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1 Introduction

Superconductors are materials with two very unique characteristics: They are able
to transmit a current without electrical resistance and can completely expel external
magnetic fields from their interior (Meißner-Ochsenfeld effect). Unfortunately, all
superconducting materials we know so far, only show these properties under extreme
conditions, i.e. very low temperature or large pressure, which currently limits their
application to large scale science projects or complex medical imaging techniques.
Their potential is, however, so great and diverse that superconductivity at ambient
conditions is a long-sought holy grail of condensed matter physics. Key technologies
that would follow such a discovery range from lossless electrical power transmission
and storage to less consumptive transportation alternatives or powerful quantum
computation [1].

The history of fundamental research in superconductivity is a prime example of
how scientific progress often happens in quantum leaps and in areas where we least
expect it. When we think of good conductors, we think of silver, gold or platinum.
The first discovered superconductor was mercury. In 1911, Kammerlingh Onnes
measured a vanishing electrical resistance below a critical temperature of 4.2K
[2–4]. While mercury is a metal at room-temperature, it is a rather bad metal when
compared with gold, silver or platinum. Things became only more absurd with
the discovery of the first high temperature superconductor (HTS). Following the
discovery of superconductivity in mercury, scientists found superconductivity in
more and more metals and metallic alloys or compounds. Bernd Matthias was
convinced that he had found a pattern after which materials did or did not show
superconductivity which became known as Matthias’ rules [5]. Loosely speaking,
they state that superconductivity favours transition metals over simple metals, a
high electronic density of states (DOS), high symmetry and that it does not like
oxygen, magnetism or insulating phases [6]. The cuprate HTS discovered by Bednorz
and Müller in 1986 [7], an antiferromagnetic insulator with copper-oxide planes, did
not break one or two, but, at least to some extent, every single one of these rules.
Clearly, these types of superconductors with critical temperatures of up to 138K

[8] were fundamentally different and to this day there is no complete microscopic
theory that can explain the unconventional superconductivity in these systems. But
the history of theory of superconductivity is also a story of great success and the
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1 Introduction

currently world-record setting high-pressurized hydrides [9, 10] are a testimony to
our good understanding of conventional superconductors [11]. But why is it that
“bad metals” make good superconductors? In order to understand this, we have to
go back to the early days of superconductivity theory.

The 1950s, roughly 40 years after superconductivity was found in mercury, turned
out to be some of the most important years for the history of superconductivity, that
still influence the way we understand this phenomenon today. The isotope effect [12],
i.e. the dependence of the critical temperature Tc and critical field Hc on the atomic
mass in isotopes of the same element, led Fröhlich to believe that electron-lattice
interactions are of utmost importance for the superconducting state to form [13].
He could show that although the static Coulomb interaction between two electrons
is repulsive, a net attractive force between two electrons can be mediated by the
dynamic interaction of electrons with the crystal lattice [13, 14]. A few years later,
Cooper could show that the Fermi sea of electrons is unstable against even the smallest
attractive interaction, which leads electrons to form pairs, the so-called Cooper
pairs [15]. A year after, in 1957, the Nobel Prize winning work of Bardeen, Cooper
and Schrieffer [16] finally tied all the threads together to a coherent microscopic
theory of conventional superconductivity, that could describe the relation between
microscopic parameters like the binding energy of a Cooper pair and macroscopic
quantities like the critical temperature. With it, the vanishing resistance, the Meißner
effect and the jump in the specific heat at Tc could all be explained from fundamental
interactions of electrons in solids. With the extension to a strong-coupling theory
[17], we also learned that there is in principle no natural upper limit for Tc [18] and
that a stronger coupling between electrons and lattice vibrations does not only lead
to an increased normal state conductivity due to electron scattering but can also
lead to higher critical temperatures.

It was during this time period, that the Norwegian physicist Giaever developed
the technique of electron tunnelling spectroscopy [19], which later earned him a
Nobel Prize. From there on, tunnelling experiments, tunnelling theory and the
theory of superconductivity developed side by side. Today, electron tunnelling
spectroscopy can be performed locally by a scanning tunnelling microscope (STM)
and state-of-the-art electronics and cryogenics enable a deep look into the electronic
structure of superconductors with unprecedented energy resolution. A detailed
introduction into the theory of superconductivity and electron tunnelling is given in
Chap. 2, followed by a description of the experimental setup and methods in Chap. 3.

Based on recent advances in our understanding of superconductivity and related
phenomena,we want to go back in time and use the capability of a state-of-the-art STM
to revisit superconductors that still leave room for undiscovered things. We start with
two popular representatives of the cuprate family of HTSs (Chap. 4). With granular
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1 Introduction

aluminium (grAl) (Chap. 5), we then turn to a granular superconductor with a Tc
enhancement mechanism that is not yet understood, but that was already discovered
in 1966 [20]. Lastly, we want to have a look at the conventional superconductor lead
(Pb) (Chap. 6 and 7).

Antiferromagnetic spin fluctuations are one of the hottest contenders for the exchange
boson in unconventional superconductors. With the recent theoretical progress
in the spin-fermion model [21, 22] and tunnelling experiments revealing bosonic
spectra [23–25] that show remarkable resemblence to the spin resonance seen in
inelastic neutron scattering (INS) [26], we slowly reach a consensus on the pairing
mechanism in cuprate superconductors. J. Jandke and P. Hlobil could show in a
combined experimental and theoretical study [27, 28] that the spectral density of the
pairing boson is also accessible through the inelastic part of a tunnelling current.
STM provides conditions under which an effective Eliashberg function, which is
proportional to the spectral density of the pairing boson, can be extracted. The
extraction of the effective Eliashberg function was in that case done for an iron-based
superconductor with a full gap. In this work, the aim is to apply the formalism to
two cuprate superconductors with a d-wave symmetry of the superconducting gap.

GrAl recently reemerged in the superconducting qubit community as a suitable
superinductor in Al/AlOx based superconducting circuits [29–31] and as a template
for magnetic-field resilient qubit fabrication [32,33]. Not only are excess quasiparticles
identified as a limiting loss mechanism in these circuits, transport measurements
in grAl near its metal-to-insulator transition (MIT) also hint at localized magnetic
moments that might be responsible for the 1/f flux noise in Al/AlOx based junctions
[34, 35]. For some reason, a thorough STM study of this material is (to our knowledge)
missing to this date. With our local probe of the quasiparticles on a microscopic
scale, we are sensitive to spin scattering, which should manifest as a pair of Yu-
Shiba-Rusinov (YSR) states below Tc. The aim in the scope of this thesis is to provide
a detailed STM study of the material with special focus on the possible origins of
microwave losses.

Multiband superconductivity is still a relatively young branch of superconductivity.
Magnesium diboride (MgB2) with a Tc of 39K [36] is the first superconductor for
which two-band superconductivity was confirmed in 2001/2002 [37, 38]. Two-band
superconductivity was also recently demonstrated for lead (Pb) [39]. In MgB2,
the existence of two superconducting condensates has interesting implications for
the intermediate state and the dynamics of vortices that has been labeled type-1.5
superconductivity [40]. We are interested if a similar thing happens in Pb. Bulk Pb is
not expected to host vortices in its intermediate state at temperatures close to its Tc of
7.2K as it is categorized as a traditional type-I superconductor [41]. However, Pb is
the elemental superconductor that is closest to the Bogomol’nyi point that separates

3



1 Introduction

type-I and type-II, which is demonstrated in several experiments that initiate a
type-I to type-II transition through a reduction of the effective coherence length
[42, 43] or an increase in the magnetic penetration depth [44, 45]. Additionally, with
our base measurement temperature of 25mK, we are far below Tc and in relatively
unexplored territory. This is more of an explorative study that is solely motivated
by scientific curiosity. We thus find it more instructing to lead the reader through
the thought process behind consecutive measurements along the way and motivate
them by the newly gained insights at each waypoint.

4



2 Superconductivity

This chapter summarizes fundamental theoretical concepts of conventional and
unconventional superconductivity and gives an introduction into tunnelling theory.
The first section features the Ginzburg-Landau theory of superconductivity. It
is followed by a section that covers important results of the microscopic theory
of conventional superconductors. The sections on multiband superconductivity
and Mott insulators familiarize the reader with superconductivity under unusual
circumstances. The fourth section is dedicated to unconventional superconductivity
with special focus on the cuprates and a spin-fluctuation mediated pairing mecha-
nism. In the last section, tunnelling theory, which is essential for the spectroscopic
measurement of superconductors, is introduced.

2.1 Ginzburg-Landau Theory

A powerful macroscopic theory to describe superconductors at temperatures T ∼ Tc,
i.e. close to the transition temperature, is the Ginzburg-Landau (GL) theory. It is a
generalization of the Landau theory of second-order phase transitions, that enables one
to study the low-temperature ordered state in the presence of spatial inhomegeneities.
In the specific case of a superconductor, this inhomogeneity can be induced by
electric currents or magnetic fields. The GL theory is a scalar field theory that
describes the second-order phase transition through a thermodynamic parameter
ψ(r), which is called the order parameter. ψ continuously changes from zero to a
finite value upon deceeding the transition (or critical) temperature Tc, like in Fig.
2.1(a). The inhomegeneity of the system is treated through the inclusion of gradient
terms of this scalar field. The lowest order of scalar field theory, in which these
gradient terms play a role, is a ϕ4-theory. For T ≈ Tc, the free-energy of the system
is expanded as a power series of the order parameter up to terms of fourth power in
ψ. The free energy functional reads

5



2 Superconductivity

Figure 2.1: Ground State in GL Theory: (a) Temperature dependence of the order parameter. (b) Free
energy landscape in the normal α > 0 and spontaneously symmetry broken state α < 0. (c) Magnetic
field and order parameter profile around a vortex in a type-II superconductor. The magnetic field
decays exponentially on the lengthscale λ while the order parameter recovers on the lengthscale ξ.

F [ψ(r),A(r)] = F0 +

∫
dr3

[
α|ψ(r)|2 + β

2
|ψ(r)|4+

+
1

2m∗ |(−iℏ∇− qA(r))ψ(r)|2 + |B(r)|2

2µ0

]
. (2.1)

F0 is the free energy of the normal state above Tc, B = ∇×A is the magnetic field
and A the corresponding magnetic vector potential. For a superconductor, the charge
and mass of each charge carrier is q = 2e and m∗ = 2me, because the supercurrent
is carried by Cooper pairs, that are made up of two electrons. The free energy
landscape is shown in Fig. 2.1(b). For α > 0, the free energy functional is minimized
by a single-valued ψ. For α < 0, a global U(1) symmetry is spontaneously broken
and the energy landscape has more than one global minimum. In fact, if one extends
the scalar field to the complex plane, i.e. ψ = |ψ|eiφ, the energy landscape forms a
mexican hat potential. The sign change of α at Tc is ensured by writing α(t) = α0(t− 1)

with t = T/Tc. The minimization of Eq. (2.1) with respect to the order parameter ψ
and the vector potential A yields the two GL equations:

1

2m∗ (−iℏ∇− qA)2ψ + αψ + β|ψ|2ψ = 0 , (2.2)

js =
1

µ0
∇×B = i

qℏ
2m∗ ([∇ψ∗]ψ − ψ∗∇ψ)− q2

m∗ |ψ|
2A. (2.3)

Thedependenceofrwasdroppedfora shorternotation. In the fieldfree,homogeneous
case (A = 0, ∇ψ = 0), the first GL equation yields the ground state

|ψ|2 = |ψ∞|2 = −α(t)
β

. (2.4)
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2.1 Ginzburg-Landau Theory

Allowing for spatial variations of the order parameter ψ = ψ∞ + δψ(r), one finds
from Eq. (2.2) that the deviations from the homegeneous ground state decay on a
characteristic length scale

ξ(t) =

√
ℏ2

2m∗|α(t)|
∝
√

1

1− t
, t < 1, (2.5)

which is the GL coherence length. A second characteristic length scale is obtained by
taking the curl of the second GL equation (2.3), which states that magnetic fields that
penetrate the superconductor are screened by induced currents and are consequently
exponentially damped on the length scale

λ(t) =

√
m∗

µ0|ψ(t)|2q2
∝
√

1

1− t
, t < 1, (2.6)

which is called the London penetration depth. Another important implication of
Eq. (2.3) is that the magnetic flux, that penetrates the superconductor, is quantized.
One can obtain this result by integrating the second GL equation along a closed line
far away from the region where the field lines penetrate, so that the order parameter
varies only in its phase ∇ψ = iψ∇φ(r) and that the net current through this loop is
zero:

∮
dsjs = 0. The single-valuedness of the order parameter then demands∮

ds∇φ =
q

ℏ
Φ = 2πn. (2.7)

The magnetic flux Φ =
∮
dsA is hence quantized in units of the magnetic flux

quantum Φ0 = h/2e.

2.1.1 The Ginzburg-Landau Parameter

It turns out out, that superconductors can be classified into two types based on
their response to a magnetic field, which is determined through the ratio of the two
characteristic length scales

κ(t) ≡ λ(t)

ξ(t)
. (2.8)

κ is called the GL parameter. A superconductor with κ < 1/
√
2 is classified as type-I

and a superconductor with κ > 1/
√
2 as type-II. Through the Meißner-Ochsenfeld

effect, a superconductor tries to actively expel an externally applied field by its
screening currents. At a certain field strengthHc, however, the associated energy that
is needed to realize a superconducting ground state with Bint = 0 is simply larger
than the free energy of the normal state and the system returns to the normal state

7



2 Superconductivity

Figure 2.2: Intermediate and Mixed Phase: (a) Schematic domains of a type-I superconductor in the
intermediate state. (b) Schematic Abrikosov lattice of a type-II superconductor in the mixed phase.

via a first-order phase transition. For a type-I superconductor of finite dimension the
phase transition is known to occur locally, which leads to an intermediate phase, in
which large normal and superconducting regions coexist. This scenario is depicted
in Fig. 2.2(a). For a type-II superconductor, there exists an additional Shubnikov
phase at Hc,1 < H < Hc,2, in which the superconductor favors flux entry in the
form of homogeneously distributed flux tubes carrying a single flux quantum Φ0,
each. These flux tubes are known as vortices, and the lattice they form in a type-II
superconductor is called the Abrikosov lattice, which is shown in Fig. 2.2(b). Below
the lower critical field Hc,1 the superconductor is again in the Meißner phase and
above the upper critical field Hc,2 it is in the normal phase. To illustrate the meaning
of the coherence length and London penetration depth, the radial field and order
parameter profile of a vortex in a type-II superconductor is schematically shown in
Fig. 2.1(c).

Onecan understandthe formation of these two transitionalphasesofa superconductor
by taking a lookat the energy costofa domain wall. Fora strong type-I superconductor,
ξ ≫ λ. Therefore, a single domain wall can lead to a large region in which the
energy cost for expelling the magnetic field is already large but the density of
the superconducting condensate |ψ|2 is only slowly approaching its bulk value
|ψ∞|2. The associated energy for hosting one domain wall is positive, so the system
tries to minimize the surface area of domain walls. In contrast, a strong type-II
superconductor with ξ ≪ λ is less effective in screening the penetrating magnetic
field. But there, the energy gain due to the superconducting condensation outweighs
the energy cost from screening. As a result, the associated energy for a single domain
wall is negative and the system tries to maximize the surface area of domain walls.
This is realized by a close-packed array of single-flux vortices.

8



2.1 Ginzburg-Landau Theory

2.1.2 Flux Pinning and Flux Flow

The flux lines inside a superconductor are a constant source of dissipation. In the
presence of an electric current density j and magnetic field B, the Lorentz force
density acting on the flux lines is given by [46, p.163]

f = j ×B. (2.9)

The movement of vortices or larger normal conducting regions through the crystal
lattice equals a normal conducting current in their core, which is responsible for
the dissipation. In the flux flow regime, the stopping force of the vortices can be
described by a viscous drag coefficient [46, p.166]

η =
jΦ

vL
, (2.10)

where vL is the velocity of the vortex with respect to the lattice and Φ is the flux
threaded through it.

In the absence of a transport current, the magnetic field lines enter a finite supercon-
ductor from the sides and are propelled to the inside by the magnetic field gradient.
Due to the movement of their normal conducting cores, their motion is damped by
dissipating currents and eventually stops. An array of vortices may also be moved
by an electric field in their normal core induced by magnetic induction according to
∇×E = −∂B/∂t [47]. Upon stopping the magnetic field ramp, the vortex motion is
again damped by the viscous behaviour according to Eq. (2.10), i.e. the dynamics do
not stop instantaneously.

The case vL = 0 for j ̸= 0 is only reached for η → ∞. This is a mechanism called
flux pinning. So far, only a perfect, defect free superconductor was discussed.
Inhomogeneities like point defects, inclusions, twin boundaries, stacking faults
or dislocations are only a few crystal defects that can act as pinning centres. In
general, for effective pinning, the defect should have the dimension of ∼ ξ or ∼ λ

[46, p.163]. Point defects are therefore only effective in a few high temperature
superconductors, in which ξ is of the same order as the lattice constant. Extended
defects like dislocations, however, can also locally suppress the order parameter in
elemental superconductors. From an energetic consideration, it is favorable for the
flux to thread through the defect than through the superconducting bulk next to the
defect, where the order parameter is already fully recovered. This local minimum of
F [A] creates a pinning force on flux lines near it. In order to unpin the flux lines, the
pinning force needs to be overcome by an overcompensating Lorentz force.

9



2 Superconductivity

2.1.3 Anderson-Higgs Mechanism

The famous Goldstone theorem, which was born in the context of superconductivity
by the works of Nambu [48], states that any spontaneous breaking of a continuous
symmetry necessitates the emergence of massless (gapless) bosons, one for each
generator of a broken symmetry [49, 50]. These bosons are referred to as Nambu-
Goldstone (NG) bosons. Famous examples of NG modes in condensed matter physics
are the magnons in ferromagnetic systems as a consequence of a broken rotational
invariance in spin-space and acoustic phonons in crystals as a consequence of a
broken rotational and translational invariance. The most original example, however,
is the NG mode in a superconductor, which appears as a consequence of a broken
global U(1) symmetry.

A BCS superconductor is often casually said to spontaneously break the U(1) gauge
symmetry when entering the superconducting state. This is, however, not entirely
correct because a gauge symmetry is not a real, physical symmetry, but merely a
choice of parametrisation of the system1[52]. Therefore, it cannot be spontaneously
broken [53]. What is meant, is that the global part of a U(1) phase rotation symmetry

Figure 2.3: Anderson-Higgs Mechanism: (a) Spontaneous symmetry breaking of U(1) leads to an
extra degree of freedom, that is a massless NG mode (phase fluctuations), and a massive Higgs mode
(amplitude fluctuations) of the order parameter ψ. (b) Dispersion ω(q) of the NG mode and the Higgs
mode. The NG mode is “eaten up" in the gauge of the vector potential leading to massive photons
that are gapped by the plasma frequency ωp. The Higgs mode can only decay into the quasiparticle
continuum for |q| > 0. Both adapted from [51].

1 The difference between a physical symmetry and a gauge symmetry can be understood as the
difference between the rotation of an object and the rotation of the coordinate axes spanning the
reference frame. While the first has a physical consequence, the second is only a description of the
system in terms of different variables.
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2.1 Ginzburg-Landau Theory

(which formally looks very much like a global gauge transformation) of the fermionic
field operators is spontaneously broken. This symmetry is, however, a real, physical
symmetry and tied to the number of fermions (or volume of the Fermi surface)
in the system, which is not conserved anymore when electrons start to pair [54,
55]. As a consequence of the spontaneously broken symmetry, the system acquires
the superconducting gap |∆| as an order parameter and an infinite number of
degenerate ground states related by a phase φ, i.e. ∆ = ∆̂eiφ, that is necessarily
universal throughout the system in its ground state. That this phase has physical
implications and is not the freedom of a gauge is reflected in the DC Josephson
effect. A superconductor is a special case, in which the matter field and gauge field,
that is the electromagnetic vector potential A, are coupled. Meissner effect, flux
quantization, Josephson effects are all phenomena based on this principle [56].

The U(1) symmetry describes the macroscopic phase of the order parameter, which
has a preferred value in the ordered state. This is shown in the mexican-hat potential
in Fig. 2.3(a). It turns out, that if such a symmetry can be associated with a gauge
symmetry, like in the case of the electroweak interaction, then the massless NG
mode is not visible, because it is “eaten up" by the gauge field and leads to massive
bosons [57–61]. This is the so-called Anderson-Higgs mechanism. In the context of
the electroweak interaction, these massive bosons are the W and Z bosons. In the
context of superconductivity, the photons inside the superconductor gain a mass,
which is ultimately responsible for the Meißner effect.

To see how this works, one can write down the GL functional for T < Tc and insert
the general ansatz ψ = (ψ∞ + δψ(r))eiφ(r), that allows for phase and amplitude
fluctuations of the order parameter. After some algebraic transformations one finds
[62]

F [δψ,A] = F0 +

∫
d3r

[
−2αδψ2 +

1

2m∗ |−iℏ∇δψ|2

−α
β

ℏ2

2m∗

∣∣∣∇φ− q

ℏ
A
∣∣∣2 +

1

2µ0
|∇ ×A|2

]
. (2.11)

This functional is invariant under the gauge transformation

A′ := A− ℏ
q
∇φ , ψ′ := ψe−iφ. (2.12)

By analyzing the form of Eq. (2.11), one recognizes two constant mass terms: The
mass term for the amplitude fluctuations is the first term and the mass is −2α.
The mass term for the field A is the third term and the mass is −αq2/(2βm∗).
As the microscopic theory shows, the mass term of the vector potential is equal
to the plasma frequency ωp =

√
nsq2/(ε0m∗) [57] and the amplitude fluctuations
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2 Superconductivity

are gapped by 2∆ [63], which is the characteristic energy gap of fermions in a
superconductor and real part of the order parameter. The dispersion relation of these
two modes is also shown in Fig. 2.3(b). It becomes obvious, that the quasiparticle
gap 2∆ becomes completely empty through the Anderson-Higgs mechanism and
the consequent elevation of the NG mode. The amplitude mode, which is commonly
referred to as the Higgs mode can only decay for q ̸= 0, because the energy transfer
to quasiparticles must be at least 2∆. The phase space for the decay of the Higgs
mode into quasiparticles is, however, too large to observe the Higgs mode in most
superconducting systems. According to a few theoretical studies, it should be
possible to shrink the number of decay channels by decreasing the gap of the Higgs
mode below 2∆ in superconductors with a charge-density wave [63] or disordered
superconductors close to a superconductor-to-insulator transition (SIT) [64]. The
phase mode is lifted in energy to the plasma frequency ωp, which is far above the
gap, at least in 3D bulk systems. In superconductors an excitation of the phase mode
is, therefore, equivalent to the excitation of a plasmon.

2.2 Microscopic Theory of Conventional
Superconductivity

This section gives a brief overview of important results of the Bardeen-Cooper-
Schrieffer (BCS) theory for conventional superconductors [16] and the Migdal-
Eliashberg theory for strong coupling superconductors [17, 65, 66].

2.2.1 BCS Theory

Given some attractive electron-electron interaction, the BCS formalism describes the
pairing mechanism that leads to a superconducting condensate, the BCS ground
state. It starts from a Fermi liquid theory of the normal state, i.e. the direct Coulomb
interaction between electrons can be absorbed into single-particle excitations
(“dressed” electrons) of the Fermi sea with energy ϵk with respect to the chemical
potential µ. The scattering process with the largest phase space, that destabilizes the
Fermi liquid, is the one between a pair of electrons in the initial state (k′ ↑ ,−k′ ↓)
into the unprimed final state (k ↑ ,−k ↓). The four-particle scattering vertex is
described by the potential Vk,k′ (cf. Fig. 2.4) and the reduced Hamiltonian in second
quantization reads

H =
∑
kσ

ϵkc
†
kσckσ +

1

N

∑
kk′

Vkk′c†k↑c
†
−k↓c−k′↓ck′↑. (2.13)
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2.2 Microscopic Theory of Conventional Superconductivity

Here and in the rest of this subsection, we closely follow and adopt the equations
from Ref. [62]. Bardeen, Cooper and Schrieffer realized that it is useful to reformulate
a mean-field approximation of this Hamiltonian in terms of expectation values
for pair-annihilation and pair-creation. This leads to the complex valued BCS gap
parameter ∆k defined by the BCS equation

∆k = − 1

N

∑
k′

Vkk′⟨c−k′↓ck′↑⟩ = − 1

N

∑
k′

Vkk′
∆k′

2Ek′
tanh

Ek′

2kBT
(2.14)

with the gapped quasiparticle (QP) spectrum

Ek =
√
ϵ2k +∆2

k. (2.15)

∆k describes the mean binding energy of a pair of electrons with opposite momenta
and spin. Its complex conjugate describes the mean binding energy of a pair of
holes with opposite momenta and spin. Bogoliubov [67] and Valatin [68] could show
independently that the mean field Hamiltonian acquired by Bardeen, Cooper and
Schrieffer can be diagonalized by a linear transformation that mixes electron and
hole excitations. It then simplifies to

H = EBCS +
∑
kσ

Ekγ
†
kσγkσ (2.16)

with the new fermionic creation and annihilation operators for the Bogoliubov
particles (or Bogoliubons)(

γk↑
γ†−k↓

)
=

(
u∗k −vk
v∗k uk

)(
ck↑
c†−k↓

)
(2.17)

and the superconducting ground state energy

EBCS =
∑
k

(ϵk − Ek +∆k⟨c†k↑c
†
−k↓⟩). (2.18)

The BCS ground state is thus a vacuum of Bogoliubons:

γkσ |ψBCS⟩ = 0. (2.19)

From Eq. (2.16) it becomes obvious why Eq. (2.15) was called the QP spectrum with
the characteristic gap ∆k. The superconducting gap is most notably seen in the DOS
of the Bogoliubov QPs. We follow again Bardeen, Cooper and Schrieffer and assume
a constant attractive pair interaction for electrons and holes in a thin shell around
the Fermi energy of width 2ωD :

Vkk′ =

{
−V0 , |ϵk| , |ϵk′ | < ωD

0 , otherwise.
(2.20)
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2 Superconductivity

ωD , the Debye frequency, is the natural cut-off frequency for an attraction mechanism
mediated by phonons. Under this assumption, ∆k → ∆ and the DOS of Bogoliubov
QPs is given by

νBCS(ϵ) =

{
νFn

|ϵ|√
ϵ2−∆2

for |ϵ| > ∆ ,

0, for |ϵ| < ∆.
(2.21)

Here, νFn is the DOS at the Fermi energy in the normal state. In the BCS approximation
(Eq. (2.20)), the gap equation (2.14) can be solved analytically and yields for T = 0

∆(0) ≈ 2ωDe
− 1

νF
n V0 . (2.22)

It is related to the critical temperature Tc via the approximate relation

∆(0)

kBTc
= 1.764. (2.23)

Gorkov could derive the Ginzburg-Landau equations from the BCS equations and
identified the position and temperature dependent gap∆(r, T ) as the orderparameter
ψ(r, T ) of a BCS superconductor [69] with the same (1− T/Tc)

1/2 dependence close
to Tc.

2.2.2 Bogoliubov-de Gennes Theory

Often, one is interested in local inhomogeneities of the superconducting state. The
Bogoliubov-de Gennes (BdG) formalism provides a microscopic description that
enables us to study defects, like e.g. vortices. One starts from the BCS mean-field
Hamiltonian and makes it spatially dependent. The QPs are described by the
two-component spinor [62]

|Ψk⟩ =

(
c†k↑
c−k↓

)
|ψBCS⟩ (2.24)

and by the Hamiltonian

HBdG(k) =

(
ϵk −∆k

−∆∗
k −ϵk

)
(2.25)
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2.2 Microscopic Theory of Conventional Superconductivity

with the eigenvalues ±Ek from Eq. (2.15). The spatial dependence is obtained
through a Fourier transformation of the single QP excitations with momentum k

[62]:

Ψ(r) =
1√
N

∑
k

eikr |Ψk⟩ , (2.26)

HBdG(r) =
1

N

∑
k

eikrHBdG(k)

=

(
H0(r) −∆(r)

−∆∗(r) −H∗
0 (r)

)
. (2.27)

The Schroedinger equation in real space

HBdG(r)Ψ(r) = EΨ(r) (2.28)

is termed the Bogoliubov-de Gennes equation. With the BdG equation, the local QP
excitations can be studied under a local potential, e.g. a vector potential H0 ∝ A(r),
inside the superconductor or one can impose a local form of the gap ∆(r) in the
vicinity of a defect.

2.2.3 Migdal-Eliashberg Theory

In this section, we want to discuss the mechanism of superconductivity in the
presence of a strong-electron phonon interaction. One now has to take a closer look
at the electron-electron scattering process via the exchange of a virtual phonon,
as shown in the diagrammatic comparison of the interaction vertices for the BCS
and Eliashberg theory in Fig. 2.4. Because this process involves time-dependent
potentials, it is useful to do so using field operators in the interaction picture and
employ the Green’s function technique. Without going into much detail of the theory,
we want to summarize in simple terms that knowing a system’s single-particle
Green’s function G(r− r′, t− t′) means knowing its single-particle Hamiltonian and
thus the time evolution of physical observables. We already saw that the attractive
electron-electron interaction is a dynamical process. Hence, it makes most sense to
consider the Fourier-transformed Green’s function in momentum and frequency
space. For completeness, we want to introduce the Matsubara Green’s function in
the imaginary frequencies [70]

Gσ(k, iωn) = − 1√
βV

∫ β

0

dτ

∫ ∞

−∞
dr⟨TτΨσ(r, τ )Ψ

†
σ(0, 0)⟩eiωnτ−ikr (2.29)
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2 Superconductivity

with β = 1/kBT , τ = it and the fermionic Matsubara frequencies ωn = (2n+ 1)π/β.
⟨..⟩ is the grand canonical average, Tτ the time ordering operator and Ψσ and Ψ†

σ are
annihilation and creation operators for the fermion field with spin σ. The physically
relevant retarded Green’s function can always be obtained from the Matsubara
(thermal) Green’s function by analytic continuation of the imaginary frequencies
onto the real axis:

GR(k, ω) = G(k, iωn → ω + i0+). (2.30)

In the presence of strong electron-phonon coupling, the electronic excitations and
lattice vibrations cannot be treated independently. Instead, the polarisation of the
lattice by fluctuations in the electron density exerts a back action on the electronic
system leading to electrons and phonons with renormalized dispersion relations.
The dressed electron and phonon propagators can be evaluated in a Dyson series of
the normal propagators (Green’s functions) G0:

G = G0 +G0ΣG = G0 +G0ΣG0 +G0ΣG0ΣG0 + ... (2.31)

The electronic and bosonic complete self-energiesΣ andΠdue to the electron-phonon
interaction are then defined by the equations

[G(k, iωn)]
−1

= [G0(k, iωn)]
−1 − Σ(k, iωn) , (2.32)

[D(q, iΩn)]
−1

= [D0(q, iΩn)]
−1 − Π(q, iΩn). (2.33)

The phonon Green’s function D is defined analogously to Eq. (2.29) with boson field
operators expanded in plain waves of momentum q and the bosonic Matsubara
frequencies Ωn = 2nπ/β.

The Dyson equation (2.31) is alreadycomplete andcan be describedbya diagrammatic
representation. But the self-energy still consists of a number of connected Feynman
diagrams and in the case of electron-phonon interaction, it is useful to sort these

k′, σ

k, σ

−k′,−σ

−k,−σ

Vkk′

D(q,Ω)

k, σ

k − q, σ

−k,−σ

−k + q,−σ

gqΩ gqΩ

Figure 2.4: Electron-Electron Interaction: Feynman diagrams depicting the attractive electron-electron
interaction through the effective four-fermion vertex in BCS theory (left) and through the virtual
exchange of a phonon with wavevector q and frequency Ω in Eliashberg theory (right).

16
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diagrams after their weight and write the Dyson equation in the self-consistent Born
approximation (SCBA)

G = G0 +G0ΣG = G0 +G0(Σ
(1) + Σ(2) + ..)G. (2.34)

This is the form in which we want to make an important approximation. Since
the movement of the electrons adiabatically follows the movement of the ions
(Born-Oppenheimer theorem) the interaction vertex is not renormalized but taken
as the bare electron-phonon vertex. This is Migdal’s theorem [65]. The neglected terms
are of order O(

√
m/M), withm being the electron andM the ion mass, so only a few

percent. This is diagrammatically depicted in Eq. (2.37). Eliashberg used the same
argument to cut off the SCBA Dyson series for the electron and phonon propagators
after the first fully self-consistent self-energy correction [17]. This is depicted in
Eq. (2.35) and (2.36).

= + + ...

Eliashberg: O(
√
m/M)

(2.35)

= + + ...

Eliashberg: O(
√
m/M)

(2.36)

= +

O(
√
m/M)Migdal:

+ ... (2.37)

The self-energies are thus given by

Σ ≈ Σ
(1)
SCBA = , (2.38)

Π ≈ Π
(1)
SCBA = . (2.39)
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The last thing that is needed before the effective electron-electron interaction can be
analyzed is the extension of the electronic Green’s function to electron-hole space
(Nambu spinor representation). It is then given by the 2× 2 matrix [70]

Ĝ(k, τ ) = −

(
⟨Tτ ck↑(τ )c†k↑(0) ⟨Tτ ck↑(τ )c−k↓(0)⟩

⟨Tτ c†−k↓(τ )c
†
k↑(0)⟩ ⟨Tτ c−k↓(τ )c

†
−k↓(0)⟩

)
:=

(
Gk Fk

Fk −G−k

)
(2.40)

where the diagonal entries describe the normal propagators for spin-up electrons and
spin-down holes and the off-diagonal entries are Gorkov’s anomalous propagators.
Just like in the BCS theory these anomalous operator averages describe the pairing
mechanism. They naturally appear in the evaluation of the right diagram in Fig.
2.4 where two electrons scatter by exchange of a virtual phonon and in the boson
self-energy. The two equations for the fermion and boson self-energies, Eq. (2.38)
and (2.39),build, together with Eq. (2.35) and (2.36), a set of coupled integral equations
that can be solved numerically. These are the Eliashberg equations. For their explicit
form, which is lengthy and physically not too insightful, the reader is referred to
standard literature.

An essential ingredient of the Eliashberg equations is the defnition of the Eliashberg
function [70]

α2F (Ω) = − 1

V 2νFn

∑
q=k−k′

δ(ϵk)δ(ϵk′)
|gqΩ|2

π
ImDR(q,Ω)Θ(Ω). (2.41)

It is a momentum-integrated phonon DOS that electrons, which scatter between
points of the Fermi surface, see. It is often also called the boson spectral function
or bosonic glue in order to generalize it to the exchange of a different boson.
In general Eliashberg theory, the gap becomes energy dependent ∆ → ∆(ϵ) and
is mainly determined through the Eliashberg function. In a conventional s-wave
superconductor a sharp resonance in the Eliashberg function atΩ∗ leads to additional
fine structure in the electronic DOS

ν(ϵ) = νFn Re
|ϵ|√

ϵ2 −∆(ϵ)2
(2.42)

at energies ϵ = ∆0 + n · Ω∗, as was demonstrated both theoretically [70] and in
tunnelling experiments on Pb [71–74]. By defining the dimensionless electron-phonon
coupling constant [18]

λ = 2

∫
dΩ

α2F (Ω)

Ω
, (2.43)

the consequence of the coupling strength can be understood in the BCS limit λ≪ 1.
Electrons effectively gain a mass proportional to λ and the effective scattering
potential V in Eq. (2.14) is substituted by λ, which nicely illustrates how a strong
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electron-phonon coupling leads to a stronger electron-electron attraction. Strong-
coupling superconductors, like Pb, have larger ∆(0)/Tc ratios than the BCS value
(Eq. (2.23)).

2.3 Multiband Superconductivity

The simultaneous existence of superconductivity in more than one electronic band is
not surprising per se. After all, many superconducting materials have more than one
electronic band crossing the Fermi level. The interplay of several superconducting
bands has,however,been mostly studied in the model two-bandsuperconductorMgB2

[36–38] and iron-pnictide superconductors [75–77]. For elemental superconductors,
supposed evidence for more than one superconducting gap was found in the heat
capacity of Nb, Ta and V in the 1960s [78]. Due to contradicting experimental results
in the following years [79–81], however, the influence of multiband effects in these
materials has remained a controversial topic. In recent years, modern theoretical
methods and higher resolution in energy gap probing experiments paved the way
for the discovery of two-band superconductivity in elemental Pb [39] after its prior
theoretical prediction [82].

In a simple picture, the system of a two-band superconductor can be described by a
model Hamiltonian that incorporates interband and intraband pairing, as well as
interband scattering [83]:

H =
∑
k,σ

ϵa,kc
†
a,k,σca,k,σ + ϵb,kc

†
b,k,σcb,k,σ

+
∑
α,β,k

∆αβc
†
α,−k,↑c

†
β,k,↓ + h.c.

+
∑
k,σ

Γc†a,k,σcb,k,σ + h.c. . (2.44)

ϵα,k denotes the quasiparticle dispersion in band α, c†α,k,σ is the creation operator
for a QP with momentum k and spin σ in the band α, ∆α,β is the superconducting
gap parameter for inter- or intraband pairing and Γ describes the QP scattering
amplitude between bands a and b. A large interband scattering amplitude Γ ≲ ∆ can
lower the transition temperature Tc in a linear manner [84], a small Γ ≪ ∆ enables
one to effectively describe the multiband superconductor in a single-band model
for each band. Consequently, the DOS may then be written as a superposition of
contributions from each individual band α, both in the normal and superconducting
state:

νs(n)(ω) =
∑
α

νs(n),α(ω). (2.45)
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In a tunnelling experiment, the individual band DOS may be probed with different
spectral weight due to the momentum and energy dependence of the tunnelling
matrix element. On a two-band superconductor this is notably seen as a discrepancy
in the differential conductance at the quasi-particle coherence peaks [38, 39].

In order to determine how large the interband scattering amplitude is, one can look
for hybridization-induced high energy gaps in the superconducting state, that have
been predicted by Komendová et al. [85]. These gaps are a consequence of avoided
band crossings of the hybridized bands at higher energies, hence their energetic
position depends on the normal state dispersion. This exotic odd-ω pairing state
can only be formed if ∆1 ̸= ∆2 and Γ > 0. The higher Γ, the larger the width of the
hybridization-induced gaps, that appear symmetrically around the Fermi energy in
a conductance spectrum. On top of that, the translational symmetry breaking of a
vortex in an s-wave superconductor is supposed to lead to an odd-frequency pairing
mechanism inside the vortex core [86]. Another theoretically predicted consequence
of a large interband coupling is a coherence length and gap parameter matching. As
was shown by Ichioka et al., for growing interband coupling, the vortex core radii
ratio ξ(c)1 /ξ

(c)
2 → 1 and maximum gap sizes ∆2/∆1 → 1 [87].

2.4 Mott Insulators

It may sound paradoxical to talk about insulators when dealing with superconduc-
tivity, but for reasons that are still not perfectly understood, materials with enhanced
critical temperatures very often feature a MIT at temperatures larger than Tc. This
includes organic superconductors, fullerenes, bismuthates and the two classes that
shall be addressed in more detail in the following: Granular superconductors and
cuprates [88, p. 63]. In these classes of superconductors, the MIT is of Mott type. This
means that a transition from the metallic to insulating state is caused by a charge
carrier density that is so low that Thomas Fermi screening becomes very weak and
electrons are localized on individual atoms due to strong on-site Coulomb repulsion.
For a better understanding, it is instructive to first consider a metal crystal like copper
where the conduction electrons can be thought of as a Fermi gas, so non-interacting
particles, due to the effective Thomas Fermi screening. In a gedanken experiment
proposed by Mott, a Mott type MIT could be initiated in such a crystal by just
pulling the ions further and further apart and by doing so effectively reducing the
charge carrier density through the increase in crystal volume2. The Thomas Fermi

2 This is of course under the assumption that the crystal does not undergo a structural transition and
does not gain a large number of defects in the process of its expansion.
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Figure 2.5: Mott MIT: Schematic of a generic
phase diagram of superconductors with a Mott
MIT. As the control parameter x, that regulates
the charge carrier density, falls below xM , the
material undergoes a discontinuous phase
transition from metal to Mott insulator. Upon
decreasing T below Tc in a region of x around
xM , the material undergoes a continuous phase
transition to the superconducting state.

screening length rTF in the Fermi gas, which was the initial state, is becoming larger
for lower charge concentrations like r2TF ∝ n−1/3. As soon as rTF becomes much
larger than the interatomic distance a, the Thomas Fermi screening is ineffective. The
potential wells of neighbouring ions overlap and only bound states are formed. The
strong electron-electron Coulomb repulsion at each atomic site renders electronic
wavefunctions localized. In this insulating state, strong electron-electron interactions
are dictating the materials electronic properties and as a consequence, a theoretical
description in terms of single-particle states is not possible. Instead, a theoretical
understanding of the ground state is usually gained in a local description of pair-wise
interactions, like in the Hubbard model with the Hamiltonian:

H = −tij
∑
⟨ij⟩,σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓. (2.46)

Here, c(†)iσ are the annihilation (creation) operators for a fermion with spin σ at lattice
site i and n = c†c are the fermionic density operators. The first term contains the
tight-binding band structure via a hopping term tij between neighbouring sites
⟨ij⟩. The second term describes the on-site Coulomb repulsion of two electrons
or holes via the potential U . From this Hamiltonian, it becomes obvious how a
critical point can be reached when the decrease in energy due to the kinetic term
is overcompensated by an increase in potential energy due to the on-site Coulomb
repulsion.

In Fig. 2.5, a highly simplified, schematic phase diagram is shown for superconductors
with a Mott MIT. When the control parameter x that regulates the charge carrier
density falls below xM , the material undergoes a discontinuous phase transition
from metal to Mott insulator, indicated by the dashed line. Upon decreasing T below
Tc in a region of x around xM the material undergoes a continuous phase transition
to the superconducting state, indicated by the continuous line. The small cartoon
depicts how an increased screening length leads to the formation of more localized
states. Granular superconductors and cuprates are two prime examples in which
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2 Superconductivity

the superconducting phase not only exists in close proximity to a Mott MIT, it also
exhibits some of its highest transition temperatures in the vicinity of it [88, p. 64].

2.4.1 Granular Superconductors

Granular Superconductors are materials in which small metallic grains are separated
by an insulating barrier. The control parameter that regulates the charge carrier
density is the intergrain resistance, so the resistivity or thickness of the barrier. Here,
the Mott insulator is characterized by a localization of electronic wavefunctions
on single grains, as soon as the intergrain coupling becomes too weak. In a sense,
the granular system is a mesoscopic Mott insulator [88, p. 68], because nanosized
grains play the role of single atoms. A pair of metallic grains, separated by the
insulating buffer, represents a normal metal tunnel junction with resistance R

and capacitance C . The electrostatic energy of such a junction can only change in
quantized decrements of Ec = q2/2C , corresponding to the tunnelling of a single
charge q. As a consequence, a tunnelling current can only flow above a threshold
voltage of

|U | ≥ UCB =
Q

2C
. (2.47)

This constraint is called the Coulomb blockade. It can be overcome by thermal or
quantum fluctuations. Hence, in order to induce metallic behaviour, the thermal
energy kBT has to be larger than Ec or the time scale on which a single charge
transfer occurs through quantum fluctuations τ = RC has to become sufficiently
short, i.e. Ec ≤ h/τ which requires R ≤ RK , where RK = h/e2 is the von Klitzing
constant [89, 90].

In the superconducting state, the metallic grains become superconducting and
the junctions are effective Josephson junctions with Josephson coupling EJ . The
tunnelling charge carriers now have the charge q = 2e. Since the number of Cooper
pairs on each grain N and the phase of the BCS wavefunction φ are conjugate
variables, i.e. [N,φ] = i, the charge per grain Q = N(2e) and the phase cannot be
measured independently. In the case of extremely decoupled grains, Ec ≪ EJ , the
junction is in the Coulomb blockade regime and experiences large fluctuations of
the superconducting phase. In the case of extremely well coupled grains, EJ ≫ Ec,
the junction is in the phase blockade regime, which means the superconducting
phase is locked but charge fluctuations are large.
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2.4.2 Cuprates

In copper-oxide based superconductors, the cuprates, the Mott criterium is evoked
on the atomic scale. There, a transition from the antiferromagnetic Mott insulator to
a metallic phase is initiated through the introduction of additional charge carriers
via doping. A more detailed discussion of the phase diagram of the cuprates is
presented in Sec. 4.1.

2.5 Unconventional Superconductivity

A superconductor is classified as unconventional if the electron pairing mechanism
is not mediated by electron-phonon interactions or additional symmetries besides
the global U(1) symmetry are spontaneously broken for T < Tc [91, p. 3]. This
unconventional pairing mechanism can lead to an anisotropic gap function ∆k

that is not explained by the BCS mean-field theory. In order to explain it, it is
necessary to include strong electron correlations and local interactions. Especially
for the technologically interesting high-temperature copper oxide superconductors,
a magnetic order is competing with a superconducting phase. In these systems, the
conduction and magnetic interactions are confined to the copper oxide planes and
are very sensitive to doping, so the charge carrier density. Despite the absence of a
complete microscopic theory that explains the unconventional electronic pairing
in these systems, considerable progress has been made in the framework of a
spin-fluctuation mediated pairing mechanism. This mechanism can explain the
close proximity of superconductivity and magnetism as well as the resulting order
parameter symmetry in the copper oxide superconductors [92].

2.5.1 Order Parameter Symmetry

The classification of superconductors into groups based on the symmetry of their
pairing amplitude proves to be a powerful concept to make good physical predictions
without tedious calculations. We recall that the pairing amplitude is given by

∆σ1σ2
(k) = − 1

N

∑
k′

Vkk′σ1σ2
⟨c−k′σ1

ck′σ2
⟩ (2.48)

and is determined in the self-consistent Eq. (2.14). In this eigenvalue problem of Tc,
∆σ1σ2

(k) are the eigenfunctions which need to have certain symmetry properties
based on their definition. The phase transition from the normal conducting to
superconducting state is a second-order phase transition and therefore tightly
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2 Superconductivity

connected with the reduction of the underlying symmetry of the system’s ground
state. If the full symmetry group G describes the system’s normal state, then the
superconducting state belongs to a subgroup H of G [56]

H ⊂ G, T < Tc. (2.49)

An important implication of spontaneous symmetry breaking is that the Hamiltonian
that describes the time-evolution of the system is still invariant under all symmetry
operations of G. Only the ground state has a reduced symmetry and is not invariant
under symmetry operation corresponding to the broken part of G. Starting from the
simplest consideration of a Fermi liquid, in which the interaction from Eq. (2.48) is
isotropic in real space and momentum space, we only need to account for symmetry
of the fermionic wavefunctions, i.e. respect the Pauli principle. The full symmetry
group G would look as follows:

G = SU(2)︸ ︷︷ ︸
spin−space

× SO(3)︸ ︷︷ ︸
k−space

×U(1)︸ ︷︷ ︸
phase

× T︸︷︷︸
time−reversal

(2.50)

First, we want to use the fact that eigenfunctions of the system are built from a basis
of an irreducible representation (irrep) of the symmetry group. A representation of
the group H would be

DH = Dl ⊗Ds ⊗DT (2.51)

where Dl is an irrep of momentum space and Ds and DT denote representations of
spin-space and the time-reversal symmetry [93]. Analogously to the hydrogen atom,
we can use the spherical harmonics Ylm(k) as the irrep of the SO(3) in momentum
space and since our fermions have a spin of 1/2 we can use the spin functions χsms

,
which are the eigenvectors of the 2D Hermitian Pauli matrices. The eigenfunctions
to the eigenvalues Tc(l, s) can then be written as [93]

∆l,s(k) =


∑
m
cmYlm(k)χ00 Singlet, l = even∑

m,ms

cmms
Ylm(k)χ1ms

Triplet, l = odd
(2.52)

with complex scalar coefficients cm and cm,ms
. Generally, the highest eigenvalue

Tc(l, s) and its corresponding eigenfunction dominate the expansion of the order
parameter. However, we can already understand the order parameter composition of
eigenfunctions with different orbital or spin character from this very simple example.
Of special importance is the transformation behaviour of the order parameter
under parity operation P . We classify the superconductors according to their parity
eigenvalue P∆(k) = ∆(−k) = (−1)l∆(k) into s-wave (l=0), p-wave (l=1), d-wave
(l=2) and so on.
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2.5 Unconventional Superconductivity

Table 2.1: Residual Groups: Spin-Singlet Pairing States with Even Parity in D4h (a) and D2h (b) [94]

(a)

Irrep∗ Residual Basis
group† functions

A1g D4h × T 1, x2 + y2, z2

A2g D4(C4)× Ci × T xy(x2 − y2)

B1g D4(D2)× Ci × T x2 − y2

B2g D4(D′
2)× Ci × T xy

Eg D2(C′
2)× Ci × T xz

D2(C′′
2 )× Ci × T (x+ y)z

D4(E)× Ci (x+ iy)z

(b)

Irrep∗ Residual Basis
group† functions

A1g D2h × T 1,x2,y2,z2
B1g D2(Cz

2 )× Ci × T xy

B2g D2(C
y
2 )× Ci × T xz

B3g D2(Cx
2 )× Ci × T yz

∗We use Mulliken symbols., †All residual symmetry groups also contain the SU(2) of spin-space.

So far we have neglected spin-orbit interaction and the crystal field. Strong spin-orbit
interaction will mix eigenstates of l and s, but we can save our basis by using the
total angular momentum number j and an effective pseudo-spin α [93]. Introducing
the crystal field will reduce the symmetry group in k-space from a continuous
rotation group SO(3) to the discrete crystallographic point group Gc. Irreps of the
crystallographic point groups are tabulated in numerous review articles on this
subject [93, 94]. Since our focus will be on the cuprates, we will concentrate on
the orthorhombic point group D2h and compare it to the irreps of the point group
D4h, the point group of a tetragonal crystal. The irreps of these two point groups
for singlet-pairing (even parity) are shown in Tab. 2.1. A BCS superconductor can
only be represented in the A1g , the only irrep where the residual group is identical
to the point group of the normal state except for the global U(1) symmetry. No
additional symmetry is broken. The basis function for A1g is 1. This means that the
gap parameter can be written as a constant, which is equivalent to the conventional
s-wave pairing state. In unconventional superconductors, however, an additional

Figure 2.6: Pairing Symmetries: 2D sketch of several (an)isotropic gap parameter functions ∆(k) inside
the first Brillouin zone. The inner radial plot shows the polar dependence of ∆ for a fixed |k| (isotropic
Fermi surface).
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symmetry is spontaneously broken and in most cases this symmetry breaking
occurs in k-space. The symmetry of the pairing state thus has a lower symmetry
in momentum space than the crystal lattice. According to the basis functions of
a certain irrep from Tab. 2.1, the gap function for a certain pair state ∆(k) can be
expanded in harmonics of cos(ki)3 where ki with i = x, y, z are the k-vectors in
three orthogonal directions inside the Brillouin zone [95]. This is analagous to the
atomic orbitals, where linear combinations of spherical harmonics are used to obtain
real wavefunctions that are often denoted in the cartesian basis, e.g. a dz2 or dx2−y2

orbital. For the s-wave state (A1g) of the tetragonal crystal with point group D4h,
one obtains [56, 95]

∆s(k) = ∆(0)
s +∆(1)

s (cos kx + cos ky) + ∆(2)
s cos kz + ... (2.53)

and for the dx2−y2 -wave state (B1g)

∆dx2−y2 (k) = ∆0
dx2−y2

(cos kx − cos ky) + ... . (2.54)

Apart from these pure pairing states, it is also possible to construct mixed pair states
by adding the gap parameter times i of one representation to the gap parameter of
another representation, provided that both representations are 1D [95]. An example
for D4h would be

∆s(k) + i∆dx2−y2 (k). (2.55)

It should be noted that these mixed states break time-reversal symmetry and result
in two first-order phase transitions instead of one second-order phase transition [56].
Remarkable in the point group D2h is that the s- and dx2−y2 -pairing state belong to
the same irrep A1g . A simple superposition of the two is therefore allowed without
building a time-reversal symmetry breaking mixed state or requiring two unrelated
phase transitions. A more detailed discussion on the pairing symmetry in the two
cuprates studied in this work follows in Sec. 4.1.2.

2.5.2 Macroscopic and Microscopic Description of Magnetic
Response in a Metal

In order to understand how Cooper pair formation can be mediated by spin-
fluctuations, it is first important to understand how the spins of itinerant electrons
collectively interact with an external magnetic field. Even though the microscopic
interactions may be very intricate, from a macroscopic viewpoint, the magnetic

3 Using Taylor-series expansion of the cosine and sine functions make it obvious why e.g. k2x − k2y ∼
cos kx − cos ky ≈ (1 + k2x/2)− (1 + k2y/2).
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2.5 Unconventional Superconductivity

properties of such a system can be described by one function: the magnetic
susceptibility χ = ∂M/∂H . It is the response function of the system to an external
magnetic field. Since the perturbation may be time-dependent, it is favourable to
study the Fourier-transformed magnetic susceptibility, i.e. how the system reacts to
an external field of a certain frequency ω and wave-vector q:

χ(q, ω) =

∫ ∫
χ(r, t)e−i(qr−ωt)drdt. (2.56)

Since the magnetic susceptibility has to obey the principle of causality, its real and
imaginary part are not independent, but related to each other through Kramers-
Kronig relations. In other words, it is sufficient to either perform a diffractive
scattering experiment to probe the real part of χ or an inelastic scattering experiment
to probe the imaginary part responsible for damping.

Microscopically, the magnetic moment operator M̂ (r) per unit volume is the sum
over all electron magnetic moment operators m̂i

M̂ (r) =
∑
i

m̂iδ(r − ri). (2.57)

Solving the time-dependent Schroedinger equation for an adiabatically turned on
external field and using statistical methods, one is able to relate microscopic and
macroscopic description through a magnetization (or spin) correlation function [96,
p. 15]

χµν(q, ω) =
i

ℏ
µ0

∞∫
0

⟨[M̂µ(q, t), M̂ν(−q, 0)]⟩eiωtdt, (2.58)

where ⟨Â⟩ = Tr(ρÂ) is the quantum-statistical average using the density matrix ρ
and [Â, B̂] = ÂB̂ − B̂Â is the operator commutator. Introducing spin fluctuations by
deviation from the mean value δM̂ = M̂−⟨M̂⟩ and using the fluctuation-dissipation
theorem the longitudinal dynamic structure factor S(q, ω) can be directly linked to
the imaginary part of the magnetic susceptibility [96, p. 17]:

Sµµ(q, ω) =
µ0

ℏ

∞∫
−∞

⟨δM̂µ(q, t)δM̂µ(−q, 0)⟩eiωtdt

=
2

1− e−ℏω/kBT
Imχµµ(q, ω). (2.59)

This structure factor is directly accessible in an INS experiment. The spin correlation
function and hence the magnetic susceptibility in Eq. (2.58) diverge, when the system
undergoes a phase transition to a magnetically ordered state χ(q → Q) → ∞.
The wave vector at which the system is most prone to do that (highest transition
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temperature) is called the magnetic ordering wave vector Q. Energy dissipated into
the electronic system through a magnetic interaction (cf. Eq. (2.59)) can be taken up
in two ways: It can produce a spin-wave, a collective excitation of the electronic spins
with momentum q and energy ℏω or produce Stoner excitations. The former can
be described by a bosonic excitation (a magnon) with a single-particle dispersion
E(q, ω) whereas the latter form a continuum, typically in the long wave-vector and
high-energy sector, where they can be thought of as local spin flips.

2.5.3 Spin-Fermion Model

Even without an external field, the itinerant electrons feel an effective magnetic
field at finite temperature due to the constant temperature driven fluctuations of
magnetic moments. Even though the valence electrons try to quickly screen the local
spin polarizations, the process is not immediate and a retarded interaction between
electrons and the background magnetic field is the consequence. Especially hot
electrons, that carry enough energy and momentum to emit a magnon, can effectively
attract another electron further away that feels the polarization of the environment
and ultimately resolves it by absorbing the magnon. At low temperatures, this
process happens only virtually (off shell) involving electrons and holes in a small
energy window around the Fermi edge. The corresponding Feynman diagram to this
coupling mechanism is shown in Fig. 2.7. The spin-fermion model aims to provide
an effective Hamiltonian that describes the interaction between low-energy electrons
and holes and collective spin-excitations. A simple Hamiltonian for this low-energy
regime, assuming a short-range Hubbard-type interaction between fermions and
spin fluctuations, reads [22, 97]

H =
∑
k,α

vk(k−kF )c
†
k,αck,α+

∑
q

χ−1
0 (q)SqS−q+g

∑
k,q,α,β

c†k+q,ασα,βck,βS−q. (2.60)

Here c†k,α denotes a fermion creation operator, σi are the Pauli matrices and Sq

describe the magnon field. g is the coupling constant between the fermionic and
bosonic degrees of freedom and χ−1

0 (q) = (ξ−2 + (q − Q)2)/χ0 is the static part
of the spin susceptibility. ξ is the spin correlation length and Q the magnetic
ordering vector. The static part of the susceptibility has Ornstein-Zernike form,
which captures the short-range interaction as its Fourier transform has the form of a
Yukawa potential.

A simple separation between fermionic and bosonic degrees of freedom (which
Eq. (2.60) implies), like in the case of electron-phonon interaction, is generally not
possible because Migdal’s theorem does not apply. Vertex corrections are suppressed
by the order O(vs/vF ). The major difference compared to the phonon case is that
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vs now describes the spin velocity instead of the sound velocity, which is of the
order of the Fermi velocity vF because the spin fluctuations stem from the fermions
themselves. Consequently,not only higherordervertex corrections but also a complete
renormalization of the bosonic propagator due to particle-hole bubble diagrams are
necessary over a wide range of frequencies [22]. The renormalization of fermionic
propagators, spin-polarization operators and vertices follows the diagrammatic
series from Eq. (2.35), (2.36) and (2.37) for the phonon exchange, but now higher-
order diagrams, which were discarded due to Migdal’s theorem before, have to be
respected.

Conceptually, one could now proceed analogously to the Migdal-Eliashberg theory
and use single fermion propagators that are fully renormalized by the fermionic
self-energy Σ(k,Ω) (first order and higher order diagrams in Eq. (2.35)), single boson
propagators that are fully renormalized by the bosonic self-energy Π(q, ω) (first
order and higher order diagrams in Eq. (2.36)) and the fully renormalized coupling
constant g̃ = g + ∆g (first order and higher order diagrams in Eq. (2.37)). What
makes this problem so difficult is the fact that the vertex corrections ∆g contain the
full fermionic and bosonic propagators. This means that all vertex corrections and
self energies have to be solved self-consistently which is a near impossible task. So it
is mandatory to look for reasonable justifications to terminate the corrections. This
is especially the case for a strong-coupling superconductor.

For the cuprate superconductors, there is a good justification for the neglect of many
high-order terms called the hot-spot theory. One makes use of the fact, that the bare
spin susceptibility in these systems peaks around the antiferromagnetic ordering
vector (AFV) Q and that such a AFV connects different parts of the Fermi surface
(hot spots), such that the electron coupling mechanism is also dominated by the
spin-fluctuations at Q. In the normal state above Tc the full spin susceptibility [22]

χ(q, ω) =
χ0ξ

2

1 + ξ2(q −Q)2 − Π(q, ω)
(2.61)

is then mainly determined by Π(Q, ω) = iω/ωsf , where ωsf is the characteristic
energy scale of the boson and a temperature dependent, free parameter. At q ≈ Q,
the spin-fluctuation dynamics are then governed by slow modes [98] which means
Migdal’s theorem can be applied in this region (no vertex corrections). Additionally,

Figure 2.7: (Para)magnon Exchange: Feyn-
man diagram depicting the attractive
electron-electron interaction through vir-
tual exchange of a (para)magnon.
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it turns out that close to the hot spots, higher order corrections to the fermion
and boson propagator only diverge logarithmically in the coupling constant, so a
renormalization is possible and the expansion can be cut off after few terms. Now the
coupled integral equations can be solved self-consistently, just like in the Eliashberg
theory. This is shown in detail in Ref. [21, 70]. The self-energies of the anomalous
Green’s function Φ(k,Ω) and normal Green’s function Σ(k,Ω) can lead to a nonzero
gap function ∆(k,Ω) below Tc, which is now sign changing for related hot spots
∆(k +Q) = −∆(k). The role of the Eliashberg function is now played by g2χ′′(ω).

The dimensionless, integrated spin spectrum is given by [28]

χ′′(ω) = −3ν0S

∫
ddqImχ(q, ω)/π, (2.62)

where ν0S denotes the normal state DOS of the superconductor. The integrated spin
spectrum plays the role of the bosonic excitation spectrum in tunnelling experiments
as we will see in Sec. 4.2. P. Hlobil and J. Schmalian calculated this bosonic spectrum
and related functions self-consistently in the spin-fermion model (see Ref. 2.8). Fig.
2.8 shows their results. They present the imaginary part of the spin susceptibility
at the AFV and the spin spectrum integrated over the 2D Fermi surface of an
iron-pnictide superconductor with a full gap (s±-symmetry). In the normal state, the
spin susceptibility shows the expected behaviour for overdamped spin-fluctuations.
In the superconducting state the spin susceptibility is drastically renormalized: The
spin spectrum at the AFV develops a spin gap for ω < ωres < 2∆. While a full spin
gap is present for ω < ∆ due to the gapped fermionic degrees of freedom in the
superconductor, the break-up of a Cooper pair requires an energy of ω > 2∆. In the
intermediate region ∆ < ω < 2∆ a spin resonance evolves at ωres that couples to the
electron-like quasiparticles, creating a peak in the DOS at ∆+ ωres. The integrated
spin spectrum approaches the value of the normal state for ω ∼ 5∆. One should

Figure 2.8: Spin-Fermion Model’s Spin Resonance: Calculated spectra in the spin-fermion model for
the normal state (blue) and superconducting state (red): (a) Spin spectrum at the antiferromagnetic
ordering vector (AFV) showing a spin resonance at ωres below Tc. (b) Integrated spin spectrum over
the 2D Brillouin zone of a fully gapped iron-pnictide superconductor. (c) Electronic DOS. Reprinted
with permission from [28].
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Figure 2.9: Tunnelling in STM and Planar Junctions: The difference in tunnelling processes due to the
tunnelling geometry are schematically illustrated for an STM geometry of tip and sample (a) and a
planar junction (b). In both, the occupied (initial) local density of states (LDOS) of the top electrode
and the unoccupied (final) local density of states (LDOS) of the bottom electrode are shaded in red and
blue respectively. The tunnelling amplitude t(r) is largest where the electronic eigenfunctions of one
lead are most strongly disturbed by the potential of the opposite lead (for the STM geometry this is the
point r0).

keep in mind that the spin-fermion model fails to describe nodal parts in cuprate
superconductors correctly. In addition to that, a full spin-gap is not expected for
them, because of the coupling between spin-fluctuations and non-gapped electrons.

2.6 Quantum Tunnelling in NIS Junctions

The BCS theory was a major success in explaining the macroscopic characteristics
of superconductors, i.e. the observed jump in the specific heat, the dissipationless
current and the Meißner and isotope effect. Another confirmation of one of the
theory’s corner stones followed three years later, when Giaver [19] realized that the
slope dI/dU of the tunnelling current I in normal metal-insulator-superconductor
(NIS) sandwich structures under an applied voltage U resembled the BCS DOS for
quasiparticle (QP) excitations. Not only did this experiment cement the existence of
the superconducting gap in the DOS of the superconductor, it also paved the way for
tunnelling experiments to become one of the primary techniques for investigating
the low energy DOS in not only superconductors, but conducting solids in general.
Therefore, historically, the exploration of the energy spectrum of superconductors
and development of tunnelling theory are closely intertwined.
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2.6.1 Theoretical Framework of the Tunnelling Geometry

A good theoretical understanding of Giaver’s observation was developed by
Bardeen [99]. Describing the insulator region as a smooth potential barrier
(Wentzel–Kramers–Brillouin (WKB) approximation), he could show, that an overlap
of the many-particle wavefunctions from the normal metal and the superconductor
leads to tunnelling normal electrons with energy eU at a rate proportional to the
superconductor’s QP DOS at EF + eU . In order to keep this section concise, only
formulas appropriate for the interpretation of experimental data obtained in a STM
will be presented. Wavefunction and derived functions of the atomically sharp tip
electrode are denoted with the index t, for the sample they carry the index s.

In contrast to planar junctions, the potential barrier separating the two leads in an
STM is the vacuum. This simplifies things because the vacuum is perfectly free of
states that could interfere with the tunnelling electrons. The height of the potential
barrier linearly changes from the work function Φt of the tip to Φs of the sample.
The quantum mechanical tunnelling intensity |t|2 and therefore also the tunnelling
current

I ∝ |t|2 ∝ exp(−2κd) (2.63)

is in a WKB approximation exponentially dependent on the tip-sample distance d
with κ =

√
2m(Φ̄ + eU)/ℏ, where Φ̄ = (Φs+Φt)/2 is the averaged barrier height. An

exponential dependence of the tunnelling current on the applied bias voltage only
arises when the bias voltage is comparable to the work function, typically several
electronvolt. For small bias voltages, eU ≪ Φ̄, this effect is negligible and κ can be
considered bias independent.

The atomic sharpness of the tip electrode has two important consequences: First,
Tersoff and Hamann [100] could show that for small bias voltages and a metallic tip
with only s-wave states, the current through the tip-sample tunnel junction is given
by

I ∝
eU∫
0

νs(r0, EF + ϵ)dϵ. (2.64)

The tunnelling current is, hence, directly proportional to the integrated local density
of states (LDOS) νs(r, E) of the sample in the energy interval [EF , EF + eU ] at the
tip position r0. This is schematically illustrated in the STM geometry shown in Fig.
2.9(a). The local density of occupied (initial) states of the tip electrode are shaded in
red and the local density of unoccupied (final) states of the sample are shaded in
blue. The total overlap is mostly determined by the overlap at r0 due to the spherical
wave nature of the tip state.
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Second, the contribution of inelastic tunnelling events to the total current is an order
of magnitude higher than in planar tunnel junctions [73]. That is because the tip
breaks the lateral translation symmetry which usually enforces the conservation
of in-plane momentum of the tunnelling electron [101] in planar junctions. By
removal of this condition, the phase space for a bosonic excitation grows significantly
[70]. The different tunnelling paths in real space are shown next to each other in
Fig. 2.9 for the STM geometry (a) and the planar junction geometry (b). In the
STM geometry, tunnelling happens in a conical region below the tip, although the
tunnelling amplitude t(r) quickly falls off for less vertical tunnelling paths due to
the smaller integral overlap of the wavefunctions of tip and sample. In a perfect
planar junction, the tunnelling paths are constrained to lead-to-lead transitions that
fulfill r∥ → r∥ +G∥, where G∥ is a in-plane lattice vector, due to the conservation of
in-plane momentum. The tunnelling amplitude t(r) is roughly constant for all points
along the lead edges and mainly determined by vertical tunnelling paths [101].

From Eq. (2.63) and (2.64) and Fig. 2.9(a) we get a good idea of how topographic
images of the sample surface are reconstructed in the constant-current mode of
an STM (see also Sec. 3.1). In order to gain a better understanding of what kind of
information is contained in a bias spectroscopy of the tunnelling current, i.e. a I(U)

curve, let us neglect the explicit energy dependence of the tunnelling amplitude t
and drop the local dependence for now. We can keep them in the back of our minds
for later. First, let us only take a look at elastic tunnelling events.

2.6.2 Elastic Tunnelling

First, let us introduce the dimensionless electronic DOS

ν̃s/t(ϵ) =
νs/t(ϵ)

ν
s/t
F

, (2.65)

where νF denotes the DOS at the Fermi energy. The elastic tunnelling current is
given by [70, 102]

Iel(U) =
σ0
e

∫ ∞

−∞
dϵ ν̃s(ϵ)ν̃t(ϵ− eU) [S(ϵ− eU, ϵ)− S(ϵ, ϵ− eU)] , (2.66)

S(ϵ1, ϵ2) = nF (ϵ1) (1− nF (ϵ2)) . (2.67)

The conductance constant σ0 = 4πe2νtF ν
s
F |tel|2 is the purely elastic conductance for

a constant sample and tip DOS and nF (ϵ) = [exp((ϵ− µ)/kBT ) + 1]−1 are the Fermi-
Dirac distributions of states with energy ϵ. Additionally, we assumed the tip DOS to
be constant and the elastic tunnelling matrix element |tel|2 = |⟨ψt(k

′, ϵ)|T̂ |ψs(k, ϵ)⟩|2
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Figure 2.10: Elastic Tunnelling Processes: Schematic of elastic tunnelling processes between tip (left)
and sample (right), where blue spheres depict electrons and white spheres holes or missing electrons.
(a) Elastic electron tunnelling in an NIN junction. (b) Elastic QP tunnelling and Andreev reflection in
an NIS junction. (c) Josephson tunnelling in an SIS junction.

to be energy and momentum independent. The differential conductance is then
given by

σel(U) =
dIel(U)

dU
= −σ0

∫ ∞

−∞
dϵν̃s(ϵ)n

′
F (ϵ− eU). (2.68)

For T → 0, it follows n′F (ϵ−eU) → −δ(ϵ−eU). Therefore, for very low temperatures,
the elastic conductance is directly proportional to the density of states of the sample
νs(eU) at the energy eU . Else, it is described by the convolution integral in Eq. (2.68),
i.e. the DOS is “smeared out” on the scale kBT . Ramping the bias voltage U and
recording the differential conductance σ = dI/dU , essentially mirrors the sample
DOS around the Fermi energy.

The simple elastic tunnelling process of normal electrons between a metallic tip
and sample through the vacuum barrier is schematically shown in Fig. 2.10(a). If
the sample is superconducting (Fig. 2.10(b)), QPs can only tunnel directly into or
out of the sample for e|U | > ∆, because of the superconducting gap in the sample’s
QP DOS. Only for a small tunnelling barrier, so when going continuously from the
tunnelling to the point-contact regime, Andreev reflections yield finite current for
e|U | < ∆. During an Andreev reflection, a hole (electron) in the tip is retro-reflected
as an electron (hole) with opposite momentum and spin at the boundary to the
superconductor, which leads to the annihilation (creation) of a Cooper pair in the
superconducting sample. If tip and sample are superconducting (Fig. 2.10(c)), then
Cooper pairs can tunnel between them through the vacuum barrier, leading to sharp
spike in the tunnelling current for U = 0.
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2.6 Quantum Tunnelling in NIS Junctions

2.6.3 Inelastic Tunnelling

Although mainly consisting of elastic contributions, the total conductance also
contains inelastic contributions, i.e. σ = σel + σinel. In STM, their weight is not
insignificant. As inelastic tunnelling spectroscopy (IETS) on Pb films shows, the
inelastic contributions can make up 9% of the total conductance [73, 74]. The inelastic
tunnelling current is given by [70]

I inel(U) =
σ0
e

1

νFs D
2

∫ ∞

−∞
dϵ

∫ ∞

0

dω× (2.69)(
α2F (ω)ν̃s(ϵ)ν̃t(ϵ− ω − eU)S(ϵ− ω − eU, ϵ)nB(ω) (2.69a)
− α2F (ω)ν̃s(ϵ)ν̃t(ϵ− ω − eU)S(ϵ, ϵ− ω − eU)[1 + nB(ω)] (2.69b)
+ α2F (ω)ν̃s(ϵ)ν̃t(ϵ+ ω − eU)S(ϵ+ ω − eU, ϵ)[1 + nB(ω)] (2.69c)
−α2F (ω)ν̃s(ϵ)ν̃t(ϵ+ ω − eU)S(ϵ, ϵ+ ω − eU)nB(ω)

)
. (2.69d)

ω is the energy of the absorbed/emitted boson with occupation number nB(ω), the
Bose-Einstein distribution function. D is a characteristic cut-off energy of the boson
spectrum, or in other words, the band width of off-shell states. α is the electron-boson
coupling constant and F (ω) the boson spectral density. For exclusively phononic
excitations, α2F (ω) is directly proportional to the Eliashberg function and will often
be used synonymously, although slight differences exist (for details see Ref. [70]).

Eq. (2.69) comprises the general inelastic tunnelling processes involving one boson
of energy ω. The processes are:

(2.69a) A tip electron tunnels into the sample. A boson in the sample is absorbed in
the process.

(2.69b) A sample electron tunnels into the tip. A boson in the sample is emitted in the
process.

(2.69c) A tip electron tunnels into the sample. A boson in the sample is emitted in the
process.

(2.69d) A sample electron tunnels into the tip. A boson in the sample is absorbed in
the process.

Processes (2.69a) and (2.69d) are essentially absent at kBT ≪ ω because the thermal
equilibrium occupation of these bosonic excitations is zero. For kBT ≪ eU only one
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2 Superconductivity

Figure 2.11: Signatures of Inelastic Tunnelling: On the left side, the inelastic tunnelling process of
electrons (quasiparticles) in an NIN (NIS) junction are schematically depicted like in Fig. 2.10(a,b). The
excitation of a single phonon mode with spectral density α2F (ω) (orange curve) centred at ωph leads
to the total tunnelling conductance σ = σel + σinel and its derivative on the right. The curves for the
NIN/NIS junction are shown in blue/red. Partly taken from Ref. [70]

of the remaining processes, (2.69b) or (2.69c), is present, depending on the direction
of the bias voltage. For positive voltage the inelastic conductance is then given by

σinel(U > 0) =
dI inel(U > 0)

dU
(2.70)

≈ − σ0
νFs D

2

∫ ∞

0

dωα2F (ω)[1 + nB(ω)]

∫ ∞

−∞
dϵν̃s(ϵ)

∂S(ϵ, ϵ+ ω − eU)

∂(−eU)

(2.71)

T→0→ σ0
νFs D

2

∫ eU

0

dωα2F (ω)ν̃s(eU − ω). (2.72)

After evaluating the Bose-Einstein and Fermi-Dirac distributions for zero tempera-
ture, the inelastic conductivity is given by a convolution integral of the boson spectral
density and the sample DOS over the real-valued boson frequencies ω ∈ [0, eU ]. In
the normal conducting state (ν̃s = 1), the second derivative of the tunnelling current
is then proportional to α2F (ω). In the superconducting state, the non-constant
sample DOS has to be respected.

In order to develop an intuitive understanding of Eq. (2.68) and (2.72), calculated
conductance signatures for normal metal-insulator-normal metal (NIN) and NIS

36



2.6 Quantum Tunnelling in NIS Junctions

tunnelling, involving a single Gaussian-shaped phonon mode at ωph, are shown in
Fig. 2.11. Elastic plus inelastic tunnelling via emission of a phonon of frequency ωph,
with the spectral density α2F (ω) shown in orange, in the normal/superconducting
sample lead to the differential conductance curve shown in blue/red. For the normal
conducting sample, the differential conductance σ exhibits a step at ωph and a
peak at the same energy in dσ/dU due to the inelastic tunnelling contribution.
For the superconducting sample, σ shows a small (gaussian broadened) copy of
the coherence peak at ωph +∆ and a change of sign at the same energy in dσ/dU .
Again, this is due to the inelastic tunnelling contribution. The increase in differential
conductance for ωph < eU < ωph + ∆ and the oscillations at higher energies are
due to strong electron-phonon coupling effects, which alter the DOS, so the elastic
conductance, of the superconductor.

This simple example already goes to show that in the presence of strong electron-
boson coupling and significant inelastic tunnelling into the superconductor, a
determination of the Eliashberg function from just the tunnelling spectrum becomes
difficult, because α2F (ω) enters the elastic and inelastic part. For large inelastic
contributions in scanning tunnelling spectroscopy (STS) measurements on conven-
tional superconductors, the Eliashberg function can simply be determined through
d2I/dU2 in the normal state. For negligible inelastic contributions like in planar
junction experiments, it can still be determined through McMillan and Rowell’s
inversion procedure [72], which fits Eliashberg theory parameters iteratively until
the DOS matches the tunnelling data. For unconventional superconductors, both
of the above-mentioned methods fail. For one, the spectral density of the bosonic
glue undergoes drastic changes from the normal to the superconducting state and
for a second, the electron-boson coupling is not of phononic nature and the use
of Migdal’s theorem, which the Migdal-Eliashberg theory builds up on, is not
justified. In Chap. 4, we will see, how scanning tunnelling spectra on unconventional
superconductors can be used to qualitatively reconstruct the boson spectral density
when the contribution of inelastic contributions outweighs the fine structure of the
elastic conductance.
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3 ExperimentalSetupandMethods

Scanning tunnelling microscopy is a surface science technique that grants access to
the local density of electronic states at a conducting sample surface. It is therefore
the ideal choice to study electronic properties in real space with local information
down to the atomic scale. The resolution of this technique is highly dependent on its
technical realization, e.g. vibration insulation, signal amplification, and measurement
temperature. For the experiments in this work, a low temperature and ultra-clean
sample surface were in all cases a prerequisite. This chapter first describes working
principle and operational procedures of the experimental setup, then introduces the
setups of the two used scanning tunnelling microscopes including the ultra-high
vacuum (UHV) system, the cryogenic system and the decoupling from various noise
sources, and lastly presents sample and probe preparation.

3.1 Scanning Tunnelling Microscopy and Spectroscopy

The first prototype of a scanning tunnelling device and precursor for the scanning
tunnelling microscope, we know today, was the topografiner, developed by R. D.
Young and co-workers between 1965 and 1971 [103]. A metallic stylus, moveable
by three-axes piezo actuators, scanned the sample surface at a constant distance
recreating the surface topography. However, due to the lack of sufficient vibration

Current 
setpoint

Feedback
Figure 3.1: Constant Cur-
rent Mode: In the constant
current mode of the STM,
a feedback-loop of the tun-
nelling current regulates the
tip-sample distance. The to-
pography z(x, y)|I=It con-
tains not only a height pro-
file but also chemical con-
trast due to its sensitivity to
the electron density at the
surface.
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3 Experimental Setup and Methods

insulation the tip-sample distance could not be kept small enough to be in tunnelling
range but the instrument was operated in field emission range. In 1981/1982 Binnig
and Rohrer presented the first version of the scanning tunnelling microscope (STM)
[104], a technical improvement of the topografiner, that bettered other real space
imaging techniques at the time, like field ion microscopy (FIM) and scanning electron
microscopy (SEM), in terms of vertical resolution while providing similar lateral
resolution. In 1986, Binnig and Rohrer received the Nobel Prize in physics for their
invention - a testament to how important the delicate insulation of this sensitive
instrument is.

Working principle In an STM,an atomically sharp metal tip is held several angstroms
above the sample surface, close enough for electrons to tunnel through the vacuum
barrier between sample and tip. The tunnelling current, usually pA to several nA
is driven by a bias voltage, which is usually much smaller than the sample and
tip work function. Due to the exponential dependence between tunnelling current
and tip-sample distance (WKB-approximation), the vertical resolution of the STM
can be in the pm range. These small distance adjustments are realized by a piezo
scanner tube. With its four-segment electrode contact, a fine motion in all three
directions is possible with good linearity and its dimensions ensure a high resonance
frequency. For a coarse alignment in horizontal (x) and vertical (z) direction, the
sample stage and the scanner respectively are moved by stack piezo actuators that
perform slip-stick motion [105].

Electronics In the STM designs used in this work, the bias voltage U is applied to
the sample and the tip is connected to a transimpedance amplifier that converts the
tunnelling current I between tip and machine ground to FPGA readable voltages.
Typical amplifications range from 107 V/A to 109 V/A. The FPGA card is the heart of
the real-time controller (RC) by Nanonis. It includes an analog-to-digital converter
(ADC) and digital-to-analog converter (DAC) making an easy real-time control of the
STM tip possible via a LabView based computer interface. In the constant-current
mode, the tip-sample distance is controlled via a feed-back loop: The user can
set a set-point current It, e.g. 1 nA, and the voltages on the piezo scanner are
then, in real-time, adjusted continuously such that the tunnelling current always
matches the set-point current. This is schematically demonstrated in Fig. 3.1. In the
constant-height mode, the tip-sample distance is kept constant (feed-back loop off)
at zt.

Topographic scan image After piezo voltages are calibrated to a tip displacement,
a rectangular area on the sample surface can be scanned in constant-current-mode
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3.1 Scanning Tunnelling Microscopy and Spectroscopy

by applying sawtooth voltage signals to the leads of the piezo scanner responsible
for x and y fine motion. A map of the value z(x, y)|I=It at fixed bias voltage is what
is called the topographic scan image. A map of the tunnelling current I(x, y)|z=zt on
the other hand is obtained in constant-height mode. Usually, a topographic scan
first ensures a flat surface on which a scan in constant-height mode can then be
performed safely.

Bias spectroscopy Bias spectroscopy is the recording of an I(U) curve at a specific
tip position (x, y, z). During the voltage ramp, the feed-back loop is turned off. A
(line) grid spectroscopy consists of bias spectroscopies at several points defined
on a (1D) 2D grid on the surface. In scanning tunnelling spectroscopy (STS), one
is often interested in the first derivative of the tunnelling current with respect to
bias voltage, dI/dU . Since the tunnelling current carries noise of all frequencies
(especially low frequencies can be a nuisance), the use of a lock-in amplifier to filter
out most noise frequencies for the cost of a little bit of energy resolution is usually
favoured over a numerical derivative.

Lock-in amplifier The goal of this lock-in technique is to extract the first derivative of
the tunnelling current with respect to the bias voltage as noise-free as possible. First,
the DC tunnelling bias U0 is modulated by addition of an AC voltage Umod cos(ωt).
As a result, the tunnelling current also picks up an AC component at the frequency
ω which is proportional to the first derivative dI/dU |U0 and the amplitude of the
modulation Umod. In a second step, the tunnelling current signal is demodulated in
the lock-in amplifier by multiplication with a reference signal of the frequency ω and
time-averaging. This averaging cancels out the signal and noise at all frequencies
that are different from ω. Only the signal and noise at ω remain. The phase of
the tunnelling current and the reference signal can be aligned as follows: Out
of tunnelling contact, the main contribution to the AC current at ω is due to the
capacitive impedance Xc of the junction. Aligning the reference phase to maximize
this contribution and rotating it by another 90◦ places it in line with the AC current
due to ohmic resistors. The by far largest ohmic resistance is the tunnelling resistance.
Hence, with this phase alignment the demodulated signal is maximally sensitive to
the tunnelling current and blind to capacitive and inductive contributions.

Energy resolution In order to determine the maxmimum energy resolution of the
Dilution-STM at 36mK, the dI/dU feature of a DC Josephson current, or alternatively
the zeroth order Andreev bound state, was measured. Even though this feature has
a functional shape governed by the dissipation of Cooper pairs through inelastic
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FWHM

Figure 3.2: Energy Resolu-
tion Limit: Differential conduc-
tance feature of a DC Joseph-
son current (black squares).
The spectrum was measured
in a Pb-Pb tunnelling contact at
T = 36mK and UPK

mod = 5 µV.
A normal distribution was fit-
ted to the data points (blue
line).

processes including thermal photons [106], we can approximate it by a delta function
centred at zero voltage1. Since the Cooper pair tunnelling signature is not broadened
by a Fermi distribution in the initial and final states, an analysis of this feature lets
us decouple pure distribution function effects from thermal voltage fluctuations by
the junction capacitance and bias voltage modulation. We prepared a Pb tip by soft
dipping a tungsten tip into a Pb(111) single crystal and measured the zero energy
peak in dI/dU on the same Pb(111) crystal at small tip-sample distance. The used
peak modulation voltage was UPK

mod = 5µV. The bias spectroscopy is shown in Fig.
3.2. The blue line shows the fitted function of Gaussian shape with a full width at
half maximum (FWHM) of

FWHM =
√

(2URMS
mod )2 + 2 ln(2)(2σel

U )
2. (3.1)

From the fit it was found thatσel
U = (9.4±0.2)µV.URMS

mod is the root mean square (RMS)
value of the AC modulation related to the peak (PK) value by URMS

mod = UPK
mod/

√
2.

The temperature broadening of dI/dU features can (with minor errors) also be
approximated by a Gaussian distribution. The full energy resolution (FWHM) of the
instrument at milli-kelvin temperatures is finally composed of the three constituents
in the following way

∆ε =
√

(3.2kBT )2 + (2eURMS
mod )2 + ((22.1± 0.5)µeV)2. (3.2)

The energy resolution of the instrument below T ∼ 80mK and a modulation voltage
of UPK

mod ∼ 15µV is mainly limited by what is thought to be voltage fluctuations due
to thermal charge fluctuations in opposite sides of the tunnelling junction leads.

1 The spectral function PC(U) has a FWHM ≤ 2 µV, which is significantly lower than the limitation of
energy resolution due to thermal voltage noise.
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Differential conductance map A topographic scan and a map of differential
conductance dI/dU |I=It at bias voltage U can be obtained simultaneously when the
lock-in amplifier is running during the scan and the integration time per pixel is
long enough. Thus, differential conductance maps are usually recorded at lower tip
speeds.

Multi-pass image Ofspecial importance in this workare so-calledmulti-pass images.
Maps of differential conductance at energies eU smaller than the superconducting
gap ∆ are not obtainable with a turned-on feedback-loop. In that case the tip
would go into direct contact with the sample as soon as the sample exhibits a
full superconducting gap because of a vanishing tunnelling current. Full grid
spectroscopies are time-consuming and if one is only interested in a small number
of energies but a fine spatial resolution, a multi-pass image is the best choice. First,
the tip scans a row of pixels forward and backward at a bias voltage larger than
∆/e and records the profile z(x, y)I=It along this line. Then, the tip plays back the
previously recorded profile at an energy eU < ∆ and records the lock-in signal. This
is also advantageous compared to the constant-height mode because areas with
larger height distribution are not a problem. In order for this method to work well,
high mechanical stability, low thermal drift and small piezo creep are important.
Vertical tip offsets in the play-back phase can either decrease the tip-sample distance
(zoff < 0) for an enhanced lock-in signal or increase it (zoff > 0) for an additional
safety buffer but smaller lock-in signal.

3.2 Low Temperature Scanning Tunnelling Microscope

In this work, two different setups were used: the dilution scanning tunnelling microscope
(D-STM) and the Joule-Thomson scanning tunnelling microscope (JT-STM) who owe
their name to their central cooling system. Both systems including UHV setup,
cryostat, magnetic coil and scanning tunnelling microscope are home-built after
original designs in the group of Prof. Wulf Wulfhekel [107, 108]. As the D-STM was
the primary setup used for all experiments except the one described in Chap. 4,
and is the more intricate one of the two, it will serve as an example to explain the
UHV setup, cryostat and STM design. Differences to the JT-STM are highlighted in
Sec. 3.2.2.
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3.2.1 Dilution Scanning Tunnelling Microscope

UHV setup The vacuum setup follows a classical three chamber design: The three
chambers - preparation chamber, STM chamber and vacuum load-lock - are placed in
an L-shape in the horizontal plane. The preparation and STM chamber are connected
via a gate valve and placed in line with a shared coolable, horizontal manipulator
that is mounted in the preparation chamber. The vacuum load-lock chamber is
mounted to the preparation chamber at an angle of 90◦ with respect to the STM
chamber connection. The load-lock has a lid, that can be opened once this chamber is
vented and a small vertical manipulator in the load-lock can pass samples on into the
preparation chamber. Additionally, the preparation and STM chamber possess small
wobble-stick manipulators for more intricate manipulation of samples in UHV.

All chambers have a connection to the barrel, a cylindrical container that is pumped
by a roughing pump. The barrel acts as a rough pre-vacuum for each turbomolecular
pump (TMP). The load-lock, preparation and STM chamber can all be pumped with
separate TMPs. The TMPs are all turned off during an STM measurement due to
their vibrational noise. Instead, the preparation and STM chamber are constantly
pumped by ion getter pumps which work based on the principle of physisorption and
chemisorption and are thus free of mechanical noise. On top of that, the preparation
chamber is equipped with a titanium sublimation pump (TSP) and the STM chamber
contains a non-evaporable getter (NEG) pump, a porous reactive material with a
very high surface area, ideal for the adsorption of hydrogen. Like this, base pressures
below 10−10 mbar can be reached in the preparation and STM chamber. It should be
noted that the cryostat also acts as a large cryopump. The pressures are therefore
mostly in the lower 10−11 mbar range inside the STM chamber and even another
two orders of magnitude lower inside the closed 1K shield where the STM sits. The
chamber pressures are constantly monitored by ionization gauges and ion currents
in the getter pumps.

Peripheral equipment mounted on the preparation chamber includes a sputter gun
(differentially pumped via load-lock), a combined instrument for low energy electron
diffraction (LEED) and Auger electron spectroscopy (AES), five electron-beam
evaporators for molecular beam epitaxy (MBE) and a quadrupole mass spectrometer
(QMS).

Cryostat The wet cryostat shown in Fig. 3.3(a) features a 13 L liquid helium tank
below a 23 L liquid nitrogen tank. Heat transfer by conduction is kept low by
thermal insulation at their mounting point on the top flange while heat transfer
by radiation is kept low by vacuum surrounding and additional radiation shields.
Since radiational heat transfer from a larger temperature to a lower temperature
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Figure 3.3: D-STM cryostat and STM: (a) Cross-sectional view of the D-STM cryostat including the
STM and magnetic coil. (b) Schematic depiction of the 3He/4He condensation, phase separation and
gas circulation. (c) 3D rendered image (cut) of the STM body. (a,c) have been reprinted from [108] with
permission of AIP Publishing.

reservoir is proportional to (T 4
> − T 4

<) it is optimal to use several radiation shields
which are equally distributed in temperature than one shield where the temperature
gradient is large. This cryostat design includes five concentric radiation shields:
an intermediate radiation shield (180K), cooled by evaporating liquid nitrogen, a
shield physically connected to the liquid nitrogen tank (77K), a second intermediate
radiation shield (28K), cooled by evaporating liquid helium, a shield physically
connected to the liquid helium tank (4.2K) and a still radiation shield (1K).

The base temperature of 25mK in the microscope is reached with the built-in
commercial dilution unit by Bluefors Cryogenics. The coolant in such a dilution
refrigerator is a 3He/4He mixture. Below a critical temperature of Tc = 870mK (for a
3He concentration of xc = 0.67) the mixture separates into two phases - a dilute and
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a concentrated phase [109]. The concentrated phase is almost pure 3He, the dilute
phase contains a low amount of 3He and the content cannot fall below x0 = 6.5%.
A dilution refrigerator makes use of this constraint to the phase equilibrium by
removing 3He from the dilute phase. In order to satisfy the concentration constraint
in the dilute phase, 3He atoms from the concentrated phase are forced to cross the
phase boundary in an endothermic process [109]. A schematic picture of the dilution
unit in the steady state is shown in Fig. 3.3(b). The flow direction of 3He is shown as
light blue arrows in the gas and as white arrows in the liquid phase. In the steady
state almost all of the gas mixture is condensed inside the still and mixing chamber.
The concentrated phase is lighter and thus floats atop the dilute phase from which
3He is constantly removed by a TMP. Much less 4He than 3He is removed from the
dilute phase because of its significantly lower vapor pressure. The removed 3He is
constantly resupplied in a closed gas cycle. In order to reach the steady state, the gas
mixture has to be readily precooled. It is pressed through a small capillary with the
help of a compressor and then precooled by heat exchangers in the liquid nitrogen
tank and liquid helium tank (see Fig. 3.3(a)). Inside the still it is again precooled by
the evaporating mixture and experiences an isoenthalpic Joule-Thomson expansion
which brings the mixture below Tc when entering the mixing chamber.

STM body and mechanical noise reduction Most parts of the STM body, shown in
Fig. 3.3(c), are made from copper or gold-plated copper for quick thermalization.
The only real thermal connection is established by pure silver wires to the mixer. The
microscope temperature is monitored by a calibrated RuO2 thermometer, mounted
on the STM body. 15× 15mm sample plates place the sample directly under the tip.
The optical access to the junction in the parked position of the microscope (elevated
position above coil) allows for a quick in-situ exchange of sample or tip.

In the unparked position, the microscope hangs on three soft springs with sub-Hz
resonance frequency to enhance vibrational damping in the high frequency range.
For insulation from low frequency mechanical noise, the whole machine, including all
chambers and cryostat, sits on pneumatic vibration isolators by Newport. Vibrational
noise damping from the pumps of the 3He circulation is realized by decoupling
bellows and Helmholtz resonators mounted on the pump line.

Magnetic coil and heater Of special importance in this work is the influence
of magnetic fields and temperature on superconductivity. The D-STM features a
superconducting NbTi-based coil, suspended in liquid helium, with a maximum
field of 6.5T. In the unparked position the STM hangs in the axial centre of the
superconducting magnet giving access to the maximum magnetic field in vertical (z)
direction. The electrical power to the coil is supplied through shielded copper wire

46



3.3 Tip and Sample Preparation

up to the liquid nitrogen tank at 78K and through high temperature superconducting
wires made from rare earth barium copper oxide (REBCO) further down in the
cryostat.

The measurement temperature can be increased by using a 10 kΩ resisitive heater
mounted on the STM body.

3.2.2 Joule-Thomson Scanning Tunnelling Microscope

The JT-STM’s cryostat lacks a dilution refrigerator and instead uses the Joule-Thomson
effect to liquify pure 3He which, in contrast to pure 4He, is not in a suprafluid phase
at this temperature. The lowest achievable temperature at the time of the experiments
was 630mK. In the parked position, the STM has a direct thermal connection to
the liquid helium bath enabling a quick cooldown. In the unparked position the
STM hangs in the axial centre of a 3T split-coil magnet. The STM head itself has an
upside down design compared to the one in the D-STM: The z prism and scanner
approach from the bottom and the samples are facing down.

3.3 Tip and Sample Preparation

3.3.1 Tip Preparation

Electrochemical Etching The ca. 3mm long tips were electrochemically etched
from a 150µm thick tungsten wire using a version of the DC drop-off technique
[110]. The setup is shown in Fig. 3.4(a). The tungsten wire is the anode and the gold
ring the cathode. An alkaline solution of NaOH (c ∼ 1mol/L) is applied to form
a meniscus inside the gold ring. Upon exceeding the activation voltage of 1.43V,
soluble tungstate ions are formed at the anode in the following electrochemical
reaction [110]:

W(s) + 2OH− + 2H2O → WO2−
4 + 3H2(g). (3.3)

In reality, the required voltage for the oxidation to start is slightly higher than
calculated from standard potentials. In this work, a voltage between 1.7V and 2.0V

was frequently used. An ammeter is put in series to observe the ion current. As soon
as it drops too low, the solution is reapplied to the meniscus to restore the original
concentration of OH− ions. Through the dissolution of tungstate ions, the wire thins
at the electrolyte/tungsten interface until it is so thin that the lower end is pulled
out by gravitation. The falling part of the tungsten wire is caught by a cushion of
shaving foam and used as the tip since the reaction is immediately stopped for this
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part after the severing. It has been reported that the upper part of the wire is blunted
by the continued etching in the meniscus after separation from the lower part [111].

Flashing After electrochemical etching, the tips were glued inside a tip-holder by
silver glue and transferred into the UHV chamber. In order to remove its 5− 10 nm

thick, insulating WO3 layer [112], it is locally heated by electron bombardment
in several short flashes. A positive voltage of 1 kV on the tip accelerates emitted
electrons from a filament onto it. The maximum emission current between filament
and tip is limited to 100mA. The voltage at the filament is turned up quickly until the
maximum heating power is reached and then immediately turned off. The maximum
heating power is only present for few milliseconds. These short bombardment
periods ensure a very local heating at the tip by the concentrated electric field. At
the heated tip end WO3 reacts with W to WO2 which sublimes at 800 ◦C, far below
the melting point of tungsten Tm = 3410 ◦C [112]. Additional benefits of flashing
are the desorption of contaminants, e.g. remains of etch solution/solvents, and/or
down diffusion of such to the tip shaft.

Shaping In preparation of the experiments from Chap. 6 and 7, the flashed
tungsten tip was additionally dipped into a Au(111) crystal in a controlled manner.
Soft-dipping the tip few nm into a good metal like gold in order to pick up some
gold atoms is a widely used technique to modify the shape of the tip end. The
procedure is repeated until a good lateral resolution and a relatively flat tip DOS
is obtained. The fact that the d-orbitals of Au are completely filled provides a tip
with mostly s-wave like states around the Fermi energy and the position of the
d-states with respect to the Fermi energy also makes Au the noblest of all metals
[113]. The former trait provides good accordance with quantum tunnelling theory
in the Tersoff-Hamann approximation and a high tunnelling conductivity but an
overall lower lateral resolution at small tip-sample distances due to the large radial
extension of s-wave states. The latter is important for the experiments on Pb(111),
described in Chap. 6 and 7 because a pure tungsten tip has higher attractive forces
towards the Pb surface atoms than a gold covered tip. A bare tungsten tip often pulls
out chains of Pb atoms or even picks them up during a scan. This could lead to the
destruction of a flat surface area or a superconducting tip, which should both be
avoided.
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Figure 3.4: Tip and Sample Preparation: (a) Sketch of the experimental setup for electrochemical tip
etching using the DC drop-off method. (b) Schematic depiction of the sputtering and annealing process.
During sputtering, an ammeter between sample and ground is installed instead of the high voltage
source (Uacc) that is present during annealing by electron bombardment. (c) Cartoon of the in-situ
cleaving process using a top-post. The sample and top-post are glued (1) under ambient conditions.
The cleave-off (2) is done in UHV at ∼ 88K.

3.3.2 Sputtering and Annealing

Sputtering A clean and smooth single crystal surface for the used metals Au(111)2

and Pb(111)3 was obtained by several cycles of argon sputtering and subsequent
annealing. During the sputtering process, the single crystal is exposed to an
argon ion beam of Uacc = 4 kV accelerating voltage at an angle of ϑ = 50◦ to the
surface normal (see Fig. 3.4(b)). The argon gas4 is let into the preparation chamber
through a needle valve up to a pressure of pprep ∼ 2× 10−8 mbar (base pressure is
pprep ∼ 1× 10−10 mbar). The pressures can be kept relatively low since the sputter
gun is differentially pumped by the load-lock. In the sputter gun, the sputter gas is
ionized by free electrons emitted from a filament running at Iem = 8mA emission
current. With these parameters, the ion current between sample and machine ground
is Iion ∼ 4.5µA. Since the raster scan of the sputter gun covers a 7× 7mm2 area and
not only the sample but also other parts of the manipulator head are connected
to ground, this value is to be taken with caution when its compared to a different
apparatus. It here refers to the experimental setup of the D-STM’s preparation
chamber. The high-energy argon ions transfer their energy and momentum to the
sample’s surface atoms leading to the ejection of single surface atoms or clusters.

2 Single crystal Au(111) (miscut angle: ±0.1◦, purity: 99.999% , hat shape, diameter: 6.9mm, thickness:
3mm) by MaTecK GmbH

3 Single crystal Pb(111) (miscut angle: ±0.1◦, purity: 99.999%, hat shape, diameter: 8mm, thickness:
2mm) by MaTecK GmbH

4 Argon minican 5.0 (purity≥ 99.999%) by Linde
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As a result, the crystal surface is cleaned from surface contaminants but left with
larger roughness than the initial polished crystal and some argon inclusions. With
the parameters mentioned, roughly 1ML/min is removed from the surface. Typical
durations of a sputtering procedure were 10− 20min.

Annealing In a subsequent annealing step, the sample is heated to a temperature
below its melting point. The annealing procedure serves two purposes: It drastically
enhances surface diffusion to smoothen the surface and induces the surface
segregation of impurities. These impurities can then be removed in a consecutive
sputtering procedure. The sample crystal was heated using the thermal radiation of
a filament placed beneath it. For annealing temperatures above 300 ◦C, the sample
was additionally heated by electron bombardment (see Fig. 3.4(b)). The crystal
temperature can be monitored by an infrared pyrometer5 and the manipulator
temperature by a thermocouple. The Au(111) crystal was annealed at Tpyro ∼ 550 ◦C.
The heating protocol was 2 min 45 sec of electron bombardment at Iem = 26mA

and Uacc = 300V. The Pb(111) crystal was annealed at up to Tpyro = 260 − 280 ◦C

without high voltage for 6 min.

Hot Sputtering A combined process, called hot sputtering, was used for Pb(111).
The simultaneous soft annealing at Tpyro < 200 ◦C and sputtering can help to keep
the sputtering damage low while constantly segregating contaminants to the surface.

3.3.3 In-situ Cleaving

For the cuprates used in this work, several layers were cleaved off in-situ to expose a
fresh, ultra-clean surface. Due to their layered structure they can easily be cleaved
in the c-plane by the top-post cleaving method shown in Fig. 3.4(c). The sample
is with one side glued to the sample plate and with the other side to a metal post
on top of it. The adhesive is a conducting epoxy glue6. As a result, the crystal is
mechanically clamped (and therefore strained after a cooldown) and the tunnelling
current can flow through the conductive glue which ensures a good electrical contact.
The samples were cleaved off on the precooling stage in the STM chamber of the
respective machine at ∼ 88K. The top-post was kicked off using a wobble-stick
manipulator.

5 OPTCTL3MH2 by Optris
6 EPO-TEK H20E by EPOTEK
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4 BosonicExcitationSpectrumin
Bi2Sr2CaCu2O8+δ andYBa2Cu3O6+x

From a technological viewpoint, high temperature superconductors (HTS) represent
the most desirable class of unconventional superconductors. Among them, the
cuprates, which are layered copper oxides with perovskite structure, are perhaps
the most famous representatives. The discovery of the first HTS lanthanum barium
copper oxide (LBCO) [7] was awarded with a Nobel Prize in 1987 and soon after,
other cuprate superconductors with transition temperatures above liquid nitrogen
temperature followed. Prime examples are the widely studied systems of yttrium
barium copper oxide (YBCO) [114] and bismuth strontium calcium copper oxide
(BSCCO) [115]. In this chapter, we address the open question of what the bosonic
glue in the cuprates is. After introducing the studied materials Bi2Sr2CaCu2O8+δ

(Bi2212) and YBa2Cu3O6+x (Y123) and giving a brief overview of the scientific
context, inelastic scanning tunnelling data is tested to tunnelling theory based on
the spin-fermion model of spin-fluctuation mediated superconductivity.

4.1 Structural and Electronic Properties

4.1.1 Structural Properties of Y123 and Bi2212

The high-temperature superconducting phase of Bi2212 crystallizes in an orthorhom-
bic Amaa structure (point group D2h). The unit cell is displayed in Fig. 4.1(a) with
lattice constants a = 5.41Å, b = 5.40Å and c = 30.72Å. This orthorhombic unit cell
contains each of its elements four times its stoichiometric value. The slight difference
in a and b supposedly results from the formation of a superlattice in the Bi-O planes
[118]. Along the c-axis CuO2 planes are sandwiched between SrO and Ca planes. The
Ca planes are mirror planes of the unit cell. The SrO-CuO2-Ca-CuO2-SrO stacks are
then again sandwiched by BiO planes. The BiO planes provide only weak bonding
to each other. Careful micromechanical cleaving of this crystal preferably leads to
a separation between the BiO planes due to their weak van-der-Waals bonds. The
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4 Bosonic Excitation Spectrum in Bi2Sr2CaCu2O8+δ and YBa2Cu3O6+x

Figure 4.1: Structure Models: Crystal structures of (a) Bi2Sr2CaCu2O8+δ in the orthorhombic phase
(space group Amaa) (b) YBa2Cu3O6+x in the orthorhombic phase (space group Pmmm). Models
were created using crystallographic data from Ref. [116, 117].

appearance of other termination layers along the c-axis is possible but occurs in
rarer cases [119].

The high-temperature superconducting phase of Y123 crystallizes in an orthorhombic
Pmmm structure (point group D2h). The unit cell is displayed in Fig. 4.1(b) with
lattice constants a = 3.82Å, b = 3.89Å and c = 11.68Å. Starting from the perovskite
structure of YBa2Cu3O9, one oxygen atom is removed in every third CuO2 plane and
one oxygen atom is removed in the Y-plane. The result can be viewed as a layered
unit cell that contains two CuO2 planes separated by a Y-plane and one plane of
CuO chains along the b-axis which are separated from the CuO2 planes by BaO
planes. The composite with low oxygen concentration x < 0.35 acquires tetragonal
symmetry without CuO chains. The structural transition between the tetragonal
and orthorhombic phase takes place inside the range x = 0.35− 0.65 [118]. Unlike
Bi2212, Y123 has no natural cleaving plane. The experimentally found predominant
termination layers after cleaving the crystal are the BaO and CuO chain layers [120].
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4.1 Structural and Electronic Properties

4.1.2 Unconventional Pairing in Y123 and Bi2212

Figure 4.2: Electronic Properties: (a) Schematic phase diagram of hole-doped cuprate superconductors.
Adapted from [22]. (b) Typical 2D Fermi surface contour of the hyperbolic bands in the copper oxide
plane of cuprate superconductors including the AFV Q that connects hot spots on the Fermi surface.

Undoped cuprates tend to be antiferromagnetic insulators at low temperatures. In
Bi2212 and Y123, sufficient hole doping, by regulating the oxygen concentration
during growth, can destroy the magnetic order through the injection of charge
carriers and reveal a rich variety of quantum matter phases. In Fig. 4.2(a), a simplified
phase diagram for the hole-doped superconductors in the temperature-doping
plane is shown. A superconducting dome with parabolic Tc(p) dependence, where p
denotes the number of holes per Cu atom, is found to be quite universal for cuprate
superconductors [122–124]. The oxygen concentration for which Tc is maximal is
called optimal doping, lower (higher) doped samples are considered underdoped
(overdoped). For the hole doped double-layer HTS like Y123 and Bi2212, the dome is
asymmetric with a steep decline of Tc in the overdoped regime when the hole doping
is assumed to correspond to chemical composition (p ≈ x). A possible explanation for
this trend is a redistribution of oxygen in the overdoped regime [124]. The parabolic
dome is, however, recovered if the hole doping is inferred from the Fermi surface
volume in angle-resolved photoemission spectroscopy (ARPES) measurements
[125]. For Bi2212, the dome is centred around p = 0.18 with Tmax

c ≈ 91K [125],
for Y123 Tmax

c ≈ 93K is reached at p ≈ 0.17 [126]. The most mysterious and least
understood part of the phase diagram is the anomalous normal state (strange metal)
at high temperatures that exhibits non-Fermi liquid behaviour1. This behaviour is

1 A trademark of this anomalous normal state is a resistivity that scales linearly instead of quadratically
(Fermi-liquid) with temperature.
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Figure 4.3: Spin Excitation in INS: Inelastic neutron scattering data of optimally doped Bi2212 (a-b)
and Y123 (c-d): (a,c) Q scans at the indicated temperatures revealing the resonance mode at the AFV
(π,π,l). (b,d) Energy scans at the AFV showing the dispersion of the spin excitation at ωres ≈ 43meV

for Bi2212 and ωres ≈ 41meV for Y123. For low excitation energies both materials show a spin gap.
(a,b) are reprinted by permission from Springer Nature Customer Service GmbH: Springer Nature [26],
Copyright (1999). (c,d) are reprinted from [121], Copyright (1991), with permission from Elsevier.

most pronounced in the underdoped cuprates at elevated temperatures between
the superconducting and magnetically ordered phase, where the material enters a
so-called pseudogap phase below the temperature T ∗. The name is derived from
the opening of a gap in the electronic spectrum that can be seen in ARPES or
STM measurements. If this phase is closely tied to spin fluctuations and represents
preformed Cooper pairs [127] or if it is the result of a competing order unrelated to
superconductivity, like nematicity [126], remains to be clarified.

The relatively large c/a ratio in the cuprates leads to an effective two-dimensional
electronic bandstructure lying in the 2D Brillouin zone (BZ) of the copper-oxide
planes which are separated by ionic spacer regions. As a result, several electronic
properties of the normal, but also the superconducting state, like conductivity,
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4.1 Structural and Electronic Properties

superconducting coherence length or magnetic penetration depth have large out-of-
plane anisotropy [56]. The strong confinement of charge carriers to the copper-oxide
planes gives rise to the strong doping dependence of electronic properties and
the lowered dimensionality favours quantum-criticality [22, 28]. Fig. 4.2(b) shows
the generic Fermi surface contour (orange line) stemming from the square CuO2

plane in a cuprate superconductor in the 2D BZ. The shaded area around the Γ

point represents the occupied states and the white area round the M points the
unoccupied states. At zero doping (δ = 0) the percentage area of the two is identical.
In the case of hole doping (δ > 0) the relative area of unoccupied states in the first
BZ dominates.

Nuclear magnetic resonance (NMR) experiments in the early 1990s could confirm a
spin-singlet state in the cuprates [128] and thus a superconducting state with an
even parity orbital wavefunction. As was already hinted at in Sec. 2.5.1, the famous
representatives of the cuprate family Y123 and Bi2212 are in an orthorhombic D2h

phase at temperatures close to Tc and the relevant doping rage. Hence, for the irrep
A1g , a superposition of extended s-wave (s + s± + ..) and dx2−y2 basis functions
is technically allowed. A pairing symmetry based on the other irreps is unlikely
considering the nearest-neighbour and next-nearest neighbour positions on the
rectangular CuO2 lattice to which the conduction is restricted. Due to the small
orthorhombicity in these systems, the superconductivity is widely believed to arise
from an unconventional spin-fluctuation pairing mechanism of predominantlydx2−y2

character in a near tetragonal D4h phase2. There, such a dx2−y2 pairing symmetry
belongs to the B1g irrep and consequently lowers the total symmetry in k-space.
This order parameter symmetry is readily supported by numerous experimental
evidence including results from thermodynamic measurements, ARPES, NMR,
Raman scattering, SQUID interferometry and many more (see Ref. [56, 92] and
references therein). An extensive summary of convincing high resolution ARPES
data has been published by A. Damascelli and co-workers [129]. Still, the argument
that an A1g order parameter representation reveals no additional broken symmetry
remains strong and consequently an s+ d pairing symmetry and even an involved
conventional pairing mechanism are not completely out of the picture yet [56].

The immediate vicinity of an antiferromagnetic phase close to superconductivity
hints towards strong magnetic fluctuations and strong short ranged spin correlations,
i.e. an enhanced magnetic susceptibility (cf. Eq. (2.58)). On the (almost) square copper
oxide planes, antiferromagnetic stripe order is realized for the AFV Q ≈ (π, π). As
shown in Fig. 4.2(b), this wave vector connects hot spots on the Fermi surface at

2 This means the 2D symmetry group is C4v in the copper-oxide plane instead of C2v and so the CuO2

unit cell is square instead of a rectangular one.
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4 Bosonic Excitation Spectrum in Bi2Sr2CaCu2O8+δ and YBa2Cu3O6+x

which the DOS is large. Even outside the magnetically ordered state, where the spin
correlation length is smaller, the susceptibility has been shown to be maximal around
Q. In fact, INS experiments show evidence of a magnetic resonance mode at the AFV
and opening of a spin-gap below Tc in nodal directions, as shown in Fig. 4.33. The
magnetic resonance is a collective spin-1 excitation mode in the superconducting
state and is arising from the renormalization of spin-fluctuations through the gapped
fermionic degrees of freedom, as could be demonstrated in the spin-fermion model
(see Sec. 2.5.3). Experimentally, the resonance mode was found to be ubiquitous in
the cuprate superconductor family and its energy is tied to Tc and ∆ [130].

A spin-fluctuation mediated coupling mechanism in the spin-fermion model
framework, as described in Sec. 2.5.3, logically combines the dx2−y2 gap parameter
with the hyperbolic 2D bands and magnetic susceptibility found in these materials.
Since this theory is rather complicated, a simple and short answer to the question
how dx2−y2 pair symmetry and the AFV Q = (π/a, π/a) are related could sound as
follows: Suppose an electron with momentum q hops from Cu lattice site i+ 1 to
an adjacent Cu lattice site i on the square CuO2 lattice. Then, it essentially carries
the relative phase qa which is equal to π for q = Q. Now, the on-site Coulomb
repulsion on a lattice site i drastically reduces the correlation for two electrons on
the same site. It can, however, become smaller for electrons with opposite signed
wavefunctions that stem from an l > 0 orbital because, there, these electrons are
spatially separated. The electrons from the Cu dx2−y2 orbitals provide this trait and
hence allow for a non-zero correlation for electrons with opposite spin and relative
wavevector Q at the same location r.

4.2 Inelastic Tunnelling in Spin-Fluctuation Driven
Superconductors

As stated in Sec. 2.5.3, in unconventional superconductors the integrated spin
spectrum g2χ′′(ω) (see Eq. (2.62)) plays the role of the Eliashberg function. Using the
Keldysh diagrammatic formalism for Greens functions, P. Hlobil and J. Schmalian
could show that this function is obtainable from the inelastic tunnelling conductance

3 The wave vector (π/a, π/a) corresponds to h = k = 1/2 in reciprocal lattice units (r.l.u.).
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4.2 Inelastic Tunnelling in Spin-Fluctuation Driven Superconductors

[28]. The inelastic tunnelling conductance due to coupling of electrons to spin
fluctuations is given by

σi(eV > 0) =− σ0
D2ν0S

∫ ∞

−∞
dω1dω2 g

2χ′′(ω1)ν̃S(ω2)×

× n′F (ω1 + ω2 − eV )[1− nF (ω2)][1 + nB(ω1)] , (4.1)

with the normalized sample DOS ν̃S(ω) = νS(ω)/ν
0
S , Fermi- and Bose-Einstein

distribution functions nF and nB , as well as the cut-off energy for the bosonic
excitation spectrumD. For a two-dimensional Brillouin zone, Eq. (2.62) in the normal
state simplifies to

χ′′(ω) ∝ ν0S arctan(ω/ωsf ). (4.2)

This leads to σi ∝ g2(eV )2/ω2
sf for small voltages eV ≪ ωsf and σi ∝ g2eV/ωsf

for eV ≫ ωsf . This behaviour in the normal state is shown in the blue curve of
Fig. 4.4(b), which shows the inelastic tunnelling conductance derived from the
formal convolution of a constant normal state DOS (blue curve in Fig. 4.4(a)) and an
overdamped spin spectrum following Eq. (4.2). In the superconducting state, the
spin spectrum is renormalized and a spin gap below ωres evolves (see Sec. 2.5.3).
Performing the formal convolution of the superconducting DOS (red curve in Fig.
4.4(a)) and the integrated spin spectrum in the superconducting state (Fig. 2.8(b)), as
instructed in Eq. (4.1), one finds the total tunnelling conductances σtot = σel + σi

shown in Fig. 4.4(c) for different weights 1/D of the inelastic tunnelling contribution.
While the pure elastic tunnelling conductance shows a peak-like feature at ∆+ ωres

(a)

(b) (c)

Figure 4.4: Elastic and Inelastic
Contributions: Calculated elas-
tic (a) and inelastic (b) contri-
butions to the differential con-
ductance in superconducting
(red) and normal state (blue).
The total conductance (c) de-
velops a dip-hump structure
around∆+ωres for high inelas-
tic current contributions (red
curves). For small to zero inelas-
tic current contributions (or-
ange/yellow curves) the con-
ductance in the superconduct-
ing state stays higher than the
conductance in the normal state
for eU > ∆. Reprinted fig-
ure with permission from [28].
Copyright (2017) by the Amer-
ican Physical Society.
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4 Bosonic Excitation Spectrum in Bi2Sr2CaCu2O8+δ and YBa2Cu3O6+x

due to coupling to virtual bosons, the inclusion of inelastic tunnelling events leads
to a peak-dip-hump structure in the total conductance for energies larger than ∆.
The hump at ∼ ∆+ ωres that brings the total conductance in the superconducting
state back to match the one in the normal state is due to the sudden onset of inelastic
tunnelling events involving real bosonic excitations.

From a series of INS experiments on various cuprate superconductors, the universal
relationship between magnetic resonance and superconducting gap of

ωres

∆
= (1.28± 0.08) (4.3)

was found [130]. While the resonance mode is directly obtained in INS, more model
assumptions, like the applicability of the spin-fermion model, have to be put in, to
deduce the spin excitation spectrum from STS and in addition to that, the k-space
information is lost in tunnelling experiments. In previous attempts at modelling the
Eliashberg function, a priori knowledge on its shape had to be put in, which biases
the result tremendously due to the ill-posedness of the deconvolution problem [131].
Recently, the application of machine learning algorithms on ARPES data proved to
be a powerful concept to reverse-model the spin-spectrum, but this happens at the
cost of a number of free parameters which cannot be easily mapped onto physical
quantities [132, 133]. Instead, we want to pursue the path of a direct deconvolution of
scanning tunnelling data, using a priori band structure for the normal state model and
the inelastic tunnelling theory described above, as input. That this yields insightful
results, has already been demonstrated for monolayer FeSe [27]. The goal here is to
extend this deconvolution method to the nodal cuprate superconductors.

4.3 Separation of Elastic and Inelastic Tunnelling Events

The single crystals Bi2Sr2CaCu2O8+δ and YBa2Cu3O6+x, that were studied here,
were grown by Thomas Wolf at the Institute for Quantum Materials and Technologies
(IQMT). The Bi2212 sample is slightly underdoped with a Tc of 82K. The Y123
sample is from the batch WAX350−1 and is optimally doped with a Tc of 92K.

In search of the bosonic mode at ∆+ ωres in low-temperature scanning tunnelling
spectra, it is first important to take a look at the inhomogeneity of the samples to
decide which spectra are most promising to study. As reported by Fischer et al.,
Bi2212 tends to show a large inhomegeneity of its DOS in the superconducting
state [120]. This can be confirmed in the direct comparison of the conductance
inhomegeneity measured on Bi2212 and Y123, shown in Fig. 4.5. The heat maps of the
conductance variation δσ/σ̄(x, y) =

∑eUt

−eUt
(σ(eU, x, y)− σ̄(eU))/σ̄(eU) show that it
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Figure 4.5: Conductance Inhomogeneity: (a,b) Heat maps showing the variation of the differential
conductance over a 50× 50 nm2 surface area on Bi2212 (a) and Y123 (b). (c,d) Position averaged bias
spectra on the grids shown in (a,b) at T = 0.7K. The higher inhomegeneity of the Bi2212 surface is
reflected in both the conductance variation map and the blurred position averaged spectrum. The
characteristic dip and hump are marked by blue and red arrows.

is with ≈ 30% on Bi2212 about three times higher than on Y123. As a consequence,
a position averaged spectrum over a 50 × 50 nm2 area can preserve detailed gap
features better for Y123 (Fig. 4.5(d)) than for Bi2212 (Fig. 4.5(c)). Especially the
dip-hump (dip marked by blue, hump marked by red arrows in Fig. 4.6(c,d)) feature
is still clearly visible in the position averaged spectrum of Y123 at ϵ ≈ 60meV but
is invisible in Bi2212. Therefore, in the case of Bi2212, an average spectrum at one
specific location, at which the dip-hump spectral feature was clearly visible, was
chosen for this study. For Y123, the position averaged spectrum was chosen.

Fig. 4.6 shows the measured differential conductance and the numerical derivative
of the tunnelling conductance on the two sample surfaces. For Bi2212, the normal
state at 84K was measured with the same tip as the superconducting state at 0.7K.
For Y123, only a spectrum in the superconducting state could be obtained because
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Figure 4.6: Symmetrized Spectra: First and second derivative of the tunnelling current on Bi2212 (a,b)
and Y123 (c,d) in the normal (blue) and superconducting state (black).

drastic tip changes complicated the measurement at elevated temperatures. Due to
the large inhomegeneity of the gap of Bi2212 on the surface, the spectrum presented
here was recorded at one fixed position whereas the spectrum for Y123 is position
averaged over an area of 50× 50 nm2. All spectra were symmetrized, normalized and
regularized by Gaussian filtering. The symmetrization accounts for the asymmetric
background, seen in the spectra (see Fig. 4.5 (c,d)). Most tunnelling experiments so
far, revealed a tilted background conductance that is higher in the negative than in the
positive bias range due to the influence of doping on the normal state DOS of Bi2212
and Y123 [120]. Since the tilt here is in the other direction, it is most likely caused
by a non-constant tip DOS in the applied bias voltage range. The normalization is
chosen such that conductance in the normal and superconducting state are the same
for E ≫ ∆. This enables a better comparison with theory, where the normal state
is effectively studied at 0K. In reality, the background conductance is reduced at
high temperatures due to increased electron-phonon scattering. The regularization
smooths the dI/dU curves for a better display of the numerical derivative and
prepares it for the deconvolution procedure in the following section.

The spectrum for superconducting Bi2212 in Fig. 4.6(a) shows a single gap with
remanent zero-bias conductance due to the dx2−y2 gap symmetry and relatively
smeared coherence peaks hinting at short quasiparticle lifetimes. This is typical for
the underdoped regime and may be caused by its proximity to the insulating phase
[120]. Outside the gap, a clear dip of the superconducting spectrum below the normal
conducting spectrum, followed by a hump reapproaching it, are visible. The V-shaped
conductance in the normal state hints towards strong inelastic contributions to the
tunnelling current, as was demonstrated in Fig. 4.4. The hump shows as a peak in
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4.3 Separation of Elastic and Inelastic Tunnelling Events

the second derivative of the tunnelling current that exceeds the curve of the normal
state at ≈ 130mV in Fig. 4.6(b). The relatively round shape of the superconducting
gap in Bi2212 is atypical for a classic d-wave superconductor, in which the naive
expectation is a V-shaped conductance minimum. As will be shown, the round shape
of the gap can, however, be generated without admixture of an s-wave paring term
by respecting the anisotropy of the Fermi surface in the normal state.

The spectrum for superconducting Y123 in Fig. 4.6(c) is qualitatively in excellent
agreement with previous STM measurements [134] and shows three low-energy
features: (i) a superconducting coherence peak at ≈ 25meV that is less broadened
than in Bi2212, (ii) a high-energy shoulder of the coherence peak and (iii) a low-
energy peak at ≈ 10meV. A good explanation for the high-energy shoulder and
sub-gap peak could be that they arise from the proximity-induced superconductivity
in BaO planes and CuO chains [135, 136]. This would certainly fit the fact that
these states are missing in the Bi-based compounds and that the sub-gap peak
shows a direction-dependent dispersion in ARPES data [129]. The hump lies at
≈ 60meV. Even without a normal conducting spectrum, the V-shaped background
conductance, which is in agreement with the predicted inelastic contribution by
magnetic scattering in the spin-fermion model, is obvious in the high-energy regime
of the superconducting spectrum.

In order to extract the inelastic part of the tunneling spectrum, it is necessary
to determine the elastic contribution by fitting a model function that keeps the
complexity as low as possible while still capturing the relevant features of the
band structure and pairing strength. To account for the presence of pair-breaking
processes, a generalized Dynes function was chosen [137]:

νels (ω) =
σ0
n

∫ π/2

0

dφν0ν
F
n (φ)×

×

∣∣∣∣∣R
(

ω + iΓ(φ)√
(ω + iΓ(φ))2 −∆(φ)2

)∣∣∣∣∣ . (4.4)

Here, n =
∫
dφνn(kF , φ) is a normalization factor, ∆(φ) = ∆0 cos(2φ) is the d-wave

pairing potential, Γ(φ) = γ · |∆(φ)| the scattering rate and νFn (φ) is the angle
dependent density of states at the Fermi energy, in the normal conducting phase. The
function νFn (φ) weighs gap distributions for different (kx, ky) by their abundance
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4 Bosonic Excitation Spectrum in Bi2Sr2CaCu2O8+δ and YBa2Cu3O6+x

along the Fermi surface. In order to determine this function, the in plane dispersion
is modeled by a tight binding model of the form

ϵ(kx, ky) =
t1
2
(cos(kx) + cos(ky)) + t2 cos(kx) cos(ky)

+
t3
2
(cos(2kx) + cos(2ky)) +

t4
2
(cos(2kx) cos(ky)

+ cos(kx) cos(2ky)) + t5 cos(2kx) cos(2ky)

− µ, (4.5)

with chemical potential µ and hopping parameters t as proposed in Ref. [138] for a
near optimally doped Bi2212 crystal. For Y123, the model function [139]

ϵ(kx, ky) = 2t1 cos(ky)2t3(cos(2kx) + cos(2ky)) (4.6)

± [4 cos2(kx)(t1 + 2t2 cos(ky))
2 + V 2/4]1/2 + µ (4.7)

was used, where the fourth term accounts for the ortho-II band folding due to CuO
chains. The parameters t1 = −0.558 eV, t2 = −0.31t1, t3 = −0.5t2, µ = 0.17 eV and
V = 0.025 eV were used. The parameters µ and V were adjusted such that the three
resonances in the DOS from the quasi-1D band correspond to the energetic positions
of peaks in the spectrum. Compared to Ref. [139], the lower µ corresponds to lower
hole-doping and shifts the lowest energy resonance to lower energies compared to
the high energy resonance (coherence peak shoulder). A reduced ortho-II potential
V leads to a more pronounced low-energy resonance due to the LDOS peak in the
near-nodal direction as seen in Fig. 4.7 (d).

An analytic expression for the Fermi wave vector kF (φ) is retrieved from the solution
of ϵ(k, φ)− µ = 0 where ϵ(k, φ) is the polar representation of Eq. (4.5). The normal
DOS is then given by

νFn =

∮
d2k

|∇kϵ|
→
∫
l

dφ

∇k,φϵ(l(φ))
∥l′(φ)∥2 , φ ∈Mφ, (4.8)

where l(φ) = (kF (φ) cos(φ), kF (φ) sin(φ))
T is a parametrization of the path along

the Fermi surface, ∥·∥2 is the Euclidean norm and Mφ = {φ|kF (φ) ∈ 1.BZ}.

The calculated Fermi surface contour and DOS in the normal state are shown in
Fig. 4.7. The fits to the superconducting spectra using Eq. (4.4) and parameters
listed in Tab. 4.1 are shown in Fig 4.8(a,b). Unlike in fully gapped superconductors,
the angle-integrated inelastic spectrum can be non-zero down to vanishing bias
voltage because ∆(k) has a nodal structure. This prevents a direct assignment of the
differential conductivity for e|U | ≲ ∆ to the purely elastic tunneling contribution like
it is possible for the s± superconductor monolayer FeSe [27, 28]. Instead, the fact that
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4.3 Separation of Elastic and Inelastic Tunnelling Events

Figure 4.7: Normal State Electrons: (a,c) Calculated Fermi surface in the first 2D BZ of Bi2212 (a) and
Y123 (c). For Y123 the contribution of the quasi-1D ortho-II band is shown in a dashed blue line. (b,d)
Calculated Fermi wavevector kF (φ) (orange) and normal conducting DOS along the Fermi surface
contour νFn (φ) (purple) as function of polar angle in the first BZ quadrant for Bi2212 (b) and Y123 (d).
For the ortho-II band, the Fermi wavevector and normal DOS are drawn as blue and green dashed lines
in (d).

σtot = σel + σinel and the physical constraints σinel(0) = 0 and σinel(e|U | > 0) > 0,
shall be used. As demonstrated in Sec. 4.2, σinel is in principle a convolution of νs and
the bosonic spectral function. Hence, for a slowly varying bosonic function, which is
expected in the range 0 < e|U | < ∆, σinel is dominated by the elastic contribution
νs(ω) with some factor, say (1− α). Consequently, in the range 0 < e|U | < ∆, σel is
well guessed by our Dynes fit times a factor α < 1. For Bi2212 α is chosen in the
following way: From the requirement that the integrated elastic contribution to the
conductance in the spectroscopic range is equal for normal and superconducting
state, one can find the scaling factor for the elastic part that best describes its
proportion to inelastic processes. This is shown in Fig. 4.9(a) in Sec. 4.4. For Bi2212
this proportionality factor is α = 0.6. In order to keep the condition σel(∞) = σ0, the
experimental curve is scaled up by 1/α instead of scaling down the fitted curve. The
resulting elastic and inelastic contributions are shown in red/grey in Fig. 4.8(c,d). For
Y123, only the condition σinel > 0 was enforced by using the scaling factor α = 0.9

because normal state spectra were lacking. The influence of this scaling factor on the
extracted bosonic spectrum is discussed in detail in the next section.

Table 4.1: Fit Parameters: Fitted Dynes function (Eq. (4.4)) parameters for Y123 and Bi2212 supercon-
ducting spectra.

∆0 (meV) ν0 (σ0) γ

Bi2212 63.3 0.47 0.15

Y123 29.53 0.083 0.08

Y123-oII 19.89 0.610 0.58
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4.4 Determining the Dispersion of the Bosonic Glue
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Figure 4.8: Spin Spectrum Extraction: (a,b) Elastic conductance fit for eV ≲ ∆(red) following Eq. (4.4)
with parameters from Tab. 4.1 to the measured conductance on Bi2212 (a) and Y123 (b). (c,d) Top: The
measured conductance spectrum is scaled up by 1/α. The inelastic part is the difference between total
conductance (black line) and the elastic part (red line). Red and orange dashed lines show the total
conductance obtained from convolving the elastic conductance guess with the orange and green spin
spectra. Bottom: Spin spectra obtained from direct deconvolution in Fourier space (orange) and from
the Gold deconvolution algorithm (green). Results for Bi2212 are shown in (c), for Y123 in (d).

In order to extract the spin spectrum, Eq. (4.1) at T = 0 is rewritten as a formal
convolution integral:

σinel(eU) ∝
∫ eU

0

dωνs(ω)g
2χ′′(eU − ω)

=
(
[νs ·Θ] ∗

[
g2χ′′ ·Θ

])
(eU) . (4.9)

As can be seen from Eq. (4.9), the integrated spin spectrum χ′′ is in information
processing terms the source, the DOS in the superconducting state is the kernel
and the inelastic tunneling conductivity is the signal. Θ denotes the Heaviside step
function. In general, retrieving the function g2χ′′ from the inelastic conductivity
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4.4 Determining the Dispersion of the Bosonic Glue

is an ill-posed problem. Additional aspects that complicate the problem are the
following:

1. The kernel function νs(ω) cannot be determined with enough certainty. As a
result, we are on the verge of a necessity for blind deconvolution algorithms.

2. Every involved function is nonzero for U → ∞. However, for an efficient
inversion of the problem the fastFourier transform (FFT) method is unavoidable.
Hence, all function arrays must be reasonably padded such that circular and
linear convolution become similar.

3. Due to flaws of the fitted model and electronic noise, the inelastic tunneling
conductivity is not monotonously rising. This can result in negative parts in
the source spectrum which are unphysical.

We compare two methods with which the Eliashberg function was determined: By
direct deconvolution in Fourier space and by the Gold algorithm [140, 141]. The
advantage of the Gold algorithm is that for a positive kernel and signal, the result
of this iterative deconvolution method is always positive, in agreement with our
physical constraint. It is explained in more detail in Appendix A.

The regularized bosonic function from direct deconvolution in Fourier space

g2χ′′(ω > 0) = F−1

(
F(σinel)(t)

A
√
2πF(νs ·Θ)(t)

)
(4.10)

is shown in Fig. 4.8(c,d) in orange. The contributions at low energies mostly stem
from the scaling factor α. The negative part of the spectrum for E < ∆ is due to the
abrupt change in elastic conductivity at zero energy (multiplication with Heaviside
distribution) which results in heavy oscillations in time space. Therefore, the circular
deconvolution contains nonzero contributions for E < 0 and negative contributions
for 0 < E < ∆ which are not physical. Despite these shortcomings, the bosonic
spectrum recovers well the tendency of the total conductivity (Fig. 4.8(c,d) dashed
orange) and shows the expected behaviour at medium and high energies, i.e. a
resonance at ∆ < E < 2∆ and approach of the normal state bosonic function for
E < 3∆.

Using the result of the direct deconvolution method as a first guess to the Gold
algorithm, the bosonic spectrum shown in green in Fig. 4.8(c,d) was obtained after
2,000,000 iterations. Again, the high value at E = 0 is a consequence of the scaling
with factorα. Negative contributions are now gone and the bosonic function recovers
well the total elastic conductivity shown in Fig. 4.8(c) (dashed green), especially the
dip-hump structure, and shows a very clear resonance at ωres ≈ 70meV ≈ 1.1∆0 ≈
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4 Bosonic Excitation Spectrum in Bi2Sr2CaCu2O8+δ and YBa2Cu3O6+x

1.2∆max ≈ 1.5∆̄ for Bi2212 and at ωres ≈ 60meV ≈ 2.0∆0 ≈ 2.4∆max ≈ 3.6∆̄ for
Y123.

The resonance mode of Bi2212 extracted in this work is higher in energy than
reported in inelastic neutron scattering experiments (ωres ≈ 43meV at the AFV) [26]
and closer to the resonance determined by optical scattering (ωres ≈ 60meV) [142].
Due to the loss of k-space information in tunnelling, the centre of the resonance is
expected to be shifted to higher energies compared to the INS results (compare Fig.
2.8(a) and (b)). The ratio ωres/∆max lies within the current range of error of Eq. (4.3).
In most other extraction methods of the bosonic mode energy, the normal state DOS
is not respected, which is why the ∆0 used there is most similar to what is here
called ∆max. ∆max is the largest gap value that contributes to the elastic conductance
spectrum.

For Y123, the resonance mode is significantly higher in energy in the bosonic density
spectrum than experimentally found by INS in optimally doped samples with
ωres ≈ 41− 46meV [121, 130] and even lies outside the onset of the spin scattering
continuum at ωc ≈ 59meV in the slightly underdoped regime [130]. Apart from
the k-space integration, which shifts the peak centre to higher energies, several
other factors can play a key role: (i) The well-studied 41meV odd-parity mode is
paired with an even-parity mode at ωe

res ≈ 53− 55meV [130, 143–145] which may
be of the same origin as it vanishes at Tc. This mode appears with a ≈ 3− 20 times
lower intensity in INS than the odd-parity mode, but this does not necessarily have
to hold for a tunnelling experiment. (ii) The bosonic spectrum extracted here is
essentially poisoned by phononic contributions from every k-space angle. Even
INS data at specific q-vectors have to be corrected by known phonon modes. In
the integrated spectrum obtained here, this is simply not feasible anymore. (iii)
Apart from physical arguments, there can also be made sceptical remarks on the

Figure 4.9: Numerical Scaling Factor α: (a) Determination of α happens through the boundary condition∫
dϵσel

n =
∫
dϵσel

s . (b) Variation of α leaves the general shape of the extracted bosonic spectrum
unaffected except for the magnitude of its zero-energy peak.
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4.5 Summary

deconvolution procedure: Evidently, it heavily depends on the guess of the elastic
tunnelling conductance, which in this case does not contain strong-coupling features
from an Eliashberg theory, like in Fig. 4.4. The large deviation from ωres/∆ ≈ 1.28 is
most likely caused by the determination of ∆. For gap sizes, the authors from Ref.
[130] use a constant ∆max = 39.5meV throughout a large range of doping in the
underdoped regime. In a collection of STS results spanning over 20 experiments,
however, the extracted gap value is lying between ∆ = 20− 30meV for underdoped
and optimally doped samples [120]. Even with inclusion of the copper oxide chain
gap the spectroscopic results on Y123 in this work do not support an effective gap
value of > 30meV because the total conductivity is already on the decrease at this
energy.

In order to make sure that the introduction of the numerical scaling factor α has no
poisoning effect on our extracted spin spectrum, the deconvolution of the Bi2212
spectrum by Gold’s algorithm was performed for four different values of α. The
results shown in Fig. 4.9 are comforting in the sense that the overall shape of the
spin spectrum is unchanged. The only major difference lies in the magnitude of the
zero-energy peak which is to be expected from a scalar multiplication, but since this
peak is anyhow out of the bounds of physical contributions it does not harm the
analysis. The oscillations in the obtained function g2χ′′ for high energies are also not
affected by a change of α. They are caused by the FFT of the elastic conductance, so
their position and spacing only changes upon changing ∆. They are a side effect of
the algorithm that might be reduced by clever filtering of the Fourier transformed
elastic conductance that enters the algorithm.

4.5 Summary

The STM junction geometry was utilised to effectively couple to real bosons in inelastic
tunnelling spectroscopy (IETS) on cuprate superconductors. The superconducting
and normal state tunnelling spectra showed significant inelastic contributions for
underdoped Bi2212 and optimally doped Y123. Since the effective Eliashberg function
is inaccessible through the normal state in unconventional superconductors, it was
obtained by deconvolution of the superconducting spectrum. In contrast to fully
gapped unconventional superconductors like monolayer FeSe [27], the separation
of elastic and inelastic tunnelling contributions proves to be more difficult in the
nodal superconductors. Particularly, the k-dependence of ∆ and the normal state
DOS are important factors that were respected in a tight-binding model of the
superconducting DOS based on ARPES measurements. By using the Gold algorithm
for the deconvolution procedure, a strictly positive effective Eliashberg function
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4 Bosonic Excitation Spectrum in Bi2Sr2CaCu2O8+δ and YBa2Cu3O6+x

was obtained. It takes the form of the expected integrated spin spectrum in the
spin-fermion model with a resonance mode at ωres > ∆0. The resonance mode was
found at ωres ≈ 70meV in Bi2212 and at ωres ≈ 60meV in Y123. Despite the loss of
momentum information in STS, a description in momentum averaged electronic and
bosonic spectral functions yields reasonable results because the tunnelling spectrum
is dominated by the hot spots on the Fermi surface.
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5 Yu-Shiba-RusinovStatesand
Long-livedBosonicExcitations in
GranularAluminium

Granularaluminium (grAl) has recentlyestablished itself in parts of the superconduct-
ing qubit community as a suitable superinductor in Al/AlOx based superconducting
circuits [29–31] and as a template for magnetic-field resilient qubit fabrication [32,
33]. Not only are excess quasiparticles identified as a limiting loss mechanism in
these circuits, transport measurements in grAl near its MIT also hint at localized
magnetic moments that might be responsible for the 1/f flux noise in Al/AlOx

based junctions [34, 35]. STM provides a local probe of the quasiparticles on a
microscopic scale and is sensitive to spin scattering, which should manifest as a pair
of Yu-Shiba-Rusinov (YSR) states below Tc. In this chapter, the first low-temperature
STM/STS results on grAl samples in two different resistivity regimes are presented
and put into perspective by comparison with a polycrystalline pure aluminium
film. The main focus in this work lies on the sub-gap YSR states that were found
in the high resistivity grAl samples together with the inelastic excitations that are
likely connected to phase modes of the superconducting order parameter. Lastly,
an experimental procedure to systematically locate the spots, at which localized
magnetic moments reside, is outlined and first results are shown.

Disclaimer: I, the author, want to emphasize that I was not personally involved
in the measurements of the grAl samples but performed the measurements of the
polycrystalline Al films (Chapter 5.2.1, 5.7). The measurements of the grAl samples
were performed by the former group member Dr. Fang Yang and his at the time
master student Tim Storbeck in the group of Prof. Wulfhekel at Karlsruhe Institute
of Technology (KIT). I was involved in data analysis and presentation, as well as
manuscript preparation for the publication that followed in Physical Review B.
Parts of the results presented in this thesis chapter have been published by me as a
co-author in [146]. Reused data is marked by the self-citation in the respective figure
caption.
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5.1 Relation between Tc and Oxygen Partial Pressure

The discovery of granular superconductors and their enhanced superconducting
transition temperature, compared to the homogeneous bulk metal, has its roots
in the group of Ben Abeles in Princeton [20, 147]. In the following years, grAl
quickly became the centre of attention due to its controlled growth [148] and the
large Tc enhancement to up to 3.15K [149]. The term “granular superconductor”
refers to a system in which superconducting grains are separated by insulating
barriers, effectively building an array of intercoupled Josephson junctions (JJ). For
aluminium, this is realized by evaporating aluminium onto a room temperature (or
colder) substrate in an oxygen atmosphere. At oxygen partial pressures larger than
roughly 1×10−5 mbar [148], the aluminium partially oxidizes in such a way that pure
aluminium grains of a well-defined grain size a are separated by a non-stoichiometric
AlOx matrix. The normal state DC resistivity ρdc is directly proportional to the oxygen
partial pressure and is the parameter of choice to compare samples grown in different
setups. Up to the Mott resistivity ρM ≈ 400µΩ cm, the mean size of the Al grains
on room temperature substrates gradually shrinks to a = (3 ± 1) nm and further
remains constant for larger resistivities, yet with a smaller variance [150]. Close to
the Mott resistivity, Tc peaks [151, 152] and reaches 2.17K (for room temperature
substrates) [153] before quickly decreasing for samples with ρdc ≳ 3 × 103 µΩ cm

due to a superconductor-to-insulator transition (SIT) [149]. This relation between
normal state resistivity and Tc creates a superconducting dome, which is depicted in
the phase diagram in Fig. 5.1. According to Ref. [153], the superconducting gap size
∆ follows the general trend of Tc in its dependence on DC resistivity below ρM , but
jumps near the Mott resistivity, which leads to a change of the BCS coupling strength
∆/Tc from ∼ 1.78 to ∼ 2.1 for the high resistivity regime [153]. The maximum gap
size determined in their THz absorption experiments was ∆ = (0.38 ± 0.04)meV

for a sample with ρdc = 1600µΩ cm.

Figure 5.1: Superconducting Dome:
The superconducting transition temperature Tc of
grAl (black line) gives rise to a superconducting
dome in the phase diagram when plotted over
the logarithmic normal state DC resistivity ρdc. It
peaks at the Mott resistivity ρM ≈ 400 µΩ cm, at
which the material features a MIT for T > Tc.
Sketched according to data from Ref. [153].
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5.1 Relation between Tc and Oxygen Partial Pressure

Until today, no general consensus has been reached on the underlying mechanisms
that govern the Tc enhancement, drive the SIT and allow superconductivity to
survive for resistivities far above the Mott limit. A few widely accepted concepts
shall, however, be briefly mentioned here. For further reading, the reader is referred
to the correspondingly cited literature. Suggested mechanisms include

1. ..for the Tc enhancement:

• Size effects of the discrete energy spectrum inside the grain lead to an
effective BCS-like electron-electron interaction inversely proportional to
the grain size and a transition to a strong coupling limit for small grain
sizes [154].

• Shell effects in the delocalized states of metallic nanosized clusters contain-
ing a specific number of atoms can lead to an increased pairing strength
[155, 156].

• Phonon softening due to the reduced dimension of the superconductor
leads to a down shift of phonon DOS in energy and an increased Eliashberg
electron-phonon coupling [157, 158].

All these effects focus on an enhanced superconductivity of the metal grains.
In the presence of the insulating barriers (AlOx) they have to be combined with
an intergrain coupling mechanism, e.g. a Josephson coupling like proposed in
Ref. [154, 159, 160], in order to explain an increase in bulk Tc.

2. ..for the SIT:

• Quenching of superconductivity in individual grains happens due to large am-
plitude fluctuations of the order parameter [161, 162] when the Josephson
coupling between them is weak.

• Loss of macroscopic phase coherence is caused by the systems increasing
susceptibility to phase fluctuations of the order parameter (Experimental
studies) [149, 153].

3. ..for the persistent superconductivity:

• Percolation arguments can be made for the superconducting junctions not
breaking down all at once but in a statistical manner leaving room for a few
superconducting channels via well-coupled grains [160] (This can easily
be discarded if a local STM probe of the LDOS shows a superconducting
gap on each grain).

71



5 Yu-Shiba-Rusinov States and Long-lived Bosonic Excitations in Granular Aluminium

• The Kondo effect due to a singly occupied electronic level in the metal
quantum dot circumvents the problem of the Coulomb blockade and
restores metallicity via the Kondo resonance below TK [163–165].

• Strong-coupling effects set in close to the MIT and can preserve supercon-
ductivity up to high resisitivities [165, 166]: Fermion pairs as small as
the Fermion scattering length aF keep a mean distance of k−1

F to each
other [167]. The transition to the dilute case 0 < kFaF ≪ 1, in which the
mean number of Cooper pairs inside a coherence volume is of order unity
(kF ξ ≲ 1) [168], is therefore connected with a BCS-BEC crossover [167,
169].

5.2 Microscopic Grain Coupling and the
Superconducting Gap

The aluminium andgranularaluminium films weregrown on Nbdoped(0.7weight%)
SrTiO3 (Nb:STO) single crystals of (001) orientation. The substrate provides a
conducting, flat and nonreactive surface. Aluminium was deposited by electron
beam evaporation in a commercial PLASSYS MEB550 at a rate of 1 nms−1 up to the
desired film thickness and the grAl films were grown in an oxygen atmosphere.
The growth parameters and estimated sample resistivities are summarized in Tab.
5.1. Subsequently, the samples were immediately transferred to the STM setup via a
vacuum suitcase to keep surface contamination to a minimum.

Figure 5.2: Sample Structure: Sample constituents and schematic structures: Left: The grAl samples
feature nano-sized aluminium grains embedded in an amorphous AlOx matrix. The coupling of
individual superconducting Al grains essentially leads to a large array of Josephson junctions. Right:
The polycrystalline Al film features larger crystallites and macroscopic phase coherence of the
superconducting order parameter.
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5.2 Microscopic Grain Coupling and the Superconducting Gap

Table 5.1: (Granular) Aluminium Samples: Investigated samples including their estimated resistivity
ρdc at oxygen partial pressure pO2

and film thickness d following established growth recipes further
detailed in Ref. [29].

Sample tag Material ρdc(µΩ cm) pO2 (10−5 mbar) d (nm)
A Al < 10 0 30

G1 grAl 300 2.8 50

G2 grAl 2000 5.6 50

Fig. 5.2 schematically summarizes the most important structural properties that are
expected from the grAl and Al films. Based on early electron microscopy studies [148,
150], the grAl film should consist of nano-sized Al grains separated by an amorphous
AlOx matrix. The thickness of the oxide, which is fine-tuned by the oxygen partial
pressure during growth, eventually causes the SIT. As long as Cooper pairs can
tunnel between two neighbouring Al grains i and j with order parameter ∆eiφi,j ,
the material is superconducting and acts as a large array of Josephson junctions with
individual Josephson couplings Jij . Above a critical thickness the grains uncouple
and the material becomes insulating. The polycrystalline Al film should consist of
larger crystallites due to the high diffusion mobility of Al at room temperature [146].
There, the phase of the superconducting order parameter is expected to be universal
throughout the sample.

5.2.1 Pure Al Film

The measurement of sample A, the pure Al film, served as a control experiment. Fig.
5.3(a) shows the topographic image of the film that features crystallites of about
50 nm lateral size. The large-range I(U) curve in Fig. 5.3(b) confirms the metallic
behaviour for large bias voltages. Fig. 5.3(c) shows the low bias dI/dU spectrum
at T = 30mK which reveals a superconducting gap of ∆ = (191± 1)µeV. The gap
size was determined by a fit to the BCS DOS. This is close to the value of 200µeV
reported for a 42 nm thick Al film [170]. In all structural and electronic aspects, the
sample behaves as expected.

5.2.2 Oxygen Poor GrAl Film

Next, the oxygen poorgrAl sample G1 withan estimatedresistivity ofρdc = 300µΩ cm

was investigated. As can be seen in the topographic image in Fig. 5.4, a granular
structure of round Al grains with sizes ranging from 5− 10 nm in diameter formed.
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Figure 5.3: Pure Al Sample: (a) Topographic image of the pure Al film (U = −1V, I = 100 pA)
showing crystallites of about 50 nm lateral size. (b) Typical large range I(U) curve displaying ohmic
behaviour of the sample. (c) dI/dU spectrum at T = 30mK showing the superconducting gap of
∆ = (191± 1) µeV. The gap size was determined from the fit of a BCS gap (blue line). Data previously
published in [146].

For objects this small and pronounced, the shape of the tip plays an important role
in the topographic image [171]. In fact, the resultant topography in the constant
current mode reflects a convolution of tip surface and sample surface. The tip cannot
be etched to arbitrary sharpness and tip apex radii of a few nm are not unusual [112,
172]. Taking this into account, the observation agrees well with previously reported
grain sizes and spread for similarly grown grAl films [150]. A comparison between
typical I(U) curves measured on different grains of G1 (Fig. 5.4(b)) and the I(U)

characteristic of the pure Al film A (Fig. 5.3(b)) confirms that sample G1 is still in the
metallic regime.

Fig. 5.4(c) shows the dI/dU spectrum at T = 30mK with a superconducting gap of
∆ = (298± 1)µeV, which is significantly larger than for the pure Al film. The gap
size was determined by a BCS fit (blue line). The gap size was practically identical
when probed on different grains (see Fig. 5.4(d)). For similar grAl films, the authors
of Ref. [173] derived ∆ = 344µeV from Tc. THz spectroscopy experiments yielded
∆ = (336 ± 8)µeV [153]. The uniform gap size on the surface for different grains
could be explained by either a homogeneous gap enhancement mechanism which
is independent of the grain size or a strongly coupled network in which the ∆

of different grains are aligned. Either way, grains on the surface would exhibit
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Figure 5.4: Oxygen Poor Sample: (a) Topographic image of the grAl film (U = 60mV, I = 240 pA) with
ρdc ≈ 300 µΩ cm showing grains of 5−10 nm lateral size. (b) Typical large range I(U) curves displaying
metallic behaviour of the sample. (c) dI/dU spectrum at T = 30mK showing the superconducting gap
of ∆ = (298± 1) µeV. The gap size was determined from the fit of a BCS gap (blue line). (d) dI/dU
spectra on different grains reveal a practically universal gap except for the grain marked in cyan in (a),
which exhibits an additional pseudogap of roughly 8∆. Data previously published in [146].

the same gap as in the bulk making the STS measurements here comparable to
bulk measurements. In Ref. [173], where ∆ was derived from Tc measurements, an
overestimation can be explained by the overall higher Tc compared to Ref. [153],
which indicates a significant difference in the systematic approach. It should be noted
that THz spectroscopy represents a real bulk measurement of ∆, whereas in STS
the sample LDOS at the tip position is measured. Other factors, that come into play,
are: 1. the overall lower oxygen concentration near the surface for the UHV samples
used in this STM study compared to the ambient samples from different studies, 2.
the overall higher oxygen concentration at the surface compared to the bulk due to
the growth procedure, 3. the fact that only a small area on the surface was probed
by STM and 4. the limited comparability of samples produced by different recipes
and in slightly different environments. Considering all these factors, the agreement
between the gap size determined here and bulk measurements is surprisingly good.
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Figure 5.5: Josephson Tunnelling: dI/dU spectrum under extreme tunnelling condition (high tunnelling
rate) on the insulating grain (a) from Fig. 5.4(a) and a more metallic grain (b). Tip stabilization condition:
U = 500 µV, I = 200 pA. Data previously published in [146].

On the grain marked in cyan in Fig. 5.4(a), the low energy spectrum shows an
additional pseudogap1 of roughly 8∆, as shown as by the cyan line in Fig. 5.4(d).
As we will see, this behaviour is rather atypical for the oxygen poor sample but not
uncommon for the oxygen rich sample. The LDOS for eU > ∆ is heavily reduced in
comparison to the other grains in this sample. For extreme tunnelling conditions on
this insulating grain, i.e. a conductance at the scale of µS and a tunnelling current
approaching the critical current, the dI/dU spectrum shown in Fig. 5.5 (a) was
obtained. It features a sharp peak at zero bias, flanked symmetrically by in-gap peaks
and a dip to negative differential conductance. The spectrum for a metallic grain at the
same tunnelling conditions does not show these features (Fig. 5.5(b)). Under extreme
tunnelling conditions, the voltage drop over the vacuum barrier seems to become
comparable to the voltage drop over the sample. As a consequence, the measured
dI/dU spectrum also contains information on the electronic transport inside the
sample. The zero-bias peak is reminiscent of the Josephson DC current in an SIS
junction, which can be understood as follows: A Cooper pair in one superconductor
is destroyed through an Andreev reflection at the insulator interface and continues
as an evanescent wave in the insulator. If the evanescent wave overlaps with the one
coming from the opposite superconductor, then a Cooper pair can be created in the
opposite superconductor by an additional Andreev reflection of the electron-hole
pair. Hence, a dissipationless DC current flows through the superconductor. The
oscillations and negative differential conductance at e|U | ≳ 0 are consistent with
previous STS measurements of the Josephson DC current and explained within
the P (E) theory [106, 175]. Direct lead-to-lead elastic cotunnelling and non-local
Andreev reflections [176, 177], which cause very similar dI/dU features [178], are

1 Although the term “pseudogap” is nowadays often associated with high-temperature superconductivity,
it is here meant in the original sense popularized by Mott, i.e. a depletion of electronic states near the
Fermi energy due to increased localization of electronic wave functions near an MIT [174].
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not expected because the superconducting coherence length in grAl is reduced to
about 10 nm [179], so below the film thickness. If the additional features near zero
bias voltage stem from intergrain tunnelling processes, then the dI/dU spectrum
should also exhibit coherence peaks at 2∆, due to the doubled energy needed to
transfer a quasiparticle from one superconductor to another superconductor with
the energy gap ∆. Unfortunately, no data in this bias range was recorded. It leaves
open the question, whether the acquired dI/dU spectrum is the superposition of
the LDOS on the grain and intergrain tunnelling characteristics in the bulk or a
different phenomenon.

5.2.3 Oxygen Rich GrAl Film

In Fig. 5.6, the general behaviour of the oxygen rich film with ρdc = 2000µΩ cm is
summarized. The topographic image in Fig. 5.6(a) confirms that its grain sizes are
similar to the oxygen poor film’s, an observation well in agreement with previous
electron microscopy studies [150]. The much higher resistance of this sample is,
however, reflected in the fact that I(U) curves (Fig. 5.6(b)) measured on individual
grains, marked in Fig. 5.6(a), exhibit insulating behaviour, so a region of almost zero
current for voltages lower than a threshold of roughly 70 to 300mV (depending on
the grain and bias sign). Above the threshold voltage, a differential conductance
(I(U) slope) comparable to the oxygen poor sample is obtained. The sudden onset
of electronic transport above the threshold voltage signals that the grains are
in the Coulomb blockade regime. At smaller tunnelling rates (lower tunnelling
conductance) the I(U) spectrum evolves to a Coulomb staircase, which is reflected
in the dI/dU spectrum in 5.6(c) as resonant tunnelling peaks for e|U | > Ec, where
Ec is the charging energy [180].

Figure 5.6: Oxygen Rich Sample: (a) Topographic image of the grAl film (U = 400mV, I = 180 pA)
with ρdc ≈ 2× 103 µΩ cm showing grains of 2− 5 nm lateral size. (b) Typical large range I(U) curves
obtained at the grains indicated by the same colors in (a). The I(U) curves display insulating behaviour
of the sample with varying gaps. (c) dI/dU spectrum of a particularly isolated grain in the Coulomb
blockade regime showing charging peaks at the energetic positions indicated by triangular markers.
Data previously published in [146].
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Figure 5.7: Grain Coupling: (a-f) Constant height maps of the area shown in Fig. 5.6(a) at the indicated
bias voltages U display the local tunnelling current I . Multiple neighbouring grains form electrical
clusters that charge and discharge collectively. Data previously published in [146].

The energy of these peaks corresponds to first, second, etc. charging state of the
single grain or cluster [181]. Using

Ec =
e2

2C
, (5.1)

the first charging state at U ≈ ±0.2V in Fig. 5.6(c) corresponds to a capacitance
of C ≈ 0.4 aF. The threshold voltages or charging energies ranging from ±70 to
±300meV thus correspond to capacities between 0.3 and 1.1 aF. Approximating the
capacitor as a sphere, of which one half is embedded in a dielectric of permittivity
εr = 9 and thickness 0.5 nm, the smallest capacitance corresponds to a charged
object of approximately 2 nm in diameter (see Sec. 5.5 for the model). Apparently,
the smallest chargeable object is a single grain, but larger clusters of grains can
also form electrical islands that are simultaneously charged and discharged. This
conclusion is supported by the tunnelling current maps shown in Fig. 5.7. The maps
were recorded in the constant-height-mode on the area from Fig. 5.6(a). An abrupt
increase in tunnelling current for increasing bias voltage is seen at once for several
neighbouring grains, indicating that several grains indeed form strongly coupled
electrical clusters. Recent measurements of a transmon qubit made from thin film
grAl also find evidence for a strong electrical coupling of about 10 grains to one
effective Josephson junction [32].

The detailed discussion of the low energy spectrum and especially the superconduct-
ing gap in sample G2 is shifted to the sections 5.3 and 5.4, which focus on the in-gap
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and out-gap structure of the DOS respectively. It should only be aforementioned
here, that the gap size for this sample is also enhanced by the granularity and with
∆ = (312 ± 1)µeV also slightly larger than for sample G1, which is in agreement
with optical spectroscopy measurements [153] on samples of similar resistivity.

5.3 Spectroscopic Signs of YSR states

Fig. 5.8(a) shows a typical high-resolution spectrum of the superconducting gap in
sample G2. A BCS fit (blue line) yields a superconducting gap of ∆ = (312± 1)µeV.
Remarkable in this spectrum are the two in-gap states at energetically symmetric
positions with respect to the Fermi energy, which are indicated by black triangles.
These in-gap states are found for eleven out of 23 individually probed grains. The
intensity of these peaks is low compared to the differential conductance outside
the gap. Their energetic position is very close to ∆ and thus rules out that they
are resonances due to Andreev bound states (cf. Fig. 5.5). The observation of the
Kondo effect in grAl films for temperatures larger than Tc [35, 163] indicates that
the resonances seen here are spectroscopic signs of Yu-Shiba-Rusinov (YSR) states.
In simplest terms they can be thought of as the analogon to the Kondo effect for
a superconductor. They are caused by the exchange coupling between conduction
electrons and unpaired localized electrons or magnetic moments in the presence of

Figure 5.8: YSR States: (a) dI/dU spectrum on an individual grain of the oxygen rich sample. Triangular
markers indicate the positions of YSR states inside the gap. (b) Heatmap of the dI/dU spectrum as a
function of lateral tip position across a single grain. The line profile is indicated in orange on top of the
grey-scale topographic image. YSR states move symmetrically in energy as a function of the tip-grain
distance. Data previously published in [146].
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a superconducting gap. In this scenario, a Cooper pair can be broken for energies
smaller than ∆ if the resulting pair of quasiparticles participates in the screening of
the localized spins and thus compensates the cost of kinetic energy by a reduction of
the mean potential energy.

As pointed out by the authors of Ref. [35], two scenarios for the origin of unpaired
magnetic moments have to be distinguished: They can either reside on the Al grains
or in the insulating oxide. In the former scenario, a sufficient decoupling of individual
grains in the Coulomb blockade regime can result in an odd number of electrons on
individual grains in the equilibrium state. These so-called Kubo spins are suggested
as the localized moments responsible for the Kondo effect at T > Tc by the authors of
Ref. [182]. It still remains unclear, how exactly these localized and unpaired electrons
would survive the onset of superconductivity, where electrons in the nanosized Al
grains pair up to Cooper pairs. The quenching of superconductivity in a few grains
by a combination of size effects and decoupling from the rest of the network at first
glance contradicts the observed large Tc and enhanced electron-phonon coupling
[153] for ρ > ρM . In the latter scenario, the nonstoichiometric composition of AlOx

could lead to trapped, unpaired electrons in dangling bonds at surfaces or interfaces.
The existence of these magnetic impurities would not be altered by the onset of
superconductivity and their abundance would scale with the thickness of the oxide,
so the resistivity of the samples.

In order to figure out, which scenario is present, the dependence of the YSR states
on an electric field was measured. This was realized by moving the tip laterally
across a single grain and recording the full dI/dU spectrum in equidistant steps.
The line profile and spectroscopic positions with respect to the grain are shown
in Fig. 5.8(b) in the top panel. In the lower panel the dI/dU spectrum is shown in
the form of a heatmap. While the superconducting gap edge (dark red) remains
fixed, the YSR states (apricot colour) vary in energy as a function of tip position. If
the unpaired spins resided in electrically decoupled grains with an odd number of
electrons, then the electric field of the biased tip-sample junction would shift the
chemical potential of the grain. As a result, the energetic position of the gap edge
would move but the position of the YSR states with respect to ∆ would stay fixed.
This contradicts the results shown here. Instead, unpaired spins in the oxide could
explain the experimental results. The voltage drop over the insulating oxide barrier
between the grains is affected by the electric field at the surface. With a variation of
the voltage drop across the insulator, the energy of the unpaired spins is changed
and ultimately their exchange coupling to the conduction electrons is modified. As
demonstrated by the authors of Ref. [183], this effect leads to an energy shift of the
YSR states with respect to ∆ as a continuous function of the exchange coupling.
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5.4 Spectroscopic Signs of Long-lived Plasma or Higgs
modes

Turning the attention to the out-gap structure of the differential conductance
displayed in Fig. 5.9 (black line), which was recorded on sample G2, a pseudogap
like in Fig. 5.4(d) of > 8∆ is retrieved2. Only now, a previously absent or invisible
series of peaks inside this pseudogap is apparent. The energetic positions and
width of these peaks are too small to be caused by charging effects, like in Fig.
5.6(c). The sharpness of the peaks is not in agreement with simple pair-breaking by
inelastic tunnelling, which would make these excitations strongly damped because
the electron pairs quickly recombine. Instead, their shape resembles the coherence
peaks. Out-gap copies of the coherence peaks are indicators of inelastic tunnelling
processes involving a rather long-lived bosonic mode: The incident tunnelling
electron excites a boson of defined energy and the final scattered electron withE ≳ ∆

ends up in the quasiparticle resonance of the BCS single particle DOS. Due to the
high DOS of the final state electron, this process has a large weight and prominent
copies of the coherence peaks, shifted from their original position by the boson
energy, are the consequence. The first copy corresponds to the creation of one boson
with energy ω, the second to two bosons, etc.

Figure 5.9: Inelastic Excitations: High resolution dI/dU spectrum (black line) featuring a supercon-
ducting gap and several inelastic excitations which appear as copies of the coherence peak for eU > ∆.
The excitation ladder can be modeled by five energetically symmetric inelastic excitations and fit to the
spectrum (red line). The modeled spectrum for zero, one, two, etc. excitations is individually displayed
in blue, green, violet, and so on. Except for the excitation shown in violet, all excitation energies are
integer multiples of ωexc. The energies ∆+ n · ωexc are indicated by dark grey dashed lines. The inset
reproduces THz spectroscopy measurements of samples with ρ ≈ 2000 µΩ cm from Ref. [153]. Data
previously published in [146].

2 The discussion of this pseudogap is postponed to the end of this section.
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Table 5.2: Fit Parameters for Bosonic Excitations: Fitted parameters of Eq. (5.2) used to model the
spectrum in red in Fig. 5.9. n is the number of the bosonic excitation, ωn its energy divided by
∆ = (277± 4) µeV and a+n and a−n are the intensities for positive and negative bias range.

n ωn (∆) a+n a−n
1 (1.40)∗ (0.142) (0.118)

2 2.31 0.369 0.377

3 2.78 0.259 0.111

4 4.09 0.418 0.899

5 5.50 0.223 0.933
∗This mode was manually set to this energy from comparison to the experimental curve. It is found at

a too high energy (∼ 1.8∆) by the fit because the BCS fit exceeds the experimental curve.

In the simplest form, the resultant dI/dU spectrum of this excitation ladder can
be modeled by fitting a BCS DOS to the gap for E ≲ 2∆, which should constitute
the elastic tunnelling signal σel, and then adding this functional form shifted by
the respective energy of the inelastic excitation with a variable intensity an. For
N inelastic conduction channels involving bosons with energy ωn, the fit function
shown as a red line in Fig. 5.9 reads

σtot(U) =

N∑
n=0

anσel(U − ωn/e) (5.2)

with a0 = 1 and ω0 = 0 for the purely elastic part. This approach corresponds to a
boson spectrum consisting of infinitely sharp modes, so single δ-distributions at
ωn. The experimental curve (black line) was fitted to this model separately for the
positive and negative bias range. For U > 0, the bosonic energies ωn and intensities
an were left as adjustable fit parameters. For the negative bias range, the bosonic
energies, which were found for the positive bias range, were enforced, but the
intensities were still left adjustable. This choice was totally ambiguous and has also
been performed in reverse yielding very similar bosonic energies. As obvious from
the measured spectrum, the peaks appear at voltages symmetric with respect to
zero bias. Their intensities, however, are different for positive and negative bias
voltage. The shape of the spectrum is nicely followed by the fitted function (red line)
taking into account N = 5 boson excitations without additional lifetime broadening.
The curves in blue, green, violet, yellow and light blue show the fit up to the n’th
excitation. The parameters of the fit function are summarized in Table 5.2.

Apart from the second excitation, shown as a violet line, all excitation energies are
roughly equidistantly spaced in the spectrum. This is indicated by the dark grey
dashed lines in Fig. 5.9. These energies are (within the margin of error) multiples
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of ωexc ≈ 1.4∆. A dissipative mode of the superconductor at this energy was also
found in THz absorption experiments on films of similar sheet resistance, as shown
in the inset of Fig. 5.9. The above-mentioned mode is labeled ω′′. While the modes at
ω′ < ∆ were assigned to two-dimensional plasma phase modes [153, 184], the origin
of the resonance at ∆ < ω′′ < 2∆ remains unclear. A phononic origin of the mode at
energy ωexc ∼ ω′′ can be ruled out as van Hove singularities in the phonon DOS of
Al or AlOx all lie above 15meV [185]. The same holds for the vibrational modes of
chemisorbed oxygen on the aluminium surface [186]. In 3D bulk superconductors
the NG mode is usually gapped up to the plasma frequency ωp (so to much higher
energies than ∆). The drastic reduction to sub-gap energies in grAl samples with
high sheet resistance, is ascribed to the granularity [184, 187] and the quantisation of
two-dimensional plasmon modes [153] that have maximum DOS at the effective
plasma frequency3. While bulk plasmonic excitations are expected above ωp, the
sharp peaks in energy seen in this work speak more for a non-dispersive mode with
a long lifetime.

Recent theoretical studies predict, that the mass of the Higgs mode can be decreased
below 2∆ in disordered superconductors [189],making it anotherplausible candidate.
In some of these disordered superconductors near an SIT, Higgs modes with long
lifetimes and a renormalized mass just below 2∆ were reported [64, 190]. The
mechanism, that was predicted in numerical calculations is, however, still missing
confirmation by an analytic theory [191]. It has been shown that in the strong
coupling limit, which we expect to be in beyond the Mott resistivity, amplitude
fluctuations become equally important as phase fluctuations [98]. The energy scale at
which this happens is T ∼ ωexc, which is for the excitation energy determined here,
roughly twice the critical temperature. This might be an indicator for the existence
of an additional temperature scale Tpair > Tc, in which pairing is already present
locally but not in a coherent manner due to large fluctuations. Similar to the case
of the cuprates, this would induce a pseudogap above Tc. Such a pseudogap was
already proposed as an explanation for the anomalous behaviour of ∆ and the real
part of the dynamical conductivity in THz spectroscopy of oxygen-rich grAl samples
[149]. Further discussion on the origin of this long-lived mode is postponed to Sec.
5.5 and 5.6, in which our tunnelling data is compared to the predictions within a
concrete model for plasmon modes.

In a more general approach, the dI/dU spectrum from Fig. 5.9 was also separated
into an elastic and inelastic part and the bosonic spectral density function α2F (ω)

was determined analagously to how the spin spectrum was obtained for the cuprate
superconductors in Chap. 4. This approach has the advantage that the functional

3 In 2D, plasmons are not gapped [188].
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Figure 5.10: Boson Spectral Density: Top panel: A separation of the experimentally determined dI/dU
spectrum (black line) into an elastic part (red) and an inelastic part (grey) allows for a deconvolution by
means of FFT and Gold algorithm. The forward calculated conductance spectrum using the bosonic
spectral density function obtained from FFT/Gold algorithm is shown in orange/green. Bottom
panel: Bosonic spectral density function obtained via FFT/Gold algorithm (orange/green). Black lines
indicate ∆ and 2∆. Dashed lines indicate the energies n · ωexc. Dashed-dotted lines indicate additional
resonances at ω∗ and 2∆ + ω∗.

form of the bosonic spectrum is not limited to a series of δ-distributions and the
number of modes is a result of the deconvolution, not postulated a priori. First, the
spectrum from Fig. 5.9 was symmetrized around zero bias in order to enhance the
sensitivity for even components of the spectrum, i.e. the particle-hole symmetric
parts including the peaks of inelastic excitations. For detailed information on how
the data is prepared and the deconvolutions are performed, the reader is referred
to Chap. 4 and Appendix A. The symmetrized spectrum is shown in Fig. 5.10 in
the top panel (black line) and a BCS fit to the gap (downscaled to an intensity
which is always lower than the measured curve) represents the elastic tunnelling
conductance (red line). Subtracting this elastic conductance from the experimental
curve yields the inelastic tunnelling conductance (grey area) which is a convolution
of the bosonic spectral density and the elastic conductance. The determination of
the bosonic spectral density α2F (ω) was performed via direct fast Fourier transform
and the Gold algorithm and is displayed in the bottom panel in orange and green
respectively. The respective results of the forward convolution using this bosonic
function yields the total conductance in orange/green in the top panel.
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Like in Chap. 4, the bosonic spectrum acquired through the FFT deconvolution
(orange) contains non-zero values for E < 0, that are cut off in the linear forward
convolution. This leads to a calculated conductance below the experimental curve.
Also, once again, unphysical negative values are obtained in several energy regions
including a region around ∆. Despite these shortcomings, the obtained bosonic
spectrum in orange already reveals three broad but prominent modes centred
at 0.63meV, 1.12meV and 1.51meV and the experimental dI/dU spectrum is
qualitatively well reproduced with it. The bosonic spectrum obtained via Gold
algorithm (green) is again limited to strictly positive values in agreement with
the physical constraint. The three above-mentioned modes are also found at the
same energies, yet with smaller width. Around the peak at 0.63meV, additional
side peaks at 0.455meV, 0.525meV and 0.77meV are found. One low energy mode
at 0.07meV is found at a position where the FFT curve also exhibits a small peak.
Although slightly above the experimental conductance curve, the forward convolved
dI/dU curve nicely reproduces the observed peaks in position and shape up to
2meV. A closer look at the mode energies in relation to the gap size ∆ reveals that
the peak energies ω2 = 0.77meV, ω3 = 1.12meV and ω4 = 1.51meV correspond to
approximately n = 2 , 3 , 4 times ωexc = ω1 = 0.37meV = 1.35∆, which marks the
onset of spectral density between ∆ and 2∆. These energies are therefore connected
to n boson excitations with energy ωexc and rising in amplitude with the number
n. They are marked by grey dashed lines in the bottom panel of Fig. 5.10. High
spectral density at 2∆ is expected to result from efficient pair breaking by inelastic
tunnelling processes. The peak amplitude is found at 2∆ + ω∗ = 0.525meV, with
ω∗ = 0.07meV being the sub-gap mode. Since the experiment only yields boson
mode energies with no ties to their origin, it remains unclear whether these two
modes are connected with each other or not. They are marked as grey dot-dashed
lines in the bottom panel of Fig. 5.10. They might also be falsely appointed to the
boson spectral density and are really part of the elastic conductivity, i.e. the sample
LDOS.

In order to gain more confidence in the presented conclusions on the boson energies
and prevent an over-analysis of the data, an independent measurement at a different
tip position with different stabilization parameters and bias step size was repeated.
The results are shown in Appendix B. The analogous analysis, especially the
deconvolution, independently confirms the bosonic mode at ωexc ∼ 1.35∆ and even
the first excitation is clearly visible there. In total, five prominent excitations are
seen, from which the first three fall on multiple energies of ωexc and the last two are
slightly shifted to higher energies. Like in the previous spectrum, the weight of the
multi-boson excitation seems to grow up to n ∼ 3− 4 before decreasing again for
higher n.
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Figure 5.11: Temperature Dependence of Low Energy Spectrum: dI/dU spectra at rising temperatures
from well below Tc (blue) to above Tc (purple). Individual spectra are offset with respect to each other
by 15 nS. Dashed lines indicate the corresponding base line of zero conductance. Data previously
published in [146].

At last, the larger pseudogap, which was found with a size of ∼ 8∆ (without fine
structure) in a single more insulating grain of sample G1 and with a size of ∼ 14∆

(with a series of equidistant peaks) in the high resistivity sample G2 seems to
be shaped by bosonic excitations of the condensate. Whether they are phase or
amplitude fluctuations of the superconducting order parameter cannot be concluded
from the available data. Such a depletion of states near the Fermi level would happen
on a larger energy scale if initiated by the Coulomb blockade in the system. In
THz spectroscopy measurements of high-resisitivity grAl samples, the anomalous
behaviour of gap size and the real part of the dynamical conductivity has been
attributed to a pseudogap above Tc as a consequence of a phase-fluctuation driven
SIT [149]. This is at least in agreement with the results shown here in the sense that
this pseudogap only arises in the high-resistivity regime and seems to grow with
increasing resistivity. As order parameter fluctuations and long-range order are
competing, a coexistance of such a pseudogap and the superconducting gap below
Tc is not too surprising and can be understood as a foretaste of what is to happen at
larger grain decoupling at the SIT. How amplitude fluctuations in the small grain
regime can destroy superconductivity has been outlined by Guy Deutscher in the
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70’s [161] and more rigorously explained by Chubukov [98]. Here, measurements
above Tc could be helpful to understand the connection between this pseudogap
and superconductivity.

In order to see if inelastic excitations still play a large role above Tc, tunnelling spectra
were measured as a function of temperature between 230mK and 2.19K. The results
are shown in Fig. 5.11 and are offset to each other by 15 nS. The respective base line of
zero conductance is indicated by a dashed line for each temperature. Up to 590mK,
the measured grain is superconducting, the gap is fully developed. Above 1.2K,
the measured in-gap conductance does not reach zero anymore due to temperature
broadening of the reduced gap. This, however, does not mean that bulk Tc has already
been reached. Between 1.37K and 2.19K the spectra exhibit a larger bias range of
decreased conductivity that gradually broadens to a V-shaped spectrum at 2.19K.
This is reminiscent of the temperature dependent gap measurements on the cuprates
from chapter 4, where the normal state exhibits a similar V-shaped spectrum due to
inelastic excitations. Above 2.19K the spectra do not change significantly anymore
which is why the superconducting transition is believed to have happened between
1.37K and 2.19K. This is generally in agreement with the transition temperature
expected for this sample from the phase diagram in Fig. 5.1. One should keep in
mind that this is a local measurement of the gap and variations from heat capacity
or bulk transport measurements are expected.

5.5 LC Resonator Model for Plasmon Modes

That the weight for inelastic tunnelling events including n boson excitations is
higher than for the emission of a single boson is surprising but the behaviour of
α2F (ω) reminds of the multiphoton-assisted tunnelling in superconducting junctions
[192]. There, the ratio between microwave amplitude and photon energy yields
a cut-off energy that suppresses multiphoton processes with an energy higher
than this cut-off and at the same time it irregularly weighs the n multiphoton
processes below the cut-off energy in a series of Bessel functions. The emergence of
additional side-peaks in dI/dU due to inelastic processes including the absorption
and stimulated emission of photons in the microwave field is well described in the
Tien-Gordon model [192]. Here, no microwave signal was coupled into the junction.
Instead, the logic is reversed: In the absence of a microwave field, only spontaneous
emission is possible, which is in agreement with the experimental observation that
only high-energy side-peaks are present. The repeated emission of photons in the
inelastic tunnelling process leads to energy level fluctuations on the time scale
1/ωexc and with an amplitude Uhf that plays the role of the microwave intensity.
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Figure 5.12: LC Resonator Model: (a) Schematic current flow through the grAl film in the STM. (b)
Self-capacitance of each grain is approximated by a metallic sphere with radius R1 in a dielectric
shell of permittivity εr and thickness (R2 −R1). (c) Electrodynamic model of the network of grains.
The tunnelling current It flows through the central line of Josephson junctions in which each grain is
capacitively coupled in parallel to other grains that lie in the same plane. (d) 2D plasmon modes for
m = 1, 2..,M and different in-plane capacitive couplings C0. Right: Zoom-in on the mode m = 1.

Since the emission of the boson most likely happens inside the sample, one should
not think of bare photons like in the vaccum. The sample is a dielectric, thus, the
photons strongly couple to the charge degrees of freedom to form plasmons. Before
we continue down this road and model the footprint of spontaneous multiplasmon
emission processes in the tunnelling spectrum (Sec. 5.6), it is first time to consider
a concrete model that legitimates the interpretation as plasmon modes. The main
argument, here, will revolve around the energy of the mode.

Fig. 5.12(a) schematically shows how the grAl film is electrically wired in the STM
geometry and in which direction the tunnelling current It flows. In our case, the
measures of the film are l = 2b = 10mm and d = 50 nm. We adopt the electrodynamic
model from Ref. [187] and describe the grAl film as a network of effective Josephson
junctions (JJ). In the RCSJ (resistively and capacitively shunted junction) model [46,
pp. 202], each JJ owns a self-capacitance CJ and a Josephson inductance LJ . In the
Coulomb blockade regime, the aluminium grains act as individual capacitors. Let us
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assume that each grain is completely embedded in the dielectric with permittivity
εr and closely surrounded by other grains which constitute the opposite electrode
(Fig. 5.12(b)). We thus model the grain network as N metal spheres of radius R1,
each surrounded by a dielectric shell of width (R2 − R1). The self-capacitance of
such a spherical capacitor is then given by

CJ = 4πε0εr
R1R2

R1 +R2
. (5.3)

Evaluating this forR1 = 1.25 nm,R2 = 1.75 nmandεr = 9.0 [193]yieldsCJ = 0.73 aF.
This value is very close to the capacitance determined through the charging peaks.
The Josephson inductance can be determined through the critical current by the
formula [30]

LJ =
Φ0

2πIc
. (5.4)

We use a critical current density of jc = 0.88mA/(µm)
2 for the film with DC

resistance ρdc ≈ 2000µΩ cm [187] and an effective current-carrying area of A = a2,
where a = R1 + R2 is the mean intergrain distance. With these values, we obtain
LJ = 42 nH. The effective plasmon frequency of one JJ,

fp =
ωp

2π
=

1

2π

√
1

LJCJ
, (5.5)

is then fp = 914GHz.

In Fig. 5.12(c), the wiring from Fig. 5.12(a) is translated into an effective circuit model.
Each shaded blob depicts a single grain. Since the tunnelling current is injected in
z-direction, the current only flows through a handful of grains, i.e. approximately
M = d/a effective JJs are put in series. But in the plane of the film, each grain is still
capacitively coupled to its nearest neighbours. There are approximately K = b/a

grains in a volume V = a2b and L = l/a grains in a volume V = a2l. We again make
use of the electrodynamic model from Ref. [187] and treat the circuit as quasi-1D.
This approximation is valid due to the non-uniform electric field induced by the
tip electrode. The electric field quickly falls off in the lateral direction of the film,
i.e. in first order, the current only flows through the central line in Fig. 5.12(c).
The capacitive coupling to neighbouring grains in each plane of the film (vertical
connections in (c)), is captured in a mean self-capactiance of each plane C0 and
mainly determined by the average number of nearest neighbours. As demonstrated
in Ref. [187], one obtains the energy levels of the quantized 2D plasmon modes by
the equation

ωm =
mπ

M

(
LJ

(
C0 +

m2π2

M2
CJ

))−1/2

(5.6)
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with m = 1, 2, ..,M and ω∞ = ωp = 1/
√
LJCJ being the plasma frequency of the JJ.

In Fig. 5.12(d), the energies of the discrete 2D plasmon modes due to confinement
in z-direction are shown for C0 = 2CJ , 3CJ , 4CJ , i.e. two, three or four nearest-
neighbour grains in each plane. With fp = 914GHz, the bulk plasmons are roughly
ten times higher in energy than the bosonic mode we see in our tunnelling spectrum.
The first standing wave mode (m = 1) due to confinement by the film thickness
d, however, lies between f1 = 86–121GHz for C0 = 2–4CJ . This corresponds to
ω1 = 355–499µeV ≈ 1.28–1.80∆, which is in the range of our observed ωexc. It
should be noted that this is only a rough estimation. The large uncertainty of the
critical current density [187] is the major factor in error estimation of ωp, as it only
enters LJ . The grain size plays a secondary role, as LJ scales inversely butCJ linearly
with the cross-section, such that the dependence nearly cancels out. Additionally,
the good agreement between the CJ estimated from the microscopic model and the
value deduced from the charging peaks give reason to believe that the estimate for
CJ is more accurate than for LJ .

In the following section, the spontaneous multiplasmon emission process is simulated
in the Tien-Gordon model. Circumstances under which the excitation of plasmons
are easy would be consistent with a low intergrain coupling and low superfluid
stiffness, i.e. the system is highly susceptible to phase fluctuations of the order
parameter near the SIT [149, 184].

5.6 Tien-Gordon Model for Spontaneous Plasmon
Emission

The Tien-Gordon model [192] traditionally describes photon-assisted tunnelling
in superconducting junctions that are exposed to a radiation field Uhf cos(Ωt). The
electrons can tunnel inelastically via the spontaneous absorption and stimulated
emission of photons with the energy Ω. The resultant tunnelling spectra exhibit n
sidebands corresponding to the absorption/emission of n photons of energy Ω [194].
How many sidebands occur, depends on the amplitude of the applied field Uhf .
Usually, spontaneous emission is neglected because the rate for stimulated emission
is much higher in the radiation field.

In this work, no high frequency signal was coupled into the tunnel junction. Instead,
the system is considered to be inherently susceptible to inelastic tunnelling events
that include the spontaneous emission of n photons in the superconductor. Inside
the superconductor, the coupling between charge carriers and photons leads to
collective excitations, the plasmons. Via the Anderson-Higgs mechanism, these
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Figure 5.13: Spontaneous Plasmon Emission: The effective tunnel Eliashberg Function α2F (ω) (a)
and the differential conductance dI/dU (b) are shown in the analytic description of the Tien-Gordon
model considering only plasmon emission. For 5∆ ≲ e|Uhf ≲ 6∆, inelastic processes with up to n = 5

plasmons contribute significantly to the tunnel current and n = 3 is the process with the largest weight
(cf. peak height in (a)).

plasmonic excitations also couple to the superconducting phase. It is assumed
that the spontaneous emission can, in this case, be described analogously to the
spontaneous absorption by simply adjusting the energy conserving term in the
δ-distribution. A more rigorous treatment of this problem by the authors of Ref. [195]
shows that the total probability for a spontaneous n plasmon emission is described
by the convolution of two distribution functions: P0(E) and Pocc(E). P0 describes
the probability that the tunnel junction emits a photon into the vacuum and Pocc

describes the absorption capability of the “cavity”, which in this case is the grAl
film. If the cavity is driven into a coherent state |α⟩ with amplitude α0, then Pocc

yields the Tien-Gordon distribution. Additionally, one realizes that the classical AC
voltage amplitude Uhf is proportional to the amplitude of the plasmon excitation
|α0| [195]. We thus consider our inelastic tunnelling current to behave like a classical
drive to the resonating aluminium grains.

Neglecting absorption, i.e. considering only the high-energy sidebands, and restrict-
ing ourselves to a single plasmon mode with energy ωexc, the total conductance for
single quasiparticle tunnelling in the Tien-Gordon model is written as

σtot
s (eU) =

eU∫
0

dωσel
s (eU − ω)

∑
n

J2
n

(
eUhf

ωexc

)
δa(ω − nωexc)

= σel
s (eU) +

eU∫
0

dωσel
s (eU − ω)

∑
n=1

J2
n

(
eUhf

ωexc

)
δa(ω − nωexc)︸ ︷︷ ︸

∝α2F (ω)

(5.7)

with
δa =

1

|a|
√
π
e−(x/a)2 . (5.8)

Jn are Bessel functions of order n and Uhf is proportional to the amplitude of the
plasmon state. The Bessel function for n = 0 describes elastic tunnelling. Hence,
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the terms with n > 0 can be collected to an effective “tunnel Eliashberg function”
α2F (ω).

In Fig. 5.13, the function α2F (ω) and the resulting differential conductance in the
Tien-Gordon model is shown for ωexc = 1.35∆, σel

s (eU) = σ0|eU |/
√

(eU)2 −∆2,
a = 0.2∆ and the three indicated values for Uhf . All α2F (ω) were normalized by the
condition of the elastic conductance

σel
s (eU) = J2

0

(
eUhf

ωexc

) eU∫
0

dωσel
s (eU − ω)δa(ω)

eU→∞→ σ0. (5.9)

The ratio eUhf/ωexc yields a cut-off for the number of plasmons that are excited in
one inelastic tunnelling event. For eUhf ≲ 6∆ the maximum number is n = 5. Due
to the functional form of the Bessel functions, the ratio eUhf/ωexc also adjusts the
relative amplitudes for the multi-plasmon excitations.

As can be seen from Fig. 5.13, good agreement with the experimental data, i.e. the
process n = 3 has the largest weight, is found for 5∆ ≲ eUhf ≲ 6∆. The resulting
dI/dU spectrum in the Tien-Gordon model then closely resembles the experimental
spectrum with the characteristic excitation ladder up to a cut-off at e|U | ≈ ∆+5 ·ωexc.

5.7 First Results on Oxidized Polycrystalline Al

The STS measurements of the YSR states in oxygen-rich grAl (sample G1) from section
5.3 suggested that it is likely that the unpaired spins reside in the nonstoichiometric
oxide of aluminium. In order to test this hypothesis, the pure and surface clean
aluminium film (sample A) from section 5.2.1 was oxidized by exposure to a pure O2

atmosphere. Oxygen gas (purity= 99.9999%) was introduced to the UHV chamber
through a variable leak valve up to a partial pressure of pO2

= 1× 10−5 mbar and
th sample was oxidized for 1 h at room temperature. This corresponds to a dose
of roughly 2.7× 104 L (Langmuir). Due to the quick passivation of the aluminium
surface after the initial incorporation mechanism (the first chemisorbed monolayer
of O2 is buried in the second surface layer by updiffusion of aluminium), the oxygen
uptake rises only slowly for higher doses [196] and saturates after roughly 2 hours
[197]. The exposure dose used here should lead to no more than 2ML of AlO
[197–199]. If dangling bonds in grain boundaries and interfaces of the oxide are the
host for unpaired electrons, then YSR states should also be observed at the surface
of the oxidized aluminium film. Conveniently, complicated factors like size effects
of the Al grains, disorder of the superconductor and percolation effects are taken
out of the equation in this control experiment.
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Figure 5.14: Oxidized Al Film: dI/dU spectrum with superconducting gap obtained on the strongly
oxidized Al film at T = 39mK. No YSR states are visible. The blue line shows a Dynes DOS fit
with ∆ = (128 ± 1) µeV and quasiparticle scattering rate Γ = (65 ± 1) µeV. Feedback condition:
U = 0.5mV, I = 100 pA. Inset: Large bias range I(U) curve displaying the low conductance of the
junction. Due to the large insulating gap the STM tip is in contact with the surface for low bias voltages.
The tunnel barrier is the aluminium oxide not the vacuum.

Fig. 5.14 shows the dI/dU spectrum of the oxidized aluminium film at T = 39mK.
The superconducting gap is reduced and not fully developed. The coherence
peaks are also broadened significantly. In-gap states are not visible. The modified
appearance of the superconducting gap is caused by the fact that tunnelling into
the superconducting aluminium is only made possible by bringing the STM tip in
contact with the surface oxide. In contrast to the vacuum, the oxide layer allows not
only ballistic but also diffusive transport. That means that the tunnelling electron can
in principle inelastically scatter on defects inside the oxide. This form of dissipation
is seen as excess sub-gap differential conductance and absent coherence peaks. The
exponential decay of the tunnelling current makes it virtually impossible to record a
tunnelling current if the tip is free standing above the surface because an additional
insulating layer of ≈ 0.8 nm is separating it from the superconducting aluminium.
The good insulation of the thin surface oxide is well captured in the large range I(U)

curve in the inset of Fig. 5.14. Only at a stabilization voltage of U > 2V a tunnelling
current of few pA starts to flow. To account for scattering processes of electrons
with sub-gap energies in the presence of the oxide, the superconducting gap was
fitted to a Dynes DOS function (see Chap. 4 for a functional expression). The fit
yields ∆ = (128± 1)µeV and a scattering rate of Γ = (65± 1)µeV. If YSR states are
not present or just overshadowed by the poisoning scattering channels for sub-gap
energies cannot be discerned.

This seemingly simple control experiment beared unexpected complications due to
the quick evolution of a large insulating gap of roughly 4 eV, already for a supposedly
thin oxide layer. A great amount of preparation of a tip with good energy resolution
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(in order to resolve the YSR states) is opposed to its one time use. As soon as the tip
is dipped into the oxide, the measurement has to be performed at once. At each lift
off the surface the tip picks up a cluster of the insulating oxide, which successively
increases the effective tunnelling barrier for the next spectroscopy until no tunnelling
current can be detected anymore. It is expected that the measurement of an oxidized
Al film with a thickness of 0.5ML < Θ < 1ML yields more conclusive results
concerning the existence of YSR states at the AlO surface. To study the depencence
between oxide thickness and abundance of these states, however, the experimental
procedure would have to be adjusted to eliminate the problems encountered in the
tunnelling geometry chosen here.

Density functional theory (DFT) calculations of chemisorbed O2 on a few layers of
α−Al2O3 on Al(111) predict that the charge transfer of the oxygen molecule heavily
depends on the oxide thickness and an effective spin of 1µB on the adsorbant is
expected only at 4−9 trilayers of Al2O3 [200]. In order to realize such thick aluminium
oxide layers either much larger oxygen pressures [199] or elevated temperatures
that facilitate the surface reactivity (dissociative chemisorption of O2 is thermally
activated) [201] are needed. The latter method would be the preferred in a UHV
environment like the setup used in this work.

5.8 Summary

The combined STM/STS measurements on grAl in the low resistivity and high
resistivity regime confirmed the existence of nano-sized grains and yielded enhanced,
uniform superconducting gaps of∆ = (298±1)µeV and∆ = (312±1)µeV compared
to ∆ = (191 ± 1)µeV for a polycrystalline aluminium sample. The oxygen-poor
grAl sample displayed metallic behaviour for larger bias voltages, which speaks for
well coupled grains, and the superconducting gap was free of sub-gap states. In
the oxygen-rich grAl sample, charging effects, indicative of the Coulomb blockade
regime, were observed. Apparently, the grains decouple as a function of oxide
thickness and can be collectively charged in the form of clusters containing several
electrically well connected grains. In some grains, YSR states were found as a
fingerprint of localized spins. The energetic shift of the YSR states in dependence
of an applied electric field suggests that the unpaired spins reside in the oxide
barriers. An independent STS experiment on a polycrystalline aluminium film
with an estimated surface oxide thickness of ≈ 2ML revealed no YSR states. It is
likely that the localization of unpaired spins requires a thicker oxide. On individual
grains in the oxygen-rich grAl sample, the out-gap structure of scanning tunnelling
spectra is shaped by inelastic excitations with long lifetimes. The extracted effective

94



5.8 Summary

bosonic spectral density of these excitations can be qualitatively well explained by
the spontaneous emission of multiple plasmons. This would very much support
an SIT that is driven by phase fluctuations of the superconducting gap. From an
energy standpoint, we argued that the excited plasmon mode is most likely part
of the lowest branch of discrete modes that are quantized through the thickness
of the grAl film. An alternative, yet very speculative, candidate for these inelastic
excitations are Higgs modes.
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6 MultifluxVortexStates inBulkPb

The recent evidence for two-band superconductivity [39] and its naturally close
proximity to the Bogomolnyi point [41, p. 436] make lead a prime candidate to
study the interplay of multiband superconductivity and normal conducting domains
in the intermediate state. Bulk multiband superconductivity in conjunction with
conventional s-wave pairing has been proposed to unveil a new route to topological
superconductors that are robust to magnetic fields and host Majorana modes [202,
203]. At medium magnetic fields, the low-temperature transitional region of a
multiband superconductor with close to critical κ, is also predicted to host interesting
structures like multiflux vortices [204]. These vortices represent topological objects
themselves, that may also host Majorana modes under the right conditions [205]. In
this chapter, new findings on the appearance of the low-temperature intermediate
state of Pb are presented. These include the emergence of single-flux vortices and
multiflux vortices. In the process, the influence of interband coupling, tunnelling
into Caroli-de Gennes-Matricon states and a robust method for winding number
determination are detailed. The numerical simulation of the vortex patterns via
solution of 3D Eilenberger equations confirms the interpretation of presented
scanning tunnelling data. The Fermi velocities that enter the numerical simulations
were provided by Rolf Heid from IQMT, KIT, and are obtained within a fully
relativistic DFT approach [206]. This chapter is based on the following preprint:
[207].

6.1 Meißner and Intermediate State

After several cycles of hot sputtering and annealing, as described in Sec. 3.3.2, only
very few adsorbants remained at some kink sites of step edges on the Pb(111) surface
and terraces formed with widths of up to few hundred nanometres, as can be seen
in the topographic scan shown in Fig. 6.1(a). Upon zero-field cooling the Pb(111)
sample to 39mK, it enters its superconducting state below Tc ∼ 7.2K [41, p. 436].
The dI/dU spectrum in Fig. 6.1(b) demonstrates that the two superconducting
gaps of Pb can be resolved in our setup, even with a normal conducting tip. From
the fit of a temperature broadened two-gap BCS function (red curve), the gaps are
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Figure 6.1: Superconducting State: (a) Topographic scan of the Pb(111) surface showing almost no
contamination and wide terraces. (b) Differential conductance spectrum at T = 39mK centred around
the Fermi energy. The superconducting gaps ∆1,2 are determined from a broadened two-gap BCS
function fit (orange curve). The insets show 3D models of the FSs of the two superconducting bands
(from Ref. [209]) inside the first BZ (wireframe) viewed from the (111) direction. ∆1 is assigned to the
band forming a tubular FS (red). The larger gap ∆2 is assigned to the band with a compact FS (cyan).

determined as ∆1 = (1.26± 0.02)meV and ∆2 = (1.40± 0.02)meV. This is in good
agreement with previous measurements of the difference of the two gaps [39], where
the authors made use of the energy resolution amplification of superconducting tips.

It should be noted that the intensity difference of the two coherence peaks has
previously been attributed to the k-dependent tunnelling matrix element and the
smaller (larger) gap has been assigned to the compact (tubular) Fermi surface (FS)
sheet [39], shown in the cyan (red) 3D model in Fig. 6.1(b). This is in contrast to
BdG calculations [208] and the findings in this work. A conclusion from the analysis
in Sec. 6.2.2 is that the band-to-gap assignment should be reverse: The band with
the tubular/compact FS (red/cyan) is from here on denoted as band I/II and is
responsible for the superconducting gap ∆1/∆2.

After applying a perpendicular magnetic field of B = 85mT, which is above the
critical field of µ0Hc ∼ 80mT [210], magnetic flux enters the sample from the sides
and destroys superconductivity completely. Upon subsequent decrease of the field
below Hc, the Landau intermediate state is reached. This state is characterized by
large normal and superconducting domains and by long domain walls separating
the two. The shapes and sizes of domains in the intermediate state of lead have been
extensively studied by magneto-optical methods revealing the strong dependencies
on temperature, sample shape and magnetic protocol [211–214]. Since the domain
sizes are in the range of several micro- or even millimetres, STM is not exactly suited to
study these domains. Still, it is possible to frequently freeze domain walls in the scan
frame by performing a slow magnetic field ramp (5mT/min) and simultaneously
measuring the differential conductance at eUt ∼ ∆2 at the tip position. As soon as a
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Figure 6.2: Intermediate State: (a) dI/dU map at Ut = 1.3meV showing a typical domain wall in
the intermediate state at B = 23mT. The normal (superconducting) domain exhibits a low (high)
conductance at this bias voltage. Right overlay: Corresponding topographic scan image of the area.
(b) Schematic cross-sectional view through the bulk material in the intermediate Landau state. The
magnetic flux density (blue) is favouring a more homogeneous distribution at the surface than in
the bulk leading to branching. (c) dI/dU spectra along a cross-section from normal conducting to
superconducting domain indicated by the white frame in (a). The direction of the profile is indicated
by the red arrow. The spectra are locally averaged over a straight part of the domain boundary
(perpendicular to the profile direction) and recorded in distance increments of ∆d = 9.19 nm.

domain wall passes the tip position, the measured conductance jumps and the ramp
is stopped. After a few seconds of waiting until the dynamics have stopped, finding
a domain wall within a scan frame of 1.4µm× 1.4µm is likely.

A typical domain wall in the intermediate state is shown in the dI/dU map in
Fig. 6.2(a). At a tunnelling bias of Ut = 1.3mV, the normal conducting domains
show up as areas of low conductance (purple) and the superconducting domains as
areas of high conductance (green/yellow). Thin lines of high conductance are an
artefact of the measurement mode and appear at the position of step edges on the
surface as the right overlay shows. They are the consequence of a sudden jump in
the tunnelling current when the tip gets too close to an edge in the multipass mode.
They are therefore ignored in the discussion of the LDOS. A cross-sectional line scan
across the domain wall, as in Fig. 6.2(c), shows how the gap ∆1 changes from zero
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to its maximum on the length scale of the coherence length. The local recovery of
superconductivity agrees well with reported coherence lengths of ξ ∼ 87 nm [41, p.
436]. A detailed analysis of the coherence length ξ1,2 of the two bands, measured
inside vortices, will follow in Sec. 6.2.1. Direct information about the magnetic
field lines and therefore also the local supercurrents inside the superconductor
bulk cannot be gained from neither STM nor the magneto-optical (MO) method
mentioned earlier. From energetic considerations, however, the intermediate state is
supposed to form according to two competing effects: The interface energy to build
domain walls is minimized by a course distribution of magnetic flux in the interior,
while the magnetic field outside the sample favours homogeneity. The resulting
compromise is a branching flux pattern, as shown in Fig. 6.2(b), which was first
predicted by Lev Landau [215, 216]. These thermodynamic considerations neglect
the influence of flux pinning centres in real crystals and dynamic effects caused
by the magnetic field ramp, Lorentz force acting on the flux tubes and topological
hysteresis [212].

6.2 Emergence of Isolated Vortices

For disk-shaped Pb samples, R. Prozorov could show that the equilibrium state after
flux penetration of a zero-field cooled (ZFC) sample is tubular: With increasing field,
flux enters the sample from the outer edges and is quickly pushed to the centre by
the Lorentz force. The tubular structure grows with increasing field in a coarsening
froth pattern. At the same field values, the sample exhibits a laminar magnetic
flux pattern on the surface (in accordance with Landau’s prediction) if this state
has been reached from the normal state upon field decrease [212]. While this is an
experimental observation on the micrometer scale and at 5K, it is nevertheless highly
unexpected that isolated vortices, so flux tubes carrying a single flux quantum,
form in Pb at ∼ 30mK when the field is decreased following the magnetic protocol
described in the previous section. If single-flux vortices are indeed stable in a bulk
Pb single crystal, then it raises the question whether strong pinning centres can
explain this fact, or the classification of superconductors into type-I and type-II has
to be revisited at ultra-low temperatures T ≪ Tc.

6.2.1 Normal Single-Flux Vortices

Here, compelling evidence for the existence of stable magnetic vortices in inter-
mediate state bulk Pb(111) is shown by display of the local density of sub-gap
states in a magnetic vortex, called Caroli-de Gennes-Matricon (CdGM) states. The
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quantum mechanical nature of theses states is explained in detail in Sec. 6.3. For
now, the following quasi-classical picture suffices to discuss most features of the
experimentally observable LDOS: In a magnetic vortex core, the superconducting
order parameter or gap size vanishes. Normal state electrons and holes with E < ∆

are trapped in this vortex as they are (mostly) specularly reflected by the potential
barrier ∆. Thus, a great number of quantum well states (QWS) exist inside the
magnetic vortex core. Their abundance at a certain energy is determined by the
normal state DOS and their penetration depth into the superconducting surrounding
is determined by the Fermi velocity vF

1.

After ramping the magnetic field down from 85mT, isolated, round normal conduct-
ing domains of only ∼ 100 nm in diameter are frequently stabilized. They appear as
a conductance depression at eUt = ∆2, as displayed in Fig. 6.3(h). The appertaining
zero bias conductance map is shown in Fig. 6.3(a). It reveals a threefold symmetric
star-shaped pattern with a maximum in the star’s centre. The CdGM LDOS stretches
over 100 nm in the ⟨21̄1̄⟩ directions in the form of thin rays (blue/green) that
continuously fade at increasing distances from the centre. On top of that, three
weak star arms (dark blue) along the ⟨12̄1⟩ directions are visible. The bulk crystal
directions have been determined from larger crystal defects that reveal the direction
of glide planes. Further information can be found in Chap. 7.

With increasing energy (independent of sign of bias voltage), the star’s weak and
strong arms both split into two with increasing splitting distance (see Fig. 6.3(b-f)).
Meanwhile, the central peak splits isotropically to a ring shape (Fig. 6.3(b-f)). At
eV ≲ ∆1 the ring size is maximal (see Fig. 6.3(g)). This pattern proved to be
invariant under reversal of tunnelling current or magnetic field direction, which
is demonstrated in Appendix D and showcases the particle-hole symmetry of the
CdGM states.

By solving the quasi-classical 3D Eilenberger equations, the experimentally found
LDOS patterns of CdGM states could be qualitatively reproduced for bands I and II
separately. In Fig. 6.3(a,e), the right bottom (top) panel shows the calculated LDOS
signature for a single-flux vortex using the DFT calculated band structure from band
I (II) at given energy. Apparently, the long, stretched-out star arms of high LDOS
stem from electrons at the Fermi edge of band II, for which the FS is shown in cyan.
A view onto the FS from the (111) direction makes it obvious, that these long arms
are caused by the large Fermi velocity anisotropy in this band. A large portion of the
FS consists of flat parts where the Fermi velocity’s in-plane component points in one

1 For a non-relativistic electron, the classical momentum p = mv can be used in the kinetic energy
term of the Hamiltonian Hkin(r) = −iℏv∇.
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LO HI

LO HI

Figure 6.3: Single Flux Vortex: Multi-pass images of the differential conductance at sub-gap energies
(a-h), recorded at T = 37mK and Bext = 0mT. The inset in (a) shows the atomic lattice and important
bulk crystal directions are marked by yellow/red arrows. Right panels in (a,e) complement experimental
data with LDOS simulations using a 3D Eilenberger formalism and DFT calculated Fermi velocities.
The LDOS pattern was calculated seperately for band I (top) and band II (bottom) with FSs as shown in
the small inset.

of the ⟨21̄1̄⟩ directions. The splitting of the arms is also seen in the semi-classical
calculation at non-zero energy. The root of this effect lies in the quantum-mechanical
nature of these states and will be discussed in detail in Sec. 6.3. The calculations
for band I confirm that the weak arms in the ⟨12̄1⟩ directions as well as the strong
central LDOS peak stem from electrons at the red FS. The openness of this FS
provides for a larger variety of Fermi velocity direction, which effectively leads to a
more isotropic scenario, albeit the threefold symmetry still remains apparent. The
stronger confinement of states in the centre is a result of the (on average over the
whole FS) larger z-component2 of the Fermi velocity. Consequently, the respective

2 Here, the z-direction denotes the direction perpendicular to the crystal surface, so the [111] direction.
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in-plane component is smaller, which leads to a smaller penetration depth into the
superconducting surrounding. The out-of plane component of the Fermi velocity
proved to play a crucial role in the Eilenberger calculations, as solving effective 2D
Eilenberger equations in the (111) plane would only yield sixfold symmetric LDOS
patterns. The 3D trajectories of the quasiparticles do, however, have substantial
z-components. Upon respecting the translation symmetry breaking by the surface,
in conjunction with 3D quasiparticle trajectories, the threefold symmetric LDOS
patterns could finally be reproduced. A detailed explanation of the simulation
methods used, can be found in Appendix C.

It should be noted that this is not the first observation of anisotropic LDOS signatures
due to CdGM states in and around a vortex structure: The first to observe such
star-shaped structures were Hess et al., who observed them in the vortex lattice of
2H-NbSe2 [217]. Later, Hayashi et al. demonstrated that the semi-classical theory of
Eilenberger can reproduce the experimental results nicely [218, 219]. Recently, they
were also observed on the (0001) surface of the elemental superconductor La [220],
where the anisotropy was attributed to the Fermi velocity and not to an anisotropy
in the gap parameter which was shown to have a large affect the LDOS pattern, too
[221, 222]. This work marks the first experimental observation of highly anisotropic
CdGM states from two different bands inside solitary vortices. The early stated
presumption that the anisotropic pattern might be caused by neighbouring vortices
[217, 223] in a flux lattice can therefore be ruled out. In addition, this is the first time,
a pattern with odd-integer rotational symmetry is found. It could be shown that this
pattern can be reproduced using 3D Eilenberger simulations with accurate Fermi
velocites and that the total signature can be understood as a superposition of the
CdGM states from both superconducting bands.

After learning which sub-gap states belong to which band, it makes sense to take a
deeper look into the single bias spectroscopies inside the vortex in order to determine
the length scale on which ∆1 and ∆2 change. Previously, in Sec. 6.1, this proved
to be difficult for the domain wall due to the ripples inside it3. Radial linegrids
recording the differential conductance were taken on the vortex from Fig. 6.3. In
Fig. 6.4, the second derivative of the differential conductance −∂2σ/∂V 2 is shown
for four different directions (indicated in the inset). The grey color code has been
adjusted such that white regions mark clear peaks in the differential conductance
curves. One can now follow the traces of these peaks as the distance from the centre
increases. For α = 0◦ the linegrid is aligned with a strong star arm. We can thus
recognise the trace of peaks at zero energy to be the CdGM states of band II (cyan

3 The necessary averaging over a certain length of the domain wall had a negative impact on the overall
energy resolution and made a distinction between ∆1 and ∆2 difficult over a large distance.
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Figure 6.4: Coherence Lengths in the Normal Single-flux Vortex: Angle dependent radial measurement
of the vortex core states from the vortex in Fig. 6.3. Displayed is the second derivative of the differential
conductance −∂2σ/∂V 2 in order to highlight maxima in the LDOS. The point distance of single spectra
is ∆d = 2.57 nm. Marked are the opening of ∆1 (red line), the opening of ∆2 (cyan line) and the
CdGM states of band II (cyan dashed line). The inset shows the direction of the y-axis.

dashed line). For 0◦ < α < 60◦ the states move to higher energies and eventually
fall together with the opening of ∆2 at α = 60◦ (cyan line). A crossing of ∆1(r) and
∆2(r) is identified at d ≈ 50 nm. That means, that the length scales on which the
two recover to their maximum value must be different. The smaller gap ∆1 seems
to recover much quicker than ∆2 when moving away from the vortex centre (red
line). While ∆2(r) can be described by ∆2(r) ∼ ∆2 tanh(r/ξ2) with ξ2 ∼ 45 nm over
the whole distance, ∆1 cannot. It follows a tanh behaviour with ξ1 ∼ 45 nm for large
distances from the centre but has a much steeper slope yielding a core size of only

ξ
(c)
1 = ∆1(∞)

[
limr→0

d∆(r)
dr

]−1

≈ 10 nm.

Such a shrinking of the vortex core size is known from theory as the Kramer-Pesch
effect [223, 224]. It is so far mainly studied in isotropic vortices [224–226] and the
self-consistent solution of the pair potential with isotropic Fermi velocity shown
in Fig. D.2 confirms that a Kramer-Pesch effect should be present and lead to a
significant deviation from a tanh shape of ∆(r). This observation is in accordance
with our band-gap assignment: Band I, which is responsible for ∆1, has a more
isotropic Fermi velocity distribution than band II, for which the Kramer-Pesch effect
is missing. It makes sense that, in the anisotropic case, the thermal population of
the CdGM states at T ≪ Tc does not lead to a core size reduction because the low
energy CdGM states can extend far from the vortex centre in certain directions. For
a superconductor in the clean limit, the core size should shrink proportional to T/Tc
and should even be able to become infinitely small at T → 0K [227]. This raises the
question, how the opening of the gap should rightfully be determined in the low
temperature experiment. As one can see in Fig. 6.4, the quasiparticle coherence peak
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at ∆1 is already present at ≈ 10 nm distance from the centre which could mean that
the core size is even smaller and the red line follows the CdGM states of ∆1 which
do not coincide with the “opening” of ∆1. This is, however, almost a philosophical
question: Since these CdGM states are always present in a vortex, they always take
away from the condensate and only when they reach E = ∆ is the corresponding
coherence peak maximally large and the gap fully empty. Apparently, there is no gap
size matching (the similar ∆ are rather a coincidence) and no length scale locking
present in Pb. This leads to the conclusion that the bands are relatively decoupled
from each other [87]. This readily justifies the separate treatment of the two bands in
the quasi-classical simulation.

6.2.2 Anomalous Vortices

Apart from normal single-flux vortices, anomalous vortices like the one in Fig. 6.5
are frequently observed. These vortices also carry one single flux quantum and
behave like the normal vortices but the sets of CdGM states from the two bands seem
to be spatially displaced with respect to each other. The fact that the strong central
zero bias peak in Fig. 6.3(a) belongs to a different band than the strong star arms
was previously only inferred from the comparison with the theoretical calculations
but can now be confirmed experimentally. In the anomalous vortex, this strong zero
bias peak does not lie in the centre of the star pattern, as can be seen in Fig. 6.5(a).
In Fig. 6.5(b-g), it is also much clearer that this peak splits almost isotropically to a
ring-like pattern for higher energies. Due to the displacement of the CdGM states,
the zero energy LDOS in the star centre and the ring centre can be compared. This is
shown in Fig. 6.5(i). The amplitude of the tunnelling conductance in the ring centre
is roughly four times larger than in the star centre. In fact, the band-gap assignment
is unambiguously possible by using the fact that the CdGM states from different
bands are spatially displaced: By recording the differential conductance in fine
linegrids (Fig. 6.5(j,k)) along the paths k,j, that are marked in Fig. 6.5(i)’s right panel,
one sees that ∆2 (cyan line) closes in the star centre, while ∆1 (red line) closes in
the centre of the ring. Since the CdGM state-band assignment is known from the
quasi-classical simulations, one can now also definitively relate band I (tubular FS)
to the smaller ∆1 and band II (compact FS) to the larger ∆2.

The direction and magnitude of spatial displacement between the two state sets could
not be tied to any crystal direction and appears to be almost random. By changing
the magnetic field, the displacement can be modified, as Fig. 6.6 demonstrates. In
fact, both CdGM state sets are mobile and as a result, the anomalous vortex can be
transformed back into a normal vortex. As a point of proof, Fig. 6.7(a,c) shows the
respective topographic images to the conductance maps in (b,d). Clearly, the scan
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Figure 6.5: Anomalous Single-flux Vortex: (a-h) dI/dU maps like in Fig. 6.3 for an anomalous vortex.
(i) Right panel: Enlarged image of (a) including the position of line grid spectra (white arrows) and
single spectra locations (red/black circle). Left Panel: Single dI/dU spectra in the star centre (black)
and ring centre (red) revealing zero bias peaks of different amplitude. (j,k) Heat maps of the second
derivative of the differential conductance −∂2σ/∂V 2 like in Fig. 6.4 along the cross-sections marked in
(i). The red/cyan line follows ∆1/∆2.

area remains the same but the vortex moved and transformed from the anomalous
type to the normal type. The chances of this being two entirely different vortices
are rather small considering the low probability to find one in the first place. So
overall, the CdGM states of individual bands seem to be almost disconnected from
each other inside one vortex, which ties into the previous indications of a small
interband coupling. Additionally, the vortices themselves are moveable by a change
in magnetic field and can be changed from the anomalous to the normal type. One
explanation for this could be, that the flux tubes are tilted with respect to the surface
and that this tilting causes the displacement of the CdGM state sets by removal of
the cylinder symmetry. In fact, the bright stripe (which also splits in energy) that
points toward the vortex in Fig. 6.5, 6.6 and 6.7 is only present for anomalous vortices
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Figure 6.6: Manipulation of CdGM State
Displacements: Upon slowly varying the
magnetic field, the relative displacement
of the star centre and ring centre (red)
changes in distance and direction untied
to any crystal direction. (a-d) Differential
conductance at zero bias voltage around
the vortex from Fig. 6.5 at decreasing
magnetic fields. The position of the ring
centre is marked by a white-dashed circle.
The bright stripe mentioned in the main
text is marked at its borders with white
dashed lines

and might indicate the direction in which the magnetic field lines are tilted. For
clarity, it is marked in Fig. 6.6 by white dashed lines, together with the position of
the ring centre by a white dashed circle.

Figure 6.7: Manipulation from Anoma-
lous to Normal Vortex: (a,c) Topographic
images of the same area on the surface
before (a) and after (c) the decrease in mag-
netic field. (b,d) Corresponding dI/dU
maps to the topographic images (a,c).
After a slow decrease of the magnetic
field, the anomalous vortex in (b) moved
and transformed into a normal type (d).
In the process, both sets of CdGM states
moved.

107



6 Multiflux Vortex States in Bulk Pb

6.3 Tunnelling into Caroli-de Gennes-Matricon States

By solving the BdG equations for a cylinder symmetric vortex line in a type-II
superconductor, C. Caroli, P.G. de Gennes and J. Matricon could show that there
exist fermionic bound states with energies smaller than the gap size ∆∞ in the
vortex core [229]. For ϵ ≪ ∆∞, these Caroli-de Gennes-Matricon (CdGM) states
approximately follow the linear dispersion

ϵ(µ, kz = 0) ∝ µ
∆∞

kF ξ
≈ µ

∆2
∞
ϵF

(6.1)

with µ being an angular momentum quantum number that defines each state |jµ⟩
with total angular momentum j. One could think of these states as quantised
Landau levels with the difference being that each of these states has to be built from
the superconducting condensate and is therefore a mixture of electron and hole
character. The spectrum for a single-flux vortex, calculated by Gygi and Schlüter, is
shown in Fig. 6.8(a). The states are in principle discrete in energy, a zero-energy state
is missing and the spectrum is inversion symmetric to the origin ϵ = µ = 0, meaning

Figure 6.8: CdGM states: Quantum mechanical calculation of ϵ(µ) for vortices of different vorticity m.
(a) Energy spectrum for an m = 1 vortex. Reprinted figure with permission from [223]. Copyright
(1991) by the American Physical Society. (b,c) Energy spectrum for an m = 4 (b) and m = 5 vortex (c).
Reprinted figure with permission from [228]. Copyright (1999) by the American Physical Society.
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Figure 6.9: Multiquantum Vortex Fingerprint: Calculated radial conductance profile for an m-quanta
vortex. Reprinted figure with permission from [228]. Copyright (1999) by the American Physical Society.

that the excitations for µ < 0 have ϵ(µ) < 0. The dispersion is linear for low energy
and flattens as the CdGM states approach the gap energy. While individual CdGM
states can be probed on a few unconventional superconductors like FeTe0.55Se0.45
[230], that have a relatively high gap energy and small Fermi energy, for conventional
superconductors the ratio ∆2/ϵF is, even at ultra-cold temperatures, below the
resolution limit of current techniques like STS. For Pb, this energy spacing is of the
order of ∼ 0.1µeV. As a result, the states form a quasi-continuum, which is called a
CdGM branch. As can be seen from comparison with results for anm = 4 andm = 5

vortex (see Fig. 6.8(b,c)) by Virtanen and Salomaa [228], there exist m individual
CdGM branches in an m-quanta vortex. While all spectra are inversion symmetric to
the origin, only vortices with odd winding number have a branch that crosses E = 0

at µ = 0.

An important feature of these states, that emphasizes their similarity to Landau
levels, is that the quantisation translates to some extent into real space: Gygi and
Schlüter could show that a CdGM state with angular momentum µ has maximum
amplitude at a distance r ∼ |µ|/kF from the vortex centre [223]. That is for a cylinder
symmetric vortex and an isotropic in-plane Fermi velocity. This makes STM an
excellent choice of instrument to study these states, as the whole spectrum of CdGM
states can be probed in radial STS profiles of the vortex. These profiles should then
exhibit the wedge shape from Fig. 6.9 with multiple dispersing branches for an
m-quanta vortex. If all CdGM state branches can be disentangled and identified in
these profiles, then an unambiguous determination of the vortex winding number is
possible.

6.3.1 Determination of Vortex Winding Numbers

In the same year, in which Gygi and Schlüter published their results from the
microscopic theory, G.E. Volovik made the connection of the low energy fermionic
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6 Multiflux Vortex States in Bulk Pb

states inside a vortex, that he studied primarily in rotating superfluid 3He-B, to
topology. He found, that the number of zero energy crossings Nzm, i.e. points
in k-space where particle and hole spectrum meet, is a topological invariant and
therefore very robust to perturbation of the system [227, 231, 232]. This means, that
the overall shape of the vortex should not matter and that the number of individual
CdGM state branches is simply determined by the vortex winding number m, in
particular

Nzm = m. (6.2)

As discussed beforehand, in the case of the cylindrically symmetric vortex with
isotropic Fermi velocity, m can easily be determined in an STM experiment. That is
because the number of zero-energy peaks in a radial STS profile going from −ξ to +ξ

through the vortex centre is Nzm and thus identical to m. The problem in deviation
from the model case of perfectly cylindrical vortices and isotropic bands is that the
description of the axial degree of freedom by an angular momentum is not correct, and
the solutions of the problem will deviate from simple Bessel functions. Consequently,
the quasiparticle spectrum, whether described fully quantum mechanically or
semi-classically, has to be described by the quantum numbers (kx, ky, kz). The
application of the topological index theorem then proves to be more difficult from
an experimental point of view, as it is unknown which line in real space crosses
all diabolic points (the zero energy points in the spectrum, in this case) in k-space
exactly once. Even though the states do not possess a continuous rotation symmetry
anymore, the next section will show that the shape of the vortex plays an underlying
role and that the discrete symmetry group of the electronic bands is inherited by the
CdGM branches in real space.

6.4 Evidence of Multiflux Vortices

Apart from single-flux vortices with a diameter of ∼ 100 nm, larger vortices could
also be observed. Two examples are shown in Fig. 6.10. (a-c) show a vortex that
contains two flux quanta. The zero bias conductance map (a) reveals a star shaped
STM state pattern in which the arms into the ⟨21̄1̄⟩ direction are doubled into parallel
rays. The arms into the ⟨12̄1⟩ direction remain weak and the conductance in the
centre of the vortex is a local minimum (see blue curve in (g)). At higher energy (b),
the star arms again split into two arms each totalling four arms in each direction for
this vortex. The quasi-classical calculation (a, right panel) confirms that this is the
signature of a magnetic vortex with winding number m = 2. Again, the star shaped
pattern stems from band II (top right) while band I, with a more isotropic Fermi
velocity distribution, would cause a ring (bottom right). Surprisingly, the relative
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LO HILO HI

Figure 6.10: Multiflux Vortices: (a-f) dI/dU maps of an m = 2 (a-c) and m = 3 (d-f) vortex. The
right panels in (a,d) display the simulated LDOS of band I (bottom) and II (top). (g,h) Single bias
spectroscopies (bottom panel) at important locations of the vortex, marked with the corresponding
color in the zero bias map (top panel).

magnitude of the LDOS signal from the two bands now seems to be reversed in
the calculation. This is in agreement with the experimental observation, where the
ring, that is predicted from band I, seems to be overshadowed by the states from
band II. An analogous behaviour is found for the vortex with three flux quanta in
Fig. 6.10(d-f). Here, the zero bias conductance reveals a star-shaped pattern with
three arms in each ⟨21̄1̄⟩ direction (d) that split into six at higher energies (e). The
centre of the vortex now features a local conductance maximum (blue curve in (h)).
Both vortices appear larger than the single-flux vortex at eV = ∆2 (compare Fig.
6.3(h) and Fig. 6.10(c,f)), grow in lateral dimension with the number of confined flux
quanta and are not round, but oval-shaped. This might once again be the result of
tilted flux lines. The number of confined flux quanta is not limited to small natural
numbers: In Fig. 6.11, a giant vortex with m > 10 is shown. It features a large but
countable number of flux quanta, because the number of arms that spread from the
structure are countable.

Coming back to Volovik’s original topological index theorem, one can conclude that
for a vortex with anisotropic Fermi velocity, it still holds that the existence/absence
of a zero-energy peak in the vortex centre implies an odd/even winding number.
However, it is not possible anymore to determine the exact winding number by
counting the number of zero-energy crossings in a radial profile. That is because
the cylinder symmetry of the problem is removed by the anisotropy in the Fermi
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6 Multiflux Vortex States in Bulk Pb

Figure 6.11: Giant Vortex: dI/dU maps
of a giant vortex with winding number
m > 10. The STM states at zero energy
(a) extend into the ⟨112⟩ directions with
more than 10 arms. At higher energies
(b) the arms split like in the vortices with
lower m.

velocity. As a consequence, it is not ensured that all diabolic points are crossed in
the radial profile, which is crucial for the topological argument. One can, however,
now reformulate the topological index theorem for a star-shaped vortex based on
the experimental findings and quasi-classical calculations: The number of parallel
arms l of a star in the zero-energy LDOS map seems to be identical to the number of
diabolic points and thus one can once again use the topological index theorem to
state that the winding number of the vortex is given by

m = l. (6.3)

6.5 Vortex Interactions beyond the Ginzburg-Landau
Limit

It is time to address the question, how a stabilization of single-flux and multi-flux
vortices in bulk Pb is possible. With a GL parameter of κ ≈ 0.48, Pb is the elemental
superconductor closest to the Bogomol’nyi point, κc = 1/

√
2 ≈ 0.7, but should,

according to the standard classification of superconductors, respond to an external
magnetic field like a typical type-I superconductor. Apparently, the majority of
domains in the intermediate state display the standard behaviour that is characteristic
for type-I, i.e. large superconducting and normal regions. During the magnetic field
ramp, flux flow is observed. As soon as the magnetic field is kept constant, single
vortices could be stabilized, without spontaneous unpinning or drift being observed
in the experiment.

This is surprising, because in superconductors of type-I, the ratio of the two
characteristic length scales ξ and λ implies an attractive vortex-vortex interaction.
That is because the vortex cores overlap before the screening currents see each
other and two vortices merge before repulsive interactions come into play. In
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type-II superconductors, the contrary is the case: Here, the screening currents
lead to repulsive interaction between two vortices before the vortex cores overlap.
The Bogomol’nyi point with κ = 1/

√
2 manifests an infinitely degenerate point

in the phase diagram where the vortex interaction potential changes sign. In an
idealized superconductor, vortices should there behave like non-interacting particles
[233–236]. Since the GL theory is only valid near Tc, this standard classification and
argumentation is also only valid for temperatures T ≲ Tc. In fact, recent works by
Vagov et al. on the low temperature extension of the GL theory expect the degeneracy
of the Bogomol’nyi point to be lifted below Tc and give rise to a phase rich transitional
region in the (κ, T ) plane that widens with decreasing temperature [204]. This is
shown in Fig. 6.12. Of special interest is the region of multi-flux vortices right below
the transitional domain with single-quantum vortices. The multi-flux vortex region
seems to be narrow, but Vagov et al. could show in the same publication that a large
Fermi velocity anisotropy in two-band superconductors can aid in widening that
region further, which opens an alternative path for Pb. To believe that the vortices in
this work are in a stable regime due to the temperature dependence of κ only is,
however, too naive, because these theoretical calculations neglect the dependence of
κ on impurities and the finiteness of sample size.

In order to test whether the above described low temperature effect is sufficient to
explain the stabilization of single-flux and multi-flux vortices in bulk Pb, a control
experiment at T = 4.3K was carried out. It turned out, that the stabilization of single
vortices within the STM scan frame was substantially harder and only in a single
case a stable vortex was found (see Fig. 6.13). This experimental observation suggests
that the low temperature plays an important role in the frequent observation of
single vortices, but is most likely not solely responsible. As mentioned earlier, in a

Figure 6.12: Low Temperature Transi-
tional Region: Low temperature phase
diagram of the critical GL parameter κ(T )
including the transitional region

[
κ∗2, κ

∗
li

]
between standard types I and II. In the re-
gion

[
κ∗s , κ

∗
1

]
multiquantum vortices are

stable solutions. Reprinted figure with
permission from [204]. Copyright (2016)
by the American Physical Society.

113
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Figure 6.13: Vortex at T ≲ Tc: (a,b) dI/dU maps of a magnetic vortex at T = 4.3K and B = 0mT.
(c) Bias spectroscopies far away from the vortex (black squares) and in the centre of the vortex
(blue triangles) in (a). The red line shows a fit of Dynes form to the differential conductance in the
superconducting region with a gap size of ∆ = 1.24meV.

real single crystal of Pb, the GL parameter is also affected by crystal defects, which
can at the same time lead to flux pinning as discussed in Chap. 2.1.2.

Extended defects with a size d ∼ ξ are effective pinning centres for flux. An
example for such a defect is a screw dislocation, as shown in Fig. 6.14(a). The
strong pinning energy scales linearly with the volume Vc = ξ2L, in which the screw
dislocation runs through the vortex line, and the condensation energy of Cooper
pairs Econd = µ0Hc(0)

2/2 [237]. The ends of screw dislocations are clearly visible in
STM topographies, but no trend of flux pinning at these sites on the surface was
obvious during the experiment. However, at stacking fault tetrahedrons, extended
defects that are unique in fcc metals, vortices were regularly pinned. Due to their
intricate structure and electronic footprint, a detailed analysis can be found in Chap.
7. In a collective pinning mechanism, defects with a size d≪ ξ can also effectively
trap flux albeit with a smaller scaling ratio. As an example, the weak collective
pinning by point defects is depicted in Fig. 6.14(b). In the potential of randomly
distributed point defects, the pinning energy scales with

√
Vc. To some extent, the

vortex line can sacrifice elastic energy in order to run through parts of the crystal
with higher defect concentrations. The length scale Lc on which the vortex line
remains relatively straight is therefore a measure for the pinning strength [237].

All in all, it seems unlikely that the isolated vortices in this work are a result of a high
κ alone. In that case, one would expect either a lot more vortices (κ∗1 < κ < κ∗li) or
domains of all kinds of sizes (κ∗2 < κ < κ∗1). Instead, one mostly finds isolated vortices
coexisting with µm-large domains. The low temperature does play an important
role, as the control experiment at 4.3K demonstrated. It prevents thermally driven
flux creep and puts bulk Pb farther away from the standard type-I regime in the
intermediate state so that attractive vortex-vortex interactions are smaller. As a
result, lower pinning energies are needed to trap flux on a defect. One can see
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Figure 6.14: Vortex Pinning Mechanisms: (a) Strong pinning by an extended defect (ddef > ξ), like a
screw dislocation: The pinning energy is proportional to the volume, in which the screw dislocation
runs parallel through the vortex line. (b) Weak pinning by point defects (ddef ≪ ξ): Small defects can
collectively pin flux. The elastic vortex line bends to run through the crystal volume with the most
defects. The length scale on which the vortex line remains straight Lc is a measure for the strength of
this pinning mechanism. The collective pinning energy only scales like the square root of the total flux
line volume. Adapted from Ref. [237].

indications for strong pinning on stacking fault tetrahedrons but not on single
screw dislocations. Additionally, impurities can aid the larger defects by a collective
pinning mechanism.

6.6 Summary

Although bulk lead (Pb) is classified as a prototypical type-I superconductor, it
was demonstrated that the intermediate state hosts single and multi-flux quanta
vortices at mK temperatures. As stability criteria for the existence of the vortices, the
influence of temperature and defect density on the effective GL parameter κ were
discussed. By probing the quasiparticle LDOS inside the vortices with STM and
comparing their signature with simulations, it was possible to identify the CdGM
states of the two superconducting bands of Pb. The spatial LDOS pattern created by
the CdGM states provides a robust method to determine the vorticity or winding
number. The robustness is rooted in the fact that the number of diabolic points in
the CdGM state spectrum are a topological invariant of the vortex. Simulations of
the single and multiflux quanta vortices in the quasi-classical Eilenberger theory, in
conjunction with DFT calculated band structure of Pb, support the experimental
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findings and interpretations. Tilted vortices were useful to demonstrate a low
interband coupling for the two superconducting bands, as their respective CdGM
state patterns were independently moveable. Additionally, they allowed for a definite
assignment of the two gaps ∆ = (1.26± 0.02)meV and ∆ = (1.40± 0.02)meV to the
two superconducting bands of Pb.
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7 QuasiparticleandFluxTrappingin
TopologicalDefectsofaTwo-band
Superconductor

Despite being topological defects themselves, vortices in dimension d = 3 are
not expected to host topologically non-trivial bound states inside their core [238].
The situation changes when topological crystal defects, i.e. extended defects with
dimension D ≥ 1 like dislocations (D = 1) or twin boundaries (D = 2), are added to
the mix [239]. In this chapter, the focus lies on stacking fault tetrahedra (SFTs) in
Pb(111). These extended defects, that are unique to fcc metals, are efficient pinning
centres for flux in the intermediate state, as shown in the differential conductance
map in Fig. 7.1. After elucidating their formation and structural properties, their
impact on the low energy electronic spectrum is highlighted. Lastly, the interaction
of these crystal defects with the CdGM states of a pinned vortex are discussed. This
chapter is the logical continuation of Chap. 6 toward the combination of extended

Figure 7.1: Flux Traps: Differential conductance map on intermediate state Pb(111) at eU = ∆2 = 1.4mV.
Areas of low conductance (purple/blue) mark normal conducting regions and areas of high conductance
(green/yellow/red) mark superconducting regions. The triangles with a surrounding hexagon of higher
conductance are the electronic footprints of SFTs. In two out of three visible SFTs magnetic flux is
trapped.
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crystal defects and (multiflux) vortices and therefore builds up on findings from the
vortex study in Pb.

7.1 Stacking Fault Tetrahedra

In face-centred cubic crystals, the preferred glide plane for dislocations is the (111)

plane and the intersections of all available {111} planes form a regular tetrahedron.
Therefore, the movement of dislocations is most conveniently explained at the
Thompson tetrahedron (TT). As shown in Fig. 7.2, the Burgers vector of a (partial)
dislocation can be easily drawn in the TT by the connection of corner points (Latin
letters) or face centres (Greek letters).

Perfect dislocations (edge or screw type) are found at the sides of the TT, so the
notation for its Burgers vector is the Latin letter for the beginning and end corner
point, e.g. BA, which corresponds to the bulk direction 1

2 [11̄0] in Miller index
notation. The unfolded TT in Fig. 7.2(b) serves as a dictionary to translate between
Miller index and TT notation. Under applied stress, the glide of a perfect dislocation
along a {111} plane is hindered by the hexagonal atomic configuration in the plane
and it is energetically favorable for the atoms to move in zig-zag motion via the hcp

A B

C D

D

A

B

C

D

D

A
B

C

D

Figure 7.2: Thompson Tetrahedron: (a) The {111} glide planes in an fcc crystal form a regular
tetrahedron - the Thompson tetrahedron (TT). The Burgers vector of (partial) dislocation lines are all
found as connections between corner points or face centres of the tetrahedron. (b) The unfolded TT
with marked bulk crystal directions serves as a dictionary to translate between Miller indices and TT
notation, e.g. BA→ 1

2
[11̄0].
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Figure 7.3: Silcox-Hirsch Mechanism: (a) The SFT of a frustrated configuration of stair-rod dislocations
is built from a triangular Franck partial loop following the dislocation reactions (7.2) and (7.3). Adapted
from [240, p. 99]. (b,c) Molecular dynamics (MD) simulations demonstrate that the Silcox-Hirsch
mechanism can create an SFT from a triangular (b) or scalene hexagonal platelet of vacancies (c).
Reprinted from [241], Copyright (2007), with permission from Elsevier.

hollow site on the (111) plane. Formally, the perfect dislocation dissociates into a
pair of Shockley partial dislocations:

BA→ Bγ + γA. (7.1)

If the stacking fault energy is low enough, the dislocation can travel through the
crystal as an extended dislocation, in which a leading Shockley partial and a trailing
Shockley partial enclose an intrinsic stacking fault. This means that between the
two Shockley partials the stacking sequence in [111] direction is not ABCAB.. but
ABABC...

The stacking sequence inside an fcc crystal can also be faulted by the removal or
insertion of one close-packed {111} layer of atoms with finite lateral dimension
(island). The boundary line of the stacking fault forms a closed loop and is called a
Franck partial dislocation. The difference to the Shockley partial is that its Burgers
vector points perpendicular to the {111} plane, which is faulted, e.g. δD ≡ 1

3 [1̄1̄1̄].
The Shockley partial and the perfect dislocation, whose Burgers vector lie within a
{111} plane, are so-called glissile dislocations, because they can freely move in the
glide plane under applied stress. The Franck partial on the other hand is a sessile
dislocation and can only move by climb [240, p. 93].

The SFT is a nanocrystal in the shape of a regular or truncated tetrahedron with
stacking faults on each of its {111} facets and commonly observed in metals of
low stacking-fault energy, like Cu, Ag or Au [242–244]. It is believed to form in
the Silcox-Hirsch mechanism [240, p. 98-99]: First, vacancies or impurities condense
to a triangular platelet, say in the ABC plane, then the bounding Franck partial
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dissociates on three adjacent {111} facets into a so-called stair-rod partial (two Greek
letters) and a Shockley partial dislocation (one Greek, one Latin letter):

δD → δα+ αD (onBCD)

δD → δβ + βD (onACD)

δD → δγ + γD (onABD). (7.2)

The stair-rod partials remain in a locked configuration along the triangle edges (on
ABC) and repel the glissile Shockley partials due to their parallel Burgers vectors.
The Shockley partials then move up the tetrahedron faces and pull up additional
stair-rod dislocations on the intersection edges (AD, BD, CD), as shown in Fig.
7.3(a), by the dislocation reactions

αD +Dβ → αβ (along CD)

βD +Dγ → βγ (along AD)

γD +Dα→ γα (along BD). (7.3)

If the stair-rod dislocations culminate in the tip of the TT (D), then one ends up with
a regular SFT, if they stop their movement before, one ends up with a truncated
SFT. Atomistic simulations could show that the Silcox-Hirsch mechanism can,
under certain circumstances, also develop SFTs from a scalene hexagonal platelet
of vacancies [241], which explains the shape of SFTs, observed on Au(111) [244].
The results of these simulations for a triangle and scalene hexagon as the starting
vacancy plate are also shown in Fig. 7.3(b,c).

7.1.1 Stacking Fault Tetrahedra in Pb(111)

In the experiments from Chap. 6 and 7, the extended defects which are able to trap
flux are interpreted as SFTs based on their size, alignment with the glide planes and
electronic footprint. They are most likely created during the hot sputtering process
although the dependence of abundance and shape of them on temperature, ion
flux and ion energy has not been studied in this work. Figure 7.4(a-d) shows the
topographies of four different exemplary SFTs in Pb(111). The white dotted lines
correspond to contours of the LDOS as seen in the respective low bias differential
conductance maps (e-h) in the superconducting state of the crystal. In (a) and (b)
the SFT lies at the surface, which is visible as a scalene hexagonal depression in
the topographic image. The apparent negative height is a fraction of one single
(111) lattice plane distance. The white contour lines in the [21̄1̄] and equivalent
crystal directions on the surface are in fact the directions in which one would
expect projections of the stair-rod dislocations αβ, γα and βγ (cf. Fig. 7.3(a)). The
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7.1 Stacking Fault Tetrahedra

difference in length of these contour lines between (a) and (b) hints towards different
evolutionary stages, so different truncation levels, of the SFTs.

By that logic, the SFT in (a) has developed less of a tetrahedron before being truncated
by the surface, while the SFT in (b) has developed further, with longer stair-rods.
Of course, this is a highly hypothetical interpretation, because the bulk structure
is only inferred from a small amount of structural information and the electronic
DOS at the surface. Given the fact, that the surface energies in Pb favour vacancy or
impurity islands of scalene hexagonal shape in the {111} planes [245], a formation
of SFTs like in Fig. 7.3(c) seems most probable. In the topographic images in Fig.
7.4(c,d) a depression like in (a,b) is missing. The SFTs seem to be buried beneath the
surface, yet close enough for the LDOS at the surface to confirm their existence. In
(c), the SFT seems to bind a non-threading screw dislocation of which both ends are
visible at the surface. In (d), no influence on the surface structure by the sub-surface
SFT is visible. Unlike the surfacing SFTs, these two SFTs have a rather similar area
ratio between the inner scalene hexagon (almost triangle) and the outer hexagon.

Figure 7.4: Appearance of SFTs: (a-d) Topographic images of areas containing (truncated) SFTs. The
white lines outline where the respective map of differential conductance exhibits clear contours of the
LDOS. Surfacing SFTs (a,b) are visible by a hexagonal shaped depression of a fraction of a lattice plane
distance. Sub-surface SFTs (c,d) are only detectable through their electronic footprint. (e-f) dI/dU -maps
at U = 1.4meV displaying the corresponding LDOS to the topographies in (a-d). In (f) and (h) flux is
threaded through the centre of the defect rendering it normal conducting.
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It is possible that these truncated SFTs represent the equilibrium shape acquired
universally in the bulk, but a definite answer lacks statistical evidence.

In dI/dU maps at eU = ∆2 (Fig. 7.4(e-h)) (superconducting state) surface and
sub-surface SFTs are easily recognizable by a hexagonal region of ≈ 30 − 150 nm

(depending on SFT size) of increased conductance with a cutout, that is usually
a scalene hexagon (or almost a triangle), of lower conductance. Rod-like contours
of the LDOS can be seen along the sides of the inner triangle/scalene hexagon
and along the ⟨12̄1⟩ directions inside the outer hexagon. The former lie within the
{111} planes, in which the stacking faults are expected and the latter fall together
with the projected directions in which the stair-rod dislocations are expected. In
Fig. 7.4 (f,h), flux is threaded through the SFT rendering its inner structure normal
conducting (dark purple). The general contour lines of the LDOS, however, remain
intact. In Fig. 7.4(e), a standing wave pattern in the green hexagonal (almost round)
part of the LDOS is visible, which is absent in the normal conducting state (see Fig.
E.1 in Appendix E). In Fig. 7.4(g), this standing wave pattern is either absent or
could not be resolved. Here, however, a very clear quasiparticle interference (QPI)
pattern is obvious in the inner triangle. Similar particle-in-the-box states have also
been found by means of STM in the SFTs of Au(111) and Ag(111) [243, 244] and
nanocavities in Pb(111) [245, 246]. The energies at which these states are observed
are slightly larger in the SFTs of Au and Ag (E ≈ 1.6 − 4.2meV) and much larger
for the nanocavities (E ≈ 400meV), which is reasonable considering the size of the
respective confinement box. Since stacking-faults are known to have tremendous
effect on the electronic band structure, the following section is dedicated to the
origin of the QPI pattern and the LDOS contrast around an SFT.

7.2 Band Filter Effect and Quantum Well States

Before turning to the QPI patterns, it makes sense to take a closer look at why the
LDOS at the gap edge ∆2 seems to exhibit such strong local contrast with sharp
transitions on the length scale of just a few atoms. As it turns out, this is not limited
to the energy ∆2. At eU = ∆1 the outer hexagon appears lower in differential
conductance than the cut-out or the superconducting surrounding but still with the
same sharp contour, as Fig. 7.5(a) shows for the SFT from Fig. 7.4(c,g). The source
of this contrast reversal in the outer hexagon becomes clear when one looks at the
single dI/dU spectra in Fig. 7.5(b) along the line indicated in (a): Inside the inner
triangle (points 0-6), the coherence peak at ∆2 appears to be missing, inside the
outer hexagon (points 8-13), the tunnelling amplitude into the coherence peak of ∆2

exceeds the one for ∆1 and outside the hexagon (points 15-25), the spectra regain
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7.2 Band Filter Effect and Quantum Well States

the characteristic coherence peak heights for the Pb(111) surface. This behaviour is
best seen in a plot of the fitted amplitude σi of the BCS curve for the gap ∆i as a
function of spectroscopic location, like in Fig. 7.5(c). In the bottom panel, the ratio
A = σ2

σ1
and the asymmetry χ = σ1−σ2

σ1+σ2
are plotted. While the tunnelling amplitude

into the two coherence peaks of Pb was demonstrated to be dependent on the
tunnelling direction with respect to the crystal orientation [39], here, only vertical
tunnelling into (111) oriented planes is expected above the SFT1. Together with
the fact that the superconducting properties cannot change on a length scale much

Figure 7.5: Band Filter Effect: (a) dI/dU map (eU = ∆1) of SFT from Fig.7.4(c,d). Black crosses mark
single spectra location and the red arrow indicates the direction in which the points were sequentially
probed. (b) Two-gap BCS fits to the spectra obtained along the line marked in (a). The single spectra are
offset in y-direction for visibility. (c) Top panel: Scaling factor (amplitude) σ1/σ2 of the BCS curves
with ∆1/∆2 along the line marked in (a). Bottom panel: Amplitude ratio A = σ2/σ1 and asymmetry
χ = (σ1 − σ2)/(σ1 + σ2) along the same line.

1 Even in the presence of screw dislocations, the distorted planes around the dislocation retain the
character of (111) planes because there is no stacking fault.
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7 Quasiparticle and Flux Trapping in Topological Defects of a Two-band Superconductor

shorter than the coherence length, it is most likely that the seen effect is caused by a
constraint imposed on the movement of normal conducting electrons in the system.
It seems that the stacking faults of the SFT act as a band filtering energy barrier
that traps QPs of band I with the energy ∆1 inside the tetrahedron and hinders
QPs of band II with energy ∆2 from entering it. As a consequence, a QPI pattern
of QPs from band I2 is formed inside the tetrahedron (see Fig. 7.5(a)) and standing
waves of QPs from band II are formed outside the tetrahedron (see Fig. 7.4(e)) as a
result of their backscattering. What the authors of Ref. [247] claim to be “enhanced
superconductivity” around nanocavities in Pb(111) could also be explained by the
band selective scattering of QPs with energy ∆1 and∆2, which would not be resolved
in their experiment due to insufficient energy resolution. What is puzzling, is that
the normal conducting state, so far, showed no signs of this band filter effect.

FFT

FFT

Figure 7.6: Scattering Vectors: (a) dI/dU map (eU = ∆2) of the SFT from Fig. 7.4(a) reveals standing
wave fronts in the green region oriented toward the ⟨21̄1̄⟩ and the ⟨12̄1⟩ directions. (b) FFT of the
region marked in (a). The scattering vector (red arrow) has the length |q∥| = 0.78π/a in the [21̄1̄] bulk
([11] surface) direction. (c) Corresponding nesting vector q∥ = (0.65, 0.375)π/a on the Fermi surface
of band II responsible for the scattering vector in (b). (d) dI/dU map (eU = ∆1) of the SFT from
Fig. 7.4(c) reveals QPI pattern inside the inner triangle. (e) Analogous to (b): the scattering vector is
|q∥| = 0.26π/a in the [112̄] direction. (f) Analogous to (c): The corresponding nesting vector on the FS
of band I has q⊥ ≈ 0.333π/a and q∥ = (0, 0.26)π/a. In (c,f) kx and ky point in the [11̄0] and [112̄]

direction. The axes in (b,e) are slightly misaligned to these directions (see real space directions in Fig.
7.4(a)).

2 The QPI pattern seen in the same defect at eU = ∆2 in Fig. 7.4(g) is caused by the oscillation of the
coherence peak amplitude at ∆1 and the sensitivity of the measurement to its high energy flank at ∆2.

124



7.2 Band Filter Effect and Quantum Well States

In a local STS measurement, one gains exceptional real space resolution for the
sacrifice of momentum information, because the pure eigenstates in real space
are the Fourier transformed eigenstates in k-space. Techniques like angle-resolved
photoemission spectroscopy (ARPES) in turn probe the pure momentum eigenstates
that contain no local information. In the presence of crystal impurities, however,
these two pictures are mixed because the translation invariance is broken. Especially
in inhomogeneous superconductors like Bi2212 [248, 249], researchers developed
the technique of Fourier-transform STM, where the probed LDOS of the QPs could
be linked to scattering vectors on the Fermi surface (FS) and ultimately explain
discrepancies between STM and ARPES studies. The coherent scattering on a defect
leads to oscillations of the LDOS in real space with the period λ = 2π/|q|, where
q = k − k′ is the scattering vector.

The Fast-Fourier transform3 of the QPI pattern marked in Fig. 7.6(a) in the outer
hexagon reveals the scattering vector with length |q∥| = 0.78 π/a in the [21̄1̄] direction
(see (b)). This vector connects opposite sides of the Fermi surface of band II (along
U−Γ−U andK−Γ−K) where the DOS is relatively small but this is overcompensated
by the connection of very large portions of the FS by this single vector, as shown in
(c). The same technique can be applied to the QPI pattern in Fig. 7.6(d) at energy ∆1.
One finds the scattering vector with |q∥| = 0.26 π/a in all ⟨21̄1̄⟩ and ⟨12̄1⟩ directions
in the (111) plane, as shown in (e). The corresponding 3D scattering vector with
the same q∥, shown in (f), connects opposite sides of the smaller necks in the FS of
band I (along U −X − U ) in the Γ−X direction. Also here, the connected FS parts
are almost parallel to each other and have a relatively high DOS. Because the QPI
pattern in (d) is limited to a closed box (the inside of the SFT), one needs to be a bit
more careful in the interpretation. That is because the boundaries of the box impose
another (larger) periodicity on the electronic wavefunctions on top of the lattice
periodic crystal potential.

The Schrödinger equation of a free particle in an equilateral triangle (2D) box has
an analytical solution [250, 251] that has been experimentally demonstrated by the
authors of Ref. [243] in the STM study of SFTs on Ag(111). Ag(111) has a surface
state of quadratic dispersion and SFTs with a triangular ground plane making it
an optimal system to study the QWSs of the triangular 2D box. The electrons in
this surface state are a quasi-free 2D electron gas with constant DOS so that the
interference pattern inside the SFT is solely determined by the box geometry and
energy. On Pb(111), such a surface state is absent, because band II does not have a
bulk band gap in this direction. In nanocavities of Pb(111) [245, 246], the QWSs are
still dictated by the box geometry because the box size is of the same order as the

3 A Hanning window function was used in the Fast-Fourier transforms.
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7 Quasiparticle and Flux Trapping in Topological Defects of a Two-band Superconductor

Figure 7.7: Free particle in an Equilateral Triangle
Box: Analytical solution for the LDOS of a free
electron with quantum numbers (p, q) =

(
2
3
, 17 2

3

)
in an equilateral triangle following Ref. [250].

lattice constant and therefore overshadows the bandcharacter of the electrons. The
QPI in an SFT of superconducting Pb(111) like in Fig. 7.6(a) should in principle be
viewed as the result of Bogolyubov QPs just above the gap energy that inherit the
Bloch character of electrons4 at the Fermi surface and scatter at the stacking faults
of the tetrahedron. Therefore, they should scatter predominantly with scattering
vectors that connect parallel parts of the FS with high DOS and indeed this is what
was seen in Fig.7.6.(d-f). Still, the interference pattern shows striking resemblance to
the QWS obtained in the model of a free electron gas inside a triangular 2D box, that
is displayed in Fig. 7.7. Considering the fact that the QWSs are not (or not clearly)
visible in the defect from Fig. 7.6(a), it seems that in Fig. 7.6(d) the SFT/triangular
box has just the right size to support QWSs with a periodicity in real space that
corresponds to strong scattering vectors.

In order to shed more light on the nature of the interference pattern, it should first
be made sure that the same pattern is seen at opposite bias voltage which is to be
expected for the near-gap QPs of a superconductor. Secondly, the evolution of the
interference pattern with energy could be measured in order to learn more about the
dispersion of the QPs. And lastly, a larger number of SFTs should be investigated to
make concluding remarks on the influence of the box size and shape.

4 In this case, the box size is much larger than the periodicity of the lattice potential making a description
in the basis of Bloch states reasonable.
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7.3 Electronic Edge State

7.3 Electronic Edge State

Stacking faults have already proved to be efficient strong pinning centres for flux, at
least in high-temperature superconductors with columnar defects [252, 253]. Because
a tendency toward flux pinning at SFTs was seen in this work, it was possible to pin
a single-flux vortex inside an SFT.

In Fig. 7.8(a), the zero-bias conductance map around the defect from Fig. 7.4(c)
features the star-shaped CdGM states characteristic for a single-flux vortex. The
central line of the vortex (centre of CdGM state pattern) lies inside the SFT as a
comparison to the dI/dU map at eU = ∆2 (e) clarifies. The star arms in the ⟨21̄1̄⟩
directions, which stem from band II, are shorter than before. The states from band I,
so the weak arms in ⟨12̄1⟩ directions and the higher energy CdGM states (b-c), that
produce a ring in the real space pattern, do not seem to cross the triangular outline
of the SFT. A logical explanation would be that this effect is also caused by the band
filtering of the stacking faults. Although not well resolved, in (b,c) the high-energy
CdGM states seem to produce a QPI pattern similar to the one observed for the gap
edge QPs. One additional feature is striking in the map in (a): In the presence of the
pinned single-flux vortex, an additional state, which is localized on the edge of the

Figure 7.8: Single-flux Vortex in SFT: dI/dU maps of the SFT from Fig. 7.4(c) at B = 6mT: a
single-flux vortex is threading the tetrahedron. (a) At U = 0.0mV the CdGM state pattern of the vortex
is less extended (shorter star arms) and along the SFT edge a zero-energy edge state emerged. (b-e) At
U = 0.4, 0.8, 1.2, 1.4mV, the regular behaviour of CdGM states in Pb is seen. The CdGM states also
seem to produce a QPI pattern inside the tetrahedron.
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Figure 7.9: Edge State: (a) dI/dU map of same area as in Fig. 7.8 after decreasing the magnetic field to
B = −2mT. The vortex moved further up but remains inside the SFT and the edge state prevails. (b)
Line profile of the differential conductance as function of bias voltage along the white line marked in
(a). The CdGM states do not cross zero energy. At the position of the SFT edge a very localized peak
centred around zero energy emerges.

SFT, appeared. This state is absent in the purely superconducting phase (see Fig. E.2
in Appendix E).

Even after slightly shifting the vortex line by a reduction of the applied magnetic
field from B = 6mT to −2mT, the edge state persists, as demonstrated in Fig. 7.9(a).
A closer look at the differential conductance spectrum along the white dotted line (b)
makes it clear that the edge state is distinct from the CdGM branch in the spectrum.
The latter does not move considerably in energy along the line profile, the former
appears exactly at the triangular contour of the SFT where the stacking fault line is
assumed to be.

In order to continue the discussion of inherent differences between the CdGM states
and the edge state on the basis of physical quantities, the localisation and “lifetimes”5

or spectral bandwidths of these states were compared. This is shown in Fig. 7.10.

5 The spectral bandwidth of CdGM states around zero energy will for reasons of readability be
associated with a “lifetime”, although, this interpretation is strictly not allowed. In a measurement at a
single tip position, several low energy CdGM states are expected to overlap. STS can never distinguish
between single life-time broadened states and bands if the energetic spacing of states is below the
resolution capability of the instrument. The general conditions for each single measurement are,
however, the same, so the deduced spectral widths will still only differ if the properties of the states
themselves are different.
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Figure 7.10: Localisation and Lifetimes: (a-c) Zero bias dI/dU maps of normal single flux vortices
trapped on an SFT (a,b) (vortex from Fig. 7.8, 7.9) and of an anomalous vortex (b) (vortex from Fig. 6.5)
with marked cross sections C1-18 (lines) and point spectroscopies P1-3 (circles). The localisation of the
zero energy edge state (d), the zero energy CdGM state of band II (f) and the zero energy CdGM state
of band I (h) was determined through a fit of the average cross section dI/dU (U = 0, x) to a Gaussian.
The corresponding lifetimes were determined by a fit of the point bias spectroscopies to a Lorentzian
(e,g,i).

In the normal vortex pinned on an SFT (a) the localisation of the edge state can be
extracted from cross sections of the dI/dU signal at U = 0mV across the edge. To
enhance the signal-to-noise ratio, several cross-sections (C1-7) were averaged. This
averaged line profile was fitted to a generalized Gaussian of the form

f(x) =
C√
2πσ

exp

(
− (x− x0)

2

2σ2

)
+ b+ cx (7.4)

with the characteristic width σ. The lifetime τ = 1/Γ was determined from a single
point spectroscopy on the edge (P3) shown in the pinned vortex in (b). The dI/dU(U)
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curve was reduced by a constant background and then the part around U ≈ 0 was
fitted to a Lorentzian of the form

g(U) =

∫ ∞

−∞
dU ′ C

(U ′ − U0)2 + (Γ/2)2
∂nF (U

′ − U)

∂U
(7.5)

with the characteristic scattering rate Γ = 1/τ . For the CdGM states, the fact that
the states from the different bands can be probed independently, especially in an
anomalous vortex (c), was used. The localisation and lifetime of the zero energy
CdGM states of band II (star pattern) were extracted from the cross-sections C8-17
(f) and the point spectroscopy P1 (g). The results for the zero energy CdGM states
of band I (point at P2) are shown in (h) and (i). The respective localisation widths
σ and scattering rates Γ from the fits are indicated in the figure. Even from this
small set of data, significant differences between edge state and the CdGM states

Figure 7.11: Edge State in Buried and Surfacing SFTs: (a-c) Buried SFT with a pinned single-flux
vortex showing no sign of an edge state at the triangular contour of the SFT (white dotted line). (d-f)
Surfacing SFT with a pinned single-flux vortex showing a clear edge state at zero bias. (a,d) Topographic
images of the area containing the SFT. (b,e) dI/dU maps at U = 1.4mV of the flux-penetrated SFT.
(c,f) Corresponding dI/dU maps at U = 0mV.
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Figure 7.12: m = 2 Vortex in SFT: dI/dU map at
U = 0.0mV of an m = 2 vortex trapped inside the
sub-surface SFT from Fig. 7.4(d). No clear edge state
is visible.

become apparent. The edge state has a much smaller lifetime than the zero energy
CdGM states of band I, it is more comparable to the zero energy CdGM states of
band II. It is, however, much more localized than the CdGM states of both bands as
a comparison of the deduced localisation widths σ shows. From this analysis, a clear
one-to-one correspondence between the edge state and the CdGM states is not seen.
The fact that a sudden change from normal conducting region to superconducting
region is seen at the edge of this SFT is intriguing in the sense that this edge state
may play an important role for the flux screening.

Comparing two SFTs with a pinned single-flux vortex, one buried beneath the
surface (Fig. 7.11(a-c)) and one at the surface (Fig. 7.11(d-f)), indicates that the edge
state (marked with white arrows) is only visible for surfacing SFTs. This would not
be too surprising, considering the fact that the edge state is also strongly localized in
the lateral direction. Hence, it might be present but not detectable on the surface for
buried SFTs. Of course, for a convincing argument a higher number of SFTs with
pinned vortices would have to be analysed.

The pinning of an m = 2 vortex inside the defect from Fig. 7.4(d) has also been
achieved. In the zero-bias conductance map in Fig. 7.12, the characteristic footprint
of the m = 2 vortex is seen, yet no edge state is visible, where the SFT edge is seen
in the map at eU = ∆2 (cf. Fig. 7.4(h)). Whether the invisibility of the edge state in
this case is due to the even vorticity of the vortex, the fact that this defect is buried
deeper beneath the surface or has an entirely different reason, cannot be concluded
from the available data.

While a topological origin of this state is far from certain, none of the here reported
properties are in conflict with it. In fact, some of them constitute necessary conditions
for a topological edge state. In summary, the following properties of the SFT edge
state were found:
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• It is not seen if the whole area containing the SFT is superconducting or normal
conducting.

• It is only present, if a vortex is pinned on the SFT.

• Its energetic position is the Fermi energy.

• An abrupt change from the normal conducting region inside the SFT to the
superconducting region outside the SFT is seen on the atomic length scale
(a≪ ξ), when the vortex is pinned and the edge state is present.

• The spectral width and localisation of it are different from the CdGM states
crossing the Fermi energy. Especially the localisation is much stronger.
Perpendicular to the edge, it is only spread across a few atoms.

• The position falls together with a region of large disturbance to the electronic
band structure, the stacking faults of the SFT.

• An even/odd effect for the vorticity is seen (although the vorticity does not
have to be the cause, as mentioned above). Several single flux (m = 1) vortices
pinned on an SFT appear together with the edge state. Them = 2 vortex pinned
on an SFT appears without it.

7.4 Summary

By hot sputtering a Pb(111) single crystal with keV argon ions and subsequent
annealing, SFTs were formed. In the superconducting state, these extended crystal
defects have tremendous influence on the LDOS of QPs. They are responsible for a
memorable LDOS pattern at the gap energy that cannot be explained by structural
deformations alone. A large change in the electronic band structure is expected at
the stacking faults that surround the tetrahedral nanocrystal. This boundary seems
to act as a band selective QP filter. It traps QPs of one band inside the SFT in the
form of quantum well states (QWSs) and prevents the QPs of the other band from
entering. Since analogous measurements in the normal state do not show these
effects, the SFT may potentially constitute a Cooper pair box. Upon pinning vortices
on SFTs, the transition between normal conducting region and superconducting
region is in certain cases reduced to a length scale much lower than the known bulk
coherence length. Concurrently with this, a zero-energy edge state emerges at the
boundary of the SFT. A series of systematic tests with the purpose of fathoming the
origin of this state could not reject a topological cause.
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In the scope of this thesis, the full potential of a mK scanning tunnelling microscope
(STM) was used to study three very different types of superconducting materials
that are constant subject of fundamental research: A granular superconductor, a con-
ventional multi-band superconductor and unconventional cuprate superconductors.
In the presence of localized spins, vortices or crystal defects the elastic part of the
tunnelling current revealed a large variety of interesting quasiparticle (QP) effects
that include Yu-Shiba-Rusinov (YSR) states, Caroli-de Gennes-Matricon (CdGM)
states and interband couplings. Outside of the superconducting gap, inelastic tun-
nelling events contributed significantly to the tunnelling current. A special focus
was given to antiferromagnetic spin fluctuations and potential plasmon or Higgs
modes near a superconductor-to-insulator transition (SIT). In the analysis part of the
thesis, the deeper understanding of CdGM states and observed inelastic excitations
required quasiclassical calculations in the framework of 3D Eilenberger equations
and an advanced deconvolution algorithm that were independently programmed
by the author.

In quest of the bosonic glue in cuprate superconductors, we demonstrated how the
effective Eliashberg function can be extracted from IETS data in the superconducting
state. The extracted boson spectral function of these d-wave superconductors is
in good agreement with the expected integrated spin spectrum, which validates
the spin-fermion model. As momentum information is usually lost in a tunnelling
experiment, an essential ingredient in the success of this method was the dominant
influence of hot-spots on the Fermi surface on the superconducting density of states.
The real space imaging power of the STM could be used further to examine the
position dependence of the bosonic excitation and potentially even perform QPI
measurements at the right energies. The minimum energy of the inelastic scattering
channel is expected to vary locally due to the inhomogeneity of ∆.

We put together the first STM study of granular aluminium (grAl) (that we know
of) and published the results in Physical Review B [146]. The systematic study of
samples with different oxygen content could confirm many microscopic properties of
these superconducting films that were previously derived from bulk measurements,
like electronic transport or optical spectroscopy. These include a homogeneous
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superconducting gap, as well as a gap enhancement and grain decoupling that
scale with the oxygen concentration. In addition, on individual grains in the high-
resistivity film, the tunnelling electrons could easily excite a long-lived bosonic
mode. It is likely that this mode corresponds to phase (or amplitude) fluctuations
of the superconducting gap near the SIT. Perhaps the most important result in the
high-resistivity grAl film was the observation of YSR states. The careful analysis of
position dependent tunnelling spectra hints towards localized spins that reside in
the oxide barriers between the aluminium grains. If this is indeed the case, then this
has important implications for many Al/AlOx based superconducting devices as
spin scattering can potentially limit their performance. In principle, these localized
spins should also appear in the natural oxide of aluminium. First attempts to find
YSR states in the natural oxide of a polycrystalline aluminium film could, however,
not confirm them. The measurements should be repeated on a thicker oxide before
final conclusions can be drawn. As the tunnelling barrier increases with a thicker
surface oxide layer, different experimental techniques may be required.

It is also worthwhile to revisit supposedly well understood conventional supercon-
ductors like lead (Pb) with state-of-the-art STM setups as ultra-low temperatures
and better energy resolution can provide new insights into the microscopic un-
derstanding of the superconducting properties. In this work, it was demonstrated
that the intermediate state of a bulk Pb single crystal can naturally host stable
vortices with single and multiple flux quanta at mK temperatures. We thus have
to rethink our traditional classification of superconductors into type-I and type-II
on the microscopic scale and at temperatures far below the critical temperature.
Using the exceptional energy resolution of a 25mK STM, it was possible to study
the interplay of CdGM states from two different bands inside a single vortex line.
Additionally, the long theoretically predicted LDOS patterns of CdGM states in
multiflux vortices could for the first time be confirmed experimentally and their
immediate connection to the vortex winding number was demonstrated. While
the CdGM states of a vortex in an s-wave superconductor are not considered to be
topologically protected bound states, topologically non-trivial boundary states can
in principle exist at topological defects. A combination of the multiflux vortices with
extended crystal defects seemed like the obvious next step.

We saw that stacking fault tetrahedra (SFTs) have a detrimental effect on the local
quasiparticle DOS of Pb. Apparently, the weak interband coupling of the two
superconducting bands leads to band selective scattering processes at the SFT
boundary and confinement effects. Stacking faults are known to have a relatively
large effect on the electronic band structure of the normal state, yet it remains an
open question which role superconductivity plays in this case. The SFTs can also
act as pinning centres for multiflux vortices. As it turns out, the CdGM states are
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also affected by the SFT boundary and in certain cases, a pinned single-flux vortex
lead to a zero-energy edge state localized on the SFT boundary. Whether this state is
topological in the quasiparticle sense remains to be seen, but the present findings do
not yield a categorical argument against it.

Superconducting phenomena often span very different classes of superconductors.
One example is the SIT that is of central importance in various high temperature
superconductors (HTSs), but also in granular superconductors. Another example
is multiband superconductivity which is widely accepted to be present in iron-
based superconductors and the elementary superconductor Pb but has been mostly
overlooked up until the discovery of two-band superconductivity in MgB2 in 2001.
This thesis shows that it is worthwhile to revisit superconductors that have been
around for several decades and that we can, when equipped with state-of-the-art
experimental and theoretical techniques, reveal previously hidden properties. When
being open for surprises, we can often find them in places where we did not expect
them. Of special noteworthiness are the findings of localized spins in grAl with
important implications for the use of Al/AlOx based superconducting devices and the
existence of stable (multiflux) vortices in bulk Pb, which provide optimal conditions
to study vortex core states in combination with multiband effects. Especially with
the discovery of an intriguing edge state, that emerged where vortex states were
perturbed by extended crystal defects, we hope to initiate further research towards
the realization of a Majorana zero mode (MZM).
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AC Alternating current

ADC Analog-to-digital converter

AES Auger electron spectroscopy

AFV Antiferromagnetic ordering vector

ARPES Angle-resolved photoemission spectroscopy
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BEC Bose-Einstein-Condensate
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DFT Density functional theory

DOS Density of states
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SEM Scanning electron microscopy
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Notation

Throughout this thesis, the SI unit system and the following notations were used:

• ℏ = kB = 1 unless stated otherwise.

• β = 1/(kBT ) denotes the inverse energy scale of the physical temperature.

• nF/B(x) =
1

e−βx±1
denotes the Fermi-Dirac/Bose-Einstein distribution func-

tion.

• Θ(x) =

{
1 , x ≥ 0

0 , x < 0
denotes the Heaviside function.

• A⊗B denotes a Kronecker product of two vectors or matrices.

List of physical constants

• e, electron charge

• kB , Boltzmann constant

• ℏ, reduced Planck constant

• c, vacuum speed of light

• me, electron rest mass

• ϵ0, vacuum permittivity

• µ0, vacuum permeability

• Φ0, magnetic flux quantum
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A DeconvolutionusingtheGold
Algorithm

On a very general basis, the spectroscopic output signal of a system y with a certain
response function h can be written as the discrete convolution

y(ωi) =

i∑
j

x(ωj)h(ωi − ωj) + n(ωi), (A.1)

where x is the input signal, n is arbitrary noise and ωi are discrete increments of
frequency. In Chap. 4, y ↔ σi, x ↔ g2χ′′ and h ↔ σel. One can write Eq. (A.1) in
matrix form [254]:

y = Hx+ n. (A.2)
A least square solution of these coupled linear equations is found by minimization
of the functional [254]

∥Hx̂− y∥2 , (A.3)
where x̂ = A−1Hy is the unconstrained least squares estimate of the input signal
and A = HTH is called the Toeplitz matrix. This solution is not definite, because
the problem of finding x with knowledge of H and y is an ill-posed problem. There
exist many solutions to this system of equations and small errors in assumption
of H or noise cause large oscillations in the extracted solution. Regularization
techniques are necessary to confine the possible solutions to a smaller subset.
Common regularization techniques concentrate on modelling the noise. In the
problem from Chap. 4, the shape of the noise is unknown but even worse, the input
signal x is only a vague guess. Therefore, larger errors due to the uncertainty of H
are expected to influence the deconvolution to find x. A physical constraint that
drastically reduces the amount of possible solutions is the required positiveness of
y, x and therefore also the positive definiteness of the Toeplitz matrix A.

The Gold algorithm [141, 254] is one of the few deconvolution algorithms that makes
use of this constraint and always yields positive solutions if the input is positive. In
the classic Gold algorithm, the solution is refined iteratively by the procedure [254]

x(n+1)(ωi) =
y′(ωi)∑M−1

j=0 Aijx(n)(ωj)
x(n)(ωi). (A.4)
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A Deconvolution using the Gold Algorithm

This solution converges to the least square estimate in the constrained subspace
of positive solutions and is frequently used in the analysis of γ-spectroscopy data
where detector counts are necessarily positive. The algorithm also decomposes
the solution into a series of δ-peaks which is not ideal for the problem at hand,
but can pronounce the seeked bosonic mode. Since the dimension N of A takes at
least the number of points in the spectrum, it is large and the product of Toeplitz
matrix and vector x in Eq. (A.4) is done by the FFT. In fact, the kernel function is far
from periodic and does not naturally go to zero for ω → ∞ which is why it has to
reasonably padded, meaning it is first extrapolated and then smoothly brought to
zero. The total deconvolution range then spans a range much larger than the range
where the kernel is unequal to zero. A typical total size of the Toeplitz matrix is
N = 12000 due to the extensive padding that is required. The FFT thus reduces the
computation time for one step by a factor of

N2

1
2N log2N

≈ 1770. (A.5)
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B SupplementaryGrAlData

In this appendix, supplementary data supporting the conclusion from Sec. 5.4 is
presented. Fig. B.1 shows a spectrum containing out-gap peaks indicating inelastic
excitations of the tunnelling electron, just like in Fig. 5.9 of the main text. This
spectrum was obtained at a different tip position and slightly milder tunnelling
conditions, so smaller overall conductance at the feedback condition (U = 4mV,
I = 70 pA). It was thoroughly checked that periodic noise in the tunnelling contact
is not causing the equidistant peaks in the spectrum. For good measure, the bias
step size was changed (while keeping the integration time for each bias value equal)
compared to the spectrum of Fig. 5.9. The spectrum shown here is an average of
1000 single spectra. For the analysis of this spectrum, the model from Eq. (5.2) of the
main text was fitted to the data. Tab. B.1 shows the found parameters, when fitting
first the negative bias side for the energies and then imposing them for the positive
side. Again, with five excitations, the spectrum is qualitatively well reproduced (see
red line in Fig. B.1). Especially the ωn for n = 2, 3, 4 are very similar to the ωn found
for the data presented in the main text. From this analysis, ω1 is slightly larger than
1.35∆.

The deconvolution by the FFT and Gold algorithm, however, reveals peaks in the
boson spectral density α2F (ω) at multiples of ωexc = 1.35∆, as indicated by the grey
dashed lines in the bottom panel of Fig. B.2. Solely the fourth excitation is found at
higher energies than expected. The trend of increasing amplitudes for harmonics of
n < 3 and subsequent decrease for harmonics of n > 3 is in good agreement with
what was interpreted into the boson spectral density obtained in the main text.
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Table B.1: Fit Parameters for Bosonic Excitations: Fitted parameters of Eq. (5.2) used to model the
spectrum in red in Fig. B.1. n is the number of the bosonic excitation, ωn its energy divided by
∆ = (250± 3) µeV and a+n and a−n are the intensities for positive and negative bias range.

n ωn (∆) a+n a−n
1 1.52 0.247 0.533

2 2.75 1.352 0.258

3 4.16 1.114 0.892

4 5.18 0.000 1.053

5 6.08 0.975 0.803

Figure B.1: Inelastic Excitations: Analogon to Fig. 5.9, recorded at a different tip position. Here, the left
side was used for the determination of the five excitation energies. Similar energies as in the main text
are found (see Tab. B.1).

Figure B.2: Boson Spectral Density: Analogon to Fig. 5.10 using the spectrum in Fig. B.1 as a source.
Grey dashed lines indicate the energies n · ωexc for n = 1, 2, 3, 4 and ωexc = 1.35∆ like in the main
text.
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C 3DEilenbenbergerEquations

Gert Eilenberger [255] and by a slightly different approach Larkin and Ovchinnikov
[256] could show that the Gorkov equations of motion for normal and anomalous
Green’s functions can be transformed into a set of simpler transport-like equations
for quasi-classical Green’s function propagators, that hold for kF ξ ≫ 1 [257]:

−ℏvF∇ĝ(r;pF , iϵn) =

[(
iϵn + vF eA(r) −∆(r,pF )

∆†(r,pF ) −iϵn − vF eA(r)

)
, ĝ(r;pF , iϵn)

]
.

(C.1)

The quasi-classical Green’s function propagator

ĝ =

(
g(r,pF , iϵn) f(r,pF , iϵn)

−f∗(r,−pF , iϵn) g∗(r,−pF , iϵn)

)
, (C.2)

depends on spatial coordinate r, crystal momentum pF = ℏkF and energy ϵn, and
must satisfy the normalization condition ĝ2 = 1̂. g and f are normal and anomalous
quasi-classical Green’s function propagators and ϵn are fermionic Matsubara fre-
quencies. Incorporated in this formalism is the self-consistent calculation of pair
potential ∆(r) and A(r), which is essential for the description of a superconductor
hosting vortices as these two fields are dependent on each other. Although this
approach is numerically much more feasible than direct diagonalization of a BdG
Hamiltonian when treating inhomegeneties, it is not necessary to solve the problem
completely self-consistently in this work. The reason for that is, that the experimental
results from Chap. 6 clearly show, that, even though the sub-gap states in the vortex
display highly anisotropic behaviour, the recovery of ∆(r) is isotropic in the plane
around the vortex core. The local pair potential is assumed to have s-wave symmetry
and has therefore been modeled by

∆(r,pF ) = ∆(r) =

(
∆0 tanh

r

ξ
+Θ(z)W tanh

z

a

)(
x+ iy

r

)m

, (C.3)

with Θ being a Heaviside step function, ∆0 the maximum gap size, ξ the coherence
length, a the lattice constant, m the winding number of the vortex and W the work
function. The second term ensures, that quasiparticles travelling to the surface are
decaying into the vacuum with the right damping factor. Since an isotropic ∆ implies
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C 3D Eilenbenberger Equations

an isotropic in-plane current density, the magnetic field profile around the vortex is
described by a vector potential of the form [258]

A = A(r, z)êφ , (C.4)

A(r, z) =
mΦ0

2πλ2

∞∫
0

dk
J1(kr)

k2 + λ−2
S(k, z) , (C.5)

S(k, z) =

{
κ

k+κe
−kz z > 0

1− k
k+κe

κz z ≤ 0 ,
(C.6)

that is cylinder symmetric in the bulk and deviates from the bulk value near and
above the surface. Here, κ =

√
k2 + λ−2, λ is the magnetic penetration depth which

was chosen to be λ = ξ/
√
2 and J1(x) is a Bessel function of first order.

Nils Schopohl and Kazumi Maki [259] could show that the Eilenberger equations
can always be solved along a characteristic line and that the solution is universal for
every point along this line. The line simply has to be parallel to the Fermi velocity
vector vF . Points on this line are then characterized by the variableX and two impact
parameters Y and Z .

r(X) = Xû+ Y v̂ + Zŵ, (C.7)
= xx̂+ yŷ + zẑ (C.8)

Transformation from the mobile frame of reference (û, v̂, ŵ), where û ∥ vF , to the
fixed coordinate system (x̂, ŷ, ẑ) is done by chaining rotation matrices using Euler
angles: vxvy

vz

 = Rzyz

vXvY
vZ

 , (C.9)

Rzyz = Rz(η)Ry(χ− π/2)Rz(ψ)

=

cos η − sin η 0

sin η cos η 0

0 0 1

 sinχ 0 cosχ

0 1 0

− cosχ 0 sinχ

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 . (C.10)

180



C 3D Eilenbenberger Equations

In order to align the axis û of the mobile frame with the axis x̂ of the static coordinate
system, no rotation about ŵ is needed and thus ψ = 0. The other two rotational
angles are defined by the components of the Fermi velocity vector as follows:

η = arccos
vz
|v|

, (C.11)

χ =


arctan

vy
vx
, vx > 0

arctan
vy
vx

+ π , vx < 0

sgn(vy)π2 , vx = 0

. (C.12)

Using this transformation, the vector potential and gap parameter can be expressed in
the variables of the mobile frame:A(r(X,Y, Z)) and∆(r(X,Y, Z)). On a characteristic
line defined by the impact parameters Yp and Zp, the functions from Eq.(C.1) become
[257]

∆(X) = ∆(r(X,Yp, Zp)) , (C.13)
iϵ̃n(X) = iϵn + vF eA(r(X,Yp, Zp)) , (C.14)
ĝ(X) = ĝ(r(X,Yp, Zp),pF , iϵn). (C.15)

The parametrisation of the Eilenberger equations on this 1D line is called the
Riccati parametrisation. Eq. (C.1) formally reduces to the solution of two initial
value problems, where the differential equations are scalar and of first order. The
Eilenberger propagator is parametrised in terms of two scalar complex functions
a(X) and b(X):

ĝ(X) =
1

1 + a(X)b(X)

(
1− a(X)b(X) 2ia(X)

−2ib(X) −1 + a(X)b(X)

)
. (C.16)

The differential equations that need to be numerically solved for a(X) and b(X) are
[259]

ℏvFa′(X) + [2ϵ̃n +∆†(X)a(X)]a(X)−∆(X) = 0 , (C.17)
ℏvF b′(X)− [2ϵ̃n +∆(X)b(X)]b(X) + ∆†(X) = 0 (C.18)

with boundary conditions

a(−∞) =
∆(−∞)

ϵn +
√
ϵ2n + |∆(−∞)|2

, (C.19)

b(+∞) =
∆†(+∞)

ϵn +
√
ϵ2n + |∆(+∞)|2

. (C.20)
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C 3D Eilenbenberger Equations

Figure C.1: Riccati Parametrisation: A sketch of the calculation procedure using the Riccati
parametrization: The 3D trajectories (black arrow) through the flux tube (blue) are given by the Fermi
velocities for each point kF (θ, φ) on the Fermi surface. Solution of the effective 1D Eilenberger equations
for this trajectory yields the LDOS(x) along this line. For a complete picture, a summation over all
kF (θ, φ) and impact parameters y is performed.

In order to solve them at a certain energy E < ∆0, the analytical continuation
iϵn → E + i0+ is used. Finally, the local density of states at r is obtained from the
real part of g(r(X)), i.e.

N (pF ) = N0(pF )Re

(
1− a(X)b(X)

1 + a(X)b(X)

)
. (C.21)

In order to obtain the total local density of states, one still needs an integration over
the Fermi surface to calculate all trajectories that are present due to the various
Fermi velocity vectors that exist, plus an integration over the impact factors Y in
order to account for trajectories that do not traverse the vortex centre. An integration
over Z is redundant since the solution in the bulk is the same for every Z . Near the
surface, this is strictly not the case anymore but the effect is small and with a large
enough variety of Fermi velocity vectors (which we have) these trajectories are not
missed. The above described calculation procedure in the Riccati parametrisation is
schematically sketched in Fig. C.1.

182



C.1 Intermediate Results

Figure C.2: Influence of Vector Potential: The LDOS obtained from solutions of the 3D Eilenberger
equations for a single-flux vortex at energy eU = 0.8meV without (a) and with vector potential (b), as
formulated in Eq. (C.6), shows only quantitative differences. With non-zero vector field, the star arms
are still split, yet the CdGM states at this energy are squeezed into a smaller area around the vortex core.

C.1 Intermediate Results

The inclusion of a non-zero vector potential A in the calculations increases the
average time needed to solve the Eilenberger equations because the Matsubara
frequencies in Eq. (C.14) gain a position dependent term that recquires a coordinate
transformation between the two reference frames. Therefore, the simulations shown
in the main text are performed without vector potential. It is already visible from
Eq. (C.6) that in a calculation where A and ∆ are not solved self-consistently, A
only enters the equation as an effective energy term. With a vector potential in the
azimuthal direction, like in Eq. (C.6), the scalar product with the Fermi velocity
is only expected to yield significant contribution for large impact parameters (for
Yp = 0, vF is perpendicular to A). That means trajectories with increasing impact
parameter have large LDOS already for smaller distances from the core than in
the field free case. The splitting star arms in the LDOS maps should be squeezed
to smaller distances from the core. In fact, this is what is seen in the calculations
with vector potential at higher energies, as shown in Fig. C.2. This proves that even
though there are quantitative differences to the case without vector potential, in the
general characteristics, the LDOS patterns remain unchanged.
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D SupplementaryPbVortexData

D.1 Bias and Magnetic Field Dependence of CdGM
LDOS

Under reversal of bias voltage sign, i.e. the tunnelling current direction (I ↔ −I), or
magnetic field direction (Bêz ↔ −Bêz), the differential conductance maps show no
qualitative change. As a point of proof, Fig. D.1(a,b) shows a normal vortex stabilized
at negative field after exposing the sample to −85mT for positive voltages and (c,d)
an anomalous vortex at 18mT for negative voltages. This illustrates the electron-hole
symmetry of the CdGM states and justifies treating them as excitations of a BCS
ground state, i.e. describing their time-evolution by a mean-field BdG Hamiltonian.

Figure D.1: Reversal of Current/Magnetic Field Direction: At a magnetic field in −z direction (a,b) or
at a negative bias voltage (c,d), the LDOS pattern of normal and anomalous vortices does not change
qualitatively compared to the patterns shown in Chap. 6.
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D.2 Self-consistent Solution of the Gap Equation

The self-consistent solution of the gap equation for a vortex with isotropic Fermi
velocity in Fig. D.2 shows that a Kramer-Pesch effect is to be expected in this case: For
a radius from the vortex centre of r < 2ξ0 the recovery of ∆(r) significantly deviates
from the function ∆0 tanh(r/ξ0). The slope of ∆(r) near the centre is roughly twice
as steep as expected from a tanh behaviour with universal ξ0. This leads to a core

size ξ(c) =
[
lim
r→0

d∆(r)
dr

]−1

that is roughly half as big.

0 1 2 3 4
0.0

0.5

1.0

 Self-consistent calculation

 Tanh(r/x0)

r/x0

D
/D

0

Figure D.2: Kramer-Pesch Effect: The self-consistent calculation of the pair potential ∆ for a vortex
with isotropic Fermi velocity exhibits a shrinking of its core size according to the Kramer-Pesch effect,
i.e. a steeper recovery of ∆ close to the vortex centre that does not follow tanh(r/ξ0).
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Figure E.1: SFT in Normal Phase: dI/dU map (eU = ∆2) of the defect in Fig.7.4(a,e) at Bz = 100mT

(normal conducting phase). No QPI is visible.

In the normal state at B > Bc, the SFT does not exhibit the characteristic LDOS
pattern known from the superconducting state at eU = ∆2, as Fig. E.1 shows. A QPI
pattern is also missing.

In the superconducting state, without pinned flux, the SFT misses the zero energy
edge state. As Fig. E.2 shows, the superconducting gap is free of states in this region.
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Figure E.2: Missing Edge State: dI/dU maps at U = 0.0mV (a) and U = 0.2mV (b) on the SFT from
Fig. 7.4(c) in the superconducting state at B = 31mT with no pinned vortex. An in-gap edge state of
the SFT like in Fig. 7.8(a) and Fig. 7.9(a) is missing.
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Complementary to scattering techniques, scanning tunnelling microscopy pro-
vides atomic-scale real space information about a material‘s electronic state 
of matter. State-of-the-art designs of a scanning tunnelling microscope (STM) 
allow measurements at millikelvin temperatures with unprecedented energy 
resolution. Therefore, this instrument excels in probing the superconducting 
state at low temperatures and especially its local quasiparticle excitations as 
well as bosonic degrees of freedom.
 
Here, three very different types of superconducting materials that are constant 
subject of fundamental research are studied with a millikelvin STM: Granular 
aluminium - a granular superconductor, Y123 and Bi2212 - two unconventional 
cuprate superconductors, and lead (Pb) - a conventional multiband supercon-
ductor. In the presence of local inhomegeneities, such as localized spins, vorti-
ces or crystal defects, the local quasiparticle excitation spectrum revealed Yu- 
Shiba-Rusinov states, Caroli-de Gennes-Matricon states and interband coupling 
effects. Fingerprints of collective excitations, such as antiferromagnetic spin 
fluctuations or plasmons, were found outside of the superconducting gap and 
could be used to gain insights into the pair forming but also pair breaking mech-
anism in the superconductor. Results in this work show that granular aluminium 
intrinsically hosts localized spins, which raises concern about the performance 
limit of aluminium/aluminium-oxide based superconducting devices and that 
(multiple-quanta) vortices are stable in the intermediate state of bulk Pb, which 
turns out to be an optimal material to study extended vortex core states in 
combination with multiband superconductivity.
 

32

Physikalisches Institut
Karlsruher Institut für Technologie


	Contents
	1 Introduction
	2 Superconductivity
	2.1 Ginzburg-Landau Theory
	2.1.1 The Ginzburg-Landau Parameter
	2.1.2 Flux Pinning and Flux Flow
	2.1.3 Anderson-Higgs Mechanism

	2.2 Microscopic Theory of Conventional Superconductivity
	2.2.1 BCS Theory
	2.2.2 Bogoliubov-de Gennes Theory
	2.2.3 Migdal-Eliashberg Theory

	2.3 Multiband Superconductivity
	2.4 Mott Insulators
	2.4.1 Granular Superconductors
	2.4.2 Cuprates

	2.5 Unconventional Superconductivity
	2.5.1 Order Parameter Symmetry
	2.5.2 Macroscopic and Microscopic Description of Magnetic Response in a Metal
	2.5.3 Spin-Fermion Model

	2.6 Quantum Tunnelling in NIS Junctions
	2.6.1 Theoretical Framework of the Tunnelling Geometry
	2.6.2 Elastic Tunnelling
	2.6.3 Inelastic Tunnelling


	3 Experimental Setup and Methods
	3.1 Scanning Tunnelling Microscopy and Spectroscopy
	3.2 Low Temperature Scanning Tunnelling Microscope
	3.2.1 Dilution Scanning Tunnelling Microscope
	3.2.2 Joule-Thomson Scanning Tunnelling Microscope

	3.3 Tip and Sample Preparation
	3.3.1 Tip Preparation
	3.3.2 Sputtering and Annealing
	3.3.3 In-situ Cleaving


	4 Bosonic Excitation Spectrum in Bi2Sr2CaCu2O8+ and Y Ba2Cu3O6+x
	4.1 Structural and Electronic Properties
	4.1.1 Structural Properties of Y123 and Bi2212
	4.1.2 Unconventional Pairing in Y123 and Bi2212

	4.2 Inelastic Tunnelling in Spin-Fluctuation Driven Superconductors
	4.3 Separation of Elastic and Inelastic Tunnelling Events
	4.4 Determining the Dispersion of the Bosonic Glue
	4.5 Summary

	5 Yu-Shiba-Rusinov States and Long-lived Bosonic Excitations in Granular Aluminium
	5.1 Relation between Tc and Oxygen Partial Pressure
	5.2 Microscopic Grain Coupling and the Superconducting Gap
	5.2.1 Pure Al Film
	5.2.2 Oxygen Poor GrAl Film
	5.2.3 Oxygen Rich GrAl Film

	5.3 Spectroscopic Signs of YSR states
	5.4 Spectroscopic Signs of Long-lived Plasma or Higgs modes
	5.5 LC Resonator Model for Plasmon Modes
	5.6 Tien-Gordon Model for Spontaneous Plasmon Emission
	5.7 First Results on Oxidized Polycrystalline Al
	5.8 Summary

	6 Multiflux Vortex States in Bulk Pb
	6.1 Meißner and Intermediate State
	6.2 Emergence of Isolated Vortices
	6.2.1 Normal Single-Flux Vortices
	6.2.2 Anomalous Vortices

	6.3 Tunnelling into Caroli-de Gennes-Matricon States
	6.3.1 Determination of Vortex Winding Numbers

	6.4 Evidence of Multiflux Vortices
	6.5 Vortex Interactions beyond the Ginzburg-Landau Limit
	6.6 Summary

	7 Quasiparticle and Flux Trapping in Topological Defects of a Two-band Superconductor
	7.1 Stacking Fault Tetrahedra
	7.1.1 Stacking Fault Tetrahedra in Pb(111)

	7.2 Band Filter Effect and Quantum Well States
	7.3 Electronic Edge State
	7.4 Summary

	8 Conclusion and Outlook
	Bibliography
	Acronyms
	Notation
	List of Figures
	List of Tables
	Appendix A Deconvolution using the Gold Algorithm
	Appendix B Supplementary GrAl Data
	Appendix C 3D Eilenbenberger Equations
	C.1 Intermediate Results

	Appendix D Supplementary Pb Vortex Data
	D.1 Bias and Magnetic Field Dependence of CdGM LDOS
	D.2 Self-consistent Solution of the Gap Equation

	Appendix E Supplementary Pb Defect Data
	Acknowledgements



