy graph gives
a zero contribution. But to get a correctly renormalized fragmentation function we add a
contribution from the wave-function renormalization factor.

To see the expected cancellation of the rapidity divergence between real and virtual
corrections, we use an integration with a test function, as in Sec. 9.4.4, after which the
1/(1− z) singularity becomes a plus distribution. The result for the counterterm is

g2

16π2
L

[1]
q/q(z) = − g2

16π2
CF

Sε

ε

[
− 4

(1− z)+
+ 2+ 2z− 3δ(z− 1)

]
. (12.80)

This is also the value of the graphs plus counterterms, to be used in subtractions in the hard
scattering.

12.10.3 Gluon in quark, and gluon in gluon

The one-loop fragmentation functions to a gluon, d
[1]
g/q(z) and d

[1]
g/g(z), can be computed

similarly. The calculation is left as an exercise.

12.10.4 DGLAP kernels

The one-loop renormalization counterterms are exactly the same for the fragmentation
functions as those we calculated in Sec. 9.4 for the parton densities. It follows that the
DGLAP evolution kernels are the same, so that the values in (9.6), (9.23), (9.24), and (9.25)
also apply to fragmentation functions.

This relation does not hold at higher order. For the two-loop values see Furmanski and
Petronzio (1980); Curci, Furmanski, and Petronzio (1980); Floratos, Kounnas, and Lacaze
(1981); Kalinowski, Konishi, and Taylor (1981); Kalinowski et al. (1981). Note that there
are misprints in the published version of Furmanski and Petronzio (1980).

12.11 One-loop coefficient functions

I now summarize a calculation of the one-loop coefficient functions for e+e− → hX. The
calculation is phenomenologically significant, and it will also illustrate the principles to be
applied.

Thus let Wμν
partonic j be defined like the hadronic tensor, but with the detected particle being

an (on-shell) massless parton of flavor j , so that the process is e+e− → jX. This object
exists if we restrict ourselves to perturbation theory and use dimensional regularization to
regulate the collinear and soft divergences. Factorization (12.21) gives

W
μν
partonic j (p, q) =

∑
j ′

∫ 1+

x−

dz

z2
dj/j ′ (z; μ) C

μν
j ′ (k̂, q; g(μ), μ). (12.81)
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Both W
μν
partonic j and the partonic fragmentation functions can be computed from Feynman

rules. From the expansion to one loop, we find

W
[1] μν
partonic j (p, q),=

∑
j ′

1

x
d

[1]
j/j ′ (x; μ) C̃

[0] μν
j ′ (p/x, q)+ C

[1] μν
j (p, q), (12.82)

where the superscripts “[0]” and “[1]” denote the order of perturbation theory, and C̃[0]

denotes the lowest-order coefficient function (12.26) without its δ(x/z− 1) factor. From
this we see that the one-loop coefficient function is its unsubtracted counterpart W

[1] μν
partonic j

minus a one-loop partonic fragmentation function, as calculated in Sec. 12.10. The formula
is easily converted to one for the structure functions F1 and F2.

For W
[1] μν
partonic j (p, q), the graphs are exactly the same as for the calculation of the e+e−

annihilation total cross section in Sec. 4.2. We simply have to remove the integral over the
momentum of the detected parton, adjusting the normalization to be that of Wμν .

Thus for the case of the inclusive production of a quark, consider the real-gluon-emission
graphs of Fig. 4.8(a) and (b), which previously gave (4.27). Now, we replace the 3-body
phase-space integral (A.44) by

1

4π

∫ 3∏
i=2

d3−2ε ki

(2π )3−2ε2|ki | (2π )4−2εδ(4−2ε)(q − p − k2 − k3)f ( p, k2, k3)

= (4π )εQ−2ε

32π2�(1− ε)
Ang. avg.

∫ 1

0
dα
[
(1− x)α(1− α)

]−ε
f ( p, k2, k3). (12.83)

Here the quark momentum k1 is replaced by p, and the scalar variables in (4.27) are written
as y1 = 1− x, y2 = xα, and y3 = x(1− α). There also appears the factor 1/(4π ) from the
definition (12.3) of Wμν .

One way of simplifying the calculation is to use scalar projections of the hadronic tensor,
−gμνW

μν and pμpνW
μν , from which can be deduced results for the structure functions

and for dσT / dx and dσL / dx. At the end of the calculation, the variable x will be replaced
by x/z for use in the factorization formulae.

The details of the calculation are left as an exercise. The results, in the MS scheme, are
given in Rijken and van Neerven (1997), where also the NNLO coefficients are calculated.
The NLO coefficients were first calculated by Baier and Fey (1979); Altarelli et al. (1979).

The variables in (12.83) were suitable for the quark coefficient function. The antiquark
coefficient function is equal. The gluonic coefficient function is obtained by applying the
variables α and x to a different permutation of partonic momenta: y1 = xα, y2 = x(1− α),
and y3 = 1− x. As in Fig. 4.8, the labels 1, 2, and 3 refer to the quark, antiquark, and gluon
respectively.

12.12 Non-perturbative effects and factorization

Gupta and Quinn (1982) pointed out a problem with factorization in the case that QCD is
replaced by a theory in which all the quarks are heavy. Initially a quark-antiquark pair that
is produced in e+e− annihilation at large Q/M goes outward at almost the speed of light. If
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the quark and antiquark were to hadronize into a jet of color-singlet hadrons, there would
need to be production of quark-antiquark pairs in the color flux tube joining the pair. But
since all quarks are heavy, this is a slow weak-coupling process, governed by αs(M). At the
same, the gluonic non-perturbative interaction is still effective, and will tend to bring the
quark and antiquark back. In the language of Sec. 4.3.1, the elastic-spring picture would
likely be a better approximation than the breakable-string picture that appears to be valid
in real QCD with its light quarks. This would break factorization for the inclusive hadron
cross section; for example the direction of the jet and the hadrons in it would not correspond
to the direction of a parton produced at short distances.

Now our proof of factorization used the structure of momentum regions that is seen in per-
turbation theory. So an important issue of principle is to what extent non-perturbative effects
change the results. This is a far-from-completely understood subject. It would seem best to
consider the process in coordinate space. Then the breakable-string picture would appear
to be compatible with preserving the factorization structure seen in perturbation theory.

This led Gupta and Quinn to an interesting question. Suppose an experimental test were
made of a perturbatively calculated jet cross section or of a factorized hadron-production
process such as we treated in this chapter, and suppose that experiment and theory sub-
stantially disagreed. Would this count as evidence against QCD? Gupta and Quinn argued
cogently that it would not, by itself, falsify QCD. The reason is that they could show a
counterexample where the theoretical methods are violated non-perturbatively without any
problem with the perturbative calculations.

What would actually be falsified would be the combination of QCD and the (mostly
implicit) assumptions about non-perturbative physics used in deriving factorization etc.

In the time since Gupta and Quinn (1982), there have be many successful comparisons
of QCD predictions with data. So we should not count all of these successes as successful
predictions of QCD itself. An isolated single experiment in this area does not test QCD.
Some of the results should be counted as establishing the breakable-string picture. Then
the other experiments can be regarded as QCD tests.

At the present time, one must regard QCD as being very well established. Failure of
a comparison between QCD predictions and experiment is highly unlikely to impinge on
QCD itself. Depending on the situation, much more likely situations would involve any
or all of: (a) problems with the experiment itself, (b) problems with more exotic QCD
methods, and (c) physics beyond the Standard Model.

12.13 Generalizations

Although the last part of the proof in Sec. 12.8 was specific to the one-particle-inclusive
cross section, the bulk of it applies to much more general situations in e+e− annihilation.

12.13.1 Multiparticle cross sections

Consider an inclusive cross section differential in more than one hadron. We first sup-
pose the particles are all at wide angles with respect to each other. In that case, in the
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Fig. 12.18. Three-jet configuration with registered particles (thick lines) in two of the jets.
The line lengths indicate momenta.

leading-region analysis, each of the particles arises from a different collinear subgraph. An
example of such a final-state configuration is shown in Fig. 12.18.

We simply apply the same method of proof as for the single-particle-inclusive cross sec-
tion. For each measured particle its collinear subgraph becomes a fragmentation function,
and we have the factorization property

dσ∏Np

α=1(d3 pα /E pα
)
=

Np∏
α=1

⎡
⎣∑

jα

∫
dzα

z2
α

dhα/jα
(zα)

⎤
⎦ dσ̂ partonic, subtracted∏Np

α=1(d3kα /Ekα
)
, (12.84)

with hadron and parton 3-momenta related by pα = zαkα . We treat this as a partonic cross
section convoluted with a number density for the partons to make the measured hadrons.
As usual, the partonic cross section is subtracted.

Each of the fragmentation functions contains an integral over its parent parton’s minus
and transverse momentum (defined with respect to the hadron in the fragmentation func-
tion). As in the one-particle-inclusive cross section, we use approximated parton kinematics
for the hard scattering. That works when the hadrons are at wide angle, since it is equivalent
to a small shift in the hadronic momenta. For example a transverse momentum of order �

corresponds to an angular shift of order �/Q.
(The reader may point out that the integral over partonic momenta also extends to large

minus and transverse momenta, where the approximation is always bad. A reminder is
needed that within the subtraction method, all that is necessary is that the approximant be
accurate to order kT/Q and k−/Q for its design region. As the distance of momenta from
the skeleton of some region R increases, so does the error in the region’s approximant TR .
But, as illustrated in Sec. 10.2, the increasing errors are compensated by the terms for larger
regions together with their double-counting subtraction terms.)

12.13.2 Back-to-back region

But when the detected hadrons are almost back-to-back, as in Fig. 12.19, the neglect of
partonic transverse momentum in the hard scattering is no longer correct, even in the
collinear region. The situation therefore needs a somewhat different kind of factorization,
which we will treat in Ch. 13.

Alternatively, we can integrate over the angle between the measured particles, averaging
over the back-to-back region with a suitably broad function. At this point, the neglect of
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Fig. 12.19. Two-jet configuration with a registered particle (thick lines) in each jet.

partonic transverse momenta in the averaging function regains its accuracy in the collinear
region, so that we can continue to use integrated fragmentation functions.

12.13.3 Multiparticle fragmentation

Another simple generalization is when two (or more) measured hadrons are approximately
parallel. Then they come out of a single collinear subgraph.

This situation is dealt with by an elementary generalization (Konishi, Ukawa, and
Veneziano, 1978) of the definitions of fragmentation functions. For example, consider the
case of two measured hadrons of momenta p1 and p2. In the final state in a definition
like (12.35), we replace |p,X, out〉 〈p,X, out| by |p1, p2, X, out〉 〈p1, p2, X, out|. At
the partonic end of the fragmentation function, nothing changes. So all the issues about
renormalization, DGLAP evolution, and the construction of a hard-scattering coefficient
function are unchanged. The fragmentation function becomes a function of more variables,
representing the kinematics of p1 and p2 relative to the parton.

A significant use of this idea is in transverse-spin physics. With fragmentation to a
single pion, there is no polarization dependence of the fragmentation function; only the
unpolarized fragmentation functions are non-zero. But with two-particle fragmentation, a
transversely polarized quark can give an azimuthal dependence of the form

A+ B cos φ. (12.85)

Here φ is the angle in the transverse plane between the transverse-spin vector of the quark
and the normal to the plane of the two measured pions. The coefficient A is proportional
to the ordinary unpolarized fragmentation function, while B is proportional to a kind of
polarized fragmentation function that was proposed in Collins, Heppelmann, and Ladinsky
(1994). It can be probed in e+e− annihilation, because there is a correlation of the transverse
spins of the quark and antiquark in the lowest-order graph. Therefore the polarized dihadron
fragmentation function appears in the factorization theorem for e+e− annihilation to four
pions, with the pions grouped in two small-angle pairs (Artru and Collins, 1996). The
function also appears in factorization for DIS with two measured hadrons in the final state
when the target hadron is transversely polarized.

Data on the two-hadron fragmentation function have recently become available:
Airapetian et al. (2008); Vossen et al. (2009); Wollny (2009). Fits have been made by
Bacchetta et al. (2009).
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12.13.4 Jet cross sections

For the e+e− annihilation total cross section to hadrons, we used a sum over all final states to
get a perturbatively calculable IR-safe cross section. Similarly, in inclusive cross sections,
we used a similar sum to obtain cancellations of IR-sensitive parts of the soft factor and of
those collinear factors that did not couple to measured hadrons.

The cancellations involve collinear and soft interactions. In the exact collinear (or
soft) limit, these interactions cause transitions between different final states with the same
momentum. This suggests a general strategy to obtaining perturbatively calculability by
defining IR-safe jet cross sections. These are computed from the angular pattern of energy
flow, and do not depend on how the energy is split among particles.

A simple example is a calorimetric cross section (Sterman, 1996) in e+e− annihilation.
Here we use a cross section weighted by a suitable function S of the momenta of the
particles in the final state:

σS =
∑

n

∫
dτn

dσ

dτn

Sn(p1/Q, . . . , pn/Q), (12.86)

where n is the number of hadrons in the final state, and dτn represents the element of n-body
phase-space. The weight function Sn is defined for any n-body configuration.

The cancellations needed for IR safety of the cross section σS occur if (Sterman, 1996)
“the weight function does not distinguish between states in which one set of collinear parti-
cles is substituted for another set with the same total momentum, or when zero-momentum
particles are absorbed or emitted”. Mathematically this is formulated as follows:

• The weighting functions are smooth.
• They are symmetric functions of their arguments.
• For massless momenta, they obey

Sn(p1/Q, . . . , pi/Q, . . . , pn−1/Q, λpi/Q)

= Sn−1(p1/Q, . . . , pi(1+ λ)/Q, . . . , pn−1/Q), (12.87)

with λ being any real parameter λ ≥ 0.

The weighting functions are defined to be functions of momenta scaled by Q. This matches
the Libby-Sterman analysis, since the cancellations needed for IR safety occur in a fixed
region of the scaled momenta. Smoothness of the weighting functions is needed because
the necessary cancellations occur in a neighborhood of the massless PSS configurations.

In practice, two rather different approaches are used instead, which more directly probe
the jet structure of final states. One is to define global measures of the jet structure of a final
state. A classic example is thrust,1 defined on an n-particle state by

T
def= 1∑

i | pi |
max

n̂

n∑
i=1

| pi · n̂|, (12.88)

1 The definition given here is the current standard one, and is based on a slightly different definition by Farhi (1977).
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with the maximum being over unit 3-vectors n̂ in the overall center-of-mass frame. The
direction that gives the maximum is called the thrust axis. Thrust has a maximum value
of unity, when a final state has a perfect 2-jet configuration, i.e., some of the momenta are
exactly aligned in one direction and the others are exactly aligned in the opposite direction.
A spherically uniform distribution of momenta gives T = 1

2 .
Applying this definition of thrust as a weight function gives the average value of thrust, a

measure of the average 2-jet-likeness of final states. Commonly a cross section differential in
thrust is measured, e.g., Bethke et al. (2009). Showing that the differential thrust distribution
is IR safe requires a generalization of the previous discussion.

Perhaps the most common approach is to define jets directly by grouping measured
hadrons into clusters by some “jet algorithm”. The clusters are labeled as jets, and cross
sections differential in jet momenta are measured. In a leading-order approximation, a jet’s
momentum is close to its parent parton’s momentum as in Fig. 2.3. It is quite non-trivial to
determine whether a particular jet algorithm is IR safe. An important practical constraint
is that the algorithm should be suitable for implementation both in experimental analyses
and in theoretical calculations. See Salam (2010) for a recent review.

12.14 Semi-inclusive deeply inelastic scattering

Another classic process where fragmentation functions appear is semi-inclusive deeply
inelastic scattering (SIDIS), i.e., DIS differential in one (or more) hadrons in the final state,
e.g., e(l)+ P → e(l′)+ π (ph)+X, Fig. 12.20.

12.14.1 Kinematics and structure functions

For the kinematics, we need to supplement the variables for DIS by a specification of the
momentum of the outgoing hadron. In the Breit frame, we write

q =
(
−xP+,

Q2

2xP+
, 0T

)
, (12.89a)

P =
(

P+,
M2

2P+
, 0T

)
, (12.89b)

ph =
(

p2
h T +m2

h

2p−h
, p−h , ph T

)
. (12.89c)

For the independent scalar variables of the hadronic part of the cross section, we use x and
Q as usual, together with

z = P · ph

P · q �
p−h
q−

, | ph T|2 � z2Q2 + 2zq · ph, (12.90)

and the azimuthal angle φh of ph T. The approximations in (12.90) are valid when masses
can be neglected. The standard specification of the angle is given by the Trento convention
(Bacchetta et al., 2004); the angle is relative to the lepton plane: Fig. 12.21.
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Fig. 12.20. SIDIS cross section.

Fig. 12.21. SIDIS kinematics, from Bacchetta et al. (2004). This diagram is given in the
target rest frame, and gives the Trento convention for defining the azimuthal angles of
the measured outgoing hadron and of the target’s spin vector. (Copyright (2004) by The
American Physical Society.)

The significance of the z variable is given in the parton-model approximation applied to
Fig. 12.22. Viewed in the Breit frame, the outgoing quark is approximately light-like, k + q

� (0, q−, 0T). Thus the experimentally measured variable z approximates the fractional
momentum of the detected hadron relative to its parent quark, just as x approximates the
fractional momentum of the struck quark k relative to the target hadron.

Given the basic meaning of a fragmentation function as a number density for a hadron in
a parton-induced jet, we immediately deduce a parton-model formula for the cross section
integrated over the transverse momentum ph T of the detected hadron:

dσ

dx dy dz
� 4πα2

yQ2
(1− y + y2/2)

∑
j

e2
j fj (x)dh/j (z). (Parton model) (12.91)

This is obtained by appending fragmentation functions to the parton model for inclusive
DIS, from (2.22) and (2.29), with neglect of masses. As usual y = q · P/l · P � Q2/(xs).
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Fig. 12.22. Parton model for SIDIS.

A general structure function analysis is more complicated than for ordinary DIS, because
of the extra vector. The details can be found in Bacchetta et al. (2007), which includes the
important case of a polarized target. For experiments, the importance of the structure
function analysis is that in the full differential cross section,

dσ

dx dy dz dph T dφh

, (12.92)

the azimuthal dependence is restricted to certain trigonometric functions. The simplest case
is the unpolarized cross section, where the azimuthal dependence is of the form

A+ B cos φh + C cos 2φh, (12.93)

with the coefficients being functions of the other variables. The situation is more compli-
cated for the polarized case, generalizing the same idea. The extra terms are each associated
with certain polarized parton densities and fragmentation functions.

12.14.2 Leading regions

To derive factorization, we use the same sequence of steps as for e+e− annihilation. An
important difference is in how a contour deformation is made to get out of the Glauber
region; this will have particularly notable consequences when we treat situations needing
transverse-momentum-dependent parton densities and fragmentation functions in Ch. 13.

The leading regions have a hard scattering on each side of the final-state cut, and the
virtual photon is attached to the hard scattering. There are at least two collinear graphs, one
of which includes the target. There may be a soft subgraph connecting by gluons to any of
the collinear subgraphs. Each of the collinear subgraphs connects to each hard-subgraph
amplitude by a primary parton line plus any number of Grammer-Yennie K-gluons. All
this follows from the usual power-counting.

There are two classes of collinear subgraph: the target subgraph and what we will call
hard-jet subgraphs. The “hard-jet” terminology associates them with the final state of a hard
scattering. In the laboratory frame the associated regions have large transverse momentum,
of order Q. In the brick-wall frame the associated regions either have large transverse
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Fig. 12.23. Typical leading region for SIDIS, when the measured final-state hadron is in
the “current fragmentation region”. Three collinear subgraphs are shown; the minimum is
two.

Fig. 12.24. Like Fig. 12.23, but when the measured final-state hadron is in the “target
fragmentation region”. Two collinear subgraphs are shown, but extra hard-jet subgraphs
are also possible.

momentum or they have large minus momentum (appropriate for the parton model with a
single hard jet).

Depending on its kinematics, the measured hadron either comes from a hard-jet subgraph,
the target subgraph, or the soft subgraph.

When the hadron is from a hard jet, it is said to be in the “current fragmentation region”,
as shown in Fig. 12.23. When it is from the target subgraph, it is said to be in the “target
fragmentation region”, as shown in Fig. 12.24. The hadron comes from the target or soft
subgraphs only when z is small, so that p−h is small. We can characterize a canonical
situation for a target-collinear hadron by z ∼ m2/Q2 and a soft hadron by z ∼ m/Q.

For the rest of this section we will only be concerned with the current fragmentation
region, z� m/Q. Target-collinear hadrons will be briefly discussed in Sec. 12.15. We will
not treat soft measured hadrons at all.
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Fig. 12.25. Illustrating Glauber region for (SI)DIS.

12.14.3 Glauber region and (SI)DIS

The Ward-identity argument needed to factor the soft subgraph requires that the contour
of integration over soft momenta avoid the Glauber region, i.e., that there be no pinch in
the Glauber region. The general conditions for a pinch in a Glauber region were given in
Sec. 5.6. They concern a pinch of the smallest components of soft momenta when they flow
through collinear subgraphs.

The ability to do a suitable contour deformation is completely determined by examining
low-order graphs. In e+e− annihilation, the collinear subgraphs are all in the final state
relative to the hard scattering. So, as we saw in Sec. 10.6.4, we could deform exchanged
Glauber momenta away from all the collinear singularities. For example, in an exchange
between two collinear groups, the deformation would avoid the final-state singularities of
both collinear groups.

In DIS, the situation is typified by Fig. 12.25, which represents a graph in a model for
SIDIS. In contrast with e+e− annihilation, only a one-sided deformation works, to deform
l+ away from final-state singularities in the upper jet, but l− is trapped in the target-collinear
subgraph. Consider the region where the lower lines are target-collinear, with momenta of
order (Q,λ2/Q, λ), the upper lines are the opposite collinear: (λ2/Q,Q, λ), while the gluon
is Glauber: l ∼ (λ2/Q, λ2/Q, λ). The target lines trap l− between initial- and final-state
poles:

1

[(kA − l)2 −m2 + i0] [(P − kA + l)2 −m2 + i0]

� 1

[−2k+A l− + · · · + i0] [2(P+ − k+A )l− + · · · + i0]
. (12.94)

The approximation is valid when kA is target collinear and l is soft or Glauber. The dots
indicate terms that do not depend on l−. The trapping of the l− contour at values of order
λ2/Q is because on one line the direction of l is with the flow of plus momentum and on the
other the line it is against. As to l+, in the Glauber region the only significant dependence
is in the upper two lines, where it always is in the opposite direction relative to the large
outgoing collinear minus momentum. Thus l+ is not trapped; we can deform the contour
to much larger values of l+. The deformation only stops when we get out of the Glauber
region.



12.15 Target fragmentation region: fracture functions 475

In order to make the region approximators, we must choose the auxiliary vectors
(Sec. 10.6.4) for the K gluons so as not to obstruct the deformation. The space-like
future-pointing vectors chosen in that section continue to work here.

12.14.4 Factorization for SIDIS

Once the contours are out of the Glauber region, we can copy the factorization proof for
e+e− annihilation. We have applied approximants and subtractions for the contributions of
each region of each graph, and sum over possibilities.

We first use Ward identities to extract collinear K gluons from the hard scattering,
converting them to Wilson lines. Similarly we extract the soft gluons from the collinear
subgraphs.

The sum-over-cuts argument applies to all the collinear subgraphs except for the target
subgraph and the one to which the measured hadron attaches. Provided we average over a
broad range of transverse momentum ph T for the measured hadron, we can also apply the
sum-over-cuts argument to the soft subgraph. We are left with a hard subgraph convoluted
with a parton density and a fragmentation function, which arise for the same reasons as in
our factorization arguments separately for DIS and e+e− annihilation.

The resulting factorization theorem is conveniently stated in terms of a cross section
differential in Lorentz-invariant phase-space, in a form generalizing (12.13):

E
dσ (e + P → e + ph +X)

d3 ph

=
∑
jj ′

∫ 1+

x−

dξ

ξ

∫ 1+

z−

dζ

ζ 2
Ek

dσ̂jj ′

d3k
dh/j ′ (ζ ; μ)fj/P (ξ ; μ).

(12.95)

The hard scattering is for a parton of flavor j and massless momentum ξP̂ to scatter
inclusively to a parton of flavor j ′ and massless momentum p̂h/ζ . Here the hatted momenta
have the same 3-momenta as the unhatted momenta in the brick-wall frame, and have their
energies set to make the momenta massless.

One can convert the above to a formula for the structure functions.

12.15 Target fragmentation region: fracture functions

When the detected final-state hadron is in the target-collinear region, the leading regions
have the form shown in Fig. 12.24. There is a hard subgraph H , a target-collinear subgraph
C(1), one or more hard-jet subgraphs C(2), . . . , C(N) and a soft subgraph S. These are
exactly like those for ordinary DIS, except that the target-collinear subgraph now contains
the detected hadron. To specify the longitudinal kinematics of ph, it is convenient not to
use z, but instead a target-relative variable

xh
def= p+h

P+
� ph · q

P · q . (12.96)

Factorization can be derived by the same arguments we have already described. First,
the soft subgraph can be factored out and then shown to cancel. The K gluons from the
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Fig. 12.26. Diagrammatic representation of gauge-invariant fracture functions. The partonic
part, with its Wilson line, is the same as for parton densities in Fig. 7.9.

collinear subgraphs can be extracted from the hard subgraph, to give Wilson lines, after
which the hard-jet subgraphs are of the form in which the integrations can be taken out of
their collinear regions. We end up with exactly the same structure as in DIS. We have a
hard scattering of identically the same form as in DIS, and it is convoluted with a target-
collinear quantity whose definition is the same as a parton density, except that the final state
is required to contain the detected hadron. These quantities are called “extended fracture
functions” (Grazzini, Trentadue, and Veneziano, 1998). For the case of a bare quark fracture
function, the definition, generalized from the quark density defined in (7.40), is (Berera and
Soper, 1996)

M(0) jh/P (x, xh, ph T) =
∫

dw−

2π
e−ixP+w−

∑
X

〈P |ψ (0)
j (0, w−, 0T)W (∞, w−)†|ph,X, out〉

× 〈ph,X, out|γ
+

2
W (∞, 0)ψ (0)

j (0)|P 〉c, (12.97)

where the Wilson line (in the minus direction) was defined in (7.41). A similar modification
to the definition of the gluon density gives the gluon fracture function. These definitions
are shown diagrammatically in Fig. 12.26. In the unpolarized case, there is no preferred
axis in the transverse plane, so the dependence on the transverse momentum of the detected
hadron is only through its size.

Since the parton kinematics are treated identically to those of parton densities, the
Feynman rules at the parton end are the same as for parton densities. Hence renormalization
of extended fracture functions has the same form (8.11) as for parton densities. The DGLAP
equations therefore have the same form as (8.30) for parton densities:

d

d ln μ
Mjh/P (x, xh, ph T; μ) = 2

∑
j ′

∫
dz

z
Pjj ′ (z; g)Mj ′h/P (x/z, xh, ph T; μ). (12.98)

There is a kinematic constraint x + xh ≤ 1, given by energy positivity for the unobserved
part |X〉 of the hadronic final state.

The above functions are officially called “extended fracture functions”, even though
the term “fracture functions” would be more natural. However the latter term was already
defined (Trentadue and Veneziano, 1994) to refer to similar quantities defined with an
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integral over all ph T. Because of the integral, these quantities also include contributions
from the current fragmentation region and have more complicated evolution equations. It
seems better to use only extended fracture functions.

The extended fracture functions can be notated as parton densities differential in ph:

Mjh/P (x, xh, ph T) = (2π )32E ph

dfjh/P

d3 ph

. (12.99)

One way of stating the factorization theorem is to project the SIDIS cross section onto
structure functions. These are like F2 etc. for DIS, but now differential in xh and ph T:

dF2(x,Q2; xh, ph T)

dxh d2 ph T
. (12.100)

Then factorization is a simple generalization of the version (8.83) for DIS:

dF1(x,Q2; xh, ph T)

dxh d2 ph T
=
∑

j

∫ 1+

x−

dξ

ξ
F̂1j (Q/μ, x/ξ ; αs)

Mjh/P (ξ, xh, ph T)

16π3xh

, (12.101a)

dF1(x,Q2; xh, ph T)

dxh d2 ph T
=
∑

j

∫ 1+

x−
dξ F̂2j (Q/μ, x/ξ ; αs)

Mjh/P (ξ, xh, ph T)

16π3xh

, (12.101b)

valid up to power-suppressed corrections. The hard-scattering coefficients are the same as
in ordinary DIS.

The primary phenomenological applications are to diffractive DIS on protons. This
concerns the case that xh is close to unity (with, necessarily, x � 1), and that the detected
hadron is also a proton. See Chekanov et al. (2010) for recent results. In this case the
extended fragmentation functions are commonly referred to as “diffractive parton densities”.

Quite elementary extensions of these ideas can be applied to cross sections differential
in more final-state hadrons. One example is the dijet cross section in diffractive DIS (Aktas
et al., 2007a), which is differential in one proton in the target fragmentation region and in
two hard jets. Diffractive parton densities can be obtained from a fit to ordinary diffractive
DIS, without the dijet condition. Then the cross section for diffractive dijet DIS is predicted
with the aid of standard perturbative calculations for the hard scattering. The success of the
prediction confirms the experimental validity of the factorization approach.

Exercises

12.1 (**) Find and prove any extensions to the Ward-identity arguments of Ch. 11 that are
needed to apply them to the processes treated in this chapter.

12.2 (*****) Construct a good formalism for the evolution of states in space-time from
a quark state to a hadronic state. Ideally, this should be a rigorous formalism from
which you can derive from first principles that partonic states evolve to jet-like
configurations. Publish your results.

Undoubtedly I have stated this (very difficult) problem quite badly, and part of
the answer should be to formulate this problem more appropriately. A good solution
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to this problem should answer the issues raised, for example, by Gupta and Quinn
(1982). See problem 5.1 for some results that may be of use.

12.3 (**) In Sec. 12.12, I discussed whether non-perturbative effects can ruin factorization
in inclusive cross sections in e+e− annihilation. Give a more detailed and explicit
account of these issues by critically using the methods and results of Einhorn (1976,
1977).

In these papers Einhorn made approximate calculations in the model of large-Nc

QCD in two space-time dimensions. The final states given by this model, both in
e+e− annihilation and in DIS, are a series of closely spaced narrow resonances.
Thus the model consistently realizes an approximately unbreakable elastic-spring
picture. Einhorn found contrasting results relative to the parton model for different
kinds of cross section: DIS, the total cross section for e+e− annihilation, and the
single-hadron-inclusive process e+e− → π +X.

Use these results to illustrate the non-perturbative properties that either preserve
or violate factorization in the different reactions.

12.4 (**) Investigate the soft gluon cancellation in Figs. 12.7 and 12.8. Assume that the
quark is approximately parallel to the modeled pion, that the antiquark moves in
approximately the opposite direction, and that the gluon is soft. Show that there
is a cancellation between all the graphs in Figs. 12.7 and 12.8. But show that the
cancellation does not work if it is restricted to subsets of graphs related by sums-
over-cuts, i.e.,
• between Fig. 12.7(a) and (b),
• between Fig. 12.7(c) and (d),
• between the graphs of Fig. 12.8 alone.
For sufficiently soft gluons, internal emission will be suppressed, and there will
be a cancellation in Fig. 12.8 alone. But when the gluon momentum l becomes
comparable to or larger than M2/Q, internal line emission is important. Here M

denotes the invariant mass of the upper jet.

12.5 (**) Complete the proofs sketched in Sec. 12.8. Deal properly and explicitly with
the issues of subtractions and of the necessary Ward identities in non-abelian gauge
theories.

12.6 Obtain explicit factorization formulae for the differential cross sections for more
complicated inclusive cross sections, e.g., e+ + e− → H1 +H2 +X, e+ + e− →
H1 +H2 +H3 +X. Assume here that the observed hadrons are at wide angles with
respect to each other (and are not close to back-to-back in the two-hadron case).
More general situations can be considered, of course. But that will lead you into other
topics, such as those in Ch. 13.

12.7 Check and complete the one-loop calculations in Sec. 12.10.

12.8 Complete the one-loop calculations in Sec. 12.11. Verify that your results agree with
Rijken and van Neerven (1997).
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TMD factorization

An appealing interpretation of a parton density is that it is a number density of partons in a
target hadron. As we saw in Sec. 6.7, a parton density in a simple theory is an expectation
value of a light-front number operator, integrated over transverse momentum. A similar
interpretation applies to fragmentation functions: Sec. 12.4.

As explained in Secs. 6.8 and 12.4, it is equally natural to define unintegrated, or
transverse-momentum-dependent (TMD), parton densities and fragmentation functions,
simply by omitting the integral over transverse momentum. In a sense, the TMD functions
are more fundamental and present more information on non-perturbative phenomena than
do the ordinary integrated functions. Therefore it is useful to find situations where TMD
functions are needed.

In this chapter, I treat two characteristic cases. One is two-particle-inclusive e+e−

annihilation when the detected hadrons are close to back-to-back. This process needs TMD
fragmentation functions. Then I will extend this work to semi-inclusive DIS (SIDIS) with a
detected hadron of low transverse momentum. In SIDIS, TMD parton densities are needed
as well as fragmentation functions. A further extension to the Drell-Yan process at low
transverse momentum will be covered in Sec. 14.5.

There are substantial complications in QCD. Although the discussion about light-front
quantization and the associated definitions of number densities gives a general motivation,
it does not work correctly in QCD (or any other gauge theory). The actual definitions are
whatever is appropriate to consistently obtain a valid factorization theorem.

The generally used jargon is that factorization with integrated pdfs and fragmenta-
tion functions is called “collinear factorization”, while factorization with the uninte-
grated functions is called “kT factorization”. For the second case, I prefer “TMD fac-
torization”. Its overall structure generalizes the results for the Sudakov form factor in
Ch. 10.

13.1 Overview of two-particle-inclusive e+e− annihilation

The definition of an ordinary integrated pdf or fragmentation function arises from the
approximants used in deriving factorization. There are two parts to an approximant.
One is in the actual amplitude for the hard scattering, where we neglect transverse and
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Fig. 13.1. A leading region in gauge theory for two-hadron-inclusive cross section in e+e−

annihilation. Like Fig. 12.4(a), but with an extra detected hadron.

minus components of momentum with respect to Q. The other is in the kinematics
of some groups of the final-state particles, as when some components of a jet or soft
momentum are neglected relative to the large component of momentum in some other jet
subgraph.

It is the second part of the approximant that determines the definition of a pdf or
fragmentation function, and it can fail, even when the more fundamental first part of the
approximant remains valid. Consider, for example, the collinear momentum kA entering one
jet subgraph in Fig. 12.4(a) or Fig. 12.5(a), and complete the loop by circulating it through
the other jet subgraph. Neglecting k−A and kA T in the second jet amounts to changing the
kinematics of the jet. If the jet is not observed, this gives a legitimate approximation for
the inclusive cross section, as we showed more formally by routing the momentum out
through the virtual photon, and by applying the approximant to the external test function
in (12.11).

But the situation is quite different if, instead, we consider two-particle-inclusive annihi-
lation e+e− → HAHB +X and choose the measured hadrons to be close to back-to-back.
The leading regions are shown in Fig. 13.1, and a corresponding 2-jet final state was
sketched in Fig. 12.19. Neglecting k−A in the second jet is still legitimate, because k−A is
small and is neglected with respect to a large minus momentum in the unobserved part of
the second jet.

But the neglect of kA T in the second jet is no longer justified. The neglect shifts the
second detected hadron transversely by an amount that can be comparable (or even larger)
than its transverse momentum relative to the jet. Exactly similar considerations apply to
the approximant for the soft factor.

Therefore, a valid approximant must preserve the exact values of collinear and soft
transverse momenta when they flow through other collinear subgraphs. A similar idea
applies if we use a cross section averaged with a test function. Then we route loop inte-
grals over soft and collinear subgraphs out through the photon vertex, and the approx-
imant must preserve transverse momenta in the test function, unlike the definition in
Sec. 12.8.1.

One direct consequence is that the relevant fragmentation functions are TMD functions,
rather than the integrated functions. Another consequence is that the soft factor no longer
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cancels. In one-particle-inclusive annihilation, we defined the soft factor with an indepen-
dent integral over all momenta for its final state, thereby enabling the proof of cancellation
in Sec. 12.8.6. But this fails when the transverse-momentum integral is coupled to the other
factors. Our treatment must include the uncanceled soft factor, just as for the Sudakov form
factor.

One simplification does occur, and this is that the leading regions in the back-to-back
case only have two collinear subgraphs, as in Fig. 13.1. To understand this consider a region
like Fig. 12.4(b), with three or more collinear groups, and for which a 3-jet final state was
sketched in Fig. 12.18. We have two detected hadrons which are almost back-to-back, and
so the directions of their parent jets are also almost back-to-back. Now, the propagators
in the hard subgraphs are power-counted as having denominators of order Q2. But as the
directions of collinear subgraphs approach each other to give a 2-jet configuration, some
denominators get much smaller, to approach collinear singularities. The neighborhood of
these singularities therefore dominates the cross section. In the contribution to the cross
section from a region with 3 (or more) collinear subgraphs, the 2-jet region is of course
subtracted out, thereby giving a power-suppression relative to the 2-jet regions. Therefore,
as claimed, the leading regions are restricted to those of Fig. 13.1, when the detected
hadrons are close to back-to-back.

Deviations from the exact back-to-back configuration of the hadrons are controlled by
transverse momentum within the two collinear subgraphs (and in the soft subgraph). Thus
they are controlled by transverse momentum generated in fragmentation functions. This
suggests a general pattern: TMD functions are needed whenever the directions of detected
hadrons match a parton configuration that does not allow for extra jets.

13.2 Kinematics, coordinate frames, and structure functions

Much of the derivation uses the same elements that we already used in Ch. 12 and in earlier
chapters. We focus on the changes.

In this section, we specify the kinematics and then define a hadronic tensor Wμν for our
process, together with corresponding structure functions. Let pA and pB be the momenta
of the detected hadrons in e+e− → HAHB +X, and let q be the momentum of the virtual
photon. It is convenient to use two different coordinate frames:

• A photon frame, in which the photon has zero transverse momentum. This is chosen
as a center-of-mass (CM) frame, supplemented by a condition on the direction of the z

axis. It is a frame most directly related to an actual experiment, and is best suited for the
analysis of the hard scattering.

• A hadron frame, in which the hadrons are back-to-back in the±z directions. This matches
the hadron frame used in (12.37) and (12.38) for defining fragmentation functions in
momentum space.

Subscripts γ and h denote components of a vector in the two frames.
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Fig. 13.2. Kinematics of two hadrons in final state: (a) center-of-mass frame; (b) center-of-
mass frame with dashed lines to indicate Z and X axes used to define the structure functions
in (13.9); (c) hadron frame of (13.4). The incoming leptons in (a) and (b) can be out of the
plane defined by the hadrons.

13.2.1 Photon frame

Our standard photon frame, illustrated in Fig. 13.2(a), is a CM frame, where the momenta
in ordinary Cartesian coordinates are

qγ = (Q, 0) , (13.1a)

pA,γ =
(
EA,γ , pA,γ

) � | pA,γ |
(
1, nA,γ

)
, (13.1b)

pB,γ =
(
EB,γ , pB,γ

) � | pB,γ |
(
1, nB,γ

)
. (13.1c)

Here nA,γ and nB,γ are unit vectors for the directions of the hadrons. In the second form
for pA,γ and pB,γ , we neglected masses. To parameterize the deviation from the exact
back-to-back configuration, we let δθ be the angle between pA,γ and − pB,γ .

Although some issues can be treated with coordinate axes fixed in the laboratory, inde-
pendent of the detected hadrons, we will find it convenient to use light-front coordinates
with a z axis defined from the hadron directions. The spatial axes can be defined covariantly
by normalized 4-vectors whose energy components in the CM frame are zero. For the z

and x axes we choose

Zμ
γ =

(
0, nA,γ − nB,γ

)
|nA,γ − nB,γ | , Xμ

γ =
(
0, nA,γ + nB,γ

)
|nA,γ + nB,γ | . (13.2)

As shown in Fig. 13.2(b), the z axis bisects the angle between pA,γ and − pB,γ , and the
x axis is orthogonal to it in the hadron-hadron plane. Thus in the back-to-back region, Z

characterizes the jet axis, and X characterizes the transverse direction of the hadron pair.
The y axis is the remaining axis in a right-handed system. The time axis can be defined by
T μ = qμ/Q.

Then we define photon-frame light-front coordinates for a vector V by

V ±γ
def= V · (T ∓ Z)√

2
. (13.3)
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13.2.2 Hadron frame

In the hadron frame, illustrated in Fig. 13.2(c), the detected hadrons are exactly back-to-
back, but the virtual photon has a generally non-zero transverse momentum. We choose the
positive z axis to be the direction of pA, and define light-front coordinates for this frame
by

qh =
(
q+h , q−h , qh T

)
, (13.4a)

pA,h =
(
p+A,h,m

2
A/2p+A,h, 0T

) � (
p+A,h, 0, 0T

)
, (13.4b)

pB,h =
(
m2

B/2p−B,h, p
−
B,h, 0T

) � (
0, p−B,h, 0T

)
. (13.4c)

We define scaling variables by

zA =
p+A,h

q+h
� pA · pB

q · pB

, zB =
p−B,h

q−h
� pA · pB

q · pA

. (13.5)

The photon transverse momentum in the photon frame measures how much the hadrons
deviate from the back-to-back configuration in the CM frame:

q2
h T = 2q+h q−h −Q2 � 2pA · q pB · q

pA · pB

−Q2 = Q2 tan2 δθ

2
. (13.6)

Formulae for zA, zB , and qh T in terms of Lorentz invariants can also be obtained with
retention of hadron masses, but I will not present them. Our definition of the hadron frame
is non-unique, in that it can be changed by a boost in the z direction, which will not affect
our derivations. If necessary, the frame can be fixed by requiring the photon to have zero
rapidity, i.e., q+h = q−h . In the general case

q±h = e±y Q√
2 cos(δθ/2)

. (13.7)

13.2.3 Lorentz transformation between photon and hadron frames

The Lorentz transformation between the photon and hadron frames is

Vh = L
(
V +γ , V −γ , V γ T

) = (
ey

[
V +γ

κ + 1

2
+ V −γ

κ − 1

2
+ V γ T · qh T

Q
√

2

]
,

e−y

[
V +γ

κ − 1

2
+ V −γ

κ + 1

2
+ V γ T · qh T

Q
√

2

]
,

V γ T + qh T

[
V +γ

Q
√

2
+ V −γ

Q
√

2
+ V γ T · qh T

Q2(κ + 1)

])
, (13.8)

where κ =
√

1+ q2
h T/Q2 � 1/ cos(δθ/2), and y is the rapidity of q in the hadron frame,

i.e., y = ln(q+h /q−h ). Note carefully that although the components of V on the right-hand
side of this equation are in the photon frame, the transverse vector qh T is for the photon in
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the hadron frame. Note also that with the x and z axes defined in Fig. 13.2 qh has a negative
x component: qx

h = −Q tan(δθ/2), q
y
h = 0.

13.2.4 Structure function analysis

We make a structure function analysis by the method that Lam and Tung (1978) used for the
Drell-Yan process. It starts from a hadronic tensor Wμν , which obeys current conservation,
qμWμν = Wμνqν = 0, is symmetric under μ←→ ν, and obeys parity conservation. When
the detected hadrons have zero spin or their polarization is not measured, we have

Wμν(q, pA, pB)
def= 4π3

∑
X

δ(4)(pX + pA + pB − q)

× 〈0|jμ(0)|pA, pB,X, out〉 〈pA, pB,X, out|jν(0)|0〉
= (−g̃μν − ZμZν)WT + ZμZνWL − (XμZν + ZμXν)W�

+ (−g̃μν − 2XμXν − ZμZν)W��, (13.9)

where the structure functions WT, etc., are functions of Lorentz invariants. We define
g̃μν = gμν − qμqν/Q2, and the orthogonal unit vectors Z and X were defined in (13.2).

The structure function decomposition (13.9) and the associated cross section formulae
can be readily generalized to include the case of Z exchange or that the hadrons are
polarized. But to explain the principles, we avoid these complications.

The names of the structure functions (T , L, �, and ��) characterize the corresponding
polarization state of a spin-1 particle of momentum q: T is for an azimuthally symmetric
transverse polarization around Z, L is for longitudinal polarization, � is for one unit of
helicity flip in the density matrix, and �� is for two units of helicity flip. Each gives a
characteristic term in the angular dependence of the cross section:

EAEB

dσ

d3 pA d3 pB

= α2

16π3Q4

[
(1+ cos2 θ ) WT + sin2 θ WL

+ sin 2θ cos φ W� + sin2 θ cos 2φ W��

]
. (13.10)

Here θ is the polar angle of the leptons with respect to the Z direction, and φ is the
azimuthal angle around Z, with the direction X corresponding to φ = 0. The angu-
lar dependence corresponds to the angular momentum associated with each structure
function.

Some confusion about the azimuthal angle can be avoided by realizing that there are
actually two azimuthal angles that can be measured from the two hadrons, but that the cross
section (13.10) only depends on one of them. In the overall CM frame with the incoming
lepton beams along the z axis, these angles can be characterized as (a) the azimuthal angle
of the overall jet axis Zμ relative to some fixed axis, and (b) the azimuthal angle of the
hadron plane relative to the plane that contains Zμ and the leptons. The dependence is
on the second angle, but not the first. The reason for this is that because the leptons are
unpolarized, the initial state has nothing to allow an intrinsic azimuthal axis to be defined.
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There are “kinematic zeros” in W� and W�� at qh T = 0, since the dependence on the
direction X arises only from the transverse momentum qh T. So when qh T → 0, W� is
proportional to qh T and W�� is proportional to q2

h T.

13.3 Region analysis

We now start the derivation of a factorization property suitable for the case of relatively
low transverse momentum, i.e., qh T � Q. Later we will combine this with a more standard
factorization for large transverse momentum to give a result valid for all qh T. We will
assume throughout that the hadron energies in the CM frame are comparable with Q. That
is, we do not treat the case of very small values for the scaling variables zA and zB .

The strategy was already explained in Chs. 10 and 12. One feature critical to a proper
derivation is the use of the integral of the hadronic tensor with a test function, as in (12.11);
this allows a clean understanding of the accuracy of the region approximants. Another fea-
ture is a shift between hadron and photon frames in defining the hadron scattering; this will
give consistency of parton kinematics between fragmentation functions and perturbative
calculations of the hard scattering.

13.3.1 Only two jets

Since we assume that the observed hadrons HA and HB have energies of order Q, they are
part of jet subgraphs, not of the soft subgraph, in the leading regions. As already explained
in Sec. 13.1, the leading regions when qh T � Q have only have two jet subgraphs, as in
Fig. 13.1; regions with three or more jet subgraphs are suppressed by a power of qh T/Q.

13.3.2 Region approximators

In the subtraction formalism, Sec. 10.1, the contribution of a particular region R of a
graph is obtained by applying an approximator TR to the graph. But it is applied only after
subtractions are made for smaller regions, to avoid double-counting problems.

For reasons already encountered in Secs. 12.7 and 12.8, we apply the approximators not
to the hadronic tensor Wμν itself, but to an integral of it with a test function. The integral,
Wμν([f ], pA, pB), is defined just as in (12.11) for the one-particle-inclusive case. The
argument of the test function is the sum of the collinear and soft momenta in the final state:
f (kA + kB + kS). Region approximants are applied to internal virtual lines of collinear and
hard subgraphs, and to the argument of the test function.

If, instead, the approximant were used for the unintegrated Wμν , it would be applied to
soft momenta circulating through final states of collinear subgraphs. The errors associated
with approximants that directly change the final-state momenta are hard to control.

The approximant for a soft momenta in a collinear subgraph is unchanged from that in
Sec. 10.4.2 for the Sudakov form factor. The approximant is also unchanged from the one
for single-particle-inclusive e+e− annihilation in Sec. 12.8.1, except for the choice of the
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directions defining the auxiliary vectors. These are now derived from the momenta of the
observed hadrons, and we apply the definitions in the hadron frame using the light-front
coordinates defined in (13.4).

The approximants for soft and collinear momenta in the hard subgraphs have an apparently
small but very significant change compared with (10.19) for the Sudakov form factor. This
concerns the frames used to specify the light-like auxiliary vectors. We now define the
projectors for collinear momenta into the hard subgraph by

PHA(kA) = wHA kA · wB

wHA · wB

, PHB(kB) = wHB kB · wA

wHB · wA

. (13.11)

Here wA and wB are light-like vectors defined in the hadron frame: wA,h = (1, 0, 0T) and
wB,h = (0, 1, 0T). They correspond to vectors used in the soft-to-collinear approximants
and in the definitions of fragmentation functions. But for reasons to be explained below,
the other vectors are defined in photon frame: wHA,γ = (1, 0, 0T) and wHB,γ = (0, 1, 0T).

As with the Sudakov form factor, a momentum from a collinear subgraph may include
a circulating soft component. This is approximated, to be in direction wB in collinear
subgraph C(A), and in direction wA in collinear subgraph C(B). From (13.11), these circu-
lating soft momenta are replaced by zero in the hard scattering, as for the Sudakov form
factor.

The reason for the new definitions of the projectors is that we normally perform per-
turbative calculations of the hard scattering in the photon frame, where the virtual photon
has zero transverse momentum. Thus the calculations correspond to the elastic process
e+e− → qq̄ in its CM frame. Therefore we arrange that in the photon frame the approxi-
mated quark momenta are in the plus and minus directions. This complication did not arise
for the Sudakov form factor, since it is an elastic process, for which the photon and hadron
frames coincide.

In hadron-frame components, the approximated momenta are

PHA(kA)h = k+A,h

(
1, e−2y κ − 1

κ + 1
, e−y qh T

√
2

Q(κ + 1)

)
, (13.12a)

PHB(kB)h = k−B,h

(
e2y κ − 1

κ + 1
, 1, ey qh T

√
2

Q(κ + 1)

)
. (13.12b)

Note that these leave unchanged the “large components”, i.e., k+A,h and k−B,h. The photon-
frame components are

PHA(kA)γ =
2e−yk+A,h

1+ κ

(
1, 0, 0T

)
, PHB(kB)γ =

2eyk−B,h

1+ κ

(
0, 1, 0T

)
. (13.13)

These formulae apply not just to the total collinear momenta entering the hard subgraph, but
equally to the individual momenta on particular external lines of H . Let these momenta be
indicated by an index j : kAj , kBj . Then, by momentum conservation at the hard scattering,
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the virtual photon’s momentum in the photon frame is changed to

q̂γ =
(∑

j

k+Aj,he
−y,

∑
j

k−Bj,he
y, 0T

)
2

κ + 1
. (13.14)

To restore the original value of q, we will define an approximant on the test function, in
(13.18) below. In effect, this approximant will change the momentum of the final state
relative to q.

Dirac projectors on the external lines of the hard subgraphs need to be modified from
those defined in Sec. 10.4.2. For quark lines between CA and H we use

PA
def= γ · wHAγ · wB

2wB · wHA

, PA
def= γ · wBγ · wHA

2wB · wHA

, (13.15)

and for quark lines between CB and H we use

PB
def= γ · wHBγ · wA

2wA · wHB

, PB
def= γ · wAγ · wHB

2wA · wHB

. (13.16)

On the side next to the hard scattering, the factors γ · wHA and γ · wHB project onto wave
functions for the (approximated) massless on-shell quarks. On the side next to the collinear
subgraphs, the factors γ · wA and γ · wB project onto the components of the Dirac fields
that are used in the hadron-frame definitions of fragmentation functions. As usual, we use

the Dirac conjugation notation: �
def= γ 0�†γ 0.

In the approximant in the test function we must preserve the exact transverse momentum
of the collinear and soft partons, since we wish to obtain a cross section differential in
qh T.

Previously, in the one-particle-inclusive cross section, the approximator made the
replacement

f (kA + kB + kS) �→ f
(
k+A, k−B , 0T

)
, (previous) (13.17)

where we neglected not only the small longitudinal components k−A and k+B , but also all
the transverse momenta. For TMD factorization, we must change the approximant to retain
the transverse momenta. But to keep the longitudinal components consistent with those
required by momentum conservation in the hard scattering, we apply a scaling to the plus
and minus components of kA and kB . We therefore define the approximant on the test
function in terms of hadron-frame momenta by

f (kA,h + kB,h + kS,h) �→ f

(
k+A,h

2κ

κ + 1
, k−B,h

2κ

κ + 1
, kA,h T + kB,h T + kS,h T

)
. (13.18)

The scaling factor 2κ/(κ + 1) = 2/(1+ cos(δθ/2)) is, of course, unity in the limit that qh T

is zero. It is chosen so that after the next step of functional differentiation, q̂γ in (13.14)
reproduces q, i.e., the hard scattering has the original value of q.
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To find the actual hadronic tensor Wμν(q, pA, pB), we functionally differentiate the
integrated tensor with respect to the test function f :

Wμν(q, pA, pB) = δWμν([f ], pA, pB)

δf (q)
. (13.19)

The result is that the approximated parton momenta, in (13.18), sum to q. Relative to
an unapproximated graph, the transverse momenta are unchanged, but the longitudinal
momenta are shifted by amounts that are power-suppressed in the design region of the
approximator. This results in power-suppressed errors in the hadronic tensor itself, provided
that scale of the q±h dependence of the hadronic tensor is Q rather than a smaller scale.

As usual, the internal integrations are over all momenta. Outside the design region R

of approximator TR , the accuracy of the approximation degrades. But this is handled by
terms for larger regions than R, combined with the double-counting subtractions in the
subtraction method.

13.3.3 Ward identities

There is no change in the Ward identities that extract K gluons from hard and collinear
subgraphs and that led to Fig. 12.12. There are now only two collinear subgraphs, so the hard
scattering only has two external lines, and each collinear subgraph has a detected hadron.

At this point the color flow is as shown in Fig. 12.13. We now disentangle the color flow
between the various factors. As before, the collinear factors are color-singlet, so we convert
to the form of Fig. 12.15, where the sums over the color indices of the hard scattering
bypass the collinear factors, which are now defined with a color average.

In our two-collinear-subgraph case, the entangled hard-soft combination has color sums
of the form

HabSab;a′b′H
∗
a′b′ , (13.20)

with repeated indices summed. Since the hard-scattering amplitudes are color-singlet, we
replace this by (

HabH
∗
ab

) 1

Nc

Scc;dd . (13.21)

Here there is a color trace for the hard scattering, the same as in a cross section with a sum
over final-state color, while the soft factor is color averaged. So from Fig. 12.12 we obtain
Fig. 13.3, where each of the collinear and soft factors has a color average. The collinear
and hard factors are still linked by a Dirac trace that we will analyze later.

As usual, a sum over graphs and regions converts Fig. 13.3 to a factorization formula.
The operator definitions for the factors are determined by the approximants, and there are
appropriate double-counting subtractions in the factors. The factorized form is

Wμν = 4π3zAzB

∑
f

∫
d2kA T d2kB T S(qh T − kA T − kB T)

× TrPA CA(zA, kA T; f )PA Hν
f PB CB(zB, kB T; f̄ )PB H

μ

f (Q), (13.22)
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Fig. 13.3. Same as Fig. 12.12, but for two-hadron-inclusive cross section in the back-to-
back region. The color flow has been reorganized: the collinear and soft factors have color
averages, and there is a color trace between the hard-scattering amplitudes on the left and
the right of the final-state cut.

where all transverse momenta are in the hadron frame, the Dirac projectors were defined in
(13.15) and (13.16), and the factors S, CA, and CB will be defined below. The sum over f

is over the flavors of quark and antiquark that can enter the CA factor, i.e., u, ū, d, d̄, etc.;
the opposite flavor is used for CB .

The following steps give the above formula.

1. We perform the functional differentiation, (13.19), for the approximated Wμν . This sets
the transverse momentum in the soft factor equal to qh T − kA,h T − kB,h T. It also sets
k+A,h = q+h and k−B,h = q−h in the collinear factors CA and CB .

2. The approximation removed dependence of the test function on k−A,h, k+B,h, and k±S,h. So
the integrals over these variables are “short-circuited” and included in the definitions of
CA, CB , and S.

3. The soft factor is S = ZSS(0), which is a UV-renormalization factor ZS(yA − yB, g, ε)
times a bare soft factor

S(0)(kS T) = 1

Nc

∫
dk+S dk−S
(2π )4−2ε

(13.23)

The Wilson lines are in non-light-like directions defined as in Sec. 12.8.1, but now
using the hadron frame: nA,h = (1,−e−2yA, 0T), nB,h = (−e2yB , 1, 0T). The rapidities
and light-front coordinates for the two collinear subgraphs are in the hadron frame, rather
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· · ·
· · · · · ·

· · ·

(a1) (a2) (b)

Fig. 13.4. (a1) and (a2) Omitted from (13.23) are graphs containing Wilson-line self-
interaction structures of this kind. (b) Example of omitted graph with four of the prohibited
structures.

than being in the different collinear-subgraph-specific coordinates used in Sec. 12.8.1.
There is a color trace over the Wilson lines, and, as explained above, there is a factor
1/Nc to give a color average.

The Wilson lines are obtained by the Ward-identity argument, given in Sec. 11.9.
But this does not produce graphs that contain a subgraph connecting only to one of the
straight-line segments of the Wilson line. Thus graphs containing structures like those in
Fig. 13.4 are omitted; this is indicated by the subscript “no SI” (for “no self-interaction”).
More details are given in Sec. 13.3.4.

4. The collinear factor CA is defined with the integral

k+A,h

p+A,h

∫
dk−A,h

(2π )4−2ε
, (13.24)

as appropriate for a fragmentation function; see (12.39).
5. The longitudinal momentum fraction in CA is then

p+A,h

k+A,h

= zA

2

κ + 1
. (13.25)

Now the factor 2/(κ + 1) goes to unity in the limit qh T/Q→ 0, and the approximations
used elsewhere in the derivation are only valid only to leading power in qh T/Q. So we
replaced the momentum fraction by zA in (13.22).

Corrections will handled by methods appropriate to the large transverse momentum
region, in Sec. 13.12.

6. As in the Sudakov form factor, soft subtractions are applied to the collinear factors.
7. The same methods give the other collinear factor CB .
8. A prefactor of zAzB compensates factors of 1/zA and 1/zB in the definitions of the frag-

mentation functions, as in (13.24). Those factors normalize the fragmentation functions
like number densities.

9. The Dirac and color traces are explicit in (13.22) rather than being absorbed into the
fragmentation functions.

As for determining the Wilson lines and implementing the soft subtractions in the
collinear factors: In Sec. 13.6, we will use Fourier transforms on transverse momenta to
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convert the convolution in transverse momentum in (13.22) to a product in transverse
position space. After that, the arguments we used in Ch. 10 for the Sudakov form factor
apply in the same way here to determine appropriate directions for the Wilson lines, and to
find optimal definitions of the factors.

We will determine the allowed polarization dependence of the fragmentation functions,
after which we will determine the angular distribution, with an interesting correction to the
standard 1+ cos2 θ form.

13.3.4 Wilson-line self-interactions

As already remarked, Wilson-line self-interactions, Fig. 13.4, are omitted from the definition
of the soft factor, (13.23). We met exactly the same issue in an abelian theory, e.g., in
(10.89). But in an abelian theory, the Wilson lines could be simplified, by the use of
(10.100), to replace the sum over gluon attachments to a Wilson line by a product of single
Wilson-line propagators. Then the self-interactions of the Wilson lines could be factored
out. A simple factorization of Wilson-line self-interactions does not work in a non-abelian
theory.

An immediate consequence is that despite being defined from a matrix element of a
Wilson-line operator, the soft factor depends on the gauge used to formulate the theory; a
gauge-dependent set of graphs is omitted. Similar issues apply to the collinear factors.

These problems will be solved by a reorganization of the factorization formula in
Sec. 13.7, just as for the Sudakov form factor in Sec. 10.11.

13.4 Collinear factors

There are two parts to our treatment of the collinear factors, leading to definitions of
fragmentation functions. In this section, we treat quark polarization and the azimuthal
dependence of the fragmentation functions. The second part, in Sec. 13.7, concerns the
Wilson lines.

13.4.1 Quark fragmentation, including polarization

The Dirac projectors for the leading power restrict the collinear factor CA to terms propor-
tional to γ−, γ−γ5, and γ−γ i (with i a transverse index). Given that we choose the observed
hadrons to be spinless, the γ−γ5 term is prohibited by parity invariance. For an integrated
fragmentation function, the γ−γ i term is prohibited by invariance under rotations about
the z axis. But for an unintegrated fragmentation function, the quantity CA can have a term
γ−γ i ki

A,h T times a function of the size of kA,h T.
We now recall our results in Sec. 12.4.7, and use them to convert (13.22) to use frag-

mentation functions that allow for quark polarization. Given the longitudinal and transverse
polarization of the initial quark, we must project the trace of CA as indicated in (12.41a).
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The first term on the r.h.s. of (12.41a) gives the unpolarized fragmentation function,
which is independent of the azimuthal angle of the quark’s transverse momentum. The
second term goes with a factor that is zero by parity invariance. The trace with the third
term picks out the γ−γ i ki

A T term in CA,

−Tr γ−
∑
i=1,2

γ i ki
A,h Tγ+

∑
j=1,2

γ5γ
j s

j
T

= 4i(kx
A,h Tsy

T − k
y
A,h Tsx

T) = 4i|kA,h T||sT| sin(φs − φk), (13.26)

where φs and φk are the azimuthal angles of sT and kA,h T. The result is a characteristic
angular dependence, which we will relate to the angular dependence of the two-hadron-
inclusive cross section. In this equation, superscripts x and y are used for transverse
components. The transverse spin vector sT of the quark will be obtained from calcula-
tions of the hard scattering in the photon frame. But it can be verified from the form
of the Dirac projector PA that the same numerical vector can be applied in the hadron
frame.

The basic derivation just given applies in a model field theory without gauge fields. In
a gauge theory, Wilson lines need to be attached to the quark fields. Since the Wilson lines
are chosen to be in the (t, z) plane, they do not affect any azimuthal dependence. So we can
apply the same Dirac trace in full QCD.

The factorization formula (13.22) has transverse momentum for the quark, and zero
transverse momentum for the hadron. But the number-density interpretation is in terms
of a transverse momentum of the hadron relative to the quark, as given by (12.34a), so
fragmentation functions are treated as functions of zj and pj T, where

pj T = −zj kj,h T. (13.27)

Don’t forget the minus sign in this relation!
The resulting fragmentation function dh/f (z, pT) depends on the azimuthal angle of the

transverse momentum. We decompose it into azimuth-independent fragmentation functions,
which we normalize by the Trento conventions (Bacchetta et al., 2004),

dh/f (z, pT) = D1, h/f (z, pT)+H⊥1, h/f (z, pT)
px

h Ts
y
T − p

y
h Tsx

T

zMh

= D1, h/f (z, pT)+H⊥1, h/f (z, pT)
|sT|| ph T|

zMh

sin(φh − φs), (13.28)

where the notations D1 and H⊥1 are those of Mulders and Tangerman (1996), Mh is the
mass of the detected hadron, and φh and φs are the azimuths of the hadron and the quark
spin. Note that the ε tensor in Bacchetta et al. (2004) has the opposite sign to the one used
in this book, so I have avoided using it in (13.28).

We therefore have two TMD fragmentation functions. Without the Wilson lines, the
unpolarized one is defined by (12.39), but we now use the symbol D1 instead of d. The
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polarized fragmentation function is

H⊥1, h/f (z, pT)
px

Ts
y
T − p

y
Tsx

T

zMh

prelim= −Trcolor

Nc,f

TrDirac

4

∑
X

1

z

∫
dx− dn−2xT

(2π )n−1
eik+h x−−ikh T·xT

× γ+γ5γ T · sT 〈0|ψ (0)
j (x/2)|p,X, out〉 〈p,X, out|ψ̄ (0)

j (−x/2)|0〉

= −Trcolor

Nc,j

TrDirac

4

1

z

∫
dk−

(2π )n
γ+γ5γ T · sT (13.29)

where the overall minus sign is from the third term on the r.h.s. of (12.41a). H⊥1, h/f

is commonly called the Collins function (Collins, 1993). Its physical importance is that
it gives a correlation between the azimuthal distribution of a hadron and the transverse
spin of its parent quark. It therefore provides a measure of the quark polarization. The
“prelim” designation of this definition is a reminder that we have not yet included Wilson
lines.

13.4.2 Antiquark fragmentation

Exchanging the quark and antiquark lines in the above definition gives the Collins function
for an antiquark. From (12.41) it follows that no change of sign is needed.

13.4.3 Coordinate systems for CA and CB factors

The above definitions apply to the fragmentation functions corresponding to CA in (13.22).
But an exchange of the roles of the plus and minus axes, i.e., a reversal of the z axis is
necessary for the CB factor. Since the x, y, and z axes form a right-handed coordinate
system, certain signs will reverse in obtaining the polarized fragmentation function.

13.4.4 Positivity and Collins function

In the absence of Wilson lines, the fragmentation function is positive, as follows from the
general definition (12.35). This must apply for any polarization state of the quark in (13.28).
Hence the Collins function is restricted to obey

|H⊥1, h/f (z, pT)|| ph T|
zMh

≤ D1, h/f (z, pT). (13.30)

When we use the full QCD definitions with subtractions to prevent double counting with
the soft factor, we may find some violation of this constraint.
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13.5 Initial version of factorization with TMD fragmentation

13.5.1 Factorization

We now express (13.22) in terms of the fragmentation functions:

Wμν prelim= 8π3zAzB

Q2

∑
f

∫
d2kA,h T d2kB,h T S(qh T − kA T − kB T)

×D1, HA/f (zA, zAkA,h T) D1, HB/f̄ (zB, zBkB,h T)

× Tr k+A,γ γ−(1− γ5γ T · aA,γ T) Hν
f (Q) k−B,γ γ+(1− γ5γ T · aB,γ T) H

μ

f (Q).

(13.31)

The “prelim” notation is used because we will modify the definitions of the factors to get
our final factorization formula. The Collins function appears in the transverse vectors aA T

and aB T defined by

aA,γ T
def= (+ k

y
A,h T, −kx

A,h T

)
αA, (13.32a)

aB,γ T
def= (− k

y
B,h T, +kx

B,h T

)
αB, (13.32b)

where the scalar coefficients are

α(z, zkh T; h/f )
def= H⊥1, h/f (z, zkh T)

MhD1, h/f (z, zkh T)
, (13.33)

and the reversed sign between the definitions of aA,γ T and aB,γ T allows for the reversed
z axis in the definitions of the fragmentation functions between the two collinear
subgraphs.

The scalar coefficients αA and αB have the dimensions of inverse mass, and quantify the
Collins function relative to unpolarized fragmentation. The vectors aj,γ T are the analyzing
power of single-particle fragmentation for measuring the transverse spin of a quark. The
transverse momenta for the quarks on the r.h.s. of (13.32) are in the hadron frame. But
the numerical values of the resulting transverse vectors aj,γ T on the l.h.s. are treated as
photon-frame vectors to be combined with the calculation of the hard scattering, performed
in the photon frame.

Note: In (13.31) there is a γ5 factor multiplying each aj T vector, thereby allowing the
interpretation in terms of an analyzing power for transverse spin. But the formulae can also
be expressed without the γ5 in terms of transverse momenta, which is a convenience in
calculations with loop graphs with dimensional regularization.

13.5.2 Lowest-order (LO) calculation

The hard-scattering factor in (13.31) is easily calculated at LO. We now use the photon
frame, in which the quark labeled A goes in the +z direction and has energy Q/2. The LO
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hard scattering is

Tr k+Aγ−(1− γ5γ T · aA T) Hν
f (Q) k−B γ+(1− γ5γ T · aB T) H

μ

f (Q)

LO= e2
f Tr k+Aγ−(1− γ5γ T · aA T) γ ν k−B γ+(1− γ5γ T · aB T) γ μ

= 2e2
f Q2

[
δ

μν
T + (δμν

T aA T · aB T − a
μ
A Taν

B T − a
μ
B Taν

A T)
]

= 2e2
f Q2

[
δ

μν
T + αAαB(δμν

T kA T · kB T − k
μ
A Tkν

B T − k
μ
B Tkν

A T)
]
, (13.34)

where δ
μν
T is a transverse Kronecker delta, the same as −g̃μν − ZμZν in the structure

function definition (13.9). Note that the dependence on aA T and aB T is only on a product
of both. This implies that the quark and antiquark are individually unpolarized, but that
their spins are correlated; the spin state is thus an entangled state. In the last line of (13.34),
we used the definitions (13.32).

To find the results for the structure functions, defined in (13.9), we insert (13.34) in the
factorization formula, and integrate over quark transverse momentum. The unpolarized term
in (13.34) contributes to WT only, giving the well-known 1+ cos2 θ distribution associated
with a spin- 1

2 quark. Comparison of the spin-dependent tensor in (13.34) with the structure
function decomposition shows that it gives a contribution to the W�� structure function.
This gives rise to a characteristic cos 2φ azimuthal dependence in the cross section, (13.10).

13.5.3 Lack of single-quark polarization

The lack of transverse polarization of each single quark is actually a result valid to all
orders of perturbation theory. The general proof uses chirality conservation in massless
perturbation theory, and is made by the argument associated with (8.84) in DIS.

13.6 Factorization and transverse coordinate space

In this section, I will restrict attention to the unpolarized term in the factorization formula.
The extension to the remaining term is left as an exercise (problem 13.6).

By using a Fourier transform, we can diagonalize the convolutions over transverse
momentum in the factorization formula, (13.31), and in the evolution equations to be
discussed later. So we define

S̃(bT) =
∫

d2−2ε kT eikT·bTS(kT), (13.35a)

D̃1, h/f (z, bT) =
∫

d2−2ε kT eikT·bTD1, h/f (z, zkT), (13.35b)

etc. The normalizations differ from those in Collins and Soper (1982b). The lack of a
1/(2π )2−2ε normally associated with kT integral is because this factor is already in the
definition of a fragmentation function. Although the phenomenological use of factorization
is in four space-time dimensions, the above formulae are written in a general space-time
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dimension, because we will also use them in dimensionally regulated perturbative calcula-
tions. All the transverse vectors are in the hadron frame.

Applying the limit bT → 0 naively, gives the integrated fragmentation function up to
normalization factor:

D̃1, h/f (z, 0T)
?= 1

z2
dh/f (z) (at ε = 0). (13.36)

The factor 1/z2 (or z−2+2ε in a general space-time dimension 4− 2ε) is from the scaling
between parton and hadron transverse momentum, (13.27). The above result applies in
a super-renormalizable non-gauge theory, and is the equivalent of (6.75) for a parton
density.

Applying (13.35b) to the definition (12.39) gives

D̃1, h/f (z, bT)
prelim= Trcolor

Nc,j

TrDirac

4

∑
X

1

z

∫
dx−

2π
eik+x−

× 〈0|γ+ψ (0)
j (x/2)|p,X, out〉 〈p,X, out|ψ̄ (0)

j (−x/2)|0〉

= Trcolor

Nc,j

TrDirac

4

1

z

∫
dk− dn−2kT

(2π )n
eikT·bT γ+ (13.37)

where the vector x is (0, x−, bT). Thus the transverse coordinate bT in the Fourier transform
is exactly the transverse separation of the quark and antiquark fields. The “prelim” notation
alerts us that we have not yet explicitly treated the Wilson-line issues in the definition. The
orientation of the diagram corresponds to hadron pA in Fig. 13.1.

Then the factorization formula becomes

Wμν prelim= 8π3zAzB

Q2

∑
f

Tr k+A,γ γ−Hν
f (Q) k−B,γ γ+H

μ

f (Q)

×
∫

d2−2ε bT

(2π )2−2ε
e−iqh T·bT S̃(bT)D̃1, HA/f (zA, bT) D̃1, HB/f̄ (zB, bT)

+ polarized terms. (13.38)

13.7 Final version of factorization for e+e− annihilation

After the Fourier transform into transverse coordinate space, the factorization structure in
(13.38) has the same multiplicative structure as the Sudakov form factor in Ch. 10. We
therefore apply the same manipulations as we used there to obtain an improved scheme for
factorization for our process.

One defining property of this scheme is that a square root of the soft factor is absorbed
into a redefinition of the TMD fragmentation functions, so no soft factor is needed in the
factorization formula itself. This is appropriate, since the non-perturbative part of the soft
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factor always appears multiplied by two collinear factors, so that it cannot be independently
determined from data.

A second defining property of the scheme is that in the definitions of fragmentation
functions, (13.42) below, as many Wilson lines as possible are made light-like. A non-
light-like Wilson line appears only in a matrix of a certain elementary soft factor where it
is multiplied with a light-like Wilson line. This will have the consequence, just as with the
Sudakov form factor, that the evolution equations for the TMD functions are homogeneous.
It also makes calculations of integrals simpler.

We will also formulate a further kind of factorization that will determine the TMD
functions for small bT in terms of ordinary integrated fragmentation functions. Later, we
will add in a correction term to factorization for large qh T/Q. After that we will have a
complete formalism suitable for phenomenological use, with certain functions needing to
be obtained by fits to data.

The use of transverse coordinate space simplifies many formulae. An equivalent for-
malism with transverse momentum variables would involve many convolutions (and their
inverses).

The results in Ch. 10 were derived for an abelian gauge theory, and gave definitions for
the factors with Wilson lines in certain directions. In the following treatment, I will only
briefly sketch the necessary generalizations of the proofs to extend the results to a non-
abelian theory. The general subtractive method still applies, and the eikonal denominators
in the Grammer-Yennie method are the same as before. It is an urgent problem to completely
fill in the details of the proofs (problem 13.7).

13.7.1 Definitions of TMD functions

As with the Sudakov form factor in Ch. 10, a basic entity in implementing factorization and
subtractions is the bare soft factor defined in (13.23). Its Wilson lines are in non-light-like
directions nA and nB , whose rapidities are yA and yB . They are chosen in the hadron frame
as in (10.32). That is, they are space-like (Collins and Metz, 2004), and initially their
rapidities approximately correspond to those of the hadrons pA and pB . The color charges
of the Wilson lines correspond to those of the quark and antiquark. The Fourier transform
to transverse coordinate space gives

S̃(0)(bT; yA, yB ) = 1

Nc

〈0| W (bT/2;∞, nB )†ca W (bT/2;∞, nA)ad

×W (−bT/2;∞, nB )bc W (−bT/2;∞, nA)†db |0〉
∣∣∣∣
No SI

, (13.39)

where Wilson-line self-interactions are again omitted, and the Wilson line rooted at position
x is

W (x;∞, n)ab = P
{
e−ig0

∫∞
0 dλ n·A(0)α (x+λn)tα

}
ab

. (13.40)

Here the index a corresponds to the start of the line at point x, and the index b corresponds
to the end at infinity.
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The soft factor has dependence on all parameters of the theory, notably, coupling, masses
and renormalization scale, in addition to the parameters indicated explicitly.

In just the same way as we did for the Sudakov form factor, we reorganize the definitions
of the factors in the factorization formula, (13.31). After the initial derivation, the collinear
factors are matrix elements defined as in the basic formula, (12.35), for a fragmentation
function, but with the following modifications:

• In the fragmentation function to hadron HA, a Wilson line is attached to each of the
quark and antiquark fields. Each Wilson line goes to positive infinity in the direction wB

corresponding to the opposite hadron. In the fragmentation function to hadron HB , the
Wilson lines are in direction wA.

• Wilson-line self-interactions, Fig. 13.4, are omitted.
• Soft subtractions and UV renormalization are applied.

A component of the results is the unsubtracted TMD fragmentation function for hadron
HA:

D̃unsub
1, HA/f (zA, bT, ypA

− yB)

def= Trcolor

Nc,j

TrDirac

4

∑
X

1

zA

∫
dx−

2π
eik+A x− 〈0|γ+W (x/2;∞; nB )ψf (x/2)|p,X, out〉

× 〈p,X, out|ψ̄f (−x/2)W (−x/2;∞; nB )†|0〉
∣∣∣∣
No SI

= Trcolor

Nc,j

TrDirac

4

γ+

zA

∫
dk−A d2−2ε kA T

(2π )4−2ε
eikA T·bT (13.41)

where the vector x in the first line is (0, x−, bT). We do not equip this fragmentation function
with a UV-renormalization factor, leaving that to the final definition in (13.42).

Exactly as for the Sudakov form factor, in (10.119a), we combine soft factors into the
collinear factors, to make the final definition of the fragmentation function for hadron HA:

D̃1,HA/f (zA, bT; ζA; μ)

def= lim
yA→+∞
yB→−∞

D̃unsub
1,HA/f (zA, bT; ypA

− yB)

√
S̃(0)(bT; yA, yn)

S̃(0)(bT; yA, yB ) S̃(0)(bT; yn, yB )

× UV-renormalization factor

= D̃unsub
1, HA/f (zA, bT; ypA

− (−∞))

√
S̃(0)(bT;+∞, yn)

S̃(0)(bT;+∞,−∞) S̃(0)(bT; yn,−∞)
ZDZ2.

(13.42)
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As in (10.119a), yn is an arbitrary rapidity value, used to specify non-light-like Wilson lines.
It will have the function in the factorization formula of separating left- and right-moving
quanta. We use the notation with infinite-rapidity Wilson lines to imply the appropriate limit
operations. The fragmentation function depends on the rapidity difference ypA

− yn. But for
the corresponding argument of the fragmentation function we use the following variable:

ζA
def= 2(k+A,h)2e−2yn = 2(p+A,h)2e−2yn

z2
A

= m2
A

z2
A

e2(ypA
−yn). (13.43)

This is a convenient variable for use in renormalization. Compare (10.127a).
As explained following (10.119a), UV renormalization and removal of the UV regulator

(i.e., space-time dimension n→ 4) are to be applied after taking the limits of infinite
rapidity for the Wilson lines. In the case of the integrated fragmentation function there was
an integral over all external parton transverse momentum, and the associated UV divergence
gave a non-trivial RG equation of the DGLAP type. But for the TMD function, this integral
is absent, and UV divergences are only in virtual corrections, essentially the same as in the
collinear factors for the Sudakov form factor. Since D̃unsub is defined with renormalized
quark fields, the multiplicative UV-renormalization factor in (13.42) is written as ZDZ2,
where Z2 is the wave-function renormalization factor of the quark field. Then ZD is the ratio
of the renormalized fragmentation function to the unrenormalized fragmentation function
defined with bare fields. The anomalous dimension will be obtained from ZD .

A fragmentation function for the other hadron is defined like (13.42), just with the roles
of the plus and minus coordinates exchanged, and with exchange of the labels A and B.
Instead of ζA we use

ζB
def= 2(k−B,h)2e2yn = 2(p−B,h)2e2yn

z2
B

= m2
B

z2
B

e2(yn−ypB
). (13.44)

Note that with the values of k+A,h and k−B,h specified in Sec. 13.3.2, and with neglect of
power-suppressed corrections, we have

ζAζB = Q4

cos4(δθ/2)
(original values). (13.45)

But we will be able to clean up the factorization formula by changing the values of ζA and
ζB slightly.

13.7.2 Wilson-line self-interactions in final definitions

For the same reasons as for the soft factor, Wilson-line self-interactions were omitted
from the definition of the unsubtracted fragmentation function, (13.41). We now show
that in the final definition of the complete fragmentation function, (13.42), we can replace
the unsubtracted collinear and soft factors by versions with Wilson-line self-interactions
allowed.

In an abelian theory, Wilson-line self-interactions just gave an overall factor, e.g.,
in (10.89). Thus it was straightforward to show that the self-interactions cancel in the
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combinations relevant to (10.119). Thus we could retain Wilson-line self-energies on the
r.h.s. of this equation, and obtain gauge independence.

For the non-abelian case, the steps are not so direct. This is because we can no longer
use (10.100) to disentangle the different gluons attaching to a Wilson line. Instead we use
a factorization theorem for each of the factors on the r.h.s. of (13.42), in the limit that
yA→∞ and yB →−∞; cf. Sec. 10.8.7. Each factor then becomes the product of a hard
factor, a soft factor, and two collinear factors. For each Wilson line in (13.42), we obtain a
particular collinear factor after this new factorization, and it is these collinear factors that
we treat as the Wilson-line self-interactions.

To see that the Wilson-line self-interactions cancel in (13.42), we simply count the
number of appearances of each kind of self-interaction factor in the complete expression.
For example, the Wilson-line self-interaction factor for the yB Wilson line of Dunsub is
canceled by the two yB Wilson-line self-interaction factors from the two factors of S̃ in the
denominator of the square-root factor.

The factorization of Wilson-line self-interaction contributions is correct for each correla-
tion function up to errors suppressed by exponentials of the differences in Wilson-line rapidi-
ties, e.g., e−(yA−yB ). Thus, when the infinite rapidity limits are taken in (13.42), these errors
become exactly zero. The result for the abelian Sudakov form factor is just a special case.

An immediate and important advantage is that the collinear factors defined in (13.42) are
gauge invariant. Hence the results of calculations are independent of the choice of gauge
fixing, unlike the case for the individual factors on the r.h.s. of (13.42); see problem 10.9.

It is true that the Wilson lines do not quite join at infinity. For example, in (13.39) we have
segments at different transverse positions. To get an exactly gauge-invariant operator, two
links must be inserted at infinity in a transverse direction. But the factorization argument for
cancellation of Wilson-line self-interactions also applies to the transverse links at infinity.

13.7.3 Factorization

To complete the factorization formula with the redefined fragmentation functions, we
anticipate a result from Sec. 13.12 below that gives an additive correction term Y to
the structure derived so far. Our derivation has been appropriate for small qh T: we have
neglected not only terms suppressed by a power of a hadronic mass divided by Q, but
also terms suppressed by a power of qh T/Q. But when qh T is of order Q, conventional
factorization with integrated fragmentation functions is valid. So in Sec. 13.12, we will
show how to formulate a large-qh T correction term Y . The resulting factorization formula
is

Wμν = 8π3zAzB

Q2

∑
f

Tr k+A,γ γ−Hν
f (Q) k−B,γ γ+H

μ

f (Q)

×
∫

d2−2ε bT

(2π )2−2ε
e−iqh T·bTD̃1, HA/f (zA, bT; Q2e−2yn ) D̃1, HB/f̄ (zB, bT; Q2e2yn )

+ polarized terms+ large-qh T correction, Y . (13.46)
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As in earlier factorization formulae, we use “polarized terms” to indicate term(s) that
involve the entangled transverse-spin state. The values of the ζA and ζB arguments of
the fragmentation functions are changed from the values in (13.43) and (13.44), thereby
removing the cos(δθ/2) in (13.45). This will simplify the formulae used in phenomenology.
Since the effect is of order q2

h T/Q2, it is comparable to errors in the approximants used in
the derivation, and does not affect the correctness of the formula. A correct Y term will
cancel q2

h T/Q2 errors in the TMD term, including those associated with the changes of the
values of ζA and ζB to those in (13.46). Hence the overall result for Wμν is valid for all
qh T, small and large, with relative errors suppressed by a power of mass divided by Q.

In the TMD part of this and previous formulae, the collinear, soft and hard factors appear
in the same way as in the Sudakov form factor in Ch. 10. In particular, a soft factor is absent
in the final formula. The changes relative to Ch. 10 simply accommodate that the factors
correspond to scattering amplitudes times conjugate amplitudes and that the Wilson lines
etc. are shifted transversely between the amplitude and the conjugate. The collinear factors
have the operators and normalizations appropriate for fragmentation; the Dirac structure is
unchanged from a non-gauge theory. Relative to the definitions in a non-gauge theory, only
the Wilson-line factors are new.

13.8 Evolution equations for TMD fragmentation functions

When initially conceived, a TMD fragmentation function was simply the number density
of hadrons in a parton-induced jet. With its complete definition, it acquires dependence
on both a renormalization scale and on ζ . We can regard this dependence as the effect of
recoil against emission of soft gluons into approximately a range determined by μ and ζ .
Appropriate values of these parameters are energy dependent.

To regain predictive power and effective universality together with some extra predic-
tions, we now derive evolution equations: an RG equation for the μ dependence and a
Collins-Soper (CS) equation for the rapidity dependence. The overall structure is the same
as for the Sudakov form factor.

13.8.1 CS evolution of TMD fragmentation function

The CS equation has the form

∂ ln D̃1,HA/f (zA, bT; ζA, . . .)

∂ ln
√

ζA

= K̃(bT; μ). (13.47)

The derivative is equivalent to a derivative with respect to −yn. Since the only dependence
on yn is in the S factors in (13.42), we have

K̃(bT; . . .) = ∂

∂yn

[
1

2
ln S̃(0)(bT; yn,−∞)− 1

2
ln S̃(0)(bT;+∞, yn)

]
+ UV counterterm

= 1

2S̃(0)(bT; yn,−∞)

∂S̃(0)(bT; yn,−∞)

∂yn

− 1

2S̃(0)(bT;+∞, yn)

∂S̃(0)(bT;+∞, yn)

∂yn

+ UV c.t. (13.48)
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This is normalized to be like K in Ch. 10. Since K is derived from the soft factor, it is
the same for all quark and antiquark fragmentation functions. It would be different for the
fragmentation of a gluon, which is a color octet.

Now in a differentiated soft factor, e.g., ∂S(bT, yA, yB )/∂yA, there is a sum of terms
in each of which one Wilson-line vertex and its neighboring line are differentiated with
respect to rapidity. The resulting vertex is the same as in Fig. 10.27 for the Sudakov form
factor, but with the insertion of the appropriate color matrix. Exactly as for the Sudakov
form factor, the momentum at the differentiated vertex is, to leading power, close in rapidity
to that of the parent Wilson line. Factorization then gives the original soft factor times a
factor associated with differentiated vertex. Taking the rapidity difference of the Wilson
lines to infinity then removes the power-suppressed corrections to factorization, and leaves
a kernel K̃ that depends on bT and on the parameters of the theory (μ, g(μ), etc.), but not
on the Wilson-line rapidities.

13.8.2 RG evolution of K

As with the Sudakov form factor, the evolution kernel K̃ is renormalized by adding a coun-
terterm, and this gives an additive anomalous dimension. The UV divergence only arises
from virtual graphs, so it has no bT dependence. The RG equation for K̃ then has the form

dK̃

d ln μ
= −γK (g(μ)) . (13.49)

13.8.3 RG evolution of TMD fragmentation function

Since the UV divergences of the TMD fragmentation function D̃ arise only from virtual
graphs, the associated RG equation arises from the overall ZD factor in (13.42). Thus the
RG equation for D̃ has the form

d ln D̃1, HA/f (zA, bT; ζA, . . .)

d ln μ
= γD

(
g(μ); ζA/μ2

)
. (13.50)

Unlike the DGLAP equation, there is no convolution with the longitudinal momentum
fraction zA. However, as with the Sudakov form factor (see Sec. 10.11.4) the anomalous
dimension does depend on the longitudinal momentum of the quark, via the variable ζA

defined in (13.43).
We obtain the energy dependence of γD , by the same proof as for the Sudakov form

factor in Sec. 10.11.4, and obtain

γD

(
g(μ); ζA/μ2

) = γD(g(μ); 1)− 1

2
γK (g(μ)) ln

ζA

μ2
. (13.51)

13.9 Flavor dependence of CS and RG evolution

In the most common applications, TMD fragmentation functions (and also TMD parton
densities) are used only for Dirac quarks. But TMD functions can be defined for any kind of
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Fig. 13.5. Lowest-order graphs for K: (a) virtual gluon, (b) real gluon. Note the addition
of the hermitian conjugate (h.c.) graphs, where the differentiated vertex is on the opposite
side of the final-state cut. The empty Wilson lines on the right in the virtual graphs give a
unit factor for zeroth-order Wilson lines. The overall factor of 1/Nc is from (13.39), and
the factor of 1

2 is from (13.48).

parton, both for the gluon in QCD and for other partonic fields in hypothesized extensions
of QCD.

The kernel K and its anomalous dimension γK arise from the Wilson-line soft factors,
and thus depend only on the color representation of the parton. Thus there are separate
versions of these for the gluon, which we could denote K8 and γK8. The lowest-order
values are obtained from those for ordinary quarks by changing CF to CA.

But in a supersymmetric extension of QCD, we would not need any extra functions. The
extra fields in such a theory are squarks and gluinos. A squark is a scalar triplet, so it would
use the same values of K and γK as ordinary quarks. This applies both to the perturbative
and non-perturbative parts, of course. A gluino is a spin- 1

2 octet, so it would need the same
K8 and γK8 as a gluon.

In contrast, the anomalous dimension γD would differ between all these types of
parton.

13.10 Analysis of CS kernel K: perturbative and non-perturbative

13.10.1 Feynman rules for K

The definition of K in (13.48) involves differentiation of Wilson lines in S̃ with respect to
rapidity. The basic vertex needed for the derivatives are obtained from differentiating one
Wilson-line vertex and its neighboring line, exactly as in Fig. 10.27, but with an appropriate
color matrix.

At lowest order, the resulting graphs are shown in Fig. 13.5, a simple generalization of
those for the Sudakov form factor.

In QCD, we no longer have the simplification that we had in an abelian theory where
each Wilson line is a graphical exponential of its first-order term. Therefore higher-order
graphs for K are more complicated than the simple connected graphs shown in Fig. 10.23
for the abelian theory. It is left as a research exercise to search for any corresponding
simplification in a non-abelian theory.
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13.10.2 LO calculation of K

LO virtual graphs for K

In (10.134), we calculated K for the Sudakov form factor. For the virtual graphs in the
present context, Fig. 13.5(a), almost the same calculation applies. The factors of 1

2 in the
definition of K for fragmentation are now canceled by the addition of hermitian conjugate
graphs. For QCD, we insert the usual QCD color factor of CF , and we make the gluon
massless.

In momentum space, there is no final-state momentum for the virtual graphs, so for
the contribution of these graphs in (13.23) we insert a factor (2π)4−2εδ(4−2ε)(kS). After the
integration given in (13.23), we have a factor δ(2−2ε)(kT) relative to the Sudakov form factor
case. The Fourier transform to transverse coordinate space converts this to unity, to give

K̃1V = −g2CF (4πμ2)ε

4π3

∫
d2−2ε lT

1

l2
T

+ g2CF Sε

4π2ε
. (13.52)

Here, the UV counterterm is in the MS scheme, and the lT integral is left explicit. This
exhibits a negative IR divergence at lT = 0, which will cancel against a positive divergence
from the real emission graphs. The subscript “1V ” denotes “1-loop virtual”.

LO real graphs for K

In Feynman gauge, each of the two graphs in Fig. 13.5(b) gives an equal result, as do their
hermitian conjugates; this is checked by explicit calculation. So the complete result is given
by multiplying one graph (including its explicit factor of 1

2 ) by 4. With the rule in Fig. 10.27
for the differentiated line, we get

K̃1R = −4g2CF μ2ε

(2π )4−2ε

∫
d4−2εkS eikS T·bT

(2π )δ(k2
S)θ (k0

S)

(k−S eyn − k+S e−yn + i0)2

= g2CF (4π2μ2)ε

4π3

∫
d2−2ε kT

eikT·bT

k2
T

. (13.53)

LO total for K

The IR divergence at zero transverse momentum cancels between the real and virtual
graphs:

K̃1 = g2CF (4π2μ2)ε

4π3

∫
d2−2ε kT

eikT·bT − 1

k2
T

+ g2CF Sε

4π2ε
. (13.54)

To perform the kT integral, we use (A.45), and get

K̃1 = g2CF

4π2

[
(πμ2b2

T)ε�(−ε)+ Sε

ε

]
ε=0= −g2CF

4π2

[
ln(μ2b2

T)− ln 4+ 2γE

]
. (13.55)

The anomalous dimension, from (13.49), is therefore

γK = g2CF

2π2
+O(g4). (13.56)
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13.10.3 Analysis of bT dependence for K

The bT dependence of TMD functions and of K̃ determines the transverse-momentum
dependence of cross section, and so it is important to understand to what extent the bT

dependence can be predicted by perturbative calculations.
At large bT the dependence is non-perturbative, simply because the operators are sepa-

rated by a large distance. There the functions must be obtained by analyzing experimental
data, given the present lack of non-perturbative calculations. In contrast, at small bT we
can employ perturbative methods, as we will now see. Since the boundary between non-
perturbative and perturbative regions is quite vague, we will also need a method to combine
for a single function perturbative predictions and non-perturbative fits.

Now in the definition of the soft factor S̃(bT), there is an integral over the external
momentum kS , with the Fourier-transform factor eikS T·bT providing, roughly speaking, an
upper cutoff at kS T ∼ 1/bT. We have the same situation as in the e+e−annihilation cross
section that this gives an IR-safe quantity. The same applies to K̃ , which is a derivative of
S̃, as is evidenced by the canceled IR singularity in (13.54).

So to calculate K̃(bT) at small bT we simply apply an RG transformation to set μ of
order 1/bT:

K̃(bT; μ, g(μ),m(μ)) � K̃

(
bT;

C1

bT
, g

(
C1

bT

)
, 0

)
−
∫ μ

C1/bT

dμ′

μ′
γK

(
g(μ′)

)
. (13.57)

On the r.h.s., K has its renormalization mass proportional to 1/bT, which eliminates large
logarithms. The constant of proportionality, C1, can be used to optimize the accuracy of
perturbative calculations. In the MS scheme, a value not far from unity is appropriate. Then,
for example, truncating perturbation theory for K̃ to the first-order term gives an error of
order the first term omitted, i.e., O(g4). We have also chosen to neglect quark masses
relative to 1/bT, as is appropriate for light quarks.

In applications, we will set μ equal to the value used in calculating the hard scattering
perturbatively, i.e., of order Q, unambiguously in a perturbative domain. As bT is varied
with μ fixed, the largest contribution to the r.h.s. of (13.57) comes from the integral over
the anomalous dimension.

Evidently the accuracy of a perturbative estimate worsens as bT increases, and for large
enough bT, presumably around 0.5 fm, perturbation theory becomes inapplicable. In this
case, we can perform a transformation to a value μ0 of the renormalization mass μ0 that
stays fixed when we change the experimental energy Q and hence change μ. Thus we
write

K̃(bT; μ, g(μ),m(μ)) = K̃(bT; μ0, g(μ0),m(μ0))−
∫ μ

μ0

dμ′

μ′
γK (g(μ′)). (13.58)

This demonstrates an important result: the non-perturbative information in K is contained
in a single universal function of bT. (The universality is between all processes using TMD
functions for color-triplet partons.) As we will see, this function can be measured from
the derivative with respect to energy of a suitable cross section. In principle, the derivative
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can be taken at one energy, thereby allowing a prediction of the cross section at other
energies.

Consequences in transverse-momentum space

When we Fourier-transform back to transverse momentum, perturbative calculations at
small bT conveniently combine two types of perturbatively calculable information. First,
the singularity of K̃(bT) at small bT determines the shape of K(kT) at large kT. Second,
the value of K̃ at small bT determines the integral of K(kT) over all kT up to about 1/bT.
Similar remarks apply to the TMD fragmentation function.

13.10.4 Matching perturbative and non-perturbative bT dependence

To combine information on bT dependence from perturbative calculations valid at small
enough bT with a non-perturbative part that must be determined by a fit to experimental
data, a matching procedure was formulated by Collins and Soper (1982a). First a parameter
bmax is chosen which has the interpretation of the maximum distance at which perturbation
theory is to be trusted. One value (Landry et al., 2003) that has been used is bmax =
0.5 GeV−1 = 0.1 fm.

Then a function b∗(bT) is defined with the properties that at small bT it is the same as
bT, and that at large bT it is no larger than bmax. The standard choice is

b∗
def= bT√

1+ b2
T/b2

max

. (13.59)

Changes in the form of this function or in the value of bmax do not affect the physical cross
section, but only the way in which non-perturbative phenomena are parameterized.

We now write K̃(bT) = K̃(b∗)+ correction term. The idea is that K̃(b∗) is always in a
situation where perturbation theory is appropriate, and the correction term is only important
at large bT. Therefore we write

K̃(bT; μ, . . .) = K̃(b∗; μ, g(μ),m(μ))

+ [K̃(bT; μ, g(μ),m(μ))− K̃(b∗; μ, g(μ),m(μ))
]

= K̃(b∗; C1/b∗, g(C1/b∗), 0)−
∫ μ

C1/b∗

dμ′

μ′
γK (g(μ′))

+ [K̃(bT; μ0, g(μ0),m(μ0))− K̃(b∗; μ0, g(μ0),m(μ0))
]

= K̃(b∗; C1/b∗, g(C1/b∗), 0)−
∫ μ

C1/b∗

dμ′

μ′
γK (g(μ′))− gK (bT), (13.60)

where the correction term is denoted −gK . Phenomenologically it is a function of one
variable bT, to be fit to data. It is RG invariant, since it is a difference of K̃ at two values of
its position argument. The correction term vanishes as bT → 0. Recent fits use a quadratic
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ansatz:

gK (bT) = 1

2
g2b

2
T. (13.61)

The measured value of g2 is correlated with the value of bmax, and with assumptions about
other non-perturbative functions; see Sec. 14.5.3. Landry et al. (2003) and Konychev and
Nadolsky (2006) found

g2 =
{

0.68 +0.01
−0.02 GeV2 with bmax = 0.5 GeV−1,

0.17± 0.02 GeV2 with bmax = 1 GeV−1.
(13.62)

(The second number is my average of two fits.) Then

gK (bT) �
{

0.34 b2
T with bmax = 0.5 GeV−1,

0.08 b2
T with bmax = 1 GeV−1.

(13.63)

The fits are made with truncated perturbative approximations for both
K̃(b∗; C1/b∗, g(C1/b∗), 0) and γK (g(μ′)). Because the coupling increases with decreas-
ing scale, the approximations lose accuracy when applied at larger values of b∗ com-
pared with lower values. A phenomenological fit for the function gK (bT) in (13.60)
effectively includes an allowance for errors in truncated perturbation theory for scales
near bmax.

Thus one should not expect the numerical values of gK (bT) to be stable against the
inclusion of yet higher-order perturbative estimates of K̃ and γK . Only the total value of
K̃(bT) should be stable against improvements in perturbative calculations.

Note that the numerical results quoted from Landry et al. (2003) were from fits to Drell-
Yan data. In describing them here for their application to e+e− annihilation, we are using
a result to be explained later that the soft function is the same in the two reactions.

13.11 Relation of TMD to integrated fragmentation function

We now generalize the methods of Secs. 13.10.3 and 13.10.4 to analyze the dependence of
the fragmentation function on bT, and to formulate perturbative and non-perturbative parts.

13.11.1 Perturbative small-bT dependence

First, we analyze the small-bT region. We show that in contrast to the case of the evolution
kernel K , the perturbative calculation for a TMD fragmentation function at small bT does
not determine the fragmentation function absolutely, but only expresses it, by a factorization
property, in terms of a perturbative coefficient convoluted with integrated fragmentation
functions. The integrated fragmentation functions themselves must still be obtained from
experiment. This result does give notable predictive power since a function of two kinematic
variables is expressed in terms of a non-perturbative function of one variable.
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Fig. 13.6. Leading regions for TMD fragmentation function at small bT.

See Sec. 13.11.2 for how to combine this with non-perturbative information for
large bT.

To motivate that a relation should exist between a TMD fragmentation function at small
bT and an integrated fragmentation function, we recall the discussion at the beginning
of Sec. 13.6. There we showed that in super-renormalizable non-gauge model theories, a
TMD fragmentation function at zero bT equals the corresponding integrated fragmentation
function (up to a standard normalization factor); this is the parton-model result. In QCD,
this relation fails, because of the need to renormalize fragmentation functions and because
of complications associated with the soft factors in (13.42).

I will now formulate a corrected relation. It is a factorization formula involving a
coefficient function whose lowest-order value is unity, corresponding to the parton-model
result.

Region analysis

We start with a region analysis for the unsubtracted unintegrated TMD fragmentation
function (13.41). Leading regions involve hard, collinear and soft subgraphs. The soft
subgraphs connect the collinear subgraphs, and there are collinear factors associated with
the detected hadron and with the Wilson line. The hard factor is associated with the
external quark–Wilson-line vertices. Its lowest-order term is just these vertices. There can
be higher-order hard subgraphs with highly virtual loops, and there can be further hard
subgraphs with production of final-state jets of high transverse momentum, the transverse
momenta being limited basically by the large value of 1/bT. The structure is essentially
the same as we encountered for simple inclusive cross sections in e+e− annihilation,
around Fig. 12.4. As in that case, the sum/integral over final states in each extra jet is
fully inclusive, so after a sum-over-cuts, as in Sec. 12.8.7, the subgraphs for the extra
high-transverse-momentum jets are effectively far off-shell and count as part of the hard
part.

But now a difference arises, that the definition of the subtracted TMD fragmentation
function (13.42) includes subtractions to remove the opposite (pB-associated) collinear
region and the soft region. So the only remaining effective regions have a subgraph collinear
to pA and a possible hard subgraph, as shown in Fig. 13.6. The parton-model result applies
when the only hard subgraphs are trivial, i.e., when all the parton lines in the graph on the
last line of (13.41) are hadron-collinear.
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Factorization for TMD at small bT

We now apply the usual factorization argument to Fig. 13.6, summed over all cases and
with double-counting subtractions. The extra gluons entering the hard part are converted
to Wilson lines by Ward identities. Since the integration over transverse momenta in the
collinear part is limited solely by 1/bT in the hard part, the collinear factor gives an
integrated fragmentation function. We get

D̃1,HA/f (zA, bT; ζA; μ)

=
∑

j

∫ 1

zA

dẑ

ẑ3−2ε
dHA/j (ẑ; μ) C̃j/f (zA/ẑ, bT; ζA, μ, g(μ))+O[(mbT)p]. (13.64)

The error term is suppressed by some power of transverse position. The sum over j is
over all types of parton, including gluons and antiquarks. The coefficient function C̃f/j is
calculated, as usual for a hard factor, from graphs with external on-shell parton of type j ,
with double-counting subtractions that cancel all collinear contributions.

Since the on-shell parton has infinite rapidity, we convert the dependence on the rapidity
yn to a dependence of C on an energy variable ζA, defined by (13.43). The lowest-order
coefficient is

C̃j/f (zA/ẑ, bT; ζA, μ, g(μ)) = δjf δ(zA/ẑ− 1)+O(g2). (13.65)

The integral in (13.64) has a measure dẑ /ẑ3−2ε , rather than the dẑ /ẑ that we would get for
a corresponding formula with a parton density. This arises from the different powers of z

in the normalizations of the definitions of the TMD and integrated fragmentation function,
(12.39) and (12.40). Although the formula is phenomenologically applied at ε = 0, it
was written for a general ε. This allows the factorization formula also to be applied in
perturbative calculations, where intermediate stages use dimensional regularization.

Logarithms in coefficient

Evolution equations for the coefficient can be derived from the CS and RG evolution
equations for the TMD fragmentation function and the DGLAP equation for the integrated
fragmentation function. They show that the dependence of the coefficient on μ and on
ζA is logarithmic in each order of perturbation theory. Hence by dimensional analysis the
dependence on bT is also logarithmic. Thus the functional form of the bT dependence in
each order of perturbation theory is a polynomial in ln b2

T. From the evolution equations it
can be seen that the order of the polynomial is 2L where L is the number of loops: i.e.,
there are two logarithms per loop, giving leading logarithms characteristic of the Sudakov
form factor. Fourier transformation gives 1/k2

T times a polynomial in ln k2
T, and the order

of this polynomial is 2L− 1.

NLO calculations

To see how actual calculations work and for the values of the coefficients, see Sec. 13.14.
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TMD fragmentation function at large kT

Fourier transformation of (13.64) gives factorization for the TMD fragmentation function
at large transverse momentum:

D1,HA/f (zA, kT; ζA; μ)

=
∑

j

∫ 1

zA

dẑ

ẑ3−2ε
dHA/j (ẑ; μ) Cj/f

(
zA

ẑ
, kT; ζA, μ, g(μ)

)
+O

[(
m

kT

)p 1

k2
T

]
. (13.66)

13.11.2 Matching perturbative and non-perturbative bT dependence
for TMD fragmentation

To combine the perturbative information on fragmentation at small bT with non-perturbative
information (to be fitted to data) at large bT, we copy the method applied in Sec. 13.10.4 to
the kernel K .

Intrinsic transverse momentum dependence and energy dependence

A complication is that in addition to the kinematic variables z and bT, the TMD fragmen-
tation function depends on two parameters ypA

− yn and μ, which can be thought of as
cutoffs on internal gluon momenta. The CS and RG equations control dependence on these
parameters. In an application, we will normally set μ of order the large kinematic variable
Q, to allow a useful perturbative calculation of the hard scattering; we might choose yn to
be zero in the overall CM frame. Thus the values of ypA

− yn and μ change, depending on
the kinematics of the process being considered.

So we solve the evolution equations to gives the TMD fragmentation function in terms
of its value at fixed reference values of ζA and μ:

D̃1, HA/f (zA, bT; ζA; μ) = D̃1, HA/f

(
zA, bT; m2

A/z2
A; μ0

)
exp

{
ln

√
ζAzA

mA

K̃(bT; μ0)

+
∫ μ

μ0

dμ′

μ′

[
γD

(
g(μ′); 1

)− ln

√
ζA

μ′
γK

(
g(μ′)

)]}
. (13.67)

Here, the reference value of ζA was chosen to correspond to ypA
= yn. Some other value

could equally well be used, but this value is appropriate as the limit of where the detected
hadron is moving to the right in the rest frame of the vector n. As for the reference value
μ0 of the renormalization scale, it should be in the perturbative region, so that low-order
perturbative calculations of γD and γK are useful. Notice that the μ dependence gives an
overall normalization change, but does not affect the shape of the bT dependence of the
fragmentation function.

The dependence on ζA involves the function K̃(bT), so it gives energy dependence to the
shape of the transverse momentum distribution. We characterize the result as follows. The
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function D̃ at its reference value of the parameters can be thought of as the Fourier transform
of an intrinsic transverse momentum distribution of a hadron in its parent parton, essentially
a parton-model concept. But this is multiplied by eln(

√
ζAzA/mA)K̃(bT;μ0). This is the effect of

energy-dependent recoil against the emission of soft gluons. In momentum space we can
treat its effects as the result of convoluting the intrinsic distribution with ln(

√
ζAzA/mA)

factors of the Fourier transformation of eK̃(bT;μ0). Thus we can treat eK̃(bT;μ0) as giving
the distribution of gluon emission per unit rapidity, with the emission being uniform
in rapidity. Note that perturbative calculations and fits indicate that K̃(bT) is basically
negative, and that it becomes very negative at large bT, so that the Fourier transform is well
behaved.

Matching perturbative and non-perturbative parts

To match the perturbative and non-perturbative parts of D̃, we again use the quantity b∗
defined in (13.59). Generalizing (13.60) we formulate an intrinsically non-perturbative part
by the following decomposition:

D̃1, HA/f (zA, bT; ζA; μ)

= D̃1,HA/f (zA, b∗; ζA; μ)

[
D̃1,HA/f (zA, bT; ζA; μ)

D̃1,HA/f (zA, b∗; ζA; μ)

]

= D̃1,HA/f (zA, b∗; ζA; μ) exp

[
−gHA/f (zA, bT)− ln

√
ζAzA

mA

gK (bT)

]
. (13.68)

In the second line we simply separated out a factor of D̃ at b∗, which we will calculate
perturbatively. We then evolved the fragmentation functions in the brackets to the reference
values of ζA and μ. The effects of the anomalous dimension γD cancel between numerator
and denominator, while from CS evolution there survived only the “non-perturbative” part
of K̃ , i.e., gK , defined in (13.60). The remaining factor we chose to write as an exponential
e−gHA/j (zA,bT), which we can label as the non-perturbative part of the intrinsic transverse
momentum distribution (Fourier transformed).

The Fourier transform of (13.68) into momentum space should be well behaved under
conditions when the factorization formula is used, i.e., when ζA is large enough, probably
bigger than a few GeV2. This implies that the function gK should go to positive infinity as
bT →∞. Typical fits assume that this behavior is proportional to one or two powers of bT,
i.e., that an exponential or Gaussian is appropriate. The constraints on the other function,
gHA/j , are less severe. If its power law is the same as gK , then there will be a problem
when ζA is too low, since then the exponent would grow indefinitely at large bT. This is
not in principle a problem, since we should only use parton densities when a factorization
formula is valid, i.e., only for ζA above some lower limit.

See Landry et al. (2003) and Konychev and Nadolsky (2006) for fits in the completely
analogous case of TMD quark densities in a hadron.

To use the perturbative small-bT result from (13.64), we now evolve the b∗ factor (13.68)
to a situation with no large kinematic ratios in the coefficient function C̃, whose logarithms
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would prevent the effective use of perturbation theory. We therefore choose to replace μ0

in (13.67) by

μb = C1

b∗(bT)
, (13.69)

and we replace the reference value m2
A/z2

A for ζA by μ2
b. Then

D̃1, HA/f (zA, bT; ζA; μ)

=
∑

j

∫ 1

zA

dẑ

ẑ3−2ε
dHA/j (ẑ; μb) C̃j/f

(
zA/ẑ, b∗; μ2

b, μb, g(μb)
)

× exp

[
−gHA/f (zA, bT)− ln

√
ζAzA

mA

gK (bT)

]

× exp

{
ln

√
ζA

μb

K̃(b∗; μb)+
∫ μ

μb

dμ′

μ′

[
γD(g(μ′); 1)− ln

√
ζA

μ′
γK (g(μ′))

]}
.

(13.70)

This is probably the best formula for calculating and fitting TMD fragmentation functions;
see (13.81) for its use in a factorization formula.1 Besides the integrated fragmentation
functions, which can be measured from simpler inclusive processes, there are further non-
perturbative functions gHA/j (zA, bT) and gK (bT) that must be obtained by fits to data. The
first of these functions requires essentially the same amount and kind of data to determine
as we would need to determine TMD fragmentation functions if the simple parton model
were valid, without any QCD modifications. The second function gK (bT) depends only on
a single variable, and can be obtained from the energy dependence of the process. Many
predictions can be made with the aid of gK , since it is independent of zA, and also since
exactly the same function appears in many other processes with TMD functions, both for
fragmentation and for parton densities.

All remaining quantities are perturbative, and can therefore be predicted to useful accu-
racy from first principles by low-order Feynman-graph calculations. For this to work, the
lower limit on μb, i.e., C1/bmax, should be at an energy scale where the use of perturbation
theory is appropriate, say about 2 GeV. However, this is typically a fairly low scale, where
the errors in truncated perturbation theory are substantially larger than in the calculation of
the hard scattering at a scale of tens or hundreds of GeV. It is worth noting that because of
the form of (13.70) these errors can dominantly be compensated by adjustments of the non-
perturbative functions. That is, actual fits for the non-perturbative functions automatically
compensate the largest higher-order terms in K̃ and C̃.

1 In this application, ε is set to zero in the factor 1/ẑ3−2ε . The ε dependence is retained in (13.70) so that the formula
can also be related to regulated perturbative calculations.
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13.12 Correction term for large qhT

The TMD factorization formalism described above applies when qh T is treated as a small
variable. Approximations were made that have errors of order a power of qh T/Q. When
qh T is of order Q, the conventional formalism, with its integrated fragmentation functions,
is valid: Ch. 12. Notably, the large qh T then arises from hard scattering with three or more
final-state partons, whereas the TMD formalism associates qh T with parton transverse
momenta in the TMD fragmentation functions.

The TMD formalism loses accuracy at large qh T, with fractional errors we characterize as
(qh T/Q)α . The other formalism loses accuracy at small qh T with fractional errors (m/qh T)β ,
where m denotes a typical hadronic scale. In these estimates, α and β are positive powers
for the first neglected terms in the region approximants, either 1 or 2 in reality, and we then
can reduce these powers slightly so as to obtain errors valid in the presence of logarithmic
corrections. We assume throughout that we do not let qh T increase beyond order Q.

To work with the whole range of qh T it is necessary to find a way of combining the two
formalisms without loss of accuracy.

A simple-minded approach would be to use the TMD formalism for qh T below some
scale Q0 � Q, and to use the conventional formalism above that scale. But this would
substantially degrade the accuracy of the predictions. For example, suppose the error
exponents are α = β = 1. Then the worst fractional error in the use of the TMD formalism
would be Q0/Q, while that for the conventional formalism would be m/Q0, both at
qh T = Q0. Globally optimal errors would be obtained with Q0 proportional to the geometric
mean of Q and m, for a fractional error of order

√
m/Q, i.e., with an error exponent

0.5 instead of unity.
Using the general principles of subtraction methods, Collins and Soper (1982a) devised

a method that in principle gives m/Q errors for all qh T. Their idea was to treat the TMD
term as a first approximation to the cross section (or structure function). It is obtained by
applying a TMD approximator, TTMD, to the structure function:

L = TTMDWμν. (13.71)

(Hidden inside the action of TTMD are all the details of the extraction of the hard factor,
the definitions of the TMD fragmentation function, etc.) This “low-transverse momentum
term” L gives all but the Y term on the r.h.s. of (13.46).

The fractional error in the approximant is power-suppressed in qh T/Q:

|W − TTMDW | = O((qh T/Q)α|W |) . (13.72)

We define the correction term Y in (13.46) by applying an approximator for ordinary
collinear factorization to the remainder:

Y
def= Tcoll(W

μν − L) (13.73)

The fractional errors in this approximation are suppressed by a factor (m/qh T)β . Although
this degrades as qh T gets small, it is applied to a quantity that itself is getting small. Therefore
the sum of L and Y , i.e., the whole r.h.s. of (13.46), is a uniformly good approximation,
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i.e., W − L− Y is power-suppressed:

|W − L− Y | = |(1− Tcoll)(W − L)|
= O

(
(m/qh T)β |W − L|)

= O
(
(m/qh T)β(qh T/Q)α|W |)

= O
(
(m/Q)min(α,β)|W |) . (13.74)

The above error estimate applies when qh T is less than of order Q. However, although
there is a kinematic limit at when qh T gets larger than Q, this kinematic limit is not respected
by the low-qh T term. Its large-qh T behavior represents only a kind of extrapolation of the
low-qh T behavior. Once one gets close to or beyond the kinematic limit, the error between
W and L increases far beyond 100%. An appropriate solution is to redefine L with a cutoff
to restrict the values of qh T to which it is applied. That is, L is replaced by

LF = F (qh T/Q) TTMDW. (13.75)

Here the function F (qh T/Q) is chosen so that it is unity at qh T = 0 and zero for large qh T. A
possible choice would be a theta function F (qh T/Q) = θ (Q− qh T). A better choice would
be a smooth function. Since the kinematic limit is dependent on the momentum fractions
zA and zB , it would be appropriate to give corresponding dependence to the function F .

The cutoff function should be inserted in (13.46), multiplying its first term, and an
appropriate redefinition of Y must be made:

YF
def= Tcoll(W − LF ). (13.76)

If L and Y were computed exactly, the choice of cutoff function would be unimportant. But
actual estimates of L and Y involve truncations of perturbation expansions, so the cutoff
function F should be chosen to minimize errors, as well as these can be understood.

Other procedures are possible, for example as proposed by Arnold and Kauffman (1991).
The overall aim is to minimize the likely errors of calculations.

13.13 Using TMD factorization

To use the factorization formalism we exploit the CS and RG evolution equations to change
the values of μ and yn in each factor separately, so that:

• perturbatively calculated quantities are applied in a region where their coefficients have
no large logarithms;

• non-perturbative quantities are applied with fixed values of μ and �y, so that the functions
that need to be fitted to data have the minimum number of variables.

The resulting formula, (13.81) below, is suitable for data fitting and for using the results
of perturbative calculations. However, this formula is quite complicated. So I show the
factorization result in two other forms to exhibit the overall structure.
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13.13.1 Three views of factorization

Main factorization formula

First is the main factorization formula, presented earlier (13.46), which follows most
immediately from the derivation of factorization. It directly exhibits the low-qh T part of the
Wμν in terms of TMD fragmentation functions. It is equivalent to a convolution of TMD
fragmentation functions.

Factorization with fixed fragmentation functions

The fragmentation functions have dependence on auxiliary parameters as well as the
momentum fractions and the transverse coordinates and momenta. We can exhibit fac-
torization in terms of TMD densities at fixed reference values of the auxiliary parameters,
by the use of (13.67), obtained from solving the CS and RG equations. This gives

Wμν = 8π3zAzB

Q2

∑
f

H
μν
f

(
Q; g(μQ), μQ

) ∫ d2bT

(2π )2
e−iqh T·bTe−S(bT;Q;μQ,μ0)

× D̃1,HA/f

(
zA, bT;

m2
A

z2
A

; μ0

)
D̃1,HB/f̄

(
zB, bT;

m2
B

z2
B

; μ0

)

+ polarized terms+ large-qh T correction, Y . (13.77)

We now have fixed fragmentation functions combined with an allowance for recoil against
energy-dependent gluon emission, in the factor

e−S(bT;Q;μQ,μ0) def= exp

{
ln

Q2zAzB

mAmB

K̃(bT; μ0)

}

× exp

{∫ μQ

μ0

dμ′

μ′

[
2γD(g(μ′); 1)− ln

Q2

(μ′)2
γK (g(μ′))

]}
, (13.78)

where the first factor gives an energy-dependent shape to the TMD distribution, but the
second factor only affects the normalization. Observe that all dependence on yn has disap-
peared.

In (13.77) the renormalization scale in the hard factor H
μν
f is chosen to be proportional

to Q,

μQ = C2Q. (13.79)

This is used to minimize logarithms in perturbative calculations of H
μν
f , which is obtained

as a (Dirac and color) trace over on-shell hard-scattering amplitudes:

H
μν
f (Q; g(μ), μ) = Tr k+Aγ−Hν

f (Q) k−B γ+H
μ

f (Q). (13.80)
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Factorization with maximum perturbative content

Finally, we apply the small-bT perturbative expansion of the TMD fragmentation functions
in the form of (13.70), where it is combined with functions to parameterize the non-
perturbative large bT dependence. This gives

Wμν = 8π3zAzB

Q2

∑
f,jA,jB

H
μν
f

(
Q; g(μQ), μQ

) ∫ d2bT

(2π )2
e−iqh T·bT

×
∫ 1

zA

dẑA

ẑ3
A

dHA/jA
(ẑA; μb) C̃jA/f

(
zA

ẑA

, b∗; μ2
b, μb, g(μb)

)

×
∫ 1

zB

dẑB

ẑ3
B

dHB/jB
(ẑB ; μb) C̃jB/f̄

(
zB

ẑB

, b∗; μ2
b, μb, g(μb)

)

× exp
[−gHA/f (zA, bT)− gHB/f̄ (zB, bT)

]
× exp

[
− ln

Q2zAzB

mAmB

gK (bT)+ ln
Q2

μ2
b

K̃(b∗; μb)

]

× exp

{∫ μQ

μb

dμ′

μ′

[
2γD(g(μ′); 1)− ln

Q2

(μ′)2
γK (g(μ′))

]}

+ polarized terms+ large-qh T correction, Y . (13.81)

The second and third lines are the part contributed by the integrated fragmentation functions.
At lowest order

Lines 2 and 3 of (13.81)
LO= dHA/f (zA; μb) dHB/f̄ (zB ; μb)

z2
Az2

B

+O(αs(μb)) . (13.82)

The fourth line of (13.81) gives the non-perturbative contribution to the non-evolving part
of the transverse distributions. Finally, the last two lines give the effect of gluon radiation,
perturbative and non-perturbative.

The overall non-perturbative factor has the form

exp

[
−gHA/f (zA, bT)− gHA/f̄ (zB, bT)− ln

Q2zAzB

mAmB

gK (bT)

]
. (13.83)

This represents the TMD part that must (currently) be obtained by fitting to data. It concerns
the region of large bT. To avoid interfering with the results of valid perturbative calculations,
the functions in the exponent should decrease like a power of bT at small bT. The choice
giving the logarithm in (13.83) (and the corresponding logarithm in (13.81)) was explained
below (13.67).

13.13.2 Arbitrariness in renormalization scales and bmax

In the perturbative parts of (13.81), there are choices of the scales μb and μQ, with
an arbitrariness parameterized by the coefficients C1 and C2. As is usual with a choice
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of renormalization/factorization scale, if all the factors were calculated exactly, then the
result for Wμν would be independent of C1 and C2. This follows simply from the CS and
RG evolution equations treated exactly. But the perturbative calculations of the various
quantities needed, H , C̃, K̃ , γD and γK , are always truncated finite-order calculations. So
there is residual dependence on C1 and C2 due to truncation errors. This dependence is small
if the truncation errors are small. The coefficients should be chosen to minimize truncation
errors, which can only be done approximately in the absence of exact calculations. My
own approach to estimating appropriate values of renormalization scales is summarized in
Sec. 3.4.

The remaining arbitrary parameter is bmax, which roughly characterizes the boundary
between the non-perturbative and perturbative domains for bT dependence. The dependence
on bmax arises from the dependence of the definition of b∗(bT) on bmax.

In (13.81), there is explicit dependence on b∗ only in the C̃ factors and in K̃ . There
is also dependence via the dependence of many quantities on μb; see (13.69). But we
have already seen that the μb dependence cancels up to perturbative truncation errors. The
explicit dependence on b∗ is in places where it can be exactly compensated by a change in
the functional form of the non-perturbative functions gHA/f , gHB/f̄ , and gK .

Therefore a change of bmax in no way affects the fundamental validity of the formalism,
but only the extent to which perturbation theory is used to predict the bT dependence.
However, fits of the non-perturbative functions are normally made by postulating particular
functional forms, e.g., (14.38) below, with a small number of parameters. In principle, if
such a parameterization is accurate at one value of bmax, it will become invalid when bmax

is changed. How much of a practical issue this is, needs an examination of actual fits. See
Sec. 14.5.3 for further comments.

13.13.3 Fitting data, etc.

It would be interesting to see how (13.81) compares to actual experimental data. However,
the most developed phenomenology is for the Drell-Yan process, which we will treat later.
See Sec. 14.5 for the factorization formalism, which has the same general structure as for the
two-hadron-inclusive cross section in e+e− annihilation. A review of the phenomenology
for the Drell-Yan process is given in Sec. 14.5.3.

13.13.4 Leading-logarithm approximation

One method of analyzing a process with a large scale is to determine in each order of
perturbation theory the term with the highest power of a logarithm. These leading logarithms
can often be derived analytically. The leading-logarithm approximation (LLA) is the sum
of these terms, and it is often treated as a useful approximation to the exact result, because
it sums the biggest terms in the perturbation expansion. In a strict LLA, the coupling is
treated as fixed. In the bT-space integrand, (13.81), the leading logarithms for large QbT

are the two per loop associated with the leading order γK . Relative to a pure LO result, we
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have a factor

WLLA(b; Q) = exp

(
−g2(μ)

π2
CF

∫ Q

1/b

dμ′

μ′
ln

Q

μ′

)
dHA/f (zA; μ) dHB/f̄ (zB ; μ).

= exp

(
−g2(μ)

2π2
CF ln2(Qb)

)
dHA/f (zA; μ) dHB/f̄ (zB ; μ). (13.84)

This exhibits all the main qualitative features just described. The value of μ and hence the
value of the coupling are not determined within the LLA. The choice of an appropriate value
needs some intuition. One natural choice is that μ = 1/bpeak, where bpeak is the maximum
of bW (b,Q), so μ is the solution of ln(Q/μ) = 2π2/(g2(μ)CF ).

The LLA can also be obtained in transverse momentum space, for example by Fourier
transformation of each term in the LLA in bT space. This gives

dσ

d2qh T
∝

g2CF ln Q
qh T

exp
(
− g2(μ)

2π2 CF ln2(Q/qh T)
)

q2
h T

dHA/f (zA; μ) dHB/f̄ (zB ; μ)

=
g2CF ln Q

qh T

q2
h T

(
qh T

Q

) g2(μ)
2π2 CF ln(Q/qh T)

dHA/f (zA; μ) dHB/f̄ (zB ; μ). (13.85)

This last formula serves as an excellent warning about the inadequacies of the leading-
logarithm method, despite its widespread use and tacit acceptance. Without the logarithms,
the cross section diverges like 1/q2

h T as qh T → 0. But with the resummed logarithms, the
cross section decreases to zero faster than any power of qh T, as exhibited on the second
line. This contradicts the correct result, which is that the cross section is finite and non-zero
at qh T = 0. Even the LLA in bT space implies this result.

The LLA can indeed provide some semi-quantitative information when the logarithms
are not too large, by focusing attention on the largest terms in the perturbation expansion.
One of the dangers of taking the LLA too literally is indicated by the Fourier transformation.
Even if the LLA in bT space were appropriate, the LLA in qh T space need not be.

In general, there is no justification for using the LLA beyond some limited domain where
g2(μ)
2π2 CF ln2(Q/qh T) � 1. In contrast the derivation of the TMD factorization theorem is

intended to be valid all the way down to qh T = 0.

13.13.5 Resummation methodology

The LLA presents some quantity like W (b) or a cross section as a sum over all orders
of perturbation theory, with each order being calculated as some analytically tractable
approximation to full perturbation theory. This is called a “resummation” of perturbation
theory.

In the literature can be found many generalizations of such resummations, for example
to allow for a running coupling. Indeed TMD factorization formulae like (13.81) are often
claimed to be resummation formulae: the starting point in this viewpoint is the normal,
collinear factorization formula valid at large transverse momentum, i.e., at qh T ∼ Q. In
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the hard-scattering coefficient H , higher-order terms contain logarithms of Q/qh T, as
in (13.85). Of course, when qh T is too small, the logarithms prevent the reliable use of
fixed-order perturbation theory, and resummation tries to overcome this problem.

If the logarithms are large but not too large, the use of resummation is reasonable.
However, the justification for using collinear factorization as a starting point breaks down
if one takes qh T too small. Now the first part of the derivation was a region analysis of
amplitudes, and this remains valid for arbitrarily small qh T, provided that Q stays large.
However, there is a failure of the approximations that led to the hard scattering and to the
definitions of integrated parton densities and fragmentation functions. Parts of the approxi-
mations neglect partonic transverse momentum and virtuality, not just relative to Q, but also
relative to qh T. The partonic transverse momenta at issue are those intrinsically associated
with the hadronic mass scale, so the actual (fractional) errors in collinear factorization are
a power of M/qh T.

Generally collinear factorization also applies to the integral of the cross section over
qh T, since the relevant errors in the approximations merely redistribute the cross section as
a function qh T.

In deriving TMD factorization, we have carefully preserved transverse momentum kine-
matics, and so the errors become a power of M/Q instead of M/qh T. TMD factorization
then applies all the way down to zero qh T.

A less abstract way to see the problems with applying collinear factorization (resummed
or not) at small qh T is from the existence of an unphysical 1/q2

h T singularity at qh T =
0 in each order of the perturbative expansion of the hard-scattering factor in collinear
factorization. Each of the summed terms in LLA is representative of the singularity. But
the singularity (with its associated logarithms) arises from emission of collinear and soft
emission gluons from parent partons that are exactly massless and on-shell. In physical
reality such partons do not exist.

There is a further problem with an LLA such as (13.84) or (13.85), that the terms alternate
in sign and exponentiate to a result much smaller than the first term when bT � 1/Q.
or qh T � Q. Without further knowledge, one could not exclude that some non-leading
logarithm might be outside the exponential form, e.g., a single term α10

s /q2
h T added to an

exponential series such as in (13.85). This term is of such high order that in practice it
would probably not be calculable. Without an accompanying exponential of even higher-
order terms, this high order would completely dominate the LLA sum.

Essentially full TMD factorization does ensure that higher-order terms can be organized
so that there is an exponential factor. But the exponentials are the rather different ones in
(13.81), and give rather different behavior than the LLA at zero qh T.

13.14 NLO calculation of TMD fragmentation function at
small bT and at large kT

To calculate the coefficient functions for the small-bT fragmentation functions, we make the
usual observation that the coefficient functions are independent of the type of the detected
hadron. Thus we can (a) replace the hadron by a parton in IR-regulated massless QCD,
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Fig. 13.7. One-loop fragmentation of quark to a gluon of physical polarization. The diagram
applies equally to TMD and integrated fragmentation functions.

(b) compute both the TMD and the integrated fragmentation functions in strict fixed-order
perturbation, and then (c) deduce the coefficient functions at that order from the perturbative
expansion of (13.64).

For each of the functions, let the expansion in powers of the renormalized coupling be
notated like

C̃j/f =
∞∑

n=0

(
g2

16π2

)n

C̃
[n]
j/f . (13.86)

We write factorization (13.64) in a convolution notation as D̃ = d ⊗ C.
Then the first-order terms give

d [0] ⊗ C̃[1] = D̃[1] − d [1] ⊗ C̃[0]. (13.87)

The lowest-order coefficient C̃[0] is given in (13.65), and the lowest-order integrated frag-
mentation function is

d
[0]
j/j ′ (z) = δjj ′δ(z− 1), (13.88)

so that

C̃
[1]
j/f (z, bT) = D̃

[1]
j/f (z, bT)− d

[1]
j/f (z)

z2−2ε
, (13.89)

where the denominator in the last term arises from the ẑ3−2ε denominator of the measure
in the convolution, (13.64), which in turn arises from the different powers of z in the
definitions of TMD and integrated fragmentation functions, e.g., (12.39) and (12.40).

In the above formulae, j and f represent any parton type. We will compute the one-loop
corrections for the cases that f is any flavor of quark, since these are the relevant ones in
TMD factorization of the two-particle-inclusive cross section.

13.14.1 Gluon from quark at O(g2)

The sole graph we need to calculate the fragmentation of a quark to a gluon at O(g2) is shown
in Fig. 13.7. The hadron-frame momentum of the gluon is ph = (p+h , 0, 0T) = (zk+h , 0, 0T),
and we restrict to a sum over physical polarizations, chosen to be in the transverse plane.
Then we have no graphs in which the gluon connects to a Wilson line.
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For the dimensionally regulated TMD fragmentation function, we have

g2

16π2
D̃

[1]
g/q(z, bT) = g2μ2εCF

(2π )4−2εz

∫
dk− d2−2ε kT eikT·bT 2πδ

(
(k − p2)

)

×
1
4 Tr

∑
j γ+/kγ j (/k − /p)γ j /k

(k2)2

= g2(4π2μ2)εCF

8π3

∫
d2−2ε kT eikT·bT

k2
T

[
1+ (1− z)2 − εz2

z3

]
. (13.90)

In the first line, the sum over j is over all transverse indices. There is a (collinear) divergence
at kT = 0, which is regulated if ε < 0.

For the integrated function, the same formula applies, except that (a) the factor 1/z in
the definition (12.39) is changed to z1−2ε , as in (12.40), (b) bT is set to zero, and (c) an MS
renormalization counterterm is used to cancel the resulting UV divergence:

g2

16π2
d

[1]
g/q(z) = g2(4π2μ2)εCF

8π3

∫
d2−2ε kT

k2
T

[
1+ (1− z)2 − εz2

z1+2ε

]

− g2CF Sε

8π2ε

[
1+ (1− z)2

z

]
. (13.91)

Using (13.89), we find the one-loop coefficient function

g2

16π2
C̃

[1]
g/q(z, bT)

= g2(4π2μ2)εCF

8π3

∫
d2−2ε kT(eikT·bT − 1)

k2
T

{
1+ (1− z)2 − εz2

z3

}

+ g2CF Sε

8π2ε

[
1+ (1− z)2

z3−2ε

]

= g2CF

8π2

(
πb2

Tμ2
)ε

�(−ε)

{
1+ (1− z)2 − εz2

z3

}
+ g2CF Sε

8π2ε

[
1+ (1− z)2

z3−2ε

]

ε=0= g2CF

8π2z3

{
2
[
1+ (1− z)2] [ln

2z

μbT
− γE

]
+ z2

}
. (13.92)

In the first line, the collinear divergence at kT = 0 is exactly canceled, and in the second
line the UV divergence kT = ∞ is renormalized. The integral was performed using (A.45).

Notice that if we applied
∫

d2−2ε kT /k2
T = 0 in the first line, then we would be left with

the IR-divergent integral
∫

d2−2ε kT eikT·bT/k2
T. The MS counterterm would appear to be

canceling the IR divergence (strictly a collinear divergence). Although this method of IR
cancellation corresponds to much actual calculational practice, it does not reflect the correct
conceptual treatment.

After Fourier transformation of (13.92) back to momentum space, the behavior of
the TMD at large transverse momentum is determined by the singularity in the Fourier
conjugate variable, i.e., by the logarithm of bT. Much more simply, one just inverts the
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Fig. 13.8. One-loop fragmentation of quark from quark. For the TMD functions, there are
also the Wilson-line terms shown in Fig. 13.9.

Fourier transform in the first line of (13.92), to obtain

g2

16π2
C

[1]
g/q(z, kT) = g2CF

8π3

1+ (1− z)2

k2
Tz3

(at large kT). (13.93)

13.14.2 Quark from quark at O(g2)

For the quark-to-quark fragmentation function, we use the graphs shown in Fig. 13.8. These
need some explanation. The Wilson line is in the light-like direction wB = (0, 1, 0T). It
is now the outgoing quark that is detected and that has zero transverse momentum. Since
the gluon has non-zero transverse momentum, its physical polarizations are no longer
exactly in the transverse plane, and its coupling to the Wilson line is non-zero. It is
convenient to calculate using a sum over all gluon polarizations, physical and unphysical,
with the polarization sum−gκλ. The unphysical part cancels between graphs, by a standard
textbook argument. Although quark self-energy graphs contribute to the actual one-loop
fragmentation functions, they cancel in the difference used to compute the coefficient
function in (13.89).

For the TMD quark fragmentation function, the graphs shown are for the D̃unsub factor
in the definition (13.42). We must add the one-loop contribution of the soft factor part of
the definition, i.e., the graphs in Fig. 13.9, and these last graphs are to be multiplied by
the lowest-order fragmentation function of a quark to a quark, i.e., δ(z− 1). They cancel a
rapidity divergence that will manifest itself in a singularity at z = 1 in Fig. 13.8. We also
add renormalization counterterms to cancel UV divergences in all the virtual graphs, i.e.,
for Figs. 13.8(c) and 13.9(b).

For the integrated fragmentation function, we need only the graphs of Fig. 13.8, which
now all have an unrestricted integral over transverse momentum. With this unrestricted
integral, the rapidity divergences cancel between real and virtual gluon emission. We also
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Fig. 13.9. One-loop graphs for soft-factor contributions to quark-to-quark fragmentation.
The labels next to the Wilson lines indicate their rapidities. The graphs are to be multiplied
by the zeroth-order fragmentation function δ(z− 1).

need counterterms to cancel the UV divergences from the integral to infinite transverse
momentum.

Since the graphs of Fig. 13.8 are doing double duty, for the two kinds of fragmentation
function, I first summarize the overall calculational structure to obtain C̃

[1]
q/q :

Fig. 13.8 for TMD f.f.+ (Fig. 13.9× δ(z− 1))+MS c.t.

− z−2+2ε
[
Fig. 13.8 for integrated f.f.+MS c.t.

]
. (13.94)

The contribution of Fig. 13.8(a) to the dimensionally regulated TMD fragmentation
function is straightforwardly

g2(4π2μ2)εCF

8π3

(1− z)(1− ε)

z2

∫
d2−2ε kT

eikT·bT

k2
T

. (13.95)

Graph (b) (including its hermitian conjugate) is

g2(4π2μ2)εCF

8π3

2

z(1− z)

∫
d2−2ε kT

eikT·bT

k2
T

. (13.96)

This has a singularity at z = 1. In the integral in the factorization formula, the singularity
is at zA/ẑ = 1, an endpoint of the integration over ẑ. The singularity is from a rapidity
divergence associated with the light-like Wilson line. The rapidity divergence is canceled
by the contribution from Fig. 13.9(a). This contribution is calculated almost identically to
the corresponding term for the Sudakov form factor, and corresponds to the last three terms
in the braces in (10.136). The differences are that (a) the gluon propagator is cut, (b) we
add a hermitian conjugate term, (c) there is a group theory factor, and (d) we set masses to
zero, obtaining:

−g2(4π2μ2)εCF

8π3
2δ(z− 1)

∫
d2−2ε kT eikT·bT

∫ ∞
0

dl+

l+
� 1

k2
T − 2(l+)2e−2yn − i0

.

(13.97)
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Here l+ is the plus momentum of the gluon, and there is a rapidity divergence at l+ = 0.
Because the soft factor (13.23) is defined with an integral over all k+S and k−S , there is
no dependence of (13.97) on external plus momenta. Thus the integral over l+ ranges to
infinity rather than a finite value. A real part � is applied, because of the addition of the
hermitian conjugate graphs.

To cancel the rapidity divergences, we combine (13.96) and (13.97) using the same
distributional technique as we used in Sec. 9.4.4 in the renormalization of the quark parton
density. After that the l+ integral in (13.97) is made convergent and can be performed
analytically. Combining all the graphs so far gives

g2(4π2μ2)εCF

8π3

∫
d2−2ε kT

eikT·bT

k2
T

×
[(

2

1− z

)
+
+ 2

z
+ (1− z)(1− ε)

z2
+ δ(z− 1) ln

2(k+)2e−2yn

k2
T

]
. (13.98)

The IR/collinear divergence at kT = 0 will cancel against the contribution of the integrated
fragmentation function. But we will not display this explicitly. Instead we will proceed
calculationally. All the remaining graphs, i.e., not only the virtual graphs for TMD frag-
mentation function, i.e., Figs. 13.8(c) and 13.9(b), but also all the graphs for the integrated
fragmentation function, give zero, because they have scale-free transverse-momentum
integrals.

So it remains to add the UV counterterms, whose total contribution is

g2CF

8π2

{
δ(z− 1)

[
−Sε

ε2
+ Sε

ε

(
ln

2(k+)2e−2yn

μ2
− 2

)]

+ z−2+2ε Sε

ε

[(
2

1− z

)
+
− 1− z+ 2δ(z− 1)

]}
. (13.99)

The first line has the counterterms for the TMD fragmentation function’s virtual graphs;
their calculation is the same as for the Sudakov form factor (10.139), except for a group-
theory factor CF and except for multiplication by 2 and removal of the imaginary part.
The second line has the counterterms for the integrated fragmentation function; these are
the same as the DGLAP kernel, but without the contribution associated with the quark
self-energy graph.

Then we perform the kT integrals analytically and add everything together at ε = 0, to
obtain

g2

16π2
C̃

[1]
j ′/j (z, bT)

ε=0= g2CF δj ′j

8π2

(
2

[(
2

1− z

)
+
+ 1

z2
+ 1

z

] [
ln

2z

μbT
− γE

]

+ 1

z2
− 1

z
+ δ(z− 1)

{
−1

2

[
ln(μ2b2

T)− 2(ln 2− γE)
]2

− [ln(μ2b2
T)− 2(ln 2− γE)

]
ln

2(k+)2e−2yn

μ2

})
. (13.100)
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For generality, we have allowed arbitrary quark flavors j and j ′, with, of course, a Kronecker
delta between them. Notice that there are two logarithms of bT in this one-loop calculation,
associated with the presence of a Sudakov form factor.

Correspondingly on Fourier transformation back to momentum space, there is a loga-
rithm of kT in the large-kT behavior:

g2

16π2
C

[1]
j ′/j (z, kT)

ε=0= g2CF δj ′j

8π3

1

k2
T

×
[(

2

1− z

)
+
+ 1

z
+ 1

z2
+ δ(z− 1) ln

2(k+)2e−2yn

k2
T

]
, (13.101)

obtained most easily from (13.98).

13.14.3 Failure of positivity

As initially defined, a TMD fragmentation function had the meaning of a number density of
a hadron in a parton. This would imply that the coefficient function C(z, kT) is also positive.
However, the ln kT in (13.101) ensures that the coefficient becomes negative (at z = 1) when
kT is larger than

√
2k+e−yn , which we normally choose to be approximately the overall

CM energy Q. There is a subsidiary positivity problem that the distribution 1/(1− z)+
is not positive, because it is defined with a subtraction. When (13.101) is convoluted
with an integrated fragmentation function, to get the TMD fragmentation function, there
is a combination of positive and negative terms. But at sufficiently large kT the negative
delta-function term dominates, and positivity is violated.

Note that the quark-to-gluon coefficient (13.93) has no such problem, because it has
neither a logarithm nor a plus distribution.

The resolution of the problem starts by the observation that we were forced to modify the
definition of the TMD fragmentation function from its naive one. We made subtractions,
notably to remove the contribution of rapidity divergences. Since we used subtractions
rather than a cutoff, we can get a negative value, just as in our implementation in Sec. 3.4
of renormalization by subtraction of an asymptote.

The real positivity requirement is on cross sections. The TMD functions occur by
themselves only in a factorization theorem for qh T � Q, where small values of par-
ton transverse momenta dominate. In that region, the logarithm at issue is indeed
positive.

For large qh T the TMD factorization formula represents only part of an estimate of the
cross section. To compensate the error, we devised a correction term Y in Sec. 13.12. It
corrects the cross section to the one obtained from standard collinear factorization, and is
available to compensate the negativity in one individual term.

Obtaining a positive physical cross section from a combination of terms of opposite sign
can be dangerous numerically, since the negative term can be larger than the final answer.
It would not be a real issue if we could calculate exactly all the coefficients involved, to all
orders of perturbation theory. But there can practical difficulties with low-order estimates.
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Fig. 13.10. SIDIS cross section.

This suggests that modifications of the basic formalism would be useful; see Sec. 13.12
and Arnold and Kauffman (1991). Any modification should agree with the TMD form of
factorization at small qh T and should agree with normal collinear factorization at large qh T.
But creativity in combining and/or matching the two kinds of contribution without double
counting is appropriate.

13.14.4 Other cases

By charge-conjugation invariance, the above coefficients are unchanged if the quark (of
any flavor) is changed to an antiquark.

At one loop, there is zero coefficient to get a quark from an antiquark, or vice versa.
This process needs a minimum of two loops.

The coefficients for quark from gluon and gluon from gluon are left as an exercise. These
cases are currently of lesser experimental importance, since the main currently studied
reactions sensitive to TMD fragmentation are those where the hard scattering involves
quarks (and antiquarks). These reactions are e+e− annihilation, SIDIS and Drell-Yan.

13.15 SIDIS and TMD parton densities

So far, we treated TMD factorization for reactions in e+e− annihilation, where TMD
fragmentation functions were used. We now extend these ideas to a process that needs
parton densities, specifically semi-inclusive DIS (SIDIS). Another process that uses TMD
parton densities is the Drell-Yan process to be treated in Ch. 14 along with the complications
in obtaining factorization in hadron-hadron collisions.

The results for SIDIS are a straightforward generalization of those for e+e− annihilation,
so it is mainly necessary to explain the changes.

13.15.1 Kinematics

Semi-inclusive deeply inelastic scattering (SIDIS) is DIS with inclusive measurement of
one hadron as well as a lepton in the final state: e(l)+HA(PA)→ e(l′)+HB(pB)+X,

Fig. 13.10. We choose the outgoing lepton to be in the DIS region, so that the reaction has
large Q, and we also choose the hadron HB to be in a region where it can be a fragmentation
product of one of the jets produced by the hard scattering.
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We have already examined this reaction in Sec. 12.14, but without a treatment appropriate
for small transverse momentum. Here we write the momenta of the incoming hadron and
the detected outgoing hadron as PA and pB instead of P and ph. This notation is consistent
with the rest of this chapter, and avoids confusion with use of a subscript h to denote
components in the hadron frame. As in Sec. 13.2, we use two coordinate frames: the photon
frame and the hadron frame.

The photon frame was used in (12.89), now notated

qγ =
(
−xP+A,γ ,

Q2

2xP+A,γ

, 0T

)
, (13.102a)

PA,γ =
(

P+A,γ ,
M2

A

2P+A,γ

, 0T

)
, (13.102b)

pB,γ =
(

p2
B,γ T +M2

B

2p−B,γ

, p−B,γ , pB,γ T

)
. (13.102c)

Lorentz scalars for the process are x, Q, z
def= PA · pB/PA · q, | pB,γ T|, and the azimuthal

angle φB,γ of pB,γ T. Thus p−B,γ � Q2z/(2xP+A,γ ).
In the hadron frame, both the hadrons have zero transverse momentum:

qh =
(
q+h , q−h , qh T

)
, (13.103a)

PA,h =
(
P+A,h, M2

A/2P+A,h, 0T
)
, (13.103b)

pB,h =
(
m2

B/2p−B,h, p−B,h, 0T
)
. (13.103c)

Since

q2
h T = 2q+h q−h +Q2 � 2pB · q PA · q

PA · pB

+Q2, (13.104)

we use qh T = − pB,γ T/z in the zero-mass limit, and we define the Lorentz transformation
between the frames to be

(
V +h , V −h , V h T

) = L
(
V +γ , V −γ , V γ T

)
=
(

V +γ +
2x2(P+A,γ )2q2

h TV −γ
Q4

+ 2xP+A,γ qh T · V γ T

Q2
,

V −γ , V γ T + qh T

2xP+A,γ V −γ
Q2

)
, (13.105)

in an approximation valid when hadron masses are neglected. (The formula with hadron
masses is more complicated.) Note that the large components of PA and pB are unchanged
between the frames: p−B,h = p−B,γ and P+A,h = P+A,γ (the last up to a mass-suppressed
correction).
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Fig. 13.11. Leading region for SIDIS, for low transverse momentum.

13.15.2 Overall structure of proof

An analysis giving TMD factorization in a CSS-style formalism was first given by Meng,
Olness, and Soper (1996), but only when the energy of the outgoing hadron was integrated
over. For the unintegrated cross section, a treatment was given by Nadolsky, Stump, and
Yuan (2000), and by Ji, Ma, and Yuan (2005). These treatments ignored important quark
polarization effects that are absent with integrated parton densities and fragmentation
functions. The formalism with polarization effects was provided by Ji, Ma, and Yuan
(2004). A list of the necessary structure functions is presented in Kotzinian (1995); Diehl
and Sapeta (2005); Bacchetta et al. (2007).

Kinematically, SIDIS differs from two-particle-inclusive e+e− annihilation simply by
crossing one hadron from the final to the initial state, and vice versa for one lepton,
thereby making the photon space-like instead of time-like. The graphical specification of
the leading regions therefore looks very similar, i.e., Fig. 13.11 for the qh T � Q case
instead of Fig. 13.1.

The same pattern of factorization proof works as for two-particle-inclusive e+e− anni-
hilation.

An important change concerns the Glauber region. Previously we simply copied the
treatment for the Sudakov form factor, in Sec. 5.5.10. For a Glauber gluon connected to
the upper collinear subgraph C(B) in Fig. 13.1, we deformed plus momentum away from
final-state poles in C(B), and for a Glauber gluon connected to C(A), we deformed minus
momentum away from final-state poles in C(A).

But for SIDIS, there are both initial- and final-state poles in C(A), as in Fig. 12.25.
Luckily, as we saw after that figure, it is sufficient to deform away from the final-state poles
in C(B), i.e., to make a one-sided deformation.

After the use of region approximators and Ward identities, we get soft and collinear
factors whose operators involve Wilson-line factors. Since the deformation to get out of
the Glauber region is in the same direction as for e+e− annihilation, we can use the
same (future-pointing) directions of the Wilson lines, which must not obstruct the contour
deformations. Hence the fragmentation function associated with collinear subgraph C(B) is
identical to the one in e+e− annihilation.
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13.15.3 Unpolarized TMD quark density

For the target-collinear subgraph we use a parton density instead of a fragmentation function.
Its definition (in transverse coordinate space) is the natural modification of (13.42), again
applied in the hadron frame:

f̃f/HA
(x, bT; ζA; μ)

def= lim
yA→+∞
yB→−∞

f̃ unsub
f/HA

(x, bT; yPA
− yB)

√
S̃(0)(bT, yA, yn)

S̃(0)(bT, yA, yB ) S̃(0)(bT, yn, yB)

× UV renormalization factor

= f̃ unsub
f/HA

(
x, bT; ypA

− (−∞)
)√ S̃(0)(bT;+∞, yn)

S̃(0)(bT;+∞,−∞) S̃(0)(bT; yn,−∞)

× Zf Z2. (13.106)

The soft factors are exactly the same as for the fragmentation function, but the renormal-
ization factor Zf may differ. The definition of ζA is now

ζA
def= 2(k+A,h)2e−2yn = 2x2(P+A,h)2e−2yn = M2

Ax2e2(yPA
−yn), (13.107)

and the unsubtracted pdf is

f̃ unsub
f/HA

(x, bT; yPA
− yB) = Tr

color

∫
dw−

2π
e−ixP+A w−

× 〈PA|ψ̄f (w/2)W (w/2;∞; nB )†
γ+

2
W (−w/2;∞; nB )ψf (−w/2)|PA〉 c

= Tr
color

Tr
Dirac

γ+

2

∫
dk−A dn−2kA T

(2π )n
e−ikA T·bT (13.108)

where the vector w in the second line is (0, w−, bT). The soft factor is defined by (13.39),
and the Wilson lines by (13.40). As in Sec. 13.7.2 for fragmentation functions, strictly
gauge-invariant operators in the definitions of S(0) and f̃ unsub would need transverse links
to join the Wilson lines at infinity. But, as shown there, their effects cancel in the parton
density defined by (13.106).

13.15.4 TMD parton densities: evolution, bT dependence, relation to integrated density

The soft factors in (13.106) are the same as for fragmentation functions. Therefore the CSS
evolution equation for the dependence of the TMD quark density on ζA is exactly the same
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as for TMD quark fragmentation, (13.47), with the same kernel K . Therefore, its anomalous
dimension γK (g) and its non-perturbative part, gK (bT) in (13.60), are unchanged.

However, in the RG equation, like (13.50), the anomalous dimension, γf , of a TMD
quark density may be different, since the quark momentum is reversed.

Because of changed normalizations, the small bT expansion of the quark density is
slightly changed from (13.64):

f̃f/HA
(x, bT; ζA; μ) =

∑
j

∫ 1+

x−

dx̂

x̂
C̃f/j (x/x̂, bT; ζA, μ, g(μ)) fj/HA

(x̂; μ)+O
[
(mbT)p

]
.

(13.109)

The coefficient function C̃ need not be the same as for fragmentation.
The analysis of the large-bT behavior of the TMD density follows as in Sec. 13.11.2. Then

the appropriate version of (13.70) giving the separation of perturbative and non-perturbative
parts is

f̃f/HA
(x, bT; ζA; μ)

=
∑

j

∫ 1+

x−

dx̂

x̂
C̃f/j

(
x/x̂, b∗; μ2

b, μb, g(μb)
)

fj/HA
(x̂; μb)

× exp

[
−gf/HA

(x, bT)− ln

√
ζA

MAx
gK (bT)

]

× exp

{
ln

√
ζA

μb

K̃(b∗; μb)+
∫ μ

μb

dμ′

μ′

[
γf (g(μ′); 1)− ln

√
ζA

μ′
γK (g(μ′))

]}
,

(13.110)

where b∗(bT) and μb are defined by (13.59) and (13.69). Of the non-perturbative func-
tions, gj/HA

(x, bT) is specific to parton densities, and cannot be predicted from any
measurements of fragmentation functions. But gK (bT) is the same as for fragmentation
functions.

13.15.5 Hadronic tensor and kinematics of hard scattering

To determine the factorization formula, we follow the same methods as for e+e− annihila-
tion. First, we define the hadronic tensor

Wμν(q, PA, pB )
def=
∑
X

δ(4)(PA + q − pB − pX)

× 〈PA|jμ(0)|pB,X, out〉 〈pB,X, out|jν(0)|PA〉 . (13.111)

For each leading region R, an approximator TR is defined, as in Sec. 13.3.2, generally
using hadron-frame coordinates. The only modification is in the approximant for collinear
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partons at the hard scattering H , to match the different transformation to the photon frame.
Consider unapproximated parton momenta: kA from the target subgraph to H , and kB

from H to the other collinear subgraph. They have components kA,h =
(
k+A,h, k

−
A,h, kA,h T

)
and kB,h =

(
k+B,h, k

−
B,h, kB,h T

)
. Then we define the approximated momenta

by

PHA(kA)h =
(
k+A,h, 0, 0T

)
, (13.112a)

PHB(kB)h = k−B,h

(
q2

h T

2(q−h )2
, 1,

qh T

q−h

)
. (13.112b)

From the transformation (13.105), the photon-frame components are

PHA(kA)γ =
(
k+A,h, 0, 0T

)
, PHB(kB)γ =

(
0, k−B,h, 0T

)
. (13.113)

It can be verified that this approximator is unique given the following requirements:

• The total transverse momentum at the hard scattering is unchanged by the approximant.
Thus let α and β label the lines between the collinear and hard subgraphs, and let k̂A,α

and k̂B,β be the approximated momenta. Then from (13.112)

∑
β

k̂B,β,h T −
∑

α

k̂A,α,h T =
∑

β

k−B,β,hqh T

q−h
= qh T, (13.114)

where the last equality follows by momentum conservation in the approximated hard
scattering.

• The approximated momenta have no transverse components in the photon frame.
• The approximated momenta are massless and on-shell.
• Fractional longitudinal momenta for the partons are the same for the approximated and

unapproximated momenta. Thus k̂+A,α,h = k+A,α,h and k̂−B,β,h = k−B,β,h.

The first requirement defines what we mean by TMD factorization, while the second and
third requirements are how we normally perform a parton-model approximation. The last
requirement could be relaxed, but there is no need to; it has the convenience that the
longitudinal momentum arguments of the parton densities and fragmentation functions
are the standard ones. This follows because the approximated large components of parton
momenta obey k̂+A,α,γ = k+A,α,h and k̂−B,β,γ = k−B,β,h. Then momentum conservation, q =∑

α k̂A,α +
∑

β k̂B,β , in the approximated hard scattering gives

k̂A,γ =
(
−xP+A,γ , 0, 0T

)
, k̂B,γ =

(
0,

Q2

2xP+A,γ

, 0T

)
. (13.115)

Hence
∑

α k+A,α,h/P
+
A,h = x, and p−B,h/

∑
β k−B,β,h = z (up to m2/Q2 corrections).
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13.15.6 Factorization

The resulting factorization formula is

Wμν = 2z

Q2

∑
f

Tr
k+A,γ γ−

2
Hν

f (Q; g(μ), μ) k−B,γ γ+H
μ
f (Q; g(μ), μ)†

×
∫

d2bT

(2π )2
e−iqT·bT f̃f/HA

(x, bT; ζA) D̃1, HB/f̄ (z, bT; Q4/ζA)

+ polarized terms+ large qh T correction, Y . (13.116)

Here, the ζB argument of the fragmentation function is set to Q4/ζA, corresponding to
a similar choice in (13.46). The overall factor 2z/Q2 is obtained from the details of the
integrals over loop momenta, given the definition of Wμν . The hard-scattering factor is the
part of the first line of (13.116) after the summation sign. It is normalized to correspond to
DIS on an on-shell massless quark in the photon frame. The vertex factor Hf is equipped
with soft and collinear subtractions as usual.

13.16 Polarization issues

The explicit TMD factorization term in (13.116) has an unpolarized quark entering the
hard scattering, and no sensitivity to the polarization of the quark leaving the hard scat-
tering. The TMD quark density is intended to be defined with an unpolarized initial-state
hadron.

There is an interesting set of extensions when one allows for polarization effects. The
details get quite complicated, with many structure functions, parton densities and fragmen-
tation functions. A comprehensive list is found in Diehl and Sapeta (2005), but without
taking account of the full CSS-style formalism.

The main ideas are quite simple, however. There is a number density of each flavor
of parton in a parent hadrons, and the parton has a helicity density matrix. Similarly, the
fragmentation function can be sensitive to the polarization state of the outgoing quark
(Sec. 13.4.1). In all cases the polarization state of a quark or of a spin- 1

2 hadron can be
described by a three-dimensional Bloch vector (e.g., a helicity λ and a transverse spin ST),
and the spin dependence is linear in the Bloch vector.

The complications arise in enumerating the list of TMD parton densities. In the case
of integrated parton densities, rotation and parity invariance restrict the parton densities
to an unpolarized density, and helicity and transversity distributions (Sec. 6.5); but with a
transverse momentum, the number of possibilities increases substantially.

In the following we let λ and ST be the helicity and transverse spin of the target,
normalized to maximum values of unity, and we let x and kT be the longitudinal momentum
fraction and the transverse momentum of the quark. As summarized by Bacchetta et al.
(2007) and Mulders and Tangerman (1996), we have the following eight densities for a
quark in a spin- 1

2 hadron.
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• In an unpolarized hadron:
– There is a number density of quarks, f1(x, kT) in the Mulders-Tangerman notation.
– The quark can have a transverse polarization proportional to εij k

j
T/M , where εij is

the two-dimensional antisymmetric tensor. The coefficient h⊥1 (x, kT) is called the
Boer-Mulders function.

• In a longitudinally polarized hadron with normalized helicity λ:
– The quark may have a longitudinal polarization proportional to that of the hadron.

The coefficient is g1L(x, kT).
– The quark may have a transverse polarization proportional to λkT/M . The coefficient

is h⊥1L(x, kT).
• In a transversely polarized hadron with normalized spin ST:

– There may be a contribution to the number density proportional to εij k
i
TS

j
T/M . The

coefficient, f ⊥1T (x, kT), is called the Sivers function (Sivers, 1990).
– The quark may have a contribution to its transverse polarization proportional to that

of the hadron. The coefficient is h1(x, kT).
– The quark may have a contribution to its transverse polarization proportional

to S
j
T(kj

Tki
T − δjik2

T/2)/M2. The coefficient, h⊥1T (x, kT), is called the pretzelosity
distribution.

– The quark may have a longitudinal polarization proportional to kT · ST/M . The coef-
ficient is g1T (x, kT).

The various combinations of pdf and fragmentation contribute to different combinations of
structure functions, and contribute to the SIDIS cross section with characteristic angular
dependencies listed in Diehl and Sapeta (2005). The longitudinal spin densities are obtained
by replacing the trace with γ+ in (13.108) by a trace with γ+γ5, and the transverse spin
densities by replacing γ+ by γ+γ iγ5.

As for quark fragmentation to an unpolarized hadron, there are (see Sec. 13.4.1) the
ordinary number density and the Collins function, which is a final-state analog of the Boer-
Mulders function. These allow the cross section to depend on all eight of the TMD densities
listed above (Diehl and Sapeta, 2005, Eq. (40)).

See Boer (2009) for the use of the polarized TMD fragmentation functions in e+e−

annihilation.

13.17 Implications of time-reversal invariance

Some interesting insights into the nature of QCD factorization and its consequences have
resulted from the observation that the Sivers and Boer-Mulders functions have the property
called “time-reversal odd”, T -odd, for short. As we will see, this means that when we
apply a PT transformation we find a reversal of sign. If Wilson lines were ignored in the
definitions of these functions, each would be its own negative, and therefore zero. In a
gauge theory we do have Wilson lines, and the PT transformation changes them to be
past-pointing instead of future-pointing.
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As we will see in Ch. 14, parton densities defined with past-pointing Wilson lines
are needed for the Drell-Yan process. Thus there is a change of sign between SIDIS
and DY (Collins, 2002) for the T -odd functions, i.e., for the Sivers and Boer-Mulders
functions.

13.17.1 Sivers function

I now derive (Collins, 1993) the T -odd property of the Sivers function. Rather than a
time-reversal transformation, it is convenient to apply a PT transformation, since it leaves
momenta of physical states unchanged. It does, however, exchange in-states and out-states,
which does not matter for the vacuum and for one-particle states.

Let PT denote the anti-unitary operator implementing PT transformation on state
space. From standard QFT textbooks, we know that the transformation of a quark field is

(PT )†ψ(w)PT = PT ψ(−w), (13.117)

where PT is a unitary Dirac matrix such that

(PT )−1(γ μ)∗PT = γ μ. (13.118)

There is a possible phase in the transformation (13.117), but it will not affect our proofs.
Also from the textbooks, we know that PT reverses the spin-vector of a single particle
state for a spin- 1

2 particle:

PT |p, S〉 = phase factor |p,−S〉 . (13.119)

A bilinear in the quark fields transforms as

(PT )†ψ̄(y)�ψ(z)PT = ψ̄(−y)(PT )†�∗PT ψ(−z), (13.120)

where the ∗ arises because PT is an antilinear operator. In the case � = γ+, as in a quark
number density, we get a positive sign: (PT )†(γ+)∗PT = γ+. For the cases used for spin
densities, i.e., � = γ+γ5 and � = γ+γ i

Tγ5, we get a minus sign, which implements the
reversal of spin by PT .

Consider now the application of PT to the operator in a basic parton number density,
where we initially work without a Wilson line:

〈P, S| ψj (w/2)
γ+

2
ψj (−w/2) |P, S〉

= 〈P, S| PT (PT )−1 ψj (w/2)
γ+

2
ψj (−w/2) PT (PT )−1 |P, S〉

= 〈P,−S| ψj (−w/2)
γ+

2
ψj (w/2) |P,−S〉 ∗

= 〈P,−S| ψj (w/2)
γ+

2
ψj (−w/2) |P,−S〉 . (13.121)
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The complex conjugate in line 3 arises because of the antilinearity of the PT operator:

〈f |(PT )†|g〉 = 〈g|PT |f 〉 = 〈f ′|g〉∗ , (13.122)

where |f ′〉 = PT |f 〉.
Suppose the number density of quarks of some flavor were defined from the matrix

element in (13.121), which has no Wilson line. We write the number density in a polarized
target as

f (x, kT)+ εij k
i
TS

j
T

M
f ⊥1T (x, kT), (13.123)

where f ⊥1T (x, kT) is the Sivers function. From (13.121) it follows the number density is
unchanged when the spin vector of the target is reversed, and therefore that the Sivers
function vanishes.

This argument is correct in a non-gauge theory. But in QCD (and any other gauge theory),
there is a Wilson line going out to infinity in some light-like direction (or approximately
light-like direction) from one quark field, and coming back to the other quark field. For the
parton densities used for SIDIS, the lines go to future infinity. Let us insert this Wilson line
in the left-hand side of (13.121). Then the PT transformation to get the right-hand side
of (13.121) reverses the positions of the fields, so that on the right-hand side, the Wilson
line goes to past infinity. We must conclude not that the Sivers function is zero, but that
the Sivers function for SIDIS has the opposite sign to a Sivers function with past-pointing
Wilson lines.

We will see that, in the Drell-Yan process, proving factorization requires that the TMD
parton densities have past-pointing Wilson lines. Thus the Sivers function reverses sign
between the two processes:

f ⊥1T ,SIDIS(x, kT) = −f ⊥1T ,DY(x, kT), (13.124)

while the ordinary unpolarized parton density, f (x, kT), is numerically the same for SIDIS
and DY.

The reversal of sign of the Sivers function is a notable violation of the initially intuitive
idea that parton densities are universal between processes. In a sense, we already have
such violations because of the renormalization-scale dependence of parton densities, and
because of the process-dependent directions of Wilson lines in TMD densities.

All of these situations concern controlled and calculable violations of universality: the
parton densities (and fragmentation functions) in different reactions and at different energies
can be related to each other.

13.17.2 Boer-Mulders function

We generalize (13.121) to measurements of quark polarization by replacing γ+/2 by the
matrix appropriate to a helicity or transversity. In this case, the right-hand side acquires a
minus sign. It follows that the Boer-Mulders function is T -odd, since this function is the
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transverse spin density of a quark in an unpolarized hadron. The function therefore also
reverses sign between SIDIS and Drell-Yan

13.17.3 Other cases

All the other parton densities listed in Sec. 13.16 are T -even. Either they involve no
polarization at all, or they involve both a quark polarization and a hadron polarization.

13.17.4 Integrated parton densities

In the definition of integrated densities, the Wilson line goes straight from one quark
field to the other, without a detour to infinity. So the Wilson line is unchanged after a
PT transformation. So the non-zero integrated parton densities must all be the T -even
ones, even in a gauge theory. But this restriction is already implied by rotation and parity
invariance, which gave us the simple restriction to a simple number density, a helicity
density and a transversity density.

13.17.5 Soft factors and K

The above arguments all apply to the basic operator for a quark density, i.e., to the first
factor in definition (13.106). This is multiplied by a particular combination of soft factors.
Now the directions of the Wilson lines in the definition (13.39) of the soft factor must
match those in the unsubtracted parton density, in order that all the necessary subtractions
and the cancellations of rapidity divergences work. So after a PT transformation, the
future-pointing Wilson lines in each soft factor S must be replaced by past-pointing Wilson
lines.

The value of each S factor is unchanged under this transformation. This is proved by
applying the same argument as (13.121) but to the matrix element in (13.39).

Hence the CS and RG evolution equations, including the values of their kernels, are
unchanged when the Wilson lines are changed from future to past pointing.

13.17.6 Fragmentation

We have found two types of TMD parton density that are related by a PT transformation
and that differ by whether the Wilson lines go to future or past infinity. Naturally, one can
ask whether a similar situation arises for fragmentation functions. The answer is in fact
negative, as we will now see.

In both the cases treated so far, e+e− annihilation and SIDIS, we used future-pointing
Wilson lines in the definitions of the fragmentation functions. A PT transformation would
indeed convert the Wilson lines to past pointing. But it would also transform out-states to
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in-states:

∑
X

Tr γ+ 〈0|ψ(w/2)|p,X, out〉 〈p,X, out|ψ̄(−w/2)|0〉

=
∑
X

Tr γ+ 〈0|ψ(w/2)|p,X, in〉 〈p,X, in|ψ̄(−w/2)|0〉 . (13.125)

Since in-states with two or more particles are not the same as the out-states with the same
labels, but are related by the S matrix, the right-hand side of this equation cannot be equated
to a matrix element used to define some fragmentation function.

So PT transformations give no useful information here. Although certain fragmentation
functions like the Collins function involve only one spin and are naively T -odd, they can
be non-vanishing even in a non-gauge model, unlike the case for a T -odd parton density.
To better understand this difference, we insert a complete set of final states between the
operators defining a parton density:

∑
X

〈P, S|ψj (w/2) |X, out〉 γ
+

2
〈X, out|ψj (−w/2) |P, S〉 . (13.126)

Although a PT transformation changes the intermediate states to in-states, we can
use completeness in the sum/integral over all basis states to convert them back to
out-states:

∑
X

|X, in〉 〈X, in| =
∑
X

|X, out〉 〈X, out| . (13.127)

This argument does not apply to the inclusive sum in a fragmentation function where one
particle is detected and therefore not summed over.

Exercises

13.1 Very carefully check all the signs in the derivation and use of the Collins function,
notably in (13.31) (13.32), and (13.34).

13.2 (**) Complete problem 10.2 of Ch. 10.

13.3 (***) Find other work on the evolution of TMD parton densities, and try to extend
problem 10.2 to it. Such work includes that resulting in the CCFM equation
(Ciafaloni, 1988; Catani, Fiorani, and Marchesini, 1990a, b; Marchesini, 1995).
Note that the CCFM equation has an apparently radically different structure to the
evolution equation described in the present chapter. It nevertheless refers to TMD
parton densities, so there should be a relation.

13.4 (**) Find and prove any extensions to the Ward-identity arguments in Ch. 11 that
are needed to apply them to the processes treated in this chapter.
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13.5 Show that the two-dimensional Fourier transform of an azimuthally symmetric
function, defined by (13.35a), can be expressed as a one-dimensional integral:

S̃(b) = 2π

∫ ∞
0

dk k J0(kb) S(k), (13.128a)

S(k) = 1

2π

∫ ∞
0

db b J0(kb) S̃(b), (13.128b)

where J0 is the Bessel function of order zero. This result is used in numerical work.

13.6 (**)
(a) Generalize the treatment of CSS evolution to include the part of the factorization

formula with the Collins function in two-particle-inclusive e+e− annihilation.
(b) Repeat for semi-inclusive DIS, and for the DY process, where the relevant

functions also include the Sivers and the Boer-Mulders functions.
See Idilbi et al. (2004) for a solution. You may wish to extend their work.

13.7 (****) Complete the proofs of all the results in this chapter, notably those concerning
the application of the subtraction formalism to processes in a non-abelian gauge
theory with TMD functions, and the expression of these functions in terms of
operator matrix elements with Wilson lines.

13.8 (***) Suppose that, contrary to the argument of Collins and Metz (2004), time-like
rather than space-like Wilson lines were used in the definitions of the TMD func-
tions. Determine whether this gives actual problems, and under what circumstances.
Consider a variety of processes for which TMD functions are appropriate, including
two-particle-inclusive e+e− annihilation, SIDIS, and DY.

Notes:
• Time-like Wilson lines appear to have the advantage of better resembling actual

recoil-less partons, at least in e+e− annihilation, where the partons have time-like
momenta.

• But in SIDIS and DY each struck parton is space-like, at least as regards its
momentum.

• With time-like Wilson lines, you need to examine very carefully the Collins-Metz
arguments about universality.

13.9 (***) If possible, find a simple elegant form for the Feynman rules for computing
K beyond lowest order.

13.10 (**) Extend the methods to take account of heavy quarks. Publish the result if you
are the first to solve this problem.

13.11 (***) The final definition of the TMD fragmentation function (13.42) involves a
product of an unsubtracted fragmentation function and several Wilson-line factors.
If possible, express Feynman graphs for this quantity as graphs for the unsubtracted
fragmentation function with a systematic subtraction procedure applied. Again,
publish the result if you are the first to solve this problem.
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13.12 (**) Obtain the coefficients for the small-bT coefficients for the TMD fragmentation
functions of gluons; that is, extend the calculations in Sec. 13.14 from quark to
gluon fragmentation.

13.13 (***) The formalism presented in this chapter uses TMD fragmentation functions
and/or pdfs for the “low-qh T” terms, and ordinary integrated fragmentation functions
and/or pdfs for the large-qh T correction. Try to obtain a more unified formalism in
which everything is done with TMD functions.



14

Inclusive processes in hadron-hadron collisions

In this chapter, I treat inclusive hard processes in hadron-hadron collisions. These give
some of the most important practical applications of factorization. But the actual derivation
has substantial extra difficulties, compared with other processes we have examined.

Technically the extra difficulties concern the Glauber region. In e+e− annihilation or
SIDIS, we deformed loop momenta out of the Glauber region in individual (cut) graphs.
But this is no longer possible in hadron-hadron collisions. This situation results from inter-
actions between the spectator parts of the beam hadrons, as I will illustrate by an example in
Sec. 14.3. To get factorization, we will need a sum over cuts of the graphs, which in
turn entails a sum over different unobserved final states in an inclusive cross section. The
technical details will be explained in Sec. 14.4 for the case of the Drell-Yan process.

After that we will obtain factorization, including the version using TMD parton densities.
I will summarize the situation for more general reactions with detected hadrons of high
transverse momentum. There is a surprising lack of detailed published proofs. Although
the statements of factorization are essentially trivial generalizations of those for Drell-Yan,
there are underlying complications in the physics which makes the justification of the
generalizations quite non-trivial.

This work also leads us to the frontiers of the factorization approach, beyond which
more general methods are needed, e.g., in diffractive hadron-hadron scattering.

14.1 Overview

The actual statements of factorization are quite simple, but they hide physical and conceptual
complications, many of which we have already seen. Examples of the processes we can
consider are:

• the Drell-Yan process, i.e., the inclusive production of high-mass lepton pairs, HA +
HB → μ+μ− +X;

• inclusive production of one or more hadrons of high transverse momentum, HA +HB →
HC +X, HA +HB → HC +HD +X, etc.;

• production of jets of high transverse momentum;
• generalizations of Drell-Yan to the production of electroweak bosons, both within the

Standard Model and in conjectured extensions;
• production of hadrons containing heavy quarks (charm, bottom, top).

540
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Fig. 14.1. Structure of factorization for the Drell-Yan process: (a) lowest-order hard
scattering; (b) more general hard scattering.

The commonality is that in the leading regions there is a hard scattering. This can be
thought of as the core of the process: a reaction involving short distances that determines
the signature property of the reaction, e.g., a high-mass virtual photon or a high-transverse-
momentum jet.

Leading regions, as in Fig. 14.3 for the Drell-Yan process, involve collinear subgraphs
for the observed initial- and final-state hadrons and a soft subgraph, as well as the hard
subgraph. To get factorization we need to use Ward identities to extract extra collinear
gluons from the hard subgraph, and we need to show that either the sum of soft subgraphs
cancels or it can be absorbed into the collinear factors. After that, we get the situation
represented in Fig. 14.1 for Drell-Yan. The hard scattering can be treated as a on-shell
partonic scattering of a kind appropriate to the chosen reaction. It is initiated by one
parton out of each initial-state hadron. The collinear factors associated with the initial-state
hadrons behave as number distributions for the partons initiating the hard scattering. For the
Drell-Yan cross section integrated over transverse momentum, the factorization property is
then

dσ

dQ2 dy d�
=
∑
ij

∫ 1

0
dξa

∫ 1

0
dξb fi/HA

(ξa)fj/HB
(ξb)

dσ̂ (ξa, ξb, i, j )

dQ2 dy d�
, (14.1)

where y is the rapidity of the lepton pair, and � is the polar angle of one of the leptons.
Very often the cross section is presented after integration over lepton-pair angle. There is
an integral over the parton fractional momenta ξa and ξb, and a sum over parton flavor.

For the cross section differential also in the transverse momentum, we have

dσ

d4q d�
=
∑
ij

∫ 1

0
dξa

∫ 1

0
dξb fi/HA

(ξa)fj/HB
(ξb)

dσ̂ (ξa, ξb, i, j )

d4q d�
, (14.2)

where now the partonic cross section is fully differential in q. This factorization is appro-
priate when qT ∼ Q. However, as we have seen in Ch. 13 for other kinematically similar
processes, the approximations needed at the hard scattering need to be changed when the
transverse momentum of the lepton pair qT is much less than Q. In that case, we need a
more general factorization with TMD parton densities: see (14.31).
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Fig. 14.2. Structure of factorization for production of hadrons at high transverse
momentum.

We can interpret all these factorization properties in the parton-model sense as a partonic
cross section times single-particle densities for the partons, with a sum and integral over the
partonic configurations. But this interpretation must not be treated literally. For example,
the hard-scattering function dσ̂ is defined with subtractions. Similarly the parton densities
are not genuine number densities, because of the details of the definition of parton densities
in renormalizable gauge theories.

The simplicity of the interpretation of the factorization should also not obscure that
substantial conceptual and technical complications are needed to derive factorization. These
leave their symptoms in the non-trivial evolution equations, especially for TMD parton
densities.

For other reactions, similarly simple factorization formulae can be written. For example,
consider the inclusive production of a hadron of high transverse momentum, HA +HB →
HC +X. The factorization structure is now that of Fig. 14.2. Here the final state of the hard
scattering is itself completely partonic, and we need a fragmentation function to give the
density of hadrons in one of the outgoing partons:

E pC

dσ

d3 pC

=
∑
ijc

∫ 1

0
dξa

∫ 1

0
dξb

∫ 1

0
dz fi/HA

(ξa)fj/HB
(ξb)dHC/c(z)

× 1

z2
|kc|dσ̂ (ξa, ξb; kc, i, j, c)

d3kc

, (14.3)

where we now have an inclusive partonic hard scattering to make a parton of type c

of on-shell momentum kc. Here the hadron and parton 3-momenta are related by z =
(E pc
+ | pc|)/(2|kc|), given the standard light-front definition of a fragmentation function,

with this relation being applied in the overall center-of-mass (CM) frame.

14.2 Drell-Yan process: kinematics etc.

The Drell-Yan process is hadro-production of high-mass lepton pairs, e.g., HA +HB →
μ+μ− +X. The classic case is production of μ+μ− or e+e− through a virtual photon, but
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the same ideas apply to production of any kind of lepton pair through an electroweak gauge
boson (γ , W or Z), as well as to many standard mechanisms for making Higgs bosons and
to many generalizations in proposed extensions of the Standard Model.

Kinematically, it differs from two-hadron-inclusive production in e+e− annihilation or
from SIDIS by a crossing transformation: both leptons are now in the final state and the two
detected hadrons are the initial state. The kinematic variables and the structure function
analysis are minor generalizations of those for the previous two processes, as is the general
analysis of the leading regions and the power-counting. As with those processes, we will
use two coordinate frames: a hadron frame and a photon frame.

Hadron frame

We let PA and PB be the momenta of the incoming hadrons, and we let q be the momentum
of the lepton pair. In a hadron frame, we write

PA,h =
(

P+A,h,
M2

A

2P+A,h

, 0T

)
, (14.4a)

PB,h =
(

M2
B

2P−B,h

, P−B,h, 0T

)
, (14.4b)

qh =
(
q+h , q−h , qh T

)
. (14.4c)

The rapidity of the lepton pair is y = 1
2 ln(q+h /q−h ), which we normally apply in the overall

CM frame, where P+A,h = P−B,h. The invariant mass of the lepton pair is Q =
√

q2.

Photon frame

We define the photon frame to be obtained from the hadron frame by a boost along the z

until the lepton pair has zero rapidity, and then a transverse boost to put the lepton pair at
rest. This gives exactly the Lorentz transformation used for e+e− annihilation, i.e., (13.8).
The momenta of the lepton pair and the hadrons are given in (13.1). With masses neglected,
the z axis of the photon frame is again midway in angle between PA and −PB , as in
Fig. 13.2(b). This frame was defined by Collins and Soper (1977).

Hadronic tensor

The hadronic tensor for the Drell-Yan process is defined as

Wμν = s

∫
d4z e−iq·z 〈PA, PB, in| jμ(z) jν(0) |PA, PB, in〉 . (14.5)

The structure functions were formulated by Lam and Tung (1978) for the case that
the hadrons are unpolarized and jμ is the electromagnetic current. See Mirkes (1992)
for the case of W bosons with unpolarized beams, and Ralston and Soper (1979) and
Donohue and Gottlieb (1981) for the case of the electromagnetic current with polarized
beams.
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Fig. 14.3. Leading regions for the Drell-Yan process: (a) when qh T is integrated over or is
large, (b) when qh T � Q. The soft subgraph connects to the collinear subgraphs.

Scaling limit

The scaling limit we consider is where s = (PA + PB)2 →∞, with q+/P+A and q−/P−B
of a fixed order of magnitude. As to the transverse momentum, there are three cases:

1. The classic case, where qh T is integrated over. The natural factorization formula uses
integrated parton densities.

2. A variation, where qh T is large, of order Q.
3. The cross section differential in qh T, particularly for qh T � Q, where the cross section

is largest. Factorization then uses TMD parton densities.

The first two cases can be unified by considering the cross section integrated over qh T with
a weighting function f (qh T/Q):

dσ [f ]

dq+ dq− d�
=
∫

d2qh T f (qh T/Q)
dσ

d4q d�
. (14.6)

The lepton angle � is taken with respect to our chosen photon frame. From (14.6), the
qh T-integrated cross section is obtained by setting f = 1 for all qh T. The differential cross
section is obtained by functional differentiation.

Leading regions

The leading regions for the process are shown in Fig. 14.3(a). There is a hard-scattering
subgraph out of which comes the virtual photon coupled to the lepton pair. There are
collinear subgraphs associated with the two beams and a possible soft subgraph. The hard
subgraph may include extra high-kT partons going into the final state. These extra partons
manifest themselves as high-kT jets, which are treated as unobserved in the inclusive Drell-
Yan cross section. In principle, these high-kT partons ought each to be attached to their
individual collinear subgraphs. To avoid notational complications, they are not indicated
in the diagram. This is appropriate since in an inclusive cross section we expect to use the
argument of Sec. 12.7 to eliminate these extra collinear factors after a sum over the relevant
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Fig. 14.4. (a) Pure parton-model contribution to Drell-Yan with single spectator. (b) With
addition of cut multiperipheral ladder (Fig. 14.5) to fill in rapidity gap. (c) and (d) Two
other cuts of graph (b) with a diffractive final state.

cuts. There are also the usual extra K gluons between the collinear subgraphs and the hard
subgraph.

In the case that qh T � Q, the leading regions are shown in Fig. 14.3(b). As with other
processes with low transverse momentum (Ch. 13) there are no extra high-kT jets, i.e., jets
with transverse momentum of order Q. These graphs are a subset of those for the cross
section integrated over qh T.

14.3 Glauber region example

The issues with the Glauber region are conveniently illustrated by the Feynman-graph
model for the Drell-Yan process shown in Fig. 14.4.

The model is simplified to treat the hadron as being composed of exactly two constituents.
Then graph (a) is the lowest-order basic parton-model approximation, without any soft
subgraph, and with a lowest-order hard scattering. If this literally represented the actual
physics, then we could apply the usual parton-model approximator to the hard scattering.
This would directly give the TMD factorization formula (14.31) below, but simplified to
have the LO hard factor and without any rapidity or scale dependence to the parton densities.
Integrating over qh T would then give the integrated DY cross section as a hard factor times
two integrated parton densities.

However, by itself this graph gives a hadronic final state consisting of the fast-moving
remnants of the two beams, with a large rapidity gap between them. The rapidity gap’s
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Fig. 14.5. Ladder graph, with cut and sum over rungs.

Fig. 14.6. Ladder model (a) for total hadron-hadron cross section, and (b) for elastic
hadron-hadron amplitude.

size would be approximately ln(s/M2), roughly the difference in rapidity between the two
beams. Such a rapidity gap is only present in a small fraction of actual DY events (Abe
et al., 1997). Moreover in QCD, the two parts of the final state would have fractional
charge, because they are each obtained by subtracting a quark or antiquark from a beam
hadron.

A simple but influential model giving a more realistic kinematic structure to the final state
is the multiperipheral model (Gribov, 2009, Ch. 9) illustrated in Fig. 14.4(b). Exchanged
between the spectator partons is a ladder graph, as defined in Fig. 14.5, with a sum over
the number of rungs. It is not necessary to specify exactly the nature of the lines in the
ladder. To match reality, the lines should probably represent some effective degrees of
freedom appropriate for non-perturbative QCD, and we will not need to specify the details
at all precisely. A similar ladder can be exchanged between intact hadrons, without a hard
scattering, to give a model for the total and elastic hadron-hadron cross sections, Fig. 14.6.
The exchanged ladder sum was used (Gribov, 2009, Ch. 9) as an elementary model for
what is called Reggeon exchange, with the exchange dominating the high-energy behavior
being called the “pomeron”. It is useful to use the term “pomeron” to denote the sum over
ladder graphs.

For the model, it is assumed that all the lines have a mass of order a typical hadronic
mass M , and that the virtualities of the displayed hadronic/partonic lines are of order M2,
as is appropriate for modeling the non-perturbative regime of the strong interaction.
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14.3.1 Energy-dependence of exchanged ladder

Details of unreferenced results in this section can be found, for example, in Gribov (2009).
The final-state particles are ordered in rapidity: y1 > y2 > · · · > yn, between the

rapidities of the two beams. The orders of magnitude of these momenta are then
lj ∼ M(eyj , e−yj , 1). In the case that the rapidities are strongly ordered, eyj � eyj+1 , the
plus momentum of each lj mostly comes from below, and the minus momentum from
above, so that the momenta on the sides of the ladder obey

kj ∼ M(eyj+1 , e−yj , 1). (14.7)

If either of k+j or k−j were larger, the excess would have to flow along the sides of the ladder
(above and below respectively), as is shown by momentum conservation at the vertices
with the rungs. This would give these other lines much higher virtuality, which we have
ruled out by the definition of the model. It follows that (when the rapidities are strongly
ordered), the vertical lines have Glauber-like momenta: k2

j � −k2
j T.

The integrals over the final-state momenta are transverse-momentum integrals times
integrals over rapidity: ∫

d3lj

2Elj
(2π )3

. . . =
∫

dyj

∫
d2lj T

2(2π )3
. . . (14.8)

When the rapidities are strongly ordered, the integrand depends only on transverse momenta,
to leading power. This enables us to estimate the energy dependence of the ladder
graphs.

When the number of rungs is zero, only the sides of the ladder exist, and at high CM
energy the exchanged system gives, relative to graph (a), a power sJ1+J2−2, where J1 and J2

are the spins of the exchanged fields. Although there is no suppression for gluon exchange,
an exchange of quarks (as would be appropriate for getting color-singlet final-state par-
ticles) would give a power 1/s, i.e., a power-suppression relative to the parton-model
graph.

Now, the rapidity integral for an n-rung ladder gives energy dependence approximated
by ∫ �y

0
dy1

∫ y1

0
dy2 . . .

∫ yn−1

0
dyn = (�y)n

n!
, (14.9)

where �y is the rapidity difference between the two beams, i.e., �y � ln(s/M2). If, as is
appropriate, we assign a general order of magnitude λ to the transverse momentum integral
per rung, then the ladder sum gives

∞∑
n=0

(λ�y)n

n!
= eλ�y �

( s

M2

)λ

. (14.10)

This increases the power of s relative to the no-rung case, to give a total power sα−1 =
sλ+J1+J2−2. (Note that each term is positive, so λ is positive.) Since we are modeling a non-
perturbative part of QCD, λ is not small. In the model, we have calculated a contribution to
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the cross section, necessarily positive. But we will find a cancellation with graphs (c) and
(d) where the ladder is uncut, so that the Drell-Yan cross section is just the parton-model
value, from graph (a). To give the cancellation, the contribution of graphs (c) and (d) is
necessarily negative.

The ladder model can also be applied to ordinary soft cross sections, Fig. 14.6, in which
case α corresponds to the “intercept” of the exchanged pomeron. The pomeron intercept is
measured to be approximately unity, to give an approximately constant total cross section.1

14.3.2 Cancellation after sum over cuts

To show the cancellation of Fig. 14.4(b)–(d), we start by performing the integrals over the
plus and minus components of k and k′ for graph (b). In the region we are considering,
the lines k and k′ are collinear to PB , while the lines q − k and q − k′ are collinear to PA.
Thus k+ and k′+ are of order M2/P−B and therefore in the lower half of the graph they are
negligible compared with the large components of plus momenta, which are of order P+A .
Similarly q− − k− and q− − k′− are of order M2/P+A , and can be neglected in the top half
of the graph. In the top half, we therefore make the replacements k−, k′− �→ q−.

We will work with the case that the end rungs of the ladder have strongly ordered rapidity
relative to the hadrons: ey1 � eyPA , and eyPB � eyn . Then the dependence of the sides of the
ladder on k± and k′± can be neglected. Of course, there is a significant region where the end
rungs are collinear to the hadrons. But in that case we should consider the rungs as part of
the collinear subgraphs, with a more general collinear subgraph, as in Fig. 14.7(a) below. To
better capture the correct concept of pomeron exchange we should redefine the exchanged
entity to have such collinear contributions removed, perhaps by some subtractive technique.
We will not investigate this issue here, although it is interesting and needs investigation.
For the purposes of a motivational example, the strongly ordered case is sufficient.

For simplicity of presenting the results, we will take all the lines to have equal mass.
This is not essential.

After the approximations, the only dependence on k+ is in the two lines k and PB − k.
We perform the integral by closing the k+ contour on the pole of the “final-state” line
PB − k:∫

dk+

2π

i

(2q−k+ − E2
T + i0)

i

[2(−k+ + P+B )(P−B − q−)− E2
T + i0]

= 1

2(P−B − q−)

i

(2q−k+on-shell − E2
T + i0)

=
∫

dk+

2π

i

(2q−k+ − E2
T + i0)

2πδ
(
2(−k+ + P+B )(P−B − q−)− E2

T

)
, (14.11)

1 If the basic ladder gives an exponent significantly larger than 2− J1 − J2, then it would give cross sections substantially
above the Froissart bound. We should then imagine that the ladder represents “bare pomeron” exchange and that the
calculation of the true cross section involves multiple bare pomerons.
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where we have made the approximation k− �→ q−, and have defined E2
T = k2

T +m2. In the
second line,

k+on-shell = P+B −
E2

T

2(P−B − q−)
. (14.12)

The effect is to set the line PB − k on-shell.
Graphically let us denote on-shell lines by a cross. Then after similarly performing the

integrations over k′+, k−, and k′−, we find that

Fig. 14.4(b) = (14.13)

to leading-power accuracy in the region we are considering.
Exactly similar calculations can be done on the other graphs, Fig. 14.4(c) and (d). In

those graphs, the final-state cut goes through two of the spectator lines, and these are set
on-shell from the beginning. The total of the three graphs is therefore

(14.14)

The left- and rightmost factors are the same in all these graphs:

(14.15)

and they equal the corresponding factor in the pure parton-model graph Fig. 14.4(a).
The pomeron factor is therefore a sum over all the kinematically allowed cuts of the

ladder graphs, with on-shell external lines:

(14.16)

This is zero by a standard theorem, which we used in Sec. 12.7. Note that, because of our
choice of kinematics for the final-state partons, the only non-zero cut that goes through the
pomeron is where all the rungs are cut, as in the first of the graphs.
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Fig. 14.7. (a) General class of parton-model graphs supplemented by ladder-graph exchange.
(b) Example where generalization of the argument for cancellation of Glauber region is
particularly non-trivial compared with Fig. 14.4(b)–(d).

The pure parton-model graph Fig. 14.4(a) gives what is commonly termed a diffractive
final state: two isolated particles (or groups of particle) separated by a large rapidity gap.
The effect of the cancellation after the sum over cuts is that the graphs with an uncut
pomeron reduce the diffractive part of the cross section and replace it by a contribution
from the cut pomeron graph in which the rapidity gap is filled. In reality, only about one or
two percent of Drell-Yan events are diffractive (Abe et al., 1997). Hence exchanges of the
kind modeled in Fig. 14.4 are a substantial effect in QCD. (The data quoted are actually for
production of W bosons, a minor generalization of the standard Drell-Yan process.)

14.3.3 More general view

The above example indicates that in the Drell-Yan process (and actually more generally in
hard processes in hadron-hadron collisions) the Glauber region is handled by a sum over
final-state cuts, restricted to those compatible with the specification of the cross section.
The cancellation applies only to the inclusive cross section.

In the model, we made restrictions that the spectator part of each hadron consisted of a
single line, and that the rungs of the ladders were strongly ordered in rapidity. In fact, the
argument generalizes (DeTar, Ellis, and Landshoff, 1975; Cardy and Winbow, 1974). The
key point is that to get a Glauber pinch, the results of Sec. 5.11 show that one must have
an exchange attached to both the spectator parts of the hadrons, as roughly indicated in
Fig. 14.7(a). Once the exchanged system is in the relevant region, the cancellation only
depends on general properties, not on the detailed structure of the exchanged pomeron-
like object. The argument applies as it stands if the zigzag line is replaced by a gluon,
for example. Given the general structure of the argument, we expect that it applies non-
perturbatively, to the actual final-state interactions of QCD.

One cut of an example of a more complicated graph to which the general argument
applies is shown in Fig. 14.7(b).
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Fig. 14.8. Space-time location of side lines of ladder graph. The slightly time-like thick lines
represent the trajectories of the incoming hadrons, and the space-like thin line represents
where the ladder’s side line is. This diagram is not to scale: the collinear ends should be
much further away.

In our example, our choice of kinematic region and of approximation was such that
the contour could be deformed to infinity, and the contour at infinity gave zero. In the more
general case, to be treated in Secs. 14.4.2 and 14.4.3, we may get a non-zero result on
the deformed contour: the contour might be obstructed before it gets to infinity (e.g., by a
pole in an exchanged gluon line), or the integrand might not fall rapidly enough in k+ and
k−. But such a contribution corresponds to some region other than the Glauber region, e.g.,
a normal soft region where k+ and k− are comparable to kT. That is sufficient to allow us to
derive factorization, by our standard methods. What matters is that there is a cancellation
of the contributions from the singularities obstructing the contour deformation.

14.3.4 Space-time structure

We now show that the cancellation has a useful but non-trivial interpretation in coordinate
space. At first sight, the fact that we obtain a cancellation by setting certain lines on-shell
suggests that these lines have a long lifetime and that the cancellation therefore concerns
interactions that happen long after the hard scattering occurs, and thus too late to affect the
inclusive cross section. If this were the case, then we could imagine making a general proof
by working with time-ordered perturbation theory in the overall CM frame. Then we could
use a unitarity argument like that used in Sec. 12.7 where we showed a cancellation from a
sum over the final states of a jet.

I show that a more powerful argument is needed by determining space-time properties
of a (cut or uncut) ladder graph, as used in Fig. 14.4(b)–(d). The result is illustrated in
Fig. 14.8. Now all the vertical lines of the ladder have virtuality of order M2 in the
region we consider. Therefore, in the rest frame of each of these lines, the lifetime of the
corresponding state is of order 1/M . But this is boosted, so in the CM frame, the lifetime
for a line of rapidity y is e|y|/M . For a collinear line, this gives a time scale

√
s/M2. But

for a central line, without a boost, the scale remains at 1/M . These time scales and the
corresponding distances give the separation between the ends of the corresponding lines.
Naturally, the positions of the vertices are integrated over, so the estimates give typical
values, not exact values.

Next we show that the vertices along the sides are at space-like separation. We do
this by examining the correspondence with light-front perturbation theory, but using two
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Fig. 14.9. Pomeron/ladder exchange with gluon connection to an active quark.

versions, both x−- and x+-ordered perturbation theory. For x−-ordered perturbation theory,
there is minus momentum flowing down the left side of the ladder from the top of the
graphs, especially graph (b). These values are positive, in order to give the positive minus
components of momentum for the rungs. In x−-ordered perturbation theory, this implies
that the vertices on the left of the final-state cut are ordered from the top to the bottom in
order of increasing x−.

But the same argument applied to x+-ordered perturbation theory implies the reverse
ordering, from bottom to top, for x+. Thus the difference in position of the ends of one
of the side lines has the opposite sign for the plus and minus components. Hence the ends
have a space-like separation, as illustrated by the lower thin line in Fig. 14.8.

A similar argument actually also applies to the partons that initiate the hard scattering.
But although these lines are space-like, they also both have high rapidity, and are therefore
close to light-like. Fitting all this information together, in Fig. 14.8, shows that the central
rungs of the ladder are initiated before the hard scattering.

Thus we cannot argue that the ladder is literally a final-state effect, so the simplest
argument using time-ordered perturbation in the CM frame is not powerful enough to show
the result we need. A correct argument will in fact use both relativistic causality and the
topological structure of the graphs with Glauber exchanges.

It is worth noticing that the relevant physical coordinate-space separation of the central
part of the ladder from the hard scattering is a normal hadronic scale, i.e., of order 1 fm.
Moreover, there is a transverse separation by the same order of magnitude.

That the side lines are space-like gives by itself a reason that there is no causal influence
of the ladder on the hard scattering. One can perhaps rationalize this by asserting that the
central rungs, particularly, correspond to pre-existing virtual fluctuations in the vacuum,
which become instantiated because an appropriate collision happens nearby.

One could try to evade the lack of causal influence, by connecting a gluon (or other line)
between the central part of the ladder and one of the active parton lines, as in Fig. 14.9.
If all the lines, both in the ladder and in the upper collinear subgraph, have an unchanged
virtuality from the previous situation, then the components of the momentum of the extra
line have the sizes l = (l+, l−, lT) ∼ (M2/Q,Me−y,M), where y gives the rapidity of the
part of the ladder that the gluon attaches to. This is actually a Glauber momentum. But at the
active-parton end, the extra gluon attaches at a place which does not give a Glauber pinch.
Therefore we can deform the integration out of the region we were originally discussing.
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Fig. 14.10. Initial-state interaction of active partons.

14.4 Factorization for Drell-Yan

For the general treatment of the Glauber region, I will follow the proof given by Collins,
Soper, and Sterman (1988), but with some important improvements and with correction of
errors. That reference supersedes earlier work (Bodwin, 1985; Collins, Soper, and Sterman,
1985a).

14.4.1 Overview

Most of the proof of factorization for the Drell-Yan process follows the same pattern as
for other processes we have treated, so we need not repeat those details. The differences
concern the Glauber region and the consequences for the directions of Wilson lines. The
steps to obtain factorization are as follows.

1. Perform the region decomposition, as in Fig. 14.3, and apply approximants and sub-
tractions as usual.

2. For each graphical decomposition for a region, we include the sum over all allowed
final-state cuts.

3. To get out of a Glauber-region contribution for the soft subgraph, we move the contours
in a direction we characterize as “away from initial-state singularities”. This is the
appropriate direction for avoiding the Glauber region when gluons are attached to
initial-state lines, e.g., Fig. 14.10.

4. But for a general graph the contour deformation entails crossing certain final-state
singularities in the collinear subgraphs. These give non-factorizing extra terms which
we prove to cancel after the sum-over-cuts. The proof is made by demonstrating that
after the sum-over-cuts there are no singularities obstructing the contour deformation.
An example of the cancellation was seen in Sec. 14.3.

5. We apply a Grammer-Yennie approximant where needed. To be compatible with the
contour deformation out of the Glauber region, the eikonal denominators correspond
to past-pointing Wilson lines. This contrasts with our treatment of e+e− annihilation
and (SI)DIS, where future-pointing Wilson lines worked.

6. The usual Ward-identity arguments give factorization into a hard factor, two parton
densities and a soft factor.

7. For the qh T � Q case, we then have TMD factorization.
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8. For the qh T-integrated cross section, the soft factor has initial-state Wilson lines. We
apply the time-reversal argument of Sec. 13.17 to show that the soft factor is equal
to the one with final-state Wilson lines. Then the usual unitarity cancellation applies,
after which we get normal factorization.

9. We also use the the time-reversal argument to relate the parton densities for Drell-Yan
to those for (SI)DIS.

10. For most parton densities, the numerical values are the same for the two ver-
sions. But as explained in Sec. 13.17, certain TMD densities, the Sivers function
and the Boer-Mulders function, are T -odd and reverse sign between Drell-Yan and
SIDIS.

The treatment of the Glauber region impinges on important issues concerning the physics
of soft hadronic interactions. Some of the physics issues manifest themselves in the pre-
dicted reversal of the sign of the T -odd distributions. Others manifest themselves in an
outright failure of the standard factorization structure in certain natural generalizations of
the Drell-Yan process when conditions are imposed in the target fragmentation region. This
failure is found both theoretically (Henyey and Savit, 1974; Landshoff and Polkinghorne,
1971) and experimentally (Abe et al., 1997; Aktas et al., 2007b), even though in DIS with
a comparable final-state condition factorization does hold (Collins, 1998b).

14.4.2 Separation of collinear subgraph and the rest

We start by consider leading regions, which each correspond to a graph of the form of
Fig. 14.3(a) or (b). They involve a convolution of a collinear factor for each incoming hadron,
a soft factor and a hard factor. At the hard scattering, let us apply the usual approximants,
and let us apply subtractions for smaller regions. Then we sum over collinear attachments
to the hard subgraph, by the usual Ward-identity argument. The necessary eikonal lines are
past-pointing, corresponding to initial-state poles.

We do not yet apply the full approximant where the soft lines attach to the collinear
subgraphs, since we wish to display the nature of the contour deformation out of the Glauber
region. Only after the deformation will the standard soft approximation apply.

It is convenient to write the result as a product CAR, where CA is the collinear factor
attached to PA, and R is everything else. (Thus R includes the hard subgraph, the soft
subgraph and the opposite collinear subgraph.) Since we have already extracted the extra
collinear-to-A gluons from the hard subgraph, there is only a single collinear-to-A line
connecting CA to R on each side of the final-state cut. All the extra gluons displayed in
Fig. 14.11 are therefore part of the soft subgraph. Next we perform the sum over final-state
cuts, organized as follows. We start with the vertices at which the soft gluons enter CA, and
we let V denote a choice of which of these vertices are to the left of the cut and which are
to the right. The sum-over-cuts is partitioned by the value of V . Given V , we sum over the
set A(V ) of compatible cuts of CA, and over the set R(V ) of compatible cuts of R. These
sets can be summed over independently, given that as regards collinear lines we have on
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Fig. 14.11. Separation of region decomposition into a collinear-A part CA and everything
else, R. The displayed gluon lines are part of the soft subgraph, and are included in the
definition of subgraph R.

each side of the cut one definite collinear line from CA to R. This gives

GL =
∫

dk+A d2kA T

(2π )3

∫ n∏
j=1

d4lj

(2π )4

∑
V

∑
FA∈A(V )

C
FA

A

(
kA, {lj }

)μ1...μn

×
∑

FR∈R(V )

RFR
(
k+A, kA T, {lj }

)
μ1...μn

. (14.17)

Here C
FA

A denotes CA with cut FA, and similarly for R. The collinear subgraph CA is
defined to include its external collinear lines kA +

∑n
j=1 lj and kA, but to exclude the soft

gluons lj . The soft lines are all in R.
The momenta are organized as follows: lj are the momenta entering CA from the soft

subgraph, while k+A and kA T are the collinear loop momentum components from CA entering
the hard scattering. Since the minus component k−A is approximated by zero in the hard
scattering, its integral is considered to be included in the definition of CA. As for routing
the soft momentum loops, we choose them as in Fig. 14.11: the collinear line on the left of
the cut has momentum kA +

∑n
j=1 lj outgoing from CA, and the collinear line on the right

has momentum kA incoming to CA.
We next apply to the soft lines two parts of the soft approximants that remain valid in

the Glauber part of the soft region. The first is that we keep only the μj = + components
of the gluon polarizations, since these correspond to the large components for the collinear
subgraph:

C
FA

A

(
kA, {lj }

)μ1...μn
RFR

(
k+A, kA T, {lj }

)
μ1...μn

�→ C
FA

A

(
kA, {lj }

)+...
RFR

(
k+A, kA T, {lj }

)
+...

. (14.18)

The second part of the approximant is to drop the plus component of each soft momentum
in CA, because in the soft region each l+j is much smaller than the order-Q components of
collinear momenta. Thus in CA we replace each lj by

l̃j = (0, l−j , lj T). (14.19)
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This all gives

GL,1 =
∫

dk+A d2kA T

(2π )3

∫ n∏
j=1

dl−j d2lj T

(2π )3

∑
V

∑
FA∈A(V )

C
FA

A

(
kA, {l̃j }

)

×
∫ n∏

j=1

dl+j
2π

∑
FR∈R(V )

RFR
(
k+A, kA T, {lj }

)
. (14.20)

It is convenient not to write the repeated fixed indices, so we define the indexless symbols
for the factors by CA = C+...

A and R = R+... = R−....
At this point, the integral over soft momenta still includes the Glauber region. As we

know from earlier chapters, this implies that the remaining part of the soft approximant
cannot yet be applied. This is the approximation of neglecting the transverse components
of lj in the collinear subgraph, i.e., to replace l̃j by

l̂j = (0, l−j , 0T). (14.21)

After we have justified a contour deformation on l−j out of the Glauber region, we can
apply this last approximation. Then we will be able to apply the Grammer-Yennie method
to factor the soft lines from CA. (A similar argument will apply to the soft lines connecting
to the collinear-to-B subgraph, which at the moment is inside the R factor.)

However, the use of (14.21) is not yet valid because in the Glauber region l−j is particu-
larly small compared with lj T.

14.4.3 Contour deformation

In (14.20), the integrals over l+j are confined to R, while the integrals over l−j and k−A are
confined to CA. This suggests writing CA and R in terms of light-front perturbation theory,
but in two opposite versions, x−-ordered perturbation theory for R, x+-ordered perturbation
theory for CA.

x+ ordering for CA

To obtain the x+-ordered form of CA, we perform all the internal k− integrals, as in
Sec. 7.2. We write C

FA

A as a sum over x+ orderings T of its vertices. With each ordering, there
is a set of intermediate states, each with its energy denominator (actually a k− denominator),
and an on-shell final state with a delta function to make its momentum physical.

We classify the intermediate states as to whether they are earlier or later than the vertex
that annihilates the active parton, and as to whether they are on the left or right of the
final-state cut. Then the sum over x+ orderings is given as

C
FA

A =
∑
T

I ′T
({l̂j })∗ FT

({l̂j }) IT

({l̂j })× vertices. (14.22)

Here IT contains those factors for intermediate states that are earlier than the active-parton
vertex and that are on the left of the cut; these we treat as being initial-state interactions.
Similarly I ′T , with a complex conjugation, is for the initial-state interactions that are on the
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Fig. 14.12. Classification of initial- and final-state interactions. x+ is assumed to increase
from the left to the final-state cut and then decrease again. The soft gluon lines are short to
symbolize that their propagators are excluded from the subgraph CA.

right of the cut. Everything else is later than the active-parton vertices, and we put it in the
factor FT , which we label as “final state”. This classification is illustrated in Fig. 14.12.

In this diagram we arrange the vertices from left to right so that there is x+ ordering on
the left of the cut and x+ anti-ordering on the right. Correspondingly we define an ordering
on the vertices and the intermediate states used in x+-ordered perturbation theory: thus, if
j is a vertex and ξ is an intermediate state, then j < ξ means that j is to the left of ξ in
Fig. 14.12. We let H and H ′ be the vertices at the end of the collinear parton lines. Then
we define an intermediate state ξ to be in the final state if H < ξ < H ′, and to be in the
initial-state if ξ < H or H ′ < ξ .

We have already extracted extra gluons from the hard scattering, converting them to
attachments to Wilson lines attached to the primary parton lines of the collinear graphs
(e.g., at H and H ′ in CA). Since we use past-pointing Wilson lines, they are all in the
initial-state factors IT and I ′T

∗; hence the Wilson lines will not affect the sum-over-cuts
argument that we will apply to FT .

Explicit expressions for IT , FT and I ′T
∗, given the position of the final-state cut FA, are

IT

({l̂j }) = ∏
states ξ :
ξ<H

1

P−A +
∑

vertices j :
j<ξ

l−j −
∑

lines L:
L∈ξ

XL + i0
, (14.23a)

I ′T
({l̂j })∗ = ∏

states ξ :
H ′<ξ

1

P−A −
∑

vertices j :
j>ξ

l−j −
∑

lines L:
L∈ξ

XL − i0
, (14.23b)

FT

({l̂j }) =
∫ ∞
−∞

dk−A
2π

∏
states ξ :

FA<ξ<H ′

1

P−A − k−A −
∑

vertices j :
j>ξ

l−j −
∑

lines L:
L∈ξ

XL − i0

× 2π δ

(
P−A − k−A −

∑
vertices j :

j>FA

l−j −
∑

lines L:
L∈ξ

XL

)

×
∏

states ξ :
H<ξ<FA

1

P−A − k−A −
∑

vertices j :
j>ξ

l−j −
∑

lines L:
L∈ξ

XL + i0
. (14.23c)
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Here ξ denotes an intermediate state, which contains a certain number of lines labeled by
L. For each line L, the quantity XL is its on-shell value of minus momentum:

XL = k2
L T +m2

L

2k+L
. (14.24)

By the rules of x+-ordered perturbation theory, the initial-state factors IT and I ′T contain
no dependence on k−A , so the integral over k−A is confined to the final-state factor FT .

Normally, there would be a factor i for each intermediate state on the left of the final-state
cut, and a factor with the opposite sign −i for each state on the right. However, at the end
of each state there is a vertex, and interaction vertices also have opposite signs between
their occurrences on opposite sides of the cut. So there is no difference in sign between
a state-vertex pair on the left and the right of the cut. Therefore we omit the i and −i

that go with the states and with the vertices; hence the factor for the vertices in (14.22) is
independent of the placement of the cut.

The initial-state denominators in IT and I ′T
∗ all give poles in the lower half plane for

those l−j s that enter at initial-state vertices. Thus to avoid these poles we deform l−j into
the upper half plane. But the final-state poles and delta function obstruct this deformation.
Our aim will be to show that the obstructions cancel after a sum-over-cuts, so that we can
deform the integrations over all the l−j momenta into the upper half plane. Thus we can
avoid all Glauber configurations, where some of the l−j values are small.

Independence of R on soft-vertex position

We will be able to obtain this result if we can sum over all cuts FA of C
FA

A indepen-
dently of the remaining parts of (14.20). But the allowed cuts for the remainder factor, in∑

FR∈R(V ) R
FR , depend on V , which labels the placement of the soft-gluon vertices in CA

relative to the cut. We solve this problem by showing that the remainder factor,∫ n∏
j=1

dl+j
2π

∑
FR∈R(V )

RFR
(
k+A, kA T, {lj }

)
, (14.25)

is in fact independent of V .
A proof of this result (Collins, Soper, and Sterman, 1988) can be made by examining

x−-ordered perturbation theory for R. (This is in contrast to the x+-ordered perturbation
theory that we used for CA.) Instead I will show here an argument that uses commutators
for the gluon field, and that is therefore more suggestive of the underlying physics issues.

For a given placement of the ends of the soft gluons relative to the cut, i.e., for a given
value of V , the quantity in (14.25) is obtained from a Fourier transform of a matrix element
of fields of the form

〈PB |T̄
{
ψ̄(0)

∏
j>F

A(xj )

}
T

{∏
j<F

A(xj )ψ(y)

}
|PB〉 . (14.26)

The soft-gluon fields diagrammatically on the right of the cut are in the anti-time-ordered
part; these are in the left-hand part of the matrix element. Conversely, the fields on the left
of the cut are in the time-ordered part that is in the right-hand part of the matrix element.
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The quark fields are those for the parton density for hadron HB , and they are on fixed
sides of the cut. Implicit in (14.26) are sums over all ways of inserting interactions; this
includes the sum-over-cuts compatible with a given placement V of the explicit gluon fields
in (14.26).

Now we made the approximation to neglect l+j in CA, so that the integrals over l+j are
confined to R, as in (14.25). It follows that the fields in (14.26) have zero separation in
the x−j coordinates. With a generally non-zero separation in the transverse direction, the A

fields are at space-like separation, and therefore they all commute with each other, given
that we use Feynman gauge. Hence the ordering of the fields does not affect the value of
(14.26). This gives the desired result that the R factor in (14.25) is independent of V , as
was to be proved.

Sum-over-cuts of collinear subgraph

Given this result, we need to analyze the sum of the collinear-to-A factor CA over all cuts,
i.e., to analyze ∑

V

∑
FA∈A(V )

C
FA

A

(
kA, {l̂j }

) = ∑
all FA

C
FA

A

(
kA, {l̂j }

)
, (14.27)

with the approximated momenta. It is in fact sufficient to take a fixed ordering of the vertices
and states in Fig. 14.12, and to sum over allowed placements of the cut FA relative to the
vertices. The active-parton vertices H and H ′ are always to the left and right (respectively)
of the cut, and we have already seen that with the formulae (14.23) for the initial- and
final-state factors, the vertex factors in (14.22) are independent of the placement of the cut
FA. Thus we just need to sum FT in (14.23c) over the placement of the cut.

Let there be N states ξf in FT , which we label by an index f = 1, . . . , N , and let the
on-shell minus momentum for state f be

Df =
∑

lines L:
L∈ξf

XL. (14.28)

Then we need to calculate

∫ ∞
−∞

dk−A
2π

N∑
c=1

{ N∏
f=c+1

1

P−A − k−A −
∑
j>f

l−j −Df − i0

× 2π δ

(
P−A − k−A −

∑
j>c

l−j −Dc

) c−1∏
f=1

1

P−A − k−A −
∑
j>f

l−j −Df + i0

}
(14.29)

times a vertex factor. For the case N = 1, i.e., when there are no final-state interactions at
all, we simply get unity. For larger N , we use the unitarity identity that the integrand equals

i

N∏
f=1

1

P−A − k−A −
∑
j>f

l−j −Df − i0
− i

N∏
f=1

1

P−A − k−A −
∑
j>f

l−j −Df + i0
. (14.30)
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The integral over k−A for each term separately is zero, since each term has its singularities
on one side of the real axis.

Therefore, after the sum-over-cuts, the FT factor becomes unity. All that remains for
the total of CA in (14.27) are those terms in which all the interactions, including the soft
vertices, are in the initial state, whether on the left or the right of the final-state cut. This
just leaves initial-state poles, so that to get out of the Glauber region, we can deform l−j
into the upper half plane.

14.4.4 Soft approximation and Grammer-Yennie method

We now switch back to Feynman perturbation theory. In the previous section, we showed
that we can avoid the Glauber region for soft momenta by deforming their integrals away
from initial-state poles. There has therefore been a cancellation of the final-state poles that
would otherwise obstruct the deformation, given that we make an inclusive sum over at
least the spectator part of the hadronic final state.

On the deformed contour, the usual soft approximation applies, where we neglect lj T

as well as l+j in the collinear-to-A subgraph. Then we apply the appropriate version of the
same argument to soft connections to the opposite collinear subgraph. After that we apply
the usual Grammer-Yennie method and Ward identities to obtain a factorized form for the
cross section or, equivalently, for the hadronic tensor.

14.4.5 Factorization for low-qhT cross section

In the case of the low-qh T cross section, we now have exactly the same structure as we
found in Ch. 13 for e+e− annihilation and SIDIS, with a product of collinear, soft, and
hard factors. So all the same steps that lead to a factorization formula can be used. We will
examine the consequences in Sec. 14.5.

It is interesting that the treatment of the Glauber region was originally formulated
(Collins, Soper, and Sterman, 1988) only in the context of situations using integrated
parton densities, e.g., the cross section integrated over qh T. In fact, the argument works
equally well for the TMD case. What enables it to work is that we now have a complete
Feynman-gauge formalism for TMD factorization and TMD parton densities. The Feynman
gauge is important in giving the analytic properties that we relied on to deform contours
out of the Glauber region.

14.4.6 Factorization for integrated cross section

We can also treat the Drell-Yan cross section integrated over all transverse momentum, or
at large qh T. The usual argument gives us a standard factorization formula with integrated
parton densities.

However, there is one step that needs enhancement for the Drell-Yan process. This is in
proving that there is a cancellation of the soft factor. This is an integrated soft factor, like
the one we encountered in Sec. 12.8.6 for an inclusive cross section in e+e− annihilation.
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There we used a unitarity-type argument applied to a soft factor defined with future-pointing
Wilson lines. But for the Drell-Yan process, we get past-pointing Wilson lines. We already
solved this problem in Sec. 13.17.5, where we used time-reversal invariance to show that
the two kinds of soft factor are equal. After that, the cancellation of the integrated soft
factor follows from Sec. 12.8.6.

Finally we obtain factorization in the standard form already stated in (14.1) and (14.2).

14.4.7 Possible use of “physical” gauges

In much early work on factorization theorems in QCD (e.g., Ellis et al., 1979; Libby and
Sterman, 1978a; Lepage and Brodsky, 1980; Collins and Sterman, 1981) so-called physical
gauges were often used. Such gauges include the various kinds of axial gauge, with the
gauge condition n · A = 0, and the Coulomb gauge.

These gauges only have physical polarizations for the gluon, unlike the Feynman gauge
with its extra unphysical states. This leads to a number of advantages including the absence
of regions that give graph-by-graph super-leading contributions, Sec. 11.2.3.

Unfortunately all such gauges, at least all the known ones, have unphysical singularities
in the gluon propagator and the singularities break manifest Lorentz invariance. The proof
of factorization relied critically on having only physical singularities for the deformation
out of the Glauber region, and especially for the treatment of final-state interactions.

In the presence of unphysical singularities, it is possible, in individual graphs, to have
signals that propagate faster than light. These can correlate the two hadrons and the two
active partons before the hard collision, and if uncanceled they lead to a breakdown of
factorization. Of course, all such effects must cancel in a physical cross section. But the
presence of unphysical singularities complicates the proof.

An example of how non-factorization could arise from initial-state interactions was given
in Bodwin, Brodsky, and Lepage (1981), where a non-abelian phase factor was calculated
from exchange of Glauber gluons between the incoming active partons in the Drell-Yan
process. Our proof shows that we can deform the momenta out of the Glauber region, and
then apply Ward identities to obtain factorization. Therefore, while the phases exist and
give a contribution to the cross section, their effects do not break factorization; rather they
get moved into the parton densities.

14.4.8 Issues remaining

The proof given above captures many of the physics issues involved. But an attentive and
critical reader can surely raise some questions about the proof’s completeness, and there
are interesting problems in trying to do better.

For example, the proof relied strictly on the momentum categories for the standard
leading regions as seen in perturbation theory. In particular, for a soft gluon connecting to
a collinear subgraph, there is a large rapidity difference between the lines at the ends of
the gluon. But the multiperipheral model used in Sec. 14.3 suggests that there is a different
but related possibility that is relevant for non-perturbative hadronic interactions. This is



562 Inclusive processes in hadron-hadron collisions

that there is an exchange where the rapidity is graduated along the exchange without any
large jumps. The overall momentum transfer along the exchange is not only soft but in fact
Glauber. But without any rapidity gaps, it is difficult to apply the argument we gave as it
stands. Very quickly one gets into a situation of trying to develop a good and deductive
QCD version of Regge theory.

Another issue is that our characterization of leading regions was incomplete in Feynman
gauge. There can be regions with extra disconnected hard-scattering subgraphs, appearing,
so to speak, in parallel with the standard hard scattering, and transversely separated from
it in coordinate space. These are induced by gluons, and they are not power-suppressed
because the gluons can have polarization in the direction of their momentum, which gives
an enhancement we have seen in many contexts. Such extra hard scatterings cancel after a
sum over graphs for the hard scattering (Labastida and Sterman, 1985).

It is quite easy to state factorization intuitively in terms of parton probability densities
in each hadron, convoluted with a parton hard scattering. The current versions of genuine
proofs are evidently formidable. Much of the difficulty is genuine. In going to hadron-
hadron scattering and in examining more detailed cross sections, one is approaching the
frontier of where ordinary factorization fails, and some more general approach is needed.
For one kind of indication as to where this frontier is, see Bomhof, Mulders, and Pijlman
(2004) and Collins and Qiu (2007).

14.5 TMD pdfs and Drell-Yan process

We now have all the ingredients to obtain TMD factorization for the Drell-Yan process
qh T � Q. The leading regions were shown in Fig. 14.3(b). We now know that after summing
over final-state cuts of graphs, we can deform contours out of the Glauber region, away from
initial-state poles. Therefore the methods of Ch. 13 apply to obtain factorization, provided
that the parton densities and the soft function are defined with past-pointing Wilson lines.
The coordinate frames and hadronic tensor were defined in Sec. 14.2.

14.5.1 Factorization

The result is a TMD factorization formula for the hadronic tensor Wμν , defined in (14.5).
Factorization is like (13.46) for e+e− annihilation, or (13.116) for SIDIS, but using parton
densities:

Wμν = 8π2s

Q2

∑
f

C
μν
f

(
k̂A, k̂B

) ∫
d2bT eiqh T·bT f̃f/HA

(
xA, bT; ζA

)
f̃f̄ /HB

(
xB, bT; ζB

)

+ polarized terms+ large qh T correction, Y . (14.31)

Some details of this formula will be explained in more detail in Sec. 14.5.2. It uses
the Drell-Yan versions of parton densities, defined with past-pointing Wilson lines. The
PT -transformation argument of Sec. 13.17 shows that these parton densities are numer-
ically equal to those in SIDIS, except that T -odd densities in the polarization part are
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reversed in sign. In the parton densities, the fractional momentum arguments are

xA = Qey

√
s

, xB = Qe−y

√
s

, (14.32)

where y is the CM rapidity of the lepton pair. The ζ arguments are as in (13.107), i.e.,

ζA = 2x2
A(P+A,h)2e−2yn = M2

Ax2
Ae2(yPA

−yn), (14.33a)

ζB = 2x2
B(P−B,h)2e2yn = M2

Bx2
Be2(yn−yPB

), (14.33b)

where yn is the rapidity parameter of the parton densities (13.106).
For phenomenological use, one can take account of the CS and RG evolution equations

by applying to (14.31) the same steps as for two-particle-inclusive e+e− annihilation. This
gives a formula like (13.81).

14.5.2 Kinematics and approximations in TMD factorization

In the derivation of the TMD term in (14.31), the approximations used concern the hard
scattering and the momentum-conservation delta function.

For the hard scattering, we use the tensor C
μν
f for the on-shell partonic reaction f f̄ →

γ ∗. Its normalization is that of a partonic scattering amplitude squared. Thus in lowest
order,

C
μν
f, LO =

e2
f

Nc

(k̂μ
Ak̂ν

B + k̂
μ
B k̂ν

A − gμνk̂A · k̂B), (14.34)

where the factor 1/Nc = 1/3 results from the average over color. In higher order, there
are the usual soft and collinear subtractions. The approximated external momenta of
the hard scattering are chosen so that in the photon frame they have zero transverse
momentum:

k̂A,γ = (q+γ , 0, 0T) = (Q/
√

2, 0, 0T), k̂B,γ = (0, q−γ , 0T) = (0,Q/
√

2, 0T). (14.35)

Then in the hadron frame

k̂A,h =
(

eyQ(κ + 1)

2
√

2
,

e−yQ(κ − 1)

2
√

2
,

qh T

2

)
, (14.36a)

k̂B,h =
(

eyQ(κ − 1)

2
√

2
,

e−yQ(κ + 1)

2
√

2
,

qh T

2

)
, (14.36b)

where κ =
√

1+ q2
h T/Q2. The hadron-frame components can be useful in performing a

structure function decomposition of the hard scattering.
These approximated parton momenta apply only to the hard scattering. In the momentum-

conservation delta function, we make instead the replacement

δ
(
qh − kA,h − kB,h

) �→ δ

(
qh −

(
k+A,hκ, k−B,hκ, kA,h T + kB,h T

))
. (14.37)
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Here, we keep the exact values of transverse momenta, as is required to correctly treat the
cross section at low qh T. But for the plus and minus components we made an approximation
that is valid to leading power in qh T/Q. The factors of κ are arranged so that the fractional
momenta in the parton densities are the variables defined in (14.32), so that k+A,h/P

+
A,h = xA

and k−B,h/P
−
B,h = xB , where errors of order M2

j /s are ignored.
Observe the mismatch between the values of k+A,h and k−B,h used in the hard scattering

and those used in the parton densities. The reader might therefore be tempted to try to
remedy this, for example, by changing the the terms in (14.37) that involve k+A,h and k−B,h.
However, such a change would not help if one stays within the parton-density framework.
The reason is that to get conventional light-front-style parton densities, one must short-
circuit the integrals over the opposite components, i.e., k−A,h and k+B,h, so that each integral
is internal to its parton density. Provided that the parton densities are not rapidly varying
as a function of xA and xB , this leads to an intrinsic error in the approximation of order
q2

h T/Q2. Changing (14.37) can only correct part of the error. A correct treatment needs to
deal with the production of extra jets, recoil against which is the source of events with large
qh T. This is the province of the Y term in (14.31). With a correct Y term included, (14.31)
is correct up to mass-suppressed corrections for all qh T.

The exact form of the approximations on the longitudinal momenta in the TMD term in
(14.31) was chosen to be fairly simple and to agree with previously stated results (Collins,
Soper, and Sterman, 1985b).

It is of course possible that the parton densities are rapidly varying enough that the
short-circuiting of k−A,h and k+B,h is a bad approximation even at small qh T. But in that case
one cannot use ordinary parton densities, even of the TMD type. One must use more general
quantities (Collins, Rogers, and Staśto, 2008; Watt, Martin, and Ryskin, 2003, 2004) that
are functions of the full 4-momentum of a parton.

14.5.3 Fitting data

A representative of the state of the art (Landry et al., 2003) for fitting the Drell-Yan process
is shown in Fig. 14.13.

As is usual, there is an interesting combination of fitting and prediction. The general
principles are as follows.

• Obtain the integrated parton densities by global fits to reactions that do not need TMD
factorization.

• From perturbative calculations estimate the perturbative parts of the Drell-Yan version
of (13.81). This determines the integrand primarily at bT � bmax.

• Compare the Drell-Yan version of (13.81) with data at moderate Q, and adjust the non-
perturbative functions to give a fit. If the data are at one value of energy, the function gK

will not yet be separately determined.
• There are some predictions already at this point, since the non-perturbative factor, gener-

alizing (13.83), is a product of a function of xA and a function of xB , rather than a more
general function.
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Fig. 14.13. From Landry et al. (2003) (with change of axis label). Copyright (2003)
by The American Physical Society. Results from fitting TMD parton densities for the
Drell-Yan process. (a) For μ+μ− production in the E288 experiment (Ito et al., 1981)
at
√

s = 27.4 GeV. From top to bottom, the curves and data are for 5 < Q < 6 GeV,
6 < Q < 7 GeV, 7 < Q < 8 GeV, 8 < Q < 9 GeV. (b) For production of e+e− pairs in
the Z-boson region at CDF at

√
s = 1800 GeV (Affolder et al., 2000). See the text for a

description of the different curves. The fits are made with bmax = 0.5 GeV−1.

• Repeat the fit at a higher value of
√

s to determine the coefficient, gK , of ln Q2 in the
non-perturbative factor.

• Since gK is independent of xA, xB and the flavors of quark and hadron, this last fit can be
performed for one value of xA and xB . The cross section is predicted for all other values.

• The cross section is then predicted for all other energies Q. (Of course, Q must be high
enough for factorization to be valid.)

In practice, errors in fitted data (and in the use of low-order perturbative calculations)
limit the accuracy of predictions. So when new data become available at a higher energy, not
only is there a test of whether the new data agree with predictions within errors, but the new
data are also used to tune up the fits. A test of the combination of QCD and factorization
is by the quality of the global fit. One problem is that to make fits, the non-perturbative
functions are typically replaced by some assumed (plausible) form with a few parameters.
A lack of a good fit may simply be due to the use of an unsuitable parameterization.

A further complication is that from standard Drell-Yan data it is hard to obtain a
complete flavor separation of the non-perturbative functions gj/H (x, bT). This is probably
most systematically solved by a global fit to data from all three processes (Drell-Yan,
SIDIS, and e+e− annihilation). The flavor relations listed in Sec. 12.4.8 will considerably
assist the fits for fragmentation functions.
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As for Drell-Yan data, Fig. 14.13 shows fits corresponding to three choices of parame-
terization of the non-perturbative factor:

DWS: exp

[
−
(

g1 + g2 ln
Q

2Q0

)
b2

T

]
, (14.38a)

GY: exp

{
−
[
g1 + g2 ln

Q

2Q0

]
b2

T − [g1g3 ln(100xAxB)] bT

}
, (14.38b)

BLNY: exp

{
−
[
g1 + g2 ln

Q

2Q0
+ g1g3 ln(100xAxB)

]
b2

T

}
. (14.38c)

Here g1, g2, and g3 are numerical parameters. The DWS ansatz is quadratic in bT, corre-
sponding to a Gaussian transverse momentum distribution; it also has no x dependence.
The GY form supplements this by an x-dependent term that is linear in bT rather than
quadratic. Since ln(xAxB) = ln xA + ln xB , this ansatz is of the general form of the Drell-
Yan equivalent of (13.83); that is, the x dependence in the exponent is a sum of separate
terms for xA and xB . Finally the BLNY ansatz is like GY, but with quadratic bT dependence
for all its terms.

From Fig. 14.13, we see that the last ansatz, BLNY, provides a good fit to the data. It
has the parameters

g1 = 0.21 +0.01
−0.01 GeV2, g2 = 0.68 +0.01

−0.02 GeV2, g3 = −0.6 +0.05
−0.04 GeV2. (14.39)

The two plots in Fig. 14.13 are at very different energies, and the primary change is a
strong broadening of the transverse-momentum distribution from low to high energy. Note
the very different scales of transverse momentum for the two plots, and that the left-hand
plot uses a logarithmic scale for the cross section, whereas the right-hand plot uses a linear
scale. Note also that the zero at the origin of the right-hand plot is an artifact of the different
variable used for the cross section, which is dσ / dPT rather than dσ / d2PT for the left-
hand plot. In both cases the cross section dσ / d2PT differential in the two-dimensional
transverse momentum is non-zero at zero transverse momentum. See Landry et al. (2003)
for a comparison of these same fits with other data.

The numerical fitted values of the coefficients in (14.38) depend strongly on the value
of the cutoff parameter bmax. For example, instead of the value bmax = 0.5 GeV−1 used
in Fig. 14.13, a later fit in Konychev and Nadolsky (2006) used a much larger value,
bmax = 1.5 GeV−1. With the same functional form, (14.38c), they found g2 � 0.2, a factor
of 3 less than given in (14.39). This corresponds to strikingly different large-bT behavior.
However, the large-bT asymptote is unimportant after we perform the Fourier transform
to transverse-momentum space, for the cross section, as can be seen from the plots of the
complete bT-space integrand in Fig. 14.14. What matters is the integrand at 2 GeV−1 and
smaller. There the curves for fits with different values bmax are in reasonable agreement.
(The short dashed curve in Fig. 14.14(a) refers to an earlier fit that is not relevant here.) For
higher energy, Fig. 14.14(b), the important values of bT migrate down, so that the details
of the large-bT asymptote are even less important.
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Fig. 14.14. bT-space integrand for the equivalent of (13.81) for the Drell-Yan process. The
results of fits (Konychev and Nadolsky, 2006) using different values of bmax are shown: (a)
for
√

s = 38.8 GeV, (b) for Z production
√

s = 1.96 TeV. In these plots C3 corresponds to
what is called C1 in this chapter, and b0 = 2e−γE � 1.123. Reprinted from Konychev and
Nadolsky (2006), with permission from Elsevier.

Given that the functional form of the non-perturbative functions was not changed when
bmax was changed, bmax can be treated as a parameter to be fitted to data. A good fit
implies that a good match is found between the perturbative prediction of the integrand and
its continuation to large bT. In fact Konychev and Nadolsky (2006) found that the larger
values, notably 1.5 GeV−1, are preferred.

It is a concern that bmax = 1.5 GeV−1 is rather large to trust perturbation theory, since it
corresponds to a low momentum. But 1.5 GeV−1 = 0.3 fm, which is somewhat smaller than
the size of a proton. Thus it is reasonable that such a distance is in the range of perturbative
quark-gluon physics. An increase by another factor of 3 would not be reasonable. In contrast,
this argument suggests that using bmax = 0.5 GeV−1 = 0.1 fm, as in Landry et al. (2003),
is excessively conservative, especially given that the non-perturbative functions can absorb
errors in using perturbation theory around bmax.

There are some general features of the bT-space integrand, which enable us to gain
a useful semi-quantitative understanding of the main properties of its Fourier transform,
which determines the cross section as a function of qh T. For this purpose we define the
integrand as

W (bT; Q) = (the Drell-Yan version of) lines 2–6 of (13.81). (14.40)

The plots in Fig. 14.14 show this factor multiplied by bT, as is appropriate in its use in a
one-dimensional radial integral, as in (13.128b).

Now W is positive everywhere in the fits. This is not absolutely guaranteed, since any
positivity constraints on parton densities apply only to their momentum-space versions.

We next notice in the plots that, beyond some value of bT, the integrand decreases with
bT, and that the plot narrows as Q increases. This arises from both the perturbative and non-
perturbative parts of the exponents. When bT � 1/Q, the biggest part of the perturbative
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exponent is

−2
∫ μQ

μb

dμ′

μ′
ln

Q

μ′
γK

(
g(μ′)

)
. (14.41)

For fixed Q, this becomes increasingly more negative as bT increases, the sign of this
term being determined by the sign of the lowest-order calculation of γK . Then when Q

itself is increased, the decrease is stronger. This matches the behavior of the corresponding
non-perturbative term−2gK (bT) ln Q, which at large bT is negative to avoid a pathological
Fourier transform.

We now examine the implications for the cross section. Assistance is provided by convert-
ing the two-dimensional Fourier transformation into a one-dimensional Bessel transform,
(13.128b). The cross section at zero transverse momentum is the area under the curve of
bTW (bT), times an overall kinematic factor. The narrowing of the bTW (bT) curve with
increasing Q therefore shows that the cross section at qh T = 0 decreases with increasing Q

(at fixed xA and xB). At large Q, the large-bT tail has decreased substantially, and therefore
has a small effect on this cross section. So the precise values of the non-perturbative func-
tions play a negligible role, and the perturbative part of (13.81) governs the cross section
even at qh T = 0. However, it is not finite-order perturbation theory for the cross section
that is relevant by itself. Perturbation theory for the exponent in W (bT), especially for γK ,
is critical.

When we increase qh T, the cross section decreases. In the Bessel transform this occurs
because of the oscillations in the Bessel function J0(qh TbT). The width of the qh T peak
can be estimated as the value of qh T where the first half-oscillation of J0(qh TbT) fits under
the peak of the bTW (bT) curve. Let bpeak(Q) be the position of the maximum of bTW (bT).
Then the half-width of the qh T distribution is very roughly 1/bpeak(Q), which agrees with
Figs. 14.13 and 14.14. The width evidently increases substantially with Q.

We obtain this broadened distribution by recoil against gluon emission into an increasing
kinematic range. Notably there is soft, non-perturbative gluon radiation uniformly in the
available rapidity range. Even at fairly low energy, as in Fig. 14.13(a), the width, around
1 GeV, is much larger than the naivest expectation (around 300 MeV) based on elementary
ideas of Fermi motion of bound quarks in hadrons.

Finally the behavior for large qh T, of the order of Q, is governed by the sharpest features
in W (bT), which come from perturbative logarithms of bT, with bT ∼ 1/Q.

14.5.4 Further issues

Although the above formalism has had substantial success, a long-standing problem has
been to account for the measured angular distribution of the Drell-Yan process pairs (Badier
et al., 1981; Falciano et al., 1986; Guanziroli et al., 1988; Conway et al., 1989). There is
a substantial sin2 θ cos(2φ) term in addition to the 1+ cos2 θ term that is expected from
unpolarized qq̄ annihilation. It should be noted that the measurement needs particular care,
because of the effects of detector acceptance (Bianconi et al., 2009).
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Now the standard applications of factorization to the Drell-Yan process have assumed
that quarks in an unpolarized hadron are themselves unpolarized. However, in Sec. 13.16
we saw that there is a transverse polarization of a quark correlated with its transverse
momentum, as described by the Boer-Mulders function. Applying this to the annihilating
quark and antiquark gives a non-zero contribution to the structure function that gives the
apparent anomaly in the angular distribution.

A recent measurement of the angular dependence, together with separation of a Boer-
Mulders term and conventional pQCD term for large transverse momentum can be found
in Zhu et al. (2009). Another recent fit can be found in Lu and Schmidt (2010). See Barone,
Melis, and Prokudin (2009) for a recent analysis of the Boer-Mulders function in SIDIS.

14.6 Calculations with initial-state partons

Applications of factorization for the Drell-Yan process involve hadronic incoming states,
with the parton densities containing non-perturbative physics. However, calculations for
the hard scattering are typically made starting from perturbative calculations of the Drell-
Yan cross section with partonic beams. Given that factorization is valid independently of
the nature of the beams, the hard scattering can be obtained by dividing by perturbative
calculations of the parton densities in partonic targets. (After the expansion in powers of
coupling, this formalism gives a subtractive calculation of the hard scattering: a Feynman-
graph calculation of the cross section with contributions associated with parton densities
subtracted off.)

When the partons are massless the calculations of the partonic cross section have mass
divergences that are canceled by mass divergences in the subtracted parton-density terms,
giving an IR-safe hard-scattering coefficient. We have seen examples of such calculations
in Ch. 9.

Although it is common and calculationally simplest in QCD perturbative calculations to
make all the partons massless, with the divergences being dimensionally regulated, this is
not essential. The principles just described apply equally to calculations with all the partons
given a mass. Then the massless limit need only be taken at the end of a calculation for the
hard scattering.

Naturally, if, for example, one wishes to calculate production of a quark whose mass is
large, then it is inappropriate to neglect its mass at any stage: the heavy quark mass in this
situation is either comparable to or actually sets the large scale Q of the hard scattering.
But for the present discussion, let us treat only a situation in which the quarks are light, of
masses much less than Q.

An interesting issue arises when some but not all of the partons are given a mass.
This is natural in QCD, since the gluon mass is required to be zero by non-abelian gauge
invariance. Then one can perturbatively calculate a Drell-Yan cross section with incoming
quarks which have a non-zero mass, while keeping the gluon mass exactly zero. This
will regulate collinear divergences involving quarks, but will leave IR divergences. In an
NLO calculation, these are much as in QED. But in higher order there will be collinear
divergences associated with gluonic self-interactions.
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In this situation the calculation has a danger of giving uncanceled IR divergences (Catani,
Ciafaloni, and Marchesini, 1986) in a hard scattering, perhaps not for the Drell-Yan process
which is completely inclusive in the hadronic final state, but for other processes. The
problem is that IR divergences occur at all beam energies, even when the beams are non-
relativistic, whereas the intricate cancellations needed to get factorization for the Drell-Yan
process require the relativistic limit. The relativistic limit implied that influences of one
incoming hadron on the other cannot travel fast enough to correlate the two active partons
in such a way as to break factorization. So factorization by itself does not imply that all
IR divergences cancel, but only those that are leading power in Q. One can imagine a
divergence proportional to

m2

Q2
× 1

ε
, (14.42)

where ε is the dimensional-regularization parameter. Should one count this as a power-
suppressed correction because of the m2/Q2 factor, or is it infinite, because one should
take the physical limit ε → 0, with quark masses non-zero? Of course, if one also had
a massive gluon, then one would replace 1/ε by something like ln(Q2/m2

g): the gluon
mass would provide a physical IR cutoff. In that case, (14.42) would be unambiguously
power-suppressed as Q→∞.

Of course, in real QCD, confinement should give a physical non-zero IR cutoff. But this
is not present in pure perturbative calculations.

It has been proposed that when calculations are made with heavy quarks, whose mass is
not always negligible with respect to Q, it would be a legitimate method to preserve heavy
quark masses in the hard scattering, including the case of incoming quarks. The above
argument indicates that this is a bad idea.

See also Aybat and Sterman (2009) for work on the cancellation of soft gluons when the
initial state is partonic.

14.7 Production of hadrons

Our proof of factorization for the Drell-Yan process depended quite essentially on the
cross section being completely inclusive in the hadronic part of the final state. So one
can anticipate further complications if one wants to generalize the result to production of
hadrons, e.g., HA +HB → HC +X and HA +HB → HC +HD +X, where the detected
hadrons have large transverse momentum. The most common experimentally investigated
case is where jets of large transverse momentum are measured in the final state.

It is easy to state factorization properties as obvious and natural generalizations of the
ones already proved, e.g., (14.3). They involve a parton density for each incoming hadron,
and a fragmentation function for each detected final-state hadron, all convoluted with a
partonic hard-scattering cross section. Many examples of such factorization properties are
in regular and successful phenomenological use, and there is an industry of calculating
important higher-order corrections to the hard scatterings.
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Fig. 14.15. Example of diagram for R: (a) and (b) with gluon vertex to left of final-state
cut, (c) and (d) with vertex to right of cut.

But there is a relative lack of detailed proofs of factorization in these cases, to justify
factorization from fundamental QCD. One of notable notable exception is Nayak, Qiu, and
Sterman (2005). This work applies to factorization of a kind that uses ordinary integrated
parton densities.

One can consider cross sections which are sensitive to partonic transverse momentum,
for example HA +HB → HC +HD +X when the final-state hadrons HC and HD are
close to back-to-back azimuthally. It is not too hard to formulate apparently suitable TMD
factorization properties, as a natural generalization of those valid for the Drell-Yan and
SIDIS processes.

However, unlike the Drell-Yan case, these TMD factorization properties appear to fail
(Collins and Qiu, 2007; Rogers and Mulders, 2010). A failure of factorization in these areas
in situations where it is intuitively plausible implies that there is a possibility of interesting
new areas of QCD physics that are in need of investigation.

Exercises

14.1 This problem is about the Glauber region treatment of Secs. 14.4.2 and 14.4.3. Verify
in a simple example, e.g., Fig. 14.15, that

∑
FR∈R(V ) R

FR in (14.20) is independent of
the choice V of where soft gluons are placed relative to the final-state cut. There is no
need to assume any particular momentum region, but only that the plus components
of the external momenta are integrated over; in Fig. 14.15, these components are k+B
and l+.

For this example the result to be proved is that

Graph (a)+ Graph (b) = Graph (c)+ Graph (d). (14.43)
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For the purposes of this exercise, you can assume the solid lines correspond to scalar
fields, with the hadron being a color singlet that couples to the quark fields by a
φ3-type vertex. You should use Feynman gauge for the gluon.

14.2 Does the result in problem 14.1 continue to hold in a “physical gauge” like axial,
light-cone or Coulomb gauge?

14.3 (***) Find and prove any extensions to the Ward-identity arguments of Ch. 11 that
are needed to apply to the processes treated in this chapter.

14.4 (*) Repeat the calculations of Sec. 13.14, but for TMD parton densities instead of
TMD fragmentation functions.



15

Introduction to more advanced topics

This book has covered many of the primary topics in perturbative QCD, with a focus
on certain inclusive processes for which particularly systematic treatments are available.
It should provide the reader with a sound conceptual framework for further study and
research. However, hadronic interactions form a vast subject, and there is an enormous
literature where perturbatively based methods have been applied.

This chapter gives a summary of a selection of important areas of further application of
perturbative QCD.

One common theme, a prerequisite for actual perturbative calculations, is that the reac-
tions have in some sense a controlling hard subprocess, occurring on a short distance scale,
i.e., a distance scale significantly less than 1 fm, or, more-or-less equivalently, a momentum
transfer significantly larger than the typical hadronic scale of a few hundred MeV.

Another recurring idea, perhaps the closest to a unifying motif, is the idea that one
should try to separate (factor) phenomena on different scales of distance and momentum.
This refers not just to scales of different virtuality, but also to a separation of phenomena at
widely different rapidities. A characteristic here is that almost scattering processes examined
in high-energy physics are ultra-relativistic. Thus time dilation and Lorentz contraction of
fast-moving hadrons by themselves provide a wide range of distance scales. For example
at the Tevatron collider we have proton and antiproton beams of energy almost 1 TeV. This
allows the measurement of hard processes with momentum scales of several hundred GeV.
Therefore distances as small as 10−3 fm can be probed. Now the intrinsic distance scale
of phenomena in a proton is about 1 fm in its rest frame. So time dilation of the beams
indicates that there are phenomena relevant to the collisions occurring on the much larger
scale of 103 fm. Thus relevant distance scales span 6 orders of magnitude (the square of
E/M). Such a big ratio allows for many simplifications and useful approximations, and not
just those that directly impinge on the applicability of perturbative methods.

This train of thought leads to one common (but not universal) theme, that of light-front
methods. Most systematically, one can represent the states of fast-moving hadronic systems
in terms of their light-front wave functions. As we have seen throughout this book, one
cannot take the elementary formulations of light-front quantization etc. literally; many of
the basic ideas must be considerably distorted to be applied correctly in QCD. Nevertheless
this area gives concepts and methodology that underlie much of the work.

The significance of light-front methods goes beyond that of perturbative applications
to relatively short-distance phenomena. There is a close relation to phenomena in soft
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hadronic physics (Gribov, 1973, 2009). This is an area often characterized as the domain
of Regge theory. Although Regge theory was extremely influential in the pre-QCD era,
and although one can still see its effects on current research, there is not yet a properly
established connection with QCD from first principles. This is an area that deserves more
investigation now that QCD is a very mature subject.

Many of the topics listed in this chapter concern some of the most difficult parts of
QCD. It is not surprising therefore that their justification from fundamental principles is
not always sufficient. It is generally difficult for an outsider, even for one experienced
in perturbative QCD, to acquire an full understanding of these areas from the published
literature. Whether or not scepticism in any particular case is justified, I will leave to the
future to decide.

15.1 Light-front wave functions and exclusive scattering at
large momentum transfer

One natural application of hard-scattering methods is to elastic scattering at large momen-
tum transfer. The classic early reference is Lepage and Brodsky (1980). Standard examples
include elastic hadron-hadron scattering HA +HB → HC +HD at wide angle, and elec-
tromagnetic form factors of hadrons at large momentum transfer.

The standard methods of region analysis apply: Sec. 5.9.3. An obvious kind of region
was shown in Fig. 5.34(a), where essentially the partonic content of each external hadron
collapses to a small configuration at a single hard scattering. The wide-angle hadronic
scattering is then controlled by a kinematically equivalent scattering of valence quarks from
each hadron. If we follow the same logic as for inclusive scattering, the non-perturbative
factors are light-front wave functions (with an integral over transverse momentum). They
are obtained from matrix elements of light-front annihilation operators between a single
hadron and the vacuum, e.g.,

〈0|bk1,λ1bk2,λ2bk3,λ3 |P 〉 , (15.1)

where the operators are as in Secs. 6.6 and 6.7. One expects the usual QCD complications,
of course.

But because the hard-scattering subgraph has more external partons than in inclusive
scattering, the cross sections fall with a higher power of the hard scale Q than corresponding
inclusive cross sections. So it is hard to probe very large Q experimentally. In addition, this
strong decrease allows the possibility of other regions contributing with either the same
power law or a less-suppressed power. See Sec. 5.9.3 for a brief discussion of one example,
the Landshoff process. See the citations to Lepage and Brodsky (1980) and Landshoff
(1974) for subsequent work.

15.2 Exclusive diffraction: generalized parton densities

A related topic concerns exclusive processes in large-Q inelastic lepton-hadron scattering.
We examined the leading regions for such processes in Sec. 5.3.6. Standard examples
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presented there were deeply virtual Compton scattering, double deeply virtual Compton
scattering, and exclusive production of mesons. The hadronic parts of these reactions are
γ ∗(q)+ P → γ + P , γ ∗(q)+ P → γ ∗(q ′)+ P , and γ ∗ + P → M + P , respectively.

Experimentally, these processes are often investigated at small Bjorken x (where the
cross section is largest), so they also take on the characteristics of diffractive scattering.

In the normal case that the momentum transfer from the target-hadron end is small,
the appropriate factorization property uses what are called “generalized parton densities”
(GPDs). These are defined exactly like parton densities, except that the hadronic matrix
element is off-diagonal, (6.90). See Sec. 11.8 for a further discussion. In exclusive produc-
tion of mesons, a light-front wave function of the meson is needed, the same quantity that
appears in elastic scattering of the meson. See Diehl (2003) for a good review.

15.3 Small-x, BFKL, perturbative Regge physics

In DIS much work deals with the region of small x. There is considerable experimental
data from the HERA collider, where the high center-of-mass energy allowed ep collisions
to go to small x while maintaining Q in a perturbative region, e.g., Q of a few GeV with x

as small as 10−5. The standard treatment of DIS involves the limit of large Q at fixed x, so
the small-x regime introduces another large ratio in addition to the ratio of the hard scale
to the hadron mass, Q/M .

In the small-x region, the ideas of Regge theory become relevant. Regge theory concerns
asymptotic behavior where s is large and momentum transfer is fixed. This includes the
total hadronic cross section at large s.

Now DIS structure functions correspond to a cross section for scattering of a virtual
photon on a hadron: γ ∗P → X. At small x, the mass of both the photon and the hadron
are much less than their center-of-mass energy, which is Q

√
(1− x)/x. When Q is in

a perturbative region, one can hope that Regge theory can be usefully approximated by
perturbative methods. Investigations of a Regge limit in perturbation theory for non-abelian
gauge theories led to the equation of Balitsky, Fadin, Kuraev, and Lipatov (BFKL) (Fadin,
Kuraev, and Lipatov, 1975; Balitsky and Lipatov, 1978). For a review, see Lipatov (1997).

This and a number of closely allied developments have had many applications, in
situations where a Regge limit is appropriate. If the DGLAP equation is regarded as
governing the Q dependence of DIS structure functions and parton densities, then the
BFKL equation governs the x dependence, at small x.

For partonic scattering at high energy and small angle, the BFKL equation gives a ladder
structure that is very similar to the multiperipheral model we mentioned in Sec. 14.3.
However, the actual Feynman graphs that give the leading behavior are gauge dependent
and need not be actual ladder graphs. Primarily the derivations use the leading-logarithm
method, and therefore concern the situation where the gluons are strongly ordered in
rapidity. But important work concerns NLO corrections.

There is interesting work by Balitsky (e.g., Balitsky, 1999), who relates the BFKL
equation to the evolution of Wilson-line matrix elements with respect to the rapidity of the
Wilson-line directions; thus his work is related to our treatment of TMD functions in Ch. 13.
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One characteristic of the BFKL equation is that it implies that its approximation to the
pomeron has an intercept well above unity. The pomeron was originally characterized as
the Regge exchange that gives the highest power of energy in elastic hadronic scattering.
Its intercept α(0) gives a total hadron-hadron cross section proportional to sα(0)−1. But the
Froissart bound requires that the cross section rise at most like ln2 s. Phenomenologically
hadronic total cross sections do rise slowly. Thus something with an intercept far above
unity cannot be the true pomeron. However, there does appear to be a transition in DIS
between soft pomeron behavior at low Q, with approximately constant γ ∗p cross sections,
and a “hard pomeron” behavior at higher Q, with a substantial rise with energy (e.g., H1
Collaboration, 2010)

Related issues concern the CCFM equation (Ciafaloni, 1988; Catani, Fiorani, and March-
esini, 1990a, b; Marchesini, 1995) for parton densities, etc. at small x.

15.4 Resummation, etc.

The basic method of using perturbation theory in QCD for a quantity with a large momentum
scale Q is to use the RG to set the renormalization mass μ of order Q. This removes large
logarithms of Q. But in many cases there are other parameters which can also give large
logarithms. One way of viewing the problem is to observe that the quantity being calculated
depends on multiple momentum scales rather than just Q.

One example is the hard-scattering coefficient in ordinary “collinear” factorization for
the Drell-Yan process when qT � Q. Among many other examples are processes at small
Bjorken x (Sec. 15.3), and at large x (Sec. 15.8 below).

The most fundamental method of dealing with such situations is to formulate an appro-
priately improved factorization theorem, such as we did using TMD factorization for the
Drell-Yan cross section in Ch. 14. After that the various perturbative coefficients are all
single-scale quantities.

Another very common method is that of resummation. There one analyzes the source
of the large logarithms. It is often not too hard to determine the leading logarithms to
all orders of perturbation theory, even without a more complete treatment. This avoids
exact Feynman-graph calculations at very high order. Then one sums the large higher-order
corrections.

The vast literature on this subject can be sampled by searching for papers with titles
containing “resummation” or “resummed”.

Resummation is at its most useful when the logarithms are not too large, since it can
provide an efficient way to improve the accuracy of perturbative calculations. One important
example is in the use of resummed calculations of jet shapes (Gehrmann, Luisoni, and
Stenzel, 2008) in e+e− annihilation to obtain accurate estimates of the strong coupling
(Bethke et al., 2009).

The method gets much harder to justify when the logarithms are large. For example,
in the Drell-Yan process at small transverse momentum, the errors in the approximations
giving collinear factorization include terms that are a power of M/qT. When the transverse
momentum is of order a hadronic mass, the derivation does not apply. TMD factorization
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solves this problem, with the outcome that more non-perturbative information is needed
in the transverse momentum distributions of partons and of soft-gluon emission. In the
intermediate region M � qT � Q, the full TMD factorization property can be used to
derive a resummation formula. In the version of TMD factorization given in (13.81), a
resummation result can be obtained by omitting the non-perturbative factors in the fourth
and fifth lines.

15.5 Methods for efficient high-order calculations

In many realistic applications of perturbative QCD, calculations of high-order graphs are
needed. For the LHC, calculations of parton-parton scattering with many partons in the
final state are used, preferably at one-loop order. Examples of the calculations are in Berger
et al. (2009).

It is readily evident that such calculations are very complex, particularly when performed
in the most direct way from the standard Feynman rules. A 3-gluon vertex has 6 terms,
so that a graph with n such vertices has 6n terms. Straightforward calculations by hand
become very lengthy or impractical. Of course, intensive use of computers helps. It also
helps if calculations are restricted to massless on-shell amplitudes as much as possible.

But it is also observed that the final results of a calculation are often much simpler than
intermediate results, and certainly much simpler than one expects from the complications in
individual graphs. This suggests that there are much better methods. See Bern, Dixon, and
Kosower (2007) for a review of much of the work in this direction, with further references.

15.6 Monte-Carlo event generators

The analysis of the regions for Feynman graphs for processes with a hard scattering
gives much more information on the detailed structure of the final state than we used in
factorization theorems for inclusive cross sections. A contrasting approach is provided by
Monte-Carlo event generators, e.g., PYTHIA (Sjostrand, Mrenna, and Skands, 2006, 2008)
and HERWIG (Bahr et al., 2008). These are computer programs which simulate actual
collisions. That is, they generate complete events with a distribution that is intended to be
a useful approximation to the distribution of events in actual collisions.

Modern collider experiments generate events with many final-state particles, and the
detectors are sensitive to most of the final state. The acceptance and efficiency of the detec-
tors is quite complicated, and the signatures of many interesting signals (e.g., the Higgs
particle) involve properties of whole groups of final-state particles. Therefore understand-
ing the nature of a physics signal is greatly assisted by having a realistic simulation of
the complete final state. Monte-Carlo event generators are therefore an essential tool in
the analysis of experimental data in high-energy physics, not to mention the planning of
future experiments.

Event generators also evade another problem. This is that the number of Feynman graphs
rises with the order N of the Feynman graph roughly like N !. The difficulty of comput-
ing each single graph also rises with the order. Although modern methods ameliorate this
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somewhat, there is a formidable computational problem in directly computing production
of final states with many particles. The situation is worse in QCD because straightfor-
ward perturbation theory is not useful without interesting reorganizations: factorization,
renormalization group, etc. A Monte-Carlo event generator provides an approximation to
the production of N particles that uses computational resources linear in N , instead of its
factorial, thereby giving a dramatic improvement over unassisted perturbation theory.

The price is, of course, the approximation and the difficulty of justifying it.
To understand how the methods used by the event generators arise, consider our treatment

in Sec. 8.9 of factorization in a non-gauge theory. There the dominant structures were
generalized ladder graphs. We can extend these ideas to analyze the structure of the jets in
the final state, obtaining a structure of ladders within ladders. If we take, as is appropriate, a
fixed order for each rung, we have a small number of graphs in each order, and the number
of rungs is proportional to N . The structure readily maps to the linear-in-N structure in an
event generator. The use of Monte-Carlo methods, i.e., probabilistic methods, is the most
sensible for numerical calculations of high-dimensional integrals and maps perfectly onto
how data appears in a scattering experiments.

In QCD, the ladder structure only arises after a sum implemented by Ward identities
from graphs with non-local attachments of gluons. The kinematics of final states, with soft
gluons filling in rapidity gaps, is also much more complicated than in a non-gauge theory.

The theory of the event generators (see Sjostrand, Mrenna, and Skands, 2006; Bahr
et al., 2008; Sjostrand, 2009) is based on the ideas used in ordinary factorization theorems
for inclusive processes. But a full justification, which I am not sure really exists, needs to
go much further. One symptom of this is in the kinematic approximations used in deriving
factorization for inclusive processes. At various points we change the kinematics of partons
going into the final state from their actual values, but in such a way that the inclusive cross
section is not affected (at leading power). But this is not adequate for an event generator
where a complete description of the final state is to be given. An event that does not obey
conservation of 4-momentum is not useful in this context. Prescriptions are needed to
correct this (Bengtsson and Sjöstrand, 1988), and these do not fully match how inclusive
factorization theorems are derived.

Furthermore, in hadron-hadron collisions, generating complete final states goes beyond
a situation in which factorization in its basic form is valid. Event generators incorporate
modelling of the soft final state and this can be regarded as a model of the spectator-spectator
interactions that we examined (in the context of another very simple and naive model) in
Sec. 14.3.

There has naturally been much work on Monte-Carlo event generators that I cannot
review here. They represent an interesting way of combining the results of perturbative
calculations with other elements including modelling of non-perturbative physics to give a
very useful approximation to real QCD.

15.7 Heavy quarks

At various points in this book, I have mentioned the issues that arise when heavy quark
masses are not small compared with the hard-scattering scale Q. Many situations can be
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dealt with by minor modifications of the standard factorization method; see for example
Krämer, Olness, and Soper (2000).

But there are other situations that require different techniques. One of the most important
is the analysis of the decays of hadrons containing heavy quark constituents, notably B

mesons. This is the domain of heavy-quark effective theory (HQET). An account of HQET
is found in Manohar and Wise (2000).

15.8 Large x

Limitations on the validity of a basic factorization theorem often arise near kinematic limits.
An important case is DIS at x → 1. There the spectator part of a typical leading region
becomes soft instead of collinear, and therefore indicates that a change in the analysis
is needed. Essentially the same considerations apply to any other inclusive process in a
kinematic region where the initiating partons of a conventional hard scattering must have
x → 1. Similar issues arise in fragmentation as z→ 1. Because of the restricted kinematics
of the spectator system, more accurate treatment of the kinematics is needed than in the
conventional factorization.

Cross sections decrease quite rapidly as x → 1 because parton densities decrease roughly
as (1− x)3 or a higher power. This decrease affects the accuracy of conventional factor-
ization methods. One indication of this is in the NLO correction (9.54) for DIS, where
the plus distribution implements a cancellation between real and virtual gluon emission.
Where the parton densities decrease rapidly this cancellation becomes inaccurate, giving
large logarithms of 1− x.

Recent work can be traced from Almeida, Sterman, and Vogelsang (2009).

15.9 Soft-collinear effective theory (SCET)

In recent years a new approach to perturbative QCD has been developed under the name
soft-collinear effective theory (SCET) (Bauer et al., 2001; Bauer and Stewart, 2001). See
Fleming (2009) for a recent overview. Historically SCET arose as a generalization of
heavy-quark effective theory; see Sec. 15.7.

The overall philosophy of SCET is like that of the Wilsonian renormalization group.
This is to integrate out certain ranges of momentum modes for the fields of QCD and to
replace them with effective fields. In SCET momentum space is divided into many bins
in each of which the integrating-out is to be done. A problem that needs to be addressed
in any such method is how to deal with a momentum that lies just outside a boundary of
an integrated-out region.1 There is no small parameter to expand in, unlike the case of
momenta far from the boundary.

In the Wilsonian RG this problem is overcome by using an infinite set of operators.
But this rather obscures the underlying simplicity of the situation, where one has a simple
factorization of coefficients times a limited set of operators.

1 Compare the discussion in the first few paragraphs of Sec. 13.12.
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In reality, the integrating-out in SCET is performed by integrating over all momenta,
with subtractions to enforce the region conditions. This is similar to what was done in this
book in Ch. 10. However, I have not been able to penetrate the SCET literature to properly
understand its rationale. I just refer the reader to the literature cited above.

15.10 Higher twist: power corrections

In deriving factorization we made approximations that used the leading power of an expan-
sion in small variables like masses relative to a hard scale Q. It is natural to ask what can
be done with non-leading powers.

The basic techniques do apply to non-leading powers. In fact, the earliest of the fac-
torization theorems, the operator product expansion (OPE), does treat all powers, leading
and non-leading, in a uniform formalism. The OPE (Collins, 1984, ch. 10) expresses a
suitable matrix element in a limit of large Euclidean momentum q as a sum of q-dependent
coefficients times q-independent operator matrix elements, e.g.,∫

d4x eiq·x 〈P |j (x)j (0)|P 〉 =
∑

i

Ci(q) 〈P |Oi |P 〉 . (15.2)

The power law for the q dependence is controlled by the dimension of the operators.2

When the OPE is applied to moments of DIS structure functions, the normal leading
power corresponds to operators Oi that obey

dimension− spin = 2. (15.3)

This quantity is called twist, and non-leading powers have a higher value of twist. It has
therefore become a standard jargon to use “higher twist” to refer to any power-suppressed
correction. Leading-power factorization for inclusive processes is then labeled “twist-2”;
integer moments of integrated parton densities are exactly matrix elements of twist-2
operators.

For work on higher-twist corrections to factorization see Qiu and Sterman (1991b).
But the vast majority of applications avoid the use of higher-twist corrections, trying

to stay in kinematic regions where the leading-power formalism is sufficient. There are
several reasons.

One is that the relevant generalizations of parton densities use multiparton operators,
and these depend on more than one fractional momentum variable. The more non-leading
the power, the larger the number of variables that is needed. But it is hard to extract such
a multivariable function from data. This contrasts with the twist-2 case, where, in the
parton-model approximation, DIS structure functions are simple linear combinations of
quark densities.

One can only do better if one is in a special situation where the non-leading power terms
are particularly simple.

2 Here I ignore the effects of anomalous dimensions.
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A second reason for not using power corrections is a fundamental limitation on the
accuracy of perturbative calculations in QCD. Consider the perturbation series for an IR-
safe quantity

F =
∞∑

n=0

cnαs(Q)n, (15.4)

with purely numeric coefficients. Suppose, as is the general expectation, that this is an
asymptotic series with large-order behavior

cnα
n
s ∼ (anαs)

n as n→∞. (15.5)

We estimate the error in a truncated perturbative expansion by the first term omitted, as is
appropriate for an asymptotic series. Then the minimum error in a perturbative calculation
is the smallest term in the series. So, (15.5) implies that the minimum error is from the term
with

n ∝ 1

aαs(Q)
. (15.6)

Then the minimum error itself is roughly

exp

(
−constant

αs(Q)

)
∼ exp

(−constant ln Q2
) = O(Q−p), (15.7)

for some positive constant p. Any higher-twist correction with a more negative power of Q

is smaller than the minimum error in the perturbative calculation of the leading-twist term.
It is therefore phenomenologically useless.

Another severe complication arises for higher-twist corrections in hadron-hadron col-
lisions. Factorization has independent parton densities for each beam hadron. To obtain
this independence, we needed a cancellation of interactions between the two hadrons. The
proof of the cancellation, Sec. 14.4, relied on causality in the ultra-relativistic limit. In a
non-relativistic situation the active partons could get correlated before the hard scattering.
Such effects generally contribute to higher-twist corrections. Therefore initial-state interac-
tions require that the non-perturbative functions in corrections of sufficiently higher twist
are properties of the whole two-hadron state, rather than being multiparton correlation
functions in individual hadrons.

This issue does not affect terms suppressed by 1/Q and 1/Q2 relative to the leading-
power terms (Qiu and Sterman, 1991a, b). So twist-3 and twist-4 terms can be investigated
in a generalized factorization framework.



Appendix A

Notations, conventions, standard mathematical results

In this appendix, I have collected the definitions of notations and conventions that I use. In
addition, I have collected some standard numerical results and formulae that are frequently used
in practical QCD calculations. For normalization conventions and the like, I generally follow
the conventions of the Particle Data Group (PDG) (Amsler et al., 2008).

In some cases it may be quite difficult to discover some of these formulae in the literature,
and the reader wishing to check them may find it easier to rederive them than do a literature
search.

A.1 General notations

1. I use
def= to denote the definition of a symbol, as in Q2 def= −(l − l′)2.

2. I use
prelim= to indicate a preliminary early version of a definition, that is to be corrected later.

Quantity
prelim= preliminary candidate definition. (A.1)

3. I use
?= to indicate an incorrect result: FL

?= 0. Typically, this represents a result true only in
some simplified situation.

4. I use [A,B]+, with a subscript +, to denote an anticommutator: [A,B]+
def= AB + BA.

5. A hat over a symbol, e.g., k̂, generally indicates that some parton-type approximator has
been applied. It is also used to denote a hard scattering or a kinematic variable at a partonic
level.

6. Generally a tilde, as in f̃ , indicates a Mellin or a Fourier transform. It has some other rarer
uses, e.g., the wave function renormalization Z̃ for the Faddeev-Popov ghost field.

7. In Feynman graphs, the normal association of line types is:

quark or lepton

gluon

Faddeev-Popov ghost

Wilson line

scalar

photon, W, Z

A.2 Units, and conversion factors

1. Generally I use units with h̄ = c = ε0 = 1, with energy in GeV. To convert to standard units,
factors of h̄, c, etc. need to be inserted according to the demands of dimensional analysis,
after which the following conversion factors are useful.

2. h̄c = 0.197 327 0 GeV fm.
3. (h̄c)2 = 0.389 379 3 GeV2 mbarn, where 1 barn = 10−28 m2.

582



A.3 Acronyms and abbreviations 583

4. The fine-structure constant is α = e2/(4π ) � 1/137.036, with e being the size of the charge
of the electron. In SI units, α = e2/(4πh̄cε0).

A.3 Acronyms and abbreviations

Common acronyms and abbreviations are:

1PI one-particle irreducible
2PI two-particle irreducible
ACOT Aivazis-Collins-Olness-Tung
BFKL Balitsky-Fadin-Kuraev-Lipatov
BJL Bjorken-Johnson-Low
BNL Brookhaven National Laboratory
BRST Becchi-Rouet-Stora-Tyutin
CCFM Catani-Ciafaloni-Fiorani-Marchesini
CERN European Organization for Nuclear Research
CKM Cabibbo-Kobayashi-Maskawa
CM center-of-mass
CS Collins-Soper
CSS Collins-Soper-Sterman
CWZ Collins-Wilczek-Zee
DDVCS double deeply virtual Compton scattering
DESY Deutsches Elektronen-Synchrotron
DGLAP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
DIS deeply inelastic scattering
DVCS deeply virtual Compton scattering
DY Drell-Yan
ELO extended leading order
ENLO extended next-to-leading order
FNAL Fermi National Accelerator Laboratory
GPD generalized parton density
HERA Hadron-Electron Ring Accelerator (at DESY)
HQET heavy-quark effective theory
IR infra-red
KLN Kinoshita-Lee-Nauenberg
LEET low-energy effective theory
LEP Large Electron Positron collider (at CERN)
LHC Large Hadron Collider (at CERN)
l.h.s. left-hand side (of equation)
LLA leading-logarithm approximation
LO leading order
LSZ Lehmann-Symanzik-Zimmermann
MNS Maki-Nakagawa-Sakata
MS modified minimal subtraction (renormalization scheme)
NLO next-to-leading order
NNLO next-to-next-to-leading order
OPE operator product expansion
pdf parton distribution function (or parton density function)
PDG Particle Data Group
pQCD perturbative QCD
p.s.c. power-suppressed correction
PSS pinch-singular surface
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QCD quantum chromodynamics
QED quantum electrodynamics
QFT quantum field theory
RG renormalization group
RGE renormalization-group equation
RHIC Relativistic Heavy Ion Collider (at BNL)
r.h.s. right-hand side (of equation)
SCET soft-collinear effective theory
SIDIS semi-inclusive deeply inelastic scattering
SLAC Stanford Linear Accelerator Center
SM Standard Model
TMD transverse momentum dependent
Tr trace
UV ultra-violet
VEV vacuum expectation value

A.4 Vectors, metric, etc.

1. 3-vectors are written in boldface: x.
2. In ordinary coordinates, Lorentz 4-vectors are written as, e.g., xμ = (t, x, y, z) = (t, x),

with a right-handed coordinate system.
3. The metric is gμν = diag(1,−1,−1,−1).
4. The fully antisymmetric tensor εκλμν is normalized to ε0123 = 1. With raised indices it has

the opposite sign: ε0123 = −1.
5. Light-front coordinates (App. B) are defined by x± = (t ± z)/

√
2. A vector is written

xμ = (x+, x−, xT).
6. The 2-dimensional antisymmetric tensor εij obeys ε12 = ε12 = 1.

7. Rapidity for a 4-momentum is defined by y
def= 1

2 ln

∣∣∣∣p+p−

∣∣∣∣.
8. I make a clear distinction between contravariant vectors, with upper indices, and covariant

vectors, with lower indices. See App. B for further details.
9. An on-shell momentum pμ = (E, p) for a particle of mass m obeys p2 = m2, and so

E = E p
def=
√

p2 +m2.
10. Hence for an on-shell particle

p± = e±y

√
(p2

T +m2)/2, (A.2)

when the transverse momentum is pT = (p1, p2).

A.5 Renormalization group (RG)

1. I consistently write renormalization group equations (RGEs) in terms of a derivative with
respect to ln μ.

2. Then the anomalous dimension γG of a quantity G is defined as

γG = −d ln G

d ln μ
. (A.3)

Note the minus sign. This corresponds to the natural use of the term “anomalous dimension”
where there is a fixed point in the coupling.

3. However, certain quantities do not have the minus sign that might otherwise be expected,
notably γm in (3.48), β in (3.44) etc., and the DGLAP kernels in (8.30).
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4. Furthermore, the definitions of β and the DGLAP kernels are conventionally made in terms
of derivatives with respect to ln μ2, so our definitions in terms of d/d ln μ acquire factors of
half.

A.6 Lorentz, vector, color, etc. sub- and superscripts

Generally, the symbols for indices of various kinds are taken from different ranges of letters:

1. Lorentz: μ, etc.
2. 3-vector: i, j , etc.
3. Dirac: ρ, etc.
4. Color, in adjoint representation: α, etc.
5. Color, in fundamental representation: a, etc.
6. Flavor, in adjoint representation: A, etc.
7. Flavor, in fundamental representation: f , etc.
8. Symbols for momenta tend to be taken from the list k, l, p, q, etc.
9. Symbols for coordinates tend to be from the end of the roman alphabet: x, y, z.

Note that there are so many symbols needed that it is not always possible to be consistent. Also
symbols may be overloaded: e.g., a common sub- or superscript index (notably e, i, ρ, and δ)
may have a different, standardized meaning when not used as a sub- or superscript.

A.7 Polarization and spin

Note: there is no agreement in the literature on the normalization of quantities defined in this
section.

1. The Pauli-Lubański (Lubański, 1942a, b) spin vector is the operator

Wμ
def= 1

2
εμαβγ J αβP γ , (A.4)

where P γ is the momentum operator, and J αβ are the generators of the Lorentz group,
normalized to obey commutation relations

[Jμν, J αβ ] = i
(−gμαJ νβ + gναJμβ + gμβJ να − gνβJμα

)
, (A.5)

[Jμν, P α] = i
(−gμαP ν + gναP μ

)
, (A.6)

[P α, P β ] = 0. (A.7)

2. The most general state – pure or mixed – of a particle of momentum p can be written in
terms of a spin density matrix ραα′ , with α and α′ being labels for the possible helicities of
the particle.1 The expectation value of an operator in such a state is

〈p, ρ| op |p, ρ〉 def=
∑
α,α′

ρα,α′ 〈p, α′| op |p, α〉 . (A.8)

The basis states |p, α〉 have definite momentum p and helicity α. The density matrix ρ is
Hermitian, it has trace unity, and all its eigenvalues are non-negative. An unpolarized state
of a particle of spin s has ρα,α′ = δα,α′/(2s + 1).

3. Helicity is a particle’s spin angular momentum projected on its direction of motion. Thus for
a spin- 1

2 particle its possible values are ± 1
2 .

1 Another basis could be chosen for the spin states, but the helicity basis is most convenient for our purposes.



586 Appendix A: Notations, conventions, standard mathematical results

4. The helicity basis states are simultaneous eigenvectors of the momentum operators and a
suitable projection of the Pauli-Lubański vector.

5. To specify a general spin state of a spin- 1
2 particle, it is also possible to use a Bloch vector

b, which is a real-valued 3-vector obeying |b| ≤ 1. The correspondence to a 2× 2 density
matrix is

ρ = 1

2
(1+ b · σ ). (A.9)

6. For a spin- 1
2 particle moving in the +z direction, we write the Bloch vector as

b = (bT, λ). (A.10)

Here λ is twice the average helicity of a state, and bT is twice the average transverse spin.
We call these normalized helicity and transverse spin; their maximum values are unity.

7. The spin vector Sμ of a single-particle state is twice the expectation value of the Pauli-
Lubański vector:

Sμ = 2 〈ψ(p), ρ Wμ ψ(p), ρ〉 . (A.11)

The factor of 2 is to agree with a standard normalization (Amsler et al., 2008) of Sμ. Here
|ψ(p), ρ〉 denotes a normalized state whose momentum is closely centered on p, and whose
helicity density matrix is ρ.

8. In the rest frame of a spin- 1
2 particle, the Bloch vector corresponds exactly to the Bloch

vector concept in non-relativistic spin physics, and Sμ = M(0, b). Thus Sμ is a Lorentz-
covariant generalization of the Bloch vector.

9. If the particle is moving in the z direction with 4-momentum p = (p0, 0, 0, pz), the spin
and the Bloch vectors are related by

S = (
S0, Sx, Sy, Sz

) = (
λpz sign(pz),Mbx

T,Mb
y
T, λp0 sign(pz)

)
. (A.12)

The factors of sign pz show that the (bT, λ) representation is not ideal for a non-relativistic
particle. But the factor of M with the transverse components shows that the spin vector
cannot correctly represent the general spin state of a massless spin- 1

2 particle.
10. For a massive spin- 1

2 particle of definite momentum p, the most general spin state is
determined by the spin vector Sμ. For a spin- 1

2 particle of mass M , the spin vector obeys
(a) S · p = 0.
(b) For a general state 0 ≥ S · S ≥ −M2.
(c) For a pure state S · S = −M2.
The helicity density matrix can be deduced from the spin vector S, and therefore we also
write the matrix element in (A.8) as

〈p, S| op |p, S〉 = 〈p, ρ(S)| op |p, ρ(S)〉 . (A.13)

A.8 Structure functions

Definitions of structure functions for various processes are as follows:

1. F1, F2, g1, and g2 for electromagnetic DIS, in (2.20).
2. For unpolarized weak interaction DIS, in (7.3).
3. For one-particle-inclusive e+e− annihilation, in (12.5).
4. For two-particle-inclusive e+e− annihilation, in (13.9).
5. For Drell-Yan, see Lam and Tung (1978); Mirkes (1992); Ralston and Soper (1979); Dono-

hue and Gottlieb (1981).
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A.9 States, cross sections, integrals over particle momentum

1. The normalization of single particle states is

δ p p′
def= 〈

p′ p
〉 = (2π )32E p δ(3)( p− p′)

= (2π )32p+ δ(p+ − p′+) δ(2)( pT − p′T)

= (2π )32 δ(y − y ′) δ(2)( pT − p′T). (A.14)

In the last two lines, light-front coordinates and rapidity were used, as defined in Sec. A.4.
2. The Lorentz-invariant integral over particle momentum is

∑
p

. . .
def=
∫

d3 p
(2π )32E p

. . . =
∫

dp+ d2 pT

2p+(2π )3
. . . =

∫
dy d2 pT

2(2π )3
. . . (A.15)

Notice that the formula with ordinary Cartesian coordinates is explicitly dependent on the
particle mass, in E p, but the formulae with light-front coordinates or rapidity are not.

3. The differential cross section for a 2→ n process with incoming momenta p1 and p2, and
outgoing momenta q1, . . . , qn is

dσ = (2π )4δ(4)

(
p1 + p2 −

∑
j

qj

) n∏
j=1

d3qj

(2π )32Eqj

∣∣M( p1, p2; q1, . . . , qn)
∣∣2

4
√

(p1 · p2)2 −m2
1m

2
2

. (A.16)

The matrix element M is normalized so that it corresponds to an amputated, on-shell, con-
nected Green function (supplemented by residue factors from the LSZ reduction formula
beyond tree approximation), with the overall (2π )4δ(4)(p1 + p2 −

∑
j qj ) factor for momen-

tum conservation removed. See Sterman (1993) for details.
4. The integral over “final-state phase space” is defined by∫

dfsps . . . =
n∏

j=1

∫
d3qj

(2π )32Eqj

(2π )4δ(4)

(
p1 + p2 −

∑
j

qj

)
. . . (A.17)

A.10 Dirac, or gamma, matrices

Here I summarize results on Dirac matrices. They can be gleaned from a standard QFT textbook.
When there are competing conventions, I normally follow Sterman (1993).

1. The anticommutator is [γ μ, γ ν]+ = 2gμνI , where I is a unit matrix.
2. The hermiticity relation is (γ μ)† = γμ.

3. γ5
def= iγ 0γ 1γ 2γ 3 = 1

4! iγ
κγ λγ μγ νεκλμν , where εκλμν is the totally antisymmetric tensor

obeying ε0123 = 1.

4. In the antisymmetric combination σμν def= i

2
[γ μ, γ ν] only 6 cases are independent, in 4

space-time dimensions.
5. When the normal space-time dimension is 4, the dimensionally regulated Dirac matrices (in

n = 4− 2ε space-time dimensions) are normalized to have Tr I = 4 for all n.

6. The contraction of γ μ and a vector is written /v
def= γ μvμ.

7. The Dirac conjugate of a matrix is defined by �
def= γ 0�†γ 0. The basic matrices obey γ μ = γ μ

and γ5 = −γ5.
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8. Useful identities:

Tr odd number of γ μs = 0, (A.18)

Tr γ μγ ν = 4gμν, (A.19)

Tr γ5γ
κγ λγ μγ ν = 4iεκλμν = −4iεκλμν, (A.20)

γ μγμ = (4− 2ε)I, (A.21)

γ μγ νγμ = −(2− 2ε)γ ν. (A.22)

9. In 4 space-time dimensions, Dirac matrices are 4× 4, and a 16-dimensional basis for them
is given by 1, γ μ, σμν , γ μγ5, γ5.

10. Thus a general 4× 4 matrix M can be written as

� = S + γ5P + γμV μ + γμγ5A
μ + 1

2
σμνT

μν, (A.23)

where we assume we are in 4 space-time dimensions. (Otherwise generalization is needed.)
If � obeys the normal Lorentz-transformation properties of a matrix on Dirac spinor space,
then the coefficients S, P , V μ, Aμ, and T μν have respectively the transformation rules of:
scalar, pseudo-scalar, vector, axial-vector, and second rank antisymmetric tensor. The factor
of 1

2 in the tensor term is introduced because both σμν and T μν are antisymmetric, so that
each independent term appears twice in the sum over μ and ν.

The coefficients can be obtained from � as

S = 1
4 Tr �, P = 1

4 Tr �γ5, V μ = 1
4 Tr �γ μ,

Aμ = 1
4 Tr �γ5γ

μ, T μν = 1
4 Tr �σμν.

(A.24)

11. In cross sections we encounter combinations uū and vv̄ of Dirac spinors for on-shell
particles. An average over independent spin states for a Dirac particle of mass M gives

1
2

∑
spin

uū = 1
2 (/p +M), 1

2

∑
spin

vv̄ = 1
2 (/p −M). (A.25)

For a Dirac particle with non-trivial spin, we have instead

(/p +M) 1
2

(
1+ γ5/S/M

)
, (/p −M) 1

2

(
1+ γ5/S/M

)
, (A.26)

where S is the particle’s spin vector, normalized (Amsler et al., 2008) to a maximum of
−S2 ≤ M2. In the case of a massless particle we use a helicity variable λ and a transverse
spin variable bT, normalized to have a maximum values unity, λ2 + |bT|2 ≤ 1 (Sec. A.7) to
give

1
2 /p

(
1− λγ5 −

∑
j=1,2

γ5γ
jb

j
T

)
for quark, (A.27a)

1
2 /p

(
1+ λγ5 −

∑
j=1,2

γ5γ
jb

j
T

)
for antiquark. (A.27b)

A.11 Group theory

1. For SU(3), the definition of the structure constants fαβγ and the representation matrices in
the fundamental (i.e., triplet) representation tα are the standard ones, with tα = λα/2. Here
λα are the Gell-Mann matrices, as defined in Amsler et al. (2008, p. 338).

2. The commutation relations are [tα, tβ ] = ifαβγ tγ .
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3. fαβγ are totally antisymmetric.
4. Combinations of representation matrices and structure constants:

Tr(tαtβ ) = TF δαβ, (A.28)

tαtα = CF I, (A.29)

fαγ δfβγ δ = CAδαβ, (A.30)

where repeated indices are summed, I is the unit matrix, and the tαs are in the fundamental
representation. Useful values with standard conventions:

Symbol SU(n) SU(3)

TF
1
2

1
2

CF
n2−1

2n
4
3

CA n 3

(A.31)

5. Combinations useful in calculations:

tβ tαtβ = tα (CF − 1
2CA), (A.32)

fδαεfεβφfφγ δ = − 1
2CAfαβγ . (A.33)

A.12 Dimensional regularization and MS: basics

See Collins (1984, Ch. 4) for a systematic mathematical treatment of dimensional regularization.

1. The space-time dimension is n = 4− 2ε.
2. Rotationally symmetric Euclidean integral in d dimensions:∫

dd k f (k2) = πd/2

�(d/2)

∫ ∞
0

dk2
(
k2
)d/2−1

f (k2). (A.34)

This is often used for the transverse dimensions, with d = 2− 2ε.
3. The Lorentz-invariant integral over particle momentum is

∑
p

. . .
def=
∫

d3−2ε p
(2π )3−2ε2E p

. . . (A.35)

4. Decomposition of integration over a spatial 3− 2ε-dimensional variable into integrals over
radius, a polar angle, and an azimuthal angle:∫

d3−2ε k f (k) =
∫ ∞

0
dk k2−2ε

∫ 1

−1
d cos θ (sin θ )−2ε

∫
d�T f (k), (A.36)

where d�T represents an integral over a 1− 2ε-dimensional angle in the transverse dimen-
sions, which would be dφ in a 3-dimensional space, i.e., at ε = 0. The normalization of the
angular integral is ∫

d�T = 2π1−ε

�(1− ε)
. (A.37)

These results can be proved by decomposing k into a z component k cos θ and a 2− 2ε-
dimensional transverse vector, and then using (A.34) to get the normalization of the azimuthal
integral. See Sec. A.14 for the Gamma function.
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5. The normalization of single particle states is〈
p′ p

〉 = (2π )3−2ε2E p δ(3−2ε)( p− p′) = (2π )3−2ε2p+ δ(p+ − p′+) δ(2−2ε)( pT − p′
T).

(A.38)

6. Loop-momentum integrals are ∫
d4−2εk

(2π )4−2ε
. . . (A.39)

7. Momentum-conservation delta functions are

(2π )4−2εδ(4−2ε)(k1 + . . .). (A.40)

8. Dirac matrices are defined to obey Tr I = 4 for all n.
9. MS definition:

(a) The lowest-order bare coupling is defined to be g0 = μεg, with g dimensionless for all n.
(b) Counterterms have a factor Sε for each loop, where

Sε = (4π )ε /�(1− ε). (A.41)

See (3.16) and (3.17) for examples. This definition differs from the more conventional
one, Sε =

(
4πe−γE

)ε � (7.056)ε , but only by terms of order ε2. It can be shown that
differences of order ε2 do not affect the values of ordinary renormalized Green functions
at any order (problem 3.3). However, the definition given here is preferable for MS
renormalization of the collinear factors defined in Chs. 10 and 13.

A.13 Dimensional regularization: standard integrals

1. “Scale-invariant” integrals, i.e., integrals of a power of the integration momentum are zero:∫
dnk(k2)−α = 0. (A.42)

2. Rotationally invariant phase-space integrals for massless particles:
(a) Two bodies:∫ 2∏

i=1

d3−2ε ki

(2π )3−2ε2|ki | (2π )4−2εδ(4−2ε)(q − k1 − k2)f (k1, k2)

= Q−2ε

24−4επ1/2−ε�( 3
2 − ε)

× angular average of f
(

1
2Qn,− 1

2Qn
)
, (A.43)

in the center-of-mass, with Q =
√

q2.
(b) Three bodies:∫ 3∏

i=1

d3−2ε ki

(2π )3−2ε2|ki | (2π )4−2εδ(4−2ε)(q − k1 − k2 − k3) f (k1, k2, k3)

= Q2−4ε

28−6επ5/2−2ε�( 3
2 − ε)�(1− ε)

× ang. avg.
∫ 1

0

3∏
i=1

dyi δ

(
1−

∑
yi

)
(y1y2y3)−ε f (k1, k2, k3). (A.44)
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Here the spatial momenta k1, k2, k3, add up to 0 in the center-of-mass frame, and the
sizes are given by dimensionless variables yi defined by |ki | = (1− yi)Q/2.

3. Integral used in Fourier transformations on transverse momenta:∫
eikT·bT(
k2

T

)α d2−2ε kT =
(

b2
T

4π

)ε+α−1
πα�(1− ε − α)

�(α)
. (A.45)

A proof can be made by converting the kT integral to a Gaussian, by the use of (k2
T)−α =

1

�(α)

∫∞
0 xα−1e−xk2

T dx .

4. For the case that the integrand has one or more powers of ln k2
T, the result is found by

differentiating (A.45) with respect to α.

A.14 Properties of � function

1. Definition:

�(z)
def=
∫ ∞

0
dt t z−1e−t . (A.46)

2. Integer values: �(n+ 1) = n!.
3. �(z+ 1) = z�(z).
4. Expansion about z = 0:

�(z) = 1

z
e−γEz

[
1+ π2

12
z2 +O(z3)

]
, (A.47)

where γE = 0.5772 . . . is the Euler constant.
5. Expansion about z = 1

2 :

�( 1
2 + z) = π1/2e−(γE+ln 4)z

[
1+ π2

4
z2 +O(z3)

]
. (A.48)

6. We often use ∫ 1

0
dx xα−1(1− x)β−1 = �(α)�(β)

�(α + β)
, (A.49)

∫ ∞
0

dx
xα−1

(A+ x)β
= Aα−β �(α)�(β − α)

�(β)
. (A.50)

These and other useful formulae can be found in or deduced from results in Abramowitz and
Stegun (1964). Some commonly used integrals have integrands with factors of logarithms of x,
1− x or A+ x relative to (A.49) or (A.50); these can be found by differentiation with respect
to α or β.

A.15 Plus distributions, etc.

We define the general plus distribution (lnn(1− x)/(1− x))+ by its integral with an arbitrary
smooth test function f (x):∫ 1

0
dx

(
lnn(1− x)

1− x

)
+

f (x)
def=
∫ 1

0
dx

[f (x)− f (1)] lnn(1− x)

1− x
. (A.51)
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When n = 0, and there is a smooth function (e.g., a polynomial) in the numerator, we will also
write ∫ 1

0
dx

A(x)

(1− x)+
f (x)

def=
∫ 1

0
dx

A(x)f (x)− A(1)f (1)

1− x
. (A.52)

In calculations of structure functions with dimensionally regulated divergences, we find
integrals in which plus distributions appear as a limit of regulated integrals. The following
derivation shows both a result that is useful in itself, and a general method. The factor [z/(1− z)]ε

in the integrand arises in the phase-space integral for DIS: Sec. 9.9. The integral is regulated if
ε < 0.∫ 1

0
dz

zε

(1− z)1+ε
f (z) =

∫ 1

0
dz

zεf (z)− f (1)

(1− z)1+ε
+ f (1)

∫ 1

0
dz

1

(1− z)1+ε

=
∫ 1

0
dz

{
f (z)− f (1)

1− z
+ ε

f (z) ln z− [f (z)− f (1)] ln(1− z)

1− z

}

+O(ε2)− f (1)

ε
. (A.53)

The expansion in powers of ε in the second line is allowed because the subtracted integrand is
well behaved as ε → 0.

This can be treated as an expansion of zε/(1− z)1+ε in powers of ε, interpreted in the standard
sense of the limit of a generalized function/distribution:

zε

(1− z)1+ε
= −δ(z− 1)

ε
+ 1

(1− z)+
+ ε

[
ln z

1− z
−
(

ln(1− z)

1− z

)
+

]
+O(ε2). (A.54)

A.16 Feynman parameters

1

AαBβ
= �(α + β)

�(α)�(β)

∫ 1

0
dx

xα−1(1− x)β−1

[Ax + B(1− x)]α+β
. (A.55)

A.17 Orders of magnitude, estimation, etc.

We will frequently need to estimate sizes of Feynman graphs, the sizes of errors in approxima-
tions, etc. A correct use of appropriate mathematical notation keeps the arguments precise and
reliable; I use the definitions given by Knuth (1976). As Knuth points out, it is quite common
to misuse the definitions, and this results in a loss of precision of the arguments.

A.17.1 “Order at most”: big-O

The most commonly used notation is

f (Q) = O
(
g(Q)

)
when Q→∞, (A.56)

which means that there is a constant C such that∣∣∣∣f (Q)

g(Q)

∣∣∣∣ < C for all large enough Q. (A.57)
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It is often useful to replace the limit by some more precise specification of the range of Q (or
whatever other variable is used). An example would be

sin x√
x2 − 1

= O

(
1

x

)
for x ≥ 2. (A.58)

Although this notation is commonly used to indicate that the left-hand side is asymptotically
of the order of magnitude of the right-hand side, this is not actually a correct usage. For this
case Knuth’s � notation should be used: Sec. A.17.2. The big-O notation is most appropriate
when stating error estimates, for example, since the standard definition allows the left-hand side
to have zeros, as in (A.58), or to go to zero relative to the right-hand side, as in

1

x2
= O

(
1

x

)
as x →∞. (A.59)

A.17.2 “Exact order”: �

Power-counting and error estimates are often made using what we often call order-of-magnitude
estimates. We replace an exact quantity by a crude approximation that is valid up to a factor.
For this we use the symbol “�”:

f (Q) = �
(
g(Q)) when Q→∞, (A.60)

which means that there are two positive non-zero constants C1 and C2 such that

C1 <

∣∣∣∣f (Q)

g(Q)

∣∣∣∣ < C2 for all large enough Q. (A.61)

(The use of this definition requires that g(Q) is non-zero for large Q.)
An example of the use of this notation would be if we added 2 to the sin x in (A.58). The

numerator of the fraction now oscillates between 1 and 3, instead of between −1 and 1, so that
we have

2+ sin x√
x2 − 1

= �

(
1

x

)
for x ≥ 2. (A.62)

This is a typical use in estimation of integrals: the right-hand side can be integrated analytically,
the left-hand side at best with difficulty.

We will frequently apply this notation to denominators of Feynman propagators, in which
case it is important that (A.60) also applies to the reciprocal functions. That is, (A.60) implies
that

1

f (Q)
= �

(
1

g(Q)

)
when Q→∞. (A.63)

A.17.3 Little-o

Sometimes we simply wish to state that something becomes arbitrarily much smaller than
something else in a limit, without wishing to say by how much. In that case we use the little-o
notation

f (Q) = o
(
g(Q)

)
when Q→∞, (A.64)

which means simply that

f (Q)

g(Q)
→ 0 when Q→∞. (A.65)
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Unlike the previous cases, it makes no sense to specify a range of Q; only the limit matters.
However, if there is another parameter involved, it makes sense to specify that (A.65) applies
uniformly in the other parameter. See below for an example.

A.17.4 Asymptotic equality: ∼
This notation is frequently used when the � notation should be used. The standard definition is
the much stronger statement that

f (Q) ∼ g(Q) when Q→∞ (A.66)

means

lim
Q→∞

f (Q)

g(Q)
= 1. (A.67)

Both this and the � notation have essential uses, so that it is important not to confuse them.

A.17.5 Uniformity

Frequently we will obtain order-of-magnitude estimates of some function that has parameters.
(Often the function is the difference between some exact quantity and an approximation.) It is
important to know whether the estimates can be made independent of the parameters.

For example, define

f1(Q; a) = 1

a2 +Q2
. (A.68)

Then as Q→∞,

f1(Q; a) = O(1/Q2). (A.69)

We can set the quantity C in the definition of O(. . .), (A.57), to be unity (or larger), independently
of the parameter a. Moreover, the application of (A.57) works with the same minimum value of
Q for all a. In that case we say that (A.69) holds uniformly in a.

But if instead we used

f2(Q; a) = 1

1+ a2Q2
, (A.70)

then we could still say that

f2(Q; a) = O(1/Q2). (A.71)

But this would not be uniform in a. When a is made small, the quantity C in (A.57) has to
be made large. A symptom of this non-uniformity is that when a = 0, f2 = O(1) instead of
O(1/Q2).
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Light-front coordinates, rapidity, etc.

The use of light-front variables, rapidity and pseudo-rapidity is very common in treating high-
energy scattering, particularly in hadron-hadron and lepton-hadron collisions. The essential
features of these collisions that make these variables of utility are the presence of ultra-relativistic
particles and a preferred axis.

B.1 Definition

Light-front coordinates are defined by a change of variables from the usual (t, x, y, z) [or
(0, 1, 2, 3)] coordinates. Given a vector V μ, its light-front components are defined by

V + = V 0 + V 3

√
2

, V − = V 0 − V 3

√
2

, V T = (V 1, V 2), (B.1)

and I will write the components in the order V μ = (V +, V −, V T). Some authors prefer to omit
the 1/

√
2 factor in (B.1), but among the reasons not to is that the change of variable from

ordinary coordinates has unit Jacobian. Thus the element of volume is simply

d4k = dk+ dk− d2kT . (B.2)

What are the motivations for defining such coordinates, which evidently depend on a particu-
lar choice of the z axis? One is that these coordinates transform very simply under boosts along
the z axis. Another is that when a vector is highly boosted along the z axis, light-front coordi-
nates nicely show what are the large and small components of momentum. Typically one uses
light-front coordinates in a situation like high-energy hadron scattering. In that situation, there
is a natural choice of an axis, the collision axis, and one frequently needs to transform between
different frames related by boosts along the axis. Commonly used frames include the rest frame
of one of the incoming particles, the overall center-of-mass frame, and the center-of-mass frame
of a partonic subprocess.

It can easily be verified that Lorentz-invariant scalar products have the form

V ·W = V +W− + V −W+ − V T ·WT,

V · V = 2V +V − − V 2
T . (B.3)

It follows that the metric tensor has as its non-zero components g+− = g−+ = 1, gij = −δij ,
where the indices i and j refer to the two transverse coordinates.

It is important to make a distinction between contravariant vectors, whose indices are super-
scripts, and covariant vectors, whose indices are subscripts. Indices are contracted by the Einstein
summation convention only between upper and lower indices, as in gμνV

μWν . Contravariant
and covariant vectors are transformed into each other by the metric tensor, e.g., Vμ = gμνV

ν .
It is readily checked that the components of the metric tensor do not change their values when

595
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both indices are changed from contravariant to covariant, g+− = g−+ = 1, gij = −δij , but that
the mixed tensor gμ

ν is just a Kronecker delta.
We will choose to treat ordinary coordinate vectors and momentum vectors as naturally

contravariant. Derivatives with respect to these are then naturally covariant:

∂μf (x)
def= ∂f

∂xμ
, (B.4)

so that a Taylor expansion can be written without any metric tensor: f (a + x) = f (a)+
aμ∂μf (a)+O(a2). Notice also, for example, that ∂+f = ∂f/∂x+. Thus the corresponding
contravariant derivative (with upstairs indices) has the slightly counterintuitive of being with
respect to the opposite coordinate, ∂+f = ∂f/∂x−, and similarly for ∂−f .

B.2 Boosts

Let us make a boost in the z direction to make a new vector V ′μ. In the ordinary (t, x, y, z)
components we have the well-known formulae

V ′0 = V 0 + vV z

√
1− v2

, V ′z = vV 0 + V z

√
1− v2

, V ′x = V x, V ′y = V y. (B.5)

It is easy to derive the following for the light-front components:

V ′+ = V +eψ, V ′− = V −e−ψ, V ′
T = V T, (B.6)

where the hyperbolic angle ψ is 1
2 ln 1+v

1−v
, so that v = tanh ψ .

Notice that if we apply two boosts of parameters ψ1 and ψ2 the result is a boost ψ1 + ψ2.
This is clearly simpler than the corresponding result expressed in terms of velocities.

B.3 Rapidity

B.3.1 Boost of particle momentum

Consider a particle of mass m that is obtained by a boost ψ in the z direction from the particle’s
rest frame. Its momentum is

pμ =
(

p+,
m2

2p+
, 0T

)
=
(

m√
2
eψ,

m√
2
e−ψ, 0T

)
. (B.7)

Notice that if the boost is very large (positive or negative), only one of the two non-zero light-
front components of pμ is large; the other component becomes small. With the usual coordinates,
two of the components, p0 and pz, become large.

Suppose next that we have two such particles, p1 and p2, with the boost for particle 1 being
much larger than that for particle 2. Then in the scalar product of the two momenta only one
component of each momentum dominates the result, so that for example (p1 + p2)2 � 2p+1 p−2 .
This implies that, when analyzing the sizes of scalar products of highly boosted particles, it is
simpler to use light-front components than to use conventional components.

B.3.2 Definition of rapidity

Since the ratio p+/p− gives a measure e2ψ of the boost from the rest frame, we are led to the
following definition of a quantity called “rapidity”:

y = 1

2
ln

p+

p−
= 1

2
ln

E + pz

E − pz
, (B.8)
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which can be applied to a particle of non-zero transverse momentum. The 4-momentum of a
particle of rapidity y and transverse momentum pT is

pμ =
⎛
⎝ey

√
m2 + p2

T

2
, e−y

√
m2 + p2

T

2
, pT

⎞
⎠ , (B.9)

with
√

m2 + p2
T being called the transverse mass mT of the particle. It can be checked that the

scalar product of two momenta is

p1 · p2 = m1Tm2T cosh(y1 − y2)− pT1 · pT2. (B.10)

In the case where the transverse momenta are negligible, this reduces to m2 cosh(y1 − y2), which
is like the formula for the product of two Euclidean vectors pT1 · pT2 = p1p2 cos θ , with the
trigonometric cosine being replaced by the hyperbolic cosine.

B.3.3 Transformation under boosts

Under a boost in the z direction, rapidity transforms additively:

y �→ y ′ = y + ψ. (B.11)

This implies that in situations where we have a frequent need to work with boosts along the z axis
it is economical to label the momentum of a particle by its rapidity and transverse momentum,
rather than to use 3-momentum.

B.3.4 Phase-space integration

The standard Lorentz-invariant phase-space integration measure for an on-shell particle of mass
m is readily converted to light-front coordinates, or to rapidity and transverse momentum:

d3p
2Ep(2π )3

= dp+ d2 pT

2p+(2π )3
= dy d2 pT

2(2π )3
, (B.12)

where E p =
√

p2 +m2. Observe that the light-front version does not depend explicitly on the
mass, and that there is a restriction to only positive p+.

B.3.5 Non-relativistic limit

For a non-relativistic particle, rapidity is the same as velocity along the z axis, for then

y = 1

2
ln

E + pz

E − pz
= 1

2
ln

1+ vz

1− vz
� vz. (vz � 1) (B.13)

Non-relativistic velocities transform additively under boosts, and the non-linear change of
variable from velocity to rapidity allows this additive rule (B.11) to apply to relativistic particles
(but only in one direction of boost).

One way of seeing this is as follows. The relativistic law for addition of velocities in one
dimension is

β13 = β12 + β23

1+ β12β23
, (B.14)
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where β12 is the velocity of some object 1 measured in the rest frame of object 2, etc. This
formula is reminiscent of the following property of hyperbolic tangents:

tanh(A+ B) = tanh A+ tanh B

1+ tanh A tanh B
. (B.15)

So to obtain a linear addition law, we should write β12 = tanh A12, etc. Then the rule (B.14)
for the addition of velocities becomes simply A13 = A12 + A23. The A variables are exactly
relative rapidities, since

vz = pz

E
= p+ − p−

p+ + p−
= tanh y. (B.16)

B.3.6 Relative velocity

Rapidity is the natural relativistic velocity variable. Suppose we have a proton and a pion with
the same rapidity at pT = 0. Then they have no relative velocity; to see this, one just boosts
to the rest frame of one of the particles. But these same particles have very different energies:
Ep = mp

mπ
Eπ .

B.4 Pseudo-rapidity

As I will now explain, the rapidity of a particle can easily be measured in a situation where its
mass is negligible, for then it is simply related to the polar angle of the particle.

First let us define the pseudo-rapidity of a particle by

η = −ln tan
θ

2
, (B.17)

where θ is the angle of the 3-momentum of the particle relative to the +z axis. It is easy to
derive an expression for rapidity in terms of pseudo-rapidity and transverse momentum:

y = ln

√
m2 + p2

T cosh2 η + pT sinh η√
m2 + p2

T

. (B.18)

In the limit that m� pT, y → η. This accounts both for the name “pseudo-rapidity” and for
the ubiquitous use of pseudo-rapidity in high-transverse-momentum physics. Angles, and hence
pseudo-rapidity, are easy to measure. But it is really the rapidity that is of physical significance:
for example, the distribution of particles in a minimum bias event is approximately uniform in
rapidity over the kinematic range available.

The distinction between rapidity and pseudo-rapidity is very clear when one examines the
kinematic limits on the two variables. In a collision of a given energy, there is a limit to the
energy of the particles that can be produced. This can easily be translated to limits on the
rapidities of the produced particles of a given mass. But there is no limit on the pseudo-rapidity,
since a particle can be physically produced at zero angle (or at 180◦), where its pseudo-rapidity
is infinite. The particles for which the distinction is very significant are those for which the
transverse momentum is substantially less than the mass. Note: (B.18) implies that |y| < |η|
always.

B.5 Rapidity distributions in high-energy collisions

In the most common events in high-energy hadronic collisions (the so-called “minimum bias
events”), the distribution of final-state hadrons is approximately uniform in rapidity (Alner et al.,
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1986; Abe et al., 1990; ATLAS Collaboration, 2010; Khachatryan et al., 2010). That is, the
distribution of final-state hadrons is approximately invariant under boosts in the z direction.

In contrast, the distribution in angle dN / d� is strongly peaked at forward and backward
angles. This follows from the Jacobian between cos θ and pseudo-rapidity:

dη

d cos θ
= cosh2 η = 1

sin2 θ
. (B.19)

It follows that rapidity and transverse momentum are appropriate variables for analyzing
data, and that detector elements should be approximately uniformly spaced in rapidity. (What is
physically possible is to make a detector uniform in the pseudo-rapidity discussed in Sec. B.4.)
This is in contrast to the situation for e+e− collisions where most of the interest is in events
generated via annihilation into an electro-weak boson. Such events are much closer to uniform
in solid angle than uniform in rapidity.



Appendix C

Summary of primary results

The important definitions and results are, quite naturally, spread throughout the book. However,
it is frequently convenient for reference purposes to have all these equations collected together.
This will be the purpose of this appendix.

Lagrangian and Feynman rules of QCD

Without regard to renormalization see (2.1) for the gauge-invariant Lagrangian, and see Sec.
3.1.2 and Fig. 3.1 for the gauge-fixed Lagrangian and the Feynman rules. See (3.6) for the BRST
transformations.

With counterterms, etc., see (3.13), (3.14), and (3.15) for the Lagrangian, and Fig. 3.2 for
the counterterm vertices.

The full Standard Model Lagrangian is given in (2.30).

Definition of MS

See Sec. 3.2.6 for the definition of the MS renormalization scheme.

Renormalization counterterms, RG coefficients

The results for one-loop renormalization counterterms in Z2, m0, Z3, Z̃, and g0 are in (3.23),
(3.24), (3.25), (3.26), and (3.31). The higher orders are left as an exercise to be derived from the
RG coefficients (problem 3.2).

The renormalization group coefficients (β, etc.) are given in Sec. 3.7.
Information on relating schemes with different numbers of active quark flavors is given in

Sec. 3.10.

Light-front perturbation theory, etc.

The rules for light-front perturbation theory are given in Sec. 7.2.3.
Light-front wave functions are defined in Sec. 7.3.

Parton densities

The operator definition of an unintegrated quark density in the parton-model framework is given
in (6.31), while the antiquark density is given in (6.33). The corresponding polarized densities
are given in (6.35) and (6.36). The unintegrated (TMD) quark density is defined in (6.79).
Isospin and charge-conjugation relations are listed in Sec. 6.9.7.

Feynman rules for the above densities, still in a pre-QCD framework, are given in (6.110)
and in Fig. 6.7. For an unintegrated (TMD) density, see Fig. 6.8.

600
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Gauge-invariant unrenormalized integrated parton densities are defined in (7.40) (quark),
(7.43) (unpolarized gluon), (7.44) (polarized gluon). Feynman rules for these are given in Figs.
7.9, 7.10, 7.11, and 7.12.

Our convention for the renormalization factors for parton densities is given in (8.11). Our
convention for the DGLAP kernel is in (8.30).

One-loop results for the DGLAP kernels are given in (9.6) (quark in gluon), (9.23) (quark in
quark), (9.24) (gluon in gluon), and (9.25) (gluon in quark).

For TMD parton densities in QCD there are a number of extra polarization-dependent
functions which are defined in Sec. 13.16. These include the Boer-Mulders function, the Sivers
function, and the pretzelosity distribution.

Fragmentation functions

The basic non-QCD definitions of fragmentation functions are given in Sec. 12.4.
In QCD, unrenormalized fragmentation functions are defined in (12.71) (quark) and (12.72)

(gluon). The situation on the DGLAP kernels for the renormalized QCD fragmentation functions
is summarized in Sec. 12.10.4.

Flavor relations are given in (12.43).

Definitions and results for deeply inelastic lepton scattering

The kinematics of DIS are defined in Sec. 2.3.2, and the structure functions in the electromagnetic
case are defined in (2.20) and (2.21). Structure functions are related to the DIS cross section in
(2.22).

The parton-model result for DIS is given in (2.28) and (2.29) for the unpolarized case, and
in (6.25) when target polarization is included.

In the case of charged-current neutrino and antineutrino scattering on an unpolarized target,
the structure functions are defined in (7.3) and the parton-model formula is given in (7.5) and
(7.6).

e+e− annihilation total cross section

The results of perturbative calculations of the ratio R for the total cross section for e+e− →
hadrons are given in (4.34).

Power-counting and region analysis

The power that corresponds to a general region for a hard process is given in (5.75), (5.76),
(5.77), (5.78).

Factorization formulae for DIS

Factorization for DIS structure functions is stated in (8.83).
The one-loop coefficient function is in (9.43) (gluon) and (9.54) (quark). With a quark

mass, the gluonic coefficients are given in (9.55) and (9.58). References to the currently known
higher-order terms are given in Sec. 9.12.

Factorization for Sudakov form factor

The final form of the collinear factors for the Sudakov form factor is defined in (10.119), with
the evolution kernel defined in (10.122). Factorization and evolution formulae are given in Sec.
10.11.4, with a solution in (10.131) for the factorized form factor.

The two-loop result for γK is given in (10.135). The one-loop hard factor is given in (10.146).
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One-particle-inclusive e+e− annihilation

For the one-particle-inclusive e+e− annihilation process, the hadronic tensor and structure
functions are defined in Sec. 12.1, and formulae for the cross section are given.

The factorization formula for the cross section is given in (12.13). Factorization formulae for
the hadronic tensor and for the structure functions are given in Secs. 12.2.3 and 12.2.4.

The LO coefficient functions are in Sec. 12.3.
The NLO coefficient functions are discussed in Sec. 12.11, with references to the results.

Semi-inclusive DIS (SIDIS)

Factorization for the SIDIS cross section is stated in the form with integrated parton densities
and fragmentation functions in (12.95).

Two-particle annihilation in e+e− annihilation

The kinematics, the hadronic tensor, and cross section formulae for two-particle annihilation in
e+e− annihilation are given in Sec. 13.2.

TMD factorization for two-particle annihilation in e+e− annihilation

For TMD factorization, the bare soft factor is defined in (13.39). The unpolarized TMD frag-
mentation function is defined in (13.42), with the unsubtracted fragmentation function defined
in (13.41) as an operator matrix element.

TMD factorization for two-particle annihilation in e+e− annihilation is stated in (13.46). The
CSS and RG evolution equations are given in Sec. 13.8.

The one-loop results for the CSS evolution kernel K and its anomalous dimension γK are
given in (13.55) and (13.56). The separation of the non-perturbative part of K is performed in
Sec. 13.10.4, especially at (13.60).

The result of solving all the evolution equations is presented in three forms in Sec. 13.13.
The results of calculations of the NLO term for the small-bT behavior of TMD fragmentation

functions are given in (13.92) (gluon from quark) and (13.100) (quark from quark).
The corresponding results for large kT are in (13.93) (gluon from quark) and (13.101) (quark

from quark).

TMD factorization for SIDIS

The TMD quark densities are defined in (13.106), the unsubtracted density being defined in
(13.108) as an operator matrix element. These definitions are the ones with future-pointing
Wilson lines to be used for SIDIS.

TMD factorization for SIDIS is stated in (13.116).

TMD factorization for Drell-Yan

TMD factorization for Drell-Yan is stated in (14.31). The results of fits to the TMD non-
perturbative functions are reviewed in Sec. 14.5.3.
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Krämer M., Olness F. I., Soper D. E. (2000). Treatment of heavy quarks in deeply inelastic
scattering. Phys. Rev. D62, 096007. arXiv:hep-ph/0003035.

Kretzer S., et al. (2004). CTEQ6 parton distributions with heavy quark mass effects. Phys.
Rev. D69, 114005. arXiv:hep-ph/0307022.

Labastida J. M. F., Sterman G. (1985). Inclusive hadron-hadron scattering in the Feynman gauge.
Nucl. Phys. B254, 425–440.

Lai H. L., et al. (2000). Global QCD analysis of parton structure of the nucleon: CTEQ5 parton
distributions. Eur. Phys. J. C12, 375–392. arXiv:hep-ph/9903282.

Lam C. S., Tung W.-K. (1978). Systematic approach to inclusive lepton pair production in
hadronic collisions. Phys. Rev. D18, 2447–2461.

Landry F., et al. (2003). Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation
formalism. Phys. Rev. D67, 073016. arXiv:hep-ph/0212159.

Landshoff P. V. (1974). Model for elastic scattering at wide angle. Phys. Rev. D10, 1024–1030.



References 613

Landshoff P. V., Polkinghorne J. C. (1971). Two high energy processes involving detected final
state particles. Nucl. Phys. B33, 221–238. Erratum: B36, 642 (1972).

Larin S. A., Vermaseren J. A. M. (1993). The three-loop QCD β function and anomalous
dimensions. Phys. Lett. B303, 334–336. arXiv:hep-ph/9302208.

Leader E., Predazzi E. (1982). An Introduction to Gauge Theories and the ‘New Physics’.
Cambridge: Cambridge University Press.

Lee T. D., Nauenberg M. (1964). Degenerate systems and mass singularities. Phys. Rev. 133,
B1549–B1562.

Leibbrandt G. (1987). Introduction to noncovariant gauges. Rev. Mod. Phys. 59, 1067–1119.
Lepage G. P., Brodsky S. J. (1980). Exclusive processes in perturbative quantum chromo-

dynamics. Phys. Rev. D22, 2157–2198.
Libby S. B., Sterman G. (1978a). Jet and lepton-pair production in high-energy lepton-hadron

and hadron-hadron scattering. Phys. Rev. D18, 3252–3268.
Libby S. B., Sterman G. (1978b). Mass divergences in two-particle inelastic scattering. Phys.

Rev. D18, 4737–4745.
Liberati S., Maccione L. (2009). Lorentz violation: motivation and new constraints. Ann. Rev.

Nucl. Part. Sci. 59, 245–267. arXiv:0906.0681.
Ligterink N. E., Bakker B. L. G. (1995). Equivalence of light front and covariant field theory.

Phys. Rev. D52, 5954–5979. arXiv:hep-ph/9412315.
Lipatov L. N. (1997). Small-x physics in perturbative QCD. Phys. Rept. 286, 131–198.

arXiv:hep-ph/9610276.
Lu Z., Schmidt I. (2010). Updating Boer-Mulders functions from unpolarized pd and pp Drell-

Yan data. Phys. Rev. D81, 034023. arXiv:0912.2031.
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Lubański J. K. (1942b). Sur la théorie des particules élémentaires de spin quelconque. II.

Physica 9, 325–338.
Manohar A. V. (1998). Large N QCD. arXiv:hep-ph/9802419.
Manohar A. V., Wise M. B. (2000). Heavy Quark Physics. Cambridge: Cambridge University

Press.
Marchesini G. (1995). QCD coherence in the structure function and associated distributions at

small x. Nucl. Phys. B445, 49–80. arXiv:hep-ph/9412327.
Martin A. D., et al. (1998). Parton distributions: a new global analysis. Eur. Phys. J. C4, 463–496.

arXiv:hep-ph/9803445.
Martin A. D., et al. (2007). Update of parton distributions at NNLO. Phys. Lett. B652, 292–299.

arXiv:0706.0459.
Melnitchouk W., Ent R., Keppel C. (2005). Quark-hadron duality in electron scattering. Phys.

Rept. 406, 127–301. arXiv:hep-ph/0501217.
Meng R., Olness F. I., Soper D. E. (1996). Semi-inclusive deeply inelastic scattering at small

qT . Phys. Rev. D54, 1919–1935. arXiv:hep-ph/9511311.
Mirkes E. (1992). Angular decay distribution of leptons from W bosons at NLO in hadronic

collisions. Nucl. Phys. B387, 3–85.
Moch S., Vermaseren J. A. M. (2000). Deep-inelastic structure functions at two loops. Nucl.

Phys. B573, 853–907. arXiv:hep-ph/9912355.
Moch S., Vermaseren J. A. M., Vogt A. (2004). The three-loop splitting functions in QCD: the

non-singlet case. Nucl. Phys. B688, 101–134. arXiv:hep-ph/0403192.
Mueller A. H. (1979). On the asymptotic behavior of the Sudakov form factor. Phys. Rev. D20,

2037.
Mulders P. J., Tangerman R. D. (1996). The complete tree-level result up to order 1/Q for polar-

ized deep-inelastic leptoproduction. Nucl. Phys. B461, 197–237. arXiv:hep-ph/9510301.



614 References

Müller D., et al. (1994). Wave functions, evolution equations and evolution kernels from light-ray
operators of QCD. Fortschr. Phys. 42, 101–141. arXiv:hep-ph/9812448.

Nachtmann O. (1973). Positivity constraints for anomalous dimensions. Nucl. Phys. B63, 237–
247.

Nadolsky P., Stump D. R., Yuan C. P. (2000). Semi-inclusive hadron production at HERA: The
effect of QCD gluon resummation. Phys. Rev. D61, 014003. arXiv:hep-ph/9906280.

Nakanishi N., Ojima I. (1990). Covariant Operator Formalism of Gauge Theories and Quantum
Gravity. Singapore: World Scientific.

Nakanishi N., Yabuki H. (1977). Null-plane quantization and Haag’s theorem. Lett. Math.
Phys. 1, 371–374.

Nakanishi N., Yamawaki K. (1977). A consistent formulation of the null-plane quantum field
theory. Nucl. Phys. B122, 15–28.

Narison S. (2002). QCD as a Theory of Hadrons. Cambridge: Cambridge University Press.
Nayak G. C., Qiu J.-W., Sterman G. (2005). Fragmentation, non-relativistic QCD, and NNLO

factorization analysis in heavy quarkonium production. Phys. Rev. D72, 114012. arXiv:hep-
ph/0509021.

Pais A. (1986). Inward Bound. Oxford: Oxford University Press.
Perkins D. H. (2000). Introduction to High Energy Physics. 4th edn. Cambridge: Cambridge

University Press.
Peskin M. E., Schroeder D. V. (1995). An Introduction to Quantum Field Theory. Reading, MA:

Addison-Wesley.
Poggio E. C., Quinn H. R., Weinberg S. (1976). Smearing the quark model. Phys. Rev. D13,

1958–1968.
Polchinski J. (1984). Renormalization and effective lagrangians. Nucl. Phys. B231, 269–

295.
Politzer H. D. (1973). Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30,

1346–1349.
Qiu J.-W., Sterman G. (1991a). Power corrections in hadronic scattering (I): Leading 1/Q2

corrections to the Drell-Yan cross-section. Nucl. Phys. B353, 105–136.
Qiu J.-W., Sterman G. (1991b). Power corrections in hadronic scattering (II): Factorization.

Nucl. Phys. B353, 137–164.
Quigg C. (1997). Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Boul-

der, Colorado: Westview Press.
Ralston J. P., Soper D. E. (1979). Production of dimuons from high-energy polarized proton-

proton collisions. Nucl. Phys. B152, 109–124.
Rijken P. J., van Neerven W. L. (1997). Higher order QCD corrections to the transverse and

longitudinal fragmentation functions in electron-positron annihilation. Nucl. Phys. B487,
233–282. arXiv:hep-ph/9609377.

Rogers T. C., Mulders P. J. (2010). No generalized transverse momentum dependent factoriza-
tion in hadroproduction of high transverse momentum hadrons. Phys. Rev. D81, 094006
arXiv:1001.2977.

Salam A. (1968). In Proceedings of the 8th Nobel Symposium. Stockholm: Almqvist and Wiksell.
Salam G. P. (2010). Towards jetography. Eur. Phys. J. C67, 637–686. arXiv:0906.1833.
Schienbein I., et al. (2009). Parton distribution function nuclear corrections for charged lepton

and neutrino deep inelastic scattering processes. Phys. Rev. D80, 094004. arXiv:0907.2357.
Seymour M. H., Tevlin C. (2008). TeVJet: a general framework for the calculation of jet

observables in NLO QCD. arXiv:0803.2231.
Sivers D. W. (1990). Single spin production asymmetries from the hard scattering of point-like

constituents. Phys. Rev. D41, 83–90.
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O(· · · ), 592
Sε , 590
�, 591
�(· · · ), 593
εκλμν , 584
εij , 584
?=, 582

def= , 582
prelim= , 582
π0 decay, 16, 30
∼, 594
gμν , 584, 595
o(· · · ), 593

abbreviations, see Sec. A.3
ACOT, 64–67, 307, 414
acronyms, see Sec. A.3
active quark, 414
Altarelli-Parisi equation, see DGLAP equation
angular coordinate, 130, 315, 321
anomalous dimension, 53, 584
anomaly, 16, 30, 61
antiquark density, 232
approximant, see approximator
approximator, 163–165, 248–249, 272, 563

e+e− annihilation, 449–451, 485–488
example, 320–321
region, 313, 317, 321, 345–351
SIDIS, 531
Sudakov, 323–329

asymptotic behavior
general formulation, 131–134
and pinch-singular surfaces, 90

asymptotic freedom, 24, 28, 53, 55
asymptotic series, 581
averaged cross section, 70–75, 84–86, 96, 400, 428,

455, 469, 487, 544
axial anomaly, see anomaly
axial gauge, 118, 394, 444, 572

and CSS evolution, 379, 396
and factorization proofs, 446, 561
power-counting, and, 135

b1, see DIS deuterium
bad components, 181
bare coupling, 9, 37, 58
bare parton density, 252, 257, 263, 309
bare quantities, 9
baryon, 12
basic interaction Lagrangian, 41
Bessel transform, 538, 568
BFKL, 575–576
Bjorken scaling, 26, 28, 29
Bjorken sum rule, 199
Bjorken variable, 19, 25, 427
Bloch vector, 586

and massless particles, 588
Boer-Mulders function, 533, 535, 569
boost, 596
breakable string, see string model
Breit frame, 22
brick-wall frame, 22
BRST transformation, 38, 417–418

renormalized, 40

Cabibbo-Kobayashi-Maskawa mixing matrix, see
CKM matrix

Callan-Gross relation, 28, 433
CCFM equation, 576
CERN, 2
chiral symmetry, see also helicity conservation, 15, 61

hard scattering, 61
CKM matrix, 32, 214
collinear factor, 369, 372, 379, 389, 491

unsubtracted, 360
collinear factorization

defined, 479
v. TMD factorization, 479

collinear momentum
characterization, 325

collinear subgraph, see also factorization,
see also pinch-singular surface,
326, 451

definition, 93
power-counting, 113, 116–118, 142–144

Collins function, 493, 533
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Collins-Soper evolution, 374–378, 383
calculation, 388, 504
flavor dependence, 502
fragmentation function, 501–502
kernel, 388, 504
non-perturbative, 506–507
parton density, 529
renormalization group, 384
Sudakov, 374–378, 384

Collins-Soper frame, 543
color, 9, 10, 12, 16, 30
contour deformation, see also Glauber region,

110–111
contravariant vector, 584, 596
conventions, 584–585

states, 587, 590
conversion factors, 582
Coulomb gauge, 394, 572

and CSS evolution, 379, 396
and factorization proofs, 446, 561
power-counting, and, 135

Coulomb region, see Glauber region
counterterm

Feynman rules, 44
Lagrangian, 41, 42

covariant derivative, 9, 31
covariant vector, 584, 596
critique of conventional treatments of factorization,

307–309
cross section

general formula, 587
current algebra, 10, 13, 15, 35
current fragmentation, 473
cut diagram definition, 21
CWZ, 64–67, 307, 414

DDVCS, 102, 415–416, 574
reduced graph, 101

decoupling theorem, 413
deeply inelastic scattering, see DIS
deeply virtual Compton scattering, see DVCS
density matrix, 585
DGLAP equation, 2, 5

calculations of kernel, 286–293
fragmentation function, 431
parton density, 261–262, 411–412
QCD, 411–412
results for kernel, 288, 293, 464
sum rule, 263–264

diffractive
DIS, 477
parton density, 477
scattering, 574

dimensional regularization, 589–591
dimensional transmutation, 56
Dirac matrix, 587–588

projector, 164, 329, 487
DIS, see also parton model

charged current, 213–217

cross section formula, 20
data, 27
deuterium, 211, 283
diffractive, 477
event picture, 19, 98
factorization, 276–280, 404–411
hadronic tensor, 21
hadronization in, 24
handbag graph, 25, 161, 237, 269, 316
heavy quarks, 306–307, 413
kinematics, 19
known calculations, 309
large x, 400, 579
leading region, 96, 147
masses, effects of, 306–307, 413
NLO

gluon coefficient, 296
quark coefficient, 301

NLO in QCD, 284–312
parton model for, 23
phenomenology, 310–312
polarized, in parton model, 168
polarized, in QCD, 278, 412
projection onto structure functions, 285
QCD, 398–425
reduced graph, 95–100
regions, 399–404
scalar exchange, 35
scalar quark, 35
small x, 575
spin-1, 211, 283
structure function, 22, 214

general, 214
structure functions in parton model, 26, 168, 215
uncut amplitude, 95–99, 399
weak interaction, 213–217, 412

dispersion relation, 85
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation,

see DGLAP equation
double deeply virtual Compton scattering, see

DDVCS
Drell-Yan process, 3, 103–105, 540–569

data, 564–568
factorization, 553–562
factorization statement, 4, 541
Glauber region, 545–553, 556–560
leading region, 103, 544
polarization, 281, 568
power-counting, 136
reduced graph, 103–105
TMD factorization, 560, 562–569

duality, see parton-hadron duality
DVCS, 102, 415–416, 574

leading region, 102
reduced graph, 101

e+e− annihilation
back-to-back region, 467
Glauber region, 445
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jet cross sections, 469
LO calculation, 76, 495
multiparticle cross sections, 466
multiparticle fragmentation, 468
NLO calculation, 75–81
one-particle inclusive, 426–433, 439–461

cross section, 428
factorization, 429–432, 448–461
hadronic tensor, 427
leading region, 439
LO, 432
NLO, 464–465
structure function, 428

total cross section, 69–86
results, 80

two-particle inclusive, 479–501, 514–519
hadronic tensor, 484
leading region, 480
structure function, 484
TMD factorization, 494, 496–501

effective coupling, 55
elastic scattering at wide angle, 574

Landshoff process, 147–148
leading regions, 147–148

elastic spring, 82, 426
equality signs, 7, 582
equation-of-motion operator, 410
event picture, 19, 98
evolution of final state, 81–84
exclusive diffraction, 574
exclusive scattering, see also DDVCS, see also

diffractive scattering, see also DVCS, see also
elastic scattering

extended fracture function, 476
extended leading order approximation,

273

F1, F2, F2, FL, see DIS structure function
factorization, 4, 243–283

critique of conventional treatments, 307–309
DIS, 404–411
Drell-Yan, 553–562
e+e− annihilation

one-particle inclusive, 429–432, 448–461
two-particle inclusive, 494, 496

elementary treatment, 245–251
gauge theory, 405–411
general methods, 313–397
initial-state partons, 569
masses, effects of, 306–307, 413
NLO calculations, 284–312
non-abelian gauge theory, 407–411
on-shell partons, 285
parton model, 167–168
polarized, 280–282
SIDIS, 475, 526–537
subtractions, 314–319
successive approximation method, 269–271

Sudakov form factor, 359–374, 378–388
TMD, see TMD factorization

factorization scale, see renormalization scale
Faddeev-Popov gauge fixing, 37
Faddeev-Popov ghost, 37, 228
Feynman parameter, 592
Feynman rules

fragmentation function, 460
parton density, 201–202, 235–237
QCD, 43, 44
Wilson line, 236

final state in fragmentation, 460
final-state interaction, 170, 545–552
flavor, 9, 12, 16, 30
flavor relations

fragmentation function, 438
parton density, 195–201

flavor SU(3), 60
Fourier transform, 591
fracture function, 475–477
fragmentation function, 429, 430

antiquark, 437
basic definition, 435–438
definition, 459
definition (TMD), 498, 529
DGLAP equation, 431, 464
Feynman rules, 460
final state, 460
flavor relations, 438
introduction, 433–439
isospin, 438
moment, 431
momentum sum rule, 438
multiparticle, 468
polarized, 437
positivity, 493
QCD, 459
quark, 436
renormalization, 431, 437, 461–464, 499
renormalization group, 431, 502
scalar, 435
sum rule, 438
TMD, 436, 492, 498

evolution, 501–502
final definition, 498
non-perturbative part, 510
polarized quark, 491
quark, 491
relation to integrated f.f., 496, 507–512,

519–526
renormalization, 499
renormalization group, 502

transverse-momentum dependent, see
fragmentation function, TMD

unintegrated, see fragmentation function, TMD
frame dependence of time ordering, 225, 552
Froissart bound, 548, 576
functional integral, 36
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G gluon, see Grammer-Yennie
g1, g2, see DIS structure function
Gamma function, 591
gauge fixing, 37
gauge link, see Wilson line
gauge transformation, see also BRST transformation,

9, 38
Wilson line, 230

generalized parton density, 193, 416, 575
generation, 31
Glauber region

and axial gauge, 395, 445
basics, 122–125
DIS, 125
Drell-Yan, 126–128, 156–158, 545–554, 556–560
e+e− annihilation, 125, 445
general determination, 125–130, 156–158
power-counting, 128, 150
SIDIS, 474, 528
space-time interpretation, 125, 126, 551
Sudakov, 331, 348–350

gluon, 9
polarization, 242

gluon density, 232–235
Goldberger-Treiman relation, 15
good components, 181
GPD, see generalized parton density
Grammer-Yennie method, 118, 122, 123, 143, 328,

345, 347, 402, 560
G gluon, 402, 422
K gluon, 402, 404–406, 416–425, 488

grand unified theories, 32
Green function and S matrix, 34
group theory, 588

hadron, 1, 10, 12
hadron frame, 434, 481, 483, 527, 530, 543, 563
hadron production in hadron-hadron collisions, 542,

570
hadronic tensor

DIS, 21
Drell-Yan process, 543
e+e− annihilation one-particle inclusive, 427
e+e− annihilation, two-particle inclusive, 484
factorization, 276
SIDIS, 530

hadronization, 24
handbag graph, 25, 161, 237, 269, 316
hard factor, 361, 373, 382, 391, 422
hard pomeron, 576
hard scattering, multiple, 147–148
hard subgraph, see also factorization, see also

pinch-singular surface, 327, 329, 417, 451
definition, 93
power-counting, 112, 141

heavy-quark effective theory, 579
heavy quarks, 62, 64–67, 76, 214–217, 306–307, 327,

413, 569, 578

helicity, 585
helicity conservation, 169, 281
helicity density, 166, 176, 189, 202, 234
hierarchy, see region hierarchy
Higgs, 2, 14, 31, 103, 160, 543, 577
higher twist, 580
Hopf algebra, 313

inactive quark, 414
infinite-momentum frame, 180, 217
infra-red safety, 69, 469
initial-state interaction, 561, 581
integrated fragmentation function, see fragmentation

function
integrated parton density, see parton density
intermediate state, 217, 218, 221
intrinsic coordinate, 130, 133, 315, 321
intrinsic transverse momentum, 510
isospin, 60

fragmentation function, 438
parton density, 195–199

jet cross sections, 469
jet factor, 167
jet shapes, 576

K gluon, see Grammer-Yennie
kinematic zero, 485
Kinoshita-Lee-Nauenberg theorem, see KLN theorem
KLN theorem, 69, 443
kT factorization, see TMD factorization

ladder graphs, 546, 578
ladder method, 256–261, 271–276
Lagrangian

QCD, 9, 37
Landau criterion, 91, 110

coordinate space, 159
Glauber region, 128
proof, 159

Landshoff process, 147–148, 574
large N , 83
large x, 172, 400, 579
lattice QCD, 1, 38
leading region, see region
leading-logarithm approximation, see LLA
lepton, 14
LHC, 2, 577
Libby-Sterman method, 87–160

Glauber region, 128, 157
light-cone gauge, 228, 230, 245, 285, 411
light-front coordinates, 584, 595–599

parton model, 23
light-front perturbation theory, 217–225

derivation, 222–223
fermion line, 223
gauge theory, 229
gluon line, 229
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QCD, 229
rules, 221–224

light-front quantization, see also light-front
perturbation theory, 180–185, 573

fragmentation function, 435
in gauge theory, 227–229
paradox, 219–221
parton density, 185–189
QCD, 227–229
renormalization, 198
vacuum, 219
wave function, 225–227, 574
zero mode, 182, 219

light-front wave function, 225–227, 574
linear polarization, 234, 242
LLA, 332, 387, 517–518
Lorentz covariance of parton density, 191
Lorentz group, 585
low-energy effective theory, 63
LSZ reduction, 79, 204

mass divergences, 87
masses of elementary fields in Standard Model,

32
Mellin transform, 262–263
meson, 12
metric tensor, 584, 596
minimal subtraction, see MS scheme
mixing angle, Weinberg, 32
mixing matrix, neutrino, see MNS
mixing matrix, quark, see CKM
MNS matrix, 32
Monte-Carlo event generators, 577–578
MS scheme definition, 43–45, 590
multi-peripheral model, 546
multiple hard scattering, 147–148

Nachtmann variable, 25
neutron decay, 14
non-abelian gauge theory, 9, 16
non-leading logarithms, 393
non-perturbative

Collins-Soper evolution, 506–507
interactions and fragmentation, 465
TMD fragmentation function, 510
TMD parton density, 564

normal coordinate, 130, 133
notation, 6, 582–594

orders of magnitude, 592–594

OPE, see operator product expansion
operator product expansion, 28, 200, 251, 263, 283,

313, 321, 408, 409, 411, 580
optimization of perturbation theory, see scale choice
ordering

partial, 316
total, 316, 352

overlapping divergence, 352

partial ordering, 316
particle-field relation, 33
parton, see also DIS, see also parton density, see also

parton model, 23
basics, 2, 4

parton density, 4, 24
in antiproton, 196
antiquark, 175, 232
bare, 252, 257, 263, 309
Boer-Mulders, 533
definition (integrated), 165–167, 174–177,

201–202, 232–235
DGLAP equation, 261–262
diffractive, 477
example calculations, 202–210, 264–268,

286–293
Feynman rules

basic, 201–202
QCD, 235–237

flavor relations, 195–201
in gauge theory, 229–235, 529
gauge invariant, 232–235
gluon, 196, 232–235, 242
integrated v. unintegrated, 186
isospin, 195–199
Lorentz covariance, 191
Mellin transform, 262–263
moment, 200, 262–263
momentum sum rule, 194, 197
negative x, 175, 176, 191–192, 208–210
in nucleus, 196
number density, 185–189
number sum rule, 194, 197
operator definition, 174–177, 192–193, 232–235,

529
in pion, 197, 235
polarized, 165–167, 176–180, 189, 233–235, 242,

253, 533
positivity, 190
pretzelosity, 533
QCD, 229–237, 529
quark, 174, 232, 529
renormalization, 198–199, 205, 251–261, 264–268,

286–293, 411–412, 529
renormalization group, 261–262, 530
scalar, 210
Sivers, 533
sum rule, 194, 197, 199, 206–207, 263–264
support, 176, 191
TMD, 190, 282, 529

final definition, 529
non-perturbative part, 564
polarized, 532
relation to integrated density, 294, 529–530
renormalization, 529
renormalization group, 530

transverse-momentum dependent, see parton
density, TMD
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parton density (cont.)
uncut, 207–208
unintegrated, see parton density, TMD
universality, see universality
UV divergence, 205, 253

parton distribution function, see parton density
parton frame, 434
parton model, 20, 87

approximator, 163–165, 248–249, 272
compared with reality, 96, 97
factorization, 167–168
for DIS, 23
gauge invariant, 237–241
heavy quarks, 215–217
polarization, 167, 168
SIDIS, 471
theory of, 161–212
validity, 170–173

parton-hadron duality, 401
Pauli-Lubański vector, 585
perturbation theory

optimization, see scale choice
validity, 75

photon frame, 481, 482, 527, 531, 543,
563

pinch-singular surface, see also region
angular coordinate, 130, 315
basics, 89–91
coordinates, 130–134
definition, 87
geometry, 106–108
intrinsic coordinate, 130, 133, 315
non-pinch comparison, 108–111
normal coordinate, 130, 133
radial coordinate, 113, 118, 119, 121, 130,

133–134, 315
region specified by, 315
skeleton, 88, 315
topology, 106–108

plus distribution, 292, 524, 591–592
polarization, see also fragmentation function

polarized, see also parton density polarized,
165, 177–180, 233–235, 585–586

DIS, 168, 278, 412
Drell-Yan process, 281, 568
linear, 234, 242
SIDIS, 532

polarized DIS, 279
pomeron, 546, 576
positivity, 190, 493, 525
power corrections, 580
power-counting, 134–145

alternate scalings, 144
collinear subgraph, 113, 116–118, 142–144
dimensional analysis, comparison, 135, 141
gauge theory, 117
general form, 140–145
Glauber region, 128, 150

hard subgraph, 141
multiple/nested regions, 148–156
soft subgraph, 119–122, 144
Sudakov form factor, 111–125
super-renormalizable couplings, 140, 146

pretzelosity, 533
proton radius, 11
pseudo-rapidity, 598
PSS, see pinch-singular surface

QCD
�, 55–56
definition, 9
Feynman rules, 43, 44
gauge transformation, 9
history, 10
justification, 6, 10, 29
Lagrangian, 9, 37
predictive power, 2, 311
renormalization, 39–48
renormalization group, 51–59
renormalization-group coefficients, 58
scale parameter, 55–56
symmetries, 60–61

quark
charges, 32
masses, 32

quark density, 232
quark model, 12
quark-parton model, see parton model
quark-quark potential, 34

radial coordinate, 113, 118, 119, 121, 130, 133–134,
315, 321

rapidity, 584, 596–598
rapidity divergence, 291, 338, 339, 342, 343, 348,

350, 351, 361, 379, 382, 407, 522–524, 536
rapidity gap, 5
reduced graph, 91

coordinate space, see reduced graph space-time
DDVCS, 101–102
DIS, 95–100
Drell-Yan, 103–105
DVCS, 101–102
examples, 106
interpretation, 106–108
space-time, 91–92, 106, 108, 116, 121–122, 125,

148, 152, 158, 159, 551
Sudakov form factor, 92–95

Regge physics, 574, 575
reggeon, 546
region, see also pinch-singular surface

approximator, 323–329
decomposition, 246–247, 314, 351
e+e− annihilation, 485
hierarchy, 108, 130, 315–317, 323, 366–369

power-counting effects, 149–156
leading, 315, 401
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DIS, 96, 147
Drell-Yan, 103, 544
DVCS, 102
e+e− annihilation, one-particle inclusive, 439
e+e− annihilation, two-particle inclusive, 480
elastic scattering at wide angle, 147–148
gauge theory, 245
general criteria, 146–148
non-gauge theory, 244
rule for, 147
SIDIS, 472, 528
Sudakov form factor, 94

minimal, 316, 317
multiple, 148
nested, 148, 316
pinch-singular surface, comparison with, 135
properties, 316
soft quark, 125
space-time interpretation, 99, 551
superleading, 144, 315, 401, 440
terminology, 315

remnant-remnant interactions, 126, 545–552, 554–560
renormalization, see also fragmentation function

renormalization, see also parton density
renormalization

BRST transformation, 40
by subtraction of asymptote, 48–51, 293–295, 299
fragmentation function, 431
MS, see MS scheme; ACOT; CWZ
parton density, 251
QCD, 39–45
region approximator, 329
wave function, 40

renormalization group, see also DGLAP equation, 28,
45, 51, 59, 579

conventions, 584
fragmentation function, 431
parton density, 261
TMD fragmentation function, 502
TMD parton density, 530

renormalization scale, 44, 300–301, 516
meaning, 48–51

resummation, 518–519, 576
running coupling, see effective coupling

scalar polarized gluon, see also Grammer-Yennie
method K gluon, 141, 143, 146, 147

scale choice, 48–51, 300–301, 516
scale dependence, see renormalization group; DGLAP

equation
SCET, see soft-collinear effective theory
semi-inclusive deeply inelastic scattering, see SIDIS
short-distance dominance, 75, 84
SIDIS, 470–475

factorization, 475
Glauber region, 474, 528
hadronic tensor, 530
leading region, 472, 528

polarization, 532
structure function, 532
target-fragmentation region, 475–477
TMD factorization, 526–537

final form, 532
Sivers function, 533, 534
skeleton of pinch-singular surface, 88, 315
Slavnov-Taylor identity, see also Ward identity, 407,

418, 421
small x, 575
soft cancellation, 456
soft factor, 359, 366
soft quark region, 125
soft subgraph, see also factorization, see also

pinch-singular surface, 326, 452
definition, 93
power-counting, 119–122, 144

soft-collinear effective theory, 579
soft-collinear gluons, 327, 354
space-time propagation, see also reduced graph,

91–92, 99, 106, 108, 116, 121–122, 125, 126,
148, 152, 224, 551, 573

spectator-spectator interactions, 126
spin projection, 588
spin vector, 586
spontaneous symmetry breaking, 61
Standard Model, 31, 33

masses of particles, 32
quantum numbers, 32

string model, 88, 426
strong CP problem, 60
structure–function

DIS, 22, 214
general, 214

e+e− annihilation
one-particle inclusive, 428
two-particle inclusive, 484

factorization, 276–280
longitudinal, 22
parton-density comparison, 169
summary, 586
transverse, 22

subtraction method, 258–261, 314–319
example, 320–321

successive approximation method, 269–271, 314
Sudakov form factor, 321–344, 359–397

calculations, 330–344, 388–393
definition, 88
factorization, 322, 374, 378–388
final solution, 383–387
large Q asymptote, 387
leading region, 94
non-leading logarithms, 393
one loop, 105–125, 330–344
regions, 323
regions at two-loop order, 153

sum-over-cuts, 441, 443, 447–448, 456–459, 475,
548
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sum rule, see fragmentation function, see parton
density

super-renormalizable couplings, 140, 146
superleading region, see region, superleading
supersymmetry, 2, 32, 37, 160, 503

target fragmentation, 473, 475–477
test function, see averaged cross section
three-particle phase space, 590
time-ordered perturbation theory, 217, 447
time-reversal transformation

and Drell-Yan, 554
and TMD fragmentation, 536

TMD factorization, 479–537
combining with collinear factorization, 501, 513
defined, 479
Drell-Yan, 560, 562–569
e+e− annihilation, 496–501
SIDIS, 526–537
using, 514–519
v. collinear factorization, 479

TMD fragmentation function, see fragmentation
function, TMD

TMD parton density, see parton density, TMD
total ordering, 316, 352
transverse coordinate space, 495
transverse mass, 597
transverse spin, 166, 169, 280–282
transverse-momentum dependent fragmentation

function, see fragmentation function, TMD
transverse-momentum dependent parton density, see

parton density, TMD
transversity density, 166, 176, 189, 202, 281
twist, 580
two-particle phase space, 590

unbreakable elastic spring, 82
uniformity, 594
unintegrated fragmentation function, see

fragmentation function, TMD

unintegrated parton density, see parton density, TMD
unit of mass, see renormalization scale
units, 582
universality

modified, 535
parton density, 2, 6

vertex graph, see Sudakov form factor

W boson, 14, 31, 32
Ward identity, 346, 362, 407, 416–425, 488,

578
with subtractions, 367

wave packet, 71–75, 187–189
wave-function renormalization, 40
weak interaction, 14
Weinberg angle, 32
Weinberg-Salam theory, 10, 14, 16, 29
Wilson line, 230–232, 361, 410–411

BFKL, 575
evolution, 343, 374–378, 383
Feynman rules, 236
in fragmentation function, 459
gauge transformation, 230
interpretation, 237–241
in parton density, 232
path dependence, 230–232
rapidity, 343
self-interaction, 360, 365, 379, 380, 491,

499–500
in soft factor, 489, 497
in TMD fragmentation function, 497–499
in TMD parton density, 529

Yang-Mills theory, 9, 16
Yukawa coupling, 31
Yukawa theory, 180, 202, 226, 264

Z boson, 14, 32
zero mode, 182, 219
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