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Preface

This book gives an overview of cutting-edge work on a new paradigm called the
“sublinear computation paradigm,” which was proposed in the large multiyear
academic research project “Foundations of Innovative Algorithms for Big Data” in
Japan. In today's rapidly evolving age of big data, massive increases in big data
have led to many new opportunities and uncharted areas of exploration, but have
also brought new challenges. To handle the unprecedented explosion of big data
sets in research, industry, and other areas of society, there is an urgent need to
develop novel methods and approaches for big data analysis. To meet this need, we
are pursuing innovative changes in algorithm theory for big data. For example,
polynomial-time algorithms have thus far been regarded as “fast,” but if we apply
an Oðn2Þ-time algorithm to a petabyte-scale or larger big data set, we will encounter
problems in terms of computational resources or running time. To deal with this
critical computational and algorithmic bottleneck, we require linear, sublinear, and
constant-time algorithms. In this project, which ran from October 2014 to
September 2021, we have proposed the sublinear computation paradigm in order to
support innovation in the big data era. We have created a foundation of innovative
algorithms by developing computational procedures, data structures, and modeling
techniques for big data. The project is organized into three teams that focus on
sublinear algorithms, sublinear data structures, and sublinear modeling. Our work
has provided high-level academic research results of strong computational and
algorithmic interest, which are presented in this book.

This book consists of five parts: Part I, which consists of a single chapter
introducing the concept of the sublinear computation paradigm; Parts II, III, and IV
review results on sublinear algorithms, sublinear data structures, and sublinear
modeling, respectively; and Part V presents some application results.
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Chapter 1
What Is the Sublinear Computation
Paradigm?

Naoki Katoh and Hiro Ito

Abstract This chapter introduces the “sublinear computationparadigm.”Asublinear-
time algorithm is an algorithm that runs in time sublinear in the size of the instance
(input data). In other words, the running time is o(n), where n is the size of the
instance. This century marks the start of the era of big data. In order to manage
big data, polynomial-time algorithms, which are considered to be efficient, may
sometimes be inadequate because they may require too much time or computational
resources. In such cases, sublinear-time algorithms are expected toworkwell.We call
this idea the “sublinear computation paradigm.” A research project named “Foun-
dations on Innovative Algorithms for Big Data (ABD),” in which this paradigm is
the central concept, was started under the CREST program of the Japan Science and
Technology Agency (JST) in October 2014 and concluded in September 2021. This
book mainly introduces the results of this project.

1.1 We Are in the Era of Big Data

The twenty-first century can be called the era of Big Data. The number of webpages
on the Internet was estimated to be more than 1 trillion (=1012) in 2008 [22], and
the number of websites grows ten times in these 10years [21]. Thus the number of
webpages is estimated to be more than 10 trillion (=1013) now. If we assume that
106 bytes(≈ 107 bits) of data is contained in a single webpage on average,1 then the
total amount of the data stored on the Internet would be more than 100 exabits (=1020

bits)! The various actions that everyone performs are collected by our smartphones
and are stored in the memory of storage devices around the world. The remarkable
development of computer memory has made it possible to store this information.

1Note that one 1080 × 1920 pixel digital photo consists of more than 2 × 106 pixels.
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However, the ability to store data and the ability to make good use of the data are
different problems. The speed of the data transfer using IEEE 802.11ac is 6.9 Gbps.
Using this, it would take 1.7days to read 1 petabit (1015 bit) of data. To read 1 exabit
(1018 bit) of data, we would need over 4years! Although the speed of data transfer
is expected to continue to increase, the amount of available data is also expected to
grow even faster.

This situation can create new problems that did not arise in past centuries, such
as requiring a huge amount of time just to read an entire dataset. We are thus faced
with new problems in terms of computation.

1.2 Theory of Computational Complexity
and Polynomial-Time Algorithms

In the area of the theory of computational complexity, the term “polynomial-time
algorithms” is often as a synonym for “efficient algorithms.” A polynomial-time
algorithm is an algorithm that runs in time expressed by a function polynomial of
the size of the instance (i.e., the input). For example, consider the sorting problem
that takes a set of positive integers a1, . . . , an as input and outputs a permutation
π : {1, . . . , n} → {1, . . . , n} such that aπ(i) ≤ aπ(i+1) for every i ∈ {1, . . . , n − 1}.
In this problem, the input is expressed by n integers and thus the input size is n.2

We now briefly introduce the theory of computational complexity. Theoretically,
the computation time of an algorithms is expressed in terms of the number of basic
units of calculations (i.e., the basic arithmetic operations, reading orwriting a value in
a cell in memory, and comparison of two values3). The complexity is then expressed
as a function of n, say T (n), where n is the (data) size of the input. If there exists
a fixed integer k such that T (n) = O(nk), then we say that the algorithm runs in
polynomial time.

For example, the sorting problem can be solved in O(n log n) time, which is
polynomial, and it has been proven that this is the minimum in the big-O sense,
meaning that no algorithm exists that runs in o(n log n)-time. In contrast, for the
partitioning problem, which is the problem of finding a subset B of a given set A
consisting of n integers a1, . . . , an such that

∑
ai∈B ai = 1

2

∑
ai∈A ai , no polynomial-

time algorithms have been found and the majority of researchers believe that no such
algorithm exists.4

2 More rigorously, representing an integer a requires around log2 a bits. However, in the area of the
theory of computational complexity, we usually use the assumption that one integer is stored in one
cell (byte) of the memory. Since this assumption may cause some strange results if pathologically
huge integers are used, these integers are prohibited.
3 In order to avoid excessive calculations, we assume that each integer consists of at most log2 n
bits, where n is the number of integers treated in the instance.
4 This is equivalent to the well-known “P vs. NP problem,” which is one of the seven Millennium
Prize open problems in mathematics.
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For many problems, constructing an exponential-time algorithm is easy. For the
partitioning problem, for example, an algorithm that tests all subsets of A clearly
solves the problem, and this requires 2n · O(n) time, which is exponential. Therefore,
the existence of an exponential-time algorithm is considered to be trivial for many
cases. Constructing polynomial-time algorithms, however, requires additional ideas
in many cases.

1.3 Polynomial-Time Algorithms and Sublinear-Time
Algorithms

1.3.1 A Brief History of Polynomial-Time Algorithms

The idea that “polynomial-time algorithms are efficient” is sometimes called Cob-
ham’s Thesis or Cobham–Edmonds’ Thesis, which is named after Alan Cobham and
Jack Edmonds [4]. Cobham [3] identified tractable problems with the complexity
class P, which is the class of problems solvable in polynomial-time with respect to
the input size. Edmonds also stated the same thing in [7].

Although these papers were published in 1965, the idea behind this thesis seems
to have been a commonly held belief among researchers in the late in 1950s. For
example, Kruskal’s algorithm and Prim’s algorithms, which are both almost linear-
time algorithms for the minimum spanning tree problem, were presented in 1956
[16] and 1957 [17], respectively. Dijkstra’s algorithm, which is an almost linear-time
algorithm for the shortest path problem with positive edge lengths, was presented
in 1959 [6]. Ford and Fulkerson presented the augmenting path algorithm for the
maximum flow problem in 1956 [8]. The blossom algorithm was proposed by Jack
Edmonds in 1961 for themaximummatching problemongeneral (i.e., not necessarily
bipartite) graphs [7].

In 1971, Cook proposed the idea of NP-completeness and proved that the satis-
fiability problem (SAT) is NP-complete [5]. NP-complete problems are intuitively
the most difficult problems among the class NP. NP is the set of problems that can
be solved in polynomial-time by nondeterministic Turing machines. Although we
do not have a proof yet, many researchers believe that no polynomial-time algo-
rithms exist for any NP-complete problems.5 Cook’s study created a new field of
research through which countlessly many combinatorial problems have been found
to be NP-complete [10].

By definition, it is trivial that every problem in NP can be solved in exponen-
tial time (by a Turing machine). The theory of NP-completeness explicitly and
firmly fixed the idea that “polynomial-time algorithms are efficient” in the minds of
researchers. We would like to call this idea the polynomial computation paradigm.

5 This is the “P vs. NP problem,” which is one of the seven Millennium Prize open problems in
mathematics at the end of the twntienth century.
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Many important polynomial-time algorithms are now known, including the two
basic polynomial-time algorithms for the linear programming problem (LP), namely
the ellipsoid method proposed by Khachiyan in 1979 [15] and the interior-point
method proposed byKarmarkar in 1984 [13], the strongly polynomial-time algorithm
for the minimum cost flow problem proposed by Éva Tardos in 1985 [19], the linear-
time shortest path algorithm with positive integer edge lengths proposed by Mikkel
Thorup in 1997 [20], and the deterministic polynomial-time algorithm for primality
test proposed byAgrawal,Kayal, andSaxena in 2002 [1]. These algorithms pioneered
new perspectives in the field of algorithm research. They are gems that were found
under the polynomial computation paradigm.

1.3.2 Emergence of Sublinear-Time Algorithms

Although linear-time algorithms have naturally considered the fastest, since intu-
itively we basically have to read all the data when solving a problem, the new idea of
“sublinear-time algorithms” emerged at the end of the twentieth century. Sublinear-
time algorithms run by reading only a sublinear (i.e., o(n)) amount of data from the
input.

The most popular framework for sublinear-time algorithms is “property testing.”
This idea was first presented by Rubinfeld and Sudan [18] in 1996 (although it
appeared even earlier at a conference version in 1992) in the context of program
checking. In this paper, they introduced the ideas of “distance” between an instance
(e.g., a function) and a property (e.g., linearity), and “ε-farness.” They also gave
constant-time testers for some properties of functions. The first study giving the
notion of constant-time testability of combinatorial (mainly graph) structures was
given by Goldreich, Goldwasser, and Ron [11], which was present a conference in
1995 (STOC’95). After the turn of the century, many studies that follow this idea of
testability have appeared and the importance of this field is growing [2, 9].

1.3.3 Property Testing and Parameter Testing

We say that a testing algorithm (or tester for short) for a property P accepts a given
instance I with probability at least 2/3 if I has P and rejects it with probability
at least 2/3 if I is far from having P . P is defined as a (generally infinitely large)
subset of instances. The distance between I and P is defined as the minimum Ham-
ming distance between I and I ′ ∈ P . The distance is normalized to be in [0, 1]
(i.e., dist(I,P) ∈ [0, 1]). If an instance has the property, the distance is zero (i.e.,
dist(I,P) = 0 if I ∈ P). If dist(I,P) ≥ ε for an ε ∈ [0, 1], then we say that I is
ε-far from P and otherwise ε-close. A tester rejects I with probability at least 2/3 if
I is ε-far from P .
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For a property, if a tester exists whose running time6 is bounded by a constant
independent of the size of the input, then we call the property is testable.7 This
framework is called property testing.

Property testing is a relaxation of the framework of decision problems. In contrast,
a relaxation of the framework of optimization problems is parameter testing. In
parameter testing, we try to find an approximation to the value of the objective
function with an additive error of at most εN from the optimum value, where N is
the maximum value of the objective function.

This idea appeared at the end of the twentieth century, and was further developed
in this century. See Chaps. 2 and 3 for these themes.

1.4 Ways to Decrease Computational Resources

In addition toproperty andparameter testing, there are variousmethods for decreasing
the amount of computational resources needed for handling big data. Although some
methods may require linear computation, each of them has strong merits. We briefly
introduce these methods in this section.

1.4.1 Streaming Algorithms

Property testing generally uses the assumption that an algorithmcan read any position
(cell) of the input. However, this may be difficult in some situations, such as if the
data arrives as a stream (sequence) and the algorithm is required to read the values
one by one in the order of arrival. The key assumption of this framework is that an
algorithm does not have enough memory to store the entire input. For example, to
find the maximum value in a sequence of integers a1, . . ., an , it is enough to use O(1)
cells of memories.8

Although this method requires linear computation time, since it must read all of
the data, the amount of memory is constant in many cases. If we assume that the
order of data arrival in the stream is random, then it becomes close to the setting of
(nonadaptive9) property testing. In this book, streaming algorithms are covered in
Chap.16.

6 Normally we also use the “query complexity” besides the running time. See Chap. 2 for details.
7 Sometimes “testable”means that the problem has an algorithmwith a sublinear query complexity,
and strongly testablemay be used for distinguishing constant query complexity frommere sublinear
query complexity.
8 We assume that each memory cell can store any one integer among {a1, . . . , an}.
9 Nonadaptivemeans that the query (of an algorithm) cannot depend on any answer of the queries;
in other words, the queries are fixed before the algorithm starts.

http://dx.doi.org/10.1007/978-981-16-4095-7_2
http://dx.doi.org/10.1007/978-981-16-4095-7_3
http://dx.doi.org/10.1007/978-981-16-4095-7_16
http://dx.doi.org/10.1007/978-981-16-4095-7_2
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1.4.2 Compression

Compression is a traditional and typical method for treating digital data. Basically,
there are two types of compression: one type is compression of data without losing
any information. In this type of compression, there is an information-theoretical lower
bound on the data size. This method is used when the original data needs be recon-
structed perfectly from the compressed data, and it thus called lossless compression
or reversible compression. The other type of compression allows discarding of some
of the data such that the compressed data is an inexact approximation. Although some
of these algorithms can compress data drastically, it is not possible to reconstruct the
original data perfectly from the compressed data, and these algorithms are thus called
lossy compression or irreversible compression. This method works remarkably well
in the field of music and image compression. See Chaps. 6, 7, 10, and 16 in this book
for results from this area.

1.4.3 Succinct Data Structures

When compressed data is used, it essentially needs to be decompressed. However,
decompression requires extra computation. It is therefore useful to be able to use
compressed data as-is without decompression. Succinct data structures are a frame-
work that realizes this idea. Specifically, succinct data structures use an amount of
space that is close to the information-theoretical lower bound while still allowing
efficient (fast) query operations. These structures involve a tradeoff between space
and time. See Chaps. 8 and 9 for details.

1.5 Need for the Sublinear Computation Paradigm

1.5.1 Sublinear and Polynomial Computation Are Both
Important

Even though the sublinear computation paradigm has become necessary, it does not
mean that the polynomial computation paradigm is obsolete. Polynomial computa-
tion is still important in normal computations. The typical cases where the sublinear
computations are needed are whenwe need to treat big data. In such cases, traditional
polynomial computation is sometimes too slow.

This relationship between the polynomial computation paradigm and the sub-
linear computation paradigm is analogous to the relationship between Newtonian
mechanics and the theory of relativity in physics. While Newton mechanics is used
for normal physical calculations, the theory of relativity is needed if we try to calcu-
late themotion of very fast objects such as rockets, satellites, or electrons.We entered

http://dx.doi.org/10.1007/978-981-16-4095-7_6
http://dx.doi.org/10.1007/978-981-16-4095-7_7
http://dx.doi.org/10.1007/978-981-16-4095-7_10
http://dx.doi.org/10.1007/978-981-16-4095-7_16
http://dx.doi.org/10.1007/978-981-16-4095-7_8
http://dx.doi.org/10.1007/978-981-16-4095-7_9
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the era of the theory of relativity in the twentieth century and the era of sublinear
computation era in the twenty-first century.

1.5.2 Research Project ABD

A research project named “Foundations on Innovative Algorithms for Big Data
(ABD),”10 in which the sublinear computation paradigm is the central concept was
started by JST, CREST, Japan in October 2014 and concluded in September 2021.
The total budget was more than 300 million yen. Although the project had 24 mem-
bers at its inception, many more researchers later joined and the final number of
regular members exceeded 40 in total. The leader of the project was Prof. Naoki
Katoh of University of Hyogo.11 The project consisted of three groups: the Sublin-
ear Algorithm Group (Team A) led by Prof. Katoh; the Sublinear Data Structure
Group (Team D) led by Prof. Tetsuo Shibuya of the University of Tokyo; and the
Sublinear Modeling Group (TeamM) led by Prof. Kazuyuki Tanaka of Tohoku Uni-
versity. In this project, we worked on problems in big data computation. The main
purpose of this book is to introduce the results of this project. A special issue of The
Review of Socionetwork Strategies [14] is also available for this project. While some
of the methods adopted in this project are not sublinear, we are confident that every
piece of research concluded under the project is useful and will form the foundations
of innovative algorithms for big data!

1.5.3 The Organization of This Book

This part of the book, Part I, has provided an introduction. Parts II, III, and IV present
the theoretical results of TeamsA,D, andM, respectively. Application results leading
to scientific and technological innovation are compiled in Part V.
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Chapter 2
Property Testing on Graphs and Games

Hiro Ito

Abstract Constant-time algorithms are powerful tools, since they run by reading
only a constant-sized part of each input. Property testing is the most popular research
framework for constant-time algorithms. In property testing, an algorithmdetermines
whether a given instance satisfies some predetermined property or is far from satis-
fying the property with high probability by reading a constant-sized part of the input.
A property is said to be testable if there is a constant-time testing algorithm for the
property. This chapter covers property testing on graphs and games. The fields of
graph algorithms and property testing are two of the main streams of research on
discrete algorithms and computational complexity. In the section on graphs in this
chapter, we present some important results, particularly on the characterization of
testable graph properties. At the end of the section, we show results that we pub-
lished in 2020 on a complete characterization (necessary and sufficient condition) of
testable monotone or hereditary properties in the bounded-degree digraphs. In the
section on games, we present results that we published in 2019 showing that the gen-
eralized chess, Shogi (Japanese chess), and Xiangqi (Chinese chess) are all testable.
We believe that this is the first results for testable EXPTIME-complete problems.

2.1 Introduction

The development of efficient algorithms for problems on big data problems is an
urgent task. Constant-time algorithms are a powerful tool for this since they run by
reading only a constant-sized part of each input. In other words, the running time
is invariant regardless of the size of the input. Property testing is the most popular
research framework for constant-time algorithms. In property testing, an algorithm
determines whether a given instance satisfies some predetermined property or is far
from satisfying that property with high probability by reading a constant-sized part
of the input. This section presents some results mainly concerning property testing
that have recently been obtained in the ABD Project.
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2.2 Basic Terms and Definitions for Property Testing

This section gives some of the basic terms that are needed in order to explain our
results. Property testing works on many different types of models, including graphs,
functions, strings, grammars, and images. Although the details of the definitions
differ slightly between the different models, since the basic ideas are the same for
all of models, we present only the definitions for digraphs.

LetN = {0, 1, 2, . . .} be the set of natural numbers. In this chapter, we sometimes
omit floor or ceiling functions. For example, if we write s = √

n in a context where
s must be an integer and n is not necessarily a square number, then

√
n should be

taken to mean �√n� or �√n�. This allows us to disregard integrality issues that make
no real difference to any of our proofs.

2.2.1 Graphs and the Three Models for Property Testing

A directed graph or digraph G is defined as a pair of finite sets (V, E), where V is
a finite set of vertices and E ⊆ V × V is a set of directed edges, or edges for short.
The vertex set V and the edge set E of a graph G are sometimes written as VG and
EG , respectively. If the direction of each edge is ignored (i.e., (u, v) = (v, u) for any
u, v ∈ V ), then the digraph is called a graph (or an undirected graph if we want to
indicate undirectedness explicitly). Every graph can be represented as a digraph by
using reflectivity on edges; in other words if (u, v) ∈ E , then (v, u) ∈ E for every
u, v ∈ V . Thus, graphs can be regarded as special cases of digraphs. This section
mainly treats (undirected) graphs. Digraphs are considered in Sect. 2.4. Many of the
terms and symbols we define for graphs are also used for digraphs.

The order of a graph G is given by |VG | and the size of a graph G is given by
|EG |. A graph (resp., digraph) of order n is also called an n-graph (resp., n-digraph).
The number of vertices adjacent to a vertex v in a graph G is denoted by degG(v).
If G is clear from the context, the subscript G may be omitted. In property testing,
since an algorithm reads only a part of an instance (input), it gets information about
the instances through oracles, which depend on how to the graphs are represented.
There are three knownmodels for treating graphs in property testing: the dense-graph
model; the bounded-degree (graph) model; and the general-graph model.

In the dense-graphmodel, the edge oracle is used: If an algorithm queries whether
(u, v) ∈ E or not, the oracle answers correctly: the answer is 1 if (u, v) ∈ E and
0 otherwise. This model basically treats dense (i.e., |E | = �(n2)) graphs. This is
because if |E | = o(n2), then the edge oracle answers “0” almost every time when n
is large, making the queries useless.1

In the bounded-degree model, there is a restriction such that the degree of every
vertex is bounded by a predetermined integer d ≥ 1, that is, deg(v) ≤ d (∀v ∈ V ).
From this restriction, it follows that the number of edges in a graph is at most dn/2 (or

1 It works only for determining whether a given graph is sparse.
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dn for a digraph); in other words, the graph is sparse (note that d is a constant). This
model assumes that for every vertex v, the vertices adjacent to v are ordered. This
model uses the adjacent-vertex oracle: If an algorithm queries for the i th (1 ≤ i ≤ d)
adjacent vertex of v by giving a pair (v, i), the oracle answers the name (ID) of the
vertex if exists and returns a predetermined special symbol such as ⊥ otherwise. A
graph where the degree is bounded by d is also called a d-bounded-degree graph.

The general-graph model is a mixed model of the dense-graph model and the
bounded-degree model. Although this model does not have any maximum degree-
bound, there is a fixed upper bound d on the average degree. In many cases d is a
constant and the graphs in this model are sparse. However, if d = �(n), graphs in
the model may be dense. This model allows all oracles that are allowed in the other
two models in addition to the degree oracle: If an algorithm queries the degree of a
vertex v, it replies with the correct answer deg(v).

2.2.2 Properties, Distances, and Testers

The set of graphs considered in each model—that is, the dense-graph model, the
bounded-degree model, or the general-graph model—is denoted by �. The subset of
� such that the order of the graph is n is denoted by �n . Hence � = ⋃

n∈N �n .
A property is defined as a (generally infinitely large) subset of graphs closed under

isomorphism.2 For example “planarity” is defined as the set of all planar graphs. For
a property P, we define Pn as P ∩ �n . Thus, clearly P = ⋃

n∈N Pn .
Property testing is a relaxation of a decision problem. The object of a property

testing is to distinguish with high probability whether a given instance satisfies some
predetermined property or the instance is “far” from satisfying the property. This
requires a mathematical definition of “far.”

LetG andG ′ both be n-graphs;G,G ′ ∈ �n . The distance between the two graphs
is defined as the Hamming distance between them divided by the largest Ham-
ming distance in the model (for normalization). Thus, the distance depends on the
models (i.e., how the graphs are represented). We explain this by using the dense-
graph model. Let δEG : V × V → {0, 1} be the characteristic function on EG , that
is, δEG (u, v) = 1 if (u, v) ∈ EG and 0 otherwise. The distance between G and G ′
is defined as follows: We denote by m(G,G ′) the number of edges that need to be
deleted from and/or inserted into G in order to make G = G ′, i.e.

m(G,G ′) := |{(u, v) ∈ V × V | δEG (u, v) �= δEG′ (u, v)}|

Using this, we define the distance between G and G ′ as follows3:

2 Intuitively this means to ignore the labels on vertices and edges.
3 Although the maximum number of edges in any (undirected) graph of order n is n(n − 1)/2, we
use n2 for the denominator for simplicity.



16 H. Ito

dist(G,G ′) := m(G,G ′)
n2

. (2.1)

Note that 0 ≤ dist(G,G ′) ≤ 1 for every G andG ′. In the bounded-degree model and
the general-graph model, the distance is defined as follows4:

dist(G,G ′) := m(G,G ′)
dn

, (2.2)

where d is the upper bound on the maximum (resp., the average) vertex-degrees for
the bounded-degree model (resp., the general-graph model).

By using the distance between graphs, the distance beetween a graph G ∈ �n and
a property P is defined as follows:

dist(G,P) :=
{
minG ′∈Pn dist(G,G ′) if Pn �= ∅,

∞ otherwise.

This applies to all the models. For a real value 0 ≤ ε ≤ 1, we say that G is ε-far
from G ′ (resp., P) if dist(G,G ′) > ε (resp., dist(G,P) > ε) and ε-close otherwise.

A testing algorithm for a propertyP is an algorithm that, given query access (by the
oracles) to an instanceG and given 0 < ε ≤ 1, accepts everyG ∈ Pwith probability
at least 2/3, and rejects every G that is ε-far from P with probability at least 2/3.
If a testing algorithm accepts every G ∈ P with probability 1, then the algorithm is
called a one-sided-error. The number of queries made by an algorithm to the given
oracle is called the query complexity of the algorithm. If the query complexity of a
testing algorithm is bounded by a constant that is independent of n (but that may
depend on ε and d), then the algorithm is called a tester. A property is testable5 if
there is a tester for the property.

2.3 Important Known Results in Property Testing
on Graphs

This section gives a very brief overviewof important known results in property testing
on graphs, particularly on the characterization and general properties of testability.
See a recent review [11] or books [4, 8] for details.

4 Although the maximum number of edges of any d-bounded-degree (undirected) graph of order n
is dn/2, we use dn for the denominator for simplicity.
5 Sometimes “testable” means that the problem has an algorithm with sublinear query complexity,
and strongly testable may be used to distinguish constant query complexity from mere sublinear
query complexity.
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2.3.1 Results for the Dense-Graph Model

Alon et al. [2] found a combinatorial characterization (necessary and sufficient con-
dition) of testable properties for the dense-graph model. We first present the theorem
without defining the terms used in it.

Theorem 2.1 For the dense-graph model, a graph property is testable if and only if
it is regular-reducible.

This theorem utilize the extremely powerful monumental Szeméredi’s regularity
lemma, which we now introduce briefly. For a pair of subsets of vertices A, B ⊆ V
of a graph G = (V, E), den(A, B) := |E(A,B)|

|A||B| is called the density of the pair. A
family of subsets V = {V1, . . . , Vk} (Vi ⊆ V , ∀i ∈ {1, . . . , k}) is called a partition
of V if Vi ∩ Vj = ∅ for all 1 ≤ i < j ≤ k and V = V1 ∪ · · · ∪ Vk . A partitionV =
{V1, . . . , Vk} of the vertex set of a graph is called an equipartition if |Vi | and |Vj |
differ by no more than 1 for all 1 ≤ i < j ≤ k.

Definition 2.1 (ε-regular) Let 0 < ε ≤ 1 be a real number and A, B ⊆ V . A
pair (A, B) is called ε-regular if |den(A, B) − den(X,Y )| ≤ ε for any two sub-
sets X ⊆ A and Y ⊆ B satisfying |X | ≥ ε|A| and |Y | ≥ ε|B|. An equipartition
V = {V1, . . . , Vk} of the vertex set of a graph is called ε-regular if all but at most
εk2 of the pairs (Vi , Vj ) (i, j ∈ {1, . . . , k}) are ε-regular.

Definition 2.2 (regularity-instance) A regularity-instance R is given by an error-
parameter 0 < ε ≤ 1, an integer k, a set of

(k
2

)
real numbers 0 ≤ ηi, j ≤ 1 indexed by

1 ≤ i < j ≤ k, and a set R of pairs (i, j) of size at most εk2. A graph is said to satisfy
the regularity-instance if it has an equipartition V = {V1, . . . , Vk} such that for all
(i, j) /∈ R the pair (Vi , Vj ) is ε-regular and satisfies |E(Vi , Vj )| = ηi, j |Vi ||Vj |. The
complexity of the regularity instance is max(k, 1/ε).

Definition 2.3 (regular-reducible) A graph property P is regular-reducible if for
any δ > 0 there exists r = rP(δ) such that for any n there is a family R of at most r
regularity-instances each of complexity at most r , such that the following holds for
every ε > 0 and every n-graph G:

1. If G ∈ P, then for some R ∈ R, G is δ-close to R.
2. If G is ε-far from P, then for any R ∈ R, G is (ε − δ)-far from R.

Theorem 2.2 (Szeméredi’s regularity lemma [2, 17]) For every pair of an integer
t and a real number ε > 0 there exists an integer T = T2(t, ε) such that any graph
with n ≥ T vertices has an ε-regular equipartition of order k, where t ≤ k ≤ T .

An intuitive explanation of the regularity lemma is that, for any ε > 0, every
graph G = (V, E) has an ε-approximation of a constant-sized edge-weighted graph,
where the edge weight approximates the density of the corresponding vertex pair.
Intuitively, a property being regular-reducible means that it can be represented by a
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constant number of equipartitions based on the regularity lemma; in other words, the
regularity lemma holds for testing the property. See [11] also for details.

Representative regular-reducible properties are monotone or hereditary proper-
ties, which are defined as follows.

Definition 2.4 A graph property P is monotone if for every G ∈ P and e ∈ EG ,
G − {e} ∈ P. A graph property P is hereditary if for every G ∈ P and v ∈ VG ,
G − {v} ∈ P.

Planarity, bipartiteness, k-colorability (for any k ∈ N), H -freeness (for any graph
H ),6 and disconnectedness are all monotone. The former four properties are also
hereditary, but the last one, disconnectedness, is not.7 A well-known non-monotone
and hereditary property is perfectness: A graph is said to be perfect if for every
induced subgraph, the chromatic number of the subgraph equals the clique number
(= the order of the largest clique) of the subgraph. Every monotone or hereditary
property is regular-reducible (see [2] for details).

We can say that Theorem 2.1 solves the problem of characterizing testable prop-
erties in the dense-graph model in a sense. However, the constants that appear in the
algorithms obtained by Theorem 2.1 are incredibly (maybe more than astronomi-
cally) huge! Thus, developing faster (i.e., smaller constant complexity) algorithms
remains an issue for each problem.

2.3.2 Results for the Bounded-Degree Model

Whereas the combinatorial characterization of testable properties as shown in
Theorem 2.1 was obtained for the dense-graph model, no perfect results have been
obtained for the bounded-degree model despite many attempts to achieve this goal.
However, progress is being made in steps. We now have an important characteriza-
tion of testable properties in the bounded-degree model called “hyperfiniteness.” We
also found another characterization called “forbidden configurations,” for one-sided
error testability, which is explained in Sect. 2.4.

Definition 2.5 Let ε > 0, t > 0, and d > 0. LetG = (V, E) be a d-bounded-degree
n-graph. If one can remove at most εdn edges from G such that each connected
component of the resulting graph has at most t vertices, then G is called (ε, t)-
hyperfinite (with respect to degree bound d). For a function ρ : R+ → R

+, if G is
(ε, ρ(ε))-hyperfinite for every ε > 0, then G is called ρ-hyperfinite. A set G of d-
degree-bounded graphs is called ρ-hyperfinite if ∀G ∈ G is ρ-hyperfinite.G is called
hyperfinite if there is a function ρ such that G is ρ-hyperfinite.

Newman and Sohler [15] presented the following theorem.

6 If a graph includes no H as a subgraph, then it is called H-free.
7 If a graph consisting of one connected component of order n − 1 and one isolated vertex is
disconnected, removing the isolated vertex from the graph makes it connected.
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Theorem 2.3 In the bounded-degree model, every graph property is testable for any
hyperfinite family of graphs.

While this is a sufficient condition, the following necessary condition related to
hyperfiniteness was obtained by Fichtenberger et al. [5].

Definition 2.6 A subproperty of a property P is a property that is a subset of P. A
property is non-trivially testable if it is testable and there exists ε > 0 such that there
is an infinite number of graphs that are ε-far from the property.

Theorem 2.4 Every testable property of bounded-degree graphs is either finite or
contains an infinite hyperfinite subproperty. Furthermore, the complement of every
non-trivially testable graph property contains an infinite hyperfinite subproperty.

These theorems show that there is a deep relation between hyperfiniteness and
testability on bounded-degree graphs. We have found, however, no necessary and
sufficient condition of graph testability even for a one-sided error. Recently we found
necessary and sufficient conditions for one-sided-error testability on subclasses of
properties of digraphs8 [12]. This was obtained through the ABD Project, and is
explained in Sect. 2.4.

2.3.3 Results for the General-Graph Model

There were previously no general classes of testable properties for the general-graph
model. Through the ABD Project, a class that models complex networks called
Hierarchical Scale Free (HSF ) was founded that is testable. We present an outline
of the result below, and the details are available in [10, 11].

Definition 2.7 For positive real numbers c > 0 and γ > 1, a class of scale-free
(multi)graphs SF (c, γ ) consists of (multi)graphs G = (V, E) for which the follow-
ing condition holds: Let νi be the number of vertices v of degree i . Then:

νi ≤ cni−γ , ∀i ∈ {2, 3, . . . , }. (2.3)

A clique is a subgraph inwhich there exists an edge between every pair of vertices.
For a nonnegative integer c ≥ 0, a c-isolated clique is a clique such that the number
of outgoing edges (edges between the clique and the other vertices) is less than ck,
where k is the number of vertices of the clique. A 1-isolated clique is sometimes
simply called an isolated clique (see [9] for details). Let E(G) be the graph obtained
from G by contracting all isolated cliques.9

8 Note that any undirected graph can be represented by a digraph, i.e., the set of digraphs can be
regarded as including the set of undirected graphs.
9 Two distinct isolated cliques never overlap, except in the special case of double-isolated-cliques,
which consists of two isolated cliques of size k that share k − 1 vertices. A double-isolated-clique
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Definition 2.8 For positive real numbers c > 0, γ > 1 and a positive integer n0 ≥ 1,
a class of hierarchical scale-free (multi)graphsHSF = HSF (c, γ, n0) consists of
(multi)graphs G = (V, E) for which the following conditions hold:

(i) G ∈ SF (c, γ ),
(ii) Consider the infinite sequence of graphs G0 = G, G1 = E(G0), G2 = E(G1),

. . .. If |VGi | ≥ n0, thenGi includes at least one isolated clique Q ⊆ V with |Q| ≥
2. (Note that if Gk has no such isolated clique, then Gk = Gk+1 = Gk+2 = · · · .)

For a graph G and a nonnegative integer d ≥ 0, G|d is the graph obtained by
deleting all edges incident to each vertex v of degree more than d. Note that G|d is
a d-bounded-degree graph. The following properties were obtained by [10].

Lemma 2.1 For everySF = SF (c, γ )with γ > 2, and every positive real number
ε > 0, there exists a constant δ = δ(ε, c, γ ) such that for every graph G ∈ SF , G|δ
is ε-close to G.

This lemma looks useful since it means that for any ε > 0, any scale-free graph
is ε-close to a bounded-degree graph. This lemma is applied in the proof of the
following theorem, which is the main theorem of [10].

Theorem 2.5 Every property is testable for HSF (c, γ, n0) with γ > 2.

In the general-graph model, no other universal (constant-time) tester is known,
but universal testing algorithms with polylog(n)-time query complexity have been
found for forests [14] and outerplanar graphs [3].

2.4 Characterization of Testability on Bounded-Degree
Digraphs

2.4.1 Bounded-Degree Model of Digraphs

As mentioned previously, there is no complete characterization of testable graph
properties in bounded-degree graphs even for one-sided-errors. Through the ABD
project, however, we have obtained a characterization for one-sided-error testable
properties of monotone and hereditary properties of bounded-degree digraphs [12],
whichwe briefly explain in this section. The set of digraphs can be regarded to include
the set of undirected graphs by introducing reflexivity, i.e., ∀u, v ∈ V , if (u, v) ∈ E ,
then (v, u) ∈ E .

In this section, we consider the bounded-degree model on digraphs. For a digraph
G = (V, E) and a vertex v ∈ V we denote by N+

G (v) the set of outgoing neighbours

Q has no edge between Q and the other part of the graph (i.e., degG(Q) = 0), and thus we specially
define that a double-isolated-clique in G is contracted into a vertex in E(G). Under this assumption,
E(G) is uniquely defined.
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of v, i.e., N+
G (v) := {u ∈ V | (v, u) ∈ E}. Similarly, N−

G (v) := {u ∈ V | (u, v) ∈ E}
and NG(v) := N+

G (v) ∪ N−
G (v). The out-degree of v is deg+

G(v) := |N+
G (v)|, and the

in-degree of v is deg−
G(v) := |N−

G (v)|. The subscript G can be omitted if it is clear.
For a (di)graph G = (V, E) and F ⊆ E , we denote by G − F the graph (V, E −

F). For a (di)graph G = (V, E) and W ⊆ V , we denote by G[W ] the subgraph of
G induced by W (i.e., G[W ] contains all edges in EG whose both endpoints are in
W ). G[V − W ] can be denoted by G − W .

In the bounded-degree model for digraphs, there are two submodels: In one,
only the out-degree is bounded; in the other, both the in-degree and out-degree are
bounded.10 The former case is represented by F(d)model and the latter one by FB(d)

model.11 The F(d) model is clealy wider than the FB(d) model. Moreover, every
undirected d-bounded graph can be formulated by the FB(d) model by replacing
each undirected edge by a pair of anti-parallel directed edges. That is, the FB(d)

model (and thus the F(d) model as well) is regarded as including the undirected
d-bounded degree model.

2.4.2 Monotone Properties and Hereditary Properties

This section extends the monotone and hereditary properties that were defined in
Definition 2.4 to digraphs.

We first introduce the following notation for characterizing the testability of these
properties. Let H be a set of digraphs. We call H an r-set if every member H ∈ H
has at most r vertices (i.e., H is an r ′-digraph for some r ′ ≤ r ). A digraph G is H-
free if for every H ∈ H , G contains no subgraph that is isomorphic to H . A digraph
G is induced H-free if for every H ∈ H , G contains no induced subgraph that is
isomorphic to H .We denote byPH (resp.,P∗

H ) the property that contains all digraphs
that areH-free (resp., inducedH-free).PH,n (resp.,P∗

H,n) is the subproperty ofPH
that consists of all n-digraphs in PH (resp., P∗

H ). We can easily confirm that PH is
monotone and P∗

H is hereditary for anyH .
Let H = (V, E) be a digraph. For a subset W ⊆ V , if by disregarding the direc-

tions of the edges of H ,W induces a connected component in the resulting undirected
graph, then we say that H [W ], which is the directed subgraph of H induced byW , is
a component of H . A digraph H is rooted if every component H ′ of H has a vertex
v such that for every u ∈ VH ′ there exists a dipath (= directed path) from v to u.

10 Clearly the case in which only the in-degree is bounded can be formulated by the model in which
only the out-degree is bounded by changing the edge direction.
11 F and B mean forward and backward, respectively.
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2.4.3 Characterizations

By using these terms, the characterizations of testable monotone or hereditary prop-
erties for the F(d) model were given in [12].

Theorem 2.6 Let P = ⋃
n∈N Pn be amonotone property in the F(d)-model. ThenP

is testable if and only if there is a function r : (0, 1) → N such that for any 0 < ε < 1
and n ∈ N, there is an r(ε)-set of rooted digraphs Hn such that the property PHn ,n

satisfies the following two conditions:
(a) Pn ⊆ PHn ,n

(b) PHn ,n is ε/2-close to Pn.

Theorem 2.7 Let P be a hereditary property in the F(d)-model. Then P is testable
if and only if there are functions r : (0, 1) → N and N : (0, 1) → N such that for any
0 < ε < 1, there is an r(ε)-set of rooted digraphs H such that for every n ≥ N (ε),
P∗

H,n satisfies the following two conditions:
(a) Pn ⊆ P∗

H,n
(b) P∗

H,n is ε/2-close to Pn.

Condition (b) in both Theorems 2.6 and 2.7 is necessary, since there exists a
monotone and hereditary property that is testable with a one-sided-error and has no
Hn such that |Hn| is bounded by a constant (r(ε)) and “Pn = PHn ,n orPn = P∗

Hn ,n
”:

One of these properties is PC√
n
(= P∗

C√
n
) on the F(1)-model,12 where Ck is the set

of directed cycles (or dicycles, for short) of length in [3, k], i.e., PC√
n
is the property

of having no dicycle of length in [3,√n]. This property is clearly monotone and
hereditary. To express PC√

n
by using a set H of forbidden subgraphs (or forbidden

induced subgraphs),H must includes C√
n , and thus |H | cannot be bounded by any

constant. However, this property is testable with a one-sided-error as shown below.

Lemma 2.2 PC√
n
on the F(1)-model is one-sided-error testable with query com-

plexity O(ε−2).

To prove this lemma, we will use the following lemma, which is often effective
for estimating the query complexity of testers.

Lemma 2.3 For any real number x, the following inequality holds:

ex ≥ x + 1. (2.4)

The proof of this lemma is trivial from the differentiation of ex − (x + 1), and is
omitted here.

Proof of Lemma 2.2: If n ≤ 2/ε, then we can get the complete data of the graph in
time 2/ε. Thus it is enough to consider the case of n > 2/ε. We use the following
algorithm for the tester:

12 PC√
n

�= P∗
C√

n
on the F(d)-model for d ≥ 2.
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Choose s = 2/ε vertices v1, . . ., vs from V uniformly at random, and denote them
by S. For each vi ∈ S, check whether there is a dicycle of length at most s that
includes vi by following each outgoing edge successively whenever it exists. (Note
that in the F(1)-model, the outgoing edge of each vertex exists uniquely if it exists.)
If a dicycle of length in [3, s] is found, then it is rejected; otherwise, it is accepted.

We show that the above algorithm is the desired one-sided-error tester. It is clearly
a one-sided-error, since it never rejects without finding a short (i.e., length of at most
s) dicycle. Thus, it is enough to show that the algorithm rejects with probability at
least 2/3 if the input is ε-far from PC√

n
.

Assume that the input G = (V, E) is ε-far from PC√
n
, i.e., that G contains more

than εn dicycles of length in [3,√n]. Let C be the set of such dicycles. We divide C
into the following two sets:

Cshort = {C ∈ C | the length of C is at most s.}
Clong = {C ∈ C | the length of C is more than s (and at most

√
n).}

From |C| > εn, |Cshort| > εn/2 or |Clong| > εn/2 holds.
First, we assume that |Clong| > εn/2. Clearly no pair of dicycles in C shares a

common vertex, and thus more than εsn/2 = n vertices are included in the graph
contradiction. Thus, |Clong| ≤ εn/2.

From this, it follows that |Cshort| > εn/2. Since no pair of dicycles in C shares a
common vertex and each dicycle has at least three vertices, then the dicycles in Cshort

contain more than 3εn/2 vertices. LetW be the set of such vertices. If the algorithm
finds at least one vertex from W , then it will find a short dicycle that includes the
vertex and rejects the input. From |W | > 3εn/2, it follows that the probability that
a chosen vertex is not in W is less than 1 − 3ε/2. Thus, the probability that all of s
vertices chosen by the algorithm are not in W is less than

(1 − 3ε/2)s ≤ e−3εs/2 = e−3 <
1

3
.

Note that the first inequality above uses the inequality (2.4). The probability that the
algorithm finds at least one vertex from W is, therefore, more than 2/3. The query
complexity of this tester is clearly O(ε−2). �

Since PC√
n
is both monotone and hereditary, Theorems 2.6 and 2.7 hold. If we

apply Theorem 2.6, thenHn = Cmin{2/ε,√n} for each n. If we apply Theorem 2.7, then
N (ε) = 4/ε2 andH = C2/ε . From this discussion, we observe that N (ε) is essential
in Theorem 2.7.

2.4.4 An Idea to Extend the Characterizations Beyond
Monotone and Hereditary

We would like to extend Theorems 2.6 and 2.7 to general properties. We denote
by Pdeg+(d−1) the property consisting of digraphs having no vertex with out-degree
d − 1 on the F(d)-model. Pdeg(d−1) is one-sided-error testable as shown below.
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Let G = (V, E) be an input. The algorithm for Pdeg+(d−1) chooses 2/ε vertices
from V uniformly at random and checks their out-degrees. If it finds a vertex of
degree d − 1, then it is rejected; otherwise, it is accepted. This algorithm is a one-
sided-error, since it never rejects if there is no vertex of out-degree d − 1. IfG is ε-far
fromPdeg+(d−1), then there are more than εn vertices of out-degrees d − 1. Thus, the
probability that there is no vertex of out-degree d − 1 in the selected 2/ε vertices by
the algorithm is less than

(1 − ε)
2
ε ≤ (

e−ε
) 2

ε = e−2 <
1

3
.

Note that this also uses the inequality (2.4).
Hence, the above algorithm is a one-sided-error tester for Pdeg+(d−1). However,

expressing this property by using forbidden subgraphs or forbidden induced sub-
graphs like Theorems 2.6 or 2.7 is impossible.13

To extend the idea of “forbidden something” to non-monotone and non-hereditary
properties,we [12] introduced the idea of “configurations,” bygeneralizing subgraphs
and induced subgraphs. A similar idea has also appeared in [16].

Definition 2.9 A configuration is a pair O = (H, L), where H = (W, F) is a
digraph in the F(d)-model, L : W → {developed, frontier} is a function, and the
out-degree of every frontier vertex is 0. The configuration is rooted if H is rooted.

Definition 2.10 Let O = (H = (W, F), L) andG = (V, E) be a configuration and
a graph respectively in the F(d)-model. We say that G has an O-appearance if
there is an injective mapping φ : W → V satisfying the condition that ∀v ∈ W with
L(v) = developed, the following two conditions hold:

(i) ∀u ∈ W , (v, u) ∈ F if and only if (φ(v), φ(u)) ∈ E .
(ii) If (φ(v), x) ∈ E , then ∃u ∈ W , φ(u) = x .

We say that G is O-free if G has no O-appearance. For a set O of configurations, we
say that G is O-free if ∀O ∈ O, G is O-free. �

As we have already stated, Pdeg+(d−1) cannot be defined by any set of
forbidden subgraphs or induced subgraphs. However, it can be defined by using
O-freeness. That is, let Odeg+(d−1) = (H = (W, F), L) be a configuration such
that W = {v0, v1, . . . , vd−1}, E = {(v0, v1), (v0, v2), . . . , (v0, vd−1)}, L(v0) =
developed, and L(v1) = L(v2) = · · · = L(vd−1) = frontier. ThenPdeg(d−1) is defined
by the set of Odeg(d−1)-free graphs.

The idea of configuration-free (or forbidden configurations) may work for char-
acterizing general one-sided-error testable properties on the F(d)-model. See [12]
for details.

13 This follows from the fact that Pdeg+(d−1) is neither monotone nor hereditary, and from Theo-
rems 2.6, and 2.7.
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2.5 Testable EXPTIME-Complete Games

This section presents results on the testability of combinatorial games, particularly
the generalized chess, Shogi (Japanese chess), and Xiangqi (Chinese chess). Given
any position on a

√
n × √

n board with O(n) pieces, the generalized chess, Shogi,
and Xiangqi problems are the problems of determining the property that “the player
whomoves first has a winning strategy.” These problems are known or believed to be
EXPTIME-complete [1, 6, 7]. In [13], we proposed that this property is testable for
chess, Shogi, and Xiangqi. The Shogi tester and Xiangqi tester are one-sided-error
testers, and surprisingly, the chess tester is a no-error tester. Many problems have
been revealed to be testable, but most of such problems belong to class NP. We think
that this is the first result on the constant-time testability of EXPTIME-complete
problems. This section presents these results. We mainly focus on chess, followed
by Shogi, but omit the explanation for Xiangqi since the method is similar to the one
for Shogi. See [13] for details.

2.5.1 Definitions

We begin by focusing mainly on generalized chess. Generalized chess is played on a√
n × √

n board with O(n) pieces, including two kings. White moves first and black
plays after white. A position is defined by fixing each piece to a particular cell on
the board. At any given position S, the problem is to determine whether white wins
if both players play optimally. The basic rules are the same as those in the original
chess and are omitted here.

In chess, there are six different types of pieces: king (K), queen (Q), bishop (B),
knight (N), rook (R), and pawn (P). There are only two pieces of kings; one white and
one black. For each of the other piece-types (i.e., bishop, knight, rook, and pawn),
there exist at most cn pieces for both white and black, respectively, where c is a
constant. Piece-numbers from 1 to cn are given to each white or black piece of each
piece-type; in other words, each piece has its own piece ID (k, o, �) comprising a
piece-type k ∈ {K,Q,B,N,R,P}, an owner-color o ∈ {white, black}, and a piece-
number � ∈ {1, . . . , cn}.

An algorithm can find the given position through the following oracles.

• Piece oracle: Given a piece ID (k, o, �), the piece oracle answers an ordered pair
(i, j) that provides the cell (i, j), i, j ∈ {0, 1, . . . ,√n} where it lies. (i and j
represent the column number and row number, respectively, and if i = j = 0, it
denotes that the piece is not in the game (such a piece is called an unused piece).
This oracle is expressed as q1(k, o, �) = (i, j).

• Coordinate oracle: Given a coordinate (i, j), i, j ∈ {0, 1, . . . ,√n}, the coordinate
oracle answers the piece ID (k, o, �) of the piece that lies on the cell if one exists. If
no piece lies on the cell, the oracle answers k = o = � = 0. This oracle is expressed
as q2(i, j) = (k, o, �).
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When we explicitly identify position S, we express the oracles as q1(k, o, �; S)

and q2(i, j; S), respectively. We introduce the assumption that all pieces can be
arranged on the board simultaneously, and it thus follows that 2 × (5cn + 1) ≤ n.
For simplicity, we assume that

c ≤ 1/11. (2.5)

A position S is called a winner if white has a winning strategy (i.e., white will win if
the players start from S and play optimally) and a loser otherwise. Note that a loser
not only includes cases where white loses but also where the game ends in a draw.

A position is fixed by querying the piece oracle for every piece. The number of
different queries for the piece oracle is at most n, and thus a position is fixed by the
maximum of n data. From this, we define the distance between positions S and S′ as

dist(S, S′) := |{(i, j) | q2(i, j; S) �= q2(i, j; S′)}|
n

. (2.6)

Clearly 0 ≤ dist(S, S′) ≤ 1.
Positions S and S′ are called isomorphic if we can make S identical to S′ by only

changing their piece-numbers (neither changing the piece-type nor owner-color is
allowed). A set of positions that is closed under isomorphism is called a property.
The distance between a position S and a property P is defined as follows:

dist(S,P) := min
S′∈P

dist(S, S′). (2.7)

For a positive ε > 0, S is ε-far from P if dist(S,P) > ε; otherwise, it is ε-close. Let
W be the set of winners. W is clearly closed under isomorphism and thus W is a
property.

For generalized Shogi and Xiangqi, similar definitions are used. They can be
easily deduced and are omitted here. See [13] for details.

2.5.2 Testers for Generalized Chess, Shogi, and Xiangqi

The following theorem was presented in [13]. Note that a no-error tester is a one-
sided-error tester that always rejects every input that is ε-far from the property; that
is, it always accepts or rejects with no-error if the input is in the property or ε-far
from the property.

Theorem 2.8 There exists a no-error tester with query complexity O(ε−1) for the
generalized chess problem, there exists a one-sided-error testerwith query complexity
O(ε−2) for the generalized Shogi problem, and there exists a one-sided-error tester
with query complexity O(ε−1) for the generalized Xiangqi problem.
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Fig. 2.1 The black king will
be checkmated by white’s
next move, as indicated by
the arrow 1

1 2 3 4 5
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4

K

K

R

R BN P
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Proof of the chess part of Theorem 2.8 Let S be a given position. Let S′ be the
position made from S by changing the pieces in cells (i, j), i ∈ {1, 2, 3, 4} and
j ∈ {1, 2, 3, 4, 5}, as shown in Fig. 2.1.

The pieces that were in these cells in S are changed to be unused pieces, and
the pieces that appear in these cells in S′ are moved from other cells or unused
pieces. In S′, the white king is safe and the black king will be checkmated by white’s
next move (moving the queen from (3, 2) to (2, 2)), meaning that S′ is a winner.
The distance between S and S′ is at most 20 + 8 = 28. Thus, if n ≥ 28/ε, then
dist(S, S′) ≤ 28/n ≤ ε. Hence, S is ε-close toW, and it is sufficient to accept it. If
n < 28/ε, it is sufficient to read all of the information by calling the piece oracle for
all pieces, which requires O(ε−1) queries.

This algorithm always accepts a winner. Moreover, if a given position S is ε-far
from W, then n < 28/ε and the algorithm knows the complete information for S.
Therefore, this algorithm is no-error. �

The algorithms for the generalized Shogi and Xiangqi problems are a little more
complicated. The reason is that in Shogi and Xiangqi there are fouls based on posi-
tions. A player who plays the fouls loses. In Shogi, the following fouls need to be
considered in the generalized Shogi problem.

• Nifu (double pawn): two or more unpromoted14 pawns that belong to the same
player must not be in the same column simultaneously.

• Dead end: pawns, lances, and knights15 can never be moved or dropped onto cells
from which a subsequent move cannot be made. Therefore, white (resp., black)
unpromoted pawns and lances can never be in the first (resp.,

√
nth) row, and

white (resp., black) knights can never be in the first or second (resp.,
√
nth or

(
√
n − 1)th) rows.

14 If a piece of some piece-type can be promoted (to a stronger piece) when it enters the opponent’s
camp.
15 These three pieces can move only forward.



28 H. Ito

In a given position S, if there is a white piece that plays a fault, then white cannot
win,16 and thus the position is not awinner.However, if the number of pieces related to
fouls is small (e.g., smaller than εn/2), we can remove the fouls and make white win,
i.e., the position is ε-close to W. To detect this, we need to perform preprocessing
and the tester may have error when the input is ε-far fromW. For Xiangqi, a similar
discussion applies. See [13] for details.

2.6 Summary

In this chapter, we introduced basic terminology and important results for property
testing, which is the most examined framework for constant- or sublinear-time algo-
rithms. In particular we presented two of our resent esults: The first is the complete
characterization of one-sided-error testable monotone or hereditary properties on
bounded-out-degree digraphs, and the other one is the testers for the generalized
chess, Shogi, and Xiangqi problems, which are all EXPTIME-complete.

The 21st century can be called the era of big data, and the larger big data becomes,
the more we need sublinear- and constant-time algorithms. The importance of this
area will continue to grow. The number of fields in which constant-algorithms are
efficiently applied will increase, and new techniques will be found accordingly. We
eagerly await these developments.
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Chapter 3
Constant-Time Algorithms for
Continuous Optimization Problems

Yuichi Yoshida

Abstract In this chapter, we consider constant-time algorithms for continuous opti-
mization problems. Specifically, we consider quadratic function minimization and
tensor decomposition, both of which have numerous applications in machine learn-
ing and data mining. The key component in our analysis is graph limit theory, which
was originally developed to study graphs analytically.

3.1 Introduction

In this chapter, we turn our attention to constant-time algorithms for continuous
optimization problems. Specifically, we consider quadratic function minimization
and tensor decomposition, both of which have numerous applications in machine
learning and data mining. The key component in our analysis is graph limit theory,
which was originally developed to study graphs analytically.

We introduce graph limit theory in Sect. 3.2, and then discuss quadratic function
minimization and tensor decomposition in Sects. 3.3 and 3.4, respectively. Through-
out this chapter, we assume the real RAM model, in which we can perform basic
algebraic operations on real numbers in one step. For a positive integer n, let [n]
denote the set {1, 2, . . . , n}. For real values a, b, c ∈ R, a = b ± c is used as short-
hand for b − c ≤ a ≤ b + c. The algorithms and analysis presented in this chapter
are based on [5, 6].

3.2 Graph Limit Theory

This section reviews the basic concepts of graph limit theory. For further details,
refer to the book by Lovász [7].
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We call a (measurable) function W : [0, 1]K → R a dikernel of order K . We
define

|W|F =
√∫

[0,1]K
W(x)2dx, (Frobenius norm)

|W|max = max
x∈[0,1]K

|W(x)|, (Max norm)

|W|� = sup
S1,...,SK ⊆[0,1]

∣∣∣∫
S1×···×SK

W(x)dx.

∣∣∣ (Cut norm)

We note that these norms satisfy the triangle inequality. For two dikernels W and
W′, we define their inner product as 〈W,W′〉 = ∫

[0,1]K W(x)W′(x)dx. For a
dikernelW : [0, 1]2 → R and a function f : [0, 1] → R, we define a functionW f :
[0, 1] → R as (W f )(x) = 〈W(x, ·), f 〉.

Let λ be a Lebesgue measure. A map π : [0, 1] → [0, 1] is said to be measure-
preserving if the pre-image π−1(X) is measurable for every measurable set X ,
and λ(π−1(X)) = λ(X). A measure-preserving bijection is a measure-preserving
map whose inverse map exists and is also measurable (and, in turn, also measure-
preserving). For a measure-preserving bijection π : [0, 1] → [0, 1] and a dikernel
W : [0, 1]K→R,wedefine adikernelπ(W) : [0, 1]K → R asπ(W)(x1, . . . , xK ) =
W(π(x1), . . . , π(xK )).

A partition P = (V1, . . . , Vp) of the interval [0, 1] is called an equipartition if
λ(Vi ) = 1/p for every i ∈ [p]. For a dikernelW : [0, 1]K → R and an equipartition
P = (V1, . . . , Vp) of [0, 1], we define WP : [0, 1]K → R as the dikernel obtained
by averaging each Vi1 × · · · × ViK for i1, . . . , iK ∈ [p]. More formally, we define

WP(x) = 1∏
k∈[K ] λ(Vik )

∫
Vi1×···×ViK

W(x′)dx′ = pK
∫
Vi1×···×ViK

W(x′)dx′,

where ik is the unique index such that xk ∈ Vik for each k ∈ [K ]. The following
lemma states that any dikernelW : [0, 1]K → R can be well approximated byWP
for some equipartition P into a small number of parts.

Lemma 3.1 (Weak regularity lemma for dikernels [4])LetW1, . . . ,WT : [0, 1]K →
R be dikernels. Then, for any ε > 0, there exists an equipartition P into |P| ≤
2O(T/ε2K ) parts, such that for every t ∈ [T ],

|Wt − Wt
P|� ≤ ε|Wt |F .

We can construct the dikernel X : [0, 1]K → R from a tensor X ∈ R
N1×···×NK as

follows. For an integer n ∈ N, let I n1 = [0, 1
n ], I n2 = ( 1n ,

2
n ], . . . , I nn = ( n−1

n , . . . , 1].
For x ∈ [0, 1], we define in(x) ∈ [n] as the unique integer such that x ∈ I ni . We then
define X(x1, . . . , xK ) = XiN1 (x1)···iNK (xK ). The main motivation of creating a dikernel
from a tensor is that, in doing so, we can define the distance between two tensors
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X and Y of different sizes via the cut norm—that is, |X − Y|�, where X and Y are
dikernels corresponding to X and Y , respectively.

Let W : [0, 1]K → R be a dikernel and Sk = (xk1 , . . . , x
k
s ) for k ∈ [K ] be

sequences of elements in [0, 1]. Then, we define a dikernelW|S1,...,SK : [0, 1]K → R

as follows:Wefirst extract a tensorW ∈ R
s×···×s by settingWi1···iK =W(x1i1, . . . , x

K
iK

).
Next, we defineW|S1,...,SK as the dikernel corresponding toW |S1,...,SK . The following
is the key technical lemma in the analysis of the algorithms given in the subsequent
sections.

Lemma 3.2 Let W1, . . . ,WT : [0, 1]K → [−L , L] be dikernels. Let S1, . . . , SK
be sequences of s elements uniformly and independently sampled from [0, 1]. Then,
with probability at least 1 − exp(−�K (s2(T/ log s)1/K )), there exists a measure-
preserving bijection π : [0, 1] → [0, 1] such that, for every t ∈ [T ], we have

|Wt − π(Wt |S1,...,SK )|� = L · OK

(
T

log s

)1/2K

,

where OK (·) and �K (·) hide factors depending on K .

3.3 Quadratic Function Minimization

Background
Quadratic functions are one of the most important function classes in machine learn-
ing, statistics, anddatamining.Many fundamental problems such as linear regression,
k-means clustering, principal component analysis, support vector machines, and ker-
nel methods can be formulated as a minimization problem of a quadratic function.
See, e.g., [8] for more details.

In some applications, it is sufficient to compute the minimum value of a quadratic
function rather than its solution. For example,Yamada et al. [13] proposed an efficient
method for estimating the Pearson divergence, which provides useful information
about data, such as the density ratio [10]. They formulated the estimation problem
as the minimization of a squared loss and showed that the Pearson divergence can be
estimated from the minimum value. Least-squares mutual information [9] is another
example that can be computed in a similar manner.

Despite its importance, minimization of quadratic functions suffers from the issue
of scalability. Let n ∈ N be the number of variables. In general, this kind of min-
imization problem can be solved by quadratic programming (QP), which requires
poly(n) time. If the problem is convex and there are no constraints, then the prob-
lem is reduced to solving a system of linear equations, which requires O(n3) time.
Both methods easily become infeasible, even for medium-scale problems of, say,
n > 10000.

Although several techniques have been proposed to accelerate quadratic function
minimization, they require at least linear time in n. This is problematicwhen handling
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Algorithm 1
Input: n ∈ N, query access to a matrix A ∈ R

n×n and to vectors d, b ∈ R
n , and ε, δ ∈ (0, 1).

1: S ← a sequence of s = s(ε, δ) indices independently and uniformly sampled from [n].
2: return n2

s2
minv∈Rn ps,A|S ,d|S ,b|S (v).

large-scale problems, where even linear time is slow or prohibitive. For example,
stochastic gradient descent (SGD) is an optimization method that is widely used
for large-scale problems. A nice property of this method is that, if the objective
function is strongly convex, it outputs a point that is sufficiently close to an optimal
solution after a constant number of iterations [1]. Nevertheless, each iteration needs
at least �(n) time to access the variables. Another popular technique is low-rank
approximation such asNyström’smethod [12]. The underlying idea is to approximate
the input matrix by a low-rankmatrix, which drastically reduces the time complexity.
However, we still need to compute thematrix vector product of size n, which requires
�(n) time. Clarkson et al. [2] proposed sublinear-time algorithms for special cases of
quadratic function minimization. However, these are “sublinear” with respect to the
number of pairwise interactions of the variables, which is �(n2), and the algorithms
require O(n logc n) time for some c ≥ 1.

Constant-time algorithm for quadratic function minimization
Let A ∈ R

n×n be a matrix and d, b ∈ R
n be vectors. Then, we consider the following

quadratic problem:

minimize
v∈Rn

pn,A,d,b(v), where pn,A,d,b(v) = 〈v, Av〉 + n〈v, diag(d)v〉 + n〈b, v〉,
(3.1)

where 〈·, ·〉 denotes the inner product and diag(d) denotes a diagonal matrix in which
the diagonal entries are specified by d. Note that although a constant term can be
included in (3.1), it is omitted here because it is irrelevant when optimizing (3.1),
and hence we omit it.

Let z∗ ∈ R be the optimal value of (3.1) and let ε, δ ∈ (0, 1) be parameters. Then,
our goal is then to compute z with |z − z∗| = O(εn2) with probability at least 1 − δ

in constant time. We further assume that we have query access to A, b, and d, with
which we can obtain their entry by specifying an index. We note that z∗ is typically
�(n2) because 〈v, Av〉 consists of �(n2) terms, and 〈v, diag(d)v〉 and 〈b, v〉 consist
of �(n) terms. Hence, we can regard the error of �(εn2) as an error of �(ε) for
each term, which is reasonably small in typical situations.

Let ·|S be an operator that extracts a submatrix (or subvector) specified by an
index set S ⊂ N. Our algorithm is then given by Algorithm 1, where the parameter
s := s(ε, δ) is determined later. In other words, we sample a constant number of
indices from the set [n], and then solve the problem (3.1) restricted to these indices.
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Note that the number of queries and the time complexity are O(s2) and poly(s),
respectively.

The goal of the rest of this section is to show the following approximation guar-
antee of Algorithm 1.

Theorem 3.1 Let v∗ and z∗ be an optimal solution and the optimal value, respec-
tively, of problem (3.1). By choosing s(ε, δ) = 2�(1/ε2) + �(log 1

δ
log log 1

δ
), with

probability at least 1 − δ, a sequence S of s indices independently and uniformly
sampled from [n] satisfies the following: Let ṽ∗ and z̃∗ be an optimal solution and the
optimal value, respectively, of the problem minv∈Rs ps,A|S ,d|S ,b|S (v). Then, we have

∣∣∣n2
s2

z̃∗ − z∗
∣∣∣ ≤ εLM2n2,

where

L = max

{
max
i, j

|Ai j |,max
i

|di |,max
i

|bi |
}

and M = max

{
max
i∈[n] |v∗

i |,max
i∈[n] |ṽ∗

i |
}

.

We can show that M is bounded when A is symmetric and full rank. To see this, we
first note that we can assume A + ndiag(d) is positive-definite, as otherwise pn,A,d,b

is not bounded and the problem is uninteresting. Then, for any set S ⊆ [n] of s indices,
(A + ndiag(d))|S is again positive-definite because it is a principal submatrix.Hence,
we have v∗ = (A + ndiag(d))−1nb/2 and ṽ∗ = (A|S + ndiag(d|S))−1nb|S/2, which
means that M is bounded.

3.3.1 Proof of Theorem 3.1

To use dikernels in our analysis, we first introduce a continuous version of pn,A,d,b.
The real-valued function Pn,A,d,b on the functions f : [0, 1] → R is defined as

Pn,A,d,b( f ) = 〈 f,A f 〉 + 〈 f 2,D1〉 + 〈 f,B1〉,

where D and B are the dikernels corresponding to d1 and b1, respectively,
f 2 : [0, 1] → R is a function such that f 2(x) = f (x)2 for every x ∈ [0, 1] and
1 : [0, 1] → R is a constant function that has a value of 1 everywhere. The fol-
lowing lemma states that the minimizations of pn,A,d,b and Pn,A,d,b are equivalent:

Lemma 3.3 Let A ∈ R
n×n be a matrix and d, b ∈ R

n×n be vectors. Then, we have

min
v∈[−M,M]n

pn,A,d,b(v) = n2 · inf
f :[0,1]→[−M,M] Pn,A,d,b( f ).

for any M > 0.
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Proof First, we show that n2 · inf f :[0,1]→[−M,M] Pn,A,d,b( f ) ≤ minv∈[−M,M]n
pn,A,d,b(v). Given a vector v ∈ [−M, M]n , we define f : [0, 1] → [−M, M] as
f (x) = vin(x). Then,

〈 f,A f 〉 =
∑

i, j∈[n]

∫
I ni

∫
I nj

Ai j f (x) f (y)dxdy = 1

n2
∑

i, j∈[n]
Ai j vi v j = 1

n2
〈v, Av〉,

〈 f 2,D1〉 =
∑

i, j∈[n]

∫
I ni

∫
I nj

di f (x)
2dxdy =

∑
i∈[n]

∫
I ni

di f (x)
2dx

= 1

n

∑
i∈[n]

di v
2
i = 1

n
〈v, diag(d)v〉,

〈 f,B1〉 =
∑

i, j∈[n]

∫
I ni

∫
I nj

bi f (x)dxdy =
∑
i∈[n]

∫
I ni

bi f (x)dx = 1

n

∑
i∈[n]

bi vi = 1

n
〈v, b〉.

Hence, we have n2Pn,A,d,b( f ) ≤ pn,A,d,b(v).
Next, we show that minv∈[−M,M]n pn,A,d,b(v) ≤ n2 · inf f :[0,1]→[−M,M] Pn,A,d,b( f ).

Let f : [0, 1] → [−M, M] be a measurable function. For x ∈ [0, 1], we then have

∂Pn,A,d,b( f (x))

∂ f (x)

=
∑
i∈[n]

∫
I ni

Aiin(x) f (y)dy +
∑
j∈[n]

∫
I nj

Ain(x) j f (y)dy + 2din(x) f (x) + bin(x).

Note that the form of this partial derivative depends on only in(x). Hence, in the
optimal solution f ∗ : [0, 1] → [−M, M], we can assume f ∗(x) = f ∗(y) if in(x) =
in(y). In other words, f ∗ is constant on each of the intervals I n1 , . . . , I nn . For such
f ∗, we define the vector v ∈ R

n as vi = f ∗(x), where x ∈ [0, 1] is any element in
I ni . Then, we have

〈v, Av〉 =
∑

i, j∈[n]
Ai j vi v j = n2

∑
i, j∈[n]

∫
I ni

∫
I nj

Ai j f
∗(x) f ∗(y)dxdy = n2〈 f ∗,A f ∗〉,

〈v, diag(d)v〉 =
∑
i∈[n]

di v
2
i = n

∑
i∈[n]

∫
I ni

di f
∗(x)2dx = n〈( f ∗)2,D1〉,

〈v, b〉 =
∑
i∈[n]

bi vi = n
∑
i∈[n]

∫
I ni

bi f
∗(x)dx = n〈 f ∗,B1〉.

Hence, we have pn,A,d,b(v) ≤ n2Pn,A,d,b( f ∗).

Proof (ofTheorem3.1)We instantiateLemma3.2with s = 2�(1/ε2) + �(log 1
δ
log log 1

δ
)

and the dikernels A, D, and B. Then, with probability at least 1 − δ, there exists a
measure-preserving bijection π : [0, 1] → [0, 1] such that

max
{
|〈 f, (A − π(A|S)) f 〉|, |〈 f 2, (D − π(D|S))1〉|, |〈 f, (B − π(B|S))1〉|

}
≤ εLM2

3
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for any function f : [0, 1] → [−M, M]. Conditioned on this event, we have

z̃∗ = min
v∈Rs

ps,A|S ,d|S ,b|S (v) = min
v∈[−M,M]s

ps,A|S ,d|S ,b|S (v)

= s2 · inf
f :[0,1]→[−M,M] Ps,A|S ,d|S ,b|S ( f ) (By Lemma 3)

= s2 · inf
f :[0,1]→[−M,M]

(
〈 f, (π(A|S) − A) f 〉 + 〈 f,A f 〉 + 〈 f 2, (π(D|S) − D)1〉+

〈 f 2,D1〉 + 〈 f, (π(B|S) − B)1〉 + 〈 f,B1〉
)

≤ s2 · inf
f :[0,1]→[−M,M]

(
〈 f,A f 〉 + 〈 f 2,D1〉 + 〈 f,B1〉 ± εLM2

)

= s2

n2
· min
v∈[−M,M]n pn,A,d,b(v) ± εLM2 s2. (By Lemma 3)

= s2

n2
· min
v∈Rn

pn,A,d,b(v) ± εLM2 s2 = s2

n2
z∗ ± εLM2 s2.

Rearranging the inequality, we obtain the desired result.

3.4 Tensor Decomposition

Background
We say that a tensor (or a multidimensional array) is of order K if it is a K -
dimensional array. Each dimension is called a mode in tensor terminology. Tensor
decomposition, which approximates the input tensor by a number of smaller tensors,
is a fundamental tool for dealing with large tensors because it drastically reduces
memory usage.

Among the many existing tensor decomposition methods, Tucker decomposi-
tion [11] is a popular choice. To some extent, Tucker decomposition is analogous to
singular-value decomposition (SVD). Whereas SVD decomposes a matrix into left
and right singular vectors that interact via singular values, Tucker decomposition of
an order-K tensor consists of K factor matrices that interact via the so-called core
tensor. The key difference between SVD and Tucker decomposition is that, in the
latter, the core tensor does not need to be diagonal and its “rank” can differ for each
mode. We refer to the size of the core tensor, which is a K -tuple, as the Tucker rank
of a Tucker decomposition.

Weare usually interested in obtaining factormatrices and a core tensor tominimize
the residual error—the error between the input and low-rank approximated tensors.
Sometimes, however, knowing the residual error itself is a task of interest. The
residual error tells us how suitable a low-rank approximation is to approximate the
input tensor in the first place, and is also useful to predetermine the Tucker rank.
In real applications, Tucker ranks are not explicitly given, and we must select them
by considering the tradeoff between space usage and approximation accuracy. For
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example, if the selected Tucker rank is too small, we risk losing essential information
in the input tensor, whereas if the selected Tucker rank is too large, the computational
cost of computing the Tucker decomposition (even if we allow for approximation
methods) increases considerably along with space usage. As with the case of the
matrix rank, one might think that a reasonably good Tucker rank can be found using
a grid search.Unfortunately, grid search for an appropriate Tucker rank is challenging
because, for an order-K tensor, the Tucker rank consists of K free parameters and
the search space grows exponentially in K . Hence, we want to evaluate each grid
point as quickly as possible.

Although several practical algorithmshavebeenproposed, such as the higher order
orthogonal iteration (HOOI) [3], they are not sufficiently scalable. For each mode,
HOOI iteratively applies SVD to an unfolded tensor—a matrix that is reshaped from
the input tensor. Given an N1 × · · · × NK tensor, the computational cost is hence
O(K maxk Nk · ∏

k Nk), which crucially depends on the input size N1, . . . , NK .
Although there are several approximation algorithms, their computational costs are
still intensive.

Constant-time algorithm for the Tucker fitting problem
The problem of computing the residual error is formalized as the following Tucker
fitting problem: Given an order-K tensor X ∈ R

N1×···×NK and integers Rk ≤ Nk (k =
1, . . . , K ), we want to compute the following normalized residual error:

	R1,...,RK (X) := min
G∈RR1×···×RK ,{U (k)∈RNk×Rk }k∈[K ]

∣∣∣X − [[G;U (1), . . . ,U (K )]]
∣∣∣2
F∏

k∈[K ] Nk
, (3.2)

where [[G;U (1), . . . ,U (K )]] ∈ R
N1×···×NK is an order-K tensor, defined as

[[G;U (1), . . . ,U (K )]]i1···iK =
∑

r1∈[R1],...,rK∈[RK ]
Gr1···rK

∏
k∈[K ]

U (k)
ikrk

for every i1 ∈ [N1], . . . , iK ∈ [NK ]. Here, G is the core tensor, and U (1), . . . ,U (K )

are the factormatrices. Note thatwe are not concernedwith computing theminimizer,
but only want to compute the minimum value. In addition, we do not need the
exact minimum. Indeed, a rough estimate still helps to narrow down promising rank
candidates. The question here is howquicklywe can compute the normalized residual
error 	R1,...,RK (X) with moderate accuracy.

In this section, we consider the following simple sampling algorithm, and
show that it can be used to approximately solve the Tucker fitting problem. First,
given an order-K tensor X ∈ R

N1×···×NK , Tucker rank (R1, . . . , RK ), and sam-
ple size s ∈ N, we sample a sequence of indices Sk = (xk1 , . . . , x

k
s ) uniformly

and independently from [Nk] for each mode k ∈ [K ]. We then construct a mini-
tensor X |S1,...,SK ∈ R

s×···×s , where (X |S1,...,SK )i1,...,iK = Xx1i1 ...,x
K
iK
. Finally, we com-

pute 	R1,...,RK (X |S1,...,SK ) using an arbitrary solver, such as HOOI, and output the
obtained value. The details are provided in Algorithm 2. Note that the time complex-
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Algorithm 2 Sampling algorithm for the Tucker fitting problem

Input: N1, . . . , NK ∈ N, query access to a tensor X ∈ R
N1×···×NK , Tucker rank (R1, . . . , Rk), and

ε, δ ∈ (0, 1).
1: for k = 1 to K do
2: Sk ← a sequence of s = s(ε, δ) indices uniformly and independently sampled from [Nk ].
3: Construct a mini-tensor X |S1,...,SK .
4: return 	R1,...,RK (X |S1,...,SK ).

ity for computing 	R1,...,RK (X |S1,...,SK ) does not depend on the input size N1, . . . , NK

but rather on the sample size s, meaning that the algorithm runs in constant time,
regardless of the input size.

The goal of the rest of this section is to show the following approximation guar-
antee of Algorithm 2.

Theorem 3.2 Let X ∈ R
N1×···×NK be a tensor, R1, . . . , RK be integers, and ε, δ ∈

(0, 1). For s(ε, δ) = 2�(1/ε2K−2) + �(log 1
δ
log log 1

δ
), we have the following. Let

S1, . . . , SK be sequences of indices as defined in Algorithm 2. Let (G∗,U ∗
1 , . . . ,U ∗

K )

and (G̃∗, Ũ ∗
1 , . . . , Ũ ∗

K ) be minimizers of problem (3.2) on X and X |S1,...,SK for which
the factor matrices are orthonormal, respectively. Then we have

	R1,...,RK (X |S1,...,SK ) = 	R1,...,RK (X) ± O(εL2(1 + 2MR)),

with probability at least 1 − δ, where L = |X |max, M = max{|G∗|max, |G̃∗|max}, and
R = ∏

k∈[K ] Rk.

We remark that, for the matrix case (i.e., K = 2), |G∗|max and |G̃∗|max are equal to
the maximum singular values of the original and sampled matrices, respectively.

3.4.1 Preliminaries

Let X ∈ R
N1×···NK be a tensor. We define

|X |F =
√ ∑

i1,...,iK

X2
i1···iK , (Frobenius norm)

|X |max = max
i1∈[N1],...,iK∈[NK ] |Xi1···iK |, (Max norm)

|X |� = max
S1⊆[N1],...,SK⊆[NK ]

∣∣∣∣∣
∑

i1∈S1,...,iK∈SK
Xi1···iK

∣∣∣∣∣ . (Cut norm)

We note that these norms satisfy the triangle inequality.
For a vector v ∈ R

n and a sequence S = (x1, . . . , xs) of indices in [n], we define
the restriction v|S ∈ R

s of v as (v|S)i = vxi for i ∈ [s]. Let X ∈ R
N1×···×NK be a
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tensor, and Sk = (xk1 , . . . , x
k
s ) be a sequence of indices in [Nk] for each mode k ∈

[K ]. Then, we define the restriction X |S1,...,SK ∈ R
s×···×s of X to S1 × · · · × SK as

(X |S1,...,SK )i1···iK = Xx1i1 ,...,x
K
iK
for each i1 ∈ [N1], . . . , iK ∈ [Nk].

For a tensorG∈RR1×···×RK and vector-valued functions {F (k) : [0, 1]→R
Rk }k∈[K ],

we define an order-K dikernel [[G; F (1), . . . , F (K )]] : [0, 1]K → R as

[[G; F (1), . . . , F (K )]](x1, . . . , xK ) =
∑

r1∈[R1],...,rK∈[RK ]
Gr1,...,rK

∏
k∈[K ]

F (k)(xk)rk

Wenote that [[G; F (1), . . . , F (K )]] is a continuous analogue of Tucker decomposition.

3.4.2 Proof of Theorem 3.2

To prove Theorem 3.2, we first consider the dikernel counterpart to the Tucker fitting
problem, in which we want to minimize the following:

	R1,...,RK (X) := inf
G∈RR1×···×RK ,{ f (k):[0,1]→RRk }k∈[K ]

∣∣∣X − [[G; f (1), . . . , f (K )]]
∣∣∣2
F
, (3.3)

The following lemma, which is proved in Sect. 3.4.3, states that the Tucker fitting
problem and its dikernel counterpart have the same optimum values.

Lemma 3.4 Let X ∈ R
N1×···×NK be a tensor, and let R1, . . . , RK ∈ N be integers.

Then, we have

	R1,...,RK (X) = 	R1,...,RK (X).

For a set of vector-valued functions F = { f (k) : [0, 1] → R
Rk }k∈[K ], we define

|F |max = maxk∈[K ],r∈[Rk ],x∈[0,1] f (k)
r (x). For a dikernelX : [0, 1]K → R, we define a

dikernel X2 : [0, 1]K → R as X2(x) = X(x)2 for every x ∈ [0, 1]K . The following
lemma, which is proved in Sect. 3.4.4, states that if X and Y are close in the cut
norm, then the optimum values when the Tucker fitting problem is applied to them
are also close.

Lemma 3.5 Let X,Y : [0, 1]K → R be dikernels with |X − Y|� ≤ ε and |X2 −
Y2|� ≤ ε. For R1, . . . , RK ∈ N, we have

	R1,...,RK (X) = 	R1,...,RK (Y) ± 2ε
(
1 + R

(|GX|max|FX|Kmax + |GY|max|FY|Kmax

))
,

where (GX, FX = { f (k)
X }k∈[K ]) and (GY,FY = { f (k)

Y }k∈[K ]) are solutions to prob-
lem (3.3) onX andY, respectively, which have objective values exceeding the infima
by at most ε, and R = ∏

k∈[K ] Rk.
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Proof (of Theorem 3.2) We apply Lemma 3.2 toX andX2. Thus, with probability at
least 1 − δ, there exists a measure-preserving bijection π : [0, 1] → [0, 1] such that

|X − π(X|S1,...,SK )|� ≤ εL and |X2 − π(X2|S1,...,SK )|� ≤ εL2.

In the following, we assume that this has happened. By Lemma 3.5 and the fact that
	R1,...,RK (X|S1,...,SK ) = 	R1,...,RK (π(X|S1,...,SK )), we have

	R1,...,RK (X|S1,...,SK ) = 	R1,...,RK (X) ± εL2
(
1 + 2R(|G|max|F |Kmax + |G̃|max|F̃ |Kmax)

)
,

where (G, F = { f (k)}k∈[K ]) and (G̃, F̃ = { f̃ (k)}k∈[K ]) are as in the statement of
Lemma 3.5. From the proof of Lemma 3.4, we can assume that |G|max = |G∗|max,
|G̃|max = |G̃∗|max, |F |max ≤ 1, and |F̃ |max ≤ 1 (owing to the orthonormality of
U ∗

1 , . . . ,U ∗
K and Ũ ∗

1 , . . . , Ũ ∗
K ). It follows that

	R1,...,RK (X|S1,...,SK ) = 	R1,...,RK (X) ± εL2
(
1 + 2R(|G∗|max + |G̃∗|max)

)
. (3.4)

Then, we have

	R1,...,RK (X |S1,...,SK ) = 	R1,...,RK (X|S1,...,SK ) (By Lemma 4)

= 	R1,...,RK (X) ± εL2
(
1 + 2R(|G∗|max + |G̃∗|max)

)
(By 4)

= 	R1,...,RK (X) ± εL2
(
1 + 2R(|G∗|max + |G̃∗|max)

)
. (By Lemma 4)

Hence, the proof is complete.

3.4.3 Proof of Lemma 3.4

We say that a vector-valued function f : [0, 1] → R
R is orthonormal if 〈 fr , fr 〉 = 1

for every r ∈ [R] and 〈 fr , fr ′ 〉 = 0 if r �= r ′. First, we calculate the partial derivatives
of the objective function. We omit the proof because it is a straightforward (but
tedious) calculation.

Lemma 3.6 Let X ∈ [0, 1]K → R be a dikernel, G ∈ R
R1×···RK be a tensor, and

{ f (k) : [0, 1] → R
Rk }k∈[K ] be a set of orthonormal vector-valued functions. Then,

we have
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∂

∂ f (k0)
r0 (x0)

∣∣∣X − [[G; f (1), . . . , f (K )]]
∣∣∣2
F

= 2
∑

r1,...,rK :rk0=r0

Gr1···rK
∫

[0,1]K :xk0=x0

X(x)
∏

k∈[K ]\{k0}
f (k)
rk (xk)dx

− 2
∑

r1,...,rK

Gr1···rK Gr1···rk0−1r0rk0+1···rK f (k0)
rk0

(x0).

Proof (of Lemma 3.4) First, we show that (LHS) ≤ (RHS). Consider a sequence of
solutions for the continuous problem (3.3) for which the objective values attain the
infimum. For Tucker decompositions, it is well known that there exists a minimizer
for which the factor matricesU (1), . . . ,U (K ) are orthonormal. By similar reasoning,
we can show that the vector-valued functions f (1), . . . , f (K ) in each solution of the
sequence are orthonormal. As the objective function is coercive with respect to tensor
G, we can take a subsequence for which G converges. Let G∗ be the limit. Now,
for any δ > 0, we can create a matrix G̃ by perturbing G∗ so that (i) by fixing G
to G̃ in the continuous problem, the infimum increases only by δ, and (ii) a matrix
constructed from G̃ is invertible and has a condition number at least δ′ = δ′(δ) > 0.

Now, consider a sequence of solutions for the continuous problem (3.3) with G
fixed to G̃ for which the objective values attain the infimum. We can show that the
partial derivatives converge to zero almost everywhere. For any ε > 0, there then
exists a solution (G̃, f (1), . . . , f (K )) in the sequence such that the partial derivatives
are at most ε almost everywhere.

Then by Lemma 3.6, for any k0 ∈ [K ], r0 ∈ [Rk], and almost all x ∈ [0, 1], we
have∑

r1,...,rK

G̃r1···rK G̃r1···rk0−1r0rk0+1···rK f (k0)
rk0

(x0)

=
∑

r1,...,rK :rk0=r0

G̃r1···rK
∫

[0,1]K :xk0=x0

X(x)
∏

k∈[K ]\{k0}
f (k)
rk (xk)dx ± ε(k0, r0, x), (3.5)

where ε(k0, r0, x) = O(ε). Now, we consider a system of linear equations consisting
of (3.5) for r0 = 1, . . . , Rk0 , where the variables are f k01 (x0), . . . , f k0Rk0

(x0). We can
assume that thematrix involved in this system is invertible andhas a positive condition
number. For any k ∈ [K ], r ∈ [Rk] and almost every pair x, x ′ ∈ [0, 1]with iNk (x) =
iNk (x

′), we then have f (k0)
r0 (x) = f (k0)

r0 (x ′) ± O(ε/δ′). For each k ∈ [K ], we can

define a matrix U (k) ∈ R
Nk×Rk as U (k)

ir = f (k)
r (x), where x ∈ [0, 1] is an arbitrary

value with iNk (x) = i . Then, we have
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1

N

∣∣∣X − [[G̃;U (1), . . . ,U (K )]]
∣∣∣2
F

= 1

N

∑
i1,...,iK

(
Xi1···iK − [[G̃;U (1), . . . ,U (K )]]i1···iK

)2

=
∑

i1,...,iK

∫
I
N1
i1

×···×I
NK
iK

(
X(x) − [[G̃; f (1), . . . , f (K )]](x) ± O(ε/δ′)

)2
dx

=
∣∣∣X − [[G̃; f (1), . . . , f (K )]]

∣∣∣2
F

± O(ε2N/(δ′)2)

for N = ∏
k∈[K ] Nk . As the choice of ε and δ are arbitrary, we obtain (LHS)≤ (RHS).

Second, we show that (RHS)≤ (LHS). LetU (k) ∈ R
Nk×Rk (k ∈ [K ]) be matrices.

We define a vector-valued function f (k) : [0, 1] → R
Rk as f (k)

r (x) = U (k)
iNk (x)r

for each
k ∈ [K ] and r ∈ [Rk]. Then, we have

∣∣∣X − [[G; f (1), . . . , f (K )]]
∣∣∣2
F

=
∫

[0,1]K

(
X(x) − [[G; f (1), . . . , , f (K )]](x)

)2
dx

=
∑

i1,...,iK

∫
∏

k∈[K ] I
Nk
ik

(
X(x) − [[G; f (1), . . . , f (K )]](x)

)2
dx

= 1

N

∑
i1,...,iK

(
Xi1···iK − [[G;U (1), . . . ,U (K )]]i1···iK

)2

= 1

N

∣∣∣X − [G;U (1), . . . ,U (K )]
∣∣∣2
F
,

from which the claim follows.

3.4.4 Proof of Lemma 3.5

For a sequence of functions f (1), . . . , f (K ), we define their tensor product
⊗

k∈[K ]
f (k) ∈ [0, 1]K → R as

⊗
k∈[K ] f (k)(x1, . . . , xK ) = ∏

k∈[K ] f (k)(xk), which is a dik-
ernel of order-K .

The cut norm is useful for bounding the absolute value of the inner product
between a tensor and a tensor product:

Lemma 3.7 Let ε ≥ 0 and W : [0, 1]K → R be a dikernel with |W|� ≤ ε. Then,
for any functions f (1), . . . , f (K ) : [0, 1] → [−L , L], we have |〈W,

⊗
k∈[K ] f (k)〉| ≤

εLK .

Proof For τ ∈ R and the function h : [0, 1] → R, let Lτ (h) := {x ∈ [0, 1] | h(x) =
τ } be the level set of h at τ . For f ′(i) = f (i)/L , we have
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〈
W,

⊗
k∈[K ]

f (k)

〉∣∣∣∣∣∣ = LK

∣∣∣∣∣∣
〈
W,

⊗
k∈[K ]

f ′(k)
〉∣∣∣∣∣∣

= LK

∣∣∣∣∣∣
∫

[−1,1]K
∏
k∈[K ]

τk

∫
∏

k∈[K ] Lτk ( f
′(k))

W(x)dxdτ

∣∣∣∣∣∣
≤ LK

∫
[−1,1]K

∏
k∈[K ]

|τk |
∣∣∣∣∣
∫

∏
k∈[K ] Lτk ( f

′(k))
W(x)dxdτ

∣∣∣∣∣
≤ εLK

∫
[−1,1]K

∏
k∈[K ]

|τk |dτ = εLK .

Thus, we have the following:

Lemma 3.8 Let X,Y : [0, 1]K → R be dikernels with |X − Y|� ≤ ε and |X2 −
Y2|� ≤ ε, where X2(x) = X(x)2 and Y2(x) = Y(x)

2 for every x ∈ [0, 1]K . Then,
for any tensor G ∈ R

R1×···×RK and a set of vector-valued functions F = { f (k) :
[0, 1] → R

Rk }k∈[K ], we have∣∣∣X − [[G; f (1), . . . , f (K )]]
∣∣∣2
F

=
∣∣∣Y − [[G; f (1), . . . , f (K )]]

∣∣∣2
F

± ε
(
1 + 2R|G|max|F |Kmax

)
,

where R = ∏
k∈[K ] RK .

Proof We have

∣∣∣∣∣X − [[G; f (1), . . . , f (K )]]∣∣2F − ∣∣Y − [[G; f (1), . . . , f (K )]]∣∣2F
∣∣∣

=
∣∣∣∣
∫

[0,1]K
(
X(x) − [[G; f (1), . . . , f (K )]](x)

)2
dx

−
∫

[0,1]K
(
Y(x) − [[G; f (1), . . . , f (K )]](x)

)2
dx

∣∣∣∣
=

∣∣∣∣
∫

[0,1]K
(
X(x)2 − Y(x)2

)
dx − 2

∫
[0,1]K

(X(x) − Y(x))[[G; f (1), . . . , f (K )]](x)dx

∣∣∣∣
≤ |X2 − Y2|� + 2

∑
r1∈[R1],...,rk∈[Rk ]

|Gr1···rK | ·
∣∣∣∣∣∣
〈
X − Y,

⊗
k∈[K ]

f (k)
rk

〉∣∣∣∣∣∣
≤ ε + 2εR|G|max|F |Kmax

by Lemma 3.7.

Proof (of Lemma 3.5) By Lemma 3.8, we have

∣∣∣Y − [[GY; f (1)
Y , . . . , f (K )

Y ]]
∣∣∣2
F

≤
∣∣∣Y − [[GX; f (1)

X , . . . , f (K )

X ]]
∣∣∣2
F

+ ε

≤
∣∣∣X − [[GX; f (1)

X , . . . , f (K )

X ]]
∣∣∣2
F

+
(
2ε + 2εR|GX‖max‖FX‖K

max

)
.
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Similarly, we have

∥∥∥X − [[GX; f (1)
X , . . . , f (K )

X ]]
∥∥∥2

F
≤

∥∥∥X − [[GY; f (1)
Y , . . . , f (K )

Y ]]
∥∥∥2

F
+ ε

≤
∥∥∥Y − [[GY; f (1)

Y , . . . , f (K )

Y ]]
∥∥∥2

F
+

(
2ε + 2εR‖GY‖max‖FY‖K

max

)
.

Hence, the claim follows.
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Chapter 4
Oracle-Based Primal-Dual Algorithms
for Packing and Covering Semidefinite
Programs

Khaled Elbassioni and Kazuhisa Makino

Abstract Packing and covering semidefinite programs (SDPs) appear in natural
relaxations of many combinatorial optimization problems as well as a number of
other applications. Recently, several techniques have been proposed that utilize the
particular structure of this class of problems in order to obtain more efficient algo-
rithms than those offered by general SDP solvers. For certain applications, it may
be necessary to deal with SDPs with a very large number of (e.g., exponentially or
even infinitely many) constraints. In this chapter, we give an overview of some of the
techniques that can be used to solve this class of problems, focusing onmultiplicative
weight updates and logarithmic-potential methods.

4.1 Packing and Covering Semidefinite Programs

We denote by Sn the set of all n × n real symmetric matrices and by Sn+ ⊆ S
n the set

of all n × n positive semidefinite (psd) matrices. We consider the following pairs of
packing-covering semidefinite programs (SDPs):

z∗
I = max C • X (Packing- I)

s.t. Ai • X ≤ bi ,∀i ∈ [m]
X ∈ S

n, X � 0

z∗
I = min bT y (Covering- I)

s.t.
m∑

i=1

yi Ai � C

y ∈ R
m, y ≥ 0,
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z∗
I I = min C • X (Covering- II)

s.t. Ai • X ≥ bi , ∀i ∈ [m]
X ∈ S

n , X � 0

z∗
I I = max bT y (Packing- II)

s.t.
m∑

i=1

yi Ai 	 C

y ∈ R
m, y ≥ 0,

where C, A1, . . . , Am ∈ S
n+ are (non-zero) psd matrices, and b = (b1, . . . , bn)

T ∈
R

m+ is a non-negative vector. In the above, C • X := Tr(C X) = ∑n
i=1

∑n
j=1 ci j xi j ,

and “�” is the Löwner order on matrices: A � B if and only if A − B is psd. This
type of SDP arises inmany applications. See, for example, [14, 15] and the references
therein.

We assume the following throughout this chapter:

(A) bi > 0 and hence bi = 1 for all i ∈ [m].
It is known that, under assumption (A), strong duality holds for problems (Packing-
I) and (Covering- I) (resp., (Packing- II) and (Covering- II)). Let ε ∈ (0, 1] be a
given constant.We say that (X, y) is an ε-optimal primal-dual solution for (Packing-
I)-(Covering- I) if (X, y) is a primal-dual feasible pair such that

C • X ≥ (1 − ε)bT y ≥ (1 − ε)z∗
I . (4.1)

Similarly, we say that (X, y) is an ε-optimal primal-dual solution for (Packing- II)-
(Covering- II) if (X, y) is a primal-dual feasible pair such that

C • X ≤ (1 + ε)bT y ≤ (1 + ε)z∗
I I . (4.2)

In this chapter, we allow the number of constraints m in (Packing- I) (resp.,
(Covering- II)) to be exponentially (or even infinitely) large, so we assume the
availability of the following oracle:

Max(Y)(resp., Min(Y)) : Given Y ∈ S
n+, find i ∈ argmaxi∈[m] Ai • Y (resp., i ∈

argmini∈[m] Ai • Y ).

Note that an approximation oracle computing the above maximum (resp., mini-
mum) within a factor of (1 − ε) (resp., (1 + ε)) is also sufficient for our purposes.
A primal-dual solution (X, y) to (Covering- I) (resp., (Packing- II)) is said to be
η-sparse if the size of supp(y) := {i ∈ [m] : yi > 0} is at most η.

When C = I = In (which is the identity matrix in R
n×n) and b = 1m (which is

the vector containing all ones in R
m), we say that the packing-covering SDPs are

in normalized form. It can be shown (see, e.g., [7, 16]) that, to within a multiplica-
tive factor of (1 + ε) in the objective, any pair of packing-covering SDPs of the
form (Packing- I)-(Covering- I) can be brought to normalized form in O(n3) time
while increasing the oracle time by only O(nω), where ω is the exponent of matrix
multiplication, under the following assumption:



4 Oracle-Based Primal-Dual Algorithms for Packing … 49

(B-I) There exist r matrices, say A1, . . . , Ar , such that Â := ∑r
i=1 Ai 
 0. In par-

ticular, Tr(X) ≤ τ := r
λmin( Ā)

for any optimal solution X for (Packing- I), and

we may assume that r = 1 and A1 = 1
τ

I.

Similarly, it can be shown that, to within a multiplicative factor of (1 + ε) in the
objective, any pair of packing-coveringSDPs of the form (Packing- II)-(Covering-
II) can be brought to normalized form in O(n3) time, while increasing the oracle
time by only O(nω). Moreover, we may assume in this normalized form that

(B-II) λmin(Ai ) = �
(

ε
n · mini ′ λmax(Ai ′)

)
for all i ∈ [m],

where, for a psd matrix B ∈ S
n+, we denote by {λ j (B) : j = 1, . . . , n} the eigenval-

ues of B, and by λmin(B) and λmax(B) the minimum and maximum eigenvalues of
B, respectively. Given additional O(mn2) time, we may also assume that

(B-II’) λmax(Ai )

λmin(Ai )
= O

(
n2

ε2

)
for all i ∈ [m].

Thus, the remainder of this chapter focuses on normalized problems.

Mixed packing and covering SDPs.
We also consider the following mixed packing-covering feasibility SDPs:

Ai • X ≤ bi , ∀i ∈ [m p] (Mix- Pack- Cover)

Bi • X ≥ di , ∀i ∈ [mc]
X ∈ S

n, X � 0,

where A1, . . . , Am p , B1, . . . , Bmc ∈ R
n×n are psd matrices, and b = (b1, . . . , bm p )

T ,
d = (d1, . . . , dmc)

T are non-negative real vectors.
A matrix X ∈ S

n+ is an ε-approximate solution for (Mix- Pack- Cover) if Ai •
X ≤ bi for all i ∈ [m p] and Bi • X ≥ (1 − ε)di for all i ∈ [mc].

4.2 Applications

4.2.1 SDP relaxation for RobustMaxCut

Given a simple undirected graph G = (V, E) on n = |V | vertices with non-negative
edge weightsw ∈ R

E+, the objective in the well-knownMaxCut problem is to find a
subset of the vertices X ⊂ V that maximizes the weight of the cut: w(X, V \ X) :=∑

u∈X, v∈V \X wuv . The best-known approximation algorithm (with approximation
ratio 0.878 . . .) [10] forMaxCut is based on the following SDP relaxation:
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max L(w) • X (MaxCut- SDP)

s.t. 1i1T
i • X = 1, ∀i ∈ [n] (4.3)

X ∈ R
n×n, X � 0.

By simply changing the equality in (4.3) into an inequality, this can be written in
the form (Packing- I), with Ai := 1i1T

i and C := L(w) � 0 being the Laplacian
matrix of G, defined as follows:

Li j (w) =
⎧
⎨

⎩

∑n
k=1 wik if i = j,

−wi j if {i, j} ∈ E,

0 otherwise.

Based on this relaxation, the following result is obtained using the scalar multiplica-
tive weights update (MWU) method:

Theorem 4.1 ([18]) There is a randomized algorithm for finding an ε-optimal solu-
tion for (MaxCut- SDP) in time Õ( nm

ε3
), where n and m respectively denote the

number of vertices and edges in a given graph.

Under the robust optimization framework, one assumes theweights are not known
precisely, but instead are given by a convex uncertainty set W ⊆ R

n+, where it is
necessary to find a (near)-optimal solution under the worst-case choice w ∈ W in
the uncertainty set:

max min
w∈W

L(w) • X Robust- MaxCut- SDP

s.t. 1i1T
i • X ≤ 1, ∀i ∈ [n] (4.4)

X ∈ R
n×n, X � 0.

By “guessing” the value τ of an optimal solution (via binary search), (4.4) can be
reduced to

min I • X

Robust- MaxCut- SDPs.t. 1i1T
i • X ≥ 1, ∀i ∈ [n]

1

τ
L(w) • X ≥ 1, ∀w ∈ W

X ∈ R
n×n, X � 0.
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Thus, we obtain a covering SDP (of type (Covering- II)) with an infinite number
of constraints, given by a minimization oracle over the convex set W . We can use
the matrix logarithmic-potential method to obtain the following result:

Theorem 4.2 There is a randomized algorithm that finds an ε-optimal solution for
(4.4) in time Õ

(
nω+1

ε2.5
+ nT

ε2

)
, where T is the time needed to optimize a linear function

over W .

Note that for this reduction to remain valid, it is sufficient to find an ε-optimal solution
to (4.4) for any ε = o

(
1
n

)
.

4.2.2 Mahalanobis Distance Learning

Given a psd matrix X ∈ S
n , the X -Mahalanobis distance between two points a, b ∈

R
n is defined as

dX (a, b) :=
√

(a − b)T X (a − b).

The distance function dX (·, ·) is a semi-metric; that is, it is symmetric (dX (a, b) =
dX (a, b)) and satisfies the triangle inequality (dX (a, c) ≤ dX (a, b) + dM(b, c)), and
it is also a metric if X 
 0 (as in this case, dX (a, b) = 0 if and only if a = b).

TheMahalanobis distance learning problem is defined as follows [28]: Given sets
Cs and Cd of similar and dissimilar pairs of points in R

n , respectively, a similarity
parameter σs ∈ R+ and a dissimilarity parameter σd ∈ R+, the objective is to find a
matrix X such that all the pairs in Cs are “close” and all the pairs in Cd are “far” with
respect to the distance function dX (·, ·):

(a − b)T X (a − b) ≤ σs, ∀(a, b) ∈ Cs (4.5)

(a − b)T X (a − b) ≥ σd , ∀(a, b) ∈ Cd (4.6)

X ∈ S
n, X � 0. (4.7)

Note that this can be written in the form (Mix- Pack- Cover), with |Cs | packing
constraints of the form Aa,b • X ≤ σs , where Aa,b = (a − b)(a − b)T for (a, b) ∈
Cs , and |Cd | covering constraints of the form Ba,b • X ≥ σd , where Ba,b = (a −
b)(a − b)T for (a, b) ∈ Cd .

We can use the scalar MWU method to obtain the following result:

Theorem 4.3 There is a deterministic algorithm that finds an ε-feasible solution
for (4.5)-(4.2.2) in time Õ(m(m+n3)

ε2
), where n is the dimension of the point sets and

m := |Cs |2 + |Cd |2.

We remark that it is plausible that further improvements (possibly by another factor
of O(m)) are possible via rank-one tricks and the use of approximate eigenvalue
computations.
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4.2.3 Related Work

Problems (Packing- I)-(Covering- I) and (Packing- II)-(Covering- II) can be
solved using general SDP solvers, such as interior-point methods. For example,
the barrier method (see, e.g., [22]) can compute a solution within an additive error
of ε from the optimal in time O(

√
nm(n3 + mn2 + m2) log 1

ε
) (see also [1, 27]).

However, due to the special nature of (Packing- I)-(Covering- I) and (Packing-
II)-(Covering- II), better algorithms can be obtained. Most of the improvements are
obtained by using first-order methods [2, 3, 5, 6, 8, 15–18, 21, 23, 24], or second-
order methods [13, 14]. In general, we can classify these algorithms according to
whether they are (semi) width-independent, are parallel, output sparse solutions, or
are oracle-based, as follows.

(I) (Semi) width-independent: The running time of the algorithm depends polyno-
mially on the bit length of the input. For example, in the of case of (Packing-
I)-(Covering- I), the running time is poly(n, m,L, log τ, 1

ε
), where L is the

maximum bit length needed to represent any number in the input. In contrast,
the running time of a width-dependent algorithm depends polynomially on a
“width parameter” ρ, which is polynomial in L and τ .

(II) Parallel: The algorithm takes polylog(n, m,L, log τ) · poly( 1
ε
) time on a poly

(n, m, L, log τ, 1
ε
) number of processors.

(III) Sparse: The algorithm outputs an η-sparse solution to (Covering- I) (resp.,
(Packing- II)) for η = poly(n, logm,L, log τ, 1

ε
) (resp., η = poly(n, logm,

L, 1
ε
)), where τ is a parameter that bounds the trace of any optimal solution X ;

(IV) Oracle-based: The only access the algorithm has to the matrices A1, . . . , Am

is via the maximization/minimization oracle, and hence the running time is
independent of m.

Table4.1 below gives a summary1 of the most relevant results together with their
classifications according to the four criteria above. We note that almost all of these
algorithms for packing/covering SDPs are generalizations of similar algorithms for
packing/covering linear programs (LPs), and most of them are essentially based on
an exponential potential function in the form of scalar exponentials, such as [3, 18],
or matrix exponential [2, 5, 6, 15, 17]. For instance, several of these results use the
scalar or matrix versions of the MWU method (see, e.g., [4]), which are extensions
of similar methods for packing/covering LPs [9, 11, 25, 29].

In [12], a different type of algorithm was given for covering LPs (indeed, more
generally, for a class of concave covering inequalities) based on a logarithmic poten-
tial function. In [7], it was shown that this approach could be extended to provide
sparse solutions for both versions of packing and covering SDPs.

As we can see from the table, among all the algorithms, only the matrix (MWU
and logarithmic-potential) algorithms are oracle-based (and hence produce sparse

1 We provide rough estimates of the bounds, as some of them are not stated explicitly in the corre-
sponding paper in terms of the parameters we consider here.
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solutions) in the sense described above. However, the overall running time of the
matrix MWU algorithm is larger by a factor of (roughly) �(n3−ω) than that of the
logarithmic-potential algorithm, where ω is the exponent of matrix multiplication.
Moreover, we cannot extend the matrix MWU algorithm to solve (Packing- I)-
(Covering- I) (in particular, it seems tricky to bound the number of iterations).

4.3 General Framework for Packing-Covering SDPs

Given a pair of packing-covering SDPs (Packing- I)-(Covering- I) or (Covering-
II)-(Packing- II), we consider the following general framework in which each con-
straint is assigned a weight reflecting how satisfied the constraint is given the current
solution:

1 Initialize constraint weights
2 while the stopping criterion is not satisfied do
3 Form a "weighted average” of all the inequalities into a single inequality
4 /* If we maintain weights for primal −→ scalar version */
5 /* If we maintain weights for dual −→ matrix version */
6 Solve a fractional knapsack problem to determine the direction of the next

update
7 Update the primal (or sometimes dual) variables in the chosen direction
8 Update the weights to reflect which constraints become more satisfied
9 /* Weights (essentially) ←→ dual (or sometimes primal) variables */

10 end

Algorithm 1: A general framework for solving packing-covering SDPs

We obtain different algorithms depending on how the weights are defined. We
write ai := Ai • X ≥ 0. Since amax := max{a1, . . . , am} (resp., amin := min{a1, . . . , am })
is not a smooth function (in X ), it is more convenient to work with a smooth approx-
imation of it, which is provided by the weighted average formed in step 3 in the
framework. There are several ways to do this, for example:

• Exponential averaging: Theweights are pi := (1+ε)ai
∑m

i ′=1
(1+ε)

ai ′ (resp., pi := (1−ε)ai∑m
i ′=1(1−ε)

ai ′ ).

The following claim justifies the use of these sets of weights.

Lemma 4.1 If amax ≥ 1+ε
ε

log1+ε
m
ε

(
resp., amin ≥ 1

ε
log 1

1−ε

(
m·amax
ε·amin

))
, then

amax

1 + ε
≤

m∑

i=1

pi ai ≤ amax

(
resp., amin ≤

m∑

i=1

pi ai ≤ (1 + ε)amin

)
.

• Logarithmic potential averaging: The weights are pi = ε
m

θ∗
θ∗−ai

(resp., pi =
ε
m

θ∗
ai −θ∗ ), where θ∗ is the minimizer (resp., maximizer) of the potential function
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�(θ) = ln

⎛

⎝θ · ε/m

√√√√
m∏

i=1

1

θ − ai

⎞

⎠
(
resp.,�(θ) = ln

⎛

⎝θ · ε/m

√√√√
m∏

i=1

(ai − θ)

⎞

⎠
)

.

(It can be easily verified that
∑

i pi = 1.) The following claim justifies the use of
these sets of weights.

Lemma 4.2

(1 − ε)amax

1 − ε/m
≤

m∑

i=1

pi ai ≤ amax

(
resp.,amin ≤

m∑

i=1

pi ai ≤ amin(1 + ε)

1 + ε/m

)
.

4.4 Scalar Algorithms

4.4.1 Scalar MWU Algorithm for
(PACKING-I)-(COVERING-I)

Given a normalized pair of packing-covering SDPs of type I (Packing- I)-
(Covering- I), and a feasible primal solution X , we use the exponential weight
pi := (1 + ε)Ai •X , for i ∈ [m]. Averaging the inequalities with respect to the weights
pi := pi∑

i pi
, we arrive at the following problem:

max I • X (4.8)

s.t.
∑

i

pi Ai • X ≤ 1, ∀i ∈ [m]

X ∈ R
n×n, X � 0.

Letting A := ∑
i pi Ai and writing X = ∑

v∈Bn
λvvvT , where Bn := {v ∈ R

n : ‖v‖ =
1} and λv ≥ 0 for all v ∈ Bn , we obtain the following (infinite-dimensional) knapsack
problem

max
∑

v∈Bn

λv (4.9)

s.t.
∑

v∈Bn

λv A • vvT ≤ 1, ∀i ∈ [m]

λv ≥ 0, ∀v ∈ Bn.

An optimal solution is attained at a vector v ∈ Bn which minimizes vT Av. This is
the basis vector corresponding to λmin(A).

Thus, using this set of weights in our general framework (Algorithm 1) yields the
following procedure (for a vector p ∈ R

m , we write pi := pi∑
i pi

):



56 K. Elbassioni and K. Makino

1 t ← 0; X (0) ← 0; y(0) ← 0; M(0) ← 0; T ← ε−2 lnm
2 while M(t) < T do
3 pi (t) = (1 + ε)Ai •X (t) /* Update the weights */
4 v(t) = argminv:||v||=1

∑
i pi (t)Ai • vvT /* Find an eigenvector corresponding to the

smallest eigenvalue of the average inequality matrix */
5 δ(t) = 1/maxi Ai • v(t)v(t)T /* Define the update step size */
6 X (t + 1) = X (t) + δ(t)v(t)v(t)T ; y(t + 1) ← y(t) + δ(t)pi (t) /* Update the primal-

dual solutions */
7 M(t + 1) = maxi Ai • X (t + 1) /* Compute the largest LHS */
8 t ← t + 1
9 end

10 output (X̂ , ŷ) =
(

X (t)
M(t) ,

y(t)
(1−1.5ε)M(t)

)

Algorithm 2: Scalar MWU algorithm for (Packing- I)-(Covering- I)

The stopping criterion is that the left-hand side (LHS) of at least one inequality
in (Packing- I) reaches some threshold T := ε−2 lnm, with respect to the current
solution X (t). The step size (step 5) is chosen such that in each iteration of the while-
loop, this right-hand size increases by at least 1, thus guaranteeing termination in
mT iterations.

Theorem 4.4 Given a real ε ∈ (0, 1], Algorithm 2 outputs an ε-optimal solution
for (Packing- I)-(Covering- I) in O(m logm/ε2) iterations, where each iteration
requires an oracle call that computes an eigenvector corresponding to the minimum
eigenvalue of a psd matrix.

For a given matrix M ∈ R
n×n , computing λmin(M) (almost) exactly requires

O(n3) time via a full eigenvalue decomposition of the matrix. If M is psd, a faster
approximation of λmin(M) can be obtained (using Lanczos’ algorithmwith a random
start) via the following result.

Theorem 4.5 ([19]) Let M ∈ S
n+ be a psd matrix with N non-zeros and γ ∈ (0, 1)

be a given constant. Then, there is a randomized algorithm that computes, with high
(i.e., 1 − o(1)) probability a unit vector v ∈ R

n such that vT Mv ≥ (1 − γ )λmax(M).
The algorithm takes O

( log n√
γ

)
iterations, each requiring O(N ) arithmetic operations.

By applying the lemma to (A)−1, we can approximate λmin(A) in Õ(nω) time.

4.4.2 Scalar Logarithmic Potential Algorithm For
(PACKING-I)–(COVERING-I)

Given a normalized pair of packing-covering SDPs of type I (Packing- I)-
(Covering- I) and a feasible primal solution X , we use the logarithmic-potential
weights pi = ε

m
θ∗

θ∗−Ai •X for i ∈ [m]. Averaging the inequalities with respect to this
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set of weights, we arrive at the knapsack problem (4.9). This gives rise to the follow-
ing procedure:

1 s ← 0; ε0 ← 1
4 ; t ← 0; ν(0) ← 1; X (0) ← 1i1T

i (for an arbitrary i ∈ [n])
2 while εs > ε do

3 δs ← ε3s
32m while ν(t) > εs do

4 θ(t) ← θ∗(t)δs , where θ∗(t) is the smallest positive root of the equation
εsθ

m

∑

i

1

θ − Ai • X (t)
= 1

y(t) ← p(t), where pi (t) := εsθ(t)

m

1

θ(t) − Ai • X (t)
, for i ∈ [n] /*

Set the dual solution */ v(t) = argminv:||v||=1 A(t) • vvT , where
A(t) := ∑

i pi (t)Ai /* Find the eigenvector corresponding to the
smallest eigenvalue of the average inequality matrix */

ν(t + 1) ← A(t) • X (t) − A(t) • v(t)v(t)T

A(t) • X (t) + A(t) • v(t)v(t)T
/* Compute the error */

τ(t + 1) ← εsθ(t)ν(t + 1)

4m(A(t) • X (t) + A(t) • v(t)v(t)T )
/* Compute the step

size */ X (t + 1) ← (1 − τ(t + 1))X (t) + τ(t + 1)v(t)v(t)T /*
Update the primal solution */ t ← t + 1

5 end
6 εs+1 ← εs

2
7 s ← s + 1
8 end

9 output (X̂ , ŷ) =
(

X (t−1)
(1−εs−1/m)θ(t−1) ,

(1+εs−1)y(t−1)
(1−εs−1)(1−2εs−1)θ(t−1)

)

Algorithm 3: Scalar logarithmic-potential algorithm for (Packing- I)-
(Covering- I)

In the above, for given numbers x ∈ R+ and δ ∈ (0, 1), we define the δ-(upper)
approximation xδ of x to be a number satisfying: x ≤ xδ < (1 + δ)x .

Theorem 4.6 Given ε ∈ (0, 1], Algorithm 3 outputs an ε-optimal solution for

(Covering- I)-(Packing- I) in O(m logψ + m/ε2) iterations, whereψ := λmax(A(0))
λmin(A(0))

and each iteration requires an oracle call that computes an eigenvector correspond-
ing to the minimum eigenvalue of a psd matrix.
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4.5 Matrix Algorithms

4.5.1 Matrix MWU Algorithm For
(COVERING-II)-(PACKING-II)

Let F(y) := ∑m
i=1 yi Ai . Then, we can rewrite the normalized version of (Packing-

II) as follows:

z∗
I = max 1T y (Packing- II)

s.t. λ j (F(y)) ≤ 1, ∀ j ∈ [n]
y ∈ R

m, y ≥ 0.

Averaging the inequalities with respect to the weights p j := p j∑
j p j

, where p j :=
(1 + ε)λ j (F(y)), we get

max 1T y

s.t.
∑

j

p jλ j (F(y)) ≤ 1, ∀ j ∈ [n]

y ∈ R
m, y ≥ 0.

Using the eigenvalue decomposition: F(y) = U�U T ,where� is the diagonalmatrix
containing the eigenvalues of F(y) and UU T = I , and letting

P := U

⎡

⎢⎢⎣

p1 0 · · · 0
0 p2 · · · 0
· · · · · · · · · · · ·
0 0 · · · pn

⎤

⎥⎥⎦ U T = (1 + ε)F(y)

Tr((1 + ε)F(y))
,

we obtain the following knapsack problem:

max 1T y

s.t.
∑

i

(P • Ai )yi ≤ 1, ∀ j ∈ [n]

y ∈ R
m, y ≥ 0.

An optimal solution is attained at the basis vector y = 1i ∈ R
m+ that minimizes P •

Ai . This gives rise to the following matrix MWU algorithm:

Theorem 4.7 Given an real ε ∈ (0, 1], Algorithm 2 outputs an ε-optimal solution
for (Covering- II)-(Packing- II) in O(n log n/ε2) iterations, where each iteration
requires matrix exponential computation, two oracle calls that computes the max-
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1 t ← 0; y(0) ← 0; X (0) ← 0; M(0) ← 0; T ← ε−2 ln n
2 while M(t) < T do
3 P(t) = (1 + ε)

∑m
i=1 yi (t)Ai /* Update the weight matrix by exponentiation */

4 i(t) ← argmini Ai • P(t) δ(t) ← 1/λmax(Ai(t)) /* Define the update step size */

X (t + 1) ← X (t) + δ(t)P(t)
I•P(t) ; y(t + 1) ← y(t) + δ(t)1i(t) /* Update the primal-dual

solution */
5 M(t + 1) ← λmax(

∑
i yi (t)Ai ) /* Compute the largest eigenvalue of LHS of dual */

6 t ← t + 1
7 end
8 L(t) ← mini Ai • X (t)

9 output (X̂ , ŷ) =
(

X (t)
L(t) ,

y(t)
M(t)

)

Algorithm 4:Matrix MWU algorithm for (Packing- II)-(Covering- II)

imum eigenvalue of a psd matrix, and a single oracle call to the minimization in
step 4.

The most demanding step in the above algorithm is the matrix exponential computa-
tion, which can be done in O(n3) time via a complete eigenvalue decomposition. A
more efficient approximation, particularly when the matrices Ai are sparse, can be
obtained via the following result.

Theorem 4.8 ([26]) There is an algorithm for approximating the matrix exponential
eF in time O(n2r log3 1

ε
), where r denotes the number of non-zeros in F ∈ S

n, and
ε is the approximation accuracy.

We remark that a matrix MWU algorithm and a theorem similar to Algorithm 4
and Theorem 4.7 for (Packing- I)-(Covering- I) have not yet been discovered and
are left as open problems.

4.5.2 Matrix Logarithmic Potential Algorithm For
(PACKING-I)-(COVERING-I)

Let F(y) := ∑m
i=1 yi Ai . Then,we can rewrite the normalized version of (Covering-

I) as

z∗
I = min 1T y (Packing- II)

s.t. λ j (F(y)) ≥ 1, ∀ j ∈ [n]
y ∈ R

m, y ≥ 0.

Averaging the inequalities with respect to the weights p j := ε
n

θ∗
λ j (F(y))−θ∗ , we get
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min 1T y

s.t.
∑

j

p jλ j (F(y)) ≥ 1, ∀ j ∈ [n]

y ∈ R
m, y ≥ 0.

Using the eigenvalue decomposition: F(y) = U�U T ,where� is the diagonalmatrix
containing the eigenvalues of F(y) and UU T = I , and letting

P := U

⎡

⎢⎢⎣

p1 0 · · · 0
0 p2 · · · 0
· · · · · · · · · · · ·
0 0 · · · pn

⎤

⎥⎥⎦ U T = εθ∗

n
(F(y) − θ∗ I )−1,

we obtain the following knapsack problem:

min 1T y

s.t.
∑

i

(P • Ai )yi ≥ 1,∀ j ∈ [n]

y ∈ R
m, y ≥ 0.

An optimal solution is attained at the basis vector y = 1i ∈ R
m+ that maximizes

P • Ai . This gives rise to the following matrix logarithmic-potential algorithm:

1 s ← 0; ε0 ← 1
2 ; t ← 0; ν(0) ← 1; y(0) ← 1

r
∑r

i=1 1i

2 while εs > ε do

3 δs ← ε3s
32n

4 while ν(t) > εs do

5 θ(t) ← θ∗(t)δs , where θ∗(t) is the smallest positive root of the equation
εsθ

n
Tr(F(y(t)) − θ I )−1 = 1

X (t) ← εsθ(t)

n
(F(y(t)) − θ(t)I )−1 /* Set the primal solution */ i(t) ← argmaxi Ai • X (t) /* Call

the maximization oracle */

6 ν(t + 1) ← X (t) • Ai(t) − X (t) • F(y(t))

X (t) • Ai(t) + X (t) • F(y(t))
/* Compute the error */

7 τ(t + 1) ← εsθ(t)ν(t + 1)

4n(X (t) • Ai(t) + X (t) • F(y(t)))
/* Compute the step size*/

y(t + 1) ← (1 − τ(t + 1))y(t) + τ(t + 1)1i(t) /* Update the dual solution */ t ← t + 1

8 end
9 εs+1 ← εs

2
10 s ← s + 1

11 end

12 output (X̂ , ŷ) =
(

(1−εs−1)X (t−1)

(1+εs−1)2θ(t−1))
,

y(t−1)
θ(t−1)

)

Algorithm 5: Matrix logarithmic-potential algorithm for (Packing- I)-
(Covering- I)

The most demanding steps are the computation of θ(t) and X (t) in steps 5 and 5,
respectively. Computing θ(t) can be done via binary search over a region determined
by repeated matrix multiplications and approximate minimum eigenvalue computa-



4 Oracle-Based Primal-Dual Algorithms for Packing … 61

tion (cf. Theorem 4.5). Once θ(t) is determined, computing X (t) requires a single
matrix inversion. The overall running time per iteration is Õ(nω) plus the time needed
by the maximization oracle in step 5.

Theorem 4.9 Given ε ∈ (0, 1], Algorithm 5 outputs an ε-optimal solution for
(Covering- I)-(Packing- I) in O(n logψ + n

ε2
) iterations, whereψ := r ·maxi λmax(Ai )

λmin( Â)

and each iteration requires O(log n
ε
) matrix multiplications and a single oracle call

to the maximization in step 5.

4.5.3 Matrix Logarithmic Potential Algorithm For
(PACKING-II)-(COVERING-II)

A symmetric version of Algorithm 5 for (Packing- II)-(Covering- II) can be given
as follows:

1 s ← 0; ε0 ← 1
4 ; t ← 0; ν(0) ← 1; y(0) ← 1i (for an arbitrary i ∈ [m])

2 while εs > ε do

3 δs ← ε3s
32n while ν(t) > εs do

4 θ(t) ← θ∗(t)δs , where θ∗(t) is the smallest positive root of the equation
εsθ

n
Tr(θ I − F(y(t)))−1 = 1 X (t) ← εsθ(t)

n
(θ(t)I − F(y(t)))−1 /* Set the

primal solution */ i(t) ← argmini Ai • X (t) /* Call the minimization oracle */

ν(t + 1) ← X (t) • F(y(t)) − X (t) • Ai(t)

X (t) • Ai(t) + X (t) • F(y(t))
/* Compute the error */

τ(t + 1) ← εsθ(t)ν(t + 1)

4n(X (t) • Ai(t) + X (t) • F(y(t)))
/* Compute the step size */

y(t + 1) ← (1 − τ(t + 1))y(t) + τ(t + 1)1i(t) /* Update the dual solution */
t ← t + 1

5 end
6 εs+1 ← εs

2
7 s ← s + 1
8 end

9 output (X̂ , ŷ) =
(

(1+εs−1)X (t−1)
(1−2εs−1)2θ(t−1)

,
y(t−1)
θ(t−1)

)

Algorithm 6: Materix logarithmic-potential algorithm for (Packing- II)-
(Covering- II)

Theorem 4.10 Given ε ∈ (0, 1], Algorithm 6 outputs an ε-optimal solution for
(Packing- II)-(Covering- II) in O(n logψ + n

ε2
) iterations, where ψ := O(log n

ε
)

and each iteration requires O(log n
ε
) matrix inversions and a single oracle call to

the minimization in step 4.
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Chapter 5
Almost Linear Time Algorithms for Some
Problems on Dynamic Flow Networks

Yuya Higashikawa, Naoki Katoh, and Junichi Teruyama

Abstract Motivated by evacuation planning, several problems regarding dynamic
flow networks have been studied in recent years. A dynamic flow network consists of
an undirected graph with positive edge lengths, positive edge capacities, and positive
vertex weights. The road network in an area can be treated as a graph where the edge
lengths are the distances along the roads and the vertex weights are the number of
people at each site. An edge capacity limits the number of people that can enter the
edge per unit time. In a dynamic flow network, when particular points on edges or
vertices called sinks are given, all of the people are required to evacuate from the
vertices to the sinks as quickly as possible. This chapter gives an overview of two
of our recent results on the problem of locating multiple sinks in a dynamic flow
path network such that the max/sum of evacuation times for all the people to sinks
is minimized, and we focus on techniques that enable the problems to be solved in
almost linear time.

5.1 Introduction

Recently, many parts of the world have been affected by disasters including earth-
quakes, nuclear plant accidents, volcanic eruptions, and flooding, highlighting the
urgent need for orderly evacuation planning. One powerful tool for evacuation plan-
ning is the dynamic flow model introduced by Ford and Fulkerson [10], which repre-
sents movement of commodities over time in a network. In this model, we are given a
graph with source vertices and sink vertices. Each source vertex is associated with a
positive weight, called a supply; each sink vertex is associated with a positive weight,
called a demand; and each edge is associated with a positive length and capacity.
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Table 5.1 Summary of minmax k-sink problems

Path General capacities: O(n log n + k2 log4 n), O(n log3 n) [7]

Uniform capacity: O(n + k2 log2 n), O(n log n) [7]

Tree General capacities: O(max{k, log n} · kn log4 n) [9]

Uniform capacity: O(max{k, log n} · kn log3 n) [9]

General graph General capacities: FPTAS for a fixed k [3]

Uniform capacity: FPTAS for a fixed k [3]

An edge capacity limits the amount of supply that can enter the edge per unit time.
One variant of the dynamic flow problem is the quickest transshipment problem, in
which the objective is to send exactly the right amount of supply out of sources into
sinks while satisfying demand constraints in the minimum overall time. Hoppe and
Tardos [17] provided a polynomial time algorithm for this problem in the case where
the transit times are integral. However, the complexity of their algorithm is very high.
Finding a practical polynomial time solution to this is still an open problem. Readers
are referred to a recent survey by Skutella [20] on dynamic flows.

This chapter discusses related problems called k-sink problems [3, 5–9, 14–16,
18], in which the objective is to find the locations of k sinks in a given dynamic
flow network so that all the supply is sent to the sinks as quickly as possible. The
following two criteria can be naturally considered for determining the optimality of
the locations: minimization of evacuation completion time and aggregate evacuation
time (i.e., average evacuation time). We call the k-sink problem that requires finding
the locations of k sinks that minimize the evacuation completion time (resp., the
aggregate evacuation time) the minmax (resp., minsum) k-sink problem. Although
several papers have studied minmax k-sink problems in dynamic flow networks [3,
7–9, 14, 15, 18], minsum k-sink problems in dynamic flow networks have not been
studied except for the case of path networks [5, 6, 15, 16].1 Tables5.1 and 5.2
summarize the previous results for the minmax k-sink problems and the minsum
k-sink problems, respectively.

There are two models for the evacuation method. Under the confluent flow model,
all the supply leaving a vertex must evacuate to the same sink through the same
edges, and under the non-confluent flow model, there is no such restriction. To our
knowledge, almost all of the papers that deal with the k-sink problems [3, 5–9, 15]
adopt the confluent flowmodel, while only one paper [16] handles both of themodels.

Although it may seem natural to model the evacuation behavior of people by
treating each supply as a discrete quantity as in [17, 18], almost all of the previous
papers on sink problems [3, 7–9, 14–16] have treated each supply as a continuous

1 Note that the minsum 1-sink problem in general networks can be solved in polynomial time
by applying the following two facts: (1) Baumann and Skutella [2] provided a polynomial time
algorithm for the problem of computing a dynamic flow to a fixed sink in a general network while
minimizing the aggregate evacuation time. (2) For the minsum 1-sink problem in general networks,
one can prove that there exists an optimal sink located at a vertex in a similar manner to the
well-known node optimality theorem for the 1-median problem [12].
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Table 5.2 Summary of minsum k-sink problems

Path General capacities: O(kn log4 n) [6]

min{O(kn log3 n), n2O(
√
log k log log n) log3 n} [16]

Uniform capacity: O(kn log3 n) [5]

min{O(kn log2 n), n2O(
√
log k log log n) log2 n} [16]

Tree Open

General graph

quantity since it is easier to treat the problems mathematically and the effect is
negligible when the number of people is large. Throughout this chapter, we adopt
the model with continuous supplies.

We also give an overview of two of our recent results [7, 16] on the problems
of locating multiple sinks on dynamic flow path networks such that the max/sum of
evacuation times for all the people to sinks isminimized, andwe focus on algorithmic
frameworks that enable solving the problems in almost linear time.

5.2 Preliminaries

For two real values a, b with a < b, let [a, b] = {t ∈ R | a ≤ t ≤ b}, [a, b) =
{t ∈ R | a ≤ t < b}, (a, b] = {t ∈ R | a < t ≤ b}, and (a, b) = {t ∈ R | a < t <

b}, whereR is the set of real values. For two integers i, j with i ≤ j , let [i.. j] = {h ∈
Z | i ≤ h ≤ j}, whereZ is the set of integers.Adynamicflowpath networkP is given
as a 5-tuple (P,w, c, l, τ ), where P is a path with vertex set V = {vi | i ∈ [1..n]} and
edge set E = {ei = (vi , vi+1) | i ∈ [1..n − 1]}, w is a vector 〈w1, . . . ,wn〉 of which
each componentwi is theweight of vertex vi representing the amount of supply (e.g.,
the number of evacuees or cars) located at vi , c is a vector 〈c1, . . . , cn−1〉 of which
each component ci is the capacity of edge ei representing the upper bound on the
flow amount that can enter ei per unit time, l is a vector 〈�1, . . . , �n−1〉 of which each
component �i is the length of edge ei (i.e., the distance between two end vertices of
ei ), and τ is the time taken for unit supply to move unit distance along any edge.

We say that a point p lies on path P = (V, E), denoted by p ∈ P , if p lies on
a vertex v ∈ V or an edge e ∈ E . We assume that path P can be represented by a
horizontal line segment along which the vertices v1, v2, . . . , vn are arranged in order
from left to right. For twopoints p, q ∈ P , p ≺ qmeans that p lies to the left side ofq.
For two points p, q ∈ P , p � q means that p ≺ q or p and q lie at the same location.
For two points p, q ∈ P such that p � q, p divides an edge (vi , vi+1) in the ratio
rp : 1 − rp, and q divides an edge (v j , v j+1) in the ratio rq : 1 − rq , let L(p, q) be the
distance between p and q, that is, L(p, q) = (1 − rp)�i + rq� j + ∑ j−1

h=i+1 �h (where∑i
h=i+1 �h = 0 and

∑i−1
h=i+1 �h = −�i ). Let us consider two integers i, j ∈ [1..n]

with i < j . We denote by Pi, j a subpath of P from vi to v j , and byPi, j a subnetwork
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of P consisting of subpaths Pi, j . Let Li, j be the distance between vi and v j , that is,
Li, j = ∑ j−1

h=i �h , and let Ci, j be the minimum capacity among all the edges between
vi and v j , that is,Ci, j = min{ch | h ∈ [i.. j − 1]}. For i ∈ [1..n], we denote the sumof
weights from v1 to vi byWi = ∑i

j=1 wj .Note that, given adynamicflowpathnetwork
P , if we construct two lists of Wi and L1,i for all i ∈ [1..n] in O(n) preprocessing
time, we can obtainWi for any i ∈ [1..n] and Li, j = L1, j − L1,i for any i, j ∈ [1..n]
with i < j in O(1) time. In addition, Ci, j for any i, j ∈ [1..n] with i < j can be
obtained in O(1) time with O(n) preprocessing time, which is known as the range
minimum query [1, 4].

A k-sink x is a k-tuple (x1, . . . , xk) of points on P such that xi ≺ x j for any i < j .
We assume that no two sinks lie on the same edge.2 We define the function Id for
point p ∈ P as follows: the value Id(p) is an integer such that vId(p) � p ≺ vId(p)+1

holds, that is, if p lies on edge (vi , vi+1) or at vertex vi , Id(p) = i . A divider d is
a (k − 1)-tuple (d1, . . . , dk−1) of real values such that 0 ≤ di < d j ≤ Wn for any
i < j . A pair (x,d) is called valid if and only if WId(xi ) ≤ di ≤ WId(xi+1) holds for
any i . A valid pair (x,d) determines what amount of supply from which vertex flows
to which sink so that the portion di − di−1 of supply is assigned to flow to sink xi ,
where d0 = 0 and dk = Wn . More precisely, given a valid pair (x,d), the portion
WId(xi ) − di−1 of supply that originates from the left side of xi flows to sink xi , and
the portion di − WId(xi ) of supply that originates from the right side of xi also flows to
sink xi . For instance, under the non-confluent flowmodel, ifWh−1 < di < Wh where
h ∈ [1..n], the portion di − Wh−1 of the wh supply at vh flows to sink xi and the rest
of the Wh − di supply flows to sink xi+1. The difference between the confluent flow
model and the non-confluent flow model is that the confluent flow model requires
that each value di of a divider d must take a value in {W1, . . . ,Wn}, whereas the
non-confluent flow model does not. For a dynamic flow path network P and a valid
pair (x,d), the evacuation completion time CT(P, x,d) is the time at which all the
supply completes the evacuation. The aggregate evacuation time AT(P, x,d) is the
sum of the evacuation completion time for all the supply. Explicit definitions of these
are given in Sect. 5.3.

5.3 Objective Functions

Suppose that we are given a divider d = (d1, . . . , dk−1). This d implies that we have
k 1-sink subproblems. The i th subproblem consists of a subnetwork Ph,h′ such that
the weight of v j iswj for j ∈ [h + 1..h′ − 1], while those of vh and vh′ areWh − di−1

and di − Wh′−1, respectively, where Wh−1 < di−1 ≤ Wh and Wh′−1 < di ≤ Wh′ . To
explicitly define the evacuation completion time and the aggregate evacuation time,

2 It turns out that this assumption does not result in a loss of generality once the cost function is
introduced later. If some adjacent two sinks xi and xi+1 lie on edge (v j , v j+1), that is, v j ≺ xi ≺
xi+1 ≺ v j+1, moving xi to v j or moving xi+1 to v j+1 does not increase the cost.
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we first consider the case of the 1-sink problem, and then extend the argument to the
general case of the k-sink problem.

5.3.1 Objective Functions for the 1-Sink Problem

Given a dynamic flow path network P = (P,w, c, l, τ ) with n vertices, we assign
a unique sink to a point x , that is, x = (x) and d = (), which is the 0-tuple. We
consider only the case where x is on an edge ei excluding its end vertices, that is,
vi ≺ x ≺ vi+1, since the case where x is on a vertex can be treated similarly. In this
case, all the supply on the left side of x (i.e., at v1, . . . , vi ) flows to the right toward
sink x , and all the supply on the right side of x (i.e., at vi+1, . . . , vn) flows to the left
toward sink x .

To treat this case, we introduce some new notation. Let the function θ x,+(z)
denote the time at which the first z − Wi of supply on the right side of x completes
its evacuation to sink x (where θ x,+(z) = 0 for z ∈ [0,Wi ]). Similarly, let θ x,−(z)
denote the time at which the first Wi − z of supply on the left side of x completes
its evacuation to sink x (where θ x,−(z) = 0 for z ∈ [Wi ,Wn]). Higashikawa [13]
showed that the values θ x,+(Wn) and θ x,−(0), which are the evacuation completion
times for all the supply on the right and left sides of x , respectively, are given by the
following formulae:

θ x,+(Wn) = max

{
Wn − Wj−1

Ci, j
+ τ · L(x, v j ) | j ∈ [i + 1..n]

}

, and (5.1)

θ x,−(0) = max

{
Wj

C j,i+1
+ τ · L(v j , x) | j ∈ [1..i]

}

. (5.2)

Using these, the evacuation completion time CT(P, (x), ()) is given by

CT(P, (x), ()) = max
{
θ x,+(Wn), θ

x,−(0)
}
. (5.3)

We can generalize formulae (5.1) and (5.2) to the case of any z ∈ [0,Wn] as follows:

θ x,+(z) = max{θ x,+, j (z) | j ∈ [i + 1..n]}, (5.4)

where θ x,+, j (z) for j ∈ [i + 1..n] is defined as

θ x,+, j (z) =
{
0 if z ≤ Wj−1,
z−Wj−1

Ci, j
+ τ · L(x, v j ) if z > Wj−1,

(5.5)

and
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Fig. 5.1 The blue (resp., red) thick half-open segments indicate the function θ x,+(z) (resp.,
θ x,−(z)). The gray area indicates AT(P, (x), ())

θ x,−(z) = max{θ x,−, j (z) | j ∈ [1..i]}, (5.6)

where θ x,−, j (z) is defined for j ∈ [1..i] as

θ x,−, j (z) =
{

Wj−z
C j,i+1

+ τ · L(v j , x) if z < Wj ,

0 if z ≥ Wj .
(5.7)

Then, the aggregate evacuation times for the supply on the right and left sides of x
are

∫ Wn

Wi

θ x,+(z)dz and
∫ Wi

0
θ x,−(z)dz,

respectively. Thus, the aggregate evacuation time AT(P, (x), ()) is given by

AT(P, (x), ()) =
∫ Wi

0
θ x,−(z)dz +

∫ Wn

Wi

θ x,+(z)dz. (5.8)

See also Fig. 5.1.

5.3.2 Objective Functions for k-Sink

Let us consider a valid pair consisting of a k-sink x = (x1, . . . , xk) and a divider
d = (d1, . . . , dk−1) such that each sink is on an edge excluding its end vertices, that
is, vId(xi ) ≺ xi ≺ vId(xi )+1. In this situation, for each i ∈ [1..k], the first di − WId(xi )

of supply on the right side of xi and the first WId(xi ) − di−1 of supply on the left
side of xi move to sink xi . By the argument of the previous section, the evacuation
completion times for the supply on the right and left sides of xi are represented by
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θ xi ,+(di ) and θ xi ,−(di−1),

respectively. Thus, the evacuation completion time CT(P, x,d) is given by

CT(P, x,d) = max
{
θ xi ,+(di ), θ

xi ,−(di−1) | i ∈ [1..k]} , (5.9)

where d0 = 0 and dk = Wn . The aggregate evacuation times for the supply on the
right and left sides of xi are

∫ di

WId(xi )

θ xi ,+(z)dz and
∫ WId(xi )

di−1

θ xi ,−(z)dz,

respectively. Thus, the aggregate evacuation time AT(P, x,d) is given by

AT(P, x,d) =
∑

i∈[1..k]

(∫ WId(xi )

di−1

θ xi ,−(z)dz +
∫ di

WId(xi )

θ xi ,+(z)dz

)

, (5.10)

where d0 = 0 and dk = Wn .

5.4 Minmax k-Sink Problems on Paths

In this section, we consider the minmax k-sink problems on path networks under the
confluent flow model, which is precisely defined as

(Minmax-k-Sink-Path-Confluent-Flow)
Input: A dynamic flow path network P = (P,w, c, l, τ ).
Goal: Find a solution (x,d) to the problem

min. CT(P, x, d)

s.t. x = (x1, . . . , xk) ∈ Pk , xh ≺ xl ∀h < l,

d = (d1, . . . , dk−1) ∈ {Wh | h ∈ [1..n]}k−1, WId(xh) ≤ dh ≤ WId(xh+1) ∀h.

For theMinmax-k-Sink-Path-Confluent-Flow problem, [7] reported the fol-
lowing result, which is the best so far:

Theorem 5.1 ([7]) TheMinmax-k-Sink-Path-Confluent-Flow problem can be
solved in O(min{n log n + k2 log4 n, n log3 n}) time. Moreover, if the capacities ofP
are uniform, the Minmax-k-Sink-Path-Confluent-Flow problem can be solved
in O(min{n + k2 log2 n, n log n}) time.
Theorem 5.1 implies that the problem is solved in almost linear time for any k. In
[7], two kinds of algorithms are provided: One is an O(n log n + k2 log4 n) time
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algorithm based on the parametric search method, and the other is an O(n log3 n)

time algorithm based on the sorted matrix method.
Both algorithms require repeatedly solving the problems of locating 1-sink for

multiple choices of different subnetworks. Note that the optimal solution for the prob-
lem of locating 1-sink on Pi, j is a point x∗ that minimizes the following expression
over x ∈ Pi, j

CT(Pi, j , (x), ()) = max
{
θ x,+(Wj ), θ

x,−(Wi−1)
}
. (5.11)

Both algorithms also require repeatedly performing feasibility tests for multiple
choices of different subnetworks. We say that Pi, j is (t, q)-feasible if and only if
the answer of the following decision problem is “yes”:

(Feasibility-Test-for-Subpath)
Input: A dynamic flow path network P = (P,w, c, l, τ ), a positive real t ∈ R

+,
integers q, i, j satisfying q ∈ [1..k] and i, j ∈ [1..n] with i < j .
Goal: Determine whether there exists a pair of vectors (x′,d′) such that

CT(Pi, j , x′,d′) ≤ t,

x′ = (x1, . . . , xq) ∈ Pq
i, j , xh ≺ xl ∀h < l,

d′ = (d1, . . . , dq−1) ∈ {Wh | h ∈ [i.. j]}q−1, WId(xh) ≤ dh ≤ WId(xh+1) ∀h.

Note that [7] developed a data structure called theCUE tree to efficiently compute
θ x,−(Wi−1) and θ x,+(Wj ) for any integers i, j ∈ [1..n] with i < j and any x ∈ Pi, j .
For the case of general edge capacities, the CUE tree can be constructed in O(n log n)

time, and θ x,−(Wi−1) and θ x,+(Wj ) can be computed in O(log2 n) time by using the
CUE tree. See [7] for more detail.

Lemma 5.1 ([7]) Given a dynamic flow path network P = (P,w, c, l, τ ) with n
vertices, the CUE tree can be constructed in O(n log n) time. Moreover, if the capac-
ities of P are uniform, the CUE tree can be constructed in O(n) time.

Lemma 5.2 ([7]) Given a dynamic flow path network P = (P,w, c, l, τ ) with n
vertices, suppose that the CUE tree is available. Then, for any integers i, j ∈ [1..n]
with i < j and any x ∈ Pi, j , θ x,−(Wi−1) and θ x,+(Wj ) can be computed in O(log2 n)

time. Moreover, if the capacities of P are uniform, θ x,−(Wi−1) and θ x,+(Wj ) can be
computed in O(log n) time.

In the rest of this section, we first describe how feasibility tests are performed
in Sect. 5.4.1 and how the 1-sink problem for a subnetwork is solved in Sect. 5.4.2,
and then show the frameworks of the parametric search method in Sect. 5.4.3 and the
sorted matrix method in Sect. 5.4.4.
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5.4.1 Feasibility Test

In [7], to solve theMinmax-k-Sink-Path-Confluent-Flow problem, an algorithm
repeatedly tests the (t, q)-feasibility ofPi, j for multiple choices of different 4-tuples
(t, q, i, j). Let CTOPT(q, i, j) denote the optimal cost for the problem of locating
q-sink on Pi, j . Then, for a positive real t ∈ R

+, integers q, i, j satisfying q ∈ [1..k]
and i, j ∈ [1..n] with i < j , Pi, j is (t, q)-feasible if and only if CTOPT(q, i, j) ≤ t
holds.

Lemma 5.3 ([7]) Given a dynamic flow path network P = (P,w, c, l, τ ) with n
vertices, suppose that the CUE tree is available. For integers q, i, j satisfying
q ∈ [1..k] and i, j ∈ [1..n] with i < j , the (t, q)-feasibility of Pi, j can be tested
in O(min{n log2 n, k log3 n}) time. Moreover, if the capacities of P are uniform, the
(t, q)-feasibility of Pi, j can be tested in O(min{n, k log n}) time.
Proof Weprove only the case of general capacities. For the case of uniform capacity,
see [7].

To determine the (t, q)-feasibility of Pi, j , we first place the sinks consecutively
from left to right as far to the right as possible. We then compute the maximum
integer h such that θ vh ,−(Wi−1) ≤ t and θ vh+1,−(Wi−1) > t holds. Next, we solve

θ vh+1,−(Wi−1) − α · τ�h = t (5.12)

for α. If α < 1, we move the leftmost sink x1 to the point that divides edge eh =
(vh, vh+1) at a ratio of 1 − α : α, otherwise we place x1 at vh . We then compute the
maximum integer l1 such that θ x1,+(Wl1) ≤ t and θ x1,+(Wl1+1) > t holds. We thus
determine the maximal subnetwork Pi,l1 such that CTOPT(1, i, l1) ≤ t . In the same
manner, we repeatedly isolate the maximal subnetworks Pi,l1 ,Pl1+1,l2 ,Pl2+1,l3 , . . .,
and if the qth subnetwork is found to have lq < j , then Pi, j is not (t, q)-feasible,
otherwise it is (t, q)-feasible.

Let us now look at the time complexity. Isolating Pi,l1 consists of (a) computing
h, (b) solving the equation for α, and (c) computing l1. Obviously (b) takes O(1)
time. For (a), applying a binary search takes O(log3 n) time because we compute
θ va ,−(Wi−1) over a ∈ [i.. j] O(log n) times and each θ va ,−(Wi−1) can be computed in
O(log2 n) time using the CUE tree by Lemma 5.2. Similarly (c) takes O(log3 n) time
by binary search. In this way, we can isolate at most q subnetworks in O(q log3 n) =
O(k log3 n) time. However, if we simply scan from left to right instead of using
a binary search for (a) and (c), that is, if we compute θ va ,−(Wi−1) for a = i, i +
1, . . . , h, h + 1 and θ x1,−(Wb) for b = h + 1, h + 2, . . . , l1, l1 + 1, it takes O((l1 −
i) log2 n) time to determine Pi,l1 . In this way, we can isolate at most p subnetworks
in O(( j − i) log2 n) = O(n log2 n) time. �
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5.4.2 Solving the 1-Sink Problem

Lemma 5.4 ([7]) Given a dynamic flow path network P = (P,w, c, l, τ ) with n
vertices, suppose that the CUE tree is available. For any integers i, j satisfying i, j ∈
[1..n] with i < j , CTOPT(1, i, j) can be computed in O(log3 n) time. Moreover, if
the capacities of P are uniform, CTOPT(1, i, j) can be computed in O(log n) time.

Proof We prove only the case of general capacities. See [7] for the case of uniform
capacity.

Recalling Eq. (5.11), we have

CTOPT(1, i, j) = min
x∈Pi, j

CT(Pi, j , (x), ())

= min
x∈Pi, j

max
{
θ x,+(Wj ), θ

x,−(Wi−1)
}
. (5.13)

Because θ x,+(Wj ) and θ x,−(Wi−1) are monotonically decreasing and monotonically
increasing, respectively, in x ∈ Pi, j , if an integer h ∈ [i.. j] satisfies θ vh ,−(Wi−1) ≤
θ vh ,+(Wj ) and θ vh+1,−(Wi−1) > θ vh+1,+(Wj ), then there exists x∗ that minimizes
CT(Pi, j , (x), ()) on edge eh including vh and vh+1. We can apply binary search
to compute this h, which can be done in O(log3 n) time using the CUE tree (see
Lemma 5.2). Once h is determined, x∗ can be computed as follows: We solve

θ vh+1,−(Wi−1) − α · τ�h = θ vh ,+(Wj ) − (1 − α) · τ�h (5.14)

for α in O(1) time. If α ≤ 0, let x∗ = vh+1 and compute CTOPT(1, i, j) =
CT(Pi, j , (vh+1), ()). If α ≥ 1, let x∗ = vh and compute CTOPT(1, i, j) =
CT(Pi, j , (vh), ()). Otherwise, let x∗ be the point that divides edge eh = (vh, vh+1)

at a ratio of 1 − α : α and compute CTOPT(1, i, j) = θ vh+1,−(Wi−1) − α · τ�h =
θ vh ,+(Wj ) − (1 − α) · τ�h . Using the CUE tree, we can compute these values in
O(log2 n) time. Thus, CTOPT(1, i, j) can be computed in O(log3 n) + O(1) +
O(log2 n) = O(log3 n) time. �

5.4.3 Parametric Search Method

In the parametric search method, we first compute the maximum integer i1 such
that Pi1+1,n is not (CTOPT(1, 1, i1), k − 1)-feasible and store t1 = CTOPT(1, 1, i1 +
1) as a feasible value. Note that t∗ = CTOPT(k, 1, n) satisfies CTOPT(1, 1, i1) <

t∗ ≤ t1. To compute i1, we apply binary search by executing O(log n) tests for
(CTOPT(1, 1, a), k − 1)-feasibility of Pa+1,n over 1 ≤ a ≤ n. For an integer a, we
can computeCTOPT(1, 1, a) in O(log3 n) time by Lemma 5.4. Also, by Lemma 5.3,
we can test whether Pa+1,n is (CTOPT(1, 1, a), k − 1)-feasible in O(k log3 n) time.
Summarizing these arguments,we can compute i1 and t1 in {O(log3 n) + O(k log3 n)}
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× O(log n) = O(k log4 n) time. Next, we compute themaximum integer i2 such that
Pi2+1,n is not (CTOPT(1, i1 + 1, i2), k − 2)-feasible and store t2 = CTOPT(1, i1 +
1, i2 + 1) as a feasible value, which can be done in O(k log4 n) time in the sameman-
ner as in the computation of (i1, t1). Sequentially, we determine (i3, t3), . . . , (ik−1,

tk−1) in (k − 3) × O(k log4 n) time and eventually compute tk = CTOPT(1, ik−1 +
1, n) in O(log3 n) time. Note that t∗ = min{ti | i = 1, 2, . . . , k} holds, which can be
computed in O(k) time.We then execute a (t∗, k)-feasibility test forP in O(k log3 n)

time, so that the optimal k-sink is obtained.We thus see that the problem can be solved
in (k − 1) × O(k log4 n) + O(log3 n) + O(k) + O(k log3 n) = O(k2 log4 n) time
once the CUE tree is constructed. Since it takes O(n log n) time to construct the
CUE tree by Lemma 5.1, the total time complexity is O(n log n + k2 log4 n).

For the case of uniform capacity, the same argument holds. Applying
Lemmas 5.1, 5.3, and 5.4, we have a total time complexity of O(n + k2 log2 n).

5.4.4 Sorted Matrix Method

A matrix A is sorted if and only if each row and column of A is sorted in non-
decreasing order. The sorted matrix method is based on the following lemma shown
in [11]:

Lemma 5.5 ([11])Consider a minimization problem Q with an instance I of size n.
Suppose that the feasibility of any value for I can be tested in g(n) time. Let A be an
n × n sorted matrix such that each element can be computed in f (n) time. Then, the
minimum element of A that is feasible for Q can be found in O(n f (n) + g(n) log n)

time.

In [7], an n × n matrix A is defined such that the (i, j)th entry of A is given by

A[i, j] =
{
CTOPT(1, n − i + 1, j) if n − i + 1 ≤ j
0 otherwise.

(5.15)

Note that we do not actually compute all the elements of A, but compute the element
A[i, j] on demand as needed.

Let us confirm that matrix A is sorted. It is also clear that matrix A includes
CTOPT(1, l, r) for every pair of integers (l, r) such that l, r ∈ [1..n] with l < r . In
addition, there exists a pair (l, r) such that CTOPT(1, l, r) = CTOPT(k, 1, n). These
facts imply that the minimum element A[i, j] such that P is (A[i, j], k)-feasible is
CTOPT(k, 1, n), and hence we can apply Lemma 5.5 to solve theMinmax- k- Sink-
Path- Confluent- Flow problem as follows: Once the CUE tree is constructed,
we have f (n) = O(log3 n) by Lemma 5.4 and g(n) = O(n log2 n) by Lemma 5.3,
so the problem can be solved in O(n log3 n) time. Because it takes O(n log n) time
to construct the CUE tree by Lemma 5.1, the total time complexity is O(n log n) +
O(n log3 n) = O(n log3 n).
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For the case of uniform capacity, the same argument holds. Applying
Lemmas 5.1, 5.3, and 5.4, we have a total time complexity of O(n log n).

5.5 Minsum k-Sink Problems on Paths

In this section, our task is to find a valid pair (x,d) that minimizes the aggregate
evacuation time AT(P, x,d). This task can be precisely represented as follows:

(Minsum-k-Sink-Path)
Input: A dynamic flow path network P = (P,w, c, l, τ ).
Goal: Find a solution (x,d) to the problem

min. AT(P, x,d)

s.t. x = (x1, . . . , xk) ∈ Pk, xh ≺ xl ∀h < l,

d = (d1, . . . , dk−1) ∈ R
k−1, WId(xh) ≤ dh ≤ WId(xh+1) ∀h.

(Minsum-k-Sink-Path-Confluent-Flow)
Input: A dynamic flow path network P = (P,w, c, l, τ ).
Goal: Find a solution (x,d) to the problem

min. AT(P, x, d)

s.t. x = (x1, . . . , xk) ∈ Pk , xh ≺ xl ∀h < l,

d = (d1, . . . , dk−1) ∈ {Wh | h ∈ [1..n]}k−1, WId(xh) ≤ dh ≤ WId(xh+1) ∀h.

For theMinsum-k-Sink-Path problem, [16] reported the following result, which
is the best so far:

Theorem 5.2 ([16]) The Minsum-k-Sink-Path/Minsum-k-Sink-Path-
Confluent-Flow problems can be solved in min{O(kn log3 n), n2O(

√
log k log log n)

log3 n} time. Moreover, if the capacities of P are uniform, then both the problems
can be solved in min{O(kn log2 n), n2O(

√
log k log log n) log2 n} time.

For the confluent flow model, it was shown in [6, 15] that for the minsum k-sink
problems, there exists an optimal k-sink such that all of the k sinks are at vertices.
[16] extended this fact to the non-confluent flow model.

Lemma 5.6 ([6, 15, 16]) For the minsum k-sink problem in a dynamic flow path
network, there exists an optimal k-sink such that all of the k sinks are at vertices
under the confluent/non-confluent flow model.

Lemma 5.6 implies that it is sufficient to consider only the case where every sink is
at a vertex. Thus, we suppose x = (x1, . . . , xk) ∈ V k , where xi ≺ x j for i < j .
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The fundamental idea of [16] for solving theMinsum-k-Sink-Path problem is to
reduce it to the minimum k-link path problem. In the minimum k-link path problem,
we are given a weighted complete directed acyclic graph (DAG) G = (V ′, E ′,w′)
with V ′ = {v′

i | i ∈ [1..n]} and E ′ = {(v′
i , v

′
j ) | i, j ∈ [1..n], i < j}. Each edge

(v′
i , v

′
j ) is associated with a weight w′(i, j). A k-link path is a path that contains

exactly k edges. The task is to find a k-link path from v′
1 to v

′
n that minimizes the sum

of weights of k edges. The minimum k-link path problem is represented as follows:

(Minimum-k-Link-Path)
Input: A weighted complete DAG G = (V ′, E ′,w′).
Goal: Find a k-link path (v′

a0 = v′
1, v

′
a1 , v

′
a2 , . . . , v

′
ak−1

, v′
ak = v′

n) from v′
1 to v

′
n .

min.
k∑

i=1

w′(ai−1, ai )

s.t. ai ∈ [0..n], a0 = 1, ak = n, ah < al ∀h < �.

Schieber [19] showed that the Minimum-k-Link-Path can be solved in almost
linear time3 regardless of k if the weight function w′ satisfies the concave Monge
property.

Definition 5.1 (Concave Monge property) We say that a function f : Z × Z → R

satisfies the concaveMonge property if for any integers i, j with i + 1 < j , f (i, j) +
f (i + 1, j + 1) ≤ f (i + 1, j) + f (i, j + 1) holds.

Lemma 5.7 ([19]) Given a weighted complete DAG with n vertices, if the weight
function satisfies the concave Monge property, the Minimum-k-Link-Path can be
solved in min{O(kn), n2O(

√
log k log log n)} time.

Higashikawa et al. [16] presented a reduction from Minsum-k-Sink-Path to
Minimum-(k + 1)-link-Path such that the weight function w′ satisfies the concave
Monge property. Let a dynamic flowpath networkP = (P = (V, E),w, c, l, τ )with
n vertices be an instance ofMinsum-k-Sink-Path. We prepare a weighted complete
DAG G = (V ′, E ′,w′) with n + 2 vertices, where V ′ = {v′

i | i ∈ [0..n + 1]} and
E ′ = {(v′

i , v
′
j ) | i, j ∈ [0..n + 1], i < j}. We set the weight function w′ as

w′(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

ATOPT(i, j) i, j ∈ [1..n], i < j,
AT(Pi,n, (vi ), ()) i ∈ [1..n] and j = n + 1,
AT(P1, j , (v j ), ()) i = 0 and j ∈ [1..n],
∞ i = 0 and j = n + 1,

(5.16)

where ATOPT(i, j) is the optimal aggregate evacuation time required to move all
the supply between vi and v j to one of two sinks vi or v j . On the weighted com-
plete DAG G constructed as above, let us consider a (k + 1)-link path (v′

a0 =

3 Note that we assume that the weight function w′ is not given explicitly, but that a value w′(i, j)
can be obtained in constant time whenever required.
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v′
0, v

′
a1 , . . . , v

′
ak , v

′
ak+1

= v′
n+1) from v′

0 to v′
n+1, where a1, . . . , ak are integers sat-

isfying 0 < a1 < a2 < · · · < ak < n + 1. The sum of weights of this (k + 1)-link
path is

k∑

i=0

w′(ai , ai+1) = AT(P1,a1 , (va1), ()) +
k−1∑

i=1

ATOPT(ai , ai+1) + AT(Pak ,n, (vak ), ()).

This value is equivalent to mind AT(P, x,d) for a k-sink x = (va1 , va2 , . . . , vak ),
which implies that a minimum (k + 1)-link path on G corresponds to an optimal
k-sink location for a dynamic flow path network P .

Let us consider the following subtasks:

(Minsum-Flow-for-Subpath)
Input: A dynamic flow path network P = (P,w, c, l, τ ), integers i, j ∈ [1..n] with
i < j .
Goal: Find a value d such that

min. AT(Pi, j , x = (vi , v j ),d = (d))

s.t. Wi ≤ d ≤ Wj−1.

(Minsum-Flow-for-Subpath-Confluent-Flow)
Input: A dynamic flow path network P = (P,w, c, l, τ ), integers i, j ∈ [1..n] with
i < j .
Goal: Find a value d such that

min. AT(Pi, j , x = (vi , v j ),d = (d))

s.t. d ∈ {Wh | h ∈ [i.. j − 1]}.

Note that [16] developed a data structure to efficiently solve both of these prob-
lems. This data structure can be constructed in O(n log2 n) time and can be used to
solve Minsum-Flow-for-Subpath/Minsum-Flow-for-Subpath-Confluent-
Flow in O(log3 n) time. See [16] for details.

Lemma 5.8 ([16]) For a given dynamic flow path network P with n vertices, there
exists a segment tree T that satisfies the following conditions:

1. T can be constructed in O(n log2 n) time.
2. Minsum-Flow-for-Subpath/Minsum-Flow-for-Subpath-Confluent-

Flow can be solved in O(log3 n) time by using T .
3. If the capacities of P are uniform, thenMinsum-Flow-for-Subpath/Minsum-

Flow-for-Subpath-Confluent-Flow can be solved in O(log2 n) time by
using T .

Because w′ satisfies the concave Monge property (see Sect. 5.5.2), Lemmas 5.7
and 5.8 lead to Theorem 5.2.
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In the rest of this section,wefirst observe the properties of the aggregate evacuation
time in Sect. 5.5.1 and then show that the weighted function w′ obtained by the
reduction satisfies the concave Monge property in Sect. 5.5.2.

5.5.1 Property of Aggregate Evacuation Time

Recalling that we consider only the case where every sink is at a vertex, we simply
use θ i,+(z) and θ i,−(z) instead of θ vi ,+(z) and θ vi ,+(z), respectively.

We next give the general form of the aggregate evacuation time. Letφi,+(z) denote
the aggregate evacuation time when the first z − Wi of supply on the right side of vi
flows to sink vi . Similarly, we denote by φi,−(z) the aggregate evacuation time when
the firstWi−1 − z of supply on the left side of vi flows to sink vi . Therefore, we have

φi,+(z) =
∫ z

Wi

θ i,+(t)dt =
∫ z

0
θ i,+(t)dt and

φi,−(z) =
∫ Wi−1

z
θ i,−(t)dt =

∫ Wn

z
θ i,−(t)dt = −

∫ z

Wn

θ i,−(t)dt (5.17)

(see Fig. 5.2). For i, j ∈ [1..n] with i < j , we define

φi, j (z) = φi,+(z) + φ j,−(z) =
∫ z

0
θ i,+(t)dt +

∫ Wn

z
θ j,−(t)dt (5.18)

for z ∈ [Wi ,Wj−1].

Fig. 5.2 Thick half-open segments represent the function θ i,+(t) and the gray area represents
φi,+(z) for some z > Wi
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Suppose that we are given a k-sink x = (x1, . . . , xk) ∈ V k and a divider d =
(d1, . . . , dk−1). Recalling the definition of Id(p) for p ∈ P , we have xi = vId(xi ) for
all i ∈ [1..k]. Because each sink is at a vertex, by simply modifying the integration
intervals in Eq. (5.10), the aggregate evacuation time AT(P, x,d) is given by

AT(P, x,d) =
∑

i∈[1..k]

(∫ WId(xi )−1

di−1

θ xi ,−(z)dz +
∫ di

WId(xi )

θ xi ,+(z)dz

)

=
∑

i∈[1..k]

(∫ WId(xi )−1

di−1

θ Id(xi ),−(z)dz +
∫ di

WId(xi )

θ Id(xi ),+(z)dz

)

. (5.19)

By Eqs. (5.17), (5.18) and (5.19), we have

AT(P, x,d) =
∑

i∈[1..k]

(∫ WId(xi )−1

di−1

θ Id(xi ),−(z)dz +
∫ di

WId(xi )

θ Id(xi ),+(z)dz

)

=
∑

i∈[1..k]

(
φId(xi ),−(di−1) + φId(xi ),+(di )

)

= φId(x1),−(0) +
∑

i∈[1..k−1]
φId(xi ),Id(xi+1)(di ) + φId(xk ),+(Wn). (5.20)

In the rest of this section, we show the important properties of φi, j (z). Let us first
confirm that by Eq. (5.17), both φi,+(z) and φ j,−(z) are convex in z since θ i,+(z)
and −θ j,−(z) are non-decreasing in z, and therefore φi, j (z) is convex in z. We have
a more useful lemma that gives the conditions for the minimizer of φi, j (z).

Lemma 5.9 ([16]) For any i, j ∈ [1..n] with i < j , there uniquely exists

z∗ ∈ argmin
z∈[Wi ,Wj−1]

max{θ i,+(z), θ j,−(z)}.

Furthermore, φi, j (z) is minimized on [Wi ,Wj−1] when z = z∗.

Proof By Eqs. (5.4) and (5.5), θ i,+(z) is strictly increasing in z ∈ [Wi ,Wn]. Simi-
larly, by Eqs. (5.6) and (5.7), θ j,−(z) is strictly decreasing in z ∈ [0,Wj−1]. Thus,
there uniquely exists z∗ ∈ [Wi ,Wj−1].

We then see that for any z′ ∈ [Wi , z∗],

φi, j (z∗) − φi, j (z′) = φi,+(z∗) + φ j,−(z∗) − (φi,+(z′) + φ j,−(z′))

=
∫ z∗

z′
θ i,+(t)dt −

∫ z∗

z′
θ j,−(t)dt

=
∫ z∗

z′

{
θ i,+(t) − θ j,−(t)

}
dt ≤ 0,
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and for any z′′ ∈ [z∗,Wj−1],

φi, j (z∗) − φi, j (z′′) = φi,+(z∗) + φ j,−(z∗) − (φi,+(z′′) + φ j,−(z′))

=
∫ z∗

z′′
θ i,+(t)dt −

∫ z∗

z′′
θ j,−(t)dt

= −
∫ z′′

z∗

{
θ i,+(t) − θ j,−(t)

}
dt ≤ 0,

which imply that z∗ minimizes φi, j (z) on [Wi ,Wj−1]. �

In the following sections, this z∗ is called the pseudo-intersection point4 of θ i,+(z)
and θ j,−(z).

5.5.2 Concave Monge Property

We now show that the function w′ defined in Eq. (5.16) satisfies the concave Monge
property under the non-confluent flow model. We omit the proof for the confluent
flow model, since the proof can be constructed similarly to the one for the confluent
flow model. See [16] for details.

Let us give some observations of ATOPT(i, j). Under the non-confluent flow
model, for any i, j ∈ [1..n] with i < j , ATOPT(i, j) = minz∈[Wi ,Wj−1] φi, j (z).
Lemma 5.9 implies that φi, j (z) on [Wi ,Wj−1] is minimized when z is the pseudo-
intersection point of θ i,+(z) and θ j,−(z). For any i, j ∈ [1..n] with i < j , let αi, j

denote the pseudo-intersection point of θ i,+(z) and θ j,−(z).
Thus, we have

ATOPT(i, j) = φi, j (αi, j ) =
∫ αi, j

0
θ i,+(z)dz +

∫ Wn

αi, j

θ j,−(z)dz. (5.21)

We give the following two lemmas.

Lemma 5.10 ([16]) For any integer i ∈ [1..n − 1] and any z ∈ [0,Wn],

θ i,+(z) ≥ θ i+1,+(z) and θ i,−(z) ≤ θ i+1,−(z)

hold.

Proof We give the proof of only θ i,+(z) ≥ θ i+1,+(z) because the other case can be
proved in a similar way. By Eq. (5.5), for any j ∈ [i + 2..n], we have

4 The reason why we use the term “pseudo-intersection” is that the two functions θ i,+(z) and
θ j,−(z) are not continuous, in general, whereas the “intersection” is usually defined for continuous
functions.
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θ i,+, j (z) − θ i+1,+, j (z) =

⎧
⎪⎨

⎪⎩

0 if z ≤ Wj−1,
z−Wj−1

Ci, j
+ τ · Li, j if Wj−1 < z ≤ Wj ,

(z−Wj−1)(Ci+1, j−Ci, j )

Ci, j Ci+1, j
+ τ · �i if z > Wj .

BecauseCi+1, j − Ci, j = min{ch | h ∈ [i + 1.. j − 1]} − min{ch | h ∈ [i.. j − 1]} ≥
0, θ i,+, j (z) − θ i+1,+, j (z) ≥ 0 holds. Therefore, we have θ i,+(z) ≥ θ i+1,+(z) since
θ i,+(z) = max{θ i,+, j (z) | j ∈ [i + 1..n]} by Eq. (5.4). �

Lemma 5.11 ([16]) For any i, j ∈ [1..n] with i < j ,

αi, j ≤ αi+1, j ≤ αi+1, j+1 and αi, j ≤ αi, j+1 ≤ αi+1, j+1

hold.

Proof We give the proof of only αi, j ≤ αi+1, j because the other cases can be proved
in a similar way. For any i, j ∈ [1..n] with i < j and positive constant ε, we have

θ i+1,+(αi, j − ε) ≤ θ i,+(αi, j − ε) < θ j,−(αi, j − ε)

because θ i,+(z) ≥ θ i+1,+(z) holds by Lemma 5.10 and θ j,−(z) is a non-increasing
function. This implies that αi, j ≤ αi+1, j holds, which completes the proof. �

Let us show that the function w′ defined in Eq. (5.16) satisfies the concave Monge
property under the non-confluent flow model.

Lemma 5.12 ([16]) The weight function w′ defined in Eq. (5.16) satisfies the con-
cave Monge property under the non-confluent flow model.

Proof If we show that, for any i, j ∈ [0..n] with i < j ,

w′(i, j) + w′(i + 1, j + 1) ≤ w′(i, j + 1) + w′(i + 1, j) (5.22)

holds, thus completing the proof. Note that condition (5.22) holds for i = 0 and
j = n, because the right-hand side of (5.22) contains w′(0, n + 1) = ∞ and other
terms are finite. Let us consider the following three cases: (1) 0 < i < j < n, (2)
i = 0 and 0 < j < n, (3) 0 < i < n and j = n.

Case 1. Consider the case of 0 < i < j < n. By Eq. (5.16), for any (i ′, j ′) ∈
{(i, j), (i, j + 1), (i + 1, j), (i + 1, j + 1)}, we have w′(i ′, j ′) = ATOPT(i ′, j ′).
Recall that αi, j is the pseudo-intersection point of θ i,+(z) and θ j,−(z), and we have

w′(i, j) = ATOPT(i, j) = φi, j (αi, j ) =
∫ αi, j

0
θ i,+(z)dz +

∫ Wn

αi, j

θ j,−(z)dz.(5.23)

For any i, j ∈ [1..n − 1] with i < j , Eq. (5.23) and Lemma 5.11 state that
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w′(i, j + 1) + w′(i + 1, j) − w′(i, j) − w′(i + 1, j + 1)

= φi, j+1(αi, j+1) + φi+1, j (αi+1, j ) − φi, j (αi, j ) − φi+1, j+1(αi+1, j+1)

=
∫ αi, j+1

αi, j

θ i,+(z)dz +
∫ αi+1, j+1

αi, j+1
θ j+1,−(z)dz

−
∫ αi+1, j

αi, j

θ j,−(z)dz −
∫ αi+1, j+1

αi+1, j
θ i+1,+(z)dz. (5.24)

Now, we show that for any z ∈ [αi, j , αi+1, j+1),

min{θ i,+(z), θ j+1,−(z)} ≥ max{θ j,−(z), θ i+1,+(z)}

holds. First, for any z ∈ [0,Wn], θ i,+(z) ≥ θ i+1,+(z) and θ j,−(z) ≤ θ j+1,−(z) hold
by Lemma 5.10. For any z ≥ αi, j , θ i,+(z) ≥ θ j,−(z) holds because αi, j is the pseudo-
intersection point of θ i,+(z) and θ j,−(z). Similarly, for any z < αi+1, j+1, we have
θ i+1,+(z) ≤ θ j+1,−(z). Therefore, for any z ∈ [αi, j , αi+1, j+1), min{θ i,+(z), θ j+1,−
(z)} ≥ max{θ j,−(z), θ i+1,+(z)} holds.

Thus, Eq. (5.24) continues as

w′(i, j + 1) + w′(i + 1, j) − w′(i, j) − w′(i + 1, j + 1)

≥
∫ αi+1, j+1

αi, j

min{θ i,+(z), θ j+1,−(z)} −
∫ αi+1, j+1

αi, j

max{θ j,−(z), θ i+1,+(z)}dz
≥ 0,

and then condition (5.22) holds for any i, j with 0 < i < j < n.
Case 2. Consider the case of i = 0 and j ∈ [1..n − 1]. Recall that w′(0, j) =

φ j,−(0) and w′(0, j + 1) = φ j+1,−(0) by Eq. (5.16). In this case, we have

w′(0, j + 1) + w′(1, j) − w′(0, j) − w′(1, j + 1)

= φ j+1,−(0) + φ1, j (α1, j ) − φ j,−(0) − φ1, j+1(α1, j+1)

=
∫ Wn

0
θ j+1,−(z)dz +

∫ α1, j

0
θ1,+(z)dz +

∫ Wn

α1, j
θ j,−(z)dz

−
∫ Wn

0
θ j,−(z)dz −

∫ α1, j+1

0
θ1,+(z)dz −

∫ Wn

α1, j+1
θ j+1,−(z)dz

=
∫ α1, j+1

0
θ j+1,−(z)dz −

∫ α1, j

0
θ j,−(z)dz −

∫ α1, j+1

α1, j
θ1,+(z)dz,

where the last equality uses α1, j ≤ α1, j+1 by Lemma 5.11. By Lemma 5.10, we have
θ j+1,−(z) ≥ θ j,−(z) for any z ∈ [0,Wn]. Using the same argument as in the previous
case, for any z < α1, j+1, we have θ1,+(z) < θ j+1,−(z). Thus, we have



84 Y. Higashikawa et al.

w′(0, j + 1) + w′(1, j) − w′(0, j) − w′(1, j + 1)

=
∫ α1, j+1

0
θ j+1,−(z)dz −

∫ α1, j

0
θ j,−(z)dz −

∫ α1, j+1

α1, j
θ1,+(z)dz

=
∫ α1, j

0

{
θ j+1,−(z) − θ j,−(z)

}
dz +

∫ α1, j+1

α1, j

{
θ j+1,−(z) − θ1,+(z)

}
dz ≥ 0.

Case 3. Consider the case of j = n and i ∈ [1..n − 1]. Recall that w′(i, n + 1) =
φi,+(Wn) and w′(i + 1, n + 1) = φi+1,+(Wn) by Eq. (5.16). Similar to the second
case, we use the facts that αi,n ≤ αi+1,n by Lemma 5.11, θ i,+(z) ≥ θ i+1,+(z) for any
z ∈ [0,Wn] by Lemma 5.10, and θ i,+(z) ≥ θn,−(z) for any z ≥ αi,n . Then, we have

w′(i, n + 1) + w′(i + 1, n) − w′(i, n) − w′(i, n + 1)

= φi,+(Wn) + φi+1,n(αi+1,n) − φi,n(αi,n) − φi+1,+(Wn)

=
∫ Wn

0
θ i,+(z)dz +

∫ αi+1,n

0
θ i+1,+(z)dz +

∫ Wn

αi+1,n
θn,−(z)dz

−
∫ αi,n

0
θ i,+(z)dz −

∫ Wn

αi,n

θn,−(z)dz −
∫ Wn

0
θ i+1,+(z)dz

=
∫ Wn

αi,n

θ i,+(z)dz −
∫ αi+1,n

αi,n

θn,−(z)dz −
∫ Wn

αi+1,n
θ i+1,+(z)dz

=
∫ αi+1,n

αi,n

{
θ i,+(z) − θn,−(z)

}
dz +

∫ Wn

αi+1,n

{
θ i,+(z) − θ i+1,+(z)

}
dz ≥ 0.

Thus, for any i, j ∈ [0..n] with i < j , condition (5.22) holds. This implies that
the function w′ satisfies the concave Monge condition. �
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Part III
Sublinear Data Structures



Chapter 6
Information Processing on Compressed
Data

Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto

Abstract We survey our recent work related to information processing on com-
pressed strings. Note that a “string” here contains any fixed-length sequence of sym-
bols and therefore includes not only ordinary text but also a wide range of data,
such as pixel sequences and time-series data. Over the past two decades, a variety
of algorithms and their applications have been proposed for compressed informa-
tion processing. In this survey, wemainly focus on two problems: recompression and
privacy-preserving computation over compressed strings. Recompression is a frame-
work inwhich algorithms transformagiven compresseddata into another compressed
format without decompression. Recent studies have shown that a higher compression
ratio can be achieved at lower cost by using an appropriate recompression algorithm
such as preprocessing. Furthermore, various privacy-preserving computation mod-
els have been proposed for information retrieval, similarity computation, and pattern
mining.

6.1 Restructuring Compressed Data

Data compression plays a central role in the efficient transmission and storage of
data. Recent developments have also shown that data compression is a useful tool for
processing highly repetitive data which contains long common substrings. Typical
examples of highly repetitive data include collections of genomes taken from simi-
lar species and versioned documents. Popular compressors for highly repetitive data
includeLempel-Ziv 77 (LZ77) [40], run-length encodedBurrows-Wheeler transform
(RLBWT) [8], and grammar-based compression [34]. For each of these compression
methods, researchers have developed techniques for operating on compressed data.
For example, there are indexes based on LZ77 [37], RLBWT [17], and grammar-
based compression [11]. Although recent studies [33, 36, 45] have investigated the
fundamentals of these techniques and obtained a unified view of the compressibility
of highly repetitive data, each compressed format still has pros and cons that cannot
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be ignored in practice. LZ77 usually achieves better compression than other com-
pression methods, the index based on RLBWT (called r -index) supports very fast
pattern search, and grammar-based compression is easy to handle in both theory and
practice. Thus, in order to take advantage of the virtues of the different compressed
formats, it is useful to have algorithms that can efficiently convert one compressed
format to another. In this section, we present some examples of these algorithms.

6.1.1 Preliminaries

Let � be an ordered alphabet, that is, a set of characters that has a total order. A
string over � is a sequence of characters chosen from �. The length of a string w

is denoted by |w|. For any 1 ≤ i ≤ |w|, the i th character of w is denoted by w[i].
The substring of w starting at i and ending at j is denoted by w[i... j]. The substring
w[i... j] is called a prefix (resp., suffix) if i = 1 (resp., j = |w|). The reversed string
of w is denoted by wR , namely, wR = w[|w|]w[|w| − 1] · · · w[2]w[1].

Let T be a string of length n over�. We consider the following three compression
schemes for T .

LZ77: LZ77 is characterized by greedy factorization T = f1 f2 · · · fz of T. The
i th factor fi is a single character if the character does not appear in f1 f2 · · · fi−1, and
otherwise, the longest substring such that there is another occurrence si of fi with
si ≤ | f1 f2 · · · fi−1|. The position si is called the reference position of the i th LZ77
factor fi . We can store T in O(z)-space because each factor fi (in the second case)
can be replaced with a pair (si , | fi |).

BWT, RLBWT: For simplicity, we assume thatT is extended by the endmarker $,
which is a special character not in� and lexicographically smaller than any character
in �, that is, T[n + 1] = $. The Burrows-Wheeler transform [8] is a permutation L
of characters in T[1 . . . n + 1] obtained as follows: L[i] is the character preceding
the lexicographically i th smallest suffix among all non-empty suffixes of T with the
exception that L[i] = $ when the i th smallest suffix is T itself (and therefore has
no preceding character). The resulting string L can be interpreted as a sequence
obtained by sorting characters in T according to their context (succeeding suffixes).
Since characters sharing similar context tend to be identical, L is well compressible
by run-length encoding. The run-length encoded BWT is called RLBWT.

Let SA[1 . . . n + 1] denote the suffix array of T [1 . . . n + 1], where SA[i] is the
starting position of the lexicographically i th smallest suffix. We consider SA as
a mapping from BWT position to text position and say that the BWT position i
corresponds to the text position SA[i]. One crucial operation on the BWT string
L is the so-called LF mapping that maps a BWT position i to the BWT position
corresponding to text position SA[i] − 1. LF mapping can be implemented by a
rank data structure on L that returns the number of occurrences of a character c in
L[1 . . . i] for any character c and BWT position i .

By using LF mapping, we can also support backward search. For any string w

that appears in T, there is a unique maximal interval [b . . . e] such that the lexico-
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graphically i th suffix is prefixed by w iff i ∈ [b . . . e]. Note that e − b + 1 is the
number of occurrences of w in T and the text positions corresponding to these posi-
tions represent the occurrences of w. A single step of the backward search computes
the cw-interval from the w-interval by using the same mechanism as LF mapping,
where c is a character. The index based on backward search on BWT is known as the
FM-index [14]. Although it was previously known that the occurrences of a pattern
can be counted by a backward search implemented in RLBWT space [41], it was
recently reported that RLBWT can be augmented with an O(r)-space data structure
to report all the occurrences of the pattern efficiently. The index based on RLBWT
is called the r -index [17].

Grammar compression: Grammar compression is a general framework of data
compression in which a context-free grammar (CFG) S = (�,V,D) that derives a
single string T is considered to be a compressed representation of T, where � is the
set of characters (terminals), V is the set of variables (non-terminals),D is the set of
deterministic production rules whose right-hand sides are strings over (V ∪ �), and
the last variable derives T.1 The compressed size of S is expressed by the sum of
the lengths of right-hand sides of the production rules in S. We consider run-length
encoding right-hand sides of CFGs, and call such CFGs run-length encoded CFGs
(RLCFGs). The compressed size of an RLCFG is expressed by the sum of run-length
encoded sizes of right-hand sides of the production rules.

Algorithm 1: Supposing that we have parsed suffix T[p + 1 . . .], compute the
length of the next LZ77 factor ending at p.

1 p′ ← p;
2 w ← ε;
3 c ← T[p′];
4 while cw-interval contains a text position larger than p′ do
5 p′ ← p′ − 1;
6 w ← cw;
7 c ← T[p′];
8 return min(1, p′ − p);

6.1.2 RLBWT to LZ77

Algorithms to compute LZ77 from RLBWT are considered in [3, 32, 46, 47,
49]. An essential task when computing LZ77 is to search for the longest pre-
fix of T[| f1 f2 · · · fi−1| + 1 · · · ] that occurs before and compute an occurrence
si ≤ | f1 f2 · · · fi−1| of fi . The basic idea is to use the backward search on RLBWT of
T R to perform this task. One difficulty is ignoring the BWT positions that correspond

1 We treat the last variable as the starting variable.
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to the suffixes starting after | f1 f2 · · · fi−1| during the backward search. In [49], it is
shown that keeping at most 2r BWT positions is sufficient to compute the longest
prefix and a reference position for the LZ77 factor. This subsection gives a brief
review of this idea.

For the sake of this explanation, consider the case of LZ77 parsing from right to
left (i.e., we conceptually compute the LZ77 factorization for T R) so that backward
search on T (instead of the reversed one) can be used. Supposing that we have parsed
suffix T[p + 1 . . .], Algorithm 1 shows how to compute the length of the next factor
ending at p. To check whether the cw-interval contains a text position larger than
p′, we partition SA into r subintervals and maintain at most two positions for each
subinterval, which is the LF-mapped interval of a run of L . Suppose that the cw-
interval [b . . . e] is non-empty and [b . . . e] is covered by consecutive subintervals
[b1 . . . e1], [b2 . . . e2], . . . , [bk . . . ek] with minimal integer k, that is, b1 ≤ b < e1 +
1 = b2 < e2 + 1 = b3 < · · · < ek−1 + 1 = bk ≤ e ≤ ek . If k = 1, the characters of
L in w-interval consist of a single character c and all positions in w-interval are LF-
mapped to cw-interval. Therefore, cw-interval contains a text position larger than p′
iff w-interval satisfies the condition in the previous step. For the case of k > 1, we
mark the closest positions from the boundaries of subintervals that correspond to text
positions larger than p′. Using this information, we can check whether SA[b1 . . . e1]
and/or SA[bk . . . ek] contain a text position larger than p′. We also maintain the data
structure to check whether a subinterval in [b2 . . . e2], . . . , [bk−1 . . . ek−1] contains
a text position larger than p′, and if so we compute which interval contains that
position.

In thisway,we can compute the lengths of LZ77 factors. The reference position for
each LZ77 factor can also be computed by maintaining text positions corresponding
to the marked positions in each subinterval. The data structures use only O(r)words
of space.

In [46], the data structures are tuned to improve the time complexity. In [47], a fast
implementation for the backward search in RLBWT space was proposed and applied
to the above-mentioned algorithm. In [3], an online construction of r -index was
proposed and the technique was extended to an online LZ77 factorization algorithm
in RLBWT space. In [32], a different approach to converting RLBWT to LZ77 was
proposed.

6.1.3 Recompression on Grammar Compression

Given that there are a number of CFGs with different properties for representing
strings, we may want to transform one CFG to another without explicitly decom-
pressing the text. In this subsection, we introduce a technique called recompression
which has proven to be a powerful tool in problems related to grammar compres-
sion [26–28, 31] and word equations [29, 30].
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In [27], Jeż proposed an algorithm TtoG for computing an RLCFG of T in O(N )

time. Let TtoG(T) denote the RLCFG of T produced by TtoG. We use the term
letters for characters and variables introduced by TtoG. A run is called a block in
this subsection. TtoG consists of two different types of compression, namely, block
compression (BComp) and pair compression (PComp).

• BComp: Given a stringw over� = [1 . . . |w|],BComp compressesw by replac-
ing all blocks of length ≥ 2 with fresh letters. Note that BComp eliminates all
blocks of length ≥ 2 in w.

• PComp: Given a string w over � = [1 . . . |w|] that contains no block of length
≥ 2, PComp compresses w by replacing all pairs from �́�̀ with fresh letters,
where (�́, �̀) is a partition of �, that is, � = �́ ∪ �̀ and �́ ∩ �̀ = ∅. Given the
frequency table of pairs, we can deterministically compute a partition of � by
which at least (|w| − 1)/4 occurrences of pairs are replaced.

TtoG compresses T0 = T by applying BComp and PComp in turns until the string
is shrunk down to a single letter. Because PComp compresses a given string by a
constant factor of 3/4, the height of TtoG(T) is O(lg N ).

TtoG performs level-by-level transformation of T0 into strings T1,T2, . . . ,Tĥ ,
where |Tĥ | = 1. If h is even, the transformation from Th to Th+1 is performed by
BComp, and production rules of the form c → c̈d are introduced. If h is odd, the
transformation from Th to Th+1 is performed by PComp, and production rules of
the form c → ćc̀ are introduced. Let �h be the set of letters appearing in Th .

The advantage of TtoG is that it can be simulated on S = S0 = (�0,V,D0)

without decompression. We consider the level-by-level transformation of S0 into
CFGs S1 = (�1,V,D1),S2 = (�2,V,D2), . . . ,Sĥ = (�ĥ,V,Dĥ), where each Sh

generates Th . More specifically, the compression from Th to Th+1 is simulated on Sh .
We can correctly compute the letters introduced in each level h + 1 while modifying
Sh into Sh+1; hence, we get all the letters of TtoG(T) in the end. We note that
new “variables” are never introduced and modifications are made by rewriting the
right-hand sides of the original variables.

WenowshowhowPComp is performedonSh for oddh. That is,we computeSh+1

from Sh . Note that any occurrence i of a pair ćc̀ in Th can be uniquely associated with
a variable X that is the label of the lowest node covering the interval [i . . . i + 1] in
the derivation tree of Sh (recall that Sh generates Th). We can compute the frequency
table of pairs by counting pairs associated with X in Dh(X) and multiplying it by
the number of occurrences of X in the derivation tree of Sh . The frequency table is
used to compute a partition of �h , which determines the pairs to be replaced. A pair
appears explicitly in right-hand sides or crosses the boundaries of variables. We can
modify Sh so that all the crossing occurrences to be replaced appear explicitly in
some right-hand side, then replace the explicit occurrences to get Sh+1. In a similar
way, BComp can also be performed on Sh for odd h.

In [23], it is shown that TtoG(T) can be used to answer the longest common
extension (LCE) queries and the transformation from arbitrary CFG S to TtoG(T)

is a key for efficient construction algorithms of LCE data structures in grammar
compressed space. In [53], the recompression technique is modified to transform
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arbitrary CFG S into the CFG obtained by the RePair algorithm [38]. RePair is
known to achieve the best compression performance in practice and there are many
studies on computing RePair in small space. Using online grammar compression
algorithms, such as [43, 57], the algorithm in [53] leads to the first RePair algorithm
working in compressed space.

6.2 Privacy-Preserving Similarity Computation

6.2.1 Related Work

This section reviews recent results in privacy-preserving information retrieval over
strings recently presented in [59]. As the number of strings containing personal
information has increased, privacy-preserving computation has become increasingly
important. Secure computation based on public-key encryption is one of the great
accomplishments of modern cryptography because it allows untrusted parties to
compute a function based on their private inputs, while revealing nothing but the
result.

Rapid progress in gene sequencing technology has expanded the range of appli-
cations of edit distance to include personalized genomic medicine, diagnosis of
diseases, and preventive treatment (e.g., see [1]). However, because the genome of
a person is ultimately personal information that uniquely identifies the owner, the
parties involved should not share personal genomic data in plaintext. We therefore
consider a secure two-party model for edit distance computation: Two untrusted par-
ties generating their own public and private keys have strings x and y, respectively,
and they want to jointly compute f (x, y) for a given metric f without revealing
anything about their individual strings.

Homomorphic encryption (HE) is an emerging technique for such secure multi-
party computation. HE is a kind of public-key encryption between two parties Alice
and Bob where Bob wants to send a secret message to Alice. In this model, Bob
generates his secret key and public key prior to communication, say sk and pk, where
pk is known to everyone. Alice then sends the encrypted message E(m, pk) to Bob
and he decrypts m by using his secret key sk using the property E(E(m, pk), sk) =
m. If it is not necessary to specify the owner of pk and sk, we simply write E(m)

for simplicity.
A public-key encryption E() has the additive homomorphic property if we can

obtain E(m + n) from E(m) and E(n) without decryption, and the multiplicative
property is similarly defined. If E() is additive, Alice can obtain the summation of
many people’s secret numbers without revealing their private numbers.

The first public-key encryption algorithm RSA [51] is multiplicative because it
has the following property: Let (e, n) be a public key and (d, n) be a secret key,
respectively, where e, d, n are integers. For a message m, its encryption is computed
by c = (me mod n) and is decrypted by cd = med ≡ m mod n. We can easily
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check the multiplicative property (me
1 mod n) · (me

2 mod n) = (m1m2)
e mod n.

The Paillier encryption system [48] was the first system to have the additive property.
This means that parties can jointly compute the encrypted value E(x + y) directly
based on only two encrypted integers E(x) and E(y).

By taking advantage of the homomorphic property, researchers have proposedHE-
based privacy-preserving protocols for computing the Levenshtein distance d(x, y).
For example, Inan et al. [25] designed a three-party protocol where two parties
securely compute d(x, y) by enlisting the help of a reliable third party. Rane and
Sun [50] then improved this three-party protocol to develop the first two-party pro-
tocol.

In this review, we focus on an extended Levenshtein distance called the edit
distance with moves (EDM) which allows any substring to be moved with unit cost
in addition to the standard operations of inserting, deleting, and replacing a character.
Based on the EDM, we can find a set of approximately maximal common substrings
appearing in two strings, which can be used to detect plagiarism in documents or long
repeated segments in DNA sequences. As an example, consider two unambiguously
similar strings x = aNbN and y = bNaN , which can be transformed into each other
by a single move. While the exact EDM is simply EDM(x, y) = 1, the Levenshtein
distance has the undesirable value d(x, y) = 2N . The n-gram distance is preferable
to the Levenshtein distance in this case, but it requires huge time/space complexity
depending on N .

Although computation of EDM(x, y) is NP-hard [55], Cormode andMuthukrish-
nan [12]were able to find an almost linear-time approximation algorithm.Many tech-
niques have been proposed for computing theEDM.For example,Ganczorz et al. [18]
proposed a lightweight probabilistic algorithm. In these algorithms, each string x is
transformed into a characteristic vector vx consisting of nonnegative integers repre-
senting the frequencies of particular substrings of x . For two strings x and y, we then
have the approximate distance guaranteeing L1(vx , vy) = O(lg∗ N lg N )EDM(x, y)
for N = |x | + |y|.

InAppendixAof [15], there is a subtle flaw in theESP algorithm [12] that achieves
this O(lg∗ N lg N ) bound. However, this flaw can be remedied by an alternative
algorithm called HSP [15]. Because lg∗ N increases extremely slowly,2 we employ
L1(vx , vy) as a reasonable approximation to EDM(x, y).

Basically, the ESP tree is a special type of grammar compression referred to in the
previous section where the length of the right-hand side of any production rule is just
two or three. Therefore, EDM(x, y) is approximated by the compressed expressions
for the strings x and y. The relationship between grammar compression (including
ESP) and its applications has been widely investigated in the past two decades (see,
e.g., [10, 21, 24, 39, 42, 52, 54, 56–58]).

2 lg∗ N is the number of times the logarithm function lg can be iteratively applied to N until
lg∗ N ≤ 1.
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Recently, Nakagawa et al. proposed the first secure two-party protocol for EDM
(sEDM) [44] based onHE. However, their algorithm suffers from a bottleneck during
the step where the parties construct a shared labeling scheme. Yoshimoto improved
the previous algorithm tomake it easier to use in practice [59].We review the practical
algorithm here.

6.2.2 Edit Distance with Moves

Based on the notation for strings in the previous section, EDM(S, S′) is the length of
the shortest sequence of edit operations that transforms S into S′, where the permitted
operations (each having unit cost) are inserting, deleting, or renaming one symbol
at any position, or moving an arbitrary substring. Unfortunately, as Theorem 6.1
states, computing EDM(S, S′) is NP-hard even if the renaming operations are not
allowed [55], so we focus on an approximation algorithm for EDM, called Edit-
Sensitive Parsing (ESP) [12].

Theorem 6.1 (Shapira and Storer [55])Determining EDM(x, y) is NP-hard even if
only three unit-cost operations are allowed, namely, inserting a character, deleting
a character, and moving a substring.

ESP constructs a parsing tree, called an ESP tree, for a given string S, where
internal nodes are labeled consistently, that is, internal nodes have a common name if
and only if they derive the same string. After two ESP trees TS and TS′ are constructed
for given strings S and S′ for comparison in EDM, the characteristic vectors vS and
vS′ are defined such that vS[i] is the frequency of the i th label in TS . EDM(S, S′) is
then approximated by L1(vS, vS′) with the following lower/upper bounds.

Theorem 6.2 (Cormode and Muthukrishnan [12]) Let TS and TS′ be consistently
labeled ESP trees for S, S′ ∈ �∗, and let vS be the characteristic vector for S, where
vS[k] is the frequency of label k in TS. Then,

1

2
EDM(S, S′) ≤ L1(vS, vS′) = O(lg∗ N lg N )EDM(S, S′)

for L1(vS, vS′) =
k∑

i=1

|vS[i] − vS′ [i]|.

In Fig. 6.1, we illustrate an example of consistent labeling of the trees TS and
TS′ together with the resulting characteristic vectors. Since the strings S and S′ are
parsed offline, the problem of preserving privacy is reduced to designing a secure
protocol for creating consistent labels and computing the L1-distance between the
trees.
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Fig. 6.1 Example of approximate EDM. For strings S = adabcadeab and S′ = eabcadadab, S
is transformed into S′ by two moves of substrings, that is, EDM(S, S′) = 2. After constructing ESP
trees TS and TS′ with consistent labeling, the corresponding characteristic vectors vS and vS′ are
computed offline. The exact EDM(S, S′) is approximated by L1(vS, vS′ ) = 4

6.2.3 Homomorphic Encryption

We now briefly review the framework of homomorphic encryption. Let (pk, sk) be
a key pair for a public-key encryption scheme, and let Epk(x) be the encrypted value
of a message x and Dsk(C) be the decrypted value of a ciphertext C , respectively.
We say that the encryption scheme is additively homomorphic if we have the fol-
lowing properties: (1) There is an operation h+(·, ·) for Epk(x) and Epk(y) such
that Dsk(h+(Epk(x), Epk(y))) = x + y. (2) For any r , we can compute the scalar
multiplication such that Dsk(r · Epk(x)) = r · x .

An additive homomorphic encryption scheme that allows a sufficient number of
these operations is called an additive HE.3 Paillier’s encryption scheme [48] is the
first secure additive HE. However, there are not many functions that can be evaluated
by using only additive homomorphism and scalar multiplication.

The multiplication Dsk(h×(Epk(x), Epk(y))) = x · y is another important homo-
morphism. If we allow both additive and multiplicative homomorphism as well as
scalar multiplication (called a fully homomorphic encryption, FHE [19] for short),
it follows that we can perform any arithmetic operation on ciphertexts. For example,
if we can use sufficiently large number of additive operations and a single multi-
plicative operation over ciphertexts, we obtain the inner-product of two encrypted
vectors.

However, there is a trade-off between the available homomorphic operations and
their computational cost. To avoid this difficulty,we focus on leveledHE(LHE)where
the number of homomorphic multiplications is restricted beforehand. In particular,

3 In general, the number of applicable operations over ciphertexts is bounded by the size of (pk, sk).
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L2HE (Additive HE that allows a single homomorphic multiplication) has attracted a
great deal of attention. TheBGNencryption system is thefirst L2HEandwas invented
by Boneh et al. [6] by assuming a single multiplication and sufficient numbers of
additions. Using BGN, we can securely evaluate formulas in disjunctive normal
form. Following this pioneering study, many practical L2HE protocols have been
proposed [2, 9, 16, 22].

In terms of EDM computation, although Nakagawa et al. [44] introduced an
algorithm for computing the EDM based on L2HE, their algorithm is very slow for
large strings. Following on from this work, Yoshimoto et al. proposed another novel
secure computation of EDM for large strings based on the faster L2HE proposed
by Attrapadung et al. [2]. To our knowledge, there is no secure two-party protocol
for EDM computation that uses only the additive homomorphic property. Whether
we can compute EDM using a two-party protocol based on additive HE alone is an
interesting question.

For the benefit of the reader, we give a simple review of the mechanism used by
BGN, the first L2HE. For plaintexts m1,m2 ∈ {1, . . . , M} and their corresponding
ciphertextsC1 andC2, the ciphertexts ofm1 + m2 andm1m2 can be computeddirectly
from C1 and C2 without decrypting m1 and m2, provided m1 + m2,m1m2 ≤ M .

For large primes q1 and q2, the BGN encryption scheme is based on two multi-
plicative cyclic groups G and G

′ of order q1q2, two generators g1 and g2 of G, an
inverse function (·)−1 : G → G, and a bihomomorphism e : G × G → G

′. By def-
inition, e(·, x) and e(x, ·) are group homomorphisms for all x ∈ G. In addition, we
assume that both the inverse function (·)−1 and the bihomomorphism e can be com-
puted in polynomial time in terms of the security parameter log2 q1q2. Such a system
(G,G′, g1, g2, (·)−1, e) can be generated by, for example, letting G be a subgroup
of a supersingular elliptic curve and e be a Tate pairing [6]. The BGN encryption
scheme proceeds as follows.

Key generation: Randomly generate two sufficiently large primes q1 and q2, then
use these to define (G,G′, g1, g2, (·)−1, e) as described above. Choose two random
generators g and u ofG, set h = uq2 , and let M be a positive integer bounded above
by a polynomial function of the security parameter log2 p1 p2. The public key is then
pk = (p1 p2,G,G′, e, g, h, M) and the private key is sk = q1.

Encryption: Encrypt themessagem ∈ {0, . . . , M} using pk and a random r ∈ Zn

to C = gmhr ∈ G yielding the ciphertext C .
Decryption: Find the integerm such that Cq1 = (gmhr )q1 = (gq1)m using a poly-

nomial time algorithm. There is a known algorithm for this with time complexity of
O(

√
M).

Homomorphic properties: For the ciphertexts C1 = gm1hr1 and C2 = gm2hr2 in
G corresponding to the messages m1 and m2, anyone can calculate the encrypted
value of m1 + m2 and m1m2 directly from C1 and C2 without knowing m1 and m2,
as follows.

– Additive homomorphism:

Ca = C1C2h
r = (gm1hr1)(gm2hr2)hr = gm1+m2hr1+r2+r
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gives the encrypted value of m1 + m2.
– Multiplicative homomorphism: Cm = e(C1,C2)hr ∈ G

′ gives the encrypted
value of m1m2, because

Cq1
m = e(C1,C2)

= [
e(g1, g2)

m1m2e(g1, g2)
q2m1r1e(g2, g1)

q2m2r1e(g1, g2)
q2r

]q1

= (
e(g1, g2)

q1
)m1m2

,

where we decrypt Cm , by computing m1m2 from (g(g1, g2)q1)
m1m2 and e(g1, g2)q1 .

Note thatC1,C2 ∈ G
′ also have additive homomorphic properties, so BGNallows

a single multiplication and unlimited additions over ciphertexts.

6.2.4 L2HE-Based Algorithm for Secure EDM

Wenowexplain the algorithm for computing approximate EDMbased onL2HE [59].
Two parties A,B have strings SA, SB, respectively. First, they compute the corre-
spondingESP trees TA and TB offline and they assign tentative labels to internal nodes
of TA and TB using a hash function h : X → {1, 2, . . . , n} for X ⊆ {0, 1, . . . ,m}
of n different labels in TA and TB with a fixed m. The goal is to securely relabel X
using a bijection: X → {1, 2, . . . , n}, as described in Algorithm 2. We suppose that
A and B generate their own public and private keys prior to the computation.

In Algorithm 2, we assume an L2HE scheme allowing a single multiplicative
operation and a sufficient number of additive operations over encrypted integers.
Because these operations are usually implemented by AND (·) and XOR (⊕) logic
gates (e.g., [7]), we introduce the following notation for these gates. First, EA(x)
denotes the ciphertext generated by encrypting plaintext x with A’s public key,
and EA(x, y, z) is an abbreviation for the vector (EA(x), EA(y), EA(z). Here,
EA(x, y, z) · EA(a, b, c)denotes (EA(x · a), EA(y · b), EA(z · c)) and EA(x, y, z)
⊕ EA(a, b, c) denotes (EA(x ⊕ a), EA(y ⊕ b), EA(z ⊕ c)) for each bit x, y, z, a,

b, c ∈ {0, 1}. Using this notation, we describe the proposed protocol in Algorithm 2.
Next, we define the protocol security based on a model where both parties are

assumed to be semi-honest, that is, corrupt parties merely cooperate to gather infor-
mation out of the protocol, but do not deviate from the protocol specification. The
security is defined as follows.

Definition 6.1 (Semi-honest security [20]) A protocol is secure against semi-honest
adversaries if each party’s observation of the protocol can be simulated using only
the input they hold and the output that they receive from the protocol.

Intuitively, this definition tells us that a corrupt party is unable to learn any extra
information that cannot be derived from the input and output explicitly (for details,
see [20]). Under this assumption, since the algorithm is symmetric with respect
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Algorithm 2 for consistently labeling TA and TB [59]

Preprocessing (tentative labeling): Parties A and B agree to use a hash function H with a
range {0, . . . ,m} for sufficiently large m. Both parties compute TA and TB corresponding to
their respective strings offline. The label of internal node u is assigned H(s(u)) where s(u) is the
string of all leaves of u. Now, partiesA and B have tentative label sets [TA], [TB] ⊆ {0, . . . ,m},
respectively.

Goal: Change all the labels using a bijection: [TA] ∪ [TB] → {1, . . . , n} without either party
having to reveal anything about their private strings.

Notation: EA(x) denotes the ciphertext of a message x encrypted by an L2HE with A’s public
key.

Sharing a dictionary:
Step 1: Party A computes the bit vector X[1 . . .m] such that X[�] = 1 iff � ∈ [TA]. Similarly,
party B computes Y[1 . . .m] such that Y[�] = 1 iff � ∈ [TB].
Step 2: A sends EA(X) to B and B sends EB(Y) to A.
Step 3: B computes (EA(X) ⊕ EA(Y)) ⊕ (EA(X) · EA(Y)) = EA(X ∪ Y) and A computes
(EB(X) ⊕ EB(Y)) ⊕ (EB(X) · EB(Y)) = EB(X ∪ Y).

Relabeling [TA] using EA(X ∪ Y) ([TB] is relabeled in a symmetrical fashion)

Step 4: A computes EB(L�) = EB

(
�∑

i=1

(X ∪ Y)[i]
)
for all � ∈ [TA].

Step 5: A sends all EB(L� + r�) to B choosing r� uniformly at random from N.
Step 6: B decrypts all L� + r� and sends them back to A.
Step 7: A recreates L� ∈ {1, . . . , n} for all � ∈ [TA] by subtracting r�.

to A and B, the following theorem proves the security of our algorithm’s against
semi-honest adversaries.

Theorem 6.3 (Yoshimoto et al. [59]) Let [TA] be the set of labels appearing in TA.
The only knowledge that a semi-honest A can gain by executing Algorithm 2 is the
distribution of the labels {L� | � ∈ [TA]} over [1, . . . , n].
Theorem 6.4 (Yoshimoto et al. [59]) Algorithm 2 assigns consistent labels using
the injection: [TA] ∪ [TB] → {1, 2, . . . , n} without revealing the parties’ private
information. It has round and communication complexities of O(1) and O(α(n lg n +
m + rn)), respectively, where n = |[TA] ∪ [TB]|, m is themodulus of the rolling hash
used for preprocessing, r = max{r1, . . . , rn} is the security parameter, and α is the
cost of executing a single encryption, decryption, or homomorphic operation.
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Table 6.1 Comparison of the communication and round complexities of secure EDM computation
models [44, 59] as well as a naive algorithm. Here, N is the total length of both parties’ input strings,
n is the number of characteristic substrings determining the approximate EDM, and m is the range
of the rolling hash H(·) for the substrings satisfying m > n. “Naive” is the baseline method that
uses H(·) as the labeling function for the characteristic substrings

Method #Communication #Round

Naive O(m lgm) O(1)

Nakagawa et al. [44] O(n lg n) O(lg N )

Yoshimoto et al. [59] O(n lg n + m) O(1)

6.2.5 Result and Open Question

The complexities of related algorithms are summarized in Table6.1. Computing
the approximate EDM involves two phases: the shared labeling of characteristic
substrings (Phase 1) and the L1-distance computation of characteristic vectors (Phase
2).

Let the parties have strings x and y, respectively. In the offline case (i.e., there is no
need for privacy-preserving communication), they construct the respective parsing
trees Tx and Ty by the bottom-up parsing called ESP [12], where the node labels
must be consistent, meaning that two labels are equal if they correspond to the same
substring. In such an ESP tree, a substring derived by an internal node is called a
characteristic substring. In a privacy-preservingmodel, the two parties need to jointly
compute these consistent labels without revealing whether a characteristic substring
is common to both of them (Phase 1). After computing all the labels in Tx and Ty ,
they jointly compute the L1-distance of two characteristic vectors containing the
frequencies of all labels in Tx and Ty (Phase 2).

As reported in [44], a bottleneck exists in Phase 1. The task is to design a bijection
f : X ∪ Y → {1, 2, . . . , n} where X and Y (|X ∪ Y | = n) are the sets of character-
istic substrings for the parties, respectively. Since X and Y are computable without
communication, the goal is to jointly compute f (w) for anyw ∈ X without revealing
whether w ∈ Y . This problem is closely related to the private set operation (PSO)
where parties possessing their private sets want to obtain the results for several set
operations, such as intersection or union. Applying the Bloom filter [5] and HE tech-
niques, various protocols for PSO have been proposed [4, 13, 35]. However, these
protocols are not directly applicable to our problem because they require at least
three parties for the security constraints. In contrast, the algorithm reviewed here
introduced a novel secure two-party protocol for Phase 1.

As shown in Table6.1, the recent result eliminates the O(lg N ) round complexity
using the proposed method that can achieve O(1) round complexity while maintain-
ing the efficiency of communication complexity. Furthermore, the practical perfor-
mance of the algorithms for real DNA sequences was reported in [44].
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Chapter 7
Compression and Pattern Matching

Takuya Kida and Isamu Furuya

Abstract We introduce our research on compressed pattern matching technology
that combines data compression and pattern matching. To show the results of this
work, we explain the collage system proposed by Kida et al. in 2003 that is a unifying
framework for compressed pattern matching, and we explain the Repair-VF method
proposed by Yoshida and Kida in 2013 and the MR-Repair method proposed by
Furuya et al. in 2019 as grammar compressions suitable for compressed pattern
matching.

7.1 Introduction

Data compression is a technology that reduces the space used to store data by com-
pactly expressing the redundancy contained in thedata. It ismainlyused for efficiently
storing large amounts of data and reducing communication costs. If we consider the
conversion of information to digital data as a kind of data compression, it has a long
history that can be traced back to the Morse code developed in the 1830s. Many
compression methods have been proposed depending on the type and application of
data [43–46].

Information retrieval has also long been studied as a technique for efficiently
finding a target part from a large-scale dataset or data group [3, 11, 13, 14, 30,
39, 55], and there are various methods depending on the required specifications. In
particular, the approaches differ between searching for images and audio data and
searching for documents (text). In this chapter, we focus on the latter task of text
searching.
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One of the basic problems in text searching is the pattern matching problem,
which is also called the string matching problem. This is the problem of finding the
occurrences of keywords (patterns) in a target text. Broadly speaking, there are two
approaches to solving this problem. One is to build an index for the input text in
advance, which is called text indexing. A text index allows for efficient searching
when the target text is static and is not subsequently updated. The other is to access
the input text sequentially from the beginning to the end while checking if the given
pattern matches at the current reference position in the text. This is called text scan-
ning. Text scanning is applicable even if the text is updated from time to time and
it does not require index structures. In general, text indexing is superior in terms
of search speed, while text scanning is superior in terms of search flexibility. By
convention, “pattern matching” often refers to the latter, text scanning, in a narrow
sense.

In this chapter, we outline a fusion technology of data compression and pattern
matching called compressed pattern matching. First, in Sect. 7.2, we look back on
the history of this field of study. Then, in Sect. 7.3, we provide some notation and
definitions that are used in the following sections. In addition, we recall grammar
compression, which is the key compression scheme for compressed pattern match-
ing. Next, in Sect. 7.4, we introduce the general framework of compressed pattern
matching proposed by Kida et al. [21]. In Sects. 7.5 and 7.6, we present outlines of
Repair-VF and MR-Repair, respectively, which are the results of our work in this
study. Finally, we conclude in Sect. 7.7.

7.2 History of Compressed Pattern Matching Research

The technology of combining data compression and pattern matching emerged in
the early 1990s. This has come to be known as the compressed pattern matching
problem [1], which is the problem of performing pattern matching without first
decompressing the compressed input text. Formally, when a text T = t1t2 . . . tu (ti
is a symbol) is given in compressed form Z = z1z2 . . . zn (zi is an element of the
compressed text), and pattern P is given, the problem is to find all occurrences of P
in T using only Z and P . A simple method is to first decompress Z to T and then use
some commonly used pattern matching algorithm. However, this approach requires
O(m + u) time for pattern matching in addition to the decompression time.

The optimal algorithm for the compressed pattern matching problem is one that
performs pattern matching in O(m + n) time in the worst case. However, it is not
easy to achieve both efficient compression of text data and fast pattern matching on
it. In the initial research in this field, individual pattern matching algorithms were
developed for each compression method. For example, Eilam-Tzoreff and Vishkin et
al. [15] proposed an algorithm for run-length compression, Ga̧sieniec et al. [18] and
Farach Thorup et al. [16] proposed algorithms for LZ77, and Amir et al. [2] proposed
an algorithm for LZW [54]. However, these algorithms tend to be complicated, and
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as Manber [29] pointed out, it is questionable as to whether they are more practical
than the simple method.

From the late 1990s to the early 2000s, several efficient methods for compressed
patternmatching emerged [22, 38, 41]. For the first time, itwas shownexperimentally
that these methods can perform pattern matching faster than the simple method.
Furthermore, methods have appeared that can perform pattern matching faster by
about the compression ratio than matching on the original text. The key is to select a
compressionmethod suitable for patternmatching even at the expense of compression
ratio. In fact, Byte Pair Encoding (BPE), which was used by Shibata et al. [48] for
this purpose, has a compression ratio of at most about 50% for natural language
texts, while the LZ-family methods can compress the same texts to about 30% or
less. However, text compression by BPE offers an advantage for pattern patching
because all the codewords are fixed at 8 bits and the correspondence between each
codeword and a portion of the text is relatively clear.

This caused a paradigm shift. Whereas individual pattern matching algorithms
were previously developed for each data compression method, we realized that in
order to increase the matching speed it would be better to develop a new data com-
pression method suitable for pattern matching. In fact, in the 2000s, several data
compression methods were proposed for this purpose.

One of the main groups of compression methods based on this idea are the
compression methods proposed by Brisaboa et al. [7–9] and by Klein and Ben-
Nissan [24]. These are based on a technique called dense coding [8]. Dense coding
divides an input (natural language) text into words, and then encodes them so that
the codewords become shorter in descending order of the frequency of the words. In
addition, each codeword is assigned a bit pattern that has an explicit end to facilitate
codeword extraction. Although dense coding offers good performance in terms of
both compression ratio and pattern matching speed, some ingenuity is required to
apply it to data such as DNA sequences that cannot be divided into words.

The other system is grammar-based compression (or grammar compression) [23]
with fixed-length coding. This idea is an extension of BPE and can be applied even
if an input text cannot be separated into words. One direct improvement of BPE
is a method using a context-sensitive grammar by Maruyama et al. [34], while for
compression methods based on context-free grammar we have the methods by Klein
and Shapira [25] and Uemura et al. [51]. In both methods, a modified version of
suffix tree [53] is used as a dictionary tree for constructing grammar.

In this chapter, for convenience, we refer to the former system as the dense coding
system and the latter as the VF coding system.

In the 2010s, new data compression algorithms began to appear that achieved
compression performance comparable towell-known compression tools such asGzip
and Bzip while maintaining properties suitable for pattern matching. Among the two
systems described above, the VF coding system has difficulties in terms of com-
pression rate and compression speed. Therefore, research looked into searching for
and improving grammar compression, which is the basis of the VF coding system.
Among this work, the algorithm RePair [26], which was proposed before the name
“grammar compression” was used, has attracted attention because of its excellent



108 T. Kida and I. Furuya

compression ratio. Yoshida and Kida et al. [56] proposes a variant of RePair, called
Repair-VF, which reduces the decrease in compression ratio by suppressing unnec-
essary grammar rules while encoding the output using fixed length codewords. The
time and space complexities required for Repair-VF are both O(n) for text of length
n, which is the same as the original RePair. Repair-VF realizes high-speed pattern
matching on compressed text while having a good compression ratio comparable to
Gzip.

Very recently, we proposed a novel variant of RePair, called MR-RePair [17],
which constructs more compact grammars than RePair, particularly for highly repet-
itive texts. This achievement comes from an analysis of RePair. We show in [17] that
the main process of RePair, that is, the step by step substitution of the most frequent
symbol pairs, works within the corresponding most frequent maximal repeats. We
then reveal in [17] the relationship between maximal repeats and grammars con-
structed by RePair.

7.3 Preliminaries

7.3.1 Definitions of Notation and Terms

Let� be analphabet, that is, an orderedfinite set of symbols.An element T = t1 . . . tn
of �∗ is called a string or a text, where |T | = n denotes its length. Let ε be an empty
string of length 0, that is, |ε| = 0. We denote a concatenation of two strings x, y ∈ �

by x · y, or xy for simplicity if no confusion occurs.
If T = xyz with x, y, z ∈ �∗, then x, y, z are called a prefix, substring, and suffix

of T , respectively. Let T [i : j] = ti · · · t j for any 1 ≤ i ≤ j ≤ n denote a substring
of T beginning at i and ending at j in T , and let T [i] = ti denote the i th symbol of
T . Let w[i : j] = ε if j < i for simplicity.

7.3.2 Grammar Compression

A context-free grammar (CFG or simply grammar) G is defined as a four-tuple G =
{V, �, S, R}, whereV denotes an orderedfinite set of variables,� denotes an ordered
finite alphabet, R denotes a finite set of binary relations called production rules (or
rules) between V and (V ∪ �)∗, and S ∈ V denotes a special variable called start
variable. A production rule refers to the situation where a variable is substituted and
written in the form v → w, with v ∈ V andw ∈ (V ∪ �)∗. Let X,Y ∈ (V ∪ �)∗. If
there are xl , x, xr , y ∈ (V ∪ �)∗ such that X = xl xxr , Y = xl yxr , and x → y ∈ R,
wewrite X → Y , and denote the reflexive transitive closure of→ as

∗⇒. Let val(v) be
a string derived from v, that is, v

∗⇒ val(v). We define grammar Ĝ = {V̂ , �̂, Ŝ, R̂}
as a subgrammar of G if V̂ ⊆ V , �̂ ⊆ (V ∪ �), and R̂ ⊆ R.
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Given a text T , grammar compression is a method for lossless text data com-
pression that constructs a restricted CFG uniquely deriving the text T . For G to
be deterministic, the production rule for each variable v ∈ V must be unique. In
what follows, we assume that every grammar is deterministic and each produc-
tion rule is vi → expri , where expri is an expression either expri = a (a ∈ �) or
expri = v j1v j2 . . . v jn (i > jk for all 1 ≤ k ≤ jn). To estimate the effectiveness for
compression, we use the size of the constructed grammar, which is defined as the
total length of the right-hand side of all production rules of the grammar.

While the problem of constructing the smallest such grammar for a given text is
known to be NP-hard [10], several approximation algorithms have been proposed.
One of them is RePair [26], which is an off-line grammar compression algorithm.
Despite its simple scheme, RePair is known for its high compression in practice [12,
19, 52], and hence, it has been comprehensively studied. Some examples of studies
on the RePair algorithm include its extension to an online algorithm [35], practical
working time/space improvements [6, 47], applications to various fields [12, 27, 49],
and theoretical analysis of generated grammar sizes [10, 40, 42].

7.4 Framework for Compressed Pattern Matching

A grammar compressed text can be expressed in a framework called collage sys-
tems [21]. A pattern matching algorithm on the compressed text can then be obtained
as an instance of the general algorithm on the collage system. Algorithm on collage
systems can be understood as an extension of the Knuth-Morris-Pratt method (KMP
method) [14].

7.4.1 KMP Method

The KMP method a well-known linear-time algorithm for pattern matching on an
ordinary (uncompressed) text. Its movement can be modeled as a linear automaton
(KMP automaton) for a given pattern P .

For a given pattern P , a KMP automaton consists of two functions:

goto functiong : Q × � → Q ∪ {fail},
failure function f : Q \ {0} → Q,

where Q = {0, 1, . . . , |P|} is the set of states, and fail is a special symbol that
is not included in Q. For j ∈ Q and a ∈ �, the goto function g returns j + 1 if
P[ j + 1] = a holds, otherwise it returns fail. For j = 0, let g(0, a) = 0 for all a ∈ �

where P[1] 	= a holds. For j ∈ Q \ {0}, the failure function f returns the maximum
integer k such that P[1 : k] = P[ j − k + 1 : j] holds.
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Fig. 7.1 KMP automaton for P = abacb. In this figure, each circle indicates a state, and the
double circle indicates the final state. Solid arrows and dashed arrows indicate the goto function
and failure function, respectively

Fig. 7.2 Movement of KMP automaton. Solid arrows and dashed arrows indicate state transitions
caused by the goto function and the failure function, respectively

The automaton repeats state transitions by tracing g corresponding to the charac-
ters read one by one from the input text. If g returns fail, then f is repeatedly called
with the current state number to go back until a transition by g succeeds with the
same character. When the automaton finally reaches the rightmost state, it can be
judged that P has occurred.

Figure7.1 shows the KMP automaton for pattern P = abacb. The movement of
the KMP automaton in Fig. 7.1 for the text T = abacbbabaabacb is shown in
Fig. 7.2. In this example, it can be judged that P has occurred when the automaton
reaches the state number 5.

To eliminate the failure function, we define the state transition function δ : Q ×
� → Q as follows:

δ( j, a) =
{
g( j, a) if g( j, a) 	= fail,
δ( f ( j), a) otherwise

Moreover, we extend it to Q × �∗ as follows:

δ∗( j, ε) = j, δ∗( j, ua) = δ(δ∗( j, u), a),

where j ∈ Q, u ∈ �∗, and a ∈ �.
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7.4.2 Collage System

A collage system is a pair 〈D,S〉 defined as follows:D is a sequence of assignments
X1 = expr1; X2 = expr2; · · · ; Xn = exprn , where each Xk is a token and exprk is
any of the form:

a for a ∈ � ∪ {ε}, (primitive assignment)
Xi X j for i, j < k, (concatenation)
[ j]Xi for i < k and an integer j , (prefix truncation)
X [ j]
i for i < k and an integer j , (suffix truncation)

(Xi )
j for i < k and an integer j . ( j times repetition)

Let the set of all tokens in D be denoted by F(D). Each token represents a
string obtained by evaluating the expression as it implies. Let the string represented
by token X ∈ F(D) be denoted by X.u. For example, for X1 = a; X2 = b; X3 =
X1 · X2; X4 = (X3)

3; X5 = X [1]
4 , X4.u = ababab and X5.u = ababa. However,

in this section we identify token X with the string it represents, and simply denote
both by X unless confusion occurs.

Let the number of assignments inD be the size ofD, and denote it by ||D||, that
is, ||D|| = |F(D)| = n. For a sequence S = Xi1 , Xi2 , . . . , Xik of tokens defined in
D, we denote by |S| the number k of tokens in S.

The collage system 〈D,S〉 represents the string obtained by concatenating
Xi1 , . . . , Xik . That is, D and S correspond to the dictionary and compressed text
in a compression method, respectively. Both D and S can be encoded in various
ways. The compression ratios therefore depend on their encoding sizes rather than
||D|| and |S|.

A collage system is said to be truncation-free if D contains no truncation oper-
ation. A collage system is said to be regular if D contains neither truncation nor
repetition operations. A regular collage system is said to be simple if for every
assignment X = Y Z , |Y.u| = 1 or |Z .u| = 1.

7.4.3 Pattern Matching on Collage Systems

The basic idea of pattern matching on a collage system is to simulate the movement
of the KMP automaton on uncompressed text. Using the state transition function
δ∗ of the KMP automaton defined in Sec. 7.4.1, we define the function Jump : Q ×
F(D) → Q as follows:

Jump( j, X) = δ∗( j, X.u).

The intent of Jump is to simulate the state transition of the original KMP automaton
by jumping when it receives token X . Moreover, for any j ∈ Q and X ∈ F(D), we
define the set Output( j, X) = OccP(P[1 : j] · X.u), where OccP(x) indicates the
set of all indices of occurrences of P within x .
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Fig. 7.3 A matching
algorithm on a collage
system

For a given collage system 〈D,S〉 representing text T and for a given pattern P ,
the pattern matching algorithm preprocesses the information required to calculate
Jump and Output from D, and then performs matching while scanning a sequence
of tokens in S one by one from the head (Fig. 7.3).

From the results of [21], the following theorem is obtained.

Theorem 1 (Theorem 3 of [21]) For a collage system 〈D,S〉, the compressed
pattern matching problem can be solved in O(||D|| + |S| + m2 + R) time using
O(||D|| + m2) space if 〈D,S〉 is regular, where R is the number of occurrences of
pattern P in the text represented by 〈D,S〉.

This theorem applies to both RePair and Repair-VF because texts compressed by
these can be described by regular collage systems.

7.5 Repair-VF

This section first introduces RePair and then gives an outline of Repair-VF. Repair-
VF has a structure that combines RePair with a fixed-length coding. Please refer
to the literature [56] for the details of Repair-VF and experimental results for its
performance.

7.5.1 RePair

RePair is a grammar compression algorithm that was proposed by Larsson and Mof-
fat [26]. For input text T , let G = {V, �, S, R} be the grammar constructed by
RePair. The RePair procedure can then be described by the following steps:

Step 1. Replace each symbol a ∈ � with a new variable va and add va → a to R.
Step 2. Find the most frequent pair p in T .
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Fig. 7.4 Example of the grammar generation process ofRePair for T = abracadabra. The generated
grammar is {{va, vb, vr, vc, v1, v2, v3, S}, {a,b,r,c,d}, S, {va → a, vb → b, vr → r, vc → c, vd →
d, v1 → vavb, v2 → v1vc, v3 → v2vd, S → v3vcvavdv3}} with a size of 16

Step 3. Replace every occurrence (or as many occurrences as possible if p is a
pair consisting of the same symbol) of p with a new variable v, and then, add
v → p to R.

Step 4. Re-evaluate the frequencies of pairs for the updated text generated in Step
3. If the maximum frequency is 1, add S → (current textT ) to R, and terminate.
Otherwise, return to Step 2.

Figure7.4 illustrates an example of the grammar generation process of RePair.
The following theorem relates to the performance of RePair shown by Larsson

and Moffat [26].

Theorem 2 ([26]) RePair works in O(n) expected time and 5n + 4k2 + 4k ′ +
√n + 1� − 1 words of space, where n is the length of the source text, k denotes
the cardinality of the source alphabet, and k ′ denotes the cardinality of the final
dictionary.

7.5.2 Outline of Repair-VF

The original RePair encodes the rules in R excluding S using Elias gamma coding,
that is, each codeword has a variable length, whereas Repair-VF uses a fixed-length
code. The right side of S corresponds to the compressed text, and is converted to a
sequence of fixed-length codewords of the rules in S.

Consider the number of fixed-length coded rules. In the process of Step 1 of
RePair, |�| rules are created. In addition, the process of Step 3 of RePair replaces
the most frequent pair and at the same time adds one rule to R. Let s be the number
of rules which are added to R in Step 3. The total number of rules is then |�| + s,
and thus each symbol can be fixed-length encoded with log(|�| + s)� bits. The
information about � can be restored from the rules added in Step 3, so there is no
need to explicitly save it. Therefore, only the rules added in Step 3 and the right side
of S added last in Step 4 need to be saved. In the former, the right side of each rule
consists of two symbols, so the total number of symbols to be saved is 2s. Since the
latter depends on the input text T , let n be the length of T . The number of bits of the
output compressed data is then
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(2s + n)log(|�| + s)� (7.1)

bits in total.
Wewant to find the best s that minimizes the total number of output bits. Note that

the final output tends to be smaller as s increases up to some point. In RePair, Step 3 is
repeated until the frequency of the most frequent pair becomes 1. In the case of using
a fixed-length code as above, this increases useless rules. Increasing the number of
rules can increase the bit length per symbol, resulting in a longer final bit length.
We can eliminate the waste by terminating the process in the middle. However, it is
difficult to determine on the fly the s at which the output becomes minimal. Even
after the first time the output size increases, the length of S may become shorter by
continuing Step 3, and the output size may decrease again.

Therefore, during the processing of RePair, we record the minimum value of the
output size and the corresponding s by calculating Equation (7.1) every time a rule
is added in Step 3. Note that the calculation of Equation (7.1) does not require actual
coding or outputting since a fixed-length code is used. Finally, when S is output in
Step 4, we can obtain the smallest output by outputting while expanding the rules
added after the best s.

This is Repair-VF (called Repair-VF-best in the original paper). The suffix “VF”
comes from an abbreviation for variable-to-fixed length coding (VF coding). For the
input text T , each rule of the output grammar G corresponds to a substring of T , and
the right-hand side of S can be regarded as the variable length factorization of T .
Thus, Repair-VF can be viewed as a VF coding from the viewpoint of information
source coding.

7.6 MR-Repair

In this sectionweoutlineMR-Repair,which is amethod to reduce the output grammar
size by focusing on the relationship betweenRePair andmaximal repeats. Please refer
to the literature [17] for the details of MR-Repair and experimental results for its
performance.

7.6.1 Maximal Repeats

Let s be a substring of text T . If the frequency of s is greater than 1, s is called a
repeat. A left (or right) extension of s is any substring of T in the form ws (or sw),
where w ∈ �∗. We define s as a left (or right) maximal if left (or right) extensions
of s occur a strictly lower number of times in T than s. Accordingly, s is a maximal
repeat of T if s is both left and right maximal. In this paper, we only consider strings
with a length of more than 1 as maximal repeats. For example, the substring abra
of T = abracadabra is a maximal repeat, whereas br is not.
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The following theorem describes an essential property of RePair, that is, RePair
recursively replaces the most frequent maximal repeats.

Theorem 3 (Theorem 1 of [17]) Let T be a given text, under the condition that
every most frequent maximal repeat of T does not appear overlapping itself. Let f
be the frequency of the most frequent pairs of T , and t be a text obtained after all
pairs with frequency f in T are replaced by variables. There is then a text s such
that s is obtained after all maximal repeats with frequency f in T are replaced by
variables, and s and t are isomorphic to each other.

7.6.2 MR Order

According to Theorem 1 of [17], if there is just one most frequent maximal repeat
in the current text, then RePair replaces all occurrences of it step by step. However,
a problem arises if there are two or more most frequent maximal repeats, with some
of them overlapping. In this case, the selection order of pairs (of course, they are
most frequent) affects the priority of maximal repeats. We call this order of selecting
(summarizing) maximal repeats the maximal repeat selection order (or simplyMR-
order). Note that the selection order of pairs actually depends on the implementation
of RePair. If there are several distinct most frequent pairs with overlaps, RePair
constructs grammars with different sizes according to the selection order of the
pairs.

However, the following theorem states that the MR-order rather than the replace-
ment order of pairs determines the size of the grammar generated by RePair.

Theorem 4 (Theorem 2 of [17]) The sizes of grammars generated by RePair are
the same if they are generated in the same MR-order.

7.6.3 Algorithm

The main strategy of the proposed method is to recursively replace the most frequent
maximal repeats instead of the most frequent pairs.

Definition 1 (Definition 3 of [17]) For an input text T , let G = {V, �, S, R} be the
grammar generated by MR-Repair. MR-Repair constructs G through the following
steps:

Step 1. Replace each symbol a ∈ � with a new variable v a and add va → a to
R.

Step 2. Find the most frequent maximal repeat r in T .
Step 3. Check if |r | > 2 and r [1] = r [|r |], and if so, use r [1 : |r | − 1] instead of

r in Step 4.
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Fig. 7.5 Example of the grammar generation process ofMR-Repair for T = abracadabra. The gen-
erated grammar is {{va, vb, vr , vc, vd , v1, S}, {a, b, r, c, d}, S, {va → a, vb → b, vr → r, vc →
c, vd → d, v1 → vavbvr , v2 → v1va, S → v2vcvavdv2}} with a size of 15

Step 4. Replace every occurrence of r with a new variable v and then add v → r
to R.

Step 5. Re-evaluate the frequencies of maximal repeats for the updated text gen-
erated in Step 4. If the maximum frequency is 1, add S → (current text) to R and
terminate. Otherwise, return to Step 2.

Figure7.5 shows an example of the grammar generation process of MR-Repair.
As shown in this figure, the size of the grammar generated by MR-Repair is smaller
than that generated by RePair shown in Figure reffig:repair.

Theorem 5 (Theorem 5 of [17]) Assume that RePair and MR-Repair work based
on the same MR-order for a given text. Let grp and gmr be the sizes of the grammars
generated by RePair and MR-Repair, respectively. Then, 1

2grp < gmr ≤ grp holds.

7.7 Conclusion

In this chapter, we outlined research on compressed patternmatching and showed that
we can speed up pattern matching by selecting a suitable compression method. This
has led to the development of compression methods that are useful for pattern match-
ing.Whereas the initially developed compression methods had low compression per-
formance, Repair-VF [56] achieves both a good compression rate and goodmatching
speed by combining advanced grammar compressionwith fixed-length code. Collage
systems [21] provide a unified algorithm for compressed pattern matching, allowing
us to obtain an efficient pattern matching algorithm for grammar compression as an
instance of the unified algorithm.

Since proposing Repair-VF, we have proposed several improvements for it. LT-
Repair [35] improves RePair processing semi-online by adding the constraint called
the left-tall condition to its grammar. This makes it possible to efficiently compress
large-scale text data with small memory.

MR-Repair [17], which we have recently proposed, is a method that reduces the
output grammar size by focusing on the relationship between RePair and maximal
repeats. Although heuristic improvements [4, 20, 28, 36] focusing on non-maximal
repetitive substrings have previously been proposed, MR-Repair is superior because
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it has been proven to generate theoretically smaller grammar than the original RePair.
A topic for future work is to see whether compressed pattern matching using these
methods can be performed efficiently.

In the present work, we mainly explained the compressed pattern matching prob-
lem based on text scanning. However, the succinct index technology which combines
text index and data compression was also established in 2000. This is an indexing
technology that utilizes a succinct data structure that can solve query processing with
a small space of almost the information-theoretic lower bound. Succinct index has
an excellent property that allows full-text searching while compressing a target text
smaller than the original text. For details of this technology, refer to the excellent
book by Navarro [37].

In terms of online grammar compression methods, there exists FOLCA proposed
by Maruyama et al. [33] and its improvement SOLCA proposed by Takabatake et
al. [50]. FOLCA is based on a string factorization called edit-sensitive parsing. It
performs factorization and grammar generation in parallel while reading an input text
sequentially from the beginning. It is known that straight line programs (restricted
CFGs) generated by FOLCA can be used as index structures [5].

In recent years, Martinez et al. [31] proposed a novel compression method called
Marlin and an improvement of it [32]. These methods achieve both decompres-
sion at ultrahigh-speed and good performance in terms of compression ratio. If we
can decompress compressed data at sufficiently high speed, we can perform pattern
matching efficiently even if it is performed after decompressing the data. Compara-
tive studies on these approaches are also left for future work.

References

1. A. Amir, G. Benson, Efficient two-dimensional compressed matching, in Proc. Data Compres-
sion Conference, p. 279 (1992)

2. A. Amir, G. Benson, M. Farach, Let sleeping files lie: pattern matching in Z-compressed files.
J. Comput. Syst. Sci. 52, 299–307 (1996)

3. A. Apostolico, Z. Galil, Pattern Matching Algorithms (Oxford University Press, 1997)
4. A. Apostolico, S. Lonardi, Off-line compression by greedy textual substitution. Proc. IEEE

88(11), 1733–1744 (2000)
5. D. Belazzougui, P. Cording, S. Puglisi, Y. Tabei, Access, rank, and select in grammar-

compressed strings, in Algorithms—ESA 2015, LNCS, vol. 9294 (Springer, 2015), pp. 142–154
6. P. Bille, I.L. Gørtz, N. Prezza, Space-Efficient Re-pair Compression (2017), pp. 171–180
7. N. Brisaboa, A. Fariña, J. López Rodríguez, G. Navarro, E. Lopez, A new searchable variable-

to-variable compressor. Data Compression Conf. DCC2010, 199–208 (2010)
8. N. Brisaboa, E. Iglesias, G. Navarro, J. Paramá, An efficient compression code for text

databases. Eur. Conf. Inform. Retrieval (ECIR’03) 2633, 468–481 (2003)
9. N. Brisaboa, G. Navarro, M. Esteller, (S,C)-dense coding: An optimized compression code for

natural language text databases, in String Processing and Information Retrieval (SPIRE2003),
LNCS, vol. 2857 (2003), pp. 122–136

10. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, A. Shelat, The
smallest grammar problem. Inform. Theory, IEEE Trans. 51, 2554–2576 (2005)

11. C. Charras, T. Lecroq, Handbook of Exact String Matching Algorithms (College Publications,
2004)



118 T. Kida and I. Furuya

12. F. Claude, G. Navarro, Fast and compact web graph representations. ACM Trans. Web 4(4)
(2010). https://doi.org/10.1145/1841909.1841913

13. M. Crochemore, C. Hancart, T. Lecroq, Algorithms on Strings (Cambridge University Press,
2007)

14. M. Crochemore, W. Rytter, Jewels of Stringology (World Scientific, 2002). https://doi.org/10.
1142/4838

15. T. Eilam-Tzoreff, U. Vishkin, Matching patterns in strings subject to multi-linear transforma-
tions. Theor. Comput. Sci. 60(3), 231–254 (1988)

16. M.Farach,M.Thorup, String-matching inLempel-Ziv compressed strings.Algorithmica 20(4),
388–404 (1998). ((previous version in STOC’95))

17. I. Furuya, T. Takagi, Y. Nakashima, S. Inenaga, H. Bannai, T. Kida, MR-RePair: grammar
compression based on maximal repeats, in Data Compression Conference (DCC2019) (IEEE
Computer Society, 2019), pp. 508–517

18. L. Ga̧sieniec, M. Karpinski, W. Plandowski, W. Rytter, Efficient algorithms for Lempel-Ziv
encoding, in Proceedings of the 4th Scandinavian Workshop on Algorithm Theory, LNCS, vol.
1097, (Springer, 1996), pp. 392–403

19. R. González, G. Navarro, Compressed text indexes with fast locate, in Combinatorial Pattern
Matching. ed. by B. Ma, K. Zhang (Springer, Berlin Heidelberg, Berlin, Heidelberg, 2007), pp.
216–227

20. S. Inenaga, T. Funamoto, M. Takeda, A. Shinohara, Linear-time off-line text compression by
longest-first substitution, in String Processing and Information Retrieval. SPIRE 2003, LNCS,
vol. 2857 (Springer, 2003), pp. 137–152

21. T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara, S. Arikawa, Collage system: a
unifying framework for compressed pattern matching. Theor. Comput. Sci. 298(1), 253–272
(2003). https://doi.org/10.1016/S0304-3975(02)00426-7

22. T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, S. Arikawa, Multiple pattern matching in
LZW compressed text. J. Discrete Algor. 1(1), 133–158 (2000). (previous version in DCC’98
and CPM’99)

23. J.C. Kieffer, E. Yang, Grammar-based codes: a new class of universal lossless source codes.
IEEE Trans. Inform. Theory 46(3), 737–754 (2000)

24. S. Klein, M. Ben-Nissan, Using fibonacci compression codes as alternatives to dense codes.
Data Compression Conf. DCC2008, 472–481 (2008)

25. S. Klein, D. Shapira, Improved variable-to-fixed length codes, in String Processing and Infor-
mation Retrieval (SPIRE 2008), LNCS, vol. 5280, (Springer, 2008), pp. 39–50

26. N.J. Larsson, A. Moffat, Offline dictionary-based compression, in Data Compression Confer-
ence (DCC’99), (IEEE Computer Society, 1999), pp. 296–305

27. M. Lohrey, S. Maneth, R. Mennicke, Xml tree structure compression using re-pair. Inform.
Syst. 38(8), 1150–1167 (2013)
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Chapter 8
Orthogonal Range Search Data
Structures

Kazuki Ishiyama and Kunihiko Sadakane

Abstract We first review existing space-efficient data structures for the orthogonal
range search problem. Then, we propose two improved data structures, the first of
which has better query time complexity than the existing structures and the second
of which has better space complexity that matches the information-theoretic lower
bound.

8.1 Introduction

Consider a set P of n points in the d-dimensional space R
d . Given an orthogonal

range Q =
[
l(Q)
0 , u(Q)

0

]
×

[
l(Q)
1 , u(Q)

1

]
× · · · ×

[
l(Q)
d−1, u

(Q)
d−1

]
, the problem of answer-

ing queries for information on P ∩ Q, the subset of P contained in the range Q, is
called the orthogonal range search problem, and is one of the fundamental problems
in computational geometry.

The information obtained about P ∩ Q differs depending on the query. The most
basic queries are the reporting query, which enumerates all the points in P ∩ Q,
and the counting query, which returns the number of points |P ∩ Q|. There are
other queries such as the emptiness query, which checks whether P ∩ Q is empty or
not, and aggregate queries, which compute the summation, average, or variance of
weights of points in the query range.

Applications of the orthogonal range search problem include database searches
[21]. For example, assuming there is a database of employees of a company, then
a query to count the number of employees whose duration of service is at least x1
years and at most x2 years, age is at least y1 and at most y2, and annual income is
at least z1 and at most z2, can be formalized as an orthogonal range search problem.
Other applications include geographical information systems, CAD, and computer
graphics.
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In such applications, it is common to perform multiple queries on the same point
set P .We therefore consider constructing the problem as an indexing problem:Given
a point set P a priori, we first construct some data structure D from P . Then, when
a query range Q is given, we answer the query using the data structure D.

8.1.1 Existing Work

Inmany existingworks, the number n of points is regarded as a variable for evaluating
time complexity and the number d of dimensions is regarded as a constant. However,
in this chapter, we regard d as a variable too. For the computation model, we use
w-bit word RAM where w = �(lg n) bits. That is, a constant number of coordinate
values can be treated in constant time. Then, it takes O(d) time to check whether a
point is inside a query range.

If more space than�(dn)words is allowed to be used for the space complexity of
data structures and if we assume that d is a constant, thenwe can perform the counting
and reporting queries in time polynomial to log n. Range trees [2, 14, 15, 23] are
such data structures. Range trees support counting queries in O

(
d logd−1 n

)
time

and reporting queries in O
(
d logd−1 n + dk

)
time using O

(
dn logd−1 n

)
word space,

where k = |P ∩ Q|, that is, the number of points enumerated by a reporting query
using the fractional cascading technique [15, 23]. Although these data structures are
time-efficient, it is desirable to develop more space-efficient data structures.

Some data structures having linear space complexity have been proposed. For
example, quad trees [6] were the first data structures used for orthogonal range
search. Unfortunately, quad trees have terrible worst-case behaviors. To overcome

this, kd-tree [1] is used. The query time complexity of the kd-tree is O
(
d2n

d−1
d

)
for

counting and O
(
d2n

d−1
d + dk

)
for reporting [13].

These data structures store the coordinates of points separately in plain form,
and therefore can be applied to the case of real-valued coordinates. However, if the
coordinates take integer values from 0 to n − 1, then there exist data structures with
even smaller space complexity and query time complexity. For example, Chazelle [4]
proposed a data structure for the two-dimensional case with linear space complexity
and time complexity ofO(lg n) for counting andO(lg n + k lgε n) for reportingwhere
0 < ε < 1 is any constant. Note that although the assumption that each coordinate
value is an integer from 0 to n − 1 seems too strict, as is explained in Sect. 8.2.2, any
orthogonal range search problem in d-dimensional space can be reduced into one on
the [n]d grid, and therefore the assumption does not create any difficulties.

There has also been research on succinct data structures for the orthogonal range
search problem. The wavelet tree [9] is a data structure which was originally pro-
posed for representing compressed suffix arrays, and it later turned out that wavelet
tree can support various queries efficiently [18]. For the orthogonal range search
problem, wavelet tree can support counting queries in O(lg n) time and reporting
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queries in O((1 + k) lg n) time [8]. Bose et al. [3] proposed improved succinct data
structures that support counting queries in O(lg n/ lg lg n) time and reporting queries
in O(((1 + k) lg n/ lg lg n) for two-dimensional cases.

For higher dimensions, Okajima and Maruyama [20] proposed the KDW-tree,
which is a succinct data structure for any dimensionality. The query time complexity
of theKDW-tree is smaller than that of the kd-tree. Ifwe assumed is a constant, count-
ing queries take O

(
n

d−2
d lg n

)
time and reporting queries take O

((
n

d−2
d + k

)
lg n

)

time. The KDW-tree has been shown to be practical by numerical experiments.

8.1.2 Our Results

We show space and time complexities of data structures for the orthogonal range
search problem explained in Sect. 8.1.1 and our proposed data structures in Table 8.1.
Note that these are for the case where the coordinates are integers from 0 to n − 1,
and the space complexities are measured in bits. Table 8.1 shows reporting time
complexities. Counting time complexities can be obtained by letting k = 0.

Our data structures are space-efficient for high-dimensional orthogonal range
search problems.

Our first data structure has the same space complexity as the KDW-tree and better
query time complexities. Note that the result in Table 8.1 is for the case of d ≥ 3. If
d = 2, we can improve the n

d−2
d term to lg n. This result appeared in [11].

Note that, as shown in Sect. 8.2.1, the necessary space to represent a set of n points
in d-dimensional space such that each coordinate takes an integer value from 0 to
n − 1 is (d − 1)n lg n + �(n) bits. This means that if we assume d is a constant, the
space complexity of the KDW-tree and our first data structure does not match the
information-theoretic lower bound asymptotically.

Table 8.1 Comparison of complexities. The results or KDW-tree and Ours 1 are for d ≥ 3. Note
that k is the number of points enumerated by a reporting query. The time complexities for counting
queries are obtained by letting k = 0 in the time complexities for reporting queries

Data structure Dim. Space (bits) Query time

kd-tree [1] d O(dn lg n) O
(
d2n

d−1
d + dk

)

Wavelet tree [9] 2 n lg n + o(n lg n) O((1 + k) lg n)

Bose et al. [3] 2 n lg n + o(n lg n) O
(
(1 + k) lg n

lg lg n

)

KDW-tree [20] d d{n lg n +
o(n lg n)}

O
((

poly(d) · n d−2
d + dk

)
lg n

)

Ours 1 d d{n lg n +
o(n lg n)}

O
((

d3n
d−2
d + dk

)
lg n
lg lg n

)

Ours 2 d (d − 1){n lg n +
o(n lg n)}

O(dn lg n)
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Our second data structure uses (d − 1)n lg n + (d − 1) · o(n lg n) bits of space.
This asymptotically matches the information-theoretic lower bound even if d is
assumed to be a constant. Therefore, we can say this data structure is truly suc-
cinct. Unfortunately, the worst-case query time complexity is O(dn lg n), which is
not fast in theory. However, this data structure is fast in practice for the case where
the number d of dimensions is large but the number d ′ of dimensions used for a query
is small. This kind of query often occurs in the database search applications shown
in Sect. 8.1. This result appeared in [10].

8.2 Preliminaries

In this paper, we assume that coordinates of points are non-negative integers. As will
be explained in Sect. 8.2.2, we sometimes assume that coordinates are integers from
0 to n − 1. Therefore, we define [n] as the set {0, 1, . . . , n − 1}. For a d-dimensional
space, we denote each dimension by dim. 0, dim. 1, . . . , dim. d − 1, coordinate values
of a point by 0-th coordinate value, 1-th coordinate value, . . . , d − 1-th coordinate
value. For a rooted tree, we assume the depth of the root node is 0. Throughout the
paper, log x denotes the natural logarithm and lg x denotes the base 2 logarithm.

Next, we define two concepts used in this chapter. The first one is containment
degree.This is the concept of an inclusion relationshipbetween twoorthogonal ranges

introduced in [20]. For two d-dimensional orthogonal ranges Q =
[
l(Q)
0 , u(Q)

0

]
×

. . . ×
[
l(Q)
d−1, u

(Q)
d−1

]
and R=

[
l(R)
0 , u(R)

0

]
× · · · ×

[
l(R)
d−1, u

(R)
d−1

]
,wedefineCDeg(R, Q)

as

CDeg(R, Q) = #
{
i ∈ [d]

∣∣∣
[
l(R)
i , u(R)

i

]
⊆

[
l(Q)
i , u(Q)

i

]}

and call it the containment degree of R with respect to Q. This is the number of
dimensions, in each of which R is contained in Q. The containment degree is an
important concept for analyzing time complexities of orthogonal range search algo-
rithms.

Next, we explain z-value. This is a projection of multi-dimensional data onto one-
dimensional data as proposed by Morton [17]. Consider a point p = (p0, p1, . . . ,
pd−1) in the d-dimensional space where the coordinate values are integers. If
coordinate values are expressed as l-bit binary numbers p0 = b00b

1
0 · · · bl−1

0 , p1 =
b01b

1
1 · · · bl−1

1 , . . . , pd−1 = b0d−1b
1
d−1 · · · bl−1

d−1, the z-value z(p) of point p is defined
as

z(p) = b00b
0
1 · · · b0d−1b

1
0b

1
1 · · · b1d−1 · · · bl−1

0 bl−1
1 · · · bl−1

d−1.

In the case of a two-dimensional space, if we arrange grid points in increasing order
of z-value, we see a z-shape curve as shown in Fig. 8.1. We therefore call the value
z-value.
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Fig. 8.1 Curve obtained by
joining grid points in
z-valueorder in
two-dimensional space

8.2.1 Succinct Data Structures and Information-Theoretic
Lower Bound

Succinctness of data structures was proposed by Jacobson [12] and is one of the
criteria for measuring space complexities of data structures. It is defined as follows.

Let n be the number of different values that an object can take. Then, we need at
least �lg n� bits of space to represent the object. If the space complexity S(n) of a
data structure representing the object satisfies S(n) = lg n + o(lg n) bits, we say the
data structure is succinct and �lg n� bits is the information-theoretic lower bound of
the size of representations of the object. Note that succinct data structures not only
offer data compression, but also support some efficient queries. For orthogonal range
search, a naive algorithm supports linear time queries by scanning an array containing
coordinate values of points. Succinct data structures are therefore expected to answer
queries in sublinear time.

The space complexity of lg n + o(lg n) bits in the definition of succinct data
structures indicates that the size of auxiliary indexing data structures added to the
data is negligibly small compared with the size of the data itself (lg n bits). In other
words, the space complexity of succinct data structures asymptotically matches the
information-theoretic lower bound when n → ∞.

We compute the information-theoretic lower bound for representing a set of points
with integer coordinates. Assume that i-th coordinate value takes integer values from
0 to Ui − 1. Because the number of grid points is

∏d−1
i=0 Ui , the number of different

sets of n points is

(∏d−1
i=0 Ui

n

)
.

By using Stirling’s approximation formula
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log n! = n log n − n + O(log n),

we obtain

log

(
U

n

)
= logU ! − log(U − n)! − log n!
= U logU −U − (U − n) log(U − n) + (U − n) − n log n + n + O(logU )

= U log
U

U − n
+ n log

U − n

n
+ O(logU )

= U log

(
1 + n

U − n

)
+ n log

U

n

(
1 − n

U

)
+ O(logU )

= U

(
n

U − n
− �

((
n

U − n

)2
))

+ n log
U

n
− �

(
n2

U

)
+ O(logU )

= n logU − n log n + � (n) .

Therefore, the information-theoretic lower bound of the size for representing the
point set is

lg

(∏d−1
i=0 Ui

n

)
=

d−1∑
i=0

n lgUi − n lg n + �(n) .

Note that storing coordinate values of the points explicitly using
∑d−1

i=0 �lgUi� use
n lg n bit more space than the information-theoretic lower bound.

8.2.2 Assumptions on Point Sets

Because data structures such as kd-tree or range trees that have linear or larger space
complexities usually store the coordinates of points in a plain format, we do not
care whether they are integers or real values. However, if we consider succinct data
structures, we usually assume that coordinates values are integers from0 to n − 1.We
also assume that for any points p, q ∈ P and any i ∈ [d], the i-th coordinate value
pi of p and the i-th coordinate value qi of q are different. Although this assumption
may appear to be unrealistic and too strong, for the orthogonal range search problem,
it is known that an arbitrary point set on R

d can be transformed into a point set on
[n]d [7].

Consider a set P of n points on R
d . We create another point set P ′ on [n]d as

follows. The set P ′ also contains n points and there is a one-to-one correspondence
between points in P and points in P ′. Assume that p ∈ P corresponds to p′ ∈ P ′.
Then, the i-th coordinate value p′

i of p
′ is then defined from the i-th coordinate value

pi of p as
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p′
i = #{q ∈ P | qi < pi }. (8.1)

That is, the i-th coordinate value of p′ is the number of points in P such that the i-th
coordinate value is smaller than pi . This is called the rank value of p with respect
to the i-th coordinate value, and the transformation is called the transformation into
rank space. We use arrays C0,C1, . . . ,Cd−1 each of length n. The array Ci stores
the i-th coordinate values of points in P in increasing order.

By using the point set P ′ on the rank space and the arrays Ci (i = 0, . . . , d − 1)
that contain the original coordinate values of the points in P , we can reduce the
problem of orthogonal range search on the original point set P into that on P ′.
Assume that a query range Q =

[
l(Q)
0 , u(Q)

0

]
× · · · ×

[
l(Q)
d−1, u

(Q)
d−1

]
⊂ R

d is given for

a point set P . From the construction of P ′, there exists a range Q′ =
[
l(Q

′)
0 , u(Q′)

0

]
×

· · · ×
[
l(Q

′)
d−1 , u

(Q′)
d−1

]
⊂ [n]d such that

p ∈ Q ⇐⇒ p′ ∈ Q′.

The boundaries of this Q′ are computed by

l(Q
′)

i = #
{
p ∈ P

∣∣∣ pi < l(Q)
i

}

u(Q′)
i = #

{
p ∈ P

∣∣∣ pi ≤ u(Q)
i

}
− 1.

These are computed in O(d lg n) time by binary searches on the arrays Ci . Then,
the counting query is performed by using Q′. For the reporting query, after finding a
point p′ ∈ P ′ which is included in the query range Q′ in the rank space, we need to
recover the original coordinates of the point p ∈ P . This is done in O(d) time using
the arrays Ci containing the coordinates of the original points by

pi = Ci [p′
i ].

Thus, an orthogonal range search problem on R
d can be transformed into that on

[n]d . Note that if coordinates are transformed as in Eq. (8.1), the identical coordinate
values inR

d are transformed into identical coordinate values in [n]d . By shifting val-
ues by one for the identical coordinate values, we can transform the coordinate values
so that for any two distinct points p′, q ′ ∈ P ′ and any i ∈ [d], the i-th coordinate
value p′

i of p
′ is different from the i-th coordinate value q ′

i of q
′.

If the original points have integer coordinate values, we can reduce the space [19].
Consider the case where P is a point set on [U ]d , that is, each coordinate value takes
an integer value from 0 to U − 1. In this case, the point set P ′ in the rank space
does not change. However, we store the coordinates of the original point set P in
a different way. We store them using multi-sets M0, M1, . . . , Md−1, each of which
corresponds to one of the d dimensions. The multi-set Mi stores the i-th coordinate
value of the points in P . We use the data structure of [22] to store multi-sets.
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Lemma 8.1 There exists a data structure using n lg(U/n) + O(n) which supports
a selectm query on a multi-set Mi in constant time.

A selectm query on a multi-set M finds the j-th smallest element in M . That is,Ci [ j]
is obtained by finding the j-th smallest element in array Ci . Therefore, if a query
range Q on [U ]d is given, it can be transformed into a query range Q′ on the rank
space by binary searches using selectm queries, and the original coordinate values
are obtained by d many selectm queries.

Assume that there exists a succinct data structure D′ for a point set P ′ on [n]d .
Then, the space complexity of D′ is (d − 1)n lg n + (d − 1) · o(n lg n) bits, as shown
in Sect. 8.2.1. If we add d data structures of Lemma 8.1, the total space complexity
becomes dn lgU − n lg n + (d − 1) · o(n lg n) bits. This is succinct for the point set
P on [U ]d . Therefore, if there exists a succinct data structure for a point set on [n]d ,
we can construct a succinct data structure for a point set on [U ]d . From here onward,
we consider only point sets on [n]d .

8.3 kd-Tree

kd-tree [1] is a well-known data structure that partitions the space recursively. It
is used not only for the orthogonal range search problem, but also for the nearest
neighbor search problem.

8.3.1 Construction of kd-Trees

We explain the algorithm for constructing a kd-tree of a point set P for the two-
dimensional case. First, we find the point p for which the x-coordinate is the median
of the point set P , and store p at the root of the kd-tree. Next, we divide the set
P \ {p} into two: the set Pleft that stores points with x-coordinates smaller than that
of p, and the set Pright that stores points with x coordinates larger than that of p. We
add two children vleft , vright to the root of the kd-tree. Next, from Pleft (Pright), we find
pleft (pright) for which the y-coordinate is the median of the set, and we store pleft
(pright) in vleft (vright). Similarly, we divide the set Pleft \ {pleft} (Pright \ {pright}) into
two subsets according to y-coordinates, find medians with respect to x-coordinates,
and store them in children of vleft (vright), and repeat this recursively. Figure 8.2 shows
an example of partitioning a point set.

For a d-dimensional space, we partition the space based on the first dimension,
the second dimension, and so on. After partitioning the space based on the d-th
dimension, we use the first dimension again.
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Fig. 8.2 Partitioning of a space based on the point set (left) and the corresponding kd-tree (right).
Points A, B,C, . . . correspond to nodes a, b, c, . . .. The range corresponding to node h is shown
in gray in the left figure

8.3.2 Range Search Algorithm

An important concept for understanding range searches using a kd-tree is the cor-
respondence between nodes of the kd-tree and ranges. In Sect. 8.3.1, we explained
that each node of the kd-tree stores a point. We can also consider that each node
corresponds to an orthogonal range. Let V (v) denote the point in P stored in node
v and R(v) denote the corresponding range. Then R(v) is defined as follows:

– For the root node r of the kd-tree, the range R(r) is the whole space.
– For a node v at depth l, the range R(vleft) for the left child vleft of v is obtained as
follows. We partition R(v) into two by the hyperplane that is perpendicular to the
(l mod d)-th axis and contains V (v). Then, R(vleft) is the range with the smaller (l
mod d)-th coordinate value and R(vright) is the range with the larger (l mod d)-th
coordinate value.

For example, in Fig. 8.2, the range R(h) corresponding to node h is the gray area.
The algorithm for reporting queries using a kd-tree is as follows. The algorithm

searches the space by traversing tree nodes from the root. Each time a node v is visited,
the algorithm checks whether the corresponding point V (v) (∈ P) is contained in
the query range Q or not. If the range R(v) is fully contained in the query range
Q, the algorithm outputs all the points stored in the sub-tree rooted at v. If R(v)

and Q has no intersection, the algorithm terminates the search of the sub-tree. For
a counting query, instead of outputting all the points when R(v) is contained in Q,
the algorithm finds and accumulates the size of the sub-tree rooted at v. Although it
may seem impossible to execute the algorithm since the range R(v) for node v is not
explicitly stored in the kd-tree, if the range R(v) for node v is known, then we know
the coordinate values of the hyperplane partitioning the range from the coordinate
values of point V (v), and we can compute R(vleft) and R(vright). Therefore, we can
execute the algorithm by keeping the range R(v) during the search.
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8.3.3 Complexity Analyses

The time complexity of kd-trees is analyzed in [13]. A counting query takes

O
(
d · n d−1

d + 2d
)
time. In general, we assume d is a constant and write the com-

plexity as O
(
n

d−1
d

)
. For a reporting query, we output all coordinates of points in

Q. Because a point can be output in constant time, the query time complexity is

O
(
n

d−1
d + k

)
.

If d ≥ lg n, the height of the kd-tree is at most d, and therefore the space is
partitioned at most d times. Then, it is necessary to traverse all the nodes and a query
takes O(n) time.

8.4 Wavelet Tree

Wavelet tree is a succinct data structure supporting various queries on strings and
integer sequences efficiently. It was originally proposed for representing compressed
suffix arrays [9], but it later became known that wavelet tree can support more
operations [18]. Orthogonal range search in two-dimensional space is one of these
operations [16].

8.4.1 Construction

The two-dimensional point sets P that can be represented directly using wavelet tree
are those where the coordinates take integer values from 1 to n and the x-coordinate
values are all distinct. As explained in Sect. 8.2.2, without loss of generality, we can
transform any point set into a point set in [n]d space. For such a two-dimensional
point set P , consider an integer sequence C that contains the y-coordinates of the
points in increasing order of x-coordinates. For example, for the point set in Fig. 8.3,
the corresponding integer sequence C is 4, 2, 7, 5, 0, 3, 1, 6. For this sequence C ,
we construct a wavelet tree as follows.

First, we consider that the root of the wavelet tree corresponds to C . Note that
we do not store C directly in the wavelet tree. We then focus on the most significant
(highest) bit of the �lg n�-bit binary representation of each integer in C . If it is 0
(1), the integer is moved into the left (right) child of the root. We consider that each
child node of the root corresponds to an integer sequence containing the numbers
in the original array C in the same order. For example, in the example in Fig. 8.3,
integers from 0 to 3 go to the left child, and integers from 4 to 7 go to the right child.
Therefore, the left child corresponds to an integer sequence 2, 0, 3, 1, and the right
child 4, 7, 5, 6.
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Fig. 8.3 A two-dimensional point set P (left) and the corresponding wavelet tree (right)

Next, for each integer sequence of child nodes, we focus on the second most
significant bit of the binary representation of each number. We move a number with
0 bit to the left, and a number with 1 bit to the right. Similarly, we repeat this until
the integer sequence of a node consists of the identical integer.

Note that we do not store integer sequences in nodes of the wavelet tree. In
each node, we store a bit string of the same length as the corresponding integer
sequence. The i-th bit of the bit string is 0 (1) if the i-th integer in the integer
sequence goes to the left (right) child. In other words, a bit string stored in a node of
depth l is the concatenation of the (l + 1)-th highest bit of each integer in the integer
sequence corresponding to the node. In the example in Fig. 8.3, the integer sequence
corresponding to the root node is 4, 2, 7, 5, 0, 3, 1, 6, and because integers from 0
to 3 go to the left child and integers from 4 to 7 go to the right child, the bit string
stored in the root node is 1, 0, 1, 1, 0, 0, 0, 1. Note that we do not store bit strings
at leaf nodes. We show the information stored in the wavelet tree in the right tree in
Fig. 8.3. Only bit strings drawn above the dark gray rectangles, that is, those in the
lower row of each node, are stored.

Note that although it may seem impossible to recover the original information
(the integer sequence) from these bit strings, it is possible. Consider the recovery of
the fourth integer of the wavelet tree in Fig. 8.3 (right). From the bit string stored
in the root node, we know that the first bit of the integer is 1. Because this 1 bit
corresponding to the fourth integer is the third 1 in the bit string, we know that the
integer to be recovered corresponds to the third bit of the bit string in the right child
of the root node. If we look at the third bit of the right child, we know that the second
bit of the integer is 0. Further, this 0 bit is the second 0 in the bit string, the integer
to be recovered corresponds to the second bit of the left child of the current node.
Finally, from the second bit of the left child, we know the last bit of the integer to be
recovered is 1. Therefore, the fourth integer is 101 in binary, that is, 5. This is shown
in Fig. 8.4.
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Fig. 8.4 In the wavelet tree
in Fig. 8.3, we recover the
fourth integer. By looking at
the bits enclosed in boxes,
we know that the fourth
integer is 101 in binary, that
is, 5

In this recovery operation, we need to compute the number of zeros/ones in the
first i bits of a bit string. This operation is also used in the range search algorithm
in the next section. If we look at bits one by one from the beginning of a bit string,
it takes O(n) time, which is too slow. We therefore represent the bit string of each
node by the following data structure [5, 12].

Lemma 8.2 For a bit string of length n, there exists a data structure using n +
o(n) bits which answers a rank/select query in constant time, where the rank query
rankb (B, i) is to count the number of b bits (b = 0, 1) in the bits from B[0] to B[i]
(i ≥ 0) of a bit string B, and the select query selectb (B, i) is to return the position
of the i-th b (i ≥ 1, b = 0, 1) in a bit string B.

The select query is also necessary for range searches using a wavelet tree.

8.4.2 Range Search Algorithm

We explain how to solve the two-dimensional range search problem using a wavelet
tree. First, we explain the counting query, which is performed by a recursive function
as in Algorithm 1. For a query range Q = [l, r ] × [b, t], the argument of the function
is WTCounting(l, r, b, t, vroot, 0, 2�lg n� − 1), where vroot is the root node of the
wavelet tree. The left (right) child of node v is represented by vleft (vright). The bit
string stored in node v is represented by v.B.

We explain the algorithm in Fig. 8.5 using the example of searching a range
Q = [1, 6] × [1, 4] for the point set P in Fig. 8.3.

The search algorithm traverses the tree from the root. During the search, the
algorithm keeps the interval I of an integer sequence (or bit string) corresponding
to an interval of the x-coordinate of the query range. In the example in Fig. 8.5,
we focus on the interval I = [1, 6] at the root node. To move to the left child, we
need to compute the interval corresponding to the query range. This is done by a
rank query that counts the number of zeros from the beginning of the bit string to a
specified position. In the bit string stored in the root node, the number of zeros from
the beginning to the 0-th position (in general, if the interval is I = [l, r ], to (l − 1)-th
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Fig. 8.5 Behavior of the algorithmwhen searching a rangeof [1, 6] × [1, 4] for the two-dimensional
point set in Fig. 8.3

Algorithm 1WTCounting(x1, x2, y1, y2, v, a, b)
Input: A node v of the wavelet tree and an interval [x1, x2] in the corresponding bit string, the

interval [a, b] of y coordinate corresponding to node v, and the interval [y1, y2] of y coordinate
for the query range.

Output: The number of points stored in the sub-tree rooted at v and contained in Q.
1: if x1 > x2 then
2: return 0
3: else if [a, b] ∩ [y1, y2] = ∅ then
4: return 0
5: else if [a, b] ⊆ [y1, y2] then
6: return x2 − x1 + 1
7: end if
8: xl1 ← rank0 (v.B, x1 − 1)
9: xl2 ← rank0 (v.B, x2) − 1
10: xr1 ← x1 − xl1
11: xr2 ← x2 − xl2 − 1
12: m ← �(a + b)/2�
13: return WTCounting(xl1, x

l
2, y1, y2, vleft, a,m)

+WTCounting(xr1, x
r
2, y1, y2, vright,m + 1, b)

position) is 0, so we know the interval corresponding to the query starts at position
0. Because the number of zeros from the beginning to the 6-th position (in general,
if the interval is I = [l, r ], to r -th position) is four, we know the interval ends at
position 3. Thus, we obtain the interval I = [0, 3] for the left child. Similarly, for
the right child, by using rank queries counting the number of ones, we can obtain the
interval I = [1, 2].

We repeat this process by going down the tree maintaining an interval. When we
reach a leaf, we can determine if the y-coordinate of the point is included in the query
range. However, we can sometimes determine this at an earlier stage. For example,
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in Fig. 8.5, after obtaining the interval I = [1, 2] at the left child of the root, for the
right child of the current node the interval of the y-coordinate corresponding to the
node is [2, 3], which is completely included in the interval [1, 4] of the y-coordinate
of the query range. Therefore, for the two points we focus on at this node, both
the x- and y-coordinates are included in the query range, and we found two points
in the query range. However, after computing the interval I = [1, 2] for the right
child of the root, the interval of the y-coordinate corresponding to the right child of
the current node is [6, 7], which has no intersection with the interval [1, 4] of the
y-coordinate of the query range. We do not need to further search the sub-tree.

As observed above, in a range search using a wavelet tree, if the query range is
Q = [l, r ] × [b, t], we first focus on points for which the x-coordinates are contained
in Q, that is, contained in the range [l, r ] × [0, n − 1]. Next, the process of traversing
down the tree corresponds to partitioning the range into two according to the y-
coordinate. If an obtained range is completely contained in the query range, or does
not intersect with the query range, we terminate searching the sub-tree.

For counting queries, it is sufficient to sum the number of points. For reporting
queries, the extra work of computing the coordinates of the points is also required.
This is shown in Algorithm 2.

The outline of the reporting query is the same as the counting query. In
Algorithm 1, we obtain the number of points in Line 2. We change it one by
one to output coordinates of points corresponding to the interval [x1, x2] of the
bit string v.B. The x- and y-coordinates of each point are obtained byWTReportX

Algorithm 2WTReporting(x1, x2, y1, y2, v, a, b)
Input: A node v of the wavelet tree, the interval [x1, x2] of the bit string stored in it, the interval

[a, b] of y coordinates corresponding to the range for v, and the interval [y1, y2] of y coordinates
for the query range.

Output: Coordinates of point stored in the sub-tree rooted at v and contained in Q.
1: if x1 > x2 then
2: terminate
3: else if [a, b] ∩ [y1, y2] = ∅ then
4: terminate
5: else if [a, b] ⊆ [y1, y2] then
6: for i = x1 to x2 do
7: x ← WTReportX(v, i)
8: y ← WTReportY(v, i, a, b)
9: Output (x, y)
10: end for
11: end if
12: xl1 ← rank0 (v.B, x1 − 1)
13: xl2 ← rank0 (v.B, x2) − 1
14: xr1 ← x1 − xl1
15: xr2 ← x2 − xl2 − 1
16: m ← �(a + b)/2�
17: WTReporting(xl1, x

l
2, y1, y2, vleft, a,m)

18: WTReporting(xr1, x
r
2, y1, y2, vright,m + 1, b)
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Algorithm 3WTReportX(v, i)
Input: A node v of the wavelet tree and an integer i .
Output: The x coordinate value of the point corresponding to the i-th bit of the bit string stored in

v.
1: if v is the root then
2: return i
3: else if v is the left child of vparent then
4: i ← select0

(
vparent.B, i + 1

)
5: return WTReportX(vparent, i)
6: else
7: i ← select1

(
vparent.B, i + 1

)
8: return WTReportX(vparent, i)
9: end if

Algorithm 4WTReportY(v, i, a, b)
Input: A node v of the wavelet tree, the interval [a, b] of y coordinate corresponding to the range

for v, and an integer i .
Output: The y coordinate value of the point corresponding to the i-th bit of the bit string stored in

v.
1: if a = b then
2: return a
3: else if v.B[i] = 0 then
4: i ← rank0 (v.B, i) − 1
5: return WTReportY(vleft, i, a, �(a + b)/2�)
6: else
7: i ← rank1 (v.B, i) − 1
8: return WTReportY(vright, i, �(a + b)/2� + 1, b)
9: end if

and WTReportY, respectively. The algorithm WTReportY for computing the y-
coordinate (Algorithm 4) is similar to the algorithm for recovering a value of the
original integer array explained in Sect. 8.4.1. We compute the y-coordinates by
traversing down the tree using rank queries.

In contrast, the algorithm WTReportX for computing the x-coordinate
(Algorithm 3) traverses up the tree using select queries. We explain this by example.
In Fig. 8.5, assume that at node v, which is the right child of the left child of the root,
we find that points corresponding to the interval I = [0, 1] are contained in the query
range. Consider the computation of the x-coordinate of the point corresponding to
the bit v.B[1]. First, the node v we focus on is the right child of its parent. We find
the position of the second 1 in the parent by a select query. Then we know that the
point corresponds to the bit v′.B[2] in the parent node v′. Next, because the current
node is the left child of the parent (the root), we find the position of the third 0 in the
bit string of the parent by a select query. Now we know that the point corresponds
to the bit r.B[5] at the root node r . That is, the x-coordinate of the point is 5.

As shown above, we can traverse the nodes of the wavelet tree using rank and
select queries on bit strings. For range searches, we traverse down the tree from the
root computing the intervals of the x-coordinate corresponding to the query range.
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If we find a node where the corresponding interval of the y-coordinate is contained
in the query range, we answer the query by computing the length of the interval or
coordinate values by traversing the tree.

8.4.3 Complexity Analyses

Wenowanalyze the space complexity of thewavelet tree and query time complexities
for the orthogonal range search problem.

First, we analyze the space complexity. The height of the wavelet tree is �lg n�.
The total length of bit strings stored in the nodes with the same depth is always n.
Therefore, the total length of all the bit strings in the wavelet tree is n lg n. We can
concatenate all the bit strings and store only a long bit string. Then it is not necessary
to store the tree structure of thewavelet tree. By using the data structure of Lemma 8.2
for this long bit string, the space complexity is n lg n + o(n lg n) bits in total.

Next, we consider query time complexities. For a counting query, we consider the
number of visited nodes. In the wavelet tree, each time we traverse an edge toward
a leaf, points with small y-coordinates go to the left child, and points with large y-
coordinates go to the right child. At leaves we can consider that all points are sorted
in increasing order of y-coordinates. This means that leaf nodes corresponding to
the interval of y-coordinates of the query range exist in a consecutive place in the
wavelet tree. Now, consider the set M of nodes of the wavelet tree defined as follows.
The set M contains a maximal node v such that the y-coordinates corresponding to
the leaf nodes in the sub-tree rooted at v are contained in the query range, that is,
the y-coordinates of the leaves in the sub-tree of v are contained in the query range
but the sub-tree of the parent of v contains some node for which the corresponding
y-coordinate is not contained in the query range. This is the set of nodes from which
we do not further search the sub-tree for a counting query using the wavelet tree, and
in Fig. 8.6, it is shown as dark gray nodes.

Let A be the set of nodes that are ancestors of nodes of M . This is the set of nodes
visited before reaching nodes of M which are shown as light gray nodes in Fig. 8.6.
The number of nodes visited in a counting query is then |A| + |M |. We now consider
the size of M and A.

For the size of the set M , the following lemma holds.

Lemma 8.3 It holds |M | = O(lg n).

Proof (Lemma 8.3) The set M is constructed as follows. Let M ′ be the set of leaf
nodes of the wavelet tree corresponding to the interval of y-coordinates in the query
range. For the nodes of M ′, if two nodes v1 and v2 have a common parent node v,
we remove v1 and v2 from M ′ and add v to M ′. By repeating this process until there
are no such pairs of nodes, the set M ′ coincides with M .

For each depth of the wavelet tree, the number of nodes of depth belonging to M
is then at most two, because if there exist more than two nodes, two of them must
have the same parent. This completes the proof that |M | = O(lg n).
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Fig. 8.6 Nodes visited by a counting query. We traverse light gray nodes, and when we reach a
dark gray node, we do not further search the nodes below it

For the size of the set A, the following lemma holds.

Lemma 8.4 It holds |A| = O(lg n).

Proof (Lemma 8.4) Consider a node v in the set A. In the set of leaf nodes in the sub-
tree rooted at v, there must exist a leaf node where the corresponding y-coordinate is
included in the query range and a leaf node where the corresponding y-coordinate is
not included in the query range. Therefore, for each depth of the wavelet tree, there
are at most two such nodes in A, because if there exists more than two such nodes, for
a node in the middle, the corresponding y-coordinates of the leaves in the sub-tree
rooted at that node are contained in the query range. This completes the proof that
|A| = O(lg n).

From the above discussion, the number of nodes visited in a counting query is
|A| + |M | = O(lg n). When we visit a new node, we use a constant number of rank
queries. Because a rank query takes constant time (Lemma 8.2), the time complexity
of a counting query using the wavelet tree is O(lg n).

For a reporting query, it is necessary to compute coordinates of points in the
query range. As explained in Sect. 8.4.2, x-coordinates are computed by traversing
up the tree and y-coordinates are computed by traversing down the tree, with the
coordinates of each point computed by visiting O(lg n) nodes. Moving to an adjacent
node in the wavelet tree is done by a constant number of rank/select queries, and
each rank/select query takes constant time (Lemma 8.2). Therefore, the coordinates
of a point are obtained in O(lg n) time, and the time complexity for a reporting query
using the wavelet tree is O((1 + k) lg n), where k is the number of output points.

We obtain the following theorem.
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Theorem 8.1 The space complexity of the wavelet tree representing a two-
dimensional point set on [n]2 is n lg n + o(n lg n) bits, and a counting query takes
O(lg n) time, and a reporting query takesO((k + 1) lg n) time, where k is the number
of points to enumerate.

As shown in Sect. 8.2.1, the information-theoretic lower bound for a point set on
[n]2 is n lg n + O(n) bits. Therefore, the wavelet tree is a succinct data structure.

Theorem 8.2 Let P bea set of points on M = [1..n] × [1..n] inwhichall points have
distinct x-coordinates. Then, there exists a data structure using n lg n + o(n lg n)

bits that answers a counting query in O(lg lg n) time and a reporting query in
O((1 + k) lg n/ lg lg n) time, where k is the number of points to output.

8.5 Proposed Data Structure 1: Improved Query Time
Complexity

This data structure uses the idea of adding data structures to the kd-tree to improve
the query time complexity [20]. First, we explain the idea of [20] in Sect. 8.5.1.
Next, we explain the algorithm of range search in Sect. 8.5.3, and analyze the time
complexity in Sect. 8.5.4.

8.5.1 Idea for Improving the Time Complexity of the kd-Tree

The method proposed in [20] improves the query time complexity of the kd-tree by
adding d many wavelet trees to the kd-tree such that the term n(d−1)/d is replaced by
n(d−2)/d (lg n if d = 2), at the cost of increasing the total complexity by a factor of
O(lg n). Note that we assume point sets are on [n]d .

First, we construct the kd-tree for a given set P of points in the d-dimensional
space. Next, we label the nodes of the kd-tree with numbers based on the inorder
traversal of a binary tree defined as follows:

– If the root node has a left child, we traverse the sub-tree rooted at the node.
– Examine the root node.
– If the root node has a right child, we traverse the sub-tree rooted at the node.

Figure 8.7 shows an example of a point set (left) and numbers assigned based on the
inorder traversal of the kd-tree of the set (right).

Next, we make point sets Pi (i = 0, . . . , d − 1) with n points on [n]2. The
two-dimensional point set Pi is created as follows. If a point p in the original d-
dimensional point set P has the i-th coordinate value pi and the inorder position of
the node of the kd-tree containing p is j , we add point ( j, pi ) to Pi . Figure 8.8 shows
the point sets P0, P1 created from the point set in Fig. 8.7.
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Fig. 8.7 A two-dimensional point set (left) and the corresponding kd-tree (right). The numbers of
nodes are assigned by an inorder traversal of the kd-tree. The dashed lines in the left figure show
the partition of the space by the kd-tree

Fig. 8.8 Two-dimensional point sets obtained from the point set in Fig. 8.7

From these two-dimensional point sets P0, . . . , Pd−1, we construct wavelet trees
W0, . . . ,Wd−1. Thewavelet treesWi can be thought of as constructed from an integer
sequence Ai containing the i-th coordinate value of points in P in the order of the
kd-tree.

These data structures can be used for range searches as follows. Given a query
range Q, we perform the original search using the kd-tree. In the original algorithm,
as explained in Sect. 8.3, we traverse the kd-tree and shrink the range R(v), and when
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CDeg(R(v), Q) = d (i.e., R(v) ⊆ Q), we know that all the points in the sub-tree
rooted at v are contained in Q. By using the d wavelet tree, we can terminate the
search when CDeg(R(v), Q) = d − 1. Assume that when a node v is visited, R(v)

is contained in Q for all dimensions except for i . The inorder numbers of nodes in
the sub-tree rooted at node v have consecutive values. Let [a, b] be the interval for
the numbers. Then, the points in this interval are contained in Q except for dim. i .
This implies that points in Pi that are contained in the range [a, b] × [l(Q)

i , u(Q)
i ] are

contained in Q even for dim. i . Therefore, after finding the node v, it is sufficient to
search the range [a, b] × [l(Q)

i , u(Q)
i ] of Pi using wavelet trees Wi .

The number of nodes of the kd-tree visited by this method is O
(
n(d−2)/d

)
(O(lg n)

for the case d = 2). The search of the last dimension using the wavelet tree takes
O(lg n) time for a counting query. Therefore, the time complexity for a counting
query using the kd-tree is improved to O

(
n(d−2)/d lg n

)
(O

(
lg2 n

)
for the case d = 2).

8.5.2 Index Construction

Wenow explain the proposed data structure. First, we construct the kd-tree for a given
point set P . Note that this kd-tree is temporarily built in order to construct our data
structure, and is not included in the final structure. Next, as in Sect. 8.5.1, we number
the nodes of the kd-tree by an inorder traversal, and create d many two-dimensional
point sets P0, . . . , Pd−1. For each Pi , we create the data structure of [3]. Let Bi be
this data structure. Finally, we discard the kd-tree. The final data structure consists
of B0, . . . , Bd−1.

8.5.3 Range Search Algorithm

We explain the algorithm for a reporting query using the data structure explained
in the previous section. The pseudocode is shown in Algorithm 5. This algorithm
simulates a search of the kd-tree using B0, . . . , Bd−1. We explain it in comparison
with the search algorithm of the kd-tree. Note that we explain the algorithm assuming
the inorder number of each node v of the kd-tree is also assigned to the point V (v)

stored in v. That is, if we say a point with number j , it is the point stored in the
node with inorder position j . We also assume that for an interval [a, b] of point
numbers, R([a, b]) denotes the range containing points that have numbers in [a, b]. In
Algorithm5, the interval [a, b] of point numbers always corresponds to the interval of
inorder numbers of nodes in the sub-tree rooted at a node v of the kd-tree. Therefore,
R([a, b]) coincides with R(v).

If we use the kd-tree, we shrink the focused range R(v) by going down the
tree. In the proposed method, by shrinking the interval [a, b] of point numbers, we
reduce the corresponding range R([a, b]). Because the kd-tree stores the point V (v)

corresponding to a node v, we can obtain the information of the point used for
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Algorithm 5 Reporting([a, b], Q)

Input: An interval of point numbers [a, b] and a query range Q.
Output: Points with numbers in [a, b] and which are contained in range Q.
1: if Deg(R([a, b]), Q) = d − 1 then
2: For the last dimension i such that R([a, b]) is not yet contained in Q, search [a, b] ×[

l(Q)
i , u(Q)

i

]
of Pi using Bi and enumerate points contained in Q. For each point, compute

coordinates using B0, . . . , Bd−1.
3: else if R([a, b]) has no intersection with Q then
4: terminate
5: else if a = b then
6: Examine the point with number a. If it is in Q, output it.
7: else
8: c ← �(a + b)/2�
9: Output the point with number c if it is in Q.
10: Reporting([a, c − 1], Q)

11: Reporting([c + 1, b], Q)

12: end if

partitioning the space. In contrast, in the proposed method, points are not explicitly
stored. However, if the focused interval [a, b] coincides with the interval of inorder
numbers for the sub-tree rooted at a node v, we find c = �(a + b)/2� is the number of
the points used for partitioning.1 Furthermore, the intervals [a, c − 1] and [c + 1, b]
correspond to the intervals of the numbers for sub-trees rooted at the left and right
child of v, respectively. Therefore, by a recursive search of Algorithm 5, we can
obtain the correct partitioning points.

For the range R([a, b]), we can compute the ranges after a partition from the
range before partition and the coordinates of the point used for partitioning similarly
to the case of the kd-tree.

8.5.4 Complexity Analyses

We now analyze the complexities of the algorithm. First, we consider its space com-
plexity.Weused data structures ofBose et al. [3] eachofwhichusesn lg n + o(n lg n)

bits as in Theorem 8.2. The total space complexity is then dn lg n + o(dn lg n) bits.
Next, we consider the query time complexity. If we use the same analysis as

in [20], assuming d is a constant, we can show the number of nodes corresponding

to cells with containment degree of at most d − 1 is O
(
n

d−2
d

)
. Here, we derive the

query time complexity using a novel analysis for non-constant d.

1 In the kd-tree, at each depth, we partition the space by the median of the point set with respect
to a dimension, and therefore c = �(a + b)/2� is the number of the point used for partitioning. If
the point set contains an even number of points, we can obtain the correct partitioning point using
a predetermined rule.
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The proposedmethod partitions the space for each dimension in order, in the same
fashion as for the kd-tree. As in [20], we define a series of partitions with respect to
dim. 0 to dim. d-1 as a cycle.We then calculate the number Tm(n, d) of nodes at which
the containment degree with respect to Q is at most d − 2 in them-th cycle.When the
(m − 1)-th cycle has finished, the space is partitioned into 2d(m−1) many cells. Among
them, we count the number of cells for which the containment degree with respect to
Q is at most d − 2. These cells contain a (d − 2)-dimensional face of Q (an edge of
a cuboid if d = 3). A (d − 2)-dimensional face of a d-dimensional orthogonal range
Q is obtained by choosing two dimensions from the d-dimensions and choosing the
upper side or the lower side of the range for each of the two dimensions. Therefore, Q
has

(d
2

)
22 many (d − 2)-dimensional faces. When the (m − 1)-th cycle has finished,

because each dimension is partitioned into 2m−1 cells, the number of cells containing
a (d − 2)-dimensional face is at most 2(m−1)(d−2). Then after the (m − 1)-th cycle,
the number of cells to be searched is at most

(
d

2

)
22 · 2(m−1)(d−2).

In the sub-trees rooted at these nodes, the number of nodes in them-th cycle is 2d − 1.
Therefore, it holds that

Tm(n, d) ≤ (
2d − 1

) (
d

2

)
22 · 2(m−1)(d−2)

< 23d(d − 1)2(d−2)m .

Let N (n, d) be the number of nodes for which the containment degree with respect
to Q is at most d − 2. It then holds that

N (n, d) =
1
d lg n∑
m=1

Tm(n, d)

< 23d(d − 1)

1
d lg n∑
m=1

2(d−2)m

= 23d(d − 1)
2d−2

(
2

d−2
d lg n − 1

)

2d−2 − 1

= O
(
d2 · n d−2

d

)
.

We use the fact that the containment degree is weakly increasing as we traverse down
the tree. In the proposed method, we terminate the search when the containment
degree reaches d − 1. The visited nodes are then those with containment degree of
at most d − 2 and their child nodes. There are at most 2N (n, d) such nodes. The
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proposed method virtually traverses the kd-tree. It takes O
(
d lg n
lg lg n

)
time to compute

the coordinates of a point stored in a node. When a node for which the containment

degree with respect to Q is d − 1, we search the last one dimension in O
(

lg n
lg lg n

)
time.

The time complexity of a counting query is then O
(
d3n

d−2
d

lg n
lg lg n

)
. For a reporting

query, it takes O
(
d lg n
lg lg n

)
time to compute the coordinates of a point. The total time

complexity is then O
((

d3n
d−2
d + dk

)
lg n
lg lg n

)
, where k is the number of points in Q.

In summary, we obtain the following:

Theorem 8.3 For an orthogonal range search problem on the [n]d space, there
exists a data structure that has space complexity of dn lg n + o(dn lg n) bits and

which answers a counting query in O
(
d3n

d−2
d

lg n
lg lg n

)
time and a reporting query in

O
((

d3n
d−2
d + dk

)
lg n
lg lg n

)
, where k is the number of points in the query range.

8.6 Proposed Data Structure 2: Succinct and Practically
Fast

The second proposed method is a data structure that is succinct and practically fast.
In this method, we use d − 1 many wavelet trees to represent a point set on [n]d . In
Sect. 8.6.1, we explain how to construct the data structure. In Sect. 8.6.2, we explain
the algorithm for the orthogonal range search problem. In Sect. 8.6.3, we analyze
the space and time complexities.

8.6.1 Index Construction

In this method, we assume that the points of P have distinct values in the 0-th
coordinate value.

First, we create length-n integer arrays A1, . . . , Ad−1. The array Ai corresponds
to dim. i , and stores the i-th coordinate value of the points in increasing order of the
0-th coordinate value. Next, for those arrays we create wavelet trees W1, . . . ,Wd−1.
The wavelet trees Wi can be considered to represent the two-dimensional point set
Pi generated from the d-dimensional point set P by projecting the points onto the
plane spanned by the 0-th axis and the i-th axis. Figure 8.9 shows an example.
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Fig. 8.9 A
three-dimensional point set
P and two-dimensional point
sets P1, P2 generated by
projecting P onto each plane

Algorithm 6 Report(Q)

Input: A query range Q =
[
l(Q)
0 , u(Q)

0

]
× · · · ×

[
l(Q)
d−1, u

(Q)
d−1

]
.

Output: The coordinates of points of P contained in Q.
1: D := ∅

2: for i = 1 to d − 1 do
3: if

[
l(Q)
i , u(Q)

i

]
� [0, n − 1] then

4: D = D ∪ {i}
5: ci := Count

(
Pi ,

[
l(Q)
0 , u(Q)

0

]
×

[
l(Q)
i , u(Q)

i

])

6: end if
7: end for
8: Sort elements i1, . . . , i|D| of D in increasing order of ci .

9: A := ReportX
(
Pi1 ,

[
l(Q)
0 , u(Q)

0

]
×

[
l(Q)
i1

, u(Q)
i1

])

10: for i = i2 to i|D| do
11: for all a ∈ A do
12: if The i-th coordinate of a point for which the 0-th coordinate is a and is not contained in[

l(Q)
i , u(Q)

i

]
then

13: A = A \ {a}
14: end if
15: end for
16: end for
17: for all a ∈ A do
18: Obtain the coordinates of a point for which the 0-th coordinate is a and output them.
19: end for

8.6.2 Range Search Algorithm

Next, we explain how to solve the orthogonal range search problem using the data
structure (Algorithm 6).
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Assume that a query range Q =
[
l(Q)
0 , u(Q)

0

]
× · · · ×

[
l(Q)
d−1, u

(Q)
d−1

]
is given. For

each i = 1, . . . , d − 1 such that
[
l(Q)
i , u(Q)

i

]
�= [0, n − 1], that is, the dimension i

used for the search, we count the number of points of Pi that are contained in range[
l(Q)
0 , u(Q)

0

]
×

[
l(Q)
i , u(Q)

i

]
using wavelet trees Wi (counting query). Let m (= |D|)

be the number of i (= 1, . . . , d − 1) such that
[
l(Q)
i , u(Q)

i

]
�= [0, n − 1], and let

i1, . . . , im be the sorted ones in increasing order of the number of answers of counting
queries.

Usingwavelet treesWi1 , we then enumerate only the x-coordinates of points of Pi1
contained in

[
l(Q)
0 , u(Q)

0

]
×

[
l(Q)
i1

, u(Q)
i1

]
and store them in a set A. For each element

a of A and for each i = i2, . . . , im , we check whether the i-th coordinate of a point
for which the 0-th coordinate is a is contained in the query range. The elements
remaining in A correspond to points in the query range. The answer to a counting
query is the cardinality of A. For a reporting query, we compute coordinates of the
points and output them.

The reason we compute the number of points contained in each dimension by a
counting query is twofold. Firstly, the x-coordinate (the 0-th coordinate) of points
contained in the query range with respect to the i1-th (and the 0-th) dimension can
be output quickly at line 9 of the algorithm if the number of points to enumerate is
small. Secondly, in the double loops from line 10 to line 16, we want to reduce the
size of A as soon as possible.

8.6.3 Complexity Analyses

Consider the space and time complexities of the proposed method.
For the space complexity, we use d − 1 many wavelet trees. Therefore, the space

complexity is (d − 1) lg n + (d − 1) · o(lg n) bits.
For the query time complexity, let m be the number of wavelet trees used in a

search. The time to performm counting queries on wavelet tree is O(m lg n). We then
sort m integers in O(m lgm) time. Next, we enumerate the x-coordinates of points
contained in the query range for the dimension with the minimum number of points.
Let ci1 = cmin be the number of points to enumerate. This takes O((1 + cmin) lg n)

time. The time to check whether these points are contained in the query range for
other dimensions is O((m − 1)cmin lg n). Let d ′ be the number of dimensions used
in the query, then it holds that m ≤ d ′. Therefore, the query time complexity can be
written as O

(
d ′cmin lg n + d ′ lg d ′).
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8.7 Conclusion

In this chapter, we first reviewed data structures for high-dimensional orthogonal
range search. We then proposed two data structures for the problem.

The first one simulates the search of the kd-tree using d succinct data structures
for two-dimensional orthogonal range search data structures [3]. We improved the
query time complexity of KDW-tree while keeping the same space complexity.

The second one is succinct and practically fast. The space complexity is
(d − 1)n lg n + (d − 1) · o(n lg n), which is succinct. The worst-case query time
complexity is O(dn lg n), which is not good. However, if the number d of dimen-
sions is large but the number d ′ of dimensions used in a search is small, it runs fast
in practice.
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Chapter 9
Enhanced RAM Simulation in Succinct
Space

Taku Onodera

Abstract Wedescribe two recent results on space-efficient functional randomaccess
memory (RAM), which is RAMwith non-standard functionalities. The first is about
oblivious RAM, which enables a remote database to be accessed without revealing to
the database owner which part of the database is being accessed. The other is about
wear leveling, which enables the number of updates to be balanced among all the
memory cells regardless of the content of the computation being performed on the
memory.

9.1 Introduction

Random access memory (RAM) underlies most modern computers, and improve-
ments to the RAM itself can have a positive impact on a wide range of applications.
For example, faster RAM access makes all RAM-based computations correspond-
ingly faster. Some types of RAM improvements are not just about efficiency but
also about functionality. An example is virtual memory in operating systems, which
enables, among other things, application programs to utilize thememorywithout con-
cern about cumbersome management issues such as allocation. Generally speaking,
this type of RAM improvement functions by using conventional RAM to simulate
“enhanced” RAM while introducing some performance overhead.

In this chapter, we describe two such enhanced RAM simulations—oblivious
RAM (ORAM) and wear leveling—with the emphasis on how to minimize the
space overhead. These topics were chosen mainly because the authors’ knowledge of
them, although there are also some conceptual similarities between ORAM and wear
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leveling. Other functionality-enhanced RAM simulations include initializable array
[2], memory checking [3], locally decodable code [11], and huge random object [8].1

9.2 Oblivious RAM

9.2.1 Problem

Suppose you want to outsource a database, stored in RAM, to a server and want to
access it in a privacy-preserving way. Although you can hide the data content by
encryption, the server can still see which part of the RAM you are accessing. This is
a serious issue in the current era of cloud computing. The same problem also appears
when one wants to hide the details of software implemented in a physically secure
processor that accesses insecure main memory.

Oblivious RAM (ORAM) is the formalization and corresponding solution of this
problem.Typically, itworks by storing theRAMinto somedata structure on the server
and moves the RAM cells dynamically in the data structure as the user accesses the
RAM.

As an example, consider a scheme where the server stores the RAM as-is except
that each cell is encrypted by the user’s key. To access the i th cell, the user performs
the following procedure for j = 1 to N where N is the number of cells:

1. Retrieve the i th cell from the server.
2. Decrypt the retrieved cell.
3. If i = j :

• For read access, copy the decrypted value to local memory.
• For write access, change the decrypted value to the new value.

4. Re-encrypt the possibly changed decrypted value.
5. Store the re-encrypted value back in the i th cell on the server.

We assume semantically secure encryptionwhen encryption is used in this chapter. In
particular, there is an overwhelmingly high probability that the re-encrypted cipher-
text looks totally different to the server from the ciphertext before re-encryption
regardless of whether the plaintext is updated or not. Thus, no matter what actual
access is performed, all that the server can see is that random-looking encrypted
cells are updated to still random-looking re-encrypted cells in a fixed scan order. Of
course, the access overhead of this method is very large since each cell access takes

1 A huge random object, in this context, is a succinct representation of a pseudorandom object
that supports certain queries. For example, a pseudorandom function can be thought of as a huge
pseudorandom bitstring that is implicitly represented by a tiny seed and supports efficient random
access. This is not a data structure in the conventional sense because the represented object is a
pseudorandom bitstring instead of “data.”
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time linear to the entire RAM size. The purpose of this example is merely to illustrate
the kind of security we want to achieve.

We now give a more formal problem description. We have three parties: the user,
the server, and the simulator. The simulator models a program that runs in the local
environment of the user. The simulator provides the user with an access interface
to RAM that we call the virtual RAM while the server provides the simulator with
an access interface to RAM that we call the physical RAM. That is, the user gives
the simulator a series of queries of the form (type, i, v) where type ∈ {read,write},
i ∈ [N ], and v ∈ {0, 1}B . We call these virtual queries. The parameter N specifies
the number of virtual cells—cells in the virtual RAM—while B specifies the size
of each virtual cell. Given a virtual query, the simulator gives the server another
series of queries of the form (type, i, v), where type ∈ {read,write}, i ∈ [N ′], and
v ∈ {0, 1}B ′

. We call these physical queries. The simulator, and thus the physical
queries, is probabilistic in general.2 The server responds to physical queries in the
obvious way. That is, for (read, i, ∗) where “∗” means that the third component is
arbitrary, the server returns the value of the i th physical cell, and for (write, i, v), the
server updates the value of the i th physical cell to v. If the virtual query from the
user is of the form (read, i, ∗), the simulator derives the value of the i th virtual cell
through the interaction with the server and returns it to the user. If the virtual query
is of the form (write, i, v), the simulator updates the value of the i th virtual cell to
v. The simulator must respond to the virtual queries online. We call the sequence
of second components of the virtual queries (resp. physical queries) a virtual access
pattern (resp. physical access pattern). For a virtual query sequence q, let a(q) denote
the physical access pattern induced by q. Recall that a(q) is a random variable in
general. TheORAMscheme is secure if a(q1) and a(q2) are indistinguishable for any
virtual query sequences q1 and q2 of the same length. There are some variations in the
exact meaning “indistinguishable”. Typically used meanings of indistinguishability
in descending order of security are a) equally distributed, b) statistically closely dis-
tributed, and c) computationally indistinguishable. The main performance metric of
ORAM includes access overhead, which is the number of physical queries processed
for each virtual query, the simulator local space size, and the server space size, which
is B ′N ′ bits.

Asmentioned above, the simulatormodels a program running in the local environ-
ment of the user. Thus, in practice, we do not distinguish the user and the simulator.
For example, we refer to the simulator local space as user space.

The ORAM problem is non-trivial only if the user space is smaller than BN bits
since otherwise, the simulator can store the entire RAM locally and ignore the server.

2 The simulator of the scan-based method is deterministic, and it is not hard to see that its linear
access overhead is optimal if we restrict the simulator to be deterministic. Thus, all simulators of
interest are indeed probabilistic.
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Table 9.1 Summary of existing results. † means amortized bound. ≈ log N means O( f (N )) for
any f ∈ ω(log N ). The constant factor of the user space of [26] is � 1

Access overhead Sever space
(N ′)

User space Technique Security

[7] O(
√
N log N ) † N (1 + 2

√
N ) O(1) Square root Computational

[9] O(log3 N )† �(N log N ) O(1) Hierarchical Computational

[19] O(
√
N log N ) (1 + �(1))N O(1)

[19] O(log3 N ) �(N log N ) O(1)

[10] O(log2 N )† (1 + �(1))N O(1)

[13] O(
log2 N
log log N ) (1 + �(1))N O(1)

[20] O(log N log log N )† (1 + �(1))N O(1)

[12] O(log N )† (1 + �(1))N O(1)

[25] O(log3 N ) �(N log N ) O(1) Tree Statistical

[27] O(log2 N ) (1 + �(1))N ≈ log N

[17] O(log2 N ) (1 + o(1))N ≈ log N

9.2.2 Existing Results

Table 9.1 gives a summary of some of the existing results. Everymethod has physical
cell size B ′ = B + �(log N ). There is an �(log N ) lower bound for the access
overhead if the user space is at most N 1−ε for constant ε > 0 [14].

There are mainly two types of techniques that are actively studied: hierarchical
approaches and tree-based approaches.3 Asymptotically, the state-of-the-art hierar-
chical method [12] has access overhead matching the lower bound mentioned above
while the state-of-the-art tree-based methods have about log N times larger asymp-
totic access overhead. Yet, tree-based methods are still of practical interest because
they tend to have much smaller access overhead constant factors than the hierarchi-
cal methods. The access overheads of tree-based methods also constrain the worst
case while those of the hierarchical methods are often amortized. Although there are
techniques to achieve competitive worst-case access overhead via the hierarchical
methods [13, 19], they tend to be complex and add further constant factors to the
performance bounds.

In the past, the ORAM research community has focused mainly on reducing the
access overhead because it was the biggest obstacle to applying ORAM in practice.
However, some recent studies have achieved practical access performances [16, 22]
by combining tree-based ORAM with special hardware. For example, the PHAN-
TOM secure processor system [16] supports access pattern-hiding SQL queries with
a time overhead of 1.2–6 × compared to the standard insecure version. Thus, at least
for tree-basedORAM, exploration of aspects other than access overhead is beginning
to make sense.

3 The square root method [7] was the first non-trivial ORAM and is the origin of some of the ideas
underlying the hierarchical methods.



9 Enhanced RAM Simulation in Succinct Space 153

We describe the recent development of techniques for reducing the number of
physical cells N ′ of the tree-based ORAM to (1 + o(1))N [17]. Note that there also
is a space overhead originating from the cell size: typically, B ′ = B + c lg N where
c is a small constant such as 2. We ignore the cell size overhead and focus on the cell
number because the typical value of B is 128 bytes in the secure processor setting
and the overhead with respect to the cell size is just a few percent.

9.2.3 Tree-Based Methods

The tree-based method of Stefanov et al. [27] works as follows. The server organizes
the physical cells into a complete binary tree with N leaves where each node is a
bucket—a container that can accommodate a constant number of virtual cells. Each
virtual cell has a position label—an integer in [N ]—and a virtual cell with position
label i is stored either in some bucket on the path from the root to the i th leaf or in a
stash, which is a container in the user’s local memory that can accommodate a small
number of virtual cells. Let vi be the i th virtual cell and let pi be the position label
of vi . Suppose the user maintains pi for all i ∈ [N ] in local memory. This requires
�(N ) user space but simplifies the exposition. We will reduce the user space later.
To access vi , the user retrieves all of the blocks on the path from the root to the pi th
leaf. Let this path be P . At this point, vi must be in the stash. The user copies the
value of vi to somewhere in its local memory for a read query or changes it to some
other value for a write query. Then, the user updates pi to a fresh random value in
[N ]. After that, the user scans the buckets on P from the leaf to the root, and for each
bucket, moves cells in the stash to the bucket greedily while respecting the position
labels and the bucket capacity. See Fig. 9.1 for an example.

Sometimes, some virtual cells in the stash cannot be moved back to the tree. For
example, if all cells are assigned the same position label, only �(log N ) physical
cells can be used to store the virtual cells and thus, most virtual cells must end up
in the stash. (Of course, if N is large, such an event happens only extremely rarely.)
Stefanov et al. proved that if the bucket size is at least 5, the number of cells left
in the stash after processing a query is exponentially small. Thus, if the stash size
is ω(log N ), the stash overflows during processing a polynomial number of queries
with only negligible probability.

To reduce the user space for position labels, the user outsources the position labels
using the same method recursively. That is, each position label is a �lg N	 bit integer
and the table for position labels of all virtual cells can be thought of as a RAM
storing the N�lg N	-bit concatenation of the integers. Thus, the original problem of
hiding the access pattern to RAM consisting of N cells, each of B bits, is reduced
to hiding the access pattern to RAM consisting of N�lg N	/B cells, each of B bits.
If, say, B ≥ 2 lg N , which is a completely reasonable assumption for all reasonable
N ,4 the problem size (cell number) decreases exponentially and reaches O(1) after

4 Recall that the typical value of B is 128 bytes in secure processor applications.
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Fig. 9.1 Example access
process for reading the 4th
virtual cell. N = 4. Bucket
size is 1. The expression i j

means the i th virtual cell
with position label j . The
path from the root to the first
leaf is scanned from top to
bottom in step (2) and from
bottom to top in step (4)

O(lg N ) levels of recursion. At that point, the user can store the O(1) size RAM
locally terminating the recursion.

The tree at the top level of recursion has size�(N ) and the tree at higher recursion
levels decreases exponentially. The access overhead is proportional to the sum of the
heights of the trees at all recursion levels, which is O(log2 N ). The server space is
proportional to the sum of the sizes of the trees at all recursion levels, which is�(N ).

Although each recursion level requires a stash, the numbers of cells left in those
stashes are independent and it turns out that the total number of cells left in all
stashes is still exponentially small. Thus, f (N ) user space is enough for any f (N ) ∈
ω(log N ).

9.2.4 Succinct Construction

The constant factor hidden in the �(N ) server space bound of the method described
above is about 10: the top-level tree has 2N nodes each of capacity 5 while the
size of the recursive trees is negligible because typically, B is much larger than
lg N . (Theoretically, we assume B = ω(lg N ).) Though one can reduce this constant
factor to some extent by decreasing the tree height while tuning the bucket size, it is
not possible to achieve a factor ≤ 2 while maintaining a meaningful stash overflow
probability, at least using the currently known analysis techniques. This method also
leads to prohibitively large access overhead as the server space becomes close to 2N .
We now describe a method for achieving (1 + o(1))N server space with a modest
sacrifice in access overhead [17].
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Fig. 9.2 Large leaf layout

The idea is to modify the layout of the tree at the top recursion level so that the leaf
number is N/ lg1.4 N and the leaf size is lg1.4 N + lg1.3 N (see Fig. 9.2). It is obvious
that the tree size is (1 + 1/ lg0.1 N )N while access overhead remains O(log2 N ). We
now explain why the stash overflow probability remains small.

Let Ni be the number of cells with position label i for i ∈ [N/ lg1.4 N ]. Let the
load of a bucket be the number of cells stored in the bucket. At each moment in
the lifetime of the scheme, Ni follows the binomial distribution with parameters N
and N/ lg1.4 N for each i . The probability that this becomes larger than lg1.4 N +
lg1.3 N is negligible. Thus, no leaf becomes full while processing a polynomial
number of queries.Under this assumption, the distribution of the internal bucket loads
is dominated by the distribution of the loads of the corresponding N/ lg1.4 N − 1
internal buckets in the standard N leaf layout scheme described above. This is so
because the internal buckets in the large leaf layout do not need to store the cells that
overflow from the leaves. Thus, assuming no leaf becomes full, the stash overflow
probability of the large leaf case is negligible. The same is true even without this
assumption because there is only a negligible probability that the assumed case does
not occur.

We can reduce the N/ lg0.1 N extra term on the tree size even further by “the
power of two choices”. That is, we give two random position labels to each virtual
cell. One is primary, which determines the path on which the cell can reside, while
the other is secondary, which is a dummy needed to hide the access pattern. Now,
Ni is the number of virtual cells with primary position label i . We maintain Ni for
all i in a sub-ORAM in the same way we store position labels in recursive ORAM.
To access a virtual cell v, we retrieve all cells on the path from the root to the p1th
leaf and the path from the root to the p2th leaf. We choose two random labels p′

1, p
′
2

and let p′
1 (resp. p

′
2) be the new primary (resp. secondary) label of v if Np′

1
< Np′

2
.

Otherwise, we exchange the role of p′
1 and p′

2. We then scan the paths specified by
the old labels and greedily move back the cells as in the previous method. Here, Ni is
not binomial but concentrated much more tightly around the mean due to the effect
of the two choices. Thus, the “head space” for each leaf can be much smaller than
lg1.3 N , leading to a smaller tree size.
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By tuning the parameters, the first technique (large leaf layout) alone can achieve
about (1 + �(

log N
B + 1√

log N
))N server space while the second technique (two

choices) decreases it to (1 + �(
log N
B + log log N

log2 N
))N .5

9.2.5 Open Problem

It is unknownwhether the optimal O(log N ) access overhead and (1 + o(1))N server
space can be achieved at the same time. There are two natural approaches for answer-
ing this question affirmatively:

• Develop a technique for making hierarchical methods, such as [9], succinct and
apply it to the existing optimal method [12]. This seems particularly challenging
if we further require a worst-case (instead of amortized) access overhead bound
because the existing techniques for achieving a worst-case access overhead bound
in the hierarchical approach [13, 19] require maintaining multiple versions of the
database.

• Achieve O(log N ) access overhead by a tree-based approach and apply the tech-
niques described here. The first part is already an open problem of sufficient
interest.

9.3 Wear Leveling

9.3.1 Problem

Consider the case where you have RAMwith the limitation that each cell state can be
updated at most a certain number of times. Once the number of updates has reached
the limit, the cell dies and you can no longer update it. The utility of the RAMquickly
degrades as the cells start to die because the total amount of information that can be
stored decreases, and it becomes cumbersome to manage which cells are still alive.
Thus, the number of times you can support updates before cells start to die is of
primary interest. This number depends heavily on the case. In the best case where
the updates are uniform among the cells, you can perform nL updates where n is the
number of cells and L is the number of times each cell can be updated. In contrast, in
the worst case where all updates fall onto a particular cell, you can perform updates
only L times. Wear leveling is the problem of prolonging the memory lifetime as
much as possible while keeping the associated overhead, if any, as small as possible.

The system community has been studying wear leveling for decades. Historically,
flash memory was the main motivation for studies conducted from the late 1980s
to the mid 2000s [1, 6, 15]. Today, the main motivation for wear leveling comes

5 These bounds include the cell size overhead that we ignored in the main explanation for brevity.
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from phase change memory (PCM), which is an emerging next-generation memory
technology that has many features, including low latency, energy efficiency, and
non-volatility [5]. Each PCM cell supports only 108–109 updates, which means that
cells can start dying within minutes or even seconds if no effort is made to perform
wear leveling. PCM differs from flash memory in certain important respects, such as
latency, access granularity, and in-place write capability, and thus requires a different
wear leveling formalization than flash memory.

Most existing studies onwear leveling are conductedmainly from a practical point
of view. Often, they do not have a formal problem statement or rigorous theoretical
analyses. While this might not be a serious problem if the only thing that matters
is the performance, some relatively recent studies have repeatedly emphasized the
security aspects of wear leveling [21, 23, 24, 28, 29]. In particular, it is important to
take into account the case of malicious users who actively try to reduce the memory
lifetime. (Consider, for example, a computing outsourcing service.)

Below, we describe a recent theoretical study that constructed a problem formal-
ization to capture the wear leveling for PCM explained above, and the corresponding
solutions [18].

The formal problem statement is as follows. There are two parties: the user and
server. The server has three resources: physical RAM,wear-freememory, and private
randomness. The physical RAMisRAMthat consists of N B-bit cellswhile thewear-
freememory is RAM that consists of a small number of B-bit cells. The user provides
the server with adversarially chosen read/write queries to virtual RAM—a RAM
consisting of n b-bit cells—and the server must respond to these queries “correctly.”
That is, each request is of the form (type, i, v) where type ∈ {read,write}, i ∈ [n],
and v ∈ {0, 1}b and, for (read, i, ∗) where “∗” means that the third component is
arbitrary, the server must return the last value written to the i th virtual cell (the v
in the last query of the form (write, i, v)). The server not only needs to return the
correct responses but also needs to support as many write queries as possible with
high probability without updating any physical cell more than L times where L is
a parameter. We assume L = nδ for some constant δ > 0. Equivalently, we define
δ := logL n and assume it is a constant. This assumption is reasonable even though,
in reality, L and n are independent, because L is 108–109 and logL n is at most 2 or
3 for reasonable n.

The performance metric for wear leveling includes the physical memory size,
the wear-free memory size, the number of write queries supported, and the access
overhead, which is the number of physical RAM accesses needed for each virtual
RAM access. We say a wear-leveling scheme is “optimal” if it satisfies the following
conditions (asymptotic notations are in terms of n → ∞):

• N = 1 + o(1)6;
• With high probability, that is, 1 − O(1/n), it can process (1 − o(1))NL write
queries without updating any physical cell more than L times;

6 We ignore the cell size overhead for brevity. Security Refresh [23] described below does not have
any cell size overhead (B ′ = B) while the method of Onodera and Shibuya [18] described after that
has a cell size of B ′ = B + 2�lg n	 + 1.
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Fig. 9.3 Movement of cells in an epoch of security refresh.All the numbers are binary. n = 4(= N ),
r0 = “10”, and r1 =“11”. Solid arrowsmean cell swapswhile dotted arrowsmean skipped cell swaps

• The processing time of each query is O(1);
• It requires only O(1) cells in the wear-free memory.

9.3.2 Security Refresh

The wear leveling scheme of Sewong et al. [23] is optimal if L = N δ for δ > 1 while
it is non-optimal (in fact, “far from” optimal) for δ < 1 [18].

In this method, n virtual cells are stored in the N = n physical cells in permuted
order. The method works in epochs. At each epoch, two random lg n-bit integers r0
and r1 are maintained. (We assume n is a power of two for brevity.) At the start of
an epoch, for each i ∈ [n], the i th virtual cell vi is stored in the i ⊕ r0th physical
cell Vi⊕r0 where ⊕ means bit-wise XOR. During the epoch, each vi is moved from
Vi⊕r0 to Vi⊕r1 . Note that the virtual cell stored in the destination Vi⊕r1 of vi is vi⊕r1⊕r0
and its destination is Vi⊕r0 ; that is, vi and vi⊕r0⊕r1 swap their positions. This is
done as follows. For every t write queries processed where t is a parameter, we
perform a remap subroutine. At the i th remap subroutine call in an epoch, we check
if i < i ⊕ r0 ⊕ r1. If so, vi still is in Vi⊕r0 and thus, we swap the contents of Vi⊕r0
and Vi⊕r1 . Otherwise, vi is already in Vi⊕r1 and we skip swapping. The epoch ends
after the nth remap subroutine finishes. At that point, each cell vi is stored in Vi⊕r1 .
We update r0 to r1, and r1 to a fresh random lg n-bit integer. Now every vi is in
Vi⊕r0 as required for the epoch start, and we restart another epoch at this point. See
Fig. 9.3 for an example. To access vi , we access Vi⊕r0 if vi was already remapped in
the epoch. (We have already seen how to check this.) Otherwise, we access Vi⊕r1 .

The non-trivial part of the analysis is the proof of a high-probability guarantee
of memory lifetime. We outline the key points. Fix a physical cell and let Xi be the
number of times it is updated during the i th epoch. We need to place a bound on
the probability that the sum of Xi s deviates from its expected value. To do this, it
suffices to bound the deviation of the sum of odd-indexed variables X1, X3, . . . from
its expected value and do the same for the sum of even-indexed variables X2, X4, . . .

separately. This is helpful because each Xi is a random variable that depends on r0, r1
in the i th epoch (and the queries) and thus, the odd-indexed variables X1, X3, . . .

are independent of each other and so are the even-indexed variables. Regardless of
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the queries, Xi is bounded by the number of write queries processed in an epoch tn.
Although this suggests the use of the Hoeffding inequality, it turns out that it does
not work for the case δ < 2, essentially because the condition Xi ≤ tn alone does
not capture the fact that some cell being updated many, say, ≈ tn, times in an epoch
negatively affects the number of times other cells are updated in the epoch. To derive
the bound for the case 1 < δ < 2, bound the second moment of Xi and apply the
Bernstein inequality [4].

If the user tries to keep on updating vi continuously, one of Vi⊕r0 and Vi⊕r1 is
updated tn/2 = �(n) times during the first epoch, and this physical cell dies if
δ < 1. Thus, this method is not optimal for δ < 1.

9.3.3 Construction for Small Write Limit Cases

We now briefly describe a method for achieving optimality for the case δ < 1, that is,
the memory is large [18]. The idea is to prepare spare cells and remap the frequently
updated cells to free spare cells adaptively. (We maintain the write counts of cells
by appending a counter to each cell.) We store pointers to the new locations in the
old locations to trace the remapped cells. To keep the number of pointers to follow
small, we connect pointers in a manner that is similar to the DFS of a complete
d-ary tree with dh leaves where d, h are parameters (see Fig. 9.4). As we continue
to process write queries, the data structure gradually degrades: the free spare cells
become scarce and the trees become saturated. To reset the degradation, we perform a
Security Refresh-style mapping. That is, we treat the structure in Fig. 9.4 as residing
in another RAM u andmaintain a global mapping—a gradually changing one-to-one
map between the cells of u and the physical cells V1, V2, . . . . Once we have globally
remapped a cell of u corresponding to a tree root, we reset the “DFS” starting from
that cell. For example, if we globally remap ui in state (5) of Fig. 9.4, we free
un+1, un+4, resetting DFS for the tree from ui to the root. Garbage such as un+3 are
also reclaimed sooner or later when they are globally remapped. To access vi , the
tree path traversal in u starting from i is simulated translating between addresses in
u and addresses in V .

Although analysis of the bound on memory lifetime is cumbersome, the same
idea as the analysis of Security Refresh applies. Indeed, the core argument is easier
because the Hoeffding bound suffices.

9.3.4 Open Problem

The access overhead of the method for the small write limit case described above
is about 1/δ. It is easy to obtain amortized 1 + o(1) and worst-case �(n) access
overhead if we allow relatively large wear-free memory, for example, O(nε) for
an appropriate constant 0 < ε < 1. It seems possible and practically relevant to
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Fig. 9.4 Example evolution of u. d = h = 2. u1, . . . , un are default locations while the rest are
spare cells. Each panel shows the state just after the thick-bordered cell was allocated because the
cell previously storing its content was updated and the write count reached the threshold

achieve amortized 1 + o(1) and worst-case O(1) access overhead in this setting. A
theoretically more interesting challenge is to give negative results that justify the use
of such large wear-free memory.

9.4 Conclusion

We reviewed two recent studies on ORAM and wear leveling that achieve succinct
space usage. Though these objects have totally different motivations and are studied
in different communities, there are some similarities between them.Aswementioned
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in the introduction, several other concepts with similar flavors are known, including
initializable RAM, memory checking, locally decodable code, and huge random
objects. There are probably many more such enhanced RAM instances yet to be
found, and trying to find them can be an avenue for making progress in studies of
data structures.
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Chapter 10
Review of Sublinear Modeling in
Probabilistic Graphical Models by
Statistical Mechanical Informatics and
Statistical Machine Learning Theory

Kazuyuki Tanaka

Abstract We review sublinear modeling in probabilistic graphical models by statis-
tical mechanical informatics and statistical machine learning theory. Our statistical
mechanical informatics schemes are based on advanced mean-field methods includ-
ing loopy belief propagations. This chapter explores how phase transitions appear in
loopy belief propagations for prior probabilistic graphical models. The frameworks
are mainly explained for loopy belief propagations in the Ising model which is one
of the elementary versions of probabilistic graphical models. We also expand the
schemes to quantum statistical machine learning theory. Our framework can provide
us with sublinear modeling based on the momentum space renormalization group
methods.

10.1 Introduction

Statistical machine learning frameworks using probabilistic graphical models are
useful for many applications, including information communication technologies
[1–3], compressed sensing [4, 5] and neural information processing systems [6–10]
in data-driven sciences.

Most probabilistic graphical models belong to the exponential family [11] and can
be regarded as classical spin systems in statistical mechanical informatics [12–17].
However, it is well known that many applicable formulations in data sciences as well
as computational sciences can be reduced to combinatorial problems with some con-
straint conditions which can be regarded as an Ising Model in statistical mechanical
informatics [18, 19]. Moreover, much interest has focused on applying quantum
annealing as a novel high-speed optimization technology to massive optimization
problems [20–24].
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10.2 Statistical Machine Learning

In statistical machine learning, most of the mathematical frameworks for machine
learning are based onmaximum likelihood frameworks [25, 26] fromstatisticalmath-
ematical sciences. The important points are how to assume the prior distribution and
the data generative probability distribution and how to express the joint probability
between the parameters and the data vector. In this section, we explore maximum
likelihood frameworks in terms of model selection and parameter selection from a
given data vector.

10.2.1 Bayesian Statistics and Maximization of Marginal
Likelihood

Let us consider a graph specified by nodes and edges, (V, E), where V is the set of all
nodes i and E is the set of all edges {i, j}. State variables si and di are associated with

each node i . The vectors s =

⎛
⎜⎜⎜⎝

s1
s2
...

s|V |

⎞
⎟⎟⎟⎠ and d =

⎛
⎜⎜⎜⎝

d1
d2
...

d|V |

⎞
⎟⎟⎟⎠ correspond to the parameters

and the data vector, respectively. The state spaces of si and di are given by � and
(−∞,+∞), respectively. Now ρ(d|s, β) and P(s|α) which correspond to the data
generative and prior models, respectively, are assumed to be as follows:

ρ(d|s, β) =
∏
i∈V

√
β

2π
exp

(
−1

2
β(di − si )

2

)
, (10.1)

P(s|α) =

∏
{i, j}∈E

exp

(
−1

2
α
(
si − s j

)2)

∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

∏
{i, j}∈E

exp

(
−1

2
α
(
si − s j

)2) . (10.2)

The expressions for the posterior probability P(s|d, α, β), joint probability
ρ(s, d|α, β), and marginal likelihood ρ(d|α, β) are given by Bayes formulas as
follows:

P(s|d, α, β) = ρ(s, d|α, β)

ρ(d|α, β)
= ρ(d|s, β)P(s|α)

ρ(d|α, β)
, (10.3)
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ρ(s, d|α, β) = ρ(d|s, β)P(s|α), (10.4)

ρ(d|α, β) =
∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

ρ(s, d|α, β)

=
∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

ρ(d|s, β)P(s|α). (10.5)

Estimates of the hyperparameters and the parameter vector α̂, β̂, ŝ = (̂
s1, ŝ2, · · ·, ŝ|V |

)
are determined by

(̂
α(d), β̂(d)

) = argmax
(α,β)

ρ
(
d
∣∣α, β

)
, (10.6)

ŝi (d) = argmax
si∈�

Pi
(
si
∣∣d, α̂(d), β̂(d)

)
(i∈V ). (10.7)

Equations (10.6) and (10.7) are referred to as themaximization of marginal likeli-
hood (MML) [25, 26] and the maximization of posterior marginal (MPM) [27],
respectively.

10.2.2 Expectation-Maximization Algorithm

Theexpectation-maximization (EM)algorithm is oftenused tomaximize themarginal
likelihood in Eq. (10.6) [25, 26]. TheQ-function for the EM algorithm in the present
framework is defined by

Q(
α, β

∣∣α′, β ′, d
) ≡

∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

P
(
s
∣∣d, α′, β ′)ln(ρ(s, d∣∣α, β

))
. (10.8)

The EM algorithm is a procedure that performs the following procedures of E- and
M-step repeatedly for t = 0, 1, 2, · · · until α̂(d) and β̂(d) converge:

E-step: Compute Q(
α, β

∣∣α(d, t), β(d, t), d
)
for various values of α and β.

M-step: Determine
(
α(d, t + 1), β(d, t + 1)

)
so as to satisfy the extremum con-

ditions of Q(
α, β

∣∣α(d, t), β(d, t), d
)
with respect to α and β. Update

α̂(d)←α(d, t + 1) and β̂(d)←β(d, t + 1).

Theupdate rule from (α(d, t), β(d, t)) to (α(d, t + 1), β(d, t + 1)) for the extremum
conditions can be written as
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1

|E |
∑

{i, j}∈E

∑
s1∈�

∑
s2∈�

· · ·
∑

s|V |∈�

(
si − s j

)2P(s1, s2, · · ·, s|V |
∣∣α(d, t + 1)

)

= 1

|E |
∑

{i, j}∈E

∑
s1∈�

∑
s2∈�

· · ·
∑

s|V |∈�

(
si − s j

)2P(s1, s2, · · ·, s|V |
∣∣d, α(d, t), β(d, t)

)
,

(10.9)

1

β(d, t + 1)
= 1

|V |
∑
i∈V

∑
s1∈�

∑
s2∈�

· · ·
∑

s|V |∈�

(si − di )
2P

(
s1, s2, · · ·, s|V |

∣∣d, α(d, t), β(d, t)
)
.

(10.10)

The marginal probability distributions of P
(
s
∣∣d, α, β

)
and P

(
s
∣∣α) are introduced as

Pi
(
si
∣∣d, α, β

) ≡
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

δsi ,τi P
(
τ1, τ2, · · ·, τ|V |

∣∣d, α, β
)
(i∈V ), (10.11)

Pi j
(
si , s j

∣∣d, α, β
) = Pji

(
s j , si

∣∣d, α, β
)

≡
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

δsi ,τi δs j ,τ j P
(
τ1, τ2, · · ·, τ|V |

∣∣d, α, β
)
({i, j}∈E),

(10.12)

Pi j
(
si , s j

∣∣α) = Pji
(
s j , si

∣∣α)

≡
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

δsi ,τi δs j ,τ j P
(
τ1, τ2, · · ·, τ|V |

∣∣α) ({i, j}∈E).

(10.13)

In this way, the extremum conditions can be reduced to

1

|E |
∑

{i, j}∈E

∑
si∈�

∑
s j∈�

(
si − s j

)2
Pi j

(
si , s j

∣∣α(d, t + 1)
)

= 1

|E |
∑

{i, j}∈E

∑
si∈�

∑
s j∈�

(
si − s j

)2
Pi j

(
si , s j

∣∣d, α(d, t), β(d, t)
)
, (10.14)

1

β(d, t + 1)
= 1

|V |
∑
i∈V

∑
si∈�

(si − di )
2Pi

(
si
∣∣d, α(d, t), β(d, t)

)
. (10.15)

To realize the EM procedure as a practical algorithm, Markov chain Monte
Carlo (MCMC)Methods are often used, which are powerful probabilistic methods
[28, 29]. In some recent developments, advanced mean-field methods from statis-
tical mechanical informatics are also used as powerful deterministic algorithms, as



10 Review of Sublinear Modeling in Probabilistic Graphical Models … 169

shown in Sect. 10.3. Consider the expectation values for both sides of Eqs. (10.9) and
(10.10) with respect to the state vector d of a data point according to the following
probability density function where the hyperparameters α and β are set to their true
values α∗ and β∗, respectively:

ρ(d|α∗, β∗) =
∑

τ∈�|V |
ρ
(
d|τ , α∗, β∗)P(τ |α∗), (10.16)

such that

ρ
(
d1, d2, · · ·, d|V |

∣∣α∗, β∗) =
∑

τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

ρ
(
d1, d2, · · ·, d|V |

∣∣τ1, τ2, · · ·, τ|V |, β∗)

×P
(
τ1, τ2, · · ·, τ|V |

∣∣α∗)
(
d1∈(−∞,+∞), d2∈(−∞,+∞), · · ·, d|V |∈(−∞,+∞)

)
. (10.17)

We can then derive simultaneous equations for the statistical trajectory {α(α∗, β∗, t),
β(α∗, β∗, t)|t = 1, 2, 3, · · ·}) in the convergence process {(α(d, t), β(d, t))|t =
1, 2, 3, · · ·} of the above EM algorithm.

Equations (10.9) and (10.10) can be rewritten as follows:

1

|E |
∂

∂α(d, t + 1)
(ln(Z(α(d, t + 1)))) = 1

|E |
∂

∂α(d, t)
(ln(Z(d, α(d, t), β(d, t)))),

(10.18)

1

β(d, t + 1)
= 1

|V |
∂

∂β(d, t)
(ln(Z(d, α(d, t), β(d, t)))), (10.19)

where

Z(α) ≡
∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

∏
{i, j}∈E

exp

(
−1

2
α
(
si − s j

)2)
, (10.20)

Z(d, α, β) ≡
∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

w
(
s1, s2, · · ·, s|V |

∣∣d, α, β
)
, (10.21)

w
(
s
∣∣d, α, β

) = w
(
s1, s2, · · ·, s|V |

∣∣d1, d2, · · ·, d|V |, α, β
)

≡
(∏
i∈V

exp

(
−1

2
β(si − di )

2

))⎛
⎝ ∏

{i, j}∈E
exp

(
−1

2
α
(
si − s j

)2)
⎞
⎠.

(10.22)

By taking the expectation values of both sides of Eqs. (10.18) and (10.19) with
respect to the state vector of the data point d in the probability density function
ρ(d|α∗, β∗), the simultaneous deterministic equation for the statistical trajectory
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{α(α∗, β∗, t), β(α∗, β∗, t)|t = 1, 2, 3, · · ·} of the EM procedure can be derived as
follows:

1

|E |
∂

∂α(α∗, β∗, t + 1)

(
ln
(
Z
(
α(α∗, β∗, t + 1)

)))

= 1

|E |
∂

∂α(α∗, β∗, t)

(∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
ρ
(
d
∣∣α∗, β∗)(ln(Z(d, α(α∗, β∗, t), β(α∗, β∗, t)

)))
dd1dd2· · ·dd|V |

)
,

(10.23)

1

β(α∗, β∗, t + 1)
= 1

|V |
∂

∂β(α∗, β∗, t)
(∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
ρ
(
d
∣∣α∗, β∗)(ln(Z(d, α(α∗, β∗t), β(α∗, β∗, t)

)))
dd1dd2· · ·dd|V |

)
.

(10.24)

In the case of a continuous state space � = (−∞,+∞), the posterior and prior
probabilistic models correspond to Gaussian graphical models, and the statistical
trajectory in Eqs. (10.23) and (10.24) can be exactly computed by means of the
multi-dimensional Gaussian integral formula [30].

For a discrete state space �, it is generally hard to treat Eqs. (10.23) and (10.24)
analytically. To estimate Eqs. (10.23) and (10.24), the following quantity is often
introduced in statistical mechanical informatics [13, 17]:

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
ρ
(
d
∣∣α∗, β∗)(ln(Z(d, α, β)))dd1dd2· · ·dd|V |. (10.25)

The quantity in Eq. (10.25) can be rewritten as follows:
∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
ρ
(
d
∣∣α∗, β∗)

(
lim

n→+0

1

n

(
Z(d, α, β)n − 1

))
dd1dd2· · ·dd|V |

= lim
n→+0

1

n

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
ρ
(
d
∣∣α∗, β∗)((Z(d, α, β)n − 1

))
dd1dd2· · ·dd|V |

= lim
n→+0

1

n

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
ρ
(
d
∣∣α∗, β∗)

⎛
⎝∑

s1∈�

∑
s2∈�

· · ·
∑

s|V |∈�

w
(
s
∣∣d, α, β

)
⎞
⎠

n

dd1dd2· · ·dd|V | − 1

= lim
n→+0

1

n

(∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
ρ
(
d
∣∣α∗, β∗)

×
n∏
j=1

⎛
⎝ ∑

s1, j∈�

∑
s2, j∈�

· · ·
∑

s|V |, j∈�

w
(
s1, j , s2, j , · · ·s|V |, j

∣∣d, α, β
)
⎞
⎠dd1dd2· · ·dd|V |

)
− 1

= 1

Z(α∗)

(√
β∗
2π

)|V |

×
{

lim
n→+0

1

n

(∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞

⎛
⎝∑

τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

w
(
τ1, τ2, · · ·τ|V |

∣∣d, α∗, β∗)
⎞
⎠

×
n∏
j=1

⎛
⎝ ∑

s1, j∈�

∑
s2, j∈�

· · ·
∑

s|V |, j∈�

w
(
s1, j , s2, j , · · ·s|V |, j

∣∣d, α, β
)
⎞
⎠
)
dd1dd2· · ·dd|V |

}
− 1. (10.26)
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Equation (10.26) means that computation of the statistical quantity in Eq. (10.25)
can be reduced, up to some normalization constant, to computation of the statistical
quantity in the probabilistic model given by the weight factor

w
(
τ1, τ2, · · ·τ|V |

∣∣d, α∗, β∗) n∏
j=1

w
(
s1, j , s2, j , · · ·s|V |, j

∣∣d, α, β
)
. (10.27)

We remark that the weight factor (10.27) is expressed by considering some replicas
of the posterior probabilistic model P(s|d, α, β) and the analysis starting from the
weight factor (10.27) is referred to as a replica method [13, 17]. One possible case
for analytical treatment is the EM algorithmwith the prior and posterior probabilistic
models in Eqs. (10.2) and (10.3) for the compete graph (V, E). The dynamics of the
EM algorithm with the MCMCmethod can be analyzed by using the replica method
and the master equations for Glauber dynamics [31].1

10.2.3 Expectation-Maximization Algorithm for Probabilistic
Image Segmentations

This section extends the previous section to the statistical machine learning frame-
work for probabilistic image segmentation. In probabilistic image segmentations,
we consider a square grid graph (V, E) in which a light intensity vector di =
(diR, diG, diB) for the three components red diR, green diG and blue diB is assigned
to each node i . The state vector s for the labeled configuration and the data matrix
D for the color image configuration are expressed as

s =

⎛
⎜⎜⎜⎜⎜⎝

s1
s2
s3
...

s|V |

⎞
⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎜⎜⎜⎝

d1
d2
d3
...

d|V |

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

d1R d1G d1B
d2R d2G d2B
d3R d3G d3B
...

...
...

d|V |R d|V |G d|V |B

⎞
⎟⎟⎟⎟⎟⎠

. (10.28)

Here ρ(D|s, a(+1), a(−1),C(+1),C(−1)) and P(s|α) are assumed to be as fol-
lows:

ρ(D|s, a(+1), a(−1),C(+1),C(−1)) =
∏
i∈V

g
(
di
∣∣si , a(si ),C(si )

)
, (10.29)

1 Glauber dynamics was proposed in Ref. [32].
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P(s|α) =

∏
{i, j}∈E

exp
(−2α

(
1 − δsi ,s j

))

∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

∏
{i, j}∈E

exp
(−2α

(
1 − δsi ,s j

)) , (10.30)

where

g
(
di
∣∣si , a(si ),C(si )

) ≡
√

1

det(2πC(si ))
exp

(
− 1

2
(di − a(si ))C

−1(si )(di − a(si ))
T
)

,

(10.31)

a(+1) =
⎛
⎝

aR(+1)
aG(+1)
aB(+1)

⎞
⎠, a(−1) =

⎛
⎝

aR(−1)
aG(−1)
aB(−1)

⎞
⎠, (10.32)

C(+1) =
⎛
⎝

CRR(+1) CRG(+1) CRB(+1)
CGR(+1) CGG(+1) CGB(+1)
CBR(+1) CBG(+1) CBB(+1)

⎞
⎠, C(−1) =

⎛
⎝

CRR(−1) CRG(−1) CRB(−1)
CGR(−1) CGG(−1) CGB(−1)
CBR(−1) CBG(−1) CBB(−1)

⎞
⎠.

(10.33)

Note that the probabilistic graphical model in Eq. (10.30) is referred to as a Potts
mode [33].

In probabilistic segmentation and clustering, ρ(D|s, a(+1), a(−1),C(+1),C(−1))
in Eq. (10.29) and P(s|α) in Eq. (10.30) correspond to the data generative and prior
models, respectively. The joint probability of s and D is expressed in terms of the
data generative and prior distributions, ρ(D|s, a(+1), a(−1),C(+1),C(−1)) and
P(s|α), as follows:

ρ(s, D|α, a(+1), a(−1),C(+1),C(−1)) ≡ ρ(D|s, a(+1), a(−1),C(+1),C(−1))P(s|α).

(10.34)

By using the joint probability distribution, the posterior probability
P(s|D, α, a(+1), a(−1),C(+1),C(−1)) and the marginal likelihood
ρ(D|α, a(+1), a(−1),C(+1),C(−1)) are defined by using Bayes formulas as fol-
lows:

P(s|D, α, a(+1), a(−1),C(+1),C(−1)) ≡ ρ(s, D|α, a(+1), a(−1),C(+1),C(−1))

ρ(D|α, a(+1), a(−1),C(+1),C(−1))
,

(10.35)

ρ(D|α, a(+1), a(−1),C(+1),C(−1))

≡
∑
s1∈�

∑
s2∈�

· · ·
∑

s|V |∈�

ρ(s, D|α, a(+1), a(−1),C(+1),C(−1)). (10.36)
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Estimates of the hyperparameters and parameter vector, namely, α̂(D), â(+1|D),
â(−1|D), ̂C(+1|D), ̂C(−1|D), ŝ(D) = (̂

s1(D), ŝ2(D), · · ·, ŝ|V |(D)
)
are deter-

mined by
(
α̂(D), â(+1|D), â(−1|D), ̂C(+1|D), ̂C(−1|D)

)

= arg max
(α,a(+1),a(−1),C(+1),C(−1))

ρ
(
D
∣∣α, a(+1), a(−1),C(+1),C(−1)

)
, (10.37)

ŝi (D) = argmax
si∈�

Pi
(
si
∣∣D, α̂(D), â(+1|D), â(−1|D), ̂C(+1|D), ̂C(−1|D)

)
(i∈V ).

(10.38)

The Q-function for the EM algorithm in the present framework is defined by

Q(
α, s(+1), a(−1),C(+1),C(−1)|s′(+1), s′(−1),C ′(+1),C ′(−1), D

)

≡
∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

P
(
s|D, α, a′(+1), a′(−1),C ′(+1),C ′(−1)

)

×ln(ρ(s, D|α, a(+1), a(−1),C(+1),C(−1))). (10.39)

The EM algorithm is a procedure that performs the following E-step and M-
step repeatedly for t = 0, 1, 2, · · · until α̂(D), â(+1, D), â(−1, D), ̂C(+1, D),
̂C(−1, D) converge:

E-step: Compute Q (
α, a(+1), a(−1),C(+1),C(−1)

∣∣α(t), a(+1, t), a(−1, t),
C(+1, t),C(−1, t)) for various values of a(+1), a(−1), C(+1), and
C(−1).

M-step: Determine α(t + 1), a(+1, t + 1), a(−1, t + 1), C(+1, t + 1), and
C(−1, t + 1) that satisfy the extremum conditions of Q-function with
respect to a(+1), a(−1), C(+1) and C(−1) as follows:

(α(t + 1), a(+1, t + 1), a(−1, t + 1),C(+1, t + 1),C(−1, t + 1))

← extremum
α,a(+1),a(−1),C(+1),C(−1)

Q(
α, a(+1), a(−1),C(+1),C(−1)

∣∣α(t), a(+1, t), a(−1, t),C(+1, t),C(−1, t), D
)
.

(10.40)

Update α̂(D)←α(t + 1), â(+1, D)←a(+1, t + 1), â(−1, D)←a(−1,
t + 1), ̂C(+1, D)←C(+1, t + 1) and ̂C(−1, D)←C(−1, t + 1).

By using the equalities in Eqs. (10.29), (10.30), (10.34), and (10.35), the EM algo-
rithm by theQ-function can be reduced to the following simultaneous update rules:

1

|E |
∑

{i, j}∈E

∑
si∈�

∑
s j∈�

(
1 − δsi ,s j

)
Pi j

(
si , s j

∣∣α(t + 1)
)

= 1

|E |
∑

{i, j}∈E

∑
si∈�

∑
s j∈�

(
1 − δsi ,s j

)
Pi j

(
si , s j

∣∣D, α(t), a(+1, t), a(−1, t),C(+1, t),C(−1, t)
)
,

(10.41)
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a(si , t + 1) =

∑
i∈V

di Pi
(
si
∣∣D, α(t), a(+1, t), a(−1, t),C(+1, t),C(−1, t)

)

∑
i∈V

Pi
(
si
∣∣D, α(t), a(+1, t), a(−1, t),C(+1, t),C(−1, t)

) (si∈�),

(10.42)

C(si , t + 1)

=

∑
i∈V

(di − a(si , t))
T(di − a(si , t))Pi

(
si
∣∣D, α(t), a(+1, t), a(−1, t),C(+1, t),C(−1, t)

)

∑
i∈V

Pi
(
si
∣∣D, α(t), a(+1, t), a(−1, t),C(+1, t),C(−1, t)

) (si∈�),

(10.43)

where

Pi (si |D, α, a(+1), a(−1),C(+1),C(−1))

≡
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

δsi ,τi P
(
τ1, τ2, · · ·, τ|V |

∣∣D, α, a(+1), a(−1),C(+1),C(−1)
)
(i∈V ),

(10.44)

Pi j (si , s j |D, α, a(+1), a(−1),C(+1),C(−1))

= Pji (s j , si |D, α, a(+1), a(−1),C(+1),C(−1))

≡
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

δsi ,τi δs j ,τ j P
(
τ1, τ2, · · ·, τ|V |

∣∣D, α, a(+1), a(−1),C(+1),C(−1)
)
({i, j}∈E),

(10.45)

Pi j (si , s j |α) = Pji (s j , si |α)

≡
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

δsi ,τi δs j ,τ j P
(
τ1, τ2, · · ·, τ|V |

∣∣α) ({i, j}∈E).

(10.46)

10.3 Statistical Mechanical Informatics

In statistical mechanical informatics [13–17], Ising models are very familiar prob-
abilistic models for which computations are done by statistical mechanical tech-
niques, including advanced mean-field methods, renormalization group methods,
Monte Carlo simulations, and replica methods [36, 37]. This section reviews the
framework of the Ising model and associated advanced mean-field methods.2

2 A review of both exact results and approximate results as well as perturbative computations for
Ising models is given in Refs. [34, 35].
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10.3.1 Ising Model

Let us consider an Ising model defined by the following probability distribution for
the state space � = {+1,−1} for the state variable si at each node i(∈V ):

P

(
s
∣∣∣d,

J

kBT
,

h

kBT

)
= P

(
s1, s2, · · ·, s|V |

∣∣∣d1, d2, · · ·, d|V |,
J

kBT
,

h

kBT

)

≡
exp

⎛
⎝− 1

kBT

⎛
⎝ 1

2
J

∑
{i, j}∈E

(
si − s j

)2 + 1

2
h
∑
i∈V

(
si − di

)2
⎞
⎠
⎞
⎠

∑
s1∈�

∑
s2∈�

· · ·
∑

s|V |∈�

exp

⎛
⎝− 1

kBT

⎛
⎝ 1

2
J

∑
{i, j}∈E

(
si − s j

)2 + 1

2
h
∑
i∈V

(
si − di

)2
⎞
⎠
⎞
⎠

(
J > 0, , T > 0, di∈(−∞,+∞) (∀i∈V )

)
. (10.47)

Because si 2 = 1 (i∈V ), the probability distribution P(s) can be reduced to

P

(
s
∣∣∣d,

J

kBT
,

h

kBT

)
= 1

Z
exp

(
− 1

kBT
H(s)

)
(T > 0), (10.48)

H(s) = H(s1, s2, · · ·, s|V |)
≡ −J

∑
{i, j}∈E

si s j − h
∑
i∈V

di si
(
J > 0, h≥0, di∈(−∞, +∞) (∀i∈V )

)
, (10.49)

Z ≡
∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

exp

(
− 1

kBT
H(s)

)
, (10.50)

where H(s) and Z are referred to in statistical mechanical informatics as the energy
function (orHamiltonian) and the partition function, respectively, the probability
distribution in Eq. (10.47) is called the Gibbs distribution, kB is the Boltzmann
constant, T is the (absolute) temperature, J is the (ferromagnetic) interaction,
and h is the external field.

Let us suppose the Kullback-Leibler Divergence

KL[P||R] ≡
∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

R(s)ln

⎛
⎝ R(s)

P
(
s
∣∣∣ J
kBT

, h
kBT

)
⎞
⎠, (10.51)

which is always non-negative for two probability distributions P
(
s
∣∣∣ J
kBT

, h
kBT

)
and

R(s) and is regarded as a pseudo-distance between them. By substituting the explicit
expression for P(s) in Eqs. (10.48), (10.49) and (10.50) into Eq. (10.51), the expres-
sion for the Kullback-Leibler divergence (10.51) in terms of the partition function Z
and the free energy functional F[R] can be derived as follows:
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KL[P||R] = 1

kBT

(
kBT ln(Z) + F[R]), (10.52)

where

F[R] ≡
∑
s1∈�

∑
s2∈�

· · ·
∑

s|V |∈�

H(s)R(s) + kBT
∑
s1∈�

∑
s2∈�

· · ·
∑

s|V |∈�

R(s)ln
(
R(s)

)
. (10.53)

For the free energy functional F[R], it is valid that

argmin
R

⎧⎨
⎩F[R]

∣∣∣
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

R
(
τ1, τ2, · · ·, τ|V |

) = 1

⎫⎬
⎭ = P

(
s
∣∣∣ J

kBT
,

h

kBT

)
,

(10.54)

min
R

⎧⎨
⎩F[R]

∣∣∣
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

R
(
τ1, τ2, · · ·, τ|V |

) = 1

⎫⎬
⎭ = −kBT ln(Z). (10.55)

Note that −kBT ln(Z) is referred to as the free energy for the Gibbs distribution in
Eq. (10.47).

10.3.2 Advanced Mean-Field Method

This section reviews the fundamental framework of advanced mean-field methods
[12], including the mean-field approximation [35–37] and the Bethe approxima-
tion [35, 39–41]. Our framework is given for the Isingmodel in Eqs. (10.48), (10.49),
and (10.50). It is known that a generalization of the present framework can be realized
by using the cluster variation method in Refs. [42–45].

We introduce a trial probability distribution R(s) = R(s1, s2, · · ·, s|V |) which is
restricted to the following functional form:

R(s) = R
(
s1, s2, · · ·, s|V |

) =
∏
i∈V

Ri (si ), (10.56)

Ri (si ) =
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

δsi ,τi R
(
τ1, τ2, · · ·, τ|V |

)
(i∈V ). (10.57)

By using the definition of Ri (si ) and the normalization condition
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∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

R
(
τ1, τ2, · · ·, τ|V |

) = 1, (10.58)

we confirm that

∑
τi∈�

Ri (τi ) = Ri (+1) + Ri (−1) = 1 (i∈V ). (10.59)

By substituting the expression R(s) in terms of the marginal probability distribution

Ri (si ) (i∈V ), such that Ri =
(
Ri (+1) 0

0 Ri (−1)

)
into Eqs. (10.56)–(10.53), the

free energy functional F[R] can be reduced to the following mean-field free energy
functional:

F[R] = FMF[{Ri |i∈V }], (10.60)

where

FMF[{Ri |i∈V }] = FMF

[{(
Ri (+1) 0

0 Ri (−1)

)∣∣∣∣i∈V
}]

≡ −J
∑

{i, j}∈E

⎛
⎝∑

τi∈�

τi Ri (τi )

⎞
⎠
⎛
⎝ ∑

τ j∈�

τ j R j (τ j )

⎞
⎠ − h

∑
i∈V

di

⎛
⎝∑

τi∈�

τi Ri (τi )

⎞
⎠

+kBT
∑
i∈V

∑
τi∈�

Ri (τi )ln(Ri (τi )). (10.61)

Let us suppose the following conditional minimization of the free energy func-
tional:

̂Ri =
{(

R̂i (+1) 0
0 R̂i (−1)

)∣∣∣i∈V, si∈�

}

= arg min{Ri |i∈V }

{
FMF[{Ri |i∈V }]

∣∣∣∣
∑
τi∈�

Ri (τi ) = 1, i∈V
}
. (10.62)

First we introduce the Lagrange multiplier λi (i∈V ) to ensure the normalization
conditions

∑
τ∈�

Ri (τ ) = 1 (i∈V ) as follows:

LMF[{Ri |i∈V }] ≡ FMF[{Ri |i∈V }] −
∑
i∈V

λi
(∑
τi∈�

Ri (τi ) − 1
)
. (10.63)

̂Ri (i∈V ) are determined so as to satisfy the following extremum condition:
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[ ∂

∂Ri (−1)
LMF[{Ri |i∈V }]

]
{Ri=̂Ri |i∈V }

= 0 (i∈V ), (10.64)

[ ∂

∂Ri (+1)
LMF[{Ri |i∈V }]

]
{Ri=̂Ri |i∈V }

= 0 (i∈V ), (10.65)

such that

[ ∂

∂Ri
LMF[{Ri |i∈V }]

]
{Ri=̂Ri |i∈V }

= 0 (i∈V ). (10.66)

It needs to be shown that ̂Ri (i∈V ) are derived as follows:

R̂i (si )

= exp

(
−1 + λi

kBT

)
exp

⎛
⎝ 1

kBT

⎛
⎝hdi + J

∑
j∈∂i

⎛
⎝∑

τ j∈�

τ j R̂ j (τ j )

⎞
⎠
⎞
⎠si

⎞
⎠ (

i∈V, si∈�
)
.

(10.67)

Finally, λi needs to be determined such that it satisfies the normalization condition
of the marginal probability R̂i (si ). The marginal probabilities

{
̂Ri

∣∣i∈V } are derived
as

R̂i (si ) =
exp

⎛
⎝ 1

kBT

⎛
⎝hdi + J

∑
j∈∂i

⎛
⎝∑

τ j∈�

τ j R̂ j (τ j )

⎞
⎠
⎞
⎠si

⎞
⎠

∑
τi∈�

exp

⎛
⎝ 1

kBT

⎛
⎝hdi + J

∑
j∈∂i

⎛
⎝∑

τ j∈�

τ j R̂ j (τ j )

⎞
⎠
⎞
⎠τi

⎞
⎠

(
i∈V, si∈�

)
. (10.68)

We introduce the local magnetization

mi ≡
∑
τi∈�

τi R̂i (τi ). (10.69)

By solving the simultaneous equations

∑
τi∈�

R̂i (τi ) = R̂i (+1) + R̂i (−1) = 1 (i∈V ), (10.70)

∑
τi∈�

τi R̂i (τi ) = R̂i (+1) − R̂i (−1) = mi (i∈V ), (10.71)

with respect to R̂i (+1) and R̂i (−1), we derive the following expression for the
marginal probability:
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R̂i (si ) = 1

2

(
1 + misi

)
(i∈V ). (10.72)

The extremumconditions inEq. (10.68) can be reduced to the following simultaneous
deterministic equation of {mi |i∈V }:

mi = tanh

⎛
⎝ 1

kBT

⎛
⎝hdi + J

∑
j∈∂i

m j

⎞
⎠
⎞
⎠ (i∈V ), (10.73)

which is referred to as the mean-field equation.3

By substituting Eq. (10.72) into Eq. (10.61), the mean-field free energy functional
can be reduced to

FMF
[{
R̂i (−1), R̂i (+1)

∣∣i∈V }] = FMF
(
m1,m2, · · ·,m|V |

)
, (10.74)

FMF
(
m1,m2, · · ·,m|V |

) ≡ −J
∑

{i, j}∈E
mim j − h

∑
i∈V

dimi

+kBT
∑
i∈V

1

2

(
1 + mi

)
ln

(
1

2

(
1 + mi

))

+kBT
∑
i∈V

1

2

(
1 − mi

)
ln

(
1

2

(
1 − mi

))
. (10.75)

The extremum conditions

∂

∂mi
FMF

(
m1,m2, · · ·,m|V |

) = 0 (i∈V ) (10.76)

can be reduced to the mean-field equations in Eq. (10.73).
We now explore the framework of the Bethe approximation for the Ising model in

Eqs. (10.48), (10.49), and (10.50). Our framework is based on the cluster variation
method [39, 42–45].

We introduce a trial probability distribution R(s) = R(s1, s2, · · ·, s|V |) that is
restricted to the following functional form:

3 Equation (10.73) is often referred to as the naive mean-field equation in statistical machine
learning theory [2, 3, 12].
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R(s) = R(s1, s2, · · ·, s|V |) =
(∏
i∈V

Ri (si )

)⎛
⎝ ∏

{i, j}∈E

Ri j (si , s j )

Ri (si )R j (s j )

⎞
⎠

=
(∏
i∈V

Ri (si )
1−|∂i |

)⎛
⎝ ∏

{i, j}∈E
Ri j (si , s j )

⎞
⎠, (10.77)

where

Ri j (si , s j ) = R ji (s j , si )

≡
∑

τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

δsi ,τi δs j ,τ j R
(
τ1, τ2, · · ·, τ|V |

)
({i, j}∈E). (10.78)

By using Eqs. (10.57) and (10.78), we can derive the normalization and reducibil-
ity conditions in the marginal probabilities as follows:

∑
τi∈�

Ri (τi ) = 1 (i∈V ),
∑
τi∈�

∑
τ j∈�

Ri j (τi , τ j ) = 1 ({i, j}∈E), (10.79)

Ri (si ) =
∑
τ j∈�

Ri j (si , τ j ), R j (s j ) =
∑
τi∈�

Ri j (τi , s j ) ({i, j}∈E). (10.80)

By substituting the explicit expression for P(s) and the expression ln(R(s)) in

terms of the marginal probability distributions Ri =
(
Ri (+1) 0

0 Ri (−1)

)
(i∈V ) and

Ri j =

⎛
⎜⎜⎝

Ri j (+1,+1) 0 0 0
0 Ri j (+1,−1) 0 0
0 0 Ri j (−1,+1) 0
0 0 0 Ri j (−1,−1)

⎞
⎟⎟⎠ ({i, j}∈E) in Eq.

(10.77) into Eq. (10.51), the Kullback-Leibler divergence can be reduced to the
following expression in terms of the partition function Z and the Bethe free energy
functional FBethe[{Ri |i∈V }, {Ri j |{i, j}∈E}]:

KL[P||R] = 1

kBT

(
kBT lnZ + FBethe

[{Ri |i∈V }, {Ri j |{i, j}∈E}]), (10.81)

where
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FBethe
[{Ri |i∈V }, {Ri j |{i, j}∈E}]

≡ −J
∑

{i, j}∈E

⎛
⎝∑

τi∈�

∑
τ j∈�

τiτ j R{i, j}(τi , τ j )

⎞
⎠ − h

∑
i∈V

(∑
τi∈�

τi Ri (τi )

)

+ kBT
∑
i∈V

(1 − |∂i |)
(∑

τi∈�

Ri (τi )ln
(
Ri (τi )

))

+ kBT
∑

{i, j}∈E

⎛
⎝∑

τi∈�

∑
τ j∈�

Ri j (τi , τ j )ln
(
Ri j (τi , τ j )

)
⎞
⎠. (10.82)

Let us suppose the following conditional minimization of the Bethe free energy
functional:

({
̂Ri

∣∣∣i∈V
}
,
{

̂R{i, j}
∣∣∣{i, j}∈E

})

= arg min{Ri |i∈V },{R{i, j} |{i, j}∈E}

{
FBethe

[{Ri |i∈V }], {R{i, j}|{i, j}∈E}]

∣∣∣∣
∑
τi∈�

Ri (τi ) = 1 (i∈V ),
∑
τi∈�

∑
τ j∈�

Ri j (τi , τ j ) = 1 ({i, j}∈E),

Ri (−1) =
∑
τ j∈�

Ri j (−1, τ j ) ( j∈∂i, i∈V ),

Ri (+1) =
∑
τ j∈�

Ri j (+1, τ j ) ( j∈∂i, i∈V )

}
. (10.83)

We introduce the Lagrange multiplier λi (i∈V ), λ{i, j}, λi,i j (−1) = λi, j i (−1),
λi,i j (+1) = λi, j i (+1) ({i, j}∈E) to ensure the normalization and reducibility con-
ditions as follows:

LBethe
[{Ri |i∈V }, {Ri j |{i, j}∈E}] ≡ FBethe

[{Ri |i∈V }, {Ri j |{i, j}∈E}]

−
∑
i∈V

λi
( ∑
τi∈�

Ri (τi ) − 1
)

−
∑

{i, j}∈E
λ{i, j}

( ∑
τi∈�

∑
τ j∈�

Ri j (τi , τ j ) − 1
)

−
∑
i∈V

∑
j∈∂i

λi,i j (−1)
(
Ri (−1) −

∑
τ j∈�

Ri j (−1, τ j )
)

−
∑
i∈V

∑
j∈∂i

λi,i j (+1)
(
Ri (+1) −

∑
τ j∈�

Ri j (+1, τ j )
)
. (10.84)

The marginal probabilities ̂Ri (i∈V ) and ̂Ri j ({i, j}∈E) are determined so as to
satisfy the following extremum condition:

[ ∂

∂Ri
LBethe

[{Ri |i∈V }, {Ri j |{i, j}∈E}]
]

{Ri=̂Ri |i∈V },{Ri j=̂Ri j |{i, j}∈E}
= 0 (i∈V ),

(10.85)
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[ ∂

∂Ri j
LBethe

[{Ri |i∈V }, {Ri j |{i, j}∈E}]
]
{Ri=̂Ri |i∈V },{Ri j=̂Ri j |{i, j}∈E} = 0 ({i, j}∈E).

(10.86)

It needs to be shown that R̂i (si ) (i∈V ) and R̂i j (si , s j ) = R̂ ji (s j , si ) ({i, j}∈E) are
derived as follows:

R̂i (si ) = exp

(
−1 − λi

kBT (|∂i | − 1)

)

×exp

⎛
⎝ 1

kBT

⎛
⎝− 1

|∂i | − 1
hdi si − 1

|∂i | − 1

∑
j∈∂i

λi,i j (si )

⎞
⎠
⎞
⎠ (i∈V ), (10.87)

R̂i j (si , s j ) = R̂ ji (s j , si ) = exp

(
−1 + λ{i, j}

kBT

)

×exp

(
1

kBT

(
Jsi s j − λi,i j (si ) − λ j,i j (s j )

))
({i, j}∈E). (10.88)

Finally,λi andλ{i, j} need to be determined so as to satisfy the normalization condition
of the marginal probabilities R̂i (si ) and R̂i j (si , s j ).

By introducing the messages μk→i (si ) and μl→ j (s j ) in the transformations

exp

(
−λi,i j (si )

kBT

)
=
⎛
⎝ ∏

k∈∂i\{ j}
μk→i (si )

⎞
⎠exp

(
h

kBT
di si

)
, (10.89)

exp

(
−λ j,i j (s j )

kBT

)
=
⎛
⎝ ∏

l∈∂ j\{i}
μl→ j (s j )

⎞
⎠exp

(
h

kBT
d j s j

)
. (10.90)

The expressions of the marginal probabilities ̂Ri and ̂Ri j in Eqs. (10.87) and (10.88)
can be reduced to the following expressions:

R̂i (si ) = 1

Zi

(∏
k∈∂i

μk→i (si )

)
exp

(
h

kBT
di si

)
(i∈V ), (10.91)
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R̂i j (si , s j ) = R̂ ji (s j , si ) = 1

Z{i, j}

⎛
⎝ ∏

k∈∂i\{ j}
μk→i (si )

⎞
⎠
⎛
⎝ ∏

l∈∂ j\{i}
μl→ j (s j )

⎞
⎠

×exp

(
1

kBT

(
Jsi s j + hdi si + hd j s j

))
({i, j}∈E),

(10.92)

Zi ≡
∑
τi∈�

(∏
k∈∂i

μk→i (τi )

)
exp

(
h

kBT
diτi

)
(i∈V ), (10.93)

Z{i, j} ≡
∑
τi∈�

∑
τ j∈�

⎛
⎝ ∏

k∈∂i\{ j}
μk→i (τi )

⎞
⎠
⎛
⎝ ∏

l∈∂ j\{i}
μl→ j (τ j )

⎞
⎠

×exp

(
1

kBT

(
Jτiτ j + hdiτi + hd jτ j

))
({i, j}∈E). (10.94)

By substituting Eqs. (10.91) and (10.92) into the reducibility conditions in Eq.
(10.80), the simultaneous deterministic equations for the messages can be derived as
follows:

μ j→i (si ) = Zi

Z{i, j}

∑
τ j∈�

⎛
⎝ ∏

l∈∂ j\{i}
μl→ j (τ j )

⎞
⎠exp

(
1

kBT

(
Jsiτ j + hd jτ j

))
({i, j}∈E),

(10.95)

μi→ j (s j ) = Z j

Z{i, j}

∑
τi∈�

⎛
⎝ ∏

k∈∂i\{ j}
μk→i (τi )

⎞
⎠exp

(
1

kBT

(
Jτi s j + hdiτi

))
({i, j}∈E).

(10.96)

The Bethe free energy functional is given by

FBethe
[{̂Ri |i∈V }, {̂Ri j |{i, j}∈E}] = −kBT

∑
i∈V

(
1 − |∂i |)lnZi − kBT

∑
{i, j}∈E

lnZ{i, j}.

(10.97)
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The framework in the Bethe approximation using Eqs. (10.91), (10.92), (10.93),
and (10.94) with Eqs. (10.95) and (10.96) is referred to as a loopy belief propa-
gation in statistical machine learning theory [12, 46–48]. The present derivation
is based on the cluster variation method in Refs. [39, 42–44], and [45]. Recently,
some novel approaches for loopy belief propagation methods have been proposed,
including the approximate message passing algorithm [49], and replica cluster
variation method [50, 51]. A review summarizing recent developments in loopy
belief propagation methods is given in Ref. [52].

By solving

∑
τi∈�

∑
τ j∈�

R̂i j (τi , τ j ) = R̂i j (+1,+1) + R̂i j (−1,+1) + R̂i j (+1,−1) + R̂i j (−1, −1) = 1,

(10.98)

∑
τi∈�

∑
τ j∈�

τi R̂i j (τi , τ j ) = R̂i j (+1, +1) − R̂i j (−1, +1) + R̂i j (+1, −1) − R̂i j (−1, −1) = mi ,

(10.99)

∑
τi∈�

∑
τ j∈�

τ j R̂i j (τi , τ j ) = R̂i j (+1, +1) + R̂i j (−1, +1) − R̂i j (+1, −1) − R̂i j (−1, −1) = m j ,

(10.100)

∑
τi∈�

∑
τ j∈�

τiτ j R̂i j (τi , τ j ) = R̂i j (+1,+1) − R̂i j (−1,+1)

−R̂i j (+1,−1) + R̂i j (−1,−1) = c{i, j} = c{ j,i},
(10.101)

as simultaneous linear equations for R̂i j (+1,+1), R̂i j (−1,+1), R̂i j (+1,−1), and
R̂i j (−1,−1), we can confirm the following equality:

R̂i j (si , s j ) = 1

4

(
1 + misi + m js j + c{i, j}si s j

)
. (10.102)

By substituting Eqs. (10.72) and (10.102) into Eq. (10.82), the Bethe free energy
functional can be reduced to

FBethe

[{
̂Ri
∣∣i∈V }, {̂Ri j

∣∣{i, j}∈E}
]

= FBethe
({
mi

∣∣i∈V }, {c{i, j}
∣∣{i, j}∈E}), (10.103)
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FBethe
({
mi

∣∣i∈V }, {c{i, j}
∣∣{i, j}∈E}) ≡ −J

∑
{i, j}∈E

c{i, j} − h
∑
i∈V

dimi

+kBT
∑
i∈V

(1 − |∂i |)
∑
si=±1

R̂i (si )ln
(
R̂i (si )

) + kBT
∑

{i, j}∈E

∑
s j=±1

R̂i j (si , s j )ln
(
R̂i j (si , s j )

)
.

(10.104)

The extremum conditions

∂

∂mk
FBethe

({
mi

∣∣i∈V }, {c{i, j}
∣∣{i, j}∈E}) = 0 (k∈V ), (10.105)

∂

∂c{k,l}
FBethe

({
mi

∣∣i∈V }, {c{i, j}
∣∣{i, j}∈E}) = 0 ({k, l}∈E) (10.106)

can be reduced to the following simultaneous equations:

h

kBT
di = 1

2
(1 − |∂i |)

∑
τi∈�

τi ln
(
R̂i (τi )

) + 1

4

∑
j∈∂i

∑
τi∈�

∑
τ j∈�

τi ln
(
R̂i j (τi , τ j )

)
(i∈V ), (10.107)

J

kBT
= 1

4

∑
τi∈�

∑
τ j∈�

τiτ j ln
(
R̂i j (τi , τ j )

)
({i, j}∈E). (10.108)

The schemes for the derivations of Eqs. (10.107) and (10.108) from the Bethe free
energy (Eqs. (10.103)–(10.104)) are given in Refs. [41, 53–55].

In the advanced mean-field method, some researchers are interested in perturba-
tive computation of the correction terms with respect to J

kBT
from the mean-field

free energy [56, 57], which is referred to as a Thouless-Anderson-Palmar (TAP)
free energy. The scheme used in the derivations has been extended to a classical
Heisenberg model [58]. One familiar perturbative method in statistical mechanical
informatics is the Plefka expansion, inwhichwe obtain higher-order correction terms
with respect to J

kBT
from themean-field free energy [12]. By substituting Eq. (10.102)

into Eq. (10.108), c{i, j} can be expressed in terms of mi , m j , and J
kBT

. It is known
that the TAP equation can be derived by expanding the expression for c{i, j} up to the

second-order term
(

J
kBT

)2
with respect to an infinitesimal J

kBT
and by substituting it

into Eq. (10.82) with Eqs. (10.72) and (10.102) [41], The fundamental framework
of the TAP free energy and its expansion using the advanced mean-field method has
been clarified [59]. The Bethe free energy functional and the TAP free energy as well
as loopy belief propagation have been applied to Boltzmann machine learning [53,
60–64]. Some recent developments appear in Chap. 7 of Part 3 in this book.

The EM schemes with advancedmean-fieldmethods in the previous sections have
been applied to noise reduction in probabilistic image processing [30, 51, 65–69].
The basic frameworks are based on Eqs. (10.14) and (10.15) with the two-body and

http://dx.doi.org/10.1007/978-981-16-4095-7_7
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Fig. 10.1 Fundamental framework of Bayesian noise reduction by generalized sparse prior and
additive white Gaussian noise

one-body posterior marginal probability distributions in Eqs. (10.11) and (10.12) as
well as the two-body prior marginal probability distribution in Eq. (10.13). They can
be computed bymeans of themessage passing algorithms in Eqs. (10.91) and (10.92)
with Eqs. (10.93), (10.94), (10.95), and (10.96) for the Ising model in Eqs. (10.47),
(10.48), and (10.50) with the prior and posterior probability distributions in Eqs.
(10.2) and (10.3), respectively. The framework and some numerical experimental
results are shown in Figs. 10.1 and 10.2, respectively. Moreover, the loopy belief
propagation is applicable to Bayesian image segmentation in the framework of Sect.
10.2.3 [70]. They are also useful for community detection be means of the stochastic
block model for modular networks [71–73].
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Fig. 10.2 Numerical experiments in Bayesian noise reduction by the generalized sparse prior and
additive white Gaussian noise

10.3.3 Free Energy Landscapes and Phase Transitions
in the Thermodynamic Limit

In this section, we consider the Ising model defined by

P

(
s
∣∣∣ J

kBT
,

h

kBT

)
≡ 1

Z
(

J
kBT

, h
kBT

)exp
(

1

kBT
H(s)

)
, (10.109)

where

H(s) = H(s1, s2, · · ·, s|V |)

≡ −J
∑

{i, j}∈E
si s j − h

∑
i∈V

si (J > 0), (10.110)

Z

(
J

kBT
,

h

kBT

)
≡

∑
s1∈�

∑
s2∈�

. . .
∑
s|V |∈�

exp

(
− 1

kBT
H(s)

)
. (10.111)

The energy function in Eq. (10.110) corresponds to the one in Eq. (10.49) for the
case of di = 1 for every node i(∈V ). In the present section, we consider a regular of
degree 4 that includes a square grid graph with periodic boundary conditions along
the x- and y-direction as shown in Fig. 10.3.
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Fig. 10.3 Square grid graph
(V, E) with periodic
boundary conditions along
the x- and y-direction in the
case V =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

For the Ising model in Eq. (10.110) and its partition function in Eq. (10.50), we
have the free energy per node

f (J, h, T ) = −kBT× lim|V |→+∞
1

|V | ln(Z), (10.112)

the internal energy for zero external field

Ju ≡ ∂

∂
(

1
kBT

)
(

1

kBT
f (J, h = 0, T )

)

= lim|V |→+∞
1

|E |
∑

{i, j}∈E

∑
s

(−si s j )P

(
s
∣∣∣ J

kBT
,

h

kBT
= 0

)
, (10.113)

and the spontaneous magnetization

m± ≡ lim
h→±0

∂

∂
(

h
kBT

)
(

1

kBT
f (J, h, T )

)

= lim
h→±0

lim|V |→+∞
1

|V |
∑
i∈V

∑
s

si P

(
s
∣∣∣ J

kBT
,

h

kBT

)
, (10.114)

as important statistical quantities in the thermodynamic limit |V |→ + ∞. The exis-
tence of the thermodynamic limit |V |→ + ∞ means that the limit of the right-hand
side in Eq. (10.110) converges. Sufficient conditions for the existence of the thermo-
dynamic limit of the Ising model of Eqs. (10.109), (10.110), and (10.111) have been
given by Ruelle in Ref. [38].

In the thermodynamic limit |V |→ + ∞ for the Ising model in Eq. (10.110) on a
square grid graph with periodic boundary conditions along the x- and y-direction as
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shown in Fig. 10.3,

u

J
= −coth

(
2J

kBT

)
⎛
⎜⎜⎝1 +

(
2tanh2

(
2J

kBT

)
− 1

)(
2

π

)∫ π
2

0

⎛
⎜⎝1 −

⎛
⎝ 2sinh

(
2J
kBT

)

cosh2
(

2J
kBT

)
⎞
⎠

2

sin2(θ)

⎞
⎟⎠

− 1
2

dθ

⎞
⎟⎟⎠,

(10.115)

m±2 = lim|r i−r j |→+∞ lim|V |→+∞
∑
s

si s j P

(
s
∣∣∣ J

kBT
,

h

kBT
= 0

)

=
⎧⎨
⎩
0

(
J

kBT
< 1

2 arcsinh(1)
)

(
1 − sinh−4

(
2J
kBT

)) 1
4

(
J

kBT
> 1

2 arcsinh(1)
) , (10.116)

where r i is the position vector of each node i(∈V ) [34, 74, 75]. In Eq. (10.116), the
spontaneous magnetizations m+ and m− correspond to each branch of m+≥0 and
m−≤0, respectively. They are as shown in Fig. 10.4. Note that for the Ising model
in Eq. (10.110) on such regular graphs,

mi,V

(
J

kBT
,

h

kBT

)
≡
∑
s

si P

(
s
∣∣∣ J

kBT
,

h

kBT

)
, (10.117)

for every i(∈V ), does not depend on i but can be expressed as mV

(
J

kBT
, h
kBT

)
.

In themean-field approximation of the previous subsection, the spontaneousmag-
netizations

m± = lim
h→±0

lim|V |→+∞mV

(
J

kBT
,

h

kBT

)
, (10.118)

are given as solutions of the following mean-field equation:

m± = tanh

(
1

kBT

(
h + 4Jm±

))
(h→±0), (10.119)

and the internal energy Ju in Eq. (10.113) in the mean-field approximation is given
as

u = −m±2. (10.120)

The solutions of Eq. (10.119) correspond to the extremum values of the following
mean-field free energy:
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Fig. 10.4 Internal energy Ju in Eq. (10.113) and magnetizationm± in Eq. (10.114) in the Onsager
solution in the Ising model of Eqs. (10.48) and (10.50) with Eq. (10.110) on the square grid graph
(V, E) with the periodic boundary conditions along the x- and y-direction

fMF(m) ≡ 1

|V | FMF
(
m1,m2, · · ·,m|V |

)

= −2Jm2 + kBT

(
1

2

(
1 + m

))
ln

(
1

2

(
1 + m

))

+ kBT

(
1

2

(
1 − m

))
ln

(
1

2

(
1 − m

))
, (10.121)

which corresponds to 1
|V | FMF

(
m1,m2, · · ·,m|V |

)
in Eq. (10.75) for h = 0. The spon-

taneous magnetization m± and the internal energy u for h = 0 are computed by

setting 0 <

∣∣∣ h
kBT

∣∣∣ < 10−5 and using the iteration method for Eq. (10.119) numeri-

cally. The graphs of
(

J
kBT

, u
)
and

(
J

kBT
,m±

)
are shown in Fig. 10.5. Moreover, the

graphs of
(
m, 1

kBT
fMF(m)

)
for J

kBT
= 0.20, 0.25, and 0.40 are shown in Fig. 10.6.

It is known that the mean-field equation always has the trivial solution m± = 0, and
begins to have some non-trivial solutions for m+ > 0 and m− < 0. The mean-field
equation (10.119) begins to have some non-trivial solutions in the region of J

kBT
> 1

4
by expanding the right-hand side of Eq. (10.119) around m = 0 and keeping the
first-order term of m.
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Fig. 10.5 Internal energy u from Eq. (10.113) and magnetization m± from Eq. (10.118) in mean-
field approximation for the Ising model in Eqs. (10.48), (10.50), and (10.110) on the regular graph
(V, E) of degree 4

Fig. 10.6 Free energy from Eq. (10.121) in mean-field approximation for the Ising model in Eqs.
(10.48), (10.50) and (10.110) on the regular graph (V, E) of degree 4. a J

kBT
= 0.2, h

kBT
= 0.

b J
kBT

= 0.25, h
kBT

= 0. c J
kBT

= 0.4, h
kBT

= 0
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Next, we consider the Bethe approximation for the Ising model in Eqs. (10.48),
(10.50), and (10.110) on the regular graph (V, E) of degree 4. In this case, the average
mi , the correlation ci j and the messages μi→ j (+1) and μi→ j (−1) do not depend on
i and j , and can be expressed as m, c, μ(+1) and μ(−1). We now introduce

� ≡ 1

2
kBT ln

(
μ(+1)

μ(−1)

)
. (10.122)

The message passing equations in Eqs. (10.95) and (10.96) and the magnetization
are reduced to

�

kBT
= arctanh

(
tanh

(
J

kBT

)
tanh

(
h + 3�

kBT

))
. (10.123)

Moreover, since the marginal probabilities R̂i (+1) and R̂i (−1) are also independent
of i , we can derive the expression for the magnetization in terms of � as follows:

mBethe

(
J

kBT
,

h

kBT

)
≡ 1

|V |
∑
i∈V

(∑
si∈�

si R̂(si )

)
= tanh

(
h + 4�

kBT

)
. (10.124)

For the infinitesimal small limits of h, such that h→ + 0 and h→ − 0, the magneti-

zation mBethe

(
J

kBT
, h
kBT

)
in Eq. (10.124) can be computed numerically by using the

iteration method. Moreover, Eqs. (10.104) and (10.108) can be reduced to

fBethe(m, c) = 1

|V | FBethe
({
mi

∣∣i∈V }, {c{i, j}
∣∣{i, j}∈E})

= −2Jc − hm

−3kBT

(
1

2

(
1 + m

))
ln

(
1

2

(
1 + m

)) − 3kBT

(
1

2

(
1 − m

))
ln

(
1

2

(
1 − m

))

+2kBT

(
1

4

(
1 + 2m + c

))
ln

(
1

4

(
1 + 2m + c

))

+4kBT

(
1

4

(
1 − c

))
ln

(
1

4

(
1 − c

))

+2kBT

(
1

4

(
1 − 2m + c

))
ln

(
1

4

(
1 − 2m + c

))
, (10.125)

and

J

kBT
= ln

(1 + c)2 − 4m2

(1 − c)2
, (10.126)

such that
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c = 1

tanh
(

2J
kBT

)
(
1 −

√
1 − (1 − 2m2)tanh2

(
2J

kBT

)
− 2m2tanh

(
2J

kBT

))
. (10.127)

The graphs of

⎛
⎝m,

1

kBT
fBethe

(
m,

1

tanh
(

2J
kBT

)
(
1 −

√
1 − (1 − 2m2)tanh2

(
2J

kBT

)
− 2m2tanh

(
2J

kBT

)))⎞⎠,

(10.128)

for J
kBT

= 0.25, J
kBT

= arctanh
(
1
3

)
, and kBT

J = 0.40 in the case of h = 0 are shown in
Figs. 10.7, 10.8, and 10.9, respectively. Figure 10.7 shows the internal energy u from
Eq. (10.113) and the spontaneous magnetization m± in Eq. (10.118) in loopy belief
propagation (Bethe approximation) for the Ising model in Eqs. (10.48), (10.50), and
(10.110) on the regular graph (V, E) of degree 4. These quantities u and m± are
obtained by

uBethe

(
J

kBT
,

h

kBT
= 0

)
=

cosh
(

6�
kBT

)
− exp

(
− 2J

kBT

)

cosh
(

6�
kBT

)
+ exp

(
− 2J

kBT

) , (10.129)

mBethe

(
J

kBT
,

h

kBT
= 0

)
= tanh

(
4�

kBT

)
, (10.130)

where

�

kBT
= arctanh

(
tanh

(
J

kBT

)
tanh

(
3�

kBT

))
. (10.131)

These always give the same results as in Eq. (10.110) on the regular graph (V, E)

of degree 4. In particular, it is known that the results for Eqs. (10.48), (10.50), and
(10.110) on the regular tree graph (V, E) of degree 4 are exact. It is known that Eq.
(10.123) always has the trivial solution � = 0, but begins to have some non-trivial
solutions in the region of J

kBT
J > arctanh

(
1
3

)
by expanding the right-hand side of

Eq. (10.123) around � = 0 and keeping the first-order term of �. In Fig. 10.7, the
blue curves correspond to global minimum states that are stable states and the red
lines correspond to the local maximum state that are unstable states for each value
of J

kBT
in the Bethe free energy fBethe(m, c) of Eq. (10.125) for the case of h = 0.

The Bethe free energy landscapes fBethe(m, c) of Eq. (10.125) in the case of h = 0
for several values of J

kBT
are shown in Figs. 10.8 and 10.9. It is known that Eq.

(10.123) always has the trivial solution � = 0, but begins to have some non-trivial
solutions in the region of J

kBT
> arctanh

(
1
3

)
by expanding the right-hand side of Eq.

(10.123) around � = 0 and keeping the first-order term of �. In Fig. 10.7, the blue
curves correspond to global minimum states that are stable states and the red lines



194 K. Tanaka

Fig. 10.7 Internal energy u from Eq. (10.113) and magnetization m from Eq. (10.118) in loopy
belief propagation (Bethe approximation) for the Ising model in Eqs. (10.48), (10.50), and (10.110)
on the regular graph (V, E) of degree 4

correspond to the local maximum state that are unstable states for each value of J
kBT

in the Bethe free energy fBethe(m, c) in Eq. (10.125) for the case of h = 0. The Bethe
free energy landscapes fBethe(m, c) in Eq. (10.125) in the case of h = 0 for several
values of J

kBT
are shown in Figs. 10.8 and 10.9.

Now we consider the |�|-state Potts model [33] given by

P

(
s
∣∣∣ J

kBT
,

h0
kBT

,
h1
kBT

, · · ·, h|�|−1

kBT

)

= 1

Z

⎛
⎝ ∏

{i, j}∈E
exp

(
J

kBT
δsi s j

)⎞
⎠
(∏
i∈V

∏
n∈�

exp

(
hn
kBT

δsi ,n

))
, (10.132)
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Fig. 10.8 Bethe free energy for fBethe(m, c) for the Ising model in Eqs. (10.48), (10.50), and
(10.110) on the regular graph (V, E) of degree 4. a J

kBT
= 0.25, h

kBT
= 0. b J

kBT
= arctanh

( 1
3

)
,

h
kBT

= 0. c J
kBT

= 0.4, h
kBT

= 0

Fig. 10.9 Bethe free energy Extremum
c

fBethe(m, c) for the Isingmodel of Eqs. (10.48), and (10.50)

with Eqs. (10.110) on the regular graph (V, E) with degree 4. a J
kBT

= 0.25, h
kBT

= 0. b J
kBT

=
arctanh

( 1
3

)
, h
kBT

= 0. c J
kBT

= 0.4, h
kBT

= 0

Z ≡
∑
s1∈�

∑
s2∈�

· · ·
∑

s|V |∈�

⎛
⎝ ∏

{i, j}∈E
exp

(
J

kBT
δsi s j

)⎞
⎠
⎛
⎝∏
i∈V

∏
n∈�

exp

(
hn
kBT

δsi ,n

)⎞
⎠, (10.133)

where � = {0, 1, 2, · · ·, |�| − 1}. By similar arguments to those for Eqs. (10.72)
and (10.102), the marginal probabilities R̂i (si ) and R̂i j (si , s j ) can be expressed as
orthonormal expansions as follows:

R̂i (si ) =
(

1

|�|
)

+
∑

k∈�\{0}
m(k)

i k(si ), (10.134)
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R̂i j (si , s j ) =
(

1

|�|
)2

+
(

1

|�|
) ∑
k∈�\{0}

m(k)
i k(si )

+
(

1

|�|
) ∑
l∈�\{0}

m(l)
j l(s j ) +

∑
k∈�\{0}

∑
l∈�\{0}

c(k,l)
i j k(si )l(s j ), (10.135)

where {k(si )|si∈�, k∈�} is the set of orthonormal polynomials satisfying the
following relationships:

0(si ) ≡
(

1

|�|
)

, (10.136)

∑
si∈�

k(si )l(si ) = δk,l (k∈�, l∈�). (10.137)

Because it is valid that

∑
si∈�

∑
si∈�

k(si )l(s j )δsi ,s j =
∑
si∈�

k(si )l(si ) = δk,l (k∈�, l∈�), (10.138)

we have the following orthonormal expansion of δsi ,s j :

δsi ,s j =
∑
k∈�

∑
l∈�

⎛
⎝∑

s ′
i∈�

∑
s ′
j∈�

k(s
′
i )l(s

′
j )δs ′

i ,s
′
j

⎞
⎠k(si )l(s j )

=
∑
k∈�

k(si )k(s j ) (si∈�, s j∈�). (10.139)

By using Eqs. (10.134) and (10.135) and the orthonormal expansion of the two-body
interaction part of the Potts model, the Bethe free energy functional for the Potts
model in Eqs. (10.132) and (10.133) can be reduced to

FBethe

[{
̂Ri

∣∣i∈V }, {̂Ri j

∣∣{i, j}∈E}
]

= FBethe

({
m(k)

i

∣∣i∈V, k∈�\{0}}, {c(k,l)
{i, j}

∣∣{i, j}∈E, k, l∈�\{0}}
)
,(10.140)

where
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FBethe

({
m(k)

i

∣∣i∈V, k∈�\{0}}, {c(k,l)
{i, j}

∣∣{i, j}∈E, k, l∈�\{0}}
)

≡ −J
∑
i∈V

|∂i |
(

1

|�|
)2

− J
∑
i∈V

|∂i | 1

|�|
∑

k∈�\{0}
m(k)

i − J
∑

{i, j}∈E

∑
k∈�\{0}

c(k,k)
i, j

+kBT
∑
i∈V

(1 − |∂i |)R̂i (si )ln
(
R̂i (si )

)

+kBT
∑

{i, j}∈E
R̂i j (si , s j )ln

(
R̂i j (si , s j )

)
. (10.141)

For the case of spatially uniformity, m(k)
i and c(k,l)

i j are independent of i and {i, j}
and can be represented by m(k) and c(k,l), respectively, in the Bethe free energy in
Eq. (10.141). For the three-state and four-state Potts model, the Bethe free energy in
Eq. (10.141) can be represented by

FBethe

((
m(1)

m(2)

)
,

(
c(1,1) c(1,2)

c(2,1) c(2,2)

))
,

(10.142)

and

FBethe

⎛
⎝
⎛
⎝
m(1)

m(2)

m(3)

⎞
⎠,

⎛
⎝
c(1,1) c(1,2) c(1,3)

c(2,1) c(2,2) c(2,3)

c(3,1) c(3,2) c(3,3)

⎞
⎠
⎞
⎠, (10.143)

respectively. Figures 10.10 and 10.11 show the internal energywith no external fields

u = lim|V |→+∞
1

|E |
∑

{i, j}∈E

∑
s

(−δsi ,s j
)
P

(
s
∣∣∣ J

kBT
,

h0
kBT

= 0,
h1
kBT

= 0, · · ·, h|�|−1

kBT
= 0

)
,

(10.144)

in loopy belief propagation (Bethe approximation) on the regular graph (V, E) of
degree 4. We now consider also the moments m(2) and m(1) as order parameters
for the three-state and four-state Potts model, respectively, for the following cases:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(I) lim
h0→+0

m(2), h1 = h2 = 0,

(II) lim
h1→+0

m(2), h0 = h2 = 0,

(III) lim
h2→+0

m(2), h0 = h1 = 0,

(IV) m(2) under h0 = h1 = h2 = 0 and μ(0) = μ(1) = μ(2) = 1
3 ,

(10.145)

for the three-state Potts model, and



198 K. Tanaka

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I) lim
h0→+0

m(2), h1 = h2 = h3 = 0,

(II) lim
h1→+0

m(2), h0 = h2 = h3 = 0,

(III) lim
h2→+0

m(2), h0 = h1 = h3 = 0,

(IV) lim
h3→+0

m(2), h0 = h1 = h2 = 0,

(V) m(2) under h0 = h1 = h2 = 0 and μ(0) = μ(1) = μ(2) = μ(3) = 1
4 ,

(10.146)

for the four-state Potts model. These are also shown in Figs. 10.10 and 10.11. In
Figs. 10.10 and 10.11, blue, green, and red lines show the global minimum states,
local minimum states, and local maximum states, respectively, of the Bethe free
energies which are given by Eq. (10.142) for the three-state Potts model and by Eq.
(10.143) for the four-state Potts model. In the global minimum states, there exist
discontinuous points in m(2) and m(1) as well as u. Although the first derivative Ju
of the free energy with respect to 1

kBT
is always continuous, the second derivative

diverges or has discontinuity in the Ising model as shown in Figs. 10.4, 10.5, and
10.7. This kind of singularity is referred to as a second-order phase transition in
statistical mechanics. However, the first derivative Ju of the free energy with respect
to 1

kBT
has a discontinuity as shown in Figs. 10.10 and 10.11. This singularity is

referred to as a first-order phase transition in statistical mechanics. Figures 10.12
and 10.13 show the Bethe free energy landscapes

fBethe
(
m(1),m(2)

) ≡ 1

|V | extremum⎛
⎝ c

(1,1) c(1,2)

c(2,1) c(2,2)

⎞
⎠
FBethe

((
m(1)

m(2)

)
,

(
c(1,1) c(1,2)

c(2,1) c(2,2)

))
,

(10.147)

for the three-state Potts model and

fBethe
(
m(1),m(3)

)
≡ 1

|V | extremum

m(2),

⎛
⎜⎜⎝
c(1,1) c(1,2) c(1,3)

c(2,1) c(2,2) c(2,3)

c(3,1) c(3,2) c(3,3)

⎞
⎟⎟⎠

FBethe

⎛
⎝
⎛
⎝
m(1)

m(2)

m(3)

⎞
⎠,

⎛
⎝
c(1,1) c(1,2) c(1,3)

c(2,1) c(2,2) c(2,3)

c(3,1) c(3,2) c(3,3)

⎞
⎠
⎞
⎠,

(10.148)

for the four-state Potts model, respectively.

10.3.4 Ising Model on a Complete Graph

This section considers a complete graph (V, E) for which the energy function H(s)
is defined by
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Fig. 10.10 Internal energy u in Eq. (10.144) and (I) lim
h0→+0

m(2) for h1 = h2 = 0, (II) lim
h1→+0

m(2)

for h0 = h2 = 0, (III) lim
h2→+0

m(2) for h0 = h1 = 0, (IV) m(2) under h0 = h1 = h2 = 0 and

μ(0) = μ(1) = μ(2) = 1
3 such that Pi (0) = Pi (1) = Pi (2) in loopy belief propagation (Bethe

approximation) for the three-state Potts model in Eqs. (10.132) and (10.133) on the regular graph
(V, E) of degree 4

H(s) = H(s1, s2, · · ·, s|V |) ≡ − J

|V |
∑

{i, j}∈E
si s j − h

∑
i∈V

si (J > 0), (10.149)

instead of Eq. (10.110) in Eqs. (10.109) and (10.111). Note that the interaction
between every pair of connected nodes is set to J

|V | to guarantee the existence of the
thermodynamic limit in |V |→ + ∞ for the complete graph in the sense of Ruelle in
Ref. [38].
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Fig. 10.11 Internal energy u in Eq. (10.144) and order parameter m(1) in loopy belief propagation
(Bethe approximation) for the four-state Potts model in Eqs. (10.132) and (10.133) on the regular
graph (V, E) of degree 4
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Fig. 10.12 Bethe free energy for fBethe(m(1),m(2)) for the three-state Potts model in Eqs. (10.132)
and (10.133) on the regular graph (V, E) of degree 4. a J

kBT
= 0.850. b J

kBT
= 0.880. c J

kBT
=

0.881. d J
kBT

= 0.882. e J
kBT

= 0.885. f J
kBT

= 0.920
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Fig. 10.13 Bethe free energy for fBethe(m(1),m(2)) for the four-state Potts model in Eqs. (10.132)
and (10.133) on the regular graph (V, E) of degree 4. a J

kBT
= 0.900. b J

kBT
= 1.000. c J

kBT
=

1.010. d J
kBT

= 1.020. e J
kBT

= 1.050. f J
kBT

= 1.100
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The free energy in Eq. (10.55) is expressed as follows:

−kBT ln

(
Z

(
J

kBT
,

h

kBT

))

= −kBT ln

⎛
⎝∑

τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

exp

⎛
⎝ h

kBT

∑
i∈V

τi + J

|V |kBT
∑

{i, j}∈E
τi τ j

⎞
⎠
⎞
⎠

= J

2
− kBT ln

⎛
⎝∑

τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

exp

(
h

kBT

∑
i∈V

τi

)
exp

⎛
⎝1

2

(√
J

|V |kBT
∑
i∈V

τi

)2⎞
⎠
⎞
⎠.

(10.150)

By using the Gauss integral formula

1√
2π

∫ +∞

−∞
exp

(
−1

2
x2 + ax

)
dx = exp

(
1

2
a2
)

, (10.151)

the expression for the free energy is rewritten as

− kBT ln

(
Z

(
J

kBT
,

h

kBT

))

= 1

2
J − ln

(∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

1√
2π

∫ +∞

−∞
e− 1

2 x
2

×exp

(∑
i∈V

(√
J

|V |kBT x + h

kBT

)
τi

)
dx

)

= 1

2
J − ln

(
1√
2π

∫ +∞

−∞
e− 1

2 x
2∏
i∈V

⎛
⎝∑

τi∈�

exp

((√
J

|V |kBT x + h

kBT

)
τi

)⎞
⎠dx

)

= 1

2
J − ln

(
1√
2π

∫ +∞

−∞
e− 1

2 x
2∏
i∈V

(
2cosh

(√
J

|V |kBT x + h

kBT

))
dx

)
. (10.152)

Note that the procedure in which a new continuous variable x is introduced in Eq.
(10.152) is referred to as aHubbard-Stratonovich transformation [13]. Moreover,

by replacing the variable x by y = x

√
|V |

(
kBT

J

)
, the free energy can be written as

− kBT ln

(
Z

(
J

kBT
,

h

kBT

))
= 1

2
J − ln

(
1√
2π

∫ +∞

−∞
exp

(|V |ψ(y)
)
dy

)
, (10.153)

where

ψ(y) ≡ −1

2

(
J

kBT

)
y2 + 1

|V |
∑
i∈V

ln

(
2cosh

(
1

kBT
(J y + h)

))
. (10.154)
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We now consider the magnetization

m

(
J

kBT
,

h

kBT

)
= lim|V |→+∞

1

|V |
∑
i∈V

∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

si P

(
s
∣∣∣ J

kBT
,

h

kBT

)
for

Eqs. (10.109) and (10.111) with Eq. (10.149) as follows:

m

(
J

kBT
,

h

kBT

)
= lim|V |→+∞

1

|V |
∂

∂
(

h
kBT

)
(

−kBT ln

(
Z

(
J

kBT
,

h

kBT

)))

= lim|V |→+∞

∫ +∞

−∞
exp

(
|V |

(
ψ(y) + 1

|V | ln
(
tanh

(
1

kBT
(J y + h)

))))
dy

∫ +∞

−∞
exp(|V |ψ(y))dy

. (10.155)

Because it is valid that

lim|V |→+∞
∂

∂y
ψ(y) = lim|V |→+∞

∂

∂y

(
ψ(y) + 1

|V | ln
(
tanh

(
1

kBT
(J y + h)

)))

= − J

kBT

(
y − tanh

(
1

kBT
(J y + h)

))
, (10.156)

we obtain the magnetization as

m

(
J

kBT
,

h

kBT

)
= lim|V |→+∞

exp

(
|V |

(
ψ(ymax) + 1

|V | ln
(
tanh

(
1

kBT
(J ymax + h)

))))

exp
(
|V |ψ(ymax)

)

= tanh

(
1

kBT
(J ymax + h)

)
, (10.157)

where

ymax = tanh

(
1

kBT
(J ymax + h)

)
(10.158)

by using a saddle point method [37]. Equations (10.157) and (10.158) reduce to the

following mean-field equation for m
(

J
kBT

, h
kBT

)
:

m

(
J

kBT
,

h

kBT

)
= tanh

(
1

kBT

(
Jm

(
J

kBT
,

h

kBT

)
+ h

))
. (10.159)

This means that it is possible to treat the Ising model on the complete graph in the
thermodynamic limit analytically using the mean-field method.

By combining the replica method with the Hubbard-Stratonovich transformation
and the saddle point method, it is possible to treat the random average in Eq. (10.25)
for the Ising model with non-uniform external fields on the complete graph analyti-
cally [13, 76]. In statistical mechanics, this kind of approach has been developed as
the spin glass theory [77–80]. Such computational techniques that use the replica
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method for Ising models with spatially non-uniform interactions and external fields
on the complete graph have been used to estimate statistical performance analysis
for many probabilistic information processing systems [13, 15–17].

Next, we consider the belief propagation method for the Ising model on the com-
plete graph in Eq. (10.149) with Eqs. (10.109) and (10.111). For an infinitesimal
small |V |−1, the message passing rule in Eq. (10.95) can be expanded to

μ j→i (si ) = Zi

Z{i, j}

∑
τ j∈�

⎛
⎝ ∏

l∈∂ j\{i}
μl→ j (τ j )

⎞
⎠exp

(
1

kBT

(
J

|V | si τ j + hτ j

))

= Zi

Z{i, j}

∑
τ j∈�

⎛
⎝ ∏

l∈∂ j\{i}
μl→ j (τ j )

⎞
⎠exp

(
h

kBT
τ j

)(
1 + 1

|V |
J

kBT
si τ j + O

(
|V |−2

))

= Zi Z j

Z{i, j}

∑
τ j∈�

R̂ j (τ j )

(
1 + 1

|V |
J

kBT
si τ j + O

(
|V |−2

))

= Zi Z j

Z{i, j}

⎛
⎝1 + 1

kBT

⎛
⎝ J

|V |
∑
τ j∈�

τ j R̂ j (τ j )

⎞
⎠si + O

(
|V |−2

)⎞⎠

= Zi Z j

Z{i, j}

⎛
⎝exp

⎛
⎝ 1

kBT

⎛
⎝ J

|V |
∑
τ j∈�

τ j R̂ j (τ j )

⎞
⎠si

⎞
⎠ + O

(
|V |−2

)⎞⎠. (10.160)

By substituting Eq. (10.160) into Eq. (10.91), the marginal probabilities can be
expressed as follows:

R̂i (si ) =
exp

⎛
⎝ 1

kBT

⎛
⎝ J

|V |
∑

j∈V \{i}

∑
τ j∈�

τ j R̂ j (τ j ) + h

⎞
⎠si

⎞
⎠

∑
τi∈�

exp

⎛
⎝ 1

kBT

⎛
⎝ J

|V |
∑

j∈V \{i}

∑
τ j∈�

τ j R̂ j (τ j ) + h

⎞
⎠τi

⎞
⎠

+O(|V |−1
)
(|V |→ + ∞, si∈�, i∈V ),

(10.161)

R̂i j
(
si , s j

) = R̂i (si )R̂ j
(
s j
) + O(|V |−1) (|V |→ + ∞, si∈�, s j∈�, {i, j}∈E). (10.162)

Equation (10.161) can be regarded as a system of simultaneous deterministic equa-

tions for
{
R̂i (si )

∣∣∣si∈�, i∈V
}
and is equivalent to the mean-field equation in Eq.

(10.68) for Eq. (10.149) with Eqs. (10.109) and (10.111).
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10.3.5 Probabilistic Segmentation by Potts Prior and Loopy
Belief Propagation

In Sect. 10.2.3, we gave the fundamental framework of probabilistic segmentation
based on the Potts prior, and reduced the framework of the EM procedure for esti-
mating hyperparameters to the extremum conditions of the Q-function as shown in
Eqs. (10.41), (10.42), and (10.43) with Eqs. (10.44), (10.45), and (10.46). These
frameworks can be realized by combining them with the loopy belief propagation in
Sect. 10.3.2 to give the following practical procedures [70]:

Probabilistic segmentation algorithm (Input :D,Output : α̂(D), û(D), â(D), Ĉ(D), ŝ(D))

Step 1: Input the data vector d and set the initial values of hyperparameters α̂(D),
â(D), Ĉ(D) and messages in the loopy belief propagation {μ̂ j→i (si , D)|i∈V,

j∈∂i, si∈�} for the posterior probability distribution.We set t ← 0 as the number
of iterations of the EM procedure.

Step 2 (E-step) Set t←t + 1 and update û(D), â(D), Ĉ(D), {μ̂ j→i (si , D)|si∈�,
i∈V, j∈∂i} using the following procedures:

μ j→i (si ) ←

∑
τ j∈�

exp
(
2α̂(D)δsi ,τ j

)
g
(
d j
∣∣τ j , â(τ j , D), Ĉ(τ j , D)

) ∏
k∈∂ j\{i}

μ̂k→ j (τ j , D)

∑
τi∈�

∑
τ j∈�

exp
(
2α̂(D)δτi ,τ j

)
g
(
d j
∣∣τ j , â(τ j , D), Ĉ(τ j , D)

) ∏
k∈∂ j\{i}

μ̂k→ j (τ j , D)

(si∈�, i∈V, j∈∂i), (10.163)

μ̂ j→i (si , D) ← μ j→i (si ) (si∈�, i∈V, j∈∂i), (10.164)

Bi ←
∑
τi∈�

g
(
di
∣∣τi , â(τi , D), σ̂ (τi , D)

)∏
k∈∂i

μ̂k→i (τi , D) (i∈V ), (10.165)

B{i, j} ←
∑
τi∈�

∑
τ j∈�

( ∏
k∈∂i\{ j}

μ̂k→i (τi , D)
)
g
(
di
∣∣τi , â(τi , D), Ĉ(τi , D)

)

×exp
(
2α̂(D)δτi ,τ j

)

×g
(
d j
∣∣τ j , â(τ j , D), Ĉ(τ j , D)

)( ∏
k∈∂ j\{i}

μ̂k→ j (τ j , D)
)

({i, j}∈E),

(10.166)
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a(si ) ←

∑
i∈V

1

Bi
dig

(
di
∣∣si , â(si , D), Ĉ(si , D)

)(∏
k∈∂i

μ̂k→i (si , D)
)

∑
i∈V

1

Bi
g
(
di
∣∣si , a(si , D),C(si , D)

)(∏
k∈∂i

μ̂k→i (si , D)
) (si∈�),

(10.167)

C(si ) ←

∑
i∈V

1

Bi

(
di − â(si , D)

)(
di − â(si , D)

)T
g
(
di
∣∣si , â(si , D), Ĉ(si , D)

)(∏
k∈∂i

μ̂k→i (si , D)
)

∑
i∈V

1

Bi
g
(
di
∣∣si , â(si , D), Ĉ(si , D)

)(∏
k∈∂i

μ̂k→i (si , D)
) (si∈�),

(10.168)

û(D) ← 1

|E |
∑

{i, j}∈E

(
1

B{i, j}

∑
τi∈�

∑
τ j∈�

( − δτi ,τ j

)
exp

(
2α̂(D)δτi ,τ j

)

×
( ∏
k∈∂i\{ j}

μ̂k→i (τi , D)
)
g
(
di
∣∣τi , â(τi , D), Ĉ(τi , D)

)

×
( ∏
k∈∂ j\{i}

μ̂k→ j (τ j , D)
)
g
(
d j

∣∣τ j , â(τ j , D), Ĉ(τ j , D)
))

,

(10.169)

â(si , D) ← a(si ) (si∈�), (10.170)

Ĉ(si , D) ← C(si ) (si∈�). (10.171)

Here, g
(
di
∣∣ξ, â(ξ, D), Ĉ(ξ, D)

)
is defined by Eq. (10.31) for each state ξ(∈�).

Step 3 (M-step): Set the initial values of the messages {̂λ(ξ)|ξ∈�} in the loopy
belief propagation for the Potts prior and repeat the following procedure until
α̂(d) and {̂λ(ξ)|ξ∈�} converge:

λ(si ) ←

∑
τ j∈�

exp
(
2α̂(D)δsi ,τ j

)̂
λ(τ j , D)3

∑
τi∈�

∑
τ j∈�

exp
(
2α̂(D)δτi ,τ j

)̂
λ(τ j , D)3

(si∈�), (10.172)
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λ̂(si , d) ← λ(si ) (si∈�), (10.173)

α̂(D) ← α̂(D)×
(

1

1 + û(D)

∑
τi∈�

∑
τ j∈�

(
1 − δτi ,τ j

)̂
λ(τi , D)3exp

(
2α̂(D)δτi ,τ j

)̂
λ(τ j , D)3

∑
τi∈�

∑
τ j∈�

λ̂(τi , D)3exp
(
2α̂(D)δτi ,τ j

)̂
λ(τ j , D)3

)1/4

.

(10.174)

Step 4 Compute the output ŝ(D) = (̂
s1(D), ŝ2(D), · · ·, ŝ|V |(D)

)
as follows:

ŝi (D) ← argmax
si∈�

g
(
di
∣∣si , â(si , D), ̂C(si , D)

)∏
k∈∂i

μ̂k→i (si , D) (i∈V ). (10.175)

Stop if the hyperparameters α̂(D), â(si , D) (si∈�), and Ĉ(si , D) (si∈�) converge
and return to Step 2 otherwise.

Some of the numerical experimental results are shown in Fig. 10.14. The Potts
prior has the first-order phase transition as shown in Sect. 10.3.6. Figure 10.14 shows
how the hyperparameter 2α = J

kBT
converges in the EM procedure with loopy belief

propagation under the first-order phase transition.

10.3.6 Real-Space Renormalization Group Method and
Sublinear Modeling of Statistical Machine Learning

First, we explore the most fundamental real-space renormalization procedure for the
Ising model in Eq. (10.49) on the ring graph (V, E), where

E ≡
{
{1, 2}, {2, 3}, {3, 4}, · · ·, {|V | − 1, |V |}, {|V |, 1}

}
, (10.176)

in the case of |V | = 2L . We have the following equality:

∑
s2∈�

∑
s4∈�

∑
s6∈�

· · ·
∑
s|V |∈�

∏
{i, j}∈E

exp

(
1

kBT
Jsi si+1

)

=
(∑
s2∈�

exp

(
1

kBT
J (s1 + s3)s2

))(∑
s4∈�

exp

(
1

kBT
J (s3 + s5)s4

))

×· · ·×
⎛
⎝ ∑

s|V |∈�

exp

(
1

kBT
J
(
s|V |−3 + s|V |−1

)
s|V |−2

)⎞
⎠
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Fig. 10.14 Numerical experimental results of probabilistic segmentations by Potts prior and loopy
belief propagation. The graph (V, E) is a square grid graphwith periodic boundary conditions along
the x- and y-directions

⎛
⎝ ∑

s|V |∈�

exp

(
1

kBT
J
(
s|V |−1 + s1

)
s|V |

)⎞
⎠

= 2
|V |
2

(
cosh

(
1

kBT
J

)) 1
2 (1+s1s3)(

cosh

(
1

kBT
J

)) 1
2 (1+s3s5)

×· · ·×
(
cosh

(
1

kBT
J

)) 1
2 (1+s|V |−3s|V |−1)(

cosh

(
1

kBT
J

)) 1
2 (1+s|V |−1s1)

= 2
|V |
2

⎛
⎝

|V |
2 −2∏
i=0

exp

((
1 + s2i+1s2i+3

)×1

2
ln

(
cosh

(
2

kBT
J

)))⎞
⎠

exp

((
1 + s|V |−1s1

)×1

2
ln

(
cosh

(
2

kBT
J

)))
.

(10.177)

For the |V |
2 -dimensional state vector (a1, a3, a5, · · ·, a|V−3|, a|V |−1), the marginal

probability distribution P{1,3,5,···,|V |−3,|V |−1}
(
a1, a3, a5, · · ·, a|V |−3, a|V |−1

∣∣α) is
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expressed as

P{1,3,5,···,|V |−3,|V |−1}
(
s1, s3, s5, · · ·, s|V |−3, s|V |−1

)

≡
∑
s2∈�

∑
s4∈�

∑
s6∈�

· · ·
∑

s|V |−2∈�

∑
s|V |∈�

P
(
s1, s2, s3, s4, s5, s6, · · ·, s|V |−3, s|V |−2s|V |−1, s|V |

)

=

⎛
⎝

|V |
2 −2∏
i=0

exp
(
α(1)s2i+1, s2i+3

)
⎞
⎠exp

(
α(1)s|V |−1, s1

)

∑
a1∈�

∑
a3∈�

· · ·
∑

a|V |−1∈�

⎛
⎝

|V |
2 −2∏
i=0

exp
(
α(1)s2i+1, s2i+3

)
⎞
⎠exp

(
α(1)s|V |−1, s1

)
, (10.178)

where

α(1) ≡ 1

2
ln

(
cosh

(
2

kBT
J

))
. (10.179)

The remaining nodes, which are denoted by odd numbers, are now renumbered by
replacing i with i−1

2 for i = 1, 3, 5, · · ·, |V | − 3, |V | − 1 and new sets V (1) and E (1)

of nodes and edges and a new state vector s(1) =
(
s(1)
1 , s(1)

2 , s(1)
3 , · · ·, s(1)

|V |
2 −1

, s(1)
|V |
2

)T

are introduced as follows:

V (1) ≡
{
1, 2, , 3, 4, · · ·, |V |

2
− 1,

|V |
2

}
, (10.180)

E (1) ≡
{
{1, 2}, {2, 3}, {3, 4}, · · ·, { |V |

2
− 1,

|V |
2

}, { |V |
2

, 1}
}
, (10.181)

s(1)
i = s2i−1 (i = 1, 2, · · ·, |V |/2). (10.182)

For the |V |
2 -dimentional state vector s(1) =

(
s(1)
1 , s(1)

2 , s(1)
3 , · · ·, s(1)

|V |
2 −1

, s(1)
|V |
2

)T
, we

define a new renormalized probability distribution by

P (1)
(
s(1)

) ≡

∏
{i, j}∈E (1)

exp
(
α(1)s(1)

i s(1)
j

)

∑

a(1)
1 ∈�

∑

a(1)
2 ∈�

· · ·
∑

a(1)
|V |/2∈�

∏
{i, j}∈E (1)

exp
(
α(1)s(1)

i s(1)
j

) . (10.183)

By repeating the above renormalizing procedures,
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∑

s(r−1)
2 ∈�

∑

s(r−1)
4 ∈�

∑

s(r−1)
6 ∈�

· · ·
∑

s|V (r−1) |∈�

∏
{i, j}∈E (r−1)

exp

(
1

kBT
Js(r−1)

i s(r−1)
i+1

)

= 2
|V |
2r

⎛
⎝

|V |
2r −2∏
i=0

exp

((
1 + s2i+1s2i+3

)×1

2
ln
(
cosh

(
2α(r−1)

)))
⎞
⎠

exp

((
1 + s|V |−1s1

)×1

2
ln

(
cosh

(
2

kBT
J

)))
,

(10.184)

α(r) ≡ 1

2
ln
(
cosh

(
2α(r−1)

))
, (10.185)

s(r)
i = s(r−1)

2i−1

(
i = 1, 2, · · ·, |V |

2r

)
, (10.186)

the renormalized probability of the r -th step is generated as follows:

P (r)
(
s(r)

) ≡

∏
{i, j}∈E (r)

exp
(
α(r)s(r)

i s(r)
i+1

)

∑

s(r)
1 ∈�

∑

s(r)
2 ∈�

· · ·
∑

s(r)
|V |/2r ∈�

∏
{i, j}∈E (r)

exp
(
α(r)s(r)

i s(r)
i+1

) , (10.187)

where

V (r) ≡ {
1, 2, · · ·, |V |

2r
}
, (10.188)

E (r) ≡
{
{1, 2}, {2, 3}, {3, 4}, · · ·, { |V |

2r
− 1,

|V |
2r

}, { |V |
2r

, 1}
}
. (10.189)

Note that V (0) = V , E (0) = E , α(0) = J
kBT

, s(0) = s, and P (0)
(
s(0)

) = P(s).
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Equation (10.185) corresponds to the update rule from α(r−1) α(r). By solving Eq.
(10.185) with respect to α(r−1), we can derive the inverse transformation rule of the
real-space renormalization group procedure as follows:

α(r−1) = 1

2
arccosh

(
exp

(
2α(r)

))
. (10.190)

If the hyperparameter α(r) in the r -th renormalized probability distribution P (r)
(
s(r)

)
has been estimated from given data vectors by means of the EM algorithm for renor-
malized probabilistic graphical models on ring graphs

(
V (r), E (r)

)
, we can estimate

the hyperparameter α(0) = J
kBT

of the probabilistic graphical models (10.49) on ring
graphs (V, E) by using the inverse transformation rule of the real-space renormal-
ization group procedure (10.190).

Now, we extend the real-space renormalization group scheme for the probabilistic
graphical model on the ring graph to the square grid graph as a pair approximation
in the real-space renormalization group framework as follows:

exp
(
α(r)s1s3

)
∝

∑
s2∈�

∑
s4∈�

exp
(
α(r−1)(s1s2 + s2s3 + s1s4 + s4s3)

)
. (10.191)

Equation (10.191) can be reduced to

α(r) = ln
(
cosh

(
2α(r−1)

))
. (10.192)

The r -th renormalized probability distribution for Eq. (10.49) is expressed as

P (r)
(
s(r)

) ∝
∏

{i, j}∈E (r)

exp
(
α(r)s(r)

i s(r)
j

)
. (10.193)

The inversion formula in Eq. (10.192) can be derived as

α(r−1) = 1

2
arccosh

(
exp

(
α(r)

))
. (10.194)

The above framework can be extended to the |�|-state Potts model, as shown in
Fig. 10.15. The inverse renormalization group transformation can also be applied
to the probabilistic segmentations in Eqs. (10.41), (10.42), and (10.43) with Eqs.
(10.44), (10.45), and (10.46) in Sect. 10.2.3 [81]. One of the numerical experimental
results in the inverse renormalization group transformation in probabilistic segmen-
tations is shown in Fig. 10.16.
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Fig. 10.15 Fundamental framework of sublinear computational modeling by the inverse renormal-
ization group transformation in probabilistic segmentations

Fig. 10.16 Numerical experimental results of sublinear computational modeling in the inverse
renormalization group transformation in probabilistic segmentations
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10.4 Quantum Statistical Machine Learning

This section explores the fundamental frameworks of quantum probabilistic graph-
ical models based on energy matrices and density matrices. Note that every energy
matrix needs to be Hermitian and have a density matrix that is defined by all the
eigenvalues and all the eigenvectors of each energy matrix. If all the off-diagonal
elements of the density matrix are zero, the diagonal elements correspond to the
probability distribution in the probabilistic graphical model. First, we explain gen-
eral frameworks of density matrices and their differentiations and define the min-
imization of free energies of density matrices. Second, we give the definitions of
tensor products of matrices as well as vectors. By using Pauli spin matrices as well
as tensor products, we introduce quantum probabilistic graphical models. Finally,
we extend the conventional EM algorithm to a quantum expectation-maximization
(QEM) algorithm.

10.4.1 Elementary Function and Differentiations
of Hermitian Matrices

Before proceeding with the quantum statistical mechanical extension of statistical
machine learning, we need to explore some essential formulas for Hermitianmatrices
and their derivatives. Some fundamental properties of matrices for statistical infer-
ence have appeared in Ref. [82]. In the present section, we give some useful formulas
for treating the entropy in quantum probabilistic graphical models.

We consider the M×M Hermitian matrix A

A =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1M

A21 A22 · · · A2M
...

...
. . .

...

AM1 AM2 · · · AMM

⎞
⎟⎟⎟⎠, (10.195)

which satisfies A = A
T
. Here we remark that AT and A are the transpose and con-

jugate matrix of A, respectively. We introduce vertical and horizontal basis vectors
in the M-dimensional space as follows:

|1〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
.
.
.

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |2〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
.
.
.

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |3〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
.
.
.

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, · · ·, |M − 1〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
.
.
.

0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |M〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
.
.
.

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10.196)
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and
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈1| = (1, 0, 0, 0, · · ·, 0, 0, 0),
〈2| = (0, 1, 0, 0, · · ·, 0, 0, 0),
〈3| = (0, 0, 1, 0, · · ·, 0, 0, 0),

...

〈M − 1| = (0, 0, 0, 0, · · ·, 0, 1, 0),
〈M | = (0, 0, 0, 0, · · ·, 0, 0, 1).

(10.197)

We can confirm that

〈i |A| j〉 = Ai j (i∈{1, 2, · · ·, M}, j∈{1, 2, · · ·, M}). (10.198)

The Hermitian matrix A is diagonalized as

A = U�U−1, (10.199)

� ≡

⎛
⎜⎜⎜⎜⎜⎝

λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λM

⎞
⎟⎟⎟⎟⎟⎠

, (10.200)

where all the eigenvalues, λ1, λ2, · · ·, λM , are always real numbers. For the eigen-

vector ui =

⎛
⎜⎜⎜⎝

U1i

U2i
...

UMi

⎞
⎟⎟⎟⎠ corresponding to the eigenvalue λi , such that Aui = λiui , for

every i∈{1, 2, 3, · · ·, M} the matrix U is defined by

U ≡ (u1, u2, u3, · · ·, uM) =

⎛
⎜⎜⎜⎜⎜⎝

U11 U12 U13 · · · U1M

U21 U22 U23 · · · U2M

U31 U32 U33 · · · U3M
...

...
...

. . .
...

UM1 UM2 UM3 · · · UMM

⎞
⎟⎟⎟⎟⎟⎠

. (10.201)

It is known that U is a unitary matrix that satisfies U−1 = U
T
for any Hermitian

matrix s. If λ1 is the maximum eigenvalue, its corresponding eigenvector u1 is
expressed using the following notation:

u1 = argmaxA. (10.202)
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Note that argmaxA is the eigenvector that corresponds to the maximum eigenvalue
of A.

For any Hermitian matrix A, the exponential function is defined by

exp(A) ≡
+∞∑
n=0

1

n! A
n

= U

⎛
⎜⎜⎜⎜⎜⎝

exp(λ1) 0 0 · · · 0
0 exp(λ2) 0 · · · 0
0 0 exp(λ3) · · · 0
...

...
...

. . .
...

0 0 0 · · · exp(λM)

⎞
⎟⎟⎟⎟⎟⎠
U−1, (10.203)

and ln(A) is defined by the inverse function of exp(A) such that

exp(ln(A)) = A. (10.204)

In the present definition, we have

exp(A⊗I) = (exp(A))⊗I, exp(I⊗A) = I⊗(exp(A)), (10.205)

where I is an identity matrix.
For |1 − λ1| < 1, |1 − λ2| < 1, · · ·, |1 − λN | < 1, ln(A) is defined by

ln(A) = ln(I − (I − A)) ≡ −
+∞∑
n=1

1

n
(I − A)n

= U

⎛
⎜⎜⎜⎜⎜⎜⎝

ln(λ1) 0 0 · · · 0
0 ln(λ2) 0 · · · 0
0 0 ln(λ3) · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · ln(λM )

⎞
⎟⎟⎟⎟⎟⎟⎠
U−1. (10.206)

By using Eqs. (10.203) and (10.206), we can confirm that

exp(ln(A)) =
+∞∑
n=0

1

n! (ln(A))n

=
+∞∑
n=0

1

n!U

⎛
⎜⎜⎜⎜⎜⎝

(ln(λ1))
n 0 0 · · · 0

0 (ln(λ2))
n 0 · · · 0

0 0 (ln(λ3))
n · · · 0

...
...

...
. . .

...

0 0 0 · · · (ln(λM))n

⎞
⎟⎟⎟⎟⎟⎠
U−1
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= U

⎛
⎜⎜⎜⎜⎜⎝

exp(ln(λ1)) 0 0 · · · 0
0 exp(ln(λ2)) 0 · · · 0
0 0 exp(ln(λ3)) · · · 0
...

...
...

. . .
...

0 0 0 · · · exp(ln(λM))

⎞
⎟⎟⎟⎟⎟⎠
U−1

= U

⎛
⎜⎜⎜⎜⎜⎝

λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λM

⎞
⎟⎟⎟⎟⎟⎠
U−1 = A. (10.207)

Moreover, we have

N∑
n=0

(I − A)n − (I − s)
N∑

n=0

(I − A)n

= I + (I − s) + (I − A)2 + · · · + (I − A)N

− (I − s) − (I − A)2 − · · · − (I − s)N − (I − A)N+1

= I − (I − A)N+1, (10.208)

such that

N∑
n=0

(I − A)n = (I − (I − A))−1(I − (I − A)N+1). (10.209)

We have

AN+1 = U

⎛
⎜⎜⎜⎜⎜⎜⎝

(1 − λ1)
N+1 0 0 · · · 0

0 (1 − λ2)
N+1 0 · · · 0

0 0 (1 − λ3)
N+1 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · (1 − λM )N+1

⎞
⎟⎟⎟⎟⎟⎟⎠
U−1→0 (N→ + ∞),

(10.210)

so it is valid that

A−1 = (I − (I − A))−1 =
+∞∑
n=0

(I − A)n. (10.211)

Note that exp(A and ln(A) as well as A−1 are also Hermitian matrices in the present

case. (This can be shown by using AnT = (
A
T)n

.)



218 K. Tanaka

We now introduce a Hermitian matrix function G(x) for any real number x as
follows:

G(x) ≡

⎛
⎜⎜⎜⎜⎜⎝

G11(x) G12(x) G13(x) · · · G1M(x)
G21(x) G22(x) G23(x) · · · G2M(x)
G31(x) G32(x) G33(x) · · · G3M(x)

...
...

...
. . .

...

GM1(x) GM2(x) GM3(x) · · · GMM(x)

⎞
⎟⎟⎟⎟⎟⎠

. (10.212)

We have

Gi j (x) = G ji (x) (i∈{1, 2, · · ·, M}, j∈{1, 2, · · ·, M}), (10.213)

such that

〈i |G(x)| j〉 = 〈 j |G(x)|i〉 (i∈{1, 2, · · ·, M}, j∈{1, 2, · · ·, M}). (10.214)

It is obvious that the derivative of the matrix G(x) with respect to x , namely,

d

dx
G(x) ≡

⎛
⎜⎜⎜⎜⎜⎝

d
dx G11(x)

d
dx G12(x)

d
dx G13(x) · · · d

dx G1M(x)
d
dx G21(x)

d
dx G22(x)

d
dx G23(x) · · · d

dx G2M(x)
d
dx G31(x)

d
dx G32(x)

d
dx G33(x) · · · d

dx G3M(x)
...

...
...

. . .
...

d
dx GM1(x)

d
dx GM2(x)

d
dx GM3(x) · · · d

dx GMM(x)

⎞
⎟⎟⎟⎟⎟⎠
(10.215)

is also a Hermitian matrix such that

〈i | d
dx

G(x)| j〉 = 〈 j | d
dx

G(x)| j〉 (i∈{1, 2, · · ·, M}, j∈{1, 2, · · ·, M}).
(10.216)

We have the following equalities:

d

dx
(Tr[G(x)]) = Tr

[
d

dx
G(x)

]
, (10.217)

and

Tr

((
d

dx
G(x)

)
G(x)

)
= Tr

(
G(x)

(
d

dx
G(x)

))
. (10.218)

Equation (10.218) can be confirmed as follows:
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Tr

((
d

dx
G(x)

)
G(x)

)
=

M∑
i=1

〈i |
(

d

dx
G(x)

)
G(x)|i〉 =

M∑
i=1

M∑
j=1

〈i |
(

d

dx
G(x)

)
| j〉〈 j |G(x)|i〉

=
M∑
j=1

M∑
i=1

〈 j |G(x)|i〉〈i |
(

d

dx
G(x)

)
| j〉 = Tr

(
G(x)

(
d

dx
G(x)

))
.

(10.219)

By using Eqs. (10.217) and (10.219), we derive the following fundamental for-
mula

d

dx
tr
(
G(x)n

) = Tr

((
d

dx
G(x)

)(
G(x)n−1

)) + Tr

(
G(x)

(
d

dx
G(x)n−1

))

= Tr

((
d

dx
G(x)

)(
G(x)n−1

))

+Tr

(
G(x)

((
d

dx
G(x)

)(
G(x)n−2

) + G(x)

(
d

dx
G(x)n−2

)))

= Tr

((
d

dx
G(x)

)(
G(x)n−1

))

+Tr

(
G(x)

(
d

dx
G(x)

)(
G(x)n−2)

)
+ Tr

(
G(x)2

(
d

dx
G(x)n−2

))

= Tr

((
d

dx
G(x)

)
G(x)n−1

)

+Tr

((
d

dx
G(x)

)
G(x)G(x)n−2

)
+ Tr

(
G(x)2

(
d

dx
G(x)n−2

))

= Tr

((
d

dx
G(x)

)
2G(x)n−1

)
+ Tr

(
G(x)2

(
d

dx
G(x)n−2

))

= · · ·
= Tr

((
d

dx
G(x)

)
(n − 1)G(x)n−1

)
+ Tr

(
G(x)n−1

(
d

dx
G(x)

))

= Tr

((
d

dx
G(x)

)
(n − 1)G(x)n−1

)
+ Tr

((
d

dx
G(x)

)
G(x)n−1

)

= Tr

((
d

dx
G(x)

)
nG(x)n−1

)
. (10.220)

From Eqs. (10.217) and (10.220), we can confirm the following equality:
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d

dx
Tr(ln(G(x))) = d

dx
Tr(ln(I − (I − G(x))))

= d

dx
Tr

(
−

+∞∑
n=1

1

n
(I − G(x))n

)

= −
+∞∑
n=1

1

n

d

dx
Tr
(
(I − G(x))n

)

= −
+∞∑
n=1

1

n
Tr

((
d

dx
(I − G(x))

)
n(I − G(x))n−1

)

= Tr

((
− d

dx
(I − G(x))

)(+∞∑
n=1

(I − G(x))n−1

))

= Tr

((
d

dx
G(x)

)(+∞∑
n=1

(I − G(x))n−1

))

= Tr

((
d

dx
G(x)

)
(I − (I − G(x)))−1

)
.

= Tr

((
d

dx
G(x)

)(
G(x)−1)

)
. (10.221)

By using Eqs. (10.221), we can confirm the following equality:

d

dA
Tr[A(ln(A))] ≡

⎛
⎜⎜⎜⎝

d
d A11

Tr[Aln(A)] d
d A12

Tr[Aln(A)] · · · d
d A1M

Tr[Aln(A)]
d

d A21
Tr[Aln(A)] d

d A22
Tr[Aln(A)] · · · d

d A2M
Tr[Aln(A)]

...
...

. . .
...

d
d AM1

Tr[Aln(A)] d
d AM2

Tr[Aln(A)] · · · d
d AMM

Tr[Aln(A)]

⎞
⎟⎟⎟⎠

= ln(A) + I . (10.222)

10.4.2 Minimization of Free Energy Functionals for Density
Matrices

For anyM×M Hermitianmatrix H that satisfies H = H
T
, the free energy functional

for an M×M trial density matrix

R =

⎛
⎜⎜⎜⎝

R11 R12 · · · R1M

R21 R22 · · · R2M
...

...
. . .

...

RM1 RM2 · · · RMM

⎞
⎟⎟⎟⎠ (10.223)
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is defined by

F[R] = Tr[R(H + kBT ln(R))]. (10.224)

The density matrix P is determined so as to satisfy the following conditional mini-
mization with the normalization condition as follows:

P = argmin
R

{F[R]∣∣Tr[R] = 1
}
, (10.225)

and this reduces to

P = 1

Z
exp

(
− 1

kBT
H
)

, (10.226)

Z ≡ Tr

[
exp

(
− 1

kBT
H
)]

. (10.227)

First,we introduce theLagrangemultiplierλ to ensure the normalization condition
as follows:

L[R] ≡ F[R] − λ
(
Tr[R] − 1

)
. (10.228)

̂R are determined so as to satisfy the following extremum condition:

∂

∂Rmm ′
L[R] = 0 (m = 1, 2, · · ·, M, m ′ = 1, 2, · · ·, M). (10.229)

Finally, by determining λ so as to satisfy the normalization condition Tr
[
̂R
]

= 1,

Eqs. (10.226) and (10.227) can be derived.
Because the energy matrix H is a Hermitian matrix, all the eigenvalues hm are

always real numbers and all the eigenvectors

⎛
⎜⎜⎜⎝

ψ(m)(1)
ψ(m)(2)

...

ψ(m)(M)

⎞
⎟⎟⎟⎠ can be chosen as real

vectors and are defined by

H

⎛
⎜⎜⎜⎝

ψ(m)(1)
ψ(m)(2)

...

ψ(m)(M)

⎞
⎟⎟⎟⎠ = h(m)

⎛
⎜⎜⎜⎝

ψ(m)(1)
ψ(m)(2)

...

ψ(m)(M)

⎞
⎟⎟⎟⎠ (m = 1, 2, · · ·, M), (10.230)

where
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(
ψ(m)(1), ψ(m)(2), · · ·, ψ(m)(M)

)
⎛
⎜⎜⎜⎜⎝

ψ(m)(1)
ψ(m)(2)

.

.

.

ψ(m)(M)

⎞
⎟⎟⎟⎟⎠

= 1 (m = 1, 2, · · ·, M). (10.231)

By using these eigenvalues and eigenvectors of H , the density matrix can be
expressed as

̂R =

⎛
⎜⎜⎜⎜⎝

ψ(1)(1) ψ(2)(1) · · · ψ(M)(1)
ψ(1)(2) ψ(2)(2) · · · ψ(M)(2)

.

.

.
.
.
.

. . .
.
.
.

ψ(1)(M) ψ(2)(M) · · · ψ(M)(M)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

p(1) 0 · · · 0
0 p(2) · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · p(M)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ψ(1)(1) ψ(2)(1) · · · ψ(M)(1)
ψ(1)(2) ψ(2)(2) · · · ψ(M)(2)

.

.

.
.
.
.

. . .
.
.
.

ψ(1)(M) ψ(2)(M) · · · ψ(M)(M)

⎞
⎟⎟⎟⎟⎠

T

,

(10.232)

where

p(m) =
exp

(
− 1

kBT
h(m)

)

Tr
[
exp

(
− 1

kBT
h(m)

)] (m = 1, 2, · · ·, M). (10.233)

This means that the probability of each state

⎛
⎜⎜⎜⎝

ψ(m)(1)
ψ(m)(2)

.

.

.

ψ(m)(M)

⎞
⎟⎟⎟⎠ is p(m) for m = 1, 2, · · ·, M.

10.4.3 Tensor Products

This section explores tensor products (Kronecker products) [82]. Tensor products
include some fundamental mathematical concepts for achieving quantum statistical
mechanical extensions of probabilistic graphical models.

We introduce tensor products for matrices and vectors by the following defini-
tions:

(
A11 A12
A21 A22

)
⊗
(
B11 B12
B21 B22

)
=

⎛
⎜⎜⎝

A11

(
B11 B12
B21 B22

)
A12

(
B11 B12
B21 B22

)

A21

(
B11 B12
B21 B22

)
A22

(
B11 B12
B21 B22

)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

A11B11 A11B12 A12B11 A12B12
A11B21 A11B22 A12B21 A12B22
A21B11 A21B12 A22B11 A12B12
A21B21 A21B22 A22B21 A12B22

⎞
⎟⎟⎠, (10.234)
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(
A1

A2

)
⊗
(
B1

B2

)
=

⎛
⎜⎜⎝

A1

(
B1

B2

)

A2

(
B1

B2

)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

A11B11

A11B21

A21B11

A21B21

⎞
⎟⎟⎠. (10.235)

We remark that
((

A11 A12

A21 A22

)
⊗
(
B11 B12

B21 B22

))((
C11 C12

C21 C22

)
⊗
(
D11 D12

D21 D22

))

=
((

A11 A12

A21 A22

)(
C11 C12

C21 C22

))
⊗
((

B11 B12

B21 B22

)(
D11 D12

D21 D22

))
. (10.236)

Moreover, for the following general matrices A and B,

A =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1M

A21 A22 · · · A2M
...

...
. . .

...

AM1 AM2 · · · AMM

⎞
⎟⎟⎟⎠, B =

⎛
⎜⎜⎜⎝

B11 B12 · · · B1N

B21 B22 · · · B2N
...

...
. . .

...

BN1 BN2 · · · BNN

⎞
⎟⎟⎟⎠, (10.237)

we define the tensor product A⊗B as

A⊗B =

⎛
⎜⎜⎜⎜⎜⎝

A11 A12 · · · A1M

A21 A22 · · · A2M

.

.

.

.

.

.

.
.
.

.

.

.

AM1 AM2 · · · AMM

⎞
⎟⎟⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎜⎜⎝

B11 B12 · · · B1N

B21 B22 · · · B2N

.

.

.

.

.

.

.
.
.

.

.

.

BN1 BN2 · · · BNN

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

A11B A12B · · · A1M B
A21B A22B · · · A2M B

.

.

.

.

.

.

.
.
.

.

.

.

AM1B AM2B · · · AMM B

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11B11 A11B12 · · · A11B1N A12B11 A12B12 · · · A12B1N · · · A1M B11 A1M B12 · · · A1M B1N

A11B21 A11B22 · · · A11B2N A12B21 A12B22 · · · A12B2N · · · A1M B21 A1M B22 · · · A1M B2N

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

A11BN1 A11BN2 · · · A11BNN A12BN1 A12BN2 · · · A12BNN · · · A1M BN1 A1M BN2 · · · A1M BNN

A21B11 A21B12 · · · A21B1N A22B11 A22B12 · · · A22B1N · · · A2M B11 A2M B12 · · · A2M B1N

A21B21 A21B22 · · · A21B2N A22B21 A22B22 · · · A22B2N · · · A2M B21 A2M B22 · · · A2M B2N

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

A21BN1 A21BN2 · · · A21BNN A22BN1 A22BN2 · · · A22BNN · · · A2M BN1 A2M BN2 · · · A2M BNN

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

AM1B11 AM1B12 · · · AM1B1N AM2B11 AM2B12 · · · AM2B1N · · · AMM B11 AMM B12 · · · AMM B1N

AM1B21 AM1B22 · · · AM1B2N AM2B21 AM2B22 · · · AM2B2N · · · AMM B21 AMM B22 · · · AMM B2N

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

AM1BN1 AM1BN2 · · · AM1BNN AM2BN1 AM2BN2 · · · AM2BNN · · · AMM BN1 AMM BN2 · · · AMM BNN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(10.238)

Similarly, for vectors
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a =

⎛
⎜⎜⎜⎝

a1
a2
...

aM

⎞
⎟⎟⎟⎠, b =

⎛
⎜⎜⎜⎝

b1
b2
...

bN

⎞
⎟⎟⎟⎠, (10.239)

the tensor product a⊗b is defined as

a⊗b =

⎛
⎜⎜⎜⎝

a1
a2
.
.
.

aM

⎞
⎟⎟⎟⎠⊗

⎛
⎜⎜⎜⎝

b1
b2
.
.
.

bN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a1b
a2b
.
.
.

aM b

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

⎛
⎜⎜⎜⎝

b1
b2
.
.
.

bN

⎞
⎟⎟⎟⎠

a2

⎛
⎜⎜⎜⎝

b1
b2
.
.
.

bN

⎞
⎟⎟⎟⎠

.

.

.

aM

⎛
⎜⎜⎜⎝

b1
b2
.
.
.

bN

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1b1
a1b2

.

.

.

a1bN
a2b1
a2b2

.

.

.

a2bN
.
.
.

aMb1
aMb2

.

.

.

aMbN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10.240)

aT⊗bT = (a1, a2, · · ·, aM)⊗(b1, b2, · · ·, bN ) = (
a1b

T, a2b
T, · · ·, aMbT

)

= (
a1b1, a1b2, · · ·, a1bN , a2b1, a2b2, · · ·, a2bN , · · ·, aMb1, aMb2, · · ·, aMbN

)
.

(10.241)

We introduce the following two-dimensional fundamental vectors:

|1〉 ≡
(
1
0

)
, |2〉 ≡

(
0
1

)
, (10.242)

|1〉 ≡ (1, 0), 〈2| ≡ (0, 1). (10.243)

By using the fundamental vectors in two-dimensional space, we define the vertical
and horizontal fundamental vectors in four-dimensional space by using the tensor
product as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|1, 1〉 ≡ |1〉⊗|1〉 =

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠, |1, 2〉 ≡ |1〉⊗|2〉 =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠,

|2, 1〉 ≡ |2〉⊗|1〉 =

⎛
⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠, |2, 2〉 ≡ |2〉⊗|2〉 =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠,

(10.244)

⎧⎨
⎩

〈1, 1| ≡ 〈1|⊗〈1| = (1, 0, 0, 0), 〈1, 2| ≡ 〈1|⊗〈2| = (0, 1, 0, 0),

〈2, 1| ≡ 〈2|⊗〈1| = (0, 0, 1, 0), 〈2, 2| ≡ 〈2|⊗〈2| = (0, 0, 0, 1),
(10.245)

It is easy to confirm the following equality:

〈i, j |
(
A11 A12

A21 A22

)
⊗
(
B11 B12

B21 B22

)
|i ′, j ′〉 = Ai,i ′ Bj, j ′ . (10.246)

By extending the above example to general-dimensional fundamental vectors, the
(i, j |i ′, j ′)-components of A×B for any M×M matrix A and N×N matrix B are
expressed as

〈i, j |A⊗B|i ′, j ′〉 = 〈i |A|i ′〉〈 j |B| j ′〉 = Ai,i ′ Bj, j ′ . (10.247)

For M×M matrices A and C and N×N matrices B and D, we have

(A⊗B)(C⊗D) = (AC)⊗(BD), (10.248)

and

Tr[A⊗B] = (Tr[A])(Tr[B]). (10.249)

In deriving the equality in Eq. (10.248), the (i, j |i ′, j ′)-components of theMN×MN
matrix (A⊗B)(C⊗D) are given by

〈i, j |(A⊗B)(C⊗D)|i ′, j ′〉 =
M∑

i ′′=1

N∑
j ′′=1

〈i, j |(A⊗B)|i ′′, j ′′〉〈i ′′, j ′′|(C⊗D)|i ′, j ′〉
(
i∈{1, 2, · · ·, M}, i ′∈{1, 2, · · ·, M}, j∈{1, 2, · · ·, N }, j ′∈{1, 2, · · ·, N }).

(10.250)

For the M×M and N×N identity matrices I (M) and I (N), it is valid that
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(
A⊗I (N)

)(
I (M)⊗B

) = (
I (M)⊗B

)(
A⊗I (N)

) = A⊗B. (10.251)

Moreover, by using mathematical induction, we can confirm the following binomial
expansion:

(
A⊗I (N) + I (M)⊗B

)n =
n∑

k=0

n!
k!(n − k)!

(
A⊗I (N)

)k(
I (M)⊗B

)n−k
. (10.252)

By using Eq. (10.252), we can derive the following equality:

exp
(
A⊗I (N) + I (M)⊗B

) =
+∞∑
n=0

1

n!
(
A⊗I (N) + I (M)⊗B

)n

=
+∞∑
n=0

1

n!
n∑

k=0

n!
k!(n − k)!

(
A⊗I (N)

)k(
I (M)⊗B

)n−k

=
+∞∑
k=0

+∞∑
n=k

1

n!
n!

k!(n − k)!
(
A⊗I (N)

)k(
I (M)⊗B

)n−k

=
+∞∑
k=0

+∞∑
n=k

1

k!(n − k)!
(
A⊗I (N)

)k(
I (M)⊗B

)n−k

=
+∞∑
k=0

+∞∑
l=0

1

k!l!
(
A⊗I (N)

)k(
I (M)⊗B

)l

=
(+∞∑

k=0

1

k!
(
A⊗I (N)

)k
)(+∞∑

l=0

1

l!
(
I (M)⊗B

)l
)

=
(+∞∑

k=0

1

k!
(
Ak⊗I (N)

))(+∞∑
l=0

1

l!
(
I (M)⊗Bl

))

=
((+∞∑

k=0

1

k! A
k

)
⊗I (N)

)(
I (M)⊗

(+∞∑
l=0

1

l! B
l

))

= (
exp(A)⊗I (N)

)(
I (M)⊗exp(B)

)

= exp(A)⊗exp(B). (10.253)

By taking the logarithm of both sides of Eq. (10.253), we have

ln(exp(A))⊗I (N) + I (M)⊗ln(exp(B)) = ln(exp(A)⊗exp(B)). (10.254)
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10.4.4 Quantum Probabilistic Graphical Models and
Quantum Expectation-Maximization Algorithm

This section explores a type of probabilistic graphical modeling based on Pauli spin
matrices from the quantum statistical mechanical point of view. Our review focuses
on the transverse Ising model in statistical mechanical informatics [37, 83, 84]. Note
that generalization of the framework is possible.

Consider a graph specified by nodes and edges (V, E) where V is the set of all
nodes i and E is the set of all edges {i, j}. We introduce Pauli spin matrices σ z and
σ x as well as an identity matrix I defined by

σ z =
(+1 0

0 −1

)
, σ x =

(
0 +1

+1 0

)
, I =

(+1 0
0 +1

)
. (10.255)

The Pauli spin matrices at each node i∈V≡{1, 2, · · ·, N } are defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ x
1 ≡ σ x⊗I⊗I⊗· · ·⊗I⊗I, σ

y
1 ≡ σ y⊗I⊗I⊗· · ·⊗I⊗I, σ z

1 ≡ σ z⊗I⊗I⊗· · ·⊗I⊗I,
σ x
2 ≡ I⊗σ x⊗I⊗· · ·⊗I⊗I, σ

y
2 ≡ I⊗σ y⊗I⊗· · ·⊗I⊗I, σ z

2 ≡ I⊗σ z⊗I⊗· · ·⊗I⊗I,
.
.
.

.

.

.
.
.
.

σ x
|V | ≡ I⊗I⊗I⊗· · ·⊗I⊗σ x , σ

y
|V | ≡ I⊗I⊗I⊗· · ·⊗I⊗σ y, σ z

|V | ≡ I⊗I⊗I⊗· · ·⊗I⊗σ z .

(10.256)

The vertical and horizontal N -dimensional state vectors are defined by

|s1, s2, · · ·, s|V |〉 ≡ |s1〉⊗|s2〉⊗· · ·⊗|s|V |〉 (s1∈�, s2∈�, · · ·, s|V |∈�), (10.257)

〈s1, s2, · · ·, s|V || ≡ 〈s1|⊗〈s2|⊗· · ·⊗〈s|V || (s1∈�, s2∈�, · · ·, s|V |∈�), (10.258)

where

〈 + 1| ≡ (1, 0), 〈 − 1| ≡ (0, 1), | + 1〉 ≡
(
1
0

)
, | − 1〉 ≡

(
0
1

)
. (10.259)

Byusing the state vector representations, (s1, s2, · · ·, s|V ||s ′
1, s

′
2, · · ·, s ′

|V |)-elements
of σ x

i , σ
z
j and σ z

i σ
z
j are given as

〈s1, s2, · · ·, s|V ||σ x
i |s ′

1, s
′
2, · · ·, s ′

|V |〉 =
⎛
⎝ ∏

k∈V \{i}
δsk ,s ′

k

⎞
⎠〈si |σ x |s ′

i 〉

(s1∈�, s2∈�, · · ·, s|V |∈�; s ′
1∈�, s ′

2∈�, · · ·, s ′
|V |∈�), (10.260)
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〈s1, s2, · · ·, s|V ||σ z
i |s ′

1, s
′
2, · · ·, s ′

|V |〉 =
⎛
⎝ ∏

k∈V \{i}
δsk ,s ′

k

⎞
⎠〈si |σ z|s ′

i 〉

(s1∈�, s2∈�, · · ·, s|V |∈�; s ′
1∈�, s ′

2∈�, · · ·, s ′
|V |∈�), (10.261)

〈s1, s2, · · ·, s|V ||σ z
i σ z

j |s′
1, s

′
2, · · ·, s′|V |〉 =

⎛
⎝ ∏

k∈V \{i, j}
δsk ,s′k

⎞
⎠〈si , s j |(σ z⊗I)(I⊗σ z)|s′

i , s
′
j 〉

(s1∈�, s2∈�, · · ·, s|V |∈�; s′
1∈�, s′

2∈�, · · ·, s′|V |∈�). (10.262)

The prior density matrix P(α, γ ) and the data generative density matrix P(d|β)

for a given data vector d are assumed to be

P(α, γ ) =
exp

(
−1

2
α
∑

{i, j}∈E

(
σ z
i − σ z

j

)2 + γ
∑
i∈V

σ x
i

)

Tr
[
exp

(
−α

∑
{i, j}∈E

(
σ z
i − σ z

j

)2 + γ
∑
i∈V

σ x
i

)] , (10.263)

P(d|β) =
(√

β

2π

)|V |
exp

(
−1

2
β
∑
i∈V

(
di I (2|V |) − σ z

i

)2)
, (10.264)

where α, β, and γ are hyperparameters. The data generative density matrix P(d|β)

is expressed as a |�||V |×|�||V | diagonal matrix in which all the off-diagonal
elements are zero. Each diagonal element 〈s1, s2, · · ·, s|V ||P(d|β)|s1, s2, · · ·, s|V |〉
((s1, s2, · · ·, s|V |)T∈�|V |) corresponds to the probability of the data vector d accord-
ing to additive white Gaussian noise when the state vector (s1, s2, · · ·, s|V |) is given,
and β corresponds to the inverse of variance in the additive white Gaussian noise.
By considering a quantum statistical mechanical extension of the Bayes formula, a
posterior density matrix P(d, α, β, γ ) and a joint density matrix P(d|α, β, γ ) can
be expressed as follows:

P(d, α, β, γ ) ≡
exp

(
ln
(
P(d|β)

)
+ ln

(
P(α, γ )

))

Tr
[
exp

(
ln
(
P(d|β)

)
+ ln

(
P(α, γ )

))]

=
exp

(
−1

2
α

∑
{i, j}∈E

(
σ z
i − σ z

j

)2 − 1

2
β
∑
i∈V

(
di I (2|V |) − σ z

i

)2 + γ
∑
i∈V

σ x
i

)

Tr
[
exp

(
−1

2
α

∑
{i, j}∈E

(
σ z
i − σ z

j

)2 − 1

2
β
∑
i∈V

(
di I (2|V |) − σ z

i

)2 + γ
∑
i∈V

σ x
i

)] ,

(10.265)
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P
(
d
∣∣α, β, γ

) ≡ exp
(
ln
(
P(d|β)

) + ln
(
P(α, γ )

))

=
exp

(
−1

2
α

∑
{i, j}∈E

(
σ z
i − σ z

j

)2 + 1

2
β
∑
i∈V

(di I (2|V |) − σ z
i )2 + γ

∑
i∈V

σ x
i

)

(√
2π

β

)|V |
Tr
[
exp

(
−1

2
α

∑
{i, j}∈E

(
σ z
i − σ z

j

)2 + γ
∑
i∈V

σ x
i

)] .

(10.266)

The estimates of the states of the hyperparameters
(̂
α(d), β̂(d), γ̂ (d)

)
are found

that maximize the marginal likelihood Tr
[
P
(
d
∣∣α, β, γ

)]
as follows:

(̂
α(d), β̂(d), γ̂ (d)

) ≡ arg max
(α,β,γ )

Tr
[
P
(
d
∣∣α, β, γ

)]
. (10.267)

To achieve the estimation criteria for hyperparameters α, β, and γ in Eqs. (10.267),
we extend the Q-function in Eq. (10.8) to the following expression from a quantum
statistical mechanical point of view:

Q
(
α, β, γ

∣∣∣α′, β ′, γ ′, d
)

≡ Tr
[
P
(
d, α′, β ′, γ ′)ln

(
P
(
d
∣∣α, β, γ

))]
.(10.268)

The quantum EM algorithm can be summarized as a procedure consisting of the fol-
lowing E- andM-stepwhich are repeated for t = 0, 1, 2, · · · until α̂ and β̂ converge:

E-step: Compute Q(
α, β

∣∣α(t), β(t), d
)
for various values of α and β.

M-step: Determine
(
α(t + 1), β(t + 1)

)
so as to satisfy the extremumof condi-

tions of
Q(

α, β
∣∣α(t), β(t), d

)
with respect toα andβ.Update α̂←α(t + 1) and β̂←β(t +

1).

The quantum EM algorithm can obtain the solution of the extremum condition in the

marginal likelihood Tr
[
P
(
d
∣∣α, β, γ

)]
, because we have the following equalities:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
∂
∂α
Q
(
α, β, γ

∣∣∣̂α, β̂, γ̂ , d
)]

(α,β,γ )=(̂α,β̂,γ̂ )
= [

∂
∂α

ln
(
Tr
[
P
(
d
∣∣α, β, γ

)])]
(α,β,γ )=(̂α,β̂,γ̂ )

,[
∂
∂β
Q
(
α, β, γ

∣∣∣̂α, β̂, γ̂ , d
)]

(α,β,γ )=(̂α,β̂,γ̂ )
=
[

∂
∂β
ln
(
Tr
[
P
(
d
∣∣α, β, γ

)])]
(α,β,γ )=(̂α,β̂,γ̂ )

,[
∂
∂γ

Q
(
α, β, γ

∣∣∣γ̂ , β̂, γ̂ , d
)]

(α,β,γ )=(̂α,β̂,γ̂ )
= [

∂
∂α

ln
(
Tr
[
P
(
d
∣∣α, β, γ

)])]
(α,β,γ )=(̂α,β̂,γ̂ )

.

(10.269)

By substituting Eq. (10.265) into Eq. (10.268), the Q-function can be rewritten as
follows:

Q(
α, β, γ

∣∣α′, β ′, γ ′, d
) = −1

2
α

∑
{i, j}∈E

Tr
(
σ z⊗I − I⊗σ z)2Pi j (d, α′, β ′, γ ′)
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−1

2
β
∑
i∈V

Tr
[
di I − σ z)2Pi (d, α′, β ′, γ ′)

]

+γ
∑
i∈V

Tr
[
σ x
i Pi (d, α′, β ′, γ ′)

]

+|V |ln
(√

2π

β

)

+ln
(
Tr
[
exp

(
−1

2
α

∑
{i, j}∈E

(
σ z⊗I − I⊗σ z)2 + γ

∑
i∈V

σ x
i

)])
.

(10.270)

The extremum conditions of Q
(
α, β, γ

∣∣∣α(t), β(t), γ (t), d
)
with respect to α, β

and γ , such that,

⎧⎨
⎩

∂
∂α
Q(

α, β, γ
∣∣α(t), β(t), γ (t), d

) = 0,
∂
∂β
Q(

α, β, γ
∣∣α(t), β(t), γ (t), d

) = 0,
∂
∂γ
Q(

α, β, γ
∣∣α(t), β(t), γ (t), d

) = 0
(10.271)

can be reduced to the following simutaneous update rules in the quantum EM algo-
rithm:

∑
{i, j}∈E

Tr
[
(σ z⊗I − I⊗σ z)

2P i j (α(t + 1), γ (t + 1))
]

=
∑

{i, j}∈E
Tr
[
(σ z⊗I − I⊗σ z)

2P i j (d, α(t), β(t), γ (t))
]
,

(10.272)

1

β(t + 1)
=
∑
i∈V

Tr
[
(di I − σ z)2P i (d, α(t), β(t), γ (t))

]
, (10.273)

∑
i∈V

Tr
[
σ x P i (α(t + 1), γ (t + 1))

] =
∑
i∈V

Tr
[
σ x P i (d, α(t), β(t), γ (t))

]
, (10.274)

where

〈si |Pi (d, α, β, γ )|s′
i 〉 = 〈si |Tr\i P(d, α, β, γ )|s′

i 〉
≡

∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

∑

τ ′
1∈�

∑

τ ′
2∈�

· · ·
∑

τ ′|V |∈�

δsi ,τi δs′i ,τ ′
i

×
⎛
⎝ ∏

j∈V \{i}
δτ j ,τ

′
j

⎞
⎠〈τ1, τ2, · · ·, τ|V ||P(d, α, β, γ )|τ ′

1, τ
′
2, · · ·, τ ′|V |〉

(si∈�, s′
i∈�. i∈V ), (10.275)
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〈si , s j |Pi j (d, α, β, γ )|s′i , s′j 〉 = 〈si , s j |P j i (d, α, β, γ )|s′i , s′j 〉
= 〈si , s j |Tr\{i, j}P(d, α, β, γ )|s′i , s′j 〉
≡

∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

∑

τ ′
1∈�

∑

τ ′
2∈�

· · ·
∑

τ ′|V |∈�

δsi ,τi δs j ,τ j δs′i ,τ ′
i
δs′j ,τ ′

j

×
⎛
⎝ ∏
k∈V \{i, j}

δτk ,τ
′
k

⎞
⎠〈τ1, τ2, · · ·, τ|V ||P(d, α, β, γ )|τ ′

1, τ
′
2, · · ·, τ ′|V |〉

(si∈� s j∈�, s′i∈�, s′j∈�, i∈V, j∈V, i < j), (10.276)

〈si , s j |Pi j (α, γ )|s′i , s′j 〉 = 〈si , s j |P j i (α, γ )|s′i , s′j 〉
= 〈si , s j |Tr\{i, j}P(α, γ )|s′i , s′j 〉
≡

∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

∑

τ ′
1∈�

∑

τ ′
2∈�

· · ·
∑

τ ′|V |∈�

δsi ,τi δs j ,τ j δs′i ,τ ′
i
δs′j ,τ ′

j

×
⎛
⎝ ∏
k∈V \{i, j}

δτk ,τ
′
k

⎞
⎠〈τ1, τ2, · · ·, τ|V ||P(α, γ )|τ ′

1, τ
′
2, · · ·, τ ′|V |〉

(si∈� s j∈�, s′i∈�, s′j∈�, i∈V, j∈V, i < j). (10.277)

Finally, we explain how the state at each node is estimated from the reduced
posterior density matrix Pi (d, α, β, γ ) in Eq. (10.276) for each node i(∈V ). The
reduced posterior density matrix Pi (d, α, β, γ ) is a real symmetric matrix and can
be diagonalized as

Pi (d, α, β, γ ) =
(

ψ
(1)
i (+1|d, α, β, γ ) ψ

(2)
i (+1|d, α, β, γ )

ψ
(1)
i (−1|d, α, β, γ ) ψ

(2)
i (−1|d, α, β, γ )

)

×
(
P(1)
i (d, α, β, γ ) 0

0 P(2)
i (d, α, β, γ )

)

×
(

ψ
(1)
i (+1|d, α, β, γ ) ψ

(2)
i (+1|d, α, β, γ )

ψ
(1)
i (−1|d, α, β, γ ) ψ

(2)
i (−1|d, α, β, γ )

)T

, (10.278)

where the eigenvalues, P (1)
i (d, α, β, γ ) and P (2)

i (d, α, β, γ ), are always real num-

bers. The vectors

(
ψ

(1)
i (+1|d, α, β, γ )

ψ
(1)
i (−1|d, α, β, γ )

)
and

(
ψ

(2)
i (+1|d, α, β, γ )

ψ
(2)
i (−1|d, α, β, γ )

)
correspond

to the eigenvectors for the eigenvalues P (1)
i (d, α, β, γ ) and P (2)

i (d, α, β, γ ), such
that



232 K. Tanaka

Pi (d, α, β, γ )

(
ψ

(n)
i (+1|d, α, β, γ )

ψ
(n)
i (−1|d, α, β, γ )

)
= Pi (n|d, α, β, γ )

(
ψ

(n)
i (+1|d, α, β, γ )

ψ
(n)
i (−1|d, α, β, γ )

)

(i∈V, n∈{1, 2}). (10.279)

Thismeans that the eigenvectors correspond to all possible states and probabilities of

the states

(
ψ

(1)
i (+1|d, α, β, γ )

ψ
(1)
i (−1|d, α, β, γ )

)
and

(
ψ

(2)
i (+1|d, α, β, γ )

ψ
(2)
i (−1|d, α, β, γ )

)
are P (2)

i (d, α, β, γ )

and P (2)
i (d, α, β, γ ), respectively, in the reduced density matrix Pi (d, α, β, γ ). The

estimates for the state at each node i(∈V ),

(
ψ̂i
(+1

∣∣d, α̂, β̂, γ̂
)

ψ̂i
(−1

∣∣d, α̂, β̂, γ̂
)
)
, are given by

(
ψ̂i
(+1

∣∣d, α̂, β̂, γ̂
)

ψ̂i
(−1

∣∣d, α̂, β̂, γ̂
)
)

≡ argmaxPi
(
d, α̂, β̂, γ̂

)
(i∈V ). (10.280)

These estimation criteria in Eqs. (10.267) and (10.280) correspond to quantum statis-
ticalmechanical extensions of themaximizations ofmarginal likelihood andposterior
marginal.

10.4.5 Quantum Expectation-Maximization (EM) Algorithm
for Probabilistic Image Segmentation

This section applies the framework of Sect. 10.4.5 to the EM algorithm for prob-
abilistic image segmentations in Sect. 10.2.3. In our present framework, Hubbard
Operators [85] are used instead of Pauli spin matrices.

First, we introduce Hubbard operators Xτ,τ ′
i at each node i(∈V ) as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X (τ,τ ′)
1 ≡ X (τ,τ ′)⊗I⊗I⊗· · ·⊗I⊗I,

X (τ,τ ′)
2 ≡ I⊗X (τ,τ ′)⊗I⊗· · ·⊗I⊗I,

...

X (τ,τ ′)
|V | ≡ I⊗I⊗I⊗· · ·⊗I⊗X (τ,τ ′)

|V | ,

(τ∈�, τ ′∈�), (10.281)

where

X (+1,+1) ≡
(
1 0
0 0

)
, X (+1,−1) ≡

(
0 0
1 0

)
, X (−1,+1) ≡

(
0 1
0 0

)
, X (−1,−1) ≡

(
0 0
0 1

)
.

(10.282)

In probabilistic segmentation and clustering, ρ(D|s, a(+1), a(−1),C(+1),C(−1))
in Eq. (10.29) and P(s|α) in Eq. (10.30) correspond to the data generative and prior
models, respectively. By using the Hubbard operators and extending Eq. (10.29)
and Eq. (10.30) from the standpoint of quantum statistical mechanical informatics,
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the density matrices of the data generative model and the prior model in quantum
machine learning systems for probabilistic image processing can be expressed as
follows:

R(D|a(+1), a(−1),C(+1),C(−1))

=
∏
i∈V

∑
si∈�

X(si ,si )
i

√
1

det(2πC(si ))
exp

(
−1

2
(di − a(si ))C

−1(si )(di − a(si ))
T
)

= exp

⎛
⎝−1

2

∑
i∈V

∑
si∈�

(
(di − a(si ))C

−1(si )(di − a(si ))
T + ln(det(2πC(si )))

)
X(si ,si )
i

⎞
⎠,

(10.283)

R(α, γ ) =
exp

⎛
⎝−2α

∑
{i, j}∈E

(
I (2|V | ) − X(+1,+1)

i X(+1,+1)
j − X(−1,−1)

i X(−1,−1)
j

) + γ
∑
i∈V

(
X(+1,−1)
i + X(−1,+1)

i

)
⎞
⎠

Tr

⎡
⎣exp

⎛
⎝−2α

∑
{i, j}∈E

(
I (2|V | ) − X(+1,+1)

i X(+1,+1)
j − X(−1,−1)

i X(−1,−1)
j

) + γ
∑
i∈V

(
X(+1,−1)
i + X(−1,+1)

i

)
⎞
⎠
⎤
⎦

,

(10.284)

where

a(+1) =
⎛
⎝
aR(+1)
aG(+1)
aB(+1)

⎞
⎠, a(−1) =

⎛
⎝
aR(−1)
aG(−1)
aB(−1)

⎞
⎠, (10.285)

C(+1) =
⎛
⎝

CRR(+1) CRG(+1) CRB(+1)
CGR(+1) CGG(+1) CGB(+1)
CBR(+1) CBG(+1) CBB(+1)

⎞
⎠, C(−1) =

⎛
⎝

CRR(−1) CRG(−1) CRB(−1)
CGR(−1) CGG(−1) CGB(−1)
CBR(−1) CBG(−1) CBB(−1)

⎞
⎠.

(10.286)

The joint density matrix of s and D is expressed in terms of the data generative and
prior density matrix as follows:

P(D|α, a(+1), a(−1),C(+1),C(−1))

≡ exp(ln(P(D|a(+1), a(−1),C(+1),C(−1))) + ln(P(α, γ ))). (10.287)

By using the joint density matrix P(D, α, γ, a(+1), a(−1),C(+1),C(−1)), the
posterior density matrix P(D, α, γ, a(+1), a(−1),C(+1),C(−1)) is defined by
using Bayes formulas as follows:

P(D, α, γ, a(+1), a(−1),C(+1),C(−1)) ≡ P(D|α, γ, a(+1), a(−1),C(+1),C(−1))

P(D|α, γ, a(+1), a(−1),C(+1),C(−1))
,

(10.288)
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Estimates of the hyperparameters and parameter vector, α̂(D), γ̂ (D), â(+1|D),
â(−1|D), ̂C(+1|D), ̂C(−1|D), are given by

(
α̂(D), γ̂ (D), â(+1|D), â(−1|D), ̂C(+1|D), ̂C(−1|D)

)

= arg max
(α,γ,μ(+1),μ(−1),C(+1),C(−1))

Tr
[
P(D|α, γ, a(+1), a(−1),C(+1),C(−1))

]
,

(10.289)

The parameter vector ŝ(D) = (̂
s1(D), ŝ2(D), · · ·, ŝ|V |(D)

)
can be estimated

from the reduced posterior marginal density matrix at each node i of
P(D, α, a(+1), a(−1),C(+1),C(−1)) by similar arguments to those for Eqs.
(10.278), (10.279), and (10.280).

The Q-function for the EM algorithm in the present framework is defined by

Q(
α′, γ ′, a(+1), a(−1),C(+1),C(−1)|α′, γ ′, a′(+1), a′(−1),C ′(+1),C ′(−1), D

)

≡ Tr
[
P
(
D, α, γ, a′(+1), a′(−1),C ′(+1),C ′(−1)

)

×ln(P(D|α, γ, a(+1), a(−1),C(+1),C(−1)))
]
. (10.290)

The EM algorithm is a procedure that performs the following E- andM-step repeat-
edly for t = 0, 1, 2, · · · until α̂(D), â(+1, D), â(−1, D), ̂C(+1, D), ̂C(−1, D)

converge:

E-step: Compute Q
(
α, a(+1), a(−1),C(+1),C(−1)

∣∣α(t), a(+1, t), a(−1, t),C(+1, t),C(−1, t)
) for vari-

ous values of a(+1), a(−1), C(+1) and C(−1).
M-step: Determine α(t + 1), a(+1, t + 1), a(−1, t + 1), C(+1, t + 1) and

C(−1, t + 1)
so as to satisfy the extremumconditions ofQ-functionwith respect to a(+1),
a(−1), C(+1) and C(−1) as follows:

(α(t + 1), a(+1, t + 1), a(−1, t + 1),C(+1, t + 1),C(−1, t + 1))

← extremum
α,a(+1),a(−1),C(+1),C(−1)

Q(
α, a(+1), a(−1),C(+1),C(−1)

∣∣α(t), a(+1, t), a(−1, t),C(+1, t),C(−1, t), D
)
.

(10.291)

Update α̂(D)←α(t + 1), â(+1, D)←a(+1, t + 1), â(−1, D)←a
(−1, t + 1), ̂C(+1, D)←C(+1, t + 1) and ̂C(−1, D)←C(−1, t + 1).
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By using some equalities in Eqs. (10.283), (10.284), (10.287), and (10.288), the EM
algorithm using the Q-function can be reduced to the following expression:

1

|E |
∑

{i, j}∈E
Tr
[(
I⊗I − X (+1,+1)⊗X (+1,+1) − X (+1,+1)⊗X (+1,+1))Pi j (α(t + 1), γ (t + 1))

]

= 1

|E |
∑

{i, j}∈E
Tr
[(

I⊗I − X (+1,+1)⊗X (+1,+1) − X (+1,+1)⊗X (+1,+1)
)

×Pi j (D, α(t), γ (t), a(+1, t), a(−1, t),C(+1, t),C(−1, t))
]
, (10.292)

1

|V |
∑
i∈V

Tr
[(

X(+1,−1) + X(−1,+1)
)
Pi (α(t + 1), γ (t + 1))

]

= 1

|V |
∑
i∈V

Tr
[(

X(+1,−1) + X(−1,+1)
)

×Pi (D, α(t), γ (t), a(+1, t), a(−1, t),C(+1, t),C(−1, t))
]
, (10.293)

μ(ξ, t + 1) =

∑
i∈V

diTr
[
X(ξ,ξ) Pi (D, α(t), γ (t), a(+1, t), a(−1, t),C(+1, t),C(−1, t))

]

∑
i∈V

Tr
[
X(ξ,ξ) Pi (D, α(t), γ (t), a(+1, t), a(−1, t),C(+1, t),C(−1, t))

] (ξ∈�),

(10.294)

C(ξ ; t + 1)

=

∑
i∈V

(
di − a(ξ ; t))T(di − a(ξ ; t))Tr

[
X(ξ,ξ ′) Pi (D, α(t), γ (t), a(+1, t), a(−1, t),C(+1, t),C(−1, t))

]

∑
i∈V

Tr
[
X(ξ,ξ ′) Pi (D, α(t), γ (t), a(+1, t), a(−1, t),C(+1, t),C(−1, t))

] (ξ∈�),

(10.295)

where

〈si |Pi (D, α, γ, a(+1), a(−1),C(+1),C(−1))|s′
i 〉

= 〈si |Tr\i P(D, α, γ, a(+1), a(−1),C(+1),C(−1))|s′
i 〉

≡
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

∑

τ ′
1∈�

∑

τ ′
2∈�

· · ·
∑

τ ′|V |∈�

δsi ,τi δs′i ,τ ′
i

×
⎛
⎝ ∏

j∈V \{i}
δτ j ,τ

′
j

⎞
⎠〈τ1, τ2, · · ·, τ|V ||P(D, α, γ, a(+1), a(−1),C(+1),C(−1)))|τ ′

1, τ
′
2, · · ·, τ ′|V |〉

(si∈�, s′
i∈�. i∈V ), (10.296)

〈si , s j |Pi j (D, α, γ, a(+1), a(−1),C(+1),C(−1)))|s′
i , s

′
j 〉

= 〈si , s j |Pj i (D, α, γ, a(+1), a(−1),C(+1),C(−1)))|s′
i , s

′
j 〉
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= 〈si , s j |Tr\{i, j} P(D, α, β, γ, a(+1), a(−1),C(+1),C(−1)))|s′
i , s

′
j 〉

≡
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

∑

τ ′
1∈�

∑

τ ′
2∈�

· · ·
∑

τ ′|V |∈�

δsi ,τi δs j ,τ j δs′i ,τ ′
i
δs′j ,τ ′

j

×
⎛
⎝ ∏

k∈V \{i, j}
δτk ,τ

′
k

⎞
⎠〈τ1, τ2, · · ·, τ|V ||P(D, α, γ, a(+1), a(−1),C(+1),C(−1)))|τ ′

1, τ
′
2, · · ·, τ ′|V |〉

(si∈� s j∈�, s′
i∈�, s′

j∈�, i∈V, j∈V, i < j), (10.297)

〈si |Pi (α, γ )|s ′
i 〉 = 〈si |Tr\{i}P(α, γ )|s ′

i 〉
≡

∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

∑
τ ′
1∈�

∑
τ ′
2∈�

· · ·
∑

τ ′|V |∈�

δsi ,τi δs ′
i ,τ

′
i

×
⎛
⎝ ∏

k∈V \{i}
δτk ,τ

′
k

⎞
⎠〈τ1, τ2, · · ·, τ|V ||P(α, γ )|τ ′

1, τ
′
2, · · ·, τ ′

|V |〉

(si∈� s j∈�, s ′
i∈�, s ′

j∈�, i∈V ), (10.298)

〈si , s j |Pi j (α, γ )|s′
i , s

′
j 〉 = 〈si , s j |Pj i (α, γ )|s′

i , s
′
j 〉

= 〈si , s j |Tr\{i, j}P(α, γ )|s′
i , s

′
j 〉

≡
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

∑

τ ′
1∈�

∑

τ ′
2∈�

· · ·
∑

τ ′|V |∈�

δsi ,τi δs j ,τ j δs′i ,τ ′
i
δs′j ,τ ′

j

×
⎛
⎝ ∏

k∈V \{i, j}
δτk ,τ

′
k

⎞
⎠〈τ1, τ2, · · ·, τ|V ||P(α, γ )|τ ′

1, τ
′
2, · · ·, τ ′|V |〉

(si∈� s j∈�, s′
i∈�, s′

j∈�, i∈V, j∈V, i < j). (10.299)

10.5 Quantum Statistical Mechanical Informatics

This section explains some quantum graphical modeling using some quantum
mechanical extensions of statisticalmechanical informatics, such as quantum statisti-
cal mechanical informatics, and particularly, advanced quantummean-fieldmethods.
Fundamental frameworks and recent developments have been explored in some text-
books in statistical mechanics [37, 86]. In some applications of quantum annealing
to massive optimization problems, a transverse Ising model is an important quan-
tum probabilistic graphical model [83, 84] and it is known that the density matrices,
for example, in Eqs. (10.263), (10.265), and (10.266), in some familiar quantum
statistical machine learning systems can be reduced to transverse Ising models.
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In quantum statistical mechanical informatics, one of most important schemes is
Suzuki-Trotter decompositions [87, 88]. This was used to realize the quantumMonte
Carlo methods by mapping d-dimensional density matrices to corresponding (d +
1)-dimensional probability distributions [89]. Recently, some quantum annealing
schemes have been realized as actual quantum computers, for example, the d-wave
machine.

In the first part of this section, we explain some basic frameworks in advanced
quantummean-fieldmethods for realizing familiar quantumstatisticalmachine learn-
ing systems for the transverse Ising models, including conventional frameworks of
quantum belief propagations. In the second part, we propose a quantum adaptive
Thouless-Anderson-Palmar (TAP) method and a new approach using the momen-
tum space renormalization group method to realize coarse graining for the transverse
Ising model not only for regular graphs but also for random graphs. In the third part,
we introduce Suzuki-Trotter decompositions [87, 88], and show the basic scheme
for mapping a d-dimensional transverse Ising model to a (d + 1)-dimensional Ising
model and apply the scheme to the message passing rules of the conventional quan-
tum belief propagation.

10.5.1 Advanced Mean-Field Methods for the Transverse
Ising Model

This section explores the detailed derivation of the deterministic equations in both the
quantum mean-field method and the quantum loopy belief propagation method for
the transverse Ising model [83, 84]. Note that the present framework of the quantum
mean-fieldmethod and the quantum loopy belief propagationmethod are constructed
in real space, while other familiar frameworks in quantum statistical mechanics such
as spin wave theory are constructed in momentum space.

For a graph (V, E)with a set of nodes V and set of edges E , we consider a density
matrix P as

P =
exp

⎛
⎝− 1

kBT

⎛
⎝1

2
J

∑
{i, j}∈E

(
σ z
i − σ z

j

)2 + 1

2
h
∑
i∈V

(
σ z
i − di I (2|V |)

)2 − γ
∑
i∈V

σ x
i

⎞
⎠
⎞
⎠

Tr

⎡
⎣exp

⎛
⎝− 1

kBT

⎛
⎝1

2
J

∑
{i, j}∈E

(
σ z
i − σ z

j

)2 + 1

2
h
∑
i∈V

(
σ z
i − di I (2|V |)

)2 − �
∑
i∈V

σ x
i

⎞
⎠
⎞
⎠
⎤
⎦

.

(10.300)

Because σ z
i σ

z
i = I (2|V |), the density matrix in Eq. (10.300) can be reduced to Eqs.

(10.226) and (10.227) with

H = −J
∑

{i, j}∈E
σ z
i σ

z
j − h

∑
i∈V

diσ
z
i − �

∑
i∈V

σ x
i . (10.301)
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Here, all the nodes j connected with the node i by an edge {i, j} are referred to as
neighboring nodes of the node i , and the set of all neighboring nodes of the node
i is denoted by the notation ∂i . The quantum probabilistic graphical model in Eqs.
(10.300) and (10.301) is referred to as the Transverse Ising Model [83, 84].

First, we explain the conventional quantum mean-field method for the transverse
Ising model. We introduce a 2N×2N trial density matrix R and its 2×2 trial reduced
density matrix Ri for each node i(∈V )) defined by

Ri = Tr\i R =
( 〈 + 1|Ri | + 1〉 〈 + 1|Ri | − 1〉

〈 − 1|Ri | + 1〉 〈 − 1|Ri | − 1〉
)

, (10.302)

where

〈si |Ri |s′
i 〉 = 〈si |Tr\i R|s′

i 〉

≡
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

∑

τ ′
1∈�

∑

τ ′
2∈�

· · ·
∑

τ ′|V |∈�

δsi ,τi δs′i ,τ ′
i

⎛
⎝ ∏

j∈V \{i}
δτ j ,τ

′
j

⎞
⎠〈τ1, τ2, · · ·, τ|V ||R|τ ′

1, τ
′
2, · · ·, τ ′|V |〉

(si∈�, s′
i∈�. i∈V ). (10.303)

By using Eq. (10.303), the average Tr(σ x
i R) can be expressed in terms of the reduced

density matrix Ri as follows:

Tr(σ x
i R) =

∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

∑
s ′
1∈�

∑
s ′
2∈�

· · ·
∑
s ′|V |∈�

〈s1, s2, · · ·, s|V ||σ x
i |s ′

1, s
′
2, · · ·, s ′

|V |〉

×〈s ′
1, s

′
2, · · ·, s ′

|V ||R|s1, s2, · · ·, s|V |〉

=
∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

∑
s ′
1∈�

∑
s ′
2∈�

· · ·
∑
s ′
|V |∈�

⎛
⎝ ∏

k∈V \{i}
δsk ,s ′

k

⎞
⎠

×〈si |σ x |s ′
i 〉〈s ′

1, s
′
2, · · ·, s ′

|V ||R|s1, s2, , · · ·, s|V |〉
=

∑
si∈�

∑
s ′
i∈�

〈si |σ x |s ′
i 〉
∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

∑
τ ′
1∈�

∑
τ ′
2∈�

· · ·
∑

τ ′|V |∈�

δsi ,τi δs ′
i ,τ

′
i

×
⎛
⎝ ∏

k∈V \{i}
δτk ,τ

′
k

⎞
⎠〈τ ′

1, τ
′
2, · · ·, τ ′

|V ||R|τ1, τ2, , · · ·, τ|V |〉

=
∑
si∈�

∑
s ′
i∈�

〈si |σ x |s ′
i 〉〈s ′

i |Ri |si 〉

= Tr(σ x Ri ). (10.304)

By similar arguments to those for Eq. (10.304), we derive

Tr
(
σ z
i R

) = Tr(σ z Ri ). (10.305)
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Now, we assume that the trial density matrix R is expressed as

R = R1⊗R2⊗· · ·⊗R|V |. (10.306)

In this case, the average Tr(σ z
i σ

z
j R) and the entropy −kBTrRlnR can be expressed

as

Tr(σ z
i σ z

j R) = Tr
(
σ z
i σ z

j

(
R1⊗R2⊗· · ·⊗R|V |

))

=
∑
s1∈�

∑
s2∈�

· · ·
∑

s|V |∈�

∑

s′1∈�

∑

s′2∈�

· · ·
∑

s′|V |∈�

∑

s′′1∈�

∑

s′′2∈�

· · ·
∑

s′′|V |∈�

⎛
⎝ ∏
k∈V \{i}

δsk ,s
′
k

⎞
⎠〈si |σ z |s′i 〉

×
⎛
⎝ ∏
l∈V \{ j}

δs′l ,s′′l

⎞
⎠〈s′j |σ z |s′′j 〉〈s′′1 |R1|s1〉〈s′′2 |R2|s2〉×· · ·×〈s′′|V ||R|V ||s|V |〉

=
⎛
⎜⎝
∑
si∈�

∑

s′i∈�

〈si |σ z |s′i 〉〈s′i |Ri |si 〉
⎞
⎟⎠

×
⎛
⎜⎝
∑
s j∈�

∑

s′′j ∈�

〈s j |σ z |s′′j 〉〈s′′j |R j |s j 〉
⎞
⎟⎠

⎛
⎜⎝

∏
k∈V \{i, j}

⎛
⎜⎝
∑

s′k∈�

∑

s′′k ∈�

δsk ,s
′
k
δs′k ,s′′k

⎞
⎟⎠〈s′′k |Rk|sk 〉

⎞
⎟⎠

= (
Tr
(
σ z Ri

))(
Tr
(
σ z R j

))
⎛
⎝ ∏
k∈V \{i, j}

(
Tr
(
Rk

))
⎞
⎠

= (
Tr
(
σ z Ri

))(
Tr
(
σ z R j

))
, (10.307)

− kBTr(Rln(R)) = −Tr
((
R1⊗R2⊗· · ·⊗R|V |

)
ln
(
R1⊗R2⊗· · ·⊗R|V |

))

= −kB

N∑
i=1

Tr
((

R1⊗R2⊗· · ·⊗R|V |
)(

I (i−1)⊗ln(Ri )⊗I (N−i)
))

= −kB

N∑
i=1

∑
s1∈�

∑
s2∈�

· · ·
∑

s|V |∈�

∑

s′1∈�

∑

s′2∈�

· · ·
∑

s′|V |∈�

〈s1|R1|s′
1〉〈s2|R2|s′

2〉×· · ·×〈s|V ||R|V ||s′|V |〉

×
⎛
⎝ ∏

k∈V \{i}
δsk ,s′k

⎞
⎠〈s′

i |ln(Ri )|si 〉

= −kB

N∑
i=1

⎛
⎝∑

si∈�

∑

s′i∈�

〈si |Ri |s′
i 〉〈s′

i |ln(Ri )|si 〉
⎞
⎠
⎛
⎝ ∏

k∈V \{i}

⎛
⎝∑

sk∈�

∑

s′k∈�

δsk ,s′k 〈sk |Rk|s′
1〉
⎞
⎠
⎞
⎠

= −kB

N∑
i=1

(
Tr
(
Ri ln(Ri )

))
⎛
⎝ ∏

k∈V \{i}
Tr(Rk)

⎞
⎠

= −kB

N∑
i=1

Tr
(
Ri ln(Ri )

)
. (10.308)

The free energy functional can be reduced to
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F [R] = FMF[R1, R2, · · ·, R|V |] ≡ −J
∑

{i, j}∈E

(
Tr(σ z Ri )

)(
Tr(σ z R j )

) − h
∑
i∈V

Tr(σ z Ri )

−�
∑
i∈V

Tr(σ x Ri ) + kBT
∑
i∈V

Tr(Ri ln(Ri )). (10.309)

We define the optimal reduced density matrix ̂Ri for each node i(∈V ) by

̂Ri = arg extremum
Ri

{
FMF

[
̂R1, ̂R1, · · ·, ̂Ri−1, Ri , ̂Ri+1, ̂Ri+2, · · ·, ̂R|V |

]∣∣∣TrRi = 1
}

(i∈V ).

(10.310)

The simultaneous self-consistent equations for reduced density matrices are
expressed as

̂Ri = 1

Zi
exp

⎛
⎝ 1

kBT

⎛
⎝
⎛
⎝J

∑
j∈∂i

(
Tr(σ z

̂R j )
) + hdi

⎞
⎠σ z + �σ x

⎞
⎠
⎞
⎠, (10.311)

Zi ≡ Tr

⎡
⎣exp

⎛
⎝ 1

kBT

⎛
⎝
⎛
⎝J

∑
j∈∂i

(
Tr(σ z

̂R j )
) + hdi

⎞
⎠σ z + �σ x

⎞
⎠
⎞
⎠
⎤
⎦. (10.312)

From Eq. (10.311), we can derive the following simultaneous self-consistent equa-
tions for the magnetizations m̂z

i ≡ Tr(σ z
̂R j ) (i∈V ) and m̂x

i ≡ Tr(σ x
̂R j ) (i∈V ):

m̂z
i =

J

kBT

∑
j∈∂i

m̂z
i + h

kBT
di

√√√√√
⎛
⎝ J

kBT

∑
j∈∂i

m̂z
j + h

kBT
di

⎞
⎠

2

+
(

�

kBT

)2

×tanh

⎛
⎜⎜⎝

√√√√√
⎛
⎝ J

kBT

∑
j∈∂i

m̂z
j + h

kBT
di

⎞
⎠

2

+
(

�

kBT

)2

⎞
⎟⎟⎠,

(10.313)
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m̂x
i =

�

kBT√√√√√
⎛
⎝ J

kBT

∑
j∈∂i

m̂z
j + h

kBT
di

⎞
⎠

2

+
(

�

kBT

)2

×tanh

⎛
⎜⎜⎝

√√√√√
⎛
⎝ J

kBT

∑
j∈∂i

m̂z
j + h

kBT
di

⎞
⎠

2

+
(

�

kBT

)2

⎞
⎟⎟⎠.

(10.314)

Themean-field free energyFMF

[
̂R1, ̂R2, · · ·, ̂R|V |

]
of thepresent system is expressed

as

FMF

[
̂R1, ̂R2, · · ·, ̂R|V |

]
=

∑
i∈V

( − kBT ln(Zi )
)

= −kBT
∑
i∈V

ln

⎛
⎝Tr

⎡
⎣exp

⎛
⎝ 1

kBT

⎛
⎝
⎛
⎝J

⎛
⎝∑

j∈∂i

(
Tr(σ z

̂R j )
)
⎞
⎠σ z + �σ x

⎞
⎠
⎞
⎠
⎞
⎠
⎤
⎦
⎞
⎠

= −kBT
∑
i∈V

ln

⎛
⎜⎜⎝2cosh

⎛
⎜⎜⎝

√√√√√
⎛
⎝ J

kBT

∑
j∈∂i

m̂z
j

⎞
⎠

2

+ �2

⎞
⎟⎟⎠

⎞
⎟⎟⎠. (10.315)

Next, we extend the above framework for themean-fieldmethod for the transverse
Ising model to the quantum loopy belief propagation method based on the quantum
cluster variation method in Ref. [90]. We introduce a 2N×2N trial density matrix R
and its 2×2 trial reduced density matrix Ri for each node i(∈V )) defined by

Ri j = R j i = Tr\{i, j}R

=

⎛
⎜⎜⎜⎝

〈 + 1, +1|Ri j | + 1, +1〉 〈 + 1, +1|Ri j | − 1, +1〉 〈 + 1, +1|Ri j | + 1, −1〉 〈 + 1, +1|Ri j | − 1, −1〉
〈 + 1, −1|Ri j | + 1, +1〉 〈 + 1, −1|Ri j | − 1, +1〉 〈 + 1, −1|Ri j | + 1, −1〉 〈 + 1, −1|Ri j | − 1, −1〉
〈 − 1, +1|Ri j | + 1, +1〉 〈 − 1, +1|Ri j | − 1, +1〉 〈 − 1, +1|Ri j | + 1, −1〉 〈 − 1, +1|Ri j | − 1, −1〉
〈 − 1, −1|Ri j | + 1, +1〉 〈 − 1, −1|Ri j | − 1, +1〉 〈 − 1, −1|Ri j | + 1, −1〉 〈 − 1, −1|Ri j | − 1, −1〉

⎞
⎟⎟⎟⎠

(i∈V, j∈V, i < j), (10.316)

where

〈si , s j |Ri j |s′i , s′j 〉 = 〈si , s j |R j i |s′i , s′j 〉
= 〈si , s j |Tr\{i, j}R|s′i , s′j 〉
≡

∑
τ1∈�

∑
τ2∈�

· · ·
∑

τ|V |∈�

∑

τ ′
1∈�

∑

τ ′
2∈�

· · ·
∑

τ ′|V |∈�

×δsi ,τi δs j ,τ j δs′i ,τ ′
i
δs′j ,τ ′

j

⎛
⎝ ∏
k∈V \{i, j}

δτk ,τ
′
k

⎞
⎠〈τ1, τ2, · · ·, τ|V ||R|τ ′

1, τ
′
2, · · ·, τ ′|V |〉

(si∈� s j∈�, s′i∈�, s′j∈�, i∈V, j∈V, i < j). (10.317)



242 K. Tanaka

By similar arguments to those for Eq. (10.304), we derive

Tr
(
σ z
i σ

z
j R

)
= Tr

(
(σ z⊗I)(I⊗σ z)Ri j

)
. (10.318)

We now assume that the free energy functional can be expressed as

F[R] = FBethe
[{
Ri

∣∣i∈V }, {R{i, j}
∣∣{i, j}∈E}]

≡ −J
∑

{i, j}∈E
Tr
(
(σ z⊗I)(I⊗σ z)R{i, j}

)

−h
∑
i∈V

diTr(σ
z Ri ) − �

∑
i∈V

Tr(σ x Ri )

+kBT
∑
i∈V

Tr(Ri ln(Ri ))

+kBT
∑

{i, j}∈E

(
Tr
(
R{i, j}ln(R{i, j}

) − Tr(Ri ln(Ri )) − Tr
(
R j ln(R j )

))

= −J
∑

{i, j}∈E
Tr
(
(σ z⊗I)(I⊗σ z)R{i, j}

)

−h
∑
i∈V

diTr(σ
z Ri ) − �

∑
i∈V

Tr(σ x Ri )

+kBT
∑

{i, j}∈E
Tr
(
R{i, j}ln(R{i, j})

) + kBT
∑
i∈V

(1 − |∂i |)Tr(Ri ln(Ri )).

(10.319)

We define the reduced density matrix ̂Ri for each node i(∈V ) by

̂Rk = arg extremum
Rk

{
FBethe

[
Rk ,

{
̂Ri
∣∣i∈V \{k}

}
,
{

̂R{i, j}
∣∣{i, j}∈E

}]∣∣∣TrRk = 1, Rk = Tr\k ̂R{k, j} ( j∈∂k))
}

(k∈V ). (10.320)

̂R{k,l} = arg extremum
R{k,l}

{
FBethe

[
R{k,l},

{
̂Ri
∣∣i∈V

}
,
{

̂R{i, j}
∣∣{i, j}∈E\{k, l}

}]∣∣∣

TrR{k,l} = 1, ̂Rk = Tr\{k,l}R{k,l}, ̂Rl = Tr\{k,l}R{k,l}
}

({k, l}∈E).

(10.321)

To ensure the constraint conditions, we introduce the Lagrange multipliers as
follows:

L[{Ri
∣∣i∈V }, {Ri j

∣∣{i, j}∈E}] = −J
∑

{i, j}∈E
Tr
(
(σ z⊗I)(I⊗σ z)Ri j

)
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−h
∑
i∈V

diTr(σ
z Ri ) − �

∑
i∈V

Tr(σ x Ri )

+kBT
∑

{i, j}∈E
Tr
(
Ri j ln(Ri j )

) + kBT
∑
i∈V

(1 − |∂i |)Tr(Ri ln(Ri )).

−
∑
i∈V

λi (TrRi − 1) −
∑

{i, j}∈E
λ{i, j}

(
TrRi j − 1

)

−
∑

{i, j}∈E
Trλi,i j

(
Ri − Tr\i Ri j

) −
∑

{i, j}∈E
Trλ j,i j

(
R j − Tr\ j Ri j

)

=
∑

{i, j}∈E
Tr

(
Ri j

(
− J (σ z⊗I)(I⊗σ z) + kBln(Ri j ) + λi,i j⊗I + I⊗λ j,i j − λi j (I⊗I)

))

+
∑
i∈V

Tr

(
Ri

(
− hdiσ

z − �σ x + kBT
(
1 − |∂i |)ln(Ri ) −

∑
j∈∂i

λi,i j − λi I
))

+
∑
i∈V

λi +
∑

{i, j}∈E
λ{i, j}. (10.322)

Here we remark that λi,i j = λi, j i and λ j,i j = λ j, j i ({i, j}∈E ,i < j).
We define the reduced density matrix ̂Ri for each node i(∈V ) and Ri j = R j i for

each edge {i, j}∈E by

̂Ri = arg extremum
Ri

{
Ri

(
− hdiσ

z − �σ x −
∑
j∈∂i

λi,i j + kBT (1 − |∂i |)ln(Ri ) − λi I
)}

(i∈V ), (10.323)

̂Ri j = arg extremum
Ri j

{
Ri j

(
− J (σ z⊗I)(I⊗σ z) + λi,i j⊗I + I⊗λ j,i j + kBT ln(Ri j ) − λ{i, j}(I⊗I)

)}

({i, j}∈E). (10.324)

The simultaneous self-consistent equations for reduced density matrices are
expressed as

̂Ri = exp

(
−1 + λi

kBT

)
exp

⎛
⎝ 1

kBT

(
1

|∂i | − 1

)⎛
⎝−hdiσ

z − �σ x −
∑
j∈∂i

λi,i j

⎞
⎠
⎞
⎠,

(10.325)

̂Ri j = exp

(
−1 + λ{i, j}

kBT

)
exp

(
1

kBT

(
J (σ z⊗I)(I⊗σ z) − λi,i j⊗I − I⊗λ j,i j

))
,

(10.326)
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exp

(
1 − λi

kBT

)
= Tr

⎡
⎣exp

⎛
⎝ 1

kBT

(
1

|∂i | − 1

)⎛
⎝−hdiσ

z − �σ x −
∑
j∈∂i

λk,k j

⎞
⎠
⎞
⎠
⎤
⎦,

(10.327)

exp

(
1 − λ{i, j}

kBT

)
= Tr

[
exp

(
1

kBT

(
J (σ z⊗I)(I⊗σ z) − λi,i j⊗I − I⊗λ j,i j

))]
.

(10.328)

By introducing the linear transformations

λi,i j = λi, j i = −hdiσ
z − �σ x −

∑
k∈∂i\{ j}

λk→i , (10.329)

Equations (10.325) and (10.326) can be rewritten as

̂Ri = 1

Zi
exp

(
1

kBT

(
hdiσ

z + �σ x +
∑
k∈∂i

λk→i

))
, (10.330)

̂Ri j = 1

Z{i, j}
exp

(
1

kBT

(
J (σ z⊗I)(I⊗σ z) + h

(
di (σ

z⊗I) + d j (I⊗σ z)
) + �

(
σ x⊗I + I⊗σ x)

+
∑

k∈∂i\{ j}
λk→i⊗I +

∑
l∈∂ j\{i}

I⊗λl→ j

))
, (10.331)

Zi = Tr

[
exp

(
1

kBT

(
hdiσ

z + �σ x +
∑
k∈∂i

λk→i

))]
, (10.332)

Z{i, j} = Tr

[
exp

(
1

kBT

(
J (σ z⊗I)(I⊗σ z) + h

(
di (σ

z⊗I) + d j (I⊗σ z)
) + �

(
σ x⊗I + I⊗σ x)

+
∑

k∈∂i\{ j}
λk→i⊗I +

∑
l∈∂ j\{i}

I⊗λl→ j

))]
. (10.333)

Then, by substituting Eq. (10.330) and Eq. (10.331) into

Ri = Tr\i Ri j , (10.334)
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we derive the following simultaneous self-consistent equations for the effective
fields:

exp

⎛
⎝ 1

kBT
λ j→i + 1

kBT

⎛
⎝hdiσ

z + �σ x +
∑

k∈∂i\{ j}
λk→i

⎞
⎠
⎞
⎠

= Zi

Z{i, j}
Tr\i

[
exp

(
1

kBT

(
J (σ z⊗I)(I⊗σ z) + I⊗

(
hdiσ

z + �σ x +
∑

l∈∂ j\{i}
λl→ j

))

+ 1

kBT

(
hdiσ

z + �σ x +
∑

k∈∂i\{ j}
λk→i

)
⊗I

)]
,

(10.335)

such that

1

kBT
λ j→i = − 1

kBT

⎛
⎝hdiσ

z + �σ x +
∑

k∈∂i\{ j}
λk→i

⎞
⎠

+ ln

(
Zi

Z{i, j}
Tr\i

[
exp

(
1

kBT

(
J (σ z⊗I)(I⊗σ z) + I⊗

(
hdiσ

z + �σ x +
∑

l∈∂ j\{i}
λl→ j

))

+ 1

kBT

(
hdiσ

z + �σ x +
∑

k∈∂i\{ j}
λk→i

)
⊗I

)])
.

(10.336)

Note that Eqs. (10.335) and (10.336) can be regarded as conventional message
passing rule quantum loopy belief propagation. The Bethe free energy

FBethe

[{
̂Ri

∣∣i∈V
}
,
{

̂Ri j

∣∣{i, j}∈E
}]

of the present system is given by

FBethe

[{
̂Ri
∣∣i∈V

}
,
{

̂Ri j
∣∣{i, j}∈E

}]
=

∑
i∈V

( − kBT ln(Zi )
)

+
∑

{i, j}∈E

( − kBT ln
(
Zi, j

) + kBT ln(Zi ) + kBT ln(Z j )
)
. (10.337)

The conventional quantum message passing rules in Eqs. (10.335) and (10.336)
reduce to Eqs. (10.95) and (10.96) for the case of � = 0.

Because we have the orthonormal relationships

⎧⎨
⎩
Tr[σ zσ z] = Tr[σ xσ x] = 2,
Tr[σ z I] = Tr[Iσ z] = Tr[σ x I] = Tr[Iσ x] = 0,
Tr[σ zσ x] = Tr[σ xσ z] = 0,

(10.338)

⎧⎨
⎩
Tr[(σ z⊗I)(σ z⊗I)] = Tr

[
(σ x⊗I)(σ x⊗I)

] = Tr[(I⊗σ z)(I⊗σ z)] = Tr
[
(I⊗σ x)(I⊗σ x)

] = 4,
Tr
[
(σ z⊗I)(σ x⊗I)

] = Tr
[
(σ x⊗I)(σ z⊗I)

] = Tr
[
(I⊗σ x)(I⊗σ z)

] = Tr
[
(I⊗σ z)(I⊗σ x)

] = 0,
Tr[(σ z⊗I)(I⊗σ z)] = Tr

[
(σ x⊗I)(I⊗σ x)

] = Tr
[
(σ z⊗I)(I⊗σ x)

] = Tr
[
(σ x⊗I)(I⊗σ z)

] = 0,

(10.339)
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the reduced density matrices Ri and Ri j = R j i expand to the following orthonormal
expansions:

Ri = 1

2

(
I + mx

i σ
x + mz

i σ
z), (10.340)

Ri j = R j i

= 1

4

(
(I⊗I) + mx

i

(
σ x⊗I

) + mz
i (σ

z⊗I) + mx
j

(
I⊗σ x) + mz

j (I⊗σ z)

+czz{i, j}(σ
z⊗I)(I⊗σ z) + cxz{i, j}

(
σ x⊗I

)
(I⊗σ z)

+czx{i, j}(σ
z⊗I)

(
I⊗σ x) + czx{i, j}

(
σ x⊗I

)(
I⊗σ x)

)
, (10.341)

where

⎧⎨
⎩
mν

i = Tr[σ ν Ri ] = Tr
[(

σ ν⊗I
)
Ri j

]
,

mν ′
j = Tr

[
σ ν′

R j
] = Tr

[(
I⊗σ ν′)

Ri j
]
,

cν,ν ′
{i, j} = Tr

[(
σ ν⊗I

)(
I⊗σ ν′)

Ri j
]
,

({i, j}∈E, i < j, ν∈{x, z}, ν ′∈{x, z}).

(10.342)

By using these orthonormal expansions of the reduced density matrices, the Bethe
free energy functional in Eq. (10.319) can be rewritten as

F[R] = FBethe

[{
mν

i

∣∣∣i∈V, ν∈{x, z}
}
,
{
cν,ν ′
{i, j}

∣∣∣{i, j}∈E, ν{x, z}, ν ′∈{x, z}
}]

≡ − J
∑

{i, j}∈E
cz,z{i, j} − h

∑
i∈V

dim
z
i − �

∑
i∈V

mx
i

+kBT
∑
i∈V

(1 − |∂i |)Tr(Ri ln(Ri ))

+kBT
∑

{i, j}∈E
Tr
(
R{i, j}ln(R{i, j})

)
. (10.343)

The extremum conditions

∂

∂mν
k

FBethe

[{
mν

i

∣∣∣i∈V, ν∈{x, z}
}
,
{
cνν ′
{i, j}

∣∣∣{i, j}∈E, ν{x, z}, ν ′∈{x, z}
}]

= 0 (k∈V, ν∈{x, z}),
(10.344)

∂

∂cνν ′
{k,l}

FBethe

[{
mν

i

∣∣∣i∈V, ν∈{x, z}
}
,
{
cνν ′
{i, j}

∣∣∣{i, j}∈E, ν{x, z}, ν ′∈{x, z}
}]
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= 0 ({k, l}∈E, ν∈{x, z}, , ν ′∈{x, z}),
(10.345)

can be reduced to the following simultaneous equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h

kBT
di = 1

2
(1 − |∂i |)Tr

[
σ z ln

(
̂Ri

)]
+ 1

4

∑

{ j∈∂i, j>i}
Tr
[(

σ z⊗I
)
ln
(
̂Ri j

)] + 1

4

∑

{k∈∂i,k<i}
Tr
[(
I⊗σ z)ln(̂Rki

)]
,

�

kBT
= 1

2
(1 − |∂i |)Tr

[
σ x ln

(
̂Ri

)]
+ 1

4

∑

{ j∈∂i, j>i}
Tr
[(

σ x⊗I
)
ln
(
̂Ri j

)] + 1

4

∑

{k∈∂i,k<i}
Tr
[(
I⊗σ x )ln(̂Rki

)]
,

(i∈V ),

(10.346)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J

kBT
= 1

4
Tr
[(

σ z⊗I
)(
I⊗σ z)ln(̂Ri j

)]
,

0 = 1

4
Tr
[(

σ z⊗I
)(
I⊗σ x)ln(̂Ri j

)] = 1

4
Tr
[(

σ x⊗I
)(
I⊗σ z)ln(̂Ri j

)]
,

0 = 1

4
Tr
[(

σ x⊗I
)(
I⊗σ x)ln(̂Ri j

)]
,

({i, j}∈E),

(10.347)

where

̂Ri = 1

2

(
I + m̂x

i σ
x + m̂z

i σ
z) (i∈V ), (10.348)

̂Ri j = ̂R j i

= 1

4

(
(I⊗I) + m̂x

i

(
σ x⊗I

) + m̂z
i (σ

z⊗I) + m̂x
j

(
I⊗σ x) + m̂z

j (I⊗σ z)

+ĉzz{i, j}(σ
z⊗I)(I⊗σ z) + ĉxz{i, j}

(
σ x⊗I

)
(I⊗σ z)

+ĉzx{i, j}(σ
z⊗I)

(
I⊗σ x) + ĉxx{i, j}

(
σ x⊗I

)(
I⊗σ x)

)
({i, j}∈E, i < j).

(10.349)

For � = 0, Eq. (10.347) with Eqs. (10.348) and (10.349) reduces to Eqs. (10.107)
and (10.108) with Eqs. (10.72) and (10.102).

Before finishing the present subsection, we briefly review another framework
of the quantum advanced mean-field method. As we mentioned above, advanced
quantummean-fieldmethods have also been formulated in themomentum space.One
familiar formulation is spin wave theory [91]. A general formulation of the quantum
cluster variation method from the viewpoint of spin wave theory was proposed in
Refs. [92, 93].
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10.5.2 Real-Space Renormalization Group Method for the
Transverse Ising Model

We now present sublinear modeling in statistical machine learning procedures by
using the real-space renormalization group method for the transverse Ising model in
Eq. (10.301) on the ring graph (V, E) of Eq. (10.176) for the case of |V | = 2L and
h = 0. The present scheme follows the one in Refs. [37, 94]. Some extensions of the
present frameworks for the ring graph in Eq. (10.176) to higher-dimensional graphs
such as the torus graph may be available according to the frameworks of Ref. [94].

The important part of the transverse Ising model in Eq. (10.301),
−J (σ z⊗I)(I⊗σ z) − �(σ x⊗I) can be diagonalized as

−J
(
σ z⊗I

)(
I⊗σ z) − �

(
σ x⊗I

) =

⎛
⎜⎜⎝

−J 0 −� 0
0 J 0 −�

−� 0 J 0
0 −� 0 −J

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1
2

(
1 + J√

J 2+�2

)
0 0

√
1
2

(
1 − J√

J 2+�2

)

0

√
1
2

(
1 − J√

J 2+�2

)
−
√

1
2

(
1 + J√

J 2+�2

)
0

√
1
2

(
1 − J√

J 2+�2

)
0 0 −

√
1
2

(
1 + J√

J 2+�2

)

0

√
1
2

(
1 + J√

J 2+�2

) √
1
2

(
1 − J√

J 2+�2

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝

−√
J 2 + �2 0 0 0
0 −√

J 2 + �2 0 0
0 0

√
J 2 + �2 0

0 0 0
√
J 2 + �2

⎞
⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1
2

(
1 + J√

J 2+�2

)
0 0

√
1
2

(
1 − J√

J 2+�2

)

0

√
1
2

(
1 − J√

J 2+�2

)
−
√

1
2

(
1 + J√

J 2+�2

)
0

√
1
2

(
1 − J√

J 2+�2

)
0 0 −

√
1
2

(
1 + J√

J 2+�2

)

0

√
1
2

(
1 + J√

J 2+�2

) √
1
2

(
1 − J√

J 2+�2

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.

(10.350)

The eigenvalues ε1 = ε2 = −√
J 2 + �2, ε3 = ε4 = +√

J 2 + �2 have the relation-
ship ε1 = ε2 < ε3 = ε4 and their corresponding eigenvectors are given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|1〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
1
2

(
1 + J√

J 2+�2

)

0√
1
2

(
1 − J√

J 2+�2

)

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, |2〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

+
√

1
2

(
1 − J√

J 2+�2

)

0

+
√

1
2

(
1 + J√

J 2+�2

)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

|3〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

−
√

1
2

(
1 + J√

J 2+�2

)

0

+
√

1
2

(
1 − J√

J 2+�2

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, |4〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
1
2

(
1 − J√

J 2+�2

)

0

−
√

1
2

(
1 + J√

J 2+�2

)

0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(10.351)

To realize the coarse graining of the present transverse Ising model for the case of
zero temperature T = 0 for the density matrix P in Eq. (10.300), we introduce the
following projection operator:

P
(2L )
i = P⊗P⊗· · ·⊗P︸ ︷︷ ︸

2L P′s

, (10.352)

where

P ≡
( 〈1|

〈2|
)

(|1〉〈1| + |2〉〈2|) =
( 〈1|

〈2|
)

=

⎛
⎜⎜⎝

√
1
2

(
1 + J√

J 2+�2

)
0

√
1
2

(
1 − J√

J 2+�2

)
0

0 +
√

1
2

(
1 − J√

J 2+�2

)
0

√
1
2

(
1 + J√

J 2+�2

)

⎞
⎟⎟⎠.

(10.353)

Because it is valid that

P

⎛
⎜⎜⎝

−J 0 −� 0
0 J 0 −�

−� 0 J 0
0 −� 0 −J

⎞
⎟⎟⎠P

T = −
√
J2 + �2

( 〈1|1〉 〈1|2〉
〈2|1〉 〈2|2〉

)
= −

√
J2 + �2 I, (10.354)

we can derive the following equalities

P
(2L )
i

(
− Jσ z

2i−1σ
z
2i − �σ x

2i−1

)
P

(2L )
i

T

= P
(2L )
i

(Tensor Products of (i−1) Matrices (I⊗I)︷ ︸︸ ︷(
I⊗I

)⊗(
I⊗I

)⊗· · ·⊗(
I⊗I

) ⊗( − J
(
σ z⊗I

)(
I⊗σ z) − �

(
σ x⊗I

))

⊗ (
I⊗I

)⊗(
I⊗I

)⊗· · ·⊗(
I⊗I

)
︸ ︷︷ ︸

Tensor Products of (2L−1−i) Matrices (I⊗I)

)
P

(2L )
i

T
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=
(

Tensor Products of (i−1) Matrices
(
P(I⊗I)PT

)
︷ ︸︸ ︷(
P(I⊗I)PT)⊗(

P(I⊗I)PT)⊗· · ·⊗(
P(I⊗I)PT))⊗

(
P
( − J

(
σ z⊗I

)(
I⊗σ z) − �

(
σ x⊗I

))
P
T
)

⊗
((
P(I⊗I)PT)⊗(

P(I⊗I)PT)⊗· · ·⊗(
P(I⊗I)PT)

︸ ︷︷ ︸
Tensor Products of (2L−1−i) Matrices (P(I⊗I)PT)

)

=
(

Tensor Products of (i−1) Matrices
(
P(I⊗I)PT

)
︷ ︸︸ ︷(
P(I⊗I)PT)⊗(

P(I⊗I)PT)⊗· · ·⊗(
P(I⊗I)PT))⊗

(
P
( − J

(
σ z⊗I

)(
I⊗σ z) − �

(
σ x⊗I

))
P
T
)

⊗
((
P(I⊗I)PT)⊗(

P(I⊗I)PT)⊗· · ·⊗(
P(I⊗I)PT)

︸ ︷︷ ︸
Tensor Products of (2L−1−i) Matrices (P(I⊗I)PT)

)

=
( (i−1) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗
(

−
√
J 2 + �2 I

)
⊗
(
I⊗I⊗· · ·⊗I︸ ︷︷ ︸
(2L−1−i) I ′s

)
, (10.355)

P
(2L )
i

(
− Jσ z

2iσ
z
2i+1 − �σ x

2i

)
P

(2L )
i

T

= P
(2L )
i

(
Tensor Products of (i−1) Matrices (I⊗I)︷ ︸︸ ︷(

I⊗I
)⊗(

I⊗I
)⊗· · ·⊗(

I⊗I
)

⊗( − J
(
I⊗σ z⊗I⊗I

)(
I⊗I⊗σ z⊗I

) − �
(
I⊗σ x⊗I⊗I

))

⊗ (
I⊗I

)⊗(
I⊗I

)⊗· · ·⊗(
I⊗I

)
︸ ︷︷ ︸

Tensor Products of (2L−1−i−1) Matrices (I⊗I)

)
P

(2L )
i

T

=
(

Tensor Products of (i−1) Matrices
(
P(I⊗I)PT

)
︷ ︸︸ ︷(
P(I⊗I)PT)⊗(

P(I⊗I)PT)⊗· · ·⊗(
P(I⊗I)PT))

⊗
((

P⊗P
T)( − J

(
I⊗σ z⊗I⊗I

)(
I⊗I⊗σ z⊗I

) − �
(
I⊗σ x⊗I⊗I

))(
P⊗P

T)
)

⊗
((
P(I⊗I)PT)⊗(

P(I⊗I)PT)⊗· · ·⊗(
P(I⊗I)PT)

︸ ︷︷ ︸
Tensor Products of (2L−1−i−1) Matrices (P(I⊗I)PT)

)

=
(

Tensor Products of (i−1) Matrices
(
P(I⊗I)PT

)
︷ ︸︸ ︷(
P(I⊗I)PT)⊗(

P(I⊗I)PT)⊗· · ·⊗(
P(I⊗I)PT))

⊗
(

− J
((
P
(
I⊗σ z)

P
T)⊗(

P(I⊗I)PT))((
P(I⊗I)PT)⊗(

P
(
σ z⊗I

)
P
T)) − �

(
P
(
I⊗σ x)

P
T⊗P(I⊗I)PT)

)

⊗
((
P(I⊗I)PT)⊗(

P(I⊗I)PT)⊗· · ·⊗(
P(I⊗I)PT)

︸ ︷︷ ︸
Tensor Products of (2L−1−i−1) Matrices (P(I⊗I)PT)

)

=
( (i−1) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗
(

− J 2√
J 2 + �2

(
σ z⊗I

)(
I⊗σ z) − �2

√
J 2 + �2

(
σ x⊗I

))⊗
(
I⊗I⊗· · ·⊗I︸ ︷︷ ︸
(2L−1−i−1) I ′s

)
, (10.356)

P
(2L )
i

(
− Jσ z

1 σ z
2L − �σ x

2L

)
P

(2L )
i

T

= P
(2L )
i

(
− J

(
(σ z⊗I)⊗

Tensor Products of (2L−1−2) Matrices (I⊗I)︷ ︸︸ ︷(
I⊗I

)⊗(
I⊗I

)⊗· · ·⊗(
I⊗I

) ⊗(I⊗I)
)
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×
(
(I⊗I)⊗

Tensor Products of (2L−1−2) Matrices (I⊗I)︷ ︸︸ ︷(
I⊗I

)⊗(
I⊗I

)⊗· · ·⊗(
I⊗I

) ⊗(I⊗σ z)
)

− �(I⊗I)⊗
Tensor Products of (2L−1−2) Matrices (I⊗I)︷ ︸︸ ︷(

I⊗I
)⊗(

I⊗I
)⊗· · ·⊗(

I⊗I
) ⊗(

I⊗σ x)
)
P

(2L )
i

T

= − J 2

√
J 2 + �2

(
σ z⊗

( (2L−1−2) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗I

)(
I⊗

( (2L−1−2) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗σ z

)

− �2

√
J 2 + �2

(
I⊗

( (2L−1−2) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗σ x

)
. (10.357)

By using these equalities, the first step of the renormalized energy matrix H (2L−1) ≡
P

(2L )
i HP

(2L )
i

T
can be reduced as follows:

H(2L−1) ≡ P
(2L )
i HP

(2L )
i

T

= −2L−1
√
J 2 + �2

( (2L−1) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)

−
2L−1∑
i=1

( (i−1) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗
(

J 2√
J 2 + �2

(
σ z⊗I

)(
I⊗σ z) + �2

√
J 2 + �2

(
σ x⊗I

))⊗
(
I⊗I⊗· · ·⊗I︸ ︷︷ ︸
(2L−1−i−1) I ′s

)

− J 2√
J 2 + �2

(
σ z⊗

( (2L−1−2) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗I

)(
I⊗

( (2L−1−2) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗σ z

)

− �2

√
J 2 + �2

(
I⊗

( (2L−1−2) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗σ x

)
. (10.358)

By similar arguments to those for the above procedure, the r -th step of the renor-

malized energy matrix H(2L−r ) ≡
(
P

(2L−r )
i P

(2L−r+1)
i · · ·P(2L )

i

)
H

(
P

(2L )
i

T
· · ·P(2L−r+1)

i

T
P

(2L−r )
i

T
)

can be reduced to the following recursion formulas:

H(2L−r ) ≡ P
(2L−r+1)
i H(2L−r+1)

P
(2L−r+1)
i

T

= 2L−r ε
(r)
1

( (2L−r ) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)

−
2L−1∑
i=1

( (i−1) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗
(
J (r)(σ z⊗I

)(
I⊗σ z) + �(r)(σ x⊗I

))⊗
(
I⊗I⊗· · ·⊗I︸ ︷︷ ︸
(2L−r−i−1) I ′s

)

− J (r)
(
σ z⊗

( (2L−r−2) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗I

)(
I⊗

( (2L−r−2) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗σ z

)
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− �(r)
(
I⊗

( (2L−r−2) I ′s︷ ︸︸ ︷
I⊗I⊗· · ·⊗I

)
⊗σ x

)
, (10.359)

where
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J (r) = (J (r−1))2√
(J (r−1))2 + (�(r−1))2

,

�(r) = (�(r−1))2√
(J (r−1))2 + (�(r−1))2

,

(10.360)

ε
(r)
1 = −

√
(J (r−1))2 + (�(r−1))2, (10.361)

⎧⎨
⎩

H (2L) ≡ H,

J (0) ≡ J,
�(0) ≡ �.

(10.362)

The inverse of the real-space renormalization group is given by

⎧⎨
⎩

J (r−1) =
√
J (r)

(
J (r) + �(r)

)
,

�(r−1) =
√

�(r)
(
J (r) + �(r)

)
,

(10.363)

If the hyperparameters J (r) and �(r) in the r -th renormalized density matrix H (2L−r )

have been estimated from given data vectors by using the QEM algorithm for a
renormalized density matrix on ring graphs

(
V (r), E (r)

)
, we can estimate the hyper-

parameters J (0) = J and �(0) = � of the transverse Ising model (10.301) on the ring
graph E of Eq. (10.176) for the case of |V | = 2L and h = 0 by using the inverse
transformation rule of the real-space renormalization group procedure (10.363).

10.5.3 Sublinear Modeling Using a Quantum Adaptive TAP
Approach and Momentum Space Renormalization
Group in the Transverse Ising Model

This section proposes a novel scheme for the momentum space renormalization
group approaches inAdaptive Thouless-Anderson-Palmar(TAP) Approaches for
the transverse Ising model on random graphs. The adaptive TAP approach is a famil-
iar advanced mean-field method for the probabilistic graphical model and many
extensions have been proposed [95–98]. Furthermore, sublinear modeling for the
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EM procedure in probabilistic graphical models has been realized by introducing
Momentum Space Renormalization Group Approaches [99, 100]. The method
proposed in this section is formulated by combining the adaptive TAP approaches
with the momentum space renormalization group approaches. Moreover, our method
is applicable not only to regular graphs but also to random graphs.

The density matrix P in Eq. (10.300) can be rewritten as

P =
exp

⎛
⎝− J

2kBT

∑
{i, j}∈E

(
σ z
i − σ z

j

)2 − h

2kBT

∑
i∈V

(
σ z
i − di I

(2|V |)
)2

− 1

2kBT

∑
i∈V

(
σ x
i − γ I2

|V |)2
⎞
⎠

Tr

⎡
⎣exp

⎛
⎝− J

2kBT

∑
{i, j}∈E

(
σ z
i − σ z

j

)2 − h

2kBT

∑
i∈V

(
σ z
i − di I

(2|V |)
)2

− 1

2kBT

∑
i∈V

(
σ x
i − � I2

|V |)2
⎞
⎠
⎤
⎦

.

(10.364)

The density matrix P satisfies the following minimization of the free energy func-
tional:

P = argmin
R

{
F[

R
]∣∣∣TrR = 1

}
, (10.365)

F[
R
] ≡ 1

2
J
∑

{i, j}∈E
Tr
[(

σ z
i − σ z

j

)2
R
]

+ 1

2
h
∑
i∈V

Tr
[(

σ z
i − di I (2|V |))2R

]

+1

2

∑
i∈V

Tr
[(

σ x
i − � I (2|V |))2R

]
+ kBTTr[Rln(R)]. (10.366)

Because all the off-diagonal elements of
(
σ z
i − σ z

j

)2
are zero, we have

F[
R
] = 1

2
J
∑

{i, j}∈E

∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

〈s1, s2, · · ·, s|V ||
(
σ z
i − σ z

j

)2|s1, s2, · · ·, s|V |〉

×〈s1, s2, · · ·, s|V ||R|s1, s2, · · ·, s|V |〉
+1

2
h
∑
i∈V

∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

〈s1, s2, · · ·, s|V ||
(
σ z
i − di I (2|V |))2|s1, s2, · · ·, s|V |〉

×〈s1, s2, · · ·, s|V ||R|s1, s2, · · ·, s|V |〉
+1

2

∑
i∈V

Tr
[(

σ x
i − � I (2|V |))2R

]
+ kBTTr[Rln(R)]

= 1

2
J
∑

{i, j}∈E

∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

(
si − s j

)2〈s1, s2, · · ·, s|V ||R|s1, s2, · · ·, s|V |〉

+1

2
h
∑
i∈V

∑
s1∈�

∑
s2∈�

· · ·
∑
s|V |∈�

(si − di )
2〈s1, s2, · · ·, s|V ||R|s1, s2, · · ·, s|V |〉
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+1

2

∑
i∈V

Tr
[(

σ x
i − � I (2|V |))2R

]
+ kBTTr[Rln(R)]. (10.367)

By introducing the reduced density matrix Ri in Eq. (10.275) and

ρ
(
s1, s2, · · ·, s|V |

) ≡ 〈s1, s2, · · ·, s|V ||R|s1, s2, · · ·, s|V |〉,
(
(s1, s2, · · ·.s|V |)∈�|V |),

(10.368)

and by extending ρ
(
s1, s2, · · ·, s|V |

)
to

ρ(φ) = ρ
(
φ1, φ2, · · ·, φ|V |

) (
φ = (

φ1, φ2, · · ·.φ|V |
)∈(−∞, +∞)|V |), (10.369)

the free energy functional can be expressed as

F
[
R
] = 1

2
J

∑
{i, j}∈E

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞

(∏
k∈V

(
δ(φk − 1) + δ(φk + 1)

))(
φi − φ j

)2
ρ(φ)dφ1dφ2· · ·dφ|V |

+ 1

2
h
∑
i∈V

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞

(∏
k∈V

(
δ(φk − 1) + δ(φk + 1)

))(
φi − di

)2
ρ(φ)dφ1dφ2· · ·dφ|V |

+ 1

2

∑
i∈V

Tr
[(

σ x
i − � I (2|V |))2Ri

]
+ kBTTr[Rln(R)]. (10.370)

Now we consider the following approximate free energy:

FAdaptive TAP
[
ρ, {Ri , ρi |i∈V }] ≡ 1

2
J

∑
{i, j}∈E

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
(
φi − φ j

)2
ρ(φ)dφ1dφ2· · ·dφ|V |

+ 1

2
h
∑
i∈V

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
(
φi − di

)2
ρ(φ)dφ1dφ2· · ·dφ|V |

+ 1

2

∑
i∈V

Tr
[(

σ x
i − � I (2|V |))2Ri

]

+kBT
∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
ρ(φ)ln

(
ρ(φ)

)
dφ1dφ2· · ·dφ|V |

+kBT
∑
i∈V

(
TrRi lnRi −

∫ +∞

−∞
ρi (φi )ln

(
ρi (φi )

)
dφi

)
, (10.371)

where

ρi (φi ) ≡
∫ +∞
−∞

∫ +∞
−∞

· · ·
∫ +∞
−∞

δ
(
φi − φ′

i
)
ρ
(
φ′
1, φ

′
2, · · ·, φ′|V |

)
dφ′

1dφ′
2· · ·dφ′|V |

(i∈V, φi∈(−∞,+∞)). (10.372)

The reduced density matrix Ri and the marginal probability density functions ρi (φi )

and ρ(φ) need to satisfy the consistencies
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
φiρ(φ)dφ1dφ2· · ·dφ|V | =

∫ +∞

−∞
φiρi (φi )dφi = Trσ z Ri (i∈V ),

∑
i∈V

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
φi

2ρ(φ)dφ1dφ2· · ·dφ|V | =
∑
i∈V

∫ +∞

−∞
φi

2ρi (φi )dφi = 1,
(10.373)

and the normalizations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ +∞
−∞

∫ +∞
−∞

· · ·
∫ +∞
−∞

ρ(φ)dφ1dφ2· · ·dφ|V | = 1,
∫ +∞
−∞

ρi (φi )dφi = 1 (i∈V ).

TrRi = 1.

(10.374)

Ri , ρi (φi ) and ρ(φ) are determined so as tominimize the above approximate free energy
F[

ρ, {Ri , ρi |i∈V }] under the constraint conditions in Eqs. (10.373) and (10.374). We

introduce Lagrange multipliers f =

⎛
⎜⎜⎜⎜⎜⎝

f1
f2
.
.
.

f|V |

⎞
⎟⎟⎟⎟⎟⎠
and g =

⎛
⎜⎜⎜⎜⎜⎝

g1
g2
.
.
.

g|V |

⎞
⎟⎟⎟⎟⎟⎠
, D, L, λ, and λi to ensure

the constraint conditions in Eqs. (10.373) and (10.374) as follows:

LAdaptive TAP
[
ρ, {Ri , ρi |i∈V }]

≡ FAdaptive TAP
[
ρ, {Ri , ρi |i∈V }]

−
∑
i∈V

gi

(∫ +∞
−∞

∫ +∞
−∞

· · ·
∫ +∞
−∞

φiρ(φ)dφ1dφ2· · ·dφ|V | −
∫ +∞
−∞

φiρi (φi )dφi

)

−
∑
i∈V

fi

(∫ +∞
−∞

∫ +∞
−∞

· · ·
∫ +∞
−∞

φiρ(φ)dφ1dφ2· · ·dφ|V | − Trσ z Ri

)

−D

⎛
⎝∑
i∈V

∫ +∞
−∞

∫ +∞
−∞

· · ·
∫ +∞
−∞

φi
2ρ(φ)dφ1dφ2· · ·dφ|V | − 1

⎞
⎠

−L

⎛
⎝∑
i∈V

∫ +∞
−∞

φi
2ρi (φi )dφi − 1

⎞
⎠

−λ

(∫ +∞
−∞

∫ +∞
−∞

· · ·
∫ +∞
−∞

ρ(φ)dφ − 1

)

−
∑
i∈V

λi

(∫ +∞
−∞

ρi (φi )dφi − 1

)
. (10.375)

By taking thefirst variationof the approximate free energyLAdaptive TAP
[
ρ̂, {Ri , ρi |i∈V }]

with respect to themarginals, we can derive the approximate expressions of ̂Ri , ρ̂i (φi ),
and ρ̂(φ) as follows:

̂Ri =
exp

(
1

kBT

(
fiσ

z + �σ x
))

Trexp
(

1
kBT

(
hiσ

z + �σ x
)) (i∈V ), (10.376)
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ρ̂(φ)

=
exp

⎛
⎝ 1

kBT

(
− 1

2
D
∑
i∈V

φi
2 +

∑
i∈V

(
fi + gi

)
φi − 1

2
h
∑
i∈V

(
φi − di

)2 − 1

2
J

∑
{i, j}∈E

(
φi − φ j

)2)
⎞
⎠

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
exp

⎛
⎝ 1

kBT

(
− 1

2
D
∑
i∈V

φi
2 +

∑
i∈V

(
fi + gi

)
φi − 1

2
h
∑
i∈V

(
φi − di

)2 − 1

2
J

∑
{i, j}∈E

(
φi − φ j

)2)
⎞
⎠dφ1dφ2 · · ·dφ|V |

,

(10.377)

ρ̂i (φi ) =
exp

(
1

kBT

(
− 1

2
Lφi

2 + giφi − 1

2
h
(
φi − di

)2))

∫ +∞
−∞

exp

(
1

kBT

(
− 1

2
Lφi

2 + giφi − 1

2
h
(
φi − di

)2))dφi

(10.378)

where C is the |V |×|V | matrix in which the (i, j)-elements are defined by

Ci j ≡

⎧⎪⎨
⎪⎩

|∂i | (i = j),

−1 ({i, j}∈E),

0 (otherwise),

(10.379)

for any nodes i(∈V ) and j(∈V ). Equations (10.376), (10.377), and (10.378) can be
rewritten as

̂Ri = 1

2cosh
(

1
kBT

√
fi 2 + �2

) fi +
√

fi 2 + �2

2
√

fi 2 + �2

⎛
⎝

1 − �

fi+
√

fi 2+�2

+ �

fi+
√

fi 2+�2
1

⎞
⎠

×
⎛
⎝ exp

(
+ 1

kBT

√
fi 2 + �2

)
0

0 exp
(
− 1

kBT

√
fi 2 + �2

)
⎞
⎠
⎛
⎝

1 + �

fi+
√

fi 2+�2

− �

fi+
√

fi 2+�2
1

⎞
⎠.

(10.380)

ρ̂(φ) =
√
det

(
(h + D)I |V | + JC

)
(2π)|V |

×exp

(
− 1

2kBT

(
φ − (

(h + D)I |V | + JC
)−1

( f + g + hd)
)T(

(h + D)I |V | + JC
)

×
(
φ − (

(h + D)I |V | + JC
)−1

( f + g + hd)
))

, (10.381)

ρ̂i (φi ) =
√
h + L

2π
exp

(
− 1

2kBT
(h + L)

(
x − gi + hdi

h + L

)2
)

(i∈V ), (10.382)

The Lagrange multipliers f , g, L, and D are often referred to as the effective fields and
are determined so as to satisfy the consistencies in Eq. (10.373), which reduce to the
following simultaneous equations:
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g + hd = (
h + L

)((
D − L

)
I (2|V |) + JC

)−1
f , (10.383)

f + g + hd =
((

D − L
)
I (|V |) + JC

)−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1√
f12+�2

tanh

(
1

kBT

√
f12 + �2

)

f2√
f22+�2

tanh

(
1

kBT

√
f22 + �2

)

.

.

.

f|V |√
f|V |2+�2

tanh

(
1

kBT

√
f|V |2 + �2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(10.384)

L = −h + 1

2
+
√
1

4
+ 1

|V | ( f + g + hd)T( f + g + hd), (10.385)

1

1
2 +

√
1
4 + 1

|V | ( f + g + hd)T( f + g + hd)
= 1

|V |Tr
((

(h + D)I |V | + JC
)−1

)
.

(10.386)

The real symmetric matrix C is diagonalized as

C = U�U−1, (10.387)

� ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · λ|V |

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (10.388)

where λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λ|V |. All the eigenvalues λ1, λ2, · · ·, λ|V | are always real num-

bers. For the eigenvector ui =

⎛
⎜⎜⎜⎜⎜⎝

U1i

U2i
.
.
.

U|V |i

⎞
⎟⎟⎟⎟⎟⎠
corresponding to the eigenvalue λi such that

Aui = λi ui , for every i∈{1, 2, 3, · · ·, M}, the matrix U is defined by
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U ≡ (u1, u2, u3, · · ·, uM ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U11 U12 U13 · · · U1 V |
U21 U22 U23 · · · U2 V |
U31 U32 U33 · · · U3 V |

.

.

.
.
.
.

.

.

.
. . .

.

.

.

U|V |1 U|V |2 U|V |3 · · · U|V ||V |

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (10.389)

It is known that U is a unitary matrix that satisfies U−1 = UT for the real symmetric
matrix C. By using the diagonal matrix � and unitary matrix U, the density matrix R

in Eq. (10.390) can be represented as follows:

R =
exp

(
− 1

2kBT
ζT

((
h I (2|V |) + J�

)⊗I (2|V |)
)
ζ − 1

2kBT
ξTξ

)

Tr

[
exp

(
− 1

2kBT
ζT

((
h I (2|V |) + J�

)⊗I (2|V |)
)
ζ − 1

2kBT
ξTξ

)] , (10.390)

where

ζ =

⎛
⎜⎜⎜⎜⎜⎝

ζ1

ζ2
.
.
.

ζ|V |

⎞
⎟⎟⎟⎟⎟⎠

≡
(
UT⊗I (2|V |)

)

⎛
⎜⎜⎜⎜⎜⎝

σ z
1

σ z
2
.
.
.

σ z
|V |

⎞
⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎝
(
h I (|V |) + J�

)−1UT

⎛
⎜⎜⎜⎜⎜⎝

d1
d2
.
.
.

d|V |

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

⊗I (2|V |),

(10.391)

ξ =

⎛
⎜⎜⎜⎜⎜⎝

ξ1

ξ2
.
.
.

ξ|V |

⎞
⎟⎟⎟⎟⎟⎠

≡
(
UT⊗I (2|V |)

)

⎛
⎜⎜⎜⎜⎜⎝

σ x
1

σ x
2
.
.
.

σ x
|V |

⎞
⎟⎟⎟⎟⎟⎠

− γ

⎛
⎜⎜⎜⎜⎜⎝

I (2|V ||V |)

I (2|V ||V |)
.
.
.

I (2|V ||V |)

⎞
⎟⎟⎟⎟⎟⎠

. (10.392)

By using the Gram-Schmidt orthonormalization in the framework of Fig. 10.17,
we introduce a new unitary matrix

˜U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ũ11 Ũ12 Ũ13 · · · Ũ1|Ṽ |
Ũ21 Ũ22 Ũ23 · · · Ũ2|Ṽ |
Ũ31 Ũ32 Ũ33 · · · Ũ3|Ṽ |

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Ũ|Ṽ |1 Ũ|Ṽ |2 Ũ|Ṽ |3 · · · Ũ|Ṽ ||Ṽ |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡
(
ũ1, ũ2, ũ3, · · ·, ũ| ˜V |

)
, (10.393)

where
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Fig. 10.17 Momentum space renormalization group for graphical models on random graphs

v1 =

⎛
⎜⎜⎜⎜⎜⎝

U11

U21
.
.
.

U|Ṽ |1

⎞
⎟⎟⎟⎟⎟⎠

, v2 =

⎛
⎜⎜⎜⎜⎜⎝

U12

U22
.
.
.

U|Ṽ |2

⎞
⎟⎟⎟⎟⎟⎠

, · · ·, v|Ṽ | =

⎛
⎜⎜⎜⎜⎜⎝

U1|Ṽ |
U2|Ṽ |

.

.

.

U|Ṽ ||Ṽ |

⎞
⎟⎟⎟⎟⎟⎠

, (10.394)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
1 = v1, ũ1 = u′

1√
u′
1
Tu′

1

,

u′
2 = v2 − u′

1
T

v2

u′
1
Tu′

1

u′
1, ũ2 = u′

2√
u′
2
Tu′

2

,

u′
3 = v3 − u′

1
T

v3

u′
1
Tu′

1

u′
1 − u′

2
T

v3

u′
2
Tu′

2

u′
2, ũ3 = u′

3√
u′
3
Tu′

3

,

.

.

.

u′
| ˜V | = v| ˜V | −

u′
1
T

v| ˜V |
u′
1
Tu′

1

u′
1 −

u′
2
T

v| ˜V |
u′
2
Tu′

2

u′
2 + · · · +

u′
| ˜V |−1

T
v| ˜V |

u′
| ˜V |−1

Tu′
| ˜V |−1

u′
| ˜V |, ũ| ˜V | =

u′
| ˜V |√

u′
| ˜V |

Tu′
| ˜V |

.

(10.395)

By using the new unitary matrix ˜U and a diagonal matrix �
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˜� ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · λ|Ṽ |

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (10.396)

we introduce a renormalized density matrix ˜R from the standpoint of the momentum
space renormalization group for general graphs as

˜P ≡
exp

(
− 1

2kBT
˜ζT

((
h I (2| ˜V |) + J ˜�

)⊗I (2| ˜V |)
)

˜ζ − 1

2kBT
˜ξT˜ξ

)

Tr

[
exp

(
− 1

2kBT
˜ζT

((
h I (2| ˜V |) + J ˜�

)⊗I (2| ˜V |)
)

˜ζ − 1

2kBT
˜ξT˜ξ

)] , (10.397)

where

˜ζ =

⎛
⎜⎜⎜⎜⎜⎝

˜ζ1
˜ζ2
.
.
.

˜ζ| ˜V |

⎞
⎟⎟⎟⎟⎟⎠

≡
(

˜UT⊗I (2| ˜V |)
)
⎛
⎜⎜⎜⎜⎜⎝

σ z
1

σ z
2
.
.
.

σ z
| ˜V |

⎞
⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎝
(
h I (| ˜V |) + J ˜�

)−1
˜UT

⎛
⎜⎜⎜⎜⎜⎝

d̃1
d̃2
.
.
.

d̃|Ṽ |

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

⊗I (2| ˜V |),

(10.398)

˜ξ =

⎛
⎜⎜⎜⎜⎜⎝

˜ξ1
˜ξ2
.
.
.

˜ξ| ˜V |

⎞
⎟⎟⎟⎟⎟⎠

≡
(
UT⊗I (2| ˜V |)

)
⎛
⎜⎜⎜⎜⎜⎝

σ x
1

σ x
2
.
.
.

σ x
| ˜V |

⎞
⎟⎟⎟⎟⎟⎠

− γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I (2| ˜V || ˜V |)

I (2| ˜V || ˜V |)
.
.
.

I (2| ˜V || ˜V |)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (10.399)

⎛
⎜⎜⎜⎝

d̃1
d̃2
.
.
.

d̃|Ṽ |

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ũ11 Ũ12 Ũ13 · · · Ũ1|Ṽ |
Ũ21 Ũ22 Ũ23 · · · Ũ2|Ṽ |
Ũ31 Ũ32 Ũ33 · · · Ũ3|Ṽ |
.
.
.

.

.

.
.
.
.

. . .
.
.
.

Ũ|Ṽ |1 Ũ|Ṽ |2 Ũ|Ṽ |3 · · · Ũ|Ṽ ||Ṽ |

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

U11 U21 U31 · · · U|V |1
U12 U22 U32 · · · U|V |2
U13 U23 U33 · · · U|V |3
.
.
.

.

.

.
.
.
.

. . .
.
.
.

U1|Ṽ | U2|Ṽ | U3|Ṽ | · · · U|V ||Ṽ |

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

d1
d2
d3
.
.
.

d|V |

⎞
⎟⎟⎟⎟⎟⎠

.

(10.400)

For this density matrix ˜P in Eq. (10.397), we can formulate the approximate reduced
density matrix ̂

˜Ri and the approximate Gaussian marginal probability density func-
tion ̂̃ρ(˜φ) = ̂̃ρ(φ1, φ2, · · ·, φ|Ṽ |) and ̂̃ρ(φi ) for the corresponding quantum adaptive TAP
approximation as follows:
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̂

˜Ri = 1

2cosh

(
1

kBT

√
f̃ 2i + �2

)
f̃i +

√
f̃ 2i + �2

2
√

f̃ 2i + �2

⎛
⎜⎜⎝

1 − �

f̃i+
√

f̃ 2i +�2

+ �

f̃i+
√

f̃ 2i +�2
1

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

exp

(
+ 1

kBT

√
f̃ 2i + �2

)
0

0 exp

(
− 1

kBT

√
f̃ 2i + �2

)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 + �

f̃i+
√

f̃ 2i +�2

− �

f̃i+
√

f̃ 2i +�2
1

⎞
⎟⎟⎠.

(10.401)

̂̃ρ(φ1, φ2, · · ·, φ|Ṽ |) =

√√√√√ det
((
h + D̃

)
I(| ˜V |) + J ˜�

)

(2πkBT )|Ṽ |

×exp

(
− 1

2kBT

(
˜φ − ˜U

((
h + D̃

)
I(| ˜V |) + J ˜�

)−1
˜UT

(
˜f + g̃ + h˜d

))T

× ˜U
((

h + D̃
)
I(| ˜V |) + J ˜�

)
˜UT

×
(

˜φ − ˜U
((

h + D̃
)
I(| ˜V |) + J ˜�

)−1
˜UT

(
˜f + g̃ + h˜d

)))
,

(10.402)

̂̃ρi (φi ) =
√

h + L̃

2πkBT
exp

(
− 1

2kBT

(
h + L̃

)(
φi − g̃i + hd̃i

h + L̃

)2
)

(i∈Ṽ ). (10.403)

The reduced density matrix ̂

˜Ri and the marginal probability density functions ̂̃ρi (φi )
and ̂̃ρ

(
φ1, φ2, · · ·, φ|Ṽ |

)
need to satisfy the consistencies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
φî̃ρ

(
φ1, φ2, · · ·, φ|Ṽ |

)
dφ1dφ2· · ·dφ|Ṽ | =

∫ +∞

−∞
φî̃ρi (φi )dφi = Trσ ẑ

˜Ri
(
i∈Ṽ ),

∑

i∈Ṽ

∫ +∞

−∞

∫ +∞

−∞
· · ·

∫ +∞

−∞
φi

2̂̃ρ
(
φ1, φ2, · · ·, φ|Ṽ |

)
dφ1dφ2· · ·dφ|Ṽ | =

∑

i∈Ṽ

∫ +∞

−∞
φi

2̂̃ρi (φi )dφi = 1.

(10.404)

The Lagrange multipliers ˜f , g̃, L̃, and D̃ are determined so as to satisfy the consis-
tencies in Eq. (10.404), which reduce to the following simultaneous equations:

g̃ + h˜d = (
h + L̃

)
˜U
((

D̃ − L̃
)
I (| ˜V |) + J ˜�

)−1
˜UT

˜f , (10.405)
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˜f + g̃ + hd = ˜U
((

D̃ − L̃
)
I (| ˜V |) + J ˜�

)−1
˜UT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̃1√
f̃ 21 +�2

tanh

(
1

kBT

√
f̃ 21 + �2

)

f̃2√
f̃ 22 +�2

tanh

(
1

kBT

√
f̃ 22 + �2

)

.

.

.
f̃|Ṽ |√

f̃ 2|Ṽ |+�2
tanh

(
1

kBT

√
f̃ 2|Ṽ | + �2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(10.406)

L̃ = −h + 1

2
+
√
1

4
+ 1

|Ṽ |
(

˜f + g̃ + h˜d
)T(

˜f + g̃ + h˜d
)
, (10.407)

1

1
2 +

√
1
4 + 1

|Ṽ |
(

˜f + g̃ + hd
)T(

˜f + g̃ + h˜d
) = 1

|Ṽ |Tr
[((

D̃ − L̃
)
I (| ˜V |) + J ˜�

)−1
]
.

(10.408)

10.5.4 Suzuki-Trotter Decomposition in the Transverse Ising
Model

In this section, we review the Suzuki-Trotter formulas and extensions from con-
ventional quantum loopy belief propagation using them. In quantum probabilistic
graphical models, the state space is defined by all the eigenvectors of the density
matrix R and the probability of each eigenvector is given by the eigenvalue as men-
tioned in Sect. 10.4.2. To compute some statistical quantities by using the Monte
Carlo method, it is necessary to diagonalize the energy matrix H, which is a massive
computation. Instead of such a scheme, quantum Monte Carlo methods based on
the Suzuki-Trotter formulas were proposed [89]. One important part of the quan-
tum Monte Carlo method is the mapping from a quantum probabilistic graphical
model to a conventional (classical) probabilistic graphical model by introducing the
techniques of Suzuki-Trotter decompositions. It is known that some statistical quan-
tities for conventional (classical) probabilistic graphical models can be computed by
MCMC methods. This is a basic idea behind quantum Monte Carlo methods. Let
us first review the Suzuki-Trotter formulas and explicitly give a detailed scheme of
Suzuki-Trotter decompositions for the transverse Ising model in Eqs. (10.226) and
(10.227) with Eq. (10.301).

From the definition of the exponential function for square matrices, we have
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exp(x(A + B)) = I + x(A + B) + 1

2
x2(A + B)2 + O(x3) (x→0), (10.409)

exp(x A) = I + x A + 1

2
x2A2 + O(x3) (x→ + 0), (10.410)

exp(xB) = I + xB + 1

2
x2B2 + O(x3) (x→ + 0). (10.411)

From these equalities, the following formula can be confirmed:

exp(x(A + B)) = exp(x A)exp(xB) + O(x2) (x→ + 0). (10.412)

Moreover, we have

exp(x A) =
[
exp

( x

M
A
)]M + O

(
x2

M

)
(x2 � M), (10.413)

exp(x(A + B)) =
[
exp

( x

M
A
)
exp

( x

M
B
)]M + O

(
x2

M

)
(x2 � M). (10.414)

Generally, for a graph (V, E)with the set of nodes V = {1, 2, · · ·, N } and the set of edges
E = {{i, j}}, we have

exp

⎛
⎝x

∑
{i, j}∈E

A{i, j}

⎞
⎠ =

⎡
⎣ ∏

{i, j}∈E
exp

( x

M
A{i, j}

)⎤⎦
M

+ O
(
x2

M

)
(x2 � M), (10.415)

exp

⎛
⎝x

∑
{i, j}∈E

A{i, j} + x
∑

{i, j}∈E
B{i, j}

⎞
⎠

=
⎡
⎣
⎛
⎝ ∏

{i, j}∈E
exp

( x

M
A{i, j}

)⎞⎠
⎛
⎝ ∏

{i, j}∈E
exp

( x

M
B{i, j}

)⎞⎠
⎤
⎦
M

+ O
(
x2

M

)
(x2 � M).

(10.416)

These are referred to as a Suzuki-Trotter Decomposition [87, 88].
For the case of N = 2, we consider an energy matrix H defined by

H = −Jσ z
1 σ z

2 − h1σ
z
1 − h2σ

z
2 − �σ x

1 − �σ x
2 . (10.417)
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It is referred to as a quantum transverse Isingmodel on a chain
(
V = {

1, 2
}
, E = {{1, 2}})

with three nodes and two edges. By using the above Suzuki-Trotter formula, we have

〈s1,1, s2,1|exp
(

− 1

kBT
H
)

|s′1,1, s′2,2〉

= lim
M→+∞

[
exp

(
1

kBT M

(
Jσ z

1 σ z
2 + h1σ

z
1 + h2σ

z
2
))

exp

(
1

kBT M

(
�σ x

1 + �σ x
2
))]M

= lim
M→+∞

∑
τ1,1∈�

∑
τ2,1∈�

∑
s1,2∈�

∑
s2,2∈�

∑
τ1,2∈�

∑
τ2,2∈�

· · ·
∑

s1,M∈�

∑
s2,M∈�

δs1,M+1,s
′
1,1

δs2,M+1,s
′
2,1

×
M∏

m=1

(
〈s1,m , s2,m |exp

(
1

kBT M

(
Jσ z

1 σ z
2 + h1σ

z
1 + h2σ

z
2
))|τ1,m , τ2,m 〉

×〈τ1,m , τ2,m |exp
(

1

kBT M

(
�σ x

1 + �σ x
2
))|s1,m+1, s2,m+1〉

)
. (10.418)

Note that

�σ x
1 + �σ x

2 = �σ x⊗I + � I⊗σ x . (10.419)

By using Eq. (10.253), Eq. (10.418) can be rewritten as

〈s1,1, s2,1|exp
(

− 1

kBT
H
)

|s′
1,1, s

′
2,1〉

= lim
M→+∞

∑
s1,2∈�

∑
s2,2∈�

· · ·
∑

s1,M∈�

∑
s2,M∈�

δs1,M+1,s′1,1δs2,M+1,s′2,1

×
M∏

m=1

(
exp

(
1

kBT M

(
Js1,ms2,m + h1s1,m + h2s2,m

))

×〈s1,m , s2,m |
(
exp

(
1

kBT M
�σ x

)
⊗I

)(
I⊗exp

(
1

kBT M
�σ x

))
|s1,m+1, s2,m+1〉

)
.

(10.420)

Moreover, by the definition of the tensor product for A⊗I and I⊗A for any matrix A

in terms of Eq. (10.238), we have

〈s1,m , s2,m |
(
exp

(
1

kBT M
�σ x

)
⊗I

)(
I⊗exp

(
1

kBT M
�σ x

))
|s1,m+1, s2,m+1〉

= 〈s1,m |exp
(

1

kBT M
�σ x

)
|s1,m+1〉〈s2,m |exp

(
1

kBT M
�σ x

)
|s2,m+1〉

= 〈s1,m |
⎛
⎝ cosh

(
1

kBT M �
)

sinh
(

1
kBT M �

)

sinh
(

1
kBT M �

)
cosh

(
1

kBT M �
)
⎞
⎠|s1,m+1〉

×〈s2,m |
⎛
⎝ cosh

(
1

kBT M �
)

sinh
(

1
kBT M �

)

sinh
(

1
kBT M �

)
cosh

(
1

kBT M �
)
⎞
⎠|s2,m+1〉. (10.421)
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Equation (10.420) can be rewritten in terms of the two-dimensional representation
as

〈s1,1, s2,1|exp
(

− 1

kBT
H
)

|s′1,1, s′2,1〉

= lim
M→+∞

∑
s1,2∈�

∑
s2,2∈�

· · ·
∑

s1,M∈�

∑
s2,M∈�

δs1,M+1,s
′
1,1

δs2,M+1,s
′
2,1

×
M∏

m=1

(
exp

(
1

kBT M

(
Js1,ms2,m + h1s1,m + h2s2,m

))

×〈s1,m |
⎛
⎝ cosh

(
1

kBT M �
)

sinh
(

1
kBT M �

)

sinh
(

1
kBT M �

)
cosh

(
1

kBT M �
)
⎞
⎠|s1,m+1〉

×〈s2,m |
⎛
⎝ cosh

(
1

kBT M �
)

sinh
(

1
kBT M �

)

sinh
(

1
kBT M �

)
cosh

(
1

kBT M �
)
⎞
⎠|s2,m+1〉

)
. (10.422)

Eventually, the density matrix P of the transverse Ising model for two nodes in Eq.
(10.417), such that

P ≡
exp

(
− 1

kBT
H
)

Tr
[
exp

(
− 1

kBT
H
)] , (10.423)

can be reduced to the probability distribution P(M)(s1, s2, s3, · · ·, sM , sM+1) for sm =(
s1,m
s2,m

)
(m = 1, 2, · · ·, M + 1) on the 2×(M + 1) ladder graph as follows:

〈s1,1, s2,1|P |s′1,1, s′2,1〉
= lim

M→+∞
∑

s1∈�2

∑

s2∈�2

· · ·
∑

sM∈�2

∑

sM+1∈�2

δs1,M+1,s
′
1,1

δs2,M+1,s
′
1,2

P(M)(s1, s2, s3, · · ·, sM , sM+1),

(10.424)

where

P(M)(s1, s2, s3, · · ·, sM , sM+1)

≡ 1

Z (M)

M∏
m=1

(
exp

(
1

kBT M

(
Js1,ms2,m + h1s1,m + h2s2,m

))

×exp

(
1

kBT M

(
K (MT, �)s1,ms1,m+1 + K (MT, �)s2,ms2,m+1

)))
,

(10.425)
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Z (M) ≡
∑

s1,2∈�

∑
s2,2∈�

· · ·
∑

s1,M∈�

∑
s2,M∈�

δs1,M+1,s1,1δs2,M+1,s2,1

×
M∏

m=1

(
exp

(
1

kBT M

(
Js1,ms2,m + h1s1,m + h2s2,m

))

×exp

(
1

kBT M

(
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K (T, �) ≡ kBT ln
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The density matrix P in Eq. (10.423) of the transverse Ising model for |V | nodes
V = {1, 2, · · ·, |V |}, which is given by Eqs. (10.226) and (10.227) with Eq. (10.301),
can be reduced to the matrix representation for s probability distribution

P(M)(s1, s2, s3, · · ·, sM , sM+1) for sm =

⎛
⎜⎜⎜⎜⎜⎝

s1,m
s2,m

.

.

.

sN ,m

⎞
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(m = 1, 2, · · ·, M + 1) on the |V |×(M + 1)

ladder graph as follows:
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(10.428)

where
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The dynamics of quantum Monte Carlo methods based on Suzuki-Trotter decom-
positions have been analyzed by using Glauber dynamics [101, 102] and Langevin
dynamics [103, 104]. Recently, these analyses are applied to some statisticalmachine
learning systems with quantum annealing [105, 106]. Some statistical analysis of
quantum Monte Carlo methods for statistical inferences based on Suzuki-Trotter
decompositions [87, 88] are shown in Chaps. 12 and 13 of Part III of this book.

We now try to construct a modification of the conventional quantum message
passing rule in Eq. (10.335) for the transverse Ising model in Eqs. (10.226) and
(10.227)with Eq. (10.301) by imposing the assumption that all off-diagonal elements
of λ j→i and λi→ j for any edge {i, j}(∈E) are zero.Byusing the Suzuki-Trotter formulas
in Eqs. (10.415)–(10.416), Eq. (10.335) can be represented as follows:
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such that,
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The sufficient conditions for Eq. (10.432) are given by
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By taking the summations
∑

si,2∈�

· · ·
∑

si,M∈�

and the limit M→ + ∞ on both sides of Eq.

(10.433), modified message passing rules can be derived as follows:
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. (10.434)

We remark that the modified message passing rules of Eq. (10.434) can be derived by
considering the Bethe free energy functional in the cluster variation method with a
ladder-type basic cluster for the probabilistic graphicalmodel [107] in Eqs. (10.429)–
(10.430). While the conventional framework of quantum belief propagations was
given as a quantum cluster variation method in Ref. [90], some extensions of loopy
belief propagations have been proposed inRefs. [108–111] from a quantum statistical
mechanical standpoint.
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10.6 Concluding Remarks

This chapter explored sublinear modeling based on statistical mechanical informat-
ics for statistical machine learning. In statistical machine learning, we need to com-
pute some statistical quantities in massive probabilistic graphical models. Statistical
mechanical informatics can provide us with many statistical approximate computa-
tional techniques. One is the advanced mean-field framework, which includes mean-
fieldmethods and loopy belief propagationmethods such as theBethe approximation.
The advanced mean-field framework can provide good accuracy for statistical quan-
tities, including averages and covariances. Some statistical quantities in probabilistic
graphical models sometimes have phase transitions when computing the advanced
mean-field method. As we have already shown in Sect. 10.3.3, we have two familiar
phase transitions, namely, the first- and second-order phase transitions. Each step
of the EM algorithm is often affected by the first-order phase transition because the
internal energy in the prior probabilistic model has a discontinuity. This difficulty
appears in the convergence procedure of the EM algorithm, in which the trajectory of
a hyperparameter passes through not only the equilibrium state but also metastable
and unstable states in the loopy belief propagation of probabilistic segmentations in
Sect. 10.3.5. We show that some algorithms based on loopy belief propagation in
probabilistic segmentations can be accelerated by the inverse real-space renormal-
ization group techniques in Sect. 10.3.6.

The second part of this chapter explored quantum statistical machine learning
and some statistical approximate algorithms in quantum statistical mechanical infor-
matics for realizing the framework. Quantum mechanical computations for machine
learning are rapidly developing in terms of both academic research and industrial
implementation. In Sect. 10.4, we explained the modeling framework of density
matrices and some fundamentalmathematics for it and expanded themodeling frame-
work to the quantum expectation-maximization algorithm. In Sect. 10.5, we showed
the fundamental frameworks of quantum loopy belief propagation and quantum sta-
tistical mechanical extensions of the adaptive TAP method. Moreover, we reviewed
the Suzuki-Trotter expansion, and the real and the momentum space renormalization
group for sublinear modeling of density matrices.

Recently, we have the framework of massive fundamental mathematical model-
ing in the statistical machine learning theory for many practical applications, such
that, mainly the sparse modeling [4, 5] and the deep learning [10]. Many academic
researchers are interested in interpretations of such modelings in the stand point of
probabilistic graphical models in the statistical mathematics [2, 3, 7] and the statisti-
cal mechanical informatics [8, 9, 13, 17]. Now we have novel technologies for real-
izing quantum computing in the stand point of quantummechanical extensions of the
statistical mechanical informatics, such that, for example, D-wave Quantum Annealer.
Some results in which the D-Wave quantum annealers have achieved high perfor-
mance computing have appeared in Refs. [112–116]. Some recent developments
of the probabilistic graphical modelings and their static and dynamical analysis of
the advanced mean-field methods and the Suzuki-Trotter decompositions as well as
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the replica methods for realizing sublinear modeling are shown in the subsequent
Chaps. 12 and 13 of the present part of this book, in the statistical mechanical point
of view.
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Chapter 11
Empirical Bayes Method for Boltzmann
Machines

Muneki Yasuda

Abstract The framework of the empirical Bayesmethod allows the estimation of the
values of the hyperparameters in the Boltzmann machine by maximizing a specific
likelihood function referred to as the empirical Bayes likelihood function. However,
themaximization is computationally difficult because the empirical Bayes likelihood
function involves intractable integrations of the partition function. The method pre-
sented in this chapter avoids this computational problem by using the replica method
and the Plefka expansion, which is quite simple and fast because it does not require
any iterative procedures and gives reasonable estimates under certain conditions.

11.1 Introduction

Boltzmann machine learning (BML) [1] has been actively studied in the fields of
machine learning and statistical mechanics. In statistical mechanics, the problem of
BML is sometimes referred to as the inverse Ising problem because a Boltzmann
machine is the same as an Ising model, and it can be treated as an inverse problem
for the Ising model. The framework of the usual BML is as follows. Given a set
of observed data points, the appropriate values of the Boltzmann machine parame-
ters, namely the biases and couplings, are estimated through maximum likelihood
(ML) estimation. Because BML involves intractable multiple summations (i.e., eval-
uation of the partition function), several approximations have been proposed for it
from the viewpoint of statistical mechanics [2]. Examples include methods based on
mean-field approximations (e.g., the Plefka expansion [3] and the cluster variation
method [4]) [5–11] and methods based on other approximations [12–14].

This chapter focuses on another type of learning problem for the Boltzmann
machine. Consider the prior distributions of the Boltzmann machine parameters and
assume that the prior distributions are governed by some hyperparameters. The intro-
duction of the prior distributions is strongly connected to regularizedML estimation,
in which the hyperparameters can be regarded as regularization coefficients. The reg-
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Fig. 11.1 Illustration of scheme of the empirical Bayes method considered in this chapter

ularizedML estimation is important for preventing overfitting to the dataset. Asmen-
tioned above, the usual BML aims to optimize the values of the Boltzmann machine
parameters using a set of observed data points. However, the aim of the problem
presented in this chapter is the estimation of the appropriate values of the hyperpa-
rameters from the dataset without estimating the specific values of the Boltzmann
machine parameters. From the Bayesian viewpoint, this can be potentially accom-
plished by the empirical Bayes method (also known as type-II ML estimation or
evidence approximation) [15, 16]. The schemes of the usual BML and the problem
investigated in this chapter are illustrated in Fig. 11.1.

Recently, an effective algorithm was proposed for the empirical Bayes method
for the Boltzmann machine [17]. Using this method, the hyperparameter estimates
can be obtained without costly operations. This chapter aims to explain this effective
method.

The rest of this chapter is organized as follows. The formulations of theBoltzmann
machine and its usual and regularized ML estimations are presented in Sect. 11.2.
The empirical Bayes method for the Boltzmann machine is presented in Sect. 11.3.
Section 11.4 describes a statistical mechanical analysis for the empirical Bayes
method and an inference algorithm obtained from the analysis. Experimental results
for the presented algorithm are presented in Sect. 11.5. The summary and some dis-
cussions are presented in Sect. 11.6. The appendices for this chapter are given in
Sect. 11.7.

11.2 Boltzmann Machine with Prior Distributions

Consider a fully connected Boltzmann machine with n (bipole) variables S := {Si ∈
{−1,+1} | i = 1, 2, . . . , n} [1]:

P(S | h, J) := 1

Z(h, J)
exp

(
h

n∑
i=1

Si +
∑
i< j

Ji j Si S j

)
, (11.1)
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where
∑

i< j is the sum over all distinct pairs of variables, that is,
∑

i< j =∑n
i=1

∑n
j=i+1. Z(h, J) is the partition function defined by

Z(h, J) :=
∑
S

exp
(
h

n∑
i=1

Si +
∑
i< j

Ji j Si S j

)
,

where
∑

S is the sum over all possible configurations of S, that is,

∑
S

:=
n∏

i=1

∑
Si=±1

.

The parameters h ∈ (−∞,+∞) and J := {Ji j ∈ (−∞,+∞) | i < j} denote the
bias and couplings, respectively.

Given N observed data points, D := {S(μ) ∈ {−1,+1}n | μ = 1, 2, . . . , N }, the
log-likelihood function is defined as

LML(h, J) := 1

nN

N∑
μ=1

ln P(S(μ) | h, J). (11.2)

The maximization of the log-likelihood function with respect to h and J (i.e., the
ML estimation) corresponds to BML (or the inverse Ising problem), that is,

{ĥML, ĴML} = arg max
h,J

LML(h, J). (11.3)

However, the exact ML estimations cannot be obtained because the gradients of the
log-likelihood function include intractable sums over O(2n) terms.

Wenow introduce the prior distributions of the parameters h and J as Pprior(h | H)

and

Pprior(J | γ ) :=
∏
i< j

Pprior(Ji j | γ ), (11.4)

where H and γ are the hyperparameters of these prior distributions. One of the
most important motivations for introducing the prior distributions is the Bayesian
interpretation of the regularized ML estimation [16]. Given the observed datasetD,
using the prior distributions, the posterior distribution of h and J is expressed as

Ppost(h, J | D, H, γ ) = P(D | h, J)Pprior(h | H)Pprior(J | γ )

P(D | H, γ )
, (11.5)

where
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P(D | h, J) :=
N∏

μ=1

P(S(μ) | h, J).

The denominator of Eq. (11.5) is sometimes referred to as evidence. Using the pos-
terior distribution, the maximum a posteriori (MAP) estimation of the parameters is
obtained as

{ĥMAP, ĴMAP} = arg max
h,J

LMAP(h, J), (11.6)

where

LMAP(h, J) := 1

nN
ln Ppost(h, J | D, H, γ )

= LML(h, J) + 1

nN
R0(h) + 1

nN
R1(J) + constant. (11.7)

The MAP estimation of Eq. (11.6) corresponds to the regularized ML estimation,
in which R0(h) := ln Pprior(h | H) and R1(J) := ln Pprior(J | γ ) work as penalty
terms. For example, (i) when the prior distribution of J is a Gaussian prior,

Pprior(Ji j | γ ) =
√

n

2πγ
exp

(
− nJ 2

i j

2γ

)
, γ > 0, (11.8)

R1(J) corresponds to the L2 regularization term and γ corresponds to its coefficient;
(ii) when the prior distribution of J is a Laplace prior,

Pprior(Ji j | γ ) =
√

n

2γ
exp

(
−

√
2n

γ
|Ji j |

)
, γ > 0, (11.9)

R1(J) corresponds to the L1 regularization term and γ again corresponds to its
coefficient. The variances of these prior distributions are identical, that is, Var[Ji j ] =
γ /n.

The following uses the Gaussian prior for J and the following as a simple test
case:

Pprior(h | H) = δ(h − H), (11.10)

where δ(x) is the Dirac delta function; that is, in this test case, h does not distribute.
It is noteworthy that the resultant algorithm obtained based on the Gaussian prior
can be applied to the case of the Laplace prior without modification [17].
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11.3 Empirical Bayes Method

Using the empirical Bayes method, the values of the hyperparameters, H and γ ,
can be inferred from the observed dataset, D. For the empirical Bayes method, a
marginal log-likelihood function is defined as

LEB(H, γ ) := 1

nN
ln

[
P(D | h, J)

]
h,J , (11.11)

where [· · · ]h,J is the average over the prior distributions, that is,

[· · · ]h,J :=
∫

d J
∫

dh(· · · )Pprior(h | H)Pprior(J | γ ).

This marginal log-likelihood function is referred to as the empirical Bayes likelihood
function in this section. From the perspective of the empirical Bayes method, the
optimal values of the hyperparameters, Ĥ and γ̂ , are obtained by maximizing the
empirical Bayes likelihood function, that is,

{Ĥ , γ̂ } = arg max
H,γ

LEB(H, γ ). (11.12)

It is noteworthy that [P(D | h, J)]h,J in Eq. (11.11) is identified as the evidence
appearing in Eq. (11.5).

The marginal log-likelihood function can be rewritten as

LEB(H, γ ) = 1

nN
ln

[
exp

(
nN LML(h, J)

)]
h,J

. (11.13)

Consider the case N � n. In this case, by using the saddle point evaluation,
Eq. (11.13) is reduced to

LEB(H, γ ) ≈ 1

nN
ln Pprior(ĥML | H) + 1

nN
ln Pprior( ĴML | γ ) + constant.

In this case, the empirical Bayes estimates {Ĥ , γ̂ } thus converge to the ML estimates
of the hyperparameters in the prior distributions in which the ML estimates of the
parameters {ĥML, ĴML} (i.e., the solution for BML) are inserted. This indicates that
parameter estimations can be conducted independently of hyperparameter estima-
tion. This trivial case is not considered in this section. Remember that the objective
is to estimate the hyperparameter values without estimating the specific values of the
parameters.
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11.4 Statistical Mechanical Analysis of Empirical Bayes
Likelihood

The empirical Bayes likelihood function in Eq. (11.11) involves intractable multi-
ple integrations. This section presents an evaluation of the empirical Bayes likeli-
hood function using statistical mechanical analysis. The outline of the evaluation is
as follows. First, the intractable multiple integrations in Eq. (11.11) are evaluated
using the replica method [18, 19]. This evaluation leads to a quantity with a certain
intractable multiple summation. The quantity is approximately evaluated using the
Plefka expansion [3]. Thus, from the two approximations, the replica method and
Plefka expansion, the evaluation result for the empirical Bayes likelihood function
is obtained.

11.4.1 Replica Method

The empirical Bayes likelihood function in Eq. (11.11) can be represented as

LEB(H, γ ) = 1

nN
ln lim

x→−1
�x (H, γ ), (11.14)

where

�x (H, γ ) :=
[
Z(h, J)xN exp N

(
h

n∑
i=1

di +
∑
i< j

Ji j di j
)]

h,J
, (11.15)

and

di := 1

N

N∑
μ=1

S(μ)

i , di j := 1

N

N∑
μ=1

S(μ)

i S(μ)

j

are the sample averages of the observed data points. We now assume that τx := xN
is a natural number larger than zero. Accordingly, Eq. (11.15) can be expressed as

�x (H, γ ) =
[∑

Sx

exp
{
h

n∑
i=1

( τx∑
a=1

S{a}
i + Ndi

)

+
∑
i< j

Ji j
( τx∑

a=1

S{a}
i S{a}

j + Ndi j
)}]

h,J
, (11.16)

where a, b ∈ {1, 2, . . . , τx } are the replica indices and S{a}
i is the i th variable in the

ath replica. Sx := {S{a}
i | i = 1, 2, . . . , n; a = 1, 2, . . . , τx } is the set of all vari-
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Fig. 11.2 Illustration of the
replicated system. The τx
replicas,
S{1}, S{2}, . . . , S{τx }, arise
from Z(h, J)τx in
Eq. (11.15)

original system

replicated system

ables in the replicated system (see Fig. 11.2) and
∑

Sx
is the sum over all possible

configurations of Sx , that is,

∑
Sx

:=
n∏

i=1

τx∏
a=1

∑

S{a}
i =±1

.

We evaluate �x (H, γ ) under the assumption that τx is a natural number, and then
we take the limit of x → −1 from the evaluation result as an analytic continuation,1

to obtain the empirical Bayes likelihood function (this is the so-called replica trick).
By employing the Gaussian prior in Eq. (11.8), Eq. (11.16) becomes

�Gauss
x (H, γ ) = exp

{
nNHM + γ (n − 1)N 2

4

(
C2 + x

N

)
− Fx (H, γ )

}
, (11.17)

where

M := 1

n

n∑
i=1

di , Ck := 2

n(n − 1)

∑
i< j

dk
i j , (11.18)

and

Fx(H, γ ) := − ln
∑
Sx

exp
( − Ex (Sx ; H, γ )

)
(11.19)

is the replicated (Helmholtz) free energy [20–23], where

1 The justification for this analytic continuation may not be guaranteed mathematically. Thus, this
type of analysis is regarded as “trick.”
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Ex (Sx ; H, γ ) := − H
n∑

i=1

τx∑
a=1

S{a}
i − γ N

n

∑
i< j

di j

τx∑
a=1

S{a}
i S{a}

j

− γ

n

∑
i< j

∑
a<b

S{a}
i S{a}

j S{b}
i S{b}

j (11.20)

is the Hamiltonian (or energy function) of the replicated system, where
∑

a<b is the
sum over all distinct pairs of replicas, that is,

∑
a<b = ∑τx

a=1

∑τx
b=a+1.

11.4.2 Plefka Expansion

Because the replicated free energy in Eq. (11.19) includes intractable multiple sum-
mations, an approximation is required to proceed with the current evaluation. In this
section, the replicated free energy in Eq. (11.19) is approximated using the Plefka
expansion [3]. In brief, the Plefka expansion is a perturbative expansion in Gibbs
free energy that is a dual form of a corresponding Helmholtz free energy.

The Gibbs free energy is obtained as

Gx (m, H, γ ) = −nτx Hm + extr
λ

{
λnτxm − ln

∑
Sx

exp
( − Ex (Sx ; λ, γ )

)}
.

(11.21)

The derivation of this Gibbs free energy is described in Sect. 11.7.1. The summation
in Eq. (11.21) can be performed when γ = 0, which gives

Gx (m, H, 0) = −nτx Hm + nτx extr
λ

{
λm − ln(2 cosh λ)

}

= −nτx Hm + nτxe(m), (11.22)

where e(m) is the negative mean-field entropy defined by

e(m) := 1 + m

2
ln

1 + m

2
+ 1 − m

2
ln

1 − m

2
. (11.23)

In the context of the Plefka expansion, theGibbs free energyGx (m, H, γ ) is approxi-
mated by the perturbation fromGx (m, H, 0). ExpandingGx (m, H, γ ) around γ = 0
gives

Gx (m, H, γ )

nN
= −xHm + xe(m) + φ(1)

x (m)γ + φ(2)
x (m)γ 2 + O(γ 3), (11.24)

where φ(1)
x (m) and φ(2)

x (m) are the expansion coefficients defined by
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φ(k)
x (m) := 1

nNk! limγ→0

∂kGx (m, H, γ )

∂γ k
.

The forms of the two coefficients are presented in Eqs. (11.34) and (11.35) in
Sect. 11.7.2.

From Eqs. (11.14), (11.17), (11.24), and (11.33), the approximation of the empir-
ical Bayes likelihood function is obtained as

LEB(H, γ ) ≈ HM − extr
m

[
Hm − e(m) + 
(m)γ + φ

(2)
−1(m)γ 2

]
, (11.25)

where


(m) := φ
(1)
−1(m) − (n − 1)N

4n

(
C2 − 1

N

)
.

The forms of φ
(1)
−1(m) and φ

(2)
−1(m) are presented in Eqs. (11.37) and (11.38) in Sect.

11.7.2.

11.4.3 Algorithm for Hyperparameter Estimation

Asmentioned in Sect. 11.3, the empirical Bayes inference is achieved bymaximizing
LEB(H, γ ) with respect to H and γ (cf. Eq. (11.12)). The extremum condition in
Eq. (11.25) with respect to H leads to

m̂ = M, (11.26)

where m̂ is the value of m that satisfies the extremum condition in Eq. (11.25). By
combining the extremum condition of Eq. (11.25) with respect tom with Eq. (11.26),

Ĥ = atanhM −
(∂φ

(1)
−1(M)

∂M
γ + ∂φ

(2)
−1(M)

∂M
γ 2

)
(11.27)

is obtained, where atanhx is the inverse function of tanh x . From Eqs. (11.25) and
(11.26), the optimal value of γ is obtained by

γ̂ = arg max
γ

[ − 
(M)γ − φ
(2)
−1(M)γ 2

]
. (11.28)

Since Eq. (11.28) represents a univariate quadratic optimization, γ̂ is immediately
obtained as follows: (i) when φ

(2)
−1(M) > 0 and 
(M) ≥ 0 or when φ

(2)
−1(M) = 0

and 
(M) > 0, γ̂ = 0, (ii) when φ
(2)
−1(M) > 0 and 
(M) < 0, γ̂ = −
(M)/

(2φ(2)
−1(M)), and (iii) γ̂ → ∞, elsewhere. The case of φ

(2)
−1(M) = 
(M) = 0 is

ignored because it may be rarely observed in realistic settings. Using Eqs. (11.27)
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and (11.28), the solution to the empirical Bayes inference can be obtained with-
out any iterative process. The pseudocode of the presented procedure is shown in
Algorithm 1. The order of the computational complexity of the presented method is
O(Nn2). Remember that the order of the computational complexity of the exact ML
estimation is O(2n).

Algorithm 1 Proposed Inference Algorithm

1: Input Observed dataset:D := {S(μ) ∈ {−1,+1}n | μ = 1, 2, . . . , N }.
2: Compute M , �, C1, and C2 using the dataset according to Eqs. (11.18) and (11.36).
3: Determine γ̂ using Eq. (11.28):

γ̂ =

⎧
⎪⎨
⎪⎩

0 case (i)

−
(M)/(2φ(2)
−1(M)) case (ii)

∞ elsewhere,

where case (i): φ(2)
−1(M) > 0, 
(M) ≥ 0 or φ

(2)
−1(M) = 0, 
(M) > 0 and case (ii): φ(2)

−1(M) >

0, 
(M) < 0.
4: Using γ̂ , determine Ĥ using Eq. (11.27).
5: Output γ̂ and Ĥ .

In the presented method, the value of Ĥ does not affect the determination of γ̂ .
Several mean-field-based methods for BML (e.g., listed in Sect. 11.1) have similar
procedures, in which ĴML is determined separately from ĥML. This is a common
property of the mean-field-based methods for BML, including the current empirical
Bayes problem.

Although the presented method is derived based on the Gauss prior presented
in Eq. (11.8), the same procedure can be applied to the case of the Laplace prior
presented in Eq. (11.9) [17].

11.5 Demonstration

This section discusses the results of numerical experiments. In these experiments,
the observed datasetDwas generated by the generative Boltzmann machine (gBM),
which has the same form as Eq. (11.1), via Gibbs sampling (with a simulated-
annealing-like strategy). The parameters of gBM were drawn from the prior dis-
tributions in Eqs. (11.4) and (11.10). This implies that the model-matched case (i.e.,
the generative and learning models are identical) was considered. In the following,
the notation α := N/n and J := √

γ are used. The standard deviations of the Gaus-
sian prior in Eq. (11.8) and the Laplace prior in Eq. (11.9) can thus be represented
as J/

√
n. The hyperparameters of gBM are denoted by Htrue and Jtrue.
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11.5.1 Gaussian Prior Case

We now consider the case in which the prior distribution of J is the Gaussian prior
in Eq. (11.8). In this case, the Boltzmann machine corresponds to the Sherrington-
Kirkpatrick (SK) model [24], and thus exhibits a spin-glass transition at J = 1 when
h = 0 (i.e., when H = 0).

We consider the case Htrue = 0. The scatter plots for the estimation of Ĵ for
various Jtrue when Htrue = 0 and α = 0.4 are shown in Fig. 11.3. When Jtrue < 1,
our estimates of Ĵ are significantly consistent with Jtrue. This implies that the validity
of our perturbative approximation is lost in the spin-glass phase, as is often the case
with several mean-field approximations. Figure 11.4 shows the scatter plots for
various α. A smaller α causes Ĵ to be overestimated and a larger α causes it to
be underestimated. In our experiments, at least, the optimal value of α seems to be
αopt ≈ 0.4 when Htrue = 0. Our method can also estimate Ĥ . The results for the
estimation of Ĥ when Htrue = 0 and α = 0.4 are shown in Fig. 11.5. Figure 11.5a,
b shows the average of |Htrue − Ĥ | (i.e., the mean absolute error (MAE)) and the
standard deviation of Ĥ over 300 experiments, respectively. The MAE and standard
deviation increase in the region where Jtrue > 1.

(a) (b)
Jtrue

0.0 0.5 1.0

in
f J

0.0

0.5

1.0

Jtrue

0.0 0.5 1.0

in
f J

0.0

0.5

1.0

Fig. 11.3 Scatter plots of Jtrue (horizontal axis) versus Ĵ (vertical axis)when Htrue = 0 andα = 0.4:
a n = 300 and b n = 500. These plots represent the average values over 300 experiments
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11.5.2 Laplace Prior Case

We now consider the case in which the prior distribution of J is the Laplace prior in
Eq. (11.9). The scatter plots for the estimation of Ĵ for various values of Jtrue when
Htrue = 0 are shown in Fig. 11.6. The plots shown in Fig. 11.6 almost completely
overlap with those in Fig. 11.4.

(a) (b)

0.0 0.5 1.0

in
f J

0.0

0.5

1.0

α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6

JtrueJtrue

0.0 0.5 1.0

in
f J

0.0

0.5

1.0

α = 0.2
α = 0.3
α = 0.4
α = 0.5
α = 0.6

Fig. 11.4 Scatter plots of Jtrue (horizontal axis) versus Ĵ (vertical axis) for various α = N/n when
Htrue = 0: a n = 300 and b n = 500. These plots represent the average values over 300 experiments
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Fig. 11.5 Results of estimation of Ĥ versus Jtrue when Htrue = 0 and α = 0.4: a the MAE and b
standard deviation. These plots represent the average values over 300 experiments
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α = 0.5
α = 0.6
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Fig. 11.6 Scatter plots of Jtrue (horizontal axis) versus Ĵ (vertical axis) for various α = N/n, when
Htrue = 0, in the case of the Laplace prior: a n = 300 and b n = 500. These plots represent the
average values over 300 experiments

11.6 Summary and Discussion

This chapter describes the hyperparameter inference algorithm proposed in [17]. As
evident from the numerical experiments, the proposed inference method in both the
Gaussian and Laplace prior cases works efficiently except for the spin-glass phase.
However, the presented method has the drawback that it is sensitive to the value of
α = N/n. In the experiments in Sect. 11.5, although α ≈ 0.4 was appropriate when
Htrue = 0, it is known that the appropriate value decreases as Htrue increases [17].
Since we cannot know the value of Htrue in advance, the appropriate setting of α is
also unknown. Estimation of αopt is an open problem. It seems to be unnatural that
there exists an optimal value of α because larger datasets are better in usual machine
learning. Such peculiar behavior can be attributed to the truncating approximation in
the Plefka expansion. A more detailed discussion of this issue is presented in [17].

Finally, we review the presented method from the perspective of sublinear com-
putation without considering the aforementioned issues. The Boltzmann machine
given in Eq. (11.1) has p parameters, where p = O(n2). In usual machine learn-
ing, N = O(p) is, at least, required to obtain a good ML estimate for the Boltz-
mannmachine. Therefore, a hyperparameter inference “without” the empirical Bayes
method (namely, the strategy in which the hyperparameters are inferred through
the ML estimate in a similar manner as that discussed in the latter part of Sect.
11.3) requires a dataset of size O(p). However, the presented method requires only
N = O(n) = O(

√
p) because α = O(1) with respect to n.
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11.7 Appendices

11.7.1 Appendix 1: Gibbs Free Energy

In this appendix, we derive the Gibbs free energy for the replicated (Helmholtz) free
energy in Eq. (11.19).

The replicated free energy is obtained by minimizing the variational free energy,
defined by

f [Q] :=
∑
Sx

Ex (S; H, γ )Q(Sx ) +
∑
Sx

Q(Sx ) ln Q(Sx), (11.29)

under the normalization constraint, that is,
∑

Sx
Q(Sx) = 1, where Q(Sx) is a test

distribution over Sx , and Ex (Sx ; H, γ ) is the Hamiltonian for the replicated system
defined in Eq. (11.20).

The Gibbs free energy is obtained by adding new constraints to the minimization
of f [Q]. We add the relationship

m = 1

nτx

n∑
i=1

τx∑
a=1

∑
Sx

S{a}
i Q(Sx ) (11.30)

as the constraint. Using Lagrange multipliers, the Gibbs free energy is obtained as

Gx (m, H, γ ) := extr
Q,λ,r

{
f [Q] − r

(∑
Sx

Q(Sx) − 1
)

− λ
( n∑

i=1

τx∑
a=1

∑
Sx

S{a}
i Q(Sx ) − nτxm

)}
, (11.31)

where “extr” denotes the extremum with respect to the assigned parameters, and r
and λ are the Lagrange multipliers for the normalization constraint of Q(Sx) and
the constraint in Eq. (11.30), respectively. Performing the extremum operation with
respect to Q(S) and r in Eq. (11.31) gives

Gx (m, H, γ ) = extr
λ

{
λnτxm − ln

∑
Sx

exp
( − Ex (Sx ; H + λ, γ )

)}
. (11.32)
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The replicated free energy in Eq. (11.19) coincides with the extremum of this Gibbs
free energy with respect to m, that is,

Fx (H, γ ) = extr
m

Gx (m, H, γ ). (11.33)

By performing the shift H + λ → λ in Eq. (11.32), Eq. (11.21) is obtained.

11.7.2 Appendix 2: Coefficients of Plefka Expansion

This appendix presents the coefficients of the Plefka expansion in Eq. (11.24). Refer
to Ref. [17] for a detailed derivation. The first-order coefficient is given by

φ(1)
x (m) = − x(n − 1)NC1

2n
m2 − (n − 1)Kx

2nN
m4, (11.34)

where Kx := τx (τx − 1)/2. The second-order coefficient is given by

φ(2)
x (m) = − (n − 1)2τx N�

2n2
m2(1 − m2) − (n − 1)τx NC2

4n2
(1 − m2)2

− (n − 1)KxC1

n2
m2(1 − m2)2 − (n − 1)Kx

2n2N

(
n + τx − 3

)
m4(1 − m2)2

− (n − 1)Kx

4n2N
(1 − m4)2, (11.35)

where � in the first term of Eq. (11.35) is defined as

� := 1

n

n∑
i=1

ω2
i , ωi := 1

n − 1

∑
j∈∂(i)

di j − C1, (11.36)

where ∂(i) := {1, 2, . . . , n} \ {i}. When x = −1, these coefficients are

φ
(1)
−1(m) = (n − 1)NC1

2n
m2 − (n − 1)(N + 1)

4n
m4, (11.37)

φ
(2)
−1(m) = (n − 1)2N2�

2n2
m2(1 − m2) + (n − 1)N2C2

4n2
(1 − m2)2

− (n − 1)N (N + 1)C1

2n2
m2(1 − m2)2

− (n − 1)(N + 1)

4n2
(
n − N − 3

)
m4(1 − m2)2 − (n − 1)(N + 1)

8n2
(1 − m4)2.

(11.38)
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Chapter 12
Dynamical Analysis of Quantum
Annealing

Anthony C. C. Coolen, Theodore Nikoletopoulos, Shunta Arai,
and Kazuyuki Tanaka

Abstract Quantum annealing aims to provide a faster method than classical com-
puting for finding the minima of complicated functions, and it has created increasing
interest in the relaxation dynamics of quantum spin systems. Moreover, problems in
quantum annealing caused by first-order phase transitions can be reduced via appro-
priate temporal adjustment of control parameters, and in order to do this optimally,
it is helpful to predict the evolution of the system at the level of macroscopic observ-
ables. Solving the dynamics of quantum ensembles is nontrivial, requiring modeling
of both the quantumspin systemand its interactionwith the environmentwithwhich it
exchanges energy. An alternative approach to the dynamics of quantum spin systems
was proposed about a decade ago. It involves creating stochastic proxy dynamics
via the Suzuki-Trotter mapping of the quantum ensemble to a classical one (the
quantumMonte Carlo method), and deriving from this new dynamics closed macro-
scopic equations for macroscopic observables using the dynamical replica method.
In this chapter, we give an introduction to this approach, focusing on the ideas and
assumptions behind the derivations, and on its potential and limitations.

12.1 Quantum Ensembles and Their Dynamics

We imagine an ensemble of K independent quantum systems |ψα〉, labeled by
α = 1 . . . K , all with the same Hamiltonian but distinct initial conditions. Making a
measurement of an observable A in this ensemble means randomly picking one of
the K systems, with equal probabilities, and measuring A in the selected system. The
average of the observable A can then be written as 〈A〉 = Tr(ρA), where ρ, the den-
sitymatrix, is theHermitian nonnegative definite operatorρ = K−1 ∑K

α=1 |ψα〉〈ψα|,
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with Tr(ρ) = 1. Since ρ is Hermitian it has a complete basis of eigenstates {|k〉}.
Its eigenvalues wk , which are nonnegative and normalized according to

∑
k wk = 1,

can be interpreted as probabilities. We can now write 〈A〉 = ∑
n an

∑
k wk |〈k|n〉|2.

Hence the probability of measuring eigenvalue an of observable A in the ensemble is
Pn = ∑

k wk |〈k|n〉|2, where |〈k|n〉|2 is the probability of observing an in eigenstate k
of the density matrix, and wk is the probability of finding the ensemble in eigenstate
k.

The evolution of the density matrix follows from the evolution of the states |ψα〉,
each governed by the Schrödinger equation, giving d

dt ρ = (i�)−1[H, ρ]. The solution
is ρ = e−iHt/�ρt=0 eiHt/�. In particular, it follows using the eigenbasis {|E〉} of H
that

〈H〉 =
∑

E

〈E |e−iHt/�ρt=0 e
iHt/�H |E〉 = 〈H〉t=0. (12.1)

At equilibrium [H, ρ] = 0. The density matrix can therefore be diagonalized simul-
taneously with H , that is, ρ = ∑

E f (E)|E〉〈E |. The values of f (E) define the
type of equilibrium ensemble at hand. In the canonical ensemble we have f (E) =
exp(−βE)/Z(β), so

ρ = 1

Z(β)

∑

E

e−βE |E〉〈E | = 1

Z(β)
e−βH . (12.2)

The quantum partition function Z(β) follows from Tr(ρ) = 1: Z(β) = Tr(e−βH ).
The free energy and the average internal energy are given by F = −β−1 logZ(β)

and E = − ∂
∂β

logZ(β). The expectation values of operators become 〈A〉 = Z(β)−1

Tr(e−βH A). Note that if the systems of the ensemble evolve strictly according to the
Schrödinger equation, there cannot be generic evolution of ρ toward the equilibrium
form in Eq. (12.2). For any initial density operator with 〈H〉t=0 �= E this is ruled
out by Eq. (12.1). Since the state in Eq. (12.2) describes the result of equilibration
of quantum systems in a heat bath with which they can exchange energy, a correct
description of the dynamics requires a Hamiltonian that also describes the degrees
of freedom of the heat bath.

This is the first obstacle in the analysis of the dynamics of quantum ensembles: it is
difficult even to write down the correct microscopic dynamical laws. A similar situa-
tion occurs also in the classical setting.Without a heat bathwe have amicro-canonical
ensemble with conserved energy. Deriving the Gibbs-Boltzmann distribution from
the joint dynamics of the system and heat bath requires us to connect determinis-
tic trajectories to invariant measures via ergodic theory and to subsequently derive
the form of these measures, which has so far proven possible for only a handful of
models.

The approach followed in [1] was to circumvent ensembles altogether and solve
theSchrödinger equation for small systems inwhich a decaying longitudinal field acts
as quantum noise (which is indeed what happens in quantum annealing). In classical
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systems one often defines the pain away. One constructs an intuitively reasonable
stochastic process that evolves toward the Gibbs-Boltzmann state, usually of the
Markov Chain Monte Carlo (MCMC) form. This process is studied as a proxy for
the dynamics of the original system. The price paid is that one cannot be sure to what
extent the stochastic dynamics are close to those of the original system. The MCMC
equations are not even unique, since there are many choices that evolve to the Gibbs-
Boltzmann state. The same dynamics strategy can be applied to quantum systems
if the latter can be mapped to classical ones. This is achieved by the Suzuki-Trotter
formalism [4].

12.2 Quantum Monte Carlo Dynamics

In order to apply quantum annealing to optimization problems formulated in terms
of binary variables, one needs spin- 12 particles [1]. These are labeled by i = 1 . . . N ,
with Pauli matrices {σ x

i , σ
y
i , σ z

i }. In the standard representation of σ z-eigenstates:

σ x =
( 0 1
1 0

)
, σ y =

(0 −i
i 0

)
, σ z =

( 1 0
0 −1

)
.

In quantum annealing one choosesHamiltonians of the form H = H0 + H1, inwhich
H0 is obtained by replacing the classical spins σi = ±1 in an Ising Hamiltonian by
the matrices σ z

i and a second part H1 that acts as a form of quantum noise1:

H0 = −
∑

i< j

Ji jσ
z
i σ

z
j − h

∑

i

σ z
i , H1 = −�

∑

i

σ x
i . (12.3)

H0 represents the quantity to beminimized in our optimization problem. The classical
state achieving this minimum follows from the quantum ground state of the system
upon moving the parameters � and β−1 adiabatically slowly to zero and is hence
obtained from the partition function Z(β) = Tr(e−βH0−βH1). For excellent reviews
of the physics and the applications of the above types of quantum spin systems with
transverse fields, we refer to [2, 3].

The Suzuki-Trotter procedure [4] allows us to convert the above quantum problem
into a classical one using the operator identity

eA+B = lim
M→∞

(
eA/MeB/M

)M
. (12.4)

From now on we assume that A and B are Hermitian operators, and we write the
basis of eigenstates of A as {|n〉}. We then obtain after some simple manipulations:

1 For simplicity, we choose H0 here to be quadratic in the spins, and the external field to be uniform,
but this is not essential.
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Tr(eA+B) = lim
M→∞

∑

n1...nM

e
∑M

k=1 ank /M
∏

k, mod(M)

〈nk |eB/M |nk+1〉. (12.5)

Application to A = −βH0 and B = −βH1, where the relevant basis is that of the
joint eigenstates of all {σ z

i }, that is, |s1, . . . , sN 〉 = |s1〉 ⊗ . . . ⊗ |sN 〉, with si = ±1
and σ z

i |s1, . . . , sN 〉 = si |s1, . . . , sN 〉, gives Z(β) = limM→∞ ZM(β), where

ZM(β) =
∑

{sik=±1}
e(β/M)

∑M
k=1[

∑
i< j Ji j sik s jk+h

∑
i sik ]

∏

k, mod(M)

N∏

i=1

〈sik |e(β�/M)σ x
i |si,k+1〉

= e
1
2 NM log[ 12 sinh(2β�/M)]

×
∑

{sik=±1}
e(β/M)

∑M
k=1[

∑
i< j Ji j sik s jk+h

∑
i sik ]+B

∑
k,mod(M)

∑
i sik si,k+1 . (12.6)

in which B = − 1
2 log tanh(β�/M). Thus the partition function of the N -spin quan-

tum system is mapped (apart from a constant) onto the limit M → ∞ of that of a
classical Ising model with NM spins s = {sik}, with Hamiltonian H(s) and asymp-
totic free energy density f = limN→∞ limM→∞ fN ,M :

H(s) = − 1

M

M∑

k=1

∑

i< j

Ji j siks jk − h

M

M∑

k=1

∑

i

sik (12.7)

− B

β

∑

k,mod(M)

∑

i

siksi,k+1,

fN ,M = − M

2β
log

[
1

2
sinh(2β�/M)

]

− 1

βN
log

∑

{sik=±1}
e

β

M

∑M
k=1[

∑
i< j Ji j sik s jk+h

∑
i sik ]+B

∑
k,mod(M)

∑
i sik si,k+1 . (12.8)

The new system in Eq. (12.8), for M→∞ equivalent to the original quantum one,
lends itself to constructing a stochastic dynamics. We first write the Suzuki-Trotter
Hamiltonian in the standard form of NM interacting Ising spins in an external field:

H(s) = −1

2

∑

ik, j	

sik Jik, j	s j	 − θ
∑

ik

sik, (12.9)

Jik, j	 = 1

M
δk	 Ji j (1−δi j ) + B

β
δi j (δk,	+1+δ	,k+1), θ = h/M. (12.10)

The conventional Glauber dynamics by which this classical system evolves toward
the equilibrium state with the above Hamiltonian is, after switching to continuous
time [5] and denoting by pt (s) the probability of finding the system in state s at time
t :
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τ
d

dt
pt (s) =

N∑

i=1

M∑

k=1

{
pt (Fik s)wik(Fik s) − pt (s)wik(s)

}
, (12.11)

wik(s) = 1

2
[1 − sik tanh(βhik(s))], hik(s) =

∑

j	

Jik, j	s j	 + θ. (12.12)

This master equation describes a process where at each step a site i ∈{1, . . . , N } and
a Trotter slice k∈{1, . . . , M} are picked at random, followed by an attempt to flip
the spin sik . The wik(s) denote transition rates for sik → −sik . Fik is an operator that
flips spin sik and leaves all others invariant. The parameter τ defines time units such
that the average duration of a single spin update is τ/N . Working out the local fields
hik(s) gives

hik(s) = 1

M

∑

j �=i

Ji j s jk + B

β
(si,k+1 + si,k−1) + h/M. (12.13)

The process in Eqs. (12.11, 12.12) is suitable for numerical simulation and defines
the quantumMonte Carlo dynamics for the ensemble with Hamiltonian given by Eq.
(12.3) provided we take M→∞. When applied to quantum annealing models, some
authors have called it ‘simulated quantum annealing’. The definition in Eqs. (12.11,
12.12), however, is not unique. Many alternative stochastic processes evolve toward
the same Gibbs-Boltzmann state (see, e.g., [6]).

12.3 Dynamical Replica Analysis

The remaining challenge is to extract formulae describing the evolution of relevant
macroscopic quantities from Eqs. (12.11, 12.12). This was addressed in [7–10] using
the so-called dynamical replica method (DRT) [12–14]. In this chapter, we deviate
from the definitions in [7–10] and stay closer to the original DRT ideas.

Thedynamics (12.11, 12.12) imply that expectationvalues 〈G(s)〉= ∑
s pt (s)G(s)

evolve according to:

τ
d

dt
〈G(s)〉 =

N∑

i=1

M∑

k=1

∑

s

pt (s)wik(s)
[
G(Fik s) − G(s)

]
. (12.14)

To study the joint dynamics of a set of L observables �(s) = (1(s), . . . , L(s))
we substitute G(s) = δ[� − �(s)]. Now 〈G(s)〉 = Pt (�), and

τ
d

dt
Pt (�) =

N∑

i=1

M∑

k=1

∑

s

pt (s)wik(s)
[
δ[� − �(Fik s)] − δ[� − �(s)]

]
. (12.15)
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If the observables μ(s) are O(1) and macroscopic in nature, their susceptibility
to single spin flips � jkμ(s) = μ(Fik s) − μ(s) will be small. We can then define
� jk = (� jk1(s), . . . , � jkL(s)) ∈ IRL , and expand (12.15) in a distributional sense,
that is,

τ
d

dt

∫

d� Pt (�)G(�) =
∫

d� G(�)
∑

	≥1

(−1)	

	!
∂	

∂μ1 . . . ∂μ	

×
{ L∑

μ1=1

. . .

L∑

μ	=1

N∑

i=1

M∑

k=1

〈
wik(s)δ[�−�(s)]�ikμ1(s) . . . �ikμ	

(s)
〉}

. (12.16)

We thereby arrive at the following Kramers-Moyal expansion

τ
d

dt
Pt (�) =

∑

	≥1

(−1)	

	!
L∑

μ1=1

. . .

L∑

μ	=1

∂	

∂μ1 . . . ∂μ	

{
Pt (�)F (	)

μ1...μ	
[�; t]

}
, (12.17)

with

F (	)
μ1...μ	

[�; t] =
〈 N∑

i=1

M∑

k=1

wik(s)�ikμ1(s) . . . �ikμ	
(s)

〉

�;t
, (12.18)

〈 f (s)〉�;t =
∑

s pt (s)δ[� − �(s)] f (s)
∑

s pt (s)δ[� − �(s)] . (12.19)

Asymptotically, that is, for N , M → ∞, only the first term of Eq. (12.17) survives
if

lim
N ,M→∞

∑

	≥2

1

	!
L∑

μ1=1

. . .

L∑

μ	=1

N∑

i=1

M∑

k=1

〈
|�ikμ1(s) . . . �ikμ	

(s)|
〉

�;t
= 0. (12.20)

If all �ikμ(s) scale similarly, that is, ∃�̃N ,M such that �ikμ(s) = O(�̃N ,M) for
N , M→∞, then Eq. (12.17) retains only its first term if limN ,M→∞ L�̃N ,M

√
NM =

0. In that case it reduces to a Liouville equation describing deterministic evolution
of �:

τ
d

dt
μ =

〈 N∑

i=1

M∑

k=1

wik(s)�ikμ(s)
〉

�;t
. (12.21)

If limN ,M→∞ L�̃N ,M

√
NM > 0, we can no longer ignore the fluctuations in our

observables �(s), which limits our choice of observables.
Equation (12.21) is closed if

∑N
i=1

∑M
k=1 wik(s)�ikμ(s) is a function of�(s) only

(which would simply drop out). If this is not the case, we close Eq. (12.21) using
a maximum entropy argument: we approximate pt (s) in Eq. (12.21) by a form that
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assumes that all micro-states with the same value for �(s) are equally likely. Now
Eq. (12.21) becomes

τ
d

dt
μ =

∑
s δ[� − �(s)]∑N

i=1

∑M
k=1 wik(s)�ikμ(s)

∑
s δ[� − �(s)] . (12.22)

Within the replica formalism [16, 17], this closed equation can also be written as

τ
d

dt
μ = lim

n→0

∑

s1...sn

( n∏

α=1

δ[�−�(sα)

) N∑

i=1

M∑

k=1

wik(s1)�ikμ(s1). (12.23)

The accuracy of Eq. (12.22) depends on our choice for the observables μ(s). We
want them to be O(1), obeying limN ,M→∞ L�̃N ,M

√
NM = 0, and such that the

probability equipartitioning assumption is as harmless as possible. Including H(s)/N
and N−1 log p0(s) in our set of observables ensures that equipartitioning holds for
t → 0 and t → ∞. If we have disorder in the couplings {Ji j }, and for N →∞ our
observables are self-averaging with respect to its realization, we can average over
the disorder.2 This gives

τ
d

dt
μ = lim

n→0

∑

s1...sn

( n∏

α=1

δ[�−�(sα)

) N∑

i=1

M∑

k=1

wik(s1)�ikμ(s1). (12.24)

For the system inEq. (12.8) and the typical initial conditions in quantumannealing,
there are two natural and simple routes for choosing the observables in the DRT
method,3 all involving the normalized distinct energy contributions in Eq. (12.27):

• Trotter slice-dependent observables
We choose, for k = 1 . . . M (mod M),

Ek (s) = − 1

N

∑

i< j

Ji j sik s jk , mk (s) = 1

N

∑

i

sik , Ek (s) = 1

N

∑

i

sik si,k+1. (12.25)

Now L = 3M , and the susceptibilities of the observables to single spin flips are, using
∑

j Ji j s jk =
O(1) for all k (required for an extensive Hamiltonian):

�ik Eq (s) = 2N−1δqksik
∑

j �=i

Ji j s jk = O(N−1), (12.26)

�ikmq (s) = −2N−1δqksik = O(N−1), (12.27)

�ikEq (s) = −2N−1sik (δqksi,k+1 + δk,q+1si,k−1) = O(N−1). (12.28)

2 Without disorder one does not need the replica formalism yet and can work directly with (12.22).
3 One can always add further observables, or split the present ones into distinct contributions. This
generally improves the accuracy of the theory provided limN ,M→∞ L�̃N ,M

√
NM = 0 still holds.



302 A. C. C. Coolen et al.

Hence �̃N ,M = N−1, so deterministic evolution requires that M � N
1
3 as M, N → ∞. Hence, on

choosing Eq. (12.25) we can no longer takeM→∞ before N →∞, whichwould have been the correct
order, and must rely on these limits commuting.4

• Trotter slice-independent observables
These are simply averages over all Trotter slices of the previous set in Eq. (12.25), that is,

E(s) = 1

M

M∑

k=1

Ek(s), m(s) = 1

M

M∑

k=1

mk(s), E(s) = 1

M

M∑

k=1

Ek(s). (12.29)

Hence L = 3, and the spin-flip susceptibilities come out as

�ik E(s) = 2(NM)−1sik
∑

j �=i

Ji j s jk = O((NM)−1), (12.30)

�ikm(s) = −2(NM)−1sik = O((NM)−1), (12.31)
�ikE(s) = −2(NM)−1sik (si,k+1+si,k−1) = O((NM)−1). (12.32)

Now �̃N ,M = 1/NM . Deterministic evolution requires limN ,M→∞(NM)
− 1

2 = 0, which is always
true.We can therefore take our two limits in any desired orderwithout having toworry about fluctuations
in our macroscopic observables.

12.4 Simple Examples

We illustrate the previous approach by application to simple models. We investigate
the commutation of the limits N → ∞ andM → ∞, and the link between stationary
states of the dynamical equations and the equilibrium theory. We start with the sim-
plest case of non-interacting spins in a uniform x field, followed by non-interacting
spins in uniform x and z fields and ferromagnetically interacting quantum systems.

12.4.1 Non-interacting Quantum Spins in a Uniform x Field

This is the simplest case of Eq. (12.8), where h = Ji j = 0 for all (i, j). Although this
specific model is physically trivial, it is still instructive since it already reveals many
general features of the more general dynamical theory. The statics analysis gives

ZM(β) =
{
e

1
2 M log[ 12 sinh(2β�/M)]Tr(KM)

}N
, (12.33)

with a 2 × 2 transfer matrix of the one-dimensional Ising chain:

4 The assumption that the order of the limits N →∞ and M→∞ can be changed is also made in
equilibrium studies such as [15], where steepest descent integration is used as N →∞ for fixed M .
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K =
(

eB e−B

e−B eB

)

, eigenvalues : λ+ = 2 cosh(B), λ− = 2 sinh(B). (12.34)

After some rewriting and insertion of the definition of B we obtain:

ZM(β) =
{
e

1
2 M log[ 12 sinh(2β�/M)]2M [coshM(B) + sinhM(B)]

}N

= [2 cosh(β�)]N . (12.35)

This gives the correct free energy density fN ,M = − 1
β
log[2 cosh(β�)].

Next, we turn to the macroscopic dynamical equations in Eq. (12.21). Since Ji j =
0, the order parameters Ek(s) and E(s) are always zero. The two dynamical routes
give:

• Trotter slice-dependent observables
The observables are {mk(s), Ek(s)}, and we are forced to take N →∞ before
M→∞. Using identities such as tanh[B(s+s ′)] = 1

2 (s+s ′) tanh(2B)we obtain:

τ
d

dt
mk = −mk + 1

2
(mk+1+mk−1) tanh(2B), (12.36)

τ
d

dt
Ek = tanh(2B)[1+ 1

2
(Ck+Ck+1)] − 2Ek, (12.37)

in which, using the equivalence of the N sites i , we have the 2-slice correlators:

Ck =
∑

s

[∏
q δ[mq−mq(s)]δ[Eq−Eq(s)]

]
s1,k−1s1,k+1

∑
s

[ ∏
q δ[mq−mq(s)]δ[Eq−Eq(s)]

] . (12.38)

One can compute these for N → ∞with fixed M via steepest descent integration:

Ck =
∑

s1...sM
e
∑

q (xq sq+yq sq sq+1)sk−1sk+1
∑

s1...sM
e
∑

q (xq sq+yq sq sq+1)
, (12.39)

in which x = (x1, . . . , xM) and y = (y1, . . . , yM) are to be solved from

mk = ∂ log Z

∂xk
, Ek = ∂ log Z

∂yk
, Z(x, y) =

∑

s1...sM

e
∑

q (xq sq+yq sq sq+1). (12.40)

• Trotter slice-independent observables
In this case, we only have m(s) and E(s), and working out Eq. (12.21) gives

τ
d

dt
m = −m[1−tanh(2B)], τ

d

dt
E = (1+C) tanh(2B) − 2E, (12.41)
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with

C =
∑

s δ[m−m(s)]δ[E−E(s)]s1,1s1,3
∑

s δ[m−m(s)]δ[E−E(s)] . (12.42)

Calculating the 2-slice correlator C using steepest descent results in

C =
∑

s1...sM
e

1
M

∑
q (xsq+ysq sq+1)s1s3

∑
s1...sM

e
1
M

∑
q (xsq+ysq sq+1)

, (12.43)

m = ∂ log Z

∂x
, E = ∂ log Z

∂y
, Z(x, y) =

∑

s1...sM

e
1
M

∑
q (xsq+ysq sq+1). (12.44)

If at time zero the mk and Ek in Eqs. (12.36, 12.37) are independent of k, this
will remain true at all times5 and the dynamics in Eqs. (12.36, 12.37) simplifies to
Eq. (12.41). Computing C involves solving a one-dimensional Ising model with a
constant external field, whereas computing Ck requires solving heterogeneous spin
chain models in equilibrium for arbitrary coupling constants and fields. This is the
second reason, in addition to the issue with limits, for why it is preferable to work
with Trotter slice-independent observables.

For non-interacting spins with h �= 0 the analysis is similar. Here f = limM→∞
fN ,M = −β−1 log[2 cosh(β√

�2+h2)], with equilibrium magnetisation

m = −∂ f/∂h = tanh(β
√
h2+�2)

h√
h2+�2

, (12.45)

and the Trotter slice-independent observables are predicted to obey

τ
d

dt
m = 1

2
(1−C) tanh(βh/M) + 1

2
Q+(1+C) − m(1−Q−), (12.46)

τ
d

dt
E = (1+C)Q−+ 2Q+m − 2E, (12.47)

with Q± = 1
2 [tanh(βh/M+2B)±tanh(βh/M−2B)]. Since limh→0 Q+ = 0 and

limh→0 Q− = tanh(2B), Eqs. (12.46,12.47) indeed revert back to Eq. (12.41) for
h → 0.We inspect the fixed-points of Eqs. (12.46, 12.47) after having also added spin
interactions in the next section. Clearly, since limM→∞ Q+ = limM→∞(1−Q−) = 0
the relaxation time of the system diverges forM → ∞, with closer inspection reveal-
ing that dm/dt = O(M−2). This makes physical sense: for large M , hence large B,
the Trotter slices increasingly prefer identical states, so state changes (in a single
slice) become rare as they require the mounting energetic costs of breaking the Trot-
ter symmetry.

5 In [7, 8, 10] this is called the static approximation.
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12.4.2 Ferromagnetic z-interactions and Uniform x and z
Fields

We now choose h �= 0, � �= 0, and Ji j = J0/N for all i �= j , so that the quantum
Hamiltonian is H = −(J0/N )

∑
i< j σ

z
i σ

z
j − ∑

i (hσ z
i + �σ x

i ). This is known as the
Husimi-Temperley-Curie-Weiss model in a transverse field [11]. In the statics, after
some simplemanipulations and using the short-handDz = (2π)− 1

2 e− 1
2 z

2
dz, we find:

ZM(β) = e
1
2 NM log[ 12 sinh(2β�/M)]− 1

2 β J0

×
∫ [ M∏

k=1

Dzk

]{

Tr
M∏

k=1

K
(
zk

√
M

β J0N

)}N

, (12.48)

with the non-symmetric transfer matrix

K (x) =
(
eB+βh/M+β J0x/M e−B+β J0x/M

e−B−β J0x/M eB−βh/M−β J0x/M

)

= ex(β J0/M)σ z
K (0). (12.49)

We first turn to the statics of the model. It is not immediately clear whether or not
the limits N , M→∞ in Eq. (12.48) commute. Upon taking the limit N → ∞ first,
one obtains via steepest descent integration:

lim
N→∞ fN ,M = − M

2β
log

[
1

2
sinh

(2β�

M

)]

− 1

β
extrx

{

log Tr
M∏

k=1

K (xk) − β J0
2M

x2
}

. (12.50)

We find the derivatives of the quantity �(x) to be extremized, with δab = 1−δab:

∂�

∂xq
= β J0

M

{
Tr

∏M
k=1(δkq1I+δkqσ z)K (xk )

Tr
∏M

k=1 K (xk )
− xq

}

, (12.51)

∂2�

∂xq∂xr
=

(β J0
M

)2
{
Tr

∏M
k=1(δkq1I+δkqσ z)(δkr1I+δkrσ

z)K (xk )

Tr
∏M

k=1 K (xk )

−Tr
∏M

k=1(δkq1I+δkqσ z)K (xk )

Tr
∏M

k=1 K (xk )

Tr
∏M

k=1(δkr1I+δkrσ
z)K (xk )

Tr
∏M

k=1 K (xk )

}

− β J0
M

δqr . (12.52)

In Trotter-symmetric solutions xk = m for all k, these derivatives simplify to
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∂�

∂xq
= β J0

M

{
Tr[σ zKM(m)]
Tr[KM(m)] − m

}

, (12.53)

∂2�

∂xq∂xr
=

(β J0
M

)2
{
Tr[σ zK |q−r |(m)σ zKM−|q−r |(m)]

Tr[KM(m)] −
(
Tr[σ zKM(m)]
Tr[KM(m)]

)2}

−(β J0/M)δqr . (12.54)

and m is the solution of

m = Tr[σ zKM(m)]
Tr[KM(m)] . (12.55)

Trotter symmetry-breaking bifurcations occurwhenDet[(β J0/M)A−1I] = 0,where

Aqr = Tr[σ zK |q−r |(m)σ zKM−|q−r |(m)]
Tr[KM(m)] − m2. (12.56)

We introduce the symmetric matrix Q(m) = e− 1
2m(β J0/M)σ z

K (m)e
1
2m(β J0/M)σ z

, with
eigenvalues λ±(x) and orthogonal eigenbasis |±〉. Now for any 	 ∈ IN we have

K 	(m) = e
1
2m(β J0/M)σ z

(
λ	+(m)|+〉〈+|+λ	−(m)|−〉〈−|

)
e− 1

2m(β J0/M)σ z
, (12.57)

and hence, with the short-hand σ z
ab = 〈a|σ z|b〉 and φ = λ−(m)/λ+(m) ∈ (−1, 1):

Tr[σ zKM(m)]
Tr[KM(m)] = σ z+++σ z−−φM

1 + φM
, (12.58)

Aqr = σ z2+++[
φ|q−r |+φM−|q−r |]|σ z+−|2+φMσ z2−−

1 + φM
− m2. (12.59)

Since A has a Toeplitz form, we know its eigenvalues:

k = 1 . . . M : ak = |σ z+−|2
1+φM

(1−φM)(1−φ2)

1+φ2−2φ cos(2π(k−1)/M)
. (12.60)

Finally we need to diagonalize Q(m) for large M . This gives:



12 Dynamical Analysis of Quantum Annealing 307

Q(m) =
(
eB+β(h+J0m)/M e−B

e−B eB−β(h+J0m)/M

)

(12.61)

λ±(m) = eB± β

M

√
(h+J0m)2+�2+O(M−2), (12.62)

lim
M→∞ |±〉 = 1

C±(m)

(
�,−(h+ J0m) ±

√
(h+ J0m)2+�2

)
, (12.63)

C±(m) = √
2
[
(h+ J0m)2+�2 ∓ (h+ J0m)

√
(h+ J0m)2+�2

] 1
2
. (12.64)

It follows that

φ = e− 2β
M

√
(h+J0m)2+�2+O(M−2). (12.65)

Hence limM→∞ φ=1, limM→∞ φM = exp[−2β
√

(h+ J0m)2+�2], limM→∞ σ z++ =
− limM→∞ σ z−− =(h+ J0m)/

√
(h+ J0m)2+�2, and limM→∞ σ z+− =

�/
√

(h+ J0m)2+�2. The equation for the magnetization m and the eigenvalues of
A thereby become

m = (h+ J0m) tanh[β
√

(h+ J0m)2+�2]
√

(h+ J0m)2+�2
, (12.66)

ak = �2 tanh[β
√

(h+ J0m)2+�2]
(h+ J0m)2+�2

[
1+2 lim

M→∞
1−cos(2π(k−1)/M)

1−φ2

]−1
. (12.67)

Since all ak are bounded for large M , the condition β J0ak/M = 1 for bifurca-
tions away from the Trotter-symmetric state are never met, indicating that the
state described by Eq. (12.66) is the physical one. The free energy density f =
limM→∞ limN→∞ fN ,M is

f = 1

2
J0m

2 − lim
M→∞

{
M

2β
log

[1

2
sinh

(2β�

M

)]
+ 1

β
log

(
λM

+ (m)+λM
− (m)

)}

= 1

2
J0m

2 − 1

β
log

[
2 cosh

(
β
√

(h+ J0m)2+�2
)]

. (12.68)

Extremizing the expression in Eq. (12.68) over m reproduces Eq. (12.66).
We return to Eq. (12.48), and now seek to take the Trotter limit M→∞ first. The

complexities are all in the evaluation for large M of the quantity

ZM =
∫ [ M∏

k=1

Dzk

]{

Tr

[ M∏

k=1

ezk
√

β J0
MN σ z

(
eB+βh/M e−B

e−B eB−βh/M

) ]}N

. (12.69)

This can be analyzed using random field Ising chain techniques [18]. Alternatively,
we can use the fact that in summations of the form

∑
k zk , each zk effectively scales

asO(M− 1
2 ), enabling us to use e−B = √

tanh(β�/M) and a modified version of the
Trotter identity, viz.

∏
k≤M

(
euk/Mev/M

) = eM
−1 ∑

k≤M uk+v, to derive
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ZM = eNMB
∫ [ M∏

k=1

Dzk

]{

Tr

[ M∏

k=1

ezk
√

β J0
MN σ z

(
1I+ β

M
(hσ z+�σ x )+O(

1

M2
)
)]}N

= √
β J0NeNMB

∫
dm√
2π

e− 1
2 β J0Nm2

{
Tr eβ(h+J0m)σ z+β�σ x+O(M−1)

}N
. (12.70)

The free energy density f = limN→∞ limM→∞ fN ,M then becomes

f = − 1

β
extrm

{
log

(
eβμ+(m) + eβμ−(m)

) − 1

2
β J0m

2
}
, (12.71)

in which μ±(m) are the eigenvalues of the matrix L(m) = (h+ J0m)σ z+�σ x :

L(m) =
(
h+ J0m �

� −(h+ J0m)

)

, μ±(m) = ±
√

(h+ J0m)2+�2. (12.72)

We now recover Eqs. (12.66, 12.68), so the limits N → ∞ and M → ∞ can be
interchanged:

f = extrm

{
1

2
J0m

2 − 1

β
log

[
2 cosh

(
β
√

(h+ J0m)2+�2
)]}

. (12.73)

We next turn to the DRT dynamics. The energy and the usual initial condi-
tions can once more be expressed in terms of {mk, Ek} (slice-dependent observ-
ables) or (m, E) (slice-independent ones). We define the short-hand Q±(m)=
1
2 tanh(β(J0m+h)/M+2B)± 1

2 tanh(β(J0m+h)/M−2B) ∈ (−1, 1). Upon insert-
ing Eqs. (12.27, 12.28) and Eqs. (12.31, 12.32) into Eq. (12.21), with the fields
hik(s) = M−1[h+ J0mk(s)] + (B/β)(si,k+1+si,k−1) + O(N−1), and using expres-
sions such as tanh[a + b(s+s ′)] = 1

4 (1+s)(1+s ′) tanh(a+2b) + 1
4 (1−s)(1−s ′)

tanh(a−2b) + 1
2 (1−ss ′) tanh(a), one finds the following descriptions:

• Trotter slice-dependent observables
Our observables are mq(s)=N−1 ∑

i si,q and Eq(s)=N−1 ∑
i si,qsi,q+1, for q =

1 . . . M , and we must take the limit N → ∞ before M → ∞. We note that

tanh(βhik(s)) = 1

2
(1+si,k+1si,k−1)Q+(mk(s)) + 1

2
(si,k+1+si,k−1)Q−(mk(s))

+1

2
(1−si,k+1si,k−1) tanh(β(h+ J0mk(s))/M), (12.74)

so with the correlators Ck in Eq. (12.39) the dynamical laws take the form
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τ
d

dt
mq = 1

2
(1+Cq)Q+(mq) + 1

2
(mq+1+mq−1)Q−(mq) − mq

+1

2
(1−Cq) tanh

(
β

M
(h+ J0mq)

)

, (12.75)

τ
d

dt
Eq = 1

2
(mq+1+mq−1)Q+(mq) + 1

2
(1+Cq)Q−(mq)

+1

2
(mq+mq+2)Q+(mq+1) + 1

2
(1+Cq+1)Q−(mq+1)

+1

2
(mq+1−mq−1) tanh

(
β

M
(h+ J0mq)

)

+1

2
(mq−mq+2) tanh

(
β

M
(h+ J0mq+1)

)

− 2Eq . (12.76)

For slice-independent initial conditions, wheremk = m and Ek = E , this becomes

τ
d

dt
m = 1

2
(1+C)Q+(m)+mQ−(m)−m+ 1

2
(1−C) tanh

(
β

M
(h+ J0m)

)

, (12.77)

τ
d

dt
E = 2mQ+(m) + (1+C)Q−(m) − 2E, (12.78)

with the correlator C in Eq. (12.43).

• Trotter slice-independent observables
For the choice (m, E) there is no constraint on the order of limits, but the quantities
mk(s) appearing inside tanh(βhik(s)) can no longer be replaced by deterministic
macroscopic observables, but must now be calculated. Using Trotter slice permu-
tation symmetry wherever possible, one finds

τ
d

dt
m = 1

2M

M∑

k=1

〈
[1+Ck(s)]Q+(mk(s)) + [mk+1(s)+mk−1(s)]Q−(mk(s))

+[1−Ck(s)] tanh(β(h+ J0mk(s))/M)
〉

m,E
− m, (12.79)

τ
d

dt
E = 1

M

M∑

k=1

〈
[mk+1(s)+mk−1(s)]Q+(mk(s))

〉

m,E

+ 1

M

M∑

k=1

〈
[1+Ck(s)]Q−(mk(s))

〉

m,E
− 2E, (12.80)

with Ck(s) = N−1 ∑
i si,k+1si,k−1. For large M and N , and in view of the inter-

changeability of the limits M → ∞ and N → ∞ in the equilibrium calculation,
we may anticipate (and can indeed show) that we can neglect the fluctuations in
the values of {mk(s)} and simply replace mk(s) → m(s) + o(1) in the right-hand
sides of the above equations, upon which these simplify to Eqs. (12.77, 12.78).
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12.5 Link Between Statics and Dynamics

Wenow show that forM → ∞, the stationary state of Eqs. (12.77, 12.78) reproduces
the equilibrium result in Eq. (12.66) as expected. The fixed-point equations of Eqs.
(12.77, 12.78) are

m = 1

2
(1+C)Q+(m) + mQ−(m) + 1

2
(1−C) tanh

(
β

M
(h+ J0m)

)

, (12.81)

E = mQ+(m) + 1

2
(1+C)Q−(m), (12.82)

with the correlator C = C(m, E) ∈ (−1, 1) to be solved from

C =
∑

s1...sM e
∑M

k=1(xsk+ysk sk+1)s1s3
∑

s1...sM e
∑M

k=1(xsk+ysk sk+1)
, (12.83)

m = 1

M

∂ log Z

∂x
, E = 1

M

∂ log Z

∂y
, Z(x, y) =

∑

s1...sM

e
∑M

k=1(xsk+ysk sk+1). (12.84)

Wecompute Z(x, y)via the transfermatrix K (x, y)with elements Kss ′=e
1
2 x(s+s ′)+yss ′

.
This gives Z(x, y)=λM+ (x, y)+λM− (x, y), where λ±(.) are the eigenvalues of K (.),

λ±(x, y) = ey
(
cosh(x) ±

√

sinh2(x)+e−4y
)
. (12.85)

For the equilbrium values of (m, E), Eq. (12.84) are solved by

x=β(h+ J0m)/M, y= B=−1

2
log tanh

(
β�

M

)

, so e−4y = tanh2
(

β�

M

)

. (12.86)

This claim is confirmed by substituting these as ansätze into the expressions given
in the appendix. The key ingredient φ = λ−/λ+ of our formulae then becomes

logφ = −2β

M

√
(h+ J0m)2+�2 + O(M−3). (12.87)

Hence for M → ∞ the formulae for m and E in Eq. (12.84) become

m = (h+ J0m) tanh[β√
(h+ J0m)2+�2]

√
(h+ J0m)2+�2

, E = 1. (12.88)

in which we recognize (12.66). For large M one finds Q+(m)=O(M−3) and
Q−(m)=1−2(β�/M)2+O(M−3), so expansion of the fixed-point equations gives
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m = M(1−C)
h+ J0m

4β�2
+ O(M−1), (12.89)

E = 1

2
(1+C)[1 − 2(β�/M)2] + O(M−3). (12.90)

The first equation implies that C = 1−C̃/M for M → ∞, with C̃ = O(1). In turn,
this gives E = 1− C̃

2M +O(M−2). What is left in our proof is to show that m obeys

m = h+ J0m

4β�2
lim

M→∞ M(1−C). (12.91)

Wehence compute the correlatorC to orderM−1, using the identities in the appendix:

C = 〈+|σ z |+〉2 + cosh
[
( 12M−2) logφ

]

cosh
[ 1
2M logφ

]
(
1 − 〈+|σ z |+〉2

)

= (h+ J0m)2

(h+ J0m)2+�2 + cosh[β(1−4/M)
√

(h+ J0m)2+�2]
cosh[β√

(h+ J0m)2+�2]
× �2

(h+ J0m)2+�2 +O
(

1

M2

)

= 1− 1

M
tanh

[
β
√

(h+ J0m)2+�2
] 4β�2
√

(h+ J0m)2+�2
+O

(
1

M2

)

. (12.92)

We can now read off the value of C̃ , and the condition in Eq. (12.91) is found to
reduce to Eq. (12.66), so that it is indeed satisfied. This completes the demonstration
that for large M , the macroscopic Eqs. (12.77, 12.78) indeed have the equilibrium
state as their fixed-point.

12.6 Evolution on Adiabatically Separated Timescales

We return to the dynamical laws in Eqs. (12.77, 12.78). As noted earlier, these exhibit
a divergent relaxation time for the magnetization for large M , suggesting that the
dynamics have distinct phases. The first phase is studied by choosing τ = O(1).
Using

Q+(m) = 4β3�2(J0m+h)

M3 + O(M−4), Q−(m) = 1− 2β2�2

M2 + O(M−4), (12.93)

we here find that

m = m0 + O(M−1), τ
d

dt
E = 1+C(m0, E) − 2E + O(M−1). (12.94)
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So on these timescales themagnetization does not change, whereas the Trotter energy
evolves to the solution of the fixed-point equation E = 1

2 + 1
2C(m0, E), in which

C(m0, E) is to be solved from the following equations according to the appendix:

m = − sinh(x) tanh[ 12M logφ]
√
sinh2(x)+e−4y

, (12.95)

E = sinh2(x)

sinh2(x)+e−4y
+ cosh[( 12M−1) logφ]

cosh[ 12M logφ]
e−4y

sinh2(x)+e−4y
, (12.96)

C = sinh2(x)

sinh2(x)+e−4y
+ cosh[( 12M−2) logφ]

cosh[ 12M logφ]
e−4y

sinh2(x)+e−4y
, (12.97)

withφ = [cosh(x)−
√
sinh2(x)+e−4y]/[cosh(x) +

√
sinh2(x)+e−4y]. Inspectionof

these equations reveals that the correct scalingwithM requires (x, e−2y)=(u, v)/M ,
with u, v=O(1). Now 1

2M logφ=−√
u2+v2+O(M−2), E = 1−Ẽ/M+O(M−2),

and C = 1−2Ẽ/M+O(M−2), in which (u, v) are solved from

m0 = u tanh(
√
u2+v2)√

u2+v2
, Ẽ = 2v2 tanh(

√
u2+v2)√

u2+v2
. (12.98)

Although the fixed-point equation for E is now solved to orderO(M−1), computation
of Ẽ requires higher orders of M−1. Once E = 1−Ẽ/M+O(N−2) and C(m, E) =
1−2Ẽ/M+O(M−2), we find dm/dt = O(M−2) and dE/dt = O(M−2), so nothing
evolves further macroscopically on these finite timescales.

Since we need τ = O(M−2) to probe the macroscopic evolution of the system on
larger timescales, spin flips in the Trotter system are attempted on unit timescales of
O(M3N ).6 With the choice τ = M−2, and upon defining M(1−E) = Ẽ and M(1−
C) = C̃ , the macroscopic laws (12.77, 12.78) become

d

dt
m = 1

2
C̃β(h+ J0m) − 2mβ2�2 + O

(
1

M

)

, (12.99)

d

dt
Ẽ = 4Mβ2�2 − M2(2Ẽ−C̃) − 8β3�2m(J0m+h) − 2β2�2C̃ + O

(
1

M

)

. (12.100)

The quantity C̃ = C̃(m, Ẽ) is to be solved together with (x, y) from Eqs. (12.95,
12.96, 12.97). The relevant scaling is still (x, e−2y) = (u, v)/M , with u, v = O(1),
but according to Eq. (12.100) we now need more than just the leading order in M−1.
Using

logφ = −2
√
u2+v2

M
+ O(M−3), (12.101)

6 This reflects the high energy cost of breaking Trotter symmetry to induce magnetization changes.
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the equations for E and C take the form E = �1(u, v) and C = �2(u, v), where

�	(u, v) =
[
sinh2

( u

M

)
+ v2

M2

]−1[
sinh2

( u

M

)
+ v2

M2

F	(u, v)

F0(u, v)

]
, (12.102)

F	(u, v) = cosh

[(
1

2
M−	

)

logφ

]

. (12.103)

Now, after tedious but straightforward expansion in M−1 one finds that

F	(u, v)

F0(u, v)
= 1 − 2	

√
u2+v2

M
tanh

(√
u2+v2

)

+2	2(u2+v2)

M2
+ O(M−3). (12.104)

Hence

�	(u, v) = 1 − 2	v2

M

tanh(
√
u2+v2)√

u2+v2
+ 2	2v2

M2
+ O(M−3). (12.105)

It follows that the equations for Ẽ = M(1−E) and C̃ = M(1−C) take the form

Ẽ = 2v2
tanh(

√
u2+v2)√

u2+v2
− 2v2

M
+O(M−2), C̃ = 2Ẽ− 4v2

M
+O(M−2). (12.106)

The dynamical equations then become

d

dt
m = Ẽβ(h+ J0m) − 2mβ2�2 + O

(
1

M

)

, (12.107)

d

dt
Ẽ = 4M(β2�2−v2) − 8β3�2m(J0m+h) − 4β2�2Ẽ + O

(
1

M

)

. (12.108)

What remains is to express v in terms of (m, Ẽ), in leading two orders, by solving
Eq. (12.106) for Ẽ alongside our equation for m. The latter is

m = u tanh(
√
u2+v2)√

u2+v2
+ O(M−2). (12.109)

Equation (12.106) shows that v = 0 corresponds to Ẽ = 0, and that Ẽ increases with
v2. On intermediate timescales τ = M−1, we have

d

dt
m = O

(
1

M

)

,
d

dt
Ẽ = 4(β2�2−v2) + O

(
1

M

)

, (12.110)
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where m remains constant and Ẽ evolves toward the value for which v = β� +
O(M−1) (which is also the equilibrium value for v). Thus, in the dynamical equations
in Eqs. (12.107, 12.108) describing the process on timescales of τ = M−2 we must
substitute v2 = β2�2 + O(M−1). Thus, during the slow process where m evolves
we always have

Ẽ = 2β2�2 m/u. (12.111)

Upon insertion into Eq. (12.107), this results in a closed dynamical equation for m
only:

d

dt
m = 2β2�2

(
β(h+ J0m) tanh(

√
u2+β2�2)

√
u2+β2�2

− m

)

, (12.112)

without requiring additional approximations, and with u to be solved from7

m = u tanh(
√
u2+β2�2)

√
u2+β2�2

. (12.113)

In equilibrium we recover from Eqs. (12.112, 12.113) the correct equilibrium state
in Eq. (12.88), with u = β(J0m+h). Comparison with Eq. (10) in [7] reveals, apart
from a harmless difference in time units, that the approximation of [7] (used also in
[8–10]) implies replacing u at any time by β(J0m+h). While this indeed holds in
equilibrium, the approximation may be dangerous far from equilibrium.

In Fig. 12.1 we test the predictions of Eqs. (12.112, 12.113) against numerical
simulations of the process in Eqs. (12.11, 12.12). The approximate co-location of
the simulation curves for widely varying values of M confirms that τ = O(1/M2)

(inferred from the dynamical theory) indeed captures the characteristic timescale
of the macroscopic process. Second, while not showing perfect agreement with the
simulation data, which is not expected in view of the probability equipartitioning
assumption used to close the macroscopic dynamical equations, away from station-
arity the full theory in Eqs. (12.112, 12.113) is reasonably accurate and improves
upon the approximation proposed in [7].

12.7 Discussion

In this chapter we aimed to explain the basic ideas and assumptions behind the DRT
strategy for deriving and closing macroscopic dynamical equations, and its applica-
tion to the types of spin systems used in quantum annealing with transverse fields.

7 For certain values of m and β�, Eq. (12.113) may have more than one solution u. In such cases
the physical solution is the one with the largest absolute value.
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Fig. 12.1 Theory versus computer simulations of themicroscopic process in Eqs. (12.11, 12.12) for
the Trotter representation of the systemwith Hamiltonian H = −(J0/N )

∑
i< j σ

z
i σ z

j − ∑
i (hσ z

i +
�σ x

i ), with N =10000 and M ∈{3, 12, 48, 192}. In all cases J0=1, T =�=0.5, and τ =1/M2 (so
time units correspond to NM3 attempted moves per spin). Left figure: magnetization versus time
for h=0.1; right figure: the same for h=0.5. The simulation data are shown as connected markers.
The black curve is the theoretical prediction, that is, the solution of Eqs. (12.112, 12.113). The light
blue curve is the approximated theory of [7], obtained by solving Eq. (12.112) with the equilibrium
value u=β(J0m + h)

We focused on technicalities relating to commutation of the limits N → ∞ and
M → ∞, the possible choices ofmacroscopic observables, the distinctM-dependent
timescales in the evolution of the Trotter system, and on how an additional approxi-
mation made in earlier studies can be avoided, leading to a more precise dynamical
theory. We have tested the theoretical predictions of the theory against numerical
MCMC simulations of a ferromagnetic quantum system [11] with transverse exter-
nal fields in Trotter representation and found good agreement.

Since there was no disorder in the examples used in this text, we could work with
the dynamical laws in Eq. (12.22). If, in contrast, there is disorder in the problem,
the macroscopic laws need to be averaged over its realization, and the main tool is
Eq. (12.24). For models with random interactions, performing this disorder average
is, however, relatively painless and does not make the dynamical theory significantly
more complicated.

We hope that this introduction to the method may aid the development of further
analytical studies of the macroscopic dynamics of quantum annealing, including
modelswith time-dependent control parameters,more realistic quantumsystemswith
disordered spin interactions or with interactions on finitely connected graphs, and
more precise analytical descriptions inwhich themacroscopic dynamical observables
are functions [14, 19, 20] instead of scalars.

Acknowledgements The authors are grateful for stimulating discussions with Professor Hidetoshi
Nishimori.
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Appendix: Mathematical Identities

Here we list some basic properties of relevant transfer matrices and expectation
values in the single-site Trotter system. The transfer matrix and its eigenvalues are

K =
(
ey+x e−y

e−y ey−x

)

, λ± = ey
[
cosh(x) ±

√

sinh2(x) + e−4y
]

(12.114)

The corresponding normalized eigenvectors are

|+〉 = 1

L

(
e−2y,

√

sinh2(x) + e−4y − sinh(x)
)
, (12.115)

|−〉 = 1

L

(√

sinh2(x) + e−4y − sinh(x),−e−2y
)
, (12.116)

L2 = e−4y +
(√

sinh2(x) + e−4y − sinh(x)
)2

. (12.117)

From these expressions one can find 〈±|σ z|±〉 = ± sinh(x)/
√
sinh2(x)+e−4y , and

compute the following observables (with φ = λ−/λ+):
∑

s1...sM s1
∏M

k=1Ksksk+1
∑

s1...sM

∏M
k=1Ksksk+1

= − sinh(x) tanh
[ 1
2M logφ

]

√
sinh2(x)+e−4y

, (12.118)

∑
s1...sM s1s2

∏M
k=1Ksksk+1

∑
s1...sM

∏M
k=1Ksksk+1

= sinh2(x)

sinh2(x)+e−4y

+ cosh
[( 1

2M−1
)
logφ

]

cosh
[ 1
2M logφ

]
e−4y

sinh2(x)+e−4y
(12.119)

∑
s1...sM s1s3

∏M
k=1Ksksk+1

∑
s1...sM

∏M
k=1Ksksk+1

= sinh2(x)

sinh2(x)+e−4y

+ cosh
[( 1

2M−2
)
logφ

]

cosh
[ 1
2M logφ

]
e−4y

sinh2(x)+e−4y

(12.120)
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Chapter 13
Mean-Field Analysis of Sourlas Codes
with Adiabatic Reverse Annealing

Shunta Arai

Abstract In this chapter, we analyze the typical performance of adiabatic reverse
annealing (ARA) for Sourlas codes. Sourlas codes are representative error-correcting
codes related to p-body spin-glass models and have a first-order phase transition for
p > 2, which degrades the estimation performance. In the ARA formulation, we
introduce the initial Hamiltonian which incorporates the prior information of the
solution into a vanilla quantum annealing (QA) formulation. The ground state of the
initial Hamiltonian represents the initial candidate solution. To avoid the first-order
phase transition, we apply ARA to Sourlas codes. We evaluate the typical ARA
performance for Sourlas codes using the replica method. We show that ARA can
avoid the first-order phase transition if we prepare for the proper initial candidate
solution.

13.1 Introduction

Problems in information processing have been studied analytically from the view-
point of statisticalmechanics [12].Associativememory, Sourlas codes, code-division
multiple-access (CDMA), and image restoration are very popular examples [5, 6, 21,
24]. Many studies have focused on the degradation of the original signal or informa-
tion due to noise. The noise can be physically regarded as thermal fluctuations. The
original information can be estimated from the degraded data by tuning the strength
of thermal fluctuations.

In this chapter, we focus mainly on error-correcting codes such as Sourlas codes,
which are described by p-body spin-glass problems [21]. The main idea of error-
correcting codes is to add redundancy while sending information to decode the orig-
inal signal from noisy outputs. In Sourlas codes, the original signal is encoded in
the interactions of the spins. To estimate the original signal, we search the ground
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state of the Hamiltonian or compute the expectation value over the Gibbs–Boltzmann
distribution at a finite temperature.

In addition to thermal fluctuations, quantum fluctuations can also be used to infer
the original information. Several studies have demonstrated that quantumfluctuations
such as the transverse field do not necessarily enhance the performance of decoding
for image restoration, Sourlas codes, or CDMA [2, 6, 15, 16]. The optimal estimation
performance using quantum fluctuations is inferior to that using thermal fluctuations
in Bayes-optimal cases. However, in some non-Bayes optimal cases, the estimation
performance using finite quantum fluctuations and thermal fluctuations surpasses
that using only thermal fluctuations; for example, when the assigned temperature is
lower than the true noise scale. This implies the potential of combining quantum and
thermal fluctuations for signal recovery problems.

Signal estimation algorithms using quantum fluctuations are related to optimiza-
tion algorithms using quantum fluctuations, which is known as quantum annealing
(QA) [9] or adiabatic quantum computation (AQC) [3]. The QA algorithm is phys-
ically implemented in the quantum annealer [7]. The quantum annealer has been
tested in numerous applications, including traffic optimization [11] and in vehicles
in factories [14].

In a closed system, the QA procedure is as follows. First, we set the initial state as
the trivial ground state of the transverse field term. Next, we gradually decrease the
strength of the transverse field. Following theSchrodinger equation, the trivial ground
state evolves adiabatically into a nontrivial ground state of the target Hamiltonian,
which is consistent with a solution of combinatorial optimization problems. The
quantum adiabatic theorem indicates that the total computational time for searching
the ground state is characterized by the minimum energy gap between the ground
state and first excited state [23]. When the target Hamiltonian has a first-order phase
transition, the computational time to find the ground state grows exponentially.

Reverse annealing (RA) is a protocol for restarting quantum dynamics from the
final state of the standard QA procedure [17]. The RA algorithm can be used to
avoid or mitigate the first-order phase transition and is classified into two methods:
adiabatic reverse annealing (ARA) [13] and i terated reverse annealing (IRA)
[26]. ARA and IRA are distinguished by how the final state is utilized. One imple-
ments the final state by introducing the initial Hamiltonian, and the other incorporates
it as the initial condition.

In a recent study [2], ARA is applied to CDMA multiuser detection. ARA can
avoid or mitigate the first-order phase transition in the CDMAmodel. In this chapter,
we apply ARA for Sourlas codes. Sourlas codes have a first-order phase transition
for p > 2. The existence of the first-order phase transition deteriorates the estima-
tion performance. We evaluate the typical performance of ARA for Sourlas codes
using the replica method. We demonstrate that ARA can avoid the first-order phase
transition of Sourlas codes if we prepare the proper initial conditions.
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13.2 Sourlas Codes Using Quantum Fluctuations

Following a previous study [15], we formulate Sourlas codes using quantum fluctua-
tions. Sourlas codes are set up to send a set of products of p spins Ji1...i p = ξi1 . . . ξi p
through a channel. The symbol ξi = ±1(i = 1 . . . N ) represents the original signal,
which is independently generated from the uniform distribution P(ξi ) = 1/2. We
consider the Gauss channel as

P(Ji1...i p |{ξ}) =
(

N p−1

J 2πp!
) 1

2

exp

{
−N p−1

J 2 p!
(
Ji1...i p − J0 p!ξi1 . . . ξi p

N p−1

)2
}

, (13.1)

where J and J0 are hyperparameters. The ratio J0/J represents the signal-to-noise
ratio. The distribution P(Ji1...i p |{ξ}) is the conditional probability of the signal Ji1...i p
for the encoded signal ξi1 . . . ξi p . We infer the original signal {ξ} from the noisy
outputs {Ji1...i p }. Using the Bayes formula, we introduce the posterior probability for
the estimated signal σ = {σ1 . . . σN } ∈ {±1}N as

P(σ |{Ji1...i p }) = P({Ji1...i p }|σ )P(σ )∑
σ P({Ji1...i p }|σ )P(σ )

, (13.2)

where P({Ji1...i p }|σ ) and P(σ ) are the likelihood and prior distribution, respectively.
The summation of spin variables

∑
σ is defined for all possible configurations. The

likelihood can be expressed as

P({Ji1...i p }|σ ) ∝ exp

⎛
⎝β

∑
i1<···<i p

Ji1...i pσi1 . . . σi p

⎞
⎠ , (13.3)

whereβ is the inverse temperature and the summation
∑

i1<···<i p
runs over all possible

combinations of p spins out of N spins. According to Eqs. (13.2) and (13.3), the
posterior distribution can be written by using the Gibbs–Boltzmann distribution with
the classical Hamiltonian H (σ ), as follows:

P(σ |{Ji1...i p }) = 1

Z
exp {−β (H(σ ) + Hinit(σ ))} , (13.4)

Z =
∑

σ

exp {−β (H(σ ) + Hinit(σ ))} , (13.5)

H(σ ) = −
∑

i1<···<i p

Ji1...i pσi1 . . . σi p , (13.6)

where Z is the partition function and Hinit(σ ) is the initial Hamiltonian, which
represents the prior information of the estimated signal. We generally assume that
the prior of the estimated signal follows a uniform distribution P(σ ) = 1/2N .
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To decode the original signal, one decoding strategy is the maximum a posteriori
(MAP) estimation, which corresponds to searching the ground state of the classical
Hamiltonian of Sourlas codes in the limit of zero temperature.Another is themarginal
posterior mode (MPM) estimation, which corresponds to finding the expectation
value over the posterior distribution at a finite temperature. In the limit of zero
temperature, the MPM estimation is consistent with the MAP estimation. In this
chapter, we mainly consider the MPM estimation. The estimation performance can
be evaluated by the overlap between the original and estimated signal as

M (β) = Trξ
∏

i1<···<i p

∫
d Ji1...i p P(ξ)P({Ji1...i p }|ξ)ξisgn〈σi 〉 (13.7)

where 〈·〉 is the expectation over the posterior distribution P(σ |{Ji1...i p }). This quan-
tity is expected to exhibit a “self-averaging” property in the thermodynamics limit
N → ∞. This means that the observables, such as the overlap for a quenched real-
ization of the data {Ji1...i p }, and ξ , are equivalent to the expectation itself over the
data distribution P(ξ)P({Ji1...i p }|ξ). In this case, the overlap can be expressed as
limN→∞ M = [ξi sgn〈σi 〉], where the bracket [·] indicates the expectation over the
data distribution.

Quantum fluctuations can be utilized to decode the original information. The
Hamiltonian of Sourlas code using quantum fluctuations is expressed as follows:

Ĥ = sĤ0 + (1 − s)ĤTF, (13.8)

Ĥ0 = −
∑

i1<···<i p

Ji1...i p σ̂
z
i1

. . . σ̂ z
i p
, (13.9)

ĤTF = −
N∑
i=1

σ̂ x
i , (13.10)

where σ̂ z
i and σ̂ x

i are the z and x components of the Pauli matrix at site i . We param-
eterize the Hamiltonian by the annealing parameter s for the ARA formulation. Note
that Ĥ0 and ĤTF consist of the z and x components of the Pauli matrices, respec-
tively. As in the classical case, we can consider the MPM estimation using quantum
fluctuations. The performance of the MPM estimation using quantum fluctuations
can be evaluated by the overlap as follows:

M(β, s) = Tr{ξ}
∫ ∏

i1<···<i p

d Ji1...i p P({Ji1...i p }|{ξ})P({ξ})ξisgn〈σ̂ z
i 〉TF

≡ [ξi sgn(〈σ̂ z
i 〉TF)

]
, (13.11)

where 〈(·)〉TF ≡ Tr
(
(·) ρ̂

)
denotes the expectation over the density matrix ρ̂ ≡

e−βĤ/Tre−βĤ.
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13.3 Replica Analysis for Adiabatic Reverse Annealing

Following Ref. [13], we formulate Sourlas codes using quantum fluctuations in ARA
as follows:

Ĥ = sĤ0 + (1 − s)(1 − λ)Ĥinit + (1 − s)λĤTF, (13.12)

Ĥinit = −
N∑
i=1

τi σ̂
z
i , (13.13)

where λ (0 ≤ λ ≤ 1) is the RA parameter. We now introduce the initial candidate
solution τi = ±1 that is expected to be close to the correct ground state ξi . We define
the probability distribution of the initial candidate solutions as follows:

P(τ ) =
N∏
i=1

P (τi ) =
N∏
i=1

(c1δ(τi − ξi ) + c−1δ(τi + ξi )) , (13.14)

where we utilize the symbol c1 = c and c−1 = 1 − c. The number c (0 ≤ c ≤ 1)
denotes the fraction of the original signal τi = ξi in the initial candidate solution as

c = 1

N

N∑
i=1

δτi ξi . (13.15)

We consider that the ARA formulation is the case when we adopt P(σ z|τ ) ∝
exp

(
−β Ĥinit

)
as the prior distribution.

The typical behaviors of the order parameters, such as the overlap, can be
obtained via the free energy. The free energy density f can be evaluated as

−β f = limN→∞(1/N )[ln Z ] in the limit of N → ∞ where Z = Tr exp
(
−βĤ

)
is the partition function of Eq. (13.12). In general, the direct computation of the
free energy density is hard due to the configuration average of ln Z and the off-
diagonal elements in Eq. (13.12). The configuration average can be found using the
replica trick [20]. Even though we can avoid the direct computation of [ln Z ], we
cannot apply the standard techniques to evaluate the free energy density due to the
non-commutativity of the Hamiltonian.

First, to eliminate the non-commutativity of the Hamiltonian, we apply the
Suzuki–Trotter decomposition [22] to the partition function:

Z = lim
M→∞Tr

{
exp

(
− β

M

(
sĤ0 + (1 − s)(1 − λ)Ĥinit

))
exp

(
−β(1 − s)λ

M
ĤTF

)}M

= lim
M→∞ ZM , (13.16)

where
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ZM =Tr exp

⎛
⎝βs

M

M∑
t=1

∑
i1<···<i p

Ji1···pσ
z
i1
(t) . . . σ z

i p
(t) + β(1 − s)(1 − λ)

M

N∑
i=1

τiσ
z
i (t)

+β(1 − s)λ

M

N∑
i=1

σ x
i (t)

)
×

N∏
i=1

M∏
t=1

〈σ z
i (t)|σ x

i (t)〉〈σ x
i (t)|σ z

i (t + 1)〉,
(13.17)

where the symbol t is the index of the Trotter slice, M is the Trotter number,
and Tr denotes the trace in the z and x basis. We impose the periodic bound-
ary conditions σ z

i (1) = σ z
i (M + 1) for all i and introduce the identity operator

1̂ =∑{σ z(t)} |{σ z(t)}〉〈{σ z(t)}| and 1̂ =∑{σ x (t)} |{σ x (t)}〉〈{σ x(t)}|. The detailed cal-
culation is given in Appendix 13.5.

To evaluate [ln Z ], we utilize the replica trick [20]:

[log Z ] = lim
n→0

[Zn] − 1

n
, (13.18)

where n is the replica number. The replicated partition function can be written as

[Zn] = lim
M→∞

∑
{ξi=±1}

∑
{τi=±ξi }

P(ξ)P(τ )
∏

i1<···<i p

∫
d Ji1,...,i p P({Ji1,...,i p }|ξi1 . . . ξi p )

× Tr exp

⎧⎨
⎩

βs

M

∑
t,a

∑
i1<···<i p

Ji1···pσ
z
i1a

(t) . . . σ z
i pa

(t) + β(1 − s)(1 − λ)

M

∑
i,t,a

τiσ
z
ia(t)

+β(1 − s)λ

M

∑
i,t,a

σ x
ia(t)

}∏
i,t,a

〈σ z
ia(t)|σ x

ia(t)〉〈σ x
ia(t)|σ z

ia(t + 1)〉, (13.19)

in which a denotes the replica index.
To remove the dependency of the original signal {ξ}, we apply the gauge trans-

formation Ji1...i p → Ji1...i pξi1 . . . ξi p and σ z
ia(t) → σ z

ia(t)ξi to the partition function
[Zn

M ]. Performing the Gaussian integration over the distribution in Eq. (13.1), we
introduce the following order parameters as

ma(t) = 1

N

N∑
i=1

σ z
ia(t), (13.20)

qab(t, t
′) = 1

N

N∑
i=1

σ z
ia(t)σ

z
ib(t

′), (13.21)

Ra(t, t
′) = 1

N

N∑
i=1

σ z
ia(t)σ

z
ia(t

′), (13.22)
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mx
a(t) = 1

N

N∑
i=1

σ x
ia(t). (13.23)

The physical meanings of the order parameters are as follows: ma(t) is the mag-
netization, qab(t, t ′) is the spin-glass order parameter, Ra(t, t ′) is the correlation
between each Trotter slice, and mx

a(t) is the transverse magnetization. Moreover,
we introduce the auxiliary parameters m̃a(t), q̃ab(t, t ′), R̃a(t, t ′), m̃x

a(t) of the order
parameters with the delta function and its Fourier integral representation. Under
the replica symmetry (RS) ansatz and static approximation, ma(t) = m, qab(t, t ′) =
q, Ra(t, t ′) = R,mx

a(t) = mx , m̃a(t) = m̃, q̃ab(t, t ′) = q̃, R̃a(t, t ′) = R̃, m̃x
a(t) =

m̃x , we can attain the RS free energy density:

−β fRS = βs J0m
p + β2s2 J 2

4
(Rp − q p) + β(1 − s)λmx − βmm̃ − βmxm̃x

− β2

2
(RR̃ − qq̃) +

∑
a=±1

ca

∫
Dz ln 2Ya, (13.24)

Ya ≡
∫

Dy cosh βua, (13.25)

ua ≡
√
g2a + (m̃x )2, (13.26)

ga ≡ m̃ + a(1 − s)(1 − λ) +√q̃z +
√
R̃ − q̃ y, (13.27)

where Dz means that the Gaussian measure Dz := 1/
√
2πdze−z2/2, and Dy is the

same as Dz. Detailed calculations for deriving the free energy density in Eq. (13.24)
are provided in Appendix 13.5. The order parameters and their auxiliary parame-
ters are determined by the saddle-point conditions in the free energy density. The
extremization of Eq. (13.24) yields the following saddle-point equations:

m =
∑
a=±1

ca

∫
DzY−1

a

∫
Dy

(
ga
ua

)
sinh βua, (13.28)

q =
∑
a=±1

ca

∫
Dz

{
Y−1
a

∫
Dy

(
ga
ua

)
sinh βua

}2
, (13.29)

R =
∑
a=±1

ca

∫
DzY−1

a

∫
Dy

{(
(m̃x )2

βu3a

)
sinh βua +

(
ga
ua

)2

cosh βua

}
,

(13.30)

mx =
∑
a=±1

ca

∫
DzY−1

a

∫
Dy

(
m̃x

ua

)
sinh βua, (13.31)
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m̃ = s J0 pm
p−1, (13.32)

q̃ = s2 J 2

2
pq p−1, (13.33)

R̃ = s2 J 2

2
pRp−1, (13.34)

m̃x = (1 − s)λ. (13.35)

From Eq. (13.11), the overlap function is easily expressed as

M(β, s, λ) =
∑
a=±1

ca

∫
Dzsgn

{
Y−1
a

∫
Dy

(
ga
ua

)
sinh βua

}
. (13.36)

In the low-temperature region, the p-body spin-glass model is known to exhibit
replica symmetry breaking (RSB) [4]. The stability condition of RS solutions under
the static approximation is expressed as

β2s2 J 2 p(p − 1)

2
q p−2

(∑
a=±1

ca Aa

)
< 1, (13.37)

Aa ≡
∫

Dz

{(
Y−1
a

∫
Dy

(
ga
ua

)
sinh βua

)2

−Y−1
a

(∫
Dy

(
(m̃x )2

βu3a

)
sinh βua +

∫
Dy

(
ga
ua

)2

cosh βua

)}2

. (13.38)

This condition, called the Almeida–Thouless (AT) condition [1], can be attained
by considering perturbations to the RS solutions. This result is consistent with the
previous result in Ref. [25] for p = 2 , J0 = 0, and λ = 1.

13.4 Numerical Experiments

Wenumerically solve the saddle-point equations in Eqs. (13.28)–(13.35) with p = 5,
temperature T = 0.05, and signal-to-noise ratio J0/J = 1.5. To evaluate the typical
MPMestimationperformance,weoften utilize the overlapM(β, s, λ). In this chapter,
we focusmainly on the possibility of avoiding thefirst-order phase transitionbyARA.
For the sake of simplicity and computational cost, we adopt the magnetization as
a measure of the average MPM estimation performance using ARA. Figure 13.1a
shows the phase diagram of the Sourlas codes using quantum fluctuations in ARA.
We consider three initial conditions: c = 0.7, 0.8, and 0.95. Each line represents a
point of the first-order phase transition. We call these lines “critical” lines. We can
avoid a first-order phase transition by preparing for proper initial conditions. When
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Fig. 13.1 a Phase diagram of Sourlas codes in ARA for c = 0.7, 0.8, and 0.95. The vertical and
horizontal axes represent the annealing parameter and the RA parameter, respectively. Each line
represents the point where the first-order phase transition occurs. The AT line indicates where the
AT condition is broken above the line. b Differences in magnetization between two local minima
at the first-order phase transition in Fig. 13.1 (a). The vertical axis denotes the differences in the
magnetization between two local minima at the first-order phase transition while the horizontal axis
represents the RA parameter

we increase the ratio of the ground state in the initial Hamiltonian, the region where
we can avoid the first-order phase transition becomes wider.

We also compute the AT condition Eq. (13.37). As shown in Fig. 13.1a, the AT
condition is broken between the AT line and the “critical” line for c = 0.7. If the
fraction of the ground state in the initial candidate solution is not enough, the spin-
glass phase emerges and RSB occurs. The emergence of RSB implies the existence
of a metastable state. Figure13.1a shows that we can avoid RSB if we tune the RA
parameter λ. For c = 0.8, the AT condition is broken in the low λ region. The region
where the AT condition is broken is smaller than that for c = 0.7. Since we cannot
distinguish the AT line from the “critical” line at this scale, we omit the AT line from
Fig. 13.1a. For c = 0.95, the AT condition holds. Therefore, the local stability of the
RS solution is recovered if we can prepare for the proper initial conditions.

To evaluate the extent to which ARA mitigates the difficulty of estimating the
original signal, we plot the differences in the magnetization 
m between the two
local minima at the first-order phase transition for c = 0.7, 0.8, and 0.95. Significant
differences in themagnetization result in the separation of the two localminima of the
free energy. Figure13.1b shows that
m decreases as c increases. The two local min-
ima of free energy are brought closer byARA.As discussed in Ref. [13], the quantum
tunneling rate between two local minima in the free-energy landscape increases if
the distance between the two local minima is smaller. Our results demonstrate that
ARA for Sourlas codes enhances the quantum tunneling effects if we prepare for an
appropriate initial condition. This result is consistent with the CDMA model [2].



328 S. Arai

13.5 Summary

In this chapter, we explained amean field analysis of ARA for Sourlas codes. Sourlas
codes have a first-order phase transition with p > 2, which deteriorates their esti-
mation performance. To avoid the first-order phase transition, we applied ARA to
Sourlas codes. The first-order phase transition can be avoided by preparing for the
proper initial conditions. The region where the first-order phase transition can be
avoided becomes larger as c increases. We investigated the differences in magneti-
zation between the two local minima at the first-order phase transition. When ARA
was applied, the two local minima of the free energy came closer if we prepared for
the proper initial conditions. ARA improved the probability of escaping the local
minimum by quantum tunneling. This study shows that ARA can be useful for error
correcting codes.

In the practical case, we need to prepare for the initial candidate solution by
using some algorithms. In the previous study [2] for CDMA multiuser detection,
we utilized the approximate message passing algorithm [8] to prepare for the initial
candidate solution. The performance of ARA in practical case was different from
the oracle cases where the initial candidate solution was generated from the original
signal. Evaluation of the performance of ARA in the practical case for Sourlas codes
is an interesting future direction.

Acknowledgements We are grateful for valuable comments from Kazuyuki Tanaka, Masayuki
Ohzeki, Manaka Okuyama, and ACC Coolen. This work was partly supported by JST-CREST (No.
JPMJCR1402).

Appendix 1: Derivation of Eq. (13.17)

In this appendix, we derive Eq. (13.15) in detail.Wemainly follow the references [10,
18, 19].We consider the z basis as the computational basis. In this case, Tr is replaced
by
∑

{σ z}〈{σ z}|(·)|{σ z}〉 and |{σ z}〉 ≡ ⊗N
i=1|σ z

i 〉. For the z basis, we introduce M

copies of the identity operator 1̂ =∑{σ z(t)} |{σ z(t)}〉〈{σ z(t)}| into Eq. (13.16),

ZM = lim
M→∞

M∏
t=1

∑
{σ z(t)}

exp

(
− β

M

M∑
t=1

(sH0 + (1 − s)(1 − λ)Hinit)

)

×
M∏
t=1

〈{σ z(t)}| exp
(

−β(1 − s)λ

M
ĤTF

)
|{σ z(t + 1)}〉 (13.39)

where we introduce the periodic boundary condition |{σ z(1)}〉 = |{σ z(M + 1)}〉. To
show the dependence of the spin operator on the Trotter index, arguments are added
to each Hamiltonian in Eq. (13.39). For x basis, we similarly introduce the M copies
of the identity operator 1̂ =∑{σ x (t)} |{σ x (t)}〉〈{σ x(t)}| into Eq. (13.39). The last



13 Mean-Field Analysis of Sourlas Codes with Adiabatic Reverse Annealing 329

term in Eq. (13.39) can be written as

M∏
t=1

∑
{σ x (t)}

exp

(
−β(1 − s)λ

M
HTF

) M∏
t=1

〈{σ z(t)}|{σ x(t)}〉〈{σ x(t)}|{σ z(t + 1)}〉.

(13.40)

Finally, we can obtain Eq. (13.17) in the main text as

ZM =
M∏
t=1

Tr exp

(
− β

M

M∑
t=1

(sH0 + (1 − s)(1 − λ)Hinit) − β(1 − s)λ

M

M∑
t=1

HTF

)

×
N∏
i=1

M∏
t=1

〈σ z
i (t)|σ x

i (t)〉〈σ x
i (t)|σ z

i (t + 1)〉, (13.41)

where Tr denotes the summation over all the possible spin configurations {σ z
i } and{σ x

i }. Since the first term in Eq. (13.41) consists of the commutable numbers, we can
take the configuration average over the data distribution.

Appendix 2: Derivation of the RS Free Energy

We derive the free energy density under the RS ansatz and the static approximation.
After the gauge transformation Ji1...i p → Ji1...i pξi1 . . . ξi p and σ z

ia(t) → σ z
ia(t)ξi , we

integrate over Ji1,...,i p as

∏
i1<···<i p

[∫
d Ji1,...,i p P({Ji1,...,i p }|{ξ}) exp

{
βs

M

∑
a,t

Ji1···pσ z
i1a

(t) . . . σ z
i pa

(t)

}]

=
∏

i1<···<i p

exp

⎧⎨
⎩
N p−1

J 2 p!

(
J0 p!
N p−1 + βs J 2 p!

2MN p−1

∑
a,t

σ z
i1a

(t) . . . σ z
i pa

(t)

)2

− J 20 p!
J 2N p−1

⎫⎬
⎭

 exp

⎧⎨
⎩

βs J0N

M

∑
a,t

(
1

N

N∑
i=1

σ z
ia(t)

)p

+ β2s2 J 2N

4M2

∑
a,b,t,t ′

(
1

N

N∑
i=1

σ z
ia(t)σ

z
ib(t

′)
)p
⎫⎬
⎭ ,

(13.42)

where we use the expression
∑

i1<···<i p
σ z
i1

. . . σ z
i p

= (N p/p!)
(∑N

i=1 σ z
i /N

)p +
O(N p−1). We introduce the delta function and its Fourier integral representation
for Eqs. (13.20)–(13.23) as follows:

∏
a,t

∫
dma(t)δ

(
ma(t) − 1

N

N∑
i=1

ξiσ
z
ia(t)

)
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=
∏
a,t

∫
βi Ndma(t)dm̃a(t)

2πM
e
− βm̃a (t)

M

(
Nma(t)−∑N

i=1 ξiσ
z
ia(t)

)
, (13.43)

∏
a,t,t ′

∫
dRa(t, t

′)δ

(
Ra(t, t

′) − 1

N

N∑
i=1

σ z
ia(t)σ

z
ia(t

′)

)

=
∏
a,t,t ′

∫
β2i NdRa(t, t ′)d R̃a(t, t ′)

4πM2
e
− β2 R̃a (t,t ′)

2M2

(
N Ra(t,t ′)−∑N

i=1 σ z
ia(t)σ

z
ia(t

′)
)
, (13.44)

∏
a �=b,t,t ′

∫
dqab(t, t

′)δ

(
qab(t, t

′) − 1

N

N∑
i=1

σ z
ia(t)σ

z
ib(t

′)

)

=
∏

a �=b,t,t ′

∫
β2i Ndqab(t, t ′)dq̃ab(t, t ′)

4πM2
e
− β2 q̃ab (t,t ′)

2M2

(
Nqab(t,t ′)−∑N

i=1 σ z
ia(t)σ

z
ib(t

′)
)
,

(13.45)

∏
a,t

∫
dmx

a(t)δ

(
mx

a(t) − 1

N

N∑
i=1

σ x
ia(t)

)

=
∏
a,t

∫
βi Ndmx

a(t)dm̃
x
a(t)

2πM
e
− βm̃x

a (t)
M

(
Nmx

a (t)−
∑N

i=1 σ x
ia(t)

)
. (13.46)

The partition function can be written as

[Zn ]  lim
M→∞

∏
a,t

∫
βi Ndma(t)dm̃a(t)

2πM

∏
a,t �=t ′

∫
β2i NdRa(t, t ′)d R̃a(t, t ′)

4πM2

×
∏

a �=b,t,t ′

∫
β2i Ndqab(t, t

′)dq̃ab(t, t ′)
4πM2

∏
a,t

∫
βNdmx

a (t)dm̃x
a (t)

2π iM
eG1+G2+G3, (13.47)

eG1 ≡ exp

⎧⎨
⎩

βs J0N

M

∑
a,t

(ma(t))p + β2 s2 J2 N

4M2

⎛
⎝ ∑
a �=b,t,t ′

q p
ab(t, t

′) +
∑

a,t �=t ′
Rp
a (t, t ′) + nM

⎞
⎠
⎫⎬
⎭

(13.48)

eG2 ≡
∑

{ξi=±1}

∑
{τi=±ξi }

P(ξ)P(τ )Tr exp

⎧⎨
⎩

β

M

∑
a,t

m̃a(t)
N∑
i=1

σ z
ia(t)

+β(1 − s)(1 − λ)

M

∑
a,t,i

τi ξiσ
z
ia(t) + β2

2M2

∑
a,t �=t ′

R̃a(t, t ′)
N∑
i=1

σ z
ia(t)σ z

ia(t ′)

+ β2

2M2

∑
a �=b

∑
t,t ′

q̃ab(t, t
′)

N∑
i=1

σ z
ia(t)σ z

ib(t
′) + β

M

∑
a,t

m̃x
a (t)

N∑
i=1

σ x
ia(t)

⎫⎬
⎭

×
∏
a,t,i

〈σ z
ia(t)|σ x

ia(t)〉〈σ x
ia(t)|σ z

ia(t + 1)〉, (13.49)
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eG3 ≡ exp

⎧⎨
⎩−βN

M

∑
a,t

m̃a(t)ma(t) − β2N

2M2

∑
a,t �=t ′

R̃a(t, t ′)Ra(t, t ′)

−β2N

2M2

∑
a<b

∑
t,t ′

q̃ab(t, t
′)qab(t, t ′) − βN

M

∑
a,t

m̃x
a (t)mx

a (t)

+β(1 − s)λN

M

∑
a,t

mx
a (t)

⎫⎬
⎭ . (13.50)

We assume the RS ansatz and the static approximation as

ma(t) = m, qab(t, t
′) = q (a �= b), Ra(t, t

′) = R (t �= t ′),mx
a(t) = mx ,

m̃a(t) = m̃, q̃ab(t, t
′) = q̃ (a �= b), R̃a(t, t

′) = R̃ (t �= t ′), m̃x
a(t) = m̃x . (13.51)

Under the RS ansatz and the static approximation, eG1 is represented as

eG1 ≡ exp

{
βnN

(
s J0m

p + βs2 J 2

4

(
(n − 1)q p + Rp

)+ O
(

1

M

))}
. (13.52)

We compute eG2 under the RS ansatz and the static approximation as follows:

eG2 =
∑

{ξi=±1}

∑
{τi=±ξi }

P(ξ)P(τ )Tr exp

{
βm̃

M

∑
a,t,i

σ z
ia(t)

+β(1 − λ)(1 − s)

M

∑
a,t,i

τiξiσ
z
ia(t) + β2 R̃

2M2

∑
a,t �=t ′

N∑
i=1

σ z
ia(t)σ

z
ia(t

′)

+ β2q̃

2M2

∑
a �=b

∑
t,t ′

N∑
i=1

σ z
ia(t)σ

z
ib(t

′) + βm̃x

M

∑
a,t

N∑
i=1

σ x
ia(t)

⎫⎬
⎭

×
∏
a,t,i

〈σ z
ia(t)|σ x

ia(t)〉〈σ x
ia(t)|σ z

ia(t + 1)〉

=
N∏
i=1

∑
ξi=±1

∑
τi=±ξi

1

2
P(τi )

∫
Dz

n∏
a=1

∫
Dy

M∏
t=1

Tr exp

{
β

M
(m̃

+(1 − s)(1 − λ)τiξi + q̃z +
√
R̃ − q̃ y

)
σ z
ia(t) + βm̃x

M
σ x
ia(t)

}

×
∏
a,t,i

〈σ z
ia(t)|σ x

ia(t)〉〈σ x
ia(t)|σ z

ia(t + 1)〉

=
N∏
i=1

∑
ξi=±1

∑
τi=±ξi

1

2
P(τi )

∫
Dz

(∫
Dy2 cosh β

√
g2(τi , ξi ) + (m̃x )2

)n
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N∏
i=1

∑
ξi=±1

1

2
exp

⎧⎨
⎩n
∫

Dz
∑

τi=±ξi

P(τi ) ln
∫

Dy2 cosh β
√
g2(τi , ξi ) + (m̃x)2

⎫⎬
⎭

= exp

{
nN

(∑
a=±1

ca

∫
Dz ln

∫
Dy2 cosh β

√
g2a + (m̃x )2

)}
, (13.53)

where

g(τi , ξi ) = m̃ + (1 − s)(1 − λ)τiξi +√q̃z +
√
R̃ − q̃ y, (13.54)

ga = m̃ + a(1 − s)(1 − λ) +√q̃z +
√
R̃ − q̃ y. (13.55)

We apply the Hubbard–Stratonovich transformation,

exp

(
x2

2

)
=
∫

Dv1 exp (xv1) , (13.56)

to the terms
(
β
√
q̃/M

∑
a,t σ

z
ia(t)

)2
/2 and

∑
a

(
β

√
R̃ − q̃/M

∑
t σ

z
ia(t)

)2

/2. We

now perform the inverse operation of the Suzuki–Trotter decomposition and take the
trace.

Under the RS ansatz and the static approximation, eG3 is expressed as

eG3 = exp

{
βnN

(
−mm̃ − mxm̃x − β

2
RR̃ − β(n − 1)

2
qq̃ + (1 − s)λmx

)
+ O

(
1

M

)}
.

(13.57)

In the thermodynamic limit N → ∞, the saddle-point method can be used. The
RS free energy density is then expressed as

−β fRS = lim
n→0

[Zn] − 1

nN

= extr
m,q,R
m̃,q̃,R̃

[
βs J0m

p + β2s2 J 2

4
(Rp − q p) + β(1 − s)λmx − βmm̃ − βmxm̃x

−β2

2
(RR̃ − qq̃) +

∑
a=±1

ca

∫
Dz ln

∫
Dy2 cosh β

√
g2a + (m̃x )2

]
.

(13.58)

The order parameters and their auxiliary parameters can be determined from the
saddle-point conditions.
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Chapter 14
Structural and Functional Analysis
of Proteins Using Rigidity Theory

Adnan Sljoka

Abstract Over the past two decades, we have witnessed an unprecedented explo-
sion in available biological data. In the age of big data, large biological datasets have
created an urgent need for the development of bioinformatics methods and inno-
vative fast algorithms. Bioinformatics tools can enable data-driven hypothesis and
interpretation of complex biological data that can advance biological and medicinal
knowledge discovery. Advances in structural biology and computational modelling
have led to the characterization of atomistic structures of many biomolecular com-
ponents of cells. Proteins in particular are the most fundamental biomolecules and
the key constituent elements of all living organisms, as they are necessary for cellu-
lar functions. Proteins play crucial roles in immunity, catalysis, metabolism and the
majority of biological processes, and hence there is significant interest to understand
how these macromolecules carry out their complex functions. The mechanical het-
erogeneity of protein structures and a delicate mix of rigidity and flexibility, which
dictates their dynamic nature, is linked to their highly diverse biological functions.
Mathematical rigidity theory and related algorithms have opened up many exciting
opportunities to accurately analyse protein dynamics and probe various biological
enigmas at amolecular level. Importantly, rigidity theoretical algorithms andmethods
run in almost linear time complexity, whichmakes it suitable for high-throughput and
big-data style analysis. In this chapter, we discuss the importance of protein flexibil-
ity and dynamics and review concepts in mathematical rigidity theory for analysing
stability and the dynamics of protein structures. We then review some recent break-
through studies, where we designed rigidity theory methods to understand complex
biological events, such as allosteric communication, large-scale analysis of immune
system antibody proteins, the highly complex dynamics of intrinsically disordered
proteins and the validation of Nuclear Magnetic Resonance (NMR) solved protein
structures.
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14.1 Introduction

In the current post-genomics era, advances in experimental and computational tech-
niques have revolutionized biological and biomedical research. High-throughput
technologies have paved the way to novel research avenues where we can systemat-
ically analyse whole genomes of organisms and individual or collection of proteins,
including their structures and interactions with other proteins, which in many cases
allow researchers to successfully decipher their biological functions. Proteins are
macromolecules that are fundamental to most cellular function [1]. They comprise
the highest levels of molecular and cellular structure and organization, and because
the majority of physiological and disease processes are manifested within proteins,
structural and computational biology research is focused on understanding protein
function.

Proteins and other biomolecules are nanomachines. Accurate representation of
their three-dimensional structure is a critical first step to understanding how they per-
form their functions. Advances in molecular biology, instrumentation, and imaging
technologies such as X-ray crystallography, nuclear magnetic resonance (NMR), and
electron microscopy have led to a revolution in structural biology. These techniques
allow us to see beautiful yet complex three-dimensional shapes of protein structures
and how they interact with other proteins and ligands. Protein imaging techniques are
continuously improving, and for many proteins, we can now characterize their struc-
tures at an individual-atom-level resolution. A rapidly growing and revolutionary
cryogenic-electron microscopy (cryo-EM) technique has been attracting significant
attention, as very recently it has broken various resolution barriers [2] and can now
discern individual atoms of very large protein structures (see Fig. 14.1). Cryo-EM
complements X-ray crystallography because it reveals atomistic structural details
without the need for a crystalline specimen. Protein Data Bank (PDB), a repository of
experimentally solved protein structures, together with computationally determined
protein structures, make up a rich source of protein structural data. Recent advances
in AI and deep learning have provided significant improvements in inferring protein
structures from a sequence of amino acids [3]. Deepmind’s Alphafold method has
demonstrated that deep learning structure predictions can come astonishingly close
to experimentally determined structures, and in the near future, we expect this will
result in huge growth of macromolecular structural data. The increasing richness of
the available protein structural data and the rapidly growing proteomics and bioinfor-
matics big-data repositories open up possibilities to systematically analyse complex
biological questions and gain novel biological insights. To facilitate data-driven bio-
logical knowledge discovery, many bioinformatics and computational biology tools,
software packages, and databases have been developed [4].

Despite tremendous advances in bioinformatics, structural biology and imaging
technologies which have generated hundreds of thousands of atomic snapshots of
protein structures, many fundamental biological problems such as protein folding,
allosteric regulation, receptor signalling, and enzyme catalysis, to name a few, still
remain largely unresolved [5–12]. While the static high-quality representation of
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Fig. 14.1 Cryo-EM
snapshot structure of viral
spike protein of
SARS-CoV-2 (a key protein
involved in COVID-19),
which is a very large protein
structure consisting of three
chains (distinct colours),
each consisting of nearly
1300 amino acids

protein structures can offer clues to structure-function mechanisms, protein func-
tion is almost purely controlled by its dynamic character through a delicate mix of
rigidity and flexibility. Research must move beyond static snapshot representations
of proteins, as the mechanical heterogeneity of protein structures that dictates their
dynamic nature is intimately linked to their highly diverse biological functions. Deep
understanding of the connection between structures and internal protein flexibility,
rigidity, and dynamics is absolutely critical, as it can lead to solutions to protein fold-
ing problem, elusive allosteric regulation and other dynamically driven biological
secrets of protein regulation.

The primary desire of any protein researcher is to see proteins move in real time
at the atomistic level while they carry out their biological functions. Yet, despite
many advances in experimental techniques and molecular dynamics simulations,
such a goal is still very far from being realized. Analysing and comprehending
protein flexibility and dynamics has proven to be extremely difficult. One major
challenge is that the main molecular simulation methods, such as classical molec-
ular dynamics simulations, require a prohibitive amount of computational power
and are not suitable to reach biologically relevant functional dynamics that occur
on longer (millisecond-second) timescales. Furthermore, with rapid growth in the
number of experimentally solved biomolecular structures and the increasing size of
structural protein databases, including the expanding big-data size sets of computa-
tionally predicted protein structures, we are faced with a pressing need to develop
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fast algorithms and novel mathematical and computational techniques that simplify
the classical force fields and can offer experimentally verified accurate predictions
of protein flexibility and dynamics.

Techniques inspired from the field of mathematical-structural rigidity theory [13–
16] have gained special attention as they are suitable for handling themany challenges
with computational analysis of protein flexibility and its dynamics. Biological func-
tions of protein structures are often related to their network (or graph) properties.
Mathematical rigidity theory offers considerable promise in deciphering graph the-
oretical properties of protein networks to better understand protein function [13,
15–18]. In rigidity theory, proteins are modelled as geometric molecular frameworks
consisting of atoms and various connecting intermolecular forces. Such frameworks
are essentially multigraphs (networks), in which atoms are vertices and edges form
various bonding andnon-bonding constraints (seeSect. 14.3). TheprogrammeFIRST
[15] and related methods [19] apply mathematical results that provide combinato-
rial characterization of rigidity and flexibility on a molecular multigraph, which
can rapidly decompose a protein framework (i.e., multigraph) into flexible and rigid
regions. Startingwith a decomposition of a protein into rigid and flexible regions, fast
Monte Carlo geometric simulationmethods, such as FRODA and FRODAN [19–22],
can sample the highly complex conformational space of proteins and simulate their
functionally relevant motions. The main advantage of rigidity theory methods over
classical molecular dynamics simulations is that their predictions of rigidity and flex-
ibility are very fast, they are not affected by timescale issues (see Sect. 14.2), and they
are suitable for high-throughput and big-data style analyses. Moreover, predictions
based on rigidity theory have been widely shown to be consistent with experimental
measures of protein flexibility and dynamics [11, 12, 15, 17–19, 22, 24–26].

In this chapter, we first discuss the importance of protein flexibility and dynamics
for biological function (Sect. 14.2). We then provide a brief review of fundamental
concepts in rigidity theory (Sect. 14.3) that enables us to perform fast predictions
of flexibility and dynamics of protein structures. We next discuss how to represent
biomolecules as a graph constraint network, the mathematical/algorithmic back-
ground for analysing protein networks, and the basic uses of rigidity theory soft-
ware for analysing protein flexibility and its dynamics. We then review some major
advances contributed by the author of this chapter, in which rigidity theory and
algorithms were used to elucidate and provide new perspectives on very complex
biological phenomena, such as long-range allosteric communication, enzyme cataly-
sis, antibody dynamics, and NMR structural validation (Sect. 14.4). We conclude by
reviewing some of these recent developments and some surprising breakthroughs that
have led to rich protein function discoveries that weremainly driven bymathematical
rigidity theory.
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14.2 Protein Structural Flexibility and Dynamics

In this section, we briefly cover for non-biologists the background and the importance
of predicting protein flexibility, which is arguably one of the most fundamental
research topics in biochemistry, structural biology, and bioinformatics.

14.2.1 Protein Flexibility and Dynamics Is Central to Protein
Function

Proteins are polypeptide chains composed of a linear sequence(s) of amino acids
[1]. Through a complex protein folding process, forces are exerted on atoms which
steer a polypeptide chain(s) into a defined three-dimensional biologically functional
native-state structural ensemble. High-resolution X-ray crystallography and other
techniques have revealed aesthetic structural complexity of protein structures and
have revolutionized our understanding of their function, which have spearheaded
the development of novel experimental and computational methods for examining
protein function in atomistic detail. It is important to stress that solved protein struc-
tures are only snapshots or pictures of proteins at some low-energy state. This can
often provide amisleading representation of proteins and potentiallymisinformabout
their function, which must include kinetic and thermodynamic descriptions [5] (see
Fig. 14.2).

Proteins are composed of rigid and connecting flexible regions that can be highly
dynamic,which facilitates sampling awide variety of conformations spanning a com-
plexmultidimensional energy landscape. In this conformational biomolecular dance,
proteins undergo dynamical fluctuations even under conditions that are preferentially
biased towards a well-defined low-energy ’native’ state [5]. Such dynamically driven
conformational states and fluctuations are critical to long-range allosteric regula-
tions, ligand recognition, catalytic efficiency, antibody–antigen recognition and the
majority of functional mechanisms. Understanding protein flexibility and rigidity
and how it is modified by mutations and ligand binding is critical to understanding
and modulating protein function [5, 7, 8, 11, 12]. Most globular proteins (excluding
intrinsically disordered proteins) function through utilizing a delicate mix of rigidity
and flexibility. Achieving appropriate balance between rigidity and flexibility is one
of the most important keys for biological function. Protein rigidity is necessary, as
it maintains overall structural fold, while flexibility and dynamics enable proteins to
perform specific functions. Protein defects can lead to alterations in overall folding,
or they can cause proteins to be overly flexible, interfering with protein function,
or cause other extreme defects that can result in indestructible rigid protein. These
scenarios are related to numerous medical conditions, including neurological dis-
orders, Alzheimer’s disease, and Mad Cow disease [22, 27]. Hence, predicting and
examining protein flexibility and dynamics is the most important, and probably the
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Fig. 14.2 The structure of an enzyme (Protein Data Bank ID 2jz3) showing a protein snapshot
representation and conformational ensemble depicting its dynamical characteristics b

most complex, component of protein research. This is an active area of research in
both experimental protein science and computational biology.

Protein structures can have thousands of conformational degrees of freedom. It is
therefore easy to imagine that their motions can be extremely complex, and deter-
mining flexible and rigid regions and how theymove relative to one another can seem
like a daunting task. Moreover, many proteins are oligomeric structures consisting of
two or more interacting polypeptide chains, and in some cases the structures are very
large, consisting of thousands of amino acids (see Fig. 14.1). Protein flexibility and
rigidity are often regulated by interactions with small ligands, drugs, hormones, and
cations (e.g., calcium and magnesium) and changes in temperature, pressure, and
pH [11, 15, 17, 18, 24]. Internal motion and conformational change can be rapid
and transient and result in a structural ensemble that can often be spectroscopically
indistinguishable from the snapshot ground state determined by X-ray crystallogra-
phy or other imaging techniques (see Fig. 14.2). Protein dynamics occur across awide
range of timescales, from very rapid short-amplitude motions caused by bond vibra-
tions occurring on a femtosecond range, to side-chain motions on the picosecond to
nanosecond timescale, all theway up to very slow larger-amplitude collective domain
motions, which are often biologically most significant, occurring in the milliseconds
to seconds range [5] (see Fig. 14.3). Dynamics on longer timescales (i.e., millisec-
ond to second timescales) are functionally very important because many biological
processes—including allostery, enzyme catalysis, receptor activations, and protein–
protein interactions—occur on such timescales [5, 9, 11, 12, 24, 28]. Fluctuations
between different low-energy states and the heights of their energy barriers can also
be affected by mutations, ligand binding, and changes in temperature or pH. The
timescale component of protein dynamics is one critical factor that complicates the
computation examination of protein dynamics. Another important characteristic of
protein dynamics is the amplitude and directionality of conformational fluctuations
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[5]. All these factors combine to contribute to the difficulty in obtaining knowledge
about the flexibility and motion of proteins.

Despite this complexity, functional motions will often involve large domain–
domain motions (i.e., relative motions dominated by a few rigid bodies) and many
degrees of freedom can be neglected or suppressed to study the functionally most
important motions. Hence decomposition of a protein into rigid and flexible regions
is a highly important aspect of deciphering protein dynamics.

14.2.2 Techniques for Analysing and Predicting Protein
Flexibility and Dynamics

In terms of experimental techniques, NMR measurements such as order parameter
measurements and chemical shifts are very useful in studying protein dynamics [24,
29]. Mass spectrometry, hydrogen–deuterium exchange, crystallographic B-values,
etc. can also provide deep insights into the dynamical nature of protein structures
[5, 11, 24, 25]. Fluorescence resonance energy transfer (FRET) [30] measures in
particular have high practical value as they can characterize changes in distance
for single molecules over time as well as possible corresponding conformational
changes. However, the disadvantage of FRET is that only a single distance change is
measured. Experimental measurements are useful as they can be used to infer specific
information about dynamics across a specific range of timescales (see Fig. 14.3) and
are specifically very helpful in supporting and validating computational predictions.
The disadvantage of experimental tools is their high cost, susceptibility to uncertainty
in measurements, and frequent inability to provide information about very dynamic
regions of protein structures. Moreover, protein structures often have to be stabilized
to extract structural and dynamical information. Experimental measurements can
also take a long time to perform, as they require maintenance of very expensive
equipment; yet, such measurements can rarely provide dynamical information about
individual atoms.

Computationally, it should be theoretically possible to describe protein dynamics
in their entirety. Molecular dynamics (MD) simulation has been the most widely
used approach for simulating the motions of proteins and other biopolymers [28].
Molecular dynamics simulations of proteins have been a common tool in biochem-
istry and biophysics since the 1970s [31]. It has been successfully applied to protein
folding problems, the impact of protein motions on enzyme catalysis, and the effects
of mutations and ligand binding on protein motions [28]. Its uses have increased in
recent years, pointing to the key importance of deciphering the relationships between
complexmotions andprotein function. Inmolecular dynamics simulations, the trajec-
tories of individual atoms in protein structures can be predicted by repeated numerical
solutions of the Newtonian motion equation (i.e., F = ma), with forward integra-
tion in time, where F represents a force field (energy function). A force field models
all potential forces and energies between the molecules and is supposed to be a
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a

b

Fig. 14.3 a A one-dimensional cross-sectional representation of a high-dimensional protein’s
energy landscape. Proteins can be defined as multiple collections of low-energy conformational
states (defined as minima in the energy surface), with many conformational ensemble substates
interconverting between one another on very fast timescales. The time it takes a protein to transition
from one low-energy state to another is dependent on the height of the energy barrier between the
states. When the barrier is high, this can occur in a relatively long microsecond to second range. b
Timescales of different dynamic processes in proteins and different experimental methods that can
detect fluctuations on each timescale. Longer timescales are largely inaccessible to classical MD
simulations. However, rigidity theory methods and simulations are not confined by this timescale
issue. Figure adapted from [5]
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simple parameterization of the energy surface of the protein. A number of different
methods and force field models exist for parametrizing the potential energy surface.
Assuming one can use an accurate description of a force field, a difficult and heavily
debated concept, molecular dynamics simulation can be extremely useful in tracking
the precise position of atoms over time. However, the major downside of molecu-
lar dynamics simulations is that they require prohibitively excessive computational
power. Indeed, even despite today’s computational advances and special-purpose
simulation machines [32], in the majority of cases molecular dynamics simulations
are largely impractical for investigating biologically relevant proteinmotions on rela-
tively longmicrosecond timescales. Stemming from the increase in protein structural
data combined with the increasing size of solved structures, advances in emerging
Cryo-EM technology and deep learning, it is clear that there is an urgent need to
develop alternate efficient and accurate computational methods for molecular flexi-
bility and dynamics simulations.

A large class of computational approaches that simplify classical force fields have
been developed. Coarse-grained simulations, normal model analysis, principal com-
ponent analysis, contact network analysis, and other related methods have become
popular alternative approaches to classical MD simulations [33]. In coarse-grained
and network approaches, physical units such as individual amino acids or a cluster of
amino acids including rigid clusters can be treated as nodes (vertices), where edges
indicate possible interactions or contacts. For more precise modelling, individual
atoms should be treated as vertices and edges should model pairwise bonded and
non-bonded contacts.

Arguably, one of the most powerful ways of analysing the flexibility and rigidity
of protein structures, especially using an all atom representation, is based on math-
ematical rigidity theory [13–16, 19, 34]. Rigorous mathematical results in rigidity
theory, whose details are explained below, can be used in combination with fast algo-
rithms to rapidly decompose a protein constraint graph into rigid and flexible regions.
Moreover, how rigidity is modified through protein–protein, protein–ligand, or other
interactions can be quickly predicted. Such decompositions are very informative as
they can be combined with other methods such as MD simulations, normal mode
analysis, orMonte Carlo simulations [19, 22] to directly infer information about pro-
tein dynamics. This is discussed in more detail below. We now turn the discussion to
mathematical formulations and the uses of rigidity theory for the analysis of protein
structures.

14.3 Rigidity Theory

In this section, we present a basic introduction and results of rigidity theory that are
essential for applications to protein structure and function analysis, with a focus on
combinatorial rigidity theory concepts. For a thorough review of rigidity theory see
[13, 19, 34].



346 A. Sljoka

14.3.1 Combinatorial Rigidity Theory and the Molecular
Theorem

In general terms, flexibility is the ability of a material or framework to reversibly
change the configuration of its joints, bodies, or building blocks. Rigidity, which is
the opposite property of flexibility, describes a state in which no relative motions
are allowed between the framework’s elements. In a rigid structure, only rigid body
motions are possible (i.e., motions arising from congruences of space, rotations,
translations, etc.). In biochemistry and biophysics, a notion related to rigidity is
the concept of stability and robustness, where internal protein dynamics are not
changed in response to small atomic fluctuations and the breaking of a few non-
covalent interactions. Although to a non-expert, rigidity and stability may seem like
related concepts, care should be taken to understand the potential differences and
their implications.

Mathematical rigidity theory, sometimes called structural rigidity because of its
close connections to structural and mechanical engineering, offers the most math-
ematically sound concepts and algorithms for analysis of rigidity and flexibility of
frameworks [13, 14, 34].Rigidity theory analyses the rigidity andflexibility of frame-
works, as specified by geometric constraints such as fixed distances, directions, and
volumes defined by a collection of points, lines, planes, or rigid bodies. Frameworks
can be natural structures (molecules, crystals, proteins, etc.) or engineered structures
(bridges, robots, etc.), and because rigidity is an essential property of most frame-
works and materials, rigidity theory naturally has many applications in engineering,
robotics, material science, and biology.

Rigidity theory has both geometric and combinatorial characteristics relying on
techniques in linear algebra, discrete and algebraic geometry, graph theory, and com-
binatorics. Rigidity theory has a very long and rich history inmathematics, with early
work appearing in the form of Euler’s (1766) conjectures on rigidity of polyhedra.
Maxwell’s (1864) [14, 34] work on counting constraints in a framework for generic
rigidity led to the birth of so-called ‘combinatorial rigidity’. Combinatorial charac-
terization of rigidity theory, 140 years later, has turned out to be absolutely crucial for
rapid flexibility analysis of materials such as glass networks and protein structures
[14].

The classical and simplest frameworks studied in rigidity theory are the bar and
joint frameworks (see Fig. 14.4), which are composed of universal (rotating) joints
that are connected by bars that fix the distances between pairs of joints. A bar and
joint framework is defined as a pair (G, p), where G = (V, E) is an undirected
graph and p : V → R

d , where vertices correspond to joints and edges correspond
to bars that connect some pairs of joints; p represents a configuration of joints in
R

d . A framework (G, p) inRd is rigid if the only edge-length-preserving continuous
motions of the vertices are derived from isometries of Rd . If d ≥ 2, it is NP-hard
to determine if a bar and joint framework is rigid [34]. As determining the rigidity
of frameworks is very difficult, a common approach is to linearize the problem by
differentiating the length/bar constraints of the corresponding pair of connecting
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a b c

Fig. 14.4 Bar and joint framework examples: a is flexible as it can deform its shape (note it is one
edge too short in terms of Laman’s count, |E | < 2|V | − 3); b is minimally rigid in 2D (but flexible
in 3D as one can rotate two triangles around the diagonal). c is redundantly rigid in 2D as it has a
redundant (i.e., extra) edge and is minimally rigid in 3D

points/joints, which leads to a system of linear equations (one equation per edge)
and a corresponding rigidity matrix. The solution to such a homogenous system
can be captured by calculating the rank of the rigidity matrix, which indicates if a
framework is infinitesimally rigid [34, 35]. However, in many applications and large
frameworks such as proteins, this is not particularly practical owing to numerical
errors and uncertainty in rank computations of the rigidity matrix.

A well-known fact within rigidity theory is that if the framework is generic (i.e.,
it does not have special singular geometry), then rigidity and infinitesimal rigidity
coincide [34]. Generic frameworks are very important, as rigidity can be studied
by pure graph and combinatorial techniques—a subfield of rigidity theory called
combinatorial rigidity theory. A framework is generically rigid if it maintains rigidity
even after minor changes to the position of its joints, and almost all frameworks are
generic [13, 34, 36]. By assuming that a framework is in a generic position, one can
neglect the geometric embedding of joints and actual distances of bars to focus on
only the topology of the bar and joint framework and discuss the generic rigidity of
(G, p) in terms of graph G.

14.3.1.1 Counting for Rigidity and Flexibility

We now motivate the characterization of rigidity of generic frameworks using com-
binatorial arguments. For bar and joint frameworks in dimension d, each joint (point,
vertex) has d conformational degrees; hence, N joints have a total of dN degrees
of freedom. The number of trivial rigid body motions in dimension d or isometries
is d(d + 1)/2. Therefore, in a generic rigid bar and joint framework, the number of
bars ≥ dN − d(d + 1)/2. This is known as Maxwell’s counting condition. In the
plane (d = 2), Laman’s theorem [34] extends this result by proving that the 2N − 3
count is both necessary and sufficient for generic rigidity of two-dimensional bar
and joint frameworks. More formally, a two-dimensional bar and joint framework
is generically minimally rigidity if and only if |E | = 2|N | − 3 and, for all subsets
of edges, |E ′| ≤ 2|N ′| − 3. In other words, this remarkable theorem says one can
count the vertices and edges in a graph and their distributions over subgraphs to
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Fig. 14.5 Maxwell’s counts
in 3D do not guarantee
rigidity. A bar and joint
framework in 3D (known as
the double banana graph)
satisfies the 3|N | − 6 count
condition but is flexible (two
yellow rigid subgraphs can
rotate about an imaginary
hinge shown as a red dashed
line)

predict generic rigidity of two-dimensional bar and joint frameworks. A framework
is minimally rigid if removal of any edge (bar) results in a flexible framework (see
Fig. 14.4).

Unfortunately, Maxwell’s counting results are not sufficient for minimally rigid
bar and joint graphs in dimension 3 and higher. For example, a well-known coun-
terexample is a graph of a double banana, which satisfies Maxwell’s 3|N | − 6 count
but is flexible (see Fig. 14.5). Not only is there a lack of a Laman type of a theorem
for generic bar and joint frameworks in dimension 3 and higher, there are no known
polynomial time algorithms for testing rigidity for general three-dimensional graphs
[34]. Extensive research has been conducted on this problem and, to date, only some
partial results and approximation algorithms can be found [34, 35]. Fortunately,
for different classes of frameworks, called body-bar and body-hinge frameworks,
which includes molecular frameworks, there is a complete and rich combinatorial
characterization of rigidity, which is discussed next.

14.3.1.2 Rigidity Model of Molecules and the Molecular Theorem

To build a computational method based on rigidity theory that can provide fast and
accurate prediction of protein rigidity and flexibility, three requirementsmust bemet:
(i) a realistic physical model of a basic molecular framework; (ii) an accurate model
of molecular interactions; and (iii) a fast algorithm for predicting rigidity/flexibility
properties of the protein framework model.

Protein structures consist of atoms and various chemical interactions (forces) of
different strengths. In rigidity theory, strong interactions between atoms are usually
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assumed tobefixed rigid constraints in termsof distances and angles. In such a rigidity
model of amolecule, bonding interactions are assumed to fix distances between a pair
of bonded atoms, and the angles between the bonds of an atom are fixed, allowing
only dihedral angle rotations. High frequency motions such as bond vibrations are
neglected. This is a sensible modelling assumption as single covalent bond lengths
are essentially invariant. For example, the length of a covalent bond between two
carbon atoms will vary less than a single percent from its equilibrium value of 1.53
angstroms [14]. Double bonds and peptide bonds lock dihedral angles, and non-
covalent interactions such as hydrogen bonds and hydrophobic contacts also impose
additional constraints.

A molecular framework in rigidity theory is a collection of atoms, which can be
modelled as fully rigid bodies with six conformational degrees of freedom of a rigid
body and bonds as rotatable hinges, which allow for rotational degrees of freedom
between single-bonded atoms. Such frameworks in rigidity theory are a special case
of body-hinge framework. Hinges (i.e., bonds) remove five degrees of freedom, and
for algorithmic and theoretical reasons, it is useful to model hinges as a set of five
rigid bars, where each bar (i.e., edge) generically removes a single degree of freedom
between bonded atoms. This finally leads to a body-bar framework representation of
amolecular body-hinge framework—that is, a collection of rigid bodies connected by
linear bars. Special geometric criteria should be considered as bonds are not generic
hinges (since bonds intersect at centre of atoms) and the five bars have to pass through
the hinge axis to geometrically give the same model as a hinge, but such discussion
is beyond the scope of this chapter (details can be found elsewhere; see [13]). Double
bonds are modelled as a set of six bars between two atoms. Moreover, non-covalent
interactions such as hydrogen bonds and hydrophobic interactions, which are impor-
tant for overall protein structure folding and rigidity, can also be modelled as a set
of one to five bars (where one bar indicates the bond is least restricting and five bars
indicate it is most restricting) [25]. This overall model, consisting of rigid bodies for
atoms and both covalent bonds and non-covalent interactions, defines the body-bar
framework model of a protein structure (see Fig. 14.6).

The topological structure of a body-bar (and body-hinge and molecular body-
hinge) framework is a multigraph G = (V, E). Vertex set V corresponds to a set
of bodies (i.e., atoms) and edge set E to a set of bars (i.e., bond constraints). In
accordance with Laman’s theorem, an equivalent statement for body-bar frameworks
was formulated by Tay [37]. Tay’s theorem confirms that the rigidity of generic body-
bar frameworks in 3D (which works for all dimensions) can be checked using the
6|V | − 6 count in a body-bar multigraph. Tay’s theorem also extends to generic
body-hinge structures [20]. It was proven by Katoh and Tanigawa [38] that the same
counting condition stated in Tay’s theorem also characterizes the rigidity of generic
molecular body-hinge frameworks. This result is known as the molecular theorem,
which is here combined with Tay’s theorem into one statement.

Theorem 1 (Tay’s Theorem/Molecular Theorem) A generic three-dimensional
body-bar framework (body-hinge/molecular framework where bonds (hinges) are
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Fig. 14.6 a 3D body-hinge framework composed of seven rigid bodies connected by hinges (lines)
can be modelled as a body-bar framework (with a corresponding body-bar multigraph shown).
b A molecule consisting of two carbon atoms and a single bond can be viewed as a body-hinge
structure where atoms are rigid bodies (one-valent hydrogen atoms are a part of a carbon atom
rigid body, as their angles are fixed and can only spin around their axes) and a hinge is a rotatable
bond, with corresponding body-bar multigraph. cA ring of seven carbon atoms (ignoring one-valent
hydrogens) with a corresponding multigraph. (According to the molecular theorem a ring of seven
atoms will have one internal degree of freedom. The total number of edges is 7(5) = 35, while
we need 6|7| − 6 = 36). d Protein structure can be modelled as a molecular body-bar multigraph
with black, red, and green lines corresponding to covalent bonds, hydrogen bonds, and hydrophobic
contacts, respectively

replaced by five bars) on a multigraph G = (V, E) is minimally rigid if and only if
|E | = 6|V | − 6, and for all subsets of edges, |E ′| ≤ 6|V ′| − 6.

In the stated original form, Tay’s theorem leads to an exponential algorithm, as it
requires counting the number of edges in every subgraph. However, because these
counts ofG (same as Laman’s counts) define an independent set in amatroid [13, 35],
this gives rise to greedy algorithms that can be used to efficiently track these counts.
It is well known that all matroidal structures have greedy algorithms. A number
of fast polynomial algorithms based on matroid unions, tree decompositions, and
extension of bipartite matching algorithms, such as the pebble game algorithm, were
subsequently developed for tracking these rigidity certifying counts (independence)
in graph and subgraphs [16, 39].

14.3.1.3 Pebble Game Algorithm

The pebble game algorithm can very rapidly decompose a body-bar/molecular graph
(i.e., protein structure) into rigid and flexible regions and quantify the overall number
of degrees of freedom. The main step of the pebble game algorithm is to determine if
a constraint (edge) is ’independent’ (i.e., removes degrees of freedom) or is ’redun-
dant’ as its insertion has no effect on rigidity. The algorithm iteratively builds a
maximal independent set of edges. We give a basic procedure of how the main steps
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of the pebble game algorithm are carried out for Tay’s theorem without full details
or speedups, which can be found in previous publications [16, 39]. A similar proce-
dure can be derived for Laman’s counts or other matroidal independence counting
conditions. The implementation of the pebble game algorithm routine given here,
which tracks counts in the molecular theorem, is important for the protein flexibility
analysis that has been implemented in several software packages. such as FIRST (see
below).

The Pebble Game Algorithm 6|V | − 6:
Input: A multigraph G = (V, E) .
Initialize I (G) andR(G) to an empty set of edges. Place six pebbles on each vertex ofG. (Fig. 14.6a)
Test the edges of E in an arbitrary order.

1. Until every edge in G has been tested, take any untested edge e, and go to step 2. Otherwise go
to step 3.

2. Count the number of free pebbles on the endvertices of e, say vertex u and v.

(a) If the vertices u and v have at least seven free pebbles, then place any pebble from either
u or v onto e, directing the edge e from that vertex (Fig. 14.6b). Place e into I (G)

(independent edges) and return to step 1.
(b) Else, search for a free pebble from u and v, by following the directed edges (covered

edges) in the partially constructed directed graph I (G) (Fig. 14.6c).
(i) If the free pebble is found on some vertexw at the end of the directed path P (which

starts at u or v), we perform a swap or sequence of swaps (cascade), reversing the
entire path P , until a free pebble appears on the initial vertex (u or v) of the path
P (i.e., w loses one free pebble, and u or v gains one free pebble) (Fig. 14.6c–e).
Return to Step 2.

(ii) Else, we could not find the seventh free pebble, and the edge is declared redundant
(could not be covered by the pebble) (Fig. 14.7). Place e into R(G) (redundant
edges). Return to step 2.

3. Once all edges have been tested, stop.
Output: The sets I (G) and R(G) = E − I (G).

When the algorithm is finished, I (G) is the maximal independent set of edges (edges that are
covered by pebbles).R(G) is the set of redundant edges (edges that were not covered by a pebble).
Total degrees of freedom (DOF) in a graph = number of remaining free pebbles.

The pebble game algorithm described here tracks the independence of edges in
graphs prescribed by the molecular theorem. The initialization of placing six free
pebbles on each vertex (corresponds to six trivial rigid body motions) tracks the 6|V |
part of the count. Pebbles are synonymous with degrees of freedom and removal of a
pebble indicates the inserted constraint (edge) is independent. Redundant constraints
do not remove degrees of freedom (pebbles) as their insertion (or deletion) from an
already rigid region causes no change in rigidity. Every time an edge is pebbled, it
grows the set of independent edges. Pebble game algorithms are building a maximal
subsets that are independent; at every stage, the edges covered by pebbles will satisfy
|E ′| ≤ 6|V ′| − 6 on all subsets. The requirement of at least seven free pebbles on the
vertices before an edge is pebbled (i.e., declared independent) ensures the critical
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Fig. 14.7 Ademonstration of a 6|V | − 6 pebble game algorithm on a 3D cyclohexane graph. Edges
are pebbled one by one (when there is at least seven free pebbles on its end vertices (a, b). If we
cannot locate seven free pebbles we can search for free pebbles along with the partially created
directed graph, swapping pebbles back. The graph has six remaining free pebbles and all edges are
pebbled, indicating it is minimally rigid

subtraction in 6|V | − 6 is respected on all subsets of edges. The algorithm is greedy.
In other words, regardless of the order the edges are pebbled (i.e., are tested for
independence), the algorithm will always give unique answers for total remaining
free pebbles, the size ofmaximal independent I (G) and redundantR(G) set of edges.
The pebble game algorithm is a very intuitive algorithm, which in the worst case runs
in O(V 2) [39], and in practice, it runs in linear time [15] (Fig. 14.8).

There are many extensions one can extract from the pebble game [16]. For exam-
ple, whenwe cannot locate the seventh free pebble, the failed search over the directed
graph indicates a rigid cluster. By using this procedure, it is possible to find all the
maximal rigid clusters and redundantly rigid clusters (Fig. 14.7). Prediction of a
highly redundant rigid clusters provides useful importance to a biochemist as these
regions will have additional robustness, and will not become unstable (flexible) due
to one or few edges breaking. For example, when a hydrogen bond breaks in a sig-
nificantly redundantly rigid region, it will not alter its rigidity. We can also extract
the relative degree of freedom count for any subgraph in G. This is very useful in
the prediction of flexibility of particular regions of interest in protein graphs, for
example, in antibody protein flexibility studies and in allostery predictions, which is
discussed in next section.
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Fig. 14.8 6|V | − 6 Pebble game algorithm. a When we cannot pebble an edge, it indicates that
edge is redundant and the corresponding failed search locates a redundantly rigid subgraph (b).
Overall, the graph is flexible with one internal degree of freedom, as indicated by the remaining
seven free pebbles. Rigid clusters are circled. Each one of the bonds can be moved with one internal
rotational degree of freedom

14.4 Protein Flexibility, Dynamics, and Function Analysis
with Rigidity Theory

14.4.1 FIRST and Rigid Cluster Decomposition

The pebble game algorithm is themain component of the programme FIRST [15] and
other related software for analysing protein rigidity and flexibility. Starting with a
protein structure (experimentally or computationally determined structure) in Protein
Data Bank File format, the programme FIRST begins by creating a molecular body-
bar multigraph. The multigraph consists of all atoms (including hydrogen atoms)
represented by vertices, with covalent bonds, hydrogen bonds, hydrophobic contacts,
and electrostatic interactions represented by edges. Covalent bonds are modelled as
five edges, with six edges for double bonds and peptide bonds (as they do not have
bond rotation), while hydrogen bonds and hydrophobic interactions are modelled
with between one and five edges [25]. Hydrophobic contacts are defined as a pair of
carbon–carbon, carbon–sulfer, or sulfer–sulfer atoms in close contact. Each hydrogen
bond is assigned an energy strength in kcal/mol using an energy potential based on
hydrogen donor and acceptor geometries. Hydrogen bonds are very important to
the overall protein shape and stability. A hydrogen bond cutoff energy value (which
mimics temperature) is selected such that all bondsweaker than this cutoff are ignored
in the graph.Once the final constraintmultigraph is obtained (Fig. 14.6d), FIRST then
uses the pebble game algorithm and molecular theorem to decompose the protein
into rigid and flexible regions.
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Fig. 14.9 Rigidity and flexibility analysis using FIRST and the pebble game algorithm on protein
data from the Protein Data Bank (Protein Data Bank ID, 2jz3). The hydrogen bond dilution plot
indicates how the protein breaks down as the hydrogen bond cutoff is increased (i.e., energy is
increased), breaking hydrogen bonds one by one. Flexible regions are indicated by thin black lines
and rigid regions are indicated by blocks, with separate colours indicating distinct rigid clusters.
Flexible regions are coloured black on the protein structure. Initially, with inclusion of all potential
hydrogenbonds, the protein is dominated by a few large rigid clusters (indicated by separate colours),
and as hydrogen bonds are gradually broken with increasing energy, most of the protein becomes
flexible (black) with a few remaining rigid clusters

Figures14.9 and 14.10 show some examples of rigid cluster decompositions
obtained with FIRST and the pebble game algorithm for two proteins. The rigid
cluster decomposition on a very large Spike protein complex consisting of nearly
4000 residues was obtained in less than one second of running time (Fig. 14.10) We
can monitor gradual changes in the rigid cluster decomposition as hydrogen bonds
are removed one by one (i.e., by lowering the hydrogen bond energy threshold) in
the order of increasing bond strength. The change in rigidity can be visualized using
a hydrogen bond ’dilution plot’ (Fig. 14.9). Because the pebble game is a combinato-
rial integer algorithm (tracking molecular theorem counts) as opposed to a numeric
algorithm, FIRST always gives a unique exact answer.

While tremendous computational power and resources are needed to simulate pro-
tein flexibility with MD simulations, FIRST can predict rigid clusters and flexible
connections in less than one second on a typical PC/laptop. Because of its speed and
efficiency, rigidity theory analysis using FIRST and other related programmes have
been widely applied to analysing various aspects of protein function and flexibility
analysis, such as viral capsids [40] (with enormous structures containing hundreds
of copies of protein structures), protein engineering, and prediction and replica-
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Fig. 14.10 Rigid cluster
decomposition obtained with
FIRST on a very large
SARS-CoV-2 (in
COVID-19) spike protein
complex (Protein Data Bank
ID 6vyb). At -1kcal/mol
energy cutoff, spike protein
consists of more than 70
rigid clusters, each
containing at least 20 atoms

tion of experimental measures of dynamics such as hydrogen–deuterium exchange,
allostery, and enzyme catalysis [11, 12, 15, 17–19, 23, 24, 26].

14.4.2 Large-Scale Rigidity and Flexibility Analysis

As an illustration of the efficiency and wider applicability of rigidity theory for large
big-data high-throughput analyses of protein structures, we review a study where the
author and colleagues carried out the largest study to date of flexibility predictions
of antibody protein structures [41].

Antibodies are proteins produced by B cells that play a main role in the adaptive
immune system. They recognize a variety of pathogens and induce further immune
response to protect the organism from external disturbance.Molecules that are bound
by antibodies are called antigens. The focus of this study was to characterize flexibil-
ity of the key hyper-variable binding region on antibody called CDR H3 loop, which
is the most important region in binding and recognition of various antigens. More
specifically, we analysed whether the conformational flexibility of CDR H3 loop is
changed as antibodies undergo affinity maturation. Antibodies can rapidly evolve
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H3 Loop

Fig. 14.11 Antibody is a large Y-shaped molecule. CDR H3 loop (shown in red) is located on the
surface of each antibody arm, acting as a key region for antigen binding and recognition. In the
study, authors applied extensions of the pebble game algorithm to analyse flexibility of the H3 loop
using thousands of naïve and mature structures. There was no significant difference in flexibility
between the naïve and mature H3 loops (figure on right adapted from [41])

to specific antigens, where affinity maturation drives this evolution through multiple
cycles of mutation leading to enhanced antibody specificity and affinity. In this study,
we utilized various extensions of the pebble game algorithm, initially developed in
[16], which enables quantification of local flexibility of any subgraph, with focus
on CDR H3 regions. By analysing thousands of mature and naÃ¯ve antibody crystal
structure and homology models, we found no clear statistically significant differ-
ence in the flexibility of CDR H3 loops (Fig. 14.11), which was also correlated with
experimental measures of flexibility. Such large-scale analysis of the flexibility of
protein structures could be carried out because of the speed of the underlying FIRST
method and our various pebble game extensions.

14.4.3 Protein Allostery Analysis with Rigidity Theory

We now briefly discuss and review an important application of rigidity theory for
analysis of allosteric signalling in protein structures. Allostery is one of the most
powerful and fundamental mechanisms regulating protein function [8–12, 42–44].
Allostery refers to the regulation of protein function at a distance, where a pertur-
bation of a protein structure at one part of protein structure (for example, due to
a binding or mutational event) can affect conformations and dynamics at another
distant site, resulting in regulation of protein function. Allostery is a common event
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in the cell, and most dynamic protein exhibit some form of allosteric control mech-
anism. Allostery has been referred to as ‘the second secret of life’, second only to
the genetic code [8]. Monod and Jacob in 1960s [43] first introduced the allostery
concept; however, most questions pertaining to allostery are still largely unresolved.
Decoding the allosteric mechanism remains one of the key long-standing unsolved
problems in the biological sciences.

One of the important areas in allostery research is describing the physical mech-
anism of distant coupled conformational changes. The utilization and extension of
our earlier fundamental work in modelling allostery in frameworks and graphs [16]
and a first rigidity-based mechanistic model of allosteric signalling has led to several
important breakthroughs in understanding how allostery controls enzyme and recep-
tor function [11, 12, 24, 44]. Our rigidity theory methods predict that if mechanical
perturbation of rigidity at one site of the protein can transmit and propagate across a
protein structure and, in turn, cause a change in the available conformational degrees
of freedom and a change in the conformation and dynamics at a second distant site,
resulting in allosteric transmission (Fig. 14.12a). Using various extensions of the
pebble game algorithm, we can analyse how long-range conformational coupling
occurs in protein structures, map out allosteric pathways (regions in protein that are
important for allosteric signalling) and extract various other properties and features
of long-range coupling.

A popular hypothesis is that dynamical effects play a central role in enzyme
catalysis. Dynamical changes are often manifested in proteins through allosteric
effects, where a substrate binding can cause changes in dynamics at remote parts
of a protein. In a study published in Science [11] concerning bacterial homodimeric
fluoroacetate dehalogenase enzyme, experimental NMR chemical shift data sug-
gested that when a substrate binds to one monomer, the second empty monomer
undergoes asymmetrically pronounced conformational changes through an increase
in flexibility in dynamics, thereby entropically favouring the forward reaction. Our
rigidity-based allostery theory was able to verify this and elucidate in great detail the
key residues involved in the allosteric pathways responsible for changes in dynamics
and how substrate binding enhances allosteric communication between two subunits
(Fig. 14.12b). These findings also provided deep insights into the energetic nature of
allosteric processes that drive catalysis.

In a follow-up study [24], we showed that when there is a high concentration of
substrate, the enzyme undergoes catalysis inhibition through the reduction in dynam-
ics and dampening of interprotomer allosteric effects. Our computational rigidity
predictions of allosteric networks and resulting changes in dynamics when addi-
tional substrates were bound to the enzyme were validated with NMR and functional
experimental studies. These studies represented a major breakthrough in illustrating
the role of dynamics and allostery in enzyme function.

Our rigidity-theoretical approaches have been extremely useful for studying
allostery in other enzymes and proteins. Indeed, we were able to provide a major
advancement and new level of insight regarding key allosteric processes in GPCR
activation. GPCRs are situated in the plasma membrane, engage the G-protein and
initiate cell signalling [45]. In several studies [12], we have shown how interactions
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Fig. 14.12 Rigidity theoretical model for allosteric communication. a Conformational changes in
one region of the framework (or protein structures) can propagate and change conformations and
rigidity at distant regions. b Rigidity theory allostery analysis showed that homodimeric fluoroac-
etate dehalogenase enzymewith substrate fluoroacetatemolecule (shown as orange spheres) exhibits
allosteric communication between the two subunits (shown in distinct colours), which is critical for
enzyme catalysis [11, 24]. c In a study of human adenosine A2A receptor [12, 18]., a member of
superfamily of receptors called G-protein-coupled receptors (GPCRs) a similar approach was used
to discover that allosteric communication between receptors and different domains of G-protein is
critical for full receptor activation

between GPCR and its natural G-protein binding partner affect activation networks,
as is critical for optimal GPCR activation (Fig. 14.12c), or how sodium, calcium,
and magnesium can affect this activation process [18]. Our rigidity theory-based
approaches offer a new perspective and opportunity to study the various facets of
allosteric regulation of protein function, which will allow us to examine complicated
signalling events in the cell.

14.4.4 Using Rigidity Theory to Simulate Protein Dynamics

So far, the discussion has focused on infinitesimal flexibility (which is equivalent
to finite flexibility, assuming atom positions are in a generic configuration) and not
on continuous motions. In other words, FIRST and the pebble game outputs do
not simulate protein dynamics and indicate the amplitude of motions. One useful
extension is to combine the rigid cluster decomposition with Monte Carlo-based
geometric dynamics simulations [20, 21]. Rigid cluster decomposition can remove
hundreds of degrees of freedom from the overall protein framework and serve as a
natural coarse graining step to speed up protein dynamics simulations [19, 46]. For
example, the all-atom geometric simulation method FRODA (Framework Rigidity
Optimized Dynamic Algorithm) (which runs about 100,000 times faster than MD
simulations) [20] uses rigid clusters as a preprocessing step to explore the conforma-
tional space of the proteinmotions. The rigid clusters, whose size and number depend
on the selected energy threshold and the type of protein structure being analysed, can
be kept fixed as rigid body geometrical components in the simulation motion (see
Fig. 14.13). The atoms belonging to a rigid cluster can only move by utilizing trivial
rigid body degrees of freedom.With this in mind, simulations can be focused on sim-
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Fig. 14.13 Geometric simulation as used in FRODA/FRODAN (a). A part of a 2D slice through
the 3N-dimensional conformational space, where red indicates disallowed states and blue indicates
allowed states [21]. A random move (green arrows) is accepted if it falls within a blue region
(green dots) and rejected if it falls within a red region (yellow dots), followed by enforcement of
the constraints (yellow arrows). The black path produces a valid geometric path within the allowed
conformational space. Any rigid region (which can be potentially very large) identified with FIRST
moves as a single rigid body within FRODA or very small rigid clusters or individual atoms within
FRODAN. b FRODA was applied to a large antibody protein to explore the large-scale motions of
arms (green and orange) of the Y-shaped antibody structure, where three distinct colours represent
three separate large rigid bodies. c FRODAN dynamics simulation illustrating internal dynamics of
a Spike protein [47]

ulating the relevant degrees of freedom belonging to intermediate flexible regions.
FRODA rapidly generates geometrically valid conformations that are consistent with
bond lengths and angular constraints while maintaining all rigid clusters. In these
protein motion simulations, we need to add the van der Waals collisions of atoms as
constraints, where only allowed geometries (valid stereochemistry, bonding angles,
Ramachandran plots etc.) accessible to protein motions are simulated. Figure14.13b
shows the output of FRODA for an antibody protein, which exemplifies large ampli-
tude motions.

We have applied and extended FRODA, using the related constrained geomet-
ric simulation programme FRODAN [21], which, like FRODA, provides very fast
motion simulations but is better suited for proteins that are not dominated by large
rigid clusters. In a FRODAN simulation, the rigid clusters are typically small, from
single atoms up to small rigid cycles (e.g., proline rings and rigid loops). This makes
FRODAN useful for simulations of protein motions that include substantial unfold-
ing and refolding and analysing motions of intrinsically disordered proteins. Indeed,
we have utilized a similar approach in combination with an experimental measure
of dynamics, hydrogen–deuterium exchange, to characterize the highly complex
motions and conformational ensemble of a large intrinsically disordered Tau protein
[22]. Tau protein is a key protein in a number of pathologies and dementias such as
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Fig. 14.14 a Tau protein is a large intrinsically disordered protein. Because of its high flexibility
and disordered structure, it is able to take a wide variety of shapes, which makes it difficult to study
with conventional MD simulations. b By performing large rigidity theory geometric simulations
using FRODAN and its extensions, we were able to characterize the representative structures for the
native and defective (i.e., hyperphosphorylated) forms of Tau, which was shown to be in agreement
with HDX experimental data (The figure in b is adapted from [22])

Alzheimer’s disease, and its primary physiological role is to stabilize microtubules
in neuronal axons at all stages of development. One of the main challenges in under-
standing the Tau structure–function relationship and finding successful therapeutics
for Alzheimer’s disease is the poor understanding of the atomic structural ensemble
and dynamics of the Tau protein. Moreover, Tau protein undergoes modifications to
its shape and internal dynamics as mediated by a hyperphosphorylation defect. By
performing FRODAN simulations and our various extensions, we were able to show
an unprecedented first detailed view of the structural and dynamic characteristics
of both the normal and the defective hyperphosphorylated forms of Tau [22]. This
study provided a rich understanding of the structural basis of Tau pathology (see
Fig. 14.14).

FRODA, FRODANand our various extensions can be applied to probe the dynam-
ics of very large structures such as Spike proteins [47] or disordered proteins, which
provides a significant advantage over traditionalMD simulations. Probingmotions of
intrinsically disordered proteins with MD simulation is extremely challenging, if not
essentially impossible, owing to their highly dynamic character. The rigidity theory-
inspired methodologies FRODA/N discussed here can be run in either targeted and
non-targeted modes, and we have recently combined these techniques with search
algorithms in reinforcement learning (under review). The targeted mode employs
biasing force during transitioning, while the non-targeted mode explores unbiased
random fluctuations, which enables the exploration of a broad conformation space.
Additionally, the targeted mode is useful for determining the conformational tran-
sition pathways between distinct conformations (i.e., opening and closing motions
such as hinge-bending motions, GPCR activation, etc.).
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14.5 Protein Structure Validation with Rigidity Theory

We now discuss another application of rigidity theory to structural biology. In a very
recent study, we made an important breakthrough in the area of protein structure
validation [48, 49].

Experimentally solved protein structures are only useful if they are known to be
accurate and realistically represent the protein structures in their native environment.
The vastmajority of protein structures in the ProteinData Bank [50] have been solved
by X-ray crystallography or NMR experiments. Both X-ray crystal structures and
NMRstructures are onlymodel representations of experimental data,which are prone
to uncertainties and errors. It is widely accepted that experimentally solved protein
structures must be validated with (i) geometric tests and (ii) how well structures
match input experimental data (restraints) [51]. Geometric criteria are easy to check
for both X-ray andNMR structures, andmeasurements like R factor and Rfree values
can be used to check how well X-ray structures match input X-ray diffraction data
[48]. Unfortunately, no such validation criteria exist for NMR structures [51], and
unlike crystal structures, validating the quality ofNMR structures has been extremely
difficult. In fact, since the first protein was determined by NMR in 1985 until now,
there has been no effective method for NMR protein structural validation, which has
largely limited the applications and use ofNMR structures among protein researchers
[51–55]. This has created a problem not only for users of structural information, but
also for scientists who use NMR to computationally solve structures and want to
know how accurate their solved structure is.

While structures solved by NMR represent less than 10% of all structures in
PDB, they are extremely important, as not all proteins can be crystalized and NMR
structures also include a high proportion of proteins with under-represented folds
(shapes). NMR structures are determined in solution (a protein’s natural environ-
ment), whereas X-ray structures are determined in a crystalline environment, which
arguably makes NMR structures more representative of in vivo structures. Hence,
there has been a pressing need to find an acceptable validation measure for NMR
structures.

We have developed the method ANSURR (Accuracy of NMR Structures Using
Random Coil Index and Rigidity) [48], which addresses this critical long-standing
gap for NMR protein structure validation. ANSURR assesses the quality of NMR
structures by comparing two measures of local protein rigidity, one derived from
the original NMR input data and the other derived from rigidity theory prediction
of protein flexibility using structural data. The measure of rigidity using input data
is based on the Random Coil Index (RCI), which uses experimental NMR chemical
shifts (a readily available data type for each NMR structure) to quantify the extent
of disordered structure for each amino acid in solution. The second measure is based
on FIRST and our rigidity theory extensions, which involves calculating the dilution
plot (see Fig. 14.9) and extracting a flexibility score for each residue. ANSURR then
compares these two measures of local rigidity and provides a residue-by-residue test
of how well the rigidity of the structure (obtained from rigidity theory) compares
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Fig. 14.15 a The ANSURR method evaluates the accuracy of nuclear magnetic resonance (NMR)
protein structure (which are given as an ensemble of models) by comparing twomeasures of protein
flexibility (orange predicted from structure, using mathematical rigidity theory using extensions of
the method FIRST, and blue derived from the random coil index [RCI] using experimental NMR
chemical shift data). bAnalysis of ANSURR using four models from NMR (Protein Data Bank ID,
1e17). ANSURR provides two metrics for accuracy: a correlation score between FIRST (rigidity)
and RCI and a root mean square difference (RMSD) score. The structures in the top right portion of
the plot (high correlation and high RMSD scores) are high-quality NMR structures, and structures
in the bottom left of the plot are considered poor structures (Figure adapted from [48]). c ANSURR
output for an example NMR structure (Protein Data Bank ID, 2kpp) that has high accuracy for most
models in the ensemble

to the experimentally determined (true, RCI chemical shift) rigidity. ANSURR pro-
vides two metrics for accuracy measurement. One is a correlation score between
FIRST (rigidity) and RCI, which assesses the accuracy of protein folding (secondary
structures), and the second is an RMSD score, which measures how well the overall
rigidity and flexibility between FIRST and RCI match (Fig. 14.15).

Unlike crystal structures, NMR structures are always represented as an ensemble
of (typically around 20) possible structural models. Because it is unclear which
models are useful or accurate, this has created substantial and unnecessary confusion
for users of NMR structures. A nice feature of ANSURR is its ability to estimate the
accuracy of each model.
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The performance of ANSURR was tested using several approaches [48]; first,
ANSURR was applied to structures refined in an explicit solvent (which was found
to be much better than unrefined structures), and then ANSURR was applied to a
large set of good and bad structures (using decoy generations). ANSURR was also
compared against previously proposed measures of accuracy (mostly restraint-based
tests and geometric checks). Several of these indicators, such as restraint violations
and restraints per residue, were shown to be poor measures of accuracy. On the
other hand, a Ramachandran analysis (a standard check to determine if a protein
backbone has a correct geometry) was found to be a useful geometric check of
accuracy. A typical comparison of howwell a structure compares to another structure
is the backbone root mean square deviation, which can show if protein structures
resemble each other when superimposed. However, this measure may miss many
of the important structural differences found in amino acid side-chain orientations,
which are responsible for forming critical hydrogen bonding interactions that have
a direct impact on protein stability and functional aspects such as protein dynamics
and enzyme catalysis. As rigidity measures are sensitive to side chains, ANSURR
can also be used to assess the quality of side-chain atomic positions, which makes it
a powerful tool for the assessment and refinement of protein structures.

Recent work [49] applied ANSURR to more than 7000 NMR structures in the
PDB, showing that NMR structures span a wide range of accuracy. Most NMR
structures have accurate secondary structures, but are too floppy, particularly in their
loops. Our studies also indicate that both crystal structures and NMR structures have
equally accurate secondary structural elements (helices, sheets), but crystal structures
are typically too rigid in disordered regions, whereas NMR structures are too flexible
overall.

Development of ANSURR is a major advancement in the long-standing prob-
lem of protein structure validation, as it provides the first workable measure of the
accuracy of NMR structures and is expected to give researchers more confidence in
the use and application of structural NMR. Ultimately, this should lead to a better
understanding of how proteins perform their functions, with general implications for
structural biology research. This work opens up enormous new research avenues in
protein structure determination and the improvement of standards for protein struc-
ture refinement.

14.6 Conclusion

Studying the rigidity and flexibility of geometric frameworks has advanced consid-
erably since Maxwell’s combinatorial characterization of the rigidity of mechanical
frameworks in the 1800s. Mathematical advancements in rigidity theory over the
last two decades have been tremendous, opening up many exciting opportunities in
applied sciences and engineering. In this chapter, we have reviewed some of the
latest advances in rigidity theory and its applications for the analysis of protein
function at an atomistic scale. Moreover, we have shown how rigidity theory-based
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methods and our various algorithms and extensions can rapidly and accurately pre-
dict protein flexibility and dynamics, which can be used to decipher various aspects
of protein function, including elusive issues of allostery, enzyme catalysis, GPCR
signalling, or motions of intrinsically disordered proteins. Our recent development
using rigidity theory in protein structure validation has led to a development of a first
workable method in validation of NMR protein structures. This advance will provide
confidence to users of protein structures and is expected to accelerate and improve
the process of protein structure determination and aid computational drug discovery.
Rigidity theory is heavily rooted in deepmathematical formulations in the area of dis-
crete applied geometry and combinatorics, which has unfortunately remained largely
inaccessible to most researchers in applied science and engineering fields. While
there has been some cross-fertilization between the various scientific fields studying
different aspects of rigidity and flexibility, stronger interactions and interdisciplinary
training are needed between applied and theoretical scientific communities to realize
the enormous potential of rigidity theory applications. We advocate that rigidity the-
ory, through both algorithmic and mathematical progress, has significantly advanced
such that it could bewidely applied in the analysis of structural biological data, which
can complement experimental approaches to reveal novel insights on intractable and
fundamental biological enigmas of living organism. Rigidity theory exemplifies how
mathematics and algorithms can make significant contributions to structural biology,
biological big-data analyses, and progress in biological applications.
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Chapter 15
Optimization of Evacuation
and Walking-Home Routes from Osaka
City After a Nankai Megathrust
Earthquake Using Road Network Big
Data

Atsushi Takizawa and Yutaka Kawagishi

Abstract Whenadisaster such as a large earthquakeoccurs, the resulting breakdown
in public transportation leaves urban areas with many people who are struggling
to return home. With people from various surrounding areas gathered in the city,
unusually heavy congestion may occur on the roads when the commuters start to
return home all at once on foot. In this chapter, it is assumed that a large earthquake
causedby theNankaiTroughoccurs at 2 p.m. on aweekday inOsakaCity,where there
aremany commuters.We then assume a scenario inwhich evacuation froma resulting
tsunami is carried out in the flooded area and people return home on foot in the other
areas. At this time, evacuation and returning-home routes with the shortest possible
travel times are obtained by solving the evacuation planning problem. However, the
road network big data for Osaka Citymake such optimization difficult. Therefore, we
propose methods for simplifying the large network while keeping those properties
necessary for solving the optimization problem and then recovering the network. The
obtained routes are then verified by large-scale pedestrian simulation, and the effect
of the optimization is verified.

15.1 Introduction

When a disaster such as a large earthquake occurs, the resulting breakdown in public
transportation leaves urban areas with many people who are struggling to return
home. With people from various surrounding areas gathered in the city, unusually
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heavy congestion may occur on the roads when the commuters start to return home
all at once on foot. In Japan, the Great East Japan Earthquake on March 11, 2011
left many people in central Tokyo unable to return home, and roads were flooded
with pedestrians attempting to do so. After the Osaka North Earthquake on June 18,
2018, the Shin-Yodogawa Bridge and its surroundings were extremely congested by
displaced people crossing the Yodo River from Umeda.

From reflecting on such confusion, many local governments have already decided
on countermeasures for people who are struggling to return home [16]. Common
among these countermeasures is that people who need to return home from their
places of work are urged not to do so immediately after the disaster but rather to
remain in place. Meanwhile, although it is known empirically that great confusion
arises when difficulties in returning home occur, the associated countermeasures tend
to be approximate because it is not known how much congestion occurs and where
until after the disaster has occurred. Pedestrian simulation of the whole city would
seemuseful in such cases, but this has not been attempted until recently because doing
so requires large-scale and detailed data and a high-speed calculation environment.
However, Hiroi et al. carried out a simulation of mass returning-home behavior on
foot after a large earthquake for an area within 40km from Tokyo Station [3].

In the case of western Japan, such as Osaka City, an earthquake originating from
the Nankai Trough is the most dangerous. In Osaka City, the resulting tsunami is
predicted to reach the shore in 1h and 50minutes and flood about half of the city [14].
One of the major problems with the tsunami is that it will travel up the Yodo River
in the northern part of Osaka City and spread to the coastal area. As mentioned
above, people returning home after the 2018 Northern Osaka Earthquake became
congested around bridges crossing the Yodo River, a phenomena that Kawagishi and
Takizawa predicted by means of a large-scale simulation of returning home from
Osaka City [7].

However, if the timings of the tsunami flooding and the movement of people
overlap, a large-scale secondary disaster may occur. Therefore, in Osaka City, it
is necessary to consider risks such as delayed escape from tsunami along with the
countermeasures for people who are struggling to return home, but it is difficult to
say that the current countermeasures consider such risks. The purpose of the study
by Kawagishi and Takizawa [7] was to investigate how a Nankai Trough earthquake
would affect the return home of commuters in Osaka City. The results confirmed
that bridges over the Yodo River from the center of Osaka City would be congested
for a long time with people crossing, and that there would be a danger of delayed
escape from tsunami by remaining in the vicinity. However, that study did not con-
sider evacuation behavior from tsunami, and it assumed that people who walk home
take the shortest route to do so. Therefore, problems remained, such as excessive
concentration of pedestrians on specific roads and bridges.

In the present study, it is assumed that a large earthquake caused by the Nankai
Trough occurs at 2 p.m. on a weekday in Osaka City, where there are many com-
muters. We then assume a scenario in which evacuation from tsunami is carried out
in the flooded area and people return home on foot in the other areas. At this time,
the evacuation and returning-home routes with the shortest possible travel times are
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obtained by solving the evacuation planning problem [8, 19]. However, the road
network big data for Osaka City make such optimization difficult. Therefore, we
propose methods for simplifying the large network while keeping those properties
that are necessary for solving the optimization problem and then recovering the net-
work. The obtained routes are then verified by large-scale pedestrian simulation, and
the effect of the optimization is verified.

The remainder of this chapter is organized as follows. The next section explains
the evacuation planning model. Next, the pedestrian simulation model for a large-
scale network model is described. Then, the results are discussed, and conclusions
and suggestions for future work are presented.

15.2 Quickest Evacuation Planning Problem

This section describes the quickest evacuation planning problem based on a dynamic
network in which the flow rate changes over time. Meanwhile, a network in which
the flow rate does not change over time is called a static network.

15.2.1 Dynamic Network

We define a directed graph D = (V, E) for vertex set V and edge set E . In V , the
sources (i.e., the starting vertices of the flow) and sinks (i.e., the destinations) are
given. A directed edge with a start vertex u ∈ V and an end vertex v ∈ V is expressed
as e = (u, v), and the start vertex of e is expressed as tail(e) and the end vertex is
expressed as head(e). For vertex v ∈ V , δ+

D(v) ⊂ E is defined as a set of edges going
out of v and δ−

D(v) ⊂ E is a set of edges going toward v. For each edge e ∈ E , we
define a travel time function τ : E → Z+ that denotes the time required to flow on
e from tail(e) to head(e). The maximum value of the flow on e is denoted by the
capacity function c : E → R+. For each vertex v ∈ V , we define a supply function
b : V → R+ that denotes the amount of supply at that vertex, and the set of vertices
with one or more supplies as S+ ⊆ V . Furthermore, the sink set S− ⊆ V is also
defined.

Using the above definitions, a dynamic network N = (D, c, τ, b, S+, S−) is
defined, and Fig. 15.1 shows an example of N . Assuming application to evacuation
planning, the flow denotes the movement of evacuees, a sink denotes an evacuation
site, and the flow reaching a sink denotes the accommodation of evacuees at that
evacuation site. An evacuee who arrives at a vertex moves on an edge and is deemed
evacuated upon reaching a sink. The total number of evacuees at point v ∈ V is
regarded as the supply at that point b(v).

Next, we define a dynamic flow f : E × Z+ → R+ on dynamic network N as
the flow rate entering the edge e ∈ E at discrete time θ ∈ Z+, and it is expressed as



372 A. Takizawa and Y. Kawagishi

Fig. 15.1 Example of a
dynamic network N

f (e, θ). Note that the flow that enters tail(e) of edge e at time θ arrives at head(e)
at time θ + τ(e).

On the dynamicflow, the following three constraints are defined. First, the capacity
constraint is given by

0 ≤ f (e, θ) ≤ c(e) (∀e ∈ E, θ ∈ Z+), (15.1)

then the flow conservation law is given by

∑

e∈δ+
D(v)

�∑

θ=0

f (e, θ) −
∑

e∈δ−
D(v)

�−τ(e)∑

θ=0

f (e, θ) ≤ b(v) (∀v ∈ V,∀� ∈ Z+), (15.2)

and the demand constraint is given by

∑

s∈S−

∑

e∈δ−
D(s)

�−τ(e)∑

θ=0

f (e, θ) =
∑

v∈V
b(v) (∃� ∈ Z+). (15.3)

A dynamic flow that satisfies these three constraints is said to be feasible, and the
feasible dynamic flow that achieves the minimum time �∗ is called the quickest
flow. The quickest evacuation planning problem is to find the minimum evacuation
completion time �∗.

Considering application to an actual evacuation planning problem, there is an
upper limit on the number of evacuees that can be accepted at each sink, which is an
evacuation center. As defined by Kamiyama et al. [6], it is assumed that the capacity
function l : S− → Z+ pertains to each sink, and the feasible flow f satisfies

∑

e∈δ−
D(s)

�∑

θ=0

f (e, θ) ≤ l(s) (∀s ∈ S−,∀� ∈ Z+). (15.4)
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15.2.2 Time-Expanded Network

Ford and Fulkerson [1, 2] proposed the time-expanded network to obtain the quick-
est flow. This is a static network corresponding to dynamic network N with time
constraint �, and it is designated as N (�). The set of vertices for N (�) is defined
by

{v(θ)|v ∈ V, θ ∈ {0, . . . , �}}. (15.5)

That is, for vertex v of the original network, vertex v(θ) is provided corresponding
to each time θ ∈ {0, . . . , �} (see Fig. 15.2).

The edge set of N (�) consists of two parts. First, for each edge e = (u, v) ∈ E
and each time θ ∈ {0, . . . , � − τ(e)}, we have edge e(θ) = (u(θ), v(θ + τ(e))) of
capacity c(e). Second, for each vertex v ∈ V and time θ ∈ {0, . . . , � − 1}, we add
stagnant edges (v(θ), v(θ + 1)) of capacity +∞ (the horizontal edges in Fig. 15.2).
For each vertex v ∈ V , the supply of v(0) is defined as b(v). The supply of v(θ)

for θ ∈ {1, . . . , �} is set to zero. Let the sink set of N (�) be {s(θ)|s ∈ S−, θ ∈
{0, . . . , �}}.

15.2.3 Algorithm for Solving Quickest Evacuation Planning
Problem

Ford and Fulkerson [1, 2] showed that for the evacuation completion time to be less
than� in dynamic network N (�), the necessary and sufficient condition is that there
exists a flow of size

∑
s∈S+ b(s) from source set {s(0)|s ∈ S+} to the sink set. The

existence of such a feasible flow can be examined by obtaining the maximum flow
of N (�). To consider the sink capacity for evaluation sites, we add a super sink st

Fig. 15.2 Time-expanded
network N (4) of Fig. 15.1
with super sink st
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and edges of capacity l(s) from s(θ) to st for s ∈ S− and θ ∈ �. Then, the necessary
and sufficient condition for the evacuation completion time to be less than or equal
to � in dynamic network N is that the aforementioned feasible flow exists in the
time-expanded network N (�).

In this way, it is possible to obtain the quickest flow of evacuation planning
in pseudo-polynomial time using the time-expanded network, but as the size of
the actual network increases, so does that of the time-expanded one. Moreover,
Hoppe and Tardos [4, 5] proposed the quickest transport algorithm without using
a time-expanded network. However, although it is a polynomial-time algorithm, it
is necessary to minimize the sub-modular function iteratively, and currently this
algorithm is inefficient for a large-scale network such as the one in the present study.

Generally, there is more than one quickest flow, of which the one for which the
cumulative number of evacuees who have so far been evacuated is the largest at
each time before the evacuation completion time � is called the universal quickest
flow. This is obtained by first finding the evacuation completion time � and then
finding the flow known as the lexicographic maximum flow [9] on the corresponding
time-expanded network. When the sinks are subjected to the capacity constraint,
the universal quickest flow does not always exist. However, when this constraint
is imposed, the obtained flow is experimentally similar to the universal quickest
flow [19].

15.3 Pedestrian Simulation Model

Because both the travel time and time interval of a dynamic network model are
approximate, pedestrian simulations are carried out for the obtained route to improve
the accuracy, and the travel time and congestion are confirmed. Because the present
study deals with a large-scale road network, we use the one-dimensional pedestrian
model with high computational efficiency developed by Yamashita et al. [20]. In this
model, pedestrians walking in the same direction move in a row on an edge. This
row is called a lane, and the number of lanes is determined according to the width of
the sidewalk as determined in Sect. 15.4.1. As illustrated in Fig. 15.3, it is assumed
that pedestrians move in their specified lane and do not overtake. A discrete-time
simulation is performed to determine the speed of each pedestrian in a lane at the
next time step from their current speed and the distance between each pedestrian and
the one walking immediately in front.

In a lane as illustrated in Fig. 15.3, the leading pedestrian is defined as the one
closest to the target node. Let xi (t) be the distance of the i-th pedestrian from the
beginning of the edge from the starting vertex at time t . The velocity ẋi (t + δt) of
pedestrian i in the lane at time t + δt is considered to depend on the current velocity
of the pedestrian and the distance to the pedestrian walking immediately in front,
and it is determined by
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Fig. 15.3 Movement of pedestrians in a lane according to one-dimensional pedestrian model

ẋi (t + δt) = ẋi (t) +
(
a1(v0 − ẋi (t)) − a2 exp

(
r − (xi−1(t) − xi (t)

a3

))
δ(t),

(15.6)
where v0 is the free walking speed, r is the radius of the pedestrian, and a1, a2,
and a3 are parameters. According to a previous study [20], we set v0 = 1.023 [m/s],
r = 0.522 [m], a1 = 0.962, a2 = 0.869, and a3 = 0.214.

15.4 Data Preparation

The geographic information system (GIS) datasets used in this study are listed in
Table15.1, and Fig. 15.4 shows the city of Osaka covered by this study, the 20-km
zone within which people walk home, and the flooded area. In the following, we
explain the data preparation.

15.4.1 Road Network

Based on the approach of the Cabinet Office of Japan for people struggling to return
home [10], the road network was calculated from the roads in Osaka City except for
the expressways, and the range of the buffer was 20km. Consequently, a large-scale

Table 15.1 GIS datasets used for optimization and simulation

# Data

1 Sub-regional boundary data [17]

2 Tsunami flooding estimation area [11]

3 Road network [18]

4 Tsunami evacuation buildings [15]

5 Daytime population data [13]
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Fig. 15.4 Osaka City and its 20-km surrounding area

road network comprising 815739 edges and 621670 nodes was obtained. Simplifi-
cation of this large-scale road network is described in the next section. In the case of
an earthquake due to the Nankai Trough, a seismic intensity of a 6-lower is assumed
in Osaka City. There is expected to be little major damage to roads and buildings at
this seismic intensity, therefore in this study buildings and roads are assumed to be
undamaged.

We assume that pedestrians move on sidewalks, but there are no sidewalk data for
this road network. Therefore, referring to the regulations of the Ministry of Land,
Infrastructure and Transport [12], we sampled the sidewalk width every 10 blocks
using the distance-measuring function of Google Maps for each of six road types
obtained from the road network data, and we unified the sidewalk width by each road
type.

Next, a sidewalk along which only one person could pass at a time was made to
be a lane, and the lane width was made to be uniformly 0.75m. The number of lanes
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was set as an even value that did not exceed the determined width of the sidewalk
divided by the width of a lane. This was done so that edges opposite to each other had
the same number of lanes. For each road type, the maximum and minimum numbers
of lanes obtained under these conditions were eight and two, respectively.

15.4.2 Tsunami Evacuation Buildings

As tsunami evacuation buildings, we used 649 buildings designated by Osaka City
in 2016. These were inputted as GIS point data, and each point was connected to the
nearest road edge by a straight line. The capacity of tsunami evacuees was set for
each tsunami evacuation building. In total, 560816 people could be accommodated
in all the tsunami evacuation buildings. Figure15.5 shows the tsunami evacuation

Fig. 15.5 Tsunami evacuation buildings and passable bridges
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buildings that were used. As described in Sect. 15.6, when we optimize and simulate
the routes including the bridges over the Yodo River, the bridges in the flooded area
are set to be impassable.

15.4.3 Daytime Population

The daytime population was calculated frommobile spatial statistics generated from
the travel histories of users of mobile phones. As shown in Fig. 15.6, we used 500-m
mesh data of the population at 2 p.m. on a weekday in Osaka City in April 2015.
There were 2696546 residents and commuters in Osaka City during this period, but
note that mobile spatial statistics cover only the population between 15 and 79 years
of age. We allocated the daytime population equally to nodes of the road network in
each mesh, and this became the initial arrangement of evacuees and stranded people.
Because the mobile spatial statistics also contain the population of each residential
area, we chose the node of the home place for each pedestrian randomly according
to this information.

15.4.4 Decisions on Number of People Struggling to Return
Home and Number of Evacuees

The polygons of the tsunami-flooded area were superimposed on the road network,
and the flooded nodes and edges were determined. For each visitor, the action of
evacuate, walk home, or remain in place was chosen according to the flooded con-
dition of the present node, the flooded condition of the home node, and the distance
to the home node. Whether or not to return home on foot was determined by the
method used by the Cabinet Office to estimate the number of people struggling to
return home [10].

Let R denote the set of commuters struggling to return home. In this approach,
the probability Pr of resident r ∈ R deciding to return home on foot is determined
by the following equation based on the distance dr [km] from the current place to
the returning place:

Pi =

⎧
⎪⎨

⎪⎩

1 (dr < 10),
20−dr
10 (10 ≤ dr < 20),

0 (20 ≤ dr ).

(15.7)

In this study, the return distance of each visitor is the length of the shortest path
from their present node to their home node obtained on the road network before
simplification. In the case of resident r whose return distance is 10 ≤ dr < 20, the
action is decided probabilistically according to Pr with uniform distribution. The
conditions for each action are summarized in Table15.2.
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Fig. 15.6 Distribution of commuters in Osaka City at 2 p.m. on a weekday in April 2015

Table 15.2 Decision rules for each action

Action Conditions

Current node Home node Return distance

Evacuate Flooded area Flooded area

Non-flooded area 10 ≤ dr < 20 (not
returning home) or
20 ≤ dr

Return home Non-flooded area dr < 10 or
10 ≤ dr < 20 (returning
home)

Remain in place Non-flooded area Flooded area

Non-flooded area 10 ≤ dr < 20 (not
returning home) or
20 ≤ dr
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Table 15.3 Breakdown of numbers of people involved in each activity

Action Number of people

Evacuate 701649

Return home 1408990

(via a bridge) 150994

(others) 1257996

Remain in place 585097

Total 2696546

Table15.3 lists the breakdown of the number of people for each activity classified
according to these rules. Of the people who return home on foot, approximately
150000 cross bridges over the Yodo River, and they become the objects for route
optimization. Everyone else returning on foot was deemed to take the shortest route.

15.5 Simplifying and Restoring Large Road Network
for Route Optimization

Computing the quickest flow depends greatly on the scale of the network. Although
the main part of the quickest-flow algorithm is computing the maximum flow, the
effect of parallelization on this algorithm is limited. Therefore, it is difficult to apply
this algorithm to a large network, even by using a recent central processing unit with
many cores. In this study, we simplify the large-scale road network and optimize the
routes for evacuation and returning home using the quickest flow. We also develop a
method for restoring the optimized routes to the original road network. The proposed
method is outlined below and illustrated in Fig. 15.7.

15.5.1 Simplification of Road Network

The basic idea is to construct a simplified road network by dividing the space by
polygons of the sub-regions of the area and connecting their centers of gravity with
straight lines between adjacent sub-regions. At this time, the sum of the numbers
of lanes of the original edges crossing the line segments shared by two polygons is
made to be the number of lanes of a simplified edge. If no original edges crossed
between two sub-regions, then the two polygons are not connected by a simplified
edge. The length of a simplified edge is the Euclidean distance between centers of
gravity, and commuters assigned to nodes in a polygon are aggregated on its center
of gravity.
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Fig. 15.7 Simplification and restoration of road network

The following procedures were carried out using GIS software to simplify the
original road network: recognizing adjacent polygons, decomposing polygons into
line segments, generating the centers of gravity of the sub-region polygons, extracting
the road edge that crosses the line segment of each pair of adjacent polygons, and
generating the simplified road network. Consequently, there were 36276 edges and
15853 vertices, these being approximately 4% and 3%, respectively, of those of the
original road network.

15.5.2 Restoring Optimized Routes on Original Road
Network

Let A be a set of sub-regions traversed by an origin–destination (OD) path in the set
of optimized OD paths on a simplified road network. In this study, we refer to the
OD path in the original road network being obtained as the shortest path in the road
network in A as route restoration. However, with this method, the destination may
not be reachable using only the road network in A (see Fig. 15.7d2). In that case, the
route obtained by the optimization is not used and is replaced by the shortest path
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in the whole road network. Then, the extent to which the original OD path could be
restored from the route in A is evaluated as the reproduction rate.

15.6 Route Optimization Settings

Thus, the routes for evacuation and returning home can be optimized. To prioritize
human life, we first secure evacuation routes for tsunami evacuees and then optimize
the routes for people walking home. The procedure and settings are described below.

15.6.1 Optimization Steps

First, we explain the concept of optimization for tsunami evacuees. As mentioned in
Sect. 15.4, inOsakaCity, there aremany tsunami evacuation buildings in the expected
flooded area, and the plan is to evacuate to those buildings. However, many areas
may continue to be flooded for several days even after drainage is carried out, and it
is feared that many tsunami evacuation buildings will be isolated by flooding.

In the event of a tsunami disaster in a large city, it is reasonable to suppose that not
many evacuees will use the tsunami evacuation buildings, given the limited resources
for rescuing evacuees from such buildings. Therefore, it is necessary to clarify which
areas contain evacuees who can only evacuate to a tsunami evacuation building. In
this study, we optimize the destinations and routes of evacuees in the following three
steps.

Step 1
In the simplified road network, the destinations of evacuees are set not as the tsunami
evacuation buildings but as the intersections of the boundaries of the flooded-area
polygons and the intersecting edges. Then, they are connected to one super sink, the
route is optimized by the universal quickest flow, and the evacuation completion time
for each evacuee is calculated.

Step 2
For evacuees whose evacuation completion time determined in step 1 exceeds 1h and
50 minutes, their evacuation routes are optimized again using the universal quickest
flow to evacuate to tsunami evacuation buildings. At this time, the optimization is
executed by using the residual network of the time-expanded network used in step 1
except for that of evacuees in step 2.

Step 3
The routes of approximately 150000 commuters walking home across passable four
bridges over the Yodo River shown in Fig. 15.5 are optimized using the universal
quickest flow.We refer to such pedestrians as “bridge passers.” In this case, sinks are
set to nodes on the north side of each bridge and are connected by one super sink. In
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addition, the residual network used in the optimization up to step 2 is used. People
in areas other than the flooded area return home via the shortest route, this being
because there is less congestion than on the bridges, and the optimization problem in
this case becomes a general multi-commodity flow problem, which is more difficult
than the quickest-flow problem.

15.6.2 Computational Conditions

The time unit of the quickest flow was set to 10s considering the computational
time and available memory. The walking speed of a pedestrian was set to 1m/s.
Meanwhile, the free walking speed in the one-dimensional pedestrian model was set
to 1.023m/s, which is similar to that in the original model [20]. The optimization and
simulation code was implemented using Visual C++ 2015, and LEDA 6.4 was also
used as a network library to solve the maximum-flow problem. The optimization
and simulation were carried out on a personal computer (PC) with Windows 10
Professional 64 bit, an Intel Core i7-6700k, and 32 GB of memory.

15.7 Results of Route Optimization

The optimization results are shown below, where the evacuation completion time
is the result of each pedestrian walking along the designated route using the one-
dimensional pedestrian model on the original road network.

15.7.1 Computational Times

The computational times for the route optimization for the two types of pedestrian are
listed in Table15.4. Even though the PC that was used was of an older specification
dating back several generations, the computation took only a matter of days. In
other words, the problem could be computed even with such a low-specification PC.
Although there were fewer bridge passers, their optimization took longer, probably
because their routes were longer.

Table 15.4 Computational time for each optimization

Pedestrian type Computational time [h:min]

Evacuee 29:56

Bridge passer 44:46
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15.7.2 Reproducibility of Restored Routes

We analyze the reproducibility of the routes optimized by the simplified network
after they are restored to the original network. The reproducibility is evaluated by the
difference in the length of a route before and after the restoration and the selectivity
of the route described above. Table15.5 lists the mean route lengths before and after
network restoration for each typeof pedestrian. In the case of evacuees, themean route
length increases after restoration, whereas it decreases for bridge passers. However,
the restoration does not cause an extremely large difference in either case.

Table15.6 lists the selection ratio, which is the percentage of each type of pedes-
trian using the routes obtained by the universal quickest flow after network restora-
tion. Although the selection ratio for evacuees exceeded 80%, that for bridge passers
was only 64%. Because the route became longer for the latter, this is thought to have
increased the number of cases in which a route cannot be constructed within the
limited range.

15.7.3 Optimization Results

Here, we assess by how much the optimization shortened the travel time compared
with that of the shortest route.

First, regarding the movement by evacuation, Fig. 15.8 shows how the cumula-
tive number of evacuees for each type of route varies with time, and Table15.7 lists
the mean evacuation time and evacuation completion time. Although the cumulative
numbers of evacuees for both types of route vary similarly, the effect of the optimiza-
tion is evident because it shortens the evacuation completion time by approximately
1h comparedwith that of the shortest route.However, the evacuation completion time

Table 15.5 Mean route lengths for each type of pedestrian before and after network restoration

Pedestrian type Mean length [m]

Before After

Evacuee 1798 2013

Bridge passer 7712 7593

Table 15.6 Selection ratios for optimized routes

Pedestrian type Total Number of
optimized-route
selectors

Selection ratio

Evacuee 701649 587585 0.84

Bridge passer 150994 97372 0.64
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Fig. 15.8 Cumulative number of arriving evacuees for each route type

Table 15.7 Comparison of travel times of evacuees for both route types

Route type Mean travel time [h:min] Travel completion time [h:min]

Optimized route 1:18 7:13

Shortest route 1:22 8:18

is over 7h, which is too long to avoid the impact of the tsunami. This is considered to
be a result of interference between the routes of evacuees and people returning home.
At the time of optimization, priority was given to evacuees, but this assumption may
have collapsed upon restoring the routes. Regardless, it is suggested that evacuees
should avoid evacuating outside the flooded area by using the tsunami evacuation
buildings as much as possible.

Next, we perform a similar verification for bridge passers. Figure15.9 shows how
the cumulative number of arriving people varies with time, and Table15.8 compares
the mean travel times and travel completion times for both route types. In the case of
the shortest route, pedestrian bridge congestion begins early, after which the slope of
the straight line of the accumulated number of arriving people is relatively low. As
a result, the completion time of returning home was drastically shortened by about
3h and 20min by the optimization with consideration of securing routes for tsunami
evacuees.
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Fig. 15.9 Cumulative number of arriving bridge passers for each route type

Table 15.8 Comparison of travel times of bridge passers for both route types

Route type Mean travel time [h:min] Travel completion time [h:min]

Optimized route 5:32 16:47

Shortest route 8:52 20:23

The effect of the optimization was demonstrated, especially for bridge passers. To
understand the changes concretely, the total numbers of pedestrians passing along
each road for both route types are visualized in Fig. 15.10. In the case of the shortest
route, people returning home are concentrated on the Nagara Bridge, but when the
route is optimized, two bridges upstream from the Nagara Bridge are used.

People generally use the Shin-Yodogawa Bridge to travel to the north of the Yodo
River from Osaka City, but in this case that bridge cannot be used because it is
in the tsunami-flooded area. Therefore, with no restrictions, most people returning
home would cross the Nagara Bridge, which is the next one upstream of the Shin-
Yodogawa Bridge. Bridges further upstream than the Nagara Bridge are not usually
used for transportation from Osaka City because they are located more than 3km
away. However, the optimization means that these bridges are also used for returning
home, and congestion is reduced.
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Fig. 15.10 Total number of pedestrians passing at each road edge for each route

15.8 Conclusion

In this study, we proposed a method for network simplification and restoration to
optimize the traveling routes of more than 2 million pedestrians with a large-scale
and detailed road network in Osaka City and its surrounding area. We then showed
that such route optimization worked well.
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Chapter 16
Stream-Based Lossless Data
Compression

Shinichi Yamagiwa

Abstract In this chapter, we introduce aspects of applying data-compression tech-
niques. First, we study the background of recent communication data paths. The
focus of this chapter is a fast lossless data-compression mechanism that handles data
streams completely. A data stream comprises continuous data with no termination of
the massive data generated by sources such as movies and sensors. In this chapter, we
introduce LCA-SLT and LCA-DLT, which accept the data streams, as well as sev-
eral implementations of these stream-based compression techniques. We also show
optimization techniques for optimal implementation in hardware.

16.1 Introduction to Stream-Based Data Compression

Rapid communication data paths are demanded in computer systems to improve per-
formance, and the fastest data paths have recently reached the order of tens of giga-
hertz as implemented by optical fiber.One solution to achieving rapid communication
data paths is to have parallelized paths in multiple connections, but technological tri-
als have offered no clear solutions because of electrical and physical limitations such
as crosstalks and refractions. To overcome the problems associated with high-speed
communication, this chapter focuses on data compression on the data path. There
are two ways in which this can be implemented. One is software-based compression,
which is typically implemented on the lower layer of the communication data path,
such as the device-driver level of Ethernet [18]. The other way is hardware-based
implementation, which must provide low latency and stream-based compression and
decompression.

Well-known algorithms such as Huffman encoding [17] and Lempel-Ziv-Welch
(LZW) compression [21, 22] perform data encoding by creating a symbol lookup
table (LUT), in which frequent data patterns are replaced by compressed symbols
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in the table. However, hardware implementation presents the following difficulties:
(1) the processing time is unpredictable because the data length is not deterministic,
(2) maximal memory must be prepared because the lengths of the data patterns are
not deterministic, and (3) blocking decompression is performed. Here, we focus on a
stream-based lossless data-compression mechanism that overcomes these problems.
The key technology is a histogram mechanism that caches the compressed data.
The decompressor must manage the same table contents as the compressor side and
reproduce the original data from the table. In this chapter, we introduce challenges to
implementing stream-based lossless compression based on hardware. The ultimate
goal is to implement compact and fast data-compression hardware without blocking
the compression operations upon accepting continuous data streams. We begin by
focusing on a technique with a static LUT, called LCA-SLT, and then we show one
with a dynamic table, called LCA-DLT.We also describe performance optimizations
for LCA-DLT.

16.2 Stream-Based Lossless Data Compression with Static
Look-Up Table

16.2.1 Design of LCA-SLT

We begin by focusing on a compression algorithm called online LCA (Lowest Com-
mon Ancestor) [12], which converts a symbol pair to an unused symbol with the
LUT of symbol pairs managed as shown in Fig. 16.1, which shows an example of
compressing the sequence ABCDFFBC to the symbol Z. Online LCA addresses the
problems caused by conventional dynamic LUT management and provides a fixed
time complexity due to the two-symbol matching. During the decompression, online
LCA invokes the opposite mappings by repeating conversions from one symbol to
two according to the table starting from the deepest compression step.

Applying the concept of online LCA, we show here the mechanism of LCA-
SLT (LCA Static Look-up Table) [20], which prepares statically allocated LUTs that
are used for converting symbol pairs. The compressor encodes inputted symbols
using the LUTs, and the decompressor does the opposite. The contents of the tables
are stored statically and initially before the compression/decompression. The tables
are prepared heuristically in the following steps: (1) a test set of the target data is
examined by online LCA, (2) the LUTs are created from all the original symbol pairs
and their matching symbols, (3) the entries in the LUTs are sorted in ascending order
by frequency, and finally (4) the entries in the top ranks are registered as the table
contents. These steps implement the best matching patterns in the original data set
as determined by the frequency analysis.

As shown in Fig. 16.2, the compressor and decompressor perform online LCA
using the tables created from a set of test data patterns. The modules are connected
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Fig. 16.1 LCA example. If
the pairs AB and CD can be
converted to K and L,
respectively, then the original
data become KL. If KL can
also be converted to O, then
the next pair becomes OP

Fig. 16.2 LCA-SLT module
comprising a compressor,
LUT for compression,
decompressor, and LUT for
decompression
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from the compressed and decompressed data lines one after another and organize a
pipeline for recursive compression/decompression operations.

The method with static LUTs has two main advantages. First, the compressed
data never include any additional information for table management. Second, the
amount of table resources is deterministic. Therefore, LCA-SLT can be implemented
on compact hardware and is fast because of its simple compression/decompression
operations.

16.2.2 Implementation of LCA-SLT

On hardware, the compressor and decompressor can be implemented using a content-
addressable memory (CAM) [8] and a normal memory (MEM), respectively. The
CAM is a type of hardware into which a set of data bits is inputted and that outputs
a matched address where the data are stored. Figure16.3 shows the organization of
the compression part. As an example, the combination of two symbols becomes 16
bits when the symbol width is 8 bits, and we add another bit per compressed data to
markwhether it is compressed, called the compressionmark (CMark) bit. Figure16.3
shows a compression pipeline in which four modules are connected. Each module
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Fig. 16.3 Organization of
compression part in
LCA-SLT

Compressed 
data

Compressed 
mark

Content addressable memory 
emulates the rank function.

Normal memory receives the matching address 
of the symbol pair and generates the substitute 

symbol. This emulates the select function.

CAM MEM
Match address equals 
to the number of the 
lookup table entries.

adds another CMark bit, and the number of bits in the compressed data is extended by
one bit per compressed data. Thus, the compression module at the end of the pipeline
generates 12-bit compressed data. Decompression involves the same operations as
the compression steps but in the opposite direction.

16.2.3 Performance Evaluations

We discuss here the performance of the LCA-SLT.We evaluate the compression ratio
and the matching ratio to the symbol pairs in the LUT during the compression. The
table is implemented with a fixed number of entries, namely, 32, 64, 128, or 256.
For the evaluations, we use Linux source codes of 50 and 200 Mbyte, as well as a
DNA sequence of 50 MB downloaded from [2]. Figure16.4 shows the compression
ratio (the data size after compression divided by the original size) and the matching
ratio of the symbol pairs during the compression. With increasing number of table
entries, the compression ratio improves and the matching ratio of the symbol pairs
becomes about 60%.

Next, we show the implementation of the LCA-SLT module with 8-bit sym-
bols and 4-bit CMark on a Xilinx Spartan-6 field-programmable gate array (FPGA;
IC code XC6SLX453CSG324). We have two options for implementing the CAM:
either shift register LUT (SRL)-based or block RAM (BRAM)-based CAM. We can
implement the MEM by applying the BRAM on the FPGA. Table16.1 shows the
compilation reports. The operation timings of both the SRL-based and BRAM-based
CAM are precisely the same. However, the number of used slice registers is larger
than that of the LUTs in the case of BRAMs because the latches are not packed
into the LUTs. The LUTs are used for the combinational logic for the I/O buses
around the memory. Besides, the SRL-based case increases the number of LUTs.
Therefore, when an application needs many LUTs, such as wide data/address buses
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Fig. 16.4 Performances of LCA-SLT

for a processor interface, it is effective to implement LCA-SLT. On the other hand,
the SRL-based implementation shows that the maximal frequency for the input clock
will decrease drastically with increasing number of LUT entries. In the FPGA case,
we must consider how the number of table entries affects the performance because
the limited number of physical wires in the large-scale integration decreases the
routing availability when the matching address bits due to the CAM become wide.

Thus, the LCA-SLT implements a compression mechanism with small overhead
for data streams. It is reconfigurable depending on the characteristics of the target
data, addressing the desired performance depending on the number of compres-
sion/decompression modules or the number of bits in a symbol or the available
symbol mapping entries in the LUT.



396 S. Yamagiwa

Table 16.1 Compilation reports regarding hardware implementations of LCA-SLT

128 entries # of slice registers # of slice LUTs # of BRAMs Max freq.

Using SRL-based
CAM

141 2224 1 93MHz

Using
BRAM-based
CAM

380 738 21 93MHz

256 entries # of slice registers # of slice LUTs # of BRAMs Max freq.

Using SRL-based
CAM

144 4135 1 75MHz

Using
BRAM-based
CAM

638 1546 41 101MHz

512 entries # of slice registers # of slice LUTs # of BRAMs Max freq.

Using SRL-based
CAM

152 8128 1 51MHz

Using
BRAM-based
CAM

1152 2567 81 81MHz

16.3 Stream-Based Lossless Data Compression
with Dynamic Look-Up Table

16.3.1 Design of LCA-DLT

Next, we focus on another algorithm for stream-based data compression with
dynamic table management, called LCA-DLT (LCA Dynamic Look-up Table) [19].
It allocates corresponding symbol LUTs for the compressor and the decompressor,
respectively. Each table has any number N of entries and the i-th entry Ei includes
a pair of the original symbols (s0i , s1i ), a compressed symbol Si , and a frequent
counter counti . The compressor side uses the following rules: (1) reading two sym-
bols (s0, s1) from the input data stream and if they match to s0i and s1i in a table
entry Ei , then after incrementing the counti , it outputs Si as the compressed data; (2)
if the symbols do not match to any entry in the table, it outputs (s0, s1) and register
an entry (s0k, s1k, Sk, countk = 1) where Sk is the index number of the entry; (3)
if all entries in the table are used, then decrement all counti (0 ≤ i < N ) until any
count(s) become zero, and then delete the corresponding entries from the table.When
compressed data S are transmitted from the compressor, the steps in the decompres-
sor are equivalent to those in the compressor. The symbol matching is performed
based on Sk in an entry. If the compressed symbol Si matches to Sk in a table entry,
then (s0k , s1k) is outputted. If not, then another symbol S′ from the compressed data
stream and the pair (S, S′) is outputted and then the pair is registered in the table.
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Fig. 16.5 Compression example for the LCA-DLT

Fig. 16.6 Decompression example for the LCA-DLT

When the table entry is full, the same operations as those of the compressor are
performed.

Figures16.5 and 16.6 show examples of compression and decompression oper-
ations, respectively. Here, the input data stream for the compressor is ABABCDA-
CABEFDCAB. First, the compressor reads the first two symbols AB and tries to
match that pair in the table (Fig. 16.5a). However, the matching fails, and the com-
pressor registers A and B as the s0 and s1 in the table. Here, the compressed symbol
is assigned in the entry, which is the index 0 of the table. Thus, a rule AB→0 is
performed. The count is initially set to 1. When the compressor continuously reads
a pair of symbols (again AB) and it matches in the table, Fig. 16.5b translates AB to
0. Subsequently the equivalent operations are performed. If the table becomes full
(Fig. 16.5c), then the compressor decrements the count(s) of all entries until any
counts become zero. Here, three entries are invalidated from the table in the figure.
The compressor will register a new entry to the invalidated entry from the smallest
index of the table. Figure16.5d shows that the compressor added a new entry after the
invalidation. Finally, the original input data are compressed to AB0CDAC0EFDC0.

The decompressor reads A first (Fig. 16.6a), but it does not match any compressed
symbol in the table (because the table is empty). The decompressor then reads another
symbol B and registers AB to a new table entry. The entry saves a rule AB→0. Thus,
the output becomes AB. The decompressor reads the next symbol 0 (Fig. 16.6b),
which matches to the table entry. The decompressor translates it to AB and outputs
it again. After the subsequent decompression operations, when the table becomes
full, the decompressor decrements the count(s) as well as on the compressor side
(Fig. 16.6c). The invalidated entries must be equivalent to those on the compressor
side. Therefore, the compressed symbols are consistently associatedwith the original
symbols. Finally, the compressed data inputted to the decompressor are associated
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and outputted as ABABCDACABEFDCAB, which is the same pattern as the input
data on the compressor side.

16.3.2 Implementation of LCA-DLT

Figure16.7 shows an implementation of the LCA-DLT. The input data are propa-
gated through the latches, and the compressed/decompressed data are processed in
a pipeline manner. The LUT in the compressor is organized as shown in Fig. 16.8a.
The symbol LUT performs the compressed/decompressed data association. Here, the
index becomes the compressed symbol, and the enable signal from the matching part
increments the count . The full management logic of the LUT activates the invalidate
control: it decrements the count and resets the valid bits (v in the figure) regard-
ing the invalidated entry. The LUT in the decompressor is organized with a RAM
and a CAM as shown in Fig. 16.8b. The management part of count also performs
equivalently to that of the compressor based on a CAM. Besides, the matching part
is implemented simply in a RAM. The compressed data generated from the address
are inputted to the RAM, and the original uncompressed data pair is associated.

The invalidate operation looks for the minimal counts in the table entries by
decrementing those counts. During the operation, the stall signal is outputted to stop
the compression/decompression data pipeline. Figure16.9a shows an implementa-
tion based on parallel decrement logic, and Fig. 16.9b shows one based on serial
decrement logic. These two implementations have a tradeoff between the amount of
logics and the compression speed when the table becomes full.

In the LCA-DLT as in the LCA-SLT, the compressor adds the CMark bit that
indicates whether or not the symbol is compressed. Moreover, by combining the
compressor and decompressor in a module and cascading the modules as shown in
Fig. 16.10, we can compress long symbol patterns corresponding to 2, 4, 8, or 16

Fig. 16.7 Overall functional block diagrams of the compressor and decompressor in LCA-DLT.
The compressor’s LUT receives two input symbols from the latches and outputs the selected signal to
the multiplexer for the output data. The decompressor’s LUT performs the opposite data translation
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Fig. 16.8 Detailed organization of LUTs in LCA-DLT. The table has 2n entries when a symbol is n
bits. The matching part for s0 and s1 must be organized as a content-addressable memory (CAM),
which outputs the index (i.e., the address in the CAM) matched to an inputted pair of (s0, s1). The
management part for count is also organized by a CAM

EE

Fig. 16.9 Decrementing logic for entry invalidation in LCA-DLT

Fig. 16.10 Cascading modules of LCA-DLT. This example compresses long symbol patterns cor-
responding to 2, 4, 8, and 16 symbols. If the input data at the first compressor are 8 bits long, then
the output compressed data become 12 bits because of the CMark bits

symbols when there are four modules. If the input data at the first compressor are 8
bits long, then the output compressed data become 12 bits after four modules because
of the CMark bits.
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Fig. 16.11 Compression perfomances of LCA-DLT

16.3.3 Performance Evaluations

Figure16.11 shows the compression ratios ((compressed_data_si ze ÷ original_
data_si ze) × 100). The numbers of table entries are varied from 16 to 256. Focusing
on the performance impact of the number of table entries, the compression ratios are
improved linearly except for the gene DNA sequence; because the DNA data have
a few patterns, all patterns can be saved in 16 entries. Furthermore, focusing on the
impact of the number of modules, the compression ratios degrade in the case of
more than two modules. This means that a communication data path using too many
compression modules becomes disadvantageous because of the CMark bit added
after each module.

Figures16.12 and 16.13 show the hardware performances of the LCA-DLT. It was
implemented with only hundreds of slices and a memory block in the FPGA. The
LCA-DLT works at 100MHz with any number of modules, thereby achieving 800
Mbit/s. The LCA-DLT has large impact on resource usage with respect to the logic
but not the memory because the recent FPGA does not have any dedicated hardware
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Fig. 16.12 Hardware resources of LCA-DLT. It is compiled with 8-bit data input in the first com-
pressor for the Xilinx Artix7 device (XC7A200T-1FBG676C)

Fig. 16.13 Performance comparison between parallel and serial invalidation mechanisms with two
modules

macros forCAMs. It is inevitably implementedbyLUTand registers in theFPGA.We
also compare the amount of hardware resources among themechanismsof the parallel
and the serial invalidations. The parallel version uses larger hardware resources;
regarding the dynamic performance of the LCA-DLT, the parallel version involves
very few stalls, but its hardware resources explode. Assuming that the hardware
works at 100MHz, the effective bandwidth in the input of the first compressor is
about 800 and 340–730Mbit/s with the parallel and serial invalidations, respectively.
The output bandwidth of the second compressor will be reduced to 35–80% of the
original data size. This means that the LCA-DLT realizes a communication data path
that can send more data even if the speed of the path is slow, and it also contributes
largely to realizing a high-speed communication data path while providing flexible
adjustment between the hardware resources and the compression performance.



402 S. Yamagiwa

16.4 Optimization Techniques for LCA-DLT

Here we introduce optimization techniques for implementing the LCA-DLT. We
consider two available optimization techniques: lazy management and time-sharing
multi-threading.

16.4.1 Lazy Management of Look-Up Tables

First, we consider the techniques of dynamic invalidation on LUTs and lazy com-
pression [11] that eliminate stalls during the LUT invalidations.

16.4.1.1 Dynamic Invalidation for Look-Up Table

With the management technique of dynamic invalidation for the symbol LUT, we
prepare a remove pointer and an insertion pointer. Initially, the remove pointer points
to any entry of the symbol LUT. The counti is decremented when the pointer comes
to the table index i , and if the counti becomes zero after the decrement, then the
entry is removed from the table. The pointer is moved to the next table index after
any table search operation. By contrast, the insertion pointer initially points also to
any empty entry in the symbol LUT; if the entry is used, then the pointer moves to
an unused entry. Using these two pointers, we can expect that a moderate number of
the entries occupied in the symbol LUT can be removed.

Figure16.14 shows an example of the dynamic invalidation mechanism for com-
pression. We assume that DCAADCBBDB is inputted to the compressor and that
the remove pointer starts on the second entry of the table. First, DC does not match
any entry in the table (Fig. 16.14a), and the compressor waits for an empty entry to
appear. The remove pointer is moved to the next entry and the count value is decre-
mented. In Fig. 16.14b, the count value of the third entry becomes zero, whereupon
the entry is removed. The insertion pointer is moved to point to the empty entry.
The new entry for DC is registered to where the insertion pointer is pointing. Now,
DC is outputted. During these operations, the input and output of the compressor
stall. When the input symbol pair matches an entry, it is compressed as shown in
Fig. 16.14c, d, the remove pointer is moved, and the count value is decremented. If
the entry that matches the input symbol pair corresponds to the one pointed out by
the remove pointer, then the count value does not change, as shown in Fig. 16.14e.
Finally, after the initially inserted DC is removed because of the count value, the
entry is used as a new one. Because it was not found in the table, DB is outputted.
Thus, the compressed data stream becomes DC012DB.

Figure16.15 shows the steps of the decompression mechanism using the dynamic
invalidation. The inputted compressed data stream is the one generated by the com-
pression in Fig. 16.14. The insertion and the remove pointers begin from the same
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Fig. 16.14 Example of the dynamic invalidation mechanism for compression

Fig. 16.15 Example of the dynamic invalidation mechanism for decompression
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Fig. 16.16 Example of the lazy compression on compressor side

Fig. 16.17 Example of the lazy compression on decompressor side

entries initially defined by the compressor. Although the matching target is the com-
pressed data, the steps are equivalent to the ones performed on the compressor side.
In Fig. 16.15a, b, the I/O of the decompressor stall. When matching the compressed
symbol in an entry, the decompressor outputs the corresponding symbol pair such as
in Fig. 16.15c, d. Again, a stall occurs during the invalidation of an entry as shown
in Fig. 16.15e, f. Finally, the original data stream is decoded.

16.4.1.2 Lazy Compression

Another optimization technique is the lazy compression. This technique ignores
compression using the symbol lookup table when the symbol lookup table is full.
This eliminates stalls and continuously outputs the data to the decompressor side.

Figure16.16 shows a compression example of lazy compression applied to the
LCA-DLTwith dynamic invalidation. First, DC does notmatch any entry in the table.
Here, the lazy compression just passes through the symbol pair without registering
the pair into the table. Therefore, no stall occurs as in Fig. 16.16a, e.When the symbol
pair matches an entry, the pair is compressed to the corresponding symbol as shown
in Fig. 16.16b, d. If the table contains empty entry(ies) when the inputted symbol pair
does not match any entry, then it is registered to the empty entry and is also passed
through to the output as in Fig. 16.16c. The output from the compressor becomes
DC0DC1DB, which is larger than DC021DB for the case of eager compression.

Figure16.17 shows the case for the decompressor. First, D is not included in
the table, therefore the input is the original data pair because actually the CMark
bit is added to the compressed data. The compressor does not register the pair and
passes through DC to the output as shown in Fig. 16.17a, e without any stall. If the
compressed data are in the table, then the decompressor translates the original symbol
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Fig. 16.18 Compression ratioswith optimizations. The orange lines show lazy compression against
the full search method, and the blue ones show dynamic invalidation against the full search method.
The results depicted as lines were from using a compressor with four modules

pair such as in Fig. 16.17b, d. If the symbol is not in the table and there are empty
entry(ies), then the inputted symbol pair is registered.

16.4.1.3 Performance Evaluations

Figure16.18 shows the compression ratios with the above optimizations in the LCA-
DLT. The bars show the ratios (i.e., the compressed data size divided by the original
data size). We can confirm that the lazy compression effectively eliminates stalls and
does not disturb the compression, although it does not compress the inputted data
when the data pair does not match entries of the symbol LUT. Overall, both of the
proposed mechanisms provide more-effective compression ratios than does the full



406 S. Yamagiwa

Fig. 16.19 Stall cycles and the stall ratios against the total clock cycles in LCA-DLT with opti-
mizations

search method. These mechanisms work well if the randomness of the data is high
(i.e., the data entropy is high).

We measured the stall clock cycles to compare the dynamic performance of hard-
ware implementation with that of the proposed techniques. We used a Xilinx Artix-7
FPGA XC7A200T-1FBG676C. The full search method works at 100MHz in this
device as described in the previous section. By contrast, the implementation with
both proposed mechanisms works at 130MHz because the implementation was sim-
plified by the lazy management of the symbol LUT.

Figure16.19 shows the stall cycles as the bars and the stall ratios against the total
clock cycles as the lines. The total throughput of the data stream becomes much
better than that with the full search method. The degradation of the throughput is
30% with the full search but less than 3% with dynamic invalidation. Regarding lazy
compression, the compression delay is the number of clock cycles for the input data
stream and is also the number of bytes of the input data (i.e., 10M cycles) because
lazy compression never causes stalls.

16.4.2 Time-Sharing Multithreading on Compression

16.4.2.1 Design and Implementation of Time-Sharing Multithreading

The time-sharing multi-threading [10] allows the compressor and decompressor to
accept multiple different data streams by dividing the dictionary updating operations
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Fig. 16.20 Example structure of time-sharing multi-threading (TSM)

among the various input streams. When N data streams are inputted to the compres-
sor/decompressor, the dictionary updating for each data stream allows NâĹš1 clock
cycles to be inserted to solve the updating problem. For example, Fig. 16.20, shows
a structure with two compressors that share the pipeline stages for the dictionary
updating operations while accepting two different data streams. This mechanism
does not cause any stalls during the input data streams, therefore the bandwidth of a
data stream of a whole compressor/decompressor module degrades to 1/N. However,
the clock frequency is expected to increase.

In implementing the compression mechanism, the following operations are
assigned to stages of the encoder pipeline for the compressor hardware. The pre-
process operation is performed to prepare the subsequent table matching operation,
after which the table search operation is performed. The symbol registration opera-
tion to the LUT performs registration of symbols, and finally the symbolizing/lookup
operations are performed against the LUT. For decompression, the operations are
performed in the opposite way to symbolize the compressed data to an original data
pair.

Next we discuss an implementation example of time-sharing multi-threading
in the LCA-DLT. Assume that there are two input data streams for the compres-
sor/decompressor, and the pipeline of the compressor is organized as shown in
Fig. 16.20. The compression in both data streams takes eight cycles to process a data
pair, as does the decompression. The compression pipeline consists of the search
stage and the registration stage. The search stage compares the contents of the LUT
with the incoming data and then creates a match flag list, and the registration stage
updates the corresponding entry in the table according to the match flag list. The
decompression pipeline consists of the same stages but is organized in the opposite
direction.

16.4.2.2 Performance Evaluations

Herewediscuss the performance effect of time-sharingmulti-threading. The example
structure with two data streams per module explained above is implemented on a
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Table 16.2 Performance comparisons of the time-sharing multi-threading (TSM)

Xilinx XCKU025 Frequency (MHz) Combinational
logic

Registers RAM bits

Compressor with
TSM

342 7,347 9,909 5,120

Compressor
without TSM

277 9,475 7,503 0

Decompressor
with TSM

353 2,145 868 17,408

Decompressor
without TSM

328 6,063 2,642 4,096

Xilinx Kintex UltraScale FPGA XCKU025-FFVA1156-1-C, and Table16.2 shows
the comparisons. Compared with the clock frequency without time-sharing multi-
threading, that with the optimization increases by a factor of approximately 1.23
for compression and 1.08 for decompression, meaning that the total throughputs of
the compressor and decompressor are increased by the same corresponding factors.
However, the improvement is shared by the two data streams, so a single data stream
achieves approximately 62% of the total throughput without time-sharing multi-
threading for compression and 54% for decompression. Regarding the resource usage
given in Table16.2, the optimization reduces the combinational logic by 23–65%,
the registers in the compressor module are increased by approximately 32%, and the
number of registers is reduced to a third of that for the implementation without the
optimization.

16.5 Related Works and Literatures

The most important lossless-compression algorithm is LZW, which is simple and
effective and can be found in lossless-compression software such as gz, bzip2, rar,
and lzh. However, when attempting to implement a compressor on hardware, the
problems discussed in this chapter inevitably arise. To implement compact hardware
for LZW, we must prepare memory of the order of kilobytes. For example, Fowers
et al. [3] and Kim et al. [5] solved the problem regarding the longest matching by
parallelizing the operations. However, it is impossible to increase the size of the
sliding dictionary because the number of start indices increases with the length of
the symbols. Another important research topic is how to manage the symbol LUT in
a limited memory space.

Thefield ofmachine learning containswell-knownalgorithms such as lossy count-
ing [9] and the space saving [13]. However, these algorithms use operations based
on pointers and are implemented in software. For a data stream with k different
symbols, an attractive algorithm for frequency counting has been proposed in which
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the top-θk frequent items are counted exactly within O(1/θ) space [4] for any con-
stant 0 < θ < 1. However, this also provides a software solution. Various hardware
implementations of lossless data-compression techniques have been investigated in
this decade, and a well-known approach is arithmetic coding (here in short, AC) [6],
which is usedwidely to compressmultimedia data. Arithmetic coding includes heavy
computation with floating-point numbers to achieve high compression ratios. To
avoid floating-point calculations, arithmetic coding based on binary numbers has
been proposed [1, 7, 15]. However, it is not possible to avoid the potential fractal
computation, which is why hardware implementations such as those by Pande et al.
[16] and Mitchell et al. [14] have been proposed to accelerate the computing speed.

References

1. T.D. Chuang, Y.J. Chen, Y.H. Chen, S.Y. Chien, L.G. Chen, Architecture design of fine grain
quality scalable encoder with CABAC for H.264/AVC scalable extension. J. Signal Proces.
Syst. 60(3), 363–375 (2010)

2. Compressed Indexes and their Testbeds: http://pizzachili.dcc.uchile.cl/ (2021)
3. J. Fowers, J.Y. Kim, D. Burger, S. Hauck,A Scalable High-Bandwidth Architecture for Lossless

Compression on FPGAs (2015)
4. R.M. Karp, S. Shenker, C.H. Papadimitriou, A simple algorithm for finding frequent elements

in streams and bags. ACM Trans. Database Syst. 28(1), 51–55 (2003)
5. J.K. Kim, S. Hauck, D. Burger, A scalablemulti-engine xpress9 compressor with asynchronous

data transfer, in IEEE 22nd Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM) (IEEE, 2014), pp. 161–164

6. G. Langdon, J. Rissanen, Compression of black-white images with arithmetic coding. IEEE
Trans. Commun. 29(6), 858–867 (1981)

7. C.C. Lo, S.T. Tsai, M.D. Shieh, Reconfigurable architecture for entropy decoding and inverse
transform in H.264. IEEE Trans. Consum. Electron. 56(3), 1670–1676 (2010)

8. K. Locke, Parameterizable content-addressable memory. Xilinx XAPP115 (2011)
9. G.S. Manku, R. Motwani, VLDB Endowment, Approximate frequency counts over data

streams(2002), pp. 346–357
10. K.Marumo, S. Yamagiwa, Time-SharingMultithreading on Stream-Based Lossless Data Com-

pression (IEEE, 2017), pp. 305–310
11. K. Marumo, S. Yamagiwa, R. Morita, H. Sakamoto, Lazy management for frequency table on

hardware-based stream lossless data compression. Information 7(4), 63 (2016)
12. S. Maruyama, H. Sakamoto, M. Takeda, An online algorithm for lightweight grammar-based

compression. Algorithms 5(2), 214–235 (2012)
13. A.Metwally, D. Agrawal, A.E. Abbadi, An integrated efficient solution for computing frequent

and top-k elements in data streams. ACM Trans. Database Syst. 31(3), 1095–1133 (2006)
14. J.L. Mitchell, W.B. Pennebaker, Optimal hardware and software arithmetic coding procedures

for the q-coder. IBM J. Res. Dev. 32(6), 727–736 (1988)
15. R.R. Osorio, J.D. Bruguera, Arithmetic coding architecture for H.264/AVC CABAC compres-

sion system, in Euromicro Symposium on Digital System Design, 2004. DSD 2004 (2004), pp.
62–69

16. A. Pande, J. Zambreno, P. Mohapatra, Hardware architecture for simultaneous arithmetic cod-
ing and encryption (2011)

17. J.S. Vitter, Design and analysis of dynamic Huffman codes. J. ACM 34(4), 825–845 (1987)
18. S. Yamagiwa, K. Aoki, K. Wada, Performance enhancement of inter-cluster communication

with software-based data compression in link layer. Proc. IASTED PDCS 2005, 325–332
(2005)

http://pizzachili.dcc.uchile.cl/


410 S. Yamagiwa

19. S. Yamagiwa, K. Marumo, H. Sakamoto, Stream-based lossless data compression hardware
using adaptive frequency table management, in Proceedings of the VERY LARGE DATA
BASES/BPOE 2015, LNCS 9495 (Springer, 2015)

20. S. Yamagiwa, H. Sakamoto, in A Reconfigurable Stream Compression Hardware Based on
Static Symbol-Lookup Table. (IEEE, 2013), pp. 86–93

21. J. Ziv, A. Lempel, A universal algorithm for sequential data compression. IEEE Trans. Inf.
Theory 23(3), 337–343 (1977)

22. J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding. IEEE Trans.
Inf. Theory 24(5), 530–536 (1978)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Preface
	Contents
	Part I Introduction
	1 What Is the Sublinear Computation Paradigm?
	1.1 We Are in the Era of Big Data
	1.2 Theory of Computational Complexity  and Polynomial-Time Algorithms
	1.3 Polynomial-Time Algorithms and Sublinear-Time Algorithms
	1.3.1 A Brief History of Polynomial-Time Algorithms
	1.3.2 Emergence of Sublinear-Time Algorithms
	1.3.3 Property Testing and Parameter Testing

	1.4 Ways to Decrease Computational Resources
	1.4.1 Streaming Algorithms
	1.4.2 Compression
	1.4.3 Succinct Data Structures

	1.5 Need for the Sublinear Computation Paradigm
	1.5.1 Sublinear and Polynomial Computation Are Both Important
	1.5.2 Research Project ABD
	1.5.3 The Organization of This Book

	References

	Part II Sublinear Algorithms
	2 Property Testing on Graphs and Games
	2.1 Introduction
	2.2 Basic Terms and Definitions for Property Testing
	2.2.1 Graphs and the Three Models for Property Testing
	2.2.2 Properties, Distances, and Testers

	2.3 Important Known Results in Property Testing on Graphs
	2.3.1 Results for the Dense-Graph Model
	2.3.2 Results for the Bounded-Degree Model
	2.3.3 Results for the General-Graph Model

	2.4 Characterization of Testability on Bounded-Degree Digraphs
	2.4.1 Bounded-Degree Model of Digraphs
	2.4.2 Monotone Properties and Hereditary Properties
	2.4.3 Characterizations
	2.4.4 An Idea to Extend the Characterizations Beyond Monotone and Hereditary

	2.5 Testable EXPTIME-Complete Games
	2.5.1 Definitions
	2.5.2 Testers for Generalized Chess, Shogi, and Xiangqi

	2.6 Summary
	References

	3 Constant-Time Algorithms for Continuous Optimization Problems
	3.1 Introduction
	3.2 Graph Limit Theory
	3.3 Quadratic Function Minimization
	3.3.1 Proof of Theorem 3.1

	3.4 Tensor Decomposition
	3.4.1 Preliminaries
	3.4.2 Proof of Theorem 3.2
	3.4.3 Proof of Lemma 3.4
	3.4.4 Proof of Lemma 3.5

	References

	4 Oracle-Based Primal-Dual Algorithms for Packing and Covering Semidefinite Programs
	4.1 Packing and Covering Semidefinite Programs
	4.2 Applications
	4.2.1 SDP relaxation for Robust MaxCut
	4.2.2 Mahalanobis Distance Learning
	4.2.3 Related Work

	4.3 General Framework for Packing-Covering SDPs
	4.4 Scalar Algorithms
	4.4.1 Scalar MWU Algorithm for (Packing-I)-(Covering-I)
	4.4.2 Scalar Logarithmic Potential Algorithm For (Packing-I)–(Covering-I)

	4.5 Matrix Algorithms
	4.5.1 Matrix MWU Algorithm For (Covering-II)-(Packing-II)
	4.5.2 Matrix Logarithmic Potential Algorithm For (Packing-I)-(Covering-I)
	4.5.3 Matrix Logarithmic Potential Algorithm For (Packing-II)-(Covering-II)

	References

	5 Almost Linear Time Algorithms for Some Problems on Dynamic Flow Networks
	5.1 Introduction
	5.2 Preliminaries
	5.3 Objective Functions
	5.3.1 Objective Functions for the 1-Sink Problem
	5.3.2 Objective Functions for k-Sink

	5.4 Minmax k-Sink Problems on Paths
	5.4.1 Feasibility Test
	5.4.2 Solving the 1-Sink Problem
	5.4.3 Parametric Search Method
	5.4.4 Sorted Matrix Method

	5.5 Minsum k-Sink Problems on Paths
	5.5.1 Property of Aggregate Evacuation Time
	5.5.2 Concave Monge Property

	References

	Part III Sublinear Data Structures
	6 Information Processing on Compressed Data
	6.1 Restructuring Compressed Data
	6.1.1 Preliminaries
	6.1.2 RLBWT to LZ77
	6.1.3 Recompression on Grammar Compression

	6.2 Privacy-Preserving Similarity Computation
	6.2.1 Related Work
	6.2.2 Edit Distance with Moves
	6.2.3 Homomorphic Encryption
	6.2.4 L2HE-Based Algorithm for Secure EDM
	6.2.5 Result and Open Question

	References

	7 Compression and Pattern Matching
	7.1 Introduction
	7.2 History of Compressed Pattern Matching Research
	7.3 Preliminaries
	7.3.1 Definitions of Notation and Terms
	7.3.2 Grammar Compression

	7.4 Framework for Compressed Pattern Matching
	7.4.1 KMP Method
	7.4.2 Collage System
	7.4.3 Pattern Matching on Collage Systems

	7.5 Repair-VF
	7.5.1 RePair
	7.5.2 Outline of Repair-VF

	7.6 MR-Repair
	7.6.1 Maximal Repeats
	7.6.2 MR Order
	7.6.3 Algorithm

	7.7 Conclusion
	References

	8 Orthogonal Range Search Data Structures
	8.1 Introduction
	8.1.1 Existing Work
	8.1.2 Our Results

	8.2 Preliminaries
	8.2.1 Succinct Data Structures and Information-Theoretic Lower Bound
	8.2.2 Assumptions on Point Sets

	8.3 kd-Tree
	8.3.1 Construction of kd-Trees
	8.3.2 Range Search Algorithm
	8.3.3 Complexity Analyses

	8.4 Wavelet Tree
	8.4.1 Construction
	8.4.2 Range Search Algorithm
	8.4.3 Complexity Analyses

	8.5 Proposed Data Structure 1: Improved Query Time Complexity
	8.5.1 Idea for Improving the Time Complexity of the kd-Tree
	8.5.2 Index Construction
	8.5.3 Range Search Algorithm
	8.5.4 Complexity Analyses

	8.6 Proposed Data Structure 2: Succinct and Practically Fast
	8.6.1 Index Construction
	8.6.2 Range Search Algorithm
	8.6.3 Complexity Analyses

	8.7 Conclusion
	References

	9 Enhanced RAM Simulation in Succinct Space
	9.1 Introduction
	9.2 Oblivious RAM
	9.2.1 Problem
	9.2.2 Existing Results
	9.2.3 Tree-Based Methods
	9.2.4 Succinct Construction
	9.2.5 Open Problem

	9.3 Wear Leveling
	9.3.1 Problem
	9.3.2 Security Refresh
	9.3.3 Construction for Small Write Limit Cases
	9.3.4 Open Problem

	9.4 Conclusion
	References

	Part IV Sublinear Modelling
	10 Review of Sublinear Modeling in Probabilistic Graphical Models by Statistical Mechanical Informatics and Statistical Machine Learning Theory
	10.1 Introduction
	10.2 Statistical Machine Learning
	10.2.1 Bayesian Statistics and Maximization of Marginal Likelihood
	10.2.2 Expectation-Maximization Algorithm
	10.2.3 Expectation-Maximization Algorithm for Probabilistic Image Segmentations

	10.3 Statistical Mechanical Informatics
	10.3.1 Ising Model
	10.3.2 Advanced Mean-Field Method
	10.3.3 Free Energy Landscapes and Phase Transitions  in the Thermodynamic Limit
	10.3.4 Ising Model on a Complete Graph
	10.3.5 Probabilistic Segmentation by Potts Prior and Loopy Belief Propagation
	10.3.6 Real-Space Renormalization Group Method and Sublinear Modeling of Statistical Machine Learning

	10.4 Quantum Statistical Machine Learning
	10.4.1 Elementary Function and Differentiations  of Hermitian Matrices
	10.4.2 Minimization of Free Energy Functionals for Density Matrices
	10.4.3 Tensor Products
	10.4.4 Quantum Probabilistic Graphical Models and Quantum Expectation-Maximization Algorithm
	10.4.5 Quantum Expectation-Maximization (EM) Algorithm for Probabilistic Image Segmentation

	10.5 Quantum Statistical Mechanical Informatics
	10.5.1 Advanced Mean-Field Methods for the Transverse Ising Model
	10.5.2 Real-Space Renormalization Group Method for the Transverse Ising Model
	10.5.3 Sublinear Modeling Using a Quantum Adaptive TAP Approach and Momentum Space Renormalization Group in the Transverse Ising Model
	10.5.4 Suzuki-Trotter Decomposition in the Transverse Ising Model

	10.6 Concluding Remarks
	References

	11 Empirical Bayes Method for Boltzmann Machines
	11.1 Introduction
	11.2 Boltzmann Machine with Prior Distributions
	11.3 Empirical Bayes Method
	11.4 Statistical Mechanical Analysis of Empirical Bayes Likelihood
	11.4.1 Replica Method
	11.4.2 Plefka Expansion
	11.4.3 Algorithm for Hyperparameter Estimation

	11.5 Demonstration
	11.5.1 Gaussian Prior Case
	11.5.2 Laplace Prior Case

	11.6 Summary and Discussion
	11.7 Appendices
	11.7.1 Appendix 1: Gibbs Free Energy
	11.7.2 Appendix 2: Coefficients of Plefka Expansion

	References

	12 Dynamical Analysis of Quantum Annealing
	12.1 Quantum Ensembles and Their Dynamics
	12.2 Quantum Monte Carlo Dynamics
	12.3 Dynamical Replica Analysis
	12.4 Simple Examples
	12.4.1 Non-interacting Quantum Spins in a Uniform x Field
	12.4.2 Ferromagnetic z-interactions and Uniform x and z Fields

	12.5 Link Between Statics and Dynamics
	12.6 Evolution on Adiabatically Separated Timescales
	12.7 Discussion
	References

	13 Mean-Field Analysis of Sourlas Codes with Adiabatic Reverse Annealing 
	13.1 Introduction
	13.2 Sourlas Codes Using Quantum Fluctuations
	13.3 Replica Analysis for Adiabatic Reverse Annealing
	13.4 Numerical Experiments
	13.5 Summary
	References

	Part V Applications
	14 Structural and Functional Analysis  of Proteins Using Rigidity Theory
	14.1 Introduction
	14.2 Protein Structural Flexibility and Dynamics
	14.2.1 Protein Flexibility and Dynamics Is Central to Protein Function
	14.2.2 Techniques for Analysing and Predicting Protein Flexibility and Dynamics

	14.3 Rigidity Theory
	14.3.1 Combinatorial Rigidity Theory and the Molecular Theorem

	14.4 Protein Flexibility, Dynamics, and Function Analysis with Rigidity Theory
	14.4.1 FIRST and Rigid Cluster Decomposition
	14.4.2 Large-Scale Rigidity and Flexibility Analysis
	14.4.3 Protein Allostery Analysis with Rigidity Theory
	14.4.4 Using Rigidity Theory to Simulate Protein Dynamics

	14.5 Protein Structure Validation with Rigidity Theory
	14.6 Conclusion
	References

	15 Optimization of Evacuation  and Walking-Home Routes from Osaka City After a Nankai Megathrust Earthquake Using Road Network Big Data
	15.1 Introduction
	15.2 Quickest Evacuation Planning Problem
	15.2.1 Dynamic Network
	15.2.2 Time-Expanded Network
	15.2.3 Algorithm for Solving Quickest Evacuation Planning Problem

	15.3 Pedestrian Simulation Model
	15.4 Data Preparation
	15.4.1 Road Network
	15.4.2 Tsunami Evacuation Buildings
	15.4.3 Daytime Population
	15.4.4 Decisions on Number of People Struggling to Return Home and Number of Evacuees

	15.5 Simplifying and Restoring Large Road Network  for Route Optimization
	15.5.1 Simplification of Road Network
	15.5.2 Restoring Optimized Routes on Original Road Network

	15.6 Route Optimization Settings
	15.6.1 Optimization Steps
	15.6.2 Computational Conditions

	15.7 Results of Route Optimization
	15.7.1 Computational Times
	15.7.2 Reproducibility of Restored Routes
	15.7.3 Optimization Results

	15.8 Conclusion
	References

	16 Stream-Based Lossless Data Compression
	16.1 Introduction to Stream-Based Data Compression
	16.2 Stream-Based Lossless Data Compression with Static Look-Up Table
	16.2.1 Design of LCA-SLT
	16.2.2 Implementation of LCA-SLT
	16.2.3 Performance Evaluations

	16.3 Stream-Based Lossless Data Compression  with Dynamic Look-Up Table
	16.3.1 Design of LCA-DLT
	16.3.2 Implementation of LCA-DLT
	16.3.3 Performance Evaluations

	16.4 Optimization Techniques for LCA-DLT
	16.4.1 Lazy Management of Look-Up Tables
	16.4.2 Time-Sharing Multithreading on Compression

	16.5 Related Works and Literatures
	References




