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The FISH Handbook for Biological Wastewater Treatment provides all the required

information for the user to be able to identify and quantify important microorganisms

in activated sludge and biofilms by using fluorescence in situ hybridization (FISH) and

epifluorescence microscopy. 

It has for some years been clear that most microorganisms in biological wastewater

systems cannot be reliably identified and quantified by conventional microscopy or by

traditional culture-dependent methods such as plate counts. Therefore, molecular

biological methods are vital and must be introduced instead of, or in addition to,

conventional methods. At present, FISH is the most widely used and best tested of these

methods. This handbook presents all relevant information from the literature and, based

on the extensive experience of the authors, advice and recommendations are given for

reliable FISH identification and quantification.

The overall purpose of the book is to help scientists, consultants, students, and plant

operators to get an overview of important microorganisms in biological wastewater

treatment and to explain how FISH can be used for detecting and quantifying these

microbes. A proper and reliable identification of dominant microorganisms is of great

importance for research and new developments in the wastewater treatment industry,

and it is important for optimization and troubleshooting of operational problems in

present wastewater treatment plants.

The book encompasses an overview of dominant microorganisms present in the

wastewater treatment systems, which oligonucleotide probes (gene probes) to select for

detection of these microbes by FISH, how to perform FISH (detailed protocols), how to

quantify the microbes, and how to solve common problems of FISH. The book addresses

several functional groups: nitrifiers, denitrifiers, polyphosphate-accumulating organisms,

glycogen-accumulating organisms, bacteria involved in hydrolysis and fermentation,

filamentous bacteria from bulking sludge, and scum-forming bacteria. A comprehensive

collection of FISH-images showing dominant representatives of these groups helps

readers to use FISH in the context of wastewater treatment.
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1

Introduction

Per Halkjær Nielsen, Holger Daims, and Hilde Lemmer

1.1 IDENTIFICATION OF MICROORGANISMS IN ACTIVATED SLUDGE

AND BIOFILMS

Until very recently, culture-dependent methods such as plate count or Most-Probable Number (MPN)

counting have widely been used for enumeration and detection of bacteria being relevant to biological

wastewater treatment performance. In fact, such standard methods are in many cases still used for effluent

quality control, particularly with respect to pathogens and various indicator organisms (e.g. APHA

Standard Methods). However, today we know that these methods suffer from severe limitations as from all

types of microbes in environmental samples (also pathogens), only a very small fraction is cultivable

on media generally applied. Therefore, this approach is prone to lead to serious misinformation. Thus,

we strongly advocate for a change to using culture-independent molecular methods in all sorts of

microbiological investigations in wastewater treatment plants (WWTPs).

Among the cultivation-independent methods for detection, fluorescence in situ hybridization (FISH)

with ribosomal RNA (rRNA)-targeted probes (gene probes) is a very powerful tool for identification of

microorganisms in activated sludge and biofilm biocenoses from WWTPs. This method is described in

detail in Chapters 7 and 8 of this book. Most known functional key microorganisms in wastewater systems

can be reliably identified and quantified by this method.

Furthermore, other molecular methods exist, primarily PCR-based methods. Quantitative PCR (q-PCR)

is now getting more commonly applied in environmental samples, but the method has several drawbacks

compared to FISH. This is due to biases concerning nucleic acid extraction, the PCR reaction, and also the

fact that PCR-based approaches do not quantify microbial cells, but measure copy numbers of marker

# 2009 IWA Publishing. FISH Handbook for Biological Wastewater Treatment: Identification and quantification of microorganisms
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genes. DNA microarrays carrying rRNA-targeted probes, so-called ‘‘phylochips’’, have a great potential

as high-throughput tools for the qualitative detection of hundreds or even thousands of different

uncultured microbes in only one experiment. When combined with autoradiography, phylochips become

‘‘isotope arrays’’ useful to track functional traits of microbes such as nitrifying bacteria in WWTP

(Adamczyk et al., 2003). However, to date no quantitative phylochip-based assay exists that would allow

for observing shifts in the abundances of probe-target microbial populations. This limitation is due to

technical problems, such as saturation effects during hybridization, with the microarrays which are very

difficult to overcome.

In contrast to the other methods, by using FISH it is possible to observe the morphology and to quantify

numbers of bacteria or the equivalent biovolume. Thus, in our opinion, FISH is for the time being the

method of choice for detection and quantification of microorganisms in WWTP as detailed in Chapters 7

and 8.

A special case is the identification of filamentous bacteria. These have primarily been identified based on

their morphology and simple staining techniques using light microscopy since their first comprehensive

description by Eikelboom (Eikelboom, 1975). Several manuals have since been published (e.g. Eikelboom

2000; Jenkins et al., 2004), all of them being based on his original work. However, today it is clear that

although some filamentous bacteria can be fairly reliably identified in this way, the majority can not. As

described in Chapter 5, we strongly recommend to also apply FISH for the identification of filamentous

microorganisms, after having accomplished a preliminary morphological identification using the manuals.

1.2 THE MICROBIOLOGY OF BIOLOGICAL WASTEWATER TREATMENT

Biological treatment of municipal and industrial wastewater worldwide is primarily carried out by the

activated sludge (AS) process. New technologies are being developed such as biofilm reactors, membrane

bioreactors, sequencing batch reactors, etc., but they basically all derive from the AS process. The

common purpose of all these technologies is the use of microorganisms to remove carbon (C), nitrogen

(N), phosphorus (P), micropollutants and pathogens.

New interesting more sustainable solutions are appearing. They include for example recovery of

nutrients (e.g. P) from wastewater, or conversion of organic waste components to usable, valuable

compounds such as bioplastics (polyhydroxyalkanoates, PHA). Conversion of organic waste to energy

by methane production during anaerobic digestion has been utilized for decades and these processes are

further being developed together with other energy yielding processes such as microbial fuel cells.

Management of these complex microbial systems (or ‘microbial resource management’ for the new

sustainable solutions, Verstraete et al., 2007) relies on a fundamental knowledge about the microbial

populations being involved and about the factors that regulate their activity. A reliable identification of the

microorganisms involved is fundamental and with the today’s toolbox of various culture-independent

methods is possible with a high sensitivity and precision. Not only the identity, but also knowledge

about their ecophysiology, ecology, and population dynamics is essential. The present methodological

approaches range from single cell microbiology (e.g. microautoradiography and FISH-Raman

microspectroscopy; Huang et al., 2007), expression of specific functional genes, systems biology

(genomics, transcriptomics, and proteomics) to lab-scale reactors and full-scale studies of chemical

transformations. In this way we are gaining a rapidly increasing understanding of key microorganisms

being involved in many processes and how to affect their presence and activity. However, there is still

2 FISH Handbook for Biological Wastewater Treatment
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much to learn about full-scale systems since most studies so far have been carried out in lab-scale and

pilot-scale reactors.

Several functional groups of bacteria being involved in the most common treatment processes are

now fairly well identified and described. It is primarily bacteria involved in nitrification and to some

extent those involved in denitrification, many bacteria involved in the enhanced biological P-removal

(EBPR), and most bacteria causing settling problems (bulking) or foam/scum formation. In each

functional group, for example the nitrifiers, a limited number of phylogenetic lineages (510) is

encountered in nitrifying plants in general with only a few dominant populations (3–5) being present in a

particular plant within the majority of full-scale plants. We should try to avoid the term ‘‘species’’,

because a concise species definition is lacking in microbial ecology. Lineages, strains or ecotypes might

be equally important for WWTP functioning as ‘‘species’’. The exact microbial community composition

in a particular plant depends on wastewater composition, process design, and plant operation, see below.

However, in common for most functional groups, the controlling factors determining the community

composition is still poorly understood.

Does it matter which bacteria are present in each functional group in a certain treatment plant?

This question can in some cases be answered with a clear ‘yes’, in others ‘perhaps’ or ‘we don’t know’.

For the filamentous bacteria it is a clear ‘yes’. Certain ecotypes cause severe settling properties, others are

(in low number) important for sludge flocs as a backbone and thus for the floc structure. A proper

identification is essential for the selection of efficient control measures towards the unwanted filamentous

bacteria causing settling problems like bulking or foam.

It is more uncertain how important the knowledge about the exact community composition is for

the nitrification performance in a certain activated sludge treatment plant, for example. Based on

in situ observations it has been suggested that the presence of several lineages of ammonia and nitrite

oxidizers ensures a more robust and stable system (e.g. Daims et al., 2001c) compared to the presence

of only a single lineage from each functional group. But it is less documented what the exact

community composition of a certain functional group means for plant stability and operation. Future

studies, all based on a reliable identification of the microbial populations, for example by FISH, will

show. A related question is whether strain-level microbial diversity influences process stability in

WWT. For instance, very closely related nitrite oxidizers, which are slightly different on the genome

level, may co-exist in the same plant. Due to a high sequence similarity (or even identity) of their

16S rRNA, the diversity of these strains would easily be overlooked by current approaches using

methods such as FISH. However, the genomic differences may result in a biologically significant

variety of phenotypes, which respond differently to events such as changes in wastewater composition

or bacteriophage attack. With the latest molecular methods such as environmental genomics and deep

DNA sequencing at hand, future research will elucidate the importance of such microbial

microdiversity from an applied perspective.

Only a few comprehensive studies have been published describing the total community composition

from full-scale wastewater treatment plants. They deal with activated sludge plants, such as industrial

plants for C-removal or N-removal (Juretschko et al., 2002) or a plant with biological N- and P-removal

from a mixture of domestic and industrial wastewater (Kong et al., 2007). However, several studies of

specific populations have been carried out in various full-scale plants, referring solely to nitrifiers,

denitrifiers or filamentous bacteria, for example. These studies are briefly described in the specific

chapters. A summary of the most commonly observed species and genera encountered in WWTPs is

shown in Table 1.1.
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1.3 FACTORS OF IMPORTANCE FOR THE GROWTH OF

MICROORGANISMS

The species composition in treatment plants depends on wastewater composition, process design, and plant

operation. It is obvious that certain functional groups are dominant only if specific processes are included

in the plant’s process design (e.g. N-removal or EBPR). As mentioned above, the controlling factors

Table 1.1. Commonly reported microorganisms in wastewater treatment systems.

Functional group/chapter Commonly reported populations

Nitrifiers (Chapter 2)
Ammonium oxidizers (AOB) Genus Nitrosomonas (N. europaea, N. eutropha,

N. mobilis, and N. oligotropha) (class Betaproteobacteria)
Genus Nitrosospira (class Betaproteobacteria)

Nitrite oxidizers (NOB) Genus Nitrospira (sublineage 1 and 2) (phylum
Nitrospirae)
Genus Nitrobacter (class Alphaproteobacteria)

Anammox bacteria Lineages Brocadia, Kuenenia, Scalindua, and
Anammoxoglobus (phylum Planctomycetes)

Denitrifiers (Chapter 3) Genus Candidatus Accumulibacter (class
Betaproteobacteria)
Genus Azoarcus (class Betaproteobacteria)
Genus Curvibacter (class Betaproteobacteria)
Genus Thauera (class Betaproteobacteria)
Genus Zoogloea (class Betaproteobacteria)

Polyphosphate-accumulating
organisms (PAOs) (Chapter 4)

Genus Candidatus Accumulibacter (class
Betaproteobacteria)
Genus Tetrasphaera (phylum Actinobacteria)

Glygogen-accumulating
organisms (GAOs) (Chapter 4)

Genus Candidatus Competibacter (class
Gammaproteobacteria)
Genus Defluviicoccus (class Alphaproteobacteria)

Filamentous bacteria (Chapter 5) Species in class Alphaproteobacteria
Genus Sphaerotilus (class Betaproteobacteria)
Genus Thiothrix (Thiothrix spp. and type 021N)
(class Gammaproteobacteria)
Candidatus Microthrix parvicella (phylum Actinobacteria)
Genus Skermania (phylum Actinobacteria)
Genus Gordonia (phylum Actinobacteria)
Genus Rhodococcus (phylum Actinobacteria)
Genus Dietzia (phylum Actinobacteria)
Species in phylum and class Chloroflexi
Genus Haliscomenobacter (phylum Bacteroidetes)
Species in candidate phylum TM7

Others (Chapter 6) Genus Candidatus Epiflobacter spp. (phylum
Bacteroidetes)
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determining the species composition are still poorly understood for many species, so during studies of the

microbiology inWWTPs it is important to observe and register the potential factors that may be decisive for

the presence of the different species. An overview of such factors is given in Table 1.2 and more advice on

these is given elsewhere (e.g. Wilderer et al., 2002).

Most important for activated sludge plants is whether solely C-removal is included in the plant design –

meaning that only aerobic tanks are present (besides clarifier), or whether denitrification/EBPR are also

included, meaning that anoxic/anaerobic tanks are present in addition to the aerobic ones. The selective

pressure due to anoxic/anaerobic tanks substantially changes the population structure. Sludge age (mean

cell residence time), which is determined by the sludge loading, is also extremely important. A low sludge

Table 1.2. Overview of important factors determining the microbial population structure in WWTPs.

Process design C-removal, C-removal and nitrification

C- and N-removal (nitrification and denitrification)

C- and N-removal and EBPR

Chemical P-precipitation

Sludge age (total and aerobic)

Sludge loading

Temperature level and seasonal variations

Others

Plant operation Oxygen concentration

Mean cell residence time in different tanks

Addition of chemicals (e.g. Fe/Al salts, polymers)

Addition of external C (e.g. methanol)

Biomass content (e.g. suspended solids per liter)

Others

Treatment plant type Activated sludge (continuous flow, SBR, ...)

Biofilter (type, support media, operation, . . .)

Membrane bioreactor

Others

Wastewater composition Industrial/domestic

Soluble/particulate fractions (C, N, P)

Specific organic compounds (e.g. acetate)

Micronutrients

Toxic substances (e.g. metals, sulfides)

Salinity

Alkalinity

pH value

Others
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age (55–10 days) may not allow nitrification to occur due to the low growth rates of the nitrifiers, whereas

a high sludge age (420–30 days) is important to obtain full N- and P-removal in temperate climates.

Treatment plants running at very high temperatures (440–C), such as those treating special industrial

wastewater, often select for unusual microbial communities.

The composition of the incoming wastewater is another decisive factor for bacterial growth. Industrial

wastewater is often less complex than municipal wastewater, meaning fewer microorganisms may

dominate in the treatment plants. Furthermore, the soluble fraction is often higher. Industrial wastewater

may also not include important nutrients, such as P or N or other micronutrients. Domestic wastewater is

usually more complex with a high fraction of particulates and a more balanced ratio of organics and

nutrients. Other important factors are temperature, salinity, presence of toxic substances, and pH value.

Likewise, the incoming microorganisms may affect the population structure in the treatment plant.

The operation of the plant may also affect the population structure. It is closely interrelated to the

process design of the plant. The exact operation of anoxic/anaerobic mean cell residence time, oxygen

concentration in aerobic tanks, addition of chemicals, carbon sources, and many other factors may affect

the population composition.

The importance of the technology platform being applied to carry out a specific process, such as

nitrification, is also poorly understood. Do we get the same nitrifiers in a full-scale plant based on

activated sludge with different process configurations (e.g. sequencing batch reactors, continuously stirred

reactors or plug-flow reactors), biofilm reactors (e.g. upflow or downflow biofilters, airlift reactors,

granules reactors), or membrane bioreactors treating the same wastewater? Few studies have investigated

this in detail, but the general impression is that we are often dealing with the same species/groups,

although perhaps with slightly different strains/ecotypes (see also above). More studies based on a reliable

identification of the microbial populations are needed.

1.4 THE USE OF THIS FISH HANDBOOK

This handbook contains a detailed description of the FISH protocol for identification and quantification

of various bacteria typically encountered in biological wastewater treatment. The bacteria included

cover several functional groups: nitrifiers, denitrifiers, polyphosphate-accumulating organisms (PAOs),

glycogen-accumulating organisms (GAOs), filamentous bacteria involved in bulking or foaming, and

some others. They can be found in aerobic or aerobic/anoxic/anaerobic treatment systems based on

activated sludge or biofilms applied in various technologies. We have not included bacteria present in

digesters (anaerobic digestion), fuel cells or bacteria carrying out more rarely encountered treatment

processes such as treatment of S-containing waste (for So production) or removal of specific pollutants

(e.g. from polluted sites). Some of these groups may be included in future editions of this book.

The handbook does not cover protozoa as the molecular methods are still not ready for a proper

detection of these.

Detailed information about the ecophysiology, ecology or management of the different bacteria is

outside the scope of this handbook. Such information can be found in the specific literature, manuals, and

books (see the different chapters) or in the new IWA book on ‘‘Microbial Ecology of Activated Sludge’’

(Eds. Seviour and Nielsen, 2009).

For each functional group an overview of the identities of the bacteria and their abundances is

presented. Extensive tables describe the gene probes to be applied for the detection of the microbes, and

phylogenetic trees show the coverage of the various probes. Furthermore, we have included a description

of the typical morphologies targeted by the probes and many of these are documented by FISH images

in the color figure section (Chapter 9). Based on our own experience we recommend the most suitable
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probes. Most probes are selected on the following criteria: they were designed based on published full-

length sequences, the probes are published, and details can be viewed in probeBase (www.microbial-

ecology.net/probebase). Other probes are briefly mentioned in the text. They might be relevant in

special cases.

New or improved gene probes for detection of relevant microbes are continually being developed, so

we plan ongoing revisions of this book, the first in 1–2 years. Information about new editions and other

relevant updates can be found on the web page of the IWA specialist groups (www.iwahq.org). This

handbook has been developed in conjunction with the IWA specialist group on ‘Activated Sludge

Population Dynamics’.

Errors, suggestions for inclusion of other probes, important experiences or other comments are more

than welcome as they can be beneficially included in future editions. Please e-mail Per Halkjær Nielsen

(phn@bio.aau.dk).
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2

The nitrifying microbes: Ammonia oxidizers,
nitrite oxidizers, and anaerobic ammonium
oxidizers

Holger Daims, Frank Maixner, and Markus C. Schmid

2.1 INTRODUCTION

Nitrification is a key process of nitrogen removal in most municipal and industrial wastewater treatment

plants (WWTPs). The term ‘‘nitrification’’ refers to the aerobic, sequential oxidation of ammonia to nitrite

and of nitrite to nitrate. These two steps are catalyzed by specialized chemolithoautotrophic prokaryotes:

ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and nitrite-oxidizing bacteria

(NOB). To date, no organism is known to be able to catalyze both autotrophic nitrification steps.

Anaerobic ammonium oxidation (the ‘‘anammox’’ process) was described as a shortcut in the

biogeochemical N-cycle, where ammonium is oxidized, nitrite is reduced, and N2 gas is formed (van de

Graaf et al., 1995). As anammox is catalyzed by strictly anaerobic and autotrophic bacteria, significant

costs for aeration and carbon sources can be saved if the process is exploited for sewage treatment.

Accordingly, a number of novel approaches for N-removal from wastewater combine partial nitrification

(ammonia oxidation by AOB) with anammox (Third et al., 2001; van Dongen et al., 2001; Pynaert et al.,

2003; van der Star et al., 2007).

All nitrifying microbes and anammox bacteria are very slow-growing organisms, which are sensitive to

changes of their growth conditions. As a consequence, nitrification has often caused trouble in wastewater

treatment due to unpredictable performance breakdowns. The causes of such events remain obscure in

# 2009 IWA Publishing. FISH Handbook for Biological Wastewater Treatment: Identification and quantification of microorganisms
in activated sludge and biofilms by FISH. Edited by Per Halkjær Nielsen, Holger Daims and Hilde Lemmer. ISBN: 9781843392316.
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many cases. Technical applications of anammox are young, and field reports are still rare, but the

extremely slow growth of anammox bacteria may also become a problem when their populations decline

for unknown reasons and the process fails in a full-scale WWTP. Therefore, fast methods to detect and

quantify the involved organisms in activated sludge or biofilm are important tools not only for

fundamental research, but could become relevant in the future also for the routine operation of nitrifying

and anammox-based reactors: If a decline of any of the key populations is detected soon enough,

operational countermeasures may be able to prevent a worst-case scenario. FISH certainly is the best

available technique for this purpose, and a large set of rRNA-targeted probes is already available for the

detection of AOB, NOB, and anammox bacteria. This chapter provides an overview of the most common

nitrifiers and anammox organisms in WWTPs and of the FISH probes frequently used to detect and to

quantify these microbes.

2.2 AMMONIA OXIDIZERS

In most nitrifying WWTPs, ammonia is oxidized by AOB of the genus Nitrosomonas (including

Nitrosococcus mobilis). Most commonly found are AOB related to N. europaea, N. eutropha, N. mobilis,

and N. oligotropha (Figure 2.1). Experiments using lab-scale reactors and studies of pure cultures suggested

that N. oligotropha and closely related AOB are better adapted to low ammonia concentrations than

N. europaea (Bollmann et al., 2002, and references therein; Limpiyakorn et al., 2007). However, detailed

studies have been carried out only with a limited number of AOB strains. Furthermore, Lydmark et al.

(2007) observed differential responses of N. oligotropha-related populations to ammonia shifts in a pilot-

scale plant. Local differences in substrate concentrations (microniches) within flocs or biofilms may also

affect the distribution and activity of AOB in WWTPs (Gieseke et al., 2005). Nitrosococcus mobilis-related

AOB seem to occur especially in reactors treating sludge liquor or other types of wastewater with elevated

ammonia and salt concentrations such as animal rendering waste (Juretschko et al., 1998).

In activated sludge flocs and biofilms, AOB related to Nitrosomonas usually form almost spherical,

compact cell aggregates (Figure 9.1, Chapter 9). Single cells within these clusters are well visible at 630£

or 1000£ magnification. The diameter of most AOB cell clusters is 10–50 mm. Less compact aggregates

occur occasionally, where the cells are more irregularly arranged with more space between them. Single

AOB cells are seldom found in activated sludge by microscopy, but they may easily be overlooked when

dense floc or biofilm structures are observed.

AOB of the genus Nitrosospira have occasionally been detected in WWTPs, but these AOB are

generally more common in terrestrial habitats and seem to play only minor roles for wastewater treatment.

Notable exceptions are rhizoremediation plants, where Nitrosospira-related organisms seem to be more

frequent (Haleem et al., 2000).

Both genera Nitrosomonas and Nitrosospira belong to the Betaproteobacteria. In marine habitats,

Nitrosomonas marina and the gammaproteobacterial lineage of AOB with the two species Nitrosococcus

oceani and N. halophilus are common. Due to their high salt requirements, these AOB are absent from

most WWTPs with the possible exception of brackish water and saltwater systems: N. marina was found

in a nitrifying trickling filter biofilm associated with a marine aquaculture system (Foesel et al., 2008).

Occurrence of N. oceani and N. halophilus in WWTPs has not been reported yet.

The question of whether AOA might be important for nitrification in WWTPs still is a matter of active

research and dispute. Indeed, AOA have been detected in activated sludges by means of specific

polymerase chain reaction (PCR) (Park et al., 2006). However, PCR does not allow to distinguish intact,

active cells from naked DNA or metabolically inactive cells that are occasionally swept into the activated
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sludge systems but have no relevant functions there. So far, high abundance of AOA in nitrifying WWTPs

has not been confirmed by more robust methods such as quantitative FISH with rRNA-targeted probes.

2.2.1 Probes for the detection of AOB

The oligonucleotide probes, which have most frequently been used to detect and quantify AOB in

WWTPs, are listed in Table 2.1. The tree in Figure 2.1 illustrates the specificity and coverage of the

various probes. Please note that this compilation of probes is not complete (i.e. additional AOB-targeted

probes have been published). However, the probes listed here have been tested in a large number of

studies by different research groups. Their coverage and specificity have been re-evaluated, based on

increasingly large rRNA sequence databases, since the probes were originally published.
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Figure 2.1. 16S rRNA-based phylogenetic tree showing main lineages of known bacterial AOB. Brackets
indicate the coverage of the probes listed in Table 2.1. Dashed brackets indicate incomplete sequence
information at the respective probe target site, so that precise coverage information cannot be inferred. The
exact branching order of the AOB lineages cannot yet be determined due to a limited phylogenetic resolution
of the 16S rRNA marker gene. Therefore, unclear tree topology is depicted as multifurcation.
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If the aim is to detect and quantify most of the AOB in an activated sludge sample at once, it is

convenient to use a probe mixture consisting of the probes Nso1225 þ NEU þ NmV þ Cluster6a192

in equimolar amounts (and also the respective competitor oligonucleotides). All probes except the

competitors should then be labeled with the same fluorochrome. All the probes in this ‘‘AOB-mix’’ can be

used with 35% formamide in the hybridization buffer. In order to differentiate the AOB in a sample, the

same ‘‘AOB-mix’’ can be used, but then with probes labeled with different fluorochromes. In addition, one

could apply the other probes (Table 2.1) using the respective formamide concentrations.

For unknown reasons, probe Nso1225 occasionally yields only dim fluorescence signals even though

the target AOB are present in the sample and their cellular ribosome content would be high enough for a

bright fluorescence signal after FISH. Additional test hybridizations with probe Nso190 should be carried

out to ensure that no AOB are overlooked in a sample. The coverage of Nso190 resembles that of

Nso1225, but Nso190 is more reliable in terms of probe brightness. However, due to its requirement for

55% formamide, Nso190 cannot be mixed with the other probes and has to be applied separately.

Please note that probe Nsv443 seldom yields unambiguously positive signals when applied to activated

sludge. In some cases a few cells are stained by this probe in each field of view, but their density seems

too low for technical relevance. Whether such cells are Nitrosospira spp. or unspecifically detected non-

target organisms remains to be shown. As mentioned already, higher densities of Nitrosospira spp. have

Table 2.1. rRNA-targeted oligonucleotide probes used to detect AOB in nitrifying activated sludge and
biofilm samples.

Probe
name Target Sequence (50-30)

FA1)

(%)
Competitor

oligonucleotide2) Reference

Nso1225 Betaproteobacterial
ammonia-oxidizing
bacteria

CGC CAT TGT ATT
ACG TGT GA

35 none Mobarry et al.
1996

Nso190 Betaproteobacterial
ammonia-oxidizing
bacteria

CGA TCC CCT GCT
TTT CTC C

55 none Mobarry et al.
1996

Nsm156 Nitrosomonas spp.,
Nitrosococcus
mobilis

TAT TAG CAC ATC
TTT CGA T

5 none Mobarry et al.
1996

Nsv443 Nitrosospira spp. CCG TGA CCG TTT
CGT TCC G

30 none Mobarry et al.
1996

NEU Most halophilic and
halotolerant
Nitrosomonas spp.

CCC CTC TGC TGC
ACT CTA

403) TTC CAT CCC CCT
CTG CCG

Wagner et al.
1995

NmV Nitrosococcus
mobilis

TCC TCA GAG ACT
ACG CGG

35 none Juretschko et al.
1998

Cluster
6a192

Nitrosomonas
oligotropha lineage
(Cluster 6a)

CTT TCG ATC CCC
TAC TTT CC

35 CTT TCG ATC CCC
TGC TTC C

Adamczyk et al.
2003

1) FA ¼ Formamide.
2) To ensure probe specificity, the unlabeled competitor must be used in equimolar amounts together with the
fluorescently labeled probe.
3) NEU can also be used with 35% formamide.
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not frequently been observed in full-scale wastewater treatment plants. If cells are detected after FISH

with Nsv443 in activated sludge, it is recommended that additional control experiments should be

performed to check for autofluorescent cells, or unspecific binding of DNA or of the fluorochromes to cell

surfaces. This can be accomplished by (i) using a nonsense probe, which cannot target any bacterium; (ii)

using the same probe labeled with a different fluorochrome; or (iii) adding large amounts of DNA (e.g.

salmon sperm DNA) to the sample prior to FISH in order to saturate any unspecific DNA binding sites on

cell surfaces. Furthermore, a hierarchy of phylogenetically nested probes should be used to confirm the

identity of probe-positive cells. In case of Nitrosospira this could be a combination of Nsv443 with probes

Nso1225 or Nso190, respectively, which should be labeled with a different fluorochrome than Nsv443.

2.3 NITRITE OXIDIZERS

In the majority of nitrifying WWTPs, the dominant NOB are members of the genus Nitrospira

(e.g. Juretschko et al., 1998; Schramm et al., 1998; Daims et al., 2001a; Gieseke et al., 2003). This genus

is part of the distinct bacterial phylum Nitrospirae, and thus is not closely related to the other known

NOB, which are all Proteobacteria (Figure 2.2). All Nitrospira are slow-growing and recalcitrant bacteria,

which are very difficult to culture in the laboratory. Only three isolates have been obtained from other

sources than activated sludge, whereas no Nitrospira has been isolated from any WWTP although one high

enrichment was achieved (Spieck et al., 2006). Therefore, the discovery that Nitrospira (not Nitrobacter)

are the key NOB in full-scale wastewater treatment plants (Juretschko et al., 1998) was based on the use of

FISH and other cultivation-independent methods. Nitrospira is a diverse genus that consists of several

phylogenetic sublineages (Figure 2.2). In WWTPs, the sublineages I, II and IV are found, but in many

systems sublineage I Nitrospira are predominant. Evidence exists that sublineage I can outcompete

sublineage II Nitrospira at (transiently) elevated nitrite concentrations (Maixner et al., 2006). Sublineage

IV, which occurs in nature in marine habitats, is limited to WWTPs receiving sewage with high salt

concentrations.

All known Nitrospira in WWTPs form spherical or irregularly shaped cell aggregates, which consist of

several hundred or thousand cells (Figure 9.2, Chapter 9). The diameter of these aggregates is 10–100 mm,

but even larger clusters are found occasionally. In particular the large Nitrospira aggregates often contain

narrow ‘‘channels’’ and larger cavities (Figure 9.2, Chapter 9).

In contrast to Nitrospira, the genus Nitrobacter seems to play a minor role in wastewater treatment.

Nitrobacter cells occur in many reactors and can be enriched or isolated by incubation of activated sludge

in artificial nitrite media, but FISH has shown that Nitrobacter do usually not reach significant cell

densities in WWTPs (Wagner et al., 1996). Notable exceptions are reactors that temporarily contain

elevated nitrite concentrations, for example sequencing batch reactors treating highly concentrated sludge

liquor. In such systems, Nitrobacter can also reach a relatively high abundance (Daims et al., 2001a),

probably because these NOB are adapted to higher NO�
2 concentrations whereas Nitrospira are adapted to

lower NO�
2 concentrations (Schramm et al., 1999). Nitrobacter in WWTPs form cell aggregates like the

other nitrifiers, or they occur as single cells embedded in the biofilm matrix.

In flocs and biofilms, NOB often occur in the direct spatial neighborhood to AOB, which reflects the

mutualistic symbiosis of these two functional groups (Maixner et al., 2006) (Figure 9.3, Chapter 9).

Other NOB comprise the marine genera Nitrococcus and Nitrospina and the only recently discovered

betaproteobacterial Nitrotoga arctica (Alawi et al., 2007). To date, none of these NOB has been shown,

by FISH or any other quantitative cultivation-independent assay, to be functionally important for

nitrification in wastewater treatment.
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2.3.1 Probes for the detection of NOB

The oligonucleotide probes, which have most frequently been used to detect and quantify NOB in

WWTPs, are listed in Table 2.2. The tree in Figure 2.2 illustrates the specificity and coverage of the

various probes. Please note that this compilation of probes is not complete (i.e. additional NOB-targeted

probes have been published). However, most of the probes listed here have been tested in a large number

of studies by different research groups. Their coverage and specificity have been re-evaluated, based on

increasingly large rRNA sequence databases, since the probes were originally published.

In most cases, probes Ntspa662 targeting the genus Nitrospira and NIT3 targeting Nitrobacter are

sufficient to detect NOB in WWTPs. Probe Ntspa662 can be combined with Ntspa712, which also targets

all Nitrospira, or with Ntspa1431, Ntspa1151 and Nspmar62, which target different sublineages of this

genus. The latter combinations are especially interesting if the probes are labeled with different

fluorescent dyes, so that one can determine whether different Nitrospira co-exist in the same WWTP.

Probes Ntspa1026 and Nsr1156 usually yield excellent signal intensities with targeted Nitrospira, but

neither probe completely covers the respective Nitrospira sublineages that are relevant for wastewater

treatment. Therefore, the use of these probes is recommended only in combination with either Ntspa662 or

Ntspa712 to increase the likelihood that all Nitrospira in a sample are detected.

2.4 ANAMMOX BACTERIA

All known anaerobic ammonium oxidizers belong to the phylum Planctomycetes (Strous et al., 1999).

They are peculiar prokaryotes in many respects, but their most distinct feature is intracellular
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Figure 2.2. 16S rRNA-based phylogenetic tree showing main lineages of known bacterial NOB. Brackets
indicate the coverage of the probes listed in Table 2.2. Dashed brackets indicate incomplete coverage of the
target groups. Sublineages I–IV comprise the genus Nitrospira. (�) Probe NTG840 may also bind to some
nontarget Betaproteobacteria, which have no 16S rRNA sequence mismatch at the probe binding site.
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compartmentalization, which is very uncommon in bacteria (Lindsay et al., 2001). Since the discovery of

anammox bacteria about a decade ago, several different representatives have been enriched from WWTPs.

These are the lineages Brocadia with the candidate species ‘‘B. anammoxidans’’ (Strous et al., 1999) and

‘‘B. fulgida’’ (Kartal et al., 2008), Kuenenia with ‘‘K. stuttgartiensis’’ (Schmid et al., 2000), Scalindua

with ‘‘S. brodae’’ and ‘‘S. wagneri’’ (Schmid et al., 2003), and Anammoxoglobus with ‘‘A. propionicus’’

(Kartal et al., 2007). The best studied anammox organism so far is K. stuttgartiensis whose genome was

sequenced, by environmental genomics, and was used to reconstruct the intricate anammox biochemical

pathway (Strous et al., 2006). Interestingly, A. propionicus co-oxidizes propionate and ammonium

(Kartal et al., 2007), whereas B. fulgida co-oxidizes acetate and ammonium more efficiently than the other

anammox bacteria (Kartal et al., 2008). These physiological differences suggest adaptations of the various

anammox organisms to specific ecological niches, which could affect the anammox community

composition in WWTPs.

Table 2.2. rRNA-targeted oligonucleotide probes used to detect NOB in nitrifying activated sludge and
biofilm samples.

Probe
name Target Sequence (50-30)

FA1)

(%)
Competitor

oligonucleotide2) Reference

Ntspa712 Phylum Nitrospirae CGC CTT CGC CAC
CGG CCT TCC

503) CGC CTT CGC CAC
CGG TGT TCC

Daims et al.
2001a

Ntspa662 Genus Nitrospira GGA ATT CCG CGC
TCC TCT

35 GGA ATT CCG CTC
TCC TCT

Daims et al.
2001a

Ntspa1026 Nitrospira
sublineages
I and II4)

AGC ACG CTG GTA
TTG CTA

20 none Juretschko
et al. 1998

Ntspa1431 Nitrospira
sublineage I

TTG GCT TGG GCG
ACT TCA

35 none Maixner et al.
2006

Ntspa1151 Nitrospira
sublineage II

TTC TCC TGG GCA
GTC TCT CC

35 none Maixner et al.
2006

Nsr1156 Nitrospira
sublineage II

CCC GTT CTC CTG
GGC AGT

30 none Schramm
et al. 1998

Nspmar62 Nitrospira
marina-related
Nitrospira

GCC CCG GAT TCT
CGT TCG

40 none Foesel et al.
2008

NIT3 Genus Nitrobacter CCT GTG CTC CAT
GCT CCG

40 CCT GTG CTC CAG
GCT CCG

Wagner et al.
1996

NTG840 Nitrotoga arctica5) CTA AGG AAG TCT
CCT CCC

10–20 none Alawi et al.
2007

1) FA ¼ Formamide.
2) To ensure probe specificity, the unlabeled competitor must be used in equimolar amounts together with the
fluorescently labeled probe.
3) Ntspa712 can also be used with 35% formamide, especially if combined with Ntspa662.
4) Ntspa1026 does not cover all members of these Nitrospira sublineages.
5) NTG840 has not yet been used with activated sludge. Nevertheless it is listed here, because Nitrotoga-like
bacteria have been enriched from a WWTP (Alawi et al., 2007) and NTG840 is the only published probe
targeting this organism. Please note that NTG840 is not fully specific as some nontarget bacteria have no
16S rRNA sequence mismatches at the probe binding site.
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Table 2.3. rRNA-targeted oligonucleotide probes used to detect anammox organisms in activated sludge
and biofilm samples.

Probe
name Target Sequence (50-30)

FA1)

(%)
Competitor

oligonucleotide Reference

Pla46 all Planctomycetes GAC TTG CAT GCC
TAA TCC

30 none Neef et al.
1998

Amx368 all anammox bacteria CCT TTC GGG CAT
TGC GAA

15 none Schmid et al.
2003

Amx820 B. anammoxidans
K. stuttgartiensis

AAA ACC CCT CTA
CTT AGT GCC C

40 none Schmid et al.
2000

Kst157 K. stuttgartiensis GTT CCG ATT GCT
CGA AAC

25 none Schmid et al.
2001

Amx1015 B. anammoxidans GAT ACC GTT CGT
CGC CCT

60 none Schmid et al.
2000

Bfu613 B. fulgida GGA TGC CGT TCT
TCC GTT AAG CGG

30 none Kartal et al.
2008

Apr820 A. propionicus AAA CCC CTC TAC
CGA GTG CCC

40 none Kartal et al.
2007

BS820 S. wagneri TAA TTC CCT CTA
CTT AGT GCC C

40 none Kuypers et al.
2003

Scabr1114 S. brodae CCC GCT GGT AAC
TAA AAA CAA G

20 none Schmid et al.
2003

1) FA ¼ Formamide.

Kst157

BS820

Brocadia fulgida

Brocadia anammoxidans

Anammoxoglobus propionicus

Kuenenia stuttgartiensis

Scalindua wagneri

Scalindua brodae

Amx820

Amx1015
Amx820
Apr820

other Planctomycetes
(not anammox bacteria)

Scabr1114

Bfu613

A
m

x3
68

Pl
a4

6

Figure 2.3. 16S rRNA-based phylogenetic tree showing main lineages of known anammox organisms.
Brackets indicate the coverage of the probes listed in Table 2.3.
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Usually, anammox bacteria occur as small to large cell aggregates (Figure 9.4, Chapter 9). Anammox

bacteria have a coccoid morphology and a ‘donut-like’ shape after FISH with an apparent small hole in the

centre of the cells. This ‘hole’ is caused by the absence of ribosomes (and thus, of target molecules for

FISH probes) in this region. Hence, in combination with suitable FISH probes, anammox organisms are

easy to identify by microscopy. However, one should keep in mind that other planctomycetes, which are

morphologically similar, also occur in WWTPs (Neef et al., 1998). These planctomycetes probably are

heterotrophs not involved in the anammox process, and they are also labeled by general planctomycetes-

specific FISH probes such as Pla46. Thus, anammox-specific FISH probes (Schmid et al., 2005) should

always be used to confirm that donut-shaped cells resembling planctomycetes really are anammox

bacteria.

2.4.1 Probes for the detection of anammox organisms

The oligonucleotide probes, which are best for detecting and quantifying anammox bacteria in WWTPs,

are listed in Table 2.3. The tree in Figure 2.3 illustrates the specificity and coverage of the various probes.

Note that some additional probes targeting anammox bacteria have been published (a compilation can be

found in Schmid et al., 2005). However, these other probes do not offer a better coverage and specificity

than the probes listed in Table 2.3 for anammox organisms occurring in full-scale WWTPs.
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3

Identification of denitrifying microorganisms
in activated sludge by FISH

Jeppe Lund Nielsen and Aviaja A. Hansen

3.1 INTRODUCTION

Denitrification is defined as the anoxic process in which nitrate or nitrite is reduced to gaseous nitrogen

oxides (nitrogen oxide, nitrous oxide or free nitrogen). The process has been the focus of numerous studies

due to its major importance in the global N-cycle, for nitrogen removal in the wastewater industry, and

lately also for potential production of the greenhouse gas N2O. Although subject for many research

studies, relatively little is known about the microorganisms carrying out the process in full-scale WWTPs

and in particular their phylogenetic distribution (Juretschko et al., 2002; Wagner and Loy, 2002).

However, a few recent studies have revealed some important denitrifiers in full-scale WWTPs (Thomsen

et al., 2007; Hagmann et al., 2008; Morgan-Sagastume et al., 2008).

The denitrifying organisms are facultative anaerobic heterotrophs and, less frequently, autotrophs. The

interaction of the denitrification process and the nitrification process is the main cause for removal of

nitrogen from wastewater. While nitrification primarily occurs under aerobic conditions, denitrification

requires anoxic conditions with the presence of nitrate or nitrite and easily degradable organic substrates.

Under oxic conditions most denitrifiers carry out full aerobic respiration. These facultative denitrifiers

seem to constitute a major fraction of the whole of bacteria in the activated sludge community (Nielsen

and Nielsen, 2002a; Morgan-Sagastume et al., 2008). Investigations on the denitrification rates in the

presence of various electron donors reveal the presence of several specialized populations of denitrifiers

in activated sludge (Thomsen et al., 2007; Hagmann et al., 2008; Morgan-Sagastume et al., 2008). Some
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microorganisms are only partially involved in the denitrification process for example by reducing nitrate

and/or nitrite to nitric oxide or nitrous oxide but these are not well described.

3.2 IDENTITY OF DENITRIFIERS IN WASTEWATER TREATMENT SYSTEMS

The organisms capable of denitrification are not limited to specific microbial taxa but present in many

phylogenetic subgroups. Denitrifiers are found among the Proteobacteria, Firmicutes, and the

Bacteroidetes covering more than 50 genera (Zumft, 1992). Previously, culture-dependent studies of

denitrifiers typically described these to be members of Pseudomonas, Bacillus or Alcaligenes, but these

are usually not the dominant genera in the activated sludge process. Several publications based on both

culture-dependent and culture-independent approaches indicate that other denitrifiers must be dominating

the activated sludge system (e.g. Heylen et al., 2006a,b; Hagman et al., 2008).

Culture-independent studies carried out directly in a WWTP treating industrial wastewater (e.g.

Juretschko et al., 2002; Wagner and Loy, 2002) have shown the betaproteobacterial genus Azoarcus

(Rhodocyclaceae) as the dominating denitrifier, while similar studies in treatment plants treating

municipal wastewater have revealed that several betaproteobacterial genera belonging to the families

Comamonadaceae and Rhodocyclaceae are present. Within the Comamonadaceae, Curvibacter-related

organisms (reclassified from Aquaspirillum, Ding and Yokota, 2004) and within the Rhodocyclaceae

members of the genera Zoogloea, Azoarcus, and Thauera are the dominating denitrifiers (Rossellò-Mora

et al., 1995; Juretschko et al., 2002; Thomsen et al., 2004; 2007). In WWTPs with Enhanced Biological

Phosphorus Removal (EBPR) with combined nitrogen removal, polyphosphate accumulating members of

Accumulibacter (Betaproteobacteria) are present and some of these, but presumably not all, are capable of

denitrification (e.g. Kong et al., 2004). The identity of these subgroups of denitrifying Accumulibacter is

not well known and it has hitherto not been possible to phylogenetically distinguish these by application

of gene probes or by other molecular methods (Seviour et al., 2003). These groups of Betaproteobacteria

constitute the vast majority of denitrifying microorganisms in most WWTPs (Thomsen et al., 2007),

although several other, less abundant unclassified denitrifiers also are present (Morgan-Sagastume et al.,

2008). Culture-dependent studies have shown that denitrifying organisms belonging to the alphaproteo-

bacterial genera Paracoccus (Rhodobacteraceae) and Rhizobium (Rhizobiaceae) are present in WWTPs

(Heylen et al., 2006a,b). However, due to the lack of appropriate probes the abundance of these

denitrifying Alphaproteobacteria has not been further evaluated.

Culture-dependent studies of wastewater treatment systems fed with methanol under denitrifying

conditions frequently identify Alphaproteobacteria belonging to the genus Hyphomicrobium (Hypho-

microbiaceae) (e.g. Timmermans and Van Haute 1983), which have been further verified by dot blot

analysis on the activated sludge (Layton et al., 2000).

Studies carried out in denitrifying lab-scale reactors inoculatedwith activated sludge and run on acetate or

other single substrates reveal high diversities of potential denitrifying organisms belonging to Proteo-

bacteria, Bacteroidetes, Chloroflexi, Firmicutes, and Actinobacteria (Yosie et al., 2001; Ginige et al., 2004;

Osaka et al., 2006). This may not, however, reflect the indigenous consortia abundant in full-scale WWTPs.

3.3 ABUNDANT DENITRIFIERS IN FULL-SCALE PLANTS

Family Comamonadaceae:

Genus Curvibacter. Curvibacter has been found to be a potential dominating denitrifier in full-scale plants

without external carbon addition with abundances of 11–29% of all Bacteria (Thomsen et al., 2004).
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Its morphology is quite distinct and easy to recognize. It is typically large and coccoid with a diameter of

1–1.5 mm and grows as single cells or in microcolonies typically ranging from 10–15 mm in diameter, see

Figure 9.5, Chapter 9.

Family Rhodocyclaceae:

Genus Azoarcus. The abundance of Azoarcus in some full-scale plants varies from 3–16% of the total

biomass (Thomsen et al., 2007), but in plants with addition of an external carbon source in the form of

methanol more than 30% have been found (Hagman et al., 2008). Different morphotypes have been

observed, but usually they appear rod-shaped (0.5–1 mm £ 1–2 mm) and grow as single cells or in

relatively small microcolonies (5–20 mm in diameter), see Figure 9.6, Chapter 9.

Genus Thauera. The number of Thauera-related bacteria ranges from 2–11% of the total biomass in

some full-scale plants (Thomsen et al., 2007). The cells usually grow in microcolonies of various sizes

(5–40 mm), and the rod-shaped cell size is typically 1.0 £ 2.5 mm, see Figure 9.7, Chapter 9.

Genus Zoogloea. Zoogloea-related bacteria are typically observed in small numbers except for a few

plants in which up to 10% of the total biomass has been reported (Rossellò-Mora et al., 1995). Zoogloea-

related bacteria have often been described as forming colonies in typical branched gelatinous matrices, the

so-called Zoogloea fingers. Most cells are rod-shaped (1–1.5 mm £ 1 mm).

Genus Accumulibacter. The presence of the potential PAO Accumulibacter usually indicates the

presence of an EBPR configuration with abundances ranging from 3–15% of the total biomass. The cells

are typically rod-shaped (1–1.5 mm) and almost always growing in microcolonies (Larsen et al., 2006).

See also Chapter 4 about PAOs.

Other denitrifiers, such as Acidovorax, are usually observed but only in small numbers, typically less

than 1–2% of the total biomass (Heylen et al., 2008). Glycogen-accumulating organisms (e.g.

Competibacter) contain members that are capable of denitrification (Zeng et al., 2003), see Chapter 4.

Other potential denitrifiers
Denitrifiers from several genera have been isolated from activated sludge. Figure 3.1 shows a selection of

the phylogenetically identified isolates. The tree has also been supplemented with sequences from three

denitrifying clone libraries, derived i) from stable isotope probing of denitrifiers grown in lab-scale

reactors on acetate and methanol (Ginige et al., 2004, 2005; and Osaka et al., 2006) and ii) denitrifying

pure cultures from lab-scale reactors seeded with wastewater (Etchebehere et al., 2001; Yosie et al., 2001;

Martin et al., 2006; Wang et al., 2007). Recently, it was found that hitherto unidentified bacteria with a

potential denitrifying capability (besides from the Betaprotobacteria) may be found within the groups of

Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria. The study revealed that their relative

abundance in the activated sludge investigated was almost as important as the Betaproteobacteria

(Morgan-Sagastume et al., 2008).

3.4 PROBES FOR DETECTION OF DENITRIFIERS

In Table 3.1 the oligonucleotide probes that can be used for identification and quantification of denitrifiers

or potential denitrifiers are listed. In the phylogenetic tree in Figure 3.1 the specificities and coverage of

the probes can be seen. At present it is not possible to target all denitrifiers, but for detection of the

majority of the Betaproteobacteria it is recommended to use the following probes:

Of the Comamonadaceae family, most Acidovorax can be targeted by probe ACI208 (Amann et al.,

1996), but also Variovorax are targeted. Some Curvibacter are targeted by Curvi997 with a high

specificity (Thomsen et al., 2004).
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Figure 3.1. 16S rRNA-based phylogenetic tree showing denitrifying bacteria from activated sludge. Brackets
indicate the coverage of the probes listed in Table 3.1. Dashed brackets indicate incomplete coverage of the
indicated groups. aSequences from bioreactor studies, bSequences from full-scale and bioreactor studies.
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Table 3.1. 16S rRNA oligonucleotide probes for the identification of potential denitrifiers.

Probe name Target Sequence 50-30 FA
conc

Competitor
oligonucleotide

Reference

PAR 651 Genus Paracoccus ACC TCT CTC GAA CTC
CAG

40 None Neef et al., 1996

G_Rb Rhodobacter,
Roseobacter

GTC AGT ATC GAG CCA
GTG AG

30 None Giuliano et al., 1999

HyphoCII-654 Hyphomicrobium
denitrificans,
H. methylovorum,
H. facilis

CCC ACC TCT ATC GGA
CTC

10 None Layton et al., 2000

Curvi997� Curvibacter CTC TGG TAA CTT CCG
TAC

35 2 competitor probes
CTC TGG CAA CTT CCG TAC
CTC TGG TCA CTT CCG TAC

Thomsen et al., 2004

PAOmix Most Accumulibacter PAO462, PAO651 and
PAO846

35 None Crocetti et al., 2000

AZA645�� Most members of the
Azoarcus cluster

GCC GTA CTC TAG CCG
TGC

20 None Hess et al., 1997

Thau646 Thauera TCT GCC GTA CTC TAG
CCT T

45 Lajoie et al., 2000

ACI208 Acidovorax spp. CGC GCA AGG CCT TGC 20 None Amann et al., 1996

ZRA23a Most members of the
Zoogloea lineage, not
Z. resiniphila

CTG CCG TAC TCT AGT
TAT

35 None Rosselló-Mora et al., 1995

AT1458 Azoarcus-Thauera
cluster

GAA TCT CAC CGT GGT
AAG CGC

50 None Rabus et al., 1999

Pae997 most true
Pseudomonas spp.

GCT GGC CTA GCC TTC 0 None Amann et al., 1996

� Renamed from Aqs997
�� Renamed from AZO644
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Of the family Rhodocyclaceae, most Azoarcus can be targeted by probe AZA645 (Hess et al., 1997).

Probe Thau646 (formerly probe MZ1) targets Thauera (Lajoie et al., 2000) but with a low specificity and

with a high proportion of outgroup hits including Dechloromonas of the Rhodocyclaceae family,

Comamonas of the Comamonadaceae family and Aquabacterium of the Incertae Sedis 5 (Figure 3.1).

Most Azoarcus and Thauera can be detected by probe AT1458 (Rabus et al., 1999). The probe is very

specific, apart from targeting most of the Castellaniella of the Alcaligenaceae family. ZRA (identical to

ZRA23a) targets a high proportion of Zoogloea-related organisms (Rosselló-Mora et al., 1995), but not all

known Zoogloea strains from WWTPs (Figure 3.1).

Accumulibacter-related PAOs can be targeted by the PAOmix (Crocetti et al., 2000), but it targets also

a high proportion of Propionivibrio of the Rhodocyclaceae family.

Specific probes for the denitrifying Alphaproteobacteria and Gammaproteobacteria have yet to be

developed and therefore the probes available have a low coverage of the denitrifiers in WWTPs (Figure

3.1). The following probes can be used to target Alphaproteobacteria:

PAR651 targets most Paracoccus of the family Rhodobacteraceae with a high specificity (Neef et al.,

1996). The denitrifying Hyphomicrobium is specifically targeted by probe HyphoCII-654 (Layton et al.,

2000) (see Figure 9.9, Chapter 9). G_Rb is a broad probe targeting most Rhodobacteraceae and some

Phyllobacteriaceae, see Figure 9.10, Chapter 9. (Giuliano et al., 1999; Eilers et al., 2000) and has

therefore also many non-denitrifying organism targets.

The following probe can be used to target some potential denitrifiers within the Gammaproteobacteria:

Pae997 targets Pseudomonas (Amann et al., 1996) with a high specificity, see Figure 9.11, Chapter 9.

24 FISH Handbook for Biological Wastewater Treatment

Downloaded from https://iwaponline.com/ebooks/book-pdf/521273/wio9781780401775.pdf
by IWA Publishing user
on 04 February 2019



4

Identification of polyphosphate-accumulating
and glycogen-accumulating organisms
by FISH

Per Halkjær Nielsen, Hien Thi Thu Nguyen, Simon Jon McIlroy,
Artur Tomasz Mielczarek, and Robert Seviour

4.1 INTRODUCTION

Enhanced biological phosphorus removal (EBPR) processes have been widely used to remove soluble

phosphate from domestic wastewater. Consistent and reliable operation of these systems requires

successful selection and enrichment of microorganisms that biologically accumulate Pi into granules of

intracellular polyphosphate.

The microbial communities in EBPR processes comprise populations considered important for

EBPR [i.e. polyphosphate-accumulating organisms (PAOs)], those competing with PAOs [i.e. glycogen-

accumulating organisms (GAOs)], and yet-to-be identified populations whose functions and interactions

with the PAOs and GAOs remain to be further understood. PAOs in full-scale systems are mainly

represented by the betaproteobacterial Candidatus Accumulibacter phosphatis (hereafter called

Accumulibacter) or related species that consist of members with and without an ability for denitrification.

Proliferation of glycogen-accumulating organism populations can cause failure in EBPR plants as they

compete with the PAOs for organic substrates during the anaerobic period without contributing to Pi

removal (Oehmen et al., 2007). Originally they were referred to as the ‘‘G bacteria’’ (Cech and Hartman,

1990) and more recently as the tetrad-forming microorganisms (TFOs) morphotype, since some appear as
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distinctive coccal-shaped cells growing in tetrads (Tsai and Liu, 2002). The term glycogen-accumulating

organisms (GAOs) was first suggested by Mino et al. (1995) defining a phenotype that stores glycogen

aerobically and consumes it anaerobically for energy production for the uptake of short-chain fatty acids

for PHA production. However, not all GAOs appear in tetrads. It has been reported that in the absence of

PAOs, phylogenetically different GAOs can compete with each other in lab-scale reactors. Less is known

about their competition in full-scale plants.

A comprehensive set of rRNA-targeted oligonucleotide probes has been applied to identify in situ such

populations in full-scale EBPR systems around the world including countries like Japan, USA, Denmark,

and Australia. The role of Accumulibacter-related PAOs seems less important in full-scale EBPR

processes compared to laboratory-scale EBPR systems fed with acetate as a sole carbon source. Thus, it is

necessary to further identify other important PAOs besides Accumulibacter in EBPR processes and to

study their dynamics/interaction with GAOs and their ecophysiological traits in full-scale processes under

controlled operational conditions.

4.2 IDENTITY OF PAOs

Accumulibacter. The most abundant and important Gram negative identified PAOs in most full-scale

EBPR wastewater treatment plants belong to the genus Accumulibacter in the family Rhodocyclaceae

of subclass 2 of the Betaproteobacteria. None have been grown in pure culture. Accumulibacter

exhibit in situ the phenotype expected from the biochemical models for the PAO. Thus, under

anaerobic conditions short-chain fatty acids are assimilated and used for synthesis of PHA with Pi

release. Subsequent aerobic PHA respiration provides energy for Pi assimilation and polyphosphate

synthesis. Details of their physiology are given in two reviews (Seviour et al., 2003; Oehmen et al.,

2007). Accumulibacter can become highly enriched in lab-scale reactors and are also generally

common in most full-scale EBPR plants, with typical relative abundances reported between 3–15% of

the total biomass expressed by the EUBmix. When the functional genes of polyphosphate kinase

(ppk) are used as phylogenetic markers at least five clades of Accumulibacter exist in wastewater

treatment plants and natural ecosystems (Peterson et al., 2008). However, 16S rRNA-targeted

FISH probes do not differentiate between these clades because of the more conserved nature of this

gene. Some, but not all Accumulibacter can denitrify, although currently the precise identity of these

strains is not clear, and so it is not possible yet to recognize these with gene probes or other

molecular methods.

Accumulibacter cells have a typical coccobacillus shape and are almost always observed growing

in microcolonies (Figure 9.15 and 9.16, Chapter 9), although in some EBPR communities they exist

predominantly as single cells.

Actinobacterial PAOs. The number of Gram positive Actinobacteria is often high in EBPR plants.

Their functions there are largely unknown, although some of these may have a PAO phenotype. However,

these do not take up short-chain fatty acids under anaerobic conditions, and their intracellular storage

polymer is not PHA, but remains unidentified. Thus they do not behave according to the current

biochemical models proposed for the PAO.

Two potential actinobacterial PAO morphotypes, both closely related to members of the genus

Tetrasphaera in the family Intrasporangiaceae are abundant in many full-scale plants (Kong et al., 2005)

as a) cocci in tetrads and b) short rods. Both morphotypes in situ grow as relatively small cells (0.3 to 0.5

mm thick and 0.8 to 1.0 mm long) and usually form medium-sized microcolonies (Figure 9.12, Chapter 9).

In some cases the cocci do not exist as the expected tetrads of Tetrasphaera, but form branches
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(‘tree-shaped’), see Figure 9.13, Chapter 9. Typical rod-shaped Tetrasphaera are shown in Figure 9.14,

Chapter 9.

Other potential PAOs. Several other bacteria grown in pure culture have been proposed to be PAOs, but

none possess the expected PAO phenotype and where FISH probes have been used, were not shown to be

abundant in full-scale treatment plants. These include Acinetobacter (Fuchs and Chen, 1975; Wagner et al.,

1994b), Microlunatus phosphovorus (Nakamura et al., 1995; Santos et al., 1999), Lampropedia spp.

(Stante et al., 1997), and Tetrasphaera spp. (Maszenan et al., 2000). FISH probe-defined uncultured species

of Dechloromonas (targeted by the probe Bet135) were proposed as putative PAOs on the basis of their

phenotype. They are relatively abundant in some full-scale EBPRplants, but how important they are as PAOs

is not known (Kong et al., 2007).

Table 4.1. 16S rRNA oligonuclotide probes for the identification of potential PAOs.

Probe

name Target Sequence 50 – 30
FA

conc

Competitor

oligonucleotide Reference

PAO462 Most Accumuli-

bacter

CCGTCATCTACWCAGGG-

TATTAAC

35 none Crocetti

et al., 2000

PAO651 Most Accumuli-

bacter

CCCTCTGCCAAACTCCAG 35 none Crocetti et al.,

2000

PAO846 Most Accumuli-

bacter

GTTAGCTACGGCACTAA-

AAGG

35 none Crocetti et al.,

2000

PAOmix Most Accumuli-

bacter

PAO462, PAO651 and

PAO846

35 none Crocetti et al.,

2000

RHC439 Rhodocyclus/

Accumulibacter

CNATTTCTTCCCCGCCGA 30 none Hesselmann

et al., 1999

RHC175a Most Rhodocyc-

laceae

TGCTCACAGAATATGCGG 30 none Hesselmann

et al., 1999

PAO462b Rhodocyclus

tenuis group

CCGTCATCTRCWCAGG-

GTATTAAC

35 none Zilles et al.,

2002

PAO846b Rhodocyclus

tenuis group

GTTAGCTACGGYACTA-

AAAGG

35 none Zilles et al.,

2002

actino1011 Tetrasphaera

japonica

TTGCGGGGCACCCAT-

CTCT

30 none Liu W. et al.,

2001

HGC69a Actinobacteria—

high GþC

Gram positive

bacteria

TATAGTTACCACCGCCGT 25 TATAGTTACGGCCGCCGT Roller et al.,

1994

Actino221 Actinobacteria—

potential PAOs

CGCAGGTCCATCCCAGAC 30 CGCAGGTCCATCCCATAC

and

CGCAGGTCCATCCCAGAG

Kong et al.,

2005

Actino658 Actinobacteria—

potential PAOs

TCCGGTCTCCCCTACCAT 40 TCCGGTCTCCCCTACCAC

and

ATTCCAGTCTCCCCTACCAT

Kong et al.,

2005
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4.2.1 Probes for detection of PAOs

Table 4.1 lists the oligonucleotides probes available for identifying and quantifying the PAOs or putative

PAOs, and the phylogenetic tree in Figure. 4.1 illustrates the specificity and coverage of these. To quantify

most Accumulibacter in a sample from a full-scale plant, the recommendation is to use the PAOmix

probe set since it targets most currently known Accumulibacter-related 16S rRNA sequences. The probes

of Zilles et al. (2002) embrace more sequences than the probes described by Crocetti et al. (2002) but in our

experience there is no difference with full-scale plant samples compared to the results obtained when the

PAOmix probe set is used.

Putative PAOs closely related to members of the genus Tetrasphaera can be targeted by probe

Actino221 (primarily cocci in tetrads) and probe Actino658 (primarily short rods). They are also

targeted by two broad-range actinobacterial probes HGC69a and actino1011. However, occasionally

filamentous bacteria probably closely related to Candidatus Nostocoida limicola (a member of the

genus Tetrasphaera) also fluoresce with these probes (see Chapter 5). As for most Gram positive

bacteria, it may be important to apply enzymes (lysozyme 0.5 g/liter in 100 mM Tris [pH 7.5] and

5 mM EDTA) or mutanolysin (5,000 U/ml in phosphate buffer) to permeabilize cells to allow their

passage to their target site, the ribosomes.

4.3 IDENTITY OF GAOs

Gammaproteobacterial GAOs. These bacteria exhibit the phenotype expected of a GAO. Namely the

uptake of short-chain fatty acids and/or glucose with formation of PHA under anaerobic conditions and

environmental clone (AF255641)
environmental clone (AF450459)
environmental clone (AF204245)

environmental clone (AY064179)
environmental clone (AY064178)

Rhodocyclus sp.R6
environmental clone (AF204244)

environmental clone (AF204247)

environmental clone (AF450474) 

Rhodocyclus tenuis
Tetrasphaera elongata

Candidatus Nostocoida limicola
Tetrasphaera jenkinsii
Tetrasphaera australiensis

Tetrasphaera nostocoidensis

Tetrasphaera japonica

5 EBPR environ. clones 

8 EBPR environ. clones 

PA
O

84
6,

 P
A

O
84

6b

environmental clone (AF204248)

PA
O

 m
ix

R
H

C
17

5a

R
H

C
43

9

PA
O

46
2,

 P
A

O
46

2b

PA
O

65
1

B
et

ap
ro

te
ob

ac
te

ri
a

actino1011

actino1011

actino1011

Actino658

Actino221

HGC69a

A
ct

in
ob

ac
te

ri
a

Figure 4.1. 16S rRNA-based phylogenetic tree showing main lineages of known or putative PAOs. Brackets
indicate the coverage of the probes listed in Table 4.1.
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subsequent synthesis of glycogen but not polyphosphate under aerobic conditions. None have been

grown in pure culture. Details of their physiology can be found in reviews by Seviour et al. (2003) and

Oehmen et al. (2007). The most numerically abundant identified GAOs in full-scale wastewater treatment

plants belong to the genus Competibacter within the Gammaproteobacteria, which are also referred to as

the GB-group. The most common of these are Candidatus Competibacter phosphatis, often abbreviated

to Competibacter. Competibacter can become highly enriched in lab-scale reactors but reports suggest

they may also be common in full-scale EBPR plants with typical relative abundances reported up to 10%

of the total cell biovolume.

More than seven subgroups of Competibacter are currently described, based primarily on 16S rRNA

gene sequences from lab-scale reactor communities. Most of these are present or often abundant in full-

scale EBPR plant communities too, but only limited information exists about possible differences in their

distribution and ecology. Some Competibacter may denitrify but whether it is possible to distinguish these

with gene probes or other molecular methods is not known.

Competibacter grow typically as coccobacilli or rods. Cells are relatively large, oval, and easily

recognized under the microscope. They can form clusters of tetrads, but also appear as microcolonies

(Figure 9.15, Chapter 9).

Alphaproteobacterial GAOs. Other GAOs present in some full-scale EBPR plants are members of the

Alphaproteobacteria. Two distinct subgroups cluster 1 and 2, related to Defluviicoccus vanus, are

distinguished based on their 16S rRNA sequences (Wong et al., 2004; Meyer et al., 2006). They are

most commonly seen in lab-scale EBPR reactors and are generally rare in full-scale EBPR plants.

Only members of cluster 2 have been seen as commonly in some EBPR plants as Accumulibacter and

Competibacter (Burow et al., 2007). It is likely that further phylogenetic diversity exists within

this group.

The Defluviicoccus-related GAOs grow as cocci and rods, and typically exhibit a TFO morphology,

where they form small colonies, although filamentous forms also exist (Figure 9.16, Chapter 9).

Other potential GAOs. Several cultured bacteria have also been proposed as GAOs but none are abundant

in full-scale treatment plants. These include Amaricoccus kaplicensis (Maszenan et al., 1997), also named

as Tetracoccus cechii (Blackall et al., 1997), and the original ‘G’ bacteria of Cech & Hartman (1993),

Quatrionicoccus sp., Micropruina glycogenica, Kineosphaera limosa (see review by Oehmen et al.,

2007). Other probe-defined uncultured populations within Betaproteobacteria and Gammaproteobacteria

were proposed as putative GAOs (targeted by probe Bet65 and Gam445) in some full-scale EBPR plants

(Kong et al., 2007) but their functional importance is unclear.

4.3.1 Probes for detection of GAOs

The oligonucleotides probes designed for identifying and quantifying these GAOs are shown in Table 4.2,

and the tree in Figure 4.2 illustrates the specificity and coverage of these probes.

For most Competibacter in an activated sludge sample, either the general GB probe or a combination

of the two lower hierarchical level probes GB_G1 probe (identical to GAOQ989) and GB_G2 can be

used. Generally, the use of the GAOmix (equal amounts of GAOQ989 and GB_G2) is recommended,

as this targets most known Competibacter-related sequences. Seven different subgroups can be targeted

by GB_1-GB_7 (Kong et al., 2002). However, as stated above, there is little information that supports the

application of these subgroup probes, as possible differences in their distribution and ecology are

not known.
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Table 4.2. 16S rRNA oligonuclotide probes for the identification of potential GAOs.

Probe name Target Sequence 50 – 30 FA conc Competitor oligonucleotide Reference Comment

Gam1019 Some Gammaproteo-

bacteria

GGTTCCTTGCGGCACCTC 30 none Nielsen et al.

1999

Gam1278 Some Gammaproteo-

bacteria

ACGAGCGGCTTTTTGGGATT 33 none Nielsen et al.

1999

GAOQ431 Some Competibacter TCCCCGCCTAAAGGGCTT 35 none Crocetti et al.

2002

GAOQ989 Some Competibacter TTCCCCGGATGTCAAGGC 35 none Crocetti et al.

2002

GB Most Competibacter CGATCCTCTAGCCCACT 35–70 none Kong et al. 2002

GB_G1

(GAOQ989)

Some Competibacter TTCCCCGGATGTCAAGGC 35–55 TTCCCCAGATGTCAAGGC Kong et al. 2002

GB_G2 Some Competibacter TTCCCCAGATGTCAAGGC 35–55 TTCCCCGGATGTCAAGGC Kong et al. 2002,

2006

GB_1 and 2 Some Competibacter GGCTGACTGACCCATCC 20 none Kong et al. 2002

GB_2 Some Competibacter GGCATCGCTGCCCTCGTT 35 none Kong et al. 2002

GB_3 Some Competibacter CCACTCAAGTCCAGCCGT 35 none Kong et al. 2002,

2006

GB_4 Some Competibacter GGCTCCTTGCGGCACCGT 35 GGCTCCTTGCGGCACCAT Kong et al. 2002

GB_5 Some Competibacter CTAGGCGCCGAAGCGCCC 35 none Kong et al. 2002,

2006

GB_6

(Gam1019)

Some Competibacter GGTTCCTTGCGGCACCTC 35 none Kong et al. 2002

GB_7 Some Competibacter CATCTCTGGACATTCCCC 35 CATCTCTGGACGTTCCCC Kong et al. 2002

TFO_DF218 Defluviicoccus-related

organisms (cluster 1)

GAAGCCTTTGCCCCTCAG 25–35 none Wong et al. 2004

TFO_DF618 Defluviicoccus-related

organisms (cluster 1)

GCCTCACTTGTCTAACCG 25–35 none Wong et al. 2004

DF988 Defluviicoccus-related

organisms (cluster 2)

GATACGACGCCCATGTCAAGGG 35 none Meyer et al.

2006

Need helper

H966þH1038

DF1020 Defluviicoccus-related

organisms (cluster 2)

CCGGCCGAACCGACTCCC 35 none Meyer et al.

2006

Need helper

H1038
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The alphaproteobacterial GAOs related to members of the genus Defluviicoccus can be targeted by two

sets of probes. In our experience from studies of full-scale plant communities, we recommend using the

DF1MIX (TFO_DF218 plus TFO_DF618) for cluster 1 and DF2MIX (DF988 plus DF1020 and helper

probes H966 and H1038) for cluster 2 members.
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Figure 4.2. 16S rRNA-based phylogenetic tree showing main lineages of known GAOs. Brackets indicate
the coverage of the probes listed in Table 4.2.
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5

Identification of filamentous bacteria by FISH

Caroline Kragelund, Elisabeth Müller, Margit Schade,
Hien Thi Thu Nguyen, Hilde Lemmer, Robert Seviour, and
Per Halkjær Nielsen

5.1 INTRODUCTION

Filamentous bacteria are found in all types of WWTPs, where they are often responsible for bulking

(e.g. inadequate separation of biosolids and liquid effluent phases) or foaming (biosolids transported to

the surface of either process tank or clarifier, typically dominated by one or two filamentous morphotypes).

Filamentous bacteria should be considered as normal members of the activated sludge communities,

primarily involved in degradation of organic material. Under some conditions they proliferate to such an

extent that they markedly affect treatment plant performance. Their relative abundance may then exceed

the usual 1–3% of the total biomass. The reasons for their excessive proliferation are many and will not be

covered in this chapter, since several recent reviews and books discuss this in detail (Eikelboom, 2000;

Jenkins et al., 2004; Tandoi et al., 2006; Nielsen et al., 2009; Seviour et al., 2009). In order to control the

growth of these problematic bacteria, their reliable identification is necessary as the factors known to

promote their growth can vary considerably. These include presence of sulphides in the influent, lack of

nutrients or low oxygen concentrations in the process tank. Methods used for their attempted control are

described elsewhere [for an overview on causes of sludge separation problems and control measures in

several countries see (Tandoi et al., 2006)]. Filamentous bacteria also inhabit biofilm systems where they

are located often at their surfaces (Galvan and de Castro, 2007). Here they rarely cause problems. Bulking

arising from their excessive presence may occur, but only occasionally when clarifiers are employed to

# 2009 IWA Publishing. FISH Handbook for Biological Wastewater Treatment: Identification and quantification of microorganisms
in activated sludge and biofilms by FISH. Edited by Per Halkjær Nielsen, Holger Daims and Hilde Lemmer. ISBN: 9781843392316.
Published by IWA Publishing, London, UK.
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settle surplus biofilm sludge. Excessive growth of filamentous bacteria may also hamper settling of

granules in these new reactor systems (Liu and Liu, 2006).

In 1975 Eikelboom published descriptions of a range of filamentous bacteria observed in a large

number of municipal activated sludge WWTP by conventional light microscopic characterization methods

(Eikelboom, 1975). He divided these into morphotypes based on morphological characteristics and

staining properties, and their abundance was expressed as a numerical filament index ranging between 0

(no filamentous bacteria present) to 5 (extensive growth of filamentous bacteria), see Eikelboom (2000).

Manuals containing descriptions of 26 different filament morphotypes in samples taken largely from

municipal WWTPs were published subsequently and are still used routinely to identify filamentous

bacteria in activated sludge (Eikelboom, 2000; Jenkins et al., 2004). Furthermore, an additional 40

morphotypes have since been detected and described in industrial treatment systems (Eikelboom and

Geurkink, 2000; 2002; van der Waarde et al., 2002). Most of these industrial morphotypes have only

rarely been found in municipal plants and only at low levels.

The presence of these morphotypes in full-scale WWTPs has been investigated and reported in several

plant surveys around the world. Generally, bulking or foaming is observed in 30–50% of all plants at any

given time, clearly indicating the widespread nature of these operational problems. One important

outcome from these surveys is that some morphotypes appear to be associated only with some types of

treatment systems defined in terms of their process design, sludge loading (sludge age) and type of influent

wastewater. This probably explains why their occurrence and frequency often differ markedly between

countries where different WWTP operating concepts are preferred, as demonstrated by the dominating

morphotypes encountered in treatment systems in Denmark, Germany, and Australia (Table 5.1). These

bacteria are divided into those seen in i) conventional plants with organic removal with or without

nitrification at a sludge load of around 0.15–0.8 kg BOD/kg MLSS d (often called high F/M filaments) and

ii) more advanced plants with denitrification and biological phosphorus removal at a sludge load of around

0.01–0.15 kg BOD/kg MLSS d (low F/M). Presence of filamentous bacteria and operating information

from reactors with biofilms or granules is limited and not included here.

From molecular methods of analyses we now know that basing identification into morphotypes on

microscopic characters is frequently inadequate for the reliable identification of many filamentous

bacteria. One morphotype can embrace several phylogenetically very different organisms, as exemplified

by the Nostocoida limicola morphotype. Studies have revealed that the N. limicola morphotypes affiliate

with members of the class Alphaproteobacteria (Snaidr et al., 2002), the phyla Chloroflexi (Schade et al.,

2002), Firmicutes (Liu et al., 2000), Planctomycetales (Liu et al., 2001b), and Actinobacteria (Blackall

et al., 2000; Liu and Seviour, 2001). This example illustrates that identification of individual filamentous

organisms in activated sludge and biofilm systems often requires further molecular analyses with

techniques like FISH to confirm their true identity after the manuals based on morphology have been used.

To illustrate the broad phylogenetic diversity existing among these filamentous bacteria, a

comprehensive phylogenetic tree of all commonly encountered species is given in Figures 5.1a–5.1c.

Most filamentous bacteria can be identified at least to phylum level by FISH (e.g. Chloroflexi). It is then

often possible to distinguish between individual genera or species. However, more specific gene probes

are still needed to completely resolve a number of morphotypes (e.g. those in Mycolata and Chloroflexi).

In Table 5.2, we have provided an overview of the most commonly observed morphotypes and their

phylogenetic affiliations when known. Furthermore, speciation of members of these phylogenetic groups

where available and the corresponding morphotypes are listed in Table 5.3.

The following sections discuss each of the filamentous morphotypes described by Eikelboom (2000;

2006) (Table 5.1). They detail their abundances, provide a short description of their morphological

appearances, and discuss their current phylogenetic affiliations, which are illustrated as phylogenetic trees
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Table 5.1. Examples of activated sludge WWTPs and the organisms being present in Danish, German, and Australian plants. In each group
the most common morphotypes are ranked.

Danish WWTPs German WWTPs� Australian WWTPs

High F/M
Plants with C –
removal ^ nitrification

Industrial Nostocoida limicola Thiothrix/type 021N Type 021N/Thiothrix

Thiothrix/type 021N Nocardioforms/Mycolata Mycolata

Type 1851 and 0041/0675
without attached growth

Nostocoida limicola
(Alphaproteobacteria)

Nostocoida limicola
(Actinobacteria and
Alphaproteobacteria)

Municipal H. hydrossis-like Type 021N Type 021N/Thiothrix,
type 0041/0675, type 0803

Type 1851, 1701 and 0041/0675 S. natans/Leptothrix/type 1701 Nostocoida limicola II

Nocardioforms/Mycolata Type 1863 H. hydrossis-like

Thiothrix/type 021N H. hydrossis-like GALO

Low F/M
Plants with N-
removal ^ biological
P removal

Industrial Nostocoida limicola Thiothrix/type 021N No data�

Type 1851 and 0041/0675 Nocardioforms/Mycolata

Type 0803 Nostocoida limicola
(Alphaproteobacteria)

Type 0092

Type 1863

Municipal H. hydrossis-like Microthrix parvicella M. parvicella

Type 1851, 1701 and 0041/0675 Type 0041/0675 Types 0092, 0914, 0041/0675

Microthrix parvicella Nocardioforms/Mycolata H. hydrossis-like

Type 0803 Nostocoida limicola II
(Actinobacteria, Chloroflexi)

Candidatus Monilibacter spp.

Type 0092 Type 1851, 0092 GALO

� Industrial WWTPs show similar filament ranking in high and low loaded plants, decisive is the carbon sources quality

Id
en
tifi

catio
n
o
f
fi
lam

en
to
u
s
b
acteria

b
y
F
IS
H

3
5

Downloaded from https://iwaponline.com/ebooks/book-pdf/521273/wio9781780401775.pdf
by IWA Publishing user
on 04 February 2019



which include FISH probe coverage of each. Lastly, the currently available FISH probes for their in situ

identification are listed and recommendations made as to which FISH probes should be used for their

in situ identifications. However, it is important of course to check each probe specificity using available

databases prior to use, since many new sequences are generated every day (see Chapter 7).

As morphotype abundance depends on plant operating parameters which can vary in different

countries, we have chosen to present these filaments in alphabetic order. As many potential users of this

handbook probably are familiar with the morphotype descriptions, we consider this to be the most

appropriate method for its practical application.

5.2 FISH DETECTION OF FILAMENTOUS BACTERIA

General approach

In order to identify the dominant filamentous organism/s in a biofilm or activated sludge sample we

propose the following procedure:

1. Observe by light microscopy (phase contrast) the abundance of filamentous bacteria and, if relevant,

record the filament index (use manuals of Eikelboom, 2000; Jenkins et al., 2004).

0.10

Thiothrix fructosivorans, L79962
Thiothrix sp. str. CT3, AF148516
'Thiothrix ramosa', U32940
Thiothrix unzii, L79961
Thiothrix nivea, L40993
Thiothrix defluvii, AF127020
Thiothrix flexilis, AB042545

Thiothrix disciformis, AB042532
Thiothrix eikelboomii, L79965

Acinetobacter calcoaceticus, M34139
Eikelboom type 1863 str. Ben59, X95305
Acinetobacter johnsonii, X81663
Eikelboom type 1863 str. Ben56, X95303
Moraxella osloensis, AF005190
Eikelboom type 1863 str. Ben58, X95304

Beggiatoa alba, AF110274
Uncultured filamentous activated sludge clone, AY322151
Curvibacter gracilis, AB109889
Eikelboom type 0803 str. Ben04B, X86071
Acidovorax delafieldii, AF078764
Eikelboom type 1701 str. RC2, L79964
Sphaerotilus natans, Z18534

Zoogloea ramigera, X74913
Defluviicoccus vanus, AF179678

Candidatus 'Monilibacter batavus', AY590701
Candidatus 'Sphaeronema italicum', AY428765 
Azospirillum brasilense, X79739

Candidatus 'Alysiosphaera europaea', AY428766
Candidatus 'Alysiomicrobium bavaricum', AY428762

Candidatus 'Combothrix italica', AY590698
Methylosinus sporium, AJ458489

Meganema perideroedes, AY170119
Meganema perideroedes, AF180468
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Figure 5.1a. Maximum likelihood phylogenetic tree of the 16S rRNA gene sequences of the important
filamentous Proteobacteria and related sequences. All sequences were at least 1000 bp long. The scale bar
corresponds to 0.1 substitutions per nucleotide position.
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2. Define the number of clearly distinct morphotypes (typically 1–2). Roughly ‘identify’ these

morphotypes, e.g. Microthrix or Haliscomenobacter.

3. Go to the morphotype descriptions given in the following section (and Table 5.2) and find out which

species each morphotype is thought to cover.

4. If it only covers one distinct morphotype (e.g. Microthrix parvicella), use the recommended

probe(s) for FISH detection (i.e. MPAmix). Further details about other probes can be found within

the description section.

5. If more than one species falls within that single morphotype (e.g. Haliscomenobacter): Select a

number of broad gene probes that covers each potential species (e.g. one for phylum Bacteroidetes

and one for phylum Chloroflexi), see Table 5.4. When the correct phylum is found, more narrow

probes can then be used (e.g. HHY-654 for H. hydrossis in Bacteroidetes or EU25-1238 for Type

1851 in Chloroflexi; see respective Tables and Figures).

6. Include always the EUBmix probe tagged with a different fluorochrome to ensure that the filament is

detectable by the FISH protocol. If no fluorescence signal is obtained with the EUBmix the filament

may be dead or the probes do not penetrate the cell wall (e.g. for Mycolata) and a pretreatment is

necessary. Some Chloroflexi filaments do not hybridize with the EUBmix probes because they lack

the probes’ target sites (Kragelund et al., 2007a). It is crucial to make sure that the morphology

and the FISH signal from the selected probes coincide. Use the images presented in this book and

those given in other manuals for comparison. Always include a negative control when examining

a new sample (nonsense probe) to detect any autofluorescence from the sample (this is not

uncommon!).
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Eikelboom type 1851 str. Ben52, AY063760
'Kouleothrix aurantiaca', AB079638

Roseiflexus castenholzii, AB041226
Chloroflexus aurantiacus, D38365

Chloroflexus aggregans, D32255
Filamentous activated sludge isolate str. Ben15, X86447

Herpetosiphon aurantiacus, M34117
Uncultured activated sludge clone A31, AF234694
Anaerolinea thermophila, AB046413
Uncultured activated sludge clone H1, AF234710
Uncultured Eikelboom type 0092 clone A26, AB445103
Uncultured activated sludge clone SBR2037, X84576

Dehalococcoides ethenogenes, AF004928
Eikelboom type 1863 str. Ben06, X85207
Chryseobacterium balustinum, M58771

Saprospira grandis, AB088636
Candidatus 'Magnospira bakii', AF087057

Filamentous activated sludge isolate str. Iso10B, DQ232755
Haliscomenobacter hydrossis, M58790
Uncultured activated sludge clone TNO5, DQ232756

Singulisphaera acidiphila, AM850678

Isosphaera pallida, X64372

'Nostocoida limicola' III str. Ben225, AF244752
'Nostocoida limicola' III str. Ben223, AF244750

'Nostocoida limicola' III str. Ben220, AF244748
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Figure 5.1b. Maximum likelihood phylogenetic tree of the 16S rRNA gene sequences of the important
filamentous Chloroflexi, Planctomycetales and Bacteroidetes and related sequences. All sequences were
at least 1100 bp long. The scale bar corresponds to 0.1 substitutions per nucleotide position.
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5.3 FILAMENTOUS BACTERIA DETECTION AND IDENTIFICATION

This section provides advice on how best to select the FISH probes to detect and identify filamentous

bacteria found in activated sludge, foam, and biofilms. It includes actual data on their abundance in

municipal and industrial WWTPs and biofilm reactors, a brief morphological description, their

phylogenetic affiliation, and recommendations for FISH probes best suited for this purpose.

For in situ monitoring purposes a semiquantitative filament count might be assessed by determining a

class index according to Eikelboom (2000). This is done for both conventional microscopy and FISH in

order to achieve comparable data. Class indices from 0 indicating no filamentous growth to 5 indicating

extensive growth of filamentous organisms with class index steps differing by a factor of 10 turned out

to be helpful for practitioners’ monitoring needs. In case of FISH overall biomass concentrations should

be checked by DAPI or a universal bacteria probe such as EUBmix to be similar to those examined in

wet mount.
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Figure 5.1c. Maximum likelihood phylogenetic tree of the 16S rRNA gene sequences of the important
filamentous Gram positive bacteria and related sequences. All sequences were at least 1300 bp long. The
scale bar corresponds to 0.1 substitutions per nucleotide position.
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Table 5.2. Overview of the most common morphotypes and their possible phylogenetic identity.

Morphotype Possible phylogenetic identity

Beggiatoa Beggiatoa spp. (class Gammaproteobacteria)

Haliscomenobacter

hydrossis

Haliscomenobacter hydrossis (Bacteroidetes)

Other species in the phylum Bacteroidetes

Species within the phylum Chloroflexi

Leucothrix mucor Leucothrix sp. (class Gammaproteobacteria)

Microthrix parvicella Candidatus M. parvicella (Actinobacteria)

Candidatus M. calida (Actinobacteria)

Unknown species within the phylum Chloroflexi

Nostocoida limicola Several species of Alphaproteobacteria

Candidatus N. limicola (Actinobacteria)

Thiothrix (type 021N) species (class Gammaproteobacteria)

Species within the phylum Firmicutes

Species within the phylum Chloroflexi

Species within the phylum Planctomycetes

Nocardioform

actinomycetes/Mycolata

Gordonia species and G. amarae

Skermania species and S. piniformis

Rhodococcus species, Rhodococcus erythropolis

Dietzia species

Unknown species

Sphaerotilus natans/

Leptothrix discophora

Sphaerotilus spp. (class Betaproteobacteria)

Leptothrix spp. (class Betaproteobacteria)

Thiothrix Thiothrix (class Gammaproteobacteria)

Species within the phylum Candidate division TM7 without attached growth

Species within the phylum Chloroflexi without attached growth

Type 0041/0675 Species within the phylum Chloroflexi

Curvibacter-related (class Betaproteobacteria)

Candidate division TM7

Type 0092 Unknown

Chloroflexi (class Chloroflexi)

Perhaps species within the phylum Bacteroidetes

Type 021N Thiothrix species (class Gammaproteobacteria)

Meganema perideroedes (class Alphaproteobacteria)

Candidatus Nostocoida limicola (Actinobacteria)

Species within the phylum Chloroflexi

Species within the phylum Firmicutes

Type 0803/0914 Unknown

Perhaps species in the class Betaproteobacteria or phylum Chloroflexi

Type 1701 Curvibacter-related (class Betaproteobacteria)

Sphaerotilus-related (class Betaproteobacteria)

Unknown

Type 1851 Kouleothrix aurantiaca (phylum Chloroflexi)

Species within the phylum Chloroflexi

Curvibacter-related (Betaproteobacteria)

Type 1863 Acinetobacter spp. (class Gammaproteobacteria)

Chryseobacterium spp. (Bacteroidetes)
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Table 5.3. Overview of the phylogenetic affiliation, species name if possible and corresponding morphotype.

Phylogenetic identity ! morphotype

Phylogenetic identity

Phylum/class Genus/Species name Morphotype

Proteobacteria/

Alphaproteobacteria

Candidatus Alysiosphaera europaea N. limicola

Candidatus Monilibacter batavus

Candidatus Alysiomicrobium bavaricum

Candidatus Combothrix italica

Meganema perideroedes Type 021N

Proteobacteria/

Betaproteobacteria

Genus Curvibacter Type 1701

Genus Curvibacter Type 0041/0675

Sphaerotilus natans Sphaerotilus natans

Leptothrix discophora Leptothrix

Proteobacteria/

Gammaproteobacteria

Thiothrix nivea, T. unzii, T. fructosivorans,

T. defluvii

Thiothrix species

T. eikelboomii, T. disciformis, T. flexilis Type 021N species

Acinetobacter spp. Type 1863

Leucothrix mucor Leucothrix mucor

Beggiatoa spp. Beggiatoa

Bacteroidetes Haliscomenobacter hydrossis H. hydrossis

Other H. hydrossis-like species H. hydrossis-like

Unknown species Type 0092

Chryseobacterium spp. Type 1863

Chloroflexi Kouleothrix aurantiaca Type 1851

Unknown species Nostocoida limicola II

Other Chloroflexi, (species not identified) Thin H. hydrossis-like

(4epiphytic growth)

Other Chloroflexi, (species not identified) Type 1851

(þepiphytic growth)

Other Chloroflexi, (species not identified) Type 0041/0675

(^epiphytic growth)

Actinobacteria Candidatus M. parvicella M. parvicella

Candidatus M. calida Thin M. parvicella

Candidatus Nostocoida limicola Nostocoida limicola II

Genus Gordonia and G. amarae Mycolata (GALO)

Genus Skermania and S. piniformis Mycolata (PTLO)

Genus Rhodococcus Mycolata (GALO)

Genus Dietzia Mycolata (NOC-like)

Unknown Mycolata Unknown Mycolata

Candidate division TM7 TM7_genera_incertae_sedis Type 0041/0675

(^epiphytic growth)

40 FISH Handbook for Biological Wastewater Treatment

Downloaded from https://iwaponline.com/ebooks/book-pdf/521273/wio9781780401775.pdf
by IWA Publishing user
on 04 February 2019



5.3.1 Beggiatoa morphotype

Abundance, morphology and affiliation

Abundance of Beggiatoa morphotype reported in plants in Australia, the Netherlands and the US

(summarized in Jenkins et al., 2004) is moderate. No bulking or foaming problems have been implied

from its presence. They are often present in low numbers in biofilms (Nielsen PH and Nielsen JL,

unpublished results). Beggiatoa spp. serve as a strong indicator for a presence of reduced sulfur

compounds, as it may be mixotrophic, using these as energy sources.

The Beggiatoa morphotype is characterized by being mobile by gliding and exhibiting straight to bent

filaments with a cell diameter of 1.5–2.5 mm. In vivo sulfur granules are often visible. Beggiatoa stain

Gram negative and Neisser negative.

The genus Beggiatoa is affiliated in the family Thiotrichaceae (class Gammaproteobacteria).

Recommending the best probes

Three Beggiatoa strains have been isolated from activated sludge (Williams and Unz, 1985) but no

phylogenetic analyses were performed on them. Only FISH probes for marine species exist

(Mussmann et al., 2003; Macalady et al., 2006), and so the broad class probe GAM42a for

Gammaproteobacteria might indicate the presence of Beggiatoa in activated sludge, see Table 5.4.

However, Beggiatoa is identifiable routinely by phase contrast microscopy only. The probes for marine

species have never resulted in a FISH positive signal for this morphotype in activated sludge samples

(Nielsen JL and Kragelund C, unpublished results).

5.3.2 Haliscomenobacter hydrossis morphotype

Abundance, morphology and affiliation

The abundance of H. hydrossis is reported in many surveys based on morphology (summarized in

Jenkins et al., 2004), usually without ever being present in large amounts. Surveys using FISH probes

have confirmed that H. hydrossis is almost always present in minor amounts in both municipal and

industrial plants, independent of plant configuration (Kragelund et al., 2008).

The H. hydrossis morphotype exists as short straight (needle-like appearance) or longer slightly bent

filaments, usually protruding from the flocs. Filament length is variable, and trichome diameter is approx.

0.4 mm. Cells are surrounded by a sheath. They stain Gram negative and Neisser negative.

These distinctively thin needle-shaped bacteria usually affiliate with members of H. hydrossis in the

genus Haliscomenobacter (family Saprospiraceae) within the phylum Bacteroidetes. However, other

Table 5.3. Continued

Phylogenetic identity ! morphotype

Phylogenetic identity

Phylum/class Genus/Species name Morphotype

Firmicutes Trichococcus spp. Nostocoida limicola I

Streptococcus spp. Streptococcus

Planctomycetales Isosphaera spp. Isosphaera, see text

Unknown Unknown Type 0803/0914

Unknown Type 0961 and others see text
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Table 5.4. General probes covering the different phyla and classes or broader groups. Can be used together with more specific probes or,
if no specific probes exist, to reveal the overall affiliation of an otherwise unidentified filamentous organism.

Probe name Target Morphotype Sequence (50-30) FA (%) Comments Reference

EUBmix
(EUB-338 þ
EUB338-II# þ
EUB338-III)

Most Bacteria,
Planctomycetales and
Verrucomicrobiales

GCT GCC TCC CGT AGG
AGT þ GCA GCC ACC CGT
AGG TGT þ GCT GCC ACC
CGT AGG TGT

0–60 Both filaments and single
cells

Amann et al. 1990;
Daims et al. 1999

ALF968 class
Alphaproteobacteria

N. limicola GGT AAG GTT CTG CGC
GTT

35 Both filaments and single
cells

Neef, 1997

GAM42a class
Gammaproteobacteria

Beggiatoa,
Thiothrix,
Leucothrix

GCC TTC CCA CAT CGT TT 35 Use together with BET42a Manz et al. 1992

BET42a class
Betaproteobacteria

Leptothrix,
S. natans are

GCC TTC CCA CTT CGT TT 35 Use together with GAM42a Manz et al. 1992

CFB563 Most Flavobacteria H. hydrossis GGA CCC TTT AAA CCC
AAT

20 Both filaments and single
cells

Weller et al. 2000

CF319aþb Most Flavobacteria H. hydrossis TGG TCC GTG TCT CAG
TACþ TGG TCC GTA TCT
CAG TAC

35 Both filaments and single
cells

Manz et al. 1996

CFB286 Most members of the
genus Tannerella and
the genus Prevotella of
the class Bacteroidetes

H. hydrossis TCC TCT CAG AAC CCC
TAC

50 Both filaments and single
cells

Weller et al. 2000

CFB719 Most members of the
class Bacteroidetes

H. hydrossis AGC TGC CTT CGC AAT
CGG

30 Both filaments and single
cells

Weller et al. 2000

LGC354B Firmicutes (Gram positive
bacteria with low GþC
content)

Streptococcus,
N. limicola I

CGG AAG ATT CCC TAC
TGC

35 Together with LGC 354A
and C. Both filaments and
single cells

Meier et al. 1999

LGC354A Firmicutes Streptococcus,
N. limicola I

TGG AAG ATT CCC TAC
TGC

35 Together with LGC 354B
and C. Both filaments and
single cells

Meier et al. 1999

LGC354C Firmicutes Streptococcus,
N. limicola I

CCG AAG ATT CCC TAC
TGC

35 Together with LGC 354A
and B. Both filaments and
single cells

Meier et al. 1999

Pla46 Planctomycetales N. limicola GAC TTG CAT GCC TAA
TCC

30 Both filaments and single
cells

Neef et al. 1998

HGC69aþ
comp

Actinobacteria GALO/PTLO,
N. limicola

TAT AGT TAC CAC CGC
CGTþ TAT AGT TAC GGC
CGC CGT

25 Both filaments and single
cells

Roller et al. 1994;
1995
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HGC1156 Actinobacteria Microthrix
parvicella

CGAGTTGACCCCGGCAGT 20 Both filaments and single
cells�

Erhart et al. 1997

Myc657 Mycobacterium sub-
division Mycolata (mycolic
acid-containing
actinomycetes)

GALO/PTLO AGT CTC CCC TGY AGT A 30 Both filaments and single
cells�

Davenport et al.
2000

MNP1 Mycolata (actinomycetes,
Corynebacterineae)

GALO TTA GAC CCA GTT TCC
CAG GCT

50 Both filaments and single
cells��

Schuppler et al.
1998

CMN119 Suborder CMN excluding
Dietzia spp. and
Tsukamurella spp.

GALO/PTLO GGCAGATCACCCACGTGT 30 Both filaments and single
cells���

Erhart, 1997

CFX mix
(GNSB941
þCFX1223)

Phylum Chloroflexi Type
0041/0675,
1851,
H. hydrossis

AAACCACACGCTCCGCTþ
CCATTGTAGCGTGTGTGTMG

35 Also other morphotypes
can be observed, often type
1851 and sometimes also
type 1701, and H. hydrossis-
like filaments

Bjornsson et al. 2002
Gich et al. 2001

TM7905 Nearly the entire candidate
division TM7

Type
0041/0675

CCGTCAATTCCTTTATGTT
TTA

20 Also other morphotypes
are detected: thick filaments,
rods, and coccoid cells

Hugenholtz et al.
2001

# Formamide 0–35%
� A. use pretreatment with achromopeptidase and lysozyme, no extended hybridization time needed
�� B. use lysozyme, acid, lipase, proteinase K and extended hybridization time 15–18h
��� C. Lysozyme and extended hybridization time 15–18h
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filaments with the same morphology are often detected, either belonging to other members of the

Bacteroidetes (Kragelund et al., 2008) or to those in the phylum Chloroflexi (Kragelund et al., 2007a).

Other filamentous bacteria can demonstrate a similar appearance but they have been identified solely on

morphology and their phylogenetic affiliations are currently unresolved.

Recommending the best probes

Table 5.5 shows those probes for identification and quantification of the H. hydrossis morphotype, and the

tree presented in Figure 5.2 illustrates their specificity and coverage.

Prevotella denticola
Prevotella multiformis

Prevotella buccae
Prevotella baroniae
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Prevotella dentalis
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Figure 5.2. 16S rRNA-based phylogenetic tree showing main lineages of known H. hydrossis bacteria.
Brackets indicate the coverage of the probes listed in Table 5.5. The exact branching order of the
H. hydrossis lineages cannot yet be determined due to a limited phylogenetic resolution of the 16S rRNA
marker gene. Therefore, unclear tree topology is depicted as multifurcation.

Table 5.5. Haliscomenobacter hydrossis morphotype: rRNA-targeted oligonucleotide probes with
corresponding formamide concentration, target, morphotype, and comments on recommendability.

Probe
name Target Morphotype Sequence (50-30) FA (%) Comments Reference

SAP-309 Most members of
Saprospiraceae H. hydrossis

TCT CAG TAC
CCG TGT GGG 25

Both filaments
and single cells

Schauer and
Hahn, 2005

HHY-654 H. hydrossis and
Isolate 10B H. hydrossis

GCC TAC CTC
AAC YTG ATT 35

Kragelund
et al. 2008

HHY H. hydrossis H. hydrossis
GCC TAC CTC
AAC CTG ATT 20–25

Wagner
et al. 1994a
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The most commonly used probe is HHY, targeting the species H. hydrossis which was designed against

a pure culture isolate (Wagner et al., 1994a). A broader probe HHY-654 is now available which also

targets an additional H. hydrossis isolate (Kragelund et al., 2008). Substantially more H. hydrossis

respond to this probe in full-scale plants. Other probes have been published to detect Bacteroidetes in

different habitats but these are very broad and do not target individual species (e.g. CFB286, CFB563 and

CFB719, Weller et al., 2000). Even though these were designed originally to target freshwater or marine

Bacteroidetes (CFB286) they also target filaments in activated sludge. Other probes detect members of the

phylum Bacteroidetes (CF319 aþb, Manz et al., 1996), targeting both single cells and filamentous

bacteria. The SAP-309 probe (Schauer and Hahn, 2005) targets members of the family Saprospiraceae

which contain both single cells and filamentous bacteria.

Our recommendation for detection of the H. hydrossis morphotype in the Bacteroidetes in activated

sludge is probe HHY-654. To detect most H. hydrossis and H. hydrossis–like bacteria, the broader

targeting probes CFB719 and SAP-309 can be used in combination. Morphological appearance of probe-

defined H. hydrossis morphotype can be seen in FISH image Figure 9.17, Chapter 9.

5.3.3 Leucothrix mucor morphotype

Abundance, morphology and affiliation

The abundance of Leucothrix mucor has been assessed in surveys based only on morphology (Jenkins

et al., 2004). It has also been detected by FISH in industrial samples (van der Waarde et al., 2002). It is

observed only occasionally in WWTPs where it plays no decisive role in bulking or foaming incidences

(van der Waarde et al., 2002; Jenkins et al., 2004).

The Leucothrix mucor morphotype is characterized by bent to twisted filaments, a highly variable cell

diameter and a variable cell morphology of discoid, round, to rod-shaped cells. It never has intracellular

S-granules and stains Gram negative and Neisser negative.

Leucothrix mucor is member of the genus Leucothrix, closely related to genus Thiothrix in the family

Thiotrichaceae (class Gammaproteobacteria).

Recommending the best probes

Only one probe exists for L. mucor (LMU) (Wagner et al., 1994a) designed based on a pure culture

isolate. It can also be targeted by the class specific probe for Gammaproteobacteria (GAM42a, see

Table 5.4). The LMU probe sequence is included in Table 5.6, which contains FISH probes available for

less commonly observed filament morphotypes. The tree in Figure 5.3 illustrates the specificity and

coverage of these probes.

5.3.4 Microthrix parvicella morphotype

Abundance, morphology and affiliation

The Microthrix parvicella morphotype is an important bacterium responsible for bulking and foaming

incidences throughout the world (Eikelboom, 2000; Jenkins et al., 2004). Two species have been

identified in activated sludge. One, Candidatus M. parvicella, predominates in WWTPs with biological

N and P removal treating primarily domestic wastewater (Blackall et al., 1996). The other, Candidatus

M. calida, resembles this morphotype but its trichome is slightly thinner and it can grow at higher

temperatures in pure culture. It has only been found so far in WWTPs treating mainly industrial waste,

both with and without biological N and P removal (Levantesi et al., 2006).

Microthrix parvicella morphotype filaments are bent to curled with a cell diameter of 0.5 – 0.6 mm
(M. calida: cell diameter between 0.3 and 0.6 mm). They stain Gram positive and Neisser positive with
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Figure 5.3. 16S rRNA-based phylogenetic tree showing main lineages of different morphotypes which are not
very commonly observed in activated sludge. Brackets indicate the coverage of the probes listed in Table 5.6.
The exact branching order of the bacterial lineages cannot yet be determined due to a limited phylogenetic
resolution of the 16S rRNA marker gene. Therefore, unclear tree topology is depicted as multifurcation.

Table 5.6. Morphotype Leucothrix mucor, Sphaerotilus natans, Leptothrix discophora, Streptococcus and
1863 morphotype: rRNA-targeted oligonucleotide probes with corresponding formamide concentration,
target, morphotype, and comments on recommendability. Exemplified for different morphotypes which are not
very commonly observed in activated sludge.

Probe
name Target Morphotype Sequence (50-30) FA (%) Comments Reference

LMU
Leucothrix mucor
(Gammaproteobacteria) Leucothrix

CCC CTC TCC
CAA ACT CTA 35

Wagner
et al. 1994a

SNA
Sphaerotilus natans
(Betaproteobacteria)

S. natans

CAT CCC CCT
CTA CCG TAC 45

Wagner
et al. 1994a

CTE
Competitor for SNA TTC CAT CCC

CCT CTG CCG 20
Schleifer
et al. 1992

LDI
Leptothrix discophora
(Betaproteobacteria) Leptothrix

CTC TGC CGC
ACT CCA GCT 35

Wagner
et al. 1994a

Strept�
Streptococcaceae
(Firmicutes)

Streptococcus
CAC TCT CCC
CTT CTG CAC

40
pretreatment
C

Trebesius
et al. 2000

ACA23a
Acinetobacter spp.
(Gammaproteobacteria)

Type 1863
ATC CTC TCC
CAT ACT CTA

35
Wagner
et al. 1994b

� This probe is denoted Str in probeBase. C. Lysozyme and extended hybridization time 15–18h.
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polyP granules, which may be absent, for example, after prolonged starvation periods or after treatment

with polyaluminum products (Eikelboom, 2006). M. parvicella morphotype filaments can also contain

lipid/PHB granules (Rossetti et al., 2005).

Candidatus M. parvicella and Candidatus M. calida both affiliate with the Actinobacteria (unclassified

Actinobacteria) (Blackall et al., 1996).

Recommending the best probes

Table 5.7 shows the probes currently available for the morphotype M. parvicella, and the tree in Figure 5.4

illustrates their specificity and coverage.

To detect M. parvicella, cell permeabilization by pretreatment with enzymes is required to obtain a

satisfactory FISH signal. Many protocols have been published for permeabilizing M. parvicella and other

Gram positive bacteria (Beimfohr et al., 1993; Erhart et al., 1997; Carr et al., 2005; Kragelund et al.,

2007b). That which seems to promote the strongest FISH signal is combining achromopeptidase and

lysozyme (Kragelund et al., 2007b), which was developed originally for CARD-FISH (Sekar et al., 2003).

An extended hybridization time of up to 15–18 hours might be needed to eliminate irregular fluorescence

signal strength along the filament (Müller et al., 2007).

The phylum probe for Actinobacteria (HGC69a) designed to target their 23S rRNA (Roller et al.,

1994) is not suitable for Candidatus M. parvicella, since at least two mismatches exist with it (Bradford

et al., 1998). Instead the probe HGC1156 (Erhart, 1997) targeting the Actinobacteria can be used for

Candidatus M. parvicella (Müller et al., 2007) and Candidatus M. calida. Several probes have been

published that target the M. parvicella morphotype. Four probes MPA645, MPA223, MPA60, and

MPA650 were developed for in situ detection of Candidatus M. parvicella (Erhart et al., 1997). The

latter probe requires two competitor probes. Another two probes Mpa-all-1410 and Mpa-T1-1260 were

developed which target Candidatus M. calida (Levantesi et al., 2006). However, Mpa-all-1410 has a

weak central mismatch to Candidatus M. parvicella, but despite this mismatch, the probe clearly

hybridized to Candidatus M. parvicella isolates and M. parvicella present in sludge samples.

We recommend the MPAmix (mixture of MPA645, MPA223 and MPA60) be used for in situ

detection of the Microthrix morphotype including both Candidatus M. parvicella and Candidatus M.

calida, together with the HGC1156 probe targeting Actinobacteria. To distinguish between similar

Table 5.7. Microthrix morphotype: rRNA-targeted oligonucleotide probes with corresponding formamide
concentration, target, morphotype and comments on recommendability.

Probe name Target Morphotype Sequence (50-30) FA (%) Comments Reference

MPAmix

(MPA60 þ

MPA223 þ

MPA645)

Candidatus

M. parvicella þ

Candidatus M. calida

Microthrix

parvicella

GGA TGG CCG CGT

TCG ACT

þ GCC GCG AGA CCC

TCC TAG

þ CCG GAC TCT AGT

CAG AGC

20 Use a probe mix

and pretreatment

A or B�

Erhart

et al., 1997

Mpa-all-

1410

Almost all sequences

belonging to Candidatus

M. calida

Thin and

normal

M. parvicella

GGT GTT GTC GAC

TTT CGG CG

35 pretreatment

A or B�

Levantesi

et al., 2006

Mpa-T1-

1260

All sequences belonging

to Candidatus M. calida

Thin

M. parvicella

TTC GCA TGA CCT

CAC GGT TT

25 pretreatment A

or B�

Levantesi

et al., 2006

A. use pretreatment with achromopeptidase and lysozyme, no extended hybridization time needed
B. use lysozyme, acid, lipase, proteinase K and extended hybridization time 15–18h
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looking Candidatus M. parvicella and Candidatus M. calida in a sludge sample, MPAmix should be

applied first in order to detect both. Thereon Mpa-T1-1260 should be used to visualize Candidatus M.

calida filaments only. FISH images of M. parvicella and M. calida morphotypes can be seen Figures 9.18

and 9.19 in Chapter 9.

5.3.5 Nostocoida limicola morphotypes

Abundance, morphology and affiliation

The abundance of the different N. limicola morphotypes (I–III) has been assessed by morphologically

based surveys and these are associated with bulking and foaming (Eikelboom, 2000; Jenkins et al., 2004).

Several surveys using FISH probes have been published; Probe NLIMII175 detected this morphotype

frequently in WWTPs of Australia, New Zealand, France (Liu and Seviour 2001) and in a higher

frequency than did the NLII65 probe in German WWTPs (Müller et al., 2007). The N. limicola affiliating

with the Alphaproteobacteria seem to play a major role in the bulking events in plants with a high load of

industrial waste (Levantesi et al., 2004). In municipal WWTPs in Germany only a few have been recorded

(Müller et al., 2007), while in Australian EBPR plants they are more abundant (Seviour, unpublished).

The Chloroflexi affiliated N. limicola morphotype has been observed in several German scums in

municipal plants (Müller et al., 2007).

The N. limicola morphotype is distinguished by its long, coiled and tangled filaments. Three different

morphotypes (I, II, and III) have been described based on minor differences primarily in their cell

diameter (Eikelboom, 2000). Individual variable opaque coccoid cells are barely resolvable by light

microscopy in thin filaments of N. limicola type I. Cells are coccoid to discoid in the thicker type II

environmental clone (DQ395502)

Environmental clone (EU159529)

Environmental clone (DQ316384)
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Candidatus Microthrix calida, TNO2-3
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Figure 5.4. 16S rRNA-based phylogenetic tree showing main lineages of Microthrix morphotypes in the
Actinobacteria. Brackets indicate the coverage of the probes listed in Table 5.7. The exact branching order of
the Actinobacteria lineages cannot yet be determined due to a limited phylogenetic resolution of the 16S
rRNA marker gene. Therefore, unclear tree topology is depicted as multifurcation.
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filaments. Flattened discoid cells are found in N. limicola type III. Diameter varies from ca. 0.8 to 2 mm.

Nostocoida limicola filaments are Gram variable and often but not always Neisser positive, and show a

light to dark grey violet cell wall.

It is difficult (or impossible) to relate each of the morphotypes to phylogenetically distinct probe-

defined species. They have been identified as members of several phylogenetically distantly related

species. Some affiliate with the Alphaproteobacteria, others with members of the Chloroflexi, Firmicutes,

Planctomycetes, and Actinobacteria.

Recommending the best probes for Nostocoida limicola II

Table 5.8 shows probes that can be used for N. limicola morphotypes, and the tree in Figure 5.5 illustrates

their specificity and coverage.

Nostocoida limicola morphotype II is commonly seen in municipal WWTPs. Many belong to

Candidatus N. limicola affiliating with the genus Tetrasphaera in the family Intrasporangiaceae in the

phylum Actinobacteria. This filamentous species is usually not observed in large quantities in bulking

incidences but often in low numbers especially in municipal WWTPs. Importantly, in German plants the

NLIMII175 probe has been observed to also target other morphotypes including bent sickle-shaped rods,

and long thin filaments developing two different morphotypes with long rectangular cells and spherical to

square-shaped cells (Schade M., unpublished). A typical N. limicola morphotype can be seen in Fig 9.20

in Chapter 9.

The N. limicola morphotype II can also be a member of the phylum Chloroflexi (class

Thermomicrobia, Hugenholtz and Stackebrandt, 2004) and is targeted by probe AHW183 (designed

based on 4 cultured isolates, Schade et al., 2002). A typical N. limicola morphotype can be seen in

Figure 9.21 in Chapter 9.

In industrial WWTPs the most commonly observed N. limicola morphotypes II belong to the

Alphaproteobacteria, and these account for many incidents of bulking (Levantesi et al., 2004). The

most commonly observed filaments Candidatus Monilibacter batavus, Candidatus Alysiomicrobium

bavaricum, Candidatus Sphaeronema italicum and Candidatus Alysiosphaera europaea can be detected

with the general probe (ALF968) for the Alphaproteobacteria, and more specifically with probes

MC2-649 and DF198, PPx3-1428, Sita-649 and Noli-644, respectively. These probes are not very

specific, for example, MC2-649 (Nittami, unpublished results), PPx3-1428 and Sita-649 (Kragelund

et al., 2006), but they can still be used for preliminary screening. For some of these filaments more

specific probes are available such as PPx1002 for Candidatus Alysiomicrobium bavaricum, and

Nost993 in combination with a helper probe for Candidatus Sphaeronema italicum (Kragelund et al.,

2006). Probe DF988 designed for the GAO Defluviicoccus (see Chapter 4) also targets Candidatus

Monilibacter batavus (Seviour R., unpublished results). Other alphaproteobacterial species with this

morphology have been identified in activated sludge: Meganema perideroedes can be detected with

probes Meg983 and Meg1028 (Thomsen et al., 2006a) and Candidatus Combothrix italica is detectable

with probe Combo1013 (Levantesi et al., 2004). However, these filaments are not commonly observed

in either industrial or municipal WWTPs.

For identification of these alphaproteobacterial Nostocoida limicola morphotype II we recommend the

following probes listed in Table 5.8. The ALF968 probe detects all known filaments belonging to the

Alphaproteobacteria (see Table 5.4). For further species differentiation the following probes are

recommended: DEF198, PPx3-1428, Sita-649 and Noli-644 which target the most commonly observed

species predominantly in industrial sludges (Table 5.8). However, bear in mind that more specific probes

are available for some of the alphaproteobacterial species and please consult the listed references for

details. For the actinobacterial species, probe NLIMII175 is recommended, but be aware that other

Identification of filamentous bacteria by FISH 49

Downloaded from https://iwaponline.com/ebooks/book-pdf/521273/wio9781780401775.pdf
by IWA Publishing user
on 04 February 2019



Table 5.8. Nostocoida limicola morphotypes: rRNA-targeted oligonucleotide probes with corresponding formamide concentration, target,
morphotype, and comments.

Probe name Target Morphotype Sequence (50-30) FA (%) Comments Reference

NLIMII175

Candidatus Nostocoida limicola II

strains except strain Ben 70

(phylum Actinobacteria)

Nostocoida

limicola II

GGC TCC GTC TCG TAT

CCG 40

Liu and Seviour, 2001

NLII65
Nostocoida limicola II (phylum

Actinobacteria)

Nostocoida

limicola II

CAA GCT CCT CGT CAC

CGT T 20
Bradford, 1997

AHW183

N. limicola-like isolate, nearest

relative Sphaerobacter thermophilus

(Chloroflexi phylum)

Nostocoida

limicola II

CCGACACTACCCACTCGT

35

Schade et al. 2002

PPx3-1428

Candidatus Alysiomicrobium

bavaricum (Alisphaera ppx3)

(Class Alphaproteobacteria)

Nostocoida

limicola II

TGG CCC ACC GGC TTC

GGG 50

Optional

hybridization

overnight

Snaidr et al. 2002

Noli-644

Candidatus Alysiosphaera

europaea

(Class Alphaproteobacteria)

Nostocoida

limicola II

TCC GGT CTC CAG CCA

CA 35

Optional

hybridization

overnight

Snaidr et al. 2002

Sita-649þ

Comp

Sita-649

Candidatus Sphaeronema

italicum þ competitor

(Class Alphaproteobacteria)

Nostocoida

limicola II

CCW CTC CCG GAC YCC

AGC þ CCT CTC CCG GTC

TCC AGC C
50

Levantesi et al. 2004

DF198

Candidatus Monilibacter

batavus-related organisms

(Class Alphaproteobacteria)

Nostocoida

limicola II

ATCCCAGGGCAACATAGT

CT 35

Nittami et al.

unpublished

Combo1031
Candidatus Combothrix italica

(Class Alphaproteobacteria)

Nostocoida

limicola II

CAC CTG CAG TGG CCT

CCC GA 35
Levantesi et al. 2004

Meg1028 þ

Meg983

All published sequences of

Meganema perideoedes

(Class Alphaproteobacteria)

Type 021N CTG TCA CCG AGT CCC

TTG C þ CGG GAT GTC

AAA AGG TGG
35

Thomsen et al. 2006

NLIMI91

Nostocoida. limicola I isolates,

Trichococcus spp. (Firmicutes)

Nostocoida

limicola I

CGCCACTATCTTCTCCGT

(published sequence)

CGCCACTATCTTCTCAGT

(correct sequence)

20

Lysozyme Liu and Seviour, 2001

NLIMIII301

N. limicola III isolate,

Isosphaera pallida

(Planctomycetales)

Nostocoida

limicola III

CCCAGTGTGCCGGGCCAC

20

Lysozyme Liu and Seviour, 2001
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Meganema perideroedes

environmental clone (AJ297618)
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environmental clone C17 (AB445109)
environmental clone C23 (AB445110)
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Figure 5.5. 16S rRNA-based phylogenetic tree showing main lineages of Nostocoida limicolamorphotypes. Brackets indicate the coverage of
the probes listed in Table 5.8. The exact branching order of the Nostocoida limicola morphotypes lineages cannot yet be determined due to a
limited phylogenetic resolution of the 16S rRNA marker gene. Therefore, unclear tree topology is depicted as multifurcation.
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morphotypes have been observed with this probe. Also the phylum probe HGC1156 targets the

morphotype (Table 5.4). Lastly, the Chloroflexi-related N. limicola II is targeted by probe AHW183 which

is also targeted by CFX mix (Table 5.4). Morphological appearance of Nostocoida limicola II

morphotypes can be seen in FISH images in Figures 9.20–9.30, Chapter 9.

Other probes for morphotypes N. limicola I and III

For Nostocoida limicola morphotypes I and III affiliating to members of the Firmicutes and

Planctomycetales several probes have been developed. However, there are some discrepancies between

morphotype definitions and probe targets so these do not necessarily target N. limicola morphotypes I and

III as described by Eikelboom. Probe NLIMI91 was designed based on sequences from three N. limicola-

like isolates, affiliated with Trichococcus spp. within the phylum Firmicutes (Liu et al., 2000). It can also

be targeted by the phylum probes LGC354A-C (Table 5.4). This probe was used to detect N. limicola I in

Australian, Italian and French WWTPs (Liu and Seviour, 2001). However, no detection of the typical

N. limicola I morphotype was observed with this probe in either municipal or industrial European plants

(Eikelboom, 2006; Müller et al., 2007). Quite the contrary, NLIMI91 detected short filaments and coccoid

cells in Australia and Europe (Liu and Seviour 2001, Müller et al., 2007) and long thin filaments with

rectangular cells (Schade M., unpublished). Probe NLIMIII301 was designed based on five N. limicola

III-like isolates belonging to the Planctomycetales. They can also be targeted by the phylum probe Pla46

(Table 5.4). The experience with this probe is rather conflicting: In contrast to the opaque cells described

by Eikelboom for morphotype Nostocoida III, they possessed transparent cocci in slightly bent filaments

(Liu et al., 2001b). The probe targeted single cells within transparent Isosphaera filaments in some cases

(Müller et al., 2007). In German plants probe NLIMIII301-targeted cells were never present in high

abundance as compared to the typical N. limicola morphotype III (Müller et al., 2007), but were highly

abundant in some Australian plants treating dairy wastes appearing as long chains of coccoid cells

(Seviour R., unpublished), see Figure 9.31, Chapter 9.

5.3.6 Nocardioform actinomycetes/Mycolata morphotype

Abundance, morphology and affiliation

Abundances of Nocardioforms/Mycolata have been assessed in surveys based on morphology

(Eikelboom, 2000; Jenkins et al., 2004) and with available FISH probes (Eales et al., 2005; Müller,

2006; Kragelund et al., 2007b; Müller et al., 2007). Mycolata are found in municipal and industrial

WWTPs with or without nutrient removal (Kragelund et al., 2007b; Seviour et al., 2008).

Two quite distinct filamentous morphotypes have been identified. Gordonia amarae-like organisms

(GALOs) have filaments with perpendicular branching angles, while acute-angle branched filaments

distinguish the pine tree-like organisms (PTLOs). This difference is used for their microscopic

‘identification’. In addition, non-filamentous growth forms may occur, and here are referred to as NOC-

like organisms. Development of these often depends on environmental conditions or organism growth

phase. Therefore it is difficult (or often impossible) to relate any of these to phylogenetically distinct

probe-defined populations. Abundances of several species of Mycolata have been assessed using available

FISH probes in foam and sludge samples. Studies have examined the abundances of Gordonia,

Skermania, and Rhodococcus populations and NOC-like organisms in plant samples from all over the

world (e.g. Australian, Czech, Danish, German, and Swedish plants) (Eales et al., 2005; Kragelund et al.,

2007b; Müller, 2006; Müller et al., 2007).

Their cell diameters vary from 0.6–2.0 mm, depending on the morphotype present. Usually they are Gram

positive, but Gram variable morphotypes have also been observed especially in industrial plants or those

operating at a very high sludge age. Neisser/DAPI positive polyP granules are occasionally seen.
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The Mycolata morphotypes formerly known as ‘nocardioforms’ all contain mycolic acid in their cell

walls. They are classified as members of the suborder Corynebacterineae within the Actinobacteria

(Stackebrandt et al., 1997). This group encompasses members of several genera including

Corynebacterium, Dietzia, Gordonia, Millisia, Mycobacterium, Nocardia, Rhodococcus, Skermania,

Tsukamurella, and Williamsia, based primarily on chemical, molecular, and morphological markers (Chun

et al., 1997; Butler et al., 2005; Soddell et al., 2006). Nocardia amarae has been reclassified as Gordonia

amarae (Goodfellow et al., 1994; Klatte et al., 1994; Ruimy et al., 1994). Nocardia pinensis has also been

reclassified into a new genus Skermania as Skermania piniformis (Chun et al., 1997). Phylogenetic and

phenotypic studies of Mycolata in WWTPs reveal a high diversity among members of this group and

Dietzia, Gordonia, Mycobacterium, Rhodococcus, Tsukamurella, and S. piniformis are often involved in

foaming events (Goodfellow et al., 1998; Schuppler et al., 1998; Soddell et al., 1998; Seong et al., 1999;

Stainsby et al., 2002; Wagner and Cloete, 2002; Nam et al., 2003; Eales et al., 2005; Müller, 2006;

Kragelund et al., 2007b).

Recommending the best probes

In general FISH protocols for detecting Mycolata incorporate a pretreatment permeabilization step to

facilitate probe transport into the cells, as described above for the Microthrix morphotype. A lysozyme

pretreatment at least is recommended. For some Rhodococcus spp. and Skermania piniformis an acid,

lipase, proteinase K treatment might be necessary (Carr et al., 2005, Müller, 2006). The protocol that

seems to promote the strongest FISH signal for detecting Gordonia and Skermania species is combining

achromopeptidase and lysozyme (Kragelund et al., 2007b). In addition extending hybridization times to

15–18 h is recommended, as outlined earlier for Microthrix.

Table 5.9 shows the FISH probes useful for Mycolata morphotypes at group, genus, and species

level, and the tree in Figure 5.6 illustrates their specificity and coverage. Firstly probes for detecting

the entire Mycolata group are described, and then those targeting individual genera and species are

discussed.

Mycolata group-targeted probes. No probe has been designed that targets the entire Mycolata group. Probe

HGC1156 targets most known Mycolata but also many other members of the phylum Actinobacteria.

However, branched filaments (GALOs and PTLOs) can to some extent be detected with the probe if no

intermediate morphotypes are observed as reported in several papers (Kragelund et al., 2007b). But NOC-

like organisms cannot be distinguished from other non-mycolic acid-containing organisms. Therefore,

additional group- and genus-targeted probes are necessary for further identification. This step is essential

since individual Mycolata members can differ markedly in their physiological features, indicating that

individual control strategies are required for each.

Two broad probes (Myc657 and MNP1) target most known members of the family Corynebacteriaceae

where most of the genera of mycolic acid containing branched filaments are grouped (Myc657;

Davenport et al., 2000; MNP1; Schuppler et al., 1998), see Table 5.4. Probe Myc657 detects more

Mycolata than MNP1, but interestingly the latter probe detects NOC-like organisms better than the

branched filamentous bacteria. Probe CMN119 (Erhart et al., 1997) detects a subgroup of the

Corynebacterineae excluding Dietzia spp. and Tsukamurella spp. and this probe has identified GALOs

which could not be detected with the other broad probes (Müller, 2006). These broad probes are grouped

in Table 5.4 along with other group or phylum probes.

Gordonia (GALO)-specific probes. The probe Gor596 is suitable for detecting all known members of

the genus Gordonia (de los Reyes et al., 1997). Other probes have been designed to target Gordonia spp.

in sludge and foam (Gam192, G. amarae (de los Reyes et al., 1997), GLP2, different Gordonia sequences
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(Schuppler et al., 1998), and G.am205, G. amarae (de los Reyes et al., 1998). Hierarchical probe overlap

is observed with Myc657 and MNP1.

Skermania piniformis (PTLO)-specific probes. Two probes for detecting Skermania piniformis have

been published: Spin1449 (Eales et al., 2006), and NPI452 (Bradford, 1997). PTLOs are commonly

observed using probe Spin1449 in foaming European WWTPs. Hierarchical probe overlap is observed

with Myc657.

Rhodococcus (GALO)-specific probes. Members of the genus Rhodococcus are a diverse group of

organisms. Rainey et al. (1995) showed that Rhodococcus species fall into six distinct phylogenetic

groups and currently contain some members whose taxonomic status is uncertain. Therefore it is not

possible to design a probe targeting all members of this genus. Nevertheless, two probes Rco1 and Rco2

are described which detect most Rhodococcus spp. (Davenport et al., 1998). However, these two probes

showed no positive FISH results with pure cultures of Rhodococcus fascians, R. rhodnii, R. globerulus,

and R. rhodochrous (Müller E., unpublished). They were optimized under different FISH conditions than

used here (e.g. different hybridization formamide concentrations and temperature) and are thus not

recommended.

Three probes are available for different Rhodococcus spp. The probe R.ery619 targets R. erythropolis

(Müller, 2006) (Rhodococcus group IV according to Rainey et al., 1995). Hierarchical probe overlap

occurs with Myc657 and MNP1 (Müller, 2006). The other two probes, i.e. RHOa429 and RHOb183, were

designed to detect two Rhodococcus clusters not affiliated to any of Rainey’s Rhodococcus groups or any

known Rhodococcus species. Probe RHOa429 targets Rhodococcus spp. cluster A, and RHOb183 targets

Rhodococcus sp. cluster B. Sequence analyses of Rhodococcus cluster A and B members show one and

two mismatches to the MNP1 and Myc657 probes, respectively. They respond only to the group-specific

probe CMN119 (Erhart, 1997; Müller, 2006).

Dietzia (NOC-like organisms)-specific probes. Two probes are available against Dietzia spp. showing a

NOC-like appearance in scum. Probe DLP (Schuppler et al., 1998) identifies members of the genus

Table 5.9. Nocardioform actinomycetes/Mycolata morphotype: rRNA-targeted oligonucleotide probes
with corresponding formamide concentration, target, morphotype, and comments on recommendability.

Probe
name Target

Morpho-
type Sequence (50-30) FA (%) Comments Reference

Gor596 Gordonia family GALO TGC AGA ATT TCA CAG ACG
ACG C

20 Pretreatment A de los Reyes
et al. 1997

G.am205 Gordonia amarae GALO CAT CCC TGA CCG CAA
AAG C

30 Pretreatment A de los Reyes
et al. 1998

Spin1449 Skermania piniformis PTLO CCGCTCCCTCCCACAAAG 35 Pretreatment A Eales
et al. 2006

R.ery619 Rhodococcus
erythropolis

GALO CCTGCAAGCCAGCAGTTG 20 Pretreatment C Müller, 2006

RHOa429 Rhodococcus spp.
Cluster A scum clone
Rhodococcus spp.

GALO CGGAGCTGAAAGGAGTTT 20 Pretreatment C Müller, 2006

RHOb183 Rhodococcus sp.
Cluster B scum
clone

GALO ACCACGAAACATGCATCC 20 Pretreatment C Müller, 2006

DIE993 Dietzia spp. NOC-
like org.

CCGTCGTCCTGTATATGT 20 Pretreatment C Müller, 2006

A. use pretreatment with achromopeptidase and lysozyme, no extended hybridization time needed
C. Lysozyme and extended hybridization time 15–18h
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Dietzia (excluding D. maris), which form short irregular rods (Schuppler et al., 1998). Another probe

DIE993 targets D. maris, D. psychralcaliphila, D. daqingensis, D. natronolimnaea, uncultured foam

bacteria (Wagner and Cloete, 2002), and scum clones (Müller, 2006), all of which are members of the

genus Dietzia. The morphology of the NOC-like organisms was bent single rods either in clusters or

forming short non-branched filaments. Hierarchical probe overlap is observed with Myc657 and also

MNP1 (Müller, 2006).

Recommending the best probes. We recommend probe Myc657 as the general probe targeting most

Mycolata. For detecting Rhodococcus spp. in sludge or foam it might be advantageous to apply CMN119

as a general probe also because some Rhodococcus species are not targeted by the Myc657 probe. At

genus level the following probes Gor596 (Gordonia spp.), Spin1449 (Skermania piniformis), RHOa429,

RHOb183, R.ery619 (three different Rhodococcus spp.) and DIE993 (Dietzia spp.) differentiate between

some common species within the broad Mycolata group. However, these more specific probes do not

cover the entire Mycolata group and so it is still not possible to identify all GALOs and PTLOs by FISH.

Mycobacterium salmoniphilum
Mycobacterium massiliense

Mycobacterium fluoranthenivorans
Mycobacterium cosmeticum

Mycobacterium aubagnense
Mycobacterium alvei

Mycobacterium obuense
Mycobacterium senegalense

Mycobacterium fortuitum
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Dietzia cinnamea

Dietzia maris
Dietzia kunjamensis

Tsukamurella tyrosinosolvens
Tsukamurella poriferae
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Gordonia amarae
Gordonia defluvii
Gordonia effusa

Gordonia desulfuricans
Nocardia sp. P–15
Rhodococcus equi

Rhodococcus sp. B–1016
Rhodococcus  sp.
Rhodococcus clone
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Rhodococcus sp. KGN8
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Figure 5.6. 16S rRNA-based phylogenetic tree showing main lineages of Nocardioform actinomycetes/
Mycolata morphotype. Brackets indicate the coverage of the probes listed in Table 5.9. The exact branching
order of the Nocardioform actinomycetes/Mycolata lineages cannot yet be determined due to a limited
phylogenetic resolution of the 16S rRNA marker gene. Therefore, unclear tree topology is depicted as
multifurcation.
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For reliable identification it is best to use activated sludge samples and not foam samples, as organisms

in the foam often have low FISH signals from their moribundity. See FISH images, Figures 9.32–9.38

in Chapter 9.

5.3.7 Sphaerotilus natans and Leptothrix discophora morphotype

Abundance, morphology and affiliation

This morphotype was once held responsible for many bulking incidences in plants operating with high

F/M ratios before other potential bulking filaments have been described (e.g. Eikelboom 1975, Jenkins

et al., 1993). It is still seen, primarily in municipal WWTPs without nutrient removal, but is now

considered as being rarely responsible for bulking (van der Waarde et al., 2002). However, it can be found

in large quantities in some industrial WWTPs worldwide, such as the pulp and paper industries in

Australia (Seviour R, unpublished) or food industries such as breweries, dairies or starch processing plants

in Germany (Lemmer et al., 2000). Leptothrix discophora has been identified in activated sludge plants

but is rarely abundant (Jenkins et al., 1993; van der Waarde et al., 2002). When a FISH survey was

conducted using species-specific probes on samples from industrial WWTPs (van der Waarde et al.,

2002), S. natans was detected in approx. 25% and L. discophora in less than 1% of these plants, but no

information about their relative abundances was given. More recently S. natans was present in only 13%

of 126 industrial WWTPs, and the filament index never exceeded 1.5 (Kragelund C and Nielsen PH,

unpublished results).

The S. natans morphotype comprises straight or bent sheathed filaments which are distinctively falsely

branched and may produce swarming gonidia. Cell diameter is approx. 1.0–1.3 mm. Cells are rectangular

(filaments center) or rod-shaped (filaments ends). It stains Gram negative and Neisser negative. S. natans

and L. discophora share an almost identical morphology. Thus probes are needed for their differentiation

(Eikelboom, 2006).

Sphaerotilus natans belongs to the genus Sphaerotilus within the Betaproteobacteria. Leptothrix

discophora is also a member of the Betaproteobacteria and is located within the genus Leptothrix.

Recommending the best probes

Probes SNA and LDI (Wagner et al., 1994a) for detecting the S. natans and L. discophora morphotypes,

respectively, are described in Table 5.6, which contains sequences for less commonly seen filament

morphotypes, while the tree in Figure 5.3 illustrates their specificity and coverage. These FISH probes

were both developed with pure cultures of S. natans and L. discophora. Probe SNA for S. natans requires

the CTE competitor probe, since Wagner et al. (1994a) report that Sphaerotilus spp., S. natans, type 1701,

L. discophora, and L. cholodnii all hybridized with it. Moreover, type 1701 and Leptothrix spp. show a

close phylogenetic affiliation with Sphaerotilus spp. In German municipal WWTPs the probe SNA even

with CTE still visualized single rod-shaped and coccoid cells in addition to Sphaerotilus filaments

(Schade M., unpublished). Both S. natans and L. discophora can be hybridized by the class-specific probe

for Betaproteobacteria (Table 5.4). See FISH images, Fig 9.39, Chapter 9.

5.3.8 Streptococcus morphotype

Abundance, morphology and affiliation

Filamentous streptococci can be quite abundant in municipal WWTPs with EBPR, constituting 1–4% of the

biovolume (Kong et al., 2008). The filaments of Streptococcus are bowed and twisted, round cells with a
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diameter of approx. 0.7 mm. Septa and constrictions are clearly visible. They stain Gram positive and Neisser

negative. Filamentous streptococci affiliate in the genus Streptococcus in the family Streptococcaceae (class

Bacilli, phylum Firmicutes). This morphotype may also cover other Firmicutes, such as Trichococcus

spp. (Liu et al., 2000), which can also be assessed as morphotype Nostocida limicola I, see section above.

Probes for detection of streptococci

Table 5.6 shows that probe Strept (Trebesius et al., 2000) can be used to identify filamentous streptococci

(see also Chapter 6). The probe targets 44% of all streptococci, and can be used together with the broader

probe LGC354C (Meier et al. 1999). The morphologies of the Strept-probed cells embrace both small cocci

and filamentous organisms. The phylogenetic tree in Figure 5.3 shows the less commonly seen filament

morphotypes and the probes for their detection along with their specificity and coverage.

5.3.9 Thiothrix and Type 021N morphotypes

Abundance, morphology and affiliation

These morphotypes occur in municipal and industrial WWTPs with and without nutrient removal

(Eikelboom, 2000; Jenkins et al., 2004) and in biofilm reactors (Nielsen PH. and Nielsen JL., unpublished

results). FISH surveys have applied several probes targeting these morphoptypes and they were seen

frequently in industrial samples where they were found in 38% of samples (detected using probes TNI and

21N) (van der Waarde et al., 2002). More specific probes targeting subpopulations of morphotype 021N

were used in a survey, and two of the three 021N morphotypes were frequently seen in Japanese and

European WWTPs (Kanagawa et al., 2000).

The Thiothrix morphotypes contain six microscopically recognizable different forms, whose trichomes

can be separated on their diameter, which may vary from 0.6–2.5 mm with rectangular cells in the filament

center and rod-shaped cells at their ends. Often sulfur granules accumulate in situ (Unz and Head, 2005).

They generally display a positive S0 result without or after incubation with a reduced sulfur source. They

are Gram and Neisser negative.

The 021N filament morphotype has a cell diameter of 1.0–2.0 mm with discoid or almost square cells

in the centre and rod-shaped cells at the filament ends. Occasionally small sulfur granules are visible in situ

or after incubating with a reduced sulfur source. Type 021N stains Gram and Neisser negative.

Several morphologically indistinguishable filaments have been identified: at least one belongs to the

Alphaproteobacteria (Meganema perideroedes) and possibly others (Howarth et al., 1999; Thomsen et al.,

2006a) and some affiliate to the Chloroflexi being not separable microscopically from T. eikelboomii

(Type 021N) (Kragelund et al., 2007a). As the S0 test is not always useful in identifying each, FISH

probes are needed to differentiate between them.

Currently, seven species of Thiothrix in the Gammaproteobacteria have been isolated and described

(Cole et al., 2005; 2008; Unz and Head, 2005) and furthermore T. nivea (Teske et al., 1996) and T. ramosa

(Polz et al., 1996) have been extensively described. The Eikelboom 021N morphotype has now been

shown to represent three separate species within the genus Thiothrix (T. eikelboomii, T. disciformis and

T. flexilis) (Howarth et al., 1999; Kanagawa et al., 2000; Unz and Head, 2005).

Recommending the best probes

Table 5.10 shows the oligonucleotide probes for identifying and quantifying the Thiothrix/Type 021N

group, and the tree in Figure 5.7 illustrates their specificity and coverage.
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The probe G123T with its competitor G123T-C (Kanagawa et al., 2000) targets the entire Thiothrix/

021N group. Probes 21N and TNI (Wagner et al., 1994) target subpopulations of type 021N and Thiothrix,

respectively. The latter also hybridizes with some rod-shaped and coccoid cells, presumably the gonidia

from Thiothrix. Probe 21N occasionally targets much thinner filaments, which are readily distinguished

from type 021N (Schade M., unpublished). Probes based on pure culture isolates allow the three type

021N species to be differentiated: G1B targets group 1 (T. disciformis), G2M, group 2 (T. eikelboomii) and

G3M, group 3 (T. flexilis).

We recommend using probe G123T and its competitor probe to detect the entire Thiothrix/021N group.

As these probes may target filaments other than Thiothrix/021N, simultaneous application of probe G123T

Table 5.10. Thiothrix/021N morphotype rRNA-targeted oligonucleotide probes with corresponding
formamide concentration, target, morphotype, and comments on recommendability.

Probe name Target Morphotype Sequence (50-30) FA (%) Comments Reference

G123T þ

G123T-C
competitor

Thiothrix/021N
group (Gamma-
proteobacteria)

Type 021N &
Thiothrix spp.

CCT TCC GAT CTC TAT
GCA þ CCT TCC GAT CTC
TAC GCA

40
Kanagawa
et al. 2000

TNI Thiothrix nivea Thiothrix
CTC CTC TCC CAC ATT
CTA 45

Wagner
et al. 1994a

21N Type 021N Type 021N
TCC CTC TCC CAA ATT
CTA 35

Wagner
et al. 1994a

G1B
021N group 1
(T. disciformis) Type 021N

TGT GTT CGA GTT CCT
TGC 30

Kanagawa
et al. 2000

G2M
021N group 2
(T. eikelboomii) Type 021N

GCA CCA CCG ACC CCT
TAG 35

Kanagawa
et al. 2000

G3M
021N group 3
(T. flexilis) Type 021N

CTC AGG GAT TCC TGC
CAT 30

Kanagawa
et al. 2000

Meg1028 þ

Meg983

Meganema
perideroedes
(Alphaproteobacteria)

Type 021N

CTG TCA CCG AGT CCC
TTG C þ CGG GAT GTC
AAA AGG TGG

35
Thomsen
et al. 2006a

Thiothrix eikelboomii, strain:KR-A
Thiothrix eikelboomii, strain:T1-4
Thiothrix eikelboomii

Thiothrix eikelboomii, strain:COM-A
Thiothrix eikelboomii, strain:T2-1
Thiothrix disciformis

Thiothrix nivea
Thiothrix sp. KRN-B2

Thiothrix sp. NKBI-C
Thiothrix unzii

Thiothrix fructosivorans
Thiothrix flexilis
alpha proteobacterium EU15

filamentous bacteria GR1
Meganema perideroedes

G1B

TNI

G2M

G3M

21N

Meg983
Meg1028

G123T
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Figure 5.7. 16S rRNA-based phylogenetic tree showing main lineages of Thiothrix/O21N. Brackets indicate
the coverage of the probes listed in Table 5.10. The exact branching order of the Thiothrix/O21N lineages
cannot yet be determined due to a limited phylogenetic resolution of the 16S rRNA marker gene. Therefore,
unclear tree topology is depicted as multifurcation.
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with probes TNI and 21N is recommended (Schade M., unpublished). For further differentiation between

these type 021N filaments (T. eikelboomii, T. flexilis and T. disciformis) and Thiothrix species more

specific probes can be used, refer to Figure 5.7. Also the class-specific probe for Gammaproteobacteria

targets these morphotypes (Table 5.4). See also FISH images in Figures 9.40–9.44, Chapter 9.

5.3.10 0041/0675 morphotype

Abundance, morphology and affiliation

This morphotype has been identified in WWTPs all over the world. 0041/0675 filaments are ranked as the

second to sixth most frequently seen bacteria (summarized in Jenkins et al., 2004; Tandoi et al., 2006).

FISH surveys have also been published with a selection of probes targeting the 0041/0675 morphotype.

For example, approximately 15% of all morphotype 0041/0675 filaments were targeted by the probe for

TM7 subdivision 1 in Danish WWTPs (Thomsen et al., 2002). A German survey detected a larger fraction

(approx. 40%) of TM7 affiliated morphotypes (Müller et al., 2007).

The 0041/0675 morphotype has straight or bent filaments with a cell diameter of 0.7 to 2 mm and

almost square cells. Filaments often show attached growth. They stain mainly Gram positive and Neisser

negative. A faint Neisser staining response might suggest phosphorus deficiency in the plant.

The phylogenetic affiliation of members of morphotype 0041/0675 is diverse. Many show affiliation

with members of the Chloroflexi (Bjornsson et al., 2002; Kragelund et al., 2007a). Others affiliate with

Curvibacter (recently reclassified from Aquaspirillum) within the Betaproteobacteria (Thomsen et al.,

2006b) and some are embraced by the Candidate division TM7 (Hugenholtz et al., 2001). However, blast

searches of the TM7 probes show that approx. 50% of the targeted sequences are in fact affiliated to the

phylum of Chloroflexi. Therefore, a thorough cross check of probe results with the filament morphological

details after phase contrast microscopy is highly recommended.

Recommending the best probes

Table 5.11 shows the oligonucleotide probes available for identifying and quantifying morphotype

0041/0675, while the tree in Figure 5.8 illustrates their specificity and coverage.

Morphotype 0041/0675 filaments are most often identified with the phylum-targeted CFXmix probes

for the Chloroflexi (Bjornsson et al., 2002; Kragelund et al., 2007a). These also detect morphotypes 0092

and 1851 and some H. hydrossis-like bacteria (see other sections). For more precise identification, genus-

and species-targeted probes within the Chloroflexi phylum are required, but these are currently not

available. Some 0041/0675 morphotypes hybridize with probe Curvi997 when applied with competitor

probes Comp1curvi997 and Comp2curvi997 (Thomsen et al., 2006b) and thus belong to the genus

Curvibacter. However, this probe also targets some abundant microcolony-forming bacteria present

in many WWTPs (Thomsen et al., 2004 and Chapter 3) and in addition hybridizes with type 1701. Some

0041/0675 filaments are detected with probes TM7905 targeting almost the entire Candidate division

TM7, and TM7305, which target members of subdivision 1. No taxonomically defined species within this

phylum have been assigned so far to type 0041/0675 filaments. In addition, single cells and other filaments

have been seen hybridizing with these TM7905 and TM7305 probes (Hugenholtz et al., 2001).

We recommend applying probes for each phylum in studies with type 0041/0675 i.e. probes CFX mix

for Chloroflexi members, Curvi997 and competitor probes for some Betaproteobacteria and probes

TM7905 and TM7305 for those in candidate division TM7. Remember to cross-check the FISH data

with those obtained with phase contrast microscopy. See also FISH images in Figures 9.45–9.48,

Chapter 9.
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Table 5.11. Morphotype 0041/0675: rRNA-targeted oligonucleotide probes with corresponding formamide concentration, target,
morphotype, and comments on recommendability for bacteria with attached growth.

Probe name Target Morphotype Sequence (50-30) FA (%) Comments Reference

CFX mix
(GNSB941
þCFX1223)

Phylum Chloroflexi Type
0041/0675

AAACCACACGCTCCGCTþ
CCATTGTAGCGTGTGTGTMG

35 Also other morphotypes can be
observed, often type 1851 and
sometimes also type 1701, and
H. hydrossis-like filaments

Bjornsson et al.
2002
Gich et al. 2001

TM7305 subdivision 1
of candidate
division TM7

Type
0041/0675

GTC CCA GTC TGG CTG ATC 30 Primarily type 0041/0675 Hugenholtz et al.
2001

Curvi997
Comp1curvi997þ
Comp2curvi997

Curvibacter delicatum
ATCC14667; Pseudomonas
lanceolata AB021390 þ few
more (Betaproteobacteria)
Competitor to curvi997
should be applied together

Type
0041/0675

CTC TGG TAA CTT CCG
TAC
CTC TGG CAA CTT CCG
TAC þ CTC TGG TCA CTT
CCG TAC

35 Primarily targets type 1701
and microcolony forming
bacteria therefore please
check thoroughly for morphology
consistency

Thomsen et al.
2004
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5.3.11 0092 morphotype

Abundance, morphology and affiliation

Type 0092 appears prominently in microscopy-based surveys of activated sludge plants around the

world (Jenkins et al., 2004). An Australian FISH survey of EBPR plants where this morphotype was

abundant, showed that it never responded to the EUBmix probes (Speirs et al., 2009). Such survey data

suggest that it seems to be associated especially with plants operating with low F/M feeds and long sludge

ages, and thus is seen frequently in activated sludge systems removing P. However, it does not stain

positively for polyP granules with DAPI.

Its morphotype is distinctive, appearing as short blunt ended trichomes extruding from flocs or

occasionally freely suspended in the bulk liquid. Some reports suggest it is also enriched in foams, although

whether it is a causative organism is unlikely. It can be ‘identified’ readily microscopically by its Neisser

positive staining reaction, where filaments appear distinctively ‘lilac’ in color. It stains Gram negative.

Reports that this morphotype has been cultured should be treated cautiously. The phylogeny of most

isolates has never been resolved, and where 16S rRNA sequencing has been performed, FISH probes

designed against them have never hybridized with this filament morphotype in situ.
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Chloroflexi bacterium Ver9Iso1

Eikelboom Type 1851 Ben52

Roseiflexus castenholzii
Chloroflexus aggregans DSM 9485

Chloroflexus aurantiacus
Chloroflexus aurantiacus J-10-fl

Chloroflexus aurantiacus J-10-fl
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environmental clone (AB166782)
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environmental clone (X84565)
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Figure 5.8. 16S rRNA-based phylogenetic tree showing main lineages of known bacteria with attached
growth. Brackets indicate the coverage of the probes listed in Tables 5.11 and 5.13–5.14. The exact
branching order of the bacteria with attached growth lineages cannot yet be determined due to a limited
phylogenetic resolution of the 16S rRNA marker gene. Therefore, unclear tree topology is depicted as
multifurcation.
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Recommending the best probes

Table 5.12 shows the oligonucleotides probes recommended now for identifying and quantifying type

0092, and the tree in Figure 5.9 illustrates their specificity and coverage.

Morphotype 0092 hybridized with the GNSB941 and CFX1223 probes targeting the Chloroflexi, but

not the CFX109 or CFX784 probes for Chloroflexi subgroups 3 and 1a, or CHL1851 designed against the

Chloroflexi type 1851 filament. Two more specific 16S rRNA-targeted probes were designed against clone

sequences recovered from one plant (Speirs et al., 2009). The CFX197 probe hybridized with the slightly

thicker of two morphological variants of this morphotype in several Australian P-removal plant samples,

while CFX223 probe targeted the thinner variant. Is is not clear whether these two variants represent

different species or strains of this filament. With all FISH analyses, the fluorescent signal from type 0092

was localized, giving the filaments a granular appearance, suggesting that their ribosomes are in

aggregates in cells.

Table 5.12. Morphotype 0092: rRNA-targeted oligonucleotide probes with corresponding formamide
concentration, target, morphotype, and comments on recommendability.

Probe
name Target Morphotype Sequence (50-30) FA (%) Comments Reference

CFX197 ‘Chloroflexi ’ OTU A
(Clones A26, B1, B45)

Type 0092 TCC CGG
AGCGCCTGAACT

40 Speirs et al.,
2009

CFX197
comp

Competitor probe against
sequences with accession
numbers ZA3635c and
ZA3612c

TCC CGA
AGCGCCTGAACT

Speirs et al.,
2009

CFX223 ‘Chloroflexi ’ OTU B
(Clone A58)

Type 0092 GGTGCTGGCTCC
TCCCAG

35 Speirs et al.,
2009

Catenulispora acidiphila
Catenulispora rubra

Catenulispora sp. Neo15
Sphaerisporangium rubeum

Kribbella flavida
Actinopolymorpha rutila

Actinopolymorpha singaporenis
environmental clone (EF125394)

environmental clone (AJ412677)
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Figure 5.9. 16S rRNA-based phylogenetic tree showing main lineages of morphotype 0092 belonging to the
Chloroflexi. Brackets indicate the coverage of the probes listed in Table 5.12. The exact branching order of
the Chloroflexi lineages cannot yet be determined due to a limited phylogenetic resolution of the 16S rRNA
marker gene. Therefore, unclear tree topology is depicted as multifurcation.
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We recommend applying the probes CFX197 and CFX223 probes for targeting morphotype 0092.

However, the probes need to be applied to more biomass samples from plants around the world before this

issue can be addressed confidently. However, on present evidence, type 0092 morphotypes should be

screened initially with the EUBmix, GNSB941 and CFX1223 probes, and then if negative for the first

and positive for the latter two probes, the CFX197 and CFX223 probes should be used. Whether they

hybridize globally with morphologically different type 0092 filaments is of interest. See also FISH images

in Figures 9.49–9.51, Chapter 9.

5.3.12 1701 morphotype

Abundance, morphology and affiliation

Type 1701 is only seen occasionally, particularly in US plants, and is considered to cause severe bulking

problems only rarely (Jenkins et al., 1993; Thomsen et al., 2006b). Filaments occur often in bundles.

The 1701 morphotype forms short filaments which are often attached to flocs. The trichome has a

diameter of 0.7–1.1 mm, and consists of rod-shaped cells. Attached growth is often present. It is usually

Gram and Neisser negative.

The identity of this morphotype is unclear. S. natans was suggested as a close relative (Howarth et al.,

1998) based on 16S rRNA gene sequence analyses, and it is placed within the genus Sphaerotilus.

Wagner et al. (1994a) also found type 1701 was closely affiliated with Sphaerotilus spp. and was readily

detected by FISH with the probe SNA in full-scale plants. Other strains of this morphotype belong

possibly to Aquaspirillum delicatum within the Betaproteobacteria (Thomsen et al., 2006b), which is

now classified as Curvibacter delicatus (Ding and Yokota, 2004), a notation used throughout this

handbook.

As stressed with other filamentous bacteria with attached growth (types 0041/0675 and 1851) a

thorough cross-check of FISH images with those from phase contrast microscopy is recommended.

Recommending the best probes

Table 5.13 shows the oligonucleotides probes for identifying and quantifying type 1701, and the tree in

Figure 5.8 illustrates their specificity and coverage.

The probe Curvi997 (formerly Aqs997) with competitor probes Comp1curvi997/Comp2curvi997

(formerly Comp1aqs997/Comp2aqs997) were developed initially for microcolony-forming bacteria.

Curvi997 was shown subsequently to target bacteria with the type 1701 morphology (Thomsen et al.,

2004). Two variants were observed with this probe: one resembles type 1701 and the other is more similar

to type 0041/0675. The 1701 morphotypes are frequently observed in low loaded plants with N removal

and biological P removal but only occasionally cause bulking there (Thomsen et al., 2006b).

We recommend applying Curvi997 and respective competitor probes for the Curvibacter-related type

1701. However, this probe targets other filament morphotypes resembling type 0041. As type 1701 is

easily confused with several other morphotypes, its staining behavior (1701 Gram�, 0041/0675 Gramþ)

and morphological features under phase contrast should first be checked carefully (e.g. rod-shaped cells

in short filaments (1701) or square cells in long filaments (0041). In addition probe SNA should also

be applied for type 1701 strains affiliated with Sphaerotilus spp. (Wagner et al., 1994a). See also FISH

images in Figures 9.52–9.53, Chapter 9.
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Table 5.13. Morphotype 1701: rRNA-targeted oligonucleotide probes with corresponding formamide concentration, target, morphotype, and
comments on recommendability for bacteria with attached growth.

Probe name Target Morphotype Sequence (50-30) FA (%) Comments Reference

Curvi997
Comp1curvi997þ
Comp2curvi997

Curvibacter delicatum
ATCC14667; Pseudomonas
lanceolata AB021390 þ few
more. Competitors to curvi997
should be applied together

Type 1701 CTC TGG TAA CTT CCG
TAC
CTC TGG CAA CTT CCG
TAC þ CTC TGG TCA
CTT CCG TAC

35 Sometimes also type
0041/0675 and
microcolony-forming
bacteria

Thomsen et al. 2004

CFX mix
(GNSB941
þCFX1223)

Phylum Chloroflexi Type 1701 AAACCACACGCTCCGCTþ
CCATTGTAGCGTGTGTGTMG

35 Primarily type 0041/0675
and type 1851 and
sometimes also
H. hydrossis- like
filaments

Bjornsson et al. 2002
Gich et al. 2001

SNA Sphaerotilus natans
(Betaproteobacteria)

Type 1701
S. natans
Leptothrix spp.

CAT CCC CCT CTA CCG TAC 45 Wagner et al. 1994a
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5.3.13 1851 morphotype

Abundance, morphology and affiliation

The 1851 morphotype is commonly seen in WWTPs all over the world, although not associated with

bulking incidences in the US (summarized in Jenkins et al., 2004). It is found in municipal and industrial

WWTPs with and without nutrient removal (Eikelboom, 2000; Beer et al., 2002; Jenkins et al., 2004;

Kragelund et al., 2007a), and is responsible occasionally for severe bulking and foaming incidents in

German municipal low F/M WWTPs (Lemmer et al., 2000). FISH surveys have also been conducted

using probes targeting morphotype 1851, where long straight to slightly bent filaments forming twisted

bundles were detected predominantly in municipal WWTPs in Australia, New Zealand, the Netherlands,

and France (Beer et al., 2002), Japan (Kohno et al., 2002), and in German WWTPs with scumming events

(Müller et al., 2007). Morphotype 1851 has also been observed in plants with high industrial loads and can

be observed both with and without attached growth (Kragelund et al., 2007a).

This morphotype shows straight or slightly bent long filaments that often form characteristic bundles.

Its cell diameter is between 0.6 and 0.8 mm. Attached growth is nearly always present in filaments seen in

domestic plants, but is often missing in those from industrial WWTPs. It stains Gram positive,

characteristically as light blue, and is usually Neisser negative.

Several morphotype 1851 strains have been identified as Kouleothrix aurantiaca in the phylum

Chloroflexi (class Roseiflexus) after 16S rRNA sequence analysis of micromanipulated filaments from

activated sludge samples (Beer et al., 2002; Kohno et al., 2002; Kragelund et al., 2007a).

Recommending the best probes

Table 5.14 shows the oligonucleotide probes for identifying morphotype 1851, and the tree in Figure 5.8

illustrates their specificity and coverage.

Two probes (CHL1851 and EU25-1238) were designed to target this morphotype in activated

sludge (Beer et al., 2002; Kragelund et al., 2007a). A survey of samples from industrialWWTPs showed that

approx. 50% of probe EU25-1238 positive filaments did not hybridize with the probe CHL1851 (Kragelund

et al., 2007a), even though the EU25 isolate possessed the probe target site at E. coli position 592.

Morphotype 1851 strains from predominantly municipal WWTPs are readily detected with the probe

CHL1851. However, we recommend using probe EU25-1238 for detecting this morphotype in WWTPs

with both high and low loadings of industrial wastewater. Many of the EU25-1238 probe-positive

filamentous bacteria in industrial WWTPs have little or no attached growth. See FISH images in Figures

9.54–9.56 in Chapter 9.

5.3.14 1863 morphotype

Abundance, morphology and affiliation

Morphotype 1863 is observed in WWTPs only occasionally and seems to play no important role in bulking

(Jenkins et al., 2004; van der Waarde et al., 2002). Type 1863 and unicellular Acinetobacter cells can be

detected in some foams or scums since these produce often hydrophobic capsular material and are known to

release biosurfactants under nutrient limitation (Lemmer et al., 2000; Müller et al., 2007). In a survey of

municipal WWTPs 60% contained Gram negative coccoid cells and 30% had type 1863 filaments which

were detected by the probe ACA23a (Wagner et al., 1994b) specific for the morphotype 1863 affiliating

with the genus Acinetobacter in the Gammaproteobacteria (Müller et al., 2007). However, it also targets

straight filaments with square-shaped cells (Schade M., unpublished results). When this probe was applied

to samples from industrial WWTPs (van der Waarde et al., 2002), the morphotype 1863 was detected in

approx. 16% of plants. Their relative abundances were not reported (van der Waarde et al., 2002).
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Table 5.14. Morphotype 1851: rRNA-targeted oligonucleotide probes with corresponding formamide concentration, target, morphotype, and
comments on recommendability for bacteria with attached growth.

Probe name Target Morphotype Sequence (50-30) FA (%) Comments Reference

CFX mix
(GNSB941
þCFX1223)

Phylum Chloroflexi Type 1851 AAACCACACGCTCCGCTþ
CCATTGTAGCGTGTGTGTMG

35 Also other morphotypes can be
observed, often type 0041/0675
and sometimes also type 1701,
and H. hydrossis-like filaments

Bjornsson et al. 2002
Gich et al. 2001

CFX 109 Some members of the
class Chloroflexi

Type 1851 CACGTGTTCCTCAGCCGT 30 Also other morphotypes can be
observed, often type 0041/0675
and sometimes also Type 1701,
and H. hydrossis-like filaments

Bjornsson et al. 2002
Gich et al. 2001

EU25-1238 Isolate EU25 and other
Kouleothrix aurantiaca
(class Chloroflexi)

Type1851 CTG CGC ATT GCC ACC
GAC AT

35 Type 1851 also without epiphytic
growth, predominantly industrial

Kragelund et al. 2007

CHL1851 Type 1851 Kouleothrix
aurantiaca (class
Chloroflexi)

Type 1851 AAT TCC ACG AAC CTC
TGC CA

20 Type 1851 with and without epiphytic
growth, predominantly municipal

Beer et al. 2002
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However, another survey where the abundance of morphotype 1863 in 126 industrial WWTPs was reported,

only 4% of the plants contained this morphotype and the filament index never exceeded 1 (Kragelund C and

Nielsen PH, unpublished results).

Type 1863 is characterized by bent, curled or tangled short filaments consisting of regular cells of 0.5

to 0.7 mm diameter. Cells are spherical to ovoid, and stain Gram and Neisser negative.

The morphotype 1863 is polyphyletic. Some isolates affiliate with members of the genus Acinetobacter

in the Gammaproteobacteria (also targeted by class-specific probe GAM42a, Table 5.4) (Wagner et al.,

1994b), while others affiliate with Chryseobacterium spp. within the Bacteroidetes (Seviour et al., 1997).

It can also be targeted by probe CFB563, Table 5.4.

Recommending the best probes

Table 5.6 shows the oligonucleotide probes for identifying and quantifying morphotype 1863, and the tree

in Figure 5.3 illustrates their specificity and coverage.

The probe ACA23a was designed to detect Acinetobacter spp. in the Gammaproteobacteria in activated

sludge (Wagner et al., 1994b). Applied to municipal activated sludge samples ACA23a visualizes rods and/

or cocci in clusters and chains (Wagner et al., 1994b), see FISH image Figure 9.57 in Chapter 9. No probes

have been designed for the type 1863 affiliating with Chryseobacterium spp. within the Bacteroidetes.

Morphotype 1863 never causes severe bulking problems. As it can be involved in scum formation we

recommend that the ACA23a probe for Acinetobacter-related 1863 strains be used in such cases.

5.3.15 0803, 0914 morphotypes and other still unidentified filamentous

species

Abundance, morphology and affiliation

A number of morphotypes are still currently unidentified (e.g. morphotype 0211, 0411, 0581, 0803,

0914, 0961, 1702 and 1802). However, many of these (morphotypes 0211, 0411, 0581, 0961, 1702 and 1802)

are only rarely observed and therefore not considered important enough for inclusion in this manual. Some

morphotypes observed more often in activated sludge like morphotypes 0803 and 0914 will be discussed.

Morphotypes 0803, and 0914 have been ‘identified’ by microscopy in activated sludge communities

around the world, and are often seen in large numbers. Thus, morphotype 0803 was ranked as the fourth

most abundant filament in Czech Republic, and morphotype 0914 ranked fifth (surveys summarized in

Jenkins et al., 2004 and Tandoi et al., 2006).

Both type 0803 and 0914 form short (550 mm) straight, or longer (100–300 mm) bent filaments.

Filaments are attached sometimes by a holdfast to inorganic particles. The cell diameter is between 0.8 and

1.1 mm. Cells are mostly square (0914) or rectangular (0803).With sulfur stores, type 0803 becomes difficult

to distinguish from type 0914 according to the descriptions of Eikelboom (2000). However, different cell

shape and cell diameter are found in situ and can be used for their differentiation. These filaments can be

Gram variable, but are more usually Gram negative, and occasionally feature Neisser positive granules.

The phylogenetic affiliation is still not resolved for any of these morphotypes. Partial 16S rRNA

gene sequence analysis from a micromanipulated morphotype 0803 isolate showed an affiliation with

the Betaproteobacteria (Bradford et al., 1996). However, no in situ hybridization with the general

betaproteobacterial probe BET42a is observed (Kragelund C, unpublished results). So the phylogenetic

affiliation of type 0803 is still uncertain. Morphotype 0914 is still unidentified and to our knowledge no

successful attempts have been made to sequence the 16S rRNA gene (either from an isolate or from

micromanipulated filaments). However, very recent results indicate that they may belong to the

Chloroflexi, hybridizing with the probes GNSB941 and CLX 1223 (Seviour R, unpublished) and new

probes are presently being developed.
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6

Identification of other microorganisms in
activated sludge and biofilms by FISH

Per Halkjær Nielsen and Jeppe Lund Nielsen

6.1 INTRODUCTION

Besides the functional groups described in previous chapters, many other groups of bacteria are present in

wastewater treatment systems, although often in low numbers. In this chapter we have included a few

groups that are present or important in many plants, they may have an important function, and relatively

specific gene probes are available. However, we do not provide detailed recommendations, only up-to date

references.

6.2 EPIPHYTIC BACTERIA INVOLVED IN PROTEIN HYDROLYSIS

In full-scale treatment plants several types of filamentous bacteria are often observed with a large number

of epiphytic, attached bacteria. These are known as type 0041, type 1851, and type 1701 based on

morphological identification (see Chapter 5 about filamentous bacteria). Most of these filamentous

bacteria belong to the candidate phylum TM7, the phylum Chloroflexi, and the class Betaproteobacteria

(related to Curvibacter) and can be detected by gene probes. Recently, it has been shown that most of

their epiphytic bacteria belong to the Saprospiraceae in the phylum Bacteroidetes (Kong et al., 2007;

Xia et al., 2008). A new genus Candidatus Epiflobacter was proposed for this epiphytic group. Three

clusters were identified but no differences in physiology could be detected. These bacteria are specialized

in protein hydrolysis and use amino acids as energy and carbon sources. They are not involved in

# 2009 IWA Publishing. FISH Handbook for Biological Wastewater Treatment: Identification and quantification of microorganisms
in activated sludge and biofilms by FISH. Edited by Per Halkjær Nielsen, Holger Daims and Hilde Lemmer. ISBN: 9781843392316.
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denitrification and cannot store polyphosphate or PHA. These epiphytic rods are typically perpendicularly

attached onto the filaments and are 1.3–1.9 mm in length and 0.3–0.4 mm in width. They can be very

abundant in BNR activated sludge treatment plants and account up to 10% of all bacterial biovolume.

Most of the epiphytic bacteria hybridize with probe SAP-309 targeting Saprospiraceae in the phylum

Bacteroidetes, see Chapter 5. Probe Bac111 (Kong et al., 2007) is more specific for species found in

wastewater treatment plants and targets alsomost of these epiphytic bacteria. Three probes exist for detection

of three subgroups but as no differences in abundance or ecophysiology is known today, it is recommended to

apply probe Bac111 to detect almost all epiphytic Saprospiraceae (Kong et al., 2007; Xia et al., 2008).

6.3 SULFATE-REDUCING BACTERIA

Sulfate-reducing bacteria are present in most activated sludge systems (Lens et al., 1995), and are

physiologically active during anaerobic periods, for example, in the anaerobic reactors of EBPR plants or in

sludge storage tanks (Rasmussen et al., 1994; Kjeldsen et al., 2004). Prolonged aeration may not lower their

activity, and oxygen-tolerant sulfate-reducing Desulfovibrio strains isolated from activated sludge plants

have been described (Kjeldsen et al., 2005; Mogensen et al., 2006). About 0.5–8% of the total bacteria have

been identified as sulfate-reducers in full-scale WWTPs (Manz et al., 1998; Vester and Ingvorsen, 1998;

Nielsen and Nielsen, 2002a). The dominant SRB belonged to the families Desulfovibrionaceae and

Desulfobacteraceae (Manz et al., 1998).

Sulfate-reducing bacteria are a polyphyletic group with most known members in the Deltaproteo-

bacteria. Their detection by FISH will not be described in detail in this book and the readers are

recommended to use the studies by Manz et al. (1998) and Lücker et al. (2007).

6.4 FERMENTING BACTERIA

Fermentation in activated sludge has been shown to be performed partially by bacteria belonging to the

genus Streptococcus in the class Bacilli and the family Streptococcaceae (Kong et al., 2008). The physiol-

ogy of the fermenting streptococci reveals a broad group of cells which are capable of partially oxidizing

glucose to produce lactate, acetate, ethanol, and formate (Liu et al., 2002; Kong et al., 2008). These are

facultative anaerobes, utilizing glucose under both aerobic and anaerobic conditions (but not mannose or

galactose) (Nielsen PH, unpublished). They probably ferment substrates in the anaerobic reactors, thus

being important in providing readily metabolizable substrates for the denitrifying and phosphate-removing

communities in these processes. Streptococci are quite abundant in many municipal WWTPs with EBPR,

constituting 1–4% of the biovolume (Kong et al., 2008). Some of these are filamentous, see Chapter 5.

The probe-defined consortia hybridizing with probe Str/Strept (Trebesius et al., 2000) can be used to

identify fermenting Streptococci (see also Chapter 5). The probe targets 44% of all streptococci, and

can be used together with the broader probe LGC354C (Meier et al., 1999). The morphologies of the

Str/Strept-probed cells cover both small cocci and filamentous organisms. A broader probe, Strc498,

targets most Streptococcus spp. (Franks et al., 1998), but has to our knowledge not been tested in

wastewater systems.

6.5 ESCHERICHIA COLI AS INDICATOR ORGANISM FOR

ENTERO-PATHOGENS

Fecal material from human and animals contain a large variety of pathogenic microorganisms.

A systematic search of all potential strains of entero-pathogens is not feasible, thus enumeration of
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gammaproteobacterial Escherichia coli has been used as indicator bacteria to evaluate the fecal content

and the sanitary risk. Several attempts of using FISH to enumerate E. coli in municipal WWTPs have been

performed. The need for accurate numbers of potentially active E. coli in natural waters has resulted in

approaches by which E. coli has to be revived prior to FISH (Garcia-Armisen and Servais, 2004). Direct

viable count (DVC) procedures involve exposing the cells to a revivification medium containing anti-

biotics preventing cellular division; elongated cells are then enumerated as viable cells.

Using such DVC-FISH approaches typically around 1% of the total cell number appear as E. coli

(Garcia-Armisen and Servais, 2004), whereas very few studies have been able to enumerate the specific

pathogens for which E. coli function as indicator (e.g. Campylobacter jejuni, Clostridium perfringens,

Bacillus cereus, Enterococcus faecalis, E. coli O157:H7, Helicobacter pylori, Klebsiella pneumoniae,

Legionella pneumophila, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella spp. and

Staphylococcus aureus). However, from quantitative PCR these have been found to estimate several

orders below that of E. coli (e.g. Shannon et al., 2007).

Escherichia in the activated sludge is believed to be coming from the incoming wastewater. To what

extent these survive or even grow here is not known. The appearance under these conditions is rods,

typically 1.0–2.3 mm in length and 0.4–0.5 mm in width.

Several probes have been used for the identification and quantification of E. coli. The probe colinsitu

has a central mismatch towards the target site in the genera Escherichia and Shigella both within the

family Enterobacteriaceae, but colinsitu has fewer outgroups hits compared to the perfect match probe

Ec637 (Regnault et al., 2000). Since both probes yield good FISH signals the colinsitu probe may be

recommended for detection of E. coli.
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7

Protocol for Fluorescence in situ
Hybridization (FISH) with rRNA-targeted
oligonucleotides

Jeppe Lund Nielsen

7.1 INTRODUCTION

Fluorescence in situ hybridization (FISH) using rRNA-targeted oligonucleotide probes has become one

of the most widely used approaches when studying microorganisms directly in complex systems

without prior cultivation and isolation. The method makes it possible within a relatively short time to

retrieve information on phylogenetic identities of the cells directly in a sample, and since it also

maintains the morphology of the cells it also supplies information on the spatial distribution as well as

the number of identified organisms.

The first applications of in situ hybridization were applied using radioactively labeled oligonucleotides,

which had limited microscopic resolution and needed autoradiography for visualization. The use of FISH

with fluorescently labeled probes was first described in 1989 (DeLong et al., 1989) and has since become

the method of choice for examining the microbial consortia in both natural and engineered systems. In

wastewater microbiology, the FISH approach has been shown to be especially well-suited with high cell

signals and detection sensitivities.

The principle of the FISH technique is based on hybridizing fluorescently labeled probes to ribosomal

rRNA in permeabilized whole microbial cells. The probes consist of short pieces of DNA (usually 15–25

nucleotides in length) and they are designed to specifically hybridize to their complementary target
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sequence on the rRNA structures (16S and 23S subunits are typically used for Bacteria, while for Eucarya

the 18S subunit is the most used; Amann, 1995) in the target cell. From the composition of the probe, it is

possible to design it to specifically target a narrow phylogenetic group (down to the species level) or any

other higher phylogenetic hierarchical group (top to bottom approach, Amann et al., 1995). No probes will

hybridize to those cells without target sequences. Cells containing the target sequence will on the other

hand retain the hybridized probe and due to the large number of ribosomes within active cells thus become

fluorescently labeled.

Several recent reviews have elegantly described the potentials of the FISH technique and new

developments for improved sensitivity (e.g. Wagner et al., 2003; Zwirglmaier, 2005; Bottari et al., 2006;

Amann and Fuchs, 2008). Often occurring pitfalls within the application of the FISH technique and

solutions hereto have been reviewed by Moter and Göbel (2000), while important factors that have an

influence on the sensitivity and quality of the obtained data are described by Bouvier and del

Giorgio (2003).

The main obstacles associated with the FISH method are poor cell permeability, insufficient ribosome

content, ribosome inaccessibility, and sample autofluorescence. Thus knowledge of the nature and appli-

cability of the sample as well as a uniform protocol with application of the proper controls are of

fundamental importance for obtaining solid and comparable information.

This chapter provides a detailed protocol for applying FISH on activated sludge samples and

possible solutions to typical problems encountered. A typical flowchart for FISH in activated sludge

or biofilm is shown in Figure 7.1 and includes sampling, possible pretreatment, fixation, possible

enzyme treatment, hybridization, epifluorescence microscopy, and possible image analysis. Details are

described below.

Fixed
sludge sample

Enzyme treatment

Washing buffer

Fluorescently labeled
oligonucleotide probe

Hybridization

Microscope examination

Washing procedure

40X
NEOFLUAR

19/8/2000

19/8/2000

19/8/2000

19/8/2000

Figure 7.1. Schematic illustration of the FISH approach.
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7.2 FISH PROTOCOL

7.2.1 Materials and solutions

8% Paraformaldehyde/PBS (8% PFA)
Stir 4 g PFA in 30 mL dH2O at 60–C and dissolve with a drop of 2 N NaOH (in the fume hood!); add

16.6 mL 3· phosphate-buffered saline (PBS) (see below). Adjust with dH2O to 50 mL. The solution is

filtrated through a 0.22 mm polycarbonate filter to remove autofluorescing particles. Should be used fresh,

or stored in aliquots at �20–C (do not freeze thawed solutions).

1:1 PBS/Ethanol (PBS/EtOH)

Mix equal volumes of 1·PBS and 96% ethanol, sterilize by filtration.

Gelatine solution
Dissolve 0.5 g gelatine and 0.01 g CrK(SO4)2 in 100 mL dH2O at 70–C. Store at 4–C.

Poly-L-lysine solution
Dissolve 0.01 g poly-L-lysine in 100 mL dH2O.

Lysozyme
Dissolve lysozyme (Merck Chemicals, Denmark) to a final concentration of 10 mg/mL (,360 000 U/mL) -

in 0.05 M EDTA, 0.1 M Tris-HCl, pH 8.0 (prepare fresh when needed; keep on ice until use).

Mutanolysin
Dissolve mutanolysin (Sigma-Aldrich, St. Louis, MO, USA) to 5000 U/mL in 0.1 M potassium phosphate

buffer, pH 6.2 (prepare fresh when needed; keep on ice until use).

Achromopeptidase
Prepare achromopeptidase (Sigma-Aldrich, St. Louis, MO, USA) solution to a final concentration of

60 U/mL in 0.01 M NaCl, 0.01 M Tris-HCl (pH 8.0) (prepare fresh when needed, keep on ice until use),

alternatively, prepare aliquots in tubes and freeze until needed.

Proteinase K
Dissolve proteinase K (Tritirachium album, Sigma-Aldrich, St. Louis, MO, USA) to 20 000 U/mL in TE

buffer (0.01 M EDTA, 0.1 M Tris-HCl, pH 8.0). (Prepare fresh when needed; keep on ice until use).

Lipase
Dissolve lipase (Sigma-Aldrich, St. Louis, MO, USA) to 75 000 U/mL in 1·PBS (prepare as 3·PBS and

dilute with dH2O) (Prepare fresh when needed; keep on ice until use).

3· Phosphate-buffered Saline (3·PBS)
Mix 0.1 M NaH2PO4 with 0.1 M Na2HPO4 till pH 7.4. Use 300 mL hereof and mix with 22.8 g NaCl and

adjust to 1000 mL with dH2O. Autoclave, and store at room temperature.

Tris-EDTA buffer (TE buffer)
0.01 M EDTA (ethylenediaminetetraaceticacid), 0.1 M Tris-HCl, pH 8.0. Sterilize by filtration and store

at 4–C.

1 M Tris-HCl, pH 8.0
Dissolve 121.1 g Tris in 800 ml dH2O, add 42 mL concentrated HCl, let cool, adjust pH and fill to 1L

with dH2O. Autoclave, and store at room temperature.
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5 M NaCl
Dissolve 292.2 g NaCl in 800 mL dH2O, fill to 1 L with dH2O. Sterilize by filtration, and store at room

temperature.

Sterile distilled H2O (dH2O)
Autoclave sterile filtered distilled H2O.

10% Sodium dodecylsulfate (10% SDS)
Heat 50 g SDS (electrophoresis-quality) in 400 mL dH2O to 70–C, adjust pH with concentrated HCl to

7.2, fill to 500 mL; no sterilization required. Store at room temperature.

0.5 M EDTA
Dissolve 18.6 g EDTA in 80 mL dH2O by adjusting the pH to 8.0 (ca. 2 g NaOH pellets required), fill to

100 mL with dH2O. Sterilize by filtration and store at 4–C.

7.2.2 Equipment and supplies needed for FISH
. Water bath (46–C)
. Hybridization oven (48–C)
. Epifluorescence microscope or Confocal Laser Scanning Microscope (CLSM) equipped with the

proper filters
. Tissue grinder (Thomas Scientific1, Swedesboro, NJ, USA)
. Citifluor AF1 (Citifluor Ldt, London, England)
. Vectashield (VECTASHIELD1 Hard-SetTM Mounting Medium, Vector Laboratories, Inc.,

Burlingame, CA, USA)
. Teflon-coated glass slides separating 6 or 10 reaction fields ¼ wells (Paul Marienfeld GmbH &

Co, Lauda-Königshofen, Germany)
. Tissue-Tek O.C.T. (Sakura Finetek, Zoeterwoude, The Netherlands)

7.3 PROTOCOL

7.3.1 Sample collection and fixation

Fresh samples are collected and fixed as soon as possible (activated sludge and biofilms can usually be

kept in the refrigerator 2–4–C for 2–3 days without major changes).

Sample preparation prior to hybridization with the fluorescently labeled probes involves fixation and

cell wall permeabilization in order to inactivate the microbial cells and any enzymatic activity, to avoid

growth/decay after harvest and to permeabilize the cells for probe penetration. The most commonly used

fixative agent is polymerized formaldehyde (paraformaldehyde) which preserves the cell morphology,

although some Gram positive cells are not adequately permeabilized with this fixative. Thus the sample is

usually fixed independently for both Gram negative and Gram positive cells.

Gram positive cells:

Mix equal volumes of sludge and 96% ethanol in a test tube. Keep the solution in the freezer (�20–C).

Gram negative cells:

Mix equal volumes of sludge with cold 8% PFA.
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Incubate on ice for ½–3 hours, depending on sample texture and target organisms (some cells require

short incubations in order to allow permeabilization of the probe, while other cells remain FISH-detectable

even after several hours of fixation. Typically sludge or biofilm samples with flocculated material must be

fixed for 2–3 hours to allow an even fixation of interior cells in the flocs/biofilms).

Separate PFA and biomass by centrifugation (3500 g for 8 min).

Dissolve the pellet in 5 mL cold 1:1 PBS/EtOH. Separate by centrifugation (3500 g for 8 min). Repeat

this step once more.

Resuspend the pellet after the last step in 1–5 mL cold 1:1 PBS/EtOH and mix.

The fixed sample can be kept in the freezer (�20–C) for several months.

7.3.2 Sample preparation

The sample can typically be applied either directly to the slide to maintain spatial resolution within the

flocs, or else after gentle homogenization to get a higher resolution and thus more accurate enumerations

(see also Chapter 8). Gentle homogenization can be obtained by gently rubbing two glass slides with

20 mL sample against each other, or more efficiently by a tissue grinder.

Cryosectioning can be carried out to maintain high resolution and still keep the spatial resolution.

Cryosectioning can be obtained by embedding the sample in paraffin or in cold polymerizing resin

(Tissue-Tek O.C.T.). Paraffin embedding usually provides accurate and homogenous slices without

breakage of the biomass sample, but requires heating the sample and de-waxing with xylene, while cold

polymerizing resin application can be carried out at low temperature and does not require further chemical

treatment.

The biofilm/sludge samples (e.g. in the lid of an Eppendorf tube) are covered by embedding material

(Tissue-Tek O.C.T.) which is allowed to migrate into the sample overnight and polymerize at 4–C, before

transferring it to liquid nitrogen. Sectioning into 5–20 mm thin slices is carried out on a cryotome at �20–C

(e.g. Dublier et al., 1995; Moter and Gobel, 2000; Gieseke et al., 2005). The slices are immediately placed

on a slide (room temperature), where they melt. The slices are allowed to dry on the bench for 3 hours.

7.3.3 Immobilization of the samples on glass slides

To provide the best possible adhesion without loss of sample during the further treatments and to obtain an

even and homogeneous distribution of the sample, it is recommended to use pretreated glass slides. The

best results are usually obtained on a relatively hydrophilic surface, which can be obtained by acid-washed

slides and slides coated with gelatin or poly-L-lysine. An acid wash before coating is recommended.

Acid wash procedure
Place the slides in a beaker containing preheated (60–C) 1 M HCl solution.

Let the slides stand for at least 8 hours. After cooling the slides are carefully rinsed in dH2O.

Rinse the slides in 95% ethanol and let dry.

Procedure for gelatine coating of microscopic slides
Rinse the slides (either normal glass slides or Teflon coated slides) in 70% ethanol, let air dry, dip in 0.5%

gelatine solution for 5 min at 70–C.

Remove the slides and let them air dry in vertical position in a dust-free environment.

Procedure for Poly-L-Lysine coating of microscopic slides
The acid-washed slides are incubated in 0.01% poly-L-lysine solution for 5 min at room temperature.

Remove the slides and let them air dry in vertical position in a dust-free environment.
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Immobilization of the sample on slides
Place 5–15 mL of the sample on a slide, cover glass or in each well in a teflon-coated slide.

Use the side of the pipette tip to spread out the sample. Let the samples dry in the fume hood until they are

completely dry (15–30 min). Drying at elevated temperature (40–60–C) improves the binding of dilute

samples to gelatine-coated slides.

7.3.4 Dehydration

Dehydration of the immobilized (untreated, homogenized or cryosectioned) sample removes water from

the sample in order to increase the resolution during microscopy. Serial treatment with increasing ethanol

concentrations efficiently removes the water in the sample rendering the final sample with a decreased

thickness down to almost 25%. Dehydrate the slides with the immobilized sludge samples by dipping it

into a container with 50% ethanol for 3 min, followed by 3 min in 80% ethanol and by 3 min in 96%

ethanol. Let the slides air-dry before continuing with the permeabilization step.

7.3.5 Permeabilization by enzymatic or chemical treatment

Some cell types require additional treatment by enzymes or chemicals for sufficient permeabilization over

the cell wall. Several enzymes have been applied and must be individually tested for new cell types,

although a few guidelines exist. Lysozyme treatment makes many Gram positive cells permeable, some

require treatment with acid, lipase or mutanolysin (Davenport et al., 2000). Some organisms (e.g. certain

Archaea) are not readily amendable to the lysozyme permeabilization strategy and require protease

treatment, e.g. protease K, mutanolysin or achromopeptidase, while others (e.g. Mycolata) require a

mixture of the various enzymatic treatments and/or mild acid hydrolysis pre-treatment (e.g. Carr et al.,

2005, Kragelund et al., 2007b). Digestion with enzymes, too long incubations or treatment with too harsh

chemicals is critical and will cause lysis of some more sensitive cells. It might thus be incompatible to

access multiple organisms in complex environments. Therefore always the gentlest treatment possible

should be used.

Procedure for permeabilization with Lysozyme
Start with immobilized samples dehydrated in EtOH series.

Apply 10–15 mL cold lysozyme (36 000–360 000 U/mL) per slide (or well on slide) and place the

slide in a horizontal position, in a 50 mL polyethylene tube, containing tissue paper with 2 mL of

dH2O.

Incubate the slides for 10–60 min at 37–C.

Wash the slide three times in dH2O, then once in absolute ethanol, and let the slide air-dry.

After permeabilization, the slide can be stored at –20–C for several months.

Permeabilization with Mutanolysin
Apply 10–15 mL cold mutanolysin solution (5000 U/mL) in per slide (or well on a slide) and place

the slide in a horizontal position, in a 50 mL polyethylene tube, containing tissue paper with 2 mL

of dH2O.

Incubate the slides for 10–30 min at room temperature.

Wash the slide three times in dH2O, then once in absolute ethanol, and let the slide air-dry.

After permeabilization, the slide can be stored at –20–C for several months.

Procedure for permeabilization with Proteinase K
Start with immobilized samples dehydrated in EtOH series.
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Apply 10–15 mL cold proteinase K (2000–20 000 U/mL) per slide (or well on slide) and transfer the slide

to a 50 mL polyethylene tube with a moisturized piece of tissue paper. Incubate the slide for 20–60 min

at 37–C.

Wash the slide three times in dH2O, then once in absolute ethanol, and let the slide air-dry.

After permeabilization, the slide can be stored at –20–C for several months.

Permeabilization with Achromopeptidase
Apply 10–15 mL cold achromopeptidase solution (60 U/mL) per slide (or well on slide) and place the

slide in a horizontal position, in a 50 mL polyethylene tube, containing a piece of tissue paper with 2 mL

of dH2O.

Incubate the slides for 20–60 min at 37–C.

Wash the slide three times in dH2O, then once in absolute ethanol, and let the slide air-dry.

After permeabilization, the slide can be stored at –20–C for several months.

Permeabilization with Lipase
Apply 10 ml (75 U/mL) per slide (or well on a slide) and place the slide in a humid chamber containing

adsorbent paper wetted with PBS to stop evaporation of the enzyme solution.

Incubate the slides for 60 min at 37–C.

The lipase solution is removed after incubation by washing the slide in dH2O. Then wash the slide once in

absolute ethanol, and let the slide air-dry.

After permeabilization, the slide can be stored at –20–C for several months.

Permeabilization with mild acid hydrolysis
The microscopic slides spotted with dehydrated cells are subjected to hydrochloric acid (1M HCl) at 37–C

for 30 min.

Wash the slide with dH2O, then once in absolute ethanol, and let the slide air-dry.

7.3.6 Preparation and quality check of probes

Commercially acquired probes typically arrive lyophilized and must be resuspended in TE buffer.

Stock solutions are diluted to contain 5 mg/mL. Working solutions are prepared at a concentration

of 50 ng/mL (by diluting stock solution 1:100 in dH2O) and stored in small portions (50 to 100 mL)
at �20–C.

To test if the probe concentration corresponds to the concentration claimed by the manufacturer

the probe is suspended in 50 mL of dH2O. The absorbance of the 1:100 diluted stock solutions (in dH2O)

are then measured at 260 nm (1 A260 < 20 mg/mL of single-stranded DNA oligonucleotide).

To check the quality of the labeling of the oligonucleotide, the ratio of absorption of fluorochrome

and DNA (presuming optimal labeling), i.e. A260/A550, should amount to < 1 for a Cy3-labeled

18-mer probe.

7.3.7 Hybridization

Hybridization of the oligonucleotide probe to the ribosome in the target cell must be carried out under

high stringency, with defined conditions regarding preheating temperature, ionic strength, and proper

formamide concentrations. By providing the proper conditions, sufficient stringency can be obtained to

discriminate between single mismatches in the hybridized probe-ribosome complex.
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Prepare 2 mL of hybridization buffer for each percentage of formamide (see Table 7.1). The formamide

concentration must reflect the empirically optimized conditions for the applied gene probes. For details on

many published probes see chapters elsewhere in this book or visit probeBase (http://www.probeBase.net;

Loy et al., 2007).

Hybridization procedures are typically designed to occur at 46–C, but can be carried out at other

temperatures by changing the matching formamide concentration according to the relation: 1%

FA ¼ 0.65–C.

Transfer 8 mL of hybridization buffer onto the slide within a small area or into each well on a teflon-

coated slide. Prepare one slide at a time to avoid evaporation of hybridization buffer and thus changed

stringency.

Add 1 mL of each gene probe (work solution 50 ng/mL) and mix carefully (avoid contact with the

sample) with the hybridization buffer (sterile pipette tips must be used for all work with gene probes).

If more gene probes are added to the same well the order is in the exact same manner – 1 mL of each

of the probes is added to the well. Equimolar concentrations of each competitor probe are added if

needed.

Place the slide horizontally into a 50 mL polyethylene tube with a piece of tissue wetted with 1–2 mL

of hybridization buffer. Place the tube in the hybridization oven (46–C) for at least 1½ hours (increased

hybridization to less accessible regions of the ribosome has been shown to occur upon hybridization for

up to 72 hours, see also Chapter 5).

Probes with different Td (requiring different formamide concentrations) cannot be applied together, but

must be applied in a double hybridization with two subsequent hybridizations starting with the highest

formamide concentration.

During hybridization prepare the washing buffer in a 50 mL polyethylene tube (formamide is replaced

by NaCl, according to Table 7.2). Preheat the washing buffer in a 48–C water bath.

Gently rinse the slide by pouring a few millilitres of the preheated washing buffer over the sample

(must be carried out in the fume hood to avoid toxic formamide fumes).

Transfer the slide to the 50 mL polyethylene tube with the remaining preheated washing buffer, and

incubate for 15 min at 48–C (water bath).

Remove the slides from the washing buffer and dip in cold dH2O. Let the slide air-dry.

Table 7.1. Composition of the hybridization buffer at different formamide concentrations.

FA (%) FA (mL) Milli-Q (mL) 5 M NaCl (mL) 1 M Tris/HCl (mL) 10% SDS (mL)

0 0 1600 360 40 2
5 100 1500 360 40 2

10 200 1400 360 40 2
15 300 1300 360 40 2
20 400 1200 360 40 2
25 500 1100 360 40 2
30 600 1000 360 40 2
35 700 900 360 40 2
40 800 800 360 40 2
45 900 700 360 40 2
50 1000 600 360 40 2
60 1200 400 360 40 2
65 1300 300 360 40 2
70 1400 200 360 40 2
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7.3.8 Counterstaining with DAPI

After hybridization the slide can be counterstained, for example, with the DNA stain 40,60-diamidino-2-

phenylindol (DAPI) to determine the fraction of FISH positive out of the total DAPI count (optional).

Add DAPI solution (1 mg/mL in distilled water) to cover the sample, and stain for 15 min at 4–C in

the dark.

Rinse with plenty of dH2O, and let the slide air-dry.

Please note that DAPI is staining DNA only, for other counterstaining methods see Chapter 8.

7.4 MICROSCOPY

Evaluation of the FISH signal is performed after embedding in a small drop of mounting agent containing

an antibleaching agent (e.g. Citifluor or Vectashield). Volumetric mixtures of Citifluor and Vectashield

are preferred by several users (optional).

The embedding medium can also be directly amended with DAPI (final concentration 1 mg/mL). This

usually yields strong signals but renders a strong background fluorescence. Stained preparations can also

be stored at –20–C without substantial loss of signal intensity.

Upon examination of multiple stained slides always examine the longer wavelength first (less

energetic) to avoid bleaching.

When examining new samples always include a nonsense probe (Non-EUB338) using the same strong

fluorescing fluorochrome as the one used with the specific probes (e.g. Cy3 or Alexa-dyes). A detailed

review of the factors influencing the sensitivity of FISH, effect of fluorochrome type, and stringency

conditions are described by Bouvier and del Giorgio (2003).

7.5 RECOMMENDATIONS AND TROUBLESHOOTING

Here follows a list of typical problems encountered when working with the FISH technique such as low

signals and problems related to the microscopic examination.

Test of new oligonucleotide probes
Several software programs exist for design of new probes (e.g. ARB software package (http://www.arb-

home.de), and Primrose (Ashelford et al., 2002)). Several publications describe the choice of parameters

Table 7.2. Composition of the washing buffer corresponding to the formamide concentrations applied during
the hybridization.

FA (%) 1 M Tris/HCl pH 8.0 (mL) 10% SDS (mL) 5 M NaCl (mL) 0.5 M EDTA (mL)

0 1000 50 9000 0
5 1000 50 6300 0

10 1000 50 4500 0
15 1000 50 3180 0
20 1000 50 2150 500
25 1000 50 1490 500
30 1000 50 1020 500
35 1000 50 700 500
40 1000 50 460 500
45 1000 50 300 500
50 1000 50 180 500
55 1000 50 100 500
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and pitfalls during the process of designing new probes (e.g. Amann and Ludwig, 2000) and only a few

recommendations for the testing will be given here.

. New probes should always be empirically tested for optimizing the applied stringency (i.e. the

formamide concentration under which it should be applied). This test is performed by

measurement of fluorescence signal intensities after FISH with increments of 5% formamide

on a pure culture with zero, one and two mismatches (harvested by the end of the

exponential growth phase). The fluorescence intensities of individual cells on images acquired

under identical settings are quantified by image analysis, and plotted as function of the

formamide concentration (see Chapter 8). The adequate hybridization stringency is the highest

concentration of formamide that does not result in a loss of signal intensity of the target

cells.
. In cases where no pure culture exists with a perfect match and with one mismatch to the probe

target sequence, as often seen in the cases where the probe was designed from clone libraries,

validation and optimization can be performed by Clone-FISH (for an example see Kong et al.,

2005).
. Alternatively, the probe can be applied in complex microbial environments, such as activated

sludge. Fluorescence signal intensities and cell numbers after FISH with increments of 5%

formamide are measured by image analysis. Cells with mismatches are targeted (due to too low

stringency) when the numbers of cells with a certain threshold of fluorescence begin to increase.

The proper stringency is found at the formamide concentration when the number of FISH positive

cells starts to decline.
. In silico predictions of the proper hybridization stringency are still not sufficiently

accurate, and thus optimization of probe specificity and sensitivity should be performed

experimentally.
. Mismatch discrimination can be based on differences in formamide denaturation profiles or by use

of competitor probes (recommended when DFA 5 20%).
. Check the ability of a new probe to form hairpin structures or self annealing. This can be checked

by appropriate software such as DINAMelt (Markham and Zuker, 2008).

Microscopy

. Loss of cells during hybridization can be minimized by acid wash and gelatin coating of the slides.

Gentle heating (40–60–C) during immobilization also decreases cell loss. If this is not sufficient

then a low-temperature-melting agarose on top of the immobilized cells can reduce the loss of

cells. Agarose embedding will give less sharp images, although still usable for quantification

purposes (see Chapter 8).
. Blurred images are often seen when adding too much or too little antifading agents and/or

immersion oil.
. Keep the illumination of the excitation light to a minimum, that is, block the light path when not

directly examining the sample.
. Always check for autofluorescent cells or debris by checking for fluorescence at other

wavelengths than the one used for the probe. Autofluorescence typically (but not always) has a

broad emission spectrum.
. In case of too high autofluorescence, choose narrow bandpass filters instead of longpass

filters.
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. Too high background can be avoided by using less or thinner biomass samples. Longer washing

times can sometimes be helpful. Large flocs can be homogenized by robbing two glass slides with

20–40 mL of the sample towards each other (circular movements). Many automated sample

homogenizers are seldom optimal for sludge samples (either too harsh or too gentle). In our lab

we have successfully applied a tissue grinder, which can be obtained in different sizes and

volumes.
. Some fluorochromes simply do not work with certain samples, either because of precipitation or

autofluorescence.

Low signals or no signals

. Inaccessibility of the probe can cause absent signals or low fluorescence. This can be overcome by

application of helper probes (Fuchs et al., 2000). Helper probes are unlabeled probes designed to

target rRNA sequences adjacent to the FISH probe target site, and are believed to open secondary

and tertiary structures and thereby increase accessibility of the FISH probe. Another solution to

inaccessible sites has been shown to be a longer hybridization time (Yilmaz et al., 2006).

Increasing the hybridization time (for up to 72 hours) will improve probe diffusion into the cell

and decrease kinetic barriers of target site accessibility. Thus a better hybridization efficiency and

in general increased fluorescence signals are achieved.
. Insufficient cell wall permeability described for the Mycolata group, for example, can also limit

target accessibility causing no or low FISH signals. The application of different pre-treatment

protocols as described in this chapter can improve cell wall permeability for FISH.
. The choice of fluorochrome is important if low fluorescent signals occur. The larger the

extinction coefficients are, the stronger signals can be obtained. In Table 7.3 the most often used

fluorochromes are listed together with their extinction coefficients.
. Avoid too long exposure to strong light sources. Store the FISH slides in the dark.
. Carefully remove all traces of ethanol from stored samples prior to DAPI staining or FISH, as

ethanol can fade the fluorescence signal.
. Avoid too long fixation time, which (especially for PFA fixation) can reduce permeability.

Table 7.3. Most commonly used fluorescent dyes to label oligonucleotides for FISH analysis. For optimal
filters to visualize the above given dyes see the webpages of the main suppliers (e.g. http://www.zeiss.de;
http://www.chroma.com).

Fluorochrome Colour
Max Excitation

l (nm)
Max Emission

l (nm)
Extinction coefficient

(M–1cm–1)

Cy3 Red 552 565 150,000
Cy5 Reda 649 670 250,000
SYBR Green Green 494 520 73,000
DAPI Blue 350 456 27,000
FLUOS Green 494 523 74,000
TAMRA Red 543 575 65,000
Alexa-488 Green 493 517 71,000
Alexa-546 Red 562 573 104,000
Alexa-350 Blue 343 441 19,000

a emission in the infrared area, it thus requires a digital camera detecting infrared light and image analysis to
be observable
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General planning

. Always test your sample for unspecific binding by applying a nonsense target probe (e.g.

NonEUB; Stahl and Amann, 1991). Use the same fluorochrome as used for the specific probes to

be analyzed.
. Although many Gram positive cells can be seen using a protocol for fixation of Gram negative

cells (and vice versa), quite a few might be impaired due to clogging of the cell membrane or cell

lysis. No universal fixation exists, so use the proper fixation procedure for the cells of interest. For

quantification purposes, stick to the recommendations in Chapter 8.
. Use (if possible) multiple probes targeting different phylogenetic levels, in order to verify that the

specificity of the most specific probe (e.g. all genus/strain-specific probes) should also be targeted

by the phylum/order/family-targeted probes.
. Hybridization efficiency depends on the hybridization length and should be optimized on new

samples.
. Specificity and coverage of new and old probes should be tested on a regular basis. This can be

done using various freely accessible internet tools [e.g. probeBase (http://www.probeBase.net) or

Probematch (http://rdp.cme.msu.edu/)].
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8

Quantitative FISH for the cultivation-
independent quantification of microbes in
wastewater treatment plants

Holger Daims

8.1 INTRODUCTION

In many fields of microbial ecology and environmental engineering, including research related to

wastewater treatment, not only the cultivation-independent detection but also the in situ quantification of

uncultured microorganisms are important tasks and the main reasons to use molecular biological methods.

For example, monitoring the abundances and population dynamics of selected microbes in activated

sludge can give important clues on correlations between problems such as sludge bulking and the

microbial community composition. As outlined in the other chapters of this book, fluorescence in situ

hybridization (FISH) with rRNA-targeted probes is a very powerful tool and the method of choice for the

cultivation-independent detection and identification of microorganisms in activated sludge and biofilm

from wastewater treatment plants (WWTPs).

A key advantage of FISH over other methods, for example those based on PCR, is the direct visual

feedback one gets during microscopic observation of the analyzed samples. This does not only give

more confidence regarding the accuracy of an experiment, but it is also the basis for extensions that

convert FISH into a precise method to quantify microorganisms in environmental samples. Based on

the rule ‘‘count what you see’’, quantitative FISH often is less prone to biases than quantitative PCR

approaches, which are quite sensitive to methodical errors (e.g. low PCR efficiency or stochastic
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tube-tube variations) and laboratory contaminations with tiny amounts of template DNA. Furthermore,

PCR-based approaches do not actually quantify microbial cells, but measure copy numbers of marker

genes. The number of marker gene copies per genome, and even the number of genomes per cell, can

vary among the targeted microbes (Ludwig and Schleifer, 2000). Thus, measuring these copy numbers

by PCR allows only indirect conclusions on cell densities and on important parameters such as

substrate turnover rates per cell. In contrast, quantification methods based on FISH directly measure

cell numbers or equivalent quantities such as biovolume. A disadvantage of FISH is its lower

sensitivity compared to quantitative PCR: while PCR can (theoretically) detect a single microbial cell,

the detection limit of FISH is as high as 103–104 cells per ml of suspended activated sludge. On the

other hand, less frequent populations are unlikely to be functionally relevant for the wastewater

treatment process. Cultivation-based methods, for example most-probable number (MPN) counting,

also are potentially more sensitive than FISH but do not correctly quantify aggregated cells and fail to

detect all organisms that do not grow in the offered nutrient media. Thus, FISH is the best currently

available technique for quantifying microbes in lab-scale or pilot-scale reactors and in samples from

full-scale WWTPs.

This chapter briefly summarizes approaches to quantify microbes by FISH with special focus on

combining FISH with digital image analysis. A protocol is provided that uses a slightly modified FISH

protocol and free open-source software for measuring the abundances of probe-target populations in

activated sludge and biofilm samples.

8.2 QUANTITATIVE FISH: A BRIEF OVERVIEW

The simplest approach to quantitative FISH is direct visual counting of probe-stained microbial cells

under the fluorescence microscope. For this purpose, FISH is performed according to the standard

protocol as described elsewhere in this book. Subsequently, the probe-target cells are counted in several

microscope fields of view (FOV). Unfortunately, the obtained numbers can hardly be related to any

useful reference value, such as sludge volume, if complex samples like activated sludge or biofilm are

analyzed this way. This is due to (i) difficulties of applying an exact known amount of flocculated

biomass onto a glass slide prior to FISH, and (ii) variations in biomass content between different FOV.

Regarding point (i), please note that by FISH only a few microlitres of sludge are analyzed in each

experiment. Even though standard methods allow the determination of biomass concentration for larger

volumes, variations due to pipetting errors and differences in the sizes of individual flocs become a major

source of imprecision when very small volumes are handled. Therefore, most past studies determined

relative rather than absolute abundances of microbes in activated sludge. In this case, the sample is

hybridized to a specific probe and also to a ‘universal’ second probe or probe mixture, which targets all

Bacteria, like the EUB-mix (Daims et al., 1999). Alternatively, the ‘universal’ probe(s) can be replaced by

a nucleic-acid staining dye such as DAPI. Following FISH, the cells stained by the specific probe and the

cells stained by the ‘universal’ probe or dye are counted. This is done for several FOVs and the results are

summed up to determine the fraction of the specifically stained cells relative to all microbes at the end.

This technique has been used, for example, to quantify non-aggregated cells in activated sludge (Wagner

et al., 1994b). While simplicity is its greatest advantage, this method is very time-consuming and tedious,

because several hundreds or even thousands of cells must manually be counted in several FOVs

in order to obtain statistically robust results. It is not suitable to quantify cells in aggregates, because a

precise counting of clustered cells, by eye and in many FOVs, is hardly feasible. The disruption of tight

cell aggregates in activated sludge to facilitate counting is not possible either (Manz et al., 1994;

Wallner et al., 1995).
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The spread of digital imaging techniques and equipment has paved the way for combining

rRNA-targeted FISH with automated image analysis methods. For example, Pernthaler et al. (2003)

designed a fully automated setup that linked image acquisition by microscopy to an image analysis

pipeline for counting planktonic bacterial cells in ocean water samples. This sophisticated approach

was much more rapid than manual counting and enabled the analysis of 28 samples within only 4 hours.

Unfortunately, microbes that cluster in biofilms cannot precisely be counted by this and related

methods. Prior to cell counting by image analysis, the images must be segmented by the computer –

that means, the machine must detect the objects to be counted in the images. In case of planktonic

cells, which do not form tight aggregates, every detected object corresponds to one single cell (or very

few attached cells). In contrast, the individual cells embedded in tight cell clusters cannot be

distinguished by image segmentation in most cases, because in the images there is no background that

would separate these cells from each other. Thus, a fully automated quantification of cells in sludge

flocs or biofilms usually is not possible.

An alternative solution is to measure the biovolume fraction of the targeted microbial population

relative to the total microbial community. This approach was developed and first applied on activated

sludge by Bouchez et al. (2000) and Schmid et al. (2000). The sludge sample is hybridized to a specific

probe and a ‘universal’ probe (set) as described above for manual counting. Subsequently, digital

images of either probe signal are recorded for 20–30 FOVs. This is best accomplished by using a

confocal laser scanning microscope (CLSM) to avoid blurred images due to light from outside the focal

plane. However, a normal epifluorescence microscope with a CCD camera can be used if low amounts

of biomass are applied onto the slides to obtain thin layers of biomass, which are completely within the

depth of focus of the microscope. An experienced user can record the images needed to quantify one

population in about one hour. Importantly, the FOVs must be randomly selected in the x, y and z

dimensions (by panning and zooming with the microscope). When all images are taken, the areas of

the probe-target organisms are measured, by image analysis, in the images showing the signal of the

specific probe and are summed up to obtain a total measured area of the probe-target population.

Likewise, the areas of all organisms detected by the ‘universal’ probe are measured in the respective

images. The area fraction of the specifically targeted population is then calculated as percentage of the

total area of all organisms. Although these measurements are made with two-dimensional images (not

with confocal z-stacks), the determined area fraction is an estimate of the biovolume fraction of the

quantified population (Daims and Wagner, 2007). Notably, this approach does not require the detection

of individual cells during image segmentation. Areas in images can be measured for single cells as well

as for filaments or cell aggregates. This greatly simplifies image segmentation and allows even densely

packed biofilm bacteria to be quantified.

The primary result of this ‘biovolume-based’ quantification method is a relative quantity, the

biovolume of the probe-target population as percentage of the total microbial biovolume in the sample.

This is sufficient for many applications such as monitoring population dynamics. However,

absolute cell numbers are needed to estimate substrate turnover rates per cell, and also to compare

different sludge samples with each other (because the total biomass content of these samples may be

different). Absolute cell numbers can be obtained by an extended ‘biovolume-based’ approach called

‘Spike-FISH’, which uses an internal standard to convert biovolume fractions to absolute cell

numbers (Daims et al., 2001b).

A more detailed description of the quantification methods mentioned here, and of additional techniques,

is provided by Daims and Wagner (2007). The next section explains how the ‘biovolume-based’

quantification method is used in practice to determine relative amounts of probe-defined bacterial

populations in activated sludge.
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8.3 A PROTOCOL FOR QUANTITATIVE FISH AND IMAGE ANALYSIS TO

MEASURE BIOVOLUME FRACTIONS

Sample preparation

For quantitative FISH follow the general sample fixation procedures described in this book in Chapter 7.

Gram negative and Gram positive cells should be quantified in separate steps using formaldehyde-fixed or

ethanol-fixed sample aliquots, respectively. Formaldehyde fixation usually applied to preserve Gram

negative cells renders most Gram positive bacteria impermeable to FISH probes. In contrast, ethanol

fixation used for Gram positive cells does not preserve Gram negative cells for extended time periods and

when these cells start to lyse, the quantification results will most likely become biased. Moreover, if

additional enzymatic pre-treatment is needed to permeabilize Gram positive cells, the Gram negative

microbes are easily destroyed (lysed) by the enzymes. In cases where only ethanol-fixed samples are

available, these samples should be analyzed within 1–3 days after sampling and fixation to reduce biases

due to lysed Gram negative cells.

Sample immobilization

For standard FISH only small amounts (5–15 ml) of an activated sludge sample are immobilized on glass

slides. This is sufficient for purely qualitative analyses, but can cause biases in quantifications due to

single cells falling down onto the slide surface (Figure 8.1A). To avoid this problem, thick layers of

sludge sample must be applied onto the slides (Figure 8.1B). First, put 15 ml of fixed sludge onto the slide

and dry the sludge at 46–C or at room temperature. Subsequently, add another 15 ml aliquot and dry

again. These steps should be repeated two to four times to obtain a thick layer of biomass (Figure 8.1B).

With this large amount of sludge on the glass slide, additional measures are needed to avoid a loss of

biomass during the hybridization and washing steps. First, poly-L-lysine-coated slides should be used to

improve sludge adhesion to the slide surface. Second, the dried biomass should be covered with a thin

agarose layer, which will act like a glue and keep the biomass attached to the slide (Figure 8.1C). For this

purpose, dip the slide (with the dried biomass) horizontally into hand-warm dissolved 0.5–1% agarose,

leave it for a few seconds in the agarose, and then cool the slide immediately in the horizontal position

(biomass side up) on ice. When the agarose has solidified, the usual dehydration in 50, 80 and 96%

ethanol is performed and the slide is dried again at 46–C. The combination of dehydration and drying

will shrink the agarose so that a thin, glue-like agarose film is obtained on top of the sludge sample

(Figure 8.1C). Finally, wipe off excess agarose from the bottom side of the slide. Although agarose may

show autofluorescence, the very thin agarose layer does usually not interfere with fluorescence

microscopy.

In situ hybridization

Hybridization, washing, drying, and embedding the agarose-covered slide in antifadent are carried out

according to the standard FISH protocol. For quantitative FISH, one must apply (i) a specific probe that

targets the population(s) to be quantified, and (ii) a ‘universal’ probe set that detects most Bacteria, which

usually is the EUB-mix (Daims et al., 1999). Probes (i) and (ii) must be labeled with different

fluorochromes. The ‘universal’ probe can be replaced by a nucleic acid stain, but be sure to use only

dyes that stain both RNA and DNA. For example, DAPI is not useful for this kind of quantification,

because DAPI stains DNA only. Unlike ribosomes, DNA is not evenly distributed inside most bacterial

cells. Therefore, DAPI-stained cells look smaller than cells labeled by FISH and their projected area in

the recorded images is smaller. Clearly, this biases a quantification technique based on measuring cell

areas in the images. In contrast, SYBR Green stains RNA as well as DNA and can be used for this

quantitative FISH approach.
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Image acquisition

Images for quantitative FISH should be recorded by using aCLSM.Take images of 20–30 FOVs,whichmust

be chosen by randomly moving the slide in the x/y dimensions and by randomly adjusting the focal plane of

the microscope in the z dimension. ‘Randomly’ means: do not choose the FOVs based on the presence of the

population to be quantified! This would bias the analysis. Make sure that each FOV contains somemicrobial

biomass (not necessarily the quantified population), but do not use any other selection criteria.

For each FOV, take one image of the population-specific probe and one image of the ‘universal’ probe

(or nucleic acid stain). Use a low magnification (400£ or lower) to capture as much biomass as possible in

each image. This will improve statistics. Cells of the quantified population will appear in either image of an

‘image pair’ (specific probe and EUB-mix; Figure 8.2) in different colors. The detector of the CLSM must

be adjusted properly to ensure that these cells have the same size (area) in both images. If this condition is

not met, the analysis will most likely be biased. Please keep in mind that this quantification method is based

on measuring the areas of cells in the images and on calculating area fractions (see above).

It makes sense to store the image pairs with numbered filenames to facilitate later analysis. For

example, the two images Gamma_001.tif and EUB_001.tif would belong to FOV #1 (with Gamma-

proteobacteria as the organisms to be quantified).

Image analysis

Measuring the areas of the probe-stained cells essentially means counting and summing up the

pixels that belong to these cells in each image. First, the images must be segmented (see also below)

to distinguish cells (¼‘objects’) from background. Second, the pixels that belong to objects must be counted.

Commercial image analysis programs, which are capable of automated image segmentation and

calculations such as area measurements, are mostly very expensive. But for quantitative FISH there is no

need to invest in such software, because some free software packages are available that can fulfil these

tasks as well. Examples are the programs CMEIAS (Liu et al., 2001a), ImageJ (http://rsbweb.nih.gov/ij/),

A B

C

A B

C
Agarose layer

Figure 8.1. A. Low amount of activated sludge biomass on a glass slide. During dehydration for FISH, single
cells (light grey) may fall down onto the glass slide, whereas cell aggregates (dark grey) stay in place.
Depending on the focal plane of the microscope (stippled line), mainly aggregates or single cells are captured
in the images. B. More biomass on the slide prevents most small cells from falling down onto the glass
surface. C. Covering the biomass with a thin agarose layer as ‘glue’ prevents biomass detachment from the
slide during the dehydration, hybridization, and washing steps.

Quantitative FISH for the cultivation-independent quantification 89

Downloaded from https://iwaponline.com/ebooks/book-pdf/521273/wio9781780401775.pdf
by IWA Publishing user
on 04 February 2019



and daime (Daims et al., 2006). While ImageJ is a general-purpose image analysis software, CMEIAS and

daime have been developed having applications in microbiology in mind.

This chapter focuses on using daime for quantitative FISH. This program (‘‘digital image analysis

in microbial ecology’’¼ daime) has been written especially for analyzing images of microbial cells as

obtained by FISH and other fluorescence labeling techniques. It allows images to be segmented by using

different intensity thresholding and edge detection algorithms. If needed, background can be reduced prior

to segmentation. Segmented images can be opened in an ‘object editor’, which allows the user to manually

refine the automated segmentation results and to remove fluorescent artefacts (such as plant material) from

the images before the actual analysis starts (Figure 8.3). daime offers various image analysis routines:

morphometry of single cells or cell aggregates, biovolume fraction measurement for quantitative FISH,

fluorescence intensity measurements, automated analysis of formamide concentration series for FISH probe

evaluation, and spatial statistics to determine if two microbial populations co-aggregate in biofilm samples

(Daims et al., 2006; Maixner et al., 2006). In addition, daime contains a volume-rendering module that can

display confocal image stacks in 3D at interactive rendering speed on current PC hardware.

More information about daime and its features can be found on the daime website (www.microbial-

ecology.net/daime) and in the user manual. The program and the manual can be downloaded free of

charge. daime runs on Windows 2000 and Windows XP (Vista not yet tested) and Linux (the source code

is available for compiling daime on Linux systems). Appropriate graphics hardware and sufficient RAM

memory (at least 1 gigabyte) are recommended for optimal performance.

To analyze the images of the different FOVs, which have been acquired in the previous steps, import

them into daime as 2D image series. For this purpose, the image files should have been saved to disk with

numbered filenames (as suggested above) and in the TIFF image format (8 bits per pixel, greyscale, or

Area of probe-target population (AP) and of all bacteria (AB) measured in n pairs

Biovolume fraction

Images of specific probe signal
(target population) Images of EUB-Mix signal

n

i=1
∑   AP

i

n

i=1
∑   AB

i

20-30
image pairs

taken at
random
x-y-z

positions

~~

Figure 8.2. Principle of approach for quantifying the biovolume fraction of a probe-defined target population.
See text for details.
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24 or 32 bits per pixel, RGB color). Then choose the option ‘Stereology: Biovolume fraction’ in the

‘Analysis’ menu. Indicate which image series shows the population to be quantified, and which one shows

all cells detected by the ‘universal’ probe. The images will then be segmented automatically, and the

object editor will open with both image series loaded (Figure 8.3). Push ‘OK’ if the segmentation

results look satisfying. The areas will now be measured in all images, and the results window will open

(Figure 8.4). As described above, the area fraction determined from all images is an estimate of the

biovolume fraction of the quantified population. In addition to this value, daime provides some other

parameters and statistics that allow the reliability of the quantification to be assessed (Figure 8.4). This

depends mainly on the quality of the input images and on the success of image segmentation.

8.4 CONCLUDING REMARKS

With today’s microscopes and computers, the FISH-based quantification of microbial populations in

activated sludge is a straightforward task. However, like any other laboratory technique this approach has

pitfalls and suffers from potential biases. Some of these problems have been addressed in the sections

above. Here are a few general suggestions on how to optimize quantitative FISH analyses:

. Make sure that the basic method, FISH itself, works properly with your samples. Always

test the applied oligonucleotide probes with samples known to contain the target organisms

Figure 8.3. Screenshot of the ‘object editor’ of the daime software. This dialog window offers several tools for
identifying artefacts in images of probe-labeled microbial cells, for selecting objects based on morphological
and other features for subsequent analysis, and for the manual refinement of automated image segmentation.
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(positive control). Also use standard negative controls for FISH (e.g. nonsense probes) to test

whether autofluorescence or unspecific attachment of probes to cells and to other surfaces might

hamper quantification by FISH and image analysis. Typical caveats of FISH and solutions have

been addressed elsewhere (Wagner et al., 2003; Daims et al., 2005).
. A low ribosome content of the probe-target organisms is a typical obstacle for the FISH-based

quantification of bacteria in oligotrophic samples. As WWTPs are not oligotrophic and most

bacteria therein are metabolically active and contain many ribosomes per cell, this problem is

hardly encountered when analyzing activated sludge. However, sometimes signal amplification

techniques such as CARD-FISH (Pernthaler et al., 2002) are needed to obtain good probe-

conferred signals even in samples from WWTPs. The issue of per-cell ribosome content in the

context of FISH has been addressed in detail by Hoshino et al. (2008).
. Try to achieve the highest possible quality of the digital images that contain the probe-labeled

cells. Image analysis software depends on a good quality of the input images. Do not expect

marvelous results from images that are dim (low-contrast), blurred, contain intense background,

have a low pixel resolution (below 5122), or contain only very few cells of the target population

to be quantified.
. If image analysis does not work as expected, despite a good image quality, remember that there is

no perfect algorithm for image segmentation (the step that most frequently causes trouble).

Different software packages offer different segmentation algorithms, so take advantage of this

diversity and play with the programs and their options. As image analysis is a science in its own

right, consulting literature on this topic may be a good idea before implementing an image

analysis procedure for routine work in the lab.

Figure 8.4. Screenshot of the results window shown by the daime software after biovolume fraction
measurement. Cumulative average analysis and other parameters inform on the reliability of the
quantification results.
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Color image section

Nitrifiers

# 2009 IWA Publishing. FISH Handbook for Biological Wastewater Treatment: Identification and quantification of microorganisms
in activated sludge and biofilms by FISH. Edited by Per Halkjær Nielsen, Holger Daims and Hilde Lemmer. ISBN: 9781843392316.
Published by IWA Publishing, London, UK.

Figure 9.1. Different populations of ammonia-
oxidizing bacteria (AOB) simultaneously detected
in a nitrifying biofilm from a sequencing batch bio-
film reactor with probes NmV (Cy3; red), Nso1225
(Cy5; blue), and NEU (FLUOS; green).

Figure 9.2. Cell aggregate of nitrite-oxidizing Nitro-
spira detected with probe Ntspa662 (Cy3; red) in a
nitrifying biofilm from a sequencing batch biofilm
reactor. Bar ¼ 10 mm.
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Denitrifiers

Figure 9.3. Three populations of nitrifying bacteria,
detected simultaneously in a nitrifying sequencing
batch biofilm reactor with ammonia-oxidizing bacteria
(AOB) of the Nitrosomonas oligotropha lineage
detected by probe Cluster6a192 (Cy5; blue), nitrite-
oxidizing bacteria (NOB) of Nitrospira sublineage I
probe Ntspa1431 (Cy3; red), NOB of Nitrospira
sublineage II probe Ntspa1151 (FLUOS; green).
Bar ¼ 10 mm.

Figure 9.4. Anaerobic ammonium-oxidizing (anam-
mox) bacteria, Candidatus Brocadia anammoxidans,
detected in an anammox enrichment culture estab-
lished from a wastewater treatment plant with probes
Amx368 (Cy3; red) and EUB338 probe mix (FLUOS;
green). Anammox cells appear yellowish due to
simultaneous binding of Amx368 and EUB338,
whereas other bacteria appear green due to binding
of EUB338-I/II/III only. Bar ¼ 5 mm.

Figure 9.6. Typical cell aggregates of denitrifying
Azoarcus detected with probe Azo644 (Cy3; red)
in activated sludge and EUBmix (FLUOS; green).
Bar ¼ 10 mm.

Figure 9.5. Typical morphology of single cells
and microcolonies of denitrifying Curvibacter spp.
detected with probe Curvi997 (Cy3; red) in activated
sludge and EUBmix (FLUOS; green). Bar ¼ 10 mm.
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Figure 9.8. Typical morphology of cells belonging to
the denitrifying Acidovorax spp. detected with probe
Aci208 (Cy3; red) in activated sludge and EUBmix
(FLUOS; green). Bar ¼ 10 mm.

Figure 9.7. Typical cell aggregates of denitrifying
Thauera spp. detected with probe Thau646 (Cy3;
red) in activated sludge and EUBmix (FLUOS;
green). Bar ¼ 10 mm.

Figure 9.9. Typical morphology of single cells of
denitrifying Hyphomicrobium spp. detected with
probe HyphoCII-654 (Cy3; red) in activated sludge
and EUBmix (FLUOS; green). Bar ¼ 10 mm.

Figure 9.10. Typical cell structures of denitrifying
cells belonging to the Rhodobacteraceae and
Phyllobacteriaceae detected with probe GRb
208(Cy3; red) in activated sludge and EUBmix
(FLUOS; green). Bar ¼ 10 mm.
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PAOs/GAOs

Figure 9.11. Typical cell aggregates of denitrifying
Pseudomonas spp. detected with probe Pae997
(Cy3; red) in activated sludge and EUBmix (FLUOS;
green). Bar ¼ 10 mm.

Figure 9.12. Typical cocci in tetrad aggregates of
actinobacterial PAOs detected with probe Actino-
221 (Cy3; red) in activated sludge and EUBmix
(FLUOS; green). Bar ¼ 10 mm.

Figure 9.13. Atypical cell aggregates of actinobac-
terial PAOs detected with probe Actino-221 (Cy3;
red) in activated sludge and EUBmix (FLUOS;
green). Bar ¼ 10 mm.

Figure 9.14. Typical cell aggregates of actinobac-
terial PAOs detected with probe APAO-658 (Cy3;
red) in activated sludge and EUBmix (FLUOS;
green). Bar ¼ 10 mm.
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Figure 9.15. Cell aggregates of Competibacter GAOs and Accumulibacter PAOs from a lab-scale reactor
detected with probe GB þ GB_G1 þ GB_G2 (Cy3; red) in activated sludge and PAOmix (Cy5; blue) and
EUBmix (FLUOS; green). Yellow overlay of GB þ GB_G1 þ GB_G2 and EUBmix. Light blue overlay of
PAOmix and EUBmix. Bar ¼ 10 mm.

Figure 9.16. Cell aggregates of Defluviicoccus GAOs and Accumulibacter PAOs from a lab-scale reactor
detected with probe DF2mix (Cy3; red) in activated sludge and PAOmix (Cy5; blue) and EUBmix (FLUOS;
green). Yellow overlay of DF2mix and EUBmix. Light blue overlay of PAOmix and EUBmix. Bar ¼ 10 mm.
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Filamentous bacteria

Figure 9.18. Typical M. parvicella morphotype
(Actinobacteria) detected with probe MPAmix
(Cy3; red) in activated sludge. Bar ¼ 10 mm.

Figure 9.20. Typical N. limicola II morphotype
(Actinobacteria) detected with probe NLIMII175
(Cy3; red) in activated sludge. Bar ¼ 10 mm.

Figure 9.19. Typical M. calida morphotype (Actino-
bacteria) detected with probe Mpa-T1-1260 (Cy3;
red) in activated sludge. Bar ¼ 10 mm.

Figure 9.17. Typical H. hydrossis morphotype (Bac-
teroidetes) detected with probe HHY (Cy3; red) in
activated sludge. Bar ¼ 10 mm.
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Figure 9.21. Typical N. limicola II morphotype (Chloroflexi) detected with probe AHW183 (Cy3; red) in
activated sludge. Bar ¼ 10 mm.

Figure 9.22. Typical N. limicola II morphotype Can-
didatus Monilibacter batavus (Alphaproteobacteria)
detected with probe DF1004 (Cy3; red), DF198
(Cy5; blue) and EUBmix (FLUOS; green) in a lab-
scale reactor. White overlay of DF1004, DF198 and
EUBmix. Bar ¼ 10 mm.

Figure 9.23. SameCandidatusMonilibacter batavus
aside in phase contrast.
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Figure 9.25. TypicalN. limicola II morphotypeCandi-
datus Alysiomicrobium bavaricum (Alphaproteo-
bacteria) detected with PPx3-1428 (Cy3; red) in
activated sludge. Bar ¼ 10 mm.

Figure 9.26. Same Candidatus Alysiomicrobium
bavaricum aside in phase contrast.

Figure 9.24. Typical N. limicola II morphotype Candidatus Alysiomicrobium bavaricum (Alphaproteobacteria)
detected with PPx3-1428 (Cy3; red) in activated sludge. Bar ¼ 10 mm.
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Figure 9.29. Typical N. limicola II morphotype
Candidatus Alysiosphaera europaea (Alphaproteo-
bacteria) detected with Noli-644 (Cy3; red) in
activated sludge. Bar ¼ 10 mm.

Figure 9.30. Same Candidatus Alysiosphaera euro-
paea aside in phase contrast.

Figure 9.27. TypicalN. limicola II morphotypeCandi-
datus Sphaeronema italicum (Alphaproteobacteria)
detected with Sita-649 þ CompSita-649 (Cy3; red)
in activated sludge. Bar ¼ 10 mm.

Figure 9.28. Same Candidatus Sphaeronema itali-
cum aside in phase contrast.
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Figure 9.31. Typical N. limicola III morphotype
Isosphaera spp. (Planctomycetales ) detected with
NLIMIII301 (Cy3; red) in activated sludge.
Bar ¼ 10 mm.

Figure 9.32. Typical Mycolata morphotype (Actino-
bacteria) detected with Myc657 (Cy3; red) in
activated sludge. Bar ¼ 10 mm.

Figure 9.33. Typical Mycolata GALO morphotype
Gordonia spp. (Actinobacteria) detected with Gor596
(Cy3; red) in activated sludge. Bar ¼ 10 mm.

Figure 9.34. Typical Mycolata GALO morphotype
Gordonia amarae (Actinobacteria) detected with
G.am205 (Cy3; red) in activated sludge.Bar ¼ 10mm.
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Figure 9.37. Typical Mycolata GALO morphotype
Rhodococcus cluster B (Actinobacteria) detected
with RHOb183 (Cy3; red) in activated sludge.
Bar ¼ 10 mm.

Figure 9.38. Typical Mycolata NOC morphotype
Dietzia spp. (Actinobacteria) detected with DIE993
(Cy3; red) and EUBmix (FLUOS; green); Yellow
overlay of DIE993 and EUBmix in activated sludge.
Bar ¼ 10 mm.

Figure 9.35. Typical Mycolata PTLO morphotype
Skermania piniformis (Actinobacteria) detected with
Spin1449 (Cy3; red) in activatedsludge.Bar ¼ 10mm.

Figure 9.36. Typical Mycolata GALO morphotype
Rhodococcus erythropolis (Actinobacteria) detected
with R.ery619 (Cy3; red) in activated sludge.
Bar ¼ 10 mm.
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Figure 9.41. Typical Thiothrixmorphotype (Gamma-
proteobacteria) detected with TNI (Cy3; red)
and G123T (FLUOS; green) in activated sludge.
Bar ¼ 10 mm.

Figure 9.42. Typical 021N morphotype (Gamma-
proteobacteria) detected with G1B (Cy3; red) in
activated sludge. Bar ¼ 10 mm.

Figure 9.39. Typical S. natans morphotype (Beta-
proteobacteria) detected with SNA (Cy3; red) and
EUBmix (FLUOS; green) in activated sludge.

Figure 9.40. Typical Thiothrixmorphotype (Gamma-
proteobacteria) andMeganemaperideroedes (Alpha-
proteobacteria) detected with Meg983 þ 1028 (Cy3;
red) and TNI (FLUOS; green) in activated sludge.
Bar ¼ 10 mm.
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Figure 9.45. Typical 0041/0675 morphotype (TM7)
detected with TM7305 (Cy3; red) and EUBmix
(FLUOS; green) in activated sludge. Bar ¼ 10 mm.

Figure 9.46. Phase contrast of the same typical
0041/0675 morphotype aside.

Figure 9.44. Phase contrast of the same typical
021N morphotype aside.

Figure 9.43. Typical 021N morphotype (Gamma-
proteobacteria) detected with 21N (Cy3; red) in
activated sludge. Bar ¼ 10 mm.
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Figure 9.49. Thinner 0092 morphotype (Chloroflexi)
detected with CFX223 (Cy3; red) and EUBmix
(FLUOS; green) in activated sludge. Bar ¼ 10 mm.

Figure 9.50. Typical 0092 morphotype (Chloroflexi)
detected with CFX197 þ competitor (Cy3; red) and
EUBmix (FLUOS; green) in activated sludge.
Bar ¼ 10 mm.

Figure9.48. Typical 0041/0675morphotype (Chloro-
flexi) detected with CFXmix (Cy3; red) and EUBmix
(FLUOS; green) in activated sludge. Bar ¼ 10 mm.

Figure 9.47. Typical 0041/0675 morphotype (Chlor-
oflexi) detected with CFXmix (Cy3; red) and EUBmix
(FLUOS; green), yellow overlay of CFXmix and
EUBmix in activated sludge. Bar ¼ 10 mm.
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Figure 9.52. Typical 1701 morphotype Curvibacter
spp. (Betaproteobacteria) detected with Curvi997
and competitors (Cy3; red) and EUBmix (FLUOS;
green) in activated sludge. Bar ¼ 10 mm.

Figure 9.53. Typical 1701 morphotype Curvibacter
spp. (Betaproteobacteria) detected with Curvi997
and competitors (Cy3; red) and EUBmix (FLUOS;
green) in activated sludge. Bar ¼ 10 mm.

Figure 9.51. Typical 0092 morphotypes (Chloroflexi) stained with Neisser. The arrows indicate the two
different morphotypes that can be detected with probes CFX223 and CFX197. Bar ¼ 10 mm.
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Figure 9.55. Typical Chloroflexi from an industrial
WWTP without epiphytic growth (Chloroflexi)
detected with CFXmix (Cy3; red) in activated sludge.
Bar ¼ 10 mm.

Figure 9.54. Typical 1851 morphotype Kouleothrix
aurantiaca (Chloroflexi) detected with Chl1851
(Cy3; red) and EUBmix (FLUOS; green) in a reactor.
Bar ¼ 10 mm.

Figure 9.57. Typical 1863 morphotype Acineto-
bacter spp. (Gammaproteobacteria) detected with
ACA23a (Cy3; red) in activated sludge. Bar ¼ 10 mm.

Figure 9.56. Typical Chloroflexi from an industrial
WWTP without epiphytic growth (Chloroflexi) detec-
ted with CFXmix (Cy3; red) in activated sludge.
Bar ¼ 10 mm.
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The FISH Handbook for Biological Wastewater Treatment provides all the required

information for the user to be able to identify and quantify important microorganisms

in activated sludge and biofilms by using fluorescence in situ hybridization (FISH) and

epifluorescence microscopy. 

It has for some years been clear that most microorganisms in biological wastewater

systems cannot be reliably identified and quantified by conventional microscopy or by

traditional culture-dependent methods such as plate counts. Therefore, molecular

biological methods are vital and must be introduced instead of, or in addition to,

conventional methods. At present, FISH is the most widely used and best tested of these

methods. This handbook presents all relevant information from the literature and, based

on the extensive experience of the authors, advice and recommendations are given for

reliable FISH identification and quantification.

The overall purpose of the book is to help scientists, consultants, students, and plant

operators to get an overview of important microorganisms in biological wastewater

treatment and to explain how FISH can be used for detecting and quantifying these

microbes. A proper and reliable identification of dominant microorganisms is of great

importance for research and new developments in the wastewater treatment industry,

and it is important for optimization and troubleshooting of operational problems in

present wastewater treatment plants.

The book encompasses an overview of dominant microorganisms present in the

wastewater treatment systems, which oligonucleotide probes (gene probes) to select for

detection of these microbes by FISH, how to perform FISH (detailed protocols), how to

quantify the microbes, and how to solve common problems of FISH. The book addresses

several functional groups: nitrifiers, denitrifiers, polyphosphate-accumulating organisms,

glycogen-accumulating organisms, bacteria involved in hydrolysis and fermentation,

filamentous bacteria from bulking sludge, and scum-forming bacteria. A comprehensive

collection of FISH-images showing dominant representatives of these groups helps

readers to use FISH in the context of wastewater treatment.
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