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1 Introduction

The increasing demand for specular freeform surfaces presented a major
challenge for production and metrology in recent years. When inspecting
specular reflective components, such as solar collectors, lens systems,
wafers, or even telescope mirrors, the interest generally lies in manufactur-
ing them as precisely as possible, which means that the exact geometric
object dimensions have to be known. Reflection properties also play a
crucial role for surfaces from the automotive industry, such as lacquered
car body parts, or objects from the entertainment industry, since defects
and flaws in the surface affect the aesthetics of the product to a great
extent. The inspection of such surfaces is very demanding in practice.
During the visual inspection of specularly reflective objects, in contrast
to diffuse reflection, an observer does not see the surface itself, but the
distorted mirror image of the environment. The reflective surface is vir-
tually invisible to the observer. Automatic visual inspection, especially
3D measurement, therefore poses a great metrological challenge.

Deflectometric measurement methods use the law of reflection and
knowledge of the arrangement between a camera and a pattern generator,
e.g., a liquid crystal display (LCD) monitor, to draw conclusions about the
shape of the surface by means of observing the deformations of the mirror
images. For automatic visual inspection and accurate 3D reconstruction,
precise knowledge of the system parameters is required, e.g., the size and
position of the LCD monitor relative to the camera sensor, as well as the
intrinsic camera parameters. If the 3D coordinates of a reference object
point and its mirror reflection are known, the reflection point on the
specular surface can in principle be calculated from them. However, the
photographic measurement of an object point lacks distance information,
that is, only directional information is available. Therefore, even with
complete knowledge of the system, a single camera is generally not
sufficient to calculate a unique surface from the measurement data. As
a result, the solutions for the surface lie on a one-parametric solution
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manifold and potential surface normals representing these surfaces can
be calculated for any point in space. To find the true surface from this
infinite variety, the problem must be regularized, where in principle,
it would be sufficient to know only a single point. Starting from this
point, the complete surface can then be reconstructed by integrating the
deflectometrically measured normal field.

Obtaining an accurate reconstruction necessitates a precise measure-
ment. Hence, sophisticated and highly specialized optical imaging de-
vices are becoming increasingly important for high-precision manufac-
turing and environment perception. In particular, light field cameras
are experiencing an ever-increasing interest in research and industry
as they provide a four-dimensional light field of the scene instead of a
two-dimensional image. The information captured by a light field camera
in a single photographic exposure can be used to, for example, digitally
refocus the image, extract depth information, or subsequently change
the perspective of the scene. Light field cameras can therefore be re-
garded as compact 3D cameras. In contrast to camera arrays, in which
the individual synchronized cameras each sample a part of the light
field, the hardware requirements for light field cameras are significantly
reduced, and they are far more robust against external influences. Even
in a compact handheld camera design, they can capture several hundred
perspectives of the scene in a single shot.

The advantages of light field cameras should therefore also be made
accessible to the field of optical metrology. In particular, this thesis aims
at combining light field imaging with deflectometry as this enables a
variety of new measurement methods. The additional information com-
pared to conventional cameras is to be used to regularize the ambiguity
of the deflectometric measurement while providing a robust reconstruc-
tion of the surface. While light field cameras offer several advantages
for deflectometry, they also introduce new difficulties and challenges.
Thanks to their design, light field cameras have a very high depth of field,
which improves the lateral resolution of the deflectometric measurement,
but at the same time, the amount of captured light is reduced, resulting
in higher noise sensitivity. In addition, the calibration of these cameras
is, unfortunately, very difficult due to their complex structure and so-
phisticated optical design. To achieve the most accurate description of
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the imaging process, advanced camera models and elaborate calibration
techniques are required. To make light field cameras available for effec-
tive use in deflectometry, special focus is placed on four aspects in this
work:

Registration: In deflectometry, the measurement of reference coordi-
nates and thus the registration between camera pixels and points in the
plane of the reference monitor provides the local slope of the surface.
The angular resolution of the angle between the surface point and the
reference point thereby determines the accuracy of the reconstruction.
Therefore, for high precision measurements, the position of the reference
feature must be determined with subpixel accuracy and has to be robust
against noise influences.

Calibration: To enable a highly accurate reconstruction of specular sur-
faces, precise calibration is of essential importance for deflectometry. To
triangulate surface points with sufficient accuracy, an intrinsic calibration
of the camera and the monitor, as well as an extrinsic calibration of the
measurement setup is mandatory. Due to the complex optical design of
light field cameras, in this work, special emphasis is given to appropriate
camera calibration.

Regularization: In order to find an unambiguous solution for the spec-
ular surface, additional information is needed. Hence, the special prop-
erties of the light field camera are to be used to resolve the ambiguity of
the deflectometric measurement and to allow extracting the true surface
normal from the one-dimensional solution manifold.

Reconstruction: The regularization provides an initial estimate of the
surface. As deflectometry is a slope-measuring technique, the surface
should be obtained by integrating the normal field. The light field camera
is to be used to enable a robust reconstruction.
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1.1 Contributions
The main contributions of this thesis are as follows.

Deflectometry requires the coding of the reference monitor pixels.
For this, phase-shift coding is used and different approaches for
phase unwrapping are investigated. Since many approaches ne-
glect the periodicity of the phase, modifications are proposed to
improve the performance of existing unwrapping methods by us-
ing a circular mean operation and circular distances. Furthermore,
a new probabilistic approach for temporal phase unwrapping is
developed that uses circular statistics to model the multi-frequency
phase-shift coding and enables an optimal reconstruction of the
phase. The developed method respects the periodicity of the phase,
simultaneously unwraps all phase measurements using maximum-
likelihood estimation, allows for an easy frequency selection with a
maximum uniqueness range of the unwrapping, and additionally,
includes the estimation of the phase uncertainty into the overall
unwrapping process. Moreover, the method is extended by con-
sidering the local pixel neighborhood resulting in a probabilistic
approach for spatio-temporal phase unwrapping that outperforms
state-of-the-art methods.

Since light field cameras have a complex optical design, more so-
phisticated camera models are necessary. This work proposes to
use a generic camera model, and a new approach for its calibration
is developed in which the uncertainty of the calibration features is
taken into account during optimization, leading to increased accu-
racy of the overall camera calibration. The problem is divided into
two subproblems, a camera ray calibration and a reference target
pose estimation, and to make the optimization feasible, alternat-
ing minimization is applied. Further, a closed-form least-squares
solution for the ray calibration subproblem is presented, and the
pose estimation subproblem is efficiently solved using a gradi-
ent descent optimization on the rotation manifold. All of this is
achieved by minimizing a single objective function, where conver-
gence is guaranteed. In addition, acceleration techniques are ap-
plied to obtain an almost quadratic convergence rate. Experimental
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evaluations show that the proposed method outperforms standard
calibration techniques and other generic approaches and yields a
high-precision calibration.

The reference monitor is modeled by a polynomial shape model
and a refraction model, and it is shown how the model and the
estimation of its parameters can be efficiently integrated into the
generic calibration framework, which further increases the calibra-
tion accuracy.

A new approach for light field reconstruction is developed using
the generic camera calibration as a basis. The approach is com-
pletely generic and can be used to reconstruct light fields from
arbitrary light field imaging systems, independent of whether the
camera is based on microlenses, mirrors, or coded apertures, or
whether it is realized by employing a camera array. Despite being
estimated from a generic and unconstrained set of camera rays,
the method outperforms state-of-the-art light field calibration ap-
proaches and yields rectified images with an accurate intrinsic
calibration.

Different approaches are developed to use the light field camera for
the regularization of the deflectometric normal measurement. For
partially specular surfaces, a classical light field depth estimation
approach is used to obtain an initial estimate of the surface height.
Furthermore, an approach is presented that estimates the distance
to the reflected reference monitor and uses this to calculate the
distance to the surface. For the reconstruction of fully specular
freeform surfaces, a stereo deflectometry approach is adapted to
implement a light field-based multi-view-deflectometry approach
that allows triangulating of the surface.

For the reconstruction of specular surfaces, a method is developed
that fuses the depth estimates obtained through regularization
with the deflectometrically measured surface normals. For this
purpose, a variational fusion approach is adapted to account for
the multi-view property of the light field camera, resulting in an
improved reconstruction accuracy.
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1 Introduction

Some parts of this work have already been published elsewhere:

The analysis of phase-shift coding and the methods for phase
unwrapping from chapter 4 were published in [A7, A2, A1].

The uncertainty-based calibration approach for the generic camera
model from Sec. 5.2 and parts of the evaluation from Sec. 5.5 were
published in [A5].

Contributions to the generic light field reconstruction, as presented
in chapter 6, were published in [A4, A3].

Some aspects of the light field-based regularization techniques and
the fusion of depth and normal estimates for surface reconstruction,
as presented in chapter 7, were published in [A9, A6].

In contrast to these original publications, the content of this thesis has
been changed considerably and the evaluation is much more detailed. In
particular, not only partial aspects are examined. Instead, the interaction
of individual components with each other is investigated, and the influ-
ence of the entire processing chain on the performance of the final result
is examined.

1.2 Overview
The remainder of this thesis is structured as follows. Starting with chap-
ter 2, basic mathematical concepts used throughout this work are pre-
sented. Chapter 3 provides the theory of light fields, light field imaging,
and its applications. Furthermore, it explains the working principles of
deflectometry, presents its difficulties, and formulates the steps required
for light field-based specular surface reconstruction.

In chapter 4 the first step of the deflectometric measurement pipeline is
analyzed, i.e., the registration of camera pixels with features on a reference
monitor. The principles of phase-shift coding are introduced, the state of
the art in the field of temporal phase unwrapping is reviewed, suggestions
for improvement are made, and as the main content, a new probabilistic
approach to spatio-temporal phase unwrapping is presented. The chapter
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1.2 Overview

concludes with an extensive comparison of the proposed methods with
state-of-the-art methods.

Chapter 5 presents the calibration of the entire deflectometric mea-
surement setup. Starting from the basic principles of camera calibration,
the motivation behind the use of more advanced generic camera models
is introduced, and an alternating minimization-based approach for cali-
bration is presented, taking into account the uncertainty of calibration
features that were obtained through phase-shift coding. After this, the
modeling of the reference monitor is explained, and it is demonstrated
how estimating its parameters can be integrated into the generic calibra-
tion framework. Furthermore, it is shown how the generic camera model
can be utilized to perform the extrinsic calibration of the deflectometric
measurement setup.

Subsequently, in chapter 6, the results of the generic camera calibra-
tion are reused to decode light fields from raw camera data. With this,
the inherent 4D topological ray-space of the light field is reconstructed,
preserving both the information of the observed scene and the geomet-
ric structure of the light field by adequate rectification and calibration.
Further, different resampling strategies are discussed and the proposed
method is compared to state-of-the-art light field calibration methods.

Eventually, chapter 7 demonstrates how light field cameras can be effi-
ciently combined with deflectometry. Possibilities for a light field-based
regularization are proposed, which can solve the ambiguity of the surface
normal estimation. A variational surface reconstruction approach is pre-
sented, which fuses the regularization points with the deflectometrically
measured surface normals and enables high-precision reconstruction.
Furthermore, different surfaces are investigated and several aspects of the
entire deflectometric measurement chain are examined for their influence
on the surface reconstruction.

Finally, chapter 8 summarizes the presented work and draws conclu-
sions, providing further insights into future research possibilities.
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2 Preliminaries

This chapter introduces the basic mathematical principles used in this
work. These include useful operators, the mathematical parameterization
of rotations, lines, and surfaces in 3D space, and optimization techniques.
The purpose of this chapter is to provide a general list of tools needed
for this work. All information is gathered here to avoid impeding the
flow of reading in later chapters. The following is therefore primarily
intended as a reference.

2.1 Operators
Reshape Operators

The vec-operator vectorizes a matrix by stacking its columns:

vec(𝐁) ≔
⎛⎜⎜⎜⎜
⎝

𝐛1
𝐛2
⋮

𝐛𝑀

⎞⎟⎟⎟⎟
⎠

, with 𝐁 = (𝐛1, 𝐛2, ⋯ , 𝐛𝑀) (2.1)

where 𝐁 ∈ ℝ𝐿×𝑀 , 𝐛𝑖 ∈ ℝ𝐿 and vec(𝐁) ∈ ℝ𝐿𝑀 .
The mat-operator is the inverse of the vec-operator, and reshapes a

vectorized matrix back to its original form:

mat(𝐛) ≔ 𝐁 , where 𝐛 = vec(𝐁) . (2.2)

The vec-operator is compatible with the Kronecker product ⊗ . With
𝐀 ∈ ℝ𝐾×𝐿 , 𝐁 ∈ ℝ𝐿×𝑀 , 𝐂 ∈ ℝ𝑀×𝑁 , a useful equation can be de-
rived [63]:

vec(𝐀𝐁𝐂) = (𝐂T ⊗ 𝐀)vec(𝐁) , (2.3)

where (𝐂T ⊗ 𝐀) ∈ ℝ𝐾𝑁×𝐿𝑀 and vec(𝐁) ∈ ℝ𝐿𝑀 .
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2 Preliminaries

Skew-Operator

The cross-product between vectors can be formulated using the skew-
operator [⋅]× . For 𝝃, 𝝁 ∈ ℝ3 the skew-operator is defined as follows:

[𝝃]× ≔ ⎡
⎢
⎣

0 −𝜉3 𝜉2
𝜉3 0 −𝜉1

−𝜉2 𝜉1 0

⎤
⎥
⎦

. (2.4)

With it, the useful relations

𝝃 × 𝝁 = [𝝃]× 𝝁 = [𝝁]T× 𝝃 = −𝝁 × 𝝃 (2.5)

can be formulated. Applying the vec-operator on the skew-operator can
be formulated as a matrix-vector product:

vec([𝝃]×) = 𝐙𝝃 , (2.6)
𝐙 = [vec([𝐞1]×) , vec([𝐞2]×) , vec([𝐞3]×)] , (2.7)

with the unit basis vectors 𝐞1, 𝐞2, 𝐞3 .

Directional Derivative

Let M be a smooth submanifold of a Euclidean space and 𝐩 a point of M .
Let 𝑓 be a function defined in a neighborhood of 𝐩 that is differentiable
at 𝐩 . With the tangent vector 𝝃 to M at 𝐩, the directional derivative of
𝑓 along 𝝃 , can be defined. Given a curve 𝛾 on M with 𝛾(0) = 𝐩 and
̇𝛾(0) = 𝝃, the directional derivative is defined by [1]

𝐷𝝃 𝑓 (𝐩) ≔ 𝜕𝜀𝑓 (𝛾(𝜀))|𝜀=0 . (2.8)

2.2 Rotation Parametrization
Rotations in 3D space have three degrees of freedom. There are different
parametrizations, which contain more or less redundant information,
and which are subject to more or less constraints [188]. Depending on the
application for which a mathematical description of rotations is required,
different parametrizations can be advantageous. In this work, rotations
are represented throughout by rotation matrices.
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2.2 Rotation Parametrization

Rotation Matrix

Rotation matrices are elements of the special orthogonal group in three
dimensions 𝐑 ∈ SO(3) ⊂ ℝ3×3 , which are subject to several constraints:

SO(3) = {𝐑 ∈ ℝ3×3 ∣ 𝐑T𝐑 = 𝐈, det (𝐑) = 1} . (2.9)

A rotation matrix is described with nine parameters

𝐑 = ⎛⎜⎜
⎝

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

⎞⎟⎟
⎠

= (𝐫1, 𝐫2, 𝐫3) , (2.10)

where ‖𝐫𝑛‖ = 1 for 𝑛 = 1, 2, 3 . The transposed rotation matrix is its own
inverse 𝐑T = 𝐑−1 , and the column vectors 𝐫1, 𝐫2, 𝐫3 span the coordinate
system that the rotation matrix transforms to.

Local Parametrization of SO(3)

Rotation matrices are very intuitive because the rotation of a 3D point
can be realized by simple matrix-vector multiplication. If rotations are
needed for parameter estimation or optimization, the highly redundant
rotation matrices are only of limited use due to the many constraints. If
used in optimization, derivatives often have to be calculated. However,
the simple calculation of derivatives of individual parameters does not
lead to meaningful results, since rotation matrices are defined on the
Riemannian manifold SO(3) and this property is lost if not handled
correctly [24]. Derivatives must therefore be calculated directly on the
manifold [81, 138, 176].

The smooth and differentiable Riemannian manifold SO(3) is a finite-
dimensional Lie group [189]. Every matrix Lie group is associated with
a Lie algebra. The corresponding Lie algebra 𝔰𝔬(3) is the set of all 3 × 3
skew-symmetric matrices

𝔰𝔬(3) = {𝛀 = [𝝃]× ∈ ℝ3×3 ∣ 𝝃 ∈ ℝ3} , (2.11)

which is the tangent space of the Lie group at the identity element [24].
The mapping from any element [𝝃]× ∈ 𝔰𝔬(3) to 𝐑 ∈ SO(3) is called

the exponential map 𝐑 = Exp ([𝝃]×) and is defined using the standard
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matrix exponential series. It can be calculated in closed form using the
well known Rodrigues rotation formula [125]:

Exp ([𝝃]×) ≔ e[𝝃]× = 𝐈 +
[𝝃]×
‖𝝃‖

sin(‖𝝃‖) +
[𝝃]2×
‖𝝃‖2 (1 − cos(‖𝝃‖)) . (2.12)

The reverse map from the Lie group to the Lie algebra [𝝃]× = Log (𝐑) is
called the logarithmic map [125]:

Log (𝐑) ≔
𝜃 (𝐑 − 𝐑T)

2 sin(𝜃)
, with 𝜃 = cos−1 (

trace(𝐑) − 1
2

) . (2.13)

Therefore, one can find a smooth parametrization 𝑔𝐑(𝝃) = Exp([𝝃]×) 𝐑
of the SO(3) manifold in a local neighborhood of 𝐑 , which is differen-
tiable with respect to 𝝃 ∈ ℝ3 using the tangent space.

2.3 Line Parametrization and Plücker
Coordinates

In 6D-Plücker-space a Plücker-line 𝐥 ∈ ℙ6 is defined by its direction
vector 𝐝 ∈ ℝ3 and its moment vector 𝐦 ∈ ℝ3 [186, 207]. A line in 3D-
space has four degrees of freedom, therefore two constraints apply to
the Plücker-line:

ℙ6 = {( 𝐝
𝐦)∣ 𝐝 , 𝐦 ∈ ℝ3, 𝐝T𝐦 = 0 , ‖𝐝‖ = 1} . (2.14)

The moment vector can be calculated with 𝐦 = 𝐩1 ×𝐝 , where 𝐩1 ∈ ℝ3 is
an arbitrary point on the line 𝐥 , see figure 2.1. The moment vector stands
perpendicular to the line and its norm ‖𝐦‖ corresponds to the Euclidean
distance of the line to the origin. Given two points 𝐩1, 𝐩2 ∈ ℝ3 , the
Plücker-line 𝐥T = (𝐝T, 𝐦T) traversing both points can be calculated:

𝐝 =
𝐩1 − 𝐩2

‖𝐩1 − 𝐩2‖
, (2.15)

𝐦 = 𝐩1 × 𝐝 = 𝐩2 × 𝐝 . (2.16)
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𝑧

𝑥
𝑦𝐩1

𝐩2
𝐥

𝐝

𝐦

⋅

Figure 2.1 A Plücker-line 𝐥 is defined by its direction vector 𝐝 and moment vector 𝐦 .
It can be calculated from two points 𝐩1 and 𝐩2 on the line.

A rotation and translation of the line in 3D-space is achieved using simple
matrix operations [12]:

𝐥′ = 𝐑𝐥𝐥 = (𝐑 𝟎
𝟎 𝐑) 𝐥 , (2.17)

𝐥′ = 𝐓𝐥𝐥 = ( 𝐈 𝟎
[𝐭]× 𝐈) 𝐥 , (2.18)

where 𝐑 ∈ SO(3) , 𝐭 ∈ ℝ3 and [⋅]× are the rotation matrix, the translation
vector and the skew operator, respectively. The Euclidean distance 𝑑(𝐥, 𝐩)
of a line 𝐥 to an arbitrary point 𝐩 ∈ ℝ3 is defined as the distance to
the closest point on the line. It is found by translating the origin of the
coordinate system into the point 𝐩

𝐥′ = ( 𝐝′

𝐦′) = ( 𝐈 𝟎
[−𝐩]× 𝐈) 𝐥 = ( 𝐝

− [𝐩]× 𝐝 + 𝐦) (2.19)

and by calculating the distance between the translated line and the new
origin:

𝑑(𝐥, 𝐩) = 𝑑(𝐥′, 𝟎) = ‖𝐦′‖ = ‖𝐩 × 𝐝 − 𝐦‖ . (2.20)

13



2 Preliminaries

2.4 Surface Parametrization
Surfaces are represented in this work by point clouds or, when needed,
by a two-dimensional function

𝑧 ∶ ℝ2 → ℝ ,
(𝑠, 𝑡) ↦ 𝑧(𝑠, 𝑡) .

(2.21)

where the set of 𝑠, 𝑡 values defines the topological relationship (e.g., be-
tween camera pixels), and 𝑧(𝑠, 𝑡) represents the corresponding depth
or height value. The surface is hereby defined by discrete values or a
continuous implicit parametric description.

Relation between Surface Normal and Gradient

Let 𝑠, 𝑡 be the image coordinates of a surface, 𝐧(𝑠, 𝑡) the corresponding
surface normal, and 𝐱(𝑠, 𝑡) = (𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡), 𝑧(𝑠, 𝑡))T a surface point.
Calculating the surface gradient with respect to the image coordinates
now depends on the model of projection [163].

With an orthographic projection a 3D point is projected orthogonally
onto the image plane. The image coordinates equal the point coordinates:

𝑥(𝑠, 𝑡) = 𝑠 , (2.22)
𝑦(𝑠, 𝑡) = 𝑡 . (2.23)

The cross product of the 3D point’s partial derivatives is normal to the
surface:

𝜕𝑠𝐱 × 𝜕𝑡𝐱 ∼ 𝐧 . (2.24)
By normalizing this, and choosing the sign so that 𝐧 points toward the
camera, one obtains

𝐧 = 1

√1 + ‖∇𝑧‖2

⎛⎜⎜
⎝

𝜕𝑠𝑧
𝜕𝑡𝑧
−1

⎞⎟⎟
⎠

, (2.25)

where ∇𝑧 = (𝜕𝑠𝑧, 𝜕𝑡𝑧)T denotes the gradient of the depth map 𝑧 . Solv-
ing (2.25) for the surface gradient then yields

𝐠 ≔ ∇𝑧 = (𝜕𝑠𝑧
𝜕𝑡𝑧

) = − 1
𝑛3

(𝑛1
𝑛2

) . (2.26)
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With a perspective projection, the projected coordinates now depen-
dend on the depth and the focal length 𝑓 of the used camera [163]:

𝑥(𝑠, 𝑡) =
𝑧(𝑠, 𝑡)

𝑓
𝑠 , (2.27)

𝑦(𝑠, 𝑡) =
𝑧(𝑠, 𝑡)

𝑓
𝑡 . (2.28)

The cross product of the 3D point’s partial derivatives is normal to the
surface and parallel to the normal vector, implying 𝜕𝑠𝐱 × 𝜕𝑡𝐱 × 𝐧 = 𝟎 ,
which results in the equation system

0 = 𝑓𝑛3𝜕𝑠𝑧 + 𝑛1 [𝑧 + 𝑠𝜕𝑠𝑧 + 𝑣𝜕𝑡𝑧] ,
0 = 𝑓𝑛3𝜕𝑡𝑧 + 𝑛2 [𝑧 + 𝑠𝜕𝑠𝑧 + 𝑣𝜕𝑡𝑧] ,
0 = 𝑛2𝜕𝑠𝑧 − 𝑛1𝜕𝑡𝑧 .

(2.29)

Knowing 𝑧 > 0 holds for the depth map and substituting ̄𝑧 = ln(𝑧)
makes (2.29) linear in the partial derivatives 𝜕𝑢 ̄𝑧 and 𝜕𝑣 ̄𝑧 :

0 = [𝑛3𝑓 + 𝑛1𝑠] 𝜕𝑠 ̄𝑧 + 𝑛1𝑡𝜕𝑡 ̄𝑧 + 𝑛1 ,
0 = [𝑛3𝑓 + 𝑛2𝑡] 𝜕𝑡 ̄𝑧 + 𝑛2𝑠𝜕𝑠 ̄𝑧 + 𝑛2 ,
0 = 𝑛2𝜕𝑠 ̄𝑧 − 𝑛1𝜕𝑡 ̄𝑧 .

(2.30)

This can then be easily inverted, providing a formula for the surface
gradient of the substitute depth map ̄𝑧 :

̄𝐠 ≔ ∇ ̄𝑧 = (𝜕𝑠 ̄𝑧
𝜕𝑡 ̄𝑧) = − 1

𝑠𝑛1 + 𝑡𝑛2 + 𝑓𝑛3
(𝑛1

𝑛2
) . (2.31)

2.5 Primal-Dual Optimization
For variational optimization, often the primal-dual formalism is used to
find efficient optimization algorithms that allow for a smooth minimiza-
tion of non-smooth functions [34].

LetX ,Y be two finite-dimensional real vector spaces and let the general
optimization problem be of the form

min
𝐱∈X

𝐹(𝐊𝐱) + 𝐺(𝐱) , (2.32)
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where 𝐊 ∶ X → Y is a continuous linear operator, 𝐹 ∶ Y → ℝ+ , 𝐺 ∶ X →
ℝ+ are convex functions, while 𝐹 can be discontinuous. The primal-dual
formulation of this is the convex-concave saddle point problem [25]

min
𝐱∈X

max
𝐲∈Y

⟨𝐊𝐱, 𝐲⟩ + 𝐺(𝐱) − 𝐹 ∗(𝐲) , (2.33)

where ⟨⋅, ⋅⟩ is an inner product, 𝐱 is considered the primal variable, 𝐲 the
dual variable, and 𝐹 ∗ denotes the convex conjugate of the function 𝐹 :

𝐹 ∗(𝐲) = sup
𝐱∈X

{⟨𝐲, 𝐱⟩ − 𝐹(𝐱)} . (2.34)

Independent of the convexity of 𝐹 , the convex conjugate is always a
convex function. The saddle point optimization problem can be efficiently
solved in an alternating manner using primal-dual algorithms [34]:

𝐲(𝑛+1) = prox𝜎𝐹 ∗ (𝐲(𝑛) + 𝜎𝐊𝐱̄(𝑛)) , (2.35)

𝐱(𝑛+1) = prox𝜏𝐺 (𝐱𝑘 − 𝜏𝐊∗𝐲𝑘) , (2.36)

𝐱̄(𝑛+1) = 𝐱(𝑛+1) + 𝜃 (𝐱(𝑛+1) − 𝐱𝑘) , (2.37)

where 𝜏, 𝜎, 𝜃 are parameters and 𝐊∗ is the adjoint of the operator 𝐊 . The
primal variable 𝐱 is updated in each iteration 𝑛 with a proximal descend,
the dual variable 𝐲 is updated with a proximal ascend, and a final ex-
trapolation step increases the convergence rate. The proximal operators
can be formulated through optimization of an independent subproblem:

prox𝜏𝐺(𝐱) = arg min
𝐱′

{
‖𝐱 − 𝐱′‖

2𝜏
+ 𝐺(𝐱)} . (2.38)

The advantage of the primal-dual algorithms is that the difficult optimiza-
tion problem (2.32) can be iteratively solved, in which only the proximal
operators need to be evaluated, where in many cases an analytic solution
for the subproblems can be provided [146].
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3 Background

3.1 Deflectometry
Specular surfaces can be found in numerous areas of industrial produc-
tion. For instance, they appear in lacquered body parts of the automotive
industry, in entertainment products, in glazed ceramics, or in the pro-
duction of high-precision mirror optics, such as those used in telescopes.
Depending on the degree of specularity, an observation will reveal im-
age features composed of a superposition of direct surface features and
features from the reflected image of the environment. Obtaining 3D infor-
mation about physical objects is a significant application of automated
visual inspection methods. However, many of these methods fail when
examining fully specular objects, especially triangulation-based methods
such as stereo vision or fringe projection profilometry. The reason for
this is that, in contrast to diffuse reflection, an observer does not see the
surface itself, but the distorted mirror image of the surroundings. The
specular surface is practically invisible to the observer. Automatic visual
inspection, especially 3D measurement, therefore is a major challenge.

While a human observer can intuitively make assumptions about the
surface by watching the distortion, various computer vision techniques
try to imitate this principle, e.g., shape from specular reflection and shape from
distortion [11]. A certain subclass of these are the so-called deflectometric
methods. The measurement setup consists here of a camera and an active
illumination source, e.g., a commercially available monitor. By illuminat-
ing with a known reference pattern, information about the surface can be
obtained from the observed distortions. In detail, deflectometry makes it
possible to obtain highly precise slope information of the surface, which
can be used for 3D reconstruction or defect detection. The advantages of
deflectometry are that it is very robust, can be realized with inexpensive
hardware, and the measurement sensitivity is limited geometrically by
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𝐬

𝐬′

𝐬′

𝐧

𝐧′

𝐧′

𝐑, 𝐭𝐱( ̂𝐬)

𝐩

Monitor

Camera

Specular Surface

Image

Figure 3.1 Deflectometric measurement principle: The camera observes distorted refer-
ence patterns as reflection in the surface. Knowing the reference point, a surface normal
can be calculated for every point on a camera ray.

the resolution of the camera sensor and the extent of the measurement
setup. This makes it interesting for many industrial applications.

3.1.1 Measurement Principle
The most basic experimental setup for a deflectometric measurement is
illustrated in figure 3.1. It consists of three components: an illumination
source displaying structured patterns, a specular object under test, and a
camera. For the light source, standard LCD monitors are usually used
that can be actively controlled, or reference patterns are projected onto a
canvas by means of a projector. The reference shows a pattern or a series
of patterns, which are then reflected on the examined specular object.
In deflectometry, the specular surface itself is part of the system and is
located in the optical path between the illumination and the camera. The
reference pattern is therefore distorted by the curvature of the surface,
and the resulting warped pattern can be imaged with a conventional
digital camera. Assuming each ray is reflected only once, which is true
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for many technical surfaces, and since the object is specularly reflective,
a camera pixel sees either exactly one position on the screen or none.

In a camera-fixed coordinate system, starting from a camera pixel, a
vision ray can be constructed with direction ̂𝐬 ∈ 𝕊2 starting from the opti-
cal center of the camera. The ray hits the surface in the point 𝐬 = 𝜌 ̂𝐬 , with
‖ ̂𝐬‖ = 1 . At the surface, the ray is reflected, hits the reference monitor,
and observes a feature 𝐱( ̂𝐬) in the monitor plane. If in a fully calibrated
system the transformation of monitor coordinates to the camera coor-
dinate system is known, the position of the observed monitor feature
relative to the camera can be calculated:

𝐩 = 𝐑𝐱 + 𝐭 . (3.1)

Using the law of reflection, the surface normal 𝐧 of the observed point
can then be specified as the angle bisector between the camera ray ̂𝐬 and
the reflected ray ̂𝐬r :

𝐧(𝜌) = ̂𝐬r − ̂𝐬 = 𝐩 − 𝐬
‖𝐩 − 𝐬‖

− 𝐬
‖𝐬‖

=
𝐩 − 𝜌 ̂𝐬

‖𝐩 − 𝜌 ̂𝐬‖
− ̂𝐬 . (3.2)

The integration of the normal field of all camera pixels finally yields the
reconstruction of the investigated surface.

However, a problem arises here, because in general, the length 𝜌 of the
vector 𝐬 is unknown in (3.2). This means that a one-parametric set of hy-
pothetical surface normals can be calculated for each camera ray, which
in turn leads to an ambiguity of the surface estimation. More precisely, a
surface normal can only be calculated correctly if the corresponding sur-
face point is already known, and the surface can only be reconstructed if
the surface normals are provided. To resolve the ambiguity of the deflec-
tometric measurement, additional regularizing information is required.
In principle, it would suffice to measure only one point of the surface
and to reconstruct the surface from the normal field starting from this
point by assuming a continuous surface [11]. However, if more samples
are available, this can help to reduce the influence of an uncertain and
noisy measurement of a single surface point.
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3.1.2 Related Works
Deflectometry has a long history in computer vision and optical metrol-
ogy. Among the earliest work, Sanderson et al. [174] proposed a structured
highlight illumination approach using an array of point light sources
to illuminate a specular surface, and they estimated surface orientation
using a stereo camera. The first promising results for optical metrology
were demonstrated in the work of Petz and Ritter [151] and Petz and
Tutsch [152, 153]. They proposed reflectance grating photogrammetry
for the measurement of specular surfaces by using a linear position-
ing unit to move a flat reference structure into different positions from
which the illumination direction is derived. By applying the triangulation
principle between the camera rays and known illumination direction,
they then determine point-wise the absolute 3D object coordinates with
high precision. Knauer et al. [103] analyzed the investigation of specular
freeform surfaces through phase-shift coding and introduced the term
phase measuring deflectometry for the first time. They further described
many aspects, e.g., the measurement principle, the physical limits of the
method, and the calibration of the system components. Bothe et al. [22]
gave practical demonstrations of their fringe reflection technique, which
allowed nondestructive testing of specular surfaces and high-resolution
3D shape measurement. And thus, deflectometry was promoted as a
novel technique for the measurement of specular freeform surfaces.

Applications

Since for industrial applications often only quality assurance or defect
detection is of interest, many pure inspection methods exist. Häusler et al.
[74] proposed a microscopic PMD system with nanometer sensitivity for
local surface features. Xiao et al. [228] used deflectometry to measure the
3D shape of aspherical mirrors. Olesch et al. [142] used deflectometry for
large-scale estimation of telescope mirrors. Häusler et al. [75] and Faber
et al. [51] compared deflectometry with interferometry and describe the
advantages and disadvantages. Werling and Beyerer [220] proposed in-
verse patterns that are computed in advance for known test objects and
that can be used for fast and robust defect detection on specular ob-
jects. Su et al. [192] investigated deflectometry with an infrared source to
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analyze rough optical surfaces. Höfer et al. [83] and Höfer [82] presented
approaches that allow coding of the reference patterns in the infrared
spectrum, and thus render infrared deflectometry industrially useful.

Regularization

The deflectometric normal measurement is inherently ambiguous, thus,
additional information is needed for 3D reconstruction. Therefore, several
approaches for regularization exist.

Li et al. [113] use an additional confocal white-light distance sensor to
precisely determine a single surface point from which the surface can be
reconstructed. Huang et al. [87] use an external laser tracker to precisely
measure the system setup and mirror surface position, and compare it
with a virtual system setup, which subsequently yields a high precision
reconstruction.

When additional assumptions are made about the surface, the recon-
struction can be simplified and a solution approximated. By neglecting
higher-order surface properties, the reconstruction task can be reduced
to a finite-dimensional parameter estimation problem, which in general
has a unique solution [9]. Liu et al. [118] show that the surface can be
reconstructed uniquely under certain conditions if it is at least twice con-
tinuously differentiable. Pak [143] adopts this approach and simplifies
the mathematical description. Liang et al. [114] characterize the surface
locally as a low-dimensional model and build their approach on the work
of Savarese et al. [177]. Huang et al. [85] describe the surface using a global
model, and they find the surface through parameter optimization.

Various methods exist to reconstruct the direction of the illumination
utilizing a multi-monitor approach. Here, the monitor can be moved
with a linear positioning unit [152, 153], or the approach can be imple-
mented without mechanical movements by using a beam splitter and
two separate monitors [120, 247]. In this context, Han et al. [71] present an
idea that can reconstruct the surface even with an uncalibrated camera
model and unknown monitor poses. Similarly, a directed illumination
can also be realized with telecentric optics, which enables triangulating
the surface [184, 237].

When attempting to apply classical stereo vision to specular surfaces,
initially there is the difficulty that only virtual features can be captured
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in the two camera images (cf. Sec. 7.1.2). However, specular stereo can be
achieved by correlating the normal vector fields induced by two measure-
ments, which indirectly enables surface triangulation. For this purpose,
starting from the ambiguous normal vector field, Bhat and Nayar [17]
seek the simultaneous solution of two partial differential equations, one
for each viewpoint. Bonfort and Sturm [21] use a correlation measure for
point-wise reconstruction by voxel carving. Balzer et al. [10] extend the
principle to measure large objects by using multi-view specular stereo.

The limit case of the stereo approach is represented by specular flow.
It is assumed that the movement between image configurations is so
small that the correspondence between image and scene points is main-
tained across two images. Roth and Black [172] combine diffuse and
specular flow to reconstruct partially specular surfaces. Balzer [9] derives
model equations of specular flow that can also describe nonlinear cam-
era motions. Adato et al. [2] provide a solution for shape from specular
flow, which makes it possible to reconstruct the surface by observing the
specular flow induced by an unknown environment motion field. Pak
[144] derives a simple relation between specular flow and the Gaussian
curvature of specular surfaces. However, the method has a practical dis-
advantage: no coded illumination can be used because the camera has to
be moved continuously for specular flow.

Reconstruction

Although regularization provides a rough estimate of the surface, the
advantages of deflectometry are that it can determine the local slope of
the surface very precisely, i.e., the measurement of the surface normals
is generally significantly more precise than the direct measurement of
surface points. Based on the unambiguous surface normals obtained
from the regularization, the surface can be reconstructed.

Various works exist that describe the surface using a two-dimensional
polynomial and convert the reconstruction into a parameter estimation
problem [85]. For this, depending on the shape of the specular object,
different surface models are used, e.g., Zernike polynomials, radial basis
functions, or Forbes polynomials [50, 85, 166].

Other approaches consider the reconstruction problem as normal in-
tegration or gradient integration. In principle, there are two concepts
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for this. Local methods integrate the surface along predetermined paths.
Horbach and Dang [84] propagate the regularization information by
region growing starting from at least one known surface point to inte-
grate the normal field. Neighboring surface normals can be computed
by assuming the continuous differentiability of the surface, which al-
lows a local regularization. However, in doing so, they also propagate
the measurement error along the path leading to a global shape devi-
ation [50]. Since the normal field is typically corrupted by noise, it is
therefore seldom integrable and curl-free. Therefore, the error of the
integration depends on the chosen path. For this reason, variational ap-
proaches are often used as global methods, where only the integrable
part of the normal field is considered, and the integration task is formu-
lated as an energy minimization problem [163]. Since the integration of
surface normals also occurs in many other applications (e.g., photometry,
profilometry), there exists much literature on the subject. Chang et al.
[35] use level set methods to integrate a multi-view normal field and
apply this to photometric stereo images. In the case of deflectometry,
Balzer et al. [10] use multi-view regularization to obtain an initial surface
estimate, and they refine this by integrating the normal field. This is done
by iteratively solving a Poisson equation using finite-elements analysis,
updating the reconstructed normals and the measured normal field con-
currently. Quéau and Durou [162] explore edge-preserving integration
of normal fields by examining different energy functionals for the recon-
struction of discontinuous surfaces. Quéau et al. [164] present several
total variation-like integration approaches where surface normals and
depth estimates can be fused into one surface. Antensteiner et al. [8] com-
pare different algorithms that fuse depth values with gradient estimates,
with application to light field photometric stereo.

While there is still other related work relevant for deflectometry, e.g.,
the coding of the structured illumination and the calibration of the mea-
surement system, they are not discussed here but later in their associated
chapters, see Ch. 4 and Ch. 5. For more details on deflectometry, its appli-
cations, further regularization and reconstruction techniques, the reader
is referred to the comprehensive reviews in the literature [11, 86, 163, 222].
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3.2 Light Fields
The light propagating through space contains a variety of information.
Within the field of geometrical optics, the theoretical background for
a description of this propagation is provided by the plenoptic function
that assigns a radiance value to the light rays present in a physical space.
It assumes that the usual 3D space is traversed by light propagating in
all directions, and the light may be blocked, attenuated, or scattered.
To account for all possible variations of light, the plenoptic function
takes a seven-dimensional description 𝑃 (𝐱, 𝜽, 𝜆, 𝜏) ∶ ℝ7 → ℝ . Arbitrary
radiance values can be assigned at any location in space 𝐱 ∈ ℝ3 , for any
possible directional angle 𝜽 ∈ ℝ2 , any wavelength 𝜆 , and any time 𝜏 .
While the plenoptic function is mainly of conceptual interest in this work,
recently, it found applications in the field of scene reconstruction and
novel view synthesis [129, 236].

In contrast, light fields have a more practical meaning, since they allow
the description of imaging systems in which only the rays that reach
the camera sensor are relevant. By introducing additional constraints,
the light field can be derived from the plenoptic function [92]. If only
single points in time are considered or if the light is integrated over the
exposure time, the temporal dimension 𝜏 of the plenoptic function can
be omitted. The integration over the spectral sensitivity of the camera
pixels eliminates the spectral dimension 𝜆 of the plenoptic function.
Thus, the light field is considered monochromatic. However, in this work,
color or more abstract coded information may be assigned to the rays,
although this will not be implicitly stated. The most important reduction
of dimensions is achieved by the so-called free space assumption [110].
In homogeneous media that are free of occluders, the radiance along a
ray is constant. Hence, the spatial dependency of the plenoptic function
can be reduced by one dimension. Moon and Spencer [132] called the
resulting function photic field, while in the field of computer graphics it is
titled 4D light field [110] or Lumigraph [64]. Formally, the 4D light field
𝐿(𝑢, 𝑣, 𝑠, 𝑡) is defined as the radiance along light rays in an empty space,
where the coordinates (𝑢, 𝑣, 𝑠, 𝑡) correspond to a certain parametrization
of the spatial and angular dependencies of the light field. The array of
rays in a light field can be modeled in different ways. The most commonly
used parametrization is the two-plane parametrization, where a light
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𝐿(𝑢, 𝑣, 𝑠, 𝑡)
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Figure 3.2 Two-plane parametrization of the 4D light field: A light ray is described by the
coordinates of intersection with two parallel planes.

ray is uniquely described by the intersections of two parallel planes with
angular coordinate (𝑢, 𝑣) , spatial coordinates (𝑠, 𝑡) , and with distance
𝑓 between both planes, see figure 3.2. This may not represent all rays,
for example, rays parallel to the two planes, provided the planes are
parallel to each other. The advantage, however, is that its description
is closely related to the analytical geometry of perspective imaging in
optical systems.

A simple way to visualize the two-plane parametrization of the light
field 𝐿(𝑢, 𝑣, 𝑠, 𝑡) is to imagine it as a discrete collection of many perspec-
tive images of the 𝑠, 𝑡-plane, each of which is taken from a different
observation position in the 𝑢, 𝑣-plane with a virtual camera. Hence, for
each fixed angular coordinate (𝑢0, 𝑣0) a two-dimensional slice can be ex-
tracted from the light field, which in the following is called a subaperture
image (SAI):

SAI𝑢0𝑣0
(𝑠, 𝑡) = 𝐿(𝑢0, 𝑣0, 𝑠, 𝑡) , (3.3)

where each SAI resembles a conventional image. By fixing an angular
coordinate and the spatial coordinate whose axis is parallel to that coor-
dinate, a so-called epipolar plane image (EPI) is obtained:

EPI𝑢0𝑠0
(𝑣, 𝑡) = 𝐿(𝑢0, 𝑣, 𝑠0, 𝑡) , (3.4)

EPI𝑣0𝑡0
(𝑢, 𝑠) = 𝐿(𝑢, 𝑣0, 𝑠, 𝑡0) , (3.5)
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𝑡
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𝑡
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Figure 3.3 Interpretation of the light field as a camera array. Each SAI represents a “virtual”
camera that is slightly shifted with respect to the other cameras. The dashed lines indicate
the coordinates of the extracted EPIs.

where, depending on which coordinates are fixed, a horizontal or vertical
EPI is extracted. Figure 3.3 shows an example light field as an array of
virtual cameras that are slightly shifted against each other, as well as a
horizontal and a vertical EPI. Due to the change of perspective for each
angular coordinate, the EPIs show lines of different slopes, whose orien-
tation provides information about the depth of the observed scene points.
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3.2.1 Light Field Acquisition
The easiest way to sample the continuous light field 𝐿(𝑢, 𝑣, 𝑠, 𝑡) is to use
a mechanical gantry to place a conventional camera at different positions
in the 𝑢, 𝑣-plane and capture the scene [205]. Of course, instead of a
time-sequential capture, this can be efficiently implemented hardware-
parallel using multi-camera arrays to allow obtaining high-resolution
light fields [233]. While camera arrays can be miniaturized and a config-
uration of specialized camera modules can be assembled, building and
maintaining camera arrays is costly and cumbersome.

In contrast, single-shot light field cameras have been proposed that
image the light field through a single main lens and encode the four-
dimensional information onto a two-dimensional camera sensor. The
most commonly used designs for such light field acquisition devices
are microlens-based light field cameras. While the basic idea of such
cameras was already described by Lippmann [116] as early as 1908, only
modern computing power and advances in the fabrication of microscopic
structures made commercialization possible. The first design of a light
field camera was introduced much later in 1992 by Adelson and Wang [3],
who called it plenoptic camera. And one of the first hand-held prototypes
was built by Ng et al. [137], which was then commercialized by Lytro Inc.
The camera’s layout is similar to that of a conventional camera with the
essential difference that an array of microscopically sized lenses is placed
in front of the sensor. By adding this microlens array (MLA), it becomes
possible to capture a section of the 4D light field 𝐿(𝑢, 𝑣, 𝑠, 𝑡) of a scene and
encode it onto the 2D sensor. In particular, there are different designs.

When the distance between the MLA and the sensor corresponds to
the focal length of the microlenses, the camera is an unfocused plenop-
tic camera, see figure 3.4. The coordinates of the light field’s two-plane
parametrization are represented here by the 𝑠, 𝑡- and 𝑢, 𝑣-coordinates,
whereby 𝑠, 𝑡 define the position of a microlens in front of the sensor,
and thus, they encode the spatial dimension of the light field. Hence,
they can be interpreted as macro pixels. The 𝑢, 𝑣-coordinates define the
position within the microlens relative to its center and in this way, they
implicitly provide information on where a light ray has passed through
the main lens. They represent the angular information of the light field.
Since the microlenses are relatively small, their size is usually below
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Figure 3.4 Schematic representation of an unfocused plenoptic camera.

100 µm, the main lens is almost infinitely far away when compared to the
distance between the sensor and MLA. The rays entering the microlenses
can therefore be assumed to be parallel. As a consequence, rays that
are imaged onto the central pixel of the sensor region belonging to a
microlens originate from the center of the main lens. And rays away from
the edge of the main lens are projected onto pixels corresponding to
angular coordinates away from the microlens center. Consequently, each
𝑢, 𝑣-coordinate samples only a sub-area of the camera’s aperture. Hence,
each SAI shows a very high depth of field, due to the small opening. To
avoid overlapping between different microlens images, the f-numbers of
the main lens and the microlenses must be matched to each other [137].
In the unfocused design, the spatial resolution is defined by the number
of microlenses in front of the sensor, whereas the angular resolution is
defined by the number of pixels under each microlens.

Since the sensor’s resolution is fixed, the spatial resolution of the light
field decreases with increasing angular resolution. Because of this trade-
off, new camera designs were introduced that allow a light field to be
captured with significantly higher spatial resolution than the traditional
approach, enabling the rendering of high-resolution images that meet
the expectations of modern photographers [122]. MLA-based light field
cameras in the so-called focused designwere first introduced by Lumsdaine
and Georgiev [123], and then later commercialized by Raytrix GmbH. In
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Figure 3.5 Schematic representation of a focused plenoptic camera.

this design, the distance between the MLA and the sensor differs from
the focal length of the microlenses, see figure 3.5. Hence, the microlenses
don’t sample the main lens’ aperture but a virtual image plane. The
relation between light field coordinates and the optical components of
the camera is no longer as intuitive as it was before. With the focused
design, the number of pixels under each microlens no longer corresponds
directly to the angular resolution. Rather, the microlenses now show
micro-images of the scene. Each microlens can therefore be interpreted as
a tiny virtual camera, where depending on the position of the microlens,
both the optical center of the virtual camera is shifted and a different small
section of the scene is observed. The pixels underneath the microlens
thus encode spatial information, while the microlens position contains
both spatial and angular information, due to a slightly different view
of the scene in each micro-image. In particular, there are even different
configurations for focused plenoptic cameras. Because the micro-images
only scan the virtual image plane onto which the main lens images
the scene, the micro-images have a significantly reduced depth of field
compared to the unfocused design. This led to the introduction of multi-
focus plenoptic cameras, which have micro-lenses with different focus
lengths [148]. In this way, a focused image can be constructed at any depth
of focus, and a really wide range of digital refocusing can be achieved [61].
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Apart from microlens-based light field cameras, a variety of more
exotic designs exists, e.g., cameras based on coded apertures [211], multi-
spectral light field cameras [178, 179], or light field objectives that can turn
any standard camera into a light field system by using kaleidoscope-like
imaging optics [128].

3.2.2 Related Works
While a conventional camera only captures the spatial information of a
scene, a light field with the additional angular information can be used,
for example, to change the perspective on the scene or to change the posi-
tion of the observer [137]. Moreover, even after capturing a dynamically
active scene, it becomes possible to shift the focus plane by rendering new
images from the 4D light field data [135]. Due to the highly redundant
information, light fields can be used for a variety of applications, e.g., de-
noising and deblurring [4, 43], super-resolution [19], segmentation [219],
material recognition [213], hyper-spectral imaging [181], structure from
motion and visual odometry [94, 238], to name a few.

A popular research area is light field-based disparity estimation, which
can be used directly to estimate depth if the camera is calibrated. A
variety of methods exist for this purpose [98]. Due to the multi-view
property of the light field, well-established feature-based approaches
comparable to stereo imaging can be used [77]. Approaches for depth
from focus/defocus [199] or disparity from EPIs exist [212, 218]. Using
the EPIs, lines of constant intensity appear, and disparity estimation can
be performed with a local orientation estimate [216] or by a local line
fitting [244, 245]. More generally, the disparity information is represented
by the two-dimensional slope of constant-intensity planes embedded in
the 4D space. In recent years, deep learning approaches have become
state of the art in disparity estimation, as they can provide more robust
local slope estimation [76, 187], or even incorporate the full 4D light field
information into the process [78, 124, 234].

In the field of partially specular reflection (or partial transparency),
the EPIs show a superposition of lines representing the direct depth
of the partially specular surface and the indirect depth of the reflected
scene, respectively. For these situations, many approaches exist to model
and remove specular highlights [41], to estimate both depths simultane-
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ously [95, 232], or to separate both image layers to obtain two separate
light fields [95, 96, 193]. Light fields are also used to detect and classify
non-Lambertian objects, such as refractive or transparent objects [126,
224, 225]. Ideguchi et al. [91] estimated the surface of transparent objects
based on local photo consistency. Lu et al. [121] used light fields to sample
surface BRDFs and developed an architecture based on convolutional
neural networks (CNN) for BRDF identification. Alperovich et al. [7]
used a deep encoder-decoder network that solves non-Lambertian intrin-
sic light field decomposition, which can recover albedo, shading, and
specularity. Light field cameras have found applications in the field of
optical metrology as well. Ziwei et al. [252] use a light field camera as
an additional geometric constraint to resolve the ambiguity of phase
unwrapping, which serves as the basis for many optical metrology ap-
plications. Liu et al. [119] achieve high dynamic range 3D imaging by
using a light field camera for multi-view fringe projection profilometry,
Zhou et al. [251] combine the light field’s EPI-based depth estimation to
improve profilometric reconstruction, and Farber et al. [58] demonstrate
that by using spectral light fields, an application like depth estimation or
profilometry can be improved even more.

31





4 Deflectometric Registration

Deflectometry is used for high-precision surface measurement and dense
3D reconstruction of specular objects. In this context, it is necessary to
carry out an optical position encoding to be able to reconstruct the surface
by means of triangulation. As described in Sec. 3.1, the objective of the
deflectometric registration is to determine an imaging function, which al-
lows direct mapping of camera pixels to points in the monitor plane. With
the help of this registration, local defects in the surface under test can
be detected or the surface can be reconstructed globally, see Ch. 7. Apart
from deflectometry, optical encoding techniques can also be used in the
field of camera calibration, where reference features displayed by an ac-
tive target drastically decrease the calibration error as compared to when
standard checkerboard features are used, see Ch. 5. Hence, to ensure
precise measurements, the registration must be as accurate as possible.
In order to determine the imaging function, the positions on the refer-
ence plane and thus the pixel coordinates of the monitor screen must be
uniquely assigned to pixels in the camera employing an encoding process.

There are a number of possibilities for such an encoding. In principle, it
would be most straightforward to turn on each individual reference pixel
one at a time and check which camera pixel is measuring an increase in
intensity. However, this would take a considerable amount of time. It
makes more sense to encode all reference pixels simultaneously using
more advanced methods. A local encoding of the reference pixels can be
done by displaying statistical patterns where each position within this
pattern is identified by the local pixel neighborhood [173]. While this
method enables very fast measurements, since only one pattern has to be
displayed, it is only of limited use for the measurement of more complex
scenes. Because the surface typically distorts the reference pattern, the
encoding of the local neighborhood can often no longer be recognized.
To achieve a high-accuracy measurement, a temporal encoding of each
pixel is more suitable. Here, instead of a single pattern, a sequence of

33



4 Deflectometric Registration

patterns is now displayed by the reference. The sequence of intensity
values measured in the camera subsequently allows decoding the ref-
erence pixels and yields the determination of the imaging function. A
popular temporal coding method is the coding of the reference pixels
by means of a gray code [159]. Here, a binary pattern sequence is dis-
played by the reference to uniquely code the individual pixels. However,
a major disadvantage of the gray-code method is that it uses only binary
intensity values. As a result, the displayed signal with its sharp edges
has high-frequency components. Because most of the time the camera
and the surface provide a blurred image of the reference pattern, these
edges become blurred and the decoding becomes more difficult. Another
disadvantage is that only discrete pixels can be encoded and no subpixel
information can be extracted [159].

Because of these disadvantages, phase-shift coding methods have be-
come widely accepted in structured illumination applications. Here, a
sequence of sinusoidal signals is displayed by the reference, whereby the
coding of the pixel coordinate is contained in the phase of the sinusoidal
signal. The great advantage of these methods is that they are robust to a
variation in the ambient illumination, to noise, to low-pass filtering due
to a defocusing effect of the camera, and that they allow an estimation
of the phase uncertainty [59]. At the same time, these methods enable a
subpixel-accurate encoding if the reference pixels are slightly out of focus.
To further increase the accuracy of the measurement, multi-frequency
methods are used, where sinusoidal pattern sequences with different
frequencies are displayed. While this increases the accuracy of the reg-
istration, the periodicity of the sinusoidal pattern sequence leads to an
ambiguous position encoding in the entire measurement range with
just a single phase measurement. The uniqueness range of the phase
measurement initially extends only over one period of the underlying
sinusoidal pattern. This leads to a modulo-2𝜋 phase wrapping, which
can only be compensated using phase unwrapping methods.

When only one phase measurement is available, spatial unwrapping
methods must be used, which examine the local 2D neighborhood of the
phase map and use spatial information to unwrap it. For applications
where several phase measurements can be performed, the so-called tem-
poral multi-frequency phase unwrapping methods have proven to be
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the best choice, since they allow a pixel-individual unwrapping. These
temporal methods are generally categorized into four groups: hierar-
chical methods [88–90, 102, 147, 201], heterodyne methods [37, 42, 107,
150, 158, 169, 170, 203, 204, 214, 253], number-theoretical methods [45,
46, 69, 160, 161, 190, 198, 202, 248], and distance minimization-based
methods [54–57, 111, 149, 255]. They differ in the way the unwrapping is
performed, in which frequency configurations can be used, and in how
large the resulting uniqueness range of the unwrapping is. However,
a disadvantage of the classical methods is that typically not all phase
measurements are unwrapped at the same time. Moreover, they often do
not take into account the inherent periodic structure of the phase, which
leads to erroneous results. More importantly, the estimation of the phase
uncertainty is completely neglected in the entire unwrapping procedure.

To overcome these deficiencies, this chapter presents a probabilistic
approach for phase unwrapping, which uses circular statistics to de-
scribe the multi-frequency phase-shift coding to optimally reconstruct
the phase. The presented approach respects the periodicity of the phase,
implicitly unwraps all phase measurements simultaneously by finding
the underlying optimal position encoding that caused the phase mea-
surement using maximum-likelihood estimation, allows for an easy fre-
quency selection with a maximum uniqueness range of the unwrapping,
and additionally, includes the estimation of the phase uncertainty into
the overall unwrapping process. Furthermore, in this chapter, it is pro-
posed to not only perform a temporal unwrapping but to additionally
incorporate the information of the local pixel neighborhood in the mod-
eling and thus obtain a probabilistic approach for spatio-temporal phase
unwrapping.

The structure of this chapter is as follows: Sec. 4.1 discusses the general
concept of phase-shift coding and shows how the phase and the phase
uncertainty can be reconstructed from the sinusoidal pattern sequence.
Sec. 4.2 introduces the principles of phase unwrapping. Sec. 4.3 describes
how the state-of-the-art phase unwrapping algorithms can be optimized
by slight modifications. Eventually, Sec. 4.4 presents the probabilistic ap-
proach for phase unwrapping. Finally, in Sec. 4.5 the presented methods
are extensively analyzed and compared to the state of the art.
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4.1 Phase-Shift Coding
In principle, to obtain an absolute coordinate, one could display a single
sinusoidal signal or a linearly increasing intensity curve on the reference
system and then assign an intensity value to each pixel. However, since
commercially available monitor screens or projectors can only display
a limited number of discrete intensity levels (usually only 8 bits), one
would have to expect strong quantization errors. Furthermore, this sim-
ple approach would be very vulnerable to external influences, such as
a variation of the ambient illumination or attenuation of the signal’s
amplitude. Therefore, it makes more sense not to use the signal intensity
as an information carrier but rather the phase of a sinusoidal signal.

The basic principle of phase-shift coding is to assign an individual
phase 𝜑𝑥(𝑥, 𝑦), 𝜑𝑦(𝑥, 𝑦) of sinusoidal signals to each reference pixel (𝑥, 𝑦) :

𝑥 =
𝜑𝑥(𝑥, 𝑦)

2𝜋𝑓
, 𝑦 =

𝜑𝑦(𝑥, 𝑦)
2𝜋𝑓

, (4.1)

where the coordinates of the pixels are interpreted as relative coordinates
𝑥, 𝑦 ∈ [0, 𝑆) with 𝑆 = 1 for the rest of this chapter.

Phase-shift coding must be performed independently in both the hori-
zontal and vertical direction, which is why only the encoding in the 𝑥
direction is considered in the following. The encoding in the 𝑦 direction
is done analogously. Further, the argument of the phase is also simplified
by omitting the coordinate 𝑦 , since the phase in 𝑥 direction will take the
same value for each 𝑦 . In other words, in the following 𝜑(𝑥) ≔ 𝜑𝑥(𝑥, 𝑦)
holds without loss of generality.

To encode a normalized monitor coordinate 𝑥 ∈ [0, 1) , a signal se-
quence of 𝑀 sinusoidal patterns with frequency 𝑓 and shifted by Ψ𝑚 is
generated and displayed on a monitor screen, whereby the coordinate is
contained in the phase 𝜑(𝑥) = 2𝜋𝑓𝑥 of the signal sequence

𝐼𝑚(𝑥) =
𝐼max

2
(1 + cos (𝜑(𝑥) + Ψ𝑚)) . (4.2)

Here 𝐼max represents the maximum displayable brightness value. The
type of phase-shift coding is determined by the choice of the discrete
phase-shift Ψ𝑚 and can be influenced by the number and also the val-
ues of the shifts, see [99, 194] for a comparison of possible methods. In
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this work, only the most widely used class of phase-shift algorithms is
considered, the so-called symmetric 𝑀-step algorithms with equidistant
phase offsets

Ψ𝑚 = 2𝜋𝑚
𝑀

, 𝑚 ∈ [1, 2, … , 𝑀] . (4.3)

The signal 𝐼𝑚 displayed on the reference illuminates the scene that is
to be examined and is then mapped onto the camera sensor. In the case
of deflectometry, the signal is emitted by a monitor screen, reflected at a
specular surface, and projected into the camera. When using phase-shift
coding to obtain reference features for camera calibration, the camera may
directly observe the monitor screen. Thus, regardless of the application,
a camera records a signal sequence for every camera pixel 𝐮 = (𝑠, 𝑡)T

̃𝐼𝑚(𝐮) = 𝐴(𝐮) + 𝐵(𝐮) cos (𝜑(𝐮) + Ψ𝑚) , (4.4)

with 𝑚 = 1, … , 𝑀 . Here 𝐴(𝐮) is a constant background illumination,
𝐵(𝐮) is the modulation of the signal and 𝜑(𝐮) is the phase that contains
the information about the encoded screen pixels 𝑥(𝐮) .

Because each camera pixel 𝐮 can be considered independently, the
coordinates 𝐮 are neglected in the following for clarity.

To determine the three unknown quantities 𝐴, 𝐵, 𝜑 from the recorded
signal sequence, at least 𝑀 ≥ 3 phase shifts are needed and the formulas
for the solutions can then be derived [194]

𝐴 = 1
𝑀

𝑀

∑
𝑚=1

̃𝐼𝑚 , (4.5)

𝐵 = 2
𝑀

√√√

⎷
(

𝑀

∑
𝑚=1

̃𝐼𝑚 sin(Ψ𝑚))
2

+ (
𝑀

∑
𝑚=1

̃𝐼𝑚 cos(Ψ𝑚))
2

, (4.6)

𝜑 = arctan2 (−
𝑀

∑
𝑚=1

̃𝐼𝑚 sin(Ψ𝑚),
𝑀

∑
𝑚=1

̃𝐼𝑚 cos(Ψ𝑚)) , (4.7)

where arctan2(𝑎, 𝑏) ∈ [−𝜋, 𝜋) is used, which correctly assigns the argu-
ments of the arctangent to the four quadrants. Also, for sake of simplicity,
in the remainder of this chapter the domain of the phase is shifted to
positive values:

𝜑 ≡ 𝜑 mod 2𝜋 ∈ [0, 2𝜋) . (4.8)
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f = 1 f = 3 f = 5

0 π 2π

Figure 4.1 Top: Displayed cosine pattern with Ψ = 0 . Bottom: Corresponding phase
maps. The phase is wrapped for 𝑓 > 1 .

From equations (4.5), (4.6), (4.7) it becomes clear that the encoding
of the phase is robust to many external influences. A locally variable
ambient illumination would only affect the offset 𝐴 . Attenuation of the
signal amplitude by, for example, a dark surface would only reduce the
contrast of the signal, resulting in a smaller modulation 𝐵 . The impor-
tant information, the phase 𝜑 , however, remains in principle completely
unaffected by this. Furthermore, since the sinusoidal pattern sequence
consists only of single signal components with the frequency 𝑓 but has
no higher frequency components, the method is also very robust against
low-pass filtering caused by blurring. It can be shown that only the modu-
lation 𝐵 is reduced, whereas the phase 𝜑 remains unaffected. To be more
precise, it is even advantageous to slightly image the pattern sequence
out of focus, as this blurs the individual pixels of the reference pattern
and allows subpixel accuracy to be achieved in the encoding [182].

4.1.1 Phase Uncertainty
The accuracy of the phase measurement is influenced by external system-
atic influences of the entire measurement setup as well as by stochastic
errors. For example, the nonlinearity of the intensity characteristic of the
reference system can degrade the phase measurement. This however can
be easily compensated using gamma calibration procedures or by using
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4.1 Phase-Shift Coding

phase-shift coding with more shifts [117, 241]. Therefore, it will not be
a subject of further consideration in this work. Other external system-
atic influences may change the brightness and contrast of the pattern
sequence, which can lead to an increase in uncertainty. For example, the
camera optics can image the sinusoidal patterns out of focus, which leads
to a decrease in contrast. As the surface is usually part of the structured
illumination system, the shape, roughness, and color of the surface also
influence the quality of the estimation. Due to these system-related influ-
ences, the uncertainty of the phase estimation can be different for each
pixel. Furthermore, the phase measurement is influenced by stochastic
errors. Every camera image is accompanied by image noise. It is obvious
that this noise also affects the phase estimation and influences the un-
certainty of the measurement. In general, the sensor noise shows up as
noise in the pixel values and can be regarded in a good approximation
as normally distributed noise with variance 𝜎2

I and zero mean [226].
Li et al. [112] show that the phase noise 𝜀𝜑 can be calculated through

Gaussian error propagation from the noise 𝜀𝐼𝑚
of the images of the

pattern series:

𝜀𝜑 =
𝑀

∑
𝑚=1

𝜕 ̃𝐼𝑚
𝜑∣

𝜀𝐼𝑚=0
𝜀𝐼𝑚

=
𝑀

∑
𝑚=1

2 sin (𝜑 + Ψ𝑚)
𝐵𝑀

𝜀𝐼𝑚
. (4.9)

Further, for symmetrical 𝑀-step methods, the phase noise has zero mean
and its uncertainty, i.e., the standard deviation of 𝜀𝜑, can be specified:

𝜎𝜑 = 2
𝑀

𝜎𝐼
𝐵

√√√
⎷

𝑀

∑
𝑚=1

sin2 (𝜑 + 2𝜋𝑚
𝑀

) = √ 2
𝑀

𝜎𝐼
𝐵

. (4.10)

While 𝐵 and 𝑀 can be estimated or are directly defined by the phase-
shift coding, the sensor noise is initially unknown. To be able to describe
the phase noise absolutely, Fischer et al. [59] introduced a quantitative
noise model, which combines the phase noise with the parameters of the
EMVA 1288 standard for camera systems [226]. This makes it possible
to predict the phase uncertainty very precisely by calculating only the
modulation 𝐵 from the pattern sequence.

To further reduce the uncertainty, it is useful to use sinusoidal pattern
sequences with a frequency 𝑓 > 1 . This has two beneficial effects. The
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first effect is a reduction in the quantization noise. Because conventional
monitors or projectors can be operated with 256 intensity levels, sinu-
soidal patterns with small frequencies show considerable steps in the
signal (e.g., 1920 pixels of a monitor screen cannot be described without
ambiguities when only 256 intensity values are used). Increasing the fre-
quency provides locally a higher dynamic in the pattern. This attenuates
the influence of quantization errors [59]. The second and more important
effect is a reduction of the phase noise induced by the camera sensor
noise. As explained in more detail in the next section, phase jumps occur
in the reconstructed phase when the frequency of the sinusoidal pattern
sequence is chosen to be 𝑓 > 1 . The phase would take values 𝜑 > 2𝜋
but is only defined on the periodic interval [0, 2𝜋) . Thus, the real line ℝ
is wrapped to the smaller interval [0, 2𝜋) , see figure 4.1. To unwrap the
phase again, an integer multiple of 2𝜋 must be added at corresponding
places, see Sec. 4.2. The unwrapped phase finally results in

Φ𝑓 = 𝜑 + 2𝜋𝑘 + 𝜀𝜑 , (4.11)

where 𝜑 ∈ [0, 2𝜋) represents the wrapped phase, 𝑘 ∈ ℤ is the unwrap-
ping factor and 𝜀𝜑 ∈ [0, 2𝜋) represents the phase noise with uncertainty
𝜎𝜑 . Since the domain of the unwrapped phase has been increased to
Φ𝑓 ∈ [0, 2𝜋𝑓) , it has to be scaled back to the original range. The final
phase measurement therefore results in

Φ =
Φ𝑓

𝑓
=

𝜑 + 2𝜋𝑘
𝑓

+
𝜀𝜑

𝑓
, (4.12)

with Φ ∈ [0, 2𝜋) . By increasing the frequency and then scaling back, the
phase information is not changed, but the noise is reduced by the factor
1/𝑓 . The uncertainty of the unwrapped phase is then be given by

𝜎𝜑,𝑓 = 1
𝑓

𝜎𝜑 = 1
𝑓

√ 2
𝑀

𝜎𝐼
𝐵

. (4.13)

In summary, with the phase-shift coding one obtains not only a pure
position encoding but additionally also the associated uncertainty, where
the complete information is encoded in the phase 𝜑 and the phase uncer-
tainty 𝜎𝜑 .
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4.2 Principles of Phase Unwrapping
If the frequency of the phase-shift pattern sequence is chosen to 𝑓 > 1 ,
jumps occur in the reconstructed phase. These jumps appear whenever
the phase would exceed the value 2𝜋 but is mapped back to the interval
[0, 2𝜋) by the arctangent (4.7). Resolving these jumps is the goal of phase
unwrapping. For this purpose, an integer multiple 𝑘 of 2𝜋 is added to
the wrapped phase, which is often called the period-order number or
unwrapping factor. Since the wrapping of the phase strongly depends
on the chosen frequency, the optimal choice of the unwrapping factor is
also frequency-dependent. For a coordinate 𝑥 and frequency 𝑓𝑖 , (4.11)
can be rewritten:

Φ𝑖(𝑥) = 𝜑𝑖(𝑥) + 2𝜋𝑘𝑖(𝑥) , 𝑘𝑖 ∈ [0, 1, … , ⌈𝑓𝑖⌉ − 1] . (4.14)

The task of phase unwrapping is to find the correct 𝑘𝑖 for each phase
measurement. Since an individual unwrapping factor exists for each
pixel, the problem from (4.14) is initially under-determined. To get a
solution anyway, additional information has to be used. In principle,
there are two approaches to solve the problem: spatial and temporal
phase unwrapping.

Spatial phase unwrapping algorithms are useful when it cannot be
guaranteed that the phase remains constant over time or when repeated
measurements would be too costly. With spatial algorithms, phase un-
wrapping is performed using only a single phase measurement. The infor-
mation necessary for the unwrapping is then obtained from the 2D pixel
neighborhood. For example, in region growing-based approaches, start-
ing from an initial pixel, the phase is unwrapped aiming to achieve a con-
tinuous phase profile where neighboring pixels have a similar value [183,
243, 250]. However, spatial unwrapping is very susceptible to noise, and
phase discontinuities can make the unwrapping difficult or cause er-
rors. For example, a step in the phase cannot be reconstructed without
ambiguity, since the algorithm is unable to determine the step’s height,
which may have a multiple of 2𝜋 as an offset. The main disadvantage
of spatial unwrapping methods is that they can generally only obtain
a relative phase instead of an absolute one, which is not useful for 3D
reconstruction problems. Hence, if the requirements for spatial phase
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unwrapping are not satisfied or an absolute phase estimate is needed,
temporal phase unwrapping must be used.

While this work is focused on phase-shift coding, these phase wrap-
ping effects also appear in other fields of optical metrology, e.g., inter-
ferometry [37, 42, 158], SAR imaging [40, 155], or even time-of-flight
imaging [47, 48]. Thus, the phase unwrapping problem influences many
other applications.

4.2.1 Temporal Phase Unwrapping
Temporal phase unwrapping methods in general do not use the spatial
information in the phase map. They can therefore handle each pixel indi-
vidually, which means that discontinuities in the phase do not cause any
problems. On the other hand, they rely on additional information ob-
tained by additional measurements. This can be achieved, for example, by
recording additional image patterns that can be decoded unambiguously.
Methods based on temporal gray-coding achieve unambiguous coding
and can be used as a basis for phase unwrapping [175, 240]. However,
they cannot achieve sub-pixel accuracy and are susceptible to noise and
defocusing effects [254]. An encoding using statistical patterns allows spa-
tial decoding, which can be used directly for phase unwrapping. While
these methods allow for a fast acquisition time, the evaluation of statis-
tical patterns has similar drawbacks as the spatial phase unwrapping
algorithms. For an overview of absolute phase unwrapping methods, the
reader is referred to the literature [242, 254].

This work is focused on another class of unwrapping methods: Tem-
poral multi-frequency phase unwrapping. These methods use multiple
phase-shift pattern sequences with different frequencies 𝑓𝑖 to obtain mul-
tiple phase measurements 𝜑𝑖 ∈ [0, 2𝜋) , all of which are based on the same
coordinate encoding. Depending on the frequencies, the phase measure-
ments are wrapped differently. Since it is assumed that the unwrapped
phase does not change over time, the multiple phase measurements gen-
erate a system of equations, where each equation has the form of (4.14).
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Because all phase measurements are based on the same coordinate 𝑥 , if
certain requirements are met, the equation system has a unique solution

𝑥 ≡
Φ𝑖

2𝜋𝑓𝑖
=

𝜑𝑖
2𝜋𝑓𝑖

+
𝑘𝑖
𝑓𝑖

. (4.15)

The unwrapping of the phase measurements is then obtained by solving
this equation system, for which various methods exist.

4.2.1.1 Hierarchical Unwrapping

The hierarchical methods are among the most intuitive approaches. They
use a series of phase measurements in which the frequency of the un-
derlying sinusoidal signals is increased in each step. To obtain an un-
ambiguous unwrapping of all phase measurements, the frequency of
the first measurement is chosen in such a way that the measured phase
is not subject to ambiguities. Thus, 𝑓0 = 1 and Φ0 = 𝜑0 . Each subse-
quent measurement is then unwrapped using the previous unwrapped
phase associated with the lower frequency as a reference Φref = Φ𝑖−1 ,
𝑓ref = 𝑓𝑖−1 . The unwrapping factor can hereby be determined using a
simple rounding operation

𝑘𝑖 = ⎡
⎢⎢⎢

𝑓𝑖
𝑓ref

Φref − 𝜑𝑖

2𝜋
⎥⎥⎥
⎦

, (4.16)

and the respective phase is unwrapped with

Φ𝑖 = 𝜑𝑖 + 2𝜋𝑘𝑖 . (4.17)

There are many variations of hierarchical unwrapping algorithms in
the literature, which differ mainly in the choice of the frequency sequence,
e.g., linearly increasing frequencies [88, 90], exponentially increasing
frequencies [89, 147], reversed sequences [90, 102] or generalized ap-
proaches [201]. Usually, after unwrapping the individual phase maps,
the phase corresponding to the highest frequency is used or all phase
maps are averaged.
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4.2.1.2 Heterodyne Unwrapping

The two-wavelength heterodyne methods were originally developed
for interferometry [37, 42, 158] but are also applicable to phase-shifting
3D-measurement systems [169, 170, 253]. Unlike before, the heterodyne
method can be implemented directly for high frequencies. Usually, only
two frequencies 𝑓1 and 𝑓2 are used. The phase measurements associated
with the two frequencies are subtracted

𝜑12 = 𝜑1 − 𝜑2 mod 2𝜋 , (4.18)

and the frequency of the synthetic phase 𝜑12 is then given by

𝑓12 = |𝑓1 − 𝑓2| , (4.19)

where 𝑓12 represents the beat frequency. If 𝑓1 and 𝑓2 are well-chosen, the
uniqueness range of the phase unwrapping can be increased enough to
resolve the ambiguity [204]. With the normalized reference size 𝑆 = 1
that is used in this chapter, it can be shown that 𝑓12 = |𝑓1 − 𝑓2| ≤ 1 must
hold in order to allow an unambiguous phase reconstruction.

Since the phase noise of 𝜑1 and 𝜑2 is accumulated during the forma-
tion of the synthetic phase, the signal-to-noise ratio deteriorates. For
this reason, the synthetic phase is generally used only to unwrap the
underlying measurements 𝜑1 and 𝜑2 . The unwrapping factors 𝑘1 and 𝑘2
are hereby calculated using (4.16) with 𝑓ref = 𝑓12 , Φref = 𝜑12 .

The extension to more than two frequencies is described in [107, 214]
and allows increasing the unambiguous measurement range even fur-
ther. For this, several approaches exist that optimize the choice of the
frequencies to obtain a robust unwrapping result [150, 203, 204].

4.2.1.3 Number-Theoretical Unwrapping

The number-theoretical unwrapping methods are based on number the-
ory, relative primes, and the divisibility properties of integers. They were
originally proposed by Gushov and Solodkin [69]. They were then further
improved to reduce the susceptibility to phase errors [160, 198, 202, 249].
In its basic form, the method uses the Chinese-remainder theorem to
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calculate a simultaneous solution to the unwrapping problem. Following
the theorem, a system of simultaneous equations of congruence

𝑋 ≡ 𝑏𝑖 (mod 𝑚𝑖) , for 𝑖 = 1, … , 𝑛 (4.20)

has a unique solution 𝑋 ∈ ℤ , if 𝑏𝑖 ∈ ℤ and 𝑚𝑖 ∈ ℤ are known integers,
where the set of 𝑚𝑖 are pairwise co-prime numbers, i.e., for their greatest
common divisor applies gcd(𝑚𝑖, 𝑚𝑗) = 1 , ∀𝑖, 𝑗 . The solution itself is
then given by

𝑋 ≡ ∑
𝑖

𝑀𝑖𝑀 ′
𝑖 𝑏𝑖 (mod 𝑚) , (4.21)

where 𝑚, 𝑀𝑖, 𝑀 ′
𝑖 ∈ ℤ with

𝑚 = ∏
𝑖

𝑚𝑖 , 𝑀𝑖 = 𝑚
𝑚𝑖

, 𝑀𝑖𝑀 ′
𝑖 ≡ 1 (mod 𝑚𝑖) , (4.22)

and where the 𝑀 ′
𝑖 can be found using, e.g., the extended Euclidean

algorithm [39]. The theorem can be applied to the phase unwrapping
problem, by comparing (4.15) to (4.20) and substituting

𝑋 ≔ 𝑥𝑆 ≡
Φ𝑖𝑆
2𝜋𝑓𝑖

, 𝑏𝑖 ≔ ⌈
𝜑𝑖𝑆
2𝜋𝑓𝑖

⌋ , 𝑚𝑖 ≔ 𝑆
𝑓𝑖

. (4.23)

If the condition lcm(𝑚1, 𝑚2, … ) ≥ 𝑆 for the least common multiple is
fulfilled, the phase ambiguity can then be resolved [115]. Hereby, an
appropriate scaling factor 𝑆 needs to be chosen to obtain meaningful
integer values and co-primes 𝑚𝑖 . In the case of a deflectometry applica-
tion, it can be set to the size of the monitor screen measured in pixels.
Further improvements to the algorithm can be achieved by precalculating
a look-up table to speed up the computation time [45, 46, 161, 190, 248].

4.2.1.4 Distance Minimization-Based Unwrapping

The previous methods have relatively high restrictions on the choice of
frequencies. Thus, newer approaches try to circumvent these restrictions
by posing the phase unwrapping as an optimization problem. Pribanić
et al. [161] extend the two-wavelengths number-theoretical method by
removing the restriction of having co-prime wavelengths. From the com-
bination of all possible unwrapping factors, they search for the one that
minimizes the distance between the two respective unwrapped phases.
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The excess fraction methods can be regarded as a multi-wavelength
extension of the heterodyne methods [54–57]. They define an excess
fraction as the difference between an ideal continuous unwrapping factor
and its integer analogon. The unwrapping factors are then determined
individually by minimizing the respective excess fraction, where each
excess fraction is influenced by all phase measurements.

More recent approaches try to perform the unwrapping of all phase
measurements simultaneously to find an ideal solution for all unwrap-
ping factors at the same time. For this purpose, the vector of ideal un-
wrapping factors 𝐤 = (𝑘1, 𝑘2, … ) is sought that minimizes the distance
of the individual unwrapped phases to the mean value of all unwrapped
phase measurements. Here, the distance measure can be defined by an
orthogonal projection of the wrapped phases onto a subspace [149], or
it can be written down directly as a sum of distances between the un-
wrapped phases to the averaged unwrapped phase [111, 255]. It is hence
titled projection distance minimization (PDM).

With 𝚽 = (Φ1, Φ2, … )T , Φ𝑖 = 𝜑𝑖 + 2𝜋𝑘𝑖 , 𝐟 = (𝑓1, 𝑓2, … )T and by
minimizing the projection distance

𝐤 = arg min
𝐤

‖𝚽 − 𝐏𝚽‖2 , with 𝐏 = 𝐟𝐟T

‖𝐟‖2 , (4.24)

the unwrapping factors, and thus, the simultaneous unwrapping of all
phase measurements can be obtained. Here, 𝐏𝚽 represents the projec-
tion of unwrapped phase measurements, which for the ideal choice of 𝐤
should be equal to 𝚽 . The optimal unwrapping factors are thereby found
by an excessive trial and error of all possible combinations. To speed up
the optimization, Petković et al. [149] suggest ignoring impossible combi-
nations and Zuo et al. [255] use the geometry of the measurement setup
of a profilometry system to further exclude unreasonable combinations.

4.3 Improving the Phase Unwrapping Algorithms
The classical phase unwrapping algorithms from the previous sections
do not use all of the information to unwrap the phase measurements. Far
more importantly, they generally do not take into account the inherently
periodic structure of the phase, which can lead to incorrect unwrapping.
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For example, the simple hierarchical unwrapping method from the
last section only uses the previous phase measurement with a lower
frequency to unwrap the current phase. However, phase measurements
with higher frequency could also contain information to unwrap the
phase measurements with lower frequency. In addition, the periodic
structure of the phase is not taken into account, so unwrapping errors
often occur near the 2𝜋-discontinuities. To achieve good accuracy for
3D reconstruction, phase maps corresponding to high frequencies are
needed. But then the number of necessary measurements is high be-
cause the sequence always starts at 𝑓 = 1 . The heterodyne method does
not have to start at low frequencies but can directly select high ones,
achieving an overall smaller mean uncertainty with the same number
of measurements [150]. However, it is disadvantageous that the unam-
biguous measurement range of the unwrapping is determined by the
beat frequency. Thus, there are frequency configurations that do not
yield an unambiguous solution but could be solved unambiguously with
other methods [149]. Additionally, the method is not straightforwardly
extendable to a multi-frequency approach. The number-theoretical un-
wrapping methods perform a simultaneous unwrapping of all phase
measurements and also consider the periodicity of the phase. Neverthe-
less, the restriction to pairwise co-prime wavelengths makes the selection
more difficult, and due to the integer arithmetic and rounding opera-
tions, these methods are relatively susceptible to noise [198]. Even more,
for the method to work, the frequencies must be chosen very precisely
proportional to the integer co-prime wavelengths, which is especially
problematic for applications where the wavelengths cannot be chosen
freely, e.g., interferometry [53]. The PDM method, on the other hand, per-
forms a simultaneous unwrapping of all phase measurements without
having to apply rounding operations. In its current form, however, it is
still not perfect. It does not take into account the periodic structure of the
phase so that unwrapping errors occur frequently near the boundaries of
the coding interval. Also, it is a very expensive procedure due to testing
all possible combinations of unwrapping factors 𝑘𝑖 . Additionally, all
methods have in common that the phase unwrapping does not consider
the estimated phase uncertainty at all, although it could help to compen-
sate for an unfavorable measurement. Therefore, the following sections
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present improvements to the classical phase unwrapping algorithms to
deal with their shortcomings.

4.3.1 Weighted Circular Mean
Multi-frequency phase unwrapping gives different estimates of the phase
Φ𝑖 with different uncertainty 𝜎𝜑𝑖,𝑓𝑖

= 1
𝑓𝑖

𝜎𝜑𝑖
. In many practical applica-

tions, only the phase with the highest frequency is used, or in the better
case, a weighted average of all phase measurements is calculated. Here
either the frequency is chosen as the weighting factor or the inverse of the
estimated uncertainty (4.13) is used. Usually, in the sense of an unbiased
estimator, the variance of the measurement is used as weighting to obtain
the phase

Φ =
∑𝑖 𝜎−2

𝜑𝑖,𝑓𝑖
Φ𝑖

∑𝑖 𝜎−2
𝜑𝑖,𝑓𝑖

. (4.25)

However, this very common approach ignores an important property
of the phase. The phase is periodic on the interval [0, 2𝜋) . Since the phase
measurement is affected by noise, a true phase value of 𝜑 = 0 can, for
example, be estimated as the value 𝜑1 = 0.01 in one measurement and
as 𝜑1 = 1.99𝜋 in a second measurement. As a result, the mean value is
not 𝜑 ≈ 0 as expected but 𝜑 = 1

2
(𝜑1 + 𝜑2) ≈ 𝜋 . Therefore, very large

errors appear at the boundary of the coding interval. A commonly used
workaround for this problem is to artificially reduce the used encoding
interval. That means instead of displaying phase values in the range
[0, 2𝜋) on the screen, only the values [Δ𝜑, 2𝜋 − Δ𝜑) are used. Depend-
ing on the expected noise, an optimal size can even be determined for
Δ𝜑 ∈ (0, 𝜋) [149, 150]. However, a reduction of the used interval leads to
a lower SNR in the remaining part, due to the effective frequency of the
represented sinusoidal signal being reduced.

With this in mind and since the phase is periodic in the interval [0, 2𝜋) ,
the usual arithmetic mean must not be used. Instead, this work proposes
to use a circular mean value M∘ , which is formed by mapping the phase
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measurements to the complex unit circle 𝑧𝑖 = e𝑗𝜑𝑖 and by calculating a
weighted mean of the complex pointers

𝑧 =
∑𝑖 𝜎−2

𝜑𝑖,𝑓𝑖
𝑧𝑖

∑𝑖 𝜎−2
𝜑𝑖,𝑓𝑖

, (4.26)

where the circular mean of the phase can then be calculated from the
argument of the resulting complex pointer

M∘ (𝚽, 𝝈𝝋,𝐟) ≔ arctan2 (Im(𝑧), Re(𝑧)) ,

= arctan2 (∑
𝑖

sin(Φ𝑖)
𝜎2

𝜑𝑖,𝑓𝑖

, ∑
𝑖

cos(Φ𝑖)
𝜎2

𝜑𝑖,𝑓𝑖

) . (4.27)

Additionally, the uncertainty of the mean phase

𝜎2
𝜑 = 1

∑𝑖
1

𝜎2
𝜑𝑖,𝑓𝑖

(4.28)

can be estimated to be further used in any subsequent application.

4.3.2 Modified Hierarchical Unwrapping
A disadvantage of the standard hierarchical phase unwrapping is that
the phase measurements belonging to higher frequencies are unwrapped
solely with the help of the previously unwrapped phase measurement.
For the case of more than two used frequencies, it makes sense to modify
the standard approach to make the unwrapping more robust against
errors. It is advisable to use not only the last phase measurement as a
reference, but the average of all phases already processed. The more fre-
quencies are used, the more the method will benefit from all the previous
unwrapped phases. For the averaging operator, the weighted circular
mean from the previous section is used. With it, the periodicity of the
phase can be partially compensated, and by using the phase uncertainty
as a weighting factor, the overall unwrapping is improved due to pe-
nalizing low-quality phase measurements. The standard hierarchical
algorithm is relatively easy to adjust to obtain the modified hierarchical
unwrapping. Algorithm 1 shows the procedure.
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Algorithm 1 Modified Hierarchical Unwrapping
Input: Wrapped phase maps 𝝋 , frequencies 𝐟 (with 𝑓0 = 1), phase un-

certainties 𝝈𝝋
Output: Fusion of unwrapped phase maps Φ

1: Set Φ𝑟𝑒𝑓 = Φ0 = 𝜑0 mod 2𝜋
2: for 𝑛 = 0, 1, … , 𝑁 − 1 do
3: Get unwrapping factor
4: 𝑘𝑛 = ⌈ 𝑓𝑛Φ𝑟𝑒𝑓−𝜑𝑛

2𝜋
⌋

5: Unwrap current phase map
6: Φ𝑛 = 𝜑𝑛+2𝜋𝑘𝑛

𝑓𝑛
mod 2𝜋

7: Calculate new reference with circular mean of previous estimates
8: Φ𝑟𝑒𝑓 = M∘ ((Φ0, … , Φ𝑛)T , (𝜎𝜑0,𝑓0

, … , 𝜎𝜑𝑛,𝑓𝑛
)T)

9: end for
10: Calculate circular mean of all unwrapped phases
11: Φ = M∘ (𝚽, 𝝈𝝋,𝐟)

4.3.3 Modified PDM Unwrapping
The PDM phase unwrapping method from Sec. 4.2.1.4 attempts to un-
wrap the phase by minimizing the distance between the vector of phase
measurements and a projected version of the same. This can be inter-
preted as minimizing the distance between each unwrapped phase to
the averaged unwrapped phase. By rewriting (4.24) it follows

‖𝚽 − 𝐏𝚽‖2 = ∥𝚽 − 𝐟𝐟T

‖𝐟‖2 𝚽∥
2

=
∥
∥
∥
∥

𝚽 − 𝐟
∑𝑗 𝑓2

𝑗 ( Φ𝑗

𝑓𝑗
)

∑𝑗 𝑓2
𝑗

∥
∥
∥
∥

2

= ∑
𝑖

(Φ𝑖 − 𝑓𝑖ΦMean)2 , (4.29)

where Φ𝑖 = 𝜑𝑖+2𝜋𝑘𝑖 and where the frequencies are used as weighting fac-
tor in ΦMean . To improve the method only three simple modifications are
necessary. First, the weighting factor is replaced by the squared inverse
of the frequency-dependent phase uncertainty 𝜎𝜑𝑖,𝑓𝑖

. Further, to respect
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the periodicity of the phase, the presented circular mean is used. And
at last, instead of using a classical distance measure, a circular distance

𝑑∘ (Φ𝑎, Φ𝑏) ≔ 𝜋 − |𝜋 − |Φ𝑎 − Φ𝑏|| (4.30)

is used, which returns the smallest distance in a periodic interval between
two points Φ𝑎, Φ𝑏 ∈ [0, 2𝜋) . Phase unwrapping using this modified PDM
method is then achieved by finding the optimal unwrapping factors

𝐤 = arg min
𝐤

∑
𝑖

𝑑∘ (Φ𝑖,M∘ (𝚽, 𝝈𝝋,𝐟))2 . (4.31)

4.4 Probabilistic Approach for Temporal Phase
Unwrapping

The modified hierarchical procedure presented in the previous section
attempts to integrate the uncertainty measurement into the unwrapping
as a first step by using it in the weighted average calculation, partially
respecting the periodicity of the phase by using the proposed circular
mean. However, a complete and simultaneous unwrapping of all phase
measurements is not given here either. The proposed modified PDM
unwrapping respects the periodicity of the phase. However, because
all combinations of the unwrapping factors need to be evaluated, it is
computationally extremely expensive. Moreover, it is by no means clear
whether the minimization of the squared circular distance yields an
optimal unwrapping result. Therefore, this work proposes a completely
different idea that addresses the phase unwrapping problem through a
probabilistic approach.

In the field of phase unwrapping, probabilistic approaches have al-
ready been used in the spatial domain. Carballo and Fieguth [32] and
Koetter et al. [105] use a probabilistic approach to model the probability of
a phase discontinuity in interferometric synthetic aperture radar (InSAR)
images to use them as weight factors for a spatial phase unwrapping
procedure. Droeschel et al. [48] use a similar approach for time-of-flight
imaging. Baselice et al. [14] use an extended Kalman filter that includes
probabilistic data to perform phase unwrapping and phase noise reduc-
tion of InSAR data.
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In contrast to these approaches, a probabilistic model for temporal
phase unwrapping is proposed here. To solve the phase unwrapping
problem optimally, an attempt is made to find the coordinate that has the
highest probability of having caused the corresponding phase measure-
ments. To formulate the unwrapping as a probability problem, the phase
measurement is modeled as an appropriate stochastic process. This is
used to determine the probability density of the encoded coordinate,
find the optimal decoding by a maximum-likelihood approach, and thus
implicitly and simultaneously compensate for the wrapping of all phase
measurements.

4.4.1 Probability Density Function of Phase-Shift Coding
As indicated in Sec. 4.1.1, the variance of the image noise can be propa-
gated through the phase-shifting algorithm. Thus, every measurement
provides not only an estimate of the phase 𝜑 but also the uncertainty
𝜎𝜑 of this estimation. The probability density function of the true phase
is therefore centered around the respective measurement. The question
now arises which probability distribution the phase has. In principle,
several distribution functions are possible. Since the image noise has a
normal distribution, the first assumption is that the phase noise is also
normally distributed. However, because the phase has a periodic struc-
ture and is only defined on the interval [0, 2𝜋) , the probability density
must be searched in the field of circular statistics [93].

4.4.1.1 Wrapped Normal Distribution

The most intuitive approach to obtain a probability distribution of the
phase is to assume a normal distribution 𝜃 ∼ N (𝜇, 𝜎2) and to allow its
values to be spread on the entire set of real numbers 𝜃 ∈ ℝ . By folding
the density function around the unit circle

𝜑 = 𝜃 mod 2𝜋 , (4.32)
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the range of values is then forced to the interval [0, 2𝜋) . The density
function of the folded random variable is then the wrapped normal
distribution [93]

𝑝WN(𝜑) =
∞

∑
𝑘=−∞

N (𝜇 + 2𝜋𝑘, 𝜎2) = 1√
2𝜋𝜎

∞

∑
𝑘=−∞

𝑒
−(𝜑−𝜇−2𝜋𝑘)2

2𝜎2 , (4.33)

with the parameters 𝜇 ∈ [0, 2𝜋) und 𝜎2 . The density function is symmet-
ric and centered around the expected value 𝜇 , whereas the width of the
function is affected by the parameter 𝜎 . Since in practice the infinite sum
must be terminated at some point, the literature provides more efficient
representations of the distribution, e.g.,

𝑝WN(𝜑) = 1
2𝜋

(1 + 2
∞

∑
𝑝=1

𝑒
−𝜎2𝑝2

2 cos (𝑝(𝜑 − 𝜇))) , (4.34)

where, depending on the choice of 𝜎2 , the sum can be aborted after only
a few terms [106].

4.4.1.2 von Mises Distribution

A major disadvantage of the wrapped normal distribution is that it is
quite intractable due to the infinite sum. Furthermore, it is not assured
that a real phase measurement results from a folding operation on a linear
normal distribution around the unit circle. Hence, it is not mandatory to
assume that (4.32) is the correct description of the phase-shift coding.

If the problem is approached with minimal knowledge, an alternative
probability density function for the phase can be found. The available
knowledge is: the expected value of the distribution corresponds to a
phase measurement 𝜇 , there is a measure of the second central moment
𝜎𝜑 , and the phase should be defined on the periodic interval [0, 2𝜋) . The
circular probability density function which maximizes the entropy under
the given conditions and thus represents the ideal choice under these
circumstances is the von Mises distribution [93]

𝑝vM(𝜑) = 𝑒𝜅 cos(𝜑−𝜇)

2𝜋𝐼0(𝜅)
, (4.35)
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where 𝐼0(𝜅) is the modified Bessel function of the first kind and order zero

𝐼0(𝜅) = 1
2𝜋

∫
2𝜋

0
𝑒𝜅 cos(𝜃)d𝜃 =

∞

∑
𝑟=0

(𝜅
2

)
2𝑟

( 1
𝑟!

)
2

. (4.36)

The parameter 𝜇 represents the expected value and 𝜅 depicts a concen-
tration measure that is analogous to the inverse of the variance in the
normal distribution. Because of its mathematical simplicity, the von Mises
distribution is one of the most commonly used distributions in circular
statistics. And due to its great importance, it is also often referred to as
the circular normal distribution [93].

4.4.1.3 Phase Noise Model of Phase-Shift Coding

A more precise way to describe the probability density of the phase is
to analyze the phase-shift coding directly. Rathjen [167] examines the
random phase error arising from the normally distributed image noise
of the sinusoidal pattern sequence. The two arguments of the arctan2
function from (4.7) are described using a bivariate normal distribution,
where the parameters of the distribution are computed from the nor-
mal distribution of the image noise of the underlying pattern sequence.
Finally, the distribution of the phase is calculated from this bivariate
normal distribution, which applies to any phase-shift coding method.

Depending on the algorithm, different distributions are obtained,
which do not necessarily have to be symmetrical and which may also
depend on the absolute value of the phase. For the symmetric 𝑀-step
methods used in this work, the arguments of the arctan2-function are
uncorrelated and have the same variance, leading to a symmetric distri-
bution function for the phase that is independent of the absolute phase
value [167]. The probability distribution function of the phase 𝜑 for sym-
metric 𝑀-step algorithms is then given by

𝑝PM(𝜑) = 𝑒−SNR

2𝜋
{1 +

√
𝜋SNR cos(𝜑 − 𝜇)𝑒SNR cos(𝜑−𝜇)2

⋅(1 + erf (
√

SNR cos(𝜑 − 𝜇)) )} ,
(4.37)
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where erf(𝑥) = 2√
𝜋

∫𝑥
0 𝑒−𝑡2d𝑡 is the Gaussian error function, the signal-to-

noise ratio SNR = 1
2
𝜎−2

𝜑 determines the width of the distribution, and
𝜇 ∈ [0, 2𝜋) represents the expected value.

4.4.1.4 Comparison

To identify which of the presented distributions is best suited for the
problem, a Monte Carlo simulation of the phase measurement is per-
formed. For this, the coordinate 𝑥 = 0 is encoded using phase-shift
coding and then the phase 𝜑 is measured. The simulation is performed
107 times, each time adding Gaussian image noise corresponding to a
phase uncertainty of 𝜎𝜑 = 𝜋

2
. The probability density of the phase noise

can then be approximated using histogram analysis.
Figure 4.2(a) shows the histogram of the measured phases and the

different density functions whose parameters can be calculated from the
phase-shift coding. As expected, the phase noise can best be described
by the noise model of Rathjen [167]. However, the von Mises distribution
also shows a reasonably good fit to the histogram, whereas the wrapped
normal distribution is too low on the hills and too high in other areas of
the histogram.

Figure 4.2(b) shows the Jensen-Shannon distance (JSD) [49] between the
histogram and each of the distributions over different phase uncertainty
values as a similarity measure, i.e., a small JSD value corresponds to a high
similarity. It can be seen that the model of Rathjen has a high similarity
to the histogram for all uncertainty values. The von Mises distribution is
also very close to the histogram and hence, represents the phase-shift
coding sufficiently good, although the similarity is not constant for all
noise values. Finally, compared to those two distributions, the wrapped
normal distribution has a greater distance to the histogram. For small
noise values 𝜎𝜑 , all distributions converge into one another [93], so that
they are almost equivalent, and for very large noise values everything
converges to the uniform distribution on the interval [0, 2𝜋) .

4.4.2 Compound Probability Density Function
Because the individual phase measurement is affected by phase noise,
the probability density of the true phase is hence centered around the
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Figure 4.2 Comparison of phase noise models.

respective measured value. To consider all phase measurements simulta-
neously in the unwrapping, depending on their respective uncertainty,
it is necessary to search for the phase that caused the individual mea-
surements with maximum probability. Since the phase has a periodic
structure, the corresponding probability density must be modeled using
circular statistics.

The von Mises distribution is mathematically easy to handle, it ap-
proximates the true distribution of the phase noise quite well, and a
maximum-likelihood estimation can be performed in a numerically sta-
ble way, cf. Sec. 4.4.3. Therefore, it will be used as the basis for modeling
the phase measurement in the following. Modeling using the other den-
sities would work analogously.

The density function of the true phase 𝜑 ∈ [0, 2𝜋) as a function of the
measurement is therefore given by

𝑝(𝜑|𝜑𝑖, 𝜅𝑖) = 𝑒𝜅𝑖 cos(𝜑−𝜑𝑖)

2𝜋𝐼0(𝜅𝑖)
. (4.38)

Here, the measured phase is represented by 𝜑𝑖 and 𝜅𝑖 = 1/𝜎2
𝜑𝑖

models
the knowledge about the uncertainty of the phase measurement and
thus describes the concentration of the distribution. Depending on the
frequency of the pattern sequence, the distribution function of the en-
coded coordinate 𝑥 can now be derived. With 𝜑𝑖(𝑥) = 2𝜋𝑓𝑖𝑥 and with
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Figure 4.3 Rows 1-3: Multi-modal von Mises distributions for different frequencies. Row
4: Compound probability density function and corresponding log-density. (a) The density
has a unique maximum, since gcd(𝐟) = 1 . (b) The solution of the maximum-likelihood
estimation has a two-fold ambiguity, since gcd (𝐟) = 2 > 1 .

the known frequency 𝑓𝑖 , the multi-modal von Mises distribution on the
periodic interval 𝑥 ∈ [0, 1) is obtained:

𝑝(𝑥|𝜑𝑖, 𝜅𝑖, 𝑓𝑖) = 𝑒𝜅𝑖 cos(2𝜋𝑓𝑖𝑥−𝜑𝑖)

𝐼0(𝜅𝑖)
. (4.39)

Due to the multi-modal character of the distribution, the ambiguity
of the phase measurement becomes illustratively visible in the density
functions, see figure 4.3.

Since the acquisition of the sinusoidal pattern sequence using phase-
shift coding is performed independently for each image and identical
acquisition conditions are assumed, each image has in principle the same
standard deviation 𝜎𝐼 of the image noise. Therefore, the strength of the
phase noise 𝜎𝜑 remains the same in each measurement. Nevertheless, the
variable substitution 𝜑𝑖(𝑥) = 2𝜋𝑓𝑖𝑥 reduces the width of the distribution
locally by 1/𝑓𝑖 . This leads to a reduction of the uncertainty, which in
turn is bought by an 𝑓𝑖-fold ambiguity.

While the image noise generally remains the same for all images, the
estimated phase uncertainty can vary significantly for different situations.
For example, if impulse noise appears in images, it is detected by the
phase-shift coding as a reduction in the modulation 𝐵 , which leads to
an increase in the estimated uncertainty 𝜎𝜑𝑖

for the respective pixels. On
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the other hand, if the sinusoidal pattern is blurred due to the imaging
system, the local contrast of the pattern sequence decreases. Again, the
modulation 𝐵 is affected and the uncertainty increases for the whole
phase measurement. Of course, this is strongly influenced by the used
pattern frequencies. The uncertainty estimate thus contains knowledge
about the system and can therefore be integrated efficiently into the
probabilistic modeling of the phase estimate.

Depending on the chosen frequency of the sinusoidal pattern sequence,
each phase measurement 𝜑𝑖 corresponds to an individual probability
distribution 𝑝(𝑥|𝜑𝑖, 𝜅𝑖, 𝑓𝑖) . Since each phase measurement 𝜑𝑖 is mea-
sured independently and all have the same underlying coordinate, the
compound density of 𝑥 for given frequencies 𝐟 = (𝑓1, … , 𝑓𝑁) , phase mea-
surements 𝝋 = (𝜑1, … , 𝜑𝑁) , and estimated concentration parameters
𝜿 = (𝜅1, … , 𝜅𝑁) can be directly expressed:

𝑝(𝑥|𝝋, 𝜿, 𝐟) = ∏
𝑖

𝑝(𝑥|𝜑𝑖, 𝜅𝑖, 𝑓𝑖) = 𝑒∑𝑖 𝜅𝑖 cos(2𝜋𝑓𝑖𝑥−𝜑𝑖)

∏𝑖 𝐼0(𝜅𝑖)
. (4.40)

4.4.3 Maximum-Likelihood Phase Unwrapping
Having described the probability density function of the multi-frequency
phase-shift coding, this can now be used to find the most likely coordi-
nate that caused the phase measurements. The optimal coordinate and
thus the simultaneous unwrapping of all phase measurements can be
found with a maximum-likelihood estimator. As a result, maximizing
the density function yields the sought coordinate

̂𝑥ML = arg max
𝑥

𝑝(𝑥|𝝋, 𝜿, 𝐟)

= arg max
𝑥

log (𝑝(𝑥|𝝋, 𝜿, 𝐟))

= arg max
𝑥

∑
𝑖

𝜅𝑖 cos (2𝜋𝑓𝑖𝑥 − 𝜑𝑖) − log 𝐼0(𝜅𝑖)

= arg max
𝑥

∑
𝑖

𝜅𝑖 cos (2𝜋𝑓𝑖𝑥 − 𝜑𝑖) . (4.41)

The logarithm of the Bessel function can be ignored due to its inde-
pendence of 𝑥, and the monotonicity of the logarithm helps to simplify
the equations and removes the potentially numerically more unstable
exponential function.
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4.4.3.1 Uniqueness

To be able to identify a unique maximum, constraints must be applied
to the selected frequencies. With other unwrapping methods from the
literature, uniqueness can be achieved if the frequencies are relatively
prime [149, 255]. However, while all the frequencies need to be pairwise
co-prime integers with gcd (𝑓𝑖, 𝑓𝑗) = 1 , ∀𝑖 ≠ 𝑗 for classical number-
theoretical approaches, the presented approach has a less restrictive
condition. Here, uniqueness is obtained with gcd (𝐟) = gcd (𝑓1, 𝑓2, … ) ≤
1 , where the frequencies do not necessarily need to be integer-valued.
For frequencies 𝑓𝑖 ∈ ℚ , the extension of the gcd to rational numbers can
be used to check uniqueness. For frequencies that are irrational numbers,
the maximum of (4.41) is theoretically always unique if ∃𝑓𝑖 ≠ 𝑓𝑗 with
𝑖 ≠ 𝑗 . Though, in this case, when the frequencies are poorly chosen, the
unwrapping might be more susceptible to noise. Figures 4.3(a) and 4.3(b)
demonstrate the uniqueness constraint illustratively. In figure 4.3(a) the
frequencies are set to 𝐟 = (2, 3, 6) , thus gcd (𝐟) = 1 . Even though, with
gcd(2, 6) = 2 and gcd(3, 6) = 3 , the frequencies are not pairwise co-
prime, a unique maximum of the compound probability density can still
be found. In figure 4.3(b) the frequencies are set to 𝐟 = (2, 4, 6) , thus
gcd (𝐟) = 2 . Here the maximum has a two-fold ambiguity. The compound
density is only unique in the range 𝑥 ∈ [0, 0.5) and repeats itself in
𝑥 ∈ [0.5, 1) . Thus, in this case, the phase cannot be recovered uniquely.

4.4.3.2 Finding the Maximum

Although (4.41) seems simple, no analytical solution can be given for the
global maximum because of the many local extrema. Therefore, the prob-
lem must be solved numerically. However, no global optimizer (e.g., sim-
ulated annealing, differential evolution) can be used because it could get
stuck in a local maximum. To ensure that the maximum of the probability
density is found every time and to avoid unwrapping errors, the optimiza-
tion problem is solved on subintervals. To define the subintervals, (4.41)
must be interpreted as a signal 𝑔(𝑥) = ∑𝑖 𝜅𝑖 cos (2𝜋𝑓𝑖𝑥 − 𝜑𝑖) . Since it is
a summation of sinusoidal signals, the maximum frequency of the signal
𝑔(𝑥) is equivalent to the maximum used frequency 𝑓max = max(𝑓𝑖) in
the phase-shift coding. From sampling theory, it is known that a discrete

59



4 Deflectometric Registration

signal can be reconstructed from its sampling points only if the signal
does not change significantly between said points [31]. Consequently, the
sampling frequency must be respected. Given the maximum frequency
𝑓max and using the sampling theorem, a minimum required number of
intervals 𝐼min = ⌈2𝑓max⌉ is obtained in which the global maximum must
uniquely lie as a single extremum. A simple 1D line search procedure
(see [140]) is now used to find the local maximum in each of those subin-
tervals. A comparison of the local maxima of the intervals finally yields
the global maximum.

From a purely practical point of view, it would be sufficient to reduce
the interval number to 𝐼min = ⌈𝑓max⌉ , since only the local maxima are
required and not the minima. Empirical investigations showed, however,
that in rare cases nearly saddle point-like shapes appear in the signal. In
these cases, two local maxima can lie very close to each other, and thus,
with the reduced number of intervals, only one can be identified as a
local maximum in the optimization. Nonetheless, the global maximum
could always be found unambiguously in billions of simulations, since
the signal changes very strongly in the vicinity of the global maximum,
and thus, only a single solution exists in the interval under investigation.

As a remark, it remains to say that the presented maximum-likelihood
optimization can in principle also be carried out with the other distri-
butions from Sec. 4.4.1. Though, since the log-likelihood function of
the corresponding densities cannot be represented as a simple sum of
cosine functions, the spectrum of these log-likelihood functions also
has components at higher frequencies. Nevertheless, empirical investi-
gations showed that higher frequencies are attenuated so strongly that
the sampling theorem is almost fulfilled and hence a maximum could
still be found every time. However, this could only be observed, when
all 𝐼min = ⌈2𝑓max⌉ subintervals were searched. Thus, the other density
functions need twice the computation time as compared to the von Mises
distribution.

In summary, with the presented method, the wrapping of all phases
is compensated simultaneously and all measurements are fused to an
optimal solution so that finally the most likely value of the coordinate
𝑥 can be found.
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4.4.4 Spatio-Temporal Phase Unwrapping
Temporal phase unwrapping has the great advantage that each pixel can
be individually unwrapped and an absolute phase is obtained. This is
especially useful when only a little information about the surface to be
examined is known and when 2D unwrapping methods would lead to
erroneous results. In many tasks of optical metrology, where structured
illumination is used, continuous surfaces are often examined. For ex-
ample, deflectometry often works with lacquered body parts from the
automotive industry, with lenses, or parabolic mirrors, which can be de-
scribed for the most part as continuous surfaces with only a few regions
deviating from this continuity due to sharp edges. Also in time-of-flight
imaging and many areas of profilometry, i.e., fringe projection, piecewise
continuous objects are often inspected [47, 209]. This piecewise conti-
nuity has the consequence that neighboring camera pixels will observe
similar phase values on the surface. It is therefore reasonable to use this
additional information to help with the phase unwrapping to suppress
phase errors.

The assumption of local continuity should be integrated into the prob-
abilistic framework from the previous section. This allows performing
not only an unwrapping in the temporal dimension but a 3D phase un-
wrapping while implicitly smoothing the probability density functions
over the spatial dimensions. To do this, the probability density of each
camera pixel is modeled as a superposition of the probability densities of
the local neighborhood. The probability density for each individual pixel
𝐮 was already derived in the previous section and can be considered as
a conditional density

𝑝(𝑥(𝐮)|𝝋(𝐮), 𝜿(𝐮), 𝐟 ) = ∏
𝑖

𝑝(𝑥(𝐮)|𝜑𝑖(𝐮), 𝜅𝑖(𝐮), 𝑓𝑖) . (4.42)

If neighboring pixels can no longer be considered independently of
each other, then the probability density results in a weighted superposi-
tion of individual densities for each pixel 𝐮

𝑝(𝑥(𝐮)) ≔ ∑
𝐮̂∈U(𝐮)

𝑝(𝐮|𝐮̂)𝑝(𝑥(𝐮̂)|𝝋(𝐮̂), 𝜿(𝐮̂), 𝐟 ) , (4.43)

where U(𝐮) represents a set of relevant neighborhood pixels. Since more
distant pixels have less influence and the modeling should be approached
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with minimal knowledge about the observed surface, the transition prob-
abilities are modeled using a 2D normal distribution

𝑝(𝐮|𝐮̂) = N (𝐮̂, 𝜎2
N𝐈) = 1

2𝜋𝜎2
N

e
− ‖𝐮−𝐮̂‖2

2𝜎2
N . (4.44)

The compound density, consisting of a spatial modeling by means of
normal distributions and a temporal modeling by means of von Mises
distributions, finally results in

𝑝(𝑥(𝐮)) = ∑
𝐮̂∈U(𝐮)

exp (− ‖𝐮−𝐮̂‖2

2𝜎2
N

) exp ( ∑𝑖 𝜅𝑖(𝐮̂) cos (2𝜋𝑓𝑖𝑥 − 𝜑𝑖(𝐮̂)) )

2𝜋𝜎2
N ∏𝑖 𝐼0(𝜅𝑖(𝐮̂))

.

(4.45)
Although this probability density appears more complicated than the

equation (4.40) from the previous section, it can be maximized using
the same methods for finding the optimal solution of the coordinate:

̂𝑥ML(𝐮) = arg max 𝑝(𝑥(𝐮)) .
However, it must be considered that this approach only leads to mean-

ingful results if the local continuity assumption is not violated. To ensure
that the given model is only applied in continuous areas, discontinuities
have to be detected.

4.4.4.1 Detection of Discontinuities

Depending on the application, discontinuities in a surface can lead to
discontinuities in the phase map. In the case of profilometry, a step in
the surface results in a step in the phase map, whereas a step in the
surface gradient does not necessarily destroy the continuity of the phase
map. However, in the case of a deflectometric measurement of specular
surfaces, even a step in the surface gradient may result in a step in the
phase map. Consequently, this means that it is not the intention to detect
edges on the surface but discontinuities in the unwrapped phase.

For edge detection, a simple detector operating directly on the wrapped
phase estimates is suitable for this purpose. Nonetheless, since the 2𝜋-
discontinuities contained in the phase maps do not represent a property
of the surface, they must not be falsely detected, cf. figure 4.10. Thus,
a 2𝜋-invariant detector is needed. Typically, gradient-based operators
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are utilized to detect edges in images. For this, the Laplace operator
Δ𝜑(𝐮) = 𝜕𝑠2𝜑(𝐮)2 + 𝜕𝑡2𝜑(𝐮)2 is often used. However, for a 2𝜋-phase
jump in the wrapped phase, the operator will yield a multiple of 2𝜋
even when the correctly unwrapped phase would have only a small con-
tinuous change. To have this property ignored, a 2𝜋-invariant Laplace
operator is defined

Δ2𝜋𝜑(𝐮) ≔ Δ𝜑(𝐮) mod 2𝜋 , (4.46)

which is only sensitive to phase discontinuities in the unwrapped phase
caused by the surface, whereas discontinuities that are caused by the
ambiguity of a wrapped phase are ignored. To reduce the effect of noise
in edge detection, a Laplacian of Gaussian may be used. Equation (4.46)
can take values within the periodic interval [0, 2𝜋) . However, since the
strength of an edge is defined as the distance to 0 , it is necessary to
calculate the circular distance for an appropriate edge quality measure.
Hence, for every phase measurement 𝜑𝑖(𝐮) , an energy measure

𝐸𝑖(𝐮) = 𝑑∘ (0, Δ2𝜋𝜑𝑖(𝐮)) = 𝜋 − |𝜋 − |Δ2𝜋𝜑𝑖(𝐮)|| (4.47)

is calculated in which the maximum possible circular distance is equal
to 𝜋 , which would correspond to a strong edge feature. Further, an ap-
propriate averaging over all phase maps improves the edge estimate

𝐸(𝐮) =
∑𝑖 𝜎−2

𝜑𝑖
(𝐮)𝐸𝑖(𝐮)

∑𝑖 𝜎−2
𝜑𝑖

(𝐮)
, (4.48)

where the uncertainty of the phase estimate can be taken into account.
Hence, the application of the modified Laplacian operator ultimately
provides an energy measure for an edge, which is insensitive towards
2𝜋-discontinuities. And finally, subsequent thresholding on this energy
measure results in a feature map containing edge areas and non-edge
areas, see figure 4.10. In places where an edge has been detected, the tem-
poral modeling according to Sec. 4.4.2 must be used, whereas everywhere
else the modeling according to Sec. 4.4.4 may be used to improve the
phase unwrapping by utilizing the spatial neighborhood information.
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4.5 Evaluation
In this section, the presented methods are evaluated, analyzed, and com-
pared with the state of the art. Sinusoidal pattern sequences with different
frequencies are simulated and the respective phase is estimated using
phase-shift coding, where the number of steps is chosen to be 𝑀 = 8 . The
following unwrapping methods are examined: The hierarchical method
of Huntley and Saldner [88], the proposed modified hierarchical method,
the heterodyne method of Lai et al. [107], the number-theoretical method
of Towers et al. [202], the PDM method of Zuo et al. [255], the proposed
modified PDM method, the proposed probabilistic temporal method,
and the proposed probabilistic spatio-temporal method. For the pro-
posed probabilistic methods, the von Mises probability density is used,
unless specified otherwise. For the spatio-temporal method a spatial
neighborhood U(𝐮) of 3 × 3 pixels is used. To investigate the robustness
of the presented phase unwrapping algorithms, the influence of Gaussian
image noise and impulse noise is examined.

4.5.1 Qualitative Comparison
The resolution of the reference pattern generator was set to (2003, 2003).
For the first simulation three phase measurements with frequencies
𝐟 ≈ (1, 3, 5) were generated. Because for the number-theoretical method
pairwise co-prime wavelengths must be used, the wavelengths are quan-
tized as 𝝀 = (2003, 668, 401) . This corresponds to the set of frequencies
𝐟 ≈ (1, 2.999, 4.995) . Nevertheless, since no methods are restricted to
integer frequencies, this does not result in any major disadvantages. The
phase uncertainty was chosen to be 𝜎𝜑 = 0.25 rad = 14.3° . Using (4.10),
Gaussian noise with variance 𝜎2

I = 𝜎2
𝜑𝐵2𝑀/2 was added to the sinu-

soidal pattern sequence. It is important to note that the noise is not added
to the wrapped phase measurements, as it is often done in the literature,
but to the camera images 𝐼𝑚 , otherwise no realistic statements about
phase-shift coding can be made. The heterodyne method calculates a
phase difference to obtain a unique reference phase. Since 𝜑1 is already
unique, it does not make sense to evaluate the heterodyne method for
this frequency configuration. The coordinate 𝑥 ∈ [0, 1) was sampled
in 2003 steps and each value was simulated 2003 times. Figure 4.4(a)
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(a) Gaussian noise with 𝜎𝜑 = 0.25 rad .
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Figure 4.4 Top: Noisy phase measurements 𝜑𝑖 with frequencies 𝐟 ≈ (1, 3, 5) . Bottom:
Estimated coordinate 𝑥̂ for different methods.

shows the phase measurements and the coordinates estimated with the
different unwrapping methods. Here, stronger colors represent a higher
point density. The upper three plots show the noisy phase measurements
𝜑𝑖 over the true coordinate 𝑥 . The lower plots show the corresponding
estimated coordinates ̂𝑥 over 𝑥 .

The hierarchical unwrapping shows a line of correctly unwrapped
estimates in the middle section. At the boundaries of the coding interval,
large errors appear because the periodicity of the phase is not implicitly
modeled for this method. For these reasons, the effective coding interval
is often reduced in practical applications. This avoids unwrapping errors,
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but the effectively used frequency decreases, which increases the overall
phase uncertainty. In addition to the boundary errors, the hierarchical
method shows unwrapping errors that are represented by parallel lines
to the middle line. In these cases, the phase was incorrectly unwrapped
once or even twice. Since the hierarchical method always refers back to
the unwrapped previous phase, unwrapping errors propagate from top
to bottom and can no longer be compensated once they occurred. Using
the modified hierarchical method, boundary errors can be significantly re-
duced, due to respecting the circularity of the phase by using the circular
mean. Similar to the standard hierarchical method, parallel lines of un-
wrapping errors appear, since the second phase is unwrapped by only us-
ing the first measurement. The number-theoretical unwrapping shows no
errors at the boundary of the coding interval since the Chinese remainder
theorem is based on modulo arithmetic. Also, only a few unwrapping er-
rors occur in the middle of the coding interval. Two lines of faulty estima-
tions appear near the boundary, where noisy estimates 𝑥 > 1 and 𝑥 < 0
are folded back into the used interval [0, 1) . Overall, the method is more
susceptible to noise, which results in a coordinate estimation with greater
uncertainty. The PDM unwrapping is much better. Almost all pixels in
the middle of the coding interval are unwrapped correctly. The errors at
the boundary are caused by the lack of modeling of the periodicity of the
phase. By using the modified PDM method, these wrongly unwrapped
pixels can be corrected. The proposed probabilistic temporal method can
also compensate for the boundary errors since the periodicity is well de-
scribed using circular statistics and it performs satisfactorily in other areas
as well. Only a few pixels are unwrapped incorrectly. Finally, the spatio-
temporal method yields even better results. Here almost all values are
unwrapped correctly and the uncertainty of the estimation is the smallest
compared to the other methods, as can be seen by the overall thinner line.
In other words, it makes a lot of sense to include spatial information.

In a second simulation, the sinusoidal pattern sequence is superim-
posed with impulse noise, where the probability of an impulse is set to
𝑝I = 0.15 . An impulse in the image appears either as a black pixel or as
a white pixel, i.e., it acts like salt and pepper noise. Again, of course, the
noise must be added to the sinusoidal pattern sequence 𝐼𝑚 and not to
the wrapped phase maps. Although 15% of the pixels show an impulse,
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the same number of phase estimates may not necessarily be affected. Fig-
ure 4.4(b) shows the phase measurements and the coordinates estimated
with the different unwrapping methods. An impulse in the pattern se-
quence causes the respective phase to be distorted to a greater or lesser ex-
tent, depending on how far the impulse is from the correct intensity value.

Again, the hierarchical method shows similar effects as before, which
are, however, more prominent here. The modified hierarchical method
is slightly better than the standard approach and also the errors at the
boundaries are smaller. The number-theoretical method can still provide
a good unwrapping performance. Due to the generally higher noise
level, the accuracy decreases. For the PDM method, more erroneous
estimations occur, comparable to the hierarchical method, whereas the
modified PDM method reduces the boundary errors. As opposed to this,
the two probabilistic methods can still achieve very good results. This can
be explained by considering that a phase measurement with an impulse
in the pattern sequence has a smaller modulation 𝐵 . This also increases
the corresponding estimate of the phase uncertainty. This estimate can
be used directly in the proposed methods to compensate for poor phase
measurements. Thus, better phase measurements have more influence
on the optimization. For the spatio-temporal method, this means that a
distortion of the phase has an effect only if a large number of the pixels
in the respective 3 × 3 × 3 cube is disturbed. Since the probability of this
is quite low, the method yields almost no errors.

To evaluate the heterodyne method, phase measurements with fre-
quencies 𝐟 ≈ (6, 9, 11) are generated. For the same reasons as before, the
wavelengths were quantized as 𝝀 = (331, 223, 181) . This corresponds to
frequencies 𝐟 ≈ (6.051, 8.982, 11.066) . Image noise is superimposed on
the sinusoidal pattern sequence, corresponding to a phase uncertainty
of 𝜎𝜑 = 0.15 rad = 8.6° . Since the hierarchical and modified hierarchical
method can uniquely unwrap the phases only up to the first period, they
are not considered in this comparison. Figure 4.5(a) shows the phase
measurements and the coordinates estimated with the different methods.

It can be seen that even with smaller noise than before, the hetero-
dyne method delivers only mediocre results. A large part of the pixels
is unwrapped correctly, though many lines of incorrect values appear
parallel to the correct line. This is due to the fact that the phase noise
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(a) Gaussian noise with 𝜎𝜑 = 0.15 rad .
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Figure 4.5 Top: Noisy phase measurements 𝜑𝑖 with frequencies 𝐟 ≈ (6, 9, 11) . Bottom:
Estimated coordinate 𝑥̂ for different methods.

is summed up when calculating the phase difference. To get a unique
solution, first 𝜑12 = 𝜑1 − 𝜑2 with 𝑓12 = 𝑓2 − 𝑓1 ≈ 2.93 and 𝜑23 with
𝑓23 = 2.08 are calculated. A unique phase can then be calculated with
𝜑123 = 𝜑23 − 𝜑12 with 𝑓123 = 𝑓12 − 𝑓23 = 0.85 . This is then used to
unwrap the individual phase measurements. However, since the noise is
summed up in each step, the reference phase is of poor quality, resulting
in a poor overall unwrapping result. Surprisingly, the number-theoretical
method fails completely. The integer arithmetic of the method cannot
work even at a very small noise level. The PDM method and the modified
PDM method show almost the same very good result, with only a few
boundary errors and two small clusters of erroneous estimates. As before,
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the presented probabilistic methods provide very good results, whereas
the spatio-temporal approach yields almost only correct estimates.

For a final evaluation, the sinusoidal pattern sequence was now again
overlaid with impulse noise, with the probability of an impulse set to
𝑝I = 0.05 . Figure 4.5(b) shows the phase measurements and the coordi-
nates estimated with the different methods. Although the noise is very
small, the heterodyne method again shows many unwrapping errors.
The number-theoretical method delivers bad values too. Here we see that
almost only pixels without distortion are unwrapped correctly, visible by
the somewhat stronger line in the center. The PDM method can unwrap
the phase very well, as before. Errors are still found at the boundary and
in parts in the center, whereas the modified version better compensates
for the boundary errors. The presented probabilistic methods show al-
most perfect results, which is explainable by the incorporation of the
estimated phase uncertainty in the unwrapping process.

4.5.2 Robustness Against Noise
The methods presented are now being evaluated quantitatively. For this
purpose, the robustness of the methods against Gaussian noise and
impulse noise will be investigated. In order to compare all methods,
sinusoidal pattern sequences with 𝑀 = 8 phase shifts were simulated.
Subsequently, various noise factors were superimposed on the images,
the phase was estimated using phase-shift coding, and finally, the phases
were unwrapped using the presented methods.

4.5.2.1 Error Metrics

In order to make quantitative statements about the methods, suitable
error metrics have to be defined beforehand. As a first error measure, the
estimation error

𝜖𝑥 = |𝑥 − 𝑥true| (4.49)

defines the absolute distance of the estimated coordinate 𝑥 to the true
coordinate 𝑥true . The second error metric evaluates the quality of phase
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unwrapping and describes the success rate, representing whether a pixel
was correctly unwrapped:

𝑠𝑥 = 1
𝑁

𝑁−1

∑
𝑖=0

𝐶𝑖 , (4.50)

where 𝐶𝑖 indicates whether the phase measurement associated with the
frequency 𝑓𝑖 has been correctly unwrapped

𝐶𝑖 = {
1 , |𝑘𝑖,true − 𝑘𝑖| = 0
0 , otherwise

, (4.51)

= {
1 , 1

2𝑓𝑖
> |𝑥true − 1

2𝜋
Φ𝑖|

0 , otherwise
. (4.52)

Because the proposed methods do not directly unwrap the individual
phase measurements but return a global solution, (4.52) is used with
𝐶𝑖 = 𝐶𝑖max

and 𝑖max = arg𝑖max 𝑓𝑖 . Hence, any phase value that is farther
away from the true solution than 1/(2𝑓max) is therefore classified as an
unwrapping error.

4.5.2.2 Error Evaluation

For a first analysis, the frequencies of the sinusoidal pattern sequence
were again chosen to be 𝐟 ≈ (1, 2.999, 4.995) to create integer wavelengths
𝝀 = (2003, 668, 401) to ensure that the number-theoretical method can
be used. The robustness towards Gaussian image noise was analyzed
by increasing the phase uncertainty incrementally from 𝜎𝜑 = 0 to 𝜎𝜑 =
0.5 rad ≈ 28.6∘ in 100 steps. For the analysis of robustness to impulse
noise, the probability of an impulse was increased stepwise from 𝑝I = 0
to 𝑝I = 20 % in 100 steps. Figure 4.6 shows the results of the analysis as a
plot of the mean estimation error 𝜖𝑥 and mean success rate 𝑠𝑥 .

The evaluation of the phase error metrics yields similar results as the
evaluation of the qualitative results from the previous section, for both
Gaussian noise and impulse noise. When analyzing the influence of Gaus-
sian noise, large differences between the methods can be observed. The
number-theoretical method consistently yields the worst results with
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Figure 4.6 Evaluation of phase error 𝜖𝑥 and success rate 𝑠𝑥 with 𝐟 ≈ (1, 3, 5) for dif-
ferent phase unwrapping methods: Number-theoretical, hierarchical, modified
hierarchical, PDM, modified PDM, probabilistic (temporal), probabilistic (spatio-
temporal).

the largest estimation error. The success rate is also consistently the low-
est, mainly caused by the erroneous unwrapping at the boundaries of
the coding interval. Interestingly, the hierarchical method and the PDM
method show almost identical behavior up to about 𝜎𝜑 ≈ 0.2 . Only for
higher noise levels, the advantage of the PDM method becomes apparent,
resulting in a lower estimation error and a higher success rate. The modi-
fied hierarchical method and the modified PDM method show the same
behavior as the probabilistic temporal method for lower noise levels. For
high noise levels, the modified hierarchical method becomes compara-
ble to the standard PDM method. The proposed probabilistic methods
provide the best results with the smallest estimation error and highest
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success rate, where even for very large noise levels the spatio-temporal
method can still correctly unwrap more than 99.9 % of the pixels. The
same conclusions can be made for the analysis of impulse noise. Here it
becomes even possible to order the methods from worst to best directly
by looking at the plots: number-theoretical, hierarchical, PDM, modi-
fied hierarchical, modified PDM, probabilistic temporal, probabilistic
spatio-temporal.

For the second analysis, the frequencies of the sinusoidal pattern se-
quence were again chosen to be 𝐟 ≈ (6.051, 8.982, 11.066) to create inte-
ger wavelengths 𝝀 = (331, 223, 181) suitable for the number-theoretical
method. The noise was parameterized in the same way as before. Fig-
ure 4.7 shows the results of the analysis as a plot of the mean phase error
𝜖𝑥 and mean success rate 𝑠𝑥 . While analyzing the influence of Gaussian
noise, it can be seen that the number-theoretical method is extremely
susceptible to noise. It can only deliver correct values for very small noise
values. Starting from a noise of 𝜎𝜑 ≈ 0.02 it has already reached the
maximum possible mean error. For small noise levels, the heterodyne
method still shows very good results and can keep up with the other
methods. Only for larger noise, significant deficiencies become apparent.
For the investigated frequency configuration, the standard and the modi-
fied PDM method have an almost identical success rate, which is only
slightly worse as compared to the probabilistic temporal method. Also,
the probabilistic method is slightly better for low noise levels resulting in
a smaller estimation error. For large noise levels, all yield almost the same
result. The spatio-temporal method, on the other hand, still yields very
good results for high noise levels even when a phase-shift configuration
is used consisting of high frequencies, where in general the success rate
is more susceptible to noise.

The analysis of the impulse noise emphasizes again the advantages of
the proposed methods. The number-theoretical method and the hetero-
dyne method are very susceptible to impulse noise. Even small amounts
of noise cause the success rate to drop steeply and the estimation error to
rise significantly. The PDM method and the modified PDM method show
similar behavior, with the modified method being slightly better. Again,
the probabilistic temporal method gives better results than the classical
approaches for all noise levels. Interestingly, the spatio-temporal method
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Figure 4.7 Evaluation of phase error 𝜖𝑥 and success rate 𝑠𝑥 with 𝐟 ≈ (6, 9, 11) for different
phase unwrapping methods: Number-theoretical, heterodyne, PDM, modified
PDM, probabilistic (temporal), probabilistic (spatio-temporal).

shows exceptionally good results here. Even with 𝑝I = 20 % impulse
noise, the success rate is still greater than 99.99 % . This can be explained
by the fact that a coordinate estimation is only disturbed if a certain
number of phase measurements are influenced by an impulse. Since
the spatio-temporal method combines 27 probability densities for each
coordinate estimate, the probability that a large part of these densities is
disturbed is very small. To obtain a correct estimate, at least one pixel of
the 3 × 3 spatial neighborhood must be correct for only two of the three
phase measurements, since the corresponding frequencies are pairwise
co-prime and effectively two phase measurements are sufficient to get
a unique result. The probability of an unwrapping error at 𝑝I = 20 %
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impulse noise with a spatial neighborhood of 𝑆 = 9 pixels, 𝑁 = 3 fre-
quencies, and pairwise co-prime frequencies is therefore approximately

1 −
𝑁

∑
𝑛=2

(𝑁
𝑛) (1 − 𝑝𝑆

I )𝑛 (𝑝𝑆
I )𝑁−𝑛 = 𝑁 (1 − 𝑝𝑆

I ) (𝑝𝑆
I )𝑁−1 + (𝑝𝑆

I )𝑁

= 0.227 + 3 ⋅ 0.218 (1 − 0.29) ≈ 6.3 ⋅ 10−13 .
(4.53)

The probability may be even lower since not every impulse necessarily
causes an erroneous measurement.

4.5.3 Comparison of Different Phase Noise Models
To confirm the choice of the von Mises distribution as a representative for
the probability density of the phase, this section compares the different
densities.

4.5.3.1 Robustness against Model Errors

The phase uncertainty is in principle not known but has to be estimated
by using the standard deviation 𝜎I of the underlying image noise. How-
ever, since this is either set arbitrarily or has to be estimated from the
camera parameters, model errors may be introduced. To investigate the
robustness against these model errors, a phase measurement with image
noise 𝜎I = 0.3 is simulated. The different probability densities are param-
eterized with the incorrect 𝜎̃I = 𝛿𝜎I

𝜎I where the relative deviation 𝛿𝜎I
describes the model error. Figure 4.8 shows the influence of the model
error on the temporal and spatio-temporal phase unwrapping. For the
temporal approach, the log-likelihood of the von Mises function is used.
Here, the phase unwrapping is completely independent of the model
error. Because the image noise has only a multiplicative influence on
the estimated phase uncertainty, this factor can be extracted from the
objective function (4.41) and has no significant influence on the maxi-
mization. However, when the other distributions or the spatio-temporal
approach is used, the situation is different. Here, the influence of model
errors as well as numerical instabilities become apparent. For 𝛿𝜎I

< 0.5
the error for the von Mises density and the phase-shift model becomes
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Figure 4.8 Evaluation of model deviations for different probability density functions:
Wrapped Gaussian, von Mises, von Mises (log-likelihood), Phase-shift model.

larger and sometimes the optimization of the phase-shift model fails
so that no result can be obtained. For too small uncertainties, the terms
in the exponential functions of the density (4.37) become too large, and
thus numerically bad or even invalid values can occur. The effects are
even stronger for the spatio-temporal approach. The wrapped Gaus-
sian density, on the other hand, shows good results only starting from
𝛿𝜎I

= 1 , whereas the results deteriorate again starting from 𝛿𝜎I
≈ 2 . In

summary, the log-likelihood approach is completely robust to model
errors, whereas the von Mises density and the phase-shift model show
poor results only for very small values. To avoid numerical instabilities,
the assumed image noise 𝜎I should therefore have a lower bound, since
it does not have a significant influence on the result. Nevertheless, the
relative difference of the phase uncertainty 𝜎𝜑 and the influence of the
frequencies are of course still important.

4.5.3.2 Robustness against Noise

With the optimal 𝜎I selected, the probabilistic temporal phase unwrap-
ping is now analyzed in more detail. Table 4.1 shows the estimation error
and the success rate for Gaussian image noise with 𝜎𝜑 = 0.3 and impulse
noise with 𝑝I = 0.03 for different probability densities. For reference, the
PDM method is shown too. As expected, the phase-shift model according
to Rathjen [167] gives the best results for the Gaussian noise and the von
Mises distribution the second best. Compared to the PDM method, the
probabilistic methods differ only minimally. Interestingly, for impulse
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Table 4.1 Comparison of different phase noise models.

𝐟 = (1, 3, 5) 𝐟 = (6, 9, 11)

Method 10 ⋅ 𝜖𝑥 𝑠𝑥 in % 10 ⋅ 𝜖𝑥 𝑠𝑥 in %

G
au

ss
ia

n PDM 0.772 99.050 1.199 95.457
Wrapped normal 0.453 99.490 1.032 95.658
von Mises 0.438 99.526 0.912 96.275
Phase-shift-model 0.425 99.549 0.862 96.505

Im
pu

ls
e PDM 0.157 99.839 0.148 99.514

Wrapped normal 0.086 99.928 0.058 99.812
von Mises 0.086 99.928 0.059 99.811
Phase-shift-model 0.091 99.925 0.068 99.781

noise, the wrapped normal distribution performs better than the model
of Rathjen. Again, the von Mises distribution provides the second-best
results, which is only insignificantly worse than the wrapped normal
distribution. So, apart from the other advantages of the von Mises distri-
bution, it therefore turns out to also be a good compromise to be robust
against Gaussian and impulse noise.

4.5.4 Phase Map Reconstruction
This section shows how phase maps are reconstructed using the pre-
sented unwrapping methods. For this purpose, two phase maps (512×512
pixels) are generated, see figure 4.9. Phase map 1 shows a continuous
surface with hills and valleys, whereas phase map 2 represents a dis-
continuous surface that has sharp edges. The corresponding sinusoidal
pattern sequences are generated with wavelengths 𝝀 = (331, 223, 181) ,
corresponding to frequencies 𝐟 ≈ (6.051, 8.982, 11.066) . The pattern im-
ages are superimposed with Gaussian noise corresponding to 𝜎𝜑 = 0.15 .
Figure 4.9 shows the generated phase-shift image data and the wrapped
phase maps that are calculated using phase-shift coding.
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Figure 4.9 (a) & (b) show the true phase maps. (c) & (d) show the noisy sinusoidal patterns
for phase offset Ψ = 0 for the frequencies 𝐟 ≈ (6, 9, 11)T , from left to right respectively.
(e) & (f) show the corresponding noisy phase maps with phase noise 𝜎𝜑 = 0.15 .

4.5.4.1 Edge Detection Example

Because the presented spatio-temporal method may not be used across
discontinuities, edges in the phase map must be detected first. The appli-
cation of edge-detection to the phase maps is shown in figure 4.10. Fig-
ure 4.10(a) and figure 4.10(c) each show the application of the presented
2𝜋-invariant edge detector to the wrapped phase maps. Figure 4.10(b) and
figure 4.10(d) show the output of an edge detector that uses a standard
Laplacian and a standard absolute distance to obtain the edge instead of
the proposed 2𝜋-invariant operations. It can be seen that the standard
detector not only detects the edges in the phase map but also the phase
jumps caused by the wrapping of the phase values. The presented detec-
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(a) (b) (c) (d)

Figure 4.10 Edge detection in phase maps: (a) & (c) show the proposed edge detection
for phase maps 1 and 2, respectively. (b) & (d) show the result of a standard edge detection.

tor, on the other hand, detects only the real edges in the phase map. Since
phase map 1 is continuous, no edge is detected. Only a few individual
pixels are detected as edges since the edge detector is of course also influ-
enced by the noise. The spiral shape of phase map 2 can be detected very
well and in addition, only a few individual pixels are incorrectly detected
as an edge. An optimization of the thresholding parameter in the edge
detection could resolve those wrongly detected pixels. However, even a
wrongly detected edge may not cause a faulty phase unwrapping, since
edge pixels are then “just” unwrapped using the probabilistic temporal
method that instead of the spatio-temporal method still performs very
well.

4.5.4.2 Phase Reconstruction

The results of the unwrapping of phase map 1 are shown in figure 4.11
for the heterodyne unwrapping, the PDM unwrapping, the proposed
temporal unwrapping, and the proposed spatio-temporal unwrapping,
respectively. The top row shows the reconstruction as a 3D plot, with
the linearly increasing phase ramp subtracted for better visibility. The
middle row shows the reconstructed phase and the bottom row shows
the respective error.

It can be seen that the heterodyne method works only suboptimally.
The total error is quite high and only 78.19 % of the pixels are correctly
unwrapped. The reconstructed phase map looks very noisy. The PDM
method, on the other hand, yields 99.89 % correct pixels and thus pro-
vides a far smoother phase reconstruction. Single unwrapping errors oc-
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Figure 4.11 Reconstruction of phase map 1 influenced by Gaussian noise with 𝜎𝜑 =
0.15 rad . The top row shows the phase reconstruction as 3D plot, where the linear phase
ramp is removed. The middle row shows the reconstructed phase. The bottom row shows
the phase error. (a) Heterodyne: 𝜖𝑥 = 0.399 , 𝑠𝑥 = 78.19 % . (b) PDM: 𝜖𝑥 = 0.011 , 𝑠𝑥 =
99.89 % . (c) Probabilistic temporal: 𝜖𝑥 = 0.008 , 𝑠𝑥 = 99.99 % . (d) Probabilistic spatio-
temporal: 𝜖𝑥 = 0.003 , 𝑠𝑥 = 100 % .

cur for phase values close to 0 and 2𝜋 , e.g., near the large hill and the deep
valley. In addition, some unwrapping errors occur in the center of the
phase map near lines where the wrapped phases show 2𝜋-discontinuities.
Initially, these errors cannot be explained directly. However, as indi-
cated by Petković et al. [149], their PDM method performs worse for non-
integer frequencies, which therefore could be the cause. The proposed
probabilistic temporal method can correctly unwrap 99.99 % of the pixels.
Similar to the PDM method, isolated errors occur for values near the
boundaries of the coding interval. The errors along the 2𝜋-discontinuities
of the wrapped phases do not occur here and show that the proposed
method also works properly for rational frequencies. The proposed prob-
abilistic spatio-temporal method can correctly unwrap all pixels. At the
same time, the general accuracy is higher, as can be seen in the error map
by the overall darker green color. Thus, the local information used in the
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Figure 4.12 Reconstruction of phase map 2 influenced by Gaussian noise with 𝜎𝜑 =
0.15 rad . The top row shows the phase reconstruction as 3D plot. The middle row shows
the reconstructed phase. The bottom row shows the phase error. (a) Heterodyne: 𝜖𝑥 =
0.418 , 𝑠𝑥 = 78.35 % . (b) PDM: 𝜖𝑥 = 0.031 , 𝑠𝑥 = 99.24 % . (c) Probabilistic temporal:
𝜖𝑥 = 0.014 , 𝑠𝑥 = 99.90 % . (d) Probabilistic spatio-temporal: 𝜖𝑥 = 0.005 , 𝑠𝑥 = 99.97 % .

maximum-likelihood estimation not only improves the success rate of
the unwrapping but also acts as a denoising filter and therefore leads to
lower uncertainty in the estimated coordinate.

Figure 4.12 shows the results of the unwrapping of phase map 2, again,
for the heterodyne unwrapping, the PDM unwrapping, the presented
temporal and spatio-temporal unwrapping, respectively. Here again, the
heterodyne method performs significantly worse than the other methods.
Only 78.35 % of the pixels can be unwrapped correctly and the estima-
tion error is very high. As before, the PDM method shows errors at the
boundaries of the coding interval, which appear at the right edge of
the spiral and the right side of the phase map. In addition, unwrap-
ping errors occur near the 2𝜋-discontinuities of the wrapped phases,
which could be caused by the non-integer frequencies. The probabilistic
temporal method again shows smaller errors at the boundaries of the
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coding interval and faulty lines as in the PDM method do not appear. The
spatio-temporal method again shows an overall smaller error and can
correctly unwrap almost all pixels. The error map shows that the pixels
along the edge of the spiral have a larger error. This can be explained
by the fact that for these pixels the continuity assumption of the surface
is violated and these pixels were detected as an edge, see figure 4.10(c).
Wherever an edge is detected, the temporal method is used, everywhere
else the spatio-temporal method helps to improve the estimation. Further,
the spatio-temporal method is more robust against unwrapping errors,
which can also be seen in the error map at the right edge of the spiral.
Here, only unwrapping errors occur exactly on the edge. The pixels away
from the edge can be correctly unwrapped.

4.6 Summary
This chapter aimed to find a way to measure the deflectometric imaging
function, which is needed for deflectometry as well as for the camera cali-
bration presented in this thesis. An optical encoding utilizing phase-shift
coding was discussed, which allows finding a direct mapping of camera
pixels to points in the plane of the monitor screen. For the decoding
of the monitor coordinates different phase unwrapping methods were
presented. In addition, approaches were discussed on how the classical
phase unwrapping methods can be improved. The main contribution
of this chapter is a new probabilistic approach for phase unwrapping
that uses circular statistics to describe the phase-shift coding. The pre-
sented method unwraps all phase measurements simultaneously by
finding the coordinate that had the maximum probability to cause the
phase measurements. Using circular statistics, both the periodicity of
the phase is taken into account and the estimation of the phase uncer-
tainty can be included in the unwrapping process, thus automatically
compensating for individual erroneous phase measurements. This is
achieved by expressing the individual phase measurements as appropri-
ate stochastic variables, where different distributions were investigated
to describe them. Using this, the probability density of the encoded
coordinate could be determined, which allowed finding the optimal de-
coding by a maximum-likelihood approach. Thus, it became possible
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to implicitly and simultaneously compensate for the wrapping of all
phase measurements. Furthermore, it was demonstrated how to extend
the presented probabilistic method to a spatio-temporal approach by
integrating a local surface continuity assumption into the framework
and modeling the local pixel neighborhood. This results in an implicit
smoothing of the probability densities over the spatial dimensions. To
ensure the assumptions are not violated, a modified edge detector is
used to detect discontinuities in the surface and exclude them from the
spatial modeling.

Simulations compared the presented methods with state-of-the-art
temporal phase unwrapping algorithms and investigated the effect of
different noise types. The results showed that the proposed probabilistic
methods are noticeably more robust against noise. This provides the
ability to increase the acquisition speed of the optical encoding by using
phase-shift coding with fewer shifts, where the noise level is generally
higher. It was also shown that the proposed methods allow a relatively
free choice in the range of frequencies of the sinusoidal pattern sequence
so that even rational frequencies yield good results. At the same time,
it was demonstrated that by modeling the periodicity using circular
probability densities, the unwrapping errors at the boundary of the cod-
ing interval can be significantly reduced. In addition, the inclusion of
the phase uncertainty allows to automatically compensate for too noisy
phase measurements, making the presented methods very robust against
impulse noise. Although the von Mises distribution does not ideally de-
scribe the phase noise, it handles impulse distortions better than the
model of Rathjen [167] and thus proves to be a suitable compromise to
compensate well for both Gaussian noise and impulse noise at the same
time. Because the image noise is in general unknown, model errors may
be introduced. Nevertheless, the von Mises distribution again proved
to be robust towards such errors. Finally, the extension of the temporal
approach to a spatio-temporal approach can considerably increase the
robustness of the method even further, eventually leading to improved
accuracy of the camera-to-monitor registration. This provides ideal start-
ing conditions for subsequent camera calibration procedures and the
deflectometric reconstruction of specular surfaces.
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In order to carry out a deflectometric measurement for specular surface
reconstruction, it is not sufficient to measure only the simple imaging
function as a registration between camera and monitor. With the registra-
tion, we may know a mapping of camera pixels to monitor coordinates,
but the geometry of the scene cannot be reconstructed without knowing
the exact geometry of the measurement setup as well. The setup must
therefore be calibrated. To perform a triangulation measurement of the
surface, an intrinsic and extrinsic calibration of both the camera and the
reference monitor is necessary. The intrinsic calibration of the camera
allows a calculation of the vision rays of the camera. Since light field
cameras have a more complex optical structure than standard cameras
and since deflectometry requires a highly accurate calibration, it is diffi-
cult to describe the light field camera sufficiently accurate using only a
low-dimensional camera model. Therefore, the calibration of the light
field camera in this thesis is done by adopting a generic camera model, in
which the vision rays belonging to each pixel are estimated individually,
thereby achieving a high precision calibration. As the main contribu-
tion of this chapter, an approach is presented that performs the generic
calibration via an alternating optimization of the ray parameters and
the unknown poses of a reference monitor. In addition, the positional
uncertainty of the reference coordinates, which is obtained using the
phase-shift coding, is taken into account in the optimization. In this con-
text, the explicit intrinsic calibration of the monitor allows calculating the
3D coordinate of an observed monitor feature using the registration data.
This improves the overall calibration result, due to possible deformations
of the display being taken into account and the refraction on the front
glass being compensated for. However, the coordinates are then still
specified in the local coordinate system of the monitor. Only an extrinsic
calibration of the whole measurement setup finally allows obtaining
transformation parameters that connect the monitor coordinates and the
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camera coordinates. In other words, the entire system calibration aims at
providing a vision ray for each camera pixel and, additionally, it allows
determining the 3D coordinates of a feature on the monitor in the camera
coordinate system. Ultimately, this will then be used in Ch. 7 to calculate
the surface normals of a specular object under examination.

In the following section, the basics of camera calibration will be ex-
plained using the classic pinhole camera model as an example. Subse-
quently, Sec. 5.2.1 introduces the generic camera model. Sec. 5.2 shows,
how the model can be fitted to measurement data to estimate its parame-
ters. In Sec. 5.3, the reference monitor is described, and it is shown how
the monitor model and the estimation of its parameters can be integrated
into the generic camera calibration. Finally, in Sec. 5.4, as the last part
of the system calibration, the extrinsic calibration of the deflectometry
measurement system is described. It returns the relative pose between
camera and monitor. Sec. 5.5 concludes with an evaluation and analysis
of the presented methods.

5.1 Principles of Camera Calibration
Probably the simplest and most widely used camera model is the pinhole
camera model, see figure 5.1. It describes the projection of points in 3D
space onto an image plane. The center of the projection is the origin of
the camera coordinate system, and it is often referred to as the optical
center. The image plane is located at a distance 𝑓 from this center, and the
line from the camera center perpendicular to the image plane is called
the principal axis or optical axis. The point where this axis meets the
image plane is called the principal point. In the pinhole camera model,
a point in space with coordinates 𝐱 = (𝑥, 𝑦, 𝑧)T is mapped to a point
(𝑓𝑥/𝑧, 𝑓𝑦/𝑧, 𝑓)T in the image plane [72]. Here, it is still assumed that the
origin of the image coordinates in the image plane lies in the principal
point, which is rarely the case for real cameras. Hence, a more general
mapping from points in 3D space to points in image space is

(𝑥, 𝑦, 𝑧)T → (
𝑓𝑥
𝑧

+ 𝑐𝑠,
𝑓𝑦
𝑧

+ 𝑐𝑡)T , (5.1)
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Figure 5.1 Pinhole camera model: A 3D point is perspectively projected onto an image
plane that is placed at distance 𝑓 to the origin.

where (𝑐𝑠, 𝑐𝑡)T are the local 2D coordinates of the principal point in
the image plane. If the world points are represented in homogeneous
coordinates, the central projection can be expressed simply as matrix
multiplication. And more generally, if a 3D point is first transformed into
the camera coordinate system, the complete projection equation for the
pinhole camera model is obtained [72]:

𝜆 (𝑠
𝑡) = 𝐊 (𝐑|𝐭) (𝐱

1) = ⎛⎜⎜
⎝

𝑓𝑡 0 𝑐𝑠
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0 0 1
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⎛⎜⎜
⎝
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⎛⎜⎜⎜⎜
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𝑦
𝑧
1

⎞⎟⎟⎟⎟
⎠

,

(5.2)
where 𝑠, 𝑡 are the local coordinates in the image plane, and 𝜆 = 𝑧 is a
scaling factor. The matrix 𝐊 represents the intrinsic parameters and is
called the calibration matrix of the camera (or camera matrix for short).
𝑓𝑠 and 𝑓𝑡 represent the focal length of the camera on the 𝑠-axis and the
𝑡-axis, respectively. The coordinate transformation of the 3D point is
described by the rotation matrix 𝐑 and the translation vector 𝐭 , which
are the extrinsic parameters.
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The pinhole model does not account for lens distortion. To accurately
represent a real camera, radial and tangential lens distortion are often
introduced. Radial distortion is when the magnitude of the aberration de-
pends solely on the distance of the object point from the optical axis [16],
and tangential distortions are caused by a lens that is not parallel to the
image plane [79]. A convenient camera model can be derived by com-
bining the pinhole model with a distortion correction [246]. E.g., for the
radial distortion, the observed image coordinates ( ̃𝑠, ̃𝑡) can be calculated
from the ideal coordinates (𝑠, 𝑡) with

̃𝑠 = 𝑠 + (𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6 + ⋯) (𝑠 − 𝑐𝑠) , (5.3)
̃𝑡 = 𝑡 + (𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6 + ⋯) (𝑡 − 𝑐𝑡) , (5.4)

where 𝑟2 = (𝑠−𝑐𝑠)2 +(𝑡−𝑐𝑡)2 and 𝑘1, 𝑘2, … are the distortion coefficients.
Estimating all the intrinsic camera parameters 𝐊, 𝑘1, 𝑘2, … is then done
by observing features (usually checkerboard features) on a reference tar-
get from different positions, and by minimizing the projection error [246].
This is the distance in pixels between the observed 2D positions of the
3D features on the image sensor and their projections to the sensor plane,
which are calculated with the parametric camera model.

5.2 Generic Camera Calibration
Accurate optical measurement methods are becoming increasingly impor-
tant for high-precision manufacturing. The rising demand can be satisfied
by modern imaging systems with advanced optics. The exact geometric
calibration of these systems is of essential importance for computer vi-
sion and optical metrology. Most systems use perspective projection with
a single projection center and are referred to as central cameras. They
can often be described by low-dimensional, parametric models with few
intrinsic parameters, e.g., the pinhole model from the previous section.
In some applications in the field of optical metrology, more complex
imaging systems are needed. These can often no longer be described
by a central camera model and are in many cases non-parametric and
non-central, e.g., multi-camera systems, catadioptric cameras, or light
field cameras [72, 137, 156, 195]. Here, more sophisticated models are
needed, which always have to be precisely adapted to the specific camera.
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Figure 5.2 An imaging system guides light rays to photosensitive elements. The generic
camera model characterizes the light rays outside the camera independently of the internal
optics. Only a relation between the rays 𝐥𝑖 and the corresponding pixel index 𝑖 is established.

5.2.1 The Generic Camera Model
The disadvantage of low-dimensional models is that they have poor
descriptive power, and in modern cameras not every pixel of the many
millions can be perfectly described by these models. The more complex
an imaging system is, the more difficult it becomes to model it. The more
elaborate the optical elements are, the more challenging it becomes to
find a mathematically correct mapping between the light of the captured
scene and the physical sensor plane of the camera. Consequently, in recent
years, the lack of flexibility and precision has led to the development of
new camera models, where cameras can be described as generic imaging
systems, which are independent of the specific camera type and allow
high-precision calibration.

The generic camera model was originally introduced in the works of
Grossberg and Nayar [66, 67]. An arbitrary imaging system is modeled as
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a non-parametric discrete black box containing photosensitive elements.
Each pixel collects light from a bundle of rays that enter the imaging
system, referred to as raxel, which consists of geometric ray coordinates
and radiometric parameters. The set of all raxels builds the complete
generic imaging model, see figure 5.2.

5.2.2 Related Works
The first work on the generic camera model was conducted by Grossberg
and Nayar [66, 67]. The authors perform the calibration by measuring
the intersection of camera rays with known reference targets: a monitor
that is moved by a linear translation stage with known steps. To obtain
the radiometric parameters, they control the intensity of light along the
rays and measure the response in the image. Sturm and Ramalingam
[191] and Ramalingam et al. [165] exclude the radiometric properties
and propose a calibration of the generic model where the poses of the
reference may be unknown. A closed-form solution can be obtained,
if the same pixel sees three points of the reference object. The down-
side of their method is that the ray distribution of the camera has to
be known in advance. For example, different models apply when the
imaging system is non-central or a perspective camera, and complicated
parametrization steps are necessary. Bothe et al. [23] and Miraldo et al.
[131] achieve pixel-wise calibration by circumventing the estimation of
the target pose by simply tracking it using an external stereo camera
system or an IR tracker, respectively. Bergamasco et al. [15], on the other
hand, assume unknown poses and calibrate the camera by iteratively
calculating the projection of the rays onto a coded calibration monitor,
and by minimizing the resulting coding error on a pixel level. In addition,
they estimate the reference pose using an adapted iterative closest point
method. Miraldo and Araujo [130] reduce the number of parameters by
fitting a spline surface onto the set of rays. Thus, they evaluate the cam-
era on a subset of control points. Rosebrock [171] additionally includes
the measurement uncertainty of the reference target into the calibration
procedure by iteratively updating this spline surface. However, these
spline-based methods only work when the imaging system is smooth, i.e.,
multi-camera systems, light field cameras, or other more complex optical
systems are excluded and cannot be modeled using this approach.
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Apart from calibration, the generic camera model is used in the field of
pose estimation, structure from motion, and surface reconstruction. Guo
et al. [68] calibrate a generic camera system using a linear translation stage
and then aim to estimate the pose of a target object by orthographically
projecting it onto the calibration planes to approximate the true object
pose in an iterative manner. Kneip and Furgale [104] propose UPnP that
generalizes the absolute pose problem to general cameras by finding a
closed-form least-squares solution for the absolute pose. Lee et al. [108]
mount a multi-fish-eye camera system on a robotic car platform and use
the generic camera model to track the position while driving. Albarelli
et al. [5] use the generic imaging model in a structured light 3D scanning
system, where they use a generic model for both the camera and the
projector.

5.2.3 Alternating Minimization-Based Calibration
The goal of the following sections is to find a flexible calibration proce-
dure that can accurately describe the geometric properties of an arbitrary
imaging system using the generic camera model. In the end, however,
one does not obtain an “image”, but rather a set of rays with correspond-
ing intensities. Still, this does not interfere with many applications in
optical metrology, e.g., laser triangulation, profilometry, or deflectometry,
where mostly the geometric ray properties are relevant [11, 145, 209].
The presented method assumes unknown poses of the calibration target
and iteratively solves the subproblems of camera calibration and pose
estimation without the use of an additional translation or rotation stage.
By processing every pixel individually and updating each pose one at a
time, the computational costs can efficiently be reduced, whereby every
camera ray and each observed reference point contribute to the result.

The portion of the light that is sampled by a single pixel has a cone-
shaped expansion due to the effects of the depth-of-field. For simplicity,
this work models a raxel as a ray running through the center of this cone
along the direction of light propagation. There are various possibilities
for a mathematical description of rays, yet in this work, the concept of
Plücker-coordinates as described in Sec. 2.3 is used. In 6D-Plücker-space a
Plücker-line 𝐥 = (𝐝T, 𝐦T)T ∈ ℙ6 is defined by its direction vector 𝐝 ∈ ℝ3

and its moment vector 𝐦 ∈ ℝ3 with the constraints ‖𝐝‖ = 1 , 𝐝T𝐦 = 0 .
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Calibrating the geometric properties of a camera using a generic camera
model means that for each individual pixel its ray 𝐥 , with the direction
vector 𝐝 and the moment vector 𝐦 , must be estimated. This can be done
in the usual way: estimating all unknown parameters by minimizing an
error function. In the traditional camera calibration approach, one has to
minimize the projection error, as a distance between the projection of an
observed target feature onto the sensor plane and the observing pixel of
the same feature. However, due to the independence of the rays from the
actual physical camera system, when considering a generic model, such
an error measure cannot be used, because there does not exist a model for
the sensor plane. As an alternative, the ray re-projection error should be
minimized instead, which represents the distance between the ray and the
observed feature in 3D space. In conclusion, ray parameters are sought
that minimize a suitable distance measure between the camera rays and
observed reference points, whereby the positions of the references in the
local coordinate system are assumed to be unknown. Figure 5.3 illustrates
the approach. The calibration can now be formulated in the sense of a
least-squares problem by minimizing

𝑓(R, T ,L) = ∑
𝑘,𝑖

𝑑 (𝐩𝑖𝑘, 𝐥𝑖)2 . (5.5)

Here, the index 𝑖 represents the individual rays and 𝑘 depicts the index
of the reference target pose. The metric 𝑑(⋅, ⋅) is a suitable ray-to-point
distance and 𝐩𝑖𝑘 = 𝐑𝑘𝐱𝑖𝑘 + 𝐭𝑘 are the observed features in 3D space,
where 𝐱𝑖𝑘 is a local point on a reference target. The matrix 𝐑𝑘 ∈ SO(3)
and the vector 𝐭𝑘 ∈ ℝ3 are the corresponding transformations to the cam-
era coordinate system. And for a compact notation, the set of rotations,
translations and rays are defined to be

R ≔ {𝐑1, 𝐑2, 𝐑3, … } , (5.6)
T ≔ {𝐭1, 𝐭2, 𝐭3, … } , (5.7)
L ≔ {𝐥1, 𝐥2, 𝐥3, … } . (5.8)

To present the camera calibration as a per-pixel problem and to treat
each pixel independently of its neighbors, sufficient observations of ref-
erence features have to be available for every pixel. However, the widely
used checkerboard patterns can provide only sparse features which are
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𝐥𝑖

𝐑1, 𝐭1 𝐑2, 𝐭2 𝐑3, 𝐭3

Figure 5.3 Generic calibration: The imaging system is treated as a black box that is
independent of the internal optics described by a set of vision rays 𝐥𝑖 . Each individual ray
observes the intersected reference target point. The ideal calibration results in a minimal
distance between rays and observed reference feature points.

not nearly enough for generic camera calibration. Instead, it is a good
idea to use active targets, e.g., flat monitor displays, and active encoding
strategies, to assign each camera ray a 2D point in the local reference tar-
get plane. Thus, each ray can observe one feature per pose. In this work,
the detection of features in the reference target plane and with it the reg-
istration of camera rays 𝐥𝑖 to monitor display points 𝐱𝑖𝑘 is found via a tem-
poral coding of the monitor pixels. Hence, the presented multi-frequency
phase-shift coding with the proposed probabilistic phase unwrapping
from Ch. 4 can be used to obtain highly accurate reference features and
their respective point uncertainties. Of course, to use the spatio-temporal
phase unwrapping, the mapping of reference features onto camera pixels
needs to be sufficiently smooth. That is, the reference target has to have
a smooth surface, and in addition, the mapping of camera pixels onto
the corresponding ray surface needs to be a continuous function. When
standard cameras are used, this smoothness assumption can be easily
met. Though, for more complex camera systems, problems may arise.
In particular, the MLA-based light field cameras that are investigated in
this work show a strong discontinuous behavior near the edges of the
microlenses, hence violating the smoothness assumption. Nonetheless,
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these areas can easily be detected with the edge detection presented in
Sec. 4.4.4, and can thus be excluded from the spatial modeling.

With the previous results, an objective function can be defined that
needs to be minimized to calibrate the camera and find all ray parameters
𝐝𝑖 , 𝐦𝑖 . Simultaneously, the estimation of the pose of the calibration
targets 𝐑𝑘 , 𝐭𝑘 with respect to the camera is performed. This is done
in a weighted-least-squares sense by minimizing the distance between
uncertain target points 𝐱𝑖𝑘 , whose uncertainty is 𝜎2

𝑖𝑘 ≔ 𝜎2
𝑥𝑖𝑘

+ 𝜎2
𝑦𝑖𝑘

and
their corresponding camera rays. To this end, the phase-shift coding
strategy is utilized to estimate the uncertainties of the reference target
points, which results in a weighting factor 𝑤𝑖𝑘 = 𝜎−2

𝑖𝑘 . In conclusion, the
objective function for the generic camera calibration is obtained:

𝑓(R, T ,L) = ∑
𝑖,𝑘

𝑤𝑖𝑘 ‖(𝐑𝑘𝐱𝑖𝑘 + 𝐭𝑘) × 𝐝𝑖 − 𝐦𝑖‖2 . (5.9)

Regardless of the used distance measure, it is very difficult to minimize
such a problem in a reasonable time and with the appropriate use of
computational resources. The ray model with six parameters and two
constraints has four degrees of freedom per pixel. Especially for today’s
standard cameras, this leads to a huge number of ray parameters that
have to be optimized, e.g., a 40-megapixel camera has 240 million param-
eters. In addition, the reference target pose is in general not known. This
means that at the same time six degrees of freedom per pose have to
be estimated. The coupling of poses and rays and the immense number
of parameters result in an extremely high-dimensional problem that
cannot be solved using a single optimization method. The calculation
of a gradient or a Hessian and the corresponding function evaluations
would be computationally too expensive.

Therefore, it is useful to divide the problem into subproblems and then
solve them iteratively in the sense of an AlternatingMinimization (AM) [70,
139]. Accordingly, problem (5.9) is split into a camera calibration and
a reference target pose estimation. The approach of an AM is to fix a
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𝐥𝑖

𝐱𝑖𝑘, 𝜎2
𝑖𝑘

𝐑1, 𝐭1 𝐑2, 𝐭2 𝐑3, 𝐭3

Figure 5.4 Generic ray estimation: Each individual ray observes several uncertain refer-
ence features. The optimal ray has a minimal distance to all observed points.

parameter set and solve the resulting problem. This way, one has two
particular problems to solve in each iteration:

𝐥(𝑛)
𝑖 = arg min

𝐥𝑖∈ℙ6
𝑓 (R(𝑛−1), T (𝑛−1), 𝐥𝑖) ∀𝑖 = 1, … , 𝐼 , (5.10)

𝐑(𝑛)
𝑘 , 𝐭(𝑛)

𝑘 = arg min
(𝐑𝑘,𝐭𝑘)∈SE(3)

𝑓 (𝐑𝑘, 𝐭𝑘,L(𝑛)) ∀𝑘 = 1, … , 𝐾 , (5.11)

where an appropriate initialization R(0), T (0) has to be chosen. The first
optimization problem is solved for each pixel 𝑖 individually by fixing all
the reference target poses and the second problem is solved for every
single pose 𝑘 by assuming fixed ray parameters. This allows for solving
the subproblems more easily. It will be shown that optimal solutions can
be found in each iteration, which further leads to the overall alternating
minimization converging towards a solution.

5.2.4 Generic Ray Estimation
One step in the camera calibration procedure is to estimate the ray param-
eters by assuming known poses of the calibration targets. This greatly
reduces the complexity. Instead of calculating every parameter at once,
one can calibrate the ray 𝐥𝑖 = (𝐝T

𝑖 , 𝐦T
𝑖 )T ∈ L of each pixel individually
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(or in parallel). Hence, for every single ray, a separate optimization prob-
lem is obtained, as illustrated in figure 5.4. To simplify the optimization,
the objective function is written in the more compact form

𝑓(𝐝𝑖, 𝐦𝑖) = ∑
𝑘

𝑤𝑖𝑘 ‖𝐩𝑖𝑘 × 𝐝𝑖 − 𝐦𝑖‖2

= ∑
𝑘

𝑤𝑖𝑘 ([𝐩𝑖𝑘]× 𝐝𝑖 − 𝐦𝑖)T ([𝐩𝑖𝑘]× 𝐝𝑖 − 𝐦𝑖)

= ∑
𝑘

𝑤𝑖𝑘 (𝐝T
𝑖 [𝐩𝑖𝑘]T× [𝐩𝑖𝑘]× 𝐝𝑖 + 𝐦T

𝑖 2 [𝐩𝑖𝑘]T× 𝐝𝑖 + ‖𝐦𝑖‖2)

= 𝐝T
𝑖 𝐀dd,𝑖𝐝𝑖 + 𝐦T

𝑖 𝐀md,𝑖𝐝𝑖 + 𝑎mm,𝑖‖𝐦𝑖‖2 , (5.12)

where the vector 𝐩𝑖𝑘 = 𝐑𝑘𝐱𝑖𝑘 + 𝐭𝑘 represents the reference target points
in camera coordinates. In addition, for better readability, the index 𝑖 is
neglected in the remainder of this section.

Since 𝐀dd is derived from a sum of products of two mutually trans-
posed matrices, it is always positive semidefinite. In addition, it is in-
vertible as long as at least two different points 𝐩𝑖𝑘 are observed. Thus,
problem (5.12) is convex. Considering the characteristics of the Plücker-
rays (2.14), finding the optimal rays results in minimizing a quadratic
program with quadratic equality constraints: 𝐝T𝐦 = 0 , ‖𝐝‖ = 1 . Al-
though the minimization of such a problem, in general, requires a difficult
nonlinear minimization, the following presents a solution to find a global
minimum in this specific case, using a few simple steps.

At first, it should be obvious that the solution of the constraint problem
is scale ambiguous and that the norm of the ray direction ‖𝐝‖ does not
influence the actual ray properties [207]. Thus, after having found a solu-
tion, applying a normalization to the ray 𝐥n = 𝐥/ ‖𝐝‖ = (𝐝/ ‖𝐝‖ , 𝐦/ ‖𝐝‖)
makes it possible to obtain a geometrical meaningful point-to-ray dis-
tance (2.20). To deal with the equality constraints, making use of the
method of Lagrange multipliers helps. Hence, the constraints are added
to the objective function using the Lagrange multipliers 𝜆, 𝜇 :

𝑔 = 𝐝T𝐀dd𝐝 + 𝐦T𝐀md𝐝 + 𝑎mm‖𝐦‖2+𝜆𝐝T𝐦 + 𝜇 (𝐝T𝐝 − 1) . (5.13)
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Further, stationary points of this Lagrangian can be found by fulfilling
the first order conditions for a minimum:

𝜕𝐝𝑔 = 2𝐀dd𝐝 + 𝐀T
md𝐦 + 𝜆𝐦 + 2𝜇𝐝 != 𝟎 , (5.14)

𝜕𝐦𝑔 = 2𝑎mm𝐦 + 𝐀md𝐝 + 𝜆𝐝 != 𝟎 , (5.15)

𝜕𝜆𝑔 = 𝐝T𝐦 != 0 , (5.16)

𝜕𝜇𝑔 = ‖𝐝‖2−1 != 0 . (5.17)

Using (5.15) and (5.16) results in the solution for the ray moment 𝐦 and
the multiplier 𝜆 :

𝐦 = − 1
2𝑎mm

(𝐀md + 𝜆𝐈) 𝐝 , (5.18)

𝐝T𝐦 = − 1
2𝑎mm

𝐝T (𝐀md + 𝜆𝐈) 𝐝 != 0 , (5.19)

⇒ 𝜆 = −
𝐝T𝐀md𝐝

𝐝T𝐝
(5.17)= −𝐝T𝐀md𝐝 = −𝐝T (∑

𝑘
2𝑤𝑖𝑘 [𝐩𝑖𝑘]T×) 𝐝

= −𝐝T ((∑
𝑘

2𝑤𝑖𝑘𝐩𝑖𝑘) × 𝐝) = −𝐝T (𝐩 × 𝐝) = 0 , (5.20)

where the last equation holds because 𝐝 is orthogonal to 𝐩×𝐝 , ∀𝐩 ∈ ℝ3 .
Inserting these results into (5.14) leads to a simple eigenvalue problem
for the solution of the ray direction 𝐝 and the Lagrange multiplier 𝜇 :

(𝐀dd − 1
4𝑎mm

𝐀T
md𝐀md) 𝐝 = −𝜇𝐝 . (5.21)

This equation still contains the trivial solution 𝐝 = 𝐦 = 𝟎 which
however has no geometric meaning for the calibration and is excluded
by (5.17). Apart from that, the solution space of (5.21) consists of three
eigenvalues 𝜇𝑗 with corresponding eigenvectors 𝐝𝑗 . After estimating a
possible 𝐝𝑗 and corresponding Lagrange multiplier 𝜇𝑗 , it is necessary
to scale the eigenvalue problem in order to normalize the ray such that
∥𝐝𝑗∥ = 1 . This preserves the geometric meaning of (2.20) and allows
obtaining an unambiguous scaling. Further, (5.18) provides the corre-
sponding ray momentum 𝐦𝑗 . And finally, from these at most three
possible stationary points, the one with the smallest objective function
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𝐥𝑖

𝐱𝑖𝑘, 𝜎2
𝑖𝑘

𝐑𝑘, 𝐭𝑘

Figure 5.5 Generic pose estimation: The set of all rays observe features on the calibration
reference. The optimal pose estimation results in a minimal distance between the rays and
corresponding feature points.

value (5.13) is selected to be the optimal solution. In conclusion, one finds
a closed-form solution for the least-squares problem of the weighted ray-
to-point distance minimization.

5.2.5 Generic Pose Estimation
As before, the estimation of the calibration target pose can drastically be
simplified by assuming known ray parameters. Therefore, it becomes
possible to optimize each pose individually, as illustrated in figure 5.5.
The objective function for each pose 𝑘 becomes:

𝑓(𝐑𝑘, 𝐭𝑘) = ∑
𝑖

𝑤𝑖𝑘 ‖(𝐑𝑘𝐱𝑖𝑘 + 𝐭𝑘) × 𝐝𝑖 − 𝐦𝑖‖2 . (5.22)

However, solving for a pose 𝐑𝑘, 𝐭𝑘 is non-trivial because the solution
space is restricted to the special Euclidean group SE(3) , which combines
rotations and translations in three dimensions, 𝐑𝑘 ∈ SO(3) and 𝐭𝑘 ∈ ℝ3 ,
respectively. Directly applying a nonlinear optimization procedure is not
advisable, because every function evaluation results in the summation
over all rays and is thus computationally very expensive. Therefore, as
before, a more compact form of this quadratic function is necessary to
reduce the computational effort.
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Again for the sake of brevity, the index 𝑘 is omitted for the remain-
der of this section. For further simplification, the vectorization operator
𝐫 = vec(𝐑) ∈ ℝ9 stacks the columns of the 3×3 matrix 𝐑 . By computing
the summation over all ray indices 𝑖 only once, reordering, and extracting
the pose parameters, the objective function can be formulated indepen-
dently of the actual number of rays, which simplifies and speeds up the
following optimization steps (see Appx. 9.1.1 for details):

𝑓(𝐑, 𝐭) = 𝐫T𝐀rr𝐫 + 𝐭T𝐀tt𝐭 + 𝐭T𝐀tr𝐫 + 𝐛T
r 𝐫 + 𝐛T

t 𝐭 + ℎ

subject to 𝐫 = vec(𝐑) , (𝐑, 𝐭) ∈ SE(3) .
(5.23)

While observing the constraint quadratic objective (5.23), one may notice
that the main constraint lies in the rotational part and the objective is
also convex in the translational part. Thus, the problem can further be
reduced by decoupling translation and rotation, which means that 𝐭 can
be expressed in terms of 𝐑 . The first order condition for a minimum
𝜕𝐭𝑓(𝐑, 𝐭) = 0 leads to the optimal translation vector

𝐭 = −1
2

𝐀−1
tt (𝐀tr𝐫 + 𝐛t) . (5.24)

Inserting (5.24) into (5.23) results in the decoupling of the rotation and
translation subproblem, which then again yields a new quadratic opti-
mization problem (see Appx. 9.1.1):

𝑓(𝐑) = 𝐫T𝐀𝐫 + 𝐛T𝐫 + 𝑐 , subject to 𝐫 = vec(𝐑) , 𝐑 ∈ SO(3) . (5.25)

After finding a solution for the rotation matrix, the optimal translation
vector is derived from (5.24), assuming invertibility of 𝐀tt . As shown
in Appx. 9.1.3, the matrix 𝐀tt is positive definite in most cases, except
for a few exotic camera ray distributions, e.g., parallel rays, telecentric
optics. Hence, the equation truly finds the minimum of the objective with
respect to the translation.

Although minimization of (5.25) seems simple at first, the optimiza-
tion has the constraint to find a solution in SO(3) . This is equivalent
to a non-convex problem with quadratic and cubic constraints on the
rotation parameters, cf. Sec. 2.2. For solving this, there exist various ap-
proaches in the literature. Bergamasco et al. [15] use an iterative closest
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point algorithm that iteratively calculates the transformation from the
observed points to the closest point on the corresponding rays, which
however only converges near the optimum. Kanatani [101] suggests a
fast method by first calculating a Euclidean solution by first assuming
𝐑 ∈ ℝ3×3 and then projecting the solution onto the SO(3)-manifold
using the singular value decomposition, which results in a not entirely
correct minimization.

However, since the main focus of this work is not real-time optimiza-
tion, but rather a highly precise pose estimation, there is the obligation to
find an accurate minimum to ensure convergence of the AM calibration.
Therefore, a gradient-based optimization approach on the Riemannian
manifold SO(3) with tangent space 𝔰𝔬(3) is applied, cf. Sec. 2.2. The
tangent space to the Lie group SO(3) is its Lie algebra 𝔰𝔬(3) , which
consists of all skew-symmetric 3 × 3 matrices. The mapping from any
element [𝝃]× ∈ 𝔰𝔬(3) to 𝐑 ∈ SO(3) is called the exponential map 𝐑 =
Exp([𝝃]×) = e[𝝃]× , and the reverse map is called the logarithmic map
[𝝃]× = Log(𝐑) . Both can be calculated in closed form using the well
known Rodrigues rotation formulas (2.12), (2.13). Therefore, in a local
neighborhood 𝑔𝐑(𝝃) = Exp([𝝃]×) 𝐑 one can find a parametrization of
the manifold in the tangent space. A function defined on the manifold
can thus be described locally by Euclidean coordinates 𝝃 ∈ ℝ3 :

𝑓 ∘ 𝑔 ∘ [⋅]× ∶ ℝ3 → 𝔰𝔬(3) → SO(3) → ℝ ,
𝑓𝝃 (𝐑) ≔ 𝑓 (𝑔𝐑(𝝃)) = 𝑓 (Exp([𝝃]×) 𝐑) .

(5.26)

If a function is to be optimized on the manifold, the corresponding
direction of descent must be sought in the local tangent space 𝑓𝝃(𝐑) .
To use conventional optimization methods, a valid representation for
both the gradient and the Hessian must be identified. According to Absil
et al. [1], these can be easily found by using directional derivatives of the
locally parameterized manifold in the direction of the tangent space:

𝐷𝝃 𝑓 (𝐑) = 𝜕𝜀𝑓𝜀𝝃 (𝐑)∣𝜀=0 = 𝝃Tgrad(𝑓) , (5.27)

𝐷𝝃 grad(𝑓) = 𝜕2
𝜀2𝑓𝜀𝝃 (𝐑)∣𝜀=0 = 𝝃THess(𝑓)𝝃 . (5.28)

98



5.2 Generic Camera Calibration

Looking back at the original problem (5.25), this approach leads to the
explicit formulas for the Riemannian gradient and Riemannian Hessian
(see Appx. 9.1.2 for a detailed derivation of the operators):

grad(𝑓) = 2𝐙T (𝐑 ⊗ 𝐈) (𝐀𝐫 + 𝐛) , (5.29)
Hess(𝑓) = 2𝐙T ((𝐑 ⊗ 𝐈) 𝐀 (𝐑 ⊗ 𝐈)T − 𝐈 ⊗ mat(𝐀𝐫 + 𝐛) 𝐑T) 𝐙 , (5.30)

with 𝐙 = [vec([𝐞1]×) , vec([𝐞2]×) , vec([𝐞3]×)] ∈ ℝ9×3 , the unit base vec-
tors 𝐞1 , 𝐞2 , 𝐞3 , and the identity matrix 𝐈 . The reshape operator mat(⋅)
is the inverse of the vectorization operator vec(⋅) , and ⊗ represents the
Kronecker product.

After the formulas for the gradient and the Hessian have been estab-
lished, a quadratic model of the local tangent space then enables to mini-
mize the objective (5.25) with the help of an appropriate Newton descend
algorithm. Apart from minor differences, the procedure is quite similar to
the classic Euclidean approach [24]. For the current iteration, grad𝑓(𝐑(𝑛))
and Hess𝑓(𝐑(𝑛)) are calculated. After the search direction 𝝃(𝑛) has been
found by solving the Newton equation, one has to calculate a projection
of the tangent space back to the manifold to obtain a valid descend:

Hess𝑓(𝐑(𝑛)) 𝝃(𝑛) = −grad𝑓(𝐑(𝑛)) , (5.31)

𝐑(𝑛+1) = Exp(𝛼 [𝝃(𝑛)]
×

) 𝐑(𝑛) . (5.32)

Finally, a subsequent 1D backtracking line search in SO(3) finds a suf-
ficient step size 𝛼 and accelerates the convergence [140]. Figure 5.6 visu-
alizes the procedure. In order to initialize the algorithm, an appropriate
start is required, where in the context of an AM-camera-calibration, the
pose estimate from the previous iteration may be used.

Looking back at the original camera pose optimization (5.23), we see
that the pose has to be found in the special Euclidean group SE(3) .
Optimization on this manifold is not straightforward, but the problem
can be simplified by making use of the local diffeomorphism between the
manifolds SE(3) and SO(3) × ℝ3 . If there is a (local) minimum in SE(3) ,
then the same minimum exists in SO(3) × ℝ3 [189]. Having this in mind,
the presented optimization performs two steps: first optimization in
SO(3) , using the manifold Newton descend; and afterward optimization
in ℝ3 , using (5.24). Performing the optimization in this manner might
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𝐑(𝑛+1)

𝔰𝔬(3)

𝜼(𝑛)
𝐑(𝑛)

SO(3)

Figure 5.6 Local parametrization of SO(3)-manifold through its tangent space 𝔰𝔬(3) .
The search direction is found in the tangent space and projected back onto the manifold to
find a minimum.

be less efficient in terms of iterations, but it yields the same optimization
result while avoiding the more complex calculation in the 𝔰𝔢(3) tangent
space, which has a greatly different exponential and logarithmic map.

5.2.6 Convergence, Acceleration and Initialization
Depending on the current pose estimation, the camera ray calibration
provides the globally optimal solution in every step. Furthermore, the
pose estimation converges towards a minimum and provides no inferior
result than the previous iteration. Following the research in the field of
AM [65, 70], it is easy to show the convergence of the optimization proce-
dure to a stationary point with an O(1/𝑛) convergence rate. To obtain a
faster convergence, acceleration techniques may be applied. Therefore,
Nesterov’s acceleration scheme is modified to obtain an almost O(1/𝑛2)
convergence rate [62, 134]. The basic principle of this acceleration is that
the difference between the new estimate and the old estimate is weighted
and added to the new estimate in each iteration, where the weighting
factor is a monotonically increasing sequence. However, these algorithms
cannot be applied to the manifold optimization problems presented here
without any adaptation. Hence, during the acceleration step, a weighted
rate of the change of the pose parameters is added to the next estimate.

100



5.2 Generic Camera Calibration

Algorithm 2 Accelerated Alternating Minimization
Input: For every pixel 𝑖 and target pose 𝑘 : measure monitor coordinates

𝐱𝑖𝑘 and weight 𝑤𝑖𝑘
Output: Calibrated ray 𝐥𝑖 for each pixel and pose 𝐑𝑘 , 𝐭𝑘 of all references
Initialize: Set poses of reference targets R(0) ,

T (0) , set acceleration parameter 𝛼0 = 1
1: for 𝑛 = 1, 2, 3, … do
2: for 𝑖 = 1, 2, 3, … do
3: Hold pose parameters and optimize rays
4: 𝐥(𝑛+1)

𝑖 = arg min
𝐥𝑖∈ℙ6

𝑓 (R(𝑛), T (𝑛), 𝐥𝑖)

5: end for
6: for 𝑘 = 1, 2, 3, … do
7: Hold ray parameters and optimize poses
8: 𝐑∗

𝑘, 𝐭∗
𝑘 = arg min

(𝐑𝑘,𝐭𝑘)∈SE(3)
𝑓 (𝐑𝑘, 𝐭𝑘,L(𝑛+1))

9: Update acceleration rate

10: 𝛼𝑛 =
1+√4𝛼2

𝑛−1+1

2
11: Accelerate translation and rotation update
12: 𝐭(𝑛+1)

𝑘 = 𝐭∗
𝑘 + 𝛼𝑛−1−1

𝛼𝑛
(𝐭∗

𝑘 − 𝐭(𝑛)
𝑘 )

13: 𝐑(𝑛+1)
𝑘 = Exp( 𝛼𝑛−1−1

𝛼𝑛
Log(𝐑T(𝑛)

𝑘 𝐑∗
𝑘)) 𝐑∗

𝑘
14: end for
15: end for

When accelerating the rotation, of course, this has to be done on the
SO(3)-manifold: The current rotation is reversed by the previous rota-
tion, projected onto the 𝔰𝔬(3) tangent space using the Log-map, weighted
by an acceleration parameter, and finally transformed back into a rota-
tion matrix using the Exp-map and multiplied onto the current estimate.
Algorithm 2 summarizes the complete accelerated AM calibration.

Although this is a strictly convergent algorithm, obviously no unique
solution exists. Depending on the initialization, the optimization runs
into an arbitrary coordinate system. Therefore, it is advisable to initial-
ize the algorithm with a rough estimate of the reference target poses,
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which could for example be obtained using standard model-based ap-
proaches presented in the literature [26, 246] or the generic approach
by Ramalingam et al. [165]. However, here it is of utmost importance
that the camera model is properly chosen. Alternatively, of course, one
can also randomly select starting poses with the downside of a longer
optimization time and the increased risk to converge to a non-optimal
local minimum. Nonetheless, the arbitrary coordinate system poses no
problem, since it does not change the geometric properties of the rays,
and accordingly, the calibrated camera can be used without loss of ac-
curacy. Even more, the final calibration can be easily transformed into a
standardized coordinate system.

5.2.7 Normalizing the Ray Bundle
Due to the black box character of the generic calibration, it is initially
not possible to define a consistent camera coordinate system for every
calibrated camera. Even when using the same calibration algorithm for
the same camera, the outcome can vary. Hence, the result of a generic
calibration is in general not unique. That is, the calibrated camera rays are
represented in an arbitrary coordinate system, which usually depends
on the starting configuration of the generic calibration procedure or the
used calibration reference target. Therefore, to transform this arbitrary
coordinate system into one that is fixed to the individual camera, a few
steps are necessary.

First, the origin of the camera coordinate system is defined to be the
optical center of the camera. For central cameras or nearly-central cameras,
e.g., light field cameras, this corresponds approximately to the center of
the exit pupil. Its location can be understood as the point 𝐩o that has the
smallest distance to all rays, i.e., it can be calculated by minimizing the
weighted mean of the Euclidean distances to all rays:

𝐩o = arg min
𝐩

∑
𝑖

𝑤𝑖 ‖𝐩 × 𝐝𝑖 − 𝐦𝑖‖2 . (5.33)

The weighting factor 𝑤𝑖 can be chosen to suppress poorly calibrated rays
and to remove outliers. For instance, a simple choice is to use the inverse
of the mean ray re-projection error

𝜀𝑖 ≔ ∑
𝑘

𝑤𝑖𝑘 ‖𝐩𝑖𝑘 × 𝐝𝑖 − 𝐦𝑖‖2 (5.34)
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that can be calculated during the generic calibration procedure for each
ray. This results in

𝐩o = (∑
𝑖

𝑤𝑖 [𝐝𝑖]× [𝐝𝑖]T×)
−1

∑
𝑖

𝑤𝑖 [𝐝𝑖]× 𝐦𝑖 . (5.35)

As a next step, the 𝑧-axis of the camera-fixed coordinate system defines
the view axis as the average ray direction which can be found by solving
the constrained optimization problem

𝐝z = arg max
𝐝

∑
𝑖

𝑤𝑖 ⟨𝐝, 𝐝𝑖⟩2 , subject to ‖𝐝‖ = 1 . (5.36)

Using the Lagrange multiplier formalism and solving for 𝐝 produces an
eigenvalue problem:

𝐝z = arg max
𝐝

∑
𝑖

𝑤𝑖 ⟨𝐝, 𝐝𝑖⟩2 − 𝜇 (𝐝T𝐝) , (5.37)

⇒ (∑
𝑖

𝑤𝑖𝐝𝑖𝐝T
𝑖 ) 𝐝z = 𝜇𝐝z , (5.38)

where the eigenvector 𝐝z with largest absolute eigenvalue 𝜇 results in the
average ray direction. A corresponding rotation matrix, which rotates
the bundle of rays from the old 𝑧-axis 𝐞z into the new 𝑧-direction, can
then directly be calculated using the Rodrigues formula (2.12):

𝐑z = Exp(arccos (𝐝T
z 𝐞z) (𝐝z × 𝐞z)) . (5.39)

The last remaining degree of freedom is the rotation around this new
𝑧-axis. Since the cameras that are studied in this work (standard cameras
and light field cameras) project the light onto a rectangular sensor, it is
useful to align the coordinate system’s 𝑥- and 𝑦-axis with the correspond-
ing sensor’s 𝑠- and 𝑡-axis, respectively. Furthermore, due to the almost
perspective projection, the change of ray direction with respect to the 𝑥-
and 𝑦-axis should correspond to the change with respect to the 𝑠- and
𝑡-axis. Thus, using 𝐝𝑖 = (𝑑𝑥,𝑖, 𝑑𝑦,𝑖, 𝑑𝑧,𝑖)T, the rotation angle that aligns
both coordinate systems can be found by calculating the mean image
gradients with respect to 𝐮 = (𝑠, 𝑡)T :

(𝑑𝑥𝑠
𝑑𝑥𝑡

) =
∑𝑖 𝑤𝑖∇𝐮𝑑𝑥,𝑖

∑𝑖 𝑤𝑖
, (𝑑𝑦𝑠

𝑑𝑦𝑡
) =

∑𝑖 𝑤𝑖∇𝐮𝑑𝑦,𝑖

∑𝑖 𝑤𝑖
. (5.40)
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By estimating the orientation angle of the gradients with respect to the
sensor axes, a rotation matrix can be found that rotates the coordinate
system around the 𝑧-axis by an angle 𝛼 :

𝛼𝑥 = arctan2 (𝑑𝑥𝑠, 𝑑𝑥𝑡) , 𝛼𝑦 = arctan2 (𝑑𝑦𝑠, 𝑑𝑦𝑡) + 𝜋
2

, (5.41)

𝛼 = arctan2(sin 𝛼𝑥 + sin 𝛼𝑦, cos 𝛼𝑥 + cos 𝛼𝑦) , (5.42)

𝐑𝛼 = ⎛⎜⎜
⎝

cos(𝛼) − sin(𝛼) 0
sin(𝛼) cos(𝛼) 0

0 0 1

⎞⎟⎟
⎠

(5.43)

While this gradient-based approach works well for camera systems whose
ray surface is a smooth function, problems arise with discontinuities. For
light field cameras, the ray direction switches to the opposite direction
at the edges of the microlenses. As a result, the gradient shows a strong
tendency to the opposite direction, which would lead to a corrupted
orientation estimation. However, these too strong gradients can easily
be suppressed by means of a threshold value in (5.40), with 𝑤𝑖 = 0 for
∥∇𝐮𝑑𝑥,𝑖∥ > 𝜏thr . And in addition, the weight factor 𝑤𝑖 is very small near
the microlens edges, due to the higher calibration error 𝜀𝑖 that is caused
by the overall worse quality of the optics. And hence, these values are
strongly suppressed nonetheless.

After all normalization parameters are found, as the final act, shifting
the origin and appropriately rotating the axes transforms the Plücker-ray
parameters into the camera-fixed coordinate system. And thus, each ray
𝐥𝑖 = (𝐝T

𝑖 , 𝐦T
𝑖 )T is transformed into the new normalized representation:

𝐥𝑖,norm = 𝐓 𝐥𝑖 , (5.44)

with the ray transformation matrix 𝐓 that consists of a ray rotation ma-
trix (2.17) and a ray translation matrix (2.18):

𝐓 = 𝐑𝐥𝐓𝐥 = ( 𝐑𝛼𝐑z 𝟎
𝐑𝛼𝐑z [−𝐩o]× 𝐑𝛼𝐑z

) . (5.45)

5.3 Calibration of the Reference Target
Besides the camera, also the reference target plays an important role in
camera calibration and deflectometry. The commonly used checkerboard
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calibration patterns are often printed on paper and then glued to a solid
base of wood or cardboard. However, due to this rudimentary construc-
tion, the reference target can no longer be assumed to be absolutely flat.
This means that the solid base material might be bent and, in addition,
small bumps on the paper can locally affect the planarity. The use of
monitor screens as reference targets drastically reduces this problem,
because the pixel plane has a very high local planarity due to the precise
manufacturing process.

As already mentioned, the calibration method presented in this work
requires dense features on a reference target, which is why it is recom-
mended to use a monitor as a reference. Nevertheless, monitor screens
are not ideal reference targets either. Depending on how they are set up,
they can deviate from their ideally planar shape to a greater or lesser
extent. Therefore, if this deviation is not sufficiently taken into account,
it can lead to a non-ideal calibration. Also, apart from the calibration
aspect, if the monitor is placed in a deflectometric measurement setup
and, for example, is mounted over the measurement sample, it may
show considerable curvature. To prevent this from leading to erroneous
measurements, it is therefore imperative that the calibration target is
described by appropriate modeling. The modeling of the monitor in
this work can be grouped into three sub-aspects, i.e., the modeling of
the nonlinear characteristic of the pixel brightness, the modeling of the
refraction at the front glass, and the modeling of the screen shape. As
briefly mentioned in Sec. 4.1.1, while the brightness characteristic only
influences the quality of the registration and can easily be compensated,
the two remaining aspects systematically and directly influence the value
of the measured coordinates. The coding methods from Ch. 4 explain
how a subpixel position in the monitor plane can be assigned to each
camera ray employing active illumination. However, only the 𝑥- and
𝑦-coordinate of the reference point can be determined. So far, it was not
specified how the 𝑧-coordinate, i.e., the height, can be obtained, or it was
implicitly assumed that it is set to zero for a flat monitor.

The following sections deal with the modeling of the reference target,
the estimation of the model parameters, and finally the integration of
the reference model into the camera calibration framework.
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5.3.1 Reference Surface Model
There are several ways to model the non-ideality of the monitor. Berga-
masco et al. [15] extend their camera calibration algorithm by modeling
the influence of refraction at the front glass. They adjust the local mon-
itor coordinates 𝑥 , 𝑦 using an additive offset that is calculated using
the angle between the ray direction and monitor surface normal. The
parameters of the refraction model are predefined and used to improve
the camera calibration. Schmalz et al. [182] and Chen et al. [36] on the
other hand, take refraction into account by correcting the 𝑧-component
of a measured point, whereas the 𝑥, 𝑦-coordinates remain unchanged.
Maestro-Watson et al. [127] model the refraction in a similar way, how-
ever, they confirm that the monitor surface also deforms the cover glass.
Hence, they measure the surface using a coordinate measuring machine
to obtain better surface normals for the refraction calculation. Studies
by Schmalz et al. [182] and Bergamasco et al. [15] show that modeling
the refraction has only a small impact on applications such as camera
calibration or deflectometry. And as investigated by Nüss et al. [141], the
shape of the monitor has a far greater influence. Bartsch et al. [13] model
the monitor by representing its surface with a polynomial surface and
the model parameters are estimated during the calibration of a deflecto-
metric measurement system. To combine both non-idealities, Reh et al.
[168] model the 𝑧-coordinate of the monitor as an additive superposition
of both effects, that is, shape and refraction.

5.3.1.1 Shape Model

Commercially available monitor screens are locally very planar and only
deviate globally from the ideal plane, which can be perceived as a slight
curvature or torsion. Thus, as suggested by Reh et al. [168] and Bartsch
et al. [13], the 𝑧-coordinate of the reference points, i.e., the monitor height,
is defined using a bivariate polynomial function

𝑧S(𝑥, 𝑦) =
𝑁𝑥

∑
𝑚=0

𝑁𝑦

∑
𝑛=0

𝑐𝑚𝑛𝑥𝑚𝑦𝑛 , (5.46)

where 𝑁𝑥 and 𝑁𝑦 are the highest orders of the variables 𝑥 and 𝑦 , respec-
tively. And the constants 𝑐𝑚𝑛 represent the coefficients of the correspond-
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𝛼

𝛽

ℎ
𝑧R

𝑔

𝑛 = 1
𝑛 ≈ 1.5

Figure 5.7 Refraction of rays at the cover glass as proposed by Reh et al. [168].

ing polynomial components. As shown by Varsamis et al. [210], to get
a short expression of the bivariate polynomial function and to simplify
further calculations, (5.46) is converted into a vector representation:

𝐦(𝑥, 𝑦) ≔ [1, 𝑥, 𝑥2, … , 𝑥𝑁𝑥] ⊗ [1, 𝑦, 𝑦2, … , 𝑦𝑁𝑦] , (5.47)

𝐜 ≔ [𝑐00, 𝑐10, … , 𝑐𝑁𝑥0, 𝑐01, 𝑐11, … , 𝑐𝑁𝑥1, … , 𝑐𝑁𝑥𝑁𝑦
] , (5.48)

⇒ 𝑧S(𝑥, 𝑦) = 𝐦(𝑥, 𝑦)T𝐜 . (5.49)

5.3.1.2 Refraction Model

For the modeling of the refraction at the front glass cover, the model of
Reh et al. [168] and Chen et al. [36] shall serve as a reference. The refraction
in the cover glass causes the measured monitor coordinates to appear in
a slightly closer position, which depends on the angle of incidence of the
camera rays. From figure 5.7 follows ℎ tan (𝛽) = 𝑔 tan (𝛼) and by using
the law of refraction sin (𝛼) = 𝑛 sin (𝛽) , where 𝑛 is the refraction index
of the glass, it follows

𝑧R = ℎ − 𝑔 = ℎ − ℎ
tan (𝛽)
tan (𝛼)

= ℎ − ℎ
cos (𝛼)

𝑛√1 − sin2 (𝛽)

= ℎ (1 −
cos (𝛼)

√𝑛2 − 1 + cos2 (𝛼)
) . (5.50)
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To calculate the refraction, the angle 𝛼 between a camera ray and the
surface normal at the observed monitor point must be determined. For
the unit normal vector 𝐧̂ and a ray with direction vector 𝐝 follows

cos (𝛼) = 𝐝T𝐑𝐧̂ , (5.51)

where 𝐑 transforms the monitor coordinate system into the camera coor-
dinate system. While Reh et al. [168], for simplicity, consider the refraction
model to be completely independent of the shape model, because they
use only a very small screen with a diagonal of about 2 cm length, this
simplification does not hold in this work. Since commercially available
monitors usually have a diagonal of more than 50 cm length, a deforma-
tion of the monitor also causes a deformation of the front glass. Therefore,
according to Maestro-Watson et al. [127], the normal of the front glass
should be calculated using the shape model. It follows:

𝐧(𝑥, 𝑦, 𝐜) = ⎛⎜⎜
⎝

−𝜕𝑥𝑧S
−𝜕𝑦𝑧S

1

⎞⎟⎟
⎠

=
⎛⎜⎜⎜
⎝

− ∑𝑁𝑥
𝑚=0 ∑𝑁𝑦

𝑛=0 𝑐𝑚𝑛𝑚 𝑥𝑚−1𝑦𝑛

− ∑𝑁𝑥
𝑚=0 ∑𝑁𝑦

𝑛=0 𝑐𝑚𝑛𝑛 𝑥𝑚𝑦𝑛−1

1

⎞⎟⎟⎟
⎠

. (5.52)

This leads to the expression for the height deviation caused by the
refraction in the front glass

𝑧R(𝑥, 𝑦) = ℎ ⎛⎜⎜
⎝

1 −
𝐝T𝐑𝐧̂(𝑥, 𝑦, 𝐜)

√𝑛2 − 1 + (𝐝T𝐑𝐧̂(𝑥, 𝑦, 𝐜))2

⎞⎟⎟
⎠

. (5.53)

5.3.1.3 Complete Reference Model

As suggested by Reh et al. [168], to obtain the reference model, both the
refraction model and the shape model are combined. Given the direction
of a camera ray 𝐝𝑖 , the point coordinates 𝑥𝑖𝑘, 𝑦𝑖𝑘 that were estimated
using phase-shift coding, and the rotation of the reference target 𝐑𝑘 , the
value of the 𝑧-coordinate can be calculated. Finally, the complete monitor
model is represented by 𝑧C(𝑥𝑖𝑘, 𝑦𝑖𝑘) ≔ 𝑧S(𝑥𝑖𝑘, 𝑦𝑖𝑘) − 𝑧R(𝑥𝑖𝑘, 𝑦𝑖𝑘) , where
the 𝑧-value of the refraction is subtracted, since the refraction causes the
measured monitor coordinates to appear in a slightly closer position.
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Using the abbreviations 𝐦𝑖𝑘 ≔ 𝐦(𝑥𝑖𝑘, 𝑦𝑖𝑘) , 𝐧̂𝑖𝑘(𝐜) ≔ 𝐑𝑘𝐧̂(𝑥𝑖𝑘, 𝑦𝑖𝑘, 𝐜) ,
this results in

𝐱𝑖𝑘 = ⎛⎜⎜
⎝

𝑥𝑖𝑘
𝑦𝑖𝑘

𝑧C(𝑥𝑖𝑘, 𝑦𝑖𝑘)

⎞⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

𝑥𝑖𝑘
𝑦𝑖𝑘

𝐦T
𝑖𝑘𝐜 − ℎ (1 − 𝐝T

𝑖 𝐧̂𝑖𝑘(𝐜)

√𝑛2−1+(𝐝T
𝑖 𝐧̂𝑖𝑘(𝐜))2

)

⎞⎟⎟⎟⎟⎟
⎠

.

(5.54)

5.3.2 Parameter Estimation
In order to estimate the parameters 𝐜 , ℎ and 𝑛 of the reference model,
the newly modeled 𝑧-coordinate has to be integrated into the objective
function (5.9):

𝑓(R, T ,L, 𝐜, ℎ, 𝑛) = ∑
𝑖,𝑘

𝑤𝑖𝑘 ∥⎛⎜⎜
⎝

𝐑𝑘
⎛⎜⎜
⎝

𝑥𝑖𝑘
𝑦𝑖𝑘

𝑧C(𝑥𝑖𝑘, 𝑦𝑖𝑘)

⎞⎟⎟
⎠

+ 𝐭𝑘
⎞⎟⎟
⎠

× 𝐝𝑖 − 𝐦𝑖∥

2

.

(5.55)
Given that the modeling of the front glass results in a strongly nonlinear

equation, (5.55) cannot be simplified as demonstrated in the previous sec-
tions. Nonetheless, because the monitor model consists of relatively few
parameters, it can be optimized using standard gradient descent-based
methods (Levenberg-Marquard, BFGS, etc. [140]). To ensure the stability
of the optimization, the front glass parameters must have constraints to
avoid physically unreasonable solutions. The optimal monitor param-
eters can then be found by solving the following bound-constrained
optimization problem:

arg min
𝐜,𝑛,ℎ

𝑓(R, T ,L, 𝐜, ℎ, 𝑛) , subject to 1 ≤ 𝑛 , 0 ≤ ℎ . (5.56)

Since a gradient descent-based optimization is an iterative process, the
objective function must be evaluated at least once in each iteration. This
leads to the fact that the sum over all rays 𝑖 and all poses 𝑘 has to be
recalculated very often, which may take several seconds even with an
efficient implementation on current GPU hardware. If the monitor op-
timization is now to be integrated into the generic calibration, the total
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optimization time will increase dramatically. However, investigations by
Schmalz et al. [182] could show that the front glass only has a very small
influence on the calibration. It is therefore advisable to estimate only the
shape of the monitor and to rely on the manual of the used monitor to
obtain the parameters ℎ, 𝑛 of the cover glass.

If the optimization of the glass cover is omitted, the objective func-
tion can be rearranged in a way that the summation over all poses and
rays only needs to be evaluated once during the optimization. This
results in a very fast optimization. With the help of the abbreviation
𝐚𝑖𝑘 = [𝐝𝑖]T× (𝑥𝑖𝑘𝐫1𝑘 + 𝑦𝑖𝑘𝐫2𝑘 + 𝐭𝑘) − 𝐦𝑖 , by using the column vectors of
the rotation matrices 𝐑𝑘 = [𝐫1𝑘, 𝐫2𝑘, 𝐫3𝑘] , and by assuming 𝑧G,𝑖𝑘 = 0 ,
the optimization problem (5.55) can be expressed as

𝑓(R,T ,L, 𝐜)

= ∑
𝑖,𝑘

𝑤𝑖𝑘 ∥[𝐝𝑖]T× (𝑥𝑖𝑘𝐫1𝑘 + 𝑦𝑖𝑘𝐫2𝑘 + 𝐦T
𝑖𝑘𝐜 𝐫3𝑘 + 𝐭𝑘) − 𝐦𝑖∥

2

= ∑
𝑖,𝑘

𝑤𝑖𝑘 ∥[𝐝𝑖]T× 𝐫3𝑘𝐦T
𝑖𝑘 𝐜 + 𝐚𝑖𝑘∥2

= ∑
𝑖,𝑘

𝑤𝑖𝑘 ‖𝐇𝑖𝑘𝐜 + 𝐚𝑖𝑘‖2

= 𝐜T ∑
𝑖,𝑘

𝑤𝑖𝑘𝐇T
𝑖𝑘𝐇𝑖𝑘𝐜 + ∑

𝑖,𝑘
𝑤𝑖𝑘𝐚T

𝑖𝑘𝐇𝑖𝑘𝐜 + ∑
𝑖,𝑘

𝑤𝑖𝑘𝐚T
𝑖𝑘𝐚𝑖𝑘

= 𝐜T𝐐𝐜 + 𝐪T𝐜 + 𝑜 . (5.57)

An easy-to-find minimum of the above objective function can be ob-
tained assuming that the matrix 𝐐 is positive definite. If so, the optimal
parameter vector of the reference model can be straightforwardly inferred
without using further optimization steps:

𝐜 = 2 𝐐−1𝐪 . (5.58)

Since the matrix 𝐐 consists of the sum of squares of 𝐇𝑖𝑘 , it is positive
semidefinite. And due to the objective function being quadratic, a global
minimum is obtained. The degenerate case with det (𝐐) = 𝟎 occurs in
reality only if 𝐇𝑖𝑘 = 𝐫3𝑘 [𝐝𝑖]× 𝐦T

𝑖𝑘 = 𝟎 holds for all summands. This
means that all camera rays 𝐝𝑖 would have to be orthogonal to the 𝑧-axis
𝐫3𝑘 of all the reference coordinate systems, i.e., a telecentric camera would

110



5.4 Calibration of the Deflectometry Setup

always need to look exactly frontally at the monitor. Because this case
can only be achieved for very special imaging configurations, it will not
be considered further in this work.

As the estimation of the reference model parameters not only returns
the shape of the monitor but also helps to improve the camera calibra-
tion, it can be easily integrated into the overall optimization framework.
Thus, it is only necessary to calculate the value of the 𝑧-coordinate of
the reference points using the current reference model (5.54). This is
then used in each step of the ray estimation from Sec. 5.2.4 and the pose
estimation from Sec. 5.2.5. The alternating minimization for the generic
camera calibration can then be extended to a three-step optimization:

𝐋(𝑛)
𝑖 = arg min

𝐋𝑖∈ℙ6
𝑓 (R(𝑛−1), T (𝑛−1), 𝐋𝑖, 𝐜(𝑛−1)) , ∀𝑖 ∈ I , (5.59)

𝐜(𝑛) = arg min
𝐜∈ℝ𝑁𝑥𝑁𝑦

𝑓 (R(𝑛), T (𝑛),L(𝑛), 𝐜) , (5.60)

𝐑(𝑛)
𝑘 , 𝐭(𝑛)

𝑘 = arg min
(𝐑𝑘,𝐭𝑘)∈SE(3)

𝑓 (𝐑𝑘, 𝐭𝑘,L(𝑛), 𝐜(𝑛)) , ∀𝑘 ∈ K , (5.61)

where the reference target model can be initialized as a flat screen using
𝐜(0) = 𝟎 . Of course, in order to obtain the complete reference model, the
influence of the cover glass on the measured reference coordinates and
its parametrization may be included in the overall calibration.

5.4 Calibration of the Deflectometry Setup
While the camera calibration provides a determination of the vision rays
and the calibration of the reference target allows modeling of the refer-
ence features, for the deflectometric reconstruction of specular surfaces
another calibration is necessary: The transformation between camera and
monitor coordinates has to be identified to transform the local monitor
features into the global camera coordinate system. Here, the assumption
is made that the camera and the reference monitor do not move relative
to each other so that there is only one transformation. A problem that
arises here is that in the deflectometric measurement setup the monitor
is generally not in the direct field of view of the camera, since it should
only be observed as a reflection on the surface under test. A monitor pose
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estimation, as presented in Sec. 5.2.5, does not work here without modifi-
cation. To estimate the real relative transformation between camera and
monitor, one can observe the monitor via the reflection in a reference
mirror. If the position and shape of this mirror are known, the virtual
(mirrored) monitor pose can be used to determine the true transforma-
tion between camera and monitor. In general, however, the position of
the mirror is unknown. There are various approaches to solving this dif-
ficulty. As probably the most intuitive approach, markers can be placed
on the mirror, which allows a direct pose estimation of the mirror [6, 29].
If no markers can be placed on the mirror or if it is not desired that the
markers increase the measurement uncertainty, then the mirror pose and
the monitor pose can also be calculated indirectly. For this purpose, the
mirror is not only placed in one position but in several positions, and the
virtual monitor pose is measured each time. The set of virtual poses can
then be used to infer the original pose [196, 229, 231].

In this work, the monitor pose is found using a marker-less plane
mirror. The following sections explain how the set of virtual poses can
be used to obtain a linear solution for the pose. Then, it is described how
the generic pose estimation from the previous sections can be used to
further improve the linear solution.

5.4.1 Linear Solution
The problem of the deflectometric calibration is shown in figure 5.8.
Because the camera does not see the monitor directly but only its reflec-
tion, the monitor coordinates 𝐱 are first transformed into the camera
coordinate system and then reflected at the mirror plane. The virtual
coordinates 𝐱̃ can then be calculated with

(𝐱̃
1) = (𝐇 2𝑑𝐧

𝟎 1 ) (𝐑 𝐭
𝟎 1) (𝐱

1) = (𝐑̃ ̃𝐭
𝟎 1) (𝐱

1) , (5.62)

where 𝐧 is the unit normal of the mirror, 𝑑 is the shortest distance between
the mirror plane and the camera aperture, and 𝐇 = 𝐈 − 2𝐧𝐧T represents
a reflection operator. Depending on the mirror position, the relation
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Mirror
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𝑧
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𝑦
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𝐑, 𝐭

𝐑̃𝑘, ̃𝐭𝑘

Figure 5.8 Mirror-based pose estimation: The camera sees the reflection of the monitor
in the reference mirror. Only the transformation of virtual monitor coordinates to camera
coordinates can be estimated.

between the different virtual poses of the reflected monitor and the pose
of the true monitor can be directly derived:

𝐑̃𝑘 = 𝐇𝑘𝐑 , (5.63)
̃𝐭𝑘 = 𝐇𝑘𝐭 + 2𝑑𝑘𝐧𝑘 . (5.64)

To obtain a solvable equation system, the angle of the mirror must be
changed for each acquisition. Takahashi et al. [196] show that the equa-
tions can be solved using an orthogonality constraint if at least three
mirror positions are observed. For this, the intersection line 𝐦𝑖𝑗 between
all possible mirror pairs 𝑖, 𝑗 ∈ {1, 2, 3} is defined. Since the intersecting
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lines have to be orthogonal to the respective mirror normals, Xiao et al.
[229] derive the equation

𝐑̃𝑖𝐑̃T
𝑗 𝐦𝑖𝑗 = (𝐇𝑖𝐑) (𝐇𝑗𝐑)T 𝐦𝑖𝑗 = 𝐇𝑖𝐑𝐑T𝐇T

𝑗 𝐦𝑖𝑗

= (𝐈 − 2𝐧𝑖𝐧T
𝑖 ) (𝐈 − 2𝐧𝑗𝐧T

𝑗 ) 𝐦𝑖𝑗

= 𝐦𝑖𝑗 . (5.65)

The intersection line 𝐦𝑖𝑗 can be found as unit eigenvector with the small-
est eigenvalue of the matrix 𝐑̃𝑖𝐑̃T

𝑗 − 𝐈 . By using the intersection lines,
the unit normal vectors of the reference mirror planes can be calculated

𝐧1 =
𝐦12 × 𝐦13

‖𝐦12 × 𝐦13‖
, 𝐧2 =

𝐦12 × 𝐦23

‖𝐦12 × 𝐦23‖
, 𝐧3 =

𝐦13 × 𝐦23

‖𝐦13 × 𝐦23‖
. (5.66)

For more than three poses, the normal estimate can also be averaged [197]:

𝐌T
𝑖 𝐧𝑖 = 𝟎 with 𝐌𝑖 = (𝐦𝑖1, 𝐦𝑖2, 𝐦𝑖3, … ) , (5.67)

where the normal vector is found to be the eigenvector with the smallest
eigenvalue of the matrix 𝐌𝑖𝐌T

𝑖 . Then, using (5.63) and 𝐇𝑖𝐇𝑖 = 𝐈 , a
rotation matrix can be calculated for each mirror pose 𝐑𝑖 = 𝐇𝑖𝐑̃𝑖 . In the
ideal case, all estimates should give the same result. Though, in order to
suppress noise, rotation averaging [73] is applied and the mean rotation
matrix is calculated using a singular value decomposition:

𝐑̄ = ∑
𝑖

𝐑𝑖 → 𝐑̄ = 𝐔𝐒𝐕 → 𝐑 = 𝐔𝐕 . (5.68)

Finally, by using (5.64), the remaining translation vector and mirror dis-
tances can easily be found by solving a system of linear equations

⎡
⎢
⎢
⎣

𝐇1 2𝐧1 0 … 0
𝐇2 0 2𝐧2 … 0

⋮ ⋮ ⋮ ⋱ ⋮
𝐇𝑁 0 0 … 2𝐧𝑁

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝐭
𝑑1
𝑑2
⋮

𝑑𝑁

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

̂𝐭1
̂𝐭2
⋮
̂𝐭𝑁

⎤
⎥
⎥
⎦

(5.69)

Thus, given virtual pose parameters 𝐑̃𝑘 , ̃𝐭𝑘 , the true pose of the monitor
𝐑 , 𝐭 can be obtained with a closed-form solution.
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To find these virtual pose parameters, in principle, standard PnP meth-
ods can be used [109, 133]. However, these usually work with a classical
camera model, e.g., the model described in Sec. 5.1. Because this work
does not commit to a specific camera model, the generic pose estimation
from Sec. 5.2.5 will be used. In the context of a generic camera model,
for each camera ray, the distances to the virtual monitor points are mini-
mized:

𝑓(𝐑̃𝑘, ̃𝐭𝑘) = ∑
𝑖

𝑤𝑖𝑘𝑑(𝐱̃𝑖𝑘, 𝐥𝑖) = ∑
𝑖

𝑤𝑖𝑘 ∥(𝐑̃𝑘𝐱𝑖𝑘 + ̃𝐭𝑘) × 𝐝𝑖 − 𝐦𝑖∥
2

subject to 𝐑̃𝑘 ∈ O(3)/SO(3)
(5.70)

Due to the reflection at the mirror plane, the virtual rotation matrices are
now orthogonal matrices with det (𝐑̃) = −1 . Fortunately, O(3)/SO(3)
and SO(3) have the same Lie algebra 𝔰𝔬(3) . Therefore, the previously de-
scribed optimization method can be used and only the initialization has to
be adapted. For this purpose, 𝐑̃𝑘 ∈ O(3)/SO(3) must hold. Since no other
information shall be specified, it shall be assumed that the reference mir-
ror is approximately orthogonal to the camera view axis, the LCD surface
of the monitor points approximately in the same direction as the camera,
and the 𝑦-axes of both coordinate systems are approximately collinear. In
other words, the monitor coordinate system is rotated by approximately
180° around the 𝑦-axis, see figure 5.8. A simple initialization for the virtual
rotation matrix is now obtained by defining the virtual pose as a reflection
on the 𝑦, 𝑧-plane 𝐑̃𝑘 = 𝐈 − 2𝐧𝑘𝐧T

𝑘 with 𝐧𝑘 = (1, 0, 0)T . Starting from this,
the generic pose estimation can converge sufficiently fast to a solution.

5.4.2 Nonlinear Optimization
The linear solution is usually sensitive to noise, so it is only used as an
initialization for a subsequent optimization to refine the monitor pose
𝐑 , 𝐭 and the positions of the mirror 𝐧𝑘 , 𝑑𝑘 simultaneously [229]. To take
advantage of the generic camera model, it is advisable to minimize the
distance between the observed monitor points and the reflected rays
to obtain the optimal transformation between the camera and monitor
coordinate system and, in addition, to obtain the mirror pose. Hence, to
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simplify the optimization, the mirror pose parameters are combined into
one vector [227]:

𝐯𝑘 ≔ 𝑑𝑗𝐧𝑘 ⇒ 𝐇𝑘 = 𝐈 − 2
𝐯𝑘𝐯T

𝑘

‖𝐯𝑘‖2 . (5.71)

Since in the deflectometric test setup the monitor is often suspended
above the test sample, it shows a non-negligible curvature due to gravity.
Therefore, it makes sense to estimate the monitor parameters 𝐜 at the
same time. The minimization of the following distance measure provides
the desired parameters

𝑓(𝐑, 𝐭, 𝐯1, 𝐯2, … , 𝐜) = ∑
𝑖,𝑘

𝑤𝑖𝑘 ‖(𝐇𝑘(𝐑𝐱𝑖𝑘(𝐜) + 𝐭) − 2𝐯𝑘) × 𝐝𝑖 − 𝐦𝑖‖2 .

(5.72)
Since this objective function is highly nonlinear, but also contains only a
few parameters, it can be minimized using standard optimization meth-
ods, e.g., BFGS or Levenberg-Marquardt [140].

The calibration result could be further improved by performing a
holistic calibration and by including the calibration of the camera rays
in the optimization [6]. However, there is the problem that the reference
mirror must be very accurate and very planar. Because of this, sufficiently
large mirrors are not available or are extremely expensive (e.g., a highly
planar mirror with only 10 cm2 diameter already costs about 800 €). If a
standard model-based camera calibration is used, this is not a big concern,
because not every ray necessarily has to observe a reference feature. For
generic methods, however, it must be ensured that each ray can observe
enough points in the monitor plane. When only a small mirror is available,
the calibration procedure is time-consuming as the mirror has to be
placed in several positions. Therefore, a holistic optimization will not be
considered further in this work and is only given as a brief outlook.

5.5 Evaluation
The following sections examine the steps necessary for system calibra-
tion and analyze the presented procedures. For the evaluation, a 27”
monitor with a resolution of 2560 × 1440 px and a pixel pitch of 233 µm
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was used to display the necessary calibration patterns. Two different
imaging systems were used to evaluate the proposed generic camera
calibration: A standard webcam (Logitech C920 HD Pro Webcam) and
a microlens array-based light field camera (Lytro Illum). The first rep-
resents a central camera that can be modeled with the classical pin-
hole camera approach, whereas the second camera ultimately results
in a non-central camera with multiple projection centers, which in ad-
dition requires a much more complex camera model to be efficiently
calibrated. The monitor was captured from 20 different poses, whereby
several phase-shift patterns have to be recorded at each pose to encode
the target features. The phase-shifting was performed the same in both
horizontal and vertical direction with 𝑀 = 12 shifts per sequence and
with the frequencies 𝐟 = (1, 4, 16, 64) , corresponding to wavelengths of
𝝀 = (2560, 640, 160, 40) pixels . The distances between monitor and cam-
era were in the range of 5 cm to 2 m. To compare the proposed technique
to the classic methods, the webcam was calibrated using the pinhole
model of Sec. 5.1 and Zhang’s algorithm [246], which is implemented in
the OpenCV library [26] . The light field camera was calibrated using the
state-of-the-art method by Bok et al. [20]. Both methods use static checker
patterns that were displayed on the reference monitor. In addition, the
calibration is also performed with the state-of-the-art generic calibration
method from Bergamasco et al. [15]. They calibrate the camera by itera-
tively calculating the intersection of the rays with the monitor plane, and
by minimizing the resulting coding error to the observed target features
on a pixel level. In addition, they estimate the reference pose using an
adapted iterative closest point method, where they calculate the perpen-
dicular projection of the 3D reference features onto the corresponding
rays, and then align the set of 3D features with the set of perpendicular
projections in an iterative manner.

Because the webcam has a smooth mapping from pixels to camera rays,
the spatio-temporal phase unwrapping from Ch. 4 can be used without
any restrictions, which allows mapping reference features to camera pix-
els. However, when the light field camera is used, strong discontinuous
appear near the edges of the microlenses. Consequently, these edges
need to be detected using the edge detection presented in Sec. 4.4.4. And
as a result, for these edge pixels, only the temporal unwrapping should
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(a) (b)

(c) (d) (e) (f)

Figure 5.9 Reference feature acquisition for the Lytro Illum camera: (a) shows the encoding
of the monitor’s 𝑥-coordinate. (b) shows the coordinate uncertainty. (c) & (d) show details
of the 𝑥-coordinate. (e) & (f) show detailed views of the coordinate uncertainty. (c) & (e)
show the center region and (d) & (f) the bottom right region of the camera sensor. For better
visualization, the color maps are stretched to maximize the contrast.

be used. Figure 5.9 shows the acquisition of reference features for the
Lytro Illum camera using phase-shift coding with probabilistic phase
unwrapping. It can be seen that the phase measurement shows strong
discontinuities near the boundaries of the microlenses. Also, in these
areas, the uncertainty increases due to vignetting that is caused by the
main lens and by the microlenses. This effect increases even more the
closer the pixels are to the edge of the sensor. In addition, the Bayer
pattern of the camera sensor affects the uncertainty in such a way that
it increases for the red and blue pixels (because in this specific dataset,
the spectrum of the displayed pattern seems to be centered around the
central wavelength of the green pixel).
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5.5.1 Error Metrics
To ensure a fair comparison between the calibration methods, the differ-
ent models are examined with regard to their point-to-ray distance of
each ray to every observed feature in every monitor plane

𝜀𝑖𝑘 ≔ ‖𝐩𝑖𝑘 × 𝐝𝑖 − 𝐦𝑖‖ . (5.73)

For the error metrics, the mean distance and the root-mean-squared error
(RMSE) are calculated:

Mean (𝜀) ≔ 1
∑𝑖𝑘 𝑤𝑖𝑘

∑
𝑖𝑘

𝑤𝑖𝑘𝜀𝑖𝑘 , (5.74)

RMSE (𝜀) ≔ √ 1
∑𝑖𝑘 𝑤𝑖𝑘

∑
𝑖𝑘

𝑤𝑖𝑘𝜀2
𝑖𝑘 . (5.75)

The comparison is here done using a weighted distance (with 𝑤𝑖𝑘 = 𝜎−2
𝑖𝑘 )

that allows to assess the quality of the camera calibration without being
too dependent on the quality of the used reference target features. For a
demonstration of the benefit of using additional uncertainty information,
the Euclidean distances are evaluated too by defining 𝑤𝑖𝑘 = 1 . In the
following, weighted distances are symbolized by the variable 𝜀w , and
Euclidean distances by the variable 𝜀e . A comparison of the commonly
used projection error on a pixel level is not possible, because in a generic
camera model there is nothing like an “image plane” – there is just a set
of rays.

5.5.2 Initialization of the Alternating Minimization
In principle, the presented generic calibration procedure can be initialized
using the model-based approaches. For the webcam, the standard camera
calibration and pose estimation provided by the OpenCV framework can
be used. And for the light field camera, the calibration by Bok et al. with
a succeeding standard pose estimation may help in the initialization.

As a more generic alternative, one could also initialize using the generic
relative pose estimation algorithm proposed by Ramalingam et al. [165].
The disadvantage of the method is, however, that the underlying camera
model must be known. Different algorithms are needed for the central
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model of the webcam and the non-central model of the light field cam-
era. In addition, the use of a two-dimensional planar calibration target
(instead of a 3D target) adds ambiguities, which can be resolved only if
there is a rough knowledge of the poses. Simulations and experiments
showed that their method works in principle, but that the procedure
is highly susceptible to noise. However, there are very severe compli-
cations for only slightly non-central cameras, like the MLA-based light
field cameras used in this work. As described by Ramalingam et al. [165]
too, the procedure becomes extremely unstable, and no reliable pose can
be estimated, even if only a very small noise is present. For light field
cameras, the method is therefore rather unusable and will thus not be
considered further in this work.

Nevertheless, because using another calibration procedure increases
the overall effort, it would be best to rely only on the here presented
generic calibration method. In this context, it could be observed that in
many cases it was even acceptable to just ”guess” the initial positions of
the monitor. For example, although the monitor poses in figure 5.10(a)
are randomly initialized, the optimization converges towards the optimal
solution. However, even if the alternating minimization is strictly conver-
gent, when using a random initialization, with some starting configura-
tions it becomes possible that the optimization gets stuck in suboptimal
solutions. Figure 5.10(d) depicts this situation, where some monitor poses
are estimated to lie behind the camera. To further minimize the error, the
algorithm causes all monitor poses to lie flat on top of each other, and
to eventually have the same rotation. The estimated ray bundle is then
slit-shaped and completely flat, which is not the correct solution. To avoid
such problems, investigations showed that it helps to properly initialize
the translation vector of the monitor poses in such a way that the order
of distances between camera and monitor poses is approximately correct.
Hence, it is useful to specify the distance to the camera during the data
acquisition for a subset of monitor poses, so that the distance is approxi-
mately known. E.g., the first three monitor poses could be placed about
10 cm apart. Using only this subset of monitor poses, the ray parameters
can be estimated with sufficient accuracy in only 20-30 iterations. And
finally, this rough estimation of rays can be used to initialize the camera
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(a) Iteration 0: RMSE ≈ 15 cm.
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(b) Iteration 1000: RMSE ≈ 32 µm.
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(c) Iteration 0: RMSE ≈ 14 cm.
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(d) Iteration 1000: RMSE ≈ 2250 µm.

Figure 5.10 Initialization and final result: The figures show the observed monitor area and
the calibrated camera rays at start and end. Note the difference in scale. (a) & (b) Even with
an initially very bad pose estimation, the procedure converges towards reasonable results.
(c) & (d) A badly chosen initialization may converge to a suboptimal local minimum.

calibration for the complete set of poses, where the remaining poses can
of course be positioned arbitrarily.

5.5.3 Convergence of the Alternating Minimization
Figure 5.11 shows the convergence of the proposed method as a function
of the weighted RMSE of the calibration error over the number of itera-
tions. Here, the calibration was carried out with and without acceleration
and with and without modeling the reference monitor. To investigate
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Figure 5.11 Convergence of AM-calibration depending on the initialization: The plot
shows the mean value and the ±𝜎-range of the convergence of the objective function for
various initializations.

the robustness against a bad initialization, the convergence behavior
was investigated for 50 trials while random translations in the range
±10 cm per direction and random rotations ±10° per axis were added
to the starting pose. For comparison, the convergence behavior of the
generic calibration method of Bergamasco et al. is also investigated, using
the same initializations. Although they minimize a different metric in
their optimization, the point-to-ray distance is evaluated here after each
iteration so that a fair comparison can be made.

The plot shows the average and the standard deviation of the RMSE
over all trials, visualized by the thick line and the light background color.
Figure 5.11 shows that the proposed method converges significantly faster
than the method of Bergamasco et al., and it shows that it is less sensitive
to a bad initialization, which is shown by the smaller standard deviation
in the error. Starting from some initialization, the method of Bergamasco
et al. leads to suboptimal solutions. The presented methods show slightly
different behaviors in the convergence during the minimization, yet
every trial converges very close to the same solution, visible by the very
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low standard deviation in the last iterations. In addition, the improved
convergence rate when using the Nesterov acceleration is clearly visible.
Hence, the minimization converges to a sufficiently accurate result after
about 300 iterations. And finally, it can be well acknowledged that the
monitor model can push the total calibration error even further down.
Interestingly, when estimating the monitor model, it can be observed
that the convergence rate is slightly worse than compared to when it is
not estimated. This can be explained by considering that the alternating
minimization now consists of three subproblems, and with the increasing
number of subproblems the convergence rate decreases.

Since each ray is independent of one another, it is possible to process
them in parallel, using a GPU. The optimization of 40 million pixels
(Lytro Illum) and 20 reference poses then only takes a few seconds per
iteration (Intel Core i7-6700, Nvidia GTX 1080 Ti, 16GB RAM). Therefore,
the overall calibration for the light field camera converges after about
45 minutes. The presented generic method is even faster and converges
after only a few minutes when calibrating the two-megapixel webcam.

5.5.4 Required Number of Poses
Theoretically, a ray can be estimated with two different point observations
(then 𝐀dd is positive definite). And to fit a pose, three non-parallel rays are
needed (then 𝐀tt is positive definite) that observe different points (then
𝐀rr is positive definite). With only two reference targets, the optimization
always converges to a perfect fit, which of course is useless. An unambigu-
ous and correct solution, however, can theoretically be obtained with at
least three reference poses [165]. But of course, because the presented cal-
ibration is based on a least-squares minimization approach, and because
the impact of noise should be reduced, more reference targets are neces-
sary. This becomes apparent in figure 5.12 that shows the calibration error
when different numbers of reference targets are used. For this purpose,
the camera was calibrated 100 times, where each time a fixed number
of target patterns was randomly selected from a total set of 60 poses. The
mean error of all calibrations and their ±𝜎 standard deviation are plotted
over the number of used patterns. It can be seen that the overall calibra-
tion error needs at least a minimum of 15–20 poses to result in a good
calibration, whereas more poses increase the overall robustness of the
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Figure 5.12 Dependency on the number of patterns: The plot shows the mean value and
the ±𝜎-range of the error.

method. Too few patterns, on the other hand, result in a very unreliable
calibration. One can see similar results for the OpenCV calibration, al-
though the dependency on the number of patterns is not as strong as
compared to the proposed method. In summary, the proposed calibration
needs more reference poses to correctly estimate the immense number of
parameters. However, even with fewer poses, the error of the proposed
calibration is several times smaller than the model-based calibration.

5.5.5 Evaluation of the Calibration Error
For a quantitative comparison of the different calibration methods, the
calibration error will be compared in the following. To verify the positive
influence of using the reference target uncertainty on the calibration, the
method “Generic (E)” is investigated in addition. This method is the same
as the presented method but does not use the uncertainty, and instead
only minimizes the Euclidean point-to-ray distance by defining 𝑤𝑖𝑘 = 1
for all target features. For a faster calibration, the proposed methods
use Nesterov acceleration. In addition, the webcam was calibrated with
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Table 5.1 Calibration of the Logitech webcam.

Logitech Webcam 𝜀w in µm 𝜀e in µm
Mean RMSE Mean RMSE

OpenCV (checker) – – 304.9 395.0
OpenCV 366.1 415.9 369.7 424.6
Bergamasco et al. 91.4 109.6 92.0 110.0
Generic (E) 25.9 33.7 28.2 37.6
Generic (H) 23.7 33.0 27.9 41.9
Generic 23.6 32.4 27.8 39.4
Generic + Monitor model 14.7 17.6 14.9 17.7

OpenCV and the light field camera with the method of Bok et al., where
checkerboard features were used as reference. For methods with the
suffix “checker”, the error was evaluated only for those camera pixels
that see the detected checker features. The other methods were evaluated
for each camera pixel using the phase-shift features.

5.5.5.1 Webcam Calibration

Table 5.1 summarizes the result of the webcam calibration for the dif-
ferent algorithms. It can be seen that the presented generic methods
produce the best results. Even for the webcam, with its relatively simple
optics, the presented method delivers both a smaller mean error and a
smaller RMSE for both error metrics, resulting in a more precise geomet-
ric calibration with fewer outliers at the same time. In the classic model
from the OpenCV library, most outliers cannot be used because they are
too far away from the model description. The generic model can effec-
tively use each individual pixel as a source of information. This becomes
particularly visible for the OpenCV calibration when only the error re-
garding the checkerboard features is evaluated. Here, the error is smaller
than when for every pixel all phase-shift features are evaluated. This
demonstrates that the classic calibrations optimize the camera model for
only a part of the pixels, namely the ones that observe checker features.
The remaining pixels are interpolated through the camera model and
thus have a larger calibration error. Figure 5.13 shows the error per pixel
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Figure 5.13 Calibration error of the webcam: The OpenCV calibration on the left shows
strong systematic errors due to the parametric modeling approach, while the generic model
on the right shows a more noise-like result.

for the standard calibration and the presented generic one. It can be seen
that the OpenCV calibration shows significant systematic errors, as the
error increases or decreases depending on the distance to the center of the
sensor. This wave-like behavior of the error is caused by the insufficient
modeling capability of parametric models. Even for a simple webcam,
the parametric modeling approach does not lead to perfect results. On
the other hand, the generic approach calibrates each pixel individually,
and hence, almost no systematic errors appear. The resulting calibration
error is overall much smaller and has an almost noise-like characteristic.

The proposed methods also perform better than the generic approach
by Bergamasco et al. Even if the uncertainties are not taken into account
and only the Euclidean distance is minimized, the presented method still
outperforms the method by Bergamasco et al. Moreover, it can be seen
that additional information about the coordinate uncertainty further
improves the calibration. Inaccurate points are weighted less strongly
and therefore have a weaker effect on the result. Interestingly, because
“Generic (E)” directly minimizes the Euclidean RMSE, the respective
value is smaller than the same metric for the “Generic” method. How-
ever, the corresponding mean value of the uncertainty-based method
is smaller, since outliers have less influence on the calibration. When
using a hierarchical phase unwrapping approach with “Generic (H)”, the
mean error slightly increases, although the used phase-shift coding with
𝑀 = 12 shifts already strongly reduces the noise. The corresponding
RMSE values increase slightly more than compared when the probabilis-
tic unwrapping is used in “Generic”, meaning that outliers are caused by
errors in the hierarchical phase unwrapping. Finally, using the monitor
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Figure 5.14 Histogram of point-to-ray distances concerning all phase-shift features (Log-
itech Webcam). The generic model creates a much tighter distribution with fewer outliers
as compared to the classical calibrations (note the logarithmic scale). Outliers can be further
suppressed with uncertainty information and by modeling the reference monitor.

model and estimating its parameters reduces the overall calibration error
even more.

Figure 5.14 illustrates the results of the calibrations by showing the
distribution of all point-to-ray distances. The OpenCV calibration shows a
very widespread distribution that is not symmetric due to the systematic
modeling errors. The error distributions of the generic approaches are
tighter, shifted to lower values, and are close to a normal distribution,
which is to be expected since the errors are calculated from the set of
independently calibrated rays.

5.5.5.2 Light Field Camera Calibration

Similar conclusions can be drawn with the Lytro Illum light field cam-
era. Table 5.2 summarizes the results of the calibration for the different
algorithms. Due to the more complex optics and the more extensive
optimization associated with this camera, the differences here are much
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Table 5.2 Calibration of the Lytro Illum camera.

Lytro Illum 𝜀w in µm 𝜀e in µm
Mean RMSE Mean RMSE

Bok et al. (checker) – – 448.4 851.8
Bok et al. 375.6 758.8 7165.1 8686.0
Bergamasco et al. 922.1 1696.5 1041.8 1720.5
Generic (E) 77.1 185.3 163.1 438.5
Generic (H) 60.4 153.4 165.2 510.7
Generic 49.4 105.8 155.5 457.4
Generic + Monitor model 43.3 91.4 149.8 439.7

greater and the superiority of the proposed generic calibration becomes
even clearer. Although the model by Bok et al. is very sophisticated, it is
adapted strongly to the few checkerboard features and only produces
good results here. But if the same model is evaluated for all phase-shift
features for every pixel, then this leads to huge RMSE values caused
by many outliers. In this case, one can see particularly well that a low
dimensional model-based approach cannot ideally describe every pixel
of a camera with complex optics, such as the light field camera. Moreover,
the benefit of using uncertainties becomes very well apparent: the quality
of pixels in microlens-based light field cameras (and the ability to model
the corresponding rays accurately) deteriorates towards the edges of the
microlenses, leading to increased uncertainties (see figure 5.9). These can
however be suppressed effectively by the proposed generic method, lead-
ing to much smaller mean errors and RMSE values for both error metrics.

The method by Bok et al. can calibrate the center of each microlens very
well. Here, their calibration error reduces to about 60 µm for the best
pixels. This results in a relatively good reconstruction of the central sub-
aperture image, as will be analyzed in detail in Ch. 6. However, the more
the pixels move away from the microlens center, the larger becomes the
error. This reduces the overall calibration quality, as shown in the results.
Also, the method by Bok et al. returns a light field with only 35 million
pixels, as compared to the total of 41 million pixels of the raw data. The
worst pixels, which are between neighboring microlenses, are not used
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Figure 5.15 Calibration error of the Lytro Illum. Left: At a global view, the error is inde-
pendent of the position on the sensor. Right: The error increases near the microlens edges.

in the modeling and are therefore cut off. Thus, they cannot be analyzed
in the evaluation made here. However, the proposed generic model
can effectively calibrate the rays of every pixel of the sensor, whereby
not only good calibration results in the centers of the microlenses are
achieved, but also at the edges, where it is very difficult to describe
the light field camera with a uniform model. By using the uncertainty
of the target features, these pixels at the microlens edges can be easily
identified as outliers. Therefore, they are automatically compensated and
have less influence on the pose estimation, which further improves the
ray estimation. Interestingly, using the hierarchical phase unwrapping
to obtain the monitor coordinates with “Generic (H)” instead of the
probabilistic approach with “Generic” has a more significant effect on
the light field camera than it had on the webcam. The overall calibration
error is much larger, which is caused by the pixels at the microlens edges.
Here, due to the strong vignetting, the signal-to-noise ratio is reduced,
resulting in higher phase noise. This again further demonstrates the
advantages of the proposed probabilistic phase unwrapping. Finally,
using the monitor model and estimating its parameters further reduces
the overall calibration error. When compared to the webcam calibration,
the improvement here is smaller.

Figure 5.15 shows the calibration error of the proposed generic method
for each camera pixel. Although the error increases near the microlens
edges, it is still very small. The reason that these pixels cannot be de-
scribed better by the generic camera model is that in reality there is a
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Figure 5.16 Histogram of point-to-ray distances concerning all phase-shift features (Lytro
Illum). The generic model creates a much tighter distribution with less outliers as compared
to the classical calibration (note the logarithmic scale). Outliers can be suppressed even
more with uncertainty information and by modelling the reference monitor.

superposition of vision rays. This means that the light cone belonging
to the ray is either strongly elliptically distorted or simply consists of
the superposition of multiple individual cones. A disadvantage of the
generic camera model is that it can only return the mean value of the
corresponding light cone for such pixels, which does not necessarily
reflect reality. Nonetheless, because a superposition of light cones causes
a high uncertainty in the phase-shift coding, the corresponding pixels
have an insignificant influence on the uncertainty-based calibration pre-
sented here. Especially during the pose estimation, outliers are strongly
suppressed, and thus, the overall calibration result still turns out well.

While the method by Bergamasco et al. delivers good results for the
webcam, it does not seem to work well with the light field camera. Al-
though the calibration of the webcam shows that their approach works, it
seems that it does not generalize as well as the proposed method and that
it has difficulties with the poor quality of the pixels at the edges of the
microlenses. The procedure diverged in the experiments. Only after im-
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Figure 5.17 Experimental deflectometry setup.

proving the initialization for a few iterations using the proposed method
and by excluding the pixels with the highest uncertainty, a convergent
result for their method could be obtained, which still has a smaller error
than the calibration by Bok et al.

Figure 5.16 summarizes the results and shows the distribution of all
point-to-ray distances for the different calibrations of the Lytro Illum. The
method by Bok et al. results in a multi-modal distribution with the lowest
peak at about 60 µm. Also, several peaks systematically appear at higher
distances, which is due to the difficulties of modeling a light field camera.
These peaks correspond to the average calibration error of the individual
sub-aperture images, as will be discussed in detail in Ch. 6. The method
by Bergamasco et al. results in a distribution with many errors at high
values (more than 1 mm). The proposed methods, on the other hand, are
much tighter with peaks at far lower values. Moreover, larger errors from
minimizing only the Euclidean distance can be reduced to smaller ones
by using the generic calibration with uncertainty-based weighting. And
in addition, using a monitor model further improves the result.

5.5.6 Mirror-Based Pose Estimation
The experimental setup of the deflectometry system used in this work
is shown in figure 5.17. The reference monitor is the same as the one
used for the camera calibration, and the camera is the Lytro Illum, which
was calibrated using the generic calibration. To perform a deflectometric

131



5 System Calibration

x in m-0.4
-0.2

0.0
0.2y

in
m 0.0

0.2

0.4
0.6

z
in

m

-0.8

-0.6

-0.4

-0.2

0.0

Figure 5.18 Result of mirrored pose estimation for the experimental setup from figure 5.17.
Top left: Reference monitor. Top right: Camera and estimated camera rays. Bottom: Refer-
ence mirrors.

measurement, the relative pose between camera and monitor must be
calculated using the procedure from Sec. 5.4. For this purpose, a pre-
cision surface mirror with 𝜆/20 flatness is used as a reference mirror,
i.e., with the reference wavelength of 632.8 nm, the mirror has a maxi-
mum peak-to-valley deviation from the perfect plane of 31.64 nm. The
mirror is placed in 10 different positions and each time reference points
are recorded using phase-shift coding. Using the adapted generic pose
estimation (5.70), the mirrored pose of the virtual monitors is estimated.
Then, using the procedure shown in Sec. 5.4.1, a linear solution is found
for the true pose between the camera and monitor. Subsequently, the non-
linear optimization (5.72) improves the final estimate. Figure 5.18 shows
the mirror planes and the resulting pose of camera and monitor. Inter-
estingly, the calibration error varies considerably during the estimation
steps. The estimation of the virtual poses results in an RMSE of 92.0 µm.
However, after the linear solution for the true pose is found, it increases
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Figure 5.19 Visualization of the display surface. Left: Because of the weight on the corners,
the monitor surface is twisted. Right: The monitor hangs above the surface and due to
gravity, the surface is slightly bent.

substantially to 640.2 µm. An explanation for this is that when two mirror
positions are only slightly inclined to each other, the distance of the in-
tersection line of both planes to the measurement setup can grow to very
large values, which leads to numerical instabilities in (5.67) and (5.69).
Still, the subsequent nonlinear optimization can compensate for this, so
that the RMSE of the final pose estimation decreases again to 95.2 µm.

5.5.7 Shape Estimation of the Reference Target
It could already be shown that the monitor model improves the calibra-
tion. However, it is not yet clear whether the model also provides realistic
values. To verify this, the monitor was measured in two positions. In the
first measurement, the monitor lies on the ground, and both the upper
left corner and the lower right corner are loaded with weights. Hence, the
monitor should show a torsion. A second measurement shows the moni-
tor in the deflectometry setup, see figure 5.17. Here, the monitor hangs
above the surface under test, and the screen points downwards. This
causes the outer areas of the monitor to also bend downwards, which
results in an increased curvature of the display surface. The monitor
parameters can be obtained after calibration, and with them, the shape
of the monitor can be calculated. Figure 5.19 shows the results for both
measurements. The figure shows very well that the first monitor has
a strong torsion, while the second one is slightly curved, as was to be
expected. The distance between the highest and the lowest point for the
first measurement is 2.5 mm and for the second measurement 0.8 mm.
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This was also approximately verified by placing a straight metal bar
on the surface and by measuring the distance between the bar and the
screen surface with a ruler. Therefore, in conclusion, the calibration of
the monitor shape is satisfactory.

5.6 Summary
In this chapter, the calibration of the deflectometric measuring system
was described. The main contribution was a new calibration technique for
the generalized camera model. The proposed method splits the calibra-
tion into two parts, a ray calibration and a pose estimation, and it applies
an alternating minimization to efficiently optimize the immense number
of parameters. Dense calibration features were obtained using phase-shift
coding techniques, and the measurement uncertainty that was estimated
during the pre-processing could be used in the optimization. A simple
analytical solution to minimize the ray subproblem was presented. Fur-
ther, the pose was optimized by decoupling rotation and translation, and
by using gradient descent on the rotation manifold. Since calibration
references, i.e., standard LCD screens, are generally not ideal, the shape
and also the refraction at the cover glass were modeled, which allowed
the estimation of the reference parameters to be efficiently integrated into
the generic calibration. Because alternating minimization typically has
a slow convergence rate, Nesterov’s acceleration scheme was modified
to speed up the optimization process. Since in a deflectometric measure-
ment setup, the reference monitor is not in the camera’s direct field of
view, a mirror-based pose estimation was adapted, which further could
be efficiently combined with the presented generic calibration procedure.

Finally, experimental evaluation verified the advantages of the pro-
posed camera calibration method over conventional and other general-
ized approaches. In this context, the benefit of using additional infor-
mation about the uncertainty of the calibration target coordinates was
demonstrated, and it could be shown that modeling the reference target
leads to a considerable improvement in the calibration.
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The calibration methods from the last chapter can already describe all
of the optical components very precisely. The generic camera model
achieves a high degree of accuracy, but in the process of the calibration,
information is discarded, namely, the topological relations between the
pixels. For many areas of optical metrology, this does not pose a prob-
lem, as often only the geometric ray properties are relevant [145, 209,
247]. In profilometry, for example, a projector illuminates a scene with
a coded pattern sequence and each scene point can thus be assigned to
a projection ray and a vision ray, allowing for a direct triangulation of
the point’s depth. The same principle cannot be implemented in deflec-
tometry without further work, since it is not the specular object that is
optically encoded here, but the distorted mirror image of the reference
pattern generator. Therefore, direct triangulation of the surface cannot
be performed. Rather, the object is measured indirectly by triangulation
of the normal field, as will be explained in Ch. 7. An important step in
this triangulation is the forward and backward projection from camera
rays to 3D points and vice versa. While it is very easy to calculate the
3D points along the corresponding ray for each pixel, it is very difficult
with the generic camera model to find out to which pixel a 3D point is
projected. More specifically, it would be extremely time-consuming to
calculate for each 3D point its closest camera ray (or rays), since a com-
plete search over all rays would have to be performed for each point. For
an indirect triangulation of the specular surface, the completely generic
camera model is therefore unsuitable. Hence, further processing of the
calibrated rays is required to recover the neighborhood information be-
tween the pixels or, in the case of the light field camera, it is necessary to
restore the 4D relation between the camera rays.

Apart from the difficulties that arise in deflectometry, light field cam-
eras also have many other applications, where the geometric calibration
of the camera itself is not crucial, but rather the correct reconstruction of
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the light field and its SAIs. Examples of this are depth estimation, chang-
ing the perspective on the scene, digital refocusing and artificial bokeh,
or hyperspectral image reconstruction, as discussed in Sec. 3.2. The em-
phasis is therefore rather on the reconstruction of the image content than
on the ray parameters. To use light field cameras for such applications,
it is necessary to obtain the 4D information of the light field. And this
information must first be decoded from the raw 2D sensor data of the
respective light field cameras. Unfortunately, due to their complex struc-
ture, their calibration is very difficult and usually precisely tailored to the
particular type of light field camera. Hence, specially adapted algorithms
have to be used and a great deal of effort must be invested in modeling
the camera optics. However, as already described in the last chapter,
low-dimensional models are often not sufficient to represent all prop-
erties of an optical system—especially when it comes to sophisticated
and highly specialized optical systems like light field cameras. In fact,
the characteristics of the optics are already very precisely incorporated
in the generic ray bundle. Therefore, it makes sense to directly utilize the
calibrated rays for light field decoding as well.

To overcome the issues of highly specialized decoding algorithms, and
to use the already precisely estimated camera rays, this chapter presents
an algorithm that uses the generic camera calibration as a basis for recon-
structing a light field from the unconstrained set of rays. Hereby, a generic
light field reconstruction is realized, which can be used to reconstruct
light fields from arbitrary light field imaging systems, independent of
whether the camera is based on microlenses, mirrors, or coded apertures,
or whether it is realized by employing a camera array.

In the following section, related works in the field of light field decod-
ing and reconstruction are presented. Then, in Sec. 6.2, a new generic
approach for light field reconstruction is proposed that only uses the
information contained in the set of rays obtained via the generic cam-
era calibration. Finally, Sec. 6.3 experimentally validates the proposed
method by reconstructing real light fields obtained with different light
field acquisition systems and compares it to state-of-the-art methods.

136



6.1 Related Works

6.1 Related Works
The first work on light field calibration was done in the context of multi-
camera arrays [208]. However, these cannot simply be transferred to other
light field acquisition systems such as MLA-based light field cameras.
Due to their complex design, the light field has to be decoded from the
raw sensor image using sophisticated algorithms. Furthermore, each lens
(main lens and microlens) is affected by lens aberrations, i.e., a subsequent
rectification of the decoded light field is necessary to obtain correct geo-
metric information relevant for image processing and optical metrology.

Among the microlens-based light field cameras, the standard plenoptic
camera (or unfocused plenoptic camera) has been studied the most, as it is
useful in consumer applications and image processing without requiring
metric calibration [137]. To still be able to compensate for optical distor-
tions, Ng and Hanrahan [136] suggested a digital correction of the lens
aberrations without metric calibration by digitally re-sorting aberrated
rays to where they should have terminated. The first metric calibration
of a commercial light field camera was proposed by Dansereau et al. [44].
To decode the light field from the sensor data, they first estimate the
grid parameters of the MLA. This is done by detecting the microlens
centers from corresponding white images and building a regular grid
that best approximates the detected centers. The light field is then de-
coded by assigning a spatial coordinate to each microlens and an angular
coordinate to every pixel under each microlens, and by converting the
hexagonal grid of microlenses into a rectangular one. Subsequently, the
decoded light field is calibrated using a camera model consisting of ten
intrinsic parameters and five distortion parameters, allowing the SAIs
to be corrected by inverting the distortions. In this process, the calibra-
tion is initialized using the SAIs and then refined by minimizing the ray
re-projection error, i.e., the distance between the 3D positions of checker-
board features and the camera rays. Cho et al. [38] perform an erosion
operation on the white image and estimate the microlens centers by using
clustering and a parabolic fitting. They then decode the light field directly
from the hexagonal layout using a barycentric interpolation. However,
they neither perform metric calibration nor rectification. Bok et al. [20],
in contrast, presented a method that can extract a rectified light field di-
rectly from raw sensor data, avoiding intermediate reconstruction steps.
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In addition, they introduce a new projection model for microlens-based
light field cameras that contains a smaller number of parameters than
the previous methods. Instead of checkerboard corner features, they use
line features extracted directly from the raw data. Further, the microlens
centers are calculated individually without fitting a grid and the light
field is decoded by barycentric interpolation. Eventually, the light field is
rectified and the camera parameters are calculated by minimizing the dis-
tance between line segments and camera rays. Since all methods rely on
a correct description of the microlens grid, Schambach and Puente León
[180] propose an extended model that additionally takes into account
the natural and mechanical vignetting of the microlenses and main lens.
As a consequence, the calibration becomes more accurate, especially in
SAIs corresponding to the peripheral regions of the angular dimension
where the vignetting effect is more prominent.

For a focused plenoptic camera, the distance between the MLA and
the sensor is not equal to the microlens’ focal length. As a result, these
cameras achieve a higher spatial resolution with decreasing angular res-
olution. To further increase the depth of field, the manufacturer Raytrix
proposed multi-focus cameras in which the microlenses have different
focal lengths [148]. Unlike the unfocused plenoptic camera, where each
pixel under the microlens can be assigned to an SAI, the (multi-)focused
plenoptic camera works like a micro camera array, where each microlens
can be interpreted as a virtual camera observing a very small section of
the scene. By using neighboring microlenses to perform stereo-based
triangulation, a virtual depth map can be estimated. And by stitching
the micro-images together using this depth information, an all-in-focus
image of the scene can be reconstructed. However, because the virtual
depth map can only be interpreted in a relative manner, a metric cali-
bration is necessary. A first approach for the calibration of a multi-focus
plenoptic camera was suggested by Johannsen et al. [97]. They extract a
depth map and an all-in-focus image from the camera data and model
the resulting synthetic image using a 15-parameter model that includes
lateral distortion as well as a depth-dependent distortion. Heinze et al.
[80] extended the model by considering the different focal lengths of
the microlenses. Zeller et al. [239] introduced a new depth distortion
model that is directly derived from the theory of depth estimation in a
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focused plenoptic camera, and in addition, they extended the residual
of their optimization to three dimensions by including the virtual depth.
A disadvantage of the above methods is that they depend on Raytrix’s
software package since they do not start from raw data but the synthetic
all-in-focus image and the virtual depth map.

6.2 Generic Light Field Reconstruction
To be able to extract light field information from the raw data, the pre-
viously discussed methods must initially detect the centers of the mi-
crolenses with high precision. But even with a subpixel accurate detec-
tion, most of the time only the rays near the center of the microlenses
are precisely calibrated. The camera rays at the boundary of the mi-
crolenses are very difficult to model in all approaches, and therefore
these pixels are often discarded. Another disadvantage of the classical
methods is the model-based calibration in general. It cannot describe
highly local errors such as the strong distortions at the boundaries of
the microlenses using only a low-dimensional model. Hence, a generic
camera calibration should be advantageous. However, the biggest disad-
vantage of the common light field reconstruction methods is that they
each are only applicable to a single type of camera. For example, the
methods by Dansereau et al. [44] and Bok et al. [20] can only be used with
MLA-based light field cameras whose microlenses are exactly focused
onto the sensor.

Since the calibrated rays describe the camera very well, it also makes
sense to make use of it for the light field reconstruction. In fact, the generic
ray bundle already represents the light field perfectly and optimally takes
into account all distortions of the camera optics. More precisely, this
means that the set of rays is effectively an irregularly sampled version
of the distortion-free light field. For the light field reconstruction, this
implies that no specific model of the used camera has to be developed,
the sensor data does not have to be decoded according to this model, it is
not necessary to detect the centers of any microlenses, and no hexagonal
sampling of an MLA has to be compensated. Instead, the irregularly
sampled light field has to be transformed into an adequate representation.
Of course, since this is completely independent of the camera optics used,
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a fully generic reconstruction algorithm is obtained that can be applied
to any type of light field camera.

In the following, it will be explained how a conventional light field can
be reconstructed from the unconstrained ray bundle. For this purpose,
a regular and discrete parametrization of the target light field is first
found based on the irregular data. Subsequently, it is shown how the
irregular data is interpolated in a suitable way to this newly defined
regular grid of light field pixels. And finally, to be useful for optical
metrology applications, the intrinsic parameters of the reconstructed
light field are derived.

6.2.1 Parametrization of Light Field Coordinates
To decode a light field from the raw sensor data, the camera must first
be calibrated, e.g., by using a generic calibration method as described
in Sec. 5.2. As a consequence, all the preprocessing steps of the conven-
tional state-of-the-art light field calibration algorithms are not needed
at all. Even more, it does not actually matter what type of light field
acquisition device is used. After applying the generic camera calibration,
a ray bundle is obtained in an arbitrary coordinate system, which can
easily be transformed into a camera-fixed coordinate system using the
normalization presented in Sec. 5.2.7. Since most light field algorithms
do not work with Plücker-coordinates, as the last step, the camera ray
parameters are transformed into light field coordinates. To do so, the rays
are first transformed into the camera-fixed coordinate system, by shifting
the origin and rotating the axes. Afterward, the intersections of the rays
with the two-plane representation of the light field are calculated. For
this, the 𝑢, 𝑣-plane is placed orthogonal to the 𝑧-axis into the origin of
the coordinate system, i.e., this corresponds approximately to the center
of the camera’s exit pupil when an MLA-based light field camera is used.
The 𝑠, 𝑡-plane is placed parallel to this at an arbitrary distance 𝑓 , see
figure 6.1. Thus, each camera ray 𝐥𝑖 = (𝐝𝑖, 𝐦𝑖)T can be described by four
light field coordinates ̄𝑠𝑖 , ̄𝑡𝑖 , 𝑢̄𝑖 , ̄𝑣𝑖 :

𝜆 ( ̄𝑠𝑖, ̄𝑡𝑖, 𝑢̄𝑖, ̄𝑣𝑖, 1)T = 𝐏𝐓 𝐥𝑖 , (6.1)
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𝐥𝑖

𝑠

𝑡

𝑢

𝑣
𝑓

Figure 6.1 Two-plane parametrization of the light field. The ray 𝐥𝑖 intersects the 𝑢, 𝑣- and
the 𝑠, 𝑡-plane in (𝑠𝑖, 𝑡𝑖, 𝑢𝑖, 𝑣𝑖) . The intensities in the planes visualize the spatial distribution
of the intersection points as a 2D histogram. The 𝑢, 𝑣-plane lies in the plane of the camera’s
main lens. The 𝑠, 𝑡-plane corresponds to a projection on the rectangular sensor.

with 𝜆 ≠ 0 , using the coordinate transformation matrix 𝐓 that is derived
in Sec. 5.2.7, and with a ray-to-light-field projection operator 𝐏 [94]:

𝐏 =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑓 0 0 0 −1 0
0 𝑓 0 1 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

. (6.2)

6.2.1.1 Regular Light Field Grid

To reconstruct a light field from the bundle of rays associated with the
camera, the calibrated ray coordinates must first be transformed into a
standardized grid. Afterwards, the observed ray intensities 𝐿( ̄𝑠𝑖, ̄𝑡𝑖, 𝑢̄𝑖, ̄𝑣𝑖)
can be interpolated to a discretized light field, which is parametrized in
the same two-plane representation as previously. The complete set of
real camera rays, which is described as a set of 4D points, is arranged
in an irregular 4D grid. Still, the classical light field algorithms (e.g.,
refocusing and depth estimation) require a regular grid with uniform
spacing. Therefore, this irregular grid of continuous ray coordinates has
to be interpolated to a discrete light field described by a regular grid.
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Hence, it is necessary to define a regular grid with integer grid points

(𝑠, 𝑡, 𝑢, 𝑣) ∈ [0, 𝑁𝑠 − 1] × [0, 𝑁𝑡 − 1] × [0, 𝑁𝑢 − 1] × [0, 𝑁𝑣 − 1] (6.3)

with a fixed number of samples 𝑁𝑠 , 𝑁𝑡 , 𝑁𝑢 , 𝑁𝑣 in the respective dimen-
sions. After the discrete target light field has been defined, the set of real
camera rays are transformed, for which the parameter space of the actual
ray geometry must be estimated. For this, the domains of the real light
field dimensions have to be determined by analyzing the intersection
points of the rays with both planes of the light field representation. It goes
without saying that among all rays there are also isolated outliers that
deviate so strongly from the others that it is not worthwhile to consider
them in the interpolation. Therefore, the 2D densities of the intersection
points should be investigated by making use of a 2D histogram analysis,
see figure 6.1. To place the regular grid structure into the 2D density
of the irregular data, a threshold value on the histogram data enables
defining the grid extension. A threshold of, e.g., 1% ensures that most of
the camera’s rays are within the range defined by the grid.

Since the real light field parameters are specified in physical units, e.g.,
millimeter, they have to be transformed to the previously defined discrete
4D-pixel grid by shifting the minimal value 𝑠o , 𝑡o , 𝑢o , 𝑣o , normalizing
the width of the histogram Δ𝑠 , Δ𝑡 , Δ𝑢 , Δ𝑣 , and considering the number
of samples. The normalized coordinates are then defined by

𝑠𝑖 =
̄𝑠𝑖 − 𝑠o
Δ𝑠

(𝑁𝑠 − 1) , 𝑡𝑖 =
̄𝑡𝑖 − 𝑡o
Δ𝑡

(𝑁𝑡 − 1) ,

𝑢𝑖 =
𝑢̄𝑖 − 𝑢o

Δ𝑢
(𝑁𝑢 − 1) , 𝑣𝑖 =

̄𝑣𝑖 − 𝑣o
Δ𝑣

(𝑁𝑣 − 1) .
(6.4)

This still results in irregularly spaced data, which however can now
be interpolated more easily to obtain the desired regularly sampled
light field. The number of 4D cubes in each direction and the length of
their edges could in principle be defined arbitrarily, but it is advisable to
incorporate knowledge about the physical camera. For example, the Lytro
Illum camera considered in this work has microlenses with a diameter
of about 15 pixels. Thus, because the camera is of the unfocused design,
this sampling can be used directly as a basis for the discretization of the
angular coordinates of the 𝑢, 𝑣-plane, where 𝑁𝑢 = 𝑁𝑣 ≈ 15 due to the
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(a) (b) (c)

Figure 6.2 Different sampling patterns of the u,v-plane: The dots represent the pixel
coordinate, and the lines limit the pixel area. (a) Cartesian sampling. (b) Polar sampling
with equidistant radius spacing, using 𝑅𝑛 = 1

2 + 𝑛 . (c) Polar sampling with equal pixel

area, using 𝑅𝑛 ∼ √𝑛𝑁𝜙 + 1 .

circular shape of the camera’s main lens. The sampling of the 𝑠, 𝑡-plane
can be determined in the same way, e.g., by the number of microlenses
in front of the sensor, whereby it is advisable to choose 𝑁𝑡−1

Δ𝑡
= 𝑁𝑠−1

Δ𝑠
to

obtain square-shaped spatial pixels.

6.2.1.2 Polar Parametrization of Angular Coordinates

As can be seen in figure 6.2, the parametrization of the 𝑢, 𝑣-plane us-
ing Cartesian coordinates is not always ideal. If the grid is defined to
enclose the entire circle, then the light field is reconstructed in areas
where no rays pass through the 𝑢, 𝑣-plane. If the grid is placed inside
the circle, a sufficient number of rays will pass through each light field
pixel. However, information is discarded at the edges. Hence, it would be
better to directly use a polar parametrization of the angular coordinates,
which would allow the entire information to be captured without sam-
pling unneeded areas. Therefore, the angular coordinates are defined
by polar coordinates 𝑟 and 𝜙 . To further obtain a resolution compara-
ble to the Cartesian sampling, the number of samples is chosen to be
𝑁𝑟 = 𝑁𝑢 and 𝑁𝜙 ≈ 𝑁𝑢 . The coordinates are then linearly sampled in

the domain 𝑟 ∈ [− 𝑁𝑟−1
2

, 𝑁𝑟−1
2

] and 𝜙 ∈ [0, 𝑁𝜙−1
𝑁𝜙

𝜋] . Here, 𝑁𝜙 should
be a multiple of 4 to be able to obtain horizontal and vertical EPIs com-
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parable to the Cartesian sampling, i.e., EPI(𝑟, 𝑠)|𝜙=0 = EPI(𝑢, 𝑠) and
EPI(𝑟, 𝑡)|𝜙= 𝜋

2
= EPI(𝑣, 𝑡) . While the advantage of a polar parametriza-

tion is a more efficient sampling, there are also disadvantages. When
sampling the angle and the radius in equidistant steps, the effective pixel
size grows with increasing radius, see figure 6.2(b). As a result, fewer
rays pass through smaller pixels, which would result in a lower signal-to-
noise ratio for these pixels during the interpolation to the discrete light
field.

A possible solution here is to define the radius sampling in such a
way that each pixel has the same area. This can easily be achieved by not
using a linear sampling of the radius coordinates but by transforming
their domain, see figure 6.2(c). The radius 𝑅0 of the center-most pixel has
the area 𝐴0 , whereas the area 𝐴𝑛 of the remaining pixels is represented
by a sector of an annulus:

𝐴0 = 𝜋𝑅2
0 , (6.5)

𝐴𝑛 = 𝜋(𝑅2
𝑛 − 𝑅2

𝑛−1) 1
𝑁𝜙

for 𝑛 > 0 . (6.6)

By requiring 𝐴𝑛 = 𝐴𝑛−1 = ⋯ = 𝐴0 and using mathematical induction, a
formula for the radius is obtained:

𝑅𝑛 = 𝑅0√𝑛𝑁𝜙 + 1 =
𝑁𝑟
2

√√√
⎷

𝑛𝑁𝜙 + 1
𝑁𝑟−1

2
𝑁𝜙 + 1

. (6.7)

The reconstruction of the light field using polar coordinates can then
be performed in the same way as when Cartesian coordinates are used.
The only distinction is the different sampling grid in the angular plane,
for which the Cartesian coordinates 𝑢𝑖 , 𝑣𝑖 need to be transformed into
polar coordinates 𝑟𝑖 , 𝜑𝑖 using

𝑟𝑖 = sign(𝑣𝑖)√𝑢2
𝑖 + 𝑣2

𝑖 , (6.8)

𝜙𝑖 = arctan2 (𝑣𝑖 −
𝑁𝑣 − 1

2
, 𝑢𝑖 −

𝑁𝑢 − 1
2

) mod 𝜋 . (6.9)
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A reverse transformation from polar coordinates back to Cartesian coor-
dinates is achieved by

𝑢𝑖 = 𝑟𝑖 cos 𝜑𝑖 +
𝑁𝑢 − 1

2
, (6.10)

𝑣𝑖 = 𝑟𝑖 sin 𝜑𝑖 +
𝑁𝑣 − 1

2
. (6.11)

The only differences between polar sampling with equidistant ra-
dius spacing and polar sampling with equal pixel area are that the
discrete pixel coordinates are slightly different. However, using a po-
lar parametrization for conventional light field applications could be
a challenge, since existing algorithms are based on rectangular data.
In particular, commonly used techniques based on CNNs cannot work
with this representation without further modification, since the standard
convolution operators would first have to be replaced by polar ones.

6.2.2 Weighted Interpolation of Irregular Data
After the parameters of the light field have been defined, each corre-
sponding light field pixel can be determined for every ray by finding
the discrete grid point that is closest to the ray’s light field coordinates.
Since the rays and the grid are normalized to the same scale, the set of
rays N𝑚

𝑠,𝑡,𝑢,𝑣 that affects a pixel (𝑠, 𝑡, 𝑢, 𝑣) can be found using a rounding
operation to the closest integer ⌈⋅⌋ . As a result, each light field pixel is
only influenced by rays that lie in the corresponding 4D cube

N𝑚
𝑠,𝑡,𝑢,𝑣 ≔

⎧{{
⎨{{⎩

𝑖 ∶ 𝑚
2

≥
∥
∥
∥
∥

⎛⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑢
𝑣

⎞⎟⎟⎟⎟
⎠

−
⎛⎜⎜⎜⎜
⎝

⌈𝑥𝑖⌋
⌈𝑦𝑖⌋
⌈𝑢𝑖⌋
⌈𝑣𝑖⌋

⎞⎟⎟⎟⎟
⎠

∥
∥
∥
∥∞

⎫}}
⎬}}⎭

, (6.12)

where each individual ray is assigned to the nearest pixel when using
𝑚 = 1 . When using a polar parametrization of the angular coordinates,
the parameters 𝑢 , 𝑣 need to be replaced by 𝑟 , 𝜙 . To allow a ray to influence
more than the nearest pixel, higher-order neighbors can be utilized with
𝑚 > 1 , 𝑚 ∈ ℕ+ . The intensity of a discrete pixel can then be calculated
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from the intensity values of the corresponding rays as a weighted average:

𝐿(𝑠, 𝑡, 𝑢, 𝑣) =
∑𝑖∈N𝑚

𝑠,𝑡,𝑢,𝑣
𝑤𝑖(𝑢, 𝑣, 𝑠, 𝑡) 𝐿(𝑠𝑖, 𝑡𝑖, 𝑢𝑖, 𝑣𝑖)

∑𝑖∈N𝑚
𝑠,𝑡,𝑢,𝑣

𝑤𝑖(𝑢, 𝑣, 𝑠, 𝑡)
. (6.13)

For the weighting factor, the distance between a ray’s light field parame-
ters and its correspondence in the grid is calculated. In order to consider
larger deviations less, the error is squared and exponentially weighted:

𝑤𝑖(𝑢, 𝑣, 𝑠, 𝑡) = 1
𝜀𝑖

exp (− ∥(𝑠, 𝑡, 𝑢, 𝑣)T − (𝑠𝑖, 𝑡𝑖, 𝑢𝑖, 𝑣𝑖)T∥2) . (6.14)

A separate weighting of the individual light field coordinates is not re-
quired because these have already been brought to a unified basis by the
normalization (6.4). To additionally benefit from the results of the generic
camera calibration, an error measure 𝜀𝑖 is taken into account, e.g., the pixel-
wise ray re-projection error (5.34). This suppresses poorly calibrated cam-
era rays, which often do not have good optical properties, e.g., dead pixels
or pixels at the edges of microlenses, which can be strongly distorted.

Regarding computational resources, it remains to say that the direct
calculation of the set of nearest neighbors N𝑚

𝑠,𝑡,𝑢,𝑣 is at first extremely in-
efficient. Since for each discrete pixel (𝑠, 𝑡, 𝑢, 𝑣) a complete search over all
irregularly distributed rays (𝑠𝑖, 𝑡𝑖, 𝑢𝑖, 𝑣𝑖) must be performed, the complex-
ity is O(𝑛2) , with 𝑛 being the number of pixels. Using more efficient algo-
rithms, such as k-d trees, can decrease the complexity to O(𝑛 log 𝑛) [39].
Fortunately, however, due to the ray coordinates being normalized to a
convenient range, it is even better to simply assign each irregular coordi-
nate (𝑠𝑖, 𝑡𝑖, 𝑢𝑖, 𝑣𝑖) to a discrete pixel directly. This is much faster since the
nearest neighbor of a continuous coordinate is directly its closest integer
analogon. Hence, a rounding of the ray coordinates directly returns the
corresponding set of nearest neighbors. In addition, to allow the assign-
ment of higher-order neighbors, a formula can be given that allocates
the rays to a set N𝑚

𝑠,𝑡,𝑢,𝑣 using only fast and simple operations:
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̄𝑠𝑢̄

𝑥
𝑥′

̄𝑠

̄𝑠′
𝑢̄′

𝑧 𝑓

Figure 6.3 Perspective projection through shifted pinhole onto shifted sensor plane.

⎛⎜⎜⎜⎜
⎝

𝑢
𝑣
𝑠
𝑡

⎞⎟⎟⎟⎟
⎠

≡
⎡
⎢
⎢
⎢
⎢

⎛⎜⎜⎜⎜
⎝

⌈𝑢𝑖⌋
⌈𝑣𝑖⌋
⌈𝑠𝑖⌋
⌈𝑡𝑖⌋

⎞⎟⎟⎟⎟
⎠

+ 𝑚 − 1
2

(−1)𝑚
⎛⎜⎜⎜⎜
⎝

sign (𝑢𝑖 − ⌈𝑢𝑖⌋)
sign (𝑣𝑖 − ⌈𝑣𝑖⌋)
sign (𝑠𝑖 − ⌈𝑠𝑖⌋)
sign (𝑡𝑖 − ⌈𝑡𝑖⌋)

⎞⎟⎟⎟⎟
⎠

⎥
⎥
⎥
⎥
⎦

⇒ 𝑖 ∈ N𝑚
𝑠,𝑡,𝑢,𝑣 .

(6.15)
Hence, a complexity of O(𝑛) is achieved. Even more, due to all rays
being independent of one another, the creation of the nearest neighbor
set (6.12) and the weighted interpolation (6.13) can be parallelized using
GPU hardware. The reconstruction of a complete light field then takes
only a few seconds (in the case of the Lytro Illum with a 40 Mpx Sensor,
using an Nvidia GTX 1080 Ti, an Intel Core i7-6700, and 16 GB RAM).

6.2.3 Intrinsic Camera Parameters
Apart from the radiometric reconstruction of the light field, the geometric
ray properties are relevant in many applications. For optical metrology,
3D reconstruction, or other areas of computer vision, a mapping is needed
to transform pixel coordinates into world coordinates and, vice versa, to
project points from world coordinates onto the pixel plane. Hence, to use
the light field camera for the deflectometric reconstruction of specular

147



6 Light Field Reconstruction

surfaces, as will be presented in Ch. 7, the intrinsic camera parameters
need to be available. Unlike the classic pinhole camera model, where
each world point is mapped to only a 2D pixel pair, the same world point
can be mapped to more than one 4D light field pixel. Illustratively, this
can be understood by the observation that a light field camera can also
be interpreted as an array of individual virtual sub-cameras, where an
observed point is mapped to a 2D pixel pair in each individual camera’s
virtual sensor plane. Hence, every angular coordinate needs a projection
equation from world points to the respective spatial pixels. The perspec-
tive projection of a point 𝐱 = (𝑥, 𝑦, 𝑧)T onto spatial pixels through a
pinhole located at the optical center is obtained with (5.1). Following
figure 6.3, projecting the same point through a pinhole located at the
shifted position 𝑢̄ then results in

̄𝑠′ =
𝑓𝑥′

𝑧
, with ̄𝑠′ = ̄𝑠 − 𝑢̄ , 𝑥′ = 𝑥 − 𝑢̄ , (6.16)

⇒ ̄𝑠 =
𝑓(𝑥 − 𝑢̄)

𝑧
+ 𝑢̄ . (6.17)

In conclusion, the intrinsic camera parameters required for the perspec-
tive projection of a point 𝐱 onto the spatial pixels ( ̄𝑠, ̄𝑡)T are described for
each angular coordinate 𝑢̄, ̄𝑣 by a projection matrix (comparable to the
standard pinhole camera model from Sec. 5.1). Since the optical centers
of the individual sub-cameras are slightly displaced to each other in the
𝑢̄, ̄𝑣-plane, a corresponding translation vector is required to represent the
relative offset to the central sub-camera. The projection is represented by

⎛⎜⎜
⎝

̄𝑠
̄𝑡

1

⎞⎟⎟
⎠

∼ 𝐊(𝐱 + 𝐭) , with 𝐊 = ⎛⎜⎜
⎝

𝑓 0 𝑢̄
0 𝑓 ̄𝑣
0 0 1

⎞⎟⎟
⎠

, 𝐭 = ⎛⎜⎜
⎝

−𝑢̄
− ̄𝑣
0

⎞⎟⎟
⎠

. (6.18)

For every SAI, the pinhole is shifted in 𝑢̄, ̄𝑣-direction, and the respective
center of the sensor is shifted in the opposite direction. Since all SAIs
share the same virtual sensor plane, such parametrization results in an
interesting effect that shows up in many light field camera calibration
algorithms: negative disparities can be obtained. For camera array-based
light field cameras, the minimal disparity is usually zero and corresponds
to a point at optical infinity. In contrast, the plane of zero disparity in the
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configuration presented here is the “focal plane” of the light field, where
𝑧 = 𝑓 . Points closer to the camera have a positive and points farther
away a negative disparity. Hence, a point at the focal plane is imaged
to the same spatial coordinate ̄𝑠 = 𝑥 in every sub-aperture image. Of
course, the choice of the focal length 𝑓 influences the light field represen-
tation. However, the actual value is not important, since it only results
in a different light field parametrization. Also, the “focal plane” of the
light field should not be confused with the plane where the imaging has
the highest sharpness. Theoretically, a light field camera has an infinite
depth of field. Practically however, due to the SAIs of a real light field
camera being imaged through only a very small aperture, their depth of
field is finite but sufficiently high [60]. In summary, the value of 𝑓 does
not correspond to a conventional focus.

Because the light field reconstruction is performed with regular grid
parameters and discrete pixels (𝑠, 𝑡, 𝑢, 𝑣) , the corresponding intrinsic
parameters need to be derived to project world points to pixel coordinates.
Thus, this results for every SAI in a camera matrix and a translation vector

𝐊𝑢𝑣 = ⎛⎜⎜
⎝

𝑓𝑠 0 𝑐𝑠(𝑢)
0 𝑓𝑡 𝑐𝑡(𝑣)
0 0 1

⎞⎟⎟
⎠

, 𝐭𝑢𝑣 = ⎛⎜⎜
⎝

𝑡𝑠(𝑢)
𝑡𝑡(𝑣)

0

⎞⎟⎟
⎠

. (6.19)

The corresponding parameters can directly be determined from the two-
plane parametrization of the light field by using (6.4) and (6.17):

𝑓𝑠 = 𝑓
𝑁𝑠 − 1

Δ𝑠
, (6.20)

𝑓𝑡 = 𝑓
𝑁𝑡 − 1

Δ𝑡
, (6.21)

𝑐𝑠(𝑢) = 𝑢Δ𝑢
Δ𝑠

𝑁𝑠 − 1
𝑁𝑢 − 1

+ (𝑁𝑠 − 1)
𝑢o − 𝑠o

Δ𝑠
, (6.22)

𝑐𝑡(𝑣) = 𝑣Δ𝑣
Δ𝑡

𝑁𝑡 − 1
𝑁𝑣 − 1

+ (𝑁𝑡 − 1)
𝑣o − 𝑡o

Δ𝑡
, (6.23)

𝑡𝑠(𝑢) = −𝑢 Δ𝑢
𝑁𝑢 − 1

− 𝑢o , (6.24)

𝑡𝑡(𝑣) = −𝑣 Δ𝑣
𝑁𝑣 − 1

− 𝑣o . (6.25)
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In this context, when using a polar parametrization of the angular coor-
dinates, the intrinsic parameters can be calculated for each 𝑟, 𝜙-pair by
transforming them to their corresponding 𝑢, 𝑣-value using (6.10) & (6.11).

The forward projection of a point 𝐱 = (𝑥, 𝑦, 𝑧)T (measured in the
coordinate system fixed to the central subcamera) onto the light field
pixel (𝑠, 𝑡, 𝑢, 𝑣) can be found with

𝑧 ⎛⎜⎜
⎝

𝑠
𝑡
1

⎞⎟⎟
⎠

= 𝐊𝑢𝑣 (𝐱 + 𝐭𝑢𝑣) . (6.26)

The backward projection of light field pixels (𝑠, 𝑡, 𝑢, 𝑣) to points 𝐱(𝑧)
along the associated camera ray is given by

𝐱(𝑧) = 𝑧 𝐊−1
𝑢𝑣

⎛⎜⎜
⎝

𝑠
𝑡
1

⎞⎟⎟
⎠

− 𝐭𝑢𝑣 . (6.27)

Finally, for every light field coordinate (𝑠, 𝑡, 𝑢, 𝑣) , the corresponding ray
in Plücker-coordinates can be obtained easily as

𝐝(𝑠, 𝑡, 𝑢, 𝑣) =
𝐱(𝑧) − 𝐱(0)

‖𝐱(𝑧) − 𝐱(0)‖
, (6.28)

𝐦(𝑠, 𝑡, 𝑢, 𝑣) = 𝐱(0) × 𝐝(𝑠, 𝑡, 𝑢, 𝑣) . (6.29)

When the light field camera is used for depth estimation, the disparity
of a scene feature is estimated [218]. The disparity appears as the slope
of a line in the EPIs, as detailed in Sec. 3.2. Because negative disparities
may also be observed with the light field parametrization presented here,
the SAIs must first be brought to a uniform basis, i.e., a disparity offset
must be subtracted. Using the disparity and with the help of the baseline
between the SAIs, it is then possible to convert back to the metric depth:

𝑧 =
𝑓𝑠𝑏𝑠

𝑑𝑠 − 𝑑offset,𝑠
=

𝑓𝑡𝑏𝑡
𝑑𝑡 − 𝑑offset,𝑡

, (6.30)

where 𝑑𝑠, 𝑑𝑡 represent the disparity estimated from the horizontal and
vertical EPI, 𝑏𝑠 and 𝑏𝑡 represent the baselines in the respective directions,
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and 𝑑offset,𝑠 and 𝑑offset,𝑡 are the offsets of the disparity. They can be
calculated from the intrinsic parameters:

𝑏𝑠 = 𝑡𝑠(0) − 𝑡𝑠(1) , 𝑑offset,𝑠 = 𝑐𝑠(0) − 𝑐𝑠(1) , (6.31)
𝑏𝑡 = 𝑡𝑡(0) − 𝑡𝑡(1) , 𝑑offset,𝑡 = 𝑐𝑡(0) − 𝑐𝑡(1) . (6.32)

If, in addition, the light field resolution is chosen to result in square-
shaped spatial and angular pixels Δ𝑠(𝑁𝑡 −1) = Δ𝑡(𝑁𝑠 −1) and Δ𝑣(𝑁𝑢 −
1) = Δ𝑢(𝑁𝑣−1) , then it follows that 𝑏𝑠 = 𝑏𝑡 and 𝑑offset,𝑠 = 𝑑offset,𝑡, which
means that the disparities calculated from different EPIs should be equal.

6.3 Evaluation
This section evaluates the presented light field reconstruction algorithm
and compares it to the state of the art. To show the advantage of the pre-
sented generic approach, three different light field camera systems are
evaluated: a Lytro Illum with an RGB sensor, a monochromatic Raytrix
R5, and a prototype K|Lens lens mounted onto an RGB camera sensor.
The Lytro Illum and the Raytrix R5 are both microlens-based light field
cameras. The former is an unfocused plenoptic camera [137], and the
latter is a focused plenoptic camera [123], see Sec. 3.2. The K|Lens cam-
era is based on an “Image Multiplier”, which contains a mirror tunnel,
similar to a kaleidoscope. Using this, a multi-view capture of the scene
is directly generated and mapped onto the camera sensor [128]. Conse-
quently, all three cameras are based on very different camera models, and
for conventional camera calibration, all would need a different calibration
procedure. However, a generic calibration works independently of the
camera. Here, the ray geometry of the vision rays of each camera was esti-
mated using the generic camera calibration from Sec. 5.2.1. Subsequently,
test scenes were captured to be used as a basis for the comparison of the
proposed light field reconstruction.

In the following, first, the presented algorithm is analyzed, and a quali-
tative evaluation of the generic light field reconstruction for all light field
cameras is conducted. Then, the quality of the geometric reconstruction
is investigated by a quantitative comparison of the calibration error.
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(a) maxzoom setting. (b) minzoom setting.

Figure 6.4 Lytro Illum data. Top: Sensor image. Bottom: Detailed views.

6.3.1 Light Field Reconstruction: Lytro Illum
The Lytro Illum light field camera has a sensor of size 7728 × 5368 px
with a pixel pitch of 1.4 µm overlaid with a Bayer pattern. Hence, with
the help of demosaicing, color information can be obtained. In front of
the sensor is an array of hexagonally arranged microlenses, with each
microlens having an approximate diameter of 20 µm and a focal length
of 𝑓 = 40 µm. Since the camera is an unfocused plenoptic camera, the
distance of the microlenses to the sensor plane corresponds to their focal
length. The main lens of the camera is a zoom lens with a selectable
focal length equivalent in the range of 30 mm to 250 mm. Therefore, two
configurations are investigated for the Lytro Illum camera: A maxzoom
setting with a focal length equivalent of 250 mm, and a minzoom setting
with a focal length equivalent of 30 mm.

Figure 6.4 shows the sensor data corresponding to both zoom settings
after demosaicing. From a coarse point of view, the images look like the
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image using a conventional camera. Only when taking a closer look the
microlenses can be seen. It can be seen that the f-number matching does
not work perfectly for the maxzoom setting since the microlenses show
strong vignetting effects here. For the minzoom setting, these effects also
occur, but not quite as strongly. To compensate for vignetting, the images
are divided by a so-called white image, i.e., an image of a white scene
taken with the aid of an optical diffuser. The pre-processed raw data can
then be used in the light field reconstruction algorithms. For a comparison
of the presented generic method to the state of the art, the light field
reconstruction methods of Dansereau et al. [44] and Bok et al. [20] are
evaluated as well. Both methods only work with unfocused plenoptic
cameras and can thus only be tested on the Lytro Illum data sets.

6.3.1.1 Ray distribution and Grid Parameters

With a pixel pitch of 1.4 µm and a microlens diameter of 20 µm there
are about 14.3 × 14.3 pixels underneath each microlens. Since the Lytro
Illum is of unfocused design, this corresponds directly to the angular
resolution. A discrete angular sampling can then be found by round-
ing up or down. To obtain a central SAI, the angular resolution should
be an odd number. Following Sec. 6.2.1, the spatial resolution can be
found by dividing the sensor size by this angular sampling factor, re-
sulting in a spatial resolution of approximately 520 × 376 px for each
SAI. Still, to allow for a meaningful discussion of the proposed light
field reconstruction relative to other methods in the literature, the Lytro
Illum data is evaluated by choosing the resolution of the light field grid
to be (𝑁𝑠, 𝑁𝑡, 𝑁𝑢, 𝑁𝑣) = (625, 434, 15, 15) , which is the same as the re-
constructed light field of Dansereau et al. In comparison, the light field
obtained from the reconstruction method by Bok et al. has a resolution
of (𝑁𝑠, 𝑁𝑡, 𝑁𝑢, 𝑁𝑣) = (552, 383, 13, 13) , meaning that the worst pixels at
the edges of the microlenses are cut off.

Now that the resolution of the discrete target light field is known, the
real light field parameters must be transformed into this newly defined
4D grid. For this purpose, the intersections of the vision rays with the two
planes of the two-plane parametrization of the light field are analyzed.
The histogram analysis of the intersection points for the minzoom and
maxzoom setting are shown in figure 6.5. For the maxzoom setting, the
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6 Light Field Reconstruction

(a) maxzoom setting. Left: 𝑠, 𝑡-plane. Right: 𝑢, 𝑣-plane.

(b) minzoom setting. Left: 𝑠, 𝑡-plane. Right: 𝑢, 𝑣-plane.

Figure 6.5 Lytro Illum: Histogram of ray-plane intersections.

histograms are very regular. The 𝑢, 𝑣-plane shows a circular distribution.
Since the 𝑢, 𝑣-plane is placed at the point of the highest ray density, one
can indirectly observe the aperture of the main lens here. The diameter
of the aperture is estimated to be 3.4 cm, which also corresponds approx-
imately to what can be roughly measured with a tape measure when
looking into the objective from outside the camera. The 𝑠, 𝑡-plane shows
a rectangle, which corresponds to a projection of the rectangular sensor.
The extension of this rectangle depends on the arbitrarily chosen distance
𝑓 between the two planes and is therefore not important. The histograms
of the minzoom setting show strong optical distortions. The 𝑠, 𝑡-plane
shows a rectangle, which has a pincushion distortion. This precisely cor-
responds to the distortions produced by the non-ideality of the main lens.
Since the generic camera model works completely independent of any
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low-dimensional parametric model, this optical distortion is perfectly
described by the generic set of vision rays. Interestingly, the 𝑢, 𝑣-plane
is no longer circular but has a hexagonal structure. The aperture of the
Lytro is therefore most likely hexagonal, meaning the projection of the
aperture can be seen here. For the maxzoom setting, where the aperture is
already very small, as seen in the white images, the aperture is probably
“completely open” and therefore circular. To keep the f-number matching,
the Lytro Illum seems to have a variable input aperture.

With the help of the histograms, the dimension of the grid parameters
can be determined. For this purpose, rectangles are fitted around the
histograms such that at least 99 % of the ray-plane intersections should
lie within the rectangular area. This effectively suppresses outliers. Every-
thing that is not exactly in the grid is not necessarily completely lost and
can still have an influence on the neighboring light field pixels, as long
as the number of nearest neighbors in (6.12) is chosen to be high enough.

6.3.1.2 Qualitative Evaluation of Subaperture Images

Due to the relatively freely chosen sampling grid, in some cases no corre-
sponding ray can be assigned for some of the discrete 4D pixels. For this
reason, if the interpolation order is too low, this can lead to a perforated
reconstruction. Hence, for the generic reconstruction, up to second-order-
nearest neighbors were used for the angular domain by setting 𝑚 = 2 ,
and up to third-order-nearest neighbors were used for the spatial domain
with 𝑚 = 3 in (6.12). Increasing the order of interpolation too much does
not change the result of the reconstruction significantly, because the expo-
nential weight of (6.14) automatically punishes rays that are too far away
very strongly. The only major disadvantage of a higher interpolation
order is the longer reconstruction time, since the intensity of each ray
must be considered for more than just the nearest neighbor.

The reconstruction of the central SAI of the maxzoom dataset captured
with the Lytro Illum is shown in figure 6.6. Here, only rays from the center
of the 𝑢, 𝑣-plane were used in the reconstruction. It can be seen that the
presented generic method can reconstruct the scene correctly, although
there were absolutely no presumptions about the internal optical struc-
ture of the camera and no information on the correlations between rays
and pixels on the sensor was used. In detail, it can be seen that the generic
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(a) Bok et al.

(b) Dansereau et al.

(c) Proposed generic light field reconstruction.

Figure 6.6 maxzoom setting. Left: SAI from the center of the 𝑢, 𝑣-plane. Right: Details.
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(a) Bok et al.

(b) Dansereau et al.

(c) Proposed generic light field reconstruction.

Figure 6.7 maxzoom setting. Left: SAI from the edge of the 𝑢, 𝑣-plane. Right: Details.
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method can reconstruct the light field even near object edges very well.
The reconstruction results of Dansereau et al. and of the generic method
are relatively similar and show a slightly sharper result compared to the
method of Bok et al. However, moving away from the center and looking
at peripheral SAIs that still contain information, one sees that the quality
of the images for Dansereau et al. and Bok et al. decreases significantly,
while the result of the generic method only becomes slightly blurrier, see
figure 6.7. In addition, the image of Bok et al. shows black borders, i.e.,
invalidated pixels, at the top and on the right. The generic method shows
a similar effect, which, depending on how tight the dimension of the
𝑠, 𝑡-plane is chosen using the histogram, could also be stronger. These
pixels define areas of the light field where there is no real ray. Therefore,
no information can be obtained. Bok et al. avoid this problem in the lower-
left area by simply reducing the size of the image. For Dansereau et al., a
similar effect shows up, if one chooses SAIs that lie even further at the
edge. However, since here their reconstruction is of such poor quality, it
does not make sense to use it for the comparison made here.

The reconstruction of the central SAI of the minzoom dataset is shown
in figure 6.8. Here one can see similar results to before. Dansereau et al.’s
method shows the sharpest reconstruction followed by Bok et al.’s method.
At the edge of the image, the generic reconstruction shows a similar per-
formance to Bok et al., visible in the bottom detail image. The minimally
blurrier appearance of the generic reconstruction in the center near the
alarm clock is due to the relatively freely chosen sampling of the light
field. In order to reconstruct the entire light field, regions at the periph-
ery of the image were also reconstructed in this case. And because the
light field was strongly rectified, the area in the center of the image
shrinks. Consequently, fewer pixels remain for this area. Bok et al. avoid
this problem by heavily cropping the entire image. Dansereau et al. do
not have this problem either, as they do not perform rectification and
undistortion. Their rectification algorithm only works for the older Lytro
camera, which has a relatively simple optical setup. But it does not yield
useful results for the newer Lytro Illum, which has a more sophisticated
lens setup that reduces optical aberrations and that enables a variable
zoom setting. Eventually, this means that the light field camera model of
Dansereau et al. is not generalizable, and it does not even seem to be ap-
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(a) Bok et al.

(b) Dansereau et al.

(c) Proposed generic light field reconstruction.

Figure 6.8 minzoom setting. Left: SAI from the center of the 𝑢, 𝑣-plane. Right: Details.
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(a) Bok et al.

(b) Dansereau et al.

(c) Proposed generic light field reconstruction.

Figure 6.9 minzoom setting. Left: SAI from the edge of the 𝑢, 𝑣-plane. Right: Details.
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plicable to all types of unfocused plenoptic cameras. Overall, this means
that lens aberrations are not compensated for, which can be clearly seen
in the barrel distortion in figure 6.8(b) and results in straight lines being
bent. Yet again, when moving away from the center and looking at the
SAIs at the edge of the 𝑢, 𝑣-plane, the quality of the images deteriorates,
see figure 6.9. The reconstructed light field of Dansereau et al. and Bok
et al. becomes much blurrier, while the quality of the generic method
becomes only slightly worse. Strong vignetting artifacts appear in the
upper left corner of the image, which (strangely) do not appear in the
generic reconstruction, even though all methods are provided with the
same devignetted sensor data. One possible explanation for this is that
the vignetting increases the calibration error 𝜀 of the generic camera
calibration. Rays with a high calibration error are superimposed by rays
with a lower error, which leads to the compensation of the vignetting
during the weighted interpolation of (6.13). Further, in the detail views,
Dansereau et al. and Bok et al. show some pixels that are completely red,
green, or blue, which are presumably dead pixels. These pixels do not
appear in the generic reconstruction, since they also have a relatively
high calibration error. So again, these pixels are efficiently suppressed
by the weighted interpolation, and the missing information is obtained
from neighboring rays.

6.3.1.3 Qualitative Evaluation of Epipolar Plane Images

Regardless of the quality of the reconstructed SAIs, the advantage of the
proposed method becomes apparent in another area. Apart from the
central view that only incorporates spatial information, the light field
contains much more, i.e., angular information. If one fixes an angular
and a spatial coordinate in the 4D light field pointing in the same di-
rection, e.g., 𝑢 and 𝑠 , one gets a 2D slice of the light field, the so-called
epipolar plane image (EPI), see Sec. 3.2. Lines of different slopes can be
seen, whose orientation represents the depth of the observed object point.
Depth estimation in light fields is thus reduced to a simple local orienta-
tion estimation in these EPIs, whereby the quality of the estimation is
significantly influenced by the calibration. The higher the quality of the
lines, the better the result of the depth estimation.
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𝑡

𝑠

𝑢

𝑠

𝑡

𝑣

Figure 6.10 EPIs of the maxzoom setting in comparison: From top to bottom and left to
right in the order Bok et al., Dansereau et al., proposed generic method.

For the maxzoom setting, figure 6.10 shows examples of horizontal and
vertical EPIs generated by fixing 𝑢 or 𝑣 to its center coordinates and by
selecting pixel lines for the 𝑠 (red) or 𝑡 (green) coordinate, respectively.
The coordinates are chosen for each reconstructed light field to approx-
imately be at the same position. The EPIs of Dansereau et al. show strong
deviations from the ideal epipolar geometry, visible by the curvy epipo-
lar lines. This is caused by the poor generalizability of the method which
was developed for the old Lytro camera and works only moderately well
for the newer Lytro Illum. Also, there are some errors at the top and the
bottom. These areas correspond to pixels that are located at the boundary
of the microlenses, where the imaging is more strongly distorted. For the
EPIs reconstructed using the method of Bok et al. and the generic method,
it can be seen that the epipolar geometry is reconstructed with higher
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𝑡

𝑠

𝑢

𝑠

𝑡

𝑣

Figure 6.11 EPIs of the minzoom setting in comparison: From top to bottom and left to
right in the order Bok et al., Dansereau et al., proposed generic method.

quality, observable by the straight lines. The slope of the epipolar lines is
different for each reconstruction method, and it depends on the chosen
parametrization of the light field. For the generic method, the general
slope direction can be shifted by changing the distance 𝑓 between the 𝑢, 𝑣-
and 𝑠, 𝑡-plane. This does not change the information in the light field at
all but only changes the “focal plane” of the light field, cf. Sec. 6.2.3. The
parametrization of Bok et al. places the focal plane at infinity, hence the
reconstructed light field can be interpreted as an array of virtual cameras
with the optical centers of each camera being located at the same spatial
pixel position. Thus, a point corresponding to zero slope results in zero
disparity, which then theoretically implies a distance of infinity. As the
EPIs show, the parametrization of the method of Dansereau et al. and the
generic method seem to have the focal plane located near the alarm clock.
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Example EPIs of the minzoom setting are depicted in figure 6.11. Now,
the general slope direction is very similar and all methods show a good
reconstruction of the epipolar geometry. Since the minzoom setting has
less microlens vignetting, the reconstruction seems to work better for
all methods. Only Dansereau et al.’s method still shows blurring in the
upper and lower areas, and the reconstruction of Bok et al. shows dis-
tortions only in the most distant edge coordinates. However, while the
epipolar geometry is reconstructed very well for all methods, only for
the generic method and Bok et al.’s method, the distortions of the lenses
are compensated, resulting in a rectified light field.

6.3.2 Comparison of Angular Sampling Grids
Another advantage of the proposed method is the free choice of sampling.
Therefore, a more suitable sampling grid can be used. The polar sampling
of the 𝑢, 𝑣-plane presented in Sec. 6.2.1 is better adapted to the data of
the Lytro Illum light field camera, and can therefore better represent
the light field. No unnecessary information is sampled and the result
is more compact, or rather, more information is contained in the same
amount of data. With the same resolution and thus the same size of
the reconstructed light field, polar sampling effectively removes less
information while representing the relevant information more accurately
than Cartesian sampling. Figure 6.12 shows the comparison, whereby
the light field is illustrated as an array of SAIs.

In detail, it is important how the polar sampling is implemented. As al-
ready described in Sec. 6.2.1, two options for the choice of radial sampling
are considered. For the first choice, the radius is set in equidistant steps.
For the second choice, the radius is set such that the pixel areas of all
pixels of the sampling grid have equal size. This has the advantage that
the signal-to-noise ratio remains the same for each pixel. Still, a minor
disadvantage becomes apparent when analyzing the EPIs. Since now the
step size of the radius is nonlinearly sampled, the lines in the EPIs are
no longer straight but curved. The conventional light field depth estima-
tion, which analyzes the slope of the lines, can therefore no longer be
applied here without further consideration, as it would provide incorrect
results or would make corresponding corrections necessary, e.g., a local
rescaling of the estimated slope of the lines. The comparison of the EPIs
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𝑟

𝜙

(a) Polar sampling results in a more efficient
representation of the data.

𝑢

𝑣
(b) Cartesian sampling reconstructs unnec-

essary peripheral areas of the 𝑢, 𝑣-plane.

𝑟

𝑠

𝑟

𝑠

(c) Top: Linear polar sampling with equidistant radius spacing. Bottom: Nonlinear polar
sampling with equal pixel area.

Figure 6.12 Comparison of Cartesian and polar sampling. (a) and (b) The light field as an
array of SAIs. (c) Polar EPIs for 𝜙 = 0 .

is shown in figure 6.12(c). In conclusion, it is therefore recommended
to use polar sampling with equal pixel area if the light field camera is
only used as a multi-view camera array. For use in the field of depth
estimation, where the slope of the epipolar lines is analyzed, sampling
the radius in equidistant steps is preferable.

6.3.3 Super-Resolution through Implicit Ray Interpolation
An interesting continuation of the generic light field reconstruction ap-
proach is the possibility to customize the dimension of the discrete pixel
grid. This allows, for example, a light field super-resolution approach to
be implemented in a very simple way. That is, the spatial resolution, the
angular resolution, or both can be artificially increased. Of course, the
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(a) Original. (b) Bilinear interpolation. (c) Super-resolution.

(d) Original. (e) Bilinear interpolation. (f) Super-resolution.

Figure 6.13 5×Super-resolution through implicit ray interpolation. (a)-(c) show details
from the central SAI of the minzoom setting. (d)-(f) show details of the maxzoom setting. (a)
and (d) show the original resolution of the light field. (b) and (e) show the result when
bilinear interpolation is applied to the images. (c) and (f) show the result of the proposed
generic super-resolution approach.
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resolution cannot be indefinitely increased, since a corresponding ray
is not always available for each super-resolved discrete coordinate. As
the light field pixels become smaller with increasing resolution, fewer
and fewer rays will hit a pixel. As a result, the reconstructed light field
may contain holes. To fill these, the generic approach can now be used
directly by considering neighboring rays. That means, in (6.12) 𝑚 > 1
must be chosen.

An example super-resolved reconstruction of the light field using the
maxzoom and minzoom settings is shown in figure 6.13. Here, 5×super-
resolution was applied spatially, resulting in the increased resolution of
(15, 15, 3125, 2170) . To interpolate missing data from the 4D neighbor-
hood, 𝑚 = 4 in the angular domain and 𝑚 = 7 in the spatial domain are
chosen. For comparison, a 5×oversampling using bilinear interpolation
on the SAIs is shown as well. While the bilinear interpolation increases
the resolution, the result is still very blurry. The generic super-resolution
approach, on the other hand, demonstrates impressively that the reso-
lution could be considerably increased. Even small and distant details
suddenly become clearly visible. The reason why the resolution of the
images can be increased so much is due to the very high redundancy
contained in light fields. Conventional super-resolution approaches must
first estimate the depth of the scene and can subsequently map the scene
points onto a virtual sensor [215, 218]. Alternatively, they are based on
learning-based methods with complex CNN architectures [185, 235].
However, they all have in common that they require an already recon-
structed light field. The advantage of the simple approach presented
here is that none of this is necessary. Instead, super-resolved SAIs can be
reconstructed directly from the generic ray bundle.

6.3.4 Light Field Reconstruction: Raytrix R5
While the generic method can already reconstruct light fields very well
from the raw data of the Lytro Illum camera, it also works with other
light field cameras without any further adaptation. To show this, the
light field of a Raytrix R5 was reconstructed.

The Raytrix R5 light field camera has a monochromatic sensor of size
2048×2048 px with a pixel pitch of 5.5 µm. In front of the sensor is an array
of hexagonally arranged microlenses with about 25 × 25 px underneath
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Figure 6.14 Raytrix R5: Raw sensor data and detailed view.

each microlens. A 35 mm fixed focal length objective with a hexagonally
shaped aperture was used. The aperture is chosen such that the f-number
matching is approximately fulfilled. The aperture cannot be rotated,
and therefore it is not perfectly aligned with the hexagonal microlens
grid, resulting in dark areas at the edge of the microlens, see figure 6.14.
Because this camera is of the focused design, the distance between the
microlenses and the sensor plane is different from the microlenses’ focal
length, see Sec. 3.2. In addition, the camera is a multi-focus plenoptic
camera, which means that there are three types of microlenses, each with
a different focal length.

As before, to transform the continuous light field parameters to a
discrete pixel grid, the intersections of the camera rays with the 𝑢, 𝑣-
and 𝑠, 𝑡-plane are analyzed. Figure 6.15 shows the histograms of the
intersection points. The 𝑠, 𝑡-plane is quadratic due to the quadratic sensor,
and the 𝑢, 𝑣-plane shows a circular distribution.

Because the Raytrix camera is a focused plenoptic camera, the number
of pixels under each microlens no longer corresponds directly to the
angular resolution. Rather, the microlenses now show micro-images of
the scene. Each micro-image can therefore be interpreted as a virtual
camera, where, depending on the position of the microlens, both the
optical center of the micro-camera is shifted and a different small section
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Figure 6.15 Raytrix R5: Histogram of ray-plane intersections. Left: 𝑠, 𝑡 . Right: 𝑢, 𝑣 .

of the scene is shown. The pixels below the microlens hence encode
spatial information, while the microlens position contains both spatial
and angular information. The angular resolution of the camera must
therefore be roughly estimated. Because the micro-images in figure 6.14
show approximately a three-fold redundancy in both the horizontal and
vertical direction, the angular resolution is chosen to be 𝑁𝑢 = 𝑁𝑣 = 3 .
The spatial resolution is slightly oversampled and set to 𝑁𝑠 = 𝑁𝑡 = 1000 .

6.3.4.1 Qualitative Evaluation

The reconstruction of the central SAI is shown in figure 6.16. One can
see that the scene is reconstructed correctly and that even details are
recognizable. Since the Raytrix light field camera is built differently than
the Lytro not everything in the reconstructed image is in focus. With this
camera, the depth of field and the focus distance are now determined
by the main lens and the main lens setting. Because the lens used in this
experiment is not optimally selected for the Raytrix R5, strong vignetting
effects are visible at the edges of the microlenses, as can be seen in the raw
data, see figure 6.14. For the Lytro Illum camera, microlens-vignetting
reduces the quality of the edge SAIs, whereas for the Raytrix the effect
can theoretically also be seen everywhere in the central image. Very dark
pixels at the edges of the microlenses cause reconstruction artifacts in the
image due to a devignetting operation. However, this unwanted effect
could be resolved by using a more suitable lens with a hexagonal aper-
ture, rotating the aperture to be aligned with the hexagonal grid, and
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Figure 6.16 Raytrix R5. Top: SAI from the center of the 𝑢, 𝑣-plane. Bottom: Details.
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manually adjusting the aperture’s opening to the correct size. This effect
is particularly strong in the lower-left area. While strong vignetting is
visible here, an additional effect occurs. Because the camera is a focused
plenoptic camera, the images under the microlens contain spatial infor-
mation. The position of each microlens encodes both angular and spatial
information. This has the consequence that the micro-images overlap to
different degrees depending on the distance of the observed objects. I.e.,
the degree of spatial redundancy seems to be distance-dependent. For
the very close area at the bottom left, the micro-images do not overlap
anymore and in addition, the strong vignetting creates perforated areas
in which the scene cannot be observed completely. The missing informa-
tion must therefore be interpolated from distant neighboring rays, which
leads to the noticeable artifacts here.

A minor disadvantage of the generic light field reconstruction is that
the multi-focus property of the Raytrix camera cannot be explicitly taken
into account at first. This leads to blurred pixels being superimposed
with sharp pixels in the reconstruction. Because the generic light field
reconstruction in this work is intended to be completely independent of
the observed scene and because it does not model the focal properties of
the rays, this problem cannot be solved at first. However, one possibility
to avoid this difficulty would be to classify the pixels beforehand and to
assign them to the three categories of microlenses, i.e., to the three focal
lengths. With this, three separate light fields could be reconstructed for
each microlens category, where of course each one would only observe a
perforated part of the scene.

6.3.5 Light Field Reconstruction: K|Lens
Unlike the previous cameras, the K|Lens is not based on microlenses.
To be more precise, the K|Lens light field camera is a light field objec-
tive lens that has to be mounted onto any full-sized camera sensor. For
this experiment, the K|Lens was mounted on an Allied-Vision Prosilica
GT4907C RGB sensor. The sensor has a resolution of 4864 × 3232 px with
a pixel pitch of 7.4 µm. Figure 6.17 shows the sensor image of the camera.
The different views are clearly visible, which are mirrored differently by
the kaleidoscope effect. Because the objective lens is not perfectly aligned
with the sensor, the whole image array is slightly rotated.
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Figure 6.17 K|Lens: Sensor image.

As with the other cameras, the K|Lens was calibrated using the generic
calibration and then the intersections with the 𝑢, 𝑣- and 𝑠, 𝑡-planes were
calculated. Figure 6.18 shows the histograms. The 𝑠, 𝑡-plane is rectangular,
while the 𝑢, 𝑣-plane consists of 3 × 3 small dots. These dots correspond
to the optical centers of the respective 3 × 3 views. The dots have a faint
butterfly-shaped boundary, which is most likely caused by lens distor-
tions having the consequence that there is no single center of projection.
The choice of the discrete light field grid is very straightforward for the
K|Lens. The angular dimension is chosen to be 𝑁𝑢 = 𝑁𝑣 = 3 and the
spatial dimension is given as one third of the sensor resolution with
𝑁𝑠 = 1621, 𝑁𝑡 = 1077 .

6.3.5.1 Qualitative Evaluation

For the light field reconstruction, only the direct neighbor was considered
in the angular domain with 𝑚 = 1 , while second-order neighbors were
considered in the spatial domain with 𝑚 = 2 . The light field reconstruc-
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Figure 6.18 K|Lens: Histogram of ray plane intersections. Left: 𝑠-𝑡-plane. Right: 𝑢, 𝑣-
Plane. For better visualization, the colormap of the 𝑢, 𝑣-histogram has a logarithmic scale.

tion for the K|Lens camera as an array of SAIs is shown in figure 6.19. All
in all, one can see that the different views of the camera are reconstructed
very well. Since for the generic calibration, the arrangement of the pixels
on the sensor is completely irrelevant, and since only the rays outside
the camera are of importance, the kaleidoscope effect is automatically
compensated by the generic reconstruction. In addition, due to the nor-
malization of the generic ray bundle, the slight rotation of the K|Lens
objective with respect to the sensor is corrected. Looking at the results in
more detail, see figure 6.20, there are hardly any differences between the
sensor data and the reconstruction, both in the central view and in the
SAIs at the edge.

6.3.6 Camera Intrinsics and Calibration Error
Apart from the reconstruction of the light field and the qualitative analy-
sis of the result, an exact characterization of the ray geometry is essential
in many areas of computer vision, for optical metrology in general, as well
as for deflectometry in particular. Since the presented method is based
on generic camera calibration and to be comparable with the very same,
the ray re-projection error 𝜀 from Sec. 5.5.1 needs to be investigated. This
error corresponds to the distance between a geometric camera ray and an
observed point on a reference target. To evaluate the error experimentally,
a commercially available monitor was used as a reference target, whose
pixels serve as reference coordinates. The monitor was captured from
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Figure 6.19 K|Lens: Reconstructed 3 × 3 light field.

different poses using the different cameras and camera configurations.
In each pose, phase-shift features were acquired using the techniques
from Ch. 4. For all cameras and both settings of the Lytro Illum camera,
the raw data with the measured phase-shift features were converted to
light fields using the presented generic reconstruction method. For com-
parison to the state of the art, the light fields corresponding to both Lytro
camera settings were additionally reconstructed with the method by
Bok et al. Further, with the help of the respective camera parameters, the
camera rays could be determined for each light field. Subsequently, using
these camera intrinsics and the generic pose estimation from Sec. 5.2.5,
the 3D coordinates of the feature points were determined, and the ray
re-projection error as an average value over all rays could be calculated.

The comparison of the different methods applied to the Lytro Illum
is shown in table 6.1. The method of Dansereau et al. [44] could unfor-
tunately not be evaluated, as the rectification algorithm and thus the
determination of the camera parameters only works for the older Lytro
but does not provide any meaningful results for the newer Lytro Illum.
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(a) Center of sensor image. (b) Center SAI.

(c) Upper right area of sensor image. (d) Upper right SAI.

Figure 6.20 K|Lens: (a) and (c) Sensor image. (b) and (d) Generic reconstruction. For
better visualization the mirroring of the sensor image is corrected in (c).

As expected, the generic calibration from Sec. 5.2 has the lowest calibra-
tion error, since each pixel can be calibrated individually and hence with
high precision. However, this result cannot be compared directly to the
other methods, since the correlations of the vision rays and the light
field information are lost or cannot be used directly with this camera
model. It is therefore only used to represent a lower limit of the calibra-
tion error. More importantly, the table shows that the presented generic
light field reconstruction method has a much smaller mean error and
RMSE than the method of Bok et al., resulting in a better calibration with
fewer outliers. And thus, the ray geometry is estimated much better al-
though the qualitative comparison of the light field reconstruction for
both methods is very similar. This is because the ray calibration of the
presented generic light field reconstruction itself could be carried out
very precisely, starting from the generic calibration. The nonidealities of
the optics are accurately included in the generic camera model, and the
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Table 6.1 Comparison of the ray re-projection errors for the Lytro Illum camera.

Lytro Illum minzoom setting maxzoom setting

𝜀 in µm 𝜀 in µm
Method Mean RMSE Mean RMSE

Bok et al. 375.6 758.8 455.2 1117.7
Generic calibration 43.3 91.4 139.8 376.2
Generic LF-reconstruction 97.1 155.0 231.4 431.1

Table 6.2 Comparison of the ray re-projection errors for the Raytrix R5 and K|Lens.

Raytrix R5 K|Lens

𝜀 in µm 𝜀 in µm
Method Mean RMSE Mean RMSE

Generic calibration 31.1 77.0 73.1 123.1
Generic LF-reconstruction 121.23 166.8 130.3 178.7

generic light field reconstruction only needs to sample the fully rectified
light field from the resulting generic ray bundle. In contrast, the method
by Bok et al. fits a low-dimensional camera model with a low-dimensional
distortion model to the camera data. Deviations from this model cannot
be taken into account, and therefore the calibration error increases. Even
though the generic reconstruction is based on the generic calibration,
the ray re-projection error is slightly worsened by the interpolation and
rounding operations of Sec. 6.2.2. A direct comparison of both camera set-
tings reveals that the calibration for the maxzoom setting provides slightly
inferior results, regardless of the method. Due to the stronger microlens
vignetting for this setting, as shown in figure 6.4, the peripheral areas of
the microlenses capture much less light, which increases the uncertainty
of the calibration features, and thus worsens the calibration.

Because the software for the Raytrix and the K|Lens are not available as
open-source, only the result of the presented generic methods is shown
here. Table 6.2 shows the results of the respective calibrations. Similar
to before, the generic calibration can be seen here as a lower limit. For
the K|Lens, it can be seen that during the light field reconstruction the
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Table 6.3 Intrinsic camera parameters for the Lytro Illum’s maxzoom setting.

Bok et al. [20] Generic LF-reconstruction

𝑓𝑠 = 4295.7 𝑓𝑠 = 4295.3
𝑓𝑡 = 4295.7 𝑓𝑡 = 4295.3
𝑐𝑠 = 278.1 𝑐𝑠 = 273.9
𝑐𝑡 = 192.0 𝑐𝑡 = 194.3
baseline = 2.99 mm baseline = 3.16 mm

calibration error again worsens only by a small factor. In contrast to
this, the generic calibration of the Raytrix R5 camera is very accurate.
However, when reconstructing the light field from this, the error increases
strongly. This is mainly due to the strong interpolation artifacts that can
also be observed in the reconstructed SAIs, see figure 6.16. Nevertheless,
the quality of the light field reconstruction of all cameras and all zoom
settings is still very close.

For a detailed comparison between the presented method and the
method of Bok et al., the maxzoom light field was reconstructed at the
same resolution as Bok et al.’s reconstruction. Since the central SAI of
Bok et al. and the generic method are now very similar, their intrinsic
parameters should also be comparable, given the same parametrization
of the light field grid. Table 6.3 shows the camera parameters for the
central image, as well as the baseline between neighboring SAIs. Both
times the parameters are very similar, and the optical center (𝑐𝑠, 𝑐𝑡) is
estimated to be close to the center of the respective images. Hence, the
proposed generic light field reconstruction yields reasonable results. The
distance between the SAIs is similar too, with a slightly larger baseline
for the generic reconstruction. For Bok et al., this results in a camera array
of width 35.88 mm, while for the generic reconstruction it results in a
width of 37.92 mm. This again means that Bok et al. does not capture the
outermost regions of the main lens, while the presented generic method
captures a slightly larger area in the parametrization investigated here.

Even if the parameters of the two methods are very similar, this does
not mean that the quality of the calibration must be comparable, since
the reconstruction of the light field is different. By taking a closer look
at the reconstruction quality of the Lytro Illum reconstruction, it can be
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Figure 6.21 Lytro Illum maxzoom setting: Ray re-projection error per pixel for all SAIs.
Top: LF-reconstruction by Bok et al. [20]. Middle: Generic LF-reconstruction with Cartesian
angular sampling. Bottom: Generic LF-reconstruction with polar angular sampling.
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seen that the errors increase the further the SAIs are from the center.
This effect is particularly strong with the calibration of Bok et al., while it
is much smaller with the generic reconstruction. Figure 6.21 shows the
comparison. Bok et al.’s reconstruction shows for the central SAI a very
high calibration quality with small ray re-projection errors. However,
the quality decreases strongly towards the outer regions. Only about
the inner 9 × 9 SAIs still have an RMSE value smaller than 300 µm. The
generic reconstruction, on the other hand, shows small errors even up
to the outer regions of the 𝑢, 𝑣-plane. Only at the very outer limits does
the error increase. At the same time, invalid pixels appear. Due to the
Cartesian sampling of the 𝑢, 𝑣-plane, areas outside the main lens are
now also sampled where simply no rays exist. However, these pixels do
not necessarily pose a problem, since they can simply be classified as
invalid. To prevent such issues from occurring altogether, one can simply
use a polar parametrization of the angular coordinates. Thereby only
the relevant areas of the main lens are sampled and invalid pixels are
avoided while maintaining a comparable calibration quality. Here again,
only at the most distant radius values, the error slightly increases.

6.4 Summary
This chapter presented a method to calibrate any light field camera (e.g.,
microlens-based, mirror-based, camera arrays) without having to model
any optical properties explicitly. Utilizing a generic calibration, the indi-
vidual camera rays were precisely calibrated. Since conventional light
field-related algorithms require regular sampling, the method trans-
formed the result into an equivalent light field representation and fitted
a regular 4D grid onto the irregular camera rays. The summation of the
weighted intensity values of the rays finally led to the interpolation and
reconstruction of a rectified light field. Apart from the usual Cartesian
sampling of the angular coordinates, this chapter presented two possibili-
ties to sample them in polar coordinates. This proved to be advantageous
since the light field information can now be represented more compactly.
Besides the pure reconstruction of the light field’s radiometric quantities,
a derivation of the intrinsic camera parameters was also presented, i.e.,
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the geometric quantities. The reconstructed light field can therefore easily
be used in any subsequent application.

Eventually, experiments showed that the proposed method can provide
good reconstructions and rectified light fields. The epipolar geometry
between the sub-aperture images is preserved and even shows better
results than the conventional state-of-the-art methods. In addition, an
analysis of the geometric parameters utilizing the ray re-projection error
showed that the proposed method has a smaller calibration error than
the state-of-the-art methods from the literature, and thus, it achieves a
better calibration. While providing very good results for a classical un-
focused plenoptic camera, the evaluation demonstrated that the generic
reconstruction works for many kinds of light field cameras and yields
a highly accurate calibration. For the K|Lens, the generic light field re-
construction is perhaps not the best solution, since the camera optics are
in principle not very complex and the generic camera calibration is quite
time-consuming due to the necessary acquisition of dense features. There-
fore, simpler models with conventional distortion models would perhaps
find a similarly satisfying solution for this specific camera. However, the
results clearly show that the presented generic light field reconstruction
achieves very high accuracy for any light field camera system, no matter
if it is microlens-based, mirror-based, or relies on other techniques.

In summary, both the information of the observed scene and the geo-
metric structure of the light field are preserved by adequate rectification
and calibration. And in the end, a better reconstruction of the light field
and an improved estimation of the camera’s geometrical properties leads
to better results when used in optical metrology or depth estimation.
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The deflectometric registration already enables a visual inspection of
specular objects with the possibility to detect local surface defects or
to roughly classify shape deviations. However, it is not yet sufficient to
enable a deflectometric 3D reconstruction. If, in addition, the intrinsic
calibration of the camera and the monitor as well as the extrinsic calibra-
tion of the measurement setup are known, a normal field can in principle
be determined from the deflectometric measurements. However, the
three-dimensional shape of a specular object cannot be directly deter-
mined for the time being, even if a calibrated setup is used. As shown
in Sec. 3.1, a possible surface normal can be calculated for each point
in the camera’s field of view, so an infinite number of possible surfaces
could be the cause of the same measurement. Because of this ambiguity,
it is necessary to use regularization methods that can determine the true
surface normal and thus lead to an unambiguous solution. The recon-
struction of the specular surface is usually done in two steps. In the first
step, the ambiguity of a single deflectometric measurement is resolved
by considering additional data. The result is an approximate position of
the surface in terms of points in space and the corresponding normal
vectors of the surface at these points. Even if a solution for the surface is
already available through this regularization, its accuracy is typically still
insufficient for practical applications. Because deflectometry is a slope
measuring technique, the accuracy of the normal estimate is magnitudes
higher than the measurement of the depth. The actual specular surface
reconstruction is therefore performed as a secondary step. Here, the
low accuracy surface points obtained from the regularization and the
corresponding high accuracy normal vectors are taken and combined to
produce a smooth and continuous representation of the surface.

Since this work deals with light field cameras, Sec. 7.1 describes pro-
cedures that use the properties of these cameras to enable a regulariza-
tion of the deflectometric ambiguity. Subsequently, Sec. 7.2 presents an
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Figure 7.1 Ambiguity of the deflectometric normal estimation. Even with a fully calibrated
system and by knowing the coordinate of the observed reference feature, a potentially valid
surface normal can be calculated for every point on a camera ray.

algorithm that fuses the regularization data with the normal estimates to
obtain a high accuracy surface reconstruction. Finally, Sec. 7.3 evaluates
the presented methods by using an experimental deflectometry setup to
reconstruct the shape of different specular objects.

7.1 Deflectometric Regularization
As explained before, the deflectometric reconstruction of the normal field
is ambiguous. Therefore, initially, no unique solution for the specular
surface can be specified, see figure 7.1. To resolve the ambiguity of the de-
flectometric measurement, additional regularizing information is needed.
In principle, it is sufficient to measure only the distance to one point of
the surface and to reconstruct the surface from the normal field starting
from this point [11]. Though, if more measurements are available, this
can help to reduce the influence of a single uncertain and noisy surface
point. For this purpose, various procedures were introduced in Sec. 3.1.2,
all of which require a more or less complex system structure.
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The main focus of this thesis is to efficiently use the special proper-
ties of the light field camera to enable a deflectometric reconstruction
of the surface. In this section, two methods are presented in which the
light field camera can be directly used to obtain additional information
about the surface, which has a regularizing effect on the deflectometric
measurement.

7.1.1 Light Field Depth-Based Regularization
Since the light field camera can partially capture the light field of the
observed scene, it can extract much more information than a standard
camera. The additional information, in contrast to standard cameras,
allows changing the perspective on the scene after the exposure, thus
enabling depth information to be extracted.

The depth of a diffusely reflecting scene, i.e., the distance of an ob-
served object point, can be determined by analyzing the light field’s
geometric structure, i.e., the slope of the epipolar lines in the EPIs (cf.
Sec. 3.2). The light field camera can therefore be used as a compact pas-
sive 3D camera, meaning that structured illumination is not required.
When surveying partially reflecting surfaces, the special properties of
the light field camera allow finding depth features on the direct surface
as well as determining the depth of the reflected scene. These indepen-
dent measurements can be used as an additional source of regularizing
information for deflectometry.

In the following, it is demonstrated how the depth estimation of the
light field camera can be used to solve the ambiguity problem of the
deflectometric normal reconstruction.

7.1.1.1 Direct and Indirect Depth Estimation

The depth estimation of light field cameras allows to find candidates for
possible surface points, and it thus makes it possible to resolve the ambi-
guity of the deflectometric normal estimation. In practice, two situations
arise, see figure 7.2. First, if the surface of the measurement specimen
has diffusely reflecting regions, a standard light field-based depth esti-
mation can be used to directly measure the distance between the camera
and the surface for each pixel (or camera ray), see Sec. 3.2. The set of
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Figure 7.2 Direct depth estimation detects diffuse features on the surface. Indirect depth
estimation estimates the depth to the reference monitor and calculates the depth to the
surface using the known measurement setup.

depth values 𝑧direct thereby estimates the distance to the surface. With
the intrinsic parameters of the light field camera and the forward projec-
tion model (6.27), this depth can be transformed to a corresponding ray
length, which can then be directly used to regularize the deflectometric
normal estimate:

𝑠direct=̂ ‖𝐬(𝑧direct)‖ . (7.1)

If the measurement sample is fully specular, the light field camera is not
able to directly determine the distance to the surface. The real surface is
virtually invisible. For plane mirrors, the camera will instead estimate the
distance to the reflected reference scene. The resulting ray length becomes

𝑠reflect = ‖𝐬‖ + ‖𝐬r‖ . (7.2)

Nevertheless, with the help of the knowledge about the calibrated de-
flectometric measurement setup and with the registration of camera rays
to monitor pixels, the direct distance to the surface can be calculated
from the indirect depth measurement. It follows with the deflectometric
measurement 𝐩 = 𝐬 + 𝐬r and the depth estimate 𝑠reflect = ‖𝐬‖ + ‖𝐬r‖ :

‖𝐬r‖2 = ‖𝐩 − 𝐬‖2 = ‖𝐩‖2 − 2𝐩T𝐬 + ‖𝐬‖2 , (7.3)
‖𝐬r‖2 = (𝑠reflect − ‖𝐬‖)2 = 𝑠2

reflect − 2𝑠reflect ‖𝐬‖ + ‖𝐬‖2 . (7.4)
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Equating (7.3) and (7.4), and using ̂𝐬 = 𝐬
‖𝐬‖

gives an estimate 𝑠indirect for
the distance to the surface:

𝑠indirect=̂ ‖𝐬‖ = 1
2

‖𝐩‖2 − 𝑠2
reflect

𝐩T ̂𝐬 − 𝑠reflect
. (7.5)

However, it must be mentioned that (7.2) is valid only if the mirror sur-
face is sufficiently flat or if the observation angle is chosen appropriately.
Investigations of Criminisi et al. [41] and Swaminathan et al. [195] have
shown that the measured length appears compressed or stretched in
contrast to the true length depending on the surface shape and the mea-
surement configuration. That is, in reality, the estimated depth becomes

𝑠reflect = ‖𝐬‖ + 𝛼−1 ‖𝐬r‖ , with 𝛼 = 1 + 2 ‖𝐬r‖ 𝜅 cos(𝛽) , (7.6)

where the multiplicative factor 𝛼 in the depth estimate is affected by
the distance of the reference scene ‖𝐬r‖ , the incidence angle 𝛽 between
camera ray and surface normal, and the curvature of the surface 𝜅 . Here,
the curvature is measured relative to the “direction of motion” of the
camera, which corresponds in a light field camera to the direction of
the used EPI. That is, different EPIs may provide different depth esti-
mates. Since it is not possible to estimate the values for 𝜅 and 𝛽 without
further knowledge about the surface and the measurement setup, the
only solution to this issue is to detect regions of strong curvature and to
exclude them from being used for regularization. Even though the sur-
face cannot be reconstructed unambiguously in deflectometry without
prior regularizing data, indications about the curvature of the surface
can still be obtained directly from the deflectometric measurement. With
an increase in local surface curvature, the directional derivatives of the
registration data increase as well [100]. Hence, a simple second-order
gradient calculation with subsequent thresholding allows the detection
of high curvature regions.

The two-fold depth estimation presented in this section can in princi-
ple be performed at the same time due to the special properties of the
light field camera. When light field cameras observe partially reflecting
or transparent objects, the resulting light field can be interpreted as a
superposition of two individual light fields. For classical stereo camera
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systems, this is usually troublesome and results in erroneous depth es-
timates. For light fields, however, an analysis of the EPIs now shows
a superposition of the line-like structures as well [96]. A simultaneous
estimate of both orientations thus provides a depth estimate of both the
partially specular object and the reflected scene. Methods for estimating
these depths use, e.g., higher-order structure tensors or optical flow [217,
232]. In practice, however, it became apparent that this simultaneous
depth estimation is not suitable for deflectometric regularization and
that a sequential estimation leads to better results since the task is sim-
plified. When examining surfaces with diffuse components, it is only
necessary to take an image where the monitor is completely white, and
thus, the surface is sufficiently well illuminated. Since the reflection (the
monitor) now contains no structure, the depth estimation algorithm will
only detect features directly on the surface. To subsequently measure
the distance to the reflected monitor, it is possible to perform a depth
estimation directly on the registration data. This means that in this case
the light field does not contain color information, but each light field pixel
is assigned the 2D coordinates of the observed monitor pixel estimated
via phase-shift coding. Using this as a direct image feature is advisable
because then image noise is drastically reduced, enabling a more robust
depth estimation.

In summary, for partially specular surfaces, the light field camera can
obtain two separate depth estimates. However, most of the classical depth
estimation algorithms (including the ones based on CNNs) only provide
the depth of the central SAI [98, 187], since it yields the most accurate
results. Further, many algorithms provide an additional confidence esti-
mate for the depth [18, 199]. Hence, for any partially specular surface,
the direct depth estimate 𝑧direct with confidence 𝑐direct is obtained. Ar-
eas with high confidence are caused by a structured surface, while low
confidence implies areas with little structure or even fully specular areas.
For planar mirrors, the indirect depth estimate 𝑧indirect can be obtained
with confidence 𝑐indirect . In contrast to the direct depth estimation, the
confidence is hereby lower for diffusely structured surface areas, while
fully specular areas have higher confidence. For non-planar mirrors, the
confidence measure is also affected by the curvature.
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Figure 7.3 Principle of stereo deflectometry: A deflectometric measurement induces two
independent normal fields in the fields of view of the cameras. On the true surface, the
surface normals measured in both cameras must coincide.

7.1.2 Light Field Multi-View-Based Regularization
A shortcoming of the regularization method from the previous section is
that it only estimates the depth of the central SAI and does not provide
the depth for the other SAIs. However, the major disadvantage of depth-
based regularization is that it only works for special surfaces. This means
that initially it cannot be used to measure fully specular and curved sur-
faces. To be able to measure such surfaces as well, this section introduces
a combination of the principle of multi-stereo deflectometry with light
field cameras to obtain accurate regularization points in each SAI.

In (multi-)stereo deflectometry, the surface is observed by at least
one additional camera. In contrast to the classical stereo vision and the
depth estimation of diffuse surfaces, on fully specular surfaces there is
the difficulty that no direct point correspondences can be found since
initially only virtual features are captured in both cameras. That is, pixels
from the cameras observing the same surface point will see different
points in the monitor plane. However, specular stereo can be achieved
by correlating the normal vector fields induced by two measurements,
where the true surface can be found in the intersection of both solution
manifolds. Hence, an indirect surface triangulation can be achieved with
the following: In the field of view of the first camera a three-dimensional
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normal field 𝐧1 is induced by a deflectometric measurement. The second
camera with a different field of view on the test object provides another
normal field 𝐧2 . Thus, for each point in the intersection of the fields
of view, two candidates for surface normals can be calculated. On the
real test surface, these normals must coincide 𝐧1 = 𝐧2 . For points that
are not on the surface, one usually observes a deviation of the normal
directions [10]. Figure 7.3 illustrates this principle.

A very basic algorithm for surface reconstruction is to determine along
a search direction the points where the two normal directions coincide
best. These points regularize the deflectometric ambiguity and repre-
sent possible surface points. The normals determined in this way are
the corresponding surface normals. The stereo principle can be easily
extended to a multi-view approach. And since the light field camera can
be interpreted as a multi-camera array, a light field multi-view-based
regularization can be easily implemented, where surface points can be
found for each SAI.

7.1.2.1 Regularization by Normal Disparity Minimization

To be able to quantitatively evaluate the similarity of the measured surface
normals for each point in space, a suitable distance measure, the so-called
normal disparity, has to be defined. A disparity measure that is widely
used in the literature is the variance of the normal field in the observed
surface point under consideration [10, 21]. This can be obtained by first
calculating the average of the normal estimates corresponding to every
view 𝐧mean = 1

𝑁
∑𝑁

𝑛=1 𝐧̂𝑛 , and by subsequently calculating the mean
angle between this mean normal and the individual normals:

𝐽(𝐬) = 1
𝑁

𝑁

∑
𝑛=1

arccos (𝐧̂T
𝑛 (𝐬)𝐧̂mean(𝐬))2 , (7.7)

where 𝐧̂ = 𝐧
‖𝐧‖

indicates a unit vector, and where all normal estimates
obviously depend on the examined point 𝐬 .

If additional information about the quality of the individual measure-
ments is available, it is reasonable to use weighted averages instead of
plain averages. The quality of the estimation is influenced by two factors:
the uncertainty of the deflectometric registration, i.e., the phase uncer-
tainty 𝜎 , and the inherent accuracy of the camera calibration, i.e., the
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residual calibration error 𝜀 . Thus, a weighting factor combining both
factors can be provided for every camera pixel, or in the case of the light
field, it is available for every ray ̂𝐬𝑢𝑣(𝑠, 𝑡) of each SAI:

𝑤𝑢𝑣(𝑠, 𝑡) = 1
𝜎2

𝜑(𝑢, 𝑣, 𝑠, 𝑡)𝜀2(𝑢, 𝑣, 𝑠, 𝑡)
. (7.8)

For the sake of brevity, the dependence on the individual light field pixels
is omitted in the following, as long as it does not impede understanding.
Hence, by interpreting the light field as a camera array, for every spatial
pixel (𝑠, 𝑡) , the objective that needs to be minimized becomes

𝐽(𝐬𝑢𝑣) = 1
∑𝑢,𝑣 𝑤𝑢𝑣

∑
𝑢,𝑣

𝑤𝑢𝑣 arccos ⎛⎜
⎝

𝐧̂T
𝑢𝑣(𝐬𝑢𝑣)

∑𝑢,𝑣 𝑤𝑢𝑣𝐧̂𝑢𝑣(𝐬𝑢𝑣)

∥∑𝑢,𝑣 𝑤𝑢𝑣𝐧̂𝑢𝑣(𝐬𝑢𝑣)∥
⎞⎟
⎠

2

.

(7.9)
To find the surface, it is now necessary to search the entire measure-

ment space for the regions with minimum normal disparity. To avoid
discretizing the measurement space with unnecessarily high resolution,
and to prevent a too coarse representation of the surface as well, initially,
no continuous parametrization of the surface is sought. Instead, the exact
resolution of the camera is used, and the optimal distance to the surface
is searched for each camera pixel, i.e., for each ray. As a consequence,
the minimization of the normal disparity along each ray depends on
only one parameter: the length of the ray or rather the depth 𝑧 of the
corresponding point 𝐬(𝑧) . Moreover, each ray can be considered individ-
ually, which allows the optimization to be performed in parallel. For each
pixel, respectively for each camera ray, one obtains the one-parametric
optimization problem

𝑧 = arg min
𝑧

𝐽 (𝐬(𝑧)) . (7.10)

To evaluate 𝐽(𝐬) and to calculate the disparity, a few intermediate
steps are necessary. First, starting with a single discrete light field pixel
(𝑢, 𝑣, 𝑠, 𝑡) , the corresponding point in space 𝐬𝑢𝑣(𝑧) must be determined
according to the current evaluated depth 𝑧 . For this purpose, the spatial
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7 Specular Surface Reconstruction

pixel (𝑠, 𝑡) of the current SAI is lifted into space by using the camera
intrinsics from Sec. 6.2.3:

𝐬𝑢𝑣(𝑧) = 𝑧 ⋅ 𝐊−1
𝑢𝑣

⎛⎜⎜
⎝

𝑠
𝑡
1

⎞⎟⎟
⎠

− 𝐭𝑢𝑣 . (7.11)

Subsequently, with the help of (6.26), the same point is then projected
back onto the virtual sensor planes of all other SAIs with the angular
coordinates (𝑢̄, ̄𝑣) :

⎛⎜⎜
⎝

𝑠𝑢̄ ̄𝑣
𝑡𝑢̄ ̄𝑣
1

⎞⎟⎟
⎠

= 1
𝑧

𝐊𝑢̄ ̄𝑣 (𝐬𝑢𝑣(𝑧) + 𝐭𝑢̄ ̄𝑣) . (7.12)

With the help of the projected light field pixel coordinates, the respective
deflectometric measurement can be obtained consisting of the measured
monitor coordinate that is transformed to the camera coordinate system
and the value of the respective weighting factor as well:

𝐩𝑢̄ ̄𝑣 = 𝐑𝐱(𝑢̄, ̄𝑣, 𝑠𝑢̄ ̄𝑣, 𝑡𝑢̄ ̄𝑣) + 𝐭 , (7.13)
𝑤𝑢̄ ̄𝑣 = 𝑤(𝑢̄, ̄𝑣, 𝑠𝑢̄ ̄𝑣, 𝑡𝑢̄ ̄𝑣) . (7.14)

Due to the possibility of non-integer spatial pixels (𝑠𝑢̄ ̄𝑣, 𝑡𝑢̄ ̄𝑣) , intermediate
values are calculated by means of bilinear interpolation. In the final
step, the surface normals are calculated using the surface point under
consideration 𝐬𝑢𝑣(𝑧) , the through phase-shift coding measured monitor
points 𝐩𝑢̄ ̄𝑣 and the respective camera rays ̂𝐬𝑢̄ ̄𝑣 for all SAIs (including 𝑢, 𝑣):

𝐧𝑢̄ ̄𝑣(𝑧) =
𝐩𝑢̄ ̄𝑣 − 𝐬𝑢𝑣(𝑧)

‖𝐩𝑢̄ ̄𝑣 − 𝐬𝑢𝑣(𝑧)‖
− ̂𝐬𝑢̄ ̄𝑣 . (7.15)

Using these steps, the normal disparity (7.9) can be calculated for the
pixel (𝑢, 𝑣, 𝑠, 𝑡) at the depth 𝑧 .

The one-parametric optimization problem (7.10) can now be optimized
along the individual camera rays using a line search algorithm. Since
the computation of the normal disparity is costly, gradient-free methods
such as Brent’s method are suitable for this purpose [30]. This method
combines golden-section-search with parabola approximations, and it
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7.2 Surface Reconstruction

converges in the ideal case with a quadratic rate to the optimum. In each
evaluation step of the optimization, the normal disparity (7.9) must be
calculated for the current depth value 𝑧 . And due to the independence
of the individual camera pixels, the corresponding depth values can
be easily optimized in parallel. However, since a fully convex objective
is required for a correct optimization, a few issues arise regarding the
disparity minimization. In general, the depth-dependent normal dispar-
ity has at least two minima. One appears at the surface. Another one
emerges for 𝑧 → ∞ , which is due to camera rays being gradually more
parallel to each other for greater distances and thus the surface normals
being calculated to become more equal. An incorrect initialization could
therefore lead to an erroneous depth estimate [200]. For particular imag-
ing configurations and concave surfaces, the issue becomes even worse,
since then the objective may even show multiple minima. More precisely,
different surfaces can be generated which cannot be distinguished even
with a stereo approach [221]. To solve these difficulties, prior knowledge
about the distance to the surface must be used, and the minimization
must be constrained by boundary conditions. Consequently, the final
optimization problem is obtained for each pixel, respectively for each
ray, where the search space of the depth 𝑧 is constraint by a convenient
choice of bounds [𝑧min, 𝑧max] that avoids incorrect minima:

𝑧 = arg min
𝑧∈[𝑧min,𝑧max]

𝐽 (𝐬(𝑧)) . (7.16)

Hence, with the same notation as for the other regularization points,
the depth map 𝑧multi is obtained and can be used to regularize the de-
flectometric normal measurement. Alg. 3 summarizes the multi-view
disparity minimization.

7.2 Surface Reconstruction
In principle, the regularization points which can be found with the meth-
ods from the previous sections can be used directly to reconstruct the
surface, for example, by calculating an average. However, since multi-
stereo measurement systems such as the light field camera are limited in
their measurement quality by the width of the effective stereo baseline,

191



7 Specular Surface Reconstruction

Algorithm 3 Light Field Multi-Stereo Deflectometry
Input: Registration data, camera intrinsics, relative pose
Output: Depth and surface normal with minimal normal disparity
Initialize: Set min and max distance

1: for (𝑢, 𝑣, 𝑠, 𝑡) ∈ [0, 𝑁𝑠 − 1] × [0, 𝑁𝑡 − 1] × [0, 𝑁𝑢 − 1] × [0, 𝑁𝑣 − 1] do
2: Get first depth value (using Brent’s method)
3: 𝑧 ≔ 𝑧𝑢𝑣(𝑠, 𝑡) ← Brent(𝑧min, 𝑧max)
4: while Disparity 𝐽 is not yet sufficiently small do
5: Project ray to world coordinates with for depth

6: 𝐬𝑢𝑣(𝑧) = 𝑧 ⋅ 𝐊−1
𝑢𝑣

⎛⎜⎜
⎝

𝑠
𝑡
1

⎞⎟⎟
⎠

− 𝐭𝑢𝑣

7: Calculate disparity and surface normal
8: for (𝑢̃, ̃𝑣) ∈ [0, 𝑁𝑢 − 1] × [0, 𝑁𝑣 − 1] do
9: Transform to SAI-pixel coordinates

10: ⎛⎜⎜
⎝

𝑠𝑢̄ ̄𝑣
𝑡𝑢̄ ̄𝑣
1

⎞⎟⎟
⎠

= 1
𝑧
𝐊𝑢̄ ̄𝑣 (𝐬𝑢𝑣(𝑧) + 𝐭𝑢̄ ̄𝑣)

11: Get corresponding monitor coordinate and weight factor
12: 𝐩𝑢̄ ̄𝑣 = 𝐑𝐱(𝑢̄, ̄𝑣, 𝑠𝑢̄ ̄𝑣, 𝑡𝑢̄ ̄𝑣) + 𝐭
13: 𝑤𝑢̄ ̄𝑣 = 𝑤(𝑢̄, ̄𝑣, 𝑠𝑢̄ ̄𝑣, 𝑡𝑢̄ ̄𝑣)
14: Calculate surface normal
15: 𝐧𝑢̄ ̄𝑣(𝑧) = 𝐩𝑢̄𝑣̄−𝐬𝑢𝑣(𝑧)

‖𝐩𝑢̄𝑣̄−𝐬𝑢𝑣(𝑧)‖
− ̂𝐬𝑢̄ ̄𝑣

16: end for
17: 𝐽(𝐬𝑢𝑣(𝑧)) = 1

∑𝑢,𝑣 𝑤𝑢𝑣
∑𝑢,𝑣 𝑤𝑢𝑣 arccos (𝐧̂T

𝑢𝑣(𝑧) ∑𝑢,𝑣 𝐧̂𝑢𝑣(𝑧)
∥∑𝑢,𝑣 𝐧̂𝑢𝑣(𝑧)∥

)
2

18: Calculate next depth (using Brent’s method)
19: 𝑧𝑢𝑣(𝑠, 𝑡) ← 𝑧 ← Brent(𝐽, 𝑧, 𝑧min, 𝑧max)
20: end while
21: end for
22: return 𝑧𝑢𝑣(𝑠, 𝑡), 𝐧𝑢𝑣(𝑠, 𝑡), 𝐽𝑢𝑣(𝑠, 𝑡)
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7.2 Surface Reconstruction

one does not always achieve the desired accuracy with this kind of depth-
based regularization. In contrast, deflectometry measures slopes, or
rather surface normals, with precision several orders of magnitude higher
than the depth, but requires information about surface points for regular-
ization [51]. It is therefore useful not to rely solely on depth estimation. In-
stead, the dense deflectometric measurements of the surface normals can
be fused with the various regularization points, which may also be only
sparsely available. In doing so, an optimal surface is found whose nor-
mals coincide with the deflectometrically measured ones and which has a
minimal distance to the calculated regularization points at the same time.

7.2.1 Surface Reconstruction by Depth and Normal
Fusion

Starting from a single known surface point, the surface can be inte-
grated from the normal field [100]. However, classical region-growing
approaches propagate both the measurement and discretization error
along the integration path [50]. In addition, a major challenge is that
typically in practical situations the normal field is corrupted by noise and
is therefore almost never integrable and curl-free. Due to this, variational
approaches are often used where only the integrable part of the normal
field is considered and the integration task is formulated as a minimiza-
tion problem [164]. The general approach of normal field integration
can be formulated as an optimization problem as follows: Find the set
of surface points 𝐬 ∈ S for which the functional 𝐸 ∶ S → ℝ

𝐸(𝐬) = ∫
S

‖𝐧 − 𝐧m(𝐬)‖2 d𝜎 (7.17)

with surface element d𝜎 and surface normal 𝐧 takes a global minimum.
That said, since in deflectometry the measured normal 𝐧m(𝐬) depends
on the surface 𝐬 itself, there exist infinitely many solutions that mini-
mize the above functional [9]. To find the true surface from the infinite
manifold of surfaces, regularization points have to be included in the
optimization. The surface reconstruction can again be modeled by energy
minimization:

arg min
𝐬,𝐧

∫
S

‖𝐧 − 𝐧m(𝐬)‖2 + ∑
𝑖

‖𝐬 − 𝐬𝑖‖2 d𝜎 . (7.18)
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7 Specular Surface Reconstruction

Thus, the searched surface should have minimal distance to the regu-
larization points 𝐬𝑖 and at the same time the difference of the surface
normals to deflectometrically measured normals 𝐧m should be mini-
mized. This resolves the ambiguity of deflectometry and results in an
overall more robust result for the 3D reconstruction. Though, for prac-
tical implementation, the functional needs to be discretized and adapted
to the available data. For the light field data available in this work, the
depth and normal measurements are located pixel-wise on a discrete
grid and the different perspectives of the light field camera are very close
to each other. Hence, it is not necessary to search for a general solution
of the functional (7.18) in an unconstrained 3D space. Instead, the deflec-
tometric surface reconstruction is formulated here as a discrete gradient
integration, and the measured surface points are projected onto a depth
map 𝑧(𝑠, 𝑡) . In addition, the corresponding surface gradient 𝐠(𝑧) of this
depth map is calculated from the depth-dependent normal field 𝐧(𝑧) .
Depending on whether perspective or orthographic projection is used
different formulas have to be used for this calculation, cf. Sec. 2.4

Since (7.17) is an ill-posed problem, minimization would not yield a
meaningful result. By adding additional regularization points a unique
solution can be found, but since the coupling between the normal and
the surface points is rather weak, and since the regularization points
may also only be sparsely available, it makes sense to make further reg-
ularizing assumptions to simplify the optimization [8]. In many areas
of image processing, Total Variation (TV) is used as a popular regular-
ization method because it can handle discontinuities in the data while
smoothing noisy measurements [33]. However, it has the disadvantage
that linear changes in an intensity profile can form unwanted staircase-
like structures after optimization. In depth maps, such intensity changes
correspond to a change in depth, e.g., tilted planes, which are by no
means uncommon. Therefore, in the field of 3D reconstruction, the TV
has the serious disadvantage that such surfaces cannot be reconstructed
correctly. In contrast to TV, Total Generalized Variation (TGV) avoids this
effect by allowing higher-order solutions [28].

Thus, the continuous functional (7.18) is first discretized and the TGV
is used as an additional regularization. And similar to the TGV-based
image fusion of Pock et al. [157] and the normal fusion of Antensteiner et al.
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7.2 Surface Reconstruction

[8], a discrete optimization problem that enables a surface reconstruction
through a fusion of depth and normal measurements can be defined as

arg min
𝑧,𝐠

∑
𝑖

𝑤𝑖 ‖𝑧 − 𝑧𝑖‖2 + 𝑤m ‖𝐠 − 𝐠m(𝑧)‖2 + TGV2
𝜶(𝑧, 𝐠) . (7.19)

Here, 𝑧𝑖 corresponds to any regularizing depth estimates, 𝐠m(𝑧) calcu-
lates the gradient for given depth-dependent normal estimates, 𝑤𝑖 and
𝑤m are weights, and 𝑧 and 𝐠 are the sought surface and surface gradient,
respectively. Further, the TGV term can be expressed using the gradient
operator ∇ and a symmetrized derivative operator E = 1

2
(∇ + ∇T) :

TGV2
𝜶(𝑧, 𝐠) = 𝛼1 ‖∇𝑧 − 𝐠‖1 + 𝛼0 ‖E𝐠‖1 . (7.20)

The purpose of the TGV term is that it strengthens the coupling be-
tween the direct estimation of the depth 𝑧 (respectively surface 𝐬) and the
estimation of the surface gradients 𝐠 (respectively surface normals 𝐧) by
minimizing the distance between the gradient field ∇𝑧 calculated from
the depth map and the gradient field of the surface 𝐠 . In addition, 𝐠 is
forced by a data term to stay in the proximity of the deflectometrically
measured gradient 𝐠m . At the same time, a deviation of the surface from
the depths 𝑧𝑖 is penalized. The choice of 𝛼0 > 0 causes a smoothing of
the gradient field and reduces the influence of noise, and in addition,
it implicitly helps to fill holes in the data if gradient information is not
available at all locations [28].

Problem (7.19) is convex but discontinuous due to the 𝐿1-norm. There-
fore, as explained in Sec. 2.5, it is necessary to reformulate it as an equiv-
alent convex-concave saddle point problem. This formulation is applied
by dualizing only the TGV term and considering the depth and normal
data terms as regularization functions

𝐺1(𝑧) = ∑
𝑖

𝑤𝑖 ‖𝑧 − 𝑧𝑖‖2 , 𝐺2(𝐠) = 𝑤m ‖𝐠 − 𝐠m(𝑧)‖2 . (7.21)

The convex conjugate of the weighted 𝐿1-norms 𝛼1 ‖⋅‖1 and 𝛼2 ‖⋅‖1 con-
tained in the TGV term are calculated to [34]

𝛿𝑌1
(𝐲1) = { 0 , ‖𝐲1‖∞ ≤ 𝛼0

∞ , ‖𝐲1‖∞ > 𝛼0
, 𝛿𝑌0

(𝐲0) = { 0 , ‖𝐲0‖∞ ≤ 𝛼1
∞ , ‖𝐲0‖∞ > 𝛼1

.

(7.22)
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Algorithm 4 Primal-Dual-Optimization:
Initialize: 𝑧(1) = ̄𝑧1 = 1

𝐼
∑𝑖 𝑤𝑖𝑧𝑖 , 𝐠(1) = ̄𝐠(1) = 𝐠m(𝑧(1)) ,

𝐲(1)
1 = 𝟎 , 𝐲(1)

0 = E𝐠(1)

1: for 𝑛 = 1, 2, 3, … , 𝑛max do
2: Proximal gradient ascent in the dual variables
3: 𝐲(𝑛+1)

1 = prox𝛿𝑌1
(𝐲(𝑛)

1 + 𝜏𝐲1
(∇ ̄𝑧(𝑛) − ̄𝐠(𝑛)))

4: 𝐲(𝑛+1)
0 = prox𝛿𝑌0

(𝐲(𝑛)
0 + 𝜏𝐲0

E ̄𝐠(𝑛))
5: Update deflectometric surface gradient
6: 𝐠m ← 𝐠m(𝑧(𝑛))
7: Proximal gradient descent in the primal variables
8: 𝑧(𝑛+1) = prox𝐺1

(𝑧(𝑛) − 𝜏𝑧 div∇ 𝐲(𝑛+1)
1 )

9: 𝐠(𝑛+1) = prox𝐺2
(𝐠(𝑛) − 𝜏𝐠 (divE 𝐲(𝑛+1)

0 − 𝐲(𝑛+1)
1 ))

10: Extrapolation
11: ̄𝑧(𝑛+1) = 2𝑧(𝑛+1) − 𝑧(𝑛)

12: ̄𝐠(𝑛+1) = 2𝐠(𝑛+1) − 𝐠(𝑛)

13: end for

At last, with the help of the dual variables 𝐲1 , 𝐲0 the discrete saddle
point problem can be formulated as

min
𝑧,𝐠

max
𝐲1,𝐲0

⟨∇𝑧 − 𝐠, 𝐲1⟩ + ⟨E𝐠, 𝐲0⟩ + 𝐺1(𝑧) + 𝐺2(𝐠) − 𝛿𝑌1
(𝐲1) − 𝛿𝑌0

(𝐲0) .
(7.23)

The individual variables are scalar, vector or tensor fields parameterized
by the spatial pixel grid 𝑤𝑖, 𝑤m, 𝑧, 𝑧𝑖 ∈ ℝ𝑁𝑠×𝑁𝑡 , 𝐠, 𝐠m, 𝐲1 ∈ ℝ2×𝑁𝑠×𝑁𝑡 ,
𝐲0 ∈ ℝ2×2×𝑁𝑠×𝑁𝑡 , or scalar weighting factors 𝛼0, 𝛼1 ∈ ℝ .

Using the divergence operators div∇ , divE that are adjoint to ∇ , E [27],
the optimization of the saddle point problem can be solved by iterative
gradient descent in the primal variables 𝑧 , 𝐠 and gradient ascent in the
dual variables 𝐲1 , 𝐲0 [34]. And, as explained in Sec. 2.5, a correspond-
ing primal-dual optimization scheme can be derived. Alg. 4 shows the
optimization algorithm.

Since the deflectometrically measured normals depend on the distance
to the surface, the measured gradient field 𝐠m(𝑧) is updated in each
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iteration. The proximal operators can be derived by solving the separate
problem (2.38) and can be stated in closed form [34]:

prox𝛿𝑌1
(𝐲̃1) =

𝐲̃1

max(1, |𝐲̃1|
𝛼1

)
, prox𝐺1

( ̃𝑧) =
̃𝑧 + 2𝜏𝑧 ∑𝑖 𝑤𝑖𝑧𝑖

1 + 2𝜏𝑧 ∑𝑖 𝑤𝑖
,

prox𝛿𝑌0
(𝐲̃0) =

𝐲̃0

max(1, |𝐲̃0|
𝛼0

)
, prox𝐺2

( ̃𝐠) =
̃𝐠 + 2𝜏𝐠𝑤m𝐠m

1 + 2𝜏𝐠𝑤m
.

(7.24)

While the presented reconstruction algorithm is still very general, it
can be applied directly to the light field camera data. In principle, two
very general approaches can be considered: multi-depth reconstruction
and multi-view reconstruction.

7.2.2 Multi-Depth Reconstruction
In the multi-depth approach, different depth maps are used for regu-
larization and are combined to make the initial depth estimate more
robust. For light field-based depth estimation, most of the time only the
depth for the central SAI is available. Therefore, only the three central
depth maps 𝑧𝑖 from Sec. 7.1 are used with 𝑖 ∈ {direct, indirect, multi} .
As explained in Sec. 2.4, due to the perspective projection occurring in the
light field camera, a variable substitution must be performed so that the
surface gradient can be determined from the measured surface normals.
By transforming the depth maps

̄𝑧𝑖(𝑠, 𝑡) ≔ ln(𝑧𝑖(𝑠, 𝑡)) , (7.25)

the surface gradient corresponding to this substitute surface can be easily
calculated from the deflectometrically measured normal

𝐧̂𝑢𝑐𝑣𝑐
(𝑧) = 𝐧̂𝑢𝑐𝑣𝑐

(exp( ̄𝑧)) = (𝑛1, 𝑛2, 𝑛3)T (7.26)

as a function of the given depth:

𝐠m (𝑧(𝑠, 𝑡)) ≔ − ( 𝑛1
(𝑠−𝑐𝑠)𝑛1+(𝑡−𝑐𝑡)𝑛2+𝑓𝑠𝑛3

, 𝑛2
(𝑠−𝑐𝑠)𝑛1+(𝑡−𝑐𝑡)𝑛2+𝑓𝑡𝑛3

)T , (7.27)

where the normal is obtained from (7.15). In order to model the perspec-
tive projection, the intrinsic camera parameters 𝑐𝑠 ≔ 𝑐𝑠(𝑢𝑐) , 𝑐𝑡 ≔ 𝑐𝑡(𝑣𝑐) ,
𝑓𝑠 , 𝑓𝑡 from Sec. 6.2.3 are required as well.
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Since most depth estimation algorithms provide a confidence measure,
this can directly be used as weighting factor 𝑤direct and 𝑤indirect . And the
inverse of the normal disparity is used to calculate 𝑤multi . Also, because
the deflectometric normal estimation is several magnitudes more accurate
than the depth estimation, 𝑤m is selected to be about 100 times larger than
the average of the other weights. After finding a minimum for (7.19), the
true surface can be derived by back-substitution from (7.25) to 𝑧 = exp( ̄𝑧).

7.2.3 Multi-View Reconstruction
A disadvantage of the naive multi-depth approach is that only the depth
estimate for the central SAI is considered, although all other SAIs could
also contribute to the reconstruction of the surface. Consequently, the
lateral resolution of the reconstruction is limited by the spatial resolution
of the central SAI. Furthermore, the depth estimation-based regulariza-
tion approaches are only applicable to a very limited group of surfaces.
In contrast, multi-view regularization through normal disparity min-
imization can be applied to more diverse surface types and provides
regularization information in each SAI.

The individual depth maps 𝑧𝑢𝑣(𝑠, 𝑡) are initially defined on differ-
ent virtual sensor planes, therefore they have to be transformed into a
common grid. To use the multi-view information to increase the lateral
resolution of the reconstructed surface, the individual depth estimates
are transformed into a new grid, which does not need to be limited by
the spatial resolution of the central SAI. In this case, the perspective pro-
jection does not need to be modeled and instead, the grid can be defined
by an orthographic projection. Consequently, all depth maps 𝑧𝑢𝑣(𝑠, 𝑡) are
transformed to point clouds 𝐬𝑢𝑣 using (6.26) and are then orthographi-
cally projected onto a new common grid 𝑧( ̃𝑠, ̃𝑡) , where the grid should be
designed to enclose all relevant surface points. Alternatively, multi-view
regularization could be performed directly on a pre-defined orthographic
grid. That is, instead of minimizing the normal disparity for each camera
pixel, the disparity for each grid point can be optimized along the depth.

During the optimization, the surface normals corresponding to each
depth value are obtained by transforming the depth map back to a point
cloud, calculating the normal estimate for each SAI using (7.15), and by
taking the average over all estimates. Because an orthographic projection
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is used no variable substitution needs to be performed. The surface
gradient can be calculated from the deflectometrically measured normal
estimate 𝐧̂(𝑧) = (𝑛1, 𝑛2, 𝑛3)T as a function of the given depth:

𝐠m (𝑧 ( ̃𝑠, ̃𝑡)) ≔ − 1
𝑛3

(𝑛1
𝑛2

) . (7.28)

For the weight factors, the inverse of the normal disparity is used to
define 𝑤𝑖 , and the weight of the surface gradients 𝑤m is selected to be
about 100 times larger considering that its accuracy is higher as well.

7.3 Evaluation
The next sections examine the steps necessary for specular surface recon-
struction and analyze the presented procedures. The experimental setup
that was used to conduct the deflectometric measurement is shown in
figure 5.17. A 27” monitor with a resolution of 2560 ×1440 px and a pixel
pitch of 233 µm was used to display the necessary phase-shift patterns.
For image acquisition, the Lytro Illum light field camera was employed.

Since the light field camera can be interpreted as a multi-camera array,
a multi-view approach for specular surface reconstruction is pursued in
this work. The measurement setup was therefore designed to provide the
most ideal conditions for this measurement principle. For the multi-view-
based regularization to find a distinct minimum in the normal disparity,
the normal field must exhibit substantial variability. According to the find-
ings of Werling [223], this can be achieved with small camera-to-object
and monitor-to-object distances, and an angle between camera/monitor
axis and mean surface normal of about 45∘. The monitor and camera are
therefore tilted 90∘ to each other, and the specular objects are placed at
a distance of about 30 to 60 cm in the camera’s field of view. In deflec-
tometry, the choice of the focal plane influences the reconstruction. If the
camera focuses on the surface, its lateral resolution is maximized, but
the monitor is blurred, which increases the uncertainty of the reference
feature and leads to a less favorable estimation of the surface normal.
When focusing on the monitor, the slope estimate is ideal, but surface
features are blurred, which degrades the effective lateral resolution of
the reconstruction [223]. As a compromise, in the experimental setup of
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7 Specular Surface Reconstruction

this work, the camera is focused on an area slightly behind the surface.
Nevertheless, since the Lytro Illum is an unfocused plenoptic camera,
the choice of the focal plane is relatively insignificant, since the camera’s
depth of field is very high.

Furthermore, phase-shift coding was used to obtain reference features,
with 𝑀 = 12 shifts and frequencies 𝐟 = (1, 4, 16, 64). The probabilistic
approach from Ch. 4 was used for phase unwrapping unless specified
otherwise. The light field camera was calibrated using the methods from
Ch. 6. Hence, for each deflectometric measurement a light field containing
the encoded monitor data is retrieved, where the light field resolution
is set to (𝑁𝑢, 𝑁𝑣, 𝑁𝑠, 𝑁𝑡) = (13, 13, 434, 625) . The extrinsic calibration of
the measurement system was conducted using the calibrated light field
camera and the methods from Sec. 5.4.

For the analysis of the reconstruction accuracy, different reference
samples were examined. Because their shape is known, this can be used
to evaluate the reconstruction accuracy of the presented methods by
calculating the distance between the reconstructed surface 𝑧 and the true
surface 𝑧GT. For this, the true surface is first fitted onto the reconstructed
data and then the depth values are compared. Two error metrics are used:
the root-mean-square error and the peak-to-valley ratio

RMSE = √Mean (|𝑧 − 𝑧GT|2) , (7.29)

PV = |max (𝑧 − 𝑧GT) − min (𝑧 − 𝑧GT)| , (7.30)

where both metrics are calculated over all valid surface points.

7.3.1 Regularization
A partially specular surface is necessary for the evaluation of depth
estimation-based regularization. For this purpose, a disk from a hard
drive was used as a reference sample, which shows partially reflective
areas in the form of color markings and scratches. For the presented
regularization methods, the surface must be coded by structured illumi-
nation. This allows not only to estimate the monitor coordinates but also
to obtain the associated coordinate uncertainty. Since the uncertainty
increases dramatically for non-specular or weakly reflective areas, this
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(a) Disk with color markings. (b) Horizontal monitor coordinate.

(c) Coordinate uncertainty. (d) Mask.

Figure 7.4 Partially specular disk: The mask is calculated by thresholding the uncertainty
estimation. The uncertainty increases near scratches and color markings.

can be used as an indicator for the relevant surface areas. Therefore, a
threshold on the uncertainty provides masking of the data.

Figure 7.4 shows the disk, the measured vertical monitor coordinates,
the coordinate uncertainty, and the resulting calculated mask. Even non-
specular components of the background provide registration data. How-
ever, these points can easily be removed by using the masking. As ex-
pected, the uncertainty is larger for the diffuse components of the surface
than for the completely specular ones, but it is still much smaller than the
areas outside the disk. Thus, the reconstruction of the specular surface is
performed only for those pixels that observe the disk.
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(a) (b) (c)

0.0

0.5

1.0

(d) (e) (f)

Figure 7.5 Depth estimation and corresponding confidence measures. (a) & (d) Direct
depth estimation. (b) & (e) Indirect depth estimation. (c) & (f) Multi-view regularization.

7.3.1.1 Depth estimation

For the direct depth to be measured, no structured illumination is nec-
essary, and instead, the monitor has been turned completely white for
adequate brightness. Due to the roughness of the mirror and the color
markings, a classical structure tensor-based orientation estimator was
used for the depth estimation [218]. This approach provides the disparity,
i.e., the slope of the lines, which can be converted into the distance to
the disk. Further, it also yields an additional confidence measure for
the estimated depth. The confidence is high in the vicinity of structured
image areas where the lines in the EPIs are visible. If there is no structure,
there are no lines in the EPIs, which results in a low confidence. For the
indirect depth estimation, phase-shift coding was used to assign the hori-
zontal and vertical monitor coordinates to each light field pixel. The same
algorithm can be used for indirect depth estimation. The only difference
is that there are only two “color channels”. Since the method does not
perform correctly near strong curvature regions, second-order gradients
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are calculated on the registration data. A final confidence measure is
then obtained by combining the confidence of the depth with the inverse
of the calculated curvature. After estimating the monitor’s depth, the
indirect depth can easily be calculated by using (7.5). Figure 7.5 shows
the estimates of the surface as a point cloud using the different methods
as well as the corresponding confidence measures, which are used as
weighting for the subsequent surface reconstruction. For comparison,
the multi-view regularization is shown as well, where the inverse normal
disparity is used as a confidence measure. The figure shows that the
direct depth estimation is very noisy because the surface itself has only
a few areas with structure. This can also be seen in the corresponding
confidence map, where only the areas near the color markings and the
edge of the disk show high confidence. The indirect depth estimation is
much less noisy since phase-shift coding suppresses image noise. The
confidence map is also much more consistent. Yet, the confidence de-
creases in the vicinity of dents on the surface, as the curvature increases
here. The multi-view depth estimate looks the best. The associated confi-
dence values are higher on the fully specular areas than near the color
markings. Outside the specular disk, it is zero since these areas are not
examined due to the masking.

The major disadvantage of direct and indirect depth estimation is
that it only works for very specific surfaces. If the surface is completely
specular, no direct surface features can be detected. If the surface has cur-
vature, the depth of the reflection is compressed or stretched. Figure 7.6
shows this behavior for the reconstruction of a convex mirror. While the
multi-view regularization can reconstruct the surface, the indirect depth
estimation fails completely, even though the surface has only a very small
curvature with 𝜅 = 1/800 mm−1. The position of the surface is in some
cases even estimated to lie behind the camera. In conclusion, the indirect
depth estimation may only be used for planar surfaces or needs further
improvements. Therefore, for the time being, it should be considered
only as a theoretical concept and interesting approach and should be
handled with caution for practical use.
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(a) (b)

Figure 7.6 Reconstruction of a convex surface: (a) The indirect depth estimation fails
even for surfaces with only marginal curvature. (b) The multi-view regularization correctly
estimates the surface depth.

7.3.1.2 Normal Disparity Minimization

Minimizing the normal disparity requires neither diffuse surface fea-
tures nor triangulating the distance to the monitor. Instead, an arbitrarily
shaped surface can be found by triangulating the normal field. The in-
spection of a planar surface and a concave surfaces are shown in figure 7.7.
The figure shows the reconstruction of the disparity of a camera pixel as
a function of the distance to the surface.

For both surfaces, the disparity increases strongly for decreasing dis-
tances, so that the lower bound of the optimization problem (7.16) can
be defined without problems. The disparity of the planar surface shows
a clear minimum, and it can be seen that the disparity decreases as the
distance approaches infinity. It has a local maximum at a distance of
about 60 cm. The upper bound for the optimization can therefore be set
very loosely since the measurement space of the experimental setup is
only slightly larger than 60 cm. The true minimum can therefore be found
easily. For the concave surface, two dominant minima emerge. As already
explained in Sec. 7.1.2, this is a peculiarity of concave surfaces, such that
for stereo deflectometry there are surfaces where the disparity shows
equivalent minima at different distances. Fortunately, this is not the case
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Figure 7.7 Multi-view regularization: The plots show the reconstructed point cloud and
the normal disparity 𝐽(𝑧) as a function over the distance 𝑧. (a) & (c) Planar surface and the
disparity of a pixel. (b) & (d) Concave surface and the disparity of a pixel.

for the multi-stereo approach investigated here, and a clear minimum can
still be seen. However, it is much more difficult to define the upper limit
of the search space, since the disparity of the investigated pixel shows a
local maximum at a value of just over 55 cm. There is only a distance of
less than 15 cm to the true minimum. Depending on how strongly the
surface is inclined, the disparity curve for some pixels is thus shifted
further to the right or left. In the worst case, the minimization wanders
for some points into the second minimum. However, since the associated
disparity is much larger than the one from the true minimum, these
erroneous estimates can still be eliminated in post-processing.
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The normal disparity can be interpreted as the variance of the angle
between the normal estimates. The square root of the disparity thus gives
information on how large the spread of the angles is in the point under
consideration. For the plane mirror, the minimum of the square root of
the disparity is

√
𝐽 = 22 µrad and the local maximum is

√
𝐽 = 3 mrad.

For the concave mirror, the minimum is
√

𝐽 = 150 µrad and the local max-
imum is

√
𝐽 = 1 mrad . These very small values are due to the very small

baseline between the SAIs. In a standard stereo-deflectometry system
with the same baseline, the same disparities would be technically indis-
tinguishable because they would be superimposed by noise. This would
make reconstruction impossible [221]. The light field-based multi-view
approach with 13 × 13 SAIs can still resolve the small disparity range
despite the small baseline because the multiple views allow a reliable
disparity estimation.

While minimizing the disparity already yields surface points, the
resulting surface is still not perfect. This is because the triangulation of the
normal field, like other triangulation methods, depends on the effective
stereo baseline and the distance to the surface, where the uncertainty of
the depth estimate increases quadratically with the depth [72]. Thus, for
better reconstruction, the normal measurement should be used.

7.3.2 Multi-Depth Reconstruction
To demonstrate the principle approach and the advantages of the different
depth estimations, the analysis will be performed here only for the central
SAI. Figure 7.8 shows the measurement of the partially specular hard disk
and the result of the 3D reconstruction. Because hard disks in general
have high planarity, the deviation from the ideal plane is calculated as a
quality measure.

The left side of the figure shows the reconstruction error for which the
respective regularization result from figure 7.5 was used. The confidence
of the depth is used to mask invalid pixels. The pure light field depth
estimate of the diffuse surface is therefore only sparsely available in
areas of high roughness or near the color markers. All other regions are
evaluated as invalid by the depth estimation, which is accounted for by
𝑤𝑖 = 0 in the fusion. The reconstruction error of the pure regularization is
relatively high with an RMSE of 14.80 mm. The indirect depth estimation
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(e) Direct depth + TGV-fusion:
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(f) Indirect depth + TGV-fusion:
RMSE = 29.00 µm .
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(g) Multi-view depth + TGV-fusion:

RMSE = 18.19 µm .
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(h) Weighted average + TGV-fusion:
RMSE = 24.06 µm .

Figure 7.8 Reconstruction of a partially specular disk. The plots show the distance between
the disk and an ideal plane. A logarithmic colormap is used for better visualization.
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and the multi-view regularization are much denser and less noisy. The
RMSE values of the reconstruction are smaller at 3.76 mm and 4.02 mm,
respectively. In areas of weak reflection, pixels are marked as invalid in
the indirect depth estimation because the confidence is very low and the
depth estimation yields significantly erroneous values. The multi-view
estimation also has small confidence values in the same areas, but can
still provide reasonably correct values.

If the regularization is used to provide support points for the normal
integration from Sec. 7.2.1, then the reconstruction error can be signifi-
cantly reduced. Because the depth estimation is only available sparsely
in some places, the intermediate values must be interpolated as initial-
ization of the surface, with the help of which the surface normals can
then be calculated. For all further steps in Alg. 4 no interpolation has to
be done, because it is sufficient to use only the valid pixels as support
points for the fusion. The right side of figure 7.8 shows the corresponding
results of the fusion. While the direct depth estimation has a relatively
high error, the multiple regularization points are sufficient to allow a
reasonably good reconstruction. Interestingly, the reconstruction with
multi-view regularization with RMSE = 18.19 µm is better than the one
with the indirect depth estimation with RMSE = 29.00 µm, although the
regularization points of the indirect depth estimation have the smallest
error overall. This can be explained by the fact that although the disk has
been manufactured precisely and with a high degree of flatness, it may
have a very slight curvature due to external forces, e.g., resulting from
adding paint markings or from the deliberate application of scratches
and dents. Therefore, the indirect regularization yields slightly incorrect
data, as explained before.

Since all regularization methods use different information as a basis,
the regularization points have different uncertainties and can thus jointly
contribute to the improvement of the reconstruction. For this purpose,
firstly, a weighted average of the individual regularization is calculated.
Further, in the depth and normal fusion (7.19) all depth estimates are
used jointly, weighted by the respective confidences. Figure 7.8(d) and (h)
show the respective reconstruction errors. Although it often helps to
merge different sources of information, in this example the result both
times is worse than when using only the multi-view regularization. The
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cause of this may be that the used confidence measures do not necessarily
represent the uncertainty of the regularization and therefore may not
be used as equivalent weights. On the other hand, the regularization
methods may show systematic errors that cannot be assessed using a
confidence estimation.

7.3.3 Multi-View Reconstruction
The light field depth estimation algorithms proposed in the literature
generally provide only the depth of the central SAI, because the high
redundancy of the light field is usually not needed after the estimation.
In principle, the algorithms could be adapted to compute the depths in
other SAIs, but the depth estimation-based regularization approaches
had other drawbacks, as noted in the last sections, so they will not be
considered any further here. The advantage of multi-view regularization
is that multiple views can be used to increase the lateral resolution of the
reconstruction. For this purpose, all depth estimates from all SAIs are
transformed into a uniform grid.

7.3.3.1 Evaluation of the Reconstruction Accuracy

Since the hard disk from the previous sections can only be regarded as
approximately planar, different reference mirrors with known shapes
are used to quantify the accuracy of the reconstruction in the following.

For the first experiment, a precision surface mirror with 𝜆/20 flatness is
used as the surface under test. With the reference wavelength of 632.8 nm,
the mirror has a maximum peak-to-valley deviation from the perfect
plane of 31.64 nm. Thus, compared to the achievable accuracy of the mea-
surement system in this work, it can be considered absolutely flat. There-
fore, as a quality measure, a perfect plane is fitted into the reconstructed
point cloud, and for each point, the distance to this plane is evaluated as
a quality measure. Figure 7.9 shows the results of the surface reconstruc-
tion. The point cloud, which can be obtained with the help of multi-view
regularization, already provides a reasonably good reconstruction. Over-
all, however, the reconstructed surface still appears slightly noisy. The
corresponding error map indicates that the surface is not yet smooth. Af-
ter optimization by fusion with the estimated surface normals, the result
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(a) Regularization. (b) Reconstruction.
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(d) Error map of reconstruction.

Figure 7.9 Reconstruction of a planar mirror: (a) & (c) The accuracy of the regularization
is quantified with RMSE = 89.71 µm, PV = 478.24 µm. (b) & (d) The accuracy of the
reconstruction is quantified with RMSE = 0.99 µm, PV = 7.94 µm.

is better. The RMSE decreases to 0.99 µm and the PV metric yields 7.94 µm.
Thus, the reconstruction result shows comparable accuracy to other de-
flectometric measurement systems from the literature [103, 154, 230].

In a second experiment, a convex surface is to be reconstructed. The
reference mirror has a radius of curvature of 𝑅 = 1/𝜅 = 800 mm and pla-
narity of 𝜆/2, which can still be considered a nearly perfect reference for
the measurement accuracy of the deflectometry system used in this work.
Since the shape of the mirror is known, the distance to the ideal surface
is again used as a quality measure. Figure 7.10 shows the results of the
surface reconstruction. The point cloud of the regularization appears
very noisy and there are strong errors at the edge of the surface. This can
also be seen in the corresponding error map. The overall error is quite
high with RMSE = 333.85 µm and PV = 1.50 mm. Looking at the surface
in detail, a systematic wave-like structure can be seen on the surface. An
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(a) Regularisation. (b) Reconstruction.
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(d) Error map of reconstruction.

Figure 7.10 Reconstruction of a convex mirror: (a) & (c) The regularization results in
RMSE = 333.85 µm, PV = 1.50 mm. (b) & (d) The reconstruction results in RMSE =
12.02 µm, PV = 41.03 µm.

explanation for this effect could be vibrations during the measurement
or a slightly faulty calibration. However, an exact cause is not known.
Still, the reconstruction of the surface using the depth and normal fusion
shows reasonable good results and the ripples in the surface disappear
as well. The shape of the surface is clearly recognizable and the accuracy
increases strongly to RMSE = 12.02 µm and PV = 41.03 µm. However,
the reconstruction accuracy is not as good as for the planar surface, which
is probably due to the inferior result of the regularization.

As a last experiment, a concave surface is reconstructed. The reference
mirror has a radius of curvature of 𝑅 = 406 mm and planarity of 𝜆/4 .
Figure 7.11 shows the results of the surface reconstruction. The surface
can already be recognized in the point cloud of the regularization. As
before, a wave-like structure appears on the surface. The error of the reg-
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(a) Regularization. (b) Reconstruction.

−2000

0

2000

D
is

ta
n
ce

in
µm

(c) Error map of regularisation

−100

0

100

D
is

ta
n

ce
in

µm
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Figure 7.11 Reconstruction of a concave mirror: (a) & (c) The regularization results in
RMSE = 1.34 mm, PV = 4.00 mm. (b) & (d) The reconstruction results in RMSE =
54.75 µm, PV = 210.50 µm.

ularization is relatively high with RMSE = 1.34 mm and PV = 4.00 mm,
which can also be attributed to the peculiarities of concave surfaces. As
explained in Sec. 7.3.1.2, the disparity minimization of concave surfaces
is more susceptible to noise. Still, the final result of the depth and normal
fusion shows a strongly improved result.

7.3.3.2 Lateral Resolution

An advantage of the multi-view regularization is that the lateral resolu-
tion of the surface reconstruction is not limited by the spatial resolution
of the central SAI. The resolution can be specified by the user. The light
field used here has the dimension (𝑁𝑢, 𝑁𝑣, 𝑁𝑠, 𝑁𝑡) = (13, 13, 434, 625).
Assuming that each SAI increases the resolution, the maximum possible
resolution of an orthographic grid is therefore approximately 13 times the
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resolution of a single SAI. To show the advantage of the higher resolution,
the partially specular disk from the previous sections will be examined
in the following. The reconstruction was performed with the resolutions
400 × 400, 1500 × 1500, and 4000 × 4000, where the grid is defined to
enclose the valid surface points as accurately as possible. The smallest
resolution corresponds approximately to the resolution that would be ob-
tained if only the central SAI would be considered in the reconstruction.

Figure 7.12 shows the results of the reconstruction of the disk, as
well as close-up views that have been reconstructed with the different
resolutions. The disk shows local defects in the form of scratches and
dents. With the low resolution, the defects in the disk can hardly be
identified. This shows that it is not sufficient to use only the central SAI
for the reconstruction. With a resolution of 1500 × 1500, the defects in
the disk can be recognized very well. If the resolution is increased even
further, there is hardly any noticeable improvement. This is probably
related to the fact that the surface normal 𝐧 for the reconstruction is
calculated as the weighted average of the normal estimates 𝐧𝑢𝑣 from all
SAIs. A more selective choice of the best normal estimated from all SAIs
or a more sophisticated weighting might therefore improve the results.

7.3.4 Influence of the Calibration
A substantial part of this thesis was dedicated to the accurate calibration
of the deflectometric measuring system. That the effort was worthwhile
will be shown in the following.

For the evaluation, the surface reconstruction was carried out based
on four different configurations of the system calibration. The light field
camera was calibrated using the procedure of Bok et al. [20] and using the
generic light field reconstruction procedure presented in Ch. 6. In addi-
tion, for each camera calibration, the influence of the monitor model from
Sec. 5.3 was analyzed. To assess the reconstruction quality, the planar ref-
erence mirror was again used and the deviation from the ideal plane was
evaluated. Figure 7.13 shows the results of the respective reconstructions.

The results impressively demonstrate that the camera model has a
significant impact on the reconstruction accuracy. With the calibration
method by Bok et al. [20] the surface can still be reconstructed with high
accuracy, but if the proposed generic LF-reconstruction is used, the re-
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(a) Reconstructed surface.
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(d) 4000 × 4000.

Figure 7.12 Reconstruction of the partially specular disk with different resolution of the
grid parameters. Local defects can be identified by increasing the lateral resolution. The
top row shows the content of the red rectangle with an area of approximately 5 mm×4 mm.
The bottom row shows the content of the blue rectangle with an area of approximately
3 mm×2.5 mm.
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(d) Bok et al. + monitor model.

Figure 7.13 Influence of the calibration on the reconstruction accuracy. The plots show
the distance to an ideal plane. Note the difference in scale. (a) RMSE = 2.30 µm,
PV = 8.71 µm. (b) RMSE = 50.19 µm, PV = 219.19 µm. (c) RMSE = 0.99 µm,
PV = 7.94 µm. (d) RMSE = 49.77 µm, PV = 216.92 µm.

sults are significantly better. For the method of Bok et al., it seems that the
surface shows a slight curvature. This is most likely caused by the com-
paratively inferior geometric calibration. As was pointed out in Sec. 6.3,
the quality of the SAIs at the edge of the angular plane is worse than in
the center. Accordingly, the calibration error is higher, which corrupts the
deflectometric triangulation of the normal field and, in addition, leads to
an erroneous normal measurement. The precise calibration of the light
field camera presented in this work is therefore indispensable for the
deflectometric reconstruction of specular surfaces.

The monitor model also affects the result, although not as much as the
camera calibration. For both camera calibrations, the accuracy is slightly
better with the monitor model. The RMSE is minimally better and the PV
decreases a few micrometers in both cases. Comparing the results of the
generic LF-reconstruction, it is noticeable that without using the monitor
model, the surface shows a slight curvature. The falsely assumed planar
monitor display is transferred into a falsified surface reconstruction. By
using a monitor model, this systematic error can be corrected.
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7 Specular Surface Reconstruction

7.4 Summary
This chapter described how the special optical properties of a light field
camera can be used for the deflectometric reconstruction of specular sur-
faces. The information contained in the light field opens up the possibility
of regularizing the ambiguity of the deflectometric normal estimation.
It was explained how classical light field depth estimation algorithms
can be used to extract regularizing information and how the light field
camera can be interpreted as a highly multi-view camera array to en-
able a multi-view regularization by triangulating the normal field. To
further increase the reconstruction accuracy, the normal measurements
were fused with the surface obtained from the regularization using a
variational optimization approach, which was solved with a primal-dual
optimization algorithm.

Experiments showed that, despite regularization techniques of dif-
ferent quality, good results can be achieved.The depth estimate-based
regularization methods are only applicable for a very special group of
surfaces, whereas the multi-view regularization can be used for arbitrary
specular free-form surfaces and provides better results. Further inves-
tigations showed that by fusion of the depth and normal estimates the
reconstruction accuracy can be drastically improved so that accuracies
in the lower micrometer range become possible, which is comparable
to other deflectometry systems from the literature. Moreover, the cali-
bration of the measurement system had a significant influence on the
accuracy of the reconstruction. Hence, the calibration methods that were
presented in this thesis are very well suited for deflectometry.

In summary, light field-based deflectometry can be realized efficiently
and in a compact design. Despite the very small stereo baseline between
the SAIs, but due to their immense number, high accuracy of the mea-
surement can be achieved. This enables the reconstruction of the global
surface form as well as local defects.
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8 Conclusion

This thesis investigated how light field imaging can be efficiently utilized
for deflectometry. While the key statements of the individual research
topics have already been summarized at the end of the respective chap-
ters, the results achieved with a view on the context of the entire thesis
are summarized here.

8.1 Summary
Deflectometry requires structured illumination, where the encoding of
the monitor pixel intensities enables the registration of camera pixels to
monitor pixels. In this thesis, multi-frequency phase-shifting techniques
were used as they provide high measurement accuracies and allow sub-
pixel accurate registration. At the same time, however, they introduce
ambiguities that can only be resolved using phase unwrapping methods.
Furthermore, several classical methods for phase unwrapping have been
studied. As a major contribution, a new probabilistic approach for phase
unwrapping was proposed. Using circular statistics, both the periodic-
ity of the phase is taken into account and the estimation of the phase
uncertainty can be included in the unwrapping process, thus automati-
cally compensating for individual erroneous phase measurements. By
performing a maximum-likelihood optimization on the probability dis-
tribution of the phase measurement, the optimal monitor coordinate can
be decoded for each camera pixel. Moreover, it was shown that by mod-
eling the local pixel neighborhood, the robustness of the method can be
improved further, leading to a probabilistic approach for spatio-temporal
phase unwrapping. Overall, the results showed that the proposed meth-
ods are significantly more robust to noise influences than state-of-the-art
methods, resulting in ideal starting conditions for use in deflectometry.
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8 Conclusion

Highly accurate calibration is an important prerequisite for precise
deflectometric measurements. In this thesis, a generic camera model was
used to calibrate the light field camera, in which the view rays associ-
ated with each pixel are estimated individually, resulting in a highly
accurate calibration. To estimate the camera parameters, it was proposed
to split the calibration into two subproblems, a ray calibration and a
pose estimation, and it was shown how an alternating minimization
approach can be used to deal with the tremendous number of param-
eters. Calibration features were obtained using phase-shift coding and
the estimated coordinate uncertainty was used as weighting in the opti-
mization. An analytical solution was given for the ray calibration, and
the pose was optimized using a gradient descent-based method on the
rotation manifold. Since the reference monitor used for calibration is not
ideal, the shape and the refraction at the cover glass were modeled, and
it was shown how the estimation of the respective parameters could be
efficiently integrated into the generic calibration framework. Finally, ex-
periments demonstrated the superiority of the presented generic method
over classical calibrations and other generic approaches.

While the generic calibration is very precise, it provides an uncon-
strained bundle of camera rays. The relationships among these rays are
lost. Thus, with the generic camera model, it is extremely difficult to
identify to which pixel a 3D point is projected or which ray is closest to
that point. For deflectometry, this forward and backward projection is
a necessity for a correct surface triangulation. In the case of the generi-
cally calibrated light field camera, this means that the 4D information
contained in the light field and, in particular, the relations between the
individual camera rays must be recovered. To achieve this, this thesis
proposed to use the generic camera calibration as a basis to perform a
generic light field reconstruction. The approach reconstructs the light
field from the camera raw data by only considering the geometry of
the camera rays and by resampling the corresponding intensity values.
Experiments validated the approach by reconstructing light fields from
different light field cameras. A comparison with state-of-the-art light
field reconstruction methods showed that the presented method is better
able to compensate for lens aberrations since these are already optimally
contained in the generic bundle of rays. The method was therefore able
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8.1 Summary

to reconstruct the information of the observed scene as well as to return
the geometric structure of the light field with the help of an adequate
rectification and calibration. This can be done regardless of whether the
light field camera is based on microlenses, mirrors, or coded apertures,
or whether it is implemented by using a camera array.

With the help of the registration and calibration, a deflectometric mea-
surement could finally be carried out. Since the deflectometric normal
measurement is inherently ambiguous, different regularization methods
were proposed, which take advantage of the special properties of the
light field camera. As the most important aspect, a multi-view approach
was adapted which interprets the light field camera as a highly multi-
plexed camera array, where possible surface normals can be calculated in
the field of view of each of these cameras. The normals differ in general,
yet must coincide on the true surface. By comparing the normal fields, an
initial estimate of the surface can be found. Moreover, an approach was
presented to fuse the regularization points with the deflectometrically
measured surface normals to further increase the accuracy of the surface
reconstruction. The fusion was formulated as a variational optimization
problem and a solution was found using a primal-dual algorithm. Exper-
iments showed that with regularization alone, the mirror surfaces can be
reconstructed with accuracies in the upper micrometer range. By fusion of
the depth and normal estimates, the result could be drastically improved
again, where the reconstructed surface shape deviated from the reference
shape with RMSE values around 1 µm and peak-to-valley ratios of less
than 10 µm. The investigated light field-based deflectometry approach
thus comes within similar orders of magnitude as comparable methods
from the literature. Furthermore, by evaluating the influence of the sys-
tem calibration, it became clear that the proposed generic light field recon-
struction provides significantly higher surface reconstruction accuracy as
compared to when using state-of-the-art light field calibration methods.
This showed that the precise calibration presented in this thesis is an im-
perative necessity for deflectometric reconstruction of specular surfaces.

In conclusion, light field-based deflectometry can be efficiently imple-
mented and enables high-precision reconstruction of specular surfaces.
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8 Conclusion

8.2 Outlook
The following is a presentation of ideas and concepts that have emerged
in the context of this thesis and that present future research opportunities.

The generic camera model presented in this thesis represents only the
simple geometric properties of the camera, moreover, it assumes that
each pixel can be perfectly described by a single ray. In reality, however,
the widening of the light ray induced by the camera optics results in
not every distance being in focus. Comparatively, a cone would be a
more accurate description, where its expansion and shape change as a
function of distance. An estimation of the cone parameters would make
the generic camera model more complete. When a ray hits the monitor,
an intersection plane is created between the corresponding cone and the
monitor plane. The area observed by the corresponding pixel is elliptically
distorted to different degrees depending on the tilt of the monitor. The
uncertainty of the horizontal and vertical monitor coordinates, which
can be estimated by phase-shift coding, corresponds to the axes of this
ellipse. The observation of different intersection planes could open up
the possibility of determining the distance-dependent focus parameters
for each ray in addition to the geometric parameters. With multi-focus
light field cameras, the proposed generic light field reconstruction is still
subject to limitations, since here sharp rays and blurred rays are processed
together. The extension of the generic camera model by focus parameters
should be helpful for the generic light field reconstruction as well.

While the generic light field reconstruction yields good results for
classical light field cameras, it would be interesting to apply it in the
context of spectrally coded light field cameras as proposed by Schambach
[178]. These cameras encode the spatial dimension of the light field using
a spectral mask such that there is only a single spectral channel for each
pixel. The geometric calibration of these cameras is difficult since adjacent
pixels contain very different information. The generic approach could
circumvent these difficulties by reconstructing an individual light field for
each spectral channel, which could then be merged into a single calibrated
and rectified light field. Whether the SAIs remain spectrally encoded or
whether one directly reconstructs the complete light field for each spectral
channel, e.g., by using the generic superresolution approach described in
this thesis, depends on the requirements of the following applications.
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8.2 Outlook

The reconstruction of specular surfaces still has potential for improve-
ment. The lateral resolution of the measurement is not limited by the
spatial resolution of the light field, as has been shown, but can be in-
creased by considering the angular dimension. However, this could only
increase the lateral resolution to a certain extent, since the surface nor-
mals were always calculated as the average of the estimates from all
SAIs. Thus, a more sophisticated calculation of the normals could im-
prove the resolution. Alternatively, the depth and normal fusion could
be combined with variational superresolution approaches [206].

The light field camera is equivalent to a multiple camera array where
the baseline between the cameras is in general not much larger than
1 mm depending on the model. A perspective change in the light field
can therefore be considered as a quasi-continuous movement of a single
camera. This allows estimating specular flow which occurs when the
reflection of a structured environment is observed on a specular surface.
While this thesis focused on a high accuracy reconstruction of specular
surfaces, specular flow can also be used for defect detection tasks or 3D
measurements with lower accuracy requirements [2, 144]. In the context
of this thesis, research was conducted on using a light field camera to in-
duce specular flow and use CNNs to reconstruct the surface, where only
a structured but unknown environment was required. This thesis does
not cover this approach, since it only works with synthetic data to some
extent, but cannot be used for real cameras without further modifications.
Unlike CNN-based disparity estimation commonly used in the literature,
surface reconstruction and depth estimation are strongly coupled to the
respective camera parameters. Training the CNN on synthetic data and
applying it to real data is therefore not possible for the time being. Other
applications have already shown that it is possible to consider the camera
parameters during the design of the CNN’s architecture [52]. Adopting
this approach for the reconstruction of specular surfaces could lead to
interesting results. The advantage of specular flow is that it does not re-
quire a temporal encoding of the illumination but only needs a structured
reference scene. With the light field camera, a single exposure already
contains all the required information for specular flow calculation. This
would open up the possibility for deflectometry in motion.

221





9 Appendix

9.1 Calibration

9.1.1 Variables
Matrices of pose subproblem

In Sec. 5.2.5, for every single pose with index 𝑘, an optimization problem
with objective function

𝑓(𝐑𝑘, 𝐭𝑘) = ∑
𝑖

𝑤𝑖𝑘 ‖(𝐑𝑘𝐱𝑖𝑘 + 𝐭𝑘) × 𝐝𝑖 − 𝐦𝑖‖2 (9.1)

is obtained. This can be written in a more compact form by using the
Kronecker identity (2.3), the cross product operator (2.4), the vec-operator
with 𝐫𝑘 = vec (𝐑𝑘) , and the introduction of some new variables:

𝐀rr,𝑘 = ∑
𝑖

𝑤𝑖𝑘 (𝐱𝑖𝑘𝐱T
𝑖𝑘) ⊗ ([𝐝𝑖]× [𝐝𝑖]T×) , (9.2)

𝐀tt,𝑘 = ∑
𝑖

𝑤𝑖𝑘 [𝐝𝑖]× [𝐝𝑖]T× , (9.3)

𝐀tr,𝑘 = ∑
𝑖

2𝑤𝑖𝑘 [𝐝𝑖]× (𝐱T
𝑖𝑘 ⊗ [𝐝𝑖]T×) , (9.4)

𝐛r,𝑘 = ∑
𝑖

−2𝑤𝑖𝑘 (𝐱T
𝑖𝑘 ⊗ [𝐝𝑖]T×)T 𝐦𝑖 , (9.5)

𝐛t,𝑘 = ∑
𝑖

2𝑤𝑖𝑘 [𝐝𝑖]T× 𝐦𝑖 , (9.6)

ℎ𝑘 = ∑
𝑖

𝑤𝑖𝑘 ‖𝐦𝑖‖2 , (9.7)

which results in the more compact form:

𝑓(𝐫𝑘, 𝐭𝑘) = 𝐫T
𝑘 𝐀rr,𝑘𝐫𝑘+𝐭T

𝑘 𝐀tt,𝑘𝐭𝑘+𝐭T
𝑘 𝐀tr,𝑘𝐫𝑘+𝐛T

r,𝑘𝐫𝑘+𝐛T
t,𝑘𝐭𝑘+ℎ𝑘 . (9.8)
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9 Appendix

Matrices of rotation subproblem

In Sec. 5.2.5, an optimization problem for the rotation estimation with
objective function

𝑓(𝐑) = 𝐫T𝐀𝐫 + 𝐛T𝐫 + 𝑐 (9.9)

is obtained. The corresponding parameters can be easily derived by
inserting (5.24) in (9.8):

𝐀 = 𝐀rr − 1
4

𝐀T
tr𝐀

−1
tt 𝐀tr , (9.10)

𝐛 = 𝐛r − 1
4

𝐀T
tr𝐀

−1
tt 𝐛t , (9.11)

𝑐 = ℎ − 1
4

𝐛T
t 𝐀−1

tt 𝐛t . (9.12)

9.1.2 Riemannian Gradient and Hessian on SO(3)
In Sec. 5.2 to minimize the rotation subproblem (5.25), the Riemannian
Gradient and Hessian were needed. In the following, it is demonstrated
how the gradient and Hessian for the rotation subproblem (5.25) from
Sec. 5.2 can be calculated.

Gradient

In the 𝔰𝔬(3)-tangent space, the derivative in direction 𝝃 is calculated. With
𝐑(𝝃) = e[𝝃]×𝐑 , 𝐫 = vec(𝐑) and 𝐙 as defined in (2.7), it follows:

𝐷𝝃 𝑓 (𝐑) = 𝜕𝜀𝑓𝝃𝜀 (𝐑)∣𝜀=0 , (9.13)

𝜕𝜀𝑓𝝃𝜀 (𝐑) = 𝜕𝜀𝐫(𝝃𝜀)T 𝜕𝐫𝑓(𝐑)|𝐫=𝐫(𝝃𝜀) = 𝜕𝜀𝐫(𝝃𝜀)T2 (𝐀𝐫(𝝃𝜀) + 𝐛) (9.14)

= 2vec([𝝃]× e𝜀[𝝃]×𝐑)T (𝐀𝐫(𝝃𝜀) + 𝐛) . (9.15)

With 𝜀 → 0 it follows:

𝐷𝝃 𝑓 (𝐑) = 𝜕𝜀𝑓𝝃𝜀 (𝐑)∣𝜀=0 = 2vec([𝝃]× 𝐑)T (𝐀𝐫 + 𝐛) (9.16)
(2.3)= ((𝐑T ⊗ 𝐈) vec([𝝃]×))T (𝐀𝐫 + 𝐛) (9.17)
(2.6)= 2𝝃T𝐙T (𝐑 ⊗ 𝐈) (𝐀𝐫 + 𝐛) = 𝝃Tgrad(𝑓) . (9.18)
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9.1 Calibration

Finally, the gradient of the locally parameterized objective function can
be obtained:

grad(𝑓) = 2𝐙T (𝐑 ⊗ 𝐈) (𝐀𝐫 + 𝐛) . (9.19)

Hessian

The second order derivative is calculated similarly to the previous calcu-
lations:

𝐷𝝃 grad(𝑓) = lim
𝜀→0

𝜕2
𝜀2𝑓𝜀𝝃 (𝐑) , (9.20)

𝝃T𝜕𝜀grad(𝑓) = 𝝃T𝜕𝜀2𝐙T (𝐑(𝝃𝜀) ⊗ 𝐈) (𝐀𝐫(𝝃𝜀) + 𝐛) (9.21)

= 𝜕𝜀 (2vec([𝝃]× e𝜀[𝝃]×𝐑)T (𝐀vec(e𝜀[𝝃]×𝐑) + 𝐛)) . (9.22)

With 𝜀 → 0 it follows:

𝐷𝝃 grad(𝑓) = 2vec([𝝃]2× 𝐑)T (𝐀𝐫 + 𝐛) + 2vec([𝝃]× 𝐑)T 𝐀vec([𝝃]× 𝐑) .
(9.23)

With the reshape operator mat(vec(𝐀)) = 𝐀 , it follows :

2vec([𝝃]2× 𝐑)T (𝐀𝐫 + 𝐛) = 2𝝃T𝐙T ([𝝃]× 𝐑 ⊗ 𝐈) (𝐀𝐫 + 𝐛)
(2.3)= 2𝝃T𝐙Tvec(mat(𝐀𝐫 + 𝐛) 𝐑T [𝝃]T×)
(2.3)= 2𝝃T𝐙T (𝐈 ⊗ mat(𝐀𝐫 + 𝐛) 𝐑T) vec([𝝃]T×)
(2.6)= −2𝝃T𝐙T (𝐈 ⊗ mat(𝐀𝐫 + 𝐛) 𝐑T) 𝐙𝝃
= 𝝃THess1(𝑓)𝝃 , (9.24)

2vec([𝝃]× 𝐑)T 𝐀vec([𝝃]× 𝐑) = 2𝝃T𝐙T (𝐑 ⊗ 𝐈) 𝐀 (𝐑 ⊗ 𝐈)T 𝐙𝝃
= 𝝃THess2(𝑓)𝝃 . (9.25)

Finally, the Hessian of the locally parameterized objective function can
be obtained:

Hess(𝑓) = Hess1(𝑓) + Hess2(𝑓) (9.26)
= 2𝐙T ((𝐑 ⊗ 𝐈) 𝐀 (𝐑 ⊗ 𝐈)T − 𝐈 ⊗ mat(𝐀𝐫 + 𝐛) 𝐑T) 𝐙 . (9.27)
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9.1.3 Proofs
Invertibility of 𝐀tt

Calculating the translation vector from the rotation in Sec. 5.2.5 requires
the matrix 𝐀tt to be invertible. Here, it is shown that 𝐀tt is positive
definite in most cases and thus invertible. It needs to be shown:

𝐱T𝐀tt𝐱 > 0 ⟹ 𝐀tt is invertible. (9.28)

With ‖𝐝𝑖‖ = 1, 𝑤𝑖𝑘 > 0 and ∀𝐱 ∈ ℝ3 with ‖𝐱‖ > 0 it follows:

𝐱T𝐀tt𝐱 = 𝐱T ∑
𝑖

𝑤𝑖𝑘 [𝐝𝑖]× [𝐝𝑖]T× 𝐱 = ∑
𝑖

𝑤𝑖𝑘𝐱T [𝐝𝑖]× [𝐝𝑖]T× 𝐱

= ∑
𝑖

𝑤𝑖𝑘 ([𝐝𝑖]T× 𝐱)T [𝐝𝑖]T× 𝐱 = ∑
𝑖

𝑤𝑖𝑘 ∥[𝐝𝑖]T× 𝐱∥2

= ∑
𝑖

𝑤𝑖𝑘 ‖𝐱 × 𝐝𝑖‖2 > 0 .

This is always true, except for the degenerate case of parallel rays, e.g.,
orthographic projection, telecentric optics. Then 𝐱 = 𝑠𝐝𝑖 , ∀𝑖 with some
arbitrary scalar 𝑠, results in 𝐱T𝐀tt𝐱 = 0 . In this case, there is an ambi-
guity in the translation term, because it is not possible to estimate the
distance between the calibration pattern and a camera with orthographic
projection:

𝐭 = 𝐭0 + 𝑠𝐝0 . (9.29)

Convergence of AM-Calibration

Following the research in the field of alternating minimization [65, 139],
the following proofs that the proposed alternating minimization tech-
nique for camera calibration is convergent. Thus

𝑓 (P (𝑛+1),L(𝑛+1)) < 𝑓 (P (𝑛),L(𝑛)) (9.30)

needs to be shown, where L(𝑛) is the set of ray parameters and P (𝑛) =
[R(𝑛), T (𝑛)] the set of pose parameters, consisting of rotations and trans-
lations.
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9.1 Calibration

Define the operators S𝐋 and S𝐏, as solution to the ray subproblem of
Sec. 5.2.4 and as solution to the pose subproblem of Sec. 5.2.5, respectively:

S𝐋 {𝑓 (P (𝑛),L(𝑛))} = 𝑓 (P (𝑛),L(𝑛+1)) , (9.31)

S𝐏 {𝑓 (P (𝑛),L(𝑛+1))} = 𝑓 (P (𝑛+1),L(𝑛+1)) . (9.32)

Because the optimization of camera rays delivers an optimal solution to
its subproblem, we cannot get an increase in the objective function:

S𝐋 {𝑓 (P (𝑛),L(𝑛))} ≤ 𝑓 (P (𝑛),L(𝑛)) . (9.33)

Furthermore, if the Newton descend algorithm for pose estimation is ini-
tialized with the previous pose, we always get a descend in the objective
function value:

S𝐏 {𝑓 (P (𝑛),L(𝑛+1))} < 𝑓 (P (𝑛),L(𝑛+1)) . (9.34)

In conclusion, it follows:

𝑓 (P (𝑛+1),L(𝑛+1)) = S𝐏 {𝑓 (P (𝑛),L(𝑛+1))}

< 𝑓 (P (𝑛),L(𝑛+1))

= S𝐋 {𝑓 (P (𝑛),L(𝑛))}

≤ 𝑓 (P (𝑛),L(𝑛)) , (9.35)

⟹ 𝑓 (P (𝑛+1),L(𝑛+1)) < 𝑓 (P (𝑛),L(𝑛)) q.e.d. (9.36)
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