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Foreword

Yvonne Choquet-Bruhat has made many deep and lasting contributions
to mathematical and physical aspects of General Relativity, starting
with her epoch-making 1952 proof of the well-posedness of the Cauchy
problem for Einstein’s equations. We are all very fortunate that she
has undertaken to present, in terms accessible to all, a comprehensive
account of all the aspects of General Relativity. Indeed, this beautiful
book is quite unique both in the range of topics it covers and in the way
each topic is treated.

First, the range of topics presented by Yvonne Choquet-Bruhat is
truly remarkable. She covers successively the basics of Riemannian
geometry (Chapter I) and of Special Relativity (Chapter II); the math-
ematical and physical definition of General Relativity (Chapter III);
the main properties and consequences of Einstein’s field equations
(Chapter IV); the mathematics and physics of the Schwarzschild
spacetime (Chapter V); a mathematically rigourous discussion of black
holes (Chapter VI); a brief, but up to date, discussion of relativistic
cosmology (Chapter VII); a thorough presentation of the Cauchy
problem (Chapter VIII); and last, but not least, a detailed discussion
of two of the most important phenomenological matter models, namely
relativistic fluids (Chapter IX) and the relativistic kinetic theory of
N -particle systems (Chapter X).

But, most importantly, the treatment of each one of these broad topics
is both very comprehensive and remarkably concise. She has succeeded in
reaching a Landau- and Lifshitz-like ideal of covering all the crucial issues
in the most concise way, while expounding each topic in a mathematic-
ally rigourous way. This rare combination of qualities makes this book
particularly valuable. For instance, her discussion of the Schwarzschild
spacetime covers, in one go: (i) a derivation of the solution that includes
a proof of Birkhoff’s theorem; (ii) the form of the solution in five different
types of coordinates; (iii) a preliminary discussion of the event horizon
(which is developed in the following chapter); (iv) the motion of planets
and of light, and their comparison with the most recent observations; (v)
the stability of circular orbits; (vi) a presentation of Fermat’s principle
that includes its little-known generalization to arbitrary spacetimes due
to G. Ferrarese; (vii) the redshift and time-delay effects; (viii) a dis-
cussion of spherically symmetric interior solutions that includes several
theorems about their general properties; (ix) the Reissner-Nordström so-
lution; (x) the Schwarzschild solution in any dimension; and (xi) a precise
but concise account of the results of Gu Chao Hao, Christodoulou, and
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others on spherically symmetric gravitational collapse. The chapter is
then nicely capped by some problems, followed by their solutions.

I am sure that this remarkably concise and complete book by Yvonne
Choquet-Bruhat will allow many readers to achieve a deep understand-
ing of General Relativity through her unique mathematico-physical
knowledge of one of the fundamental pillars of modern physics. Thank
you, Yvonne for sharing with us the deep wisdom you have acquired
during your lifelong exploration of the beautiful theoretical landscape
opened, nearly a century ago, by Albert Einstein.

Thibault Damour
Institut des Hautes Études Scientifiques



Preface

Special Relativity (1905) and General Relativity (1915), both due to
Einstein’s genius, are fundamental pillars of modern physics. They have
revolutionized the scientific concepts of space and time, formerly due
to everyday experience at a human scale, and also to previous scien-
tific work and experiments made with clocks, very precise and reliable
at the considered scale. These concepts of absolute space and absolute
time had become ingrained in the minds of common folk as well as
scientists, and were difficult to overthrow for a long time.1 1For instance, the fact that two twins

who live different lives age differently
was called the ‘twin paradox’, although
in fact there is no paradox there, except
in the human-built definition of time.

Nowadays,
the world explored by humanity, at microscopic as well as cosmological
scales, has become very much greater, and old concepts have had to be
replaced by more general ones. Spectacular improvements in technology
have changed the lives of a large part of humanity, and new information
processes have permitted easier access to scientific knowledge and the
acceptance of new concepts.

Modern physical theories have a mathematical formulation, often
geometrical, with consequences deduced from mathematical theorems.
The validity of a physical theory results from the verification of its
consequences by observations or experiments.

General Relativity is a beautiful geometric theory, simple in its gen-
eral mathematical formulation, which has numerous consequences with
striking physical interpretations: gravitational waves, black holes, cosmo-
logical models. Several of these consequences have been verified with a
great accuracy. The Einstein equations present a wide variety of new and
interesting mathematical problems with possible physical interpretation.

The aim of this book is to present with precision, but as simply as pos-
sible, the foundations and main consequences of General Relativity. It
is written for an audience of mathematics students interested in physics
and physics students interested in exact mathematical formulations—
or indeed for anyone with a scientific mind and curious to know more of
the world we live in. The mathematical level of the first seven chapters
is that of undergraduates specializing in mathematics or physics; these
chapters could be the basis for a course on General Relativity. The next
three chapters are more advanced, though not requiring very sophisti-
cated mathematics; they are aimed at graduate students, lecturers, and
researchers. No a priori specialized physics knowledge is required. These
chapters could serve as the text for a course for graduate students.

I wish to everyone a good trip in this strange but fascinating world.

Yvonne Choquet-Bruhat
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Notation

The sign ≡ denotes an identity and the sign := a definition, although
sometimes when there is no confusion possible I denote by the simple
sign = one or the other of these.

In the text, I usually denote by a single letter a geometric ob-
ject, for example X or T for a vector or tensor. In equations, I
prefer to use indices, since this makes operations simpler to write
and understand—without speaking of possible numerical or algebraic
computing applications.

The spacetime metric signature is −++ . . .+ . In the Lorentzian case,
the spacetime indices are Greek letter. When specified, a time index is
denoted by zero, and the space indices by Latin letters from the middle
of the alphabet, i, j, . . . .

Definitions of new notions are in bold characters and are assembled
in the index.

Note on references

I have not tried to find for each result an original source. This would
have been a difficult and sometimes controversial task. In the side notes,
I give references, assembled at the end of the book, to papers I have used,
where the interested reader can find relevant details, complements, and
references to previous papers about the subjects treated.

• The reference YCB-OUP2009 is to Yvonne Choquet-Bruhat General
Relativity and the Einstein Equations, published by Oxford University
Press in 2009.

• The references CB-DMI and II are to Y. Choquet-Bruhat and
C. DeWitt-Morette, Analysis, Manifolds and Physics, Parts I and II,
published by North-Holland in 1982 and 2000, respectively.
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Part A

Fundamentals

This part contains the mathematical definitions and physical inter-
pretations necessary for a basic understanding of Einstein’s General
Relativity. The basic definitions and properties of Riemannian and
Lorentzian geometry are given. Special Relativity is introduced, with
discussion of proper time, the equivalence of mass and energy, and phys-
ical observations. The spacetimes of General Relativity are defined, and
their basic mathematical properties and physical interpretations are de-
scribed, along with comments on experimental results. The theoretical
foundations of the Einstein equations are given and these equations are
derived. The Newtonian and Minkowskian approximations of their so-
lutions are described. Gravitational waves and gravitational radiation
are introduced. The spherically symmetric Schwarzschild spacetime is
deduced from the Einstein equations in vacuum, its mathematical conse-
quences are computed, and their observational confirmation is described.
Black holes, a phenomenon unknown to Newtonian mechanics, but
predicted by the Einstein equations, are discussed. Both spherically
symmetric and axisymmetric (Kerr) black holes are constructed and
studied. Some mathematical results and conjectures are introduced, and
an introduction to the thermodynamics of black holes and Hawking ra-
diation is provided. Relevant astrophysical observations are described.
The construction of the first cosmological models—Einstein, de Sitter,
and anti-de Sitter—is given. General Robertson–Walker spacetimes, the
cosmological redshift, and the Hubble law are discussed. Friedman–
Lemâıtre universes and the presently accepted ΛCDM model with
accelerated expansion are described, as is the current majority view on
the content of the universe, including the mysterious dark matter and
dark energy. A brief account of primordial cosmology is given.
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I
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I.4 Structure coefficients
of moving frames 10
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metrics 11
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I.12 Physical comment 24

I.13 Solutions of selected
exercises 24

I.14 Problems 28

I.1 Introduction

We give in this chapter a survey of the basic definitions of Riemann-
ian and Lorentzian differential geometry1

1More complete treatments can be
found in many textbooks, in particular
in CB-DMI.

that are necessary in General
Relativity.

I.2 Differentiable manifolds and mappings

I.2.1 Differentiable manifolds

The fundamental arena of differential geometry is a differentiable mani-
fold. For the physicist, the most concrete and useful definition makes
apparent the local identification of a manifold with Rn, the space of sets
of n real numbers with its usual topology.2

2A basis of open sets in R comprises the
sets determined by the order relation
a < x < b. The topology of Rn is the
direct product of n copies of R.

The definition proceeds as
follows.

A chart on a set X is a pair (U, φ), with U a subset of X, called
the domain of the chart, and φ a bijection from U onto an open set u
of Rn, i.e. a one-to-one invertible mapping φ : U → u by x �→ φ(x) ≡
(x1, . . . , xn). The numbers xi, i = 1, . . . , n, are called local coordinates
of the point x ∈ X.

An atlas on X is a collection of charts (UI , φI), with {I} an arbitrary
set of indices, whose domains cover X.

A mapping f between open sets of Rn, f : u→ v, is called a homeo-
morphism if it is bijective and if f and its inverse mapping f−1 are
continuous. A bijective mapping is a Ck diffeomorphism if f and f−1

are of class Ck.

Exercise I.2.1 Prove that a C1 diffeomorphism with f of class Ck is
a Ck diffeomorphism.

Hint: ∂(ff−1)/∂xi ≡ 0.

An atlas endows X with the structure of a topological manifold, of
dimension n, if the mappings φI ◦ φ−1

J are homeomorphisms between
the open sets of Rn, φJ(UJ ∩ UI) and φI(UJ ∩ UI). The mappings
φI ◦ φ−1

J define changes of local coordinates in the intersection UJ ∩UI ,
(x1, . . . , xn) �→ (y1, . . . , yn). The manifold is a differentiable mani-
fold of class Ck if these mappings are Ck diffeomorphisms; that is, if
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the functions yi(x1, . . . , xn) are of class Ck and the Jacobian determin-
ant D(y)/D(x) with elements the partial derivatives ∂yi/∂xj is different
from zero. Henceforth, by smooth we shall mean of class Ck with k large
enough for the statement under consideration to be true; a particular
case is k = ∞.

Two Ck atlases on X are said to be equivalent if their union is again
a Ck atlas. We consider them to define the same Ck manifold. It is
known that any C1 manifold can be endowed with a C∞ structure.
Unless otherwise stated, all manifolds considered here are assumed to
be smooth.

The given definition of a manifold does not imply that it is a Hausdorff
topological space; that is, it admits the possibility for two points not to
have non-intersecting neighbourhoods. In the following, we will, unless
otherwise stated, only consider Hausdorff manifolds and call them
simply manifolds.

Examples of manifolds are the sphere and the torus.
An open set of Rn is oriented by the order of the coordinates

(x1, . . . , xn). A differentiable manifold is said to be orientable (and
oriented by the choice of coordinates) if its defining atlas is such that
D(y)/D(x) > 0 in all intersections of domains of charts.

Unless otherwise stated, the manifolds considered here will be C∞,
connected and oriented.

I.2.2 Differentiable mappings

A function f on an n-dimensional manifold V n is a mapping V n → R
by x �→ f(x). Its representative in local coordinates of the chart (U, φ)
is a function on an open set of Rn, fφ := f ◦ φ−1 : (xi) �→ f(φ−1(xi)).

The function f is of class Ck at x if fφ is of class Ck at φ−1(x). This
definition is chart-independent if V n is smooth. The gradient, also called
differential, of f is represented in a chart by the partial derivatives of
fφ. If (U, φ) and (U ′, φ′) are two charts containing x, it holds that at x
(calculus relations)

∂fφ

∂xi
=
∂fφ′

∂xj′
∂xj′

∂xi
. (I.2.1)

This equivalence relation entitles the differential of f to be called a
covariant vector (see below). A covariant vector is a geometric object,
independent of a particular of coordinates choice.

A differentiable mapping f between differentiable manifolds and
diffeomorphisms can be defined analogously. The differential of f at
x∈Wn, the source, is represented in a chart around x and a chart at
f(x) ∈ V p, the target, by a linear mapping from Rn into Rp; that is, an
n× p matrix with elements ∂fα/∂xi, α = 1, . . . , p, i = 1, . . . , n.
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I.2.3 Submanifolds

An embedded submanifold of V is the image by an injective
differentiable mapping of a smooth manifold W.

I.2.4 Tangent and cotangent spaces

A tangent vector v to a differentiable manifold V at a point x ∈ V
is a geometric object. It can be defined through local coordinates as
an equivalence class of triplets (UI , φI , vφI

), where (UI , φI) are charts
containing x, while vφI

= (vi
φI

), i = 1, . . . , n, are vectors in Rn. The
equivalence relation is given by

vi
φI

= vj
φJ

∂xi
I

∂xj
J

, (I.2.2)

where xi
I and xi

J are respectively local coordinates in the charts (UI , φI)
and (UJ , φJ ). The vector vφ ∈ Rn is the representative of the vector
v in the chart (U, φ). The vector v is attached to the manifold by the
assumption, compatible with the equivalence relation, that the numbers
vi

φ are the components of vφ in the frame of Rn defined by the tangents
to the coordinate curves, curves in Rn where only one coordinate varies.

Tangent vectors at x constitute a vector space, the tangent space
to V n at x, which is denoted TxV

n. The set of pairs (x, vx), x ∈ V n,
vx ∈ TxV

n, denoted by TV n, is called the tangent bundle to V n.
An arbitary set of n linearly independent tangent vectors at x con-

stitute a frame at x. The natural frame associated to a chart (U, φ)
is the set of n vectors e(i), i = 1, . . . , n, such that ej

(i),φ = δj
i ; they are

represented in local coordinates by tangent vectors to the coordinates
curves of the chart. The numbers vi

φI
are the components of the vector

v in the natural frame. Traditionally, indices of components of vectors
are written upstairs.

The cotangent space T ∗
x to V is the dual of Tx, that is, the space

of 1-forms on Tx, which are also called covariant vectors at x ∈ V,
the tangent vectors being called contravariant. The components of a
covariant vector at x in a chart (U, φ) containing x, are a set of n numbers
vi, i = 1, . . . , n, with indices traditionally written downstairs. Under a
change of chart from (U, φ) to (U, φ′), it holds that

v′i = vj
∂xj

∂x′i
. (I.2.3)

Covariant vectors can be defined by this equivalence relation. By (2.1),
the differential at x of a differentiable function f is a covariant vector,
called the gradient of f. The natural coframe is the set of differentials
dxi of the coordinate functions x �→ xi.
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I.2.5 Vector fields and 1-forms

A vector field on V assigns a tangent vector at x ∈ V to each point x.
The relations (2.1) and (2.2) show that, given a differentiable function

f on V, the quantity v(f) defined for points x in the domain U of the
chart (U, φ) by

v(f) := vi
φ

∂fφ

∂xi
φ

, fφ := f ◦ φ−1 (I.2.4)

is chart-independent: v defines a mapping between differentiable func-
tions. It is easy to check that this mapping is additive,33Even linear, that is also such that

v(λf) = λv(f), with λ a constant in
R, a property included in the Leibniz
rule.

v(f + g) = v(f) + v(g), (I.2.5)

and satisfies the Leibniz rule,

v(fg) = fv(g) + gv(f). (I.2.6)

The properties (2.5) and (2.6) characterize a derivation operator,
and v(f) is called the derivative of f along v.

If we take for v a vector of a natural frame eφ,(i), that is, vj = δj
i ,

then

v(f) ≡ eφ,(i)(f) =
∂(f ◦ φ−1)

∂xi
φ

. (I.2.7)

Alternatively, a tangent vector at a point x on a differentiable mani-
fold can be defined, without first introducing its representatives and the
equivalence relation, as the value at x of a linear first-order derivation
operator acting on differentiable functions defined in a neighbourhood
of x.44See, for instance, CB-DMI, III B 1. The natural frame can thus be defined as the set of operators
∂/∂xi, i = 1, . . . , n.

A covariant vector field on V assigns a covariant vector at x to each
point x ∈ V . It is called a 1-form on V.

I.2.6 Moving frames

A moving frame, often called simply a frame in what follows, in a
subset U of a differentiable n-dimensional manifold V is a set of n vector
fields on U that are linearly independent in the tangent space TxV at
each point x ∈ U. A manifold that admits global frames (not necessarily
global coordinates) is called parallelizable.55It has been proved that all orientable

differentiable 3-manifolds are paral-
lelizable; this is not true in all other
dimensions.

A coframe on U is a set of n 1-forms θi that are linearly independent at
each x ∈ U in the dual space T ∗

xV . In the domain U of a coordinate chart,
a coframe is specified by n linearly independent differential 1-forms

θi ≡ ai
jdx

j , (I.2.8)

with ai
j functions on U.
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The differential of a differentiable function f is a covariant vector field
called an exact 1-form

df :=
∂f

∂xi
dxi ≡ ∂ifθ

i.

Its components ∂if in the coframe θi are called Pfaff derivatives.
The dual frame to a coframe θi is the set of vector fields such that

θi(ej) = δi
j . (I.2.9)

The natural frame ∂/∂xi and the natural coframe dxi are dual.

I.3 Tensors and tensor fields

I.3.1 Tensors, products and contraction

A covariant p-tensor at a point x ∈ V can be defined as a p-multilinear
form on p direct products of the tangent space TxV with itself. Con-
travariant tensors can be defined as multilinear forms on direct products
of the cotangent space T ∗

xV.
Tensors, contravariant or covariant, can also be defined, like vec-

tors, through equivalence relations between their components in various
charts. For instance a 1-contravariant 2-covariant tensor T at x ∈ V is
an equivalence class of triplets (UI , φI , TφI ,ij

h), i, j, h = 1, . . . , n, with
the equivalence relation being the law of change of components of T by
change of local coordinates from (U, φ) to (U, φ′) given by

Ti′j′ h′
=
∂xk

∂xi′
∂xl

∂xj′
∂xh′

∂xm
Tkl

m. (I.3.1)

The space of tensors of a given type is a vector space, in which summa-
tion of elements and their multiplication by scalars are defined in terms
of these operations acting on components.

The tensor product S ⊗ T of a p-tensor S and a q-tensor T is in-
trinsically defined: it is the (p + q)-tensor with components defined by
products of components. For example, the tensor product of a covariant
vector ω with a contravariant 2-tensor T is the mixed 3-tensor ω ⊗ T
with components

(ω ⊗ T )i
jk = ωiT

jk. (I.3.2)

Although products of components are commutative, tensor products are
non-commutative: ω ⊗ T and T ⊗ ω of the previous example do not
belong to the same vector space. A p-covariant and q-covariant tensor is
an element of the tensor product of p copies of Tx and q copies of T ∗

x ,
but different orders of these products give different spaces of tensors:
T ∗

x ⊗ Tx 
= Tx ⊗ T ∗
x .

A basis of the vector space of tensors of a given type is obtained by
tensor products of vectors and covectors of bases. For example, a natural
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basis of the space of covariant 2-tensors at x is dxi ⊗ dxj :

T = Tijdx
i ⊗ dxj . (I.3.3)

The symmetry [respectively antisymmetry] properties, for ex-
ample Tij = Tji [respectively Tij = −Tji], are intrinsic properties (i.e.
independent of coordinates).

Exercise I.3.1 Check these properties.

The contracted product of a p-contravariant tensor and a q-
covariant tensor is a tensor of order p + q − 2 whose components are
obtained by summing over a repeated index appearing once upstairs
and once downstairs.

I.3.2 Tensor fields. Pullback and Lie derivative

Tensor fields are assignments of a tensor at x to each point x of the
manifold V. Differentiability can be defined in charts; the notion of a Ck

tensor field is chart-independent if the manifold is of class Ck+1.
The image of a contravariant tensor field on V under a differentiable

mapping between differentiable manifolds f : V → W is not necessarily
a tensor field on W unless f is a diffeomorphism.

Exercise I.3.2 Prove this statement in the case of a vector field.

The pullback f∗ on V of a covariant tensor field on W is a covariant
tensor field. For instance, for a covariant vector ω and a mapping f given
in local charts by the functions yα = fα(xi), with yα coordinates on W
and xi coordinates on V, the pullback is defined by

(f∗ω)i(x) =
∂yα

∂xi
ωα(y(x). (I.3.4)

Exercise I.3.3 Extend the definition and property to covariant
tensors.

The Lie derivative of a tensor field T with respect to a vector field
X is a derivation operator from p-tensors into p-tensors. If ft is the one-
parameter local group of diffeomorphisms66See, for instance, CB-DMI, III C. generated by X, then the Lie
derivative at x ∈ V of a contravariant tensor T is defined by

(LXT )(x) := lim
t=0

[(f−1
t )′T (ft(x)) − T (x)]. (I.3.5)

For example, for a contravariant 2-tensor, it is computed to be

(LXT )jk = Xi ∂T
jk

∂xi
− T ik ∂X

j

∂xi
− T ji ∂X

k

∂xi
. (I.3.6)

The Lie derivative of a vector field X in the direction of the vector field
Y is called the Lie bracket of X and Y ; it has components

(LXY )j ≡ [X,Y ]j ≡ Xi∂iY
j − Y i∂iX

j .
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An analogous definition gives Lie derivatives of covariant tensors. For
instance, for a covariant 2-tensor,

(LXT )jk = Xi ∂Tjk

∂xi
+ Tik

∂Xi

∂xj
+ Tji

∂Xi

∂xk
. (I.3.7)

Exercise I.3.4 Check that the quantities (3.6) [respectively (3.7)]
transform as the components of a 2-contravariant tensor [respectively
a 2-covariant tensor] under a change of coordinates.

I.3.3 Exterior forms

A totally antisymmetric covariant p-tensor field is also called an ex-
terior p-form. A natural basis of the space of p-forms is obtained by
antisymmetrization. We call the p-antisymmetrization operator the
mixed tensor with components ε12...p

i1...ip
= 1 if i1 . . . ip is an even per-

mutation of 12 . . . p and ε12...p
i1...ip

= −1 if it is an odd permutation The
components of a p-form can be written

ωi1...ip
= ε12...p

i1...ip
ω12...p

A p-form is determined by the data of its component with indices of
increasing order.

We define the exterior product of exterior forms by antisymmetriza-
tion of tensor products. A basic example is the exterior product of two
1-forms given by7 7Note that there is an alternative def-

inition of the exterior product in which
the factor of 1

2
is omitted: dxi ∧ dxj =

dxi ⊗ dxj − dxj ⊗ dxi.dxi ∧ dxj = −dxj ∧ dxi :=
1
2
(dxi ⊗ dxj − dxj ⊗ dxi). (I.3.8)

Using exterior products, a p-form reads in a natural coframe

ω =
1
p!
ωi1...ip

dxi1 ∧ . . . ∧ dxip . (I.3.9)

The exterior derivative of a p-form is a (p+ 1)-form given in local
coordinates by

dω :=
1
p!
dωi1...ip

dxi1 ∧ . . . ∧ dxip ≡ 1
p!

∂

∂xj
ωi1...ip

dxj ∧ dxi1 ∧ . . . ∧ dxip .

(I.3.10)

A form whose differential is zero is called a closed form. A form that
is the differential of an exterior form is called an exact form. An ex-
act form is a closed form. The reciprocal of this property is true on
manifolds diffeomorphic to Rn (Poincaré lemma), but not on general
manifolds. A necessary and sufficient condition is given by the de Rham
theorem.8 8The sufficient condition is that the in-

tegral of the p-form is zero on p-cycles.
Example I.3.1 Any n-form on the compact n-manifold Sn is closed,
but is an exact differential only if its integral on Sn vanishes.
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The interior product of a p-form with a vector field X is the
(p− 1)-form given in local coordinates by the formula

(iXω)i1...ip−1 :=
1

(p− 1)!
Xhωhi1...ip−1

.

Lemma I.3.1 The Lie derivative of an exterior form ω with
respect to a vector field X is given by the formula

LXω ≡ iXdω + d(iXω).

Exercise I.3.5 Prove this formula for 2-forms by using local coordin-
ates.

I.4 Structure coefficients
of moving frames

For the natural coordinates xi in a chart of a manifold, which are func-
tions x �→ xi, it holds that ∂xi/∂xj = δi

j , d
2xi ≡ 0. However, for a

moving coframe in a domain U , the differentials of the 1-forms θi do not
vanish in general: they are given by 2-forms

dθi ≡ −1
2
Ci

jhθ
j ∧ θh. (I.4.1)

The functions Ci
jh on U, antisymmetric in j and k, are called the

structure coefficients of the frame.
The Pfaffian derivatives ∂i in the coframe θi of a function f on U are

defined by df ≡ ∂if θ
i. The identity d2f ≡ 0 implies that

d2f ≡ 1
2
(∂i∂jf − ∂j∂if − Ch

ij∂hf)θi ∧ θj ≡ 0; (I.4.2)

hence, Pfaffian derivatives in contrast to ordinary partial derivatives, do
not generally commute,

(∂i∂j − ∂j∂i)f ≡ Ch
ij∂hf. (I.4.3)

Exercise I.4.1 Show that the structure coefficients of a coframe
θi := ai

jdx
j are given by

Ci
hk ≡ Aj

k∂ha
i
j −Aj

h∂ha
i
j

where A is the matrix inverse of the matrix a.

We note that the basis ei dual to θi satisfies the commutation
conditions

[ei, ej ] =
1
2
Ch

ijeh,

where [., ] denotes the Lie bracket of vector fields:

[v, w] := Lvw = −Lwv.
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I.5 Pseudo-Riemannian metrics

I.5.1 General properties

A pseudo-Riemannian metric on a manifold V is a symmetric covari-
ant 2-tensor field g such that the quadratic form it defines on contravari-
ant vectors, g(X,X), given in local charts by gijX

iXj , is non-degenerate;
that is, the determinant Det(g) with elements gij does not vanish in any
chart; this property is independent of the choice of the charts because,
under a change of local coordinates (x′i) → (xi), it holds that

Det(g) = Det(g′)
(
D(x′)
D(x)

)2

. (I.5.1)

The inverse of the matrix (gij) is denoted by (gij).

Exercise I.5.1 Show that the Kronecker symbol δj
i , δ

j
i = 1 for i = j,

δj
i = 0 for i 
= j, is invariant under change of frame.
Show that the gij are the components of a contravariant symmetric

2-tensor.

A metric is traditionally written in a moving frame:

g = gijθ
iθj , i.e., in a natural frame, g = gijdx

idxj . (I.5.2)

It is known from algebra that any non-degenerate quadratic form over
the reals can be written as a sum

gijdx
idxj ≡

∑
i

εi(θi)2 with εi = ±1, (I.5.3)

where the θi are independent real linear forms of the dxi, that is, a
moving frame. Given g, this decomposition can be done in many ways,
but the number of εi that are equal to +1 and the number that are equal
to −1 are independent of the decomposition; this is called the signature
of the quadratic form. A moving frame where a metric takes the form
(5.3) is called an orthonormal frame, whatever its signature.

A pseudo-Riemannian metric g on V defines at each point x ∈ V
a scalar product, that is, a bilinear non-degenerate function on the
tangent space TxV :

(v, w) := gx(v, w) ≡ gij(x)viwj , v, w ∈ TxV.

Two vectors of a tangent space TxV are said to be orthogonal if their
scalar product vanishes.

Through contracted products with the metric or its contravariant
counterpart, one associates canonically contravariant and covariant ten-
sors, for example

Tij = gihgjkT
hk. (I.5.4)

An isometry of the pseudo-Riemannian manifold (V, g) is a diffeo-
morphism f that leaves g invariant; that is,

(f∗g)(x) = g(x) at each point x ∈ V. (I.5.5)
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If a metric g is invariant under the action of a one-parameter group
generated by the vector field X, then its Lie derivative with respect to
X vanishes; the converse is locally true. The vector field X is then called
a Killing vector of g.

Exercise I.5.2 Show that the Lie bracket of two Killing vectors is also
a Killing vector.

A pseudo-Riemannian manifold of dimension n admits at most
n(n+ 1)/2 Killing vectors.

Two pseudo-Riemannian manifolds (V, g) and (V ′, g′) are called lo-
cally isometric if there exists a differentiable mapping f such that any
point x ∈ V admits a neighbourhood U, and f(x) a neighbourhood U ′,
with (U, g) and (U ′, g′) isometric. Locally isometric manifolds have the
same dimension but can have different topologies (for example, a plane
and a cylinder).

A pseudo-Riemannian manifold is called a flat space if it is isometric
with a pseudo-Euclidean space, that is, Rn with metric

gijdx
idxj ≡

∑
i

εi(dxi)2 with εi = ±1.

It is called locally flat if it is locally isometric to a flat space.
The volume form of the metric g is the exterior n-form that reads

in local coordinates

ωg = |Detg| 12 dx1 ∧ . . . ∧ dxn. (I.5.6)

This exterior form induces, on domains oriented by the order x1, . . . , xn,
a volume element on a pseudo-Riemannian manifold, often denoted
by the same symbol ωg, although the volume element concerns only
oriented manifolds. It reads,

μg = |Detg| 12 dx1 . . . dxn, (I.5.7)

the order of the differential dxi is irrelevant in integration (Fubini’s
theorem).99For integration of forms on manifolds,

see for instance CB-DMI, IV B 1.

I.5.2 Riemannian metrics

A metric is called Riemannian (or, for emphasis, properly Riemannian)
if the quadratic form defined by g is positive-definite.1010That is, εi = +1 for all i in the

formula (5.3). If v is a tangent vector at x to a Riemannian manifold (V, g), the
non-negative scalar

gx(v, v)
1
2 := [gij(x)vivj ]

1
2 (I.5.8)

is the norm (in g) of v; it vanishes only if v is the zero vector, whose
components are vi = 0.



I.5 Pseudo-Riemannian metrics 13

The length � of a parametrized curve λ �→ x(λ) joining two points of
V with parameters λ = a and λ = b is

� :=
∫ b

a

[
gij(x(λ))

dxi

dλ

dxj

dλ

] 1
2

dλ. (I.5.9)

Elementary analysis shows that the definition is independent of the par-
ametrization. The distance between these two points is the lower bound
of the length of arcs joining them. A geodesic of a properly Riemannian
manifold is a curve for which this bound is attained.

Distance endows a properly Riemannian manifold with the structure
of a metric space with a topology that coincides with its topology as
a manifold. Riemannian manifolds and their topologies have been ex-
tensively studied by differential geometers, and their metrics are closely
related to their topological properties. They are of interest to General
Relativists as possible properties of space (see Chapter VII).

I.5.3 Lorentzian metrics

A pseudo-Riemannian metric g is called a Lorentzian metric if the
signature of the quadratic form defined by g is (−++ · · ·+). In the case
of a manifold with a Lorentzian metric, we denote its dimension by n+1
and use Greek indices α, β, . . . = 0, 1, 2, . . . , n for local coordinates and
local frames. A Lorentzian metric is a quadratic form

g ≡ gαβdx
αdxβ (I.5.10)

that admits a decomposition as a sum of squares of 1-forms θα with the
following signs, independent of the choice of these 1-forms:

g ≡ −(θ0)2 +
∑

i=1,...n

(θi)2, θα = aα
βdx

β . (I.5.11)

Remark I.5.1 We adopt the ‘mostly plus’ MTW convention.11 11Misner–Thorne–Wheeler.Some
authors prefer the opposite convention, giving to Lorentzian metrics the
signature (+−− . . .−). Each of these conventions has its advantages and
disavantages, but of course they give equivalent geometrical results (note,
however, that, surprisingly, this is not always true on non-orientable
manifolds12 12See CB-DMII Chapter I Section 7,

Pin and spin groups.
).

A metric of fundamental physical importance in the case n = 3 is the
Minkowski metric. For a general n, it is the flat metric on Rn+1 that
reads

g ≡ −(dx0)2 +
∑

i=1,2,...,n

(dxi)2. (I.5.12)

The group of linear maps of Rn+1,

θα = Lα
α′θα′

, (I.5.13)

that preserves orthonormal frames (i.e. frames θα where the metric takes
the form (5.12)) is called the Lorentz group Ln+1.
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I.6 Causality

I.6.1 Causal and null cones

At each point x of a Lorentzian manifold V, one defines in TxV, the
tangent space to V at x, a double cone Cx called the causal cone, by
the inequality

gx(v, v) ≤ 0, v ∈ TxV. (I.6.1)

The boundary of Cx in TxV is the double cone Γx, called the null cone
or light cone,

gx(v, v) = 0. (I.6.2)

A vector v ∈ Txv is called causal if

gx(v, v) ≤ 0. (I.6.3)

It is called timelike [respectively spacelike] if

gx(v, v) < 0 [respectively gx(v, v) > 0]. (I.6.4)

It is called a null vector, not to be confused with the zero vector, if

gx(v, v) = 0 (I.6.5)

I.6.2 Future and past

The causal cone Cx splits into two convex cones, C+
x and C−

x , charac-
terized in an orthonormal Lorentzian frame by the properties v ∈ Cx

and

C+
x : θ0(v) ≡ v0 > 0, C−

x : v0 < 0. (I.6.6)

If it is possible to choose this splitting continuously on V , the manifold
is said to be time-orientable. It is time-oriented by the choice. Unless
otherwise stated, the manifolds called Lorentzian manifolds are oriented
manifolds with time-oriented Lorentzian metrics.

A causal vector is future- [respectively past-] oriented if it is such
that v ∈ C+

x [respectively v ∈ C−
x ].

A curve γ joining xa to xb in a manifold V is the image in V of a
segment of R, λ �→ γ(λ) ∈ V, a ≤ λ ≤ b. The tangent to γ at a point
γ(λ) is the derivative dγ/dλ, a vector in Tγ(λ) with components dγα/dλ
in local coordinates.

In a Lorentzian manifold (V, g), a future causal curve is a curve with
future causal tangent vectors, and a future timelike curve has future
timelike tangent vectors. The future of a point x is the set of points
y ∈ V that can be reached from x by a future timelike curve. The future
of a subset is the union of the future of its points.
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I.6.3 Spacelike submanifolds

Let M be an n-dimensional differentiable submanifold of the (n + 1)-
dimensional differentiable manifold V. Assume that f is defined by an
equation f = 0, with f a differentiable function with non-vanishing
gradient. Then, we denote by ν the contravariant vector associated in
the metric g to the gradient of f at x ∈ V.

Exercise I.6.1 Show that ν is orthogonal in g to vectors v in TxM.

The submanifold M is called spacelike [respectively, timelike, null] if
its normal ν is timelike [respectively, spacelike, null].

Exercise I.6.2 Show that in a small enough neighbourhood, local co-
ordinates of a Lorentzian manifold can always be chosen such that the
time lines are orthogonal to spacelike submanifolds; that is, the metric
can be written

ds2 := −N2(dx0)2 + gijdx
idxj .

I.6.4 Length and geodesics

The length of a causal curve γ joining xa to xb is

�: =
∫ b

a

(
−gαβ

dγα

dλ

dγβ

dλ

) 1
2

dλ. (I.6.7)

Null curves have zero length.
To define geodesics on a Lorentzian manifold, we replace the inte-

gral (6.7), which causes problem at points where the curve has a null
tangent vector, by the integral, which is no longer independent of the
parameter λ,∫ b

a

L dλ, with L:=gαβ(x(λ))ẋαẋβ , ẋα :=
dxα

dλ
. (I.6.8)

A geodesic joining x(a) and x(b) is defined as a critical point of this
Lagrangian, that is, a solution of the Euler equations

d

dλ

∂L
∂ẋα

− ∂L
∂xα

= 0. (I.6.9)

These equations read explicitly

2gαβ
d2xβ

dλ2
+
(

2
∂gαβ

∂xγ
− ∂gβγ

∂xα

)
dxβ

dλ

dxγ

dλ
= 0;

that is, because of the symmetry in the indices β and γ,

d2xρ

dλ2
+ Γρ

βγ

dxβ

dλ

dxγ

dλ
= 0, Γρ

βγ :=
1
2
gαρ

(
∂gαβ

∂xγ
+
∂gαγ

∂xβ
− ∂gβγ

∂xα

)
.

(I.6.10)

Lemma I.6.1 On a curve solution of the equations (6.10), it holds that

gαβ(x(λ))ẋαẋβ = constant (I.6.11)
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Proof. Equation (6.11), as can easily be checked directly, is a special
case of the energy equality satisfied by solutions of the Euler equations
of a Lagrangian:

L − ∂L
∂ẋα

ẋα = constant. (I.6.12)

�

The above lemma shows that the definition (6.10) of geodesics defines
not only geometric curves but parametrized ones. It implies that the
critical points of the functional (6.10) are also critical points of (6.7),
but the converse is not true.

Exercise I.6.3 Prove this statement.

It can be proved that a geodesic between two points that are causally
related realizes, in the Lorentzian case, a local (i.e. among nearby such
curves) maximum of distance.

Exercise I.6.4 Check this statement by drawing in a plane with Car-
tesian coordinates (x, t) a broken causal line joining the origin (0, 0) to
a point (0, a) and comparing the Minkowskian lengths of this line and
the straight line joining the same points.

I.7 Connections

I.7.1 Linear connection

Partial derivatives of components of tensor fields are not components
of tensor fields – they do not transform as such under a change of co-
ordinates. Geometric derivation operators are defined by endowing the
manifold with a new structure called a connection. These operators are
called covariant derivatives and are usually denoted by ∇. They map
differentiable vector fields into 2-tensor fields and obey the following
laws:

∇(v + w) = ∇v + ∇w additivity, (I.7.1)

∇(fv) = f∇v + df ⊗ v Leibnitz rule for a product with a function.
(I.7.2)

When acting on a scalar function, they coincide with the differentiation
operator; that is,

∇f := df, a covariant vector.

Consider in the domain U of a chart a vector field v = viei in an
arbitrary frame. By the previous rules, one has

∇v = vi∇ei + dvi ⊗ ei, (I.7.3)
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and hence ∇v is determined in U by the covariant derivatives of the
basis vectors ei, 2-tensor fields that we write in the chosen frame as

∇ei = ωh
jiθ

j ⊗ eh. (I.7.4)

The ωh
ij are functions of the local frame on U. They are called connec-

tion coefficients. The covariant derivative of a vector reads, by (7.3)
and (7.4),

∇v = (∇jv
i)θj ⊗ ei, with ∇jv

i = ∂jv
i + ωi

jhv
h. (I.7.5)

The connection coefficients ωh
ji are not components of a tensor;13 13They define a matrix valued 1-form

ωi
h given by ωh

i := ωh
jiθ

j .
their

transformation law under a change of local frame results from the
tensorial character of ∇v and is found to be

ωh
ji = Ah

h′∂jA
h′
i +Ah

h′A
j′
j A

i′
i ω

h′
j′i′ , (I.7.6)

where A is the change-of-frame matrix. In the case of a change of natural
frame, it holds that

Ai
i′ =

∂xi

∂xi′ .

Exercise I.7.1 Prove the connection frame-change formula (7.6).
Show that the difference of two connections on a manifold V is a tensor
on V.

The covariant derivative of a covariant vector is defined so that the
covariant derivative of the scalar viui is the ordinary derivative and
obeys the Leibniz rule:

∇j(viui) =∂j(viui) ≡ (∂jv
i)ui + vi(∂jui) and

∇j(viui) =(∇jv
i)ui + vi(∇jui).

It then follows from (7.5) that

∇jui := ∂jui − ωh
jiuh. (I.7.7)

The covariant derivatives of a (contravariant) vector v or a covariant
vector u in the direction of another vector w are vectors of the same
type ∇wv and ∇wu with components

wi∇iv
j and wi∇iuj .

Remark I.7.1 The set of numbers ∇iv
j or ∇iuj defined as com-

ponents of 2-tensors can also be interpreted for any given i as the
components of the vector or covector that is the derivative of v or u
in the direction of the frame vector e(i).

The property that the covariant derivative in the direction of a vector
w of a contravariant or covariant vector is also a contravariant or covari-
ant vector, respectively, allows us to define the covariant derivatives of
tensor fields by assuming that, as is usual for derivation operators, they
satisfy the additivity condition and also obey the Leibniz rule, but here
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only for derivation in the direction of a given vector,1414One cannot apply the Leibniz rule
directly to tensor fields, because of the
non-commutativity of the tensor prod-
uct: ∇u ⊗ v and u ⊗∇v do not belong
to the same vector space.

equivalently on
representatives (i.e. components). We have, for two arbitrary tensors,

∇v(S + T ) = ∇vS + ∇vT linearity,
∇v(S ⊗ T ) = ∇vS ⊗ T + S ⊗∇vT Leibniz rule for tensor product

and the derivation ∇v.

These general definitions give, for example for the 2-covariant, 2-
contravariant tensor

T := Tj
hk

lθ
j ⊗ eh ⊗ ek ⊗ θl, ∇iT := ∇ei

T

the components of its covariant derivative, a 3-covariant, 2-contravariant
tensor

∇iTj
hk

l = ∂iTj
hk

l − ωm
ij Tm

hk
l + ωh

imTj
mk

l + ωk
imTj

hm
l − ωm

il Tj
hk

m.

Remark I.7.2 Lie derivatives obey the Leibniz rule

LX(S ⊗ T ) ≡ LXS ⊗ T + S ⊗ LXT.

I.7.2 Riemannian connection

The Riemannian connection of the pseudo-Riemannian metric g is
the linear connection ω such that

• The covariant derivative of the metric is zero; that is,

∂αgβγ − ωλ
αγgβλ − ωλ

αβgλγ = 0. (I.7.8)

• The second covariant derivatives of scalar functions commute:

∇α∂βf −∇β∂αf ≡ 0. (I.7.9)

One says that the connection has vanishing torsion.

Theorem I.7.1 The conditions (7.8) and (7.9) determine one and
only one Riemannian connection, given by

ωβ
αγ ≡ Γβ

αγ + gβμω̃αγ,μ, (I.7.10)

with

ω̃αγ,μ ≡ 1
2
(gμλC

λ
αγ − gλγC

λ
αμ − gαλC

λ
γμ), (I.7.11)

where the Cλ
αγ are the structure coefficients of the moving frame,

vanishing in a natural frame, while

Γβ
αγ ≡ 1

2
gβμ(∂αgγμ + ∂γgαμ − ∂μgαγ). (I.7.12)

The quantities Γ are called the Christoffel symbols of the metric g;
they are zero for an orthonormal frame and, more generally, when the



I.8 Geodesics, another definition 19

gαβ are constant. In a natural frame, the connection coefficients reduce
to the Christoffel symbols, which then read

Γβ
αγ ≡ 1

2
gβμ

(
∂gγμ

∂xα
+
∂gαμ

∂xγ
− ∂gαγ

∂xμ

)
. (I.7.13)

Applying the general formula (7.6) to a change (xα) �→ (x′α
′
) of local

coordinates in a Riemannian connection gives

Γ′β′
α′γ′ =

∂x′β
′

∂xβ

∂xα

∂x′α′
∂xγ

∂x′γ′ Γ
β
αγ +

∂xβ′

∂xδ

∂

∂xα′

(
∂xδ

∂xγ′

)
. (I.7.14)

Proposition I.7.1 By a suitable choice of local coordinates, the con-
nection coefficients can be made to vanish at any one given point, and
even along any one given curve.

Exercise I.7.2 Show that these properties hold.

This proposition is very useful to remember when computing tensorial
expressions containing covariant derivatives.

Exercise I.7.3 Prove that a Killing vector field satisfies the equations

∇iXj + ∇jXi = 0.

I.8 Geodesics, another definition

I.8.1 Pseudo-Riemannian manifolds

Parallel transport: a vector field v is said to be parallely transported
along a curve λ �→ x(λ) with tangent vector u if it satisfies along this
curve the differential equation

uα∇αv
β = 0, uα =

dxα

dλ
. (I.8.1)

A differentiable curve is called a geodesic if its tangent vector is
parallely transported:

uα∇αu
β = 0; (I.8.2)

that is, in local coordinates, if

dxα

dλ

(
∂uβ

∂xα
+ Γβ

αλu
β

)
= 0 (I.8.3)

or, equivalently,

d2xβ

dλ2
+ Γβ

αγ

dxα

dλ

dxγ

dλ
= 0. (I.8.4)

Lemma I.8.1 The scalar

uαuα ≡ gαβ
dxα

dλ

dxβ

dλ

is constant along a geodesic with parallely transported tangent uα.
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Proof. Along a geodesic, it holds that

uαuβ∇αu
β ≡ uα∇α(uβu

β) ≡ d

dλ
(uβu

β) = 0. �

It should be noted that the given definition of geodesics concerns par-
ametrized curves—the property (8.2) is not conserved under a change
of parameter; indeed, if λ′ = f(λ), uα := dxα/dλ and u′α := dxα/dλ′,
then

duα

dλ
≡ d2xα

dλ2
=

d2xα

(dλ′)2

(
dλ′

dλ

)2

+
dxα

dλ′
d2λ′

(dλ)2
,

and (8.4) becomes(
dλ′

dλ

)2 [
d2xα

(dλ′)2
+ Γβ

αγ

dxα

dλ

dxγ

dλ

]
+
dxα

dλ′
d2λ′

(dλ)2
= 0, (I.8.5)

or, equivalently,

u′α∇αu
′β + c(λ)u′α = 0 with c(λ) :=

d2λ′

(dλ)2

(
dλ

dλ′

)2

.

Therefore, u′α is parallely transported only if d2λ′/(dλ)2 = 0, i.e. λ′ =
aλ + b; that is, λ and λ′ are linked by an affine transformation. The
parameter λ on a geodesic, with uα ≡ dxα/dλ parallely transported,
is called a canonical affine parameter. The geodesics considered in
Section I.6.4 are canonically parametrized.

I.8.2 Riemannian manifolds

In a Riemannian manifold, a geodesic joining two points attains the
minimum length among neighbouring curves joining these points.

I.8.3 Lorentzian manifolds

Since uαuα is constant along a geodesic, the timelike, null or spacelike
character of a geodesic is the same along the whole curve. The canonical
parameter λ is proportionnal to arc length if the curve is timelike.

In contrast to the Riemannian case, we have the following theorem.

Theorem I.8.1 In a Lorentzian manifold, a timelike geodesic join-
ing two points attains the maximum length among neighbouring curves
joining these points.

I.9 Curvature

I.9.1 Definitions

The non-commutativity of covariant derivatives is a geometrical prop-
erty of the metric, manifesting itself via its Riemannian connection.
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The commutation (∇α∇β − ∇α∇β)vλ of two covariant derivatives of
a vector v is a 2-covariant, 1-contravariant tensor that is found by cal-
culus to depend linearly on v, and not on its derivatives; that is, there
exist coefficients Rαβ

λ
μ such that

(∇α∇β −∇β∇α)vλ ≡ Rαβ
λ

μv
μ. (I.9.1)

These coefficients are the components of a tensor,15 15Because the left-hand side is a tensor
and v is an arbitrary vector.

Riem(g), antisym-
metric in its first two indices, called the Riemann curvature tensor.16

16Note that the sign convention for the
Riemannian curvature tensor in (I.9.1)
is that used in CB-DMII; an alterative
convention is used in CB-DMI.

The identity (9.1) is called the Ricci identity.
It can be proved17

17See CB-DMI, V B 2.

that a manifold with vanishing Riemann curvature
is locally flat.

Straightforward calculus using the expressions for the components in
natural coordinates of the covariant derivative of a vector shows that
the components of the Riemann tensor in natural coordinates are

Rαβ
λ

μ ≡ ∂

∂xα
Γλ

βμ − ∂

∂xβ
Γλ

αμ + Γλ
αρΓ

ρ
βμ − Γλ

βρΓ
ρ
αμ. (I.9.2)

The Ricci tensor Ricci(g) is defined by the contraction α = λ of the
Riemann tensor and has components

Rβμ ≡ ∂

∂xα
Γα

βμ − ∂

∂xβ
Γα

αμ + Γρ
βμΓα

αρ − Γλ
βρΓ

ρ
μλ. (I.9.3)

The scalar curvature is

R := gαβRαβ . (I.9.4)

The Einstein tensor18 18Denoted Gαβ by some authors.is

Sαβ := Rαβ − 1
2
gαβR. (I.9.5)

Exercise I.9.1 Show that in an arbitrary moving frame,

Rλμ
α

β ≡ ∂λω
α
μβ − ∂μω

α
λβ + ωα

λρω
ρ
μβ − ωα

μρω
ρ
λβ − ωα

ρβC
ρ
λμ. (I.9.6)

Remark I.9.1 The Riemann curvature tensor is an exterior 2-form
taking values in the set of linear maps from the tangent plane to itself.

I.9.2 Symmetries and antisymmetries

The Riemann tensor is obviously antisymmetric in its first pair of indices.
It is straightforward to show that when written in full covariant form

Rαβ,γμ := gγλRαβ
λ

μ,

it is also antisymmetric in its last pair of indices and satisfies the so-called
algebraic Bianchi identity

Rαβ,λμ +Rβλ,αμ +Rλα,βμ ≡ 0. (I.9.7)

This identity can be used to show that the Riemann tensor is invariant
under the interchange of these two pairs. One says that it is a symmetric
double 2-form.

The Ricci and Einstein tensors are symmetric 2-tensors.
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I.9.3 Differential Bianchi identity and contractions

The definition of the Riemann tensor implies the differential Bianchi
identity

∇αRβγ,λμ + ∇βRγα,λμ + ∇γRαβ,λμ ≡ 0. (I.9.8)

Contracting this identity gives the identity

∇αRβγ
α

μ −∇βRγμ + ∇γRβμ ≡ 0, (I.9.9)

and a further contraction gives the following identity satisfied by the
Einstein tensor:

∇αS
αβ ≡ 0. (I.9.10)

This identity, called the conservation identity, plays a fundamental
role in the choice of the Einstein equations.

I.10 Geodesic deviation

An important phenomenon that signals to observers the curvature of
spacetime is its influence on the distance between nearby geodesics.

Let Cσ be a one-parameter family of geodesics with canonical par-
ameter denoted by s, Cσ(s) := ψ(σ, s). Denote by v = ∂ψ/∂s the
tangent vector to Cσ and by X = ∂ψ/∂σ the vector that characterizes
the infinitesimal displacement of Cσ.

Lemma I.10.1 These two vector fields commute; that is,

vα∇αX
β −Xα∇αv

β = 0 (I.10.1)

Proof. The relation is tensorial and pointlike. It is sufficient to prove it
at an arbitrary point in particular coordinates. Choose coordinates such
that at that point the Christoffel symbols vanish. Then

vα∇αX
β −Xα∇αv

β =
∂2ψβ

∂s∂σ
− ∂2ψβ

∂σ∂s
= 0. �

Theorem I.10.1 The rate of acceleration of distance between nearby
geodesics is linked with the curvature by the equation

∇2
v2Xβ ≡ D2

Ds2
Xβ = XαvλvμRλα

β
μ, (I.10.2)

called the equation of geodesic deviation.19

19One also says that the right-hand
side is the relativistic tidal force. This
terminology is inspired by the fact that
tides on Earth are due to the differen-
tial of the gravitational attraction (the
Hessian of the gravitational potential in
the Newtonian approximation) mainly
of the Moon, on the seas.

Proof. Differentiating the relation (10.1) in the direction of v gives, using
the parallel transport of v,

vλvα∇λ∇αX
β − vλ∇λX

α∇αv
β −Xαvλ∇λ∇αv

β = 0. (I.10.3)
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Hence, using the Ricci identity,

vλvα∇λ∇αX
β − vλ∇λX

α∇αv
β −Xαvλ(∇α∇λv

β +Rλα
β

μv
μ) = 0.

(I.10.4)

and hence, by the parallel transport of v,

vλvα∇λ∇αX
β − vλ∇λX

α∇αv
β +Xα∇αv

λ∇λv
β −XαvλRλα

β
μv

μ = 0.
(I.10.5)

The commutation (10.1) of v and X shows that this equation simplifies
to

vλvα∇λ∇αX
β = XαvλvμRλα

β
μ, (I.10.6)

which can also be written as

∇2
v2Xβ ≡ D2

Ds2
Xβ = XαvλvμRλα

β
μ. (I.10.7)

�

I.11 Linearized Ricci tensor

The linearization,20 20See, for instance, CB-DMI, II A, in
particular Problem 1.

also called first variation, of an operator
P : u �→ P (u) between open sets of normed vector spaces E1 and E2,
at a point u ∈ E1, is a linear operator acting on vectors δu ∈ E2 given
by the (Fréchet) derivative P ′

u of P at u, that is, such that

δP := P ′
uδu, with P (u+ δu) − P (u) = P ′

u(u)δu+ o(|δu|). (I.11.1)

We consider a pseudo-Riemannian metric, with components gαβ in
local coordinates. The relation between gαβ and the inverse matrix gαβ ,

gαλgαβ = δλ
β , the Kronecker symbol, (I.11.2)

implies that

δgαβ = −hλμ := −gαλgβμhλμ, where we have set hλμ := δgλμ.
(I.11.3)

The definition and the above relation applied to the Christoffel sym-
bols and the Ricci tensor gives by straightforward computation that
δΓλ

αβ is the following 3-tensor (indices raised with gλμ):

δΓλ
αβ ≡ 1

2
(
∇αh

λ
β + ∇βh

λ
α −∇λhαβ

)
. (I.11.4)

From this formula and the expression for the Ricci tensor, it follows that
δRicci(g) is the linear operator on h := δg given in local coordinates by

δRαβ ≡ −1
2
∇λ∇λhαβ +

1
2
(
∇λ∇αh

λ
β + ∇λ∇βh

λ
α −∇α∇βh

λ
λ

)
. (I.11.5)

From this identity, there results the linearization of the scalar curvature:

δR ≡ gαβδRαβ +Rαβδg
αβ ,
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where gαβδRαβ is the divergence of a vector, namely,

gαβδRαβ ≡ −∇λ

(
∇λhα

α −∇αh
λα
)
. (I.11.6)

I.11.1 Linearized Bianchi identities

The contracted Bianchi identities

∇αS
αβ ≡ 0

imply

δ(∇αS
αβ) ≡ 0;

that is,

∇α(δSαβ) + SαλδΓβ
αλ + SλβδΓα

αλ ≡ 0,

with

δSλμ ≡ δRλμ − 1
2
(gλμδR+ hλμR) ≡ 0.

I.12 Physical comment

We shall see in the following chapters that in Relativity (and already
in Newton’s theory) a model for reality at a macroscopic scale is based
on differentiable manifolds, geometric objects whose elements are called
points. Each point of, let us say, a 3-manifold is represented by a family
of sets of three numbers, each set being the coordinates of the point in a
reference frame; different elements of the family are linked by an equiva-
lence relation between reference frames. The physically realistic problem
is to link the abstract reference frames with a concrete observable one.
We will return to this subject in the following chapters.

I.13 Solutions of selected exercises

Exercise I.3.2 Image of a vector field

Let f : V → W by x �→ y := f(x), and denote by (yα) coordinates on
W and by (xi) coordinates on V. The differential of f at x is a linear
map between TxV and TyW , denoted by f ′, such that

(f ′v)α(y) ≡ ∂f i

∂xj
vi(x(y)).

It is not a vector field on W if the inverse mapping of f, f −1 : y �→ x(y),
is not defined on W.
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Exercise I.3.4 Components of Lie derivatives

For a covariant 2-tensor, the components of the Lie derivative are

(LXT )jh = Xi ∂Tjh

∂xi
+ Tih

∂Xi

∂xj
+ Tji

∂Xi

∂xh
. (I.13.1)

Under the change of coordinates xi = φi(yj′
), we have Xi = Ai

j′Xj′
,

with

Ai
j′ :=

∂xi

∂yj′ and
∂

∂xi
= Aj′

i

∂

∂yj′ ,

with (Aj′
i ) the inverse matrix of (Ai

j′). Straightforward computation
gives

(LXT )jh =Ai
m′Xm′

An′
i

∂(Ap′
j A

q′
h Tp′q′)

∂yn′ +An′
i A

q′
h Tn′q′Ap′

j

∂(Ai
m′Xm′

)
∂yp′

+Ap′
j A

n′
i Tp′n′Ah

q

∂(Ai
m′Xm′

)
∂yq′ .

Since Aj′
i A

i
h′ = δj′

h′ , the terms containing no derivatives of the A are
easily seen to reduce to

Ap′
j A

q′
h

(
Xm′ ∂Tp′q′

∂ym′ + Tm′q′
∂Xm′

∂yp′ + Tp′m′
∂Xm′

∂yq′

)
≡ Ap′

j A
q′
h (LXT )p′q′ .

(I.13.2)
The terms containing derivatives of the A are

Xm′
Tp′q′

∂(Ap′
j A

q′
h )

∂ym′ +An′
i A

q′
h Tn′q′Ap′

j X
m′ ∂Ai

m′

∂yp′

+Ap′
j A

n′
i Tp′n′Aq′

h X
m′ ∂Ai

m′

∂yq′ ,

which can be written

Xm′
Tp′q′

∂(Ap′
j A

q′
h )

∂ym′ +An′
i A

q′
h Tn′q′Ap′

j X
m′ ∂Ai

m′

∂yp′

+Ap′
j A

n′
i Tp′n′Aq′

h X
m′ ∂Ai

m′

∂yq′ .

Renaming indices then gives

Tp′q′Xm′
[
∂(Ap′

j A
q′
h )

∂ym′ +Ap′
i A

q′
h A

n′
j

∂Ai
m′

∂yn′ +Ap′
j A

q′
i A

n′
h

∂Ai
m′

∂yn′

]
≡ 0.

Since partial derivatives commute, it holds that

∂Ai
m′

∂yn′ ≡ ∂2xi

∂yn′∂ym′ =
∂Ai

n′

∂ym′ ,
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and we can write

Tp′q′Xm′
[
∂(Ap′

j A
q′
h )

∂ym′ +Ap′
i A

q′
h A

n′
j

∂Ai
n′

∂ym′ +Ap′
j A

q′
i A

n′
h

∂Ai
n′

∂ym′

]
≡ 0.

But, since Ai
n′ and An′

j are elements, of inverse matrices,

Ap′
i A

n′
j

∂Ai
n′

∂ym′ = −Ap′
i A

i
n′
∂An′

j

∂ym′ = −
∂Ap′

j

∂ym′ .

An analogous computation replacing j by h completes the proof that

(LXT )jh ≡ Ap′
j A

q′
h (LXT )p′q′ .

Exercise I.3.5 Lie derivative of exterior forms

On a two-dimensional manifold, the maximal order of an exterior form
is 2:

ω :=
1
2
ωijdx

i ∧ dxj ≡ ω12dx
1 ∧ dx2

The general formula for the Lie derivative of a covariant tensor gives for
LXω the 2-form

(LXω)12 = Xh ∂

∂xh
ω12 + ω12

(
∂Xh

∂xh

)
≡ ∂

∂xh
(Xhω12), (I.13.3)

while

iXω = ω12(X1dx2 −X2dx1), dω ≡ 0.

Hence,

d(iXω) =
∂(ω12X

1)
∂x1

+
∂(ω12X

2)
∂x2

dx1 ∧ dx2

and

LXω ≡ d(iXω) ≡ d(iXω) + iXdω.

Exercise I.5.1 Kronecker symbol and contravariant
components of g

A mixed tensor X with components Xi
j := δi

j in coordinates xi has the
following components in coordinates x′i:

Xi′
j′ ≡ ∂xi′

∂xi

∂xj

∂xi′ δ
i
j .

Hence,

Xi′
j′ ≡ ∂xi′

∂xi

∂xi

∂xi′ = δi′
j′ ,

because ∂xi′/∂xi and ∂xi/∂xi′ are elements of inverse matrices.
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The elements gih of the inverse of the metric gij are such that

gihgjh = δi
j ,

and in another coordinate system they are such that

gi′h′
gj′h′ = δi

j ;

that is,

gi′h′ ∂xj

∂xj′
∂xh

∂xh′ gjh = δi
j .

Hence,

gih = gi′h′ ∂xj

∂xj′
∂xh

∂xh′ ,

and the gih are the components of a contravariant tensor.

Exercise I.7.1 Connection frame-change formula

Let

vi = Ai
i′v

i′ , ∇jv
i = ∂jv

i + ωi
jhv

h, ∇j′vi′ = ∂j′vi′ + ωi′
j′h′vh′

.

We have ∂j = Aj′
j ∂j′ , with Aj′

j and Aj
j′ inverse matrices, and hence

∇jv
i = Aj′

j ∂j′(Ai
i′v

i′) + ωi
jhA

h
h′vh′

= Aj′
j A

i
i′∂j′vi′ + (Aj′

j ∂j′Ai
i′)v

i′ + ωi
jhA

h
h′vh′

.

But, since ∇v is a mixed tensor,

∇jv
i = Ai

i′A
j′
j ∇j′vi′ = Ai

i′A
j′
j (∂j′vi′ + ωi′

j′h′vh′
).

Identifying these two expressions for ∇jv
i gives the connection change-

of-frame formula and the tensorial law for the difference of two
connections, because the vh′

are arbitrary numbers.

Exercise I.7.3 Killing equations

A Killing vector X of a metric g is such that

(LXg)hk ≡ Xi∂ighk + gih∂kX
i + gki∂hX

i = 0.

Using ∇ighk ≡ 0 gives the result by straightforward computation.
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I.14 Problems

I.14.1 Liouville theorem

1. Let (V, g) be a pseudo-Riemannian manifold with tangent space TV.
Prove (Liouville theorem) that the volume form θ in TV given by

θ := |Detg|dx0 ∧ dx1 ∧ . . . ∧ dxn ∧ dp0 ∧ dp1 ∧ . . . ∧ dpn

is invariant under the geodesic flow with tangent vector X; that is,
with LX denoting the Lie derivative with respect to X, it holds that

LXθ = 0. (I.14.1)

2. Show that iXθ is a closed form.

Solution

In local coordinates (xA) := (xα, pβ) on TV, the Lie derivative of the
exterior 2(n+1)-form θ with respect to the vector field X = (p,G), that
is, (XA) = (pα, Gᾱ), reads, using the fact that the components of θ do
not depend on p,

(LXθ)01...n,n+1...2(n+1) = pα ∂

∂xα
θ01...n,n+1...2(n+1) + θA1...2(n+1)

∂XA

∂x0

+ θ0A...2(n+1)
∂XA

∂x1
+ . . .+ θ01...(2n+1)A

∂XA

∂x2(n+1)
.

(I.14.2)

The expression for θ gives that

∂

∂xα
θ01...nn+1...2(n+1) = gλμ

(
∂

∂xα
gλμ

)
θ01...nn+1...2(n+1); (I.14.3)

on the other hand, since θ is antisymmetric, the same index cannot
appear twice in its components; therefore, the second line of (I.14.2) is
equal to (recall that the components pα of X do not depend on xα)

θ01...2(n+1)
∂XA

∂xA
= θ01...2(n+1)

∂Gα

∂pα
. (I.14.4)

The expression for G gives that

∂Gα

∂pα
= −2Γλ

λαp
α. (I.14.5)

The result LXθ = 0 follows from the expression for the Christoffel
symbols.

2. The 2(n + 1)-exterior form θ is closed (dθ ≡ 0) on TV, a 2(n + 1)-
dimensional manifold. The equality LXθ ≡ iXdθ + diXθ = 0 implies
that diXθ = 0.
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I.14.2 Codifferential δ and Laplacian of an exterior
form

The codifferential, denoted by δ, of an exterior p-form

ω :=
1
p!
ωi1....ip

dxi1 ∧ . . . ∧ dxip

on a pseudo-Riemannian manifold is defined to be the exterior (p− 1)
-form

δω :=
−1

(p− 1)!
∇iωij1....jp−1dx

j1 ∧ . . . ∧ dxjp−1 .

1. Show that δ and the exterior differential d are adjoint operators in
the sense that for forms with compact support in an open set of Rn,
θ of degree p+ 1 and ω of degree p, it holds that

(ω, δθ) = (δω, dθ),

where the scalar product of p-forms in the metric g is defined by

(ω, θ) =
∫

Rn

ωi1....ip
ψi1...ipμg,

with μg the volume element of g.
2. Show that Δ := −(δd + dδ), called the Laplacian,21 21Note that the Laplacian is some-

times (for instance in CB-DMI) defined
without the minus sign: � := δd + dδ.

is an operator
from p-forms into p-forms given by (a hat means that the index is
absent from the sequence)

(Δω)i1...ip
≡ gjh∇j∇hωi1...ip

−
∑

1≤q≤p

Rh
iq
ωhi1...̂ıq...ip

− 2
∑

r<q≤p

Rh
iq

j
ir
ωjhi1..;̂ır...̂ıq...ip

.

If g is Lorentzian, then δd + dδ is usually denoted by �g and called
the wave operator of g (the d’Alembertian if g is the Minkowski
metric η).

Solution

Take a 1 form ω = ωαdx
α; then

dω =
1
2
(∇βωα −∇αωβ)dxβ ∧ dxα, δω = −∇αω

α ≡ −∇αωα

(δdω)β := −∇α(∇αωβ −∇βωα), (dδω)β = ∇β∇αωα.

Therefore, the components of the Laplacian of ω, a 1-form like ω, are

(Δω)β ≡ ∇α∇αωβ −∇α∇βωα + ∇β∇αωα;

that is, using the Ricci formula for commutation of covariant derivatives,

(Δω)β ≡ ∇α∇αωβ −Rα
βα

λωλ ≡ ∇α∇αωβ −Rβ
λωλ.

The general result is obtained similarly by straightforward computation.
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I.14.3 Geodesic normal coordinates

The geodesics arcs on a pseudo-Riemannian manifolds (V, g) are, in the
tangent bundle TV , solutions of a first-order differential system that
reads in local coordinates (xα, vα)

dxα

dλ
= vα,

dvα

dλ
= −Γα

βγv
βvγ . (I.14.6)

Classical theorems on such differential systems say that if the coefficients
are Lipschitzian, i.e. if the metric is C1,1, then this system has one and
only one solution, defined in a neighbourhood of λ = 0; taking given
values for λ = 0, xα(0) = xα

0 , v
α(0) = aα.

1. Show that if the functions

xα := φα(λ, aα)

satisfy the system (14.6) with φα(0, aα) = 0, ∂φα/∂λ(0, aα) = aα,
then

xα = xα
k := φα

(
kλ,

aα

k

)
, k a real number.

Hint : Show that xα and xα
k satisfy the same differential system and

take the same initial value.

2. Deduce from the result of Part 1 that there exists a neighbourhood
of xα

0 such that the functions

xα = φα(1, yα)

define an admissible change of coordinates (xα) → (yα). Show
that in the coordinates yα, called normal geodesic coordinates,
the geodesic arcs issuing from x0 are represented by straight lines,
λ �→ yα = aαλ. Show in particular that in these coordinates the
Christoffel symbols vanish at x0.

I.14.4 Cases d = 1, 2, and 3

One-dimensional manifolds are locally isometric with straight lines.
For two-dimensional manifolds, the Riemann tensor has only (up to

sign) one non-zero component, R12,12. What are the Ricci tensor and
the scalar curvature?

Show that in dimension d = 3, the Riemann tensor is linear in the
Ricci tensor (see Problem I.14.7 on the Weyl tensor).

I.14.5 Wave equation satisfied by the Riemann tensor

Deduce from the Bianchi identities a system of semilinear wave equations
satisfied by the Riemann tensor2222Bel (1958). when the Ricci tensor is equal to a
given tensor ρ.
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Solution

The Riemann tensor satisfies the Bianchi identities

∇αRβγ,λμ + ∇γRαβ,λμ + ∇βRγα,λμ ≡ 0. (I.14.7)

These identities together with the Ricci identity imply that

∇α∇αRβγ,λμ + ∇γ∇αRαβ,λμ + ∇β∇αRγα,λμ + Sβγ,λμ ≡ 0, (I.14.8)

where Sβγ,λμ is a homogeneous quadratic form in the Riemann tensor:

Sβγ,λμ ≡{Rγ
ρRρβ,λμ +Rα

γβ
ρRαρλμ + [(Rα

γλ
ρRαβ,ρμ)

− (λ→ μ)]} − {β → γ}.
(I.14.9)

On the other hand, the Bianchi identities imply by contraction

∇αR
α

βγ, μ + ∇γR
α

αβ, μ + ∇βR
α

γα, μ ≡ 0, (I.14.10)

which can be written, using the symmetry Rαβ,λμ ≡ Rλμ,αβ , as

∇αR
α

β,λμ + ∇μRλβ −∇λRμβ ≡ 0, (I.14.11)

and the identities become

∇α∇αRβγ,λμ + Sβγ,λμ + {∇γ(∇μRλβ −∇λRμβ) − (β → γ)} ≡ 0,
(I.14.12)

If the Ricci tensor Rαβ satisfies the Einstein equations

Rαβ = ραβ , (I.14.13)

then the previous identities become the following quasidiagonal system
of semilinear wave equations23 23These equations are analogous to the

Maxwell equations for the electromag-
netic 2-form F .

for the Riemann tensor:

∇α∇αRβγ,λμ + Sβγ,λμ + Jβγ,λμ = 0, (I.14.14)

where Jβγ,λμ depends on the sources ραβ and is zero in vacuum:

Jβγ,λμ ≡ ∇γ(∇μρλβ −∇λρμβ) − (β → γ). (I.14.15)

I.14.6 The Bel–Robinson tensor

The Bel–Robinson tensor associated with the Riemann tensor on
a four-dimensional pseudo-Riemannian manifold was defined by Bel24

24Bel (1959).through the use of the left and right adjoints of the Riemann tensor
defined by

(∗Ri)αβ,λμ ≡ 1
2
ηαβρσR

ρσ
λμ, (R∗)αβ,λμ ≡ 1

2
ηρσρσR

ρσ
αβ , (I.14.16)

with ηαβλμ the volume form of the spacetime metric.
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1. Prove that the left and right adjoints of the Riemann tensor are equal.
2. Prove the Lanczos identity

(Ri+∗Ri∗)αβ,λμ ≡ Sαλgβμ + Sβμgαλ − Sαμgβλ − Sβλgαμ, (I.14.17)

with S the Einstein tensor

Sαλ ≡ Rαλ − 1
2
gαλR. (I.14.18)

3. The Bel–Robinson tensor Q is the fourth-order tensor given by

Qαβλμ ≡ 1
4
[
Rαρ,λσRβ μ

ρ σ + 2(∗R)αρ,λσ(∗R)β μ
ρ σ

+(∗R∗)αρ,λσ(∗R∗)β μ
ρ σ

]
Show that it is symmetric in its two first and two last indices, and
under commutation of these pairs of indices.

4. Show that the Bel–Robinson tensor of a vacuum Einstein spacetime,
possibly with cosmological constant (Sαβ = Λgαβ), is conservative;
namely, that it satisfies the equation

∇αQ
αβλμ = 0. (I.14.19)

It can be proved that the contraction of the Bel–Robinson tensor with
timelike vectors is positive, thus giving the definition of a positive energy
density for the Riemann tensor. This is used in some existence proofs
(see Chapter VIII).

Solution

Parts 1–3 follow by straightforward computation (easier to do in an
orthonormal frame).

Part 4 uses the Bianchi identities.

I.14.7 The Weyl tensor

Two metrics g and g̃ on a manifold V are called conformal if there is a
positive scalar function Ω ≡ e2Φ on V such that

g̃ ≡ e2Φg, i.e. g̃αβ = e2Φgαβ , g̃αβ = e−2Φgαβ . (I.14.20)

Two conformal Lorentzian metrics have the same light cones and hence
define the same causal structures.

1. Show that the Christoffel symbols of two conformal metrics are linked
by the relations

Γ̃α
βγ = Γα

βγ + Sα
βγ , (I.14.21)

where S is the tensor

Γ̃λ
βμ − Γλ

βμ := Sλ
βμ ≡ δλ

μ∂βΦ + δλ
β∂μΦ − gβμ∂

λΦ. (I.14.22)
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2. Show that the Riemann tensors of g and g̃ are linked by

R̃αβ
λ

μ −Rαβ
λ

μ ≡ δλ
βΦαμ − δλ

αΦβμ + gαμΦβ
λ − gβμΦα

λ

+ (δλ
βgαμ − δλ

αgβμ)∂ρΦ∂ρΦ,

with

Φαβ := ∇α∂βΦ − ∂αΦ∂βΦ.

3. Show that the Ricci tensors Rβμ and R̃βμ on a d-dimensional manifold
are linked by

R̃βμ −Rβμ = − gβμ∇α∂αΦ − (d− 2)∇μ∂βΦ + (d− 2)

×
(
∂μΦ∂βΦ − gβμ∂

λΦ∂λΦ
) (I.14.23)

and the scalar curvatures by

e2ΦR̃−R = −2(d− 1)∇α∂αΦ − (d− 2)(d− 1)∂λΦ∂λΦ. (I.14.24)

4. Define the Weyl tensor25 25It is equal to the Riemann tensor in
a Ricci-flat space (Rαβ ≡ 0). It is con-
sidered that the Weyl tensor embodies
in some sense the non-Newtonian prop-
erties of the gravitational field, in par-
ticular its radiation properties. This
point of view is supported by the fact
that the equations for massless fields,
at least in four spacetime dimensions,
are conformally invariant.

by the relation

Wαβ,γδ =Rαβ,γδ −
1

d− 2
(gβδRαγ − gαγRβδ + gβγRαδ − gαδRβγ)

− (gβγgαδ − gαγgβδl)R.

Check that the Weyl tensor has the same symmetries as the
Riemann tensor and has zero trace.

Show that the components Wαβ
λ

μ are the same for two conformal
metrics.

Since W is obviously zero for a flat metric, it is also zero if the
metric is conformal to a flat metric.26 26It can be proved that if d > 3, then

the identical vanishing of the Weyl ten-
sor implies that the metric is locally
conformally flat.

5. Show that the Weyl tensor of a three-dimensional pseudo-Riemannian
manifold (M, g) is identically zero. Show that a three-dimensional
pseudo-Riemannian manifold with Ricci tensor identically zero is
locally flat.

I.14.8 The Cotton–York tensor

It can be proved that a 3-manifold is locally conformally flat if and only if
its Cotton tensor vanishes. This tensor is a 3-tensor with components
given in terms of the Ricci tensor and the scalar curvature of a metric
gij by

Ckij: := ∇i

(
Rjk − 1

4
gjkR

)
−∇j

(
Rik − 1

4
gikR

)
. (I.14.25)

Define a 2-tensor, called the Cotton–York tensor, by

Y ij := −εiklgmjCmkl.

Show that Y is symmetric, traceless and transverse, that is, such that
∇iY

ij = 0.
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I.14.9 Linearization of the Riemann tensor

Write the linearization of the Riemann tensor as a geometric second-
order operator on hαβ := δgαβ .

Solution

δRαβ
λ

μ ≡ ∂

∂xα
Γλ

βμ − ∂

∂xβ
Γλ

αμ + Γλ
αρΓ

ρ
βμ − Γλ

βρΓ
ρ
αμ, (I.14.26)

δRαβ
λ

μ ≡ ∂

∂xα
δΓλ

βμ − ∂

∂xβ
δΓλ

αμ + Γλ
αρδΓ

ρ
βμ + (δΓλ

αρ)Γ
ρ
βμ

− δΓλ
βρΓ

ρ
αμ − Γλ

βρ(δΓ
ρ
αμ), (I.14.27)

where δΓλ
αβ is the tensor

Xλ
αβ := δΓλ

αβ ≡ 1
2
(
∇αh

λ
β + ∇βh

λ
α −∇λhαβ

)
. (I.14.28)

Therefore, δRαβ
λ

μ is the tensor

δRαβ
λ

μ ≡ ∇αX
λ
βμ −∇βX

λ
αμ.

I.14.10 Second derivative of the Ricci tensor

The second (Fréchet) derivative, also called the second variation, of
an operator P at u ∈ E1 is, if E1 is a Banach algebra, a quadratic form
P ′′

u2 in δu such that

δ2P := P ′′
u2(δu, δu), (I.14.29)

with

P (u+ δu) − P (u) = P ′
u(u)δu+

1
2
P ′′

u2(u)(δu, δu) + o(|δu|2). (I.14.30)

Compute the second variation of the Ricci tensor at a metric g as a
quadratic form in h := δg :

δ2Rαβ := R′′
αβ(g)(h, h). (I.14.31)

Solution

Straightforward though lengthy computation gives2727Choquet-Bruhat (2000).

δ2Rαβ ≡ −hλμ [∇λ(∇αhβμ + ∇βhαμ −∇μhαβ) −∇α∇βhλμ]

−∇λh
λμ(∇αhβμ + ∇βhαμ −∇μhαβ) +

1
2
∇βh

λμ∇αhλμ

+
1
2
∇λhρ

ρ(∇αhβλ + ∇βhαλ −∇λhαβ)

+∇λh
μ
α∇λhβμ −∇λh

μ
α∇μh

λ
β . (I.14.32)
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II.1 Introduction

Special Relativity, formulated by Enstein in 1905, revolutionized our
conceptions of time and space.1

1See e.g. the historical discussion in
Damour (2006).

II.2 Newtonian mechanics

II.2.1 The Galileo–Newton Spacetime

In the spacetime of Galileo and Newton, the simultaneity of two events
is a notion independent of observers. Space and time are absolute ob-
jects,2

2Newton’s contemporary Leibniz was
in disagreement with this postulate.

which exist independently of matter and events that may happen
in them. The mathematical model of Newton spacetime is the direct
product of R, where time varies, and space, which is assumed to be a
Euclidean space E3, that is, R3 with the Euclidean metric, which reads,
in natural frames that mathematicians call ‘Cartesian’ and physicists
‘inertial’,

ds2 =
∑

i=1,2,3

(dxi)2. (II.2.1)

To link this mathematical model with observations, one has to iden-
tify an inertial frame of this Euclidean space with observed objects (see
Section II.2.3).

The isometry group of the Euclidean model of space permits the ex-
istence of solid bodies remaining isometric to themselves under motions.
In Galileo–Newton spacetime, lengths can be measured by comparison
with a standard metre, a piece of metal deposited in Sèvres. For dis-
tances that are too large to be compared directly with a copy of the
standard metre, one can use properties of Euclidean geometry, such as
triangulation. The existence of clocks measuring absolute time is pre-
dicted by the periodic phenomena resulting from Newtonian dynamics.3

3The small oscillations of a pendulum
are approximately such a phenomenon.

II.2.2 Newtonian dynamics. Galileo group

The fundamental law of Newtonian dynamics for a particle assumed to
be pointlike is

F = mγ, (II.2.2)
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where m is a constant, the mass of the particle (called inertial mass), γ
is its acceleration in absolute time with respect to absolute space, and
F is a phenomenological vector, the applied force. The components of γ
in Cartesian coordinates xi for the particle in the absolute space E3 are
the second partial derivatives γi = d2xi/dt2.

Newton’s law (2.2) is invariant under the following time-dependent
change of coordinates in Newton’s absolute space E3:

x′i = xi + vit+ xi
0, (II.2.3)

where the vi and xi
0 are constants. The corresponding t-dependent Car-

tesian coordinates system in E3 is in uniform translation with respect to
the original absolute space. All such reference frames are inertial frames.
The set of transformations (2.3) forms a group, called the Galileo
group. It had already been remarked by Galileo that a uniform-in-time
translation of a boat cannot be detected by observers in the hold. More
generally, all the physical laws of Newtonian mechanics are assumed to
be invariant under the Galileo group, in the sense that they admit the
same formulation in all inertial frames.

II.2.3 Physical comment

Inertial frames are a physical reality. Someone seating on a disk turning
with respect to the Earth feels a ‘centrifugal force’ due the fact that
axes fixed on the disk are not inertial for the Galileo–Newton spacetime.
More generally, non-inertial coordinates manifest themselves through
non-vanishing Christoffel symbols of the Euclidean metric of the phys-
ical space E3 in these axes. These non-zero Christoffel symbols cause
the appearance of what in Newtonian mechanics are called Coriolis or
inertial forces. So the problem is posed, what is the physical origin of
the inertial frames? The answer appeared simple for Newton, namely
the a priori given absolute space and time, but the problem of iden-
tification with observed reality was there all the same. The answer for
Mach was that ‘absolute’ space was determined by the matter content of
the universe.4

4Mach’s considerations partly inspired
Einstein’s General Relativity.

In practice, Mach and Newton agree, in an approximate
way. Experiments on Earth have shown that Newton’s laws of dynamics
written in his absolute spacetime are satisfied to a good approximation
if one assumes an inertial frame linked with the Earth, and to a better
approximation if the inertial frame, called a Copernican frame, has its
origin at the center of the Sun and with axes directed to specific stars.
This was observed by Foucault by recording the oscillations of a pen-
dulum on Earth in a vertical plane that remains approximately fixed
for a short time, but rotates through 360◦ in a time that depends on
the latitude λ, namely5

5In Paris, 31 h 50 m, as can be verified
by a visit to the pendulum exhibited at
the Musée des arts et métiers or prob-
ably soon to one suspended beneath the
dome of the Panthéon (its original lo-
cation). This dependence results from
the fact that the rotation of axes linked
with the Earth’s rotation with respect
to the Copernican inertial system leads
to what is called in Newtonian mech-
anics a complementary inertial force.
The appearance of sin λ, equal to 1 at
the North Pole, is due to the value
of the vertical (i.e. orthogonal to the
Earth’s surface) component of the ro-
tation vector of the Earth, parallel to
the line between the poles. The hori-
zontal component does not contribute
to the complementary inertial force, be-
cause it is parallel to the velocity of
the pendulum (see e.g. Bruhat, 1934,
p. 134).

1 day/sinλ because of the centrifugal force due
to the rotation of the Earth. When the Solar System was known to be
rotating in the Milky Way, another inertial frame was considered, which
led to verification of the existence of a further very small correction for
experiments made in the Solar System. Astronomers now know that the
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Milky Way itself does not stay still in the universe, but it is impossible
to determine an inertial frame for the universe if such a thing exists.
Finally, the physicists of the nineteenth century introduced a mysteri-
ous medium, called aether, invisible and intangible, though with all the
properties of a solid.6 6Perhaps physics is coming back to

the idea of an absolute spacetime de-
termined by its content, everywhere-
present pairs of virtual particles, but
perhaps spacetime is not a differenti-
able manifold, either below the Planck
length or at cosmological scales.

II.2.4 The Maxwell equations in Galileo–Newton
spacetime

The Maxwell equations unify the various classical physical laws that
govern the electric and magnetic fields (E,H). These equations in non-
inductive media read, in 3-vector notation on R3,

div E = q, Coulomb’s law, (II.2.4)
div H = 0, Gauss’s law, non-existence of magnetic charges. (II.2.5)

The scalar q is the charge density. These equations are ‘constraints’, i.e.
they do not contain time derivatives. The following are evolution equa-
tions, with c, the speed of light, a dimensionless constant that depends
on the units of space and time (and can be made equal to 1 by choice of
a relation between these units7 7See Section III.5 in Chapter III.):

curl E = −1
c

∂H

∂t
, Faraday’s law, (II.2.6)

curl H = j +
1
c

∂E

∂t
, Ampère–Maxwell law. (II.2.7)

The vector j is the electric current. The term ∂E/∂t, called the ‘displace-
ment current’, was introduced by Maxwell and led to the consideration of
the electric and magnetic fields as the splitting, in an observer-dependent
fashion, of one entity called the electromagnetic field, into these electric
and magnetic fields. The set of equations (2.4)–(2.7), still valid today,
are the shining success of nineteenth-century theoretical physics.

The various laws written above were interpreted before Einstein with
t the absolute time and E3 the absolute space determined by the
mysterious medium of the aether. The Maxwell equations imply that
electric and magnetic fields—and also light,8

8It was already known that the speed of
light is finite, and it had been measured
by Römer in 1675 from observations of
the eclipses of Jupiter’s Moons.which is an electromag-

netic phenomenon—propagate in vacuum with the constant velocity c,
independent of the time t and the location in this absolute space.9

9In the absence of electric current and
charge, this set of equations implies
that E and H satisfy the wave equation
in the Minkowski metric

− 1

c2
∂2H

∂t2
+ ΔH = 0,

− 1

c2
∂2E

∂t2
+ ΔE = 0,

Δ :=
∑

ı̂=1,2,,3

∂2

(∂ti)2
.

The
number c can be made equal to 1 by appropriate choice of space and
time units.

The problem, for Newton’s mechanics, is that the Maxwell equations
are not invariant under the Galileo group.

It was the mathematical genius of Lorentz and Poincaré to discover the
group that leaves invariant the Maxwell equations, but neither of them
discarded Newton’s absolute time, nor the aether filling the absolute
space.
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II.3 The Lorentz and Poincaré groups

The (n+ 1)-dimensional Lorentz group is the group of linear maps of
Rn+1,

Xα = Lα
α′Xα′

,

that preserves the quadratic form

−(X0)2 +
n∑

i=1

(Xi)2;

that is, the elements Lα
α′ of matrices L that represent the Lorentz group

on Rn+1 are such that for each set {Xα′} ∈ Rn+1, it holds that

− (L0
α′Xα′)2 +

∑
i=1,...,n

(Li
α′Xα′)2 ≡ −(X ′0)2 +

∑
i=1,...,n

(X ′i)2. (II.3.1)

This identity with X0′
= 1, Xi′ = 0 implies that

(L0
0′)2 = 1 +

∑
i=1,...n

(Li
0′)2 ≥ 1. (II.3.2)

The orthochronous Lorentz group is the subgroup that preserves
the orientation of R defined by the element L0

0′ , i.e. such that

L0
0′ > 0. (II.3.3)

The elements with L0
0′ < 0 reverse the orientation of R. They do not

constitute a group.
Equation (3.1) implies that the determinant of L is equal to +1 or

−1. Proper Lorentz transformations are those that preserve the
spacetime orientation; i.e. they are such that

Det(L) = 1. (II.3.4)

Particular Lorentz transformations are the space rotations

L0
i′ = Li

0′ = 0,
∑

i=1,...,n

(Li
j′Xj′)2 ≡

∑
i=1,...,n

(X ′i)2.

Standard geometrical considerations show that every proper Lorentz
transformation can be written

L = R1LSR2, (II.3.5)

where R1 and R2 are space rotations and LS is a so-called special Lor-
entz transformation, acting only in the time and one space directions,
namely such that (3.1) reduce to

(L0
0′)2 − (L1

0′)2 = 1, (II.3.6)

(L1
1′)2 − (L0

1′)2 = 1, (II.3.7)

L0
0′L0

1′ − L1
1′L1

0′ = 0. (II.3.8)
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Exercise II.3.1 Show that the general solution of these equations is,
for an orthochronous transformation,

L0
0′ = L1

1′ = coshϕ, L1
0′ = L0

1′ = sinhϕ. (II.3.9)

The (n + 1)-Poincaré group is the group of isometries of a flat
Lorentzian (n + 1)-manifold, the Minkowski spacetime Mn+1. It is the
semidirect product of the translation group Rn+1 of Rn+1 and the
Lorentz group Ln+1.

See Problem II.1 for the statement and proof of the invariance of the
Maxwell equations written for a pair of vectors E,H.

II.4 Lorentz contraction and dilation

Before the new physics introduced by Einstein—that is, redefinition
of time and space as observable reality instead of abstract a priori
concepts—the results obtained by Lorentz and Poincaré led to contro-
versial studies on the dynamics of charged bodies. We give some of their
results, obtained by considering a special Poincaré transformation. We
set x0 = t, ξ0 = τ , and V := tanhϕ, and hence sinhϕ = V/

√
1 − V 2, and

coshϕ = 1/
√

1−V 2 (note that V ≤ 1). We obtain the transformation
law

t− τ =
t′ − τ ′ + V (x′1 − ξ′1)√

1 − V 2
, x1 − ξ1 =

x′1 − ξ′1 + V (t′ − τ ′)√
1 − V 2

,

(II.4.1)

where (x1, t) and (ξ1, τ) are the coordinates of two points in the (x1, t)
plane in an inertial system, and the primed quantities are the coordinates
of these points in another inertial system in uniform translation along
the x1 axis with respect to the first one. With classical interpretation
of time and space, the relative velocity of this translation is dx′1/dt for
fixed x1, while the relative velocity of the unprimed frame with respect
to the primed one is dx1/dt′ for fixed x′1. These velocities resulting from
the above formulas are found to be

dx1

dt′
|x′1=const =

V√
1 − V 2

and
dx′1

dt
|x1=const =

−V√
1 − V 2

. (II.4.2)

• Consider two events simultaneous in the primed frame: t′ = τ ′. The
formulas (4.2) give that

x1 − ξ1 =
x′1 − ξ′1√

1 − V 2
, (II.4.3)

and hence the spatial distance observed in the primed frame is
smaller than that observed in the unprimed one. This is the Lorentz
contraction.
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• Consider two events with the same spatial location in the primed
frame: x′1 = ξ′1. Then

t− τ ≥ t′ − τ ′. (II.4.4)

This is the Lorentz dilation.

The Lorentz contraction and dilation are not intrinsic phenomena.
They are relative to the observers, linked with their reference frames, as
is obvious from the fact that they are reversed by exchanging the roles
of these frames when defining simultaneity or spatial coincidence.

II.5 Electromagnetic field and Maxwell
equations in Minkowski
spacetime M4

Recall that the Poincaré–Minkowski spacetime1010It was first introduced as a tech-
nical tool (in the Euclideanized version
with x4 = ix0) by Poincaré in 1905.
Later, in 1908, Minkowski realized the
deeper mathematical–physical import-
ance of the four-dimensional structures
η and F .

M4 is the (3 + 1)-
dimensional manifold R4 endowed with a Lorentzian, flat metric that
reads,11

11As in Chapter I, we have adopted
the MTW convention, although the
signature (+−−−), which is more con-
venient for some problems, is used by
many authors.

in so-called inertial coordinates,

η = −(dx0)2 +
∑

i=1,2,3

(dxi)2. (II.5.1)

We define the electromagnetic 2-form F on M4,

F ≡ 1
2
Fαβdx

α ∧ dxβ , (II.5.2)

by its components in inertial coordinates deduced from the electric and
magnetic vectors E and H previously considered on E3. We set

Fi0 = Ei, F23 = H1, F31 = H2, F12 = H3.

The electric current is defined as the vector Jα on M4 with components
J i = −ji, J0 = q.

Theorem II.5.1 Giving to the velocity of light its geometric value
c = 1, the Maxwell equations (2.4)–(2.7) can be written as a pair of equa-
tions for the electromagnetic 2-form F on Minkowski spacetime M4. In
arbitrary coordinates, the equations are, with ∇ the covariant derivative
in the Minkowski metric in these coordinates,

dF = 0, i.e. ∇αFβγ + ∇γFαβ + ∇βFγα = 0, (II.5.3)

and

∇ · F = J, i.e. ∇αF
αβ = Jβ , (II.5.4)

where indices are raised with the Minkowski metric.
Equation (5.4) implies the conservation of the electric current J :

∇αJ
α = 0. (II.5.5)
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Proof. It is straightforward to check in inertial coordinates that equa-
tions (2.4) and (2.5) are equivalent12 12Recall that in inertial coordinates on

M4 with c = 1, it holds that F ij = Fij ,
Fi0 = −F i0, and ∇α = ∂/∂xα.

to dF = 0 and that equations (2.6)
and (2.7) are equivalent to ∇ · F = J. This equation implies ∇ · J = 0
(see Chapter I), which could have been deduced directly from equations
(2.4) and (2.5) in inertial coordinates. Since d and ∇· are geometric op-
erators, the Maxwell equations for F considered as an exterior 2-form
are valid in any frame of M4.

Since the operator d does not depend on the spacetime metric, and
∇ · F is invariant under the group leaving the metric invariant, the
Maxwell equations are invariant under the isometry group of Minkowski
spacetime. �

Conversely, given on spacetime an exterior 2-form, we can define for
a given observer a corresponding electric field as follows. We consider a
local coordinate system for which the observer is at rest, i.e. the observer
describes a time line with unit tangent vector u with uα = δα

0 . Then,
the observer’s electric vector field, orthogonal to u, isEβ = F βαuα, i.e.,
in his proper frame,13 13The proper frame of an observer is

the orthonormal frame with timelike
vector the unit tangent vector u to
its trajectory. Its proper space is the
hyperplane orthogonal to u.

Ei = F 0i.
The magnetic 2-form of an observer is the trace in his proper space

of the electromagnetic 2-form. A magnetic space vector field is defined
only if this space is three-dimensional. In this case the magnetic field
is the adjoint of the magnetic 2-form, given by the contracted product
with the volume form of the three-dimensional Euclidean metric:

Hh :=
1
2
ηijhFij .

Note that H so defined (for n = 3) is a vector on the space manifold,
but it is not a spacetime vector.

Under a change of observer, i.e. of proper frame, the space and time
components of the electromagnetic field are mixed. This fact has been
checked over and over in laboratories.

Exercise II.5.1 Write transformation of the electric and magnetic
fields under a change of Lorentzian frame with only non-zero components
Lα′

α with α and α′ equal to zero or one.

Hint: Use Fαβ ≡ ∂xα′

∂xα

∂xβ′

∂xβ
Fα′β′ = Lα′

α L
β′
β Fα′β′ .

Maxwell tensor

The Maxwell tensor τ is the symmetric 2-tensor given on Minkowski
spacetime by

ταβ := Fα
λFβλ − 1

4
ηαβF

λμFλμ. (II.5.6)

Exercise II.5.2 Show that the Maxwell tensor is traceless in spacetime
dimension 4.

The definitions of E and H in space dimension 3 show that the
components τ0α of τ in inertial coordinates read as follows, with εijl
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totally antisymmetric and ε123 = 1 :

τ00 =
1
2
(E2 +H2), τ0i = −εijlE

jH l. (II.5.7)

The component τ00 = τ00 is the energy density of the electromagnetic
field, and the τ0i = −τ0i, i = 1, 2, 3, are the components of the Poynting
energy flux vector P, given in vector product notation on R3 by

P = E ∧H. (II.5.8)

Lemma II.5.1 Modulo the Maxwell equations, it holds that

∇ατ
αβ = JλFβλ. (II.5.9)

Proof. Straightforward calculation gives

∇ατ
α
β ≡ (∇αF

αλ)Fβλ + Fαλ∇αFβλ − 1
2
Fλμ∇βFλμ.

Hence, changing names of indices and using antisymmetries,

∇ατ
α
β ≡ (∇αF

αλ)Fβλ +
1
2
Fαλ(∇αFβλ + ∇λFαβ + ∇βFλα). (II.5.10)

The Maxwell equations (5.3) and (5.5) imply the result. �
The vector JλFβλ is called the Lorentz force.
When the Lorentz force is identically zero, the equations ∇ατ

αβ = 0
written in inertial coordinates are the usual equations of conservation of
energy and momentum.

II.6 Maxwell equations in arbitrary
dimensions

The Minkowski spacetime Mn+1 is the manifold Rn+1 endowed with a
flat metric that reads in inertial coordinates

η = −(dx0)2 +
∑

i=1,...,n

(dxi)2. (II.6.1)

In a Minkowski spacetime of dimension n+ 1, it is natural to define an
electromagnetic field as an exterior 2-form F that satisfies the Maxwell
equations

dF = 0, ∇ · F = J, with ∇ · J = 0.

Let u be a unit timelike vector field. The electric field relative to u is
the vector field uαFαβ ; it is orthogonal to u. Choose for u the time
vector ∂/∂x0 of a system of inertial coordinates. The electric field is
then a space vector with components Ei := Fi0, while the components
Fij define on each submanifold M0 := { x0 = const} an exterior 2-form,
which can be called the magnetic 2-form. As mentioned previously
the magnetic vector field is defined only in space dimension 3.
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The definition (5.6) of the Maxwell stress energy tensor, as well as its
conservation law (5.9), extend to arbitrary dimension.

II.7 Special Relativity

II.7.1 Proper time

Lorentz and Poincaré had made mathematical studies, but it was Ein-
stein who made the conceptual jump to discard Newton’s absolute time
and space as physical realities.14 14See Damour (2013a).Einstein, in Special Relativity, replaces
the direct product E3 ×R by the Minkowski spacetime M4. An event is
now a point in spacetime. Its history is a timelike trajectory in M4. An
Einsteinian revolution was to discover that the parameter t appearing
in the Minkowski metric has no physical meaning: the quantity meas-
urable by well-defined clocks (mechanical, atomic, or biological) is the
length of their timelike trajectories in spacetime; it is called the proper
time. More precisely, if C : t �→ C(t), t ∈ [t1, t2] is a future causal curve
parametrized by t joining two points of M4, then the proper time along
that curve is the parameter-independent quantity∫ t2

t1

[
−η
(
dC

dt
,
dC

dt

)] 1
2

dt. (II.7.1)

Relativity postulates the existence of universal clocks defined by spe-
cific physical phenomenon that measure the proper time. Such clocks
are nowadays obtained by using the frequency of radiation emitted by
specific atomic transitions, predicted by quantum theory to have a con-
stant universal value. The actually adopted standard clock is the caesium
atom, which exhibits a particularly stable (of the order of 10−16) micro-
wave transition between two particular energy levels. The second is now
defined through the time measured by the caesium clock.15 15It is likely, however, that in the fu-

ture, the caesium clock will be replaced
as a standard by an optical clock.

Einstein’s concept of proper time has been proved valid in all
experiments performed to test it.

In a Lorentzian manifold, the length of timelike curves joining two
points has a local maximum for a timelike geodesic. Geodesics of
Minkowski spacetime are represented by straight lines in inertial co-
ordinates. In particular, the line where only the parameter t of inertial
coordinates varies is a timelike geodesic. Therefore, the time measured
by an observer at rest in some inertial coordinate system is greater than
the time measured by a traveller which does not follow such a straight
line between their separation and their reunion. This so-called ‘twin
paradox’ (see Fig. II.1)16

16There is actually no paradox, be-
cause the two twins do not have the
same history: one describes a geodesic
in Minkowski spacetime, and the other
does not—in fact, he has to use a mo-
tor to follow his trajectory. This phys-
ical effect is not to be confused with
the apparent time dilation, which is a
reciprocal effect.

has been long verified for elementary par-
ticles in modern accelerators. The reality of proper time has also been
checked in 1971 in an airplane flight of a caesium clock which was late
with respect to a similar clock that remained on ground.17 17It is pleasant to know that the trav-

eller ages less than the one who stays
put.

In long space
travels it could be verified with the human biological clock.

dxT

t

x0

T
2

dt

dx

ds2 = –dt2 + dx2

T1 = 1 – v2 dt < T
T

0

dt

v =
 t

= –v

= v

Fig. II.1 The twin paradox.

The case of spatial distances is more delicate to treat because of the
lack of an absolute notion of simultaneity.
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II.7.2 Proper frame and relative velocities

A velocity, even in Galileo–Newton mechanics, is always defined with re-
spect to some observer. The problem is more complex in Relativity, since
there is neither absolute time nor absolute simultaneity. In Relativity,
an observer is defined by its world line, a timelike curve. The norm (in
the Minkowski metric) of its timelike tangent vector is dependent on the
choice of the parameter on the curve; this norm has no physical meaning
if the parameter is not specified. We label as a ‘unit tangent vector’ u
this tangent vector normalized by

η(u, u) = −1. (II.7.2)

We call the proper frame of the observer (not necessarily following a
geodesic) at some point of spacetime an orthonormal Lorentzian frame
with u as its timelike axis. Consider an object following a causal line
with tangent v at the considered point. If in the proper frame the vector
v has time component v0 and space components vi, we say1818This definition comes from associat-

ing with an observer at some point of
spacetime the inertial system in which
he is momentarily at rest.

that the
object has velocity V with respect to this observer, where V is a space
vector, orthogonal to u, with components

V i =
vi

v0
. (II.7.3)

Since v is causal, it holds that

|V | ≡
[∑

i

(V i)2
] 1

2

≤ 1, (II.7.4)

with |V | = 1, the speed of light, if and only if v is a null vector.
In particular, consider two observers at a point of spacetime with unit

velocities u and u′. Choose their proper frames such that they are linked
by a special Lorentz transformation, i.e. e2 = e′2, e3 = e′3. The velocity
of the primed observer with respect to the unprimed observer is then
along the axis e1 and is given by, with ũα the components of u′ in the
unprimed frame,

V =
ũ1

ũ0
=
L1

0′

L0
0′
, (II.7.5)

since the components of u′ in the primed frame are u′1 = 0, u′0 = 1.

Addition of velocities

As foreseen from the overturning of the notion of absolute time and
simultaneity, relativistic relative velocities do not add simply as in
Newtonian mechanics.

Consider two systems of inertial coordinates (t, x1, xa) and (t′, x′1, xa).
They define at each point of spacetime two Lorentz frames, linked by a
special Lorentz transformation, in relative motion with velocity V. The
velocity of a given point particle is dx1/dt with respect to the unprimed
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frame and dx′1/dt′ with respect to the primed frame. The formula (4.1)
implies that

dx1

dt
=
dx′1 + V dt′

dt′ + V dx′1
, (II.7.6)

and, therefore, setting dx1/dt = U, dx′1/dt′ = U ′,

U =
U ′ + V

1 + V U ′ . (II.7.7)

This coincides in a first approximation with the classical formula for
addition of velocities when U ′V is small with respect to 1, the velocity
of light.

The formula (7.7) implies that U = 1 when U ′ = 1: the speed of
light is independent of the relative velocity V of different observers. This
property, very surprising in the framework of Galilean kinematics, but
already implicit in the Maxwell equations, was found experimentally by
Michelson19 19See footnote 8.and verified more accurately by Michelson and Morley.
They compared the speed of light in the direction of the orbital velocity
of the Earth and in a transverse direction. To the surprise of the scientific
world, they found the same value in both cases to an accuracy higher
than possible experimental error. Since then, it has been verified with
greater and greater accuracy, in a medium that does not interfere with
this velocity, the vacuum. The most recent experiments give, with a 10−9

accuracy, 299 792.458 km/s. The Michelson–Morley experiment was in
part20 20It seems that Einstein was more in-

spired by Faraday’s law of induction
than by the Michelson–Morley experi-
ment.

a source of inspiration to Einstein to discover Special Relativity.
Since the speed of light in vacuum is a universal constant, it can

be used to define the standards of length and time from one another.
Physics has shown that time can be measured more accurately, with a
caesium clock, than length, for which the previous standard was related
to the wavelength of a krypton transition.21 21The caesium clock defines the sec-

ond as 9 192 631 770 periods of the
radiation from a specific caesium-133
atomic transition. Optical clocks de-
fined by electromagnetic radiation are
even more precise. See, for instance,
Salomon (2013).

It has been decided by
scientific authorities that the metre is now officially defined to be the
distance covered by light in (299 792 458)−1 seconds. The speed of light
in vacuum is therefore fixed to be a universal constant. Unless otherwise
specified, we follow the mathematical usage of choosing units of length
and time such that this constant is equal22

22If the second is physically defined (for
instance through the caesium clock),
then unit of length for which the vel-
ocity of light is 1 is the distance covered
by light in 1 second, that is, 299 792 458
metres.

to 1 (its ‘geometric’ value). Of
course, in making comparison with observations or experiments, other
units may be more appropriate.

II.8 Some physical comments

Like all mathematical models, Special Relativity aims at providing as
accurate as possible a picture of physical reality. No mathematical model
can replace reality, but the first problem is to be able to compare the
results given by equations with observed facts. In Special Relativity,
one should physically identify spacetime inertial reference frames for
Minkowski spacetime. The choice posed a puzzle for Einstein, since
Minkowski spacetime considered as a global model is empty.
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II.9 Dynamics of a pointlike mass

II.9.1 Newtonian law

The Newtonian equation of motion (2.5) of a particle with rest2323The rest mass is a number depending
only on the nature of the particle.

mass
m0 a constant, subjected to a force f , can be written

d(m0v)
dt

= f, (II.9.1)

with v its velocity with respect to a Galilean inertial frame and t the
Newtonian absolute time. When f = 0, the particle is in uniform recti-
linear motion in all Galilean inertial frames. In a non-Galilean frame, a
term, called the inertial force, must be added to f.

From (9.1), we obtain the Newtonian energy equation

d

dt
(
1
2
m0v

2) = f · v, (II.9.2)

where the raised dot denotes the Euclidean scalar product.
If we want to write Newton’s law (9.1) in a non-Galilean frame, we

must add to f the so-called inertial forces due to the motion of the
considered frame with respect to a Galilean one.

II.9.2 Relativistic law

The trajectory of a pointlike massive particle in Minkowski spacetime is
a timelike curve. Since there is no absolute time to define its velocity,
we consider its unit velocity u, the tangent vector to its trajectory
parametrized by the proper time (the Minkowskian arc length s). The
components of u are, in arbitrary coordinates,2424Recall our choice of signature

− +. . . .+

uα =
dxα

ds
, satisfing uαuα = −1. (II.9.3)

The acceleration of the particle is the derivative of u in the dir-
ection of itself, uα∇αu

β . The time-dependent, coordinate-dependent,
Newtonian equations in space, (9.1) and (9.2), are replaced in relativistic
dynamics by a spacetime, coordinate-independent, equation

uα∇α(m0u
β) = F β , (II.9.4)

where F is now a spacetime vector. Using uβ∇αu
β = 0, a consequence

of uβu
β = constant, (9.4) gives

uα∂αm0 = uβF
β . (II.9.5)
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This equation holds with m0 a constant25 25The rest mass of a molecule is modi-
fied by chemical reactions. The rest
mass of an atom is modified by its
absorption or emission of photons.

on the trajectory if and only
if uβF

β = 0, i.e. if F is orthogonal (in the Minkowski metric) to the
trajectory,26

26This is the case for the electromag-
netic Lorentz force.

which we shall assume in what follows.

Remark II.9.1 Equation (9.4) reads (see Chapter I) in an arbitrary
frame

m0

(
d2xβ

ds2
+ Γβ

αλ

dxα

ds

dxλ

ds

)
= F β . (II.9.6)

In a Minkowskian inertial reference frame, the connection coefficients
vanish, and (9.6) with index i reduce to an analogue of Newton’s equation
in a Galilean frame. This remark leads to interpretation of the term
involving Γ as a kind of inertial force.

II.9.3 Newtonian approximation of the relativistic
equation

We denote by V as in Section II.7.2 the relative velocity of a mas-
sive particle with respect to some Minkowskian inertial coordinates xi,
xs0 = t, where its unit velocity is uα = dxα/ds; that is, we set

V i :=
dxi

dt
= ui ds

dt
=
ui

u0
. (II.9.7)

Using (u0)2 −
∑

i(u
i)2 = (u0)2(1− |V |2) = 1 with |V |2 =

∑
i(V

i)2 gives

u0 =
dt

ds
=

1√
1 − |V |2

and ui =
dxi

ds
=

V i√
1 − |V |2

. (II.9.8)

These relations imply that the relativistic equations (9.4) can be written
in the inertial frame as

uα ∂

∂xα

(
m0V

i√
1 − |V |2

)
= F i, uα ∂

∂xα

(
m0√

1 − |V |2

)
= F 0.

On the trajectory, it holds that

uα ∂

∂xα
=

d

ds
=
dt

ds

d

dt
,

and hence the above equations read

d

dt

m0V
i√

1 − |V |2
= F i

√
1 − |V |2, d

dt

m0√
1 − |V |2

= F 0
√

1 − |V |2.

(II.9.9)
The formulas with indices i look like the Newtonian ones if we replace
m0 by

m =
m0√

1 − |V |2
, and f i = F i

√
1 − |V |2. (II.9.10)
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For small velocities, i.e. for |U | small with respect to 1, we have√
1 − |U |2=̃1 − 1

2 |U |2. Then,

m=̃m0

(
1 +

1
2
|U |2

)
. (II.9.11)

Therefore, in this approximation, the mass m appearing in the relativ-
istic equation is the sum of the rest mass of the particle and its kinetic
energy.

Remark II.9.2 The force f i is replaced in the new notation by
F i
√

1 − |V |2. The condition for the constancy of m0 reads

uβF
β ≡ uiF

i + u0F
0 ≡ ViF

i − F 0√
1 − |V |2

= 0

and hence is satisfied by the condition

F 0 =
Vif

i√
1 − |V |2

where Vif
i is in Newtonian mechanics the power of the force f.

II.9.4 Equivalence of mass and energy

The addition of the ‘kinetic energy’ and the energy of applied forces to
the rest mass m0 in the relativistic equation led Einstein to his famous
postulate of the equivalence of mass and energy,2727It is possible that all fundamen-

tal elementary particles have zero rest
mass and that the positive rest mass of
the particles that appear to us as elem-
entary is only an interaction energy.

with a conversion
factor of the order of c2, where the speed of light c is taken to be 1 in
the expression used for the Minkowski metric (geometrized units). The
equivalence of mass and energy has been verified in nuclear reactions
in a spectacular fashion. The energy can be created by the fission of
a uranium atom induced by a collision with a neutron. The sum of
the rest masses of the incoming particles is greater than that of the
post-fission particles, the difference being seen as kinetic (or radiated)
energy. Nuclear fusion of particles into a single particle with rest mass
smaller than the sum of the rest masses of the incoming particles also
produces energy in accord with E = mc2. Complex fusion reactions
involving hydrogen and its isotopes deuterium and tritium, leading in
particular to helium nuclei, is the main source of the heat produced
by the Sun. Researchers are trying actively to reproduce it on Earth.
Constant rest masses are assigned to elementary particles, the photon
(rest mass zero), electron, proton, neutrino,2828After many years during which the

rest mass of the neutrino was believed
to be zero, it has now been established
that this rest mass is very small, but
non-zero.

etc. The proton has now
been experimentally found to be composed of quarks and gluons.

Remark II.9.3 A useful physical quantity is the energy–momentum
P , a vector tangent to the trajectory and defined for massive particles by

Pα = muα, hence PαPα = −m2.
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In an arbitrary Lorentzian frame, the component P 0 is considered as the
energy of the particle with respect to that frame, while the components
P i define its momentum. This splitting is frame-dependent.

II.9.5 Particles with zero rest mass

An energy–momentum is also defined for particles with zero rest mass.
Indeed, it was recognized by Einstein in 1905 that light can be de-
scribed both by waves and by particles, the latter being called photons.
A particle with zero rest mass moves on a null geodesic, and the energy–
momentum of a photon is a null vector P tangent to this geodesic,
satisfying the equation

(P 0)2 −
∑

i

(P i)2 = 0.

Its energy with respect to some Minkowskian reference frame is the
component P 0.

To determine P , we consider that the wave associated to the con-
sidered photon is given by a scalar function eiϕ with hypersurfaces of
constant ϕ normal to the trajectory of the null particle and hence with
gradϕ a null vector proportional to P. The wave has a frequency ν in
some inertial coordinates if ∂ϕ/∂x0 = 2πν.

Einstein introduced in 1905 the postulate that the energy of a photon
with respect to some Minkowskian reference frame, i.e. the component
P 0, is proportional to the frequency observed in that frame of the as-
sociated wave. The energy–momentum of a photon in some inertial
coordinates is, with h Planck’s constant (introduced by Planck in 1900
with a different meaning),

P =
h

2π
gradϕ, P 0 = hν.

The relation P 0 = hν introduced by Einstein to explain the photo-
electric effect is one of the key discoveries that led to quantum
mechanics.

II.10 Continuous matter

Our never-ending improvement in the exploration of reality has made us
see that matter is discontinuous at all scales: galaxies in the cosmos, stars
in galaxies, molecules in stars, atoms in molecules, ‘elementary’ particles
in atoms, quarks in protons, strings, . . .But, at some scales, which we call
‘macroscopic’, we are not interested in the impossible task29 29Even without speaking of the intru-

sion of quantum mechanics!
of following

the individual motions of constituents. We wish to describe the behav-
iour of volumes, small at the observed scale, but large at the scale of the
constituents, which we call particles, of the model that we are studying.
Particles eventually go in and out of such a volume. If it is possible to
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define, pointwise on spacetime, measurable macroscopic quantities that
characterize the behaviour of matter at the scale of interest, we say that
we are dealing with continuous matter.

Real matter is much too complicated to be represented by a single
model. In fact, all models are only an approximation of a type of mat-
ter. Roughly speaking, fluids are matter models where, in the absence of
external forces, the only action on an elementary volume is an interfacial
action with neighbouring elements that does not prevent them from slip-
ping against each other. Perfect fluids are those for which the antislipping
force has minimal action, that is, is orthogonal to the interface.

In Newtonian mechanics with absolute time and simultaneity, the
state of a fluid is characterized, if one leaves aside thermodynamical con-
siderations, by its density function μ and its flow vector field v. These are
absolute time-dependent quantities on Euclidean space E3. They satisfy
on the one hand the conservation-of-matter equation

∂μ

∂t
+ ∂i(μvi) = 0 (II.10.1)

and on the other hand the equations of motion obtained by passing to
the pointlike limit of the Newtonian dynamical laws applied to a small
volume in E3. These equations are

d(μvi)
dt

+ ∂kt
ik = 0,

d

dt
:=

∂

∂t
+ vi ∂x

i

∂x
, (II.10.2)

where tik is the stress tensor, deduced in the case of fluids from the force
f that the surrounding matter exerts at a point on an element of surface
with normal n by the linear relation

f i = tijnj . (II.10.3)

The tensor t depends on the nature of the matter. It can be proved to
be symmetric when the matter has no intrinsic momentum density.

In relativistic dynamics, the fundamental macroscopic, spacetime
quantities characterizing a fluid are the flow vector field u, a time-
like unit vector,3030Except for null fluids, where

uαuα = 0.
i.e. uαuα = −1, and the energy density function

μ. A Lorentzian frame with timelike vector u is called a comoving or
proper frame of the fluid. The function μ on spacetime is the time
component in the proper frame of the energy–momentum vector field
P = μu.

If there are no interactions (chemical, nuclear, inelastic shocks, etc.)
modifying the nature of the underlying particles, we can define for the
fluid a rest mass density r, proportional to the particle number density if
all particles have the same rest mass. This scalar function on spacetime
satisfies a conservation equation that reads in arbitrary coordinates,

∇α(ruα) = 0. (II.10.4)
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II.10.1 Case of dust (incoherent matter),
massive particles

The dust model of matter is a good approximation to other models,
owing to the high conversion factor in usual units between rest mass
and other types of energy. A fluid is called dust if neighbouring volume
elements exert no action on each other. It is then supposed that the flow
lines are geodesics,

uα∇αu
β = 0. (II.10.5)

The following lemma will be of fundamental importance in General
Relativity.

Lemma II.10.1 Equations (10.4) and (10.5) imply that the tensor

Tαβ = ruαuβ (II.10.6)

satisfies the conservation law

∇αT
αβ = 0. (II.10.7)

Proof. From uαuα =constant, it results that uβ∇αuβ = 0. The proof is
then obtained by computing first uβ∇αT

αβ . �

Remark II.10.1 In a proper frame, the components of the tensor
(10.6) are

T 00 = r, T 0i = T i0 = 0, T ij = 0. (II.10.8)

II.10.2 Perfect fluids

The equations of motion for Newtonian fluids are generalized to relativ-
istic fluids by introducing a spacetime energy–momentum stress tensor
T , or stress–energy tensor for short, such that its components T 00, T 0i

and T i0 in a proper frame of the fluid represent energy, energy flux and
momentum per unit volume31 31We do not give an axiomatic formu-

lation of these physical notions: phys-
ics cannot be axiomatized (nor, by
the way, can mathematics at its very
foundations). Eventually, energy and
momentum are defined as mathemat-
ical objects in elaborate theories. For
instance, energy appears as the con-
served quantity associated to a time-
independent Hamiltonian.

relative to that frame, while the space
part of this tensor is, in a first consideration, identified with the stress
tensor of Newtonian mechanics.

A relativistic fluid is called a perfect fluid if the components of T in
a proper frame reduce to

T 00 = μ, energy density, (II.10.9)

T 0i = 0, no energy flux (no heat flow), (II.10.10)

T i0 = 0, zero momentum. (II.10.11)

and, with p a scalar function called the pressure and e the Euclidean
metric,

T ij = peij . (II.10.12)
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The formula (10.12) coincides with the stress tensor of a Newtonian
perfect fluid.3232The force acting on an element of the

boundary of an elementary volume is
orthogonal to it: there is no antislipping
force.

Proposition II.10.1 The stress–energy tensor of a perfect fluid in
Minkowski spacetime is, in arbitrary coordinates,

Tαβ = μuαuβ + p(ηαβ + uαuβ) (II.10.13)

Proof. One checks that in the proper frame the above tensor has
components given by (10.9)–(10.12). �
Remark II.10.2 In the usual pressure and mass units, p is of the
order of c−2 with respect to μ; hence, at ordinary scales, p is very small
compared with μ.

The proper frame varies from point to point. It is not in general the
natural frame of an inertial coordinate system. It is therefore not legit-
imate to write the usual equations for separate conservation of energy
and momentum by using ordinary partial derivatives and the compo-
nents (10.9)–(10.12) of the stress–energy tensor in a proper frame of the
fluid. The dynamical equations of a perfect fluid are postulated to be
spacetime tensorial equations that read, in arbitrary coordinates,

∇αT
αβ = 0. (II.10.14)

These equations can be written in an arbitrary Lorentzian metric. We
will return to them after introducing General Relativity.

II.10.3 Yang–Mills fields

The electromagnetic field, and the basics of Special Relativity have been
treated in Sections II.5–II.7. The definition of the electromagnetic po-
tential has been omitted so far. It is a locally defined 1-form A such
that

dA = F.

Its existence, non-unique, results (Poincaré lemma) from the Maxwell
equation dF = 0.3333See, for instance, YCB-OUP2009,

Chapter III, Section 6.2.
The non-uniqueness of the electromagnetic potential

A, the local character of its definition on a multiply connected mani-
fold, and the physical properties of spinor fields in the presence of an
electromagnetic field have led to the interpretation of A as the repre-
sentative on spacetime of a U(1) connection on its tangent bundle, the
electromagnetic field being the curvature of this connection.

After the discovery of other fundamental interactions, strong and
weak, it was found by Yang and Mills that these interactions could also
be mathematically modelled by curvatures of connections on the tan-
gent bundle of spacetime, but with higher-dimensional and non-Abelian
groups. The electromagnetic and weak interactions have been unified by
Weinberg and Salam as the curvature of an SU(2) × U(1) connection,
with the addition of a scalar field, the Higgs field, made necessary by
the physical fact of the distinction (called symmetry breaking) of these
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interactions at lower energy scales. The strong interactions have now
been identified as a Yang–Mills field, namely the curvature of a SU(3)
connection. These connections together with associate spinor fields con-
stitute what is now called the standard model.34

34These Yang–Mills and spinor fields
appear in physics, up to now, only as
quantum fields.

We recall briefly35 35See, for instance, CB-DMI Vbis
Problem 1.

the
descriptions of a classical (non-quantized) Yang–Mills field, the Yang–
Mills equations and the conserved stress–energy tensor, which can be
taken as a source36 36Though, at a macroscopic scale, the

Yang–Mills fields are not directly ob-
served.

for the Einstein equations.
Let G be a Lie group and G its Lie algebra. A representative on space-

time of a G-connection is a locally defined 1-form with values in G; it is
called a Yang–Mills potential. The curvature of this connection is rep-
resented by a G-valued 2-form, called a Yang–Mills field, given in terms
of A by (with [ , ] the Lie bracket in G)

F = dA+ [A,A], i.e. Fαβ = ∂αAβ − ∂βAα + [Aα, Aβ ]. (II.10.15)

The 2-form F satisfies the identity

d̂F ≡ 0, i.e ∇̂αFβγ + ∇̂γFαβ + ∇̂βFγα = 0, (II.10.16)

where d̂ is the gauge-covariant exterior differential and ∇̂ is the metric-
and gauge-covariant derivative:

∇̂αFβγ := ∇αFβγ + [Aα, Fβγ ], (II.10.17)

where ∇ is the covariant derivative associated with the spacetime met-
ric. The Yang–Mills equations, which can be written in an arbitrary
Lorentzian metric, consist of the identity (10.16) and the following
equations that generalize the second set of Maxwell equations:

∇̂αF
αβ ≡ ∇αF

αβ + [Aα, F
αβ ] = 0. (II.10.18)

Note that (except for Abelian groups G) the Yang–Mills potential does
not disappear from these equations.

The Yang–Mills stress–energy tensor, a generalization of the Maxwell
tensor, is an ordinary tensor given by

ταβ := Fα
λ · Fβλ − 1

4
gαβF

λμ · Fλμ. (II.10.19)

where a raised dot denotes the scalar product with respect to the Killing
form37 37See, for instance, CB-DMI III D 6.of G. It is divergence-free if the Yang–Mills equations are satisfied:

∇ατ
αβ = 0.

Remark II.10.3 On a d-dimensional spacetime, the Einstein equa-
tions with Yang–Mills source are equivalent to

Rαβ = ραβ ≡ Fα
λ · Fβλ − 1

2(d− 2)
gαβF

λμ · Fλμ. (II.10.20)

The Yang–Mills stress–energy tensor has zero trace in four-dimensional
spacetimes, as the Maxwell tensor. In this case, ραβ = ταβ .
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II.11 Problems

II.11.1 Lorentz transformation of the Maxwell
equations

The Maxwell equations on R3 × R in non-inductive media read, with
c = 1 the velocity of light, as follows:

1. The evolution equations are

∂E1

∂t
=
∂H3

∂x2
− ∂H2

∂x3
− j,

∂H1

∂t
=
∂E2

∂x3
− ∂E3

∂x2
, (II.11.1)

and equations obtained by circular permutation of the indices 1, 2, 3.
2. The constraint equations are

∂E1

∂x1
+
∂E2

∂x2
+
∂E3

∂x3
= q,

∂H1

∂x1
+
∂H2

∂x2
+
∂H3

∂x3
= 0. (II.11.2)

The separation into evolution and constraints is coordinate-
dependent, as is the splitting of the electromagnetic field in electric
and magnetic parts. Consider the Lorentz transformation

t =
t′ + V x′1√

1 − V 2
, x1 =

x′1 + V t′√
1 − V 2

, x2 = x′2, x3 = x′3 (II.11.3)

and determine E
′
,H ′, j′, q′ depending on E,H, j, q, V and satisfying

the Maxwell equations.

II.11.2 The relativistic Doppler–Fizeau effect

It has been well known since Doppler (in 1842) and experimentally veri-
fied with great accuracy (by Fizeau in 1848) that light appears reddened
when the source recedes from the observer, with the opposite occuring
when the source approaches the observer. This fact is easily explained
by the longer time between two successive pulses needed to reach the
observer when the source recedes from him (or her). The classical for-
mula results trivially from addition of velocities in the Newton–Galileo
kinematics. Give an expression for the relativistic Doppler–Fizeau effect
using the addition-of-velocities formula in Special Relativity.
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III.1 Introduction

Besides his desire to reconcile Special Relativity, valid when gravita-
tional effects are negligible, and Newton’s law of gravitation, Einstein
was led to his theory by physical facts and new ideas. We will not try in
this book to follow Einstein’s long path (1907–1915) of discovery of Gen-
eral Relativity and the Einstein equations. Their mathematics rely on
Lorentzian differential geometry, now a well-understood subject,1

1In fact, General Relativity has given a
great impulse to the study of Riemann-
ian and Lorentzian differential geom-
etry.

with
which we started this book.

The physical facts that inspired Einstein’s genius are the principle of
general covariance and the Galileo–Newton equivalence principle.

III.2 Principle of general covariance

The principle of general covariance is an extension of the principle
called ‘material indifference’ in Newtonian mechanics, which essentially
says that physical phenomena do not depend intrinsically on the ref-
erence frame in which we express their laws.2

2A principle that seems trivial, if we be-
lieve there exists a reality, although it
becomes debatable in quantum mech-
anics.

The laws may look very
different for different observers, and hence in different frames, but it
should be possible to find frame-independent formulas for them. Tensor
fields are good candidates as objects for physical laws, being intrinsic
geometric objects on a manifold. Tensors can be represented by their
components, specific numbers attached to them by the choice of a par-
ticular reference frame but with general laws for passage from one frame
to another.

III.3 The Galileo–Newton equivalence
principle

The fundamental law of Newtonian dynamics,

F = mIγ, (III.3.1)

relates the acceleration γ of a test particle3 3Which is considered to be pointlike.in Galileo–Newton absolute
spacetime E3 × R to the force F acting on it and to its inertial mass
mI . In Newtonian mechanics, this inertial mass is a constant, depending
only on the nature of the particle.



56 General Relativity

In its primitive, fundamental form, the equivalence principle is the
expression of the fact that the acceleration γ due to gravity of a massive
body is independent of its mass.44The story, perhaps not history, is that

Galileo verified this universality of fall
by dropping objects from the Lean-
ing Tower of Pisa. This fact has been
observed repeatedly down the years,
perhaps since Philiponos Eramnatikos
in Alexandria around AD 300. Astro-
nauts on the Moon verified it again by
dropping at the same time a piece of
metal and a feather (which on Earth
would have been slowed down by the
atmosphere).

In Newtonian gravitation theory, the acceleration of a test par-
ticle in a gravitational field depends only on its location in space
(universality of free fall); it satisfies a differential equation that reads,
in inertial coordinates,

d2xi

dt2
=
∂U

∂xi
. (III.3.2)

The function U, called the gravitational potential, satisfies the
Poisson equation

ΔU = −4πρG, Δ :=
∑

i=1,2,3

∂2

(∂xi)2
, (III.3.3)

where Δ is the Laplace operator on Euclidean space E3 while the source
ρG is a, possibly time-dependent, positive scalar function on R3 equal
to the ‘gravitational mass density’5

5Traditionnally, one introduces a pas-
sive and an active gravitational mass—
we bypass this distinction. By analogy
with the electric field, we could have
called the function ρG a gravitational
charge density, but since it will be iden-
tified with the inertial mass density, a
variable quantity in Special Relativity,
the analogy would be misleading.

of the sources at time t. We do not
include in the definition of the potential of ρG the Newtonian gravi-
tational constant GN . We will introduce GN later after proving the
proportionality of inertial mass and so-called gravitational mass.

Classical results on elliptic equations, in particular on the Laplace
operator, imply that the Newtonian gravitational potential U is given
at each instant of time and each point x ∈ E3 by the space integral6

6The gravitational acceleration of a
point particle of inertial mass mI due
to ρG is the gradient of the potential
U, independent of mI . On the Earth’s
surface, the acceleration due to gravity
is approximately 9.81 cm s−2.

over E3 at this time:7

7Newton himself had some doubts
about this instantaneous “action at a
distance”, which contradicts our hu-
man experience.

U(x) =
∫

R3

ρG(y)
|x− y|d

3y, d3y ≡ dy1 dy2 dy3. (III.3.4)

The equivalence principle, the identity of the gravitational mass and
the inertial mass up to a choice of units, can now be proved through
the Newtonian principle of equality of action and reaction, as follows.
Let the source of gravitation be a pointlike particle P located at the
origin O with gravitational mass mG; that is, a density ρG := mGδ,
where δ is the Dirac density at O. This particle generates a potential
with value U = mG/r at a point x at distance r from O. The attractive
Newtonian force generated by P on a particle P ′ of inertial mass m′

i

located at x has intensity mGmI/r
2. We can infer from the principle

of action and reaction that mGm
′
I = m

′
GmI , and hence the quotient

mG/mI is independent of the considered particle. Following the usual
notation, we denote the constant by GN , and call GN the Newtonian
gravitational constant, and we have

mG = GNmI . (III.3.5)

The value of this universal constant depends on the choice of units
for time, length and mass. It is approximately, in CGS units (see
Section III.5), the very small number8

8With proper units of mass relative
to the units of time and length, one
can set GN = 1, which is done by
many authors. Others prefer, as we do
in this book because it is more con-
venient when working with the Einstein
equations, to choose units such that the
proportionality factor of the Einstein
tensor and the stress–energy tensor of
sources is equal to 1. GN =̃ 6, 67259 × 10−8 cm3 g−1 s−2.
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The Newton equivalence principle (the equality mG = mI up to a
choice of units of inertial and gravitational masses) has been verified by
experiments on the motion of pendulums by Galileo and Newton (1610–
1680), followed by several subsequent accurate experiments by Eötvös
(1860–1908) and in modern times by Dicke, Braginski and especially
Aidelberger and his group, comparing with a torsion balance the gravi-
tational force and the inertial, centrifugal, force due to rotation. There
have been also accurate tests of this equality from celestial mechanics,
starting from work of Newton and Laplace, up to modern tests based on
laser ranging to the Moon.

III.4 General Relativity

We have in Chapter II expressed the metric of Minkowski spacetime,
the arena of the dynamics of Special Relativity, in arbitrary coordin-
ates. We have seen that in the equations of motion of test particles, the
inertial forces appear through the Christoffel symbols of the metric.9

9Inertial forces (for example Coriolis
forces) appear also in Newtonian mech-
anics through non-inertial (i.e. non-
Galilean) frames.

This fact, the Galileo–Newton equivalence principle and his genius in-
spired Einstein to replace the Minkowski spacetime of Special Relativity
by a general Lorentzian manifold (hence the name General Relativity).

The Newtonian gravitational potential had no influence on Newtonian
absolute spacetime structure. The new revolutionary idea due to Einstein
is that space and time are not a priori given structures but are united in
a four-dimensional curved Lorentzian manifold whose metric g is linked
with the energy content of spacetime. This Lorentzian metric governs
the spacetime causality structure (see Chapter I). The length of a
timelike curve measures the intrinsic, called proper, time along that
curve: in Relativity, Special or General, the basic observable quantity
is proper time. It is assumed that quantum phenomena, namely vibra-
tions of atoms, permit its measure, independently of everything else. The
official clock is at present the caesium atom.

In General Relativity, as was already the case in Special Relativity,
there is no intrinsic notion of simultaneity, or, therefore, of spatial dis-
tances. Velocities are defined mathematically in the tangent space at
the location of an observer at a point of the spacetime (see Chapter II).
Assuming that the speed of light is an absolute constant is physically
sensible because it is consistent with the experimental observation that
at any given point, the velocity of light is independent of direction, and
when measured on Earth with standard of length a solid body, it ap-
pears to be constant with extremely great accuracy. Taking the velocity
c of light equal to 1 for any observer is no restriction—it is a definition
of the unit of length in terms of the unit of time.10

10Evaluating astronomical distances in
a time unit, namely the light-year, and
saying that this is the time it takes
light to travel from one object to an-
other is misleading since the proper
time is zero along a light ray. The dis-
tance is not the length of a spacelike
geodesic joining two points of space-
time, but is defined in a more subtle
way and depends on the trajectories
of the objects in the Lorentzian mani-
fold that represents the spacetime (see
Section III.5).

III.4.1 Einstein equivalence principles

Unification of gravitation and inertia is at the root of Einstein General
Relativity.
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In General Relativity, massive pointlike objects in free fall are as-
sumed to follow timelike geodesics of the metric, and their equations
of motion are therefore independent of their mass, reading, in arbitrary
coordinates,

d2xα

ds2
+ Γα

βγ

dxβ

ds

dxγ

ds
= 0,

with s the proper time (see Chapter I). The connection Γ of the metric
represents in the coordinates xα both gravitation and inertia. This is
often called the weak Einstein equivalence principle. This priciple
is used in the formulation of equations of motion in a given gravita-
tional field of massive bodies small enough at the considered scale to
be taken as pointlike, with mass negligible compared with the masses
that produce the gravitational field: this is the case for the motion of
the planet Mercury in the gravitational field of the Sun. The advance of
the perihelium of its elliptic orbit was the first spectacular confirmation
of Einstein General Relativity (see Chapter V).

Light rays are null geodesics, trajectories of particles with zero rest
mass. Their deviation by gravitation was first verified during the 1919
solar eclipse.

The weak Einstein equivalence principle can be shown to be a par-
ticular case, modulo the Einstein equations (see Chapter IV), of the
Einstein equivalence principle, which says that in the dynam-
ical equations previously expressed in Special Relativity, the spacetime
Minkowski metric η must be replaced, if the gravitatonal field is not
negligible, by the spacetime Lorentzian metric, usually denoted by g.
One sometimes speaks of the strong Einstein equivalence principle when
self-gravitational phenomena are important.

We will treat in Chapter IV the coupling of gravitation and matter.

III.4.2 Conclusion

The Einstein equivalence principle has its root in Einstein’s basic idea
of identifying gravitation with inertia. In particle physics in Minkowski
spacetime, there appear phenomenological constants that are dimension-
less, and hence cannot be given a geometric value by choice of units: their
variation in spacetime would violate the Einstein equivalence principle.
No such violation has been found up to now. The fine-structure con-
stant α := e2/hc has been estimated to have a fractional variation of
no more than order 10−7 from analysis of a natural fission reactor phe-
nomenon that took place in Oklo, Gabon two billion years ago. Another
dimensionless constant, the ratio μ = me/mp of the rest masses of elec-
tron and proton, has been estimated with a precision of 10−6 through
measurements of absorption lines in astronomical spectra. The value of
these constants is puzzling. Some physicists have remarked that if the
constants of nature were not what they are, life as we know it would not
exist and that this is enough of an explanation for our observations.11

11This is known under the name of the
‘Anthropic principle’.
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III.5 Constants and units of measurement

This section recalls definitions, common to Newtonian and Einsteinian
mechanics, that permit us to express quantitative facts, as required for
the confrontation of theory and reality. The three familiar items of every-
day life are distance, mass and time. The fundamental requirement here
is the definition of units that are both common to a group of people
and reliable. The system of units used in nearly all countries in sci-
ence and technology, and in most of them in everyday life, is the CGS
system.12 12centimetre, gram, second.The Convention, an assembly of the French Republic, defined
in 1795 the metre (100 centimetres) as the 1/(4 × 106) part of the merid-
ian of the Earth and the gram as the mass of 1 cm3 of water. Standards
of mass and length made of platinum were deposited at an Institute in
Sèvres—a kilogram (1000 grams) for the mass, and were taken as the
definitions of the metre and kilogram, replacing the physical quantities
previously used to define them. The unit of time, the second, was defined
first as a fraction of the solar day, then as a fraction of a specific year
and then of a sideral day.13 13Defined by observation of the stars.

Modern science has defined fundamental universal dimensional14
14A constant is called dimensional if its
value depends on the units chosen. The
dimensional equation of a function de-
pending on positive or negative powers
pL, pM and pT of length, mass and time
is

LpLMpM T pT .

For example, an acceleration has di-
mensional equation LT−2, a force
MLT−2. Under a change by a propor-
tionality factor k of a unit with power p
in the dimensional equation, the func-
tion changes by a proportionality factor
k−p.

constants. Two such constants can, in principle, be used to define two
units in terms of a third by giving an arbitrary fixed value to these
constants. If this arbitrary value is 1, it is called the geometric value
and the units deduced from it are called geometric units. However, one
of the units must be defined by an experimental device with verifiable
reproducibility.

An international committee fixes the definition of the officially chosen
units, called SI for ‘Système International’. Of course, multiples of these
units can equivalently be used when they lead to values that are easier to
grasp at the relevant scale, as is the case with the mks (metre, kilograms,
second) and cgs systems.

The velocity of light, c, observed experimentally to be constant to very
great accuracy, is, in metres per second,

cm s−1 = 299 792 458 =̃ 3 × 108. (III.5.1)

This equality is now taken as fixing a relation between the units of
length and time. It is the unit of time that is actually chosen15

15For a while, it was the unit of length
that was chosen, namely the wave-
length of a specified ray of the radiation
emitted by a specific transition of the
krypton atom, which replaced the def-
inition of the metre by the standard in
Sèvres. But it was less precise and less
convenient to use. Remember that as-
tronomers have long been using time to
measure distance, namely light-years.

as basic
for formulation of experimental results; it is defined at present by the
period Tcaesium of a particular atomic transition of caesium, predicted to
be constant by quantum mechanics and observed experimentally with a
very high accuracy to be the number

Tcaesium =
1

9 192 631 770
second. (III.5.2)

The second is now defined by this equality. In the future, it will probably
be defined with still higher precision by an optical clock.

The velocity of light will be equal to 1 if we choose as unit of length
the distance16

16Note that, in Relativity, the defin-
ition of distance is ambiguous since
there is no absolute definition of sim-
ultaneity.

covered by light in 1 second. We denote17 17One could call it a light-second.this distance
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by Ls, and it holds that

c
Ls ,s−1 = 1.

The metre is defined, using (5.1), by the formula

1 metre = (299 792 458)−1Ls.

A unit of mass could be defined through the previously chosen units by
taking the gravitational constant equal to 1; in cgs units, it is observed
to be,18

18The dimensions of GN can be de-
duced from the fact that GNm/r2 is
an acceleration, and hence has dimen-
sions LT−2. The dimensions of GN are
therefore L3M−1T−2.

GN,cgs = 6.67259 × 10−8.

However, the lack of sufficient accuracy19

19This lack of accuracy is due to the
extreme weakness of the gravitational
force between bodies of laboratory size.
Another difficulty appears with masses
of planetary size: this is that only the
product of GN with their mass ap-
pears in their equations of motion, and
these masses must be determined from
the planetary orbits—which requires
knowledge of the value of GN .

in the knowledge of GN has
so far prevented the use of this formula to define a unit of mass in terms
of the length or time unit. It has recently been decided (July 2011) by
the BIPM (Bureau International des Poids et Mesures) that Planck’s
constant h, which is known with a very high accuracy, should be used
to officially define a unit of mass-energy. It is now h that is a geometric
quantity.20

20This official definition does not pre-
vent mathematicians from setting the
gravitational constant equal to 1 in the
equations on which they work. It must
only be remembered what this means
when one wants to make numerical
estimates using various specified units.

III.6 Classical fields in General Relativity

We have written in Chapter II the expressions for the stress–energy
tensors of the usual and simplest forms of matter and fields in Special
Relativity. The Einstein equivalence principle leads immediately to their
expressions in General Relativity. We give them in a general Lorentzian
metric g on a manifold V of arbitrary dimension n + 1, although the
physical case on a macroscopic scale is n = 3.

III.6.1 Perfect fluid

The tensor representing the energy, stress and momentum of a perfect
fluid is, in arbitrary coordinates, the following symmetric 2-tensor on V :

Tαβ = μuαuβ + p(gαβ + uαuβ) (III.6.1)

where u is the unit timelike flow vector, i.e. such that

gαβu
αuβ = −1,

while μ and p are scalar functions, respectively the pointwise energy and
pressure density of the fluid, both of which are non-negative in classical
situations.

Exercise III.6.1 Show that in a proper frame of the fluid, i.e. an
orthonormal frame for the metric g with timelike vector u, the com-
ponents of the tensor T are respectively the fluid pointwise densities

T00 = μ(energy), T0i = 0(momentum), Tij = pδij(stresses).

In the case of dust, p ≡ 0.
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The Einstein equivalence principle implies that a relativistic perfect
fluid satisfies the conservation equations

∇αT
αβ = 0,

which have been found in Special Relativity as consequence of the
classical conservation laws of energy and momentum.

III.6.2 Electromagnetic field

The electromagnetic field is an exterior 2-form on the manifold V . The
equivalence principle says that on the Lorentzian manifold (V, g),
the electromagnetic field satisfies, in the absence of electric charges,
the vacuum Maxwell equations

dF = 0, ∇ · F = 0. (III.6.2)

Its stress energy tensor is the Maxwell tensor

ταβ := Fα
λFβλ − 1

4
gαβF

λμFλμ. (III.6.3)

As foreseen from the equivalence principle, if an electromagnetic field
satisfies the sourceless Maxwell equations, then its Maxwell tensor is
divergence-free:

∇ατ
αβ = 0. (III.6.4)

The covariant derivatives that appear in these equations of motion are
a symptom of the influence of gravitation on electromagnetism.

III.6.3 Charged fluid

In an electrically charged fluid, there is an electromagnetic field gener-
ated by the fluid motion, which in turn is influenced by the electromag-
netic field Fαβ . In the simplest classical model, the fluid is a perfect fluid
with unit velocity u, and energy and presure densities μ and p, and the
electric current is the sum of convection and conduction currents:

Jα = quα + σα

The stress–energy tensor is the sum of the fluid stress–energy tensor and
the Maxwell tensor:

Tαβ = (μ+ p)uαuβ + pgαβ + ταβ .

Exercise III.6.2 Given the metric g, write the coupled system of
equations satisfied by u, μ, p, q and F.

Hint: Use the equations

∇αT
αβ = 0 and ∇ατ

αβ = uαJ
α.
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III.7 Gravitation and curvature

There is no intrinsic splitting between gravity and inertial-type forces.
In a general spacetime (V, g), it is always possible at a given point
(see Chapter I) to choose local coordinates such that the Christof-
fel symbols vanish at that point; gravity and relative acceleration are
then, at that point, exactly balanced. It is even possible to choose lo-
cal coordinates such that the Christoffel symbols vanish along a given
geodesic—astronauts spacecrafts have made popular knowledge the fact
that in free fall one feels neither acceleration nor gravity; in a small
enough neighbourhood of a geodesic, the relative accelerations of objects
in free fall are approximately zero.

Nevertheless, gravity is a physical reality that cannot be assimilated
with the old notion of inertia. In a general Lorentzian manifold, there is
no coordinate system (unless the metric is locally flat) in which all the
Christoffel symbols vanish in the domain of a chart; a family of geodes-
ics cannot in general be represented by straight lines. In the presence
of a non-everywhere-vanishing mass or energy density, gravity manifests
itself by the non-vanishing of the Riemann curvature tensor Riem(g).
If Riem(g) does not vanish in an open set U of a spacetime (V, g),
then the gravitational field in U cannot be identified with an inertial
field. The existence of a non-zero curvature of the metric is revealed,
beyond the first approximation, by the relative acceleration of test par-
ticles, as is predicted by the equation of geodesic deviation (Chapter I,
Section 7).

III.8 Observations and experiments

The following observations have been made and experiments performed
to confirm the predictions of General Relativity.2121For details, see Will (2014).

III.8.1 The Einstein equivalence principle

The fact that the acceleration at a point in a gravitational field of bodies
small at the considered scale is independent of their nature is common
to both Newton’s and Einstein’s theories of gravitation. It has been
verified with an accuracy of the order of 10−13 in several experiments—
in particular in the laboratory with atoms of titanium and beryllium
and a very sophisticated apparatus based on a torsion balance, and also
at an astronomical scale by refined analyses of results of lunar laser
ranging (LLR) to determine precisely the orbit of the Moon together
with sophisticated approximation methods to show the compatibility
of this orbit with the equivalence principle applied to the system Sun–
Earth–Moon.
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III.8.2 Deviation of light rays

A consequence of Einstein’s postulate of the equivalence of mass and
energy is that particles of zero mass should also follow geodesics of the
spacetime metric. Light rays in particular are null geodesics, and light is
deflected by a gravitational field.22 22Newtonian gravitational theory also

predicts light deflection, with light
treated as small but may be massive
particles. But the Newtonian light de-
flection is exactly half of that predicted
by Einstein and verified by Eddington.

This was confirmed by observation
as early as 1919 by Eddington and Dyson during a total solar eclipse
(though not with very high precision, because of large experimental er-
rors). A solar eclipse makes it possible for a photograph of the sky to be
taken in which stars are visible, so that their positions can be compared
with those in a photograph taken in the absence of the Sun. Greater
precision is now obtained for the deflection of radio waves, which does
not need an eclipse to be observed.

A spectacular verification of the deflection of light rays by a gravita-
tional field is provided by the observed phenomena called gravitational
lensing, in which the light rays from a star or galaxy, i.e. the null
geodesics issuing from some point in curved spacetime, may intersect
again such that an observer can see several images simultaneously. Sev-
eral gravitational lenses have now been observed,23 23See, for instance, Schneider

et al. (1992).
in particular the

‘Einstein cross’, obtained by the Hubble telescope, consists of four im-
ages of the same quasar; in the centre appears a fainter image of the
galaxy whose gravitational field acts as the lens.24 24See for instance Figure 4.16 in Chap-

ter 4 of Ohanian and Ruffini (2013).

III.8.3 Proper time, gravitational time delay

As in Special Relativity, the physically measurable quantity is proper
time, which is the length in the spacetime metric of timelike curves. It
is again postulated that the period of specific spectral radiation from
atoms provides universal clocks for the measure of proper time.

A consequence of the reality of the dependence of this physically meas-
urable time on the presence of a gravitational field is the observation of
a redshift in the spectrum of a given atom in a gravitational field, as
seen by a distant observer for whom this field is weaker. Such shifts add
to the Doppler effect for bodies in motion. The reality of the Einstein
effect was verified in the years 1926–1928 with convincing accuracy by
careful analysis25 25See details on pp. 126–130 of Bruhat

(1931).
of the lines of various elements in the solar spectrum

by St John, an astronomer working in the Mount Wilson observatory.
In 1960, the Mossbauer resonant effect (emission of γ rays with an
extremely narrow profile, reabsorbed in crystals with a very sharp res-
onance) enabled Pound and Rebka to measure the shift of spectral lines
due to the variation of the gravitational field with height above the
Earth’s surface in their laboratory. We give below a brief account of the
theoretical prediction in this case.

Inspired by the Newtonian approximation (see Section IV.5 in Chap-
ter IV), we assume the spacetime metric to be, in the laboratory,

g = −N2(x1)dt2 + g11(x1)(dx1)2 + gabdx
adxb, a, b = 2, 3, (III.8.1)
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where x1 varies with the height of a point while xa, a = 2, 3, label the
position of this point in a horizontal plane. Consider two identical clocks,
one at rest on the ground, say at x1 = 0, the other at rest on the same
vertical, with height labelled by x1 = h. The hypotheses are therefore
that, in the coordinates xα, the representatives of the world lines of the
clocks lie in the plane (x1, t); they are the lines where only t varies, given
respectively by x1 = 0 and x1 = h. Let T (0) and T (h) be the periods,
in proper time, of these clocks. The signals of the beginning and end of
a period of the clock on the ground are transmitted by light rays to an
observer handling the other clock. Such light rays obey the differential
equation

dt

dx1
=

√
g11

N
. (III.8.2)

A signal emitted at parameter time t(0) reaches the clock at height h at
parameter time

t(h) =
∫ h

0

√
g11

N
(x1) dx1 + t(0). (III.8.3)

The difference in the parameter times between two emitted and two
received signals is therefore the same. However, this statement is not
true for the proper times, which are the physically measured quantities.
We denote by T (0) (respectively T (h)) the period in proper time of the
clocks. Using the relation between the parameter time and the proper
time for each of the clocks, namely dT = Ndt, we find that

t2(0) − t1(0) = N−1(0)T (0) = t2(h) − t1(h) = N−1(h)T (h). (III.8.4)

The corresponding lapse of proper time marked by the clock of this
observer is

T (h) =
N(h)
N(0)

T (0). (III.8.5)

A longer period is observed (redshift) if N(h) > N(0), which is the case
in our laboratory example where the source of gravitation is the Earth
with mass m. Then (see the Newtonian approximation)

N =̃ 1 − m

x1
. (III.8.6)

Theory and experimental results have proven to be in excellent agree-
ment.

A related effect (which involves the geometry of null geodesics connect-
ing the timelike world lines of various massive bodies) has been measured
directly for celestial objects, and called time delay by Shapiro, who
measured it first, in 1966, by sending radar signals to planets (i.e. in the
gravitational field of the Sun) and measuring the time elapsed on Earth
between their emission and their return after reflection. We will give the
calculations leading to the theoretical prediction in Chapter V, devoted
to the Schwarzschild spacetime.
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The reality of the proper time defined on spacetime by a Lorentzian
metric that is not locally flat in the presence of a gravitational field has
been checked directly by carrying caesium clocks on satellites around the
Earth and observing that they gain some hundred nanoseconds26 26After correction for the kinematic

effect of Special Relativity. An approxi-
mately drag-free satellite describes a
geodesic of the Lorentzian (Schwarz-
schild) metric, but the observer on
Earth, not in free fall because held by
the ground, does not.

over
identical clocks that remain on the ground. The experiment has now
been done with clocks on satellites orbiting Mars and on its surface.

Finally, it has been found that the accuracy of the GPS position-
ing system depends upon General Relativistic correction of the physical
(proper) time, both because the satellites that receive the signals from
Earth are far above the Earth’s surface and because, for high-precision
results, it is necessary to take into account that the Earth is not exactly
spherical, and has plains and mountains that induce variations in the
gravitational field.27

27We compute in Problem IV.11.5 in
Chapter IV the first correction (quad-
rupole moment) to the Newtonian po-
tential due to non-sphericity of the
source. In Newton’s theory of grav-
ity, the potential has no influence on
time. We will study in Chapter IV the
Newtonian approximation of the Ein-
stein theory of gravity, in which time is
dependent of the gravitational field.

III.8.4 Conclusion

All experimental results to date28

28For a description of basic experi-
ments, their results and discussions,
see, for instance, Chapter 4 of Ohanian
and Ruffini (2013). For up to date re-
sults, see papers by Clifford Will, for
instance his recent review (Will, 2014).

are in agreement with the predictions
of Einstein’s General Relativity.

III.9 Problems

III.9.1 Newtonian gravitation theory in absolute space
and time En × R

1. By analogy with the case n = 3, the Newtonian potential on the
Euclidean space En of a gravitational mass density ρG is a scalar
function U given by

U(x) :=
∫

Rn

ρG(y)
|x− y|n−2

dy, with |x− y| =

⎡
⎣ ∑

i=1,...n

(xi − yi)2

⎤
⎦

1
2

.

Show that U satisfies the elliptic partial differential equation

ΔU :=
∑

i=1,...,n

∂2

(∂xi)2
U = −(n− 2)(areaSn−1)ρG

2. Show that the Newtonian potential of a pointlike particle with gravi-
tational mass density mGδ, where δ is the Dirac measure at the origin
O, is

U =
mG

rn−2
.
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Hint: The Dirac measure at O is by definition such that if f is a
continuous function at O, then∫

Rn

f(y)δ dny = f(0)(areaSn−1).

3. Assuming the laws of Newtonian dynamics and gravitation,

F = mIγ, with mI the inertial mass and γ = gradU,

show by using Newton’s principle of action and reaction that mG is
proportional to mI by a fixed constant.

III.9.2 Mass in length units (case n = 3)

The value of the Newton gravitational constant GN is, in cgs units with
a 10−13 accuracy,

GN,cgs = 6.67259 × 10−8 =̃ 7 × 10−8 .

Compute the unit of mass in the centimetre–gram system (in which the
second is expressed in terms of the centimetre by taking c = 1) under
the condition that the Newton gravitational constant is equal to 1.

Compute in this unit the mass of the Earth, whose mass is about
6 × 1024 cgs grams in the cgs system.

Solution

This uses only the dimensions L3M−1T−2 of GN . Recall that

1 s =̃ 3 × 1010 cm-s. (III.9.1)

Set 1 g = μ cm-g. The trivial fact that the quotient of the values of
a quantity in different units is the inverse of the quotient of the units
gives

GN,geom,cm = GN,cgsμ−1 1
9
× 10−20 = 1,

with

GN,cgs =̃ 7 × 10−8.

Hence, GN,geom = 1 if μ = 7
9 ×10−28. Then mEarth = 6×1027 g implies2929See more comments in Chapter V.

mEarth,geom =̃
42
90

cm.
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III.9.3 Planck units

The dimensional constant that has been measured with the greatest
accuracy is the Planck constant h. Planck remarked that it is possible
to define from GN , h and c units for time, length and mass, called Planck
units or geometric units, such these constants all take the value 1.

1. Show that the dimensions of h are ML2/T−1.
2. Assume that the three constants c, GN and h are known in cgs units.

Denote by LP = x cm, Mp = y grams and TP = z seconds new units
such that these constants are equal to 1. Such units are called Planck
units. Write the three equations satisfied by x, y and z.

3. Compute the unique solution giving the Planck units.

Solution

1. h = E/ν. The dimensions of energy E are ML2/T−2 and those of
frequency ν are T−1. The result follows immediately.

2. The relation between cgs and Planck units and the dimensions of the
given constants imply

cP = ccgs
z

x
, GP = Gcgs

yz2

x3
, hP = hcgs

z

yx2
,

and setting these constants equal to 1 gives

x

z
= ccgs,

x3

yz2
= Gcgs,

yx2

z
= hcgs,

which imply trivially
x

z
= ccgs,

x

y
= c−2

cgsGcgs,
z

y
= c−3

cgsGcgs, c3cgsG
−1
cgsx

2 = hcgs.

Therefore, the unique values of the unknowns x, y and z are

x =

√
hcgsGcgs

c3cgs
, y = xc2cgsG

−1
cgs, z = xc−1

cgs,

which give

x =

√
hcgs

c3cgsGcgs
, y =

√
hcgsccgs
Gcgs

, z =

√
hcgsGcgs

c5cgs
.

Of course, the use of Planck units in formulas does not eliminate
the need for at least one of them to be defined through a physical
phenomenon, to link equations with reality.
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IV.1 Introduction

The previous chapter replaced the Minkowski spacetime (R4, η) of Spe-
cial Relativity by a general Lorentzian manifold, (V 4, g)—hence the
name ‘General Relativity’. The connection coefficients of the metric g
replaced both the gravitational and the inertial forces. There are space-
time frames where at a given point, or even along a given spacetime
curve, they cancel each other. This statement is in agreement with the
weak Einstein equivalence principle, which concerns the motion of one
test particle. However, in contrast to inertial forces in Newtonian theory,
which disappear in inertial frames (without canceling gravitation), there
are no reference frames defined on an open set of a spacetime of Gen-
eral Relativity where all the connection coefficients vanish, except if the
metric is flat, i.e. free of gravitation. In Einstein gravity, the existence
of a non-zero gravitational field manifests itself by the curvature of the
spacetime metric.

The non-Minkowskian metric g replaces in a sense Newton’s gravi-
tational potential, which satisfies the Poisson equation, a linear elliptic
second-order partial differential equation with mass density as a source.
The metric g should satisfy equations that give in first approximation
the same results as Newton’s law for the motions of bodies in a weak
gravitational field and with velocities small with respect to the speed
of light. Indeed, in these circumstances, Newton’s law had been veri-
fied with excellent agreement.11Except for the advance of the peri-

helion of the orbit of Mercury, which
behaves approximately like a slowly
rotating ellipse whose perihelion ad-
vances 42′′ per century more than that
computed using Newton’s law when
taking into account the gravitational
fields due to other planets.

Einstein’s geometric foresight looked for
geometric relations between the metric g of General Relativity and pos-
sible sources of gravitation. The equivalence of mass and energy that he
had discovered before, the symmetric 2-tensor character of the metric
g whose curvature he wanted to link with the gravitation sources, and
his genius all led Einstein, after various unsuccessful attempts,2

2Einstein was helped in obtaining the
final result by his friend, the mathem-
atician Marcel Grossmann.

to the
famous Einstein equations that are at present more fundamental than
ever for theoretical physics at all scales.

We will write the equations in spacetimes of arbitrary dimension n+1,
since they are now used by physicists in a wider context than the original
dimension n = 3. We will specify that n = 3 only when this leads to
special properties.
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IV.2 The Einstein equations

IV.2.1 The Einstein equations in vacuum

The vanishing in a domain of spacetime of the Riemann curvature ten-
sor of the metric g implies that this metric is locally flat in this domain
(see Chapter I), and hence without gravitational effects. It is therefore
too strong a condition to impose in domains empty of matter or field
energy sources in a spacetime that is not globally empty. A natural can-
didate for an equation to impose in vacuo3

3The notion of vacuum seems clear to
common sense: it is a region of space-
time where there is neither matter nor
electromagnetic field. Modern physics
has shown that what we called the vac-
uum is indeed full of strange things—
pairs of particles and antiparticles con-
stantly annihilating each other and lib-
erating virtual photons or neutrinos,
which in turn give birth to pairs of par-
ticles. But these stange phenomena are
in the realm of quantum field theory
and do not concern us in this book.

on the Lorentzian metric g, a
symmetric 2-tensor, is the vanishing of the symmetric 2-tensor Ricci(g),
which is related to the Riemann curvature tensor by contraction. The
tensor Ricci(g) is a second-order partial differential operator on g, like
the Laplace equation for the Newtonian potential, though it has quite
different properties, as we will see in the following sections: first, it is
nonlinear;4 4Gravitation is also its own source.second, it presents both elliptic properties like the Newton-
ian potential and hyperbolic ones like the wave equation, corresponding
to propagation of the gravitational field with the speed of light. We
formulate the basic proposition5 5It is known now that the Einstein

equations are the only tensorial ones
(up to addition of a ‘cosmological
term’, see Section IV.3) that are of sec-
ond order and quasilinear for the metric
g in four dimensions.

of Einsteinian gravitation.

Proposition IV.2.1 In an open set U devoid of energies other than
gravitation, the Lorentzian metric g of an Einsteinian spacetime (V, g)
satisfies the following tensorial Einstein equations in vacuum:

Ricci(g) = 0. (IV.2.1)

The equations (2.1) are represented in each chart (see Chapter I)
with domain included in U by the following system of second-order hy-
perquasilinear6 6A partial differential equation of order

m is called quasilinear if it is linear in
the derivatives of order m. It is called
hyperquasilinear if, in addition, the co-
efficients of these derivatives do not
contain derivatives of order m − 1.

partial differential equations for the components gαβ of
the metric g:

Rαβ ≡ ∂

∂xλ
Γλ

αβ − ∂

∂xα
Γλ

βλ + Γλ
αβΓμ

λμ − Γλ
αμΓμ

βλ = 0, (IV.2.2)

where the Γλ
αβ are the Christoffel symbols of the metric g, given in local

coordinates (see I.7.13) by

Γλ
αβ := gλμ[αβ, μ], with [αβ, μ] :=

1
2

(
∂gαμ

∂xβ
+
∂gβμ

∂xα
− ∂gαβ

∂xμ

)
.

These equations are not independent; they satisfy the identities deduced
in Chapter I from the Bianchi identities:

∇αS
αβ ≡ 0, Sαβ := Rαβ − 1

2
gαβR, R := gλμRλμ. (IV.2.3)

The tensor with components7 7Denoted by Gαβ by many authors.Sαβ is called the Einstein tensor, it is
the symmetric 2-tensor with geometric expression

Einstein(g) := Ricci(g) − 1
2
gR(g).
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IV.2.2 Equations with sources

It took a considerable time for Einstein to settle on the choice of equa-
tions connecting the metric g with sources. From a physical point of
view, he was inspired on the one hand by the relativity to observers
of the splitting beween energy and momentum (see Chapter II) and by
the conservation laws for the various stress–energy–momentum tensors
T found in Special Relativity and on the other hand by the equiva-
lence principle. From a mathematical point of view Einstein’s choice of
equations was motivated by the contracted Bianchi identities.

The geometric equations found by Einstein in 1915, with the help of
the mathematician Marcel Grossmann, are the very simple ones

Einstein(g) := Ricci(g) − 1
2
gR(g) = GET ;

i.e. in local coordinates and arbitrary dimension n+ 1 ≥ 3,

Sαβ := Rαβ − 1
2
gαβR = GETαβ . (IV.2.4)

Exercise IV.2.1 Show that in a spacetime of dimension n + 1 > 2,
the Einstein equations with sources are equivalent to the following:88It is only in the classical dimension n+

1 = 4 that d−2 = 2—a fact that should
not be forgotten when working in other
dimensions. Rαβ = GEραβ , with ραβ ≡ Tαβ − Tλ

λ

n− 1
gαβ . (IV.2.5)

The source T is the stress–energy symmetric 2-tensor, supposed to
represent the pointwise value of all the energies, momenta and stresses
present in the spacetime. It is a phenomenological tensor whose choice
is not always easy,9

9In particular when there is a density
of linear momentum, which is natur-
ally represented by a non-symmetric
2-tensor. This is the case for electro-
magnetic fields with induction.

even in the classical dimension n + 1 = 4 and even
without taking quantum mechanical considerations into account.

The factor1010Denoted by κ by some authors. GE is a phenomenological dimensional constant. We will
explain later, by using the Newtonian approximation, why in spacetime
dimension n+ 1 = 4 physicists take

GE = 8πGN ,

with GN the Newtonian gravitational constant.
Note that the gravitational constant does not appear in Special

Relativity—hence, the Einstein equivalence principle does not imply
that it is a constant. In fact, several physicists (Jordan, Thiry, Dicke,
Dirac, and others) have conjectured that it is a spacetime scalar function.
However, no experiment has confirmed this conjecture.

The geometric units of time and length have been defined in Chap-
ter III. In these units, the speed of light is equal to 1.

In this book, as in most mathematical studies, except when making
numerical estimates, we assume units of mass–energy chosen such that
GE takes its geometric value: GE = 1.
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The contracted Bianchi identities (2.3) show that the Einstein
equations are compatible only if the tensor T satisfies the equations,
called conservation laws,

∇αT
αβ = 0. (IV.2.6)

We have written in Chapter III the equations of motion of the simplest,
most common energy sources on a general Lorentzian metric of arbi-
trary dimension by using their expression in Special Relativity and the
Einstein equivalence principle.

IV.2.3 Matter sources

In the case of dust (incoherent matter, also called pure matter),
the stress–energy tensor is

Tαβ = ruαuβ , (IV.2.7)

with u the unit flow velocity and r the rest-mass density.
In the case of a perfect fluid, the stress–energy tensor is

Tαβ = μuαuβ + p(gαβ + uαuβ), (IV.2.8)

with u again the unit flow velocity and with μ and p respectively the
energy and the pressure densities, both of which are non-negative in
classical situations. The equations of motion of the phenomenological
quantities μ, p and u (see Chapter III) imply that Tαβ satisfies the
conservation law

∇αT
αβ = 0. (IV.2.9)

Note that we could have made the converse argument and deduced
the equations of motion of the sources from the conservation laws im-
plied by the Einstein equations satisfied by the spacetime metric. In
Einstein’s theory, in contrast to Newton’s, the equations of motion are
a consequence of the equations satisfied by the gravitational potential.

IV.2.4 Field sources

For an electromagnetic field, the stress–energy tensor is the Maxwell
tensor

ταβ := Fα
λFβλ − 1

4
ηαβF

λμFλμ. (IV.2.10)

The Maxwell tensor satisfies the conservation laws

∇ατ
αβ = 0 (IV.2.11)

if the 2-form F that represents the electromagnetic field satisfies the
Maxwell equations of General Relativity

dF = 0 and ∇ · F = 0. (IV.2.12)
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IV.3 The cosmological constant

It is known that the only tensorial operator for a metric g on a four-
dimensional1111There exist other possibilities

(Gauss–Bonnet equations) in higher
dimensions, which seem to play a role
in string theory.

spacetime that is second-order and quasilinear is the
Einstein tensor with the possible addition of a linear term Λg, with Λ
an arbitrary constant, called the cosmological constant, which Einstein
did not include, because it has no a priori physically fixed value. The
Einstein equations with cosmological constant Λ read

Einstein(g) + Λg ≡ Ricci(g) − 1
2
gR(g) + Λg = T. (IV.3.1)

In local coordinates, these take the form

Sαβ + Λgαβ ≡ Rαβ − 1
2
gαβR+ Λgαβ = Tαβ , (IV.3.2)

where T is the stress–energy tensor considered before, supposed to rep-
resent the density of all the energies, momenta and stresses of the
matter and classical field sources. Einstein introduced the cosmological
constant when looking for a stationary model for the cosmos (see Prob-
lem IV.11.1) and removed it1212Calling it ‘the greatest blunder of my

life’, because its value was neither logic-
ally nor experimentally determined.

after the interpretation of astronomical
observations as showing the universe to be expanding. It is again in-
cluded by cosmologists, although its value is controversial and may have
been different at different epochs. It is generally considered to be very
small now but to have been large in the early universe. In fact, the
tendency now is to put Λ among the sources, interpreting −Λgαβ as an
energy–momentum tensor of the vacuum generated by quantum-particle
processes; the constant Λ is then replaced by a function of a new field φ
satisfying a wave equation with a non-linear potential. A ‘cosmological’
term also appears in supergravity and string theories.

The equations (3.2) on an n + 1 = d-dimensional spacetime are
equivalent to the following:

Rαβ = ραβ , with ραβ ≡ Tαβ +
(

d

d− 2
Λ − Tλ

λ

d− 2

)
gαβ . (IV.3.3)

IV.4 General Einsteinian spacetimes

A spacetime of General Relativity is a pair (V, g), with V a differentiable
manifold and g a Lorentzian metric on V, both a priori arbitrary. It is
called an Einsteinian spacetime1313Not to be confused with the Ein-

stein spaces of geometers, which are
Riemannian spaces of constant curva-
ture.

if the metric g satisfies on V the
Einstein equations with source a phenomenological 2-tensor T assumed
to represent all the non-gravitational energies, momenta and stresses:

Einstein(g) = T, i.e. Sαβ = Tαβ , (IV.4.1)

∇ · T = 0, i.e ∇αT
αβ = 0. (IV.4.2)

The definition of T is clear in the cases mentioned in Section IV.2.3 and
IV.2.4, but is not so clear and is still controversial for more complicated
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sources, even in the classical cases of dissipative fluids with or without
heat current and of electromagnetic fields with inductions. Coupling with
quantum fields raises the deep problem of quantum gravity. New and
mysterious fields are now being discovered in cosmological studies (see
Chapter VII).

Two isometric14 14That is, such that there exists a dif-
feomorphism f of V onto V ′ such that
f ∗ g′ = g.

spacetimes (V, g) and (V ′, g′) are considered as
identical.

The spacetime is called a vacuum spacetime if T ≡ 0.

IV.4.1 Regularity

In an Einsteinian spacetime, the manifold V can be assumed to be C∞

without restricting its generality.15 15It is known that any C1 manifold can
be given a C∞ structure that induces
this C1 structure.

We have already said that we assume
in this book that the metric is as smooth as necessary for any given
statement to be true. It is clear that if the source T is discontinuous,
then the metric g cannot be C2. Using the definition of generalized
derivatives, it may be possible to define the Einstein tensor16 16This possibility is limited, however,

by the nonlinearity of the Riemann
curvature tensor.

for metrics
that do not admit second derivatives in the usual sense.

The largest simple Sobolev Hilbert space for the components of the
metric g for which the components of the Riemann tensor in four di-
mensions are almost everywhere defined functions on a coordinate patch
diffeomorphic to a ball Ω of R4 is H3(Ω), the space of functions that,
together with their generalized partial derivatives of order up to 3, are
square-integrable on Ω.

For physical interpretation, one is led to split, at least locally, space
and time and consider coordinate patches Ω = ω×I, with ω a ball in R3

and I an interval of R. The restriction to ω of gαβ is then assumed to be
in H2(ω), and hence uniformly continuous on ω, while the restrictions
of the first derivatives ∂gαβ/∂x

λ and second derivatives ∂2gαβ/∂x
λ∂xμ

belong respectively to H1(ω) and L2(ω). The restriction of the Riemann
tensor is then defined as a function in L2(ω). For more comments, see
Chapter VIII on the Cauchy problem.

IV.4.2 Boundary conditions

The Einstein equations are partial differential equations, and so their
solutions are linked with the data of boundary conditions. We will see
in Chapter VIII on the Cauchy problem that, even in a vacuum, the
Einstein equations present both elliptic aspects like the Poisson equation
of Newtonian gravity and hyperbolic aspects like the wave equation of
light propagation. We just mention here that in the primary cases the
manifold V of an Einsteinian spacetime (V, g) is a product M ×R, with
M spacelike and R timelike.

For cosmological studies, the case of a compact manifold M without
boundary has been used, although this seems to be in conflict with recent
observations hinting at a flat universe—but cosmology is a very debated
subject.
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In the astrononphysical context, particularly relevant situations that
can be confronted with observation are isolated systems of a few bodies
far from any other source of gravitation, for example the Solar System
and binary star systems. In these cases, it is legitimate to assume that
(M , ḡ), with ḡ the Riemannian metric induced on M by the spacetime
metric, tends to be flat far away from the studied system. It is then
assumed to be an asymptotically Euclidean manifold, which we define
below.17

17This model is only an approximation,
like all mathematical models of phys-
ical situations. The system considered
as isolated is in fact embedded in a
curved universe.

A three-dimensional1818Higher-dimensional asymptotically
Euclidean manifold can also be defined.

asymptotically Euclidean Riemannian
manifold (M, ḡ) is defined as a smooth manifold M union of a com-
pact set and an1919Asymptotically Euclidean mani-

folds with several ends can also be
considered, with just some additional
complications in writing down the
appropriate equations.

end M end diffeomorphic to the exterior of a ball of
R3. This end is given local coordinates x1, x2, x3 by this diffeomorphism.
We denote by r, θ, φ the corresponding polar (pseudo) coordinates,

r :=
[∑

i(x
i)2
] 1

2
. The Riemannian manifold (M, g) is called asymptot-

ically Euclidean if in M end it holds that

gij = δij +O(r−1), ∂kgij = O(r−|k|+1),

with the notation

∂k :=
∂k1

(∂x1)k1

∂k2

(∂x2)k2

∂k3

(∂x3)k3
, |k| = k1 + k2 + k3,

and where a function f is said to be O(r−k) if rkf is uniformly bounded
on M end. The useful maximum order of the derivatives appearing in the
definition depends on the circumstances. Variants of hypotheses on the
behaviour of metrics at infinity appear in the solution of problems on
asymptotically Euclidean manifolds.2020For metrics approaching the Eu-

clidean metric in weighted Hölder
spaces, see Choquet-Bruhat (1974) and
Chaljub-Simon and Choquet-Bruhat
(1979), and for those in weighted
Sobolev spaces, see Cantor (1979),
Cantor and Brill (1981), and Choquet-
Bruhat and Christodoulou (1981).

IV.4.3 Physical comment

Even in the vacuum case, there exist many Einsteinian spacetimes. They
have underlying manifolds with different topologies, as well as different
metrics on each of these manifolds. A great number of exact solutions
of Einstein equations possessing isometry groups have been constructed,
in vacuum or with various sources. Some of these spacetimes have (at
least at present) a purely mathematical interest, but a few of them are
models of known physical situations, at different time or space scales.
There is no universal Einsteinian spacetime as a model for reality—
this is in disagreement with Newton’s concepts, and also with Special
Relativity.

Before giving the main lines of construction and properties of gen-
eral Einsteinian spacetimes, we justify their validity by their possible
approximation by the Newton spacetime for sources with low velocity,
and we give for weak gravitation the approximation of Einsteinian space-
times by Minkowski spacetime. The Minkowskian approximation reveals
a property of gravitational fields that has no analogue in Newton’s the-
ory, namely the existence of gravitational waves and their propagation
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with the speed of light—this property eliminates the need for ‘action at
a distance’ that was so puzzling for Newton.

IV.5 Newtonian approximation

We have said that Einstein’s theory of gravitation must nearly coincide
with Newton’s in the physical situations where the latter proved to be
accurate. These situations are slow (compared to the speed of light)
velocity of the gravitating bodies with respect to Newton spacetime and
weak gravitational fields. In Einstein’s theory, the spacetime coincides
with Minkowski spacetime in the absence of gravitation, that is with
the manifold R3 × R endowed with the flat metric, which, in inertial
coordinates and geometrical units, reads as follows:

−(dx0)2 +
3∑

i=1

(dxi)2.

An Einsteinian spacetime with a weak gravitational field will be R3 ×R
with a metric such that

g00 = −1 + h00, g0i = h0i, gij = δij + hij ,

with hαβ of order ε << 1.
In a spacetime with masses moving slowly (compared with 1, the speed

of light), the components hiα are small with respect to h00 and the time
derivatives ∂0hαβ are small with respect to the space derivatives ∂ihαβ ;
these are considered to be of the same order as hαβ .

Exercise IV.5.1 Justify these statements by considering units where
c =̃ 3 × 105km/s.

Hint: Change the timescale by seting dx0 = c dt.

IV.5.1 Determination of GE

The component R00 in the considered approximation is equivalent to

R00 =̃ ∂iΓi
00 =̃ − 1

2
Δh00,

with Δ the Laplace operator of Euclidean space. In Newtonian the-
ory, the gravitational field is the gradient of the Newtonian potential, a
function U that satisfies the Poisson equation:

ΔU = −ρG ≡ −4πGNρ (IV.5.1)

where ρ is a positive scalar function on R3 equal to the mass dens-
ity of the sources and GN is the Newtonian gravitational constant (see
Chapter III).

In Einstein’s theory, the energy sources are represented by the stress–
energy tensor. Under usual circumstances, the most important energy
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source is pure matter, i.e. the stress–energy tensor is of the following
form, with μ some positive scalar function and u the unit flow vector:

Tαβ =̃μuαuβ .

In the case where the matter has a small velocity (with respect to the
speed of light, taken to be c = 1) for observers following the time lines
of the coordinate system, it holds that u0 is equivalent to −1 and ui to
zero; therefore, Tiα is negligible and

ρ00 ≡ GE(T00 −
1
2
g00T ) =̃

1
2
GEμ. (IV.5.2)

We see that in the approximation that we are making, called the
Newtonian approximation, the equation R00 = GEρ00 gives

Δh00 =̃ −GEμ,

that is, the Poisson equation of Newton’s theory for the gravitational po-
tential if h00 is identified with 2U and one sets GE := 8πGN . This is the
reason why many physicists write the Einstein equations in dimension
3 + 1 as

Sαβ = 8πGNTαβ . (IV.5.3)

The value of the Newtonian gravitational constant depends on the
choice of units for time, length, and mass. As we said before, GN is
approximately, in CGS units,

GN,cm3g−1s−2 = 6, 67259 × 10−8.

Of course, making GE = 1 instead of GN = 1 implies a change by a
factor 8π in the unit of mass–energy.

In this book, we write the Einstein equations in geometric units, i.e.
Sαβ = Tαβ , introducing the relevant scale factor to the usual physical
units only when this is useful for interpretation of observations.

IV.5.2 Equations of motion

In Newton’s theory, the equation of motion of a test particle is

d2xi

dt2
=
∂U

∂xi
.

In General Relativity, a test particle follows a geodesic of the spacetime
metric, i.e.

d2xα

ds2
+ Γα

μλ

dxλ

ds

dxμ

ds
= 0.

For small velocities, we have already seen that dx0/ds ∼ 1 and
dxi/ds ∼ 0; therefore,

d2xi

(dx0)2
∼ −Γi

00 ∼ 1
2
∂ih00. (IV.5.4)
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We see that the Einstein law coincides with the Newton law in the
Newtonian approximation where h00 = 2U .

IV.5.3 Post-Newtonian approximation

One can improve the Newtonian approximation by retaining further
terms in the expansions. This leads to the so-called post-Newtonian
(PN) approximation. To make these approximations, it is more conveni-
ent not to replace the gravitational constant and speed of light by their
geometric value 1.

Let us briefly explain the structure of the first post-Newtonian (1PN)
approximation, where one keeps all the corrections to the Newtonian
approximation containing one power of 1/c2. There are three sources
of such 1/c2 corrections: (i) in algebraic (v/c)2 terms, where v is a vel-
ocity variable; (ii) in U/c2 terms, where U is a Newtonian-potential-like
variable; or (iii) in time-derivative terms ∂2

0 = c−2 ∂2
t . At the 1PN ap-

proximation level, one must go beyond the linearized approximation to
the Einstein equations, and keep some of the quadratically nonlinear
terms in the time–time Einstein equation

R00 = 8πGNc
−4

(
T 00 − 1

n− 1
Tg00

)
.

A convenient way of doing so is to parametrize the metric in the following
exponential form:21 21Blanchet and Damour (1989).

g00 = − exp
(
− 2
c2
V

)
,

g0i = − 4
c3
Vi, (IV.5.5)

gij = exp
(

+
2
c2
V

)
γij .

Inserting this form in Einstein’s equations, and using for simplicity wave
coordinates, one finds (in dimension n = 3) that the auxiliary metric γij

must be flat modulo corrections of the next PN order O(1/c4), i.e.

γij = δij +O

(
1
c4

)
. (IV.5.6)

In addition, one finds that the gravitational ‘scalar potential’ V and
the gravitational ‘vector potential’ Vi satisfy the following simple, linear
equations:

ΔV − 1
c2
∂2

t V = −4πGNσ,

ΔVi = −4πGNσ
i,

(IV.5.7)
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where the source terms σ and σi are simply given in terms of the
contravariant components of the stress–energy tensor by

σ :=
T 00 + T ss

c2
, (IV.5.8)

σi :=
T 0i

c
.

The linear form of the equations (5.7) for V and Vi allows one to solve
them explicitly in terms of σ and σi. At the 1PN approximation, one
can write

V (t, x) = GN

∫
d3x′

[
σ(t, x′)
|x− x′| +

1
2c2

∂2
t σ(t, x′) |x− x′| +O

(
1
c4

)]
,

Vi(t, x) = GN

∫
d3x′

σi(t, x′)
|x− x′| +O

(
1
c2

)
.

(IV.5.9)

The approximate form of the metric obtained by inserting
Eqs. (IV.5.9) in to the expressions (5.5), the first of which explicitly
reads (upon expanding the exponential to show the level of nonlinearity
actually contained in the 1PN approximation)

g00 = −
[
1 − 2

c2
V +

2
c4
V 2 +O

(
1
c6

)]
, (IV.5.10)

is sufficiently accurate for describing all current experiments and obser-
vations in the Solar System, including perihelion advances of planetary
orbits, the bending and delay of electromagnetic signals exchanged
between the Earth and planets or satellites, and the very accurate
laser ranging data to the Moon. Let us, however, note several different
extensions of the above 1PN formalism.

First, to compare not only General Relativity but also different (non-
Einsteinian) gravitational theories with experiments and observations,
an extension of the above general relativistic 1PN metric, containing a
whole collection of adjustable parameters, has been introduced, and is
called the parametrized post-Newtonian (PPN) formalism.2222See, for instance, Will (2014).

Second, when developing a general relativistic theory of the motion of
an N -body system (such as the Solar System), it has been found useful
to generalize the PN formalism into a multichart approach to general
relativistic celestial mechanics.2323See Brumberg and Kopejkin (1989)

and Damour, Soffel, and Xu (1991,
1992).

In contrast to the traditional one-chart
approach to the general relativistic N -body problem (in which a single
coordinate system is used to describe both the gravitational field and
the motion of N bodies), the multichart approach uses N +1 coordinate
systems: a global coordinate system xμ and N local coordinate systems
Xα

A (with A = 1, 2, . . . , N), each of which is attached to one of the
N bodies. This multichart approach has been found useful not only in
the Solar System, but also in binary systems containing strongly self-
gravitating objects such as neutron stars or black holes (see Section VI.6
in Chapter VI).
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IV.6 Minkowskian approximation

To compute the Minkowskian approximation of solutions of the Einstein
equations, one considers Lorentzian metrics on Rn+1 with components
in some coordinate frames:

gαβ = ηαβ + hαβ ,

with ηαβ = diag(−1, 1, . . . ., 1). One assumes hαβ and its derivatives to
be small with respect to 1; their products are then even smaller.

IV.6.1 Linearized equations at η

A first approximation is obtained by neglecting in the Einstein equations
all terms containing products of the perturbation h, that is, by consid-
ering a solution of the Einstein equations linearized at η. The following
linearizations are particular cases of those computed in Chapter I and
result easily from the expressions for the Christoffel symbols and the
Ricci tensor when products of h’s and of their derivatives are neglected:

(δΓλ
αβ)η(h) =

1
2
ηλμ[μ, αβ] =

1
2
ηλμ (∂αhμβ − ∂μhαβ)

(δRαβ)η(h) = −1
2
�hαβ + ∂αfβ + ∂βfα, (IV.6.1)

where � := ηλμ∂2
λμ, with ∂α := ∂/∂xα, is the Minkowskian

d’Alembertian operator and fα is the set of functions (indices are raised
with the Minkowski metric η)

fα :=
1
2

(
∂λh

λ
α − 1

2
∂αh

λ
λ

)
. (IV.6.2)

The decomposition (6.1) is non-tensorial; the conditions fα = 0 can
be satisfied by choice of coordinates.

Exercise IV.6.1 Show that the equations fα = 0 are equivalent to the
linearized wave equations for the coordinates xα, i.e.

fλ ≡ (δFλ)η(h), with Fλ := �gx
λ ≡ gαβΓλ

αβ .

Hint:

δ(gαβΓλ
αβ)|η = ηαβ(δΓλ

αβ)|η.

IV.6.2 Plane gravitational waves

The formula (6.1) shows that if fα = 0 the first approximation is solution
of the linearized Einstein equations at η in vacuum, (δRαβ)η(h(1)) = 0
which reduce to

�h(1)
αβ := ηλμ∂2

λμh
(1)
αβ ≡

[
− ∂2

(∂t)2
+
∑

i

∂2

(∂xi)2

]
h

(1)
αβ = 0. (IV.6.3)
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These equations are a system of ordinary wave equations for the per-
turbation h(1); the solutions propagate on Minkowski spacetime with
velocity 1, i.e. the speed of light.

In the case of a Minkowski background, the equations �h(1)
αβ = 0 imply

trivially �fα = 0. However, �fα = 0 implies fα = 0 only if fα satisfies
appropriate initial data. We will study such problems in Section IV.7
for the full Einstein equations. Here, for weak fields, we will proceed
directly, considering the general plane waves

h
(1)
αβ = cαβϕ(aλx

λ), with cαβ and aλ constants.

Such a perturbation of the Minkowski metric is a solution of the
linearized Einstein equations at η if

�h(1)
αβ ≡ cαβ�ϕ ≡ cαβ

[
(−a0)2 +

∑
i

(ai)2
]
ϕ′′(aλx

λ) = 0 (IV.6.3a)

and (linearized gauge condition)

2fα ≡ aλχαλϕ
′(aλx

λ) = 0, with χαλ := cαλ − 1
2
ηαλc. (IV.6.3b)

Equation (6.3a) implies that aα is a null vector,

(a0)2 −
∑

i

(ai)2 = 0, (IV.6.4)

while (6.3b) implies that the constant tensor cαβ satisfies the polariza-
tion conditions

aλχαλ = 0,

which are n+1 linear and homogeneous equations with (n+ 1)(n+ 2)/2
unknowns χαλ. The wave is said to be transverse-traceless, abbrevi-
ated to TT, because by a first-order change of frame one can reduce the
polarization conditions to the equations

c00 = c0i = 0, cii = 0, and aicij = 0.

Exercise IV.6.2 Prove this statement.

The polarized cαβ span a vector space of dimension (n+ 1)(n− 2)/2:
in the classical dimension n = 3, weak gravitational waves have two
degrees of polarization. For example, choose a frame such that a2 =
a3 = 0. The equations above then imply c1i = 0 and c22 + c33 = 0.
Examples of oscillating weak gravitational waves are

h
(1)
αβ = 0, except for h

(1)
23 , h

(1)
22 , and h

(1)
33 ,

with

h
(1)
23 = c23 sin(ωt− ωx1), h

(1)
22 = −h(1)

33 ≡ c22 sin(ωt− ωx1).
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IV.6.3 Further results on gravitational waves

We have seen that in situations where one can apply the linearized ap-
proximation to Einstein’s equations, a system emits gravitational waves
at infinity, which are given, to the lowest approximation, in terms of the
quadrupole moment24 24See Problem IV.11.5.of the system. More precisely, in a TT coordinate
system, the metric perturbation far from the system reads, to lowest
order,

hTT
ij (t, x) � 2GN

c4
1
r

(
Pik Pjl −

1
2
Pij Pkl

)
d2

dt2
Ikl

(
t− r

c

)
+O

(
1
r2

)
,

(IV.6.5)

where Pij ≡ δij−ni nj is a spatial projector orthogonal to the unit vector
ni ≡ xi/r and where the quadrupole moment of the system, Iij(t), is
given (to lowest approximation) by

Iij(t) =
∫
d3x′

T 00(t, x′)
c2

(
x′i x′j − 1

3
x′2 δij

)
. (IV.6.6)

The recent development of kilometre-size interferometric detectors
of gravitational waves (LIGO, VIRGO, etc.) has provided strong mo-
tivation for improving the theoretical treatment of the generation of
gravitational waves by astrophysically realistic systems. As many of
these systems (such as binary neutron stars or binary black holes)
contain strongly self-gravitating systems, one needs to use the multi-
chart formalism sketched in Section IV.5.3. In addition, it has been
found necessary to (i) include higher multipoles than the quadrupole
Iij , (ii) include higher post-Newtonian corrections to the Newtonian-
level quadrupole formula, and (iii) push the post-Newtonian expansion
to the highest possible approximation. These developments, however, are
outside the scope of this book.25 25For the generalization of (6.5) to the

infinite sequence of higher multipoles
see Damour and Iyer (1991). For a
review of the current theory of gravi-
tational radiation from post-Newtonian
sources, see Blanchet (2014). See also
Damour and Nagar (2011).

IV.6.4 Tidal force

The influence of a gravitational wave on the trajectory of a single isolated
particle, as noted before, cannot be observed. The tidal force due to a
gravitational wave acting on a pair of particles, i.e. the geodesic deviation
equation (see Chapter I), depends on the Riemann tensor. Considering
two nearby particles with initially parallel unit velocity uα = δα

0 and
spatial separation vector Xi, the equation for the geodesic deviation
force reads

uαuβ∇α∇βX
i = XαuλuμR

(1)
λα

β
μ ≡ XjR

(1)i
0 0j , (IV.6.7)

with, at first order,

uαuβ∇α∇βX
i =̃ ∂2

00X
i

and

R
(1)i
0 0j ≡ −R(1)0

0i j =̃
∂

∂x0
δΓ0

ij −
∂

∂xi
δΓ0

0i. (IV.6.8)
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In the TT gauge, where h(1)
α0 = 0,

(δΓ0
αβ)η(h(1)) ≡ 1

2
∂0h

(1)
αβ , (IV.6.9)

and hence

δR0
0iJ = −1

2
∂2
00hij

We see that the equation of geodesic deviation implies at first order of
the Minkowskian approximation that

∂2
00(X

i +Xjh
(1)i
j ) = 0.

IV.6.5 Gravitational radiation

The word ‘radiation’ usually refers to energy transfer without material
support.

In the preceding subsections, the approximations used were mathem-
atically well defined and physically well understood. By analogy with
other fields, in particular electromagnetism, one expects gravitational
waves to carry energy. However, as we have already mentioned, there
is no pointwise intrinsically defined gravitational energy. At best, it is
possible to define some non-local quantities depending also in general on
another a priori given metric—quantities that possess some properties
analogous to those of the energies of other fields. Much important and
very complex work, analytical as well as numerical, has been (and is
continuing to be) devoted to the problem of gravitational radiation
energy, but some fundamental questions are still open.

IV.7 Strong high-frequency waves

IV.7.1 Introduction

It is of course possible to define weak gravitational waves as perturba-
tions of a given non-flat Lorentzian metric and to obtain for them linear
equations. It is more interesting to study nonlinear effects by extending
to nonlinear equations the WKB2626Wentzel–Kramers–Brillouin. anzatz, first used to study approxi-
mate rapidly oscillating solutions of the Schrödinger equation in the
form

u(x) = a(x)eiωφ(x), (IV.7.1)

where x is a spacetime point and a and φ are functions on spacetime.
The function φ, called the phase of the wave, and ω, a number called the
frequency, are real. The number ω is assumed to be large compared with
the values of the functions a and φ and their derivatives with respect
to x. Such an approximation is called in mechanics a high-frequency
wave, or a progressive wave with wave fronts φ(x) = constant; the
function u varies more rapidly in directions transverse to the wave fronts
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than on the wave fronts. The study of progressive waves, also called the
two-timing method, has many applications in classical as well as in
quantum physics.

The WKB ansatz, or its generalization by Lax to asymptotic series, is
not well adapted for the study of high-frequency waves associated with
nonlinear equations, because the product of two functions like (7.1) is
not of the same type.27

27Isaacson applied the original WKB
method to the linearized Einstein equa-
tions and then looked for a solution of
equations with source a stress–energy
tensor obtained by averaging the ob-
tained perturbation. Progressive waves
of the type (7.2) for the nonlinear
Einstein equations are constructed in
Choquet-Bruhat (1969a).

J. Leray28

28G̊arding, Kotake, and Leray (1966).

and his collaborators introduced for
linear equations a more general anzatz, replacing eiωφ(x) by a general
function of x and ωφ(x). For quasilinear equations, it is then possible29

29Choquet-Bruhat (1969b). For coup-
ling of high frequency gravitational and
fluid waves see Choquet-Bruhat and
Greco (1983).

to
construct high-frequency waves that are approximate solutions in a well-
defined sense. The effects of the nonlinearity on the waves are possible
distortion of signals and the appearance of singularities similar to shocks.

In the case of General Relativity, where the unknown is a Lorentzian
metric on a manifold V , a high-frequency gravitational wave in vac-
uum is a Lorentzian metric that is the sum of a non-oscillating part g
and a rapidly varying one depending on a large parameter ω called the
frequency:

g(x, ωφ(x)) = g(x) + h, h := {ω−1v(x, ξ) + ω−2w(x, ξ)}ξ=ωφ(x).
(IV.7.2)

We say that (7.2) is an asymptotic solution of order p of the vacuum Ein-
stein equations if it is such that ωpRicci(g(x, ωφ(x)) remains uniformly
bounded30

30The added term in ω−2 is introduced
to ensure rigorously the asymptotic
character of the constructed solution.

as ω tends to infinity.
To write the asymptotic expansion of the Ricci tensor of the metric

(7.2), we set31 31It is also possible to write a
coordinate-independent formula by
introducing a given metric e. Note
that Ricci′′

g∂2g
and Ricci∂g∂g are

independent of the choice of the given
metric e.

h := δg := g − g, hence ∂h = ∂(g − g), ∂2h = ∂2(g − g). (IV.7.3)

The Taylor formula gives the expansion

Ricci(g) −Ricci(g) = δRicci+
1
2
δ2Ricci+ . . . , (IV.7.4)

with

δRicci ≡ Ricci′g · h+Ricci′∂g · ∂h+Ricci′∂2g · ∂2h.

The coefficients Ricci′g, Ricci
′
g, Ricci

′
∂g, and Ricci′∂2g depend only on

the background metric g. The second derivative δ2Ricci, a quadratic
form in (h, ∂h, ∂2h), is computed analogously. We remark that δ2Ricci
does not contain the square of ∂2h, because Ricci(g) is linear in ∂2g.

To compute ∂h and ∂2h, we use the definition of h. We denote by a
prime a derivative with respect to ξ and underline partial derivatives
with respect to x. We set ϕλ := ∂λϕ ≡ ∂λϕ. Elementary calculus implies

∂λhαβ(x, ωφ(x)) ≡ {φλv
′
αβ(x, ξ) + ω−1[∂λvαβ(x, ξ) + φλw

′
αβ(x, ξ)]

+ω−2∂λwαβ(x, ξ)}ξ=ωφ(x)
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and a corresponding formula for the second derivative,

∂λ∂μhαβ =ωϕλϕμv
′′
αβ + ϕλ∂μv

′
αβ + ϕμ∂λv

′
αβ + v′αβ∂λϕ

λ

+ ϕλϕμw
′′
αβ + ω−1Rλμ,αβ

with

Rλμ,αβ :=
{
[∂2

λμvαβ + φλμw
′
αβ + (ϕμ∂λ + ϕλ∂μ)w′

αβ

+ω−1∂λ∂μwαβ ](x, ξ)
}

ξ=ωφ(x)

IV.7.2 Phase and polarization

The asymptotic expansion in ω of the Ricci tensor is obtained by re-
placing the metric and its first and second derivatives by the above
expressions. We see that this expansion starts with a term in ω1, whose
coefficient must vanish for g to be an asymptotic solution of order zero.
We thus obtain the equations

Ricci′∂2
λμgϕλϕμv

′′ = 0. (IV.7.5)

This is a linear homogeneous system for the second derivative with
respect to the parameter ξ of the tensor v, which reads, in coordinates,

− 1
2
ϕλϕλv

′′
αβ +

1
2

[ϕαPβ(v′) + ϕβPα(v′)] = 0, (IV.7.6)

with

Pα(v′) ≡ ϕλv
′λ

α − 1
2
ϕαv

′λ
λ.

By analogy with what we saw in the Minkowskian approximation, we
call Pα the polarization operator. We state as a theorem the result
we have obtained.

Theorem IV.7.1 If the phase is isotropic,3232That is, if its gradient is a null vector.
This condition is necessary for the wave
to be significant.

then the necessary and
sufficient condition for the progressive wave to satisfy the Einstein equa-
tions at order zero in ω is that the tensor v satisfies the four polarization
conditions

Pα(v) = 0.

Exercise IV.7.1 Prove that the polarization conditions express the
vanishing at order zero of the perturbation of the harmonicity functions
gλμΓα

λμ.

Hint: For an arbitrary metric, the following identity can be proved by
straightforward computation (see Chapter VIII on the Cauchy problem):

Rαβ ≡ R
(h)
αβ + Lαβ , (IV.7.7)

with

Lαβ ≡ 1
2
(
gαλ∂βF

λ + gβλ∂αF
λ
)
, (IV.7.8)
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Fα ≡ gλμΓα
λμ. ≡ gλμ∇λ∂μx

α ≡ �gx
α,

while the R(h)
αβ are a system of quasilinear, quasidiagonal (i.e. linear and

diagonal in the principal, second-order, terms) wave operators,

R
(h)
αβ ≡ −1

2
gλμ∂2

λμgαβ + Pαβ(g)(∂g, ∂g), (IV.7.9)

where P is a quadratic form in the components of ∂g, with coefficients
polynomial in the components of g and its contravariant associate.

IV.7.3 Propagation and backreaction

Using previous results, or by direct computation, we find that the
coefficients at zeroth order in ω in the expansion of Ricci(g) are

R
(0)
αβ = Rαβ + (Pv′)αβ + L(v′, w′′)αβ +Nαβ(v, v′, v′),

with P a linear propagation operator along the rays of ∂ϕ, namely

(Pv′)αβ ≡ −
(
ϕλ∂λv

′
αβ +

1
2
v′αβ∂λϕ

λ

)
,

while L reads

Lαβ ≡ 1
2

[ϕαQβ(v′) + ϕβQα(v′)] +
1
2

[ϕαPβ(w′′) + ϕβPα(w′′)] ,

with

Qα(v′) := ∂λv
′λ
α − 1

2
∂αv

′λ
λ.

The nonlinear term N(v, v′, v′′) comes from δ2Rαβ . We find that for
polarized v it reduces to

Nαβ(v, v′, v′′) ≡ 1
2
ϕαϕβ

[
vλμv′′λμ − 1

2
vλ

λv
′′μ
μ +

1
2

(
v′λμv′λμ − 1

2
v′λλ v

′μ
μ

)]
.

We can now prove the following theorem.

Theorem IV.7.2 The progressive wave

g
αβ

(x) + {ω−1vαβ(x, ξ) + ω−2wαβ(x, ξ)}ξ=ωϕ(x)

is an asymptotic solution of order one of the vacuum Einstein equations
on a manifold V under the following hypotheses:

(1) The phase ϕ is isotropic for the background g.
(2) v satisfies the linear, non-homogeneous, propagation system

P(v′) = 0

along the rays33 33Null curves tangent to ∂ϕ.of the phase ϕ and also satisfies the polarization
conditions on a hypersurface Σ transverse to these rays, assumed to
span V. The field v is periodic in ξ on Σ.
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(3) w is a solution of the linear system

Pα(w′′) = Qα(v′) +
1
4
ϕα(vλμv′λμ − vλ

λv
′μ
μ )′ +

1
2
ϕα(E − E).

(4) The background metric g satisfies the Einstein equations with source
a null fluid:

Rαβ = Eφαφβ ,

where, with T the period of v,

E ≡ 1
T

∫ T

0

E(., ξ)dξ, with E ≡ 1
4

(
v′λμv′λμ − 1

2
v′λλ v

′μ
μ

)
.

Proof.

(1) If v′ satisfies the propagation equations P(v′) = 0 on V ×R and the
polarization conditions on Σ transverse to rays that span V , then it
satisfies the polarization conditions on V ×R because the equation
P(v′) = 0 implies the propagation both of ϕαvαβ = 0 and vα

α = 0.
Indeed,

gαβ(Pv′)αβ ≡ −ϕλ∂λv
′λ
λ +

1
2
v′λλ ∂λϕ

λ

and also

ϕα(Pv′)αβ ≡ −ϕλ∂λ(ϕαv′αβ) − 1
2
ϕαv′αβ∂λϕ

λ,

because if ϕα is a gradient and isotropic, then

ϕλ∂λϕα = ϕλ∂αϕλ = 0.

The coefficient of ω in the asymptotic expansion of Ricci(g) is
therefore zero.

(2) The function x→ v′(x, ξ), a solution of the linear differential equa-
tion P(v′) = 0 with coefficients independent of ξ, is determined on
V × R if it is known on a submanifold transverse to rays that span
V. It has period T in ξ if its data on the submanifold have period T .

(3) When v is known, the equations for w′′ are non-homogeneous linear
equations, namely

Lαβ +Nαβ +Rαβ = 0.

(4) If v and w′ have period T in ξ, then the following relation holds,
because linear terms in v′ or w′′ integrate to zero:

TRαβ = −
∫ T

0

Nαβ(., ξ) dξ.

An elementary computation gives

Nαβ = −ϕαϕβ

[
E − 1

2

(
v′λμvλμ − 1

2
vλ

λv
′μ
μ

)′]
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from which there follows the expression given for R and hence the
linear system for w′′ given in the theorem. These linear equations
have solutions on V × R, periodic with period T in ξ, because the
linear transposed homogeneous system has an empty kernel and the
coefficients have period T . The tensor w can be chosen also of period
T in ξ and the right-hand side has a zero integral on ξ on the interval
0 ≤ ξ ≤ T .

�

Note a most remarkable fact, which is not shared by other nonlinear
fields: the vector v obeys linear propagation equations; that is, there is
no distortion under propagation of gravitational signals, in spite of the
nonlinearity of the Einstein equations.

IV.7.4 Observable displacements

As in the case of weak gravitational waves, the observable displace-
ments due to a strong gravitational wave are governed by the tidal force
determined by the highest-order terms in ω of the Riemann tensor.

Exercise IV.7.2 Consider two nearby particles with initially parallel
unit velocity uα = δα

0 and spatial separation vector Xi. Write the first
approximation of the geodesic deviation due to a strong high-frequency
wave.

IV.8 Stationary spacetimes

IV.8.1 Definition

We call stationary an (n+1)-dimensional spacetime (V, g) that admits
a one-parameter group G1 ≡ R of isometries with timelike Killing vector
ξ whose orbits are diffeomorphic34

34We exclude the case of orbits diffeo-
morphic to S1, i.e. the case of closed
timelike curves, because this is con-
sidered non-physical.to R and span the manifold V. More

precisely,35
35The assumptions that V is a product
M × R could be relaxed in the defin-
ition of stationarity, but the uniqueness
theorems given below would not neces-
sarily hold.

we assume that V is a product M ×R, a point of V is a pair
(x, t), x ∈ M, t ∈ R, the subspaces M × {t} of constant t are spacelike
submanifolds, and the Killing vector ξ is represented by ∂/∂t. In frames
adapted to the product structure, the spacetime metric g reads

g ≡ −ψ2(dt+ a)2 + ḡ, (IV.8.1)

with t ∈ R a time coordinate on the orbits of the vector ξ = ∂/∂t;
ψ, a, and ḡ are respectively a t-dependent scalar, a 1-form, and the
Riemannian metric on M. In local coordinates xi in the domain of a
chart of M, one has

a ≡ aidx
i, ḡ ≡ gijdx

idxj , (IV.8.2)

with all coefficients in g being independent of t.
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A stationary spacetime is called static if the orbits are orthogonal to
the n-dimensional space manifolds. Its metric then reads

g ≡ −N2dt2 + ḡ. (IV.8.3)

Static spacetimes are considered to represent equilibrium situations,
while stationary spacetimes model permanent motions. Both play an
important role in relativistic dynamics.

Lemma IV.8.1 A stationary spacetime is static if the 1-form a is an
exact differential:

a = dφ, i.e. ai = ∂iφ,

with φ a t-dependent scalar function on M.

Proof. For a stationary spacetime, assume that a = dφ, and consider
the change of its time and space factorization under the change of time
parameter

t′ = t+ φ. (IV.8.4)

This puts its metric into the static form

g ≡ −N2dt′2 + gijdx
idxj , (IV.8.5)

with g and N ≡ ψ independent of t′. �
Static spacetimes are invariant under time reversal, t → −t. This

property can also be taken as a definition to distinguish static spacetimes
among stationary ones.

One calls locally static those stationary spacetimes for which the
1-form a is closed, da = 0, but is not globally an exact form, i.e. there
does not exist on the whole of M a function such that a = dφ. This can
happen only3636See, for instance, CB-DMI IV. if M is not diffeomorphic to Rn.

IV.8.2 Equations

We denote by ∇̄ and R̄icci the covariant derivative and Ricci tensor in
the Riemannian metric ḡ. One can show by straightforward computation
that the components of the Ricci tensor of the spacetime metric

g := −ψ2(dt+ aidx
i)2 + ḡ, with ḡ := gijdx

idxj ,

reduce, with f = da, to

Rij ≡ R̄ij +
ψ2

2
fi

hfjh − ψ−1∇̄i∂jψ, with f j
i := gjk(∇̄kai − ∇̄iak),

(IV.8.6)

Ri0 ≡ − 1
2ψ

∇̄j(fi
jψ3), (IV.8.7)

R00 ≡ 1
4
ψ4fi

jfj
i + ψΔḡψ. (IV.8.8)
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Exercise IV.8.1 Prove these formulas using the general formulas for
connection and curvature given in Chapter I. More general formulas are
derived in Chapter IX.

In the case of a locally static spacetime, the components of the Ricci
tensor reduce to

Rij ≡ R̄ij − ψ−1∇̄i∂jψ, (IV.8.9)

Ri0 ≡ 0, (IV.8.10)

R00 ≡ ψΔḡψ. (IV.8.11)

The second identity37 37For a consequence of the last iden-
tity when M is compact, see Prob-
lem IV.11.9.

shows that the source must have zero momentum
for an Einsteinian spacetime to be locally static, justifying its name.
A reciprocal theorem is easy to prove under a physically meaningful
hypothesis, namely the following:

Theorem IV.8.1 A stationary Einsteinian spacetime with sources of
zero momentum, i.e. ρ0i ≡ 0, is locally static if either

(1) M is compact.
(2) The spacetime is asymptotically Euclidean.

Proof. If ρ0i = 0, a previous identity gives

Ri0 ≡ − 1
2ψ

∇̄j(fi
jψ3) = 0,

and hence

∇̄j(aifi
jψ3.) =

1
2
ψ3fi

jfj
i. (IV.8.12)

If M is compact (and hence without boundary according to our
definitions) integration of the above equality on M gives, by Stokes’s
formula, ∫

M

ψ3fi
jfj

iμM = 0,

and fj
i ≡ 0 since fi

jfj
i ≥ 0,

If M is asymptotically Euclidean, then we have, with Br a ball of
radius r, and using again Stokes’s formula,∫

M

ψ3fi
jfj

iμM =
1
2

lim
r→∞

∫
Br

ψ3fi
jfj

iμBr
= lim

r→∞

∫
∂Br

aifi
jψ3njμ∂Br

.

(IV.8.13)

When the radius r of the ball tends to infinity, the right-hand side tends
to zero if n > 2, because if the spacetime is asymptotically Euclid-
ean, then the product af falls off like r−(2p+1), 2p + 1 > n − 1, while
μ∂Br

=̃ rn−1μS2 , where μS2 is the volume element of the sphere Sn−1.
We conclude again that f j

i ≡ 0 on M. �
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IV.8.3 Non-existence of gravitational solitons

One calls a gravitational soliton a complete non-trivial (i.e. non-flat)
stationary solution of the vacuum Einstein equations.

We extend to arbitrary dimensions the proof of a theorem given
in 3+1 dimensions by Einstein and Pauli in the static case and by
Lichnerowicz3838Lichnerowicz (1939). in the stationary case.

Theorem IV.8.2 In (n+1)-dimensional spacetimes, the gravitational
solitons (M × R, g) with M compact or asymptotically Euclidean are
locally static with Ricci-flat space metric and ψ a constant.

Proof. Since gravitational solitons are solutions of the vacuum Einstein
equations, Theorem IV.8.1 shows that they are locally static: f j

i ≡ 0.
The remaining vacuum Einstein equations read

Δḡψ = 0, (IV.8.14)

R̄ij = ψ−1∇i∂jψ. (IV.8.15)

By well-known theorems resulting from the maximum principle applied
to solutions of elliptic partial differential equations, the equality (8.14)
implies that ψ = constant on a manifoldM that is compact or asymptot-
ically Euclidean (if ψ is smooth and uniformly bounded—assumptions
we implicitly include in the definition of gravitational solitons). The last
equation concludes the proof. �

Corollary IV.8.1 Under the hypotheses of the theorem, the only
(3+1)-dimensional gravitational solitons are locally flat.

Proof. In 3 dimensions, a Ricci-flat manifold is flat. �

In the classical case considered by Einstein where M is an asymptot-
ically Euclidean3939By a theorem of Schoen and Yau,

a locally flat asymptotically Euclidean
(complete—a property included in our
definition) Riemannian 3-manifold is
isometric to R3.

manifold diffeomorphic to R3, the only gravitational
soliton is Minkowski spacetime M4.

In the compact case, there are, besides the flat torus T 3, five non-
isometric (i.e. non-diffeomorphic) Riemannian orientable compact flat
manifolds, quotients of the Euclidean space E3 by discrete isometry
groups.4040See Chapter 3 of Wolf (2011).

Remark IV.8.1 Corollary IV.8.1 is not true in higher dimensions.

IV.8.4 Gauss’s law

A property of stationary spacetimes deduced easily from the previous
identities is the following, which we have called4141Fourès (Choquet)-Bruhat (1948). the relativistic Gauss
law.

Theorem IV.8.3 The time–time component Rt
t of the Ricci tensor of

a stationary spacetime (M×R, ĝ) in a natural frame with time axis tan-
gent to the timelines and space axis tangent to the manifold Mt satisfies
the divergence identity



IV.9 Lagrangians 91

ψRt
t ≡ ψRt

t ≡ ∇̃i

[
∂iψ +

1
2
(ajfjiψ

3)
]
. (IV.8.16)

Proof. The component Rt
t is immediately deduced from the components

previously computed in the frame θ0 := dt+aidx
i. The change-of-frame

formula gives

Rt
t ≡ R0

0 + aiR
i
0, (IV.8.17)

with

R0
0 ≡ −ψ−2R00, Ri

0 ≡ g̃ijR0j . (IV.8.18)

Therefore,

Rt
t ≡ −

[
1
4
ψ2fi

jfj
i + ψ−1Δg̃ψ +

1
2
ψ−1ai∇j(fi

jψ3)
]
, (IV.8.19)

which gives, using the definition of fij ,

Rt
t ≡ −ψ−1

[
Δg̃ψ +

1
2
∇̃j(aifi

jψ3)
]
, (IV.8.20)

that is, the given identity. �

Corollary IV.8.2 If the space manifold of a stationary Einsteinian
spacetime with source ρ is asymptotically Euclidean, then it holds that

fluxinfinity gradψ := lim
ρ→∞

∫
∂Bρ

ni∂iψμ∂Bρ
=
∫

M

ψρt
tμg̃.

Exercise IV.8.2 Prove this corollary, which has an analogue in New-
tonian mechanics, called Gauss’s law.

IV.9 Lagrangians

Lagrangians, arising from energies, play a fundamental role in physics.
The Lagragian formulation of the Einstein equations, found independ-
ently by Einstein and Hilbert, stands apart, being unrelated to a
pointwise intrinsically defined gravitational energy. However, it plays an
important role in many modern developments, in particular for equations
with field sources.
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IV.9.1 Einstein–Hilbert Lagrangian in vacuo

In this section we use the results of Chapter I, and its physicists’
notation.

Theorem IV.9.1 The Einstein equations in vacuo are the Euler
equations4242One equivalently says that a solution

of the Einstein equations in vacuo is
a critical point of the Einstein–Hilbert
Lagrangian.

of the Einstein–Hilbert Lagrangian, defined by

Lgrav(g) :=
∫
R(g)μg, (IV.9.1)

with R(g) the scalar curvature and μg the volume element of the
Lorentzian metric g.

Proof. We have

δLgrav(g) =
∫

[δR(g)μg +R(g)δμg] , (IV.9.2)

with

δR ≡ gαβδRαβ +Rαβδg
αβ

and

δμg ≡ −1
2
gαβδg

αβμg.

We have found in Chapter I that gαβδRαβ is the divergence of a vector,

gαβδRαβ ≡ −∇λv
λ, vλ := ∇λhα

α −∇αh
λα, hαβ := δgαβ , (IV.9.3)

and hence the integral of this term vanishes if vλ vanishes on the bound-
ary of the integration domain, as is assumed in computing the Euler
equations. We therefore have

δLgrav(g) =
∫

[δR(g)μg +R(g)δμg] =
∫ (

Rαβ − 1
2
gαβR

)
δgαβμ(g).

(IV.9.4)
�

Exercise IV.9.1 Prove the formula (IV.9.4).

Hint: The derivative of a determinant is ∂λ det g ≡ gαβ∂λgαβ det g.

IV.9.2 Lagrangians for Einstein equations with sources

A Lagrangian for the Einstein equations with sources (with the latter
being generically denoted by φ) is the sum of the vacuum Lagrangian
and a Lagrangian for sources. By the equivalence principle, the Lagran-
gian in General Relativity of a source, L(g, φ) =

∫
L(g, φ)μg, should

be deduced from the Lagrangian in Special Relativity, invariant under
diffeomorphism, by replacing the Minkowski metric η by g.
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General theorem

The vanishing of the variation with respect to g and φ of the sum of the
Einstein–Hilbert Lagrangian and the Lagrangian of the sources gives the
Einstein equations with source a tensor T, together with the equations
of motion for the sources.

The first variation of the total Lagrangian

Ltot(g, φ) :=
∫

[R(g) + L(g, φ)]μg (IV.9.5)

reads (the dot below denotes some algebraic linear form)

δLtot(g, φ) ≡
∫
{[Sαβ(g) −Mαβ(g, φ)]δgαβ − Φ(g, φ) · δφ}μg, (IV.9.6)

where Φ = 0 are the equations of motion of the fields φ on (V, g) and
Mαβ coincides with their stress–energy tensor.

Remark IV.9.1 The conservation laws ∇αM
αβ = 0, necessary for

the solvability of the Einstein equations with source φ, are a consequence
of the invariance under diffeomorphisms of the source Lagrangian, which
implies that if Φ(g, φ) = 0, then it holds that for any vector X,∫

Mαβ(∇αXβ + ∇βXα)μg = 0.

Matter and field sources

In the case of matter sources, it is somewhat difficult to find a La-
grangian in Special Relativity, and even in Newtonian mechanics. A
simple-looking Lagrangian for barotropic perfect fluids was proposed by
Taub.43

43Taub (1954, ?).

It reads44 44Here μ denotes the energy density
and μg the volume element.

Lfluid :=
∫
p(μ)μg.

The Taub Lagrangian leads to the Euler equations through a some-
what involved process, introducing first a Lagrangian with the constraint
g(u, u) = −1 and a Lagrange multiplier λ, and using Lagrangian-type
coordinates where the timelines are the flow lines.

Another proposal introducing velocity potentials is due to Schutz.45 45Schutz (1971).

None of these Lagrangians has been effectively used in the study of
properties of relativistic fluids.

In the case of the usual field sources, the Lagrangians in Spe-
cial Relativity are well known and naturally transferred to General
Relativity.

The Maxwell equations in vacuo are the Euler equations with respect
to a closed 2-form F of the Lagrangian

Le.m.(F, g) := −1
4

∫
FαβFαβμg. (IV.9.7)

The Lagrangian of a scalar field f with potential V (f) is

Lscal(f, g) := −
∫ [

1
2
gαβ∂αf∂βf + V (f)

]
μg. (IV.9.8)



94 The Einstein equations

The Lagrangians for Yang–Mills fields and wave maps are obtained
analogously by replacing ordinary products by scalar products in the
Lie algebra in the case of Yang–Mills fields and in the metric of the
target in the case of wave maps.4646See YCB-OUP 2009, Chapter III,

Section 6.5. In particle physics at a classical (i.e. non-quantum) level the dynamics
is ruled by the standard model Lagrangian with a structure of the
type

Lstandard(φ) := −
∫ [

1
4
Fαβ .Fαβ + ψ̄γμDμψ +

1
2
gμνDμH ·DνH

+V (H) + λψ̄Hψ

]
μg,

with φ := (F,ψ,H, g), F a Yang–Mills field with values in the Lie algebra
of U(1) × SU(2) × SU(3), ψ various spinor fields, and γμ Dirac gamma
matrices, while H is a complex-valued scalar doublet, the Higgs field; V
is a potential for H and λ is some constant coefficient.

Exercise IV.9.2 Check the general theorem in the Maxwell and scalar
field cases.

Hint:

δ

∫
gαβ∂αφ∂βφμg =

∫
δgαβ∂αφ∂βφμg + 2

∫
gαβ∂αδφ∂βφμg

+
∫
gαβ∂αφ∂βφδμg

=
∫
δgαβ

(
∂αφ∂βφ− 1

2
gαβg

λμ∂λφ∂μφ

)
− 2

∫
δφgαβ∇α∂βφμg.

The theorem is taken to define the equations for sources and the
stress–energy tensor when only the Lagrangian is known.

Remark IV.9.2 A constant factor depending on the units in which
the sources are measured must be put in front of the Lagrangian for the
sources when it is added to the vacuum Einstein Lagrangian in the case
of interpretation of observations in non-geometric units.

IV.10 Observations and experiments

In Chapter V, we will study the spherically symmetric vacuum Eisteinian
spacetime, the first exact solution constructed by Schwarzschild in 1916.
We will explain most of its observable consequences, and briefly quote
the results of observations, which are all in very good agreement with
the predictions.

We will discuss the reality of the revolutionary prediction of Einstein’s
equations—black holes—in Chapter VI.

The recently operational gravitational wave detectors VIRGO and
LIGO have not so far been able to detect any gravitational wave signal.
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This is not so surprising, given the predicted weakness of such signals.
However, the reality of energy loss by gravitational radiation was
confirmed as early as 1979 by the observation by Taylor and collab-
orators of the slowing down of the period of a binary pulsar,47 47A binary pulsar is a system of two

stars gravitating near enough to each
other to be considered as an isolated
system, one of them being a pulsar. A
pulsar is a star from which we receive
strong electromagnetic signals at regu-
lar intervals. It is now thought that the
signals are emitted in the direction of
the axis of a rapidly rotating neutron
star.

which
was interpreted as a shrinkage of its orbit due to gravitational radi-
ation. Many other binary pulsars have now been discovered. More than
30 years of observations and recording of data from the original Hulse–
Taylor pulsar have led (not without hard work from theoreticians and
physicists) to information being obtained on several physical properties,
including the masses, orbits, rotation, advance of the periastron, and
other parameters, of the pulsar and its invisible companion (both are
now thought to be neutron stars). All the results obtained agree with
those predicted by Damour and Deruelle48

48Damour and Deruelle (1981, 1986)
and Damour (1982).from the Einstein equations,

rather than those predicted by alternative gravitation theories.49 49For observational and experimental
results up to the end of 2013, see the re-
view by Damour for the Particle Data
Group (Damour, 2013b).

General Relativity and the Einstein equations are universally adopted
as the best model for gravitation at planetary and astronomical scales.
Their use at the atomic, quantum, scale requires new tools, still
the subject of much research and discussion. The sub-Planckian and
cosmological scales pose serious problems that probably require new
ideas.

If gravity is to become a quantum field theory like others, there must
exist an elementary particle called the graviton. This particle should
be massless like the photon, since gravitation propagates with the speed
of light. The putative graviton50

50The observation of a graviton is very
unlikely in the near future.

is thought to be spin51 51Spin is a quantum notion whose pre-
cise definition is outside of the scope
of this book. It takes only integer or
half-integer values. A supersymmetric
partner of the graviton, the gravitino,
would have spin 3

2
.

2 for the same
reasons why the photon is called spin 1 and the electron and the neutrino
spin 1

2 .

IV.11 Problems

IV.11.1 The Einstein cylinder

The Einstein cylinder52 52The Einstein cylinder, also called the
Einstein static universe, was the first
Einsteinian cosmological model to be
constructed.

is the manifold S3 × R endowed with the
static metric

− dt2 + a2
0γ+, (IV.11.1)

with a0 a constant and γ+ the metric of the unit 3-sphere S3, which is,
in the usual angular coordinates,

γ+ := dθ2 + sin2 θ (dφ2 + sin2 φdψ2).

1. Show that setting sin θ = r gives the form familiar to geometers:

γ+ =
dr2

1 − r2
+ r2(dφ2 + sin2 φdψ2). (IV.11.2)
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Show that the components of the Ricci tensor are (whatever coord-
inates are used)

R0α ≡ 0, Rij ≡ 2γ+
ij . (IV.11.3)

2. Show that the Einstein cylinder is a solution of the Einstein equations
with perfect fluid source of constant positive energy and negative
pressure:

μ0 = 3a−2
0 , p0 = −a−2

0 < 0. (IV.11.4)

3. A negative pressure is unacceptable on classical physical grounds.
Show that the Einstein cylinder is a solution of the Einstein equations
with a positive cosmological constant and source a perfect fluid with
positive energy and pressure.

4. Show that the Einstein cylinder is locally conformally flat. Determine
the image of Minkowski spacetime under a diffeomorphism into the
Einstein cylinder.

Solution

1. This is a straightforward computation.
2. The Einstein equations with cosmological constant Λ are

Sαβ = Tαβ − Λgαβ .

We deduce from (11.3) and (11.4) that

R ≡ 6a−2
0 , and S00 ≡ 3a−2

0 , Sij ≡ −γ+
ij .

The stress–energy tensor Tαβ ≡ (μ+ p)uαuβ + pgαβ of a perfect fluid
in the Einstein static universe with static flow vector u0 = 1, ui = 0 is

T00 ≡ μ0, T0i ≡ 0, Tij ≡ p0a
2
0γ

+
ij ,

and hence (recall that on the Einstein cylinder, g00 ≡ −1, gij ≡ a2
0γ

+
ij)

S00 = T00 + Λ, Sij = Tij − a2
0γ

+
ijΛ

if

μ0 = 3a−2
0 − Λ, p0 = Λ − a−2

0 .

IV.11.2 de Sitter spacetime

The de Sitter spacetime has for supporting manifold S3 × R, like the
Einstein cylinder. Its metric, analogous to the Einstein cylinder metric, is

− dt2 + a2γ+, (IV.11.5)

but the coefficient a is now time-dependent.
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1. Show that the de Sitter metric is a solution of the vacuum Einstein
equations with positive cosmological constant Λ if and only if the
coefficient a is such that

ä− k2a = 0, with ȧ :=
∂a

∂t
, ä :=

∂2a

∂t2
, k2 :=

Λ
3
, (IV.11.6)

and

ȧ2 − k2a2 = −1. (IV.11.7)

2. Show that the general solution for (11.5) is, with A and B a pair of
constants,

a = Aekt +Be−kt. (IV.11.8)

Show that such a function a satisfies (11.6) if 4AB = k−2. Show that
the metric, called the de Sitter metric,53 53The de Sitter spacetime is time-

symmetric. The radius of its spherical
space sections expands to infinity in
both time directions.

− dt2 + k−2(cosh2 kt)[dα2 + sin2 α(dθ2 + sin2 θ dφ2)] (IV.11.9)

is a solution of the vacuum Einstein equations with positive cosmo-
logical constant.

IV.11.3 Anti-de Sitter spacetime

1. Show that the spacetime metric defined on R3 × (−π/2, π/2) by

− dt2 + (cos2 t) γ−, (IV.11.10)

where γ− is the metric of the hyperbolic 3-space of constant negative
curvature,

γ− := dχ2 + (sinh2 χ)(sin2 θ dφ2 + dθ2),

satisfies the vacuum Einstein equations with negative cosmological
constant Λ = −3.

2. The spacetime classically called anti-de Sitter spacetime is the
manifold R3 ×R with the static metric

gAdS := −dt2(cosh2 χ)+dχ2 +sinh2 χ(sin2 θ dφ2 +dθ2), 0 ≤ χ <∞.
(IV.11.11)

Show that it is conformal54 54This property has been used by
Choquet-Bruhat to prove the global ex-
istence of Yang–Mills fields in anti-de
Sitter spacetime. It plays an important
role in recent work by H. Friedrich.

to the half 0 < θ < π/2 of the Einstein
cylinder.

3. Show that no light ray emitted at time t0 will go beyond a space slice
at finite time t = t0 + T.

Remark IV.11.1 Five-dimensional anti-de Sitter spacetime plays
an important role in supersymmetric theories conformal field, in
particular with regard to the so-called AdS–CFT correspondence.
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Solution

1. This is straightforward computation.
2. Set

coshχ =
1

cosα
, hence sinhχdχ = − sinα

cos2 α
dα.

Computation using the identities satisfied by sines and cosines gives
the announced identity:

gAdS ≡ 1
cos2 α

[−dt2 + dα2 + sin2 α(sin2 θ dφ2 + dθ2)].

3. We have on a radial light ray

dt =
dχ

coshχ
, hence t = t0 +

∫ χ

χ0

dχ

coshχ
, (IV.11.12)

and hence, whatever χ0 is,

t− t0 ≤
∫ χ

0

dχ

coshχ
< 2

∫ ∞

0

dχ

eχ
:= T <∞. (IV.11.13)

Therefore, no light ray emitted at time t0 will go beyond the space
slice t = t0 + T. The anti-de Sitter spacetime has no global causality
properties; it is not globally hyperbolic (see Chapter VIII).

IV.11.4 Taub–NUT spacetime

The underlying manifold of the Taub spacetime is S3 × I with S3 a
three-dimensional topological sphere and I := (t−, t+) an interval of R.
This manifold is endowed with the Lorentzian metric

−U−1dt2+(2�)2U(dψ+cos θ dφ)2+(t2+�2)(dθ2+sin2 θdφ2), (IV.11.14)

where

t± = m± (m2 + �2)
1
2 (IV.11.15)

and

U ≡ −1 +
2(mt+ �2)
t2 + �2

. (IV.11.16)

The numbers � and m are positive constants. The coordinates ψ, θ, φ are
the Euler coordinates on the sphere S3.

1. Show that the Taub spacetime is a solution of the vacuum Einstein
equations.

2. Show that U tends to zero as t tends to t+ or t−. Show that the
metric is still Lorentzian when t is in the complement in R of the
closure of I, but ψ is now a time variable and t a space variable.
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3. Show that by setting

ψ′ = ψ +
1
2�

∫ t

0

dτ

U(τ)
, (IV.11.17)

the Taub metric extends to a C∞ metric on S3 × R, called Taub–
NUT:55 55For its discoverers, Newman, Unti,

and Tamburino.

4�2 dψ′2 − 4� dψ′ dt+ 4�2U cos θ dφ dψ′ − 2� cos θ dt dφ

+(t2 + �2)(dθ2 + sin2 θ dφ2).
(IV.11.18)

4. Show that the two hypersurfaces, diffeomorphic to S3, t = m± (m2 +
�2)

1
2 , which bound the Taub spacetime in Taub–NUT are null mani-

folds, generated by closed null geodesics where ψ only varies. They
are the Cauchy horizons of the maximal development of any Cauchy
surface (see Chapter VIII) in the Taub spacetime.

5. Show that one family of null geodesics issuing from a point of the
Taub region crosses both horizons, and that another family spirals
near these surfaces and is incomplete. Show that in the NUT region
there are closed timelike curves (the surfaces t = const are timelike
there).

6. Construct another extension of the Taub spacetime with analogous
properties, though not isometric to it, by the change of coordinates

ψ′′ = ψ − 1
2�

∫ t

0

dτ

U(τ)
. (IV.11.19)

Remark IV.11.2 The Taub–NUT spaces give counterexamples to sev-
eral conjectures (see Chapter VIII). The consolation is that they are not
generic, because of their symmetries.

IV.11.5 The quadrupole formula

Many approximation methods in General Relativity use approximations
of a Newton-type potential U generated by a mass of density ρ given in
geometrical units (κ = 1) by the integral

U(x) =
∫

R3

ρ(y)
|x− y| d

3y, d3y ≡ dy1 dy2 dy3.

1. Show that 1/|x− y| admits the following Taylor expansion about
y = 0:

1
|x− y| =

1
r

+
∑

i=1,2,3

yi x
i

r3
+

1
2

∑
i,j=1,2,3

(3yiyj − r′2)δj
i

xixj

r5
+ . . . ,

with r2 :=
∑

i=1,2,3(x
i)2, and r′2 :=

∑
i=1,2,3(y

i)2.



100 The Einstein equations

2. Write, for a point x outside the support of the function ρ,

U(x) =
M

r
+
∑

i

Di x
i

r3
+

1
2

∑
i,j

Qij x
ixj

r5
+ . . . .

Give the expressions for M, Di, and Qij , which are called respectively
the mass, the dipole moment, and the quadrupole moment of the
matter density ρ. Show that U reduces to −M/r if ρ is spherically
symmetric. Show that Di can be made zero by choosing for origin
the Newtonian centre of gravity of the matter.

3. Show that for a non-spherical mass, the gradient of U will in general
differ from −M/r2 by a term in 1/r4.

IV.11.6 Gravitational waves

Give details and draw images of the displacement of the plane-wave
perturbation of a Minkowski metric.

IV.11.7 Landau–Lifshitz pseudotensor

By analogy with other fields, it was thought long ago that a locally
defined energy for the gravitational field should be defined in a post-
Minkowskian approximation by a quadratic form in the first derivatives
∂λhαβ , hαβ := δgαβ=̃gαβ − ηαβ . A simple-minded way to obtain such a
quadratic form is inspired on the one hand by the Einstein equations with
right-hand side the stress–energy tensor of matter or other fields and
on the other hand by the classical Picard iteration method for solving
quasilinear equations.

1. Show that in vacuum the first approximation h := δg at η of a metric-
g solution of the Einstein equations satisfies the linear equations

δRαβ ≡ Lαβ(h) ≡ −1
2
∂λ∂λhαβ+

1
2
[
∂λ∂αh

λ
β + ∂λ∂βh

λ
α − ∂α∂βh

λ
λ

]
= 0.

(IV.11.20)

2. Show that the Picard method gives for the approximation h(2) of
order two the following linear equations with source quadratic in the
first approximation h:

Lαβ(h(2)) = hλμ [∂λ(∂αhβμ + ∂βhαμ − ∂μhαβ) − ∂α∂βhλμ] + tαβ ,

with tαβ quadratic in first derivatives, namely

tαβ := −∂λh
λμ(∂αhβμ +∂βhαμ−∂μhαβ)+

1
2
∂βh

λμ∂αhλμ (IV.11.21)

+
1
2
∂λhρ

ρ(∂αhβλ + ∂βhαλ − ∂λhαβ) + ∂λh
μ
α∂

λhβμ − ∂λh
μ
α∂μh

λ
β .
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The tαβ are the components of the Landau–Lifshitz pseudotensor.
This was considered by Landau and Lifshitz as representing the
stress–energy of the first-order perturbation h.

IV.11.8 High-frequency waves from a spherically
symmetric star

Take as background the spherically symmetric Vaidya metric, which
in the coordinates x0 = u, x1 = r, (xA) = (θ, φ) reads

g := −
[
1 − 2m(u)

r

]
(du)2 − 2 du dr + r2(dθ2 + sin2 θ dφ2).

1. Check that the Vaidya metric coincides with the Schwarzschild metric
(see Chapter V) when m is constant. Write down its contravariant
components.

2. Write the conditions that must be satisfied by the high-frequency
wave

g(x, ωu) := g + ω−1v(x, ωu),+ω−2w(x, ωu), with x := (u, r, θ, φ)

for it to be an asymptotic solution of the vacuum Einstein equations
with phase u
(a) of order zero;
(b) of order 1, in a gauge such that v01 = 0.

3. Show that the first term v in the wave falls off at infinity like r−1,
as the background metric. Show that the second term w falls off like
r−2.

Solution

1. Elementary computation gives

Detg = −
[
1 − 2m(u)

r

]
r4 sin2 θ,

g00 = g0A = g1A = 0, g01 =
r4 sin2 θ

Detg
, g11 = 1.

2. The coordinate function u is isotropic for g because guu = 0. The
gradient of the phase ϕ ≡ u ≡ x0 is ϕα = δ0α.

(a) For a solution of order zero, the polarization conditions

Pi(v) ≡ v 0
i ≡ vi1 = 0

and

P0(v) ≡ −1
2
vi

i = 0
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must be satisfied; that is, using previous relations,

giαviα = g10v10 + gABvAB ,

gABvAB ≡ 1
r2

(
v22 +

1
sin2 θ

v33

)
= −v10. (IV.11.22)

(b) To have an asymptotic wave of order one, we must have R(0)
αβ = 0.

If we choose the gauge such that v10 = 0, then the propagation
equations, R(0)

ij = 0 are found to reduce to

∂1vAB − 1
r
vAB = 0.

These equations integrate to

vAB(x, ξ) = rγAB(u, θ, φ, ξ).

We set

γ22 =: α, γ23 =: β.

The polarization conditions are then equivalent to

γ33 = −α sin2 θ.

To have a progressive-wave solution of order one of the vacuum
Einstein equations, it remains to satisfy the equations R(0)

0α = 0.
The equations R(0)

0i = 0 are found to be

R
(0)
01 ≡ −1

2
w′′

11 = 0,

R
(0)
02 ≡ −1

2
w′′

12 +
1
2r

(
∂2α

′ +
1

sin2 θ
∂3β

′ + 2α′ cos θ
sin θ

)
= 0,

R
(0)
03 ≡ −1

2
w′′

13 +
1
2r

(
∂2β

′ − ∂3α
′ +

cos θ
sin θ

β
′
)

= 0.

We see that, given α and β uniformly bounded functions of ξ as
well as their primitives with respect to ξ, these linear equations
in w′′

ij , also linear in α′ and β′, are satisfied by functions w′′
1i such

that there exist functions w1i that are uniformly bounded in ξ.
It remains to satisfy the equation R(0)

00 = 0, which reads

1
2

[
gijw′′

ij +
1
r2

(
α2 +

β2

sin2 θ

)]′′
= − 1

2r2

(
α′2 +

β′2

sin2 θ

)
− 2
r2
dm

du
.

(IV.11.23)

This equation can be satisfied by a w uniformly bounded in ξ only
if the right-hand side is also the second derivative of a function
uniformly bounded in ξ. This will be the case if

1
4

(
α′2 +

β′2

sin2 θ

)
+
dm

du
= 0, (IV.11.24)
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for example, by assuming dm/du < 0 and setting μ(u) :=
2(−dm/du) 1

2 ,

α = μ(u) sin ξ sin θ, β = μ(u) cos ξ sin θ cos θ. (IV.11.25)

One finds bounded wij satisfying all the required equations:

w12 =
μ(u)
r

cos ξ (cos θ + 2), (IV.11.26)

w13 =
μ(u)
r

sin ξ sin2 θ, (IV.11.27)

and

wAB = 0. (IV.11.28)

Remark IV.11.3 The asymptotic metric obtained is axially sym-
metric (the coefficients do not depend on ϕ), but not spherically
symmetric. It is conjectured and partially proved that, in agree-
ment with physical intuition, no progressive gravitational wave with
spherically symmetric background is spherically symmetric.

3. This is left to the reader.

IV.11.9 Static solutions with compact spacelike
sections

Show that in dimension 3+1, the only locally static solution of the Ein-
stein equations with compact spacelike sections and source such that
ρ00 ≥ 0 is vacuum and locally flat.

Solution

The Einstein equations for a locally static spacetime metric are

R̄ij − ψ−1∇̄i∂jψ = ρ0i, ρi0 ≡ 0, ψΔḡψ = ρ00. (IV.11.29)

If M is a compact manifold (without boundary) and Δḡψ ≡ ∇̄i∂
iψ, then

it holds that

0 =
∫

M

Δḡψμḡ =
∫

M

ψ−1ρ00μḡ, hence ρ00 ≡ 0 if ψ > 0 and ρ00 ≥ 0.

Therefore, Δḡψ = 0. On a compact manifold, this implies ψ = constant,
and the equations imply Ricci(ḡ) = 0. We know that Ricci-flat three-
dimensional manifolds are locally flat.
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IV.11.10 Mass of an asymptotically Euclidean
spacetime

The ADM5656Arnowitt–Deser–Misner. mass of an asymptotically Euclidean manifold (M, g) is
defined by a flux integral through the sphere at infinity of its end:

mADM :=
1

16π
lim

r→∞

∫
∂Br

(∂igij − ∂jgii)ni dμ.

Consider the asymptotically Euclidean metric on R3 ∩ r > 0,
r2 = x2 + y2 + z2, (

1 +
m

2r

)4

(dx2 + dy2 + dz2),

isometric with the space part of the Schwarzschild metric in standard
coordinates (see Chapter V).

Show that its ADM mass is equal to m.

Solution

For the given metric gij = (1 +m/2r)4δij , δij = 0 for i 
= j,

∂igij = 4
(
1 +

m

2r

)3
(
− m

2r2
xj

r

)
, ∂jgii = 12

(
1 +

m

2r

)3
(
− m

2r2
xj

r

)
,

(∂igij − ∂jgii) = 8
(
1 +

m

2r

)3
(
m

2r2
xj

r

)
=̃ 4

mxi

r3
= 4m

ni

r2
,

and hence, with nini = 1 and 4π the surface of the unit sphere S2,

mADM =
1

16π

∫
S1

(∂igij − ∂jgii)ni dμ = m.

IV.11.11 Taub Lagrangian

Consider the Lagrangian with constraint g(u, u) = −1 and Lagrange
multiplier λ:

L =
∫
{R(g) + [μ+ p+ λg(u, u)]}μg.

Prove by choosing coordinates adapted to the fluid flow that the Euler
equations for such a Lagrangian lead, with the choice λ = μ, to the usual
Euler equations for perfect fluids and the Einstein equations with source
their stress–energy tensor.
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V.1 Introduction

In 1916, soon after the publication of Einstein’s equations, an exact
solution was constructed by Schwarzschild that could model the gravi-
tational field outside a spherically symmetric isolated body such as the
Sun. It was shown that, in first approximation, the relativistic planetary
trajectories, i.e. timelike geodesics of the Schwarzschild metric, coincide
with the Kepler orbits. However, in the case of Mercury, the planet near-
est to the Sun, an additional advance of its perihelion of about 42′′ per
century beyond the Newtonian calculuation was found,1

1Actually, this was first obtained by
Einstein, in November 1915, by a per-
turbative calculation where he solved
the Einstein equations by successive
approximations, going to second order
in GE .

in agreement
with astronomers’ observations. Other effects predicted by the Einstein-
ian gravitation theory, namely deflection of light rays, redshift, and time
delay, have also been found to be in remarkable agreement with obser-
vations and experiments (see Sections V.8 and V.9). In Chapter VI, we
will treat a revolutionary property of Einsteinian spacetimes, the exist-
ence of black holes, which first appeared through investigations of the
Schwarzschild metric.

V.2 Spherically symmetric spacetimes

We start with the following natural and elementary definitions.

Definition V.2.1 A three-dimensional Riemannian manifold (M, ḡ) is
said to be spherically symmetric if

1. The manifold M is represented by one chart (U,Φ) with Φ(U) = R3 or
the exterior of a ball B of R3 centred at some point O. We denote by
ρ, θ, φ spherical (pseudo) coordinates in Φ(U), linked to the canonical
coordinates x, y, z of R3 by the usual relations

x = ρ sin θ sinφ, y = ρ sin θ cosφ, z = ρ cos θ. (V.2.1)

2. In Φ(U), given by ρ ≥ ρ0 ≥ 0, 0 ≤ θ < π, 0 ≤ ϕ < 2π, ḡ is
represented by a metric of the form

eh(ρ)dρ2 + f2(ρ)(dθ2 + sin2 θ dϕ2), (V.2.2)
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with f a monotonically increasing function of ρ. The interpretation
is that Φ(U) is foliated by metric 2-spheres ρ = constant, centred at
O; their areas in the metric (2.2) are 4πf2. The metric (2.2) is the
general form of a metric invariant under rotations in R3, centred at
O. It is defined on the whole of R3 if the ball B is empty.

Remark V.2.1 In the preceding definition, ρ = 0 represents, by def-
inition, a single point O. The vanishing of f2(0) does not imply a
singularity in the metric, but reflects the fact that spherical ‘coordinates’
are not admissible coordinates at ρ = 0.

The choice of the coordinate r given by r = f(ρ) is called the
standard choice.

Definition V.2.2 Consider a spacetime (V, g) with V contained in the
product R3×R, a point of V being labelled (x, t). Suppose the subsets Mt

of constant t are spacelike submanifolds; then we denote by gt the Rie-
mannian metric induced by g on Mt. The trajectories of the vectors ∂/∂t
are supposed timelike. The spacetime is said to be spherically symmetric
if the following hold:

1. Each manifold Mt has a representation as the exterior R3 − Bt of
a ball Bt of R3 centred at the origin O. Each manifold (Mt, gt) is
spherically symmetric. In R3 − Bt the metric gt reads, in standard
coordinates,

gt = eλ(r,t) dr2 + r2(dθ2 + sin2 θ dϕ2). (V.2.3)

2. For each t, the g length and the representative of the projection on Mt

of the vector ∂/∂t tangent to the timeline22Equivalently, the lapse and the shift of
the slicing (see Chapter VIII).

are both invariant under
the rotation group defined above.

Lemma V.2.1 A spherically symmetric spacetime (V, g) admits a
metric of the form

g = −eν dt2 + eλ dr2 + r2(dθ2 + sin2 θ dϕ2), (V.2.4)

where λ and ν are functions of t and r only.

Proof. A scalar on R3 −B invariant under the rotation group is neces-
sarily a function of r and t alone. A vector field invariant under this
group is tangent to the radial lines (lines where only the r coordinate
varies) and its magnitude depends only on r for each t. Therefore, the
given definition implies that

g = −a2(r, t) dt2+2b(r, t) dt dr+eλ(r,t) dr2+r2(dθ2+sin2 θ dϕ2). (V.2.5)

We can eliminate the diagonal term in dt dr by computing an integrat-
ing factor for the 1-form in two variables ω := a dt− b dr, i.e. a function
of t and r, which we denote by e−2ν , such that its product by the 1-form
is the differential of a function τ :

e−2νω ≡ e−2ν(t, r)(a dt− b dr) ≡ dτ.
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We take τ as a new time coordinate, keeping r, θ, ϕ as space pseudo-
coordinates. Writing the metric (2.4) with this new time coordinate,
renamed as t, gives the formula (2.3). The coordinates t, r are called
standard coordinates. �

Exercise V.2.1 Given a and b, determine ν.

Remark V.2.2 If the point with coordinate r = 0 belongs to the
manifolds Mt, it describes a timelike line called the central world line.

V.3 Schwarzschild metric

We will prove the following theorem:

Theorem V.3.1 A smooth spherically symmetric metric is a solution
of the vacuum Einstein equations if and only if it is the Schwarzschild
metric, which reads, in standard coordinates, with m a constant

gSchw = −
(

1 − 2m
r

)
dt2 +

(
1 − 2m

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2).

(V.3.1)

Proof. We set t = x0, r = x1, θ = x2, ϕ = x3 and denote by a prime the
derivative with respect to r. We find that the only non-zero Christoffel
symbols of the spherically symmetric metric (2.4) are

Γ0
00 =

1
2
∂tν, Γ1

00 =
1
2
eν−λν′, Γ0

01 =
ν′

2
, Γ0

11 =
∂tλ

2
eλ−ν , Γ1

01 =
∂tλ

2
,

(V.3.2)

Γ1
11 =

λ′

2
, Γ1

22 = −re−λ, Γ2
12 = Γ3

13 = r−1, Γ1
33 = −r sin2 θ e−λ,

(V.3.3)

Γ2
33 = − sin θ cos θ, Γ3

23 = cot θ. (V.3.4)

Computing the components of the Ricci tensor, we find

R10 ≡ r−1∂tλ, R22 ≡ −e−λ
[
1 +

r

2
(ν′ − λ′)

]
+ 1, R33 ≡ sin2 θ R22.

(V.3.5)
We deduce from these identities that for a solution of the vacuum

Einstein equations, Rαβ = 0, λ is independent of t. Therefore, ν′ is also
independent of t, ∂tν

′ = 0, and ν is of the form

ν(t, r) = ν(r) + f(t). (V.3.6)

We set τ :=
∫
e

1
2 f(t)2 dt and we rename τ as t; we then have ∂tν = 0. The

other non-identically zero components of the Ricci tensor then reduce to

R00 ≡ eν−λ

(
ν′′

2
+
ν′2

4
− ν′λ′

4
+
ν′

r

)
, (V.3.7)
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R11 ≡ −ν
′′

2
− ν′2

4
+
λ′ν′

4
+
λ′

r
. (V.3.8)

The vacuum Einstein equations therefore imply

r(eλ−νR00 +R11) ≡ ν′ + λ′ = 0. (V.3.9)

Modulo this relation, the equations R22 = 0 and R33 = 0 reduce to

−e−λ(1 − rλ′) + 1 = 0;

that is,

(e−λ)′ +
e−λ

r
=

1
r
. (V.3.10)

The general solution of this linear equation for e−λ is

e−λ = 1 +
A

r
, hence eν = B

(
1 +

A

r

)
, (V.3.11)

with A and B arbitrary constants. The constant B can be made equal
to 1 by a rescaling of t. The constant A is denoted by −2m; we will
see in Section V.6, Equation (6.8), that the Newtonian approximation
corresponding to the Schwarzschild metric then coincides with Newton’s
gravity, with the coefficient m being the gravitational mass expressed in
units of length. We have thus obtained the metric (3.1).

To show that this metric satisfies the full vacuum Einstein equations,
we must check that it satisfies also the equations R00 = 0 and R11 = 0;
this can be done by using (3.9) and (3.7), (3.8), (3.11) to show that
eλ−νR00 −R11 = 0. �

Exercise V.3.1 Prove this last statement by using the Bianchi iden-
tities.

Remark V.3.1 We have supposed in this theorem that the areas of the
orbits of the symmetry group are monotonically increasing along their
orthogonal trajectories.

In the course of the proof, we have obtained Birkhoff’s theorem:

Theorem V.3.2 (Birkhoff) A smooth spherically symmetric metric
solution of the vacuum Einstein equations is necessarily static.

V.4 Other coordinates

In some problems, it is useful to use alternative, non-standard, coordin-
ates for the Schwarzschild metric.
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V.4.1 Isotropic coordinates

One defines new coordinates X,Y,Z, called isotropic, on R3 × R that
are related to the standard r, θ, φ (i.e. x, y, z) by setting

r = R
(
1 +

m

2R

)2

, (V.4.1)

X = Rr−1x, Y = Rr−1y, Z = Rr−1z. (V.4.2)

In terms of these coordinates, the metric reads, with R2 = X2+Y 2+Z2,

gSchw = −
(

2R−m

2R+m

)2

dt2 +
(
1 +

m

2R

)4

(dX2 + dY 2 + dZ2). (V.4.3)

Exercise V.4.1 Prove this formula (see the solution of Problem
V.12.4).

It is clear from the above expression that the spaces t = constant of
the Schwarzschild metric are conformal to Euclidean space.

Remark V.4.1 r is a monotonically increasing function of R, from 2m
to infinity, when R increases from m/2 to infinity; r and R are equivalent
for large r.

V.4.2 Wave (also called harmonic) coordinates

Theorem V.4.1 The 3 + 1 metric,3 3Note that while the standard form of
the Schwarzschild metric generalizes to
higher values of n, its expression in
wave coordinates does not (see Prob-
lem V.12.5).

defined for r̄ > m,

− r̄ −m

r̄ +m
dt2 +

r̄ +m

r̄ −m
dr̄2 + (r̄ +m)2(dθ2 + sin2 θ dφ2) (V.4.4)

is isometric to the Schwarzschild metric by the mapping r = r̄+m. The
corresponding Cartesian coordinates t and xi defined by

x1 = r̄ sin θ sinφ, x2 = r̄ sin θ cosφ, x3 = r̄ cos θ

are wave coordinates.

Proof. We write an arbitrary spherically symmetric, static, metric on
R3 ×R in the form

−A2 dt2 +B2 dr̄2 + r2(dθ2 + sin2 θ dφ2), (V.4.5)

where θ, φ are spherical coordinates on S2. The coefficients A, B, and r
are functions of r̄ only. The coordinate t is obviously a wave coordinate.
We look for a function r = f(r̄) such that the coordinates xi defined by
the above relations are wave coordinates, i.e. such that the functions xi

satisfy the wave equation. For an arbitrary function ψ, the wave equation
in the metric (4.4) reads

− 1
A2

∂2ψ

∂t2
+

1
r2

[
1
AB

∂

∂r̄

(
AB−1r2

∂ψ

∂r̄

)
+ Δ∗ψ

]
, (V.4.6)
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where Δ∗ is the Laplacian on the sphere S2. If xi is one of the functions
given above, then

∂xi

∂r̄
=
xi

r̄
,
∂2xi

∂r̄2
= 0 and Δ∗xi = −2xi. (V.4.7)

Hence the condition that the xi be wave coordinates reduces to

1
AB

d

dr̄
(AB−1r2) − 2r̄ = 0. (V.4.8)

In the case of the Schwarzschild metric, we have for r > 2m

A ≡
√

1 − 2m
r
, B ≡ A−1 dr

dr̄
, (V.4.9)

and hence the harmonicity condition is

d

dr

(
dr̄

dr
A2r2

)
− 2r̄ ≡ d

dr

[
dr̄

dr
(r2 − 2mr)

]
− 2r̄ = 0. (V.4.10)

We set

r = m(1 + z), (V.4.11)

and (4.10) becomes

d

dz

[
(z2 − 1)

dr̄

dz

]
− 2z = 0, for z > 1. (V.4.12)

This linear second-order differential equation is a Legendre equation,
whose general solution is, with C1 and C2 arbitrary constants

r̄ = C1z + C2

(
z

2
ln
z + 1
z − 1

− 1
)
. (V.4.13)

To avoid introducing an additional logarithmic singularity on the horizon
r = 2m, we take

r̄ = mz, i.e. r = r̄ +m. (V.4.14)

Using this value of r, we can check that the Schwarzschild metric in the
wave coordinates xi defined above is the given metric. �

V.4.3 Painlevé–Gullstrand-like coordinates

The following stationary but non-static form of the Schwarzschild metric
has been used in numerical computations:44Pretorius (2005a).

−
(

1 − 2m
r

)
dt2 + dx2 + dy2 + dz2 +

2
r

√
2m
r

(x dx+ y dy + z dz) dt.

(V.4.15)
It is called a boosted Schwarzschild metric.
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V.4.4 Regge–Wheeler coordinates

We define, in the region r > 2m, a tortoise radial coordinate

ρ = r + 2m log(r − 2m). (V.4.16)

The metric then takes a form in which the timelike sections θ = constant,
φ = constant are conformal to two-dimensional Minkowski space:

gSchw =
(

1 − 2m
r

)
(−dt2 + dρ2) + r2(dθ2 + sin2 θ dφ2), (V.4.17)

where r is the function of ρ defined by (4.16).

V.5 Schwarzschild spacetime and event
horizon

If m = 0, the Schwarzschild metric reduces to the Minkowski metric;
if m 
= 0, it is singular for r = 0 and has a coordinate singularity for
r = 2m (see below).

The sign of the constant m 
= 0 is very important in determining the
properties of the Schwarzschild metric.

If m < 0, the Schwarzschild metric defines a spherically symmetric
spacetime on the whole of R3 × R, except at {0} × R, where the met-
ric is singular. At present, the Schwarzschild metric with m < 0 has no
physical interpretation. It can be shown that there exists no asymptotic-
ally Euclidean Einsteinian spacetime (R3×R, g) with sources of positive
energy that coincides for r > a ≥ 0 with a Schwarzschild metric with
m < 0; this is a particular case of the positive-mass theorem.5 5See, for instance, YCB-OUP2009 and

references therein.If m > 0, the Schwarzschild metric is a regular Lorentzian metric with
t timelike and r spacelike and r > 2m; 2m is called the Schwarzschild
radius. For r large with respect tom, we will see in the following sections
that the resulting physical properties coincide in first approximation to
those of the Newtonian theory for a spherical body of gravitational6

6Recall that the gravitational and in-
ertial masses differ by a factor equal
to the gravitational constant. In this
book, unless otherwise stated, we work
in units such that this constant as well
as the speed of light are equal to 1.

mass m centred at r = 0.
It is possible to construct so-called interior Schwarzschild solutions

that are spherically symmetric spacetimes, not necessarily static, smooth
on a manifold R × R3 ∩ {r ≤ a}, satisfy the Einstein equations with
sources of positive energy, and lead to a complete admissible Einsteinian
spacetime on the whole manifold R×R3, with, for r > a, a Schwarzschild
spacetime of mass 2m < a (see Section V.10).

Since 1 − 2m/r vanishes for r = 2m, the Schwarzschild metric in
standard coordinates appears to be singular there: g00 vanishes and grr

becomes infinite. For r < 2m, r 
= 0, the Schwarzschild metric is again
a regular Lorentzian metric, but the timelike and spacelike character of
the coordinates t and r are interchanged.

We will construct later, whatever the value of a > 0 , vacuum Ein-
steinian spacetimes that are regular for r ≥ a > 0 and isometric for
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r > 2m to a Schwarzschild spacetime in canonical coordinates with ra-
dius 2m. They are interpreted as spacetimes modelling the exteriors of
bodies with Schwarzschild radius 2m. However, the apparent ‘Schwarz-
schild singularity’ r = 2m > a has a deep physical meaning that we will
discuss in Chapter VI: no light ray or other classical signal (i.e. one not
due to a quantum effect) can escape from the regions r < 2m. For this
reason, the hypersurface R×{r = 2m} is called an event horizon and
a spacetime with source of radius a < 2m is called a black hole (see
Chapter VI).

If a is identified with the radius of the body in a classical CGS length
unit and the gravitational mass m determining the Schwarzschild radius
is expressed in the same unit of length, but with the units of time and
mass chosen so that the speed of light and the gravitational constant are
both equal to 1, as we do in writing the equations (see Problem III.9.3
in Chapter III), then the Schwarzschild radii of the solar planets and
normal stars are very much inside these bodies:77For the Sun, 2mSun =̃ 2.96 km and for

the Earth, 2mEarth =̃ 8.87 mm.
2m << a.

In the rest of this chapter, we will study properties of Schwarzschild
spacetimes in the region r > 2m. We will compare their predictions with
the Newtonian ones and unravel new effects of gravitation predicted by
Einstein’s General Relativity. We will also quote results of observations
and experiments, all in agreement with Einstein’s theory.

V.6 The motion of the planets and
perihelion precession

V.6.1 Equations

The trajectories of bodies of small size and mass in a spherically symmet-
ric gravitational field, for instance the trajectories of the solar planets,
are timelike geodesics of this field, i.e. of the Schwarzschild spacetime.

We denote by ds the element of proper time on a timelike curve; i.e.
with our signature convention,

ds2 ≡ −gαβdx
αdxβ . (V.6.1)

As in the Newtonian case, we find that the orbits remain in a ‘plane’
of R3 by considering first the equation (cf. the expressions for the
Christoffel symbols)

d2θ

ds2
+

2
r

dr

ds

dθ

ds
− sin θ cos θ

(
dϕ

ds

)2

= 0. (V.6.2)

We choose the coordinate θ such that at some initial instant s0 we have
for the considered motion of the planet θ(s0) = π/2 and (dθ/ds)(s0) = 0.
The equation satisfied by θ then implies that the orbit remains in the
‘plane’ θ = π/2. With this choice of the coordinate θ, the equation for
ϕ reduces to

d2ϕ

ds2
+

2
r

dr

ds

dϕ

ds
= 0, (V.6.3)
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which integrates to an analogue of the Newtonian area law, with � some
constant such that

r2
dϕ

ds
= �. (V.6.4)

Remark V.6.1 Equation (6.4) is a consequence of the invariance of
the metric under rotations. The constant � can be interpreted as the
angular momentum per unit mass, as seen at large distance.

The equation

d2t

ds2
+
dν

dr

dr

ds

dt

ds
= 0, with ν := log

(
1 − 2m

r

)
(V.6.5)

integrates to (‘energy’ integral due to t-translation invariance)(
1 − 2m

r

)
dt

ds
= E, E a constant. (V.6.6)

The remaining geodesic equation is

d2r

ds2
+

1
2
dλ

dr

(
dr

ds

)2

− e−λ

(
dϕ

ds

)2

+
eν−λ

2
dν

ds

(
dt

ds

)2

. (V.6.7)

Using the expressions for λ and ν together with the previous integrals
(6.4) and (6.6), we see that, when � 
= 0, this equation reduces to

d2u

dϕ2
+ u =

m

�2
+ 3mu2, with u ≡ 1

r
. (V.6.8)

This equation is formally the same as the linear equation in u of New-
tonian mechanics, except for the addition of the nonlinear term 3mu2.
Therefore, it holds that

u(ϕ) = uNewton(ϕ) + v(ϕ), (V.6.9)

where v satisfies the equation

d2v

dϕ2
+ v = 3mu2. (V.6.10)

As is well known, the solutions of the Newtonian equation (for � 
= 0)
are the conics

1
r

= m�−2(1 + e cos ϕ) =: uNewton, (V.6.11)

where e is the eccentricity and where the longitude of the perihelion, a
constant in this Newtonian case, has been taken to be equal to zero. The
constant e depends on the initial position and velocity of the planet. It
is not far from 0 for the solar planets—their orbits are almost circular.

For the solar planets, r is large with respect to �, and hence 3mu2

can be considered as a small correction to m�−2; the correction v will
therefore be small with respect to uNewton. An approximate solution of
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(6.11), a small correction to the Newtonian expression, is obtained by
replacing (6.11) by the linear equation

d2v

dϕ2
+ v = 3mu2

Newton ≡ 3m3�−4(1 + 2e cosϕ+ e2 cos2 ϕ). (V.6.12)

This is the differential equation for a forced oscillation. The general
solution is the sum of the general solution of the associated homogeneous
equation, i.e. an arbitrary periodic function of period 2π in ϕ, and a
particular solution, for instance

3m3�−4

[
1 + eϕ sinϕ+ e2

(
1
2
− 1

6
cos 2ϕ

)]
. (V.6.13)

The term that will give the observationally most significant contribution
to the correction is the ‘secular’ (non-periodic) term in ϕ; that is, we
consider the Einsteinian approximation:

uEinstein ∼ uNewton + 3m2�−4eϕ sinϕ
= m�−2(1 + e cosϕ+ e3m2�−2ϕ sinϕ). (V.6.14)

In geometric units, m2�−2 is small, and therefore 3m2�−2ϕ is equivalent
to sin(3m2�−2ϕ) and uEinstein is equivalent to

uEinstein ∼ m�−2 {1 + e cos[(1 − 3m2�−2)ϕ]}. (V.6.15)

The orbit is no longer a closed curve (unless it is circular, i.e. if e = 0),
because uEinstein does not have period 2π in ϕ. It is only approximately
an ellipse; the closest point to the centre (perihelion), attained for ϕ = 0,
is attained successively after each increase of ϕ by 2π(1 − 3m2�−2)−1∼
2π + 6πm2�−2. The additional 6πm2�−2 is the famous Einsteinian
perihelion precession.

Remark V.6.2 Elementary calculus gives a perihelion precession per
orbit

6πm
p

, p := a(1 − e2).

p is called the parameter of the Newtonian ellipse, a is its semi-major
axis, and e its eccentricity. For equivalent a’s, the precession of the
perihelion is greatest for eccentricities approaching 1.

V.6.2 Results of observations

It was observed long ago by astronomers that the orbits of the solar
planets are not exact ellipses, but slowly rotating ones. This phenom-
enon was interpreted in Newton’s theory as a result of the influence of
other planets. The perihelion precession of most planets could thus be
accounted for—except for that nearest the Sun, Mercury, for which a
precession of 42′′ per century over the 5600′′ observed (found by Lever-
rier in 1845) remained unexplained. The Einsteinian correction (1916)
just filled the gap, which was a remarkable success for the new theory.
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For a long time, it was thought that the not exactly symmetric shape of
the Sun could also play a role but was too difficult to estimate,8 8In the case of satellites orbiting the

Earth, the irregularities of their mo-
tions are used to determine the shape
of the Earth.

but re-
cent data have estimated the quadrupole moment of the Sun and shown
its contribution to Mercury’s perihelion advance to be quite small.

In 1974, a pulsar (a rotating neutron star, PSR 1913+16) was observed
by Taylor and collaborators, orbiting around a companion that is most
probably also a neutron star. Its orbit shows a precession of about 4.2 deg
per year, which is about 27 100 times the precession rate of Mercury.
This is believed to be an Einsteinian effect, but since the masses of the
orbiting objects are not known, the precession cannot be used directly
to test General Relativity; it is used instead to estimate these masses.
To do this, one must generalize the above treatment of the dynamics of
a small mass around a large one to the study of the relativistic dynamics
of two comparable masses.

In order to compare the predictions of General Relativity with the
observations of binary pulsars, it is necessary to go beyond the first post-
Newtonian approximation presented in Section IV.5.3 in Chapter IV.
First, as a neutron star is an object that generates at its surface a very
strong deformation of the Minkowski metric (gsurface

00 � −1 + hsurface
00 ,

with hsurface
00 � 2GM/c2R � 0.4 for a neutron star, to be compared with

hsurface
00 (Sun) ∼ 10−6 and hsurface

00 (Earth) ∼ 10−8), one needs to develop
approximation methods that go beyond the usual weak-field expansion
and are able to deal with the motion of strongly self-gravitating bodies.
Such methods, based on the multichart approach mentioned in Sec-
tion IV.5.3, were developed by several authors in the 1970s and 1980s.9 9See, notably, D’Eath (1975) and

Damour (1983a).These approaches use the method of matched asymptotic expansions
to transfer information between the tidal-like expansions of the metric
GA

αβ(Xγ
A) considered in the local coordinate system Xα

A attached to each
body (labelled by A) and the post-Minkowskian (or post-Newtonian)
expansion of the metric gμν(xλ) considered in the global coordinate
system xμ. In addition, it was necessary to push the accuracy of the
post-Newtonian expansion used in the global chart xμ much beyond the
1PN level. More precisely, it was necessary to go to the 2.5PN level,
corresponding to keeping terms (v/c)5 smaller than the Newtonian-level
terms. The first complete results in the 2.5PN approximation were ob-
tained in the early 1980s.10 10See Damour and Deruelle (1981) and

Damour (1982).
At this level of approximation, the fact that

the gravitational interaction between the two bodies propagates (via a
retarded Green function of the wave equation) at the velocity of light
entails an observable effect: namely a slow decrease of the orbital period
Pb given by11 11See Damour (1983b).

dPb

dt
= −192π

5 c5
ν(GM Ω)5/3 1 + 73

24 e
2 + 37

96 e
4

(1 − e2)7/2
, (V.6.16)

where ν ≡ mAmB/(mA + mB)2 is the symmetric mass ratio, M ≡
mA + mB the total mass, Ω = 2π/Pb the orbital frequency, and e
the eccentricity of the orbit. This effect has been observed in several
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binary pulsars, with a magnitude in precise agreement with the Gen-
eral Relativity prediction (6.16). As this effect is a direct consequence
of the propagation of the gravitational interaction at the velocity of
light, it constitutes an observational proof of the reality of gravitational
radiation.

In addition, the development of the relativistic theory of the ‘tim-
ing’ of binary pulsars1212See Damour and Deruelle (1985,

1986).
has allowed several other comparisons between

the predictions of Einstein’s theory and binary pulsar data. More pre-
cisely, the measurement of n ‘post-Keplerian’ parameters appearing in
the Damour–Deruelle timing formula allows one to extract n − 2 tests
of General Relativity (or alternative theories of gravity). For instance,
in the case of PSR 1913+16, one could use pulsar timing data to meas-
ure the following three ‘relativistic’ or ‘post-Keplerian’ observables: (i)
advance of periastron, (ii) apparent modification of the proper time of
the pulsar by combined Doppler and gravitational effects, and (iii) rate
of change of the orbital period of the pulsar linked to gravitational radi-
ation damping. Comparison of these three ‘post Keplerian’ observables
with their General Relativity prediction leads to an accurate (10−3 level)
confirmation of Einistein’s theory in a regime that involves both strong-
field effects (in the neutron star) and radiative effects. Other binary
pulsars1313For a review, see, for instance,

Damour (2013b).
have recently allowed further accurate confirmation of GR.

V.6.3 Escape velocity

As an exercise in the physical interpretation of General Relativity, we
compute the radial velocity with respect to an observer at rest in the
Schwarzschild metric that must be applied to a test object for it to
escape the gravitational attraction.

Let r0 be the r coordinate of the static observer in a Schwarzschild
spacetime with mass m < r0/2. Denote by ṙ0 = dr/ds(0) the proper-
time initial velocity, supposed to be radial, of the launched rocket at
parameter time t = 0. This rocket, supposed to be in free motion after
its launch, follows a radial geodesic curve and hence satisfies, by (6.6),
the equation

(
1 − 2m

r

)
ṫ = E =

(
1 − 2m

r0

)
ṫ0. (V.6.17)

We also have, as a result of the definition of ds,

1 =
(

1 − 2m
r

)
ṫ2 −

(
1 − 2m

r

)−1

ṙ2. (V.6.18)

Hence

ṙ2 = E2 − 1 +
2m
r
. (V.6.19)
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The rocket can attain a maximum of the parameter r (and then turn
back) when ṙ = 0, that is, when r takes the value

rM =
2m

1 − E2
. (V.6.20)

The number rM is an attained maximum of the parameter r if it is
positive and finite, that is, if E < 1. The escape velocity for which rM
is infinite corresponds to E = 1, and hence, by (6.16), to

ṙ20 =
2m
r0
. (V.6.21)

The relativistic escape velocity V for the observer at rest is given by
the ratio of the space (radial) and time components V 1 and V 0 in the
proper frame of this observer of the velocity vector, which has compo-
nents (ṙ0, ṫ0) in the natural frame of the coordinates t, r. The proper
frame of the static observer is

θ0 =
(

1 − 2m
r0

) 1
2

dt, θ1 =
(

1 − 2m
r0

)− 1
2

dr, (V.6.22)

and therefore

V 1 =
(

1 − 2m
r0

)− 1
2

ṙ0, V 0 =
(

1 − 2m
r0

) 1
2

ṫ0. (V.6.23)

Hence, using (6.20) and (6.18) when E = 1, we obtain

V =:
V 1

V 0
=
√

2m
r0
. (V.6.24)

This escape velocity coincides with its Newtonian value. It tends to 1, the
velocity of light, when r0 tends to 2m, in agreement with interpretations
that we will give in a forthcoming section.

V.7 Stability of circular orbits

To study the stability of circular orbits, we use the identity

gαβ ẋ
αẋβ = −1 (V.7.1)

and (6.4) and (6.6) to obtain

1
2
ṙ2 +

1
2

(
1 − 2m

r

)(
�2

r2
+ 1
)

=
1
2
E2. (V.7.2)

This type of differential equation occurs in classical mechanics and
governs the motion of a particle of unit mass and energy 1

2E
2 in the

potential14

14Our consideration of the dynamics of
a test particle by means of an effective
potential can actually be generalized
to the case of the motion of a binary
system of comparable masses by us-
ing the ‘effective one-body’ approach
to two-body systems (see Buonanno
and Damour, 1999; Damour and Nagar,
2011).V (r) ≡ 1

2

(
1 − 2m

r

)(
�2

r2
+ 1
)
. (V.7.3)



118 The Schwarzschild spacetime

By differentiating (7.3) with respect to s, we obtain the following second-
order differential equation for r

..
r +

dV

dr
= 0. (V.7.4)

A circular orbit r = r0 is one for which ṙ = 0; hence
..
r = 0 and

(dV /dr)(r0) = 0. That is, for such an orbit, the potential V has a critical
point. Computation gives

dV

dr
≡ r−4

(
mr2 − �2r + 3m�2

)
. (V.7.5)

The critical points are therefore given by

R± =
�2 ±

√
�4 − 12�2m2

2mr2
. (V.7.6)

For �2 < 12m2, there is no circular orbit. For �2 > 12m2, there are two
possible circular orbits: r0 = R+ and r0 = R−. The circular orbit r = r0
is stable if the critical value r0 is a minimum of V ; it is unstable if r0
is a maximum. Indeed, linearization around r0 of dV /dr shows that the
equation (7.4) leads to oscillations of r around r0 if (d2V/dr2)(r0) > 0
and exponential growth of r if (d2V/dr2)(r0) < 0. Elementary calculus
shows that R− is a maximum of V and hence the orbit r0 = R− is
unstable, while R+ is a minimum and hence r0 = R+ is stable.

We see from (7.6) that, given m, the smallest possible value of R+ is
6m, while the smallest possible value of R− (obtained when � tends to
infinity) is 3m. We have proved the following theorem:

Theorem V.7.1 In a Schwarzschild spacetime of mass m, there is no
circular orbit with angular momentum � less than m

√
12. The Schwarz-

schild coordinates r of circular orbits all satisfy r > 3m. The last stable
circular orbit has r ≥ 6m.

V.8 Deflection of light rays

V.8.1 Theoretical prediction

Light rays are null geodesics, so they are bent by the curvature of the
spacetime. The differential equations they satisfy are the same as the
equations for timelike geodesics, except that the derivative denoted by a
dot is now a derivative with respect to the affine parameter on the null
geodesic and (7.1) is replaced by

gαβẋ
αẋβ = 0. (V.8.1)

That is, using (6.4) and (6.6), we have

1
2
ṙ2 +

1
2

(
1 − 2m

r

)
�2

r2
=

1
2
E2. (V.8.2)
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We deduce from this equation and from (6.4) that on a null geodesic,

1
r4

(
dr

dϕ

)2

+
1
r2

− 2m
r3

= k2, (V.8.3)

with k = E2�−2 a constant. Setting u ≡ r−1 gives(
du

dϕ

)2

+ u2 − 2mu3 = k2. (V.8.4)

Hence, after differentiation, we obtain

d2u

dϕ2
+ u = 3mu2. (V.8.5)

The term 3mu2 in (8.5) is the Einsteinian correction to the following
equation:

d2u

dϕ2
+ u = 0, with u ≡ 1

r
. (V.8.6)

This gives, in the absence of gravitation, straight lines as light rays, with
equations in spherical coordinates taking the form

1
r

= usphr(ϕ) ≡ 1
r0

cos(ϕ− ϕ0), (V.8.7)

where r0 is the displacement from the centre. If we consider the Einstein
correction 3mu2 as small, we obtain an approximation to Einstein’s light
rays by solving the differential equation

d2u

dϕ2
+ u = 3mu2

sphr. (V.8.8)

Setting ϕ0 = 0 for simplicity, we find that the general solution to (8.8)
is

1
r

=
1
r0

cosϕ+
m

r20
(1 + sin2 ϕ). (V.8.9)

On the straight line given by (8.7), the coordinate r tends to infinity
when φ tends to −π/2 or π/2. On the curve given by (8.9), r tends
to infinity when φ tends to ±(π/2 + α) with, by (8.9) and elementary
trigonometry, α satisfying

− sinα+
m

r0
(1 + cos2 α) = 0. (V.8.10)

That is, if α is small,

α =̃
2
r0
. (V.8.11)

The total deflection of a light ray is therefore estimated to be

δ =̃
4m
r0
. (V.8.12)

For light rays grazing the solar surface, this angle is about 1.75′′.
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V.8.2 Fermat’s principle and light travel parameter
time

We have said that light rays follow null geodesics of spacetime. The
following property is a generalization to static spacetimes of a classical
theorem of Fermat in Newton’s space E3.

Theorem V.8.1 In a static spacetime with metric

ds2 = −g00 dt2 + gijdx
idxj ,

the projections on space of light rays are geodesics of the Riemannian
metric

dσ2 =
gijdx

idxj

g00
;

i.e. they are relative minima of the integral

� =
∫ t2

t1

√
gijdxidxj

g00
.

On a null curve, � is the parameter-time duration.

Proof. This is a straightforward computation, using the geodesic equa-
tions in ds and dσ. We leave it as an exercise. �

In addition, we note that Fermat’s principle can be generalized to
arbitrary spacetimes as follows.1515Ferrarese (2004).

Theorem V.8.2 The ‘proper time of arrival’ of null curves to a given
timelike curve admits a critical point (is a relative minimum) at a
light ray.

V.8.3 Results of observation

It was first necessary to wait for an eclipse to be able to observe the
apparent displacement of the stars due to the deflection by the Sun of
light coming from them. As early as 1919, an expedition was organized
by Eddington to measure the bending of light by the Sun. The observed
deflection was in reasonable agreement with the prediction but was not
very precise, until data from the Hipparcos satellite verified the deflec-
tion of light to a 10−3 precision. More precise results have long since been
obtained with the use of radio waves: it was not necessary in this case to
wait for an eclipse. Measurements using several radio telescopes at inter-
continental separations (very long baseline interferometry, VLBI) now
give a precision of about 10−4. They strongly support General Relativ-
ity, in particular in constrast to the Jordan–Brans–Dicke scalar–tensor
theory.
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V.9 Redshift and time dilation

The time dilation and redshift effects are not due to a change of the
velocity of light in a gravitational field—in General as well as in Special
Relativity, the speed of light is a universal constant. Rather, the effects
are caused by dependence on the observer of the measure of the proper
time (see Chapter III).

V.9.1 Redshift

We have already considered the gravitational redshift in Chapter III, in
any static spacetime. Its measurement in a Schwarzschild spacetime is
one of the classical tests of Einstein’s equations.

Suppose for simplicity that the emitting atom and the observer are
both at rest with the same angular coordinates, and with radial Schwarz-
schild coordinates rA and rO, respectively. The emitted period TA and
the observed period TO are then linked by the relation (see (III.8.5))

TO =

√(
1 − 2m

rO

)√(
1 − 2m

rA

)−1

TA. (V.9.1)

Hence TO > TA if rO > rA, and so a redshift (smaller frequency ν) of
spectral lines is then observed. If m/r0 is small, then

TA

TO
≡ νO

νA
=̃ 1 −m

(
1
rA

− 1
rO

)
. (V.9.2)

This formula shows that the time between signals emitted regularly in
its own time by a source located at a point with parameter rO tending
to the horizon 2m seem progressively longer to a stationary faraway
observer; it tends to infinity as the source tends to the horizon rO = 2m.
This effect, already noticed by Oppenheimer and Snyder, is called the
infinite-redshift effect.

V.9.2 Time dilation

To state the elements of the theoretical prediction of time dilation, we
treat the case of a rocket sent from the Earth in a radial direction with
a velocity less than the escape velocity and moving then in free fall, i.e.
following a timelike geodesic of the Schwarzschild metric representing the
Earth’s gravitational field. The parameter time tM it takes the rocket
to fall back to Earth is twice the parameter time it takes to attain its
maximum rM value (see Section V.6.3). We calculate the proper time
using the formula
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sA =
∫ tM

0

ds

dt
dt =

∫ tM

0

E−1

(
1 − 2m

r

)
dt

=
∫ tM

0

1 − 2m
r

1 − 2m
r0

ds

dt
(0) dt, (V.9.3)

with [(
ds

dt

)
(0)
]2

=
(

1 − 2m
r0

)
−
(

1 − 2m
r0

)−1 [
dr

dt
(0)
]2

. (V.9.4)

We set (dr/dt)(0) = v and we obtain for sA, when m/r0 is small, the
approximate expression

sA =̃
∫ tM

0

(
1 − 2m

r
+
m

r0
+
mv2

r0

)
dt. (V.9.5)

The proper time observed on Earth at the fixed r0 between the origin
and the impact point is

sO =
∫ tM

0

√
1 − 2m

r0
dt =̃

∫ tM

0

(
1 − m

r0

)
dt. (V.9.6)

Therefore, a standard clock carried by the rocket shows a delay over the
same standard clock of the observer, given approximately by

sA − sO =̃
∫ tM

0

(
−2m

r
+ 2

m

r0
+
mv2

r0

)
dt > 0, (V.9.7)

since r > r0 on the trajectory. Experiments made with caesium clocks
have confirmed this time delay and its estimates with great precision.

Remark V.9.1 On a Lorentzian manifold, timelike geodesics are, as
in Minkowski spacetime, local maxima of the length of timelike curves
joining two points. In the given example, it is the rocket that follows a
geodesic, while in the twin paradox (see Chapter II), it is the travelling
twin who is not in free fall—he has to use an engine to come back.

V.10 Spherically symmetric interior
solutions

A relativistic model for a spherically symmetric isolated star is a spher-
ically symmetric spacetime (V ≡ R3 × R, g) such that g satisfies the
Einstein equations on V ,

Sαβ ≡ Rαβ − 1
2
gαβR = Tαβ ,

where Tαβ , the source stress–energy tensor, is zero outside the star and
depends inside it on the star’s physical constitution—this is not well
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known and is difficult to model by a single formula. For this reason,
there is no physically reliable exact solution for the considered problem.
However, important qualitative features can be obtained from general
considerations.

Remark V.10.1 As in Newtonian theory, a spherically symmetric
Einsteinian gravitational field vanishes in the interior of a hollow
sphere—that is to say, namely a spherically symmetric vacuum solution
defined for r < a is necessarily flat in this domain. Indeed, the construc-
tion of Section V.3 shows that such a solution is a Schwarzschild metric
(3.1), with m some arbitrary number. The only solution of this form that
is continuous at r = 0 is the flat solution with m = 0.

V.10.1 Static solutions. Upper limit on mass

We look for equilibrium configurations, i.e. static spacetimes. We use
Schwarzschild coordinates. For r > rstar, with rstar the radial Schwarz-
schild coordinate of the star’s boundary, we have vacuum; hence the
solution is Schwarzschild. For r < rstar, we again look for a static
spherically symmetric metric, of the form

g = −eν dt2 + eλ dr2 + r2(dθ2 + sin2 θ dϕ2), (V.10.1)

but now we solve the equations with a non-vanishing stress–energy ten-
sor, which we take, in the absence of better modelling, to represent a
perfect fluid; that is, the Einstein equations are

Sαβ = Tαβ , with Tαβ ≡ (μ+ p)uαuβ + pgαβ ; (V.10.2)

equivalently,

Rαβ = ραβ ≡ (μ+ p)uαuβ +
1
2
(μ− p)gαβ . (V.10.3)

For a static solution, the fluid unit velocity is ui = 0, u0 = e−ν/2,
tangent to the timelines. Then T0i = R0i = 0,

T00 ≡ μeν , R00 = eν 1
2
(μ+ 3p), Tij ≡ pgij , Rij =

1
2
(μ− p)gij .

(V.10.4)
The scalar functions μ and p, like λ and ν, depend only on r.

The identities found in Section V.3 give (a prime denotes differenti-
ation with respect to r)

R22 ≡ 1
sin2 θ

R33 ≡ −e−λ
[
1 +

r

2
(ν′ − λ′)

]
+ 1,

r(eλ−νR00 +R11) ≡ ν′ + λ′,

and for the spacetime scalar curvature

R ≡ −e−νR00 + e−λR11 + r−2(R22 + sin−2 θ R33). (V.10.5)
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≡ −e−λ

(
ν′′ +

ν′2

2
− ν′λ′

2
+
ν′ − λ′

r
+

2
r2

)
+

2
r2
. (V.10.6)

Elementary computations give

S00 ≡ R00 +
1
2
eνR ≡ 1

2
[R00 + eν−λR11 + eνr−2[R22 + (sinθ)−2R33]}.

The equation S00 = T00 ≡ μeν is then found to reduce1616We will see in Section VIII.7.2 that
the fact that the component S0

0 does
not contain the lapse (here eν) is a
general property of the Einstein tensor.

to a differential
equation for λ that can be written as

1− d

dr
(e−λr) = r2μ, hence e−λ =

1
r

{∫ r

0

[
1 − ρ2μ(ρ)

]
dρ+ constant

}
.

(V.10.7)

Smoothness of the metric in a neighbourhood of the origin r = 0 of polar
coordinates imposes the vanishing of the integration constant; hence

e−λ = 1 − 2M(r)
r

, with M(r) ≡ 1
2

∫ r

0

ρ2μ(ρ) dρ. (V.10.8)

This solution defines a Lorentz metric in a domain r ≤ a only if

2M(a) ≡
∫ a

0

ρ2μ(ρ) dρ ≤ a. (V.10.9)

Having computed λ, we use the equation

ν′ +λ′ ≡ r(eλ−νR00 +R11) = r(eλ−νρ00 + ρ11) ≡ reλ(μ+ p) (V.10.10)

to find that

ν′ = (eλ − 1)r−1 + reλ(p− μ) =
2M(r) + r3(p− μ)
r[r − 2M(r)]

. (V.10.11)

On the other hand, the fluid equation (cf. Chapter IV) gives

(μ+ p)uα∇αu1 + ∂1p ≡ (μ+ p)u0u0Γ1
01 + ∂1p = 0;

that is,

p′ = −1
2
(p+ μ)ν′,

and we find that

p′ = −1
2
(p+ μ)

2M(r) + r3(p− μ)
r[r − 2M(r)]

. (V.10.12)

This is known as the Tolman–Oppenheimer–Volkov equation of
relativistic hydrostatic equilibrium. It can be integrated if one assumes
some equation of state inside the star. In most situations, it is quite
difficult to know with any reliability an equation of state, because of the
complexity of the phenomena that occur. However, one can deduce some
conclusions from this formula.

When the density μ is a constant, μ0, the integral (10.8) gives

2M(r) = μ0

∫ r

0

ρ2 dρ =
1
3
μ0r

3. (V.10.13)
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Equation (10.12) then reduces to a differential equation for p that can
be integrated exactly. Assuming that p vanishes at the boundary r = a
of the star, one finds for the pressure at its centre

p(0) = μ0

1 −
[
1 − 2a−1M(a)

] 1
2

3[1 − 2a−1M(a)]
1
2 − 1

. (V.10.14)

This pressure becomes infinite if

3[1 − 2a−1M(a)]
1
2 = 1, i.e. M(a) =

4a
9
. (V.10.15)

The pressure p(0) becomes negative if M(a) > 4a/9.

Exercise V.10.1 Prove these results.

The classical conclusion is that stars with M(a) ≥ 4a/9 cannot exist.
The same result holds17 17The integration was first performed

by Schwarzschild in 1916. For details,
and a discussion of the case of a
non-constant density, see Wald (1984),
p. 129.

if one supposes only that μ is a non-increasing
function of r.

Theorem V.10.1 There exist no equilibrium configuration of spheric-
ally symmetric stars filled with a perfect fluid with μ a non-increasing
function of r and such that

M(a) ≥ 4a
9
, (V.10.16)

where a is the standard radius of the star and M(a) is given by

M(a) =
1
2

∫ a

0

μ(ρ)ρ2 dρ.

V.10.2 Matching with an exterior solution

An Einsteinian model for the exterior and the interior of a spherically
symmetric star is a manifold R3 × R with a Lorentzian metric g that
satisfies the Einstein equations on the whole manifold, induces an interior
Schwarzschild metric in B × R, with B a ball of R3 filled with matter,
and an exterior, vacuum, Schwarzschild metric in the complementary
domain. The metric, spherically symmetric, reads on R3 ×R

g = −eν dt2 + eλ dr2 + r2(dθ2 + sin2 θ dϕ2,

with eλ and eν equal to the coefficients of the interior metric gstar for
r < rstar, denoted by a above, and to those of a vacuum Schwarzschild
metric in the exterior. For such a metric to be a solution on R3 × R,
some continuity18 18If these quantities were not continu-

ous, their differentiation would intro-
duce a measure with support r = rstar
in the components of the Ricci tensor
that are not present in the source.

properties are required from the functions λ and ν at
the boundary r = a between the interior and exterior regions. Equation
(10.8) in particular imposes that

e−λext = 1 − 2m
r

= e−λint = 1 − 2M(r)
r

for r = a;
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that is,

m = M(a) ≡ 1
2

∫ a

0

r2μ(r) dr. (V.10.17)

The number M(a), sometimes called the mass function, can be com-
puted in terms of the density in classical units by reinserting in the above
formula the Einstein gravitational constant GE = 8πGN . This leads to
the integral of the density on the volume of a sphere Ba of radius a,
namely

M cgs(a) = 4πGcgs
N

∫ acgs

0

r2μcgs(r) dr.

Note, however that M(a) is not the proper mass of a static spherical star
of standard radius a, which should be computed with the space proper
volume element

r2e
1
2 λdr sin θ dθ dφ,

resulting in a smaller quantity; the difference represents the gravitational
binding energy of the star in equilibrium.

V.10.3 Non-static interior solutions

Birkhoff’s theorem does not apply to interior solutions. There exist time-
dependent, spherically symmetric solutions of the Einstein equations
with sources in a domain r < rstar; the radius rstar of the star may be a
function of t. The full solution is the considered interior solution gint for
r ≤ rstar and a Schwarzschild exterior solution with mass m for r ≥ rstar,
provided that rstar > 2m, the Schwarzschild radius of the star, which is
constant for an exterior solution and is linked with the energy content
of the star, which is considered as an isolated object. When the star
contracts so much that rstar becomes smaller than 2m, it is no longer
observable from the region r > 2m of the spacetime (see Chapter VI).

It is physically clear that there can be no static interior solution with
zero pressure, because there is nothing in that case to resist the gravita-
tional attraction. This can be checked mathematically by solving (10.12)
with p = p′ = 0, which gives

μ(r) = 2r−3M(r) ≡ 2r−3

∫ r

0

ρ2μ(ρ) dρ, (V.10.18)

that is, setting y(r) =
∫ r

0
ρ2μ(ρ) dρ, the differential equation

y′ =
2
r
y, hence y = Cer2

,

with C a constant. Then

μ = Cr−2er2
, (V.10.19)

which is always infinite for r = 0.
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V.11 Spherically symmetric gravitational
collapse

It is believed that when a star has exhausted all thermonuclear sources
of energy, it will collapse under its own gravitational field. Oppenheimer
and Snyder19 19Oppenheimer and Snyder (1939).made a rigorous study of this process for a spherically
symmetric dust cloud by using a special solution given by Tolman20 20Tolman (1934) and, Bondi (1947).in
the restricted case of a spatially constant matter density starting from
rest. This study was revisited by Gu21 21Gu (1973).with the restriction to spatially
constant matter lifted. Gu analysed shell-crossing singularities as well
as the essential singularity at the centre of symmetry. He gave a de-
tailed mathematical discussion of the formation of horizons and of what
is now called the nakedness of the singularities. Hu22 22Hu (1974).constructed the
fully general spherically symmetric solutions for dust, not restricted to
the Tolman class, and discussed their properties. The work done by Gu
and Hu for non-homogeneous dust clouds was repeated, in ignorance
of these papers published in China, by Müller zum Hagen, Seifert, and
Yodzis23 23Müller zum Hagen, Seifert, and

Yodzis (1973).
, who proved the existence of shell-crossing singularities in the

case of the Tolman class; later, Christodoulou proved the existence of
central singularities,24 24Christodoulou (1984).starting from rest. Finally, Newman25

25Newman (1986).

obtained
the general solution. These western papers were motivated by the cos-
mic censorship conjecture, which is violated both at shell-crossing
singularities and at the centre, as was already shown in Gu’s paper.

V.11.1 Tolman, Gu, Hu, and Claudel–Newman metrics

In the case of dust, the flow lines are the timelike geodesic trajec-
tories of the particles; we take these geodesics as timelines (comoving
coordinates). A spherically symmetric metric can then be written as

− dt2 + e2ω dr2 +R2(dθ2 + sin2 θ dφ2), (V.11.1)

where ω and R are functions of r and t. The flow lines of the dust are
the curves on which the coordinates r, θ, φ are constant; a so-called dust
shell is labelled by its coordinate r. The metric is regular as long as e2ω

and R are smooth positive functions. R2 is (up to multiplication by 4π)
the area of the spherical dust shell of parameter r, at time parameter t.
One fixes the parameter r by choosing it to be such that r = R(r, 0).

The stress–energy tensor T of the dust reduces to

Tαβ = μuαuβ , (V.11.2)

with uα = δα
0 , since the timelines are the matter flow lines. The only

non-zero component of the stress energy tensor is

T00 = μ, (V.11.3)

with

μ = μ(r, t) for r ≤ a and μ(r, t) = 0 for r > a, (V.11.4)
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where a is the r parameter of the outermost dust shell2626Which may not remain the outermost
shell if there is shell crossing as time
evolves.

at time t = 0.
We denote by primes and dots respectively differentiation with respect

to r and t. We compute the general solution in the chosen notation. The
equation R10 = 0 is equivalent to the second-order equation

Ṙ′ − ω̇R′ = 0, (V.11.5)

which integrates to the first-order equation

R′e−ω = f(r), (V.11.6)

with f(r) an arbitrary function of r.
The conservation equations reduce to

∇αT
α0 ≡ μ̇+ Γα

α0μ ≡ μ̇+ μ(ω̇ + 2R−1Ṙ) = 0; (V.11.7)

hence, with φ an arbitrary function of r, we obtain

μ(t, r) =
e−ω

R2
φ(r). (V.11.8)

Using (12.6), this equation becomes

μ(t, r) =
r2μ0

R2R′ . (V.11.9)

Here μ0 is an arbitrary function of r that we identify with the initial
density because we have chosen r such that R(0, r) = r and hence
R′(0, r) = 1. It has been shown by R. Newman that the Einstein
equations then admit the first integral

1
2
Ṙ2 − M(r)

R
=

1
2
[f2(r) − 1], (V.11.10)

with

M(r) =
∫ r

0

f(ρ)μ(t, ρ)R2(t, ρ)eω dρ. (V.11.11)

The function M(r) is the integral over the volume occupied by the dust
shells 0 ≤ ρ ≤ r of the density weighted by the factor f(ρ).2727Note as before that a factor 4π has

been included in our definition of dens-
ities; the integral giving M(r) is taken
over a 3-sphere.

It is
independent of t, as can be verified by using (12.6) and (12.9), which
show that

M(r) =
∫ r

0

μ0(ρ)ρ2 dρ. (V.11.12)

The explicit formulas for R(r, t) and ω(r, t) depend on the sign of
f2(r) − 1; they have been computed and studied in the general case by
Hu and Newman, to whom we refer the reader.2828Hu (1974) and Newman (1986). The case where the
dust cloud starts from rest, i.e.

Ṙ(0, r) = 2
M(r)
r

+ f2(r) − 1 = 0, (V.11.13)

has been studied by Christodoulou, using parametric equations for R
and t.
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Here, following Gu29 29Gu (1973).we study the case f2(r) = 1, in which exact
integration permits a clear and comparatively short discussion. In the
case f2(r) = 1, (11.10) reads

R
1
2 Ṙ = ±

√
2M(r). (V.11.14)

We suppose that the star starts contracting; then the minus sign must
be chosen when t increases, and the equation integrates to

R(r, t)
3
2 = Φ(r) − 3

2

√
2M(r)t,

with Φ an arbitrary function. Since we have normalized the radial par-
ameter r by the condition R(r, 0) = r, it holds that Φ(r) = r

3
2 . We use

the notation
3
2

√
2M(r) =: h

1
2 (r), (V.11.15)

and then

R(r, t) = [r
3
2 − h

1
2 (r)t]

2
3 . (V.11.16)

Using (11.6), we then find

eω = R′ = [r
3
2 − h

1
2 (r)t]−

1
3

[
r

1
2 − 1

3
h−

1
2h′(r)t

]
.

Here, as a consequence of the definition (11.15), we have

h′(r) =
9
2
r2μ0(r).

On the other hand, the equation for μ gives

μ(t, r) =
r2μ0

[r
3
2 − h

1
2 (r)t][r

1
2 − 3

2h
− 1

2h′(r)t]
. (V.11.17)

We make a change of coordinates: instead of choosing as radial parameter
the number characterizing a dust shell, we take the area R of a dust shell
at time t. Since we have chosen f(r) = 1, i.e. R′ = eω, it holds that

dR = eω dr + Ṙ dt = eω dr −R− 1
2
√

2M(r) dt. (V.11.18)

The change of coordinates from r, t to R, t is admissible if R′ does
not vanish. In the new coordinates, the spacetime metric becomes, for
0 ≤ r ≤ a,

−
[
1 −

√
2M(r)
R

]
dt2+2R− 1

2
√

2M(r) dR dt+dR2+R2(dθ2+sin2 θ dφ2).

(V.11.19)

We see that the metric of the space sections t = constant reduces to the
Euclidean metric in polar coordinates. If the space manifold is, for every
t, homeomorphic to a ball of three-dimensional Euclidean space and R is
an admissible polar coordinate, then R(t, r) is also the distance at time
t between the centre and the dust shell with parameter r.
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V.11.2 Monotonically decreasing density

Collapse of dust shells

In this subsection, we suppose that μ0 is a monotonically decreasing
function of the parameter r, as r increases from 0, the centre of the star,
to a, the value of r at the surface boundary of the star at time t = 0.

To study the possible collapse, we study the evolution in proper time
t of the function R(t, r) for a given dust shell, i.e. for a given value of r.
We see from (11.16) that the shell collapses at the centre of symmetry
at the time t1(r) where R(t1, r) = 0; that is,

t1(r) = h−
1
2 (r)r

3
2 .

It follows that

dt1(r)
dr

=
1
2
r

1
2h−

3
2 [3h(r) − rh′(r)] =

9
4
r

1
2h−

3
2 [3M(r) − rM ′(r)] .

(V.11.20)

If μ0 is monotonically decreasing, then, using the definition (11.11) of
M(r), we find that

3M(r) − rM ′(r) ≡ 3
∫ r

0

μ0(ρ)ρ2 dρ− μ0(r)r3 ≥ 0. (V.11.21)

Hence the shells with increasing parameter r arrive successively at the
centre, and there is no shell crossings.3030Shell crossing, leading to non-central

singularities, exists when the density
is not monotonically decreasing. See
Gu (1973), Hu (1974), Müller zum Ha-
gen et al. (1984), and Newman (1986).

If the density is uniform (the
Oppenheimer–Snyder case), then the dust shells all arrive at the same
time at the centre.

The metric (11.19) is a regular Lorentzian metric if the linear form
dR − Ṙ dt does not vanish, i.e. if R′ = eω > 0. We deduce from the
expression (11.16) for R that

3
2
R

3
2R′ =

[
3
2
r

1
2 − 1

2
h−

1
2 (r)h′(r)t

]
= 0. (V.11.22)

Hence R′(t, r) vanishes3131Vanishing of R′ signals a shell
crossing.

at a time t2 given by

t2 =
3h

1
2 (r)r

1
2

h′(r)
=

2h
1
2 (r)

3r
3
2μ0(r)

≡
√

2M(r)

r
3
2μ0(r)

. (V.11.23)

We note that

t1
t2

=
h′(r)r
3h(r)

. (V.11.24)

The monotonicity of μ0 and the mean value theorem led Gu to the
conclusion that

t1 ≤ t2; (V.11.25)

that is, the dust evolution does not induce a singularity in the metric
before a dust shell arrives at the centre, in agreement with the previous
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conclusion of the absence of shell crossing. The first occurence of the
singularity is at a time t0, with

t0 = lim
r=0

[
r3

h(r)

] 1
2

=
1√

3
2μ0(0)

; (V.11.26)

the greater μ0(0) is, the sooner the singularity appears.

Matching with an exterior metric

The interior metric is given by (11.19) for r ≤ a, i.e.

0 ≤ R ≤
[
a

3
2 − h

1
2 (a)t

] 2
3
. (V.11.27)

The computations that we have made are still valid outside the star,
where r > a and μ0(r) = 0, but for r > a it holds that

M(r) ≡Ma :=
∫ a

0

μ0(ρ)ρ2 dρ, r > a, (V.11.28)

and the exterior metric reads

−
(

1 − 2Ma

R

)
dt2 + 2

√
2Ma

R
dRdt+ dR2 +R2(dθ2 + sin2 θ dφ2).

(V.11.29)

It is a boosted Schwarzschild metric with horizon

R = 2Ma. (V.11.30)

This solution takes the usual Schwarzschild form

−
(

1 − 2Ma

R

)
dt2 +

(
1 − 2Ma

R

)−1

dR2 +R2(dθ2 + sin2 θ dφ2)

(V.11.31)
if we make the change of time coordinate

dτ = dt−
(

1 − 2Ma

R

)−1
√

2Ma

R
dR. (V.11.32)

The full spacetime metric g is defined on R3×R+, with R, θ, φ polar
coordinates on R3 and t ∈ R+ (i.e. t ≥ 0) by

g = gdust, 0 ≤ R ≤
[
a

3
2 − h

1
2 (a)t

] 2
3
, (V.11.33)

g = gext, R ≥
[
a

3
2 − h

1
2 (a)t

] 2
3
. (V.11.34)

The interior dust solution is hidden behind the horizon when[
a

3
2 − h

1
2 (a)t

] 2
3
< 2Ma. (V.11.35)

This begins at a positive time t3 given by

t3 = h−
1
2 (a)[a

3
2 − (2Ma)

3
2 ] (V.11.36)
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if a > 2Ma, that is, if the star is initially visible. We have seen that
the outer shell of the star collapses into a singularity when t1(a) =
h−

1
2 (a)a

3
2 , hence after the star has ceased to be visible. This fact was an

inspiration for the formulation of the cosmic censorship conjecture
by Penrose (see Chapter VIII).

V.12 Problems

V.12.1 Relativistic and Newtonian gravitational
masses

Show that the relativistic gravitational proper mass of a spherical star
with radius a and density μ(r) is larger that its Newtonian gravitational
mass.

Solution

The Newtonian gravitational mass is, with GN the Newtonian gravita-
tional constant,

M(a) = GN

∫
S2

∫ a

0

r2μ(r) dr sin θ dr dθ dφ ≡ 4πGN

∫ a

0

r2μ(r) dr.

The relativistic gravitational mass, computed with the proper volume
element, is

2Ma := GE

∫ a

0

r2μ(r)
[
1 − 2M(r)

r

]− 1
2

dr. (V.12.1)

The proper massMa is greater thanM(a) because [1 − 2M(r)/r]−
1
2 > 1.

The difference represents the gravitational binding energy of the star in
equilibrium.

V.12.2 The Reissner–Nordström solution

Show that the Reissner–Nordström metric (found in 1916 by
Reissner) and given in standard coordinates by

−
(

1 − 2m
r

+
Q2

r2

)
dt2 +

(
1 − 2m

r
+
Q2

r2

)−1

dr2 +r2(dθ2 +sin2 θ dϕ2)

(V.12.2)

is a spherically symmetric solution of the Einstein–Maxwell equations
with electromagnetic potential

Ai = 0, A0 = −Q
r
, (V.12.3)
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identical with the classical electrostatic potential of a spherical body
with charge Q.

Show that the metric (12.1) is smooth and Lorentzian with t a time
variable, provided that

2m
r

− Q2

r2
< 1. (V.12.4)

Remark V.12.1 For large r, the term Q/r2 is small in comparison
with m/r. Since the total charge of celestial bodies is observed to be neg-
ligible in comparison with their mass, the Reissner–Nordström solution
has little application in astrophysics. It was also abandoned as a possible
model for the electron, for which m−1Q2 = 2.8 × 10−13 cm, and so the
influence of the term r−2Q2 would be important only at distances where
quantum effects cannot be neglected.

The Reissner–Nordström solution has attracted interest in connec-
tion with modern aspects of mathematical General Relativity. Indeed, if
m2 > Q2, it possesses two event horizons (see Chapter VI) given in
standard coordinates by

r± = m±
√
m2 −Q2. (V.12.5)

It would invalidate a censorship conjecture if the word ‘generic’ was not
included in the hypotheses (see Chapter VIII).

Reissner–Nordström-type solutions have recently become important in
string theories.

V.12.3 Schwarzschild spacetime in dimension n + 1

Construct by reasoning and computations analogous to those for
n+ 1 = 4 the (n + 1)-dimensional Schwarzschild metric in spherical
standard coordinates, r ∈ R+,

gSchw = −
(

1 − 2m
rn−2

)
dt2 +

(
1 − 2m

rn−2

)−1

dr2 + r2 dω2, (V.12.6)

where dω2 is the metric of the sphere Sn−1. The Schwarzschild spacetime
is defined as for n = 3 by this metric supported by the manifold M ×R,
with M the exterior of the ball rn−2 = 2m.

V.12.4 Schwarzschild metric in isotropic
coordinates, n = 3

Show that in isotropic coordinates the four-dimensional Schwarzschild
metric reads, with R2 = X2 + Y 2 + Z2,

gSchw = −
(

2R−m

2R+m

)2

dt2 +
(
1 +

m

2R

)4

(dX2 + dY 2 + dZ2). (V.12.7)
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Solution

Recall that, in standard coordinates,

gSchw = −
(

1 − 2m
r

)
dt2 +

(
1 − 2m

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2).

(V.12.8)
The relation between r and R is

r = R
(
1 +

m

2R

)2

=
4R2 + 4Rm+m2

4R
, (V.12.9)

and hence the coefficient of dt2 becomes

1 − 2m
r

= 1 − 8Rm
(2R+m)2

=
(

2R−m

2R+m

)2

.

To compute the space metric in isotropic coordinates, we first remark
that (

1 − 2m
r

)−1

=
r

r − 2m
=
(

2R+m

2R−m

)2

and

r = R
(
1 +

m

2R

)2

= R+m+
m2

4R
, (V.12.10)

dr = dR

(
1 − m2

4R2

)
.

We then proceed as follows. From the definitions

R−1X = r−1x, R−1Y = r−1y, Z = Rr−1z, and

R−2(X2 + Y 2 + Z2) = r−2(x2 + y2 + z),
(V.12.11)

it results that,

d(r−1x) = r−1 dx− r−2x dr = R−1 dX −R−2X dR

with analogous relations for y and z, and hence

r−2(dx)2 − 2r−3x dx dr + r−4x2(dr)2 = R−2(dX)2

− 2R−3X dX dR+R−4X2(dR)2,

and, by summation and simplification,

r−2(dx2 + dy2 + dz2 − dr2) = R−2(dX2 + dY 2 + dZ2 − dR2).

Using

r2(dθ2 + sin2 θ dφ2) = dx2 + dy2 + dz2 − dr2

= r2R−2(dX2 + dY 2 + dZ2 − dR2)
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shows that the space part of gSchw can be written as(
2R+m

2R−m

)2(
1 − m2

4R2

)2

dR2 +
(
1 +

m

2R

)4

(dX2 + dY 2 + dZ2 − dR2),

and, after simplification, the Schwarzschild metric is obtained in iso-
tropic coordinates.

V.12.5 Wave coordinates for the Schwarzschild metric
in dimension n + 1

Show that the requirement that xμ = (t, xi) be wave coordinates,
�gx

μ = 0, with xi = r̄(r)ni, ni ∈ Sn, reduces to the equation

−�∗r̄−(n−1)r̄ =
d

dr

[
dr̄

dr
rn−1(1 − 2mr2−n)

]
−(n−1)r̄ = 0, (V.12.12)

with Δ∗ the Laplacian on the sphere Sn−1.
Show that setting s = 1/r gives as equation singular at s = 0:

d

ds

[
s3−n(1 − 2msn−2)

dr̄

ds

]
= (n− 1)s1−nr̄ .

Show the asymptotic expansions

r̄ = r +
m

(n− 2)rn−3
+
{

m2

4 r
−3 ln r +O(r−5 ln r), n = 4,

O(r5−2n), n ≥ 5

}
.

Solution

See Choquet-Bruhat, Chruściel, and Loiselet (2006).
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VI.1 Introduction

Laplace and Michell had already foreseen that light can become trapped
by a massive body, so that the latter becomes black to observers and is
perceptible only through its gravitational field. However, the apparent
‘Schwarzschild singularity’ r = 2m is a phenomenon that has no ana-
logue in classical mechanics, and the completed spacetimes are indeed
very strange. It was long believed that these extensions have no physical
reality, i.e. that matter cannot be compressed so that it is included in
the region r < 2m. It was mainly through the vision of Robert Oppen-
heimer and John Archibald Wheeler that the reality of black holes was
seriously considered. They cannot be seen directly, but astronomical ob-
servations, in particular perturbations of motions of various stars, reveal
gravitational fields too strong to be explained by an invisible massive
companion other than a black hole. Some X-ray sources and active gal-
actic nuclei are interpreted in terms of black holes. Also, some γ-ray
bursts are thought to be due ultimately to the explosion of matter ac-
creted near the boundary of a black hole by the gravitational field it
generates. There is now a large consensus among astrophysicists on the
existence of many black holes in the universe, even at the centre of our
own galaxy.

VI.2 The Schwarzschild black hole

The first model of a black hole appears in the first exact solution of the
Einstein equations constructed by Schwarzschild in 1916, the spherically
symmetric one that we have studied in Chapter V (Fig. VI.1). We have
defined the Schwarzschild spacetime as the manifold r > 2m in R3 ×R,
with r a polar coordinate in R3, with Lorentzian metric given in standard
coordinates by

−
(

2m
t

− 1
)
dt2 +

(
2m
t

− 1
)
dr2 + r2(dθ2 + sin2 θ dφ2), (VI.2.1)

and we have called the submanifold r = 2m of R3 ×R, diffeomorphic to
the product S2 ×R, the event horizon.

Horizon

Singularity

Fig. VI.1 Schwarzschild black hole.

The Schwarzschild metric in standard coordinates with m > 0 ceases
to be a smooth Lorentzian metric for r = 2m; at this value of r, the
coefficient g00 vanishes and g11 becomes infinite.



VI.3 Eddington–Finkelstein extensions 137

For 0 < r < 2m, the Schwarzschild metric in standard coordinates is
again a smooth Lorentzian metric, but t is a space coordinate while r is
a time coordinate.

Exercise VI.2.1 Show that the Schwarzschild metric with 0 < r < 2m
is neither spherically symmetric nor static.

The volume element of gSchw in standard coordinates,
r2 sin θ dr dθ dϕ dt, is smooth1 1If r, θ, φ are interpreted as polar co-

ordinates on R3, then θ, φ are only
locally coordinates in the usual sense;
the sphere S2 is not diffeomorphic to
R2 and hence cannot be covered by a
single coordinate patch.

and non-vanishing. More importantly,
a straightforward computation shows that the coordinate-independent
scalar RαβγδRαβγδ, called the Kretschman scalar, is finite at r = 2m,
in fact for all r > 0, being equal to 48m2/r6. This property led to
the belief that the Schwarzschild spacetime (S2 × {r > 2m}) × R is
extendible, in the sense that it can be immersed in a larger Einsteinian
spacetime, whose manifold is not covered by the Schwarzschild standard
coordinates with r > 2m.

VI.3 Eddington–Finkelstein extensions

Let us consider (following Eddington in 1924, Lemâıtre in 1926, and
Finkelstein in 1958) the change of coordinates, defined for r > 2m,
obtained by replacing the canonical Schwarzschild time t by the ‘retarded
time’ v given by,2 2This change of coordinates from

t, r, θ, φ to v, r, θ, φ is singular for
r = 2m.v = t+ r + 2m log

( r

2m
− 1
)
. (VI.3.1)

Using this new coordinate v together with r, θ, ϕ, the Schwarzschild met-
ric can be expressed as the so-called Eddington–Finkelstein (EF)
metric

−
(

1 − 2m
r

)
dv2 + 2 dr dv + r2(sin2 θ dϕ2 + dθ2). (VI.3.2)

The EF metric is a smooth metric of Lorentzian signature3 3The vanishing of the coefficient gvv

at r = 2m does not correspond to a
singularity of the metric, because its
determinant, det g ≡ 1, does not vanish
there.

on the
manifold S2 × R+ × R, (θ, ϕ) ∈ S2, r ∈ R+, v ∈ R defining a vac-
uum Einsteinian spacetime called the Eddington–Finkelstein black hole.
By its construction, the Schwarzschild spacetime is isometric with the
domain r > 2m of the EF black hole.

Exercise VI.3.1 Prove these statements.

The submanifold r = 2m is null (isotropic), since grr = 0 for r = 2m.
One family of radial (i.e. θ = constant, ϕ = constant) light rays is

represented by straight lines v = constant; the other family is given by

−
(

1 − 2m
r

)
dv + 2 dr = 0;

that is,

dv = −2
r

2m− r
dr =

(
− 4m

2m− r
+ 2
)
dr,
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which integrates for r < 2m to

v = 2r + 4m log(2m− r) + constant. (VI.3.3)

Under the change of coordinates

t = v − r − 2m log
(

2m
r

− 1
)
,

the EF metric takes, in the domain r < 2m, the Schwarzschild form(
2m
r

− 1
)
dt2 −

(
2m
r

− 1
)−1

dr2 + r2(dθ2 + sin2 θ dφ2),

but t is now spacelike, and r timelike. The metric is no longer static.
It is singular for r = 0—in general interpreted as a limiting spacelike
3-surface. The following theorem justifies the name of black hole given to
the EF spacetime: no future light ray issuing from a point where r < 2m
crosses the event horizon r = 2m, as can be seen from the light cones
and null geodesics in Fig. VI.2. More generally, the theorem is as follows:

Theorem VI.3.1 On a timelike line issuing from a point with r < 2m,
in standard coordinates, the variable r is always decreasing and tends to
zero in a finite proper time. Hence any observer crossing the Schwarz-
schild radius r = 2m attains the singularity r = 0 in a finite proper
time.

Proof. This is conveniently done in terms of the t, r coordinates, not-
withstanding the fact that t is now a space coordinate and r a time
one.

t

r

r 
=

 2
m

(a)

t́

r

r 
=

 2
m

(b)

Fig. VI.2 (a) Orientation of the light
cones in the standard Schwarzschild co-
ordinates. (b) Null geodesics and light
cones in the extension. Here t′ = v − r,
where v is the ‘retarded’ time defined
in (3.1).
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(1) Radial geodesics: we have found in Chapter V that on such geodesics,
with s the proper time,4 4We are in the region r < 2m, and

hence

E2 − (1 − 2mr−1)

≡ r−1
[
2m − r(1 − E2)

]
> 0.

ṙ2 = E2 − (1 − 2mr−1), ṙ :=
dr

ds
. (VI.3.4)

Hence the point r = 0 is attained from r = r0 < 2m after the finite
proper time ∫ r0

0

ds

dr
dr ≡ r

1
2 dr√

2m− (1 − E2)r
. (VI.3.5)

(2) Non-radial geodesics and non-geodesic5 5Recall that in a Lorentzian manifold
causal geodesics realize a local max-
imum of length between two causally
related points.

motions lead to a smaller
lapse of proper time between points with coordinates r0 < 2m and 0.

�

The amount of proper time taken for an astronaut entering the black
hole to reach the singularity is indeed very short—it is of the order of
the Schwarzschild radius estimated in geometric units. For a black hole
with mass of the order of the solar mass, this gives a time of the order
of 10−5 s.

Remark VI.3.1 Because of the singularity for r = 0, the Finkelstein
black hole cannot be considered as a generalized solution of the Einstein
equations, in contrast to the 1/r singularity in the potential of Newtonian
gravitation, which is solution of the Poisson equation with right-hand
side a delta measure mass located at the origin.6 6Remember also that for r < 2m,

the coordinate r is timelike. In a two-
dimensional, necessarily somewhat mis-
leading, conformal diagram, r = 0 is
represented by a spacelike line.

The idea now is rather
to consider that, near this singularity, the gravitational field is so strong
that it becomes a quantum field or even a string field, for which the
Einstein equations are no longer applicable.

VI.3.1 Eddington–Finkelstein white hole

By time reversal, one obtains manifestly another extension of the
Schwarzschild spacetime. The manifold is again S2 × (r > 0) × R and
the metric is

−
(

1 − 2m
r

)
dv2 − 2 dr dv + r2(sin2 θ dϕ2 + dθ2).

The extension to r < 2m now appears to observers in the Schwarzschild
spacetime as a white hole: nothing can penetrate into it, but every past
inextendible light ray or timeline in the Schwarzschild spacetime eman-
ates from this white hole, as can be seen from the radial null geodesics
and light cones in Fig. VI.3.

VI.3.2 Kruskal spacetime

It is possible to embed the Schwarzschild spacetime and both of its
extensions in a larger spacetime containing an additional copy of the
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t́

r 
=

 2
m

rFig. VI.3 Radial null geodesics
and light cones of the Eddington–
Finkelstein white hole. Here t′ = v − r,
where v is the ‘retarded’ time defined
in (3.1).

Schwarzschild spacetime for which the previous black hole extension now
plays the role of a white hole and vice versa. The support of the obtained
spacetime is the manifold S2 ×R2.

The metric of the Kruskal spacetime reads, in Kruskal coordinates,

32m3

r
e−r/2m(dz2 − dw2) + r2(dθ2 + sin2 θ dφ2),

where θ, φ are coordinates on S2 while z, w are coordinates on the open
set diffeomorphic to R2 defined by

z2 − w2 > −1,

and r is the function of z and w defined by

z2 − w2 =
1

2m
(r − 2m)er/2m.

In Kruskal coordinates, the radial light rays are represented by straight
lines.

Exercise VI.3.2 Obtain the portion of the Kruskal spacetime isomet-
ric to the Schwarzschild spacetime by the change of coordinates

z = ev/4m + e−u/4m, w = ev/4m − e−u/4m, (VI.3.6)

with

u = t− r − 2m log
( r

2m
− 1
)
. (VI.3.7)

Obtain other portions by analogous changes of coordinates.

The Kruskal spacetime has two asymptotically flat regions (I and I′ in
Fig. VI.4(a)), each of which is isometric to the Schwarzschild spacetime.
A section through the Kruskal spacetime connecting these two regions,
for instance w = 0, is called the Schwarzschild throat (Fig. VI.4(b)).
No non-tachyonic77Tachyon is the name given to a (so-far

unobserved) particle travelling faster
than light.

signal can travel from one of the asymptotically flat
regions to the other.

The Kruskal spacetime cannot be embedded in a larger spacetime.
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r = constant<2m

r = constant>2m

r = constant >2m
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t = 0
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(Singularity)
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(Singularity)
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z

ω

Fig. VI.4 (a) Kruskal spacetime.
(b) Schwarzschild throat.

VI.4 Stationary black holes

Most stars are not static8 8In particular, their motion is not in-
variant under time reversal.

with respect to their local inertial reference
frame, nor are they exactly spherically symmetric, so they cannot be
modelled by a Schwarzschild spacetime or, after their collapse, by a
Schwarzschild black hole. The simplest physical situations after static
are the stationary ones (see Chapter IV), where the spacetime is of the
type (M ×R, g) with g invariant under translations along R.

VI.4.1 Axisymmetric and stationary spacetimes

In General Relativity, physical considerations9

9A non-axisymmetric rotating body
would lose energy by gravitational ra-
diation and hence cannot be stationary.

led to the conjecture10

10The conjecture was formulated by
Hawking in the 1970s and proved by
him under an analyticity hypothesis
and some restrictive geometric assump-
tions (see Hawking and Ellis, 1973).
The analyticity hypothesis and some
of the geometric assumptions have
recently been removed by Alexakis,
Ionescu, and Klainerman (2013).

that a stationary black hole is necessarily axisymmetric, a spacetime
(V, g) being said to be axisymmetric if the underlying manifold is of
the type M×R, with Mt ≡M×{t} spacelike and {x}×R timelike, and
the spacetime metric is such that Mt is diffeomorphic to the exterior of
a subset of R3, gt admits a group S1 of isometries that acts on R3 like
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a rotation group with given origin Ot, and the lapse and shift of g are
also invariant under this group.

A spacetime is called stationary axisymmetric if, the origins Ot

being derived from each other by time translations, the two Killing fields
∂/∂φ and ∂/∂t commute. Moreover, for such a spacetime, it is required
that the metric be invariant under simultaneous reversals of time t �→ −t
and angle of rotation x1 ≡ φ �→ −φ, as is consistent with physical
interpretation. It holds then that

g02 = g03 = g12 = g13 = 0,

since the signs of these coefficients change under such reversals. Using the
fact that a two-dimensional metric can always be put in diagonal form,
we write the metric of an arbitrary stationary axisymmetric spacetime
as follows:

g = g00 dt
2 + 2g01 dt dφ+ g11 dφ

2 + g22(dx2)2 + g33(dx3)2.

VI.5 The Kerr spacetime and black hole

In 1963, Roy Kerr found a stationary axisymmetric metric, an exact
solution of the Einstein vacuum equations, which was later interpreted
as a black hole and became very important in General Relativity (see
the following sections).

VI.5.1 Boyer–Lindquist coordinates

The Kerr metric, written in Boyer–Lindquist coordinates (found by
Boyer and Lindquist in 1967), reads

−
(

1 − 2mr
A

)
dt2 − 4mra

sin2 θ

A
dt dφ+

A

B
dr2 +Adθ2

+
(
r2 + a2 +

2mra2 sin2 θ

A

)
sin2 θ dφ2, (VI.5.1)

with a and m constants and

A ≡ r2 + a2 cos2 θ, B ≡ r2 − 2mr + a2. (VI.5.2)

The coordinate r appearing in this metric can be considered as defining
the manifold structure of the support of this metric by interpreting it
together with θ and φ as polar coordinates on the outside of the subset
of R3 such that A > 2mr and B > 0; t ∈ R is a time coordinate.

The Kerr metric (written here in Boyer–Lindquist coordinates) is axi-
symmetric (it does not depend on φ) and stationary but not static (it
does not depend on t, but it is not invariant under time reversal). It
is invariant under simultaneous reversals of time t �→ −t and angle of
rotation φ �→ −φ, as required. The Kerr metric is interpreted as the
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gravitational field outside a rotating black hole. It has not been found
to be the gravitational field outside any realistic rotating star.

To interpret the constants a and m, we go to Cartesian-type coordin-
ates

r2 = x2 + y2 + z2, θ = Arctan

√
x2 + y2

z
. (VI.5.3)

We then see that for large r, the Kerr metric tends to the Minkowski
metric and we have the following equivalence for its deviation from
Minkowski:

gKerr
∼= −

(
1 − 2m

r

)
dt2 +

(
1 +

2m
r

)
dr2 + r2(dθ2 + sin2 θ dφ2)

(VI.5.4)

− 4ma
r3

(x dy − y dx) dt. (VI.5.5)

The first line is equivalent for large r to the Schwarzschild metric: we
identify m with the mass of the system. The last term leads to the
identification of a as the angular momentum per unit mass of the system.
The Kerr metric is invariant under the change (a, t) → (−a,−t), in
agreement with this interpretation of a.

VI.5.2 The Kerr–Schild spacetime

The Kerr metric in Boyer–Lindquist coordinates becomes singular on
various surfaces. As with the Schwarzschild metric, it is possible to trans-
form it to another metric admissible in a larger domain. The following
coordinates adapted to light propagation and redefinition of angular
variable adapted to the rotation were introduced by Kerr and Schild in
1965:

dv = dt+
r2 + a2

B
dr

dΦ = dφ+
a

B
dr.

The Boyer–Lindquist metric then takes the Kerr–Schild form

gKS ≡ −
(

1 − 2mr
A

)
dv2 + 2 dr dv +Adθ2 +

Σ2

A
sin2 θ dΦ2

+ 4amr
sin2 θ

A
dv dΦ + 2a sin2 θ dr dΦ,

with

Σ2 ≡ (r2 + a2)2 −Ba2 sin2 θ.

This metric extends to a regular Lorentzian metric for all A > 0. It
reduces to the Minkowski metric in retarded time and polar coordinates
of R3 if m = a = 0, and it reduces to the Eddington–Finkelstein metric
when a = 0.
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VI.5.3 Essential singularity

The Kerr metric becomes singular for A ≡ r2 + a2 cos2 θ = 0. This is a
genuine singularity: the Kretschman scalar tends to infinity when A
tends to zero.

In order to have the Kerr metric reducing to a form of the Minkowski
metric when m = 0 and a 
= 0, the coordinates are reinterpreted as
follows: θ and φ are coordinates on S2, but r = 0 is not a single point
of R3; it is assumed instead that the manifold R3 defined by the Carte-
sian coordinates x, y, z is represented in the variables r, θ, φ through the
mapping (oblate polar ‘coordinates’)

x = (r2 + a2)
1
2 sin Φ sin θ, y = (r2 + a2)

1
2 cos Φ sin θ,

z = r cos θ.

The singularity A = 0 is then interpreted as the circle r = 0, θ = π/2,
i.e.

z = 0, x2 + y2 = a2

VI.5.4 Horizons

The case |a| > m

This would apply to very rapidly rotating bodies. We then have B > 0
for all r, no surface r = constant is a null surface, and the essen-
tial singularity is naked. This case is presently considered as physically
unrealistic.

The case |a| < m

The Boyer–Lindquist metric then appears as singular for r = r+ or
r = r−, solutions of B = 0 given by

r± = m±
√
m2 − a2.

When a tends to zero, the Kerr metric tends to the Schwarzschild met-
ric, r+ tends to 2m, and r− tends to zero. The surfaces r = r± are
not singular in the Kerr–Schild spacetime, but they are null surfaces—
the contravariant component grr of the Kerr–Schild metric vanishes for
B = 0, as can be foreseen and checked by direct calculus.

The surface r = r+ is the event horizon: no particle entering the region
r < r+ can escape from it: the future light cone at points where r = r+
points entirely towards the interior. The surface r = r− has no obvious
physical meaning.

VI.5.5 Limit of stationarity. The ergosphere

The variable r becomes a time variable when
2mr
A

> 1.
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The metric is then no longer stationary. The surface r = rstat, with rstat
the largest root of A− 2mr = 0, is called the limit of stationarity. It
does not coincide with the horizon when a 
= 0 : it holds that

rstat = m+
√
m2 − a2 cos2 θ ≥ r+.

The domain between the limit of stationarity and the horizon r+ is called
the ergosphere.

The Penrose process is the extraction of energy from a Kerr black
hole by dropping a particle into the ergosphere, which will emit a particle
with a greater energy. The process can be described as follows. Consider
the Killing vector X ≡ ∂/∂v, with components (Xα) = (1, 0, 0, 0) in
Kerr–Schild coordinates. This vector is timelike outside the ergosphere
r > rstat,

gαβX
αXβ ≡ −

(
1 − 2mr

A

)
< 0 when r > rStat,

and spacelike when r+ < r < rstat. A particle with timelike 4-momentum
p has an energy E = −pαXα with respect to the vector field X; this
scalar is constant along the trajectory (a geodesic) because of the law
of dynamics and the fact that X is a Killing vector. It holds that E > 0
outside the ergosphere. Suppose that the particle enters the ergosphere
and splits there into two particles with momenta p1 and p2. By the
conservation of 4-momentum, it holds that

p = p1 + p2, E = E1 + E2,

with Ei = −pα
i Xα. Since X is spacelike inside the ergosphere, it

is possible to have the timelike vector p1 such that E1 < 0; hence
E2 = E − E1 > E. Both scalars E1 and E2 are conserved along the tra-
jectories of the respective fragments. If the second fragment returns to
the outside of the ergosphere, it will be with a greater energy (with re-
spect to the X observer) than the whole piece which left it. It can be
considered that it has extracted energy from the rotating black hole.

VI.5.6 Extended Kerr spacetime

The Kerr–Schild spacetime that we have defined is not complete. It is
possible to extend it (even to negative r), but the results11 11Cf. for instance, Wald (1984) and

Chandrasekhar (1983).
are much

more complicated than in the Schwarzschild case and their physical
interpretation very unclear.

VI.5.7 Absence of realistic interior solutions or models
of collapse

Despite considerable effort, no realistic source has been found to make
an exterior domain of a Kerr metric a complete admissible Einsteinian
spacetime.
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No construction of gravitational collapse analogous to those due to
Oppenheimer–Snyder, Gu–Hu, and Claudel–Newman in the spherically
symmetric case has been made for axisymmetric gravitational collapse.

VI.6 Uniqueness theorems for stationary
black holes

We have seen in Chapter IV that there are no gravitational solitons
with support compact in space and sources with non-negative energy.
There is no theorem on the non-existence of spacetimes with compact
space outside the black hole region—but nor are there any examples of
such spacetimes. Unless otherwise specified, a black hole is considered
as an isolated object in spacetime; the black hole region in space is an
asymptotically Euclidean manifold with boundary its event horizon.

VI.6.1 The Israel uniqueness theorem

The uniqueness of a static black hole in vacuum, the Schwarzschild black
hole, had been conjectured in the early 1950s by G. Darmois. It was
proved with simple and precise assumptions by W. Israel.

VI.6.2 Uniqueness of the Kerr black hole

The following uniqueness theorem was proved in 1975 by Robinson,
improving previous results of Carter from 1972.

Theorem VI.6.1 Stationary, axisymmetric spacetimes that are so-
lutions of the vacuum Einstein equations are uniquely specified by
two parameters—the mass m and the angular momentum a—if they
have a regular event horizon, are smooth outside the horizon, and are
asymptotically flat.

Since the Kerr metric provides a solution of the vacuum Einstein equa-
tions satisfying the hypothesis of the theorem for any given m and a, the
Kerr metric represents the only such axisymmetric stationary black hole.

The Hawking–Klainerman theorem on the axisymmetric property of
a stationary black hole completes, under its hypotheses,12

12For details on the state of
these hypotheses—in particular
on the horizon—see Chapter XIV,
Section 11 of YCB-OUP 2009 (con-
tributed by P.Chruściel), Bray and
Chruściel (2004), and Alexakis
et al. (2013).

the ‘no-
hair’ theorem13

13This uniqueness was predicted in the
early 1960s by J. A. Wheeler and de-
scribed by the picturesque statement
‘Black holes have no hair’.

for a stationary black hole in a vacuum spacetime of
dimension 4.

In higher dimensions, other stationary black holes have been con-
structed by Emparan and Reall.14

14See again Chapter XIV, Section 11
by Chruściel in YCB-OUP 2009.

VI.6.3 Stability of the Kerr black hole

The intuitive definition of the stability of a dynamical system is that
its evolution does not change much under a change in its state at an
initial time. A stronger requirement if the system admits an asymptotic
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state for given initial data is that the system admits the same asymptotic
state for data that are perturbations of these data. If the dynamics obeys
nonlinear differential equations

N(u) ≡ f(Dku, . . . ,Du, u) = 0, (VI.6.1)

one is tempted to study the stability of a solution u, at least in a first
step, to look for the evolution of a perturbation δu that satisfies the
system linearized at u:

∂N

∂(Dku)
(u)Dkδu+ . . .+

∂N

∂u
(u)δu = 0. (VI.6.2)

If δu remains small for all times for small initial data, the solution u
is called linearization-stable. If δu tends to zero when the time tends
to infinity, u is called asymptotically linearization-stable. Linearization
stability is often treated by physicists by considering perturbations given
by Fourier series. The linearization stability of the Schwarzschild space-
time was thus found by Zerilli and Wheeler in the early 1960s. Results
on the linearized stability of the Kerr spacetime have been obtained.15 15See, in particular, Dafermos,

Holzegel, and Rodnianski (2013).Nonlinear stability is a much more difficult problem, requiring global
existence of solutions of nonlinear differential equations. The nonlinear
stability of the Kerr spacetime is a subject of active research, in
particular by S. Klainerman and collaborators, with conjectures and
partial results.

VI.7 General black holes

An intuitive physical definition of a black hole is easy to give: a black
hole is a region of spacetime in which the gravitational field is so strong
that no signal, in particular light, can get out. A black hole may reveal its
presence by the motion of surrounding stars that indicates the presence
of an enormous mass confined in a region too small for any known matter
to be contained in it. The presence of a black hole can also sometimes
be deduced from the very short and bright emission16 16Although it is rather thought now

that this emission is in general quasi-
stationary.

of γ rays (a γ-ray
burst) due to the explosion of an accretion ring formed around the black
hole by its tremendous gravitational pull. Black holes are the subject
of active observational research. The black holes interior is physically
terra incognita, and very strange indeed. It is the subject of fascinating
advanced and varied mathematical studies and conjectures.

VI.7.1 Definitions

A mathematical definition of an isolated black hole given by Penrose
through a conformal diagram of an asymptotically Euclidean spacetime
is often used. A definition that does not appeal to conformal compact-
ification can be given for isolated black holes, or for a group of black
holes and material bodies that is isolated in the sense that it is so far
from other bodies that it may be considered to be embedded in an
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asymptotically Euclidean spacetime (V, g). The following is a possible
definition:

Definition VI.7.1 The black hole region B of the spacetime (V, g)
is the complement of the past of the set covered by the null geodesics that
have an infinite future canonical parameter.

The event horizon H is the boundary ∂B of the black hole region B
in the spacetime V. Under appropriate reasonable assumptions, the event
horizon H is a null hypersurface (C0 but not necessarily C1), generated
by null geodesics.

VI.7.2 Weak cosmic censorship conjecture

The original idea of Penrose,1717See, for instance, Penrose (1979). coming from the study of spherical gravi-
tational collapse where a black hole forms and hides the singularity from
timelike observers, is the conjecture that generic Einsteinian spacetimes
with physically reasonable sources do not admit any naked singular-
ity, that is, a singularity visible by an observer. With the definition of
singularity by incompleteness, trivial counterexamples can be obtained
by cutting out regions of any spacetime, for example Minkowski space-
time. Therefore, the mathematics must be more precise to grasp the
physical content. We give the following definition of a nakedly singular
spacetime.

Definition VI.7.2 An inextendible spacetime (V, g) is said to be future
nakedly singular if it admits a future inextendible causal curve that lies
entirely in the past of some point x ∈ V .

We formulate the conjecture as follows:

Definition (No naked singularity conjecture). An inextendible,
generic,1818Generic is usually taken to mean

without exceptional properties or sta-
ble under small perturbations.

Einsteinian spacetime with physically reasonable sources ad-
mits no naked singularity.

Note that the big bang is not a counterexample to this conjecture—it
has no past, and hence does not correspond to any future inextendible
causal curve.

A generic spacetime can be understood as a spacetime that is stable, in
some sense to be defined, under small perturbations. Reasonable sources
are physical sources that have a hyperbolic, causal evolution and do not
have their own singularities (shocks, shell crossings, etc.).

We will briefly return to cosmic censorship in Chapter VIII.

VI.7.3 Thermodynamics of black holes

There are many theorems and conjectures about the thermodynamics
and quantum properties of black holes—difficult to prove and even of-
ten to state in a precise way. Several properties have analogies with
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the fundamental laws of thermodynamics. They have led physicists to
attribute to general black holes both entropy and temperature.

The first black hole ‘thermodynamic’ property is the Hawking area
theorem, which says that the surface area A of the horizon H at a
given time cannot decrease with time: it led to the identification of A,
up to a constant factor, with the entropy of the black hole.

The temperature of a black hole has been defined through its surface
gravity,19 19For material bodies, the surface grav-

ity in Newtonian theory is the gravi-
tational acceleration at points of its
surface, about 9.81 m s−2 in the case of
the Earth.

often denoted by κ (not to be mistaken with the gravitational
constant GN , which is also often denoted by κ). The usual definition of
the surface gravity does not apply to the horizon of a black hole. It
is defined for stationary black holes by the formula, with k the Killing
vector tangent to the horizon,

kα∇αk
β = κkβ .

This definition has been challenged by many authors and is still the sub-
ject of active discussion and possible generalizations to non-stationary
black holes.

Hawking radiation from black holes is a quantum effect. It is well
known that there are no absolute barriers in quantum theory. Hawking
introduced quantum waves to study radiation from black holes and pro-
vide a consistent definition of their entropy and its variation (i.e. the
decrease of their horizon area) with ‘black hole evaporation’. Such ra-
diation could be due to splitting of virtual pairs of particles emerging
from the quantum vacuum outside the black hole, with one particle fall-
ing into the black hole and the other escaping from it. Hawking radiation
is very weak and has not been observed.

These properties of black holes are fascinating and the subject of active
study and discussion, involving also quantum gravity, a largely open sub-
ject. They are at present beyond any possible physical confirmation and
mostly also any rigorous mathematical proof, although progress in the
construction of a quantum theory of gravitation, in particular through
string theory, opens new roads to the modelling of black hole interiors.

An exception, as far as mathematical proofs are concerned, is the proof
through sophisticated mathematics by Huisken and Ilmanen and inde-
pendently by Bray20 20See, for instance, Bray and Chruściel

(2004).
of the Riemannian Penrose inequality, which

admits a purely geometric formulation. It is linked with several theorems
or conjectures due to Penrose (see Problem VI.10.5).

VI.8 Conclusions

VI.8.1 Observations

The conjectured existence of the first black hole, Cygnus X1 in 1972,
was deduced from the study of a star’s orbital parameters, the values of
which implied the existence of an invisible companion too massive to be
thought to be even a neutron star. An enormous number of candidate
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black holes have now been detected. Astronomers usually classify black
holes as follows.

Stellar-Mass black holes with masses between 10 and 24 solar masses
reveal their presence by the motion of companion stars due to the
existence of a strong gravitational field that cannot be explained other-
wise. Another indication of the presence of a black hole is radiation
emitted from matter falling into the black hole under its tremendous
gravitational pull.

Supermassive black holes, millions (or billions) times more massive
than the Sun, are thought to be in the centres of many galaxies, including
our own Milky Way. They are detected by the motion of nearby stars
and gas.

Recently, evidence for intermediate-mass black holes has been ob-
tained by powerful new telescopes, such as Chandra, XMM-Newton,
and Hubble.

There is an abundant literature on the subject in relevant scientific
journals and on the Internet.

VI.8.2 The interiors of black holes

We have seen that the representation of the interior of a Schwarzschild
black hole by a Lorentzian manifold ceases to be meaningful at the sin-
gularity r = 0, attained in a very short time2121Although not so short for a very

large mass M , since it is estimated
as 10−5 s × M/MSun

∼= 103 s for
M = 108MSun.

by any infalling object.
The representation of the singularity in the Kruskal diagram by a space-
like submanifold is misleading. The interior of the Kerr black hole and
its singularity are very strange. They cannot be considered as Einstein-
ian spacetimes in any classical sense. The general belief is that a new
theory of gravitation must be constructed to represent them. This is a
subject of very active research, linked with the old problem of the quant-
ization of the gravitational field. Previous research in this difficult field
has known dramatic transformations through the introduction of new
and fascinating ideas, in particular string theory. However, further dis-
cussions of black holes and quantum gravity are outside the scope of this
book.

VI.9 Solution of Exercise VI.3.1

(1) With t now denoted by ρ and r by τ , the Schwarzschild metric reads

−
(

2m
τ

− 1
)−1

dτ2 +
(

2m
τ

− 1
)
dρ2 + τ2(dθ2 + sin2 θ dφ2),

It has Lorentzian signature for 0 < τ < 2m, with τ a timelike co-
ordinate. For any such given τ , the space metric is defined on the
product R× S2; it is degenerate at τ = 2m and singular for τ = 0.
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(2) The definition

v = t+ r + 2m log
( r

2m
− 1
)
, (VI.9.1)

i.e.

dv = dt+ dr +
2mdr

r − 2m
= dt+

r dr

r − 2m
,

implies by a simple computation the announced result:

−
(

1 − 2m
r

)
dt2 +

(
1 − 2m

r

)−1

dr2 =
(

1 − 2m
r

)
(dv2 + 2 dv dr).

(3) The metric is Lorentzian because

2 dv dr =
1
2

[
(dv + dr)2 − (dv − dr)2

]
.

VI.10 Problems

VI.10.1 Lemâıtre coordinates

As was done by Lemâıtre in 1933, consider coordinates τ, ρ, θ, φ given in
terms of the standard Schwarzschild coordinates t, r, θ, φ on R4 by the
functions

τ := t+ 2
√

2mr + 2m log

∣∣∣∣∣
√

2m−√
r√

2m̄+
√
r

∣∣∣∣∣ ,
ρ− τ := r3/2 2

3
√

2m
.

1. Show that the coordinates change is singular for r = 2m.
2. Show that in the Lemâıtre coordinates, the Schwarzschild metric takes

a form that is singular only for r = 0, but non-static:

−dτ2 +
2m
r
dρ2 + r2(dθ2 + sin2 θ dφ2).

3. Determine the radial geodesics.

Solution

1. The logarithm tends to −∞ when r tends to 2m.
2. This is a straightforward computation.
3. The radial geodesics are lines where only τ varies.
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VI.10.2 Reissner–Nordström black hole

Discuss for which values of the constants m and Q the Reissner–
Nordström metric (see Chapter V)

gRN := −
(

1 − 2m
r

+
Q2

r2

)
dt2 +

(
1 − 2m

r
+
Q2

r2

)−1

dr2

+ r2(dθ2 + sin2 θ dϕ2),

(VI.10.1)

with electromagnetic potential Ai = 0, A0 = −Q/r describes a black
hole and study its event horizon.

Solution

The metric gRN is a smooth Lorentzian metric for all r 
= 0 if

r2 − 2mr +Q2 > 0,

that is, m2 < Q2, since the roots of this polynomial in r,

r± = m±
√
m2 −Q2, (VI.10.2)

are then imaginary. For Q2 < m2, the metric becomes singular in the
standard coordinates on the two manifolds r = r+ and r = r−. The
manifold r = r+ is the event horizon.

VI.10.3 Kerr–Newman metric

The Kerr–Newman metric reads

gKN = −
(

1 − 2mr
A

)
dt2 − 4mra

sin2 θ

A
dt dφ+

A

B +Q2
dr2

+Adθ2 +
(
r2 + a2 +

2mra2 sin2 θ

A

)
sin2 θ dφ2, (VI.1.2)

with a and m constants and

A ≡ r2 + a2 cos2 θ, B ≡ r2 − 2mr + a2. (VI.1.3)

Check that gKN coincides with the Kerr metric in Boyer–Lindquist
coordinates if Q = 0, and with the Reissner–Nordström metric if a = 0.

Show that gKN satisfies the Einstein equations with electromagnetic
source.

VI.10.4 Irreducible mass (Christodoulou–Ruffini)

Assume the Hawking area theorem,22

22Christodoulou and Ruffini had shown
in 1971 (see Ohanian and Ruffini, 2013)
that the irreducible mass increases in
any Penrose problem, proving thus in a
particular case the Hawking area the-
orem. For the general case, see Hawking
and Ellis (1973).

which says that no physical process
can make the area of the event horizon of a black hole decrease. Show
that the energy loss in a Penrose process in Kerr spacetime is at best
50%.
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Solution

The radius of the event horizon of a Kerr spacetime with parameters m
and a is

r+ = m+m
√

1 − |J |2,

where J denotes the spin of the black hole.
The event horizon of the static spacetime resulting from an optimal

(i.e. absorbing all the rotational energy) Christodoulou–Ruffini–Penrose
process with mass m′ is r = 2m′. The Hawking area theorem implies

m′ ≥ 1
2
m(1 +

√
1 − |J |2).

The gain in mass is

m−m′ ≤ 1
2
m

⎛
⎝1 − 1√√

1 − |J |2

⎞
⎠ <

1
2
m.

It tends to m/2 when |J | tends to its maximum value 1.

VI.10.5 The Riemannian Penrose inequality

We have given in Chapter V the Schwarzschild metric in isotropic
coordinates,

gSchw = −
(

2R−m

2R+m

)2

dt2 +
(
1 +

m

2R

)4

(dX2 + dY 2 + dZ2) (VI.10.3)

and have shown in Chapter IV that it has ADM mass mADM = m.
Prove that

m =

√
A

16π
,

where A is the area of the horizon.

Solution

The horizon, deduced from the expression for the spacetime metric, is

R =
m

2
.

Straightforward classical calculus gives the area of this 2-sphere:

A =
∫

Bm/2

24 dX dY dZ =
m2

4
244π = 16πm2.
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Comment. The above equalities and the Beckenstein–Hawking area
theorem led Penrose to conjecture that general black holes should satisfy
an inequality of the form

m ≤
√

A

16π
.

This inequality considering only the space manifold, then called the ‘Rie-
mannian Penrose inequality’, has been proved by Huisken and Ilmanen
under the hypotheses that the space manifold is a Riemannian asymptot-
ically Euclidean manifold with non-negative scalar curvature that admits
a compact boundary composed of minimal surfaces but no other min-
imal surface.2323For details, see Bray and Chruściel

(2004) and references therein.
The considered area A is the area of any disconnected

such surface. The relevance to physics is that such boundary surfaces are
‘trapped surfaces’ conjectured to be linked with black holes containing
a singularity of the corresponding spacetime.
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VII.1 Introduction

A cosmological model is a spacetime that is supposed to represent the
whole past, present, and future of our universe. It has long been argued
that in the framework of General Relativity, gravitation should model
the geometry of the cosmos because its forces are long range (in contrast
to nuclear forces) and non-compensated (there are no negative masses—
in contrast to the existence of positive and negative electric charges).
Since Einstein’s formulation of his equations, it was assumed by most
cosmologists that the cosmos in which we live is a Lorentzian 4-manifold
(V, g) that satisfies the Einstein equations with the non-gravitational
energies as sources. In the beginning, cosmological models relied essen-
tially on a priori conjectures based on philosophical prejudices, the aim
of simplicity, and the desire for unification.

Because of considerable progress in astronomical observations by both
Earth-based telescopes and satellites,1

1Such as COBE (Cosmic Background
Explorer), and WMAP (Wilkinson
Microwave Anisotropy Probe), and the
information gathered by the Planck
satellite (analysed and published in
March 2013).

cosmology has become a fully
fledged part of physics. There is a wealth of information that has been
accumulated in recent years from observations of the cosmos and that
needs to be analysed. There have been remarkable advances in our know-
ledge, but also new and puzzling questions. We cannot in this book enter
into a detailed exposition of the amazing number of observations made
since the beginning of this century, and we can only give some indication
of how remarkably precise conclusions, often convincing but sometimes
speculative, have been deduced from these observations.

We will in this chapter give the main facts that led a majority of cos-
mologists (although there are still dissidents) to believe that our cosmos
is represented by a four-dimensional Robertson–Walker spacetime (see
Section VII.4) solution of the Einstein equations with source all the
non-gravitational energies. Radiation energy is today negligible with re-
spect to matter energy, but is thought to have been dominant at early
stages. The matter source was considered until fairly recently as a perfect
fluid, whose particles would be galaxies or clusters of galaxies. Obser-
vations made at various scales have now shown that the usual matter
sources represent only a quite small fraction, an estimated 4.5%, of the
energy content of the universe.2 2Dynamical properties of celestial bod-

ies, for instance the flat aspect of some
galaxies, cannot be explained by their
‘normal’ mass content.

Modern cosmologists have introduced
new types of sources: dark matter (about 25%) and dark energy (about
70%). There are numerous physical conjectures regarding the nature of
these sources. A possible interpretation of dark matter is the existence
of WIMPS (weakly interacting massive particles), particles that interact



156 Introduction to cosmology

only through the weak field and gravitation. Dark energy is often in-
terpreted as an energy of the vacuum, represented by a cosmological
constant, or possibly a scalar field, called quintessence.

In Section VII.7, we give a brief description of what is currently
thought by most cosmologists3

3Though not quite by all of them—
there are still adherents of the steady-
state and continuous-creation theory of
Gold, Hoyle, and Narlikar and also of
I. E. Segal’s theory of chronogeometry
(Segal, 1976). to be the birth and infancy of the cosmos

in which we live.44See, for instance, for results and ref-
erences prior to 2002, Cotsakis and
Papantonopoulos (2002) and for refer-
ences prior to 2010, Cheng (2010). Most
recent observations can be found in
papers on the arXiv (gr-qc or astro-ph).

VII.2 The first cosmological models

Soon after the Einstein equations were first framed, models were
proposed for the whole cosmos.

VII.2.1 Einstein static universe

Historically, the first cosmological model was found in 1917 by Ein-
stein himself, looking for a solution that was homogeneous and eternal,
would solve Olbers’ paradox,55Olbers pointed out in 1823 that if

space was infinite and filled with a
homogeneous distribution of stars, the
sky would appear uniformly bright—
in clear contradiction with the dark
night sky. Historians of astronomy have
found that Olbers was not the first to
make this remark, but it is his name
that is still attached to it.

and would be in agreement with Mach’s
principle. He was thus led to the Einstein static universe (see Prob-
lem IV.11.1) with closed space manifold S3, and spacetime manifold
S3 ×R endowed with the static metric

− dt2 + a2
0γ+, (VII.2.1)

with a0 a constant and γ+ the metric of the unit 3-sphere S3, that is, in
the usual angular coordinates,

γ+ := dθ2 + sin2 θ (dφ2 + sin2 φ (dψ2)

Setting sin θ = r gives the form familiar to geometers:

γ+ =
dr2

1 − r2
+ r2(dφ2 + sin2 φdψ2). (VII.2.2)

We have seen that the Einstein static universe is a solution of the Ein-
stein equations with static perfect fluid source of constant density and
pressure given by

μ0 =
3
2
a−2
0 , p0 = −a−2

0 < 0. (VII.2.3)

A negative pressure is unacceptable on classical physical grounds.6
6Another obstacle to the acceptance of
the Einstein static universe as a model
for our cosmos is that it is unstable. This difficulty was remedied by Einstein by introducing a positive

cosmological constant.77An idea Einstein did not like, because
it introduces a new parameter, a priori
not geometrically defined.

The formulas (2.3) are then replaced by

μ0 =
3
2
a−2
0 − Λ, p0 = −a−2

0 + Λ; (VII.2.4)

Einstein choose Λ = a−2
0 so that p0 = 0.

The Einstein static spacetime, also called the Einstein cylinder, is
(but with a different interpretation) the arena of the Segal cosmos.
The manifold S3 × R is the universal cover of compactified Minkowski
spacetime; it is conformally locally flat,8

8These properties have been used by
Penrose to give a geometric definition
of asymptotic flatness; see, for instance,
Hawking and Ellis (1973) or Section 6
in Appendix VI of YCB-OUP2009. and the conformal group acts
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on this geometric, non-metric, structure. The fact that representations
of the conformal group govern the world of elementary particles seemed
to I. E. Segal a justification of his cosmological model. He explains the
cosmological redshift by the existence of a local time different from the
cosmic time.

A few years after introducing the cosmological constant (in order to
obtain a physically realistic time-independent cosmos), Einstein aban-
doned it (calling it the greatest blunder of his life) and accepted
time-dependent models, motivated by the observation by astronomers
of the redshift of light coming from distant stars, interpreted as being
due to the expansion of the universe.9 9Recent observations indicate that the

cosmological expansion is accelerating.
This has led cosmologists to reintro-
duce a cosmological term.

VII.2.2 de Sitter spacetime

The de Sitter spacetime (see Problem IV.11.2) was constructed in 1917
by Willem de Sitter. It is a solution of the four-dimensional Einstein
equations with positive cosmological constant. It is not realistic, because
it is a vacuum solution, but was the first example of a time-dependent,
expanding, Einsteinian spacetime.

Einstein and de Sitter had long discussions about their respective
models. These discussions, and the discovery of the expansion of the
universe, led Einstein to abandon the cosmological constant, but accept
time-dependent spacetimes.

VII.2.3 General models

In the classical models, still basic for cosmological studies, the cosmos
is modelled by a four-dimensional Einsteinian spacetime. Nowadays, all
cosmologists consider, as it is experienced by everybody in daily life,
that there is a flow of time—that is, a past and a future. They speak of
the universe as the cosmos at a given time. Note that we do not observe
the present state of the cosmos, since information comes to us at most
with the speed of light. Most cosmologists now accept that the universe
is expanding—indeed that the expansion is accelerating, according to
recent observational data.

VII.3 Cosmological principle

VII.3.1 Assumptions

The standard cosmological models are based on the so called
cosmological principle, which is composed of two assumptions.

The first assumption is that the cosmos is a manifold M ×R endowed
with a Lorentzian metric, four-dimensional in the usual case, such that
the lines x×R, x ∈M, called trajectories of the ‘fundamental obser-
vers’, are timelike geodesics orthogonal to the manifold M×{t} at each
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point (x, t) ∈M ×R. The Lorentzian metric of the cosmos can therefore
be written as

(4)g := −dt2 + (3)g.

The Riemannian manifold (M,(3) g) is the universe at time t. The proper
time of fundamental observers is called cosmic time.

The second assumption of the cosmological principle is that the uni-
verse at each time should look the same in all directions and also to
any fundamental observer. This assumption is called the Copernican
principle—in the name of Copernicus, who deprived us of a central pos-
ition in the Solar System. We also know that the Sun does not occupy a
remarkable place in our galaxy. The mathematical content of the second
assumption, modulo the first one, is as follows:

(1) Isotropy: the Riemann tensor of the space metric (3)g is at each
point x invariant under rotation in the tangent space to M centred
at x.

(2) The space metric is homogeneous, i.e. it admits a transitive1010That is, for each pair of points x and
y in Mt, there exists an isometry of
(M, g) that brings x to y.

group of (global) isometries.

VII.3.2 Observational support

We see the stars very unevenly distributed in the night sky. Galaxies,
and even clusters of galaxies, are also observed in our telescopes as being
very anisotropically and inhomogeneously distributed. An argument in
favour of adopting the cosmological principle is that, at a still larger
scale, isotropy and homogeneity seem to be attained.

For most astrophysicists, the strongest evidence for the validity of the
cosmological principle is the isotropy of the CMB (cosmic microwave
background) radiation. This is the faint background glow1111First found by Penzias and Wilson in

1964, but predicted earlier by Gamov
from the big bang theory.

that sen-
sitive radio telescopes detect in the sky, which otherwise appears dark
between stars and galaxies to traditional optical telescopes. The CMB
radiation is measured to be very nearly isotropic, with a temperature of
about 2.725 K and a black body12

12A black body is one that absorbs all
radiation. Contrary to its name, a black
body emits radiation when heated, but
the graph of the emitted energy in
terms of wavelength (the black body
spectrum) is a roughly Gaussian-type
curve with a peak depending on the
temperature.

spectrum. An observed discrepancy
with isotropy of order 10−3 is interpreted as being due to our own mo-
tion relative to fundamental observers. There are further anisotropies of
the order of 10−5: the most recently observed13

13Planck satellite in 2013.

anisotropic structures at
this scale seem to be best explained by random inhomogeneities in the
big bang.

An argument in favour of homogeneity is that the fundamental phys-
ical constants seem to be and have been the same throughout the cosmos
with a remarkable accuracy.

VII.4 Robertson–Walker spacetimes

The Robertson–Walker spacetimes are (3 + 1)-dimensional14

14There is no real difficulty in ex-
tending the definition to n + 1 di-
mensions, although the space Riemann
tensor is then no longer equivalent
to the Ricci tensor. Note also that
the topological classification of three-
dimensional manifolds does not extend
to higher dimensions.

models
satisfying the assumptions of the cosmological principle; that is, they
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are represented by metrics that read, on a product M × R with M a
three-dimensional manifold,

(4)g ≡ −dt2 + (3)g, (VII.4.1)

where (3)g is a t-dependent Riemannian metric on M whose Riemannian
curvature is isotropic at each point of M. We will see that this implies
that the metric (3)g is homogeneous.

VII.4.1 Robertson–Walker universes, metric at given t

The curvature tensor of a Riemannian metric g at a point x ∈ M is
isotropic at x, that is, invariant under rotations in the tangent space
to M at x, if and only if it is of the form

Rij,hk(x) = K(x)(gih gjk − gjh gik)(x). (VII.4.2)

Exercise VII.4.1 Prove the ‘if ’ part of this property.

Since in dimension 3 the Riemann tensor is equivalent to the Ricci
tensor (4.2) can be replaced in that case by (recall that Sij ≡ Rij− 1

2gijR
denotes the Einstein tensor)

(3)Rij ≡ 2K (3)gij , hence (3)Sij ≡ −K(3)gij . (VII.4.3)

The contracted Bianchi identity implies

(3)∇ (3)
j Sij ≡ 0, i.e. ∂iK = 0.

Hence, K is a constant; the isotropic metric (3)g is also homogeneous.
Riemannian spaces with curvature of the form (4.2) with K a constant
are called spaces of constant curvature.

To determine the general Riemannian spacetimes (M,(3) g) of constant
curvature, it is convenient to use, in a neighbourhood of an arbitrar-
ily chosen point, polar pseudo-coordinates centred at that point, in
which the spherical symmetry resulting from the cosmological principle
is manifest. In these coordinates, the metric (see Chapter V) takes the
form

(3)g ≡ eμ dr2 + r2(dθ2 + sin2 θ dφ2), with μ = μ(r). (VII.4.4)

Equations (4.2) then read (the prime denotes the derivative with respect
to r)

(3)Rik ≡ 0, i 
= k, (3)R11 ≡ r−1μ′ = 2Keμ, (VII.4.4)

1
sin2 θ

(3)

R33 ≡ (3)R22 ≡ −e−μ + 1 +
r

2
e−μμ′ = 2Kr2. (VII.4.5)

The general solution of (4.4) is trivially found to be e−μ =
−Kr2+constant, and (4.5) then gives

e−μ = 1 −Kr2. (VII.4.6)
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We already know that a metric of constant curvature K = 0 is locally
flat.

A metric with constant curvature K > 0 [respectively K < 0] is lo-
cally a 3-sphere of radius K

1
2 [respectively locally a hyperbolic 3-space

of radius |K|− 1
2 ]. In these cases, one classically scales r by setting

r= |K|− 1
2 r̄ and relabels r̄ as r. In the new coordinate r, the metric

takes one or other of the standard forms according to the sign of K:

(3)g ≡ |K|−1γε, γε ≡ dr2

1 − εr2
+ r2(sin2 θ dφ2 + dθ2), ε = signK.

(VII.4.7)
The metric γε can be transformed into the familiar forms of the unit
sphere or pseudosphere metrics as follows:

when ε = 0, r ≡ χ, we have

γ0 = dχ2 + χ2(sin2 θ dφ2 + dθ2); (VII.4.8)

when ε = 1, r ≡ sinχ, we have

γ+ = dχ2 + sin2 χ (sin2 θ dφ2 + dθ2); (VII.4.9)

when ε = −1, r = sinhχ, we have

γ− = dχ2 + sinh2 χ (sin2 θ dφ2 + dθ2). (VII.4.10)

The isotropic homogeneous simply connected Riemannian manifold
corresponding to ε = 1 with 0 ≤ χ < π and θ, φ angular coordinates on
S2, is the sphere S3, a compact Riemannian manifold.1515In an old terminology, universes sup-

ported by compact manifolds were
called ‘closed’ (recall that, unless other-
wise specified, manifolds are without
boundary). Those with non-compact
support were called ‘open’.

The metrics with ε = 0 or ε = −1 can both be supported by the non-
compact manifold R3, with coordinate 0 ≤ χ < ∞. The corresponding
isotropic, homogeneous, simply connected Riemannian manifolds are the
Euclidean space E3 or the hyperbolic 3-space H3.

We have computed Robertson–Walker spaces supported by simply
connected manifolds by looking for globally spherically symmetric met-
rics around one point. There are other metrics that are isotropic and
homogeneous but not globally spherically symmetric, which can be ob-
tained as quotients of the previous metrics by an isometry group. They
are supported by manifolds with different topologies. An example in the
case ε = 0 is the flat 3-torus.

VII.4.2 Robertson–Walker cosmologies

From Section VII.4.1, there are three types of Robertson–Walker space-
time metrics:

− dt2 + a2(t)γε, ε = 1,−1, or 0, (VII.4.11)

where a is an arbitrary function1616When ε 
= 0, a(t) is equal to |K|− 1
2 ,

K being the constant-in-space, time-
dependent, scalar Riemann curvature
of (3)g.

of t. We see that a(t) is a scaling fac-
tor of local spatial distances of fundamental observers. In an expanding
universe, (i.e. if ȧ := da/dt > 0), this distance increases proportionally
to a and to the original distance, as in an inflated balloon. Indeed, on
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the trajectory of a fundamental observer, only t varies; the space dis-
tance at time t of two fundamental observers moving respectively on the
timelines x = x0 and x = x1 is the product by a(t) of the distance in
the metric γε between these two points of M.

VII.5 General properties
of Robertson–Walker spacetimes

VII.5.1 Cosmological redshift

The first essential cosmological data came from the observation of the
redshifts of stars and galaxies. The redshift parameter is defined to be

z ≡ νS

ν0
− 1, (VII.5.1)

where ν0 is the observed frequency and νS the emitted frequency. There
is a shift towards the red [respectively towards the blue] if z > 0
[respectively z < 0]. We now prove the following proposition.

Proposition VII.5.1 In an expanding Robertson–Walker spacetime,
there is a cosmological redshift with parameter given approximately by

1 + z ≡ νS

ν0
=̃
a(t0)
a(tS)

, (VII.5.2)

if we assume that the variation of a is negligible during a period of the
emitted and a period of the received light signal.

Proof. Recall that a Robertson–Walker metric is of the form

− dt2 + a2(t)
[
dχ2 + f2(χ)(dθ2 + sin2 θ dφ2)

]
. (VII.5.3)

Let O0 and OS be two fundamental observers. Take coordinates such
that they have the same θ and φ and have χ coordinates 0 and χS ,
respectively. An observer O with space coordinate χO = 0 (this is no
restriction) and t = tO receives at time tO light emitted at time tS < tO
by a source S with space coordinate χ(tS) = χS > 0 if it is on the light
ray joining these two spacetime points. This light ray is the solution of
the differential equation

dt

dχ
= a(t) (VII.5.4)

given by

χS =
∫ tO

tS

dt

a(t)
. (VII.5.5a)

Photons emitted by OS situated at χs at times tS and tS + TS follow
null rays and arrive at O0 situated at χO = 0 at times t0 and t0 + T0
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that satisfy ∫ tO

tS

dt

a(t)
=
∫ tO+TO

tS+TS

dt

a(t)
. (VII.5.6)

Elementary calculus shows that the times TS and T0 are therefore related
by ∫ tS+TS

tS

dt

a(t)
=
∫ tO+TO

tO

dt

a(t)
. (VII.5.7)

Hence, if a is considered as constant during the small amounts of time
TS (period of the emission) and TO (period of the reception), we obtain

TS

TO
=
a(tS)
a(tO)

. (VII.5.8)

Since the frequency is the inverse of the period, this result leads to

νS

ν0
=
a(t0)
a(tS)

, (VII.5.9)

which is the desired relation (5.2). �
A positive cosmological redshift, ν0 < νS signals an expansion of the

universe, a(t0) > a(tS).
Statistical observations1717A statistical treatment is necessary

because an individual star, even an in-
dividual galaxy or cluster of galaxies,
cannot be considered as a fundamental
observer.

of distant galaxies confirm, if we analyse
them in the framework of a Robertson–Walker spacetime, that our uni-
verse is at present expanding, a′(t0) > 0. Over the last few years, it has
been observed that the expansion is accelerating: a′′(t0) > 0.

VII.5.2 The Hubble law

In a Robertson–Walker spacetime, the distance between two given fun-
damental observers at some cosmic time t is proportional to a(t). The
Hubble parameter is defined to be the constant-in-space, t-dependent
scalar

H ≡ a−1a′. (VII.5.10)

It measures the rate of expansion (or possibly contraction) of the
universe. It has dimension (time)−1. An expanding Robertson–Walker
universe has a positive Hubble parameter.

The Hubble law says that the observed redshift is proportional to the
distance of the source.1818This again is a statistical statement

with regard to distances of fundamen-
tal observers emitting and receiving
signals.

It is true as consequence of the theory only in
first approximation for not too distant sources, as we now show.

Approximate computation of the redshift gives

1 + z :=
νS

ν0
=̃
a(t0)
a(tS)

, (VII.5.11)

z :=
νS

ν0
− 1 =

a(tO)
a(tS)

− 1 =̃
a′(tO)(tO − tS)

a(tS)
.
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Recall that

χS =
∫ tO

tS

dt

a(t)
=̃ (t0 − tS)a−1(tS), (VII.5.12a)

and hence, with dS = a(t0)χS ,

z =̃H(tO)
a(t0)
a(tS)

(t0 − tS) =̃H(t0)dS .

For a given observer at a given time, the redshift is, in rough approxi-
mation, proportional to the distance of the source.

The Hubble law has long been used by astronomers to estimate dis-
tances from the Earth of various astronomical objects that are too far
away for these distances to be measured by triangulation. It is then not
logical to use these redshifts to estimate distances. Fortunately, distances
can also be estimated by comparing the luminosity of a star as observed
from Earth (the ‘apparent luminosity’) with the emitted luminosity (the
‘absolute luminosity’) as calculated from the physical nature of the star.
In the past, cepheid variables (whose absolute luminosity is related to
their period of variation) were used as such ‘standard candles’, but it was
discovered that there are two kinds of cepheids. More reliable ‘standard
candles’ have been found by astronomers, particular so-called type Ia
supernovae.19 19Supernovae of type Ia have weak

hydrogen lines and a strong Si line at
6150 Å.

VII.5.3 Deceleration parameter

A second approximation of the relation between redshift and distance
is obtained by introducing the deceleration parameter linked with
the second derivative of the scale factor a. This is a dimensionless sca-
lar that measures the rate of variation with time of the expansion (or
contraction), and is defined by

q = −aa
′′

a′2
. (VII.5.13)

An expanding accelerated universe has a negative deceleration param-
eter.

Taylor formula gives

a(tS) = a(t0)
[
1 + (tS − t0)H(t0) −

1
2
qH2(tS − t0)2 + . . .

]
(VII.5.14)

and

χS = a−1(t0)
[
t0 − tS +

H

2
(tO − tS)2 + . . .

]
, (VII.5.15)

which gives the next approximation,

z = H(t0)dS +
1
2
(q + 1)H(t0)d2

S + . . . . (VII.5.16)
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VII.5.4 Age and future of the universe

It is generally believed that the universe started with a big bang,2020Although there were, and still are,
some cosmologists who believe in an
eternal universe.

the structure of which is a subject of active debate (see Section VII.7).
We denote by t = 0 the time at which it is believed to have started
expanding as a Robertson–Walker universe. We set a(0) = a0.We denote
by t0 the present time, that is, the age of the universe. By definition,
a(t0) > 0; also, a′(t0) > 0, since we observe (statistically) redshifts, not
blueshifts—the universe is presently expanding.

Until near the end of the twentieth centuries, it was thought for clas-
sical physical reasons that the expansion of the universe has been, is,
and will be always slowing down—that is, a′′(t) < 0 for all t > 0, and
the curve is concave-downwards. The universe would end in a big crunch
at a time t = T < ∞. In fact, more recent observations have led to the
belief that the expansion of the universe is now accelerating a′′(t0) > 0.
Estimates of t0 and the future of the universe depend on the properties of
the function a(t), that is, of the qualitative and quantitative properties
of sources.

VII.6 Friedmann–Lemâıtre universes

VII.6.1 Equations

A Friedmann–Lemâıtre cosmos is a Robertson–Walker spacetime whose
metric satisfies the equations

Sαβ = −Λgαβ + Tαβ , with Sαβ ≡ Rαβ − 1
2
gαβR, (VII.6.1)

with Tαβ such that

T00 := μ, Tij = pa2γij , Ti0 = 0.

The non-zero Christoffel symbols of the spacetime metric (4.11),
−dt2 + a2γε, are computed to be

Γ0
ij ≡ aa′γij , Γj

0i ≡ a−1a′δj
i , Γi

jh = γi
jh, with a′ :=

da

dt
, (VII.6.2)

where γi
jh are the Christoffel symbols of the relevant metric γε.

The non-zero components of the Ricci tensor of the spacetime metric
are, using the value rij = 2εγij for the Ricci tensor of the spatial metric
γε,

R00 ≡ −3a−1a′′, Rij ≡
(
2ε+ aa′′ + 2a′2

)
γij a′′ :=

d2a

dt2
(VII.6.3)

The scalar curvature is

R ≡ −R00 + a−2γijRij ≡ 3a−2
(
2ε+ 2aa′′ + 2a′2

)
.
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Hence the component S00 of the Einstein tensor reads as a first-order
differential operator on a:

S00 ≡ R00 −
1
2
g00R ≡ 3a−2

(
ε+ a′2

)
The corresponding Einstein equation21 21It is a constraint on a and a′, as pre-

dicted from a general analysis of the
Einstein equations.

gives μ in terms of a, a′, and Λ;
it is called the Friedmann equation:

μ = S00 − Λ ≡ 3a−2
(
ε+ a′2

)
− Λ. (VII.6.4)

The equation

γijSij ≡ γijTij − 3Λ ≡ 3pa2

gives p in terms of a, a′, and a′′, namely

p = −a−2
(
ε+ a′2 + 2aa′′

)
+ Λ. (VII.6.5)

Exercise VII.6.1 Prove (6.4) and (6.5).

Exercise VII.6.2 Using the formulas obtained for μ and p, prove that
the stress–energy tensor satisfies the conservation laws, which read, since
Λ is a constant,

∇αT
αβ = 0.

VII.6.2 Density parameter

In discussing cosmological observations, it is useful to replace the dens-
ity function μ by a dimensionless quantity Ω, called the ‘density
parameter’, which is defined by

Ω ≡ μ+ Λ
3H2

, (VII.6.6)

where H := a−1a′ is the Hubble parameter. Note that Ω depends only
on cosmic time. The Friedmann equation (6.4) reads

3
(
a−2ε+H2

)
= μ+ Λ, (VII.6.7)

that is,

Ω ≡ 1 +
ε

a2H2
. (VII.6.8)

If our universe is modelled by a Robertson–Walker cosmology, then
the value of Ω determines the type of Robertson–Walker spacetime in
which we live: Ω > 1 implies that ε = 1, with closed space sections; Ω < 1
implies ε = −1, with the spatial sections being open if they are simply
connected. The critical case Ω = 1 implies ε = 0, and hence locally flat
space (Euclidean space if simply connected). Physicists argue that in the
models we are studying, if Ω > 1 by an appreciable amount at an early
time, the universe will subsequently collapse in an extremely short time.
If Ω < 1, it will expand so fast that no stars could form. Thus one must
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suppose that Ω was initially very close to 1; this is called the flatness
problem.

VII.6.3 Einstein–de Sitter universe

At the present cosmic time, p is negligible with respect to μ.
The Einstein–de Sitter universe (found by Einstein and de Sitter

in 1932) is a Friedmann–Lemâıtre universe such that p = 0 (dust model),
Λ = 0, and ε = 0 (flat case). Then a satisfies the second-order differential
equation

a′2 + 2aa′′ = 0, (VII.6.9)

which can be integrated easily. Indeed, it can be written as

2aa′′ + a′2 ≡ 2aa′
(
a′′

a′
+

1
2
a′

a

)
= 0,

which is equivalent to

d

dt
ln(a′a

1
2 ) = 0. (VII.6.10)

Hence, if a(0) = 0, it holds that

a
3
2 = kt, k a constant.

By setting χ := kr, the metric reads

− dt2 + k2t
4
3
[
dr2 + r2(dθ2 + sin2 θ dφ2)

]
. (VII.6.11)

Exercise VII.6.3 Find this metric by using (6.5) and (6.6).

VII.6.4 General models with p = 0

In the general case with p = 0, one can use the Friedmann equation

μ = 3a−2
(
ε+ a′2

)
− Λ (VII.6.12)

and the conservation law
d

dt
(μa3) = 0

to obtain

a′2 = f(a) :=
a−1C + a2Λ

3
− ε, C = μa3 a constant. (VII.6.13)

Hence one has the differential equation

dt

da
=

√
1

f(a)
.

for the function a �→ t(a), whose inverse gives the variation of a in
function of t.
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In fact, it is now possible with a good approximation to deduce dens-
ity μ from observations by a dynamical analysis, and the distance aχ by
using standard candles. Analysis of the redshift then gives the Hubble
parameter H and the deceleration parameter q, and hence a′ and a′′.
It is found that today a′ is positive (expansion) and also a′′ > 0 (ac-
celeration). The belief among most cosmologists is that at present the
universe is in accelerated expansion.

VII.6.5 ΛCDM cosmological model

The standard model of the universe adopted at present by most cosmolo-
gists is, up to small corrections, a Friedmann–Lemâıtre universe;
that is, a Robertson–Walker spacetime solution of the Einstein equa-
tions with cosmological constant and source a stress–energy tensor of
matter, with negligible contribution from radiation and neutrinos (even
if the latter have a tiny non-zero mass). Observations of the motions of
stars and galaxies using powerful Earth-based and satellite telescopes
seem to imply that at a cosmological scale classical baryonic matter22

22Protons, neutrons, and electrons.is a very small part of the energy content of the cosmos, around 4.5%.
The observations indicate the existence of cold dark matter, estimated
at about 25% of the universe energy content and probably composed of
WIMPS (weakly interacting massive patricles) with only weak and gravi-
tational interactions. The acceleration of the universe is explained in the
ΛCDM model by the existence of dark energy represented by the term
Λg, usually considered as an energy of the vacuum, of quantum origin
and constant in spacetime, in agreement with the observational result of
the constancy throughout spacetime of the fundamental dimensionless
parameters, in particular the fine-structure constant (see Chapter IV).

Remark VII.6.1 The expansion history for the ΛCDM cosmological
model is presently obtained from the supernova distance–redshift relation
deduced from observation of type Ia supernovae. It assumes the validity of
the Friedmann equation. However, as pointed out by some cosmologists,
the Friedmann equation itself has not been independently tested.

VII.7 Primordial cosmology

The general belief is that the cosmos started with a singularity23

23The structure of the conjectured ini-
tial singularity (big bang or oscillatory)
has led to interesting mathematical
work but remains a mystery.

about
14×109 years ago.24

24This estimated age was augmented
by a few million years after analysis
in 2013 of data from the Planck sat-
ellite, which led to a reduction of the
value of the Hubble parameter (see
Section VII.5) by about 10%.

There was a primeval phase25

25The duration of this primeval phase
is estimated as a Planck time, that is,
about 10−44 s (see Chapter III). Note
that giving an estimate for the duration
of this preliminary stage is somewhat
contradictory to the fact that time and
space perhaps did not exist at this
stage.

for which the physics
was very different from anything we have ever investigated experimen-
tally. This physics, linked with the search for quantum gravity, is the
subject of intensive investigation, mainly in the context of string theor-
ies, with amazing results. In the most popular string theory, the universe
is an (n+1)-dimensional manifold that has n− 3 of its spacelike dimen-
sions compactified or a very small size (possibly of the order of the
Planck length) and that is filled with one-dimensional strings. In some
theories, space and time began to appear only after the Planck time.26



168 Introduction to cosmology

26Or rather no time less than the
Planck time 10−44 s exists.

For the next earliest phase, the favoured paradigm is that the universe
(that is, a section t = constant of the Friedmann–Lemâıtre model), en-
tered a phase of quasi-exponential growth, called inflation, driven by an
energy content approximately equivalent to a large cosmological term,
a constant or a function of a scalar field, called the inflaton. Inflation
is generally considered by cosmologists as solving the flatness problem,
every region of space being stretched almost flat by the expansion. In-
flation is also considered as solving the ‘horizon problem’, that is, the
observed similarity in properties (cosmological principle) in regions of
space so far apart now that no signal emitted near the big bang could
have reached them both without inflation.

The inflationary stage (during which the universe is similar to a de Sit-
ter spacetime) was followed by a transition2727The transition phase of inflation

could have been a weakening of the
inflaton called the slow roll. It is be-
lieved that damping oscilations were
probably present (see Damour and
Mukhanov, 1998).

to a radiation-dominated
era, during which the universe was filled by an extremely hot plasma
of quarks, gluons, leptons, photons, and neutrinos. The evolution of the
universe was governed until a time of the order of 10−6 seconds by quan-
tum mechanics, and the physics was more like that which is or soon will
be accessible to laboratory experiments, albeit under extreme conditions.

The universe was expanding and cooling; there came periods of
so-called recombinations and the formation of baryons2828Protons and neutrons. and an-
tibaryons.2929By a process that is not yet fully

understood, as a result of the exist-
ence at some time of a slightly greater
number of baryons than antibaryons,
most of the latter were annihilated,
leaving behind an overwhelming pre-
dominance of matter over antimatter in
the universe.

A later recombination between ions and electrons led to
the formation of atoms and molecules. The universe became transpar-
ent.30

30In the radiation epoch, the photons
lost energy by interations with elec-
trons (Thomson scattering) and the
universe was opaque. After recombin-
ation and the capture of electrons by
atoms, the universe became transpar-
ent.

The cosmic microwave background (CMB) radiation observed
now is thought to be made of the free photons surviving from this epoch.
Finally, stars and galaxies appeared, and the universe as we know it was
born at a time estimated at about 108 years.

The modelling of these fascinating early phases is, however, outside
the scope of this book.

VII.8 Solution of Exercises VII.6.1
and VII.6.2

We need to show that in a Friedmann–Lemâıtre universe

μ = 3a−2
(
ε+ a′2

)
− Λ, (VII.8.1)

p = −a−2
(
ε+ a′2 + 2aa′′

)
+ Λ (VII.8.2)

∇αT
αβ = 0 (VII.8.3)

Solution

(VII.8.1):

S00 = T00 − g00Λ

gives

μ = S00 − Λ ≡ 3a−2
(
ε+ a′2

)
− Λ.
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(VII.8.2):

Sij ≡ Rij−
a2

2
γijR ≡

[
2ε+ aa′′ + 2a′2 − 3(ε+ aa′′ + a′2)

]
γij

When n = 3, γijγij = 3, and hence

γijSij ≡ 3
(
−ε− 2aa′′ − a′2

)
= γijTij − 3Λ = 3(pa2 − Λ)

implies

p = −a−2
(
ε+ a′2 + 2aa′′

)
+ Λ.

(VII.8.3): The stress–energy tensor is such that T i0 = 0, and hence

∇αT
ai ≡ ∂jT

ji + Γh
hjT

ji + Γi
hjT

hj .

The non-zero Christoffel symbols of the spacetime metric are
Γ0

ij ≡ aa′γij , Γj
0i ≡ a−1a′δj

i , and Γi
jh = γi

jh. Denoting by
(3)∇ the covariant derivative in the metric γ, we have

∇αT
ai ≡ ∂jT

ji+Γh
hjT

ji+Γi
hjT

hj ≡ (γ)∇jT
ji ≡ γij∂j(pa2) = 0,

because a and p depend only on t. We also have

∇αT
a0 ≡ ∂0T

00+3a−1a′T 00+aa′γijT
ij ≡ μ′+3a−1a′(μ+p).

Using the previous expressions for μ and p, we find

μ′ = −6a−3a′
(
ε+ a′2

)
+ 6a−2a′a′′,

μ+ p = 3a−2
(
ε+ a′2

)
− a−2

(
ε+ a′2 + 2aa′′

)
≡ 2a−2

(
ε+ a

′2 − aa′′
)
,

and hence

μ′ + 3a−1a′(μ+ p) = 0.

Thus

∇αT
a0 = 0.

VII.9 Problems

VII.9.1 Isotropic and homogeneous Riemannian
manifolds

Isotropy of the space section Mt at a point x means that there is no
privileged direction in the tangent space Tx to Mt at x.
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1. Show that if the Riemann tensor of the metric g takes at x the form,
with K(x) some number,

Rij,hk(x) = K(x)(gihgjk − gjhgik)(x), (VII.9.1)

it is invariant on the tangent plane at x under rotations centred at x.
2. Show that the tensor (9.1) is locally homogeneous.

Solution

1. The tangent space to an n-dimensional Riemannian manifold at x is
an n-dimensional Euclidean vector space. A rotation around its origin
x is represented by an n× n matrix A (called an orthogonal matrix)
whose elements Am

p acting on tangent vectors X at x, Yp = Am
p Xm,

are such that ∑
p

Y 2
p :=

∑
p

Am
p XmA

q
pXq ≡

∑
q

X2
q ;

that is, ∑
p

Am
p A

q
p = 0, m 
= q,

∑
p

Am
p A

q
p = 1, m = q.

(VII.9.2)

In an orthonormal frame at x, the components of the Riemann tensor
(9.1) read

Rij,hk(x) = K(x)(δihδjk − δjhδik)(x).

Under a rotation A, the transformed curvature tensor R′ has compo-
nents

R′
i′j′,h′k′(x) = K(x)Ai

i′A
j
j′A

h
h′Ak

k′(δihδjk − δjhδik)(x);

that is, using the formulas (9.2),

R′
i′j′,h′k′(x) = K(x)(δi′h′δj′k′ − δj′h′δi′k′)(x).

VII.9.2 Age of the universe

1. Use the Taylor formula3131See, for instance, see CB-DMI, p. 81
or Bony (2001), p. 61.

a(t) = a(t0) + a′(t0)(t− t0) + (t− t0)2
∫ 1

0

(1− λ)a′′(t0 + λ(t− t0)) dλ

to find estimates of the age t0 and the time T of the end of an ex-
panding Robertson–Walker universe when we assume that a′′(t) < 0
for 0 ≤ t ≤ T .

2. What can we say if a′′(t0) > 0.
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Solution

1. The Taylor formula implies

a(0) = a(t0) − t0a
′(t0) + t20

∫
a′′(t0(1 − λ)) dλ, 0 ≤ λ ≤ 1.

Hence, if a(0) = 0, a′(t0) > 0, and a′′(t) ≤ 0 for t ≤ t0, then

t0 ≥ a(t0)
a′(t0)

= H(t0).

Suppose that a′′(t) ≤ −C, some positive constant for t ≥ t0; then

a(t) ≤ a(t0) + a′(t0)(t− t0) −
1
2
C(t− t0)2,

and hence a(T ) = 0 (big crunch) as soon as

a(t0) + a′(t0)(t− t0) −
1
2
C(t− t0)2 = 0;

that is,

T − t0 =
−a′(t0) +

√
a′2(t0) + 2Ca(t0)
C

.

2. The age t0 depends on the behaviour of a′(t), and hence of a′′(t) for
0 < t < t0. Assume a′(t) ≥ 0 for 0 ≤ t ≤ t1; hence a(t1) ≥ 0 and
(inflation) a′′(t) ≥ C > 0 for t1 ≤ t ≤ t0. Then the Taylor formula
reads

a(t0) = a(t1)+a′(t1)(t0−t1)+(t0−t1)2
∫ 1

0

(1−λ)a′′(t1+λ(t0−t1)) dλ,

and implies

a(t0) ≥
C

2
(t0 − t1)2.

VII.9.3 Classical Friedmann–Lemâıtre universes

Consider a Friedmann–Lemâıtre universe with Λ = 0 filled with a perfect
fluid with equation of state p = (γ − 1)μ, with γ a constant. Note that
γ = 1 corresponds to dust and γ = 4

3 to pure radiation.

1. Show that the velocity of acoustic waves is less than the speed of light
if γ ≤ 2 (see Chapter IX).

2. Show that in such a Friedmann–Lemâıtre universe, it holds that, with
C a constant,

μa3γ = C.

Therefore, the density μ must decrease with increasing a.
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Solution

If p = (γ − 1)μ, the equation (6.5) reads

d

dt
(a3μ) + 3a−1a′(γ − 1)μ = 0

and simplifies to

μ′ + 3a−1a′γμ = 0.

Hence, by integration, with C a constant,

μa3γ = C.

VII.9.4 Milne universe

The Milne universe is a Robertson–Walker spacetime with ε = −1,
Λ = 0, space support R3, and is a vacuum (μ = p = 0). The Milne
universe, or analogous spacetimes with compact (non-simply connected)
space sections, play an important role as asymptotic states in cosmology.

Write the spacetime metric of the Milne universe. Show that it is
locally flat, isometric to a wedge of Minkowski spacetime.

Solution

The Friedmann equation implies

a′2 = 1.

Hence a′ = 1, and, up to the choice of label of the time origin, a(t) = t.
The spacetime metric on the manifold R3 × (0,∞) then takes the form

−dt2 + t2[dr2 + sinh2r(dθ2 + sin2 θ (dφ2)],

where r, θ, φ are polar (pseudo-)coordinates on R3. The space metric
collapses for t = 0 and expands indefinitely when t tends to infinity.
The spacetime metric is locally flat, as can be seen by computing its
Riemann tensor, for instance by using the 3 + 1 decomposition given in
Chapter VIII.



Part B

Advanced topics

This part provides a deeper study of the properties of general solutions
of the Einstein equations either in vacuum or with stress–energy–
momentum sources. Particular attention is paid to relativistic fluids and
kinetic models, both of which have become important in astrophysics
and cosmology.
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VIII.1 Introduction

The Cauchy problem for a partial differential equation of order m on
Rn+1 with unknown a function f is the search for a solution such that
f and its derivatives of order less than m take given values on an n-
dimensional submanifold M. In coordinates x0, xi, i = 1, 2, . . . , n, with
M represented by x0 = 0, the independent data are

f(0, xi) and
∂pf

(∂x0)p
(0, xi), p = 1, . . . ,m− 1.

In the regular1

1The regularity condition for a quasi-
linear equation with analytic coeffi-
cients and analytic data on M, repre-
sented by x0 = 0, is that the coefficient
of the derivative ∂mf/(∂x0)m does not
vanish for x0 = 0.

analytic case, this problem has one and only one analytic
solution in a neighbourhood of M.

The stability2

2That is, contiguous dependence on
initial data.

of the solution of the Cauchy problem, and its existence
in the non-analytic case, depend crucially on its characteristic determin-
ant, the polynomial obtained in replacing in the terms of order m the
derivative ∂f by a vector X. For a linear second-order equation

aαβ ∂2f

∂xα∂xβ
+ bα

∂f

∂xα
+ cf = h, (VIII.1.1)

the characteristic polynomial is the scalar function

P (X) := aαβXαXβ . (VIII.1.2)

The properties of solutions depend essentially on the signature of this
quadratic form. In a domain U of Rn+1, the equation is elliptic if P (X)
is positive- (or negative-) definite; it is hyperbolic if it is of Lorentzian
signature.

For elliptic equations, the solution of the Cauchy problem exists in
the analytic case, but is not stable: one says that the Cauchy problem is
not well posed.3

3A problem is said to be well posed if
it has one and only one solution and
this solution depends continuously on
the data.

Possibly well-posed problems for elliptic equations are
global problems, for instance the so-called Dirichlet problem, which
is the data of the unknown on the boundary of the domain.4

4In this case, the well posedness de-
pends also on the lower-order terms.

For hyperbolic equations, the Cauchy problem is well posed in the
analytic case, but also for more general functional spaces,5

5An important property for General
Relativity, since the relativistic causal-
ity imposes that a solution of a relativ-
istic equation depends only on the past
of this point, while analytic functions
are entirely determined by their values
in any open set.

in particu-
lar smooth functions. For linear equations, the solution is global, i.e. it
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exists on the whole of Rn+1, although it may grow, even exponentially,
with t ≡ x0. Results extend to some (see J. Leray (1953)) quasidiagonal66Diagonal in the highest-order terms.

systems and to systems on manifolds. That is, for linear second-order
systems on a Lorentzian manifold (V n+1, g) that read

gαβ∇2
αβf

I + bα,I
J ∇αf

J + cIJf
J = hI , (VIII.1.3)

the Cauchy problem with data on a spacelike section Mn is globally
well posed in relevant functional spaces, with relevant hypotheses on the
coefficients and Cauchy data. In particular, the solution f I is smooth if
(V n+1, g) is a smooth and regularly sliced Lorentzian manifold and the
Cauchy data are smooth. An important property for Relativity is that
the solution at a point depends only on the values of the initial data in
the past of this point.

A quasidiagonal, quasilinear system of second-order differential equa-
tions on a manifold V n+1 reads, in a domain U of local coordinates,

gαβ∇2
αβf

I + bα,I
J ∇αf

J + cIJf
J = hI , (VIII.1.4)

where g, b, and c depend on the unknown f and its first derivative. The
covariant derivative ∇ is taken in an a priori given77The introduction of ∇ permits a glo-

bal geometric formulation, impossible
with ∇ for the Einstein equations,
where g itself is the unknown and sat-
isfies ∇g ≡ 0.

metric g in U. It is
always possible to take for g in U the flat metric, i.e. ∇α := ∂/∂xα. The
Cauchy problem for the system (1.4) is well posed for some initial data
if the linear system obtained by replacing in the coefficients g, b, and c
the quantities f and ∂f by their initial data is a well-posed system for
these initial data. Note that the existence of the solution (which can be
obtained by iteration), is in general for nonlinear equations only local in
time.

The Einstein equations in vacuum are a geometric system for the pair
(V, g), invariant under diffeomorphisms of the manifold V and the asso-
ciated isometries of the Lorentzian metric g. These equations constitute,
from the analyst’s point of view, a system of (n + 1)(n + 2)/2 second-
order quasilinear partial differential equations for the (n + 1)(n + 2)/2
coefficients88In the classical physical case n+1 = 4,

the number of independent coefficients
gαβ of a general metric g is 10.

of the metric in local coordinates. However, the equations
are not independent, because of the contracted Bianchi identities, a con-
sequence of the invariance under diffeomorphisms. We will see that the
Einstein equations have both hyperbolic and elliptic aspects.

VIII.2 Wave coordinates

The Einstein equations are invariant under diffeomorphisms; to con-
struct generic Einsteinian spacetimes, one fixes the local coordinates by
a general condition, called a gauge choice. One then has to prove that
the constructed spacetime satisfies the gauge condition.

The results of the Minkowskian approximation have led various au-
thors, over many years,9

9Einstein used them in the Minkow-
skian approximation. It seems that
de Donder was the first to introduce
them for the full Einstein equations,
shortly before G. Darmois.

to select in various problems what are now
called harmonic or wave coordinates, that is, to impose that the scalar
functions x �→ xα defining local coordinates satisfy the wave equations10

10In computations done in local co-
ordinates (xα), it holds that ∂α ≡
∂/∂xα.
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Fα := �gx
α ≡ gλμ∇λ∂μx

α = 0. (VIII.2.1)

In terms of the Christoffel symbols associated with the coordinates xα,
it holds that

Fα ≡ gλμΓα
λμ. (VIII.2.2)

The following identity results from a straightforward computation:

Rαβ ≡ R
(h)
αβ + Lαβ , (VIII.2.3)

where

Lαβ ≡ 1
2
(
gαλ∂βF

λ + gβλ∂αF
λ
)

(VIII.2.4)

vanish in wave coordinates while the R(h)
αβ are a system of quasilinear,

quasidiagonal (i.e. linear and diagonal in the principal, second-order,
terms) wave operators

R
(h)
αβ ≡ −1

2
gλμ∂2

λμgαβ + Pαβ(g, ∂g), (VIII.2.5)

where P is a quadratic form in the components of ∂g, with coeffi-
cients that are polynomials in the components of g and its contravariant
associate.

The system of partial differential equations

R
(h)
αβ = ραβ (VIII.2.6)

are called the (harmonically) reduced Einstein equations (the
vacuum reduced Einstein equations if ραβ ≡ 0).

VIII.2.1 Generalized wave coordinates

It is clear that one can also deduce from the Ricci tensor a quasidiagonal
operator on the components of the metric, namely

R
(h,H)
αβ ≡ R

(h)
αβ +

1
2
(
gαλ∂βH

λ + gβλ∂αH
λ
)
, (VIII.2.7)

if the wave coordinate conditions are replaced by the more general ones11 11Friedrich (1986).

Fα
H := Fα −Hα = 0, with Fα ≡ gλμΓα

λμ, (VIII.2.8)

where the Hα are known scalar functions. Their advantage is that they
contain a new set of functions Hα, which can be freely specified, or
eventually chosen to satisfy ad hoc equations.
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VIII.2.2 Damped wave coordinates

Recently, numerical analysts1212Gundlach, Calabrese, Hinder, and
Martin-Garcia (2005), Pretorius
(2005b), and Lindblom, Scheel,
Kidder, Owen, and Rinne (2006).

have been led to introduce reduced
Einstein equations in a wave-related gauge, called damped wave
coordinates. The operator R(h,H)

αβ is replaced by

R
(h,H,γ0)
αβ ≡R

(h)
αβ +

1
2
(
gαλ∂βH

λ + gβλ∂αH
λ
)

+
1
2
γ0F

λ
H(gβλnα

+ gαλnβ − gαβnλ),

with n the unit vector normal to spacelike slices and γ0 a constant.
The presence of this non-zero constant seems to stabilize the results of
numerical calculations of the evolution system; it determines the time
rate at which the gauge conditions Fλ

H = 0 are damped under evolution.
The use of a wave gauge gives the basic elements for the proof of fun-

damental properties of Einstein gravity using known results for partial
differential equations.

VIII.3 Evolution in wave gauge

VIII.3.1 Solution of the reduced equations in vacuum

We consider the vacuum case,13

13For the Einstein equations with non-
zero sources, one must solve the cou-
pled system of these equations and
the equations satisfied by the sources,
which depend on their nature.

that is, the search for solutions of a
system of quasilinear wave equations. The natural well-posed problem,
called the Cauchy problem, is the construction of a solution taking to-
gether with its first derivatives given values on a submanifold M of V
assumed to be spacelike for these initial values. If M has equation x0 = 0
in a local coordinate system and the analytic data are gαβ(0, xi) (a quad-
ratic form of Lorentzian signature) and (∂gαβ/∂x

0)(0, xi), then the
manifold M is spacelike for these data if the initial data ḡ (the induced
metric on M with components gij(0, xh)), is positive-definite. Known
theorems for quasidiagonal quasilinear systems of wave equations14

14A constructive method inspired by
representation formulas for solutions of
linear equations given in dimension 4
by Sobolev and in even dimension n +
1 > 4 by de Rham (restricted to con-
stant coefficients) was used for the first
proof of existence of solutions of the
Cauchy problem for quasilinear, qua-
sidiagonal systems of wave equations
by Fourès (Choquet)-Bruhat (1952) for
the case n + 1 = 4 and by Fourès
(Choquet)-Bruhat (1953) for the case
n + 1 > 4. The Leray theory of gen-
eral hyperbolic systems with its energy
method can also be used. The multi-
plicity of roots of the characteristic
determinant is irrelevant for the ap-
plication of Leray theory because the
characteristic matrix is diagonal. This
multiplicity destroys the Leray hyper-
bolicity when the characteristic ma-
trix cannot be diagonalized into blocks
with determinants with distinct roots.
K. O. Friedrichs’s theory of first-order
symmetric hyperbolic systems has no
difficulty with multiple characteristics,
but such first-order systems destroy the
spacetime appearance of the problem
and hide the propagation properties of
the solution. Friedrichs hyperbolic sys-
tems have no analogue for higher-order
Leray hyperbolic systems. Moreover
the weak hyperbolicity of Leray–Ohya
(see Chapter IX), important for rela-
tivistic causality, has no analogue in
Friedrichs’s theory of symmetric hyper-
bolic first-order systems.

lead to the following theorem, valid in relevant functional spaces,15

15For results in classical Sobolev spa-
ces, see YCB-OUP2009, Appendix III.

in particular spaces of smooth functions with some finite number of
derivatives.

Theorem VIII.3.1 The Cauchy problem for the vacuum Einstein
equations in wave gauge is well posed; that is, it has one and only one
local solution depending continuously on the initial data. This solution
has the physically important property of exhibiting propagation of the
gravitational field with the speed of light: its value at a spacetime point
depends only on the data in the past of this point.

The equations being nonlinear, the solution in general is defined only
in a neighbourhood of the initial space manifold. The appearance of sin-
gularities and their nature is a fundamental field of research in General
Relativity.
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VIII.3.2 Equations with sources

In the presence of sources, the reduced Einstein equations contain other
unknowns in addition to the metric g, namely fields or matter. The
necessary conservation laws satisfied by the sources, ∇αT

αβ = 0, are
equations that contain both g and these other unknowns; they must be
coupled with the Einstein equations. The hyperbolicity of this coupled
system with a dependance domain of a solution of the Cauchy problem
determined by the null cones of the metric g is important for the sat-
isfaction of the Einstein principle of causality (see Problems VIII.12.6
and VIII.12.7 and Chapters IX and X).

VIII.4 Preservation of the wave gauges

A solution of the reduced Einstein equations that is a metric in wave
gauge satisfies the full Einstein equations, and, indeed, for any solution
of the reduced equations to be a solution of the full equations, it has to
be in wave gauge, that is satisfy the equations

Fα ≡ gλμΓα
λμ = 0. (VIII.4.1)

We use the Bianchi identities to show that if g is a solution of the
reduced Einstein equations16 16This preservation of the wave gauge

property holds for Einstein equations
with sources satisfying the conservation
laws.

in a wave (harmonic) gauge, then the
gauge conditions satisfy a second-order linear quasidiagonal homoge-
neous differential system, because of the Bianchi identities, which imply
the following identities for the Einstein tensor S:

∇αS
αβ ≡ 0. (VIII.4.2)

Indeed, if g is a solution of the equations in wave gauge

Rαβ
(h) = ραβ , (VIII.4.3)

then it holds that, with Tαβ := ραβ − 1
2g

αβρ the stress–energy tensor of
sources,17 17Recall that we use geometric units

where GE = 1; equivalently, in the case
n + 1 = 4, 8πGN = 1.

Sαβ − Tαβ = −1
2
(gαλ∂λF

β + gβλ∂λF
α − gαβ∂λF

λ). (VIII.4.4)

An elementary computation using the Bianchi identities and the conser-
vation laws for the source T shows that, the functions Fα then satisfy a
linear homogeneous system of wave equations

gαλ∂2
αλF

β +Aβλ
α ∂λF

α = 0, (VIII.4.5)

where the A’s are linear functions in the Christoffel symbols of g.

Exercise VIII.4.1 Compute the coefficients A. Write similar equa-
tions in the cases of generalized and damped generalized wave
coordinates.
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The homogeneous wave equations (4.5). imply Fα = 0 if the initial
data for g are such that the Fα and their first derivatives vanish on the
initial manifold M; that is,

Fα|M = 0 and ∂0F
α|M = 0. (VIII.4.6)

Corresponding properties hold for the generalized and damped wave
gauges.

VIII.4.1 Wave gauge constraints

We will deduce from (4.6) relations that must hold between initial data
on the submanifold x0 = 0 for the solution of the reduced Einstein
equations to be a solution of the full Einstein equations, that is, to be a
metric in wave gauge. The simplest way to find these relations is to use
the contravariant tensor densities

Gαβ := |Det g| 12 gαβ . (VIII.4.7)

It holds that

Fα := gλμΓα
λμ ≡ −|Det g|− 1

2 ∂βGαβ . (VIII.4.8)

Exercise VIII.4.2 Prove this identity.

Hint: The derivatives of the determinant of g are ∂α(Det g) ≡
(Det g)gλμ∂αgλμ.

Straightforward computation using the identity (2.3) satisfied by the
Ricci tensor shows that the Einstein tensor S satisfies the identity

Sαβ := Rαβ − 1
2
Rgαβ ≡ Sαβ

(h) +
1
2
(
gαλ∂λF

β + gβλ∂λF
α − gαβ∂λF

λ
)
,

(VIII.4.9)

where the Sαβ
(h) are a quasidiagonal system of wave operators in the metric

g for the Gαβ .
Suppose that Fα|t≡x0=t0 = 0. Then also ∂iF

α|x0=t0 = 0, and the
identity (4.9) implies the equality

Sα0|M = Sα0
(h)|M +

1
2
(g00∂0F

α)|M . (VIII.4.10)

The expressions for Sα0
(h) and Fα show that Sα0|M does not contain any

second time derivative of g; that is, the equations

Cα := Sα0|M − Tα0|M = 0 (VIII.4.11)

are constraints on the initial data. If they are satisfied, then a solu-
tion of the reduced Einstein equations with these initial data, i.e. such
that Sα0

(h)|M − Tα0|M = 0, satisfies also ∂0F
α|M . We have proved the

following theorem:

Theorem VIII.4.1 A solution of the reduced Einstein equations with
initial data such that Fα|M = 0 satisfies the full Einstein equations if
and only if the initial data satisfy the constraints Cα = 0.

An analogous theorem holds for the other types of wave gauges.
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VIII.5 Local existence and uniqueness

An Einsteinian spacetime is constructed in local coordinates,18 18See the geometric intrinsic formula-
tions in Section VIII.7.

in a
neighbourhood of a hypersurface M with equation x0 ≡ t = t0, from
initial data gαβ |M , a Lorentzian metric for which M is spacelike, and
(∂0gαβ)|M .

Theorem VIII.5.1 (Fourès (Choquet)-Bruhat, 1952)

1. The Cauchy problem for the vacuum Einstein equations with initial
data on a spacelike hypersurface gαβ |M and (∂tgαβ)|M satisfying the
wave gauge constraints has a local-in-time solution, a Lorentzian met-
ric in wave gauge depending continuously on the initial data. Its value
at a given point depends only on the past of this point.

2. The solution is locally geometrically unique.

Part 1 of this theorem is a consequence of Theorems VIII.3.1 and
VIII.4.1.

For Part 2, we first recall that the solution constructed in wave gauge
from given initial data gαβ |M , (∂0gαβ)|M satisfying the constraints is
unique. To show local geometric uniqueness, we show that any given
vacuum Einsteinian spacetime defined in a neighbourhood of M can be
put in wave gauge in a possibly smaller neighbourhood of M, taking
initial data that depend only on the original data. We will state a more
general, global, uniqueness property after definining geometric initial
data.

VIII.6 Solution of the wave gauge
constraints

The expressions for Sα0 and Fα show that the wave gauge constraints
are of the form, for the Einstein equations with source the stress–energy
tensor T,

Cα ≡ 1
2
Gij∂2

ijGα0− 1
2
G00∂2

itGαi+Gi0∂2
itGα0+Kα0−T α0 = 0, (VIII.6.1)

where Kα0 depends only on G and its first derivatives.

Remark VIII.6.1 Giving Gαβ , ∂tGαβ for t = t0 is equivalent to giving
gαβ , ∂tgαβ , for t = t0.

The constraints appear as a system of n+1 equations for (n+2)(n+1)
unknowns, Gαβ , ∂tGαβ , on the manifold x0 = 0. This system, with more
unknowns than equations, is undetermined. It is natural to try to split
the initial data into specified quantities and n+1 unknowns, for which we
wish to find a well-posed system of partial differential equations, which
we expect to be elliptic because this is a pure, non-evolutionary, space
problem. This was done for the first time in the general case19 19Bruhat (Choquet-Bruhat) (1962).by using
the equations (6.1). Two choices were suggested for splitting the initial
Cauchy data between unknowns and given data:
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(1) Give arbitrarily on the initial manifold M the quantities Gαi. The
∂jGαi are then known and the ∂tGα0 are determined by the har-
monicity conditions. The remaining unknowns, in this first step, are
u := G00 and vij := ∂tGij . Equations (6.1) can be written in the
following form:
• For α = 0,

C0 ≡ 1
2
Gij∂2

ijG00 −A = 0, (VIII.6.2)

where

A :=
1
2
G00∂2

itG0i + Gi0∂2
itG00 + K00 − T 00 (VIII.6.3)

depends only on the specified quantities and on the space deriva-
tives of the unknowns of order at most 1

• For α = h,

Ch ≡ −1
2
G00∂i(∂tGhi) + Bh = 0, (VIII.6.4)

where

Bh :=
1
2
Gij∂2

ijGh0 + gi0∂2
itGh0 + Kα0 − Gα0. (VIII.6.5)

Equation (6.2) is a semilinear second-order equation for G00 with
principal symbol20

20The principal symbol of a scalar par-
tial differential operator is the poly-
nomial obtained by replacing in the
highest-order terms the partial deriva-
tive ∂i by the component ξi of a vector.
In the case of a system, the principal
symbol is a matrix (see the example
below).

the positive-definite quadratic form Gijξiξj ; it
is an elliptic21

21A system of partial differential oper-
ators is elliptic if its principal symbol
is an isomorphism (i.e. an invertible
square matrix) for each non-zero vec-
tor ξ. For one scalar equation, this
means that the principal symbol does
not vanish for any non-zero set of real
numbers ξi.

equation.
To write the system (6.4) of n equations with the n(n + 1)/2

unknowns Xhi := ∂tGhi as an elliptic system for n unknowns
and n(n − 1)/2 specified functions, one can use the Berger–Ebin
decomposition theorem for a functional space E as

E = kerD + rangeD∗,

where D and D∗ are a differential operator and its adjoint, one of
which has injective symbol; the product DD∗ is then elliptic. Since
in this section we work in local coordinates, we simply recall here
the classical procedure for decomposing a symmetric unknown Xij

on Rn. We set

Xij ≡ Y ij + Zij , with ∂iY
ij = 0 and Zij = ∂iU

j + ∂jU
i.

Equations (6.4) take the form∑
i

∂2
iiU

j + ∂i∂jU
i = f j .

They imply ∑
i

∂2
ii(∂jU

j) =
1
2
∂jf

j ,

which is an elliptic equation for ∂jU
j and an elliptic system for U j

when ∂iU
i is known.
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(2) In the spirit of Wheeler’s ‘thin-sandwich conjecture’, we give ar-
bitrarily on M the quantities Gij and ∂tGij . The harmonicity
conditions then determine ∂tG0i = −∂jGji and imply the relation

∂tG00 = −∂iG0i. (VIII.6.6)

The constraints now read, without needing the introduction of a
further splitting, as a system of n+1 equations for the n+1 unknowns
G00, G0i :

Ch ≡ 1
2
Gij∂2

ijG0h −Fh = 0, (VIII.6.7)

C0 ≡ 1
2
Gij∂2

ijG00 − G0i∂2
ijGj0 −F0 = 0, (VIII.6.8)

where F0 and Fh depend only on the given quantities and on the
first space derivatives of the unknowns.

The system is elliptic because of the expression of its characteristic
determinant, the determinant of its principal symbol.

Exercise VIII.6.1 Show that this determinant is proportional to a
power of the determinant of a Laplace operator.

Hint: The principal part in the equation Ch = 0 contains only G0h.

The solution of an elliptic system on a manifold is a global problem.
Two cases are of particular interest in General Relativity: the case of
asymptotically Euclidean manifolds and the case of compact manifolds.

VIII.6.1 Asymptotically Euclidean manifolds

A particularly physically relevant case is the study in Einsteinian gravi-
tation of isolated systems, composed of a few bodies far from any other
source of gravitation, so that the metric tends to be flat far away from
the studied system. Such systems are modelled in general by asymp-
totically Euclidean manifolds, defined in Chapter IV. For mathematical
study of solutions of elliptic differential equations on asymptotically Eu-
clidean manifolds, one uses either weighted Hölder spaces22

22Choquet-Bruhat (1974), Chaljub-
Simon and Choquet-Bruhat (1979).or weighted

Sobolev spaces.23 23Cantor (1979), Choquet-Bruhat and
Christodoulou (1981).The linearization of the nonlinear constraints (6.7) and (6.8) for given

Euclidean data reduces to the Euclidean Laplace equations, for which
solutions are known in the mentioned functional spaces. The nonlinear
constraints have been shown to have a solution24 24Vaillant-Simon (1969).for given data near
Euclidean data.

Various numerical methods are available for solution of the relevant
equations. It would be interesting to solve them numerically, their solu-
tion giving initial data directly for the harmonically reduced evolution
equations, which form a well-posed system.
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VIII.6.2 Compact manifolds

Mathematicians are especially interested in the case of compact space
manifolds without boundary, where topology plays an important role.
Solutions of the constraints on compact manifolds have been exten-
sively studied, but after writing them as elliptic equations for geometric
unknowns—the induced metric ḡ and extrinsic curvature K.

Compact space manifolds are of interest as cosmological models.
However, the choice of a model for our whole cosmos is very speculative.

VIII.7 Geometric n + 1 splitting

We will in the following sections formulate geometric, i.e. coordinate
independent, theorems about the existence and uniqueness of solutions
of the Cauchy problem. We first give the following decomposition,25

25Fourès (Choquet)-Bruhat (1956). often called the ADM decomposition, although Arnowitt, Deser, and
Misner2626Arnowitt et al. (1962). are only accountable for its Hamiltonian interpretation. This
decomposition has been for many years intensively used for numerical
computation, in spite of the fact that the evolution equations that it
gives are not a hyperbolic system.

VIII.7.1 Adapted frame and coframe

We consider a spacetime with manifold V = M×R and hyperbolic metric
g such that the submanifolds Mt ≡ M × {t} are spacelike. We take a
frame with space axes ei tangent to the space slice Mt and time axis
e0 orthogonal to it. Such a frame, particularly adapted to the solution
of the Cauchy problem, is called a Cauchy adapted frame. We take
local coordinates adapted to the product structure, (xα) = (xi, x0 = t),
and we choose for ei the vectors ∂/∂xi of a natural frame on Mt, i.e.

∂i = ∂/∂xi. (VIII.7.1)

The dual coframe is found to be such that, with β a time-dependent
vector tangent to Mt called the shift,

θi = dxi + βidt, (VIII.7.2)

while the 1-form θ0 does not contain dxi. We choose

θ0 = dt. (VIII.7.3)

The vector e0, i.e. the Pfaffian derivative ∂0, is then

∂0 ≡ ∂t − βj∂j , with ∂t := ∂/∂t. (VIII.7.4)

The vector e0 is timelike since it is orthogonal to spacelike surfaces. We
suppose that it defines the positive time orientation. In the coframe θα,
one has gi0 = 0, and the metric reads

ds2 = −N2(θ0)2 + gijθ
iθj , θ0 = dt, θi = dxi + βidt. (VIII.7.5)
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The function N is called the lapse. We shall assume throughout that
N > 0. The time-dependent, properly Riemannian, space metric induced
by g on Mt is denoted by either gt or ḡ. An overbar denotes a spatial
tensor or operator, i.e. a t-dependent tensor or operator on M . Note that
in our frame, ḡij = gij and ḡij = gij .

A spacetime (V, g) with V = M×R and metric (7.5) is called a sliced
spacetime.

The non-zero structure coefficients of a Cauchy adapted frame are
found to be

Ci
0j = −Ci

j0 = ∂jβ
i. (VIII.7.6)

We denote by ∇̄ the covariant derivative corresponding to the space
metric ḡ. Using the general formulas from Chapter I, we find that

ωi
jk ≡ Γi

jk ≡ Γ̄i
jk, (VIII.7.7)

ωi
00 ≡ Ngij∂jN, ω0

0i ≡ ω0
i0 ≡ N−1∂iN, ω0

00 ≡ N−1∂0N,

and

ω0
ij ≡ 1

2
N−2

(
∂0gij + ghjC

h
i0 + gihC

h
j0

)
, (VIII.7.8)

from which we obtain

ω0
ij ≡ 1

2
N−2∂̄0gij , (VIII.7.9)

where the operator ∂̄0 is defined on any t-dependent space tensor T by
the formula

∂̄0 :=
∂

∂t
− L̄β , (VIII.7.10)

where L̄β is the Lie derivative on Mt with respect to the spatial vector β.
Note that ∂̄0T is a t-dependent space tensor of the same type as T .

The extrinsic curvature (also called the second fundamental
form) of Mt is the t-dependent symmetric space tensor K given by

Kij ≡ −1
2
N−1∂̄0gij ≡ −ω0

ijn0 ≡ −Nω0
ij . (VIII.7.11)

The remaining connection coefficients are found to be (indices are raised
with ḡ)

ωi
0j ≡ −NKi

j + ∂jβ
i, ωi

j0 ≡ −NKi
j . (VIII.7.12)

The trace in the metric ḡ of the extrinsic curvature, often denoted
by τ, is called the mean curvature of Mt :

τ ≡ trḡK ≡ ḡijKij . (VIII.7.13)
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K and τ play an important role in the initial-value formulation and other
geometric problems of General Relativity.

Exercise VIII.7.1 Show that the extrinsic curvature K of Mt is the
projection on Mt of the spacetime gradient of the past-oriented unit nor-
mal n to Mt (some authors take the opposite orientation of n to define
K). Show that τ := TrḡK of K is equal to the spacetime divergence of n.

Remark VIII.7.1 The tensor K is symmetric. It can equivalently be
defined, up to a factor 1/2, as the Lie derivative of the spacetime metric
in the direction of n. It does not depend on the value of n outside Mt.

Remark VIII.7.2 A positive value of τ signals a positive divergence
of the past-directed normals. A negative value of τ corresponds to con-
vergence of the past-directed normals, and hence future expansion of the
submanifolds Mt.

We deduce from the general formula giving the Riemann tensor and
the splitting of the connection the following identities:

Rij,kl ≡ R̄ij,kl +KikKlj −KilKkj , (VIII.7.14)

R0i,jk ≡ N(∇̄jKki − ∇̄kKji), (VIII.7.15)

R0i,0j ≡ N(∂̄0Kij +NKikK
k

j + ∇̄i∂jN) (VIII.7.16)

From these formulas, we obtain the following expressions for the Ricci
curvature:

NRij ≡ NR̄ij − ∂̄0Kij +NKijK
h
h − 2NKikK

k
j − ∇̄i∂jN, (VIII.7.17)

N−1R0j ≡ ∂jK
h
h − ∇̄hK

h
j , (VIII.7.18)

R00 ≡ N(∂̄0K
h
h −NKijK

ij + Δ̄N). (VIII.7.19)

Also, with R̄ := gijR̄ij ,

gijRij = R̄−N−1∂̄0K
h
h + (Kh

h )2 −N−1Δ̄N, (VIII.7.20)

R≡−N−2R00+gijRij =R̄+KijK
ij + (Kh

h )2−2N−1∂̄0K
h
h−2N−1Δ̄N,

(VIII.7.21)

and

S00 ≡ R00 −
1
2
g00R ≡ 1

2
(R00 + gijRij).

It follows that

2N−2S00 ≡ −2S0
0 ≡ R̄−KijK

ij + (Kh
h )2. (VIII.7.22)
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VIII.7.2 Dynamical system with constraints
for ḡ and K

We see in the above decomposition of the Ricci tensor that none of the
components of the Einstein tensor contains the time derivatives of the
lapse N or the shift β. One is thus led to consider the Einstein equations
as a dynamical system with constraints for the two fundamental tensors
ḡ and K of the space slices Mt, while N and β are gauge variables.27 27Darmois (1927) was the first to view

the Einstein equations (in a Gaussian
gauge N = 1, β = 0) as an evolution
system for ḡ, K supplemented by initial
constraints.

Constraints

The expressions for the Ricci tensor lead to the following constraints
for ḡ and K on space slices Mt for solutions of the Einstein equations:28

28These constraints correspond to the
Gauss and Codazzi equations well
known to geometers.

Hamiltonian constraint

2N−2S00 ≡ −2S0
0 ≡ R̄−KijK

ij + (Kh
h )2 = ρ, with ρ := −2T 0

0 ;

(VIII.7.23)

for the usual classical sources, ρ ≥ 0.

Momentum constraint

N−1S0j ≡ N−1R0j ≡ ∂jK
h
h − ∇̄hK

h
j = Jj , with Jj := −N−1T0j .

(VIII.7.24)

These constraints coincide with those found previously by using the
wave gauge and shown to be preserved under evolution for stress–energy
tensor sources satisfying the conservation laws.

Evolution

The equations

Rij ≡ R̄ij −
∂0Kij

N
− 2KjhK

h
i +KijK

h
h − ∇̄j∂iN

N
= ρij , (VIII.7.25)

together with the definition

∂̄0gij = −2NKij , (VIII.7.26)

determine the derivatives transverse toMt of ḡ andK when these tensors
are known on Mt, as well as the lapse N and shift β and the source ρij .
It seemed natural to look at these equations as evolution equations de-
termining ḡ and K, while N and β, which are projections of the tangent
vector on the timeline respectively on e0 and on the tangent space to M,
are considered as gauge variables. These evolution equations have been
used extensively in the past for numerical computations. The Cauchy
problem for these equations is clearly well posed for analytic data—a
physically unsatisfactory condition because analytic functions have non-
localizable support. The data of lapse and shift does not seem to be a
good gauge choice. However, it can be proved29

29See YCB-OUP2009, Chapter VIII,
Section 3.

that, given N and β, the
operator Rij given by (7.25), with Kij given by (7.26), is a second-order
differential system on the gij that is Leray–Ohya30 30See J. Leray and Y. Ohya (1968).hyperbolic and
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causal. The Cauchy problem for such systems has solutions in Gevrey
classes,3131Gevrey classes are C∞ functions

whose derivatives satisfy inequalities
weaker than those satisfied by analytic
functions and assure in this case the
convergence of their expansion in Tay-
lor series. In contrast to an analytic
function, a Gevrey class is not deter-
mined by the values of all its derivatives
at a given point, nor by its value in an
open set; it can have compact support.

causally determined from initial data. However, the infinite
number of derivatives required from a Gevrey class foreshadow the poor
stability of results of numerical computation, as has been confirmed by
numerical analysis.

More promising, appropriate combination of the evolution equation
and the constraints have been shown to lead,32

32Choquet-Bruhat and Ruggeri (1983)
for zero shift; Choquet-Bruhat and
York (1996) for arbitrary shift.

modulo a gauge choice33

33Called an algebraic gauge in the first
formulation of Choquet-Bruhat and
Ruggeri, but now called densitizing the
lapse; it is equivalent to a wave gauge
choice for the time variable.

for N, to a quasidiagonal system of wave equations for K that together,
with (7.1), give an hyperbolic causal system for ḡ and K.

Another possibility, leading to a mixed elliptic–hyperbolic system, is
to impose on N an elliptic equation that implies that the trace of K
takes a given value.34

34Christodoulou and Klainerman
(1989).

Preservation of constraints

As shown before for the wave gauge constraints, the geometrically formu-
lated constraints (7.23) and (7.24) are preserved under evolution when
the stress–energy tensor source satisfies the conservation laws. A simple
proof follows.35

35Choquet-Bruhat and Noutchegueme
(1986) and, independently, Anderson
and York (1999).

Theorem VIII.7.1 If Rij −ρij = 0 holds, then the constraints satisfy
a linear homogeneous first-order symmetric hyperbolic system.36

36A system of N first-order partial
differential equations in N unknown
scalar functions of n + 1 variables with
principal part

AI,α
J

∂uJ

∂xα
, I, J = 1, . . . , N

is symmetric hyperbolic if the matrices

Aα with (real) elements AI,α
J are sym-

metric and the matrix A0 is positive-
definite. The Cauchy problem for such
systems has one and only one so-
lution, in relevant functional spaces
(Friedrichs, 1954). See, for instance,
YCB-OUP2009, Appendix IV.

If they
are satisfied initially, then they are satisfied for all time.

Proof. If Rij − ρij = 0, then we have, in the Cauchy adapted frame,
with ρ := gαβραβ ,

R− ρ = −N2(R00 − ρ00).

Hence

S00−T 00 =
1
2
(R00−ρ00) and R−ρ = −2N2(S00−T 00) = 2(S0

0 −T 0
0 )

and

Sij − T ij = −1
2
ḡij(R− ρ) = −ḡij(S0

0 − T 0
0 ).

With these identities, we may derive from the Bianchi identities and the
conservation laws a linear homogeneous system for Σi

0 ≡ Si
0 − T i

0 and
for Σ0

0 ≡ S0
0 − T 0

0 with principal parts

N−2∂0Σi
0 + ḡij∂jΣ0

0, and ∂0Σ0
0 + ∂iΣi

0.

Since this system can be made symmetric hyperbolic, it has a unique
solution, which is zero if the initial values are zero. �

Exercise VIII.7.2 Show that Σi
0 and Σ0

0 satisfy a quasidiagonal
homogeneous second-order system with principal part the wave operator
of the spacetime metric g.
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VIII.7.3 Geometric Cauchy problem. Regularity
assumptions

To give a geometric formulation of the solution of the Cauchy problem
for the Einstein equations with data on a manifold M , we introduce the
following definitions (in the usual case, n = 3).

Definition VIII.7.1

1. An initial data set is a triple (M, ḡ,K) with (M, ḡ) a Riemannian
n-dimensional manifold and K a symmetric 2-tensor on M.

2. An Einsteinian vacuum development of (M, ḡ,K) is a Lorentzian
(n+1)-manifold (V, g) solution of the vacuum Einstein equations such
that M is an embedded submanifold of V and ḡ is induced by g on
M , while K is the extrinsic curvature of M in (V, g).

The following existence theorem holds as a direct consequence of previ-
ously stated and known results on hyperbolic differential equations. The
weakest hypotheses on initial data using only classical Sobolev spaces
and energy estimates are when n = 3, ḡ ∈ H loc

3 (M), K ∈ H loc
2 (M).

Recall that H loc
s (M) is a space of tensor fields with components that,

along with their derivatives of order less than or equal to s, are square-
integrable in relatively compact domains of local coordinates covering
M.37 37Various, more intrinsic, equivalent

definitions can be found, for instance,
in YCB-OUP2009, Appendix III, Sec-
tion 3.7.

The local uniqueness up to isometries is a consequence of the
geometric uniqueness given in Theorem VIII.5.1.

Theorem VIII.7.2 (existence and local uniqueness up to isometries)
An initial data set (M, ḡ,K) for the Einstein vacuum equations satis-
fying the constraints admits a vacuum Einsteinian development (V, g).
This development is locally unique, up to isometries.

Remark VIII.7.3 The hypothesis g ∈ H loc
3 when n = 3 is not suffi-

cient to ensure the uniqueness of geodesics issuing from one point with
a given tangent. This uniqueness would be ensured if the Christoffel
symbols were Lipschitzian, which is not the case for H loc

3 metrics on
three-dimensional space.

Lowering the regularity required of data is conceptually important for
the understanding of the mathematics and the physics of the theory,
and essential in the study of global problems. Geometric hyperbolic evo-
lution systems involving the Riemann curvature tensor instead of wave
gauges have been considered and have allowed for the broadening of ad-
missible functional spaces for the initial data. Klainerman, Rodnianski,
and Szeftel38 38Klainerman, Rodnianski, and Szef-

tel (2012).
have conjectured that sufficient conditions for the existence

of a Lorentzian metric solution of the vacuum Einstein equations in a
four-dimensional neighbourhood of a 3-manifold M supporting initial
data (ḡ,K) are that Ricci(ḡ) ∈ L2, that ∇̄K ∈ L2 locally on M , and
that the volume radius39 39The volume radius is the lower bound

of the quotient by r3 of the volume of
geodesic balls of radius r in (M, ḡ).

of (M, ḡ) is strictly positive. In several long
and difficult papers using refined functional analysis, they have proved
their conjecture interpreted as a continuation argument for the Einstein
equations; that is, the spacetime constructed by evolution from smooth
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data can be smoothly continued, together with a time foliation, as long
as the curvature of the foliation and the first covariant derivatives of
its second fundamental form remain L2-bounded on the leaves of the
foliation.

VIII.8 Solution of the constraints
by the conformal method

The conformal method, initiated by Lichnerowicz and developed by
Choquet-Bruhat and York, has been intensively used to prove existence
of solutions of the constraints. Variants of it are now used in numer-
ical computations of initial data for the two-body problem. It has the
advantage of turning the momentum constraint into a linear system in-
dependent of the conformal factor for a weighted extrinsic curvature
when the mean extrinsic curvature τ is zero or constant.4040Lichnerowicz (1944) for τ = 0; York

(1972) for τ = constant.
The con-

formal factor then satisfies a semilinear elliptic operator with principal
part the Laplace operator of the conformal metric. Given a TT (trans-
verse traceless) tensor, the momentum constraint can be written as a
linear elliptic system for a vector field.4141Choquet-Bruhat (1971) for τ = 0;

York (1972) for τ = constant.
The method was used in early

numerical computations, essentially by taking conformally flat metrics.

VIII.8.1 Conformally formulated (CF) constraints

When the sources ρ and J are known, the unknowns in the constraints
(7.24) and (7.23) are the metric ḡ and the tensor K. It is mathematic-
ally clear that these scalar and vector equations do not have a unique
solution, even geometrically. Physically, this fact corresponds to the
property of Einsteinian gravity that it is its own source. Roughly speak-
ing, ‘radiation data’ should also be given, the constraints then becoming
an elliptic system for a scalar function and a vector field. The geometric
meaning of the lower-order terms permits discussion of the existence and
uniqueness of solutions on general manifolds. We treat for simplicity of
notation the usual physical case n = 3.4242The case of arbitrary n is treated in

detail in YCB-OUP2009, Chapter VII,
Section 3.

The Hamiltonian constraint (7.23) reads, for general n,

R̄− (|K|2ḡ + ρ− τ2) = 0, R̄ := R(ḡ), τ := trḡ K. (VIII.8.1)

This equation is turned into an elliptic equation for a scalar function ϕ
by considering the metric ḡ as given up to a conformal factor. In the
case n = 3, one sets

ḡij = ϕ4γij ,

with γ a given metric on M and ϕ a function to be determined.
The scalar curvatures of the conformal metrics ḡ and γ are found by

straightforward computation to be linked when n = 3 by the formula

R(ḡ) ≡ ϕ−5 [ϕR(γ) − 8Δγϕ] . (VIII.8.2)
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Exercise VIII.8.1 Prove an analogous formula for general n ≥ 3 with
ϕ4/(n−2).

Hint: The choice ϕ4 when n = 3 is made to eliminate quadratic terms
in first derivatives of ϕ.

The identity (8.2) implies the following theorem:

Theorem VIII.8.1 When γ, K, and the source ρ are known, the Ham-
iltonian constraint is a semilinear second-order elliptic equation for ϕ,
linear also in first derivatives, which, in the case n = 3, reads

8Δγϕ−R(γ)ϕ+ (|K|2ḡ − τ2 + ρ)ϕ5 = 0. (VIII.8.3)

To solve the momentum constraint, we split the unknown K into
a weighted traceless part K̃ and its trace τ. In the case n = 3, we set

Kij = ϕ−2K̃ij +
1
3
ḡijτ. (VIII.8.4)

Equivalently, with indices in K and K̃ being respectively lifted with ḡij

and γij ,

Kij = ϕ−10K̃ij +
1
3
ḡijτ, ḡij = ϕ−4γij . (VIII.8.5)

The tensor K̃ is symmetric and traceless; indeed,

trγ K̃ ≡ γijK̃ij = ϕ−2ḡij

(
Kij −

1
3
ḡijτ

)
= 0.

Straightforward computation shows that the momentum constraint
becomes, with D the covariant derivative in the given metric γ,

DiK̃
ij =

2
3
ϕ6γij∂iτ + ϕ10J. (VIII.8.6)

This equation has the interesting property that it does not contain ϕ
when J is zero and τ is constant on M, that is, when M is be a subman-
ifold with constant mean extrinsic curvature in the ambient spacetime.
We have the following theorem:

Theorem VIII.8.2 In the case τ = constant and J = 0, the symmet-
ric 2-tensor K̃ij := ϕ−10Kij is a TT tensor (transverse, traceless) and
the momentum constraint reduces to linear homogeneous sytem for K̃:

DjK̃
ij = 0, γijK̃

ij = 0. (VIII.8.7)

Exercise VIII.8.2 Show that the space of TT tensors is the same for
two conformal metrics.

Returning to the Hamiltonian constraint, we compute, using the
definition of K̃,

|K|2ḡ := ḡih ḡjkKijKhk = ϕ−12|K̃|2γ +
1
3
τ2. (VIII.8.8)



192 General Einsteinian spacetimes. The Cauchy problem

Exercise VIII.8.3 Prove this formula.

Hints: K̃ is traceless and γihγjkγijγhk = δh
j δ

j
h = 3.

Exercise VIII.8.4 Write down the corresponding formula for arbi-
trary n.

The Hamiltonian constraint now reads

8Δγϕ−R(γ)ϕ+ ϕ−7|K̃|2γ +
(
−2

3
τ2 + ρ

)
ϕ5 = 0. (VIII.8.9)

It is a semilinear elliptic equation for ϕ when γ (a Riemannian metric),
τ, ρ, and K̃ are known. It is called the Lichnerowicz equation.43

43It was obtained by Lichnerowicz
(1944) for n = 3 and extended to
general n by Choquet-Bruhat (1996).
Scaling of the sources was introduced
by York (1972). We will still refer to
as Lichnerowicz equations all the equa-
tions deduced from the Hamiltonian
constraint by the conformal method.

A scaling of the momentum of the sources by setting, when n = 3,4444York (1972).

J = ϕ−10J̃ ,

with J̃ considered as a known quantity, permits the extension of the de-
coupling property to the non-vacuum case. The momentum constraints
now read

DjK̃
ij = J̃ i.

The scalar part ρ of the sources can also be scaled. The scaling proposed
by York, justified by physical considerations (at least in the case n = 3
for electromagnetic field sources), is

ρ = ϕ−8ρ̃,

with ρ̃ considered as a given function. The Hamiltonian constraint then
reads

8Δγϕ−R(γ)ϕ+ |K̃|2γϕ−7 + ρ̃ϕ−3 − 2
3
τ2ϕ5 = 0. (VIII.8.10)

VIII.8.2 Elliptic system

We complete the writing of the CF constraints as an elliptic partial
differential equation system on the initial manifold by a treatment of the
momentum constraint4545Choquet-Bruhat (1971a) and York

(1972); Fischer and Marsden (1979),
Choquet-Bruhat and York (1980),
Choquet-Bruhat, Isenberg and York
(2000) and see further references in
Choquet-Bruhat and York (2002). For
the coupling with a scalar field see
Choquet-Bruhat, Isenberg and Pollack
(2007).

analogous to that indicated in Section VIII.6.
We can split the tensor K̃ into an element of the kernel of the homogen-
eous part of the momentum constraint operator, i.e. a TT tensor Y for
the given metric γ, and an element of the range of the dual operator,
the conformal Lie derivative Z of a vector field X; that is, we set

K̃ij = Yij + Zij , with DiY
ij = 0, (VIII.8.11)

and, when n = 3,

Zij := (Lγ,confX)ij ≡ DiXj +DjXi − 2
3
γijDkX

k. (VIII.8.12)

A tensor of this form satisfies the momentum constraint if and only if
the vector X satisfies the second-order system

Δγ,confX := D · (Lγ,confX) = D · J̃ .
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Exercise VIII.8.5 Show that this system is a linear elliptic system
for X when γ and J̃ are known.

The search for the arbitrary TT tensor Yij can itself be done through
the data of an arbitrary traceless tensor Uij by setting Y := Lγ,confV +U
and imposing the requirement that the vector V satisfy the following
elliptic system:

Δγ,confV ≡ D · (Lγ,confV ) = −D · U.

The traceless tensor Y is then also transverse, i.e. satisfies D · Y = 0.
The arbitrary data in the extrinsic curvature K is in this scheme
the symmetric traceless tensor U ij . The physical extrinsic curvature is
given by

Kij = ϕ−2
[
Lγ,conf(X + V )ij + U ij

]
+

1
3
ḡijτ.

The splitting of the solution K̃ into a given traceless tensor U and the
conformal Lie derivative of an unknown vector X depends on the choice
of γ, not only on its conformal class.46 46More refined splittings have been

given by York under the name of con-
formal thin sandwich.Exercise VIII.8.6 Prove this statement.

VIII.8.3 Physical comment

The conformal method is a mathematical, geometric convenience. The
tilde (∼) quantities are not directly observable. There is a large arbi-
trariness in the choice of their scaling, although some justifications are
given a posteriori, at least for electromagnetic field sources. The tilde
quantities play the role of parameters to construct initial data solutions
of the constraints that can, hopefully, be used for evolution and lead to
results that can be confronted with observations.

VIII.9 Motion of a system of compact
bodies

There is now a wealth of new results from observations of motions of
stars and galaxies obtained by powerful Earth-based and satellite tele-
scopes. Also, a new generation of gravitational wave detectors (LIGO,
GEO, TAMA, and VIRGO) are now operational, and it is hoped that
within the next few years they will reach sensitivities that will allow for
the first time observations of gravitational radiation. The prime targets
of these observations are the motions of compact binaries: black holes
and neutron stars. A fundamental problem for Einsteinian gravitation
theory is the modelling of the motion and the gravitational wave emis-
sion of systems of compact bodies. For many years, considerable effort
has been spent towards this goal, with little success until fairly recently,
because of the nonlinearity of the equations, their hyperbolic–elliptic
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character, and the insufficient stability of the solution of the chosen evo-
lution equations, in particular the so-called ADM ones for ḡ and K. In
Newtonian theory, two bodies represented by pointlike masses describe
conics with focus situated at the centre of gravity.4747The problem becomes arduous when

more than two bodies are involved.
In Einsteinian gravi-

tation, the dynamics of two-body systems is already too complex to be
solved exactly, and prediction of the gravitational radiation they will
emit in their inspiralling and merger can be obtained only by refined
approximation methods (analytical or numerical) after a clever choice
of unknowns and gauges, and splitting of equations between constraints
and evolution. The mathematical well-posedness of the considered sys-
tem is of course essential for the stability and reliability of the results.
Refined analytical results have been obtained in the last decade both
by the high-order post-Newtonian approach and by using the effective
one-body (EOB) method. In parallel, thanks to the advent of extremely
powerful computers, accurate numerical simulations of two-body systems
have been obtained using various numerical codes. The results of the two
types of methods (analytical and numerical) have been compared and
found to be in remarkable agreement.4848For recent comparisons, see, for in-

stance, Damour, Nagar, and Bernuzzi
(2013) and Hinder et al. (2014).

VIII.9.1 Effective one-body (EOB) method

The EOB formalism4949See Damour and Nagar (2011). is an analytical approach that replaces the usual
post-Newtonian expanded approximations to the motion and radiation
of binary systems by resummed expressions. This formulation allows one
to describe the dynamics of binary black hole systems up to the moment
of the coalescence of the two black holes, and is further completed by
the description of the final ringdown gravitational wave signal emitted
by the distorted black hole formed during the coalescence process. This
formalism thereby provides a quasi-analytical description of the entire
waveform emitted by a binary black hole system from early inspiralling
up to the final ringdown. It has also been extended to the description of
the coalescence of binary neutron star systems.

VIII.9.2 Numerical Relativity

Although its origins lie in the 1960s, it is in the years since 2005 that
Numerical Relativity has seen considerable expansion, owing to the
enormous growth in the power of computers and to the development
of stable codes describing the coalescence of compact binary systems.
This has permitted the modelling of more realistic situations than be-
fore, although difficulties remain. Two main codes are now in use: one
is based on damped generalized wave coordinates,50

50See Pretorius (2007) and references
therein.

while the other,
called BSSN,5151Baumgarte–Shapiro–Shibata–

Nakamura.
is a modification of the 3+1 decomposition using con-

formal weights. The code BSSNz4 improves the stability of results by
introducing four more unknowns linked with the harmonicity functions.

Numerical Relativity is a science in itself, outside of the scope of this
book.52

52See, for instance, Rezzolla and Zan-
otti (2013).



VIII.10 Global properties 195

VIII.10 Global properties

VIII.10.1 Global hyperbolicity and global uniqueness

A fundamental notion in the study of global properties of solutions of
hyperbolic partial differential equations is that of global hyperbolic-
ity, defined by Jean Leray53

53Leray (1953). The notion was applied
and described in detail for Lorentzian
manifolds by Choquet-Bruhat (1968).

for general hyperbolic differential equations
as compactness54 54The empty set is considered as com-

pact.
(in a functional space) of paths joining two points

whose tangent belong to the cone determining the domain of depend-
ence of solutions of the Cauchy problem; that is, causal paths in the case
of relativistic causal systems. Global hyperbolicity forbids, in particu-
lar, the existence of closed causal curves.55

55A path is a mapping from an inter-
val of R into the manifold; a curve is
the image of a path in the manifold.
A closed causal curve can be covered
by an infinite sequence of causal paths
joining two points, a non-compact set.

Later, Penrose56

56See, for instance, Penrose (1968).

introduced
what he called strong causality: a Lorentzian manifold (V, g) is said
to be strongly causal if any neighbourhood of any point x contains a
smaller neighbourhood such that no causal curve penetrates in it more
than once. It can be proved57

57See Choquet-Bruhat (1968).
that global hyperbolicity is equivalent to

strong causality together with compactness of the subsets of V that are
intersections of the past of any point x with the future of any other point
y, traditionally denoted by I−(x) ∩ I+(y).

A very useful definition due to R. Geroch is that of a Cauchy hy-
persurface in a Lorentzian manifold (V, g), that is, a submanifold S
of codimension 1 intersected once and only once by each inextendible
timelike curve. Geroch58 58Geroch (1970). For a detailed proof,

see, for instance, Ringström (2009).
proved that the existence of a Cauchy sur-

face is equivalent to global hyperbolicity. He also proved the important
property that the support of the spacetime is then a product S ×R.

With these definitions, one can complete the existence theorem by a
global uniqueness theorem proved by Choquet-Bruhat and Geroch;59 59Choquet-Bruhat and Geroch (1969).it
uses in particular Zorn’s lemma. Proofs without the use of this lemma
have been published recently.60 60See Ringström (2009), corrected by

Ringström in <http://www.math.kth.
se/∼hansr/mghd.pdf> and in Sbierski
(2013).

Theorem VIII.10.1 (existence and geometric global uniqueness) A
vacuum Einsteinian development (V, g) of an initial data set (M, ḡ,K),
satisfying the vacuum Einstein constraints, exists and is unique (up to
an isometry) in the class of maximal 61 61Which cannot be embedded in a big-

ger one.
globally hyperbolic spacetimes.

The manifold M embedded in (V, g) is a Cauchy hypersurface.

VIII.10.2 Global existence

A solution of the vacuum Einstein equations is called global if it is a
complete Lorentzian manifold. It is generally called singular if it is in-
complete. Incompleteness can result from the appearance of a curvature
singularity (with the Kretschmann scalar62 62The square of the Riemann tensor.tending to infinity on a
causal curve for a finite value of the canonical parameter) or another
phenomenon.63 63See Problem IV.11.4 on Taub space-

time.
Proving either global existence of solutions or, on the

contrary, their incompleteness and the formation of singularities, are
difficult problems and the subject of active research. Some remarkable
achievements linked with the special properties of the Einstein equa-
tions, fundamental in physics but quite particular nonlinear geometric

http://www.math.kth.se/~hansr/mghd.pdf
http://www.math.kth.se/~hansr/mghd.pdf
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differential equations, have been obtained in the last twenty years with
the use of advanced and intricate mathematics. The details of these
achievements are outside of the scope of this book (in fact of any book
of reasonable size!). We will only give some definitions and quote some
results with references to original papers.

A future global existence theorem for data near Minkowskian data
on a manifold tending to a null manifold at infinity was given by H.
Friedrich6464Friedrich (1986). using an original conformal construction and the Newman–
Penrose formalism.6565This formalism uses on a four-

dimensional manifolds Weyl spinors
represented by objects with 2-index
components.

For a tensorial formulation of
the Friedrich conformal system, see
Choquet-Bruhat and Novello (1987),
CB-DM II, Chapter V, Section 7.

A breakthrough in the problem of global existence for initial data
on a spacelike manifold was the proof in 1989 by Christodoulou and
Klainerman66

66See Christodoulou and Klainerman
(1993). See also Klainerman and Nicolo
(2003) and Bieri (2007).

of the global nonlinear stability of Minkowski spacetime—
that is, the construction of complete globally hyperbolic solutions of the
vacuum Einstein equations with asymptotically Euclidean initial data
near data for the Minkowski spacetime.67

67This theorem showed that Einstein’s
intuition that the only global asymp-
totically Euclidean vacuum solution of
his equations is Minkowski spacetime
required one more hypothesis to be
true, namely a faster fall-off of the met-
ric at spatial infinity, which implies the
vanishing of the ADM mass.

They used in particular a
double null foliation and delicate estimates of the Riemann tensor.68

68Their proof has been notably simpli-
fied by Lydia Bieri. For the use of equa-
tions satisfied by the Riemann tensor,
see Problem I.14.5 in Chapter I.

The proof of the global nonlinear stability of Minkowski spacetime was
obtained later by Lindblad and Rodnianski69

69Lindblad and Rodnianski (2005).

through wave coordinates
and the use of special properties (a kind of generalized null condition)
of the Einstein equations. The global existence result has been extended
to cases of Einstein equations with field sources, and even to the case or
irrotational fluid sources.70

70Rodnianski and Speck (2009).

Proofs of global existence have been obtained for small initial data on
several categories of compact manifolds with symmetries by: Moncrief,
by Choquet-Bruhat and Moncrief, and by Choquet-Bruhat, and, in a
case without symmetries, by Andersson and Moncrief.71

71See articles and references in
Chruściel and Friedrich (2004).

VIII.11 Singularities and cosmic
censorship conjectures

The problem of the formation of singularities from generic initial data
was attacked by Penrose and Hawking in the 1970s.7272See Hawking and Ellis (1973). Inspired by the
Schwarzschild solution, they discussed what they called the strong and
the weak cosmic censorship conjectures. These conjectures con-
cern generic Einsteinian spacetimes with physically reasonable sources.
A generic spacetime can be understood as a spacetime with no iso-
metry group, or as a spacetime that is stable (in some sense to be
defined), under small perturbations. Reasonable sources are physical
sources that have a hyperbolic, causal evolution and do not have their
own singularities (shocks, shell crossings, etc.).

VIII.11.1 Strong cosmic censorship conjecture

The strong cosmic censorship conjecture73
73Suggested in private discussions by
Geroch and Penrose in 1969, and
formalized by Eardley and Mon-
crief (1981).

aims at proving the deter-
ministic character of General Relativity at the classical (non-quantum)
level. It can be formulated as follows:
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Strong cosmic censorship conjecture The maximal globally hyper-
bolic vacuum Einsteinian development of generic74 74Loosely speaking ‘generic’ means

‘without special properties’. In a more
precise mathematical sense, it can be
interpreted that ‘generic initial data’
form a dense subset of the set of pos-
sible initial data in some relevant top-
ology, see for instance discussion in
Isenberg and Moncrief (2002).

initial data is
inextendible as a vacuum, even non-globally hyperbolic, Einsteinian
spacetime.75

75The formulation leaves open the
smoothness required of extendibility
and also the hypotheses on initial data.
It was pointed out by P. Chruściel that
the requirement that the initial mani-
fold (M, ḡ) be complete is not sufficient
to make the conjecture plausible—
initial data for Minkowski spacetime
on a hyperboloid are then a trivial
counterexample.

The inextendibility is sometimes conjectured to hold for all devel-
opments, not necessarily solutions of the Einstein equations—this is
certainly the case when incompleteness is due to the appearance of
infinite curvature.

Examples of non-globally hyperbolic extensions of a globally hyper-
bolic spacetime with initial data on S3 are provided by the
Taub–NUT spacetimes.76

76See Problem IV.11.4 in Chapter IV.

However, these extensions do not provide a
counterexample to the strong cosmic censorship conjecture, because the
Taub spacetime, because of its symmetries, is not generic. V. Moncrief
and J. Isenberg have shown that some qualitative features of Taub–NUT
spacetime imply in fact the existence of an isometry group.

VIII.11.2 Weak cosmic censorship conjecture

The original idea of Penrose came from the study of spherical gravi-
tational collapse where a black hole forms, hiding the singularity to
timelike observers. The weak cosmic censorship conjecture77 77The weak and strong cosmic conjec-

tures are independent.
is that

in generic Einsteinian spacetimes with physically reasonable sources, it
is not possible for there to form any naked singularity, that is, a sin-
gularity visible by an observer; in other words, the past of no point x
contains a future causal curve that is inextendible.

Note that the big bang is not a counterexample to this conjecture—it
has no past, and hence does not correspond to any future inextendible
causal curve. Nor is the Schwarzschild metric with m < 0 on the mani-
fold (R3 − {0}) × R a counterexample to the ‘non-naked singularity’
conjecture, because it is not considered to be a physically meaningful
metric.

A more elaborate version of the weak cosmic censorship conjecture
uses the Penrose definition of conformal null infinity—it raises technical
difficulties regarding the existence and smoothness of the boundary of a
Penrose diagram for general spacetimes.

Christodoulou has obtained in a series of papers complete results sup-
porting the weak cosmic censorship conjecture for the Einstein–scalar
equations with spherical symmetry.

An important theorem due to Penrose links the existence of sin-
gularities with trapped surfaces.78 78Penrose (1965).In a four-dimensional spacetime, a
trapped surface S is a two-dimensional compact spacelike surface
without boundary (typically a sphere) such that the two families of
future-directed null geodesics orthogonal to S have a positive conver-
gence whether they are directed inwards or outwards. Penrose’s theorem
says that in a non-compact spacetime, a trapped surface always hides
an incompleteness of the spacetime.
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In a 500-page book7979Christodoulou (2009). Christodoulou proves the formation of
trapped surfaces due to ‘short-pulse’ data on a characteristic cone.
Christodoulou’s8080Klainerman, Luk, and Rodnian-

ski (2013).
construction has recently been extended by Klain-

erman, Luk, and Rodnianski to data on a null geodesic segment and his
proof has been simplified.

VIII.12 Problems

VIII.12.1 Symmetric hyperbolic systems

The system of N first-order linear partial differential equations on
Rn ×R,

Mα ∂

∂xα
u+ Au+ f = 0, i.e. Mα,IJ ∂

∂xα
uI + AIJuI + fJ = 0,

(VIII.12.1)
with u = (uI , I = 1, . . . , N) a set of N unknown functions, f = (f I , I =
1, . . . , N) a set of given functions, and Mα and A given N×N matrices,
is called symmetric hyperbolic (SH) if the matrices Mα are sym-
metric (Mα,IJ = Mα,JI) and the quadratic form defined by the matrix
M0, the coefficient of ∂/∂x0, is positive-definite; that is,

M0(u, u) ≡ M0,IJuIuJ > 0 for all u 
= 0.

1. Define a function called the energy of u at time x0 = t by the
integral

Et(u) :=
1
2

∫
x0=t

M0(u, u) dnx, dnx := dx1 . . . dxn. (VIII.12.2)

Show that under appropriate smoothness and boundary conditions,
Et(u) satisfies the energy equality

ET (u) = Et0(u) +
∫ T

t0

∫
x0=t

[
1
2

(
∂

∂xα
MαIJ

)
uJuI

+ AIJuJuI + fJuJ

]
dnx dt.

(VIII.12.3)

2. Show that the energy equality implies an integral energy inequal-
ity of the form

ET (u) ≤ Et0(u) +
∫ T

t0

[
C1(t)Et(u) + C2(t)E

1
2
t (u)

]
dt. (VIII.12.4)

Deduce from it a bound of the energy.
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Solution

1. It holds that

uJMα,IJ ∂

∂xα
uI ≡ uIMα,JI ∂

∂xα
uJ ,

and hence, if the matrices Mα are symmetric (i.e. Mα,IJ = Mα,JI),
then

uJMα,IJ ∂

∂xα
uI =

1
2
Mα,IJ ∂

∂xα
(uIuJ)

≡ 1
2

∂

∂xα
(uIuJMα,IJ ) − 1

2
uIuJ

∂

∂xα
Mα,IJ .

Under appropriate smoothness and fall-off conditions at infinity,
the integral on Rn of (∂/∂xi)(uIuJMi,IJ ) vanishes owing to Stokes’s
formula. There remains the equality∫ T

t0

∫
x0=t

{
1
2

[
∂

∂x0
(uIuJMα,IJ ) − uIuJ

∂

∂xα
Mα,IJ

]

+ AIJuIuJ + fJuJ

}
dxn dx0 = 0,

which gives the energy equality after performing in the first term the
integrations first with respect to xn and then over x0.

2. Assume that M0 is uniformly positive-definite, i.e.

M0,IJuIuJ ≥ C0|u|2, C0 > 0, a constant,

while (∂/∂xα)Mα,IJ and AIJ are uniformly bounded and fJ is
square-integrable for each t. It is straightforward to deduce an inte-
gral energy inequality of the given form from the energy equality using
elementary properties of integrals and the Cauchy–Schwarz inequality∣∣∣∣

∫
Rn

uf dnx

∣∣∣∣ ≤
(∫

Rn

|u|2 dnx

) 1
2
(∫

Rn

|f |2 dnx

) 1
2

.

To prove the energy inequality, one uses a general theorem81 81See the proof for instance in Cho-
quet (2006).

for dif-
ferential equations that says that if f(t, y) is a function continuous in t
and Lipschitzian in y, then the differential equation

z′ = f(t, z)

has one and only one maximal solution taking a given initial value. Any
C1 function y satisfying the inequalities

y′ ≤ f(t, y), y(t0) ≤ z(t0)

satisfies y(t0) ≤ z(t0).
This theorem implies that if y(t) satisfies the integral inequality

y(T ) ≤ y(t0) +
∫ T

t0

[
C1y(t) + C2y(t)

1
2

]
dt, (VIII.12.5)
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with C1 and C2 non-negative, then y(t) is less than or equal to the
function z satisfying the corresponding equality8282A result sometimes called Grönwall’s

lemma.
and such that z(t0) ≥

y(t0).
In the considered case, y(t) := Et(u), one finds that z is the solution

of an equation of the form

z′ = C1z + C2z
1
2 ,

i.e. setting z = ζ2, the linear equation

2ζ ′ = C1ζ + C2,

which has a solution with initial data ζ0 := y
1
2
0 continuous and bounded

for all finite t. Writing down this solution is left as an exercise for the
reader.

VIII.12.2 The wave equation as a symmetric
hyperbolic system

1. The wave equation with mass a constant m for a scalar function u on
a Lorentzian manifold (V, g) is

gαβ∇α∂βu−mu+ f = 0.

For g = η, the Minkowski metric, write this as a symmetric hyperbolic
system.

For m a constant, compare the ‘mathematical energy’ of u defined
by (12.2) with the physical energy as it would be defined from the
wave equation by multiplying it with ∂u/∂t.

2. Extend the study to the case when (V, g) is a sliced Lorentzian
manifold.

Solution

1. Recall our signature (−,+ + . . .+). The equation reads

−ηαβ∇α∂βu+mu ≡ ∂2
00u−

∑
i

∂2
iiu+mu = f, ∂α :=

∂

∂xα
.

Set uα = ∂αu and consider the system Mα∂αU with unknowns UI =
(u, uα):

∂0u = u0, ∂0ui − ∂iu0 = 0, ∂0u0 −
∑

i

∂iui +mu = f
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The principal operator Mα∂α is the matrix⎛
⎜⎜⎜⎜⎝

∂0

∂0 −∂1

∂0 −∂1

∂0 −∂1

−∂1 −∂2 −∂3 ∂0

⎞
⎟⎟⎟⎟⎠ .

The matrices Mα are obviously symmetric and M0, the unit matrix,
is positive-definite.

Multiplication of the wave equation by ∂u/∂t gives by simple
computation the identity, if m is a constant:

∂u

∂t

[
∂2u

∂t2
−
∑

i

∂2u

(∂xi)2
+mu− f

]

≡ 1
2
∂

∂t

[(
∂u

∂t

)2

+
∑

i

(
∂u

∂xi

)2

+mu2

]
−
∑

i

∂

∂xi

(
∂u

∂t

∂u

∂xi

)
=
∂u

∂t
f.

Hence, by integration when f ≡ 0, using Stokes’s formula,

1
2

∫
Mt

[(
∂u

∂t

)2

+
∑

i

(
∂u

∂xi

)2

+mu2

]
dx1 . . . dxn = constant if f ≡ 0.

The integrand is interpreted as the physical energy density at time t,
positive if m ≥ 0 and zero for m = 0 only if u = constant.

2. For a non-flat Lorentzian metric on a sliced manifold, we take an
orthonormal frame adapted to the slicing,

g = ηαβθ
αθβ ,

with

θ0 = N dt, θi = ai
j dx

j+βi dt, hence ∂0 =
∂

∂t
−βi ∂

∂xi
, ∂i = Aj

i

∂

∂xj
.

The wave operator reads

gαβ∇α∂βu ≡ ηαβ(∂α∂βu+ γλ
αβ∂λu).

Introducing the new unknowns uα = ∂αu and the identities

∂0ui − ∂iu0 = Cα
i0uα

gives for the unknowns U = (u, uα) a linear system with operator in
matrix form

Mα∂αU +AU.

The matrices Mα are the same as in the Minkowski case, and hence
symmetric, and the matrix coefficient of ∂/∂t in M0 is the Minkowski
M0 metric. The same reasoning applies as previously.
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VIII.12.3 The evolution set of Maxwell equations
as a first-order symmetric hyperbolic system

The evolution set of Maxwell equations on Minkowski spacetime M4,
with unknowns (E,H), comprises (see Chapter II)

∂E1

∂t
=
∂H3

∂x2
− ∂H2

∂x3
− j,

∂H1

∂t
=
∂E2

∂x3
− ∂E3

∂x2
, (VIII.12.6)

together with the equations obtained by circular permutation of the
indices 1, 2, 3. The characteristic matrix Mα∂α is

⎛
⎜⎜⎜⎜⎜⎜⎝

∂0 −∂2 ∂3

∂0 −∂2 ∂1 0
∂0 ∂3 −∂1

−∂2 −∂3 ∂0

−∂2 ∂1 ∂0

∂3 0 −∂1 ∂0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

It is symmetric, and M0, the unit matrix, is positive-definite. Note
that in this case the energy densities corresponding to symmetric
hyperbolicity and to physics coincide, both being equal to 1

2 (|E|2+|H|2).

VIII.12.4 Conformal transformation of the CF
constraints

Show that two different choices of the given metrics γ and γ′ lead
to equivalent conformally formulated constraints if the sources are
appropriately chosen.

VIII.12.5 Einstein equations in dimension 2 + 1

The vacuum Einstein equations are trivial in the case n = 2 in the
sense that Ricc(g) = 0 implies that the spacetime metric g is locally flat
when n + 1 = 3. However, the (2 + 1)-dimensional Einstein theory has
a topological content: (V, g) is not necessarily the Minkowski spacetime
M3. In particular, V = S×R with S a two-dimensional compact surface
can be a Lorentzian flat manifold with S the torus T 2 or a surface
of genus greater than 1. On the other hand, (2 + 1)-dimensional, non-
flat, Einstein equations with sources appear for spacetimes that admit
a one-parameter spacelike isometry group.8383See Choquet-Bruhat and Moncrief

(2001) and Choquet-Bruhat (2004). Write a conformal formulation of the constraints in the case n = 2 by
setting84

84Moncrief (1986).

ḡ = exp(2λ)γ and Kij = exp(4λ)K̃ij +
1
2
ḡijτ.
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Solution

Elementary computation gives

∇̄iK
ij − ḡij∂iτ ≡ exp(4λ)DiK̃

ij − 1
2
γ̄ij exp(−2λ)∂iτ.

The constraints split again into a linear system for K̃ and a semilin-
ear equation for λ when K̃ is known, if τ is a given constant and the
momentum of the sources is zero, or properly weighted.

VIII.12.6 Electrovac Einsteinian spacetimes,
constraints

The Einstein equations with electromagnetic source are (see Chapter IV)

Sαβ = ταβ ≡ Fα
λFβλ − 1

4
gαβF

λμFλμ, (VIII.12.7)

where the electromagnetic 2-form satisfies the Maxwell equations

dF ≡ 0, i.e ∇αFβγ + ∇γFαβ + ∇βFγα = 0, (VIII.12.8)

and, in vacuo,

δF = 0, i.e. ∇αF
αβ = 0. (VIII.12.9)

The electromagnetic initial data on a hypersurface M are a 2-form F̄
and a vector field Ē. The 2-form F̄ is the form induced on M by the
electromagnetic field F, while Ē is the electric vector field on M relative
to the unit normal n to M in the spacetime metric.

1. Show that in a Cauchy adapted frame, the components of Ē are

Ēi := N̄ F̄ 0i, with N the lapse of the metric g. (VIII.12.10)

2. Show that a solution of the Maxwell equations must satisfy on M the
constraints

dF̄ = 0, i.e ∇̄hF̄ij + ∇̄jF̄hi + ∇̄iF̄jh = 0, (VIII.12.11)

and

∇̄iĒ
i = 0. (VIII.12.12)

Solution

1. Eβ = nαF
αβ , nα = Nδ0α, i.e E0 = 0, Ei = NF 0i.

2. dF = 0 and δF = 0 on M imply

∂hF̄ij + ∂jF̄hi + ∂iF̄jh ≡ ∇̄hF̄ij + ∇̄jF̄hi + ∇̄iF̄jh = 0

and

∇αFα0 ≡ ∂iF i0+Γα
αiF

i0+Γ0
αλF

αλ ≡ 1√
Det g

√
g∂iF i0 + F i0∂i

√
g = 0,
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that is, using Det g ≡ N2 det ḡ,

∂i(N̄
√

Det ḡF̄ 0i) ≡ ∇̄Ēi = 0. (VIII.12.13)

VIII.12.7 Electrovac Einsteinian spacetimes,
Lorenz gauge

The vector potential A is a locally defined 1-form such that

F = dA, i.e. Fαβ = ∂αAβ − ∂βAα. (VIII.12.14)

The first Maxwell equation dF = 0 is automatically satisfied. The
potential A is said to be in Lorenz8585It seems that this gauge, although

used by Lorentz, was first introduced
by another mathematician named Lor-
enz (without a ‘t’).

gauge if it has zero divergence:

∇αA
α ≡ 0. (VIII.12.15)

Show that, in vacuo, the second Maxwell equation reduces in wave
coordinates and Lorentz gauge to a quasidiagonal semilinear system of
wave equations for the components of A of the form

gαλ∂λ∂αAβ = fβ(g, ∂g, ∂A). (VIII.12.16)

State a local-in-time existence and uniqueness theorem for a solution of
the Cauchy problem for the Einstein–Maxwell system

Solution

∇αFαβ ≡ gαλ(∂λFαβ − Γμ
λβFαμ − Γμ

λαFμβ) = 0.

In wave coordinates, it holds that gαλΓμ
λα = 0, and the above system

reads, in terms of A,

gαλ
[
∂λ∂αAβ − ∂λ∂βAα − Γμ

λβ(∂αAμ − ∂μAα)
]

= 0.

By elementary manipulations, these equations become

gαλ∂λ∂αAβ − ∂β(gαλ∂λAα) + (∂βg
αλ)∂λAα − Γμ

λβ(∂αAμ − ∂μAα) = 0.
(VIII.12.17)

If A satisfies the gauge condition gαλ∂λAα = 0, they reduce to a qua-
sidiagonal semilinear system of wave equations for the components of A,
of the form

gαλ∂λ∂αAβ = fβ(g, ∂g, ∂A). (VIII.12.18)

The equation gαλ∂λAα = 0 is equivalent in wave coordinates, where
gαλΓμ

αλ ≡ 0, to the Lorenz gauge condition, because

∇λA
λ ≡ gαλ∇λAα ≡ gαλ(∂λAα − Γμ

λαAμ).

Equations (12.18) together with the Einstein equations in wave gauge,
with source the Maxwell tensor of F, constitute a quasidiagonal quasi-
linear system of wave equations for the pair g,A. Local existence and
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uniqueness for a solution of the Cauchy problem for the pair (g,A) in
wave and Lorenz gauge results from the general theorem quoted before.
The proof that the constructed (g,A) satisfies the gauge conditions if
the initial data satisfy the constraints follows lines analogous to those
given in Section VIII.4, using, in addition, the identity ∇α∇βF

αβ ≡ 0.
Various other gauge conditions can be used on A to solve the Maxwell

equations: for example the temporal gauge A0 = 0 or the Coulomb gauge
∇iA

i = 0. They have proved useful in different domains.
All these gauges, like the Lorenz gauge, generalize to Yang–Mills fields.

They lead to equations with the same principal parts as in the case of
electromagnetism, but in this case only semilinear.86 86That is to say, only linear in the prin-

cipal terms—in the case of the Yang–
Mills system, the first-order derivatives.

VIII.12.8 Wave equation for F

1. Show that the Maxwell equations satisfied by the electromagnetic 2-
form F on a Lorentzian manifold (V, g) imply that F satisfies on V a
quasidiagonal, quasilinear system of wave equations with coefficients
depending on the curvature of g.

2. Extend the result to the Yang–Mills case.

Solution

1. The Maxwell equations in vacuuo, dF = 0, δF = 0, imply

(δd+ dδ)F = 0; (VIII.12.19)

that is,87 87See, for instance, the expression for
this operator for an arbitrary p-form in
CB-DMI, V B 4.

by straightforward computation using the Ricci identity,

gαβ∇α∇βFλμ +Rα
μFαλ −Rα

λFαμ + 2Rα
λ,

β
μFαβ = 0. (VIII.12.20)

2. The Yang–Mills gauge- and metric-covariant derivative of F is defined
by

∇̂F := ∇F + [A,F ], (VIII.12.21)

with ∇ the Riemannian covariant derivative and [., .] the bracket in
the Lie algebra corresponding to the considered Yang–Mills model.
The Yang–Mills equations in vacuo are

∇̂αFβγ + ∇̂γFαβ + ∇̂βFγα = 0 (VIII.12.22)

and

∇̂αF
αβ = 0. (VIII.12.23)

These equations imply the following second-order semilinear equation
for F, depending on A:

∇̂λ∇̂λFαβ − 2[F γ
α , Fγβ ] = 0, (VIII.12.24)
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where

∇̂λ∇̂λFαβ ≡ ∇λ∇λFαβ + 2∇γ [Aγ , Fαβ ] − [∇γA
γ , Fαβ ]

+ [Aγ , [Aγ , Fαβ ]]. (VIII.12.25)

This equation for F plays an essential role in the proof of the global
existence of a solution of the Cauchy problem for the Yang–Mills
equations by Eardley and Moncrief.8888Eardley and Moncrief (1982). See

also the survey article by Choquet-
Bruhat (1983).

VIII.12.9 Wave equation for the Riemann tensor

Show that the Riemann tensor of an Einsteinian spacetime of arbi-
trary dimension satisfies a quasidiagonal semilinear system of wave
equations8989Bel (1958). in the spacetime metric.

Solution

The Riemann tensor satisfies the Bianchi identities

∇αRβγ,λμ + ∇γRαβ,λμ + ∇βRγα,λμ ≡ 0. (VIII.12.26)

One deduces from this identity and the Ricci identity an identity of the
form

∇α∇αRβγ,λμ+∇γ∇αRαβ,λμ+∇β∇αRγα,λμ+Sβγ,λμ ≡ 0, (VIII.12.27)

where Sβγ,λμ is a homogeneous quadratic form in the Riemann tensor:

Sβγ,λμ ≡{Rγ
ρRρβ,λμ +Rα

γ,β
ρRαρ,λμ + [(Rα

γ,λ
ρRαβ,ρμ) − (λ→ μ)]}

− {β → γ}.
(VIII.12.28)

Returning to the Bianchi identities gives, by contraction,

∇αRβγ ,
α

μ + ∇γR
α

αβ, μ + ∇βR
α

γα, μ ≡ 0. (VIII.12.29)

Therefore, using the symmetry Rαβ,λμ ≡ Rλμ,αβ ,

∇αR
α

β,λμ + ∇μRλβ −∇λRμβ ≡ 0. (VIII.12.30)

If the Ricci tensor Rαβ satisfies the Einstein equations Rαβ = ραβ , then
the previous identities imply equations of the form

∇α∇αRβγ,λμ + Sβγ;λμ = Jβγ,λμ, (VIII.12.31)

where Jβγ,λμ depends on the sources ραβ and is zero in vacuum:

Jβγ,λμ ≡ ∇γ(∇μρλβ −∇λρμβ) − (β → γ). (VIII.12.32)

Note that (12.26) and (12.29) modulo the Einstein equations are
analogous to the Maxwell equations for the electromagnetic 2-form F :

dF = 0, δF = J, (VIII.12.33)

where J is the electric current.
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VIII.12.10 First-order symmetric hyperbolic system
for the Riemann tensor, Bel–Robinson
energy

Write in a Cauchy adapted frame a first-order symmetric differential
system with constraints satisfied by the Riemann tensor of a (3 + 1)-
dimensional Einsteinian spacetime.

Solution

In a coframe θ0, θi where g0i = 0 the Bianchi identities (12.26) with
{αβγ} = {ijk} and the equations (12.30) with β = 0 do not contain
derivatives ∂0 of the Riemann tensor. We call them ‘Bianchi constraints’.
The remaining equations, called from here on ‘Bianchi equations’, read
as follows:

∇0Rhk,λμ + ∇kR0h,λμ + ∇hRk0,λμ = 0, (VIII.12.34)

∇0R
0
i,λμ + ∇hR

h
i,λμ = ∇λρμi −∇μρλi ≡ Jλμi, (VIII.12.35)

where the pair (λμ) is either (0j) or (jl), with j < l. There are three of
one or the other of these pairs if the space dimension n = 3.

Equations (12.34) and (12.35) are, for each given pair (λμ, λ < μ), a
first-order system for the components Rhk,λμ and R0h,λμ. If we choose
at a point of the spacetime an orthonormal frame, then the principal
operator is diagonal by blocks; each block corresponding to a choice of
a pair (λμ, λ < μ) is a symmetric 6 × 6 matrix that reads

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂0 0 0 ∂2 -∂1 0
0 ∂0 0 0 ∂3 -∂2

0 0 ∂0 -∂3 0 ∂1

∂2 0 -∂3 ∂0 0 0
-∂1 ∂3 0 0 ∂0 0
0 -∂2 ∂1 0 0 ∂0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The numerically valued matrix Mt of coefficients of the operator ∂/∂t
corresponding to the Bianchi equations relative to the Cauchy adapted
frame is proportional to the unit matrix, with coefficient N−2, and hence
is positive-definite; thus the proof is complete. The energy corresponding
to the first-order symmetric hyperbolic system (12.34), (12.35) is the
Bel–Robinson energy.

VIII.12.11 Schwarzschild trapped surface

Show that a 2-surface t =constant, r = r0 of the Schwarzschild spacetime
is not trapped if r0 > 2m. Show that it is trapped if r0 ≤ m.
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IX.1 Introduction

A fluid matter source in a domain of a spacetime (V, g) is such that
there exists in this domain a timelike vector field u, called the unit
velocity, satisfying g(u, u) ≡ gαβu

αuβ = −1, whose trajectories are the
flow lines of matter. A moving Lorentzian orthonormal frame is called
a proper frame if its timelike vector is u. In a proper frame, the unit
velocity has components u0 = 1, ui = 0.

One may also consider null fluids, with flow lines trajectories of a null
vector field u, i.e. such that uαuα = 0.

The Einstein equations with fluid source are

Sαβ ≡ Rαβ − 1
2
gαβR = Tαβ , (IX.1.1)

where the stress–energy (momentum) tensor T is deduced from the
equivalence principle and its expression in Special Relativity (see Chap-
ters II and III) for the considered type of fluid. The conservation
equations

∇αT
αβ = 0, (IX.1.2)

which in Special Relativity resulted from the physical laws of conserva-
tion of energy and momentum, are in General Relativity1

1As said before (Chapter IV), this
property motivated Einstein in the
choice of his equations.

a consequence
of the Bianchi identities. The conservation equations (1.2) must some-
times be completed by equations satisfied by other physical quantities
appearing in T (e.g. the electromagnetic field).

In this chapter, we will describe general properties of perfect fluids.
When appropriate definitions are given, a number of these properties
generalize well-known properties of non-relativistic perfect fluids. How-
ever, the equivalence of mass and energy in Relativity introduces a
number of fundamental differences. The relativistic causality principle,
limitation by the speed of light of the speed of any macroscopically
transmitted signal, leads also to new considerations.

We will only briefly touch on the case of dissipative fluids, which are
still subject to controversies.

IX.2 Case of dust

A fluid source is called pure matter or dust if in a proper frame, it
has neither momentum nor stresses; hence, in a proper frame, the only
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non-vanishing component of the stress–energy tensor is T00 = r, the
proper mass density. In an arbitrary frame,

Tαβ = ruαuβ , uαuα = −1, (IX.2.1)

where u is the unit flow velocity.
At usual laboratory, and often at astronomical, scales, this dust stress–

energy tensor is a good approximation of a general fluid stress–energy
tensor, since the mass energy is of order c2 (c being the velocity of light),
with respect to the other forms of energy.

The conservation laws for the dust stress–energy tensor read

∇αT
αβ ≡ uβ∇α(ruα) + ruα∇αu

β = 0. (IX.2.2)

They give, using the property uβuβ = −1, and hence uβ∇αu
β = 0, the

continuity equation (conservation of matter)

∇α(ruα) = 0 (IX.2.3)

and the geodesic motion of the particles

uα∇αu
β = 0. (IX.2.4)

Similar equations are obtained for a null-dust model where uαuα = 0.
The geometric initial data for the spacetime metric g on an initial

manifold M are a Riemannian metric ḡ and a symmetric 2-tensor K.
The initial data for a dust source are a scalar function r̄ on M and
a tangent vector field v̄ to M. A solution (V, g, r, u) of the coupled
Einstein–dust equations is an Einsteinian development of the initial data
set (M, ḡ,K, r̄, v̄) if ḡ and K are respectively the induced metric and the
second fundamental form of M as an embedded submanifold in (V, g),
while r̄ is the function induced by r on M and v̄ is the value on M of
the dust velocity with respect to the proper frame of an observer with
timelike vector orthogonal to M in (V, g). In local coordinates such that
the values on M of the shift and the lapse of the development are re-
spectively β̄ = 0 and N̄ = 1, it holds that v̄i = (ū0)−1ūi, where ūα are
the components of u in the considered coordinate system at points of M.

It can be proved2

2Fourès (Choquet)-Bruhat (1958). For
more refined statements on the re-
quired regularity, see YCB-OUP2009,
Chapter IX.

that an initial data set (M, ḡ,K, r̄, v̄) satisfying the
constraints for the Einstein equations with dust source admits a globally
hyperbolic and maximal Einsteinian development3 3Non-complete in general.(V, g), unique up to
isometries, with dust source (r, u).

The problem of how to use the general equations of fluid evolution to
determine the motion of isolated bodies is a long standing one, which
has received only very partial answers. In the pure matter case, it can
be proved4 4Choquet-Bruhat and Friedrich (2006).that a solution can be found for isolated bodies, i.e. when
the support ω of r̄ is the disconnected union of compact sets, by giving
to v̄ arbitrary values outside ω (see Problem IX.20.2).
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IX.3 Charged dust

The stress–energy tensor of charged pure matter55This model is seldom valid in the real
world, where opposite charges interact.

(dust) is the sum of
the stress–energy tensor of the matter and the Maxwell tensor of the
electromagnetic field F :

Tαβ = ruαuβ + ταβ , (IX.3.1)

with

ταβ = Fα
λFβλ − 1

4
gαβF

λμFλμ. (IX.3.2)

The Maxwell equations are,

dF = 0 and ∇ · F = J, i.e. ∇αF
αβ = Jβ := quβ , (IX.3.3)

where J is the convection electric current of the charge density q. They
imply the conservation of electric charge:

∇α(quα) = 0. (IX.3.4)

We introduce the electromagnetic potential A, a 1-form such that (for
simplicity, we suppose that A exists globally on the considered domain)

F = dA. (IX.3.5)

We take A in Lorenz gauge, i.e. such that

δA = 0. (IX.3.6)

The Maxwell equations then read as a wave equation for A, namely

∇α∂
αAβ −Rβ

λA
λ = Jβ = quβ . (IX.3.7)

Modulo the Maxwell equations (and uαuα = −1), the stress–energy
conservation equations are equivalent to

∇α(ruα) = 0 (IX.3.8)

and

ruα∇αu
β + quλF

βλ = 0. (IX.3.9)

Equations (3.4) and (3.8) imply

uα∂α

(q
r

)
= 0;

that is, the specific charge q/r is constant along the flow lines; it is
constant throughout the spacetime that we construct if it is constant ini-
tially. We will make this simplifying (though not necessary) hypothesis,
and set

q = kr,

with k some given constant. Equation (3.9) can then be replaced by

uα∇αu
β + kuλF

βλ = 0. (IX.3.10)
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The proof of the existence of a solution (local in time) of the Cauchy
problem for the full Einstein–Maxwell–dust system when the initial data
satisfy the Einstein and Maxwell constraints with dust source follows the
same lines as in the vacuum Einstein–Maxwell case. Geometric global
uniqueness can also be proved.

IX.4 Perfect fluid

IX.4.1 Stress–energy tensor

We have written in Chapter IV the stress–energy tensor T of a perfect
fluid in General Relativity:

Tαβ = μuαuβ + p(gαβ + uαuβ), (IX.4.1)

where u is the unit flow vector, while μ and p are respectively the energy
and pressure densities. In a proper frame, it holds that T00 = μ, T0i = 0,
and Tij = pδij , the isotropic-in-space pressure tensor. For classical fluids,
μ and p are non-negative.6 6Quantum or cosmological phenomena

can lead to the appearance of negative
pressures.Exercise IX.4.1 Show that in a spacetime of dimension n + 1, the

Einstein equations with a perfect fluid source can be written as

Rαβ = ραβ , with ραβ ≡ (μ+ p)uαuβ +
1

n− 1
gαβ(μ− p).

Hint: We have shown in Chapter IV (equation IV.2.5) that, with n the
dimension of space (in the classical case, n = 3),

ραβ ≡ Tαβ − 1
n− 1

gαβT
λ
λ .

We have here

T ≡ gαβTαβ = np− μ. (IX.4.2)

The energy–momentum vector relative to a timelike vector X is

Pα
X := TαβXβ ≡ (μ+ p)uαuβXβ + pXα. (IX.4.3)

For X = −u, the components of P are P 0 = μ, the energy density, and
P i = 0, zero momentum density.

We mention the following properties, which use a terminology fre-
quently referred to, although misleading since weak and strong condi-
tions are unrelated in the following propositions.

Proposition IX.4.1 If μ and p are non-negative, while X and Y are
causal with the same time orientation, then

1. The scalar TαβXαYβ is non-negative; one says that a perfect fluid
satisfies the weak energy condition.

2. The scalar7
7Recall that the Einstein equations can
be written as Rαβ = ραβ , ραβ :=

Tαβ − 1
n−1

Tgαβ .
ραβX

αXβ is non-negative if X is causal; such a perfect
fluid satisfies the strong energy condition.
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3. If μ > p and if X is past timelike, then the energy–momentum vec-
tor PX is future timelike like u; such a perfect fluid satisfies the
dominant energy condition.

Exercise IX.4.2 Prove these properties.

Hint: Compute these quantities in a proper frame and for Part 2 use the
property (X0)2 ≥

∑
(Xi)2.

IX.4.2 Euler equations

The conservation laws of a perfect fluid read

∇αT
αβ ≡ (μ+ p)uα∇αu

β + gαβ∂αp+ uβ [∇α(μ+ p)uα] = 0. (IX.4.4)

By taking the contracted product with uβ , one deduces from these
equations the energy equation

(μ+ p)∇αu
α + uα∂αμ = 0, (IX.4.5)

and, using this equation, one obtains the equations of motion

(μ+ p)uα∇αu
β + (gαβ + uαuβ)∂αp = 0. (IX.4.6)

The set of equations (4.4), (4.5) is called the Euler equations.

Exercise IX.4.3 Show that the condition uαuα = −1 is conserved
along the flow lines.

Hint: The equations of motion imply uα∂α(uβuβ) = 0.

IX.5 Thermodynamics

IX.5.1 Conservation of rest mass

In relativity, mass and energy are the same entity. However, there exists8
8See Taub (1959). another scalar function of physical interest, namely the particle number

density r (better called the rest mass density if there are different kinds of
particles with non-zero rest mass). In the absence of chemical reactions
or quantum phenomena, conservation of particle number implies the
equation

∇α(ruα) = 0. (IX.5.1)

The quantity r−1 plays the role of a specific volume.

IX.5.2 Definitions. Conservation of entropy

The difference between the total energy density μ and the rest mass
density r is called the internal energy density. One denotes by ε the
specific internal energy density; that is, one sets

μ = r(1 + ε). (IX.5.2)
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In the case of local thermodynamic equilibrium (reversible thermo-
dynamics), one defines a specific entropy density S and an absolute
temperature T by extending to relativistic perfect fluids the identity of
the first law of thermodynamics, namely

TdS := dε+ pd(r−1). (IX.5.3)

The thermodynamic quantities μ, p, S, and T are spacetime scalar
functions.

Theorem IX.5.1 In a perfect fluid, the thermodynamic identity (5.3)
and the matter conservation equation (5.1) imply the conservation of the
entropy density along the flow lines:9 9See Pichon (1965).

uα∂αS = 0. (IX.5.4)

Proof. The identity (5.3) and the definition (5.2) of ε give that

Tuα∂αS ≡ uα∂αε− r−2puα∂αr ≡ uαr−1∂αμ− (μ+ p)r−2uα∂αr,

and hence, using the energy equation (5.1),

Tuα∂αS ≡ −r−2(μ+ p)∇α(ruα). �

IX.5.3 Equations of state (n = 3)

For a perfect fluid, only two thermodynamic scalars are independent;
the others are linked to them by relations that are assumed to depend
only on the nature of the given fluid. Usually, the general formula called
the equation of state is the data of p as some function of μ and S:

p = p(S, μ),

invertible as a function μ = μ(p, S).
Two circumstances are of particular physical interest for General

Relativity, astrophysics, and cosmology.
In astrophysics, one is inspired by what is known from classical flu-

ids, with additional relativistic considerations. Particularly interesting
cases are those of barotropic and polytropic fluids.

Barotropic fluids

A fluids is called barotropic when the equation of state reduces to

p = p(μ).

The fluid dynamics is then governed by the energy and momentum equa-
tions. The particle number conservation equation decouples from the
others and can be solved after the fluid motion has been determined.
Some physical situations that correspond to this model are the following:

(1) Very cold matter, including models of nuclear matter, such as in
neutron stars.
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(2) Ultrarelativistic fluids, i.e. fluids where the energy μ is largely dom-
inated by the radiation energy. Then, by the Stefan–Boltzmann law,
it holds that μ = KT 4 and p = 1

3KT
4, and hence

p =
1
3
μ. (IX.5.5)

The same equations for p and μ (with different constants K) and the
equation of state (5.5) are valid for a fluid of neutrinos or electron–
positron pairs.

Remark IX.5.1 The stress–energy tensor of an ultrarelativistic fluid
is traceless.

Polytropic fluids

A fluids is called polytropic if it obeys an equation of state of the form

p = f(S)rγ .

Several physical situations correspond to this case.
Frequently in stellar situations, only the internal energy ε and pressure

p are dominated by radiation; then ε = KrT 4 and

p =
1
3
KT 4, hence p =

1
3
rε. (IX.5.6)

On the other hand, the thermodynamic identity together with the
expressions ε and p imply

dS =
4K
3
d(r−1T 3), hence S =

4KT 3

3r
. (IX.5.7)

Eliminating T between (5.6) and (5.7) gives the polytropic equation of
state of index γ = 4

3 :

p =
K

3

(
3S
4K

) 4
3

r
4
3 , with μ = 3p+ r. (IX.5.8)

More refined equations of state adapted to various physical situations
have also been considered.

In cosmology, new information obtained from modern ground-based
and satellite telescopes has brought puzzling questions. It has been
known for a long time that radiation energy is presently only a very
small fraction of the energy content of the cosmos, but it has recently
been found1010In particular by analysing data from

the Planck satellite (see Chapter VII).
that baryonic matter itself represents at present only about

4% of this energy content. Another 24% is constituted by dark matter,
whose nature is conjectural, and the remaining 72% by what is called
‘dark energy’, whose nature is a mystery.

In the early universe of the big-bang models, at very high tempera-
ture, the energy content of the sources can be roughly modelled as an
ultrarelativistic fluid. For later times, after the formation of galaxies,
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cosmologists in general have assumed, for simplicity, a linear equation
of state independent of entropy:

p = (γ − 1)μ. (IX.5.9)

In order that the speed of sound waves not be greater than the speed of
light (see Section IX.6), it has been supposed that 1 ≤ γ ≤ 2. The case
γ = 1 corresponds to dust. In the case γ = 2, the fluid is called stiff, or
incompressible. In a stiff fluid, the speeds of sound and light are equal.

IX.6 Wave fronts and propagation speeds

In the spacetime of Galilean–Newtonian mechanics a wave front is a 2-
surface in space that propagates with time. Its propagation speed at a
point of space and an instant of time is the quotient by an infinitesimal
absolute time interval δt of the infinitesimal distance between two wave
fronts measured in the direction orthogonal to them, at times t and
t + δt. In an Einsteinian spacetime, a wave front is a three-dimensional
timelike or null submanifold. The definition of its propagation speed
depends on the choice of an observer, and requires some thought.

Let us give first some definitions.

IX.6.1 Characteristic determinant

The characteristic polynomial of a linear partial differential equation
at a point x ∈ Rn+1 is the polynomial obtained by replacing in its
higher-order terms the partial derivatives ∂/∂xα by the components of
a covariant vector.

In the case of a system of N first-order partial differential equations11
11For the definition for more general
systems, see, for instance, YCB-
OUP2009, Appendix IV, Section 2.

with N unknowns U I and principal part

N∑
I=1

AJ,α
I

∂U I

∂xα
, J = 1, . . . , N,

the characteristic polynomial Φ(x, p) is the determinant of the N×N
matrix with elements AJ,α

J pα :

Φ(x, p) := Det
[
AJ,α

I (x)pα

]
.

At a given point x, the equation Φ(x, p) = 0 defines a cone in the
cotangent space called the characteristic cone.

The wave fronts associated to a system of first-order partial differ-
ential equations on a spacetime are the submanifolds of this spacetime
whose normals are roots of the characteristic determinant; that is, wave
fronts satisfy in local coordinates an equation f = 0, where f is a solu-
tion of the first-order nonlinear partial differential equation, called the
eikonal equation,
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Φ
(
x,
∂f

∂x

)
= 0.

Generically, discontinuities of the derivatives of the unknowns of the
order appearing in these principal parts can occur only across such
submanifolds.

By general results on first-order partial differential equations,1212See for instance CB-DMI, IV Chap-
ter 7.

a wave
front is generated by the bicharacteristics of the eikonal equation, also
called rays, which are solutions of the ordinary differential system

dxα

∂Φ/∂pα
= − dpα

∂αΦ/∂xα
= dλ, (IX.6.1)

where λ is a parameter, called the canonical parameter. The tangents
to the rays issuing from a given point x generate a cone in the tangent
space to the spacetime at x, called the wave cone, which is dual to the
characteristic cone. The wave cone is the envelope of the hyperplanes
whose normals (in the metric g) belong to the characteristic cone. A
wave front at x is tangent to the wave cone at x along the direction of
a ray.

Exercise IX.6.1 Show that Φ(x, p) is constant along a ray.

Exercise IX.6.2 The eikonal equation associated to the wave operator
�g on a spacetime (V, g) is

1
2
gαβ ∂f

∂xα

∂f

∂xβ
= 0. (IX.6.2)

Show that the light cone and the characteristic cone of a spacetime (V, g)
can be identified by the usual identification of the tangent and cotangent
spaces to V through the metric g.

IX.6.2 Wave front propagation speed

The propagation speed of a smooth wave front with respect to an obser-
ver is the propagation speed of the tangent plane to the wave front with
respect to the proper Lorentz frame of this observer, with the following
definition (one could give analogous definitions for higher dimensions,
but to be clearer we prefer to stick to 3 + 1).

Definition IX.6.1 The propagation speed at a point x of a three-
dimensional hyperplane P with respect to an orthonormal Lorentzian
frame at x is the velocity with respect to this frame of the vector of
greatest slope in P, orthogonal to the 2-plane1313Two 3-hyperplanes in four-

dimensional spacetimes intersect
generically along a 2-plane whose
normal in a 3-plane is a vector.

intersection of P with
the space hyperplane X0 = 0.

Lemma IX.6.1 The propagation speed V of a hyperplane with normal
ν with respect to a Lorentzian frame at x with time vector u is given by
the formula
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|V |2 =
(uανα)2

(uαuβ + gαβ)νανβ
. (IX.6.3)

Proof. The vector of greatest slope in P with respect to the Lorentz
frame with time vector u is the vector in P orthogonal to the 2-plane I
that is the intersection of P and the hyperplane orthogonal to u. This
intersection I satisfies the equations

uαXα = 0, ναXα = 0. (IX.6.4)

Choose for the first space vector in the Lorentzian frame the projection
of ν on the hyperplane orthogonal to u; then (6.4) read

X0 = 0, ν0X0 + ν1X1 = 0. (IX.6.5)

A vector in I therefore has components X0 = 0, X1 = 0, with X2, X3

arbitrary. The vector of greatest slope Y in P orthogonal to I is uniquely
determined by the conditions

Y ∈ P, i.e. ν0Y0 + ν1Y1 = 0, hence Y1 = −ν
0

ν1
Y0, (IX.6.6)

and the orthogonality with I, that is, Y2 = Y3 = 0.
The propagation speed of P with respect to the considered Lorentz

frame is

|V | =
∣∣∣∣Y1

Y0

∣∣∣∣ =
∣∣∣∣ν0

ν1

∣∣∣∣ . (IX.6.7)

The given formula (6.3) takes the form (6.7) in a Lorentz frame where
the time axis is the unit vector u and the normal ν to P has components
ν2 = ν3 = 0. �

IX.6.3 Case of perfect fluids

The Euler and entropy conservation equations of a perfect fluid are of
first order. Using the entropy equation (5.4) in the energy equation (4.5),
we see that the Euler–entropy equations written for the unknowns S, p, u
have a characteristic matrix composed of two blocks around the diagonal.
One of these blocks corresponds to the entropy S and its conservation
law (5.4); it reduces to the linear form14 14To avoid confusion with pressure,

we denote by X the vector previously
denoted by p.

a ≡ uαXα.

The other block corresponds to the unknowns p and u and the equa-
tions (4.4) and (4.5). It is the following 5×5 matrix15

15The four components of u are con-
sidered as independent unknowns. The
identity g(u, u) = −1 is preserved by
the flow.

with ρ ≡ μ + p,
μ′

p = ∂μ/∂p:
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M ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

a ρμ′
pX0 ρμ′

pX1 ρμ′
pX2 ρμ′

pX3

X0 + au0 ρa 0 0 0
X1 + au1 0 ρa 0 0
X2 + au2 0 0 ρa 0
X3 + au3 0 0 0 ρa

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The determinant of this matrix is computed to be

− ρ4a3D, (IX.6.8)

with D quadratic in X and given by

D ≡ (μ′
p − 1)(uαXα)2 + μ′

pX
αXα. (IX.6.9)

We see that a perfect fluid has two types of wave fronts:

• Matter wave fronts, f = constant, such that

uα∂αf = 0. (IX.6.10)

They are submanifolds generated by the flow lines. Their propagation
speed for a comoving observer (i.e. in a proper rest frame of the fluid)
is zero.

• Sound wave fronts, whose normals satisfy D = 0. In a proper rest
frame gαβ = ηαβ (the Minkowski metric), u0 = 1, ui = 0. The
corresponding eikonal equation reads

− μ′
p(∂0f)2 +

∑
i

(∂if)2 = 0. (IX.6.11)

The propagation speed of these wave fronts is, assuming μ′
p > 0,

|V | = (μ′
p)

− 1
2 ;

it is less than the speed of light,1616Recall that we use geometric units;
i.e. the speed of light is equal to 1.

as expected from a relativistic
theory, if and only if

μ′
p ≥ 1. (IX.6.12)

A fluid such that μ′
p = 1 is called an incompressible or stiff fluid.

In such a fluid, sound waves propagate with the speed of light.

IX.7 Cauchy problem for the Euler
and entropy system

The Cauchy problem is the determination of the solution of a partial
differential system from its initial data. Consider first one linear1717That is, linear in the highest-order,

m + 1, terms.
partial

differential equation of order m+1 with unknown a function U on Rn+1

where coordinates are denoted by x0, xi, i = 1, . . . , n. The initial data
for U on the submanifold x0 = 0 are the values for x0 = 0 of U and
its partial derivatives with respect to x0 of order less than or equal to
m. A Cauchy problem is said to be well posed, for initial data in some
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functional space, if it admits in a neighbourhood of x0 = 0 one and only
one solution depending continuously on the initial data. The equation is
called hyperbolic if it admits a well-posed Cauchy problem with data
in spaces where only a finite number of derivatives are involved18 18Mathematicians often use Sobolev

spaces Hs.
and

if the solution of this Cauchy problem manifests a finite propagation
speed. Hyperbolic well-posedness depends only on the coefficients of the
principal terms, i.e. terms of order m+1. For a quasilinear differential
equation (i.e. one that is linear only in the highest (m+1)-order terms),
the hyperbolicity depends on the values of the coefficients of these terms
for the given initial data. By contrast, if the equation is semilinear
(i.e. the coefficients of the highest-order terms do not depend on the
unknowns), hyperbolicity does not depend on the initial data.19 19One calls hyperquasilinear equations

of order m + 1 in which the coefficients
of the highest-order terms do not de-
pend on derivatives of the unknowns of
order > m − 1. The Einstein equations
are hyperquasilinear.

In General Relativity, causality is an essential feature, saying that
the properties of physical phenomena at one point depend only on the
past of this point, determined by the causal paths20

20In other words, physicists say that
the speed of light is a maximum for the
propagation of all observables.

of the Lorentzian
spacetime metric g. The definitions of Cauchy problem and hyperbolicity
extend to systems of partial differential equations, in particular to qua-
sidiagonal systems. The wave gauge reduced vacuum Einstein equations
are a quasidiagonal and quasilinear second-order partial differential sys-
tems as studied in Chapter VIII; they are a hyperbolic system for data
on a Lorentzian metric on a spacelike submanifold. They are a special
case of a quasidiagonal Leray hyperbolic systems.21 21Leray (1953). See also Dionne (1962):

this article by a student of Leray re-
fines his results in an important way.
It treats only the case of one equa-
tion, but the results extend trivially to
quasidiagonal systems.

IX.7.1 The Euler and entropy equations as a Leray
hyperbolic system

It can be shown22 22Choquet-Bruhat (1966).that the Euler equations are equivalent to a quasidi-
agonal system with principal terms in the diagonal either uα∂α or the
third-order operator

uα
[
(μ′

p − 1)uλuβ + μ′
pg

λβ
]
∂λ∂β∂α. (IX.7.1)

The characteristic cone at a point is

uαXα

[
(μ′

p − 1)uλuβ + μ′
pg

λβ
]
XλXβ = 0. (IX.7.2)

It is the union of a hyperplane uαXα = 0, spacelike if u is timelike,
reading (in a proper frame for u)

(P ) := {X0 = 0},

and a second-order cone (C), reading (in a proper frame for u)

(C) :=
{
−(X0)2 + μ′

p

∑
(Xi)2 = 0

}
.

It is easy to see by drawing a figure that if μ′
p > 0, then any straight

line passing through a point y in the interior of (C), which is

−(y0)2 + μ′
p

∑
(yi)2 ≤ 0,
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but not passing through the vertex, cuts the union (P ) ∪ (C) at three
distinct points.2323Note that this geometric criterion re-

fers to cones in the dual of the tangent
space to the spacetime manifold.

This is the criterion of Leray hyperbolicity for a third-
order operator, or a quasidiagonal system of such operators.24

24For details, see YCB-OUP2009, Ap-
pendix IV, Section 2 or Leray (1953). IX.7.2 First-order symmetric hyperbolic systems

An alternative to the Leray approach to proving the well-posedness
of a Cauchy problem for evolution equations is the Friedrichs the-
ory2525Friedrichs (1954). The Leray hyper-

bolic systems are much more general,
containing equations of arbitrary or-
ders, but some symmetric hyperbolic
systems do not satisfy the criteria for
Leray hyperbolicity.

of first-order symmetric hyperbolic (FOSH) systems. The
first-order linear system of partial differential equations on Rn+1,

M t
IJ

∂UJ

∂t
+M i

IJ

∂UJ

∂xi
= fI ,

is called symmetric if the n+1, N×N matrices Mt,Mi with elements
M t,

IJ ,M
i
IJ are symmetric (i.e. Mα

IJ = Mα
JI). It is hyperbolic with respect

to the x0 ≡ t coordinate, and is then described as simply symmetric
hyperbolic, if, in addition, the matrix Mt is a positive-definite quad-
ratic form. The Cauchy problem is then well posed if its initial data
are given on a submanifold S0 := {x0 = constant}. In a quasilinear
system, the matrices Mα are functions of the unknowns U, but not of
their derivatives. The symmetric hyperbolicity depends then on the val-
ues of these unknowns. The Cauchy problem with data on S0 is then
well posed if the system is symmetric hyperbolic when in the coefficients
the unknowns are replaced by their initial data. Note that in general,
however, the solution exists only in a neighbourhood of S0.

It is straightforward to write for wave equations equivalent FOSH sys-
tems (see Problem VIII.12.10 in Chapter VIII). In the case of the Euler
equations, the procedure is more subtle but may be preferred for some
numerical computations. To obtain FOSH systems, one can apply gen-
eral methods inaugurated by Lax, developed by Boillat and Ruggeri, and
explained in the book by Anile.2626Anile (1989). These authors use a convex functional
and auxiliary unknowns. In the case of relativistic perfect fluids, one
can perform a direct computation to show the equivalence of the Euler–
entropy system to a FOSH system.2727A FOSH system, for barotropic flu-

ids, was found in Special Relativity
by K. O. Friedrichs. Its construction
in General Relativity was sketched by
Rendall (1992).

The idea is to take as unknowns
the pressure p, denoted by U0, and the space components ui, denoted
by U I , I = 1, 2, 3. The component u0 is determined through the identity

uαuα = −1. (IX.7.3)

From this identity, one deduces

∇αu
0 = −ui∇αu

i

u0
. (IX.7.4)

The energy–continuity equation yields the following first-order evolution
equation for p and ui:

∇iu
i − ui∇0u

i

u0
+ μ′

pu
α ∂αp

μ+ p
= 0. (IX.7.5)
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The combination of the equations of motion of indices 0 and i,

uα∇αu
i + (gαi + uαui)

∂αp

μ+ p
− ui

u0

[
uα∇αu

0 + (gα0 + uαu0)
∂αp

μ+ p

]
= 0,

reduces to another first-order evolution equation for p and ui:

uα

(
∇αu

i +
uiuj

u0u0
∇αu

j

)
+
(
gαi − ui

u0
gα0

)
∂αp

μ+ p
= 0. (IX.7.6)

Setting A := (μ+ p)−1, the principal matrix of the system (7.5), (7.6) reads
M ≡ Mα∂α,

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2μ′
pu

α∂α A

(
∂1 −

u1

u0
∂0

)
A

(
∂2 −

u2

u0
∂0

)
A

(
∂3 −

u3

u0
∂0

)

A

(
∂1 − u1

u0
∂0

)
uα

(
1 +

u1u1

u0u0

)
∂α

u2u1

u0u0
uα∂α

u1u3

u0u0
uα∂α

A

(
∂2 − u2

u0
∂0

)
u1u2

u0u0
uα∂α uα

(
1 +

u2u2

u0u0

)
∂α

u2u3

u0u0
uα∂α

A

(
∂3 − u3

u0
∂0

)
u1u3

u0u0
uα∂α

u1u3

u0u0
uα∂α uα

(
1 +

u3u3

u0u0

)
∂α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(IX.7.7)

It can be proved that the system is equivalent to a symmetric system
with ∂0 = ∂/∂t and with Mt positive-definite28 28See YCB-OUP2009, Chapter IX,

Section 13.
if u is timelike and

μ′
p ≥ 1; that is, to a FOSH system.

Exercise IX.7.1 Show that (7.5), (7.6) are equivalent to the original
Euler–entropy equations.

IX.8 Coupled Einstein–Euler–entropy
system

IX.8.1 Initial data

An initial data set for the Einstein–Euler system with a given equation
of state will be the usual data for the Einstein equations together with
data for the fluid source.

We have seen that an initial data set for the Einstein equations is a
triple (M, ḡ,K) with M a 3-manifold, ḡ a properly Riemannian metric,
and K a symmetric 2-tensor on M . A spacetime (V, g) is said to admit
these initial data if M can be embedded in V as a submanifold M0 with
induced metric ḡ and extrinsic curvature K. If (V, g) is a solution of the
Einstein equations with source the stress–energy tensor T, then (ḡ,K)
must satisfy the following constraints:

R(ḡ) −K ·K + (trK)2 = 2ρ, (IX.8.1)

∇̄ ·K − ∇̄trK = J. (IX.8.2)
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In a Cauchy adapted frame, where the equation of M ≡ M0 in V is
x0 ≡ t = 0 and the time axis is orthogonal to M0, one has, in the case
of a perfect fluid,

ρ ≡ N2T 00 ≡ N2(μ+ p)(u0)2 − p, (IX.8.3)

J i = NT i0 ≡ N(μ+ p)uiu0,

Nu0 = (1 + giju
iuj)

1
2 . (IX.8.4)

Using uαuα = −1, that is,

Nu0 = (1 + giju
iuj)

1
2 , (IX.8.5)

we see that on M0 the quantities ρ and J depend only on the values μ̄
and p̄ of μ and p on M0, and on the projection v of u, with components
vi = ui, on M0; they do not depend on the choice of lapse and shift. The
initial data on M0 for a perfect fluid with equation of state μ = μ(p, S)
are two scalars p̄ and S̄ and a tangent vector v̄. Data for the third-order
system are obtained by using the restriction toM0 of the Euler equations
and its first-order derivative in the direction of u. This computation now
requires a choice for initial lapse and shift, since this is also required for
the solution of the reduced Einstein equations.

IX.8.2 Evolution

The Einstein equations reduced in harmonic gauge, with perfect fluid
source, read as a second-order quasidiagonal system for the metric whose
principal part is the wave operator of the spacetime metric while the
fluid variables appear at order zero. It is straightforward to show that,
together with the Euler–entropy equations, they form a Leray hyperbolic
system provided that μ′

p > 0. However, the system is causal (i.e. the
domain of dependence is determined by the light cone) only if μ′

p ≥ 1.
It is also straightforward to write in that case the coupled system as
a FOSH system. We have already described in Chapter VIII the proof
that a solution of the reduced system is a solution of the full system if
the initial data satisfy the constraints.

IX.9 Dynamical velocity

IX.9.1 Fluid index and Euler equations

Important properties of non-relativistic fluids generalize to relativis-
tic fluids if one introduces a spacetime vector called the dynamical
velocity29

29See Lichnerowicz (1955) and refer-
ences therein. The dynamical velocity
was used by Fourès (Choquet)-Bruhat
(1958) for the first proof of the well-
posedness of the Cauchy problem for
relativistic perfect fluids, coupled or
not with the Einstein equations.

linked with both the kinematic unit vector u and the
thermodynamic quantities.
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In the case of barotropic fluids, i.e. with equation of state μ = μ(p),
the simplest way is to define a function f(p), called the index of the
fluid, by

f(p) := exp
[∫ p

p0

dp

μ(p) + p

]
(IX.9.1)

and the dynamical 4-velocity by

Cα = fuα, hence CαCα = −f2, Cβ∇αCβ = −f∂αf. (IX.9.2)

Theorem IX.9.1 For a barotropic fluid, the Euler equations (4.4) and
(4.5) are equivalent to the equation

Cα(∇αCβ −∇βCα) = 0 (IX.9.3)

and

∇αC
α + (μ′

p − 1)
CαCβ

CλCλ
∇αCβ = 0, with μ′

p ≡ ∂μ

∂p
. (IX.9.4)

Exercise IX.9.1 Prove this theorem.

Exercise IX.9.2 Show that the flow lines of a perfect fluids are
geodesics of a metric confomal to the spacetime metric.

Hint: Show that g̃ = F 2g implies

Cα∇̃αCβ = Cα∇αCβ + CαCα∂β(logF ).

Corollary IX.9.1 A barotropic relativistic fluid is incompressible
(μ′

p = 1) if and only if 30 30This property of incompressible flu-
ids generalizes the classical one for
Newtonian fluids, ∂iv

i = 0, implied in
this case by the constancy of density.

∇αC
α = 0. (IX.9.5)

Assuming an equation of state and expressing p as a function of f ,
and hence of C, the equations (9.4), (9.5) read as a first-order differential
system for C.

Exercise IX.9.3 Write these equations for the equation of state
p = (γ − 1)μ.

IX.9.2 Vorticity tensor and Helmholtz equations

The vorticity tensor is defined through the dynamical velocity as the
antisymmetric 2-tensor

Ωαβ ≡ ∇αCβ −∇βCα.

It results from the equations of motion (9.3) that this tensor is
orthogonal to the velocity; indeed, these equations read

CαΩαβ = 0. (IX.9.6)

Theorem IX.9.2 (relativistic Helmholtz equations) The Lie derivative
of the vorticity tensor Ω with respect to the dynamic velocity C vanishes:

LCΩ = 0.
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Proof. Since Ω is an exterior 2-form, the differential of the 1-form C, it
is a closed form, satisfying in local coordinates the identity

∇αΩβγ + ∇γΩαβ + ∇βΩγα ≡ 0,

and hence

Cα∇αΩβγ + Cα∇γΩαβ + Cα∇βΩγα ≡ 0. (IX.9.7)

The equations of motion (9.3) imply, by the derivation ∇γ ,

Cα∇γΩαβ + Ωαβ∇γC
α = 0.

Using this equation, the identity (9.7) gives the equation

Cα∇αΩβγ − Ωαβ∇γC
α − Ωγα∇βC

α ≡ 0;

that is, using the expression for the Lie derivative of a covariant tensor
and the antisymmetry of Ω,

(LCΩ)βγ ≡ Cα∇αΩβγ + ∇γC
αΩβα + ∇βC

αΩαγ = 0. (IX.9.8)

�

We have shown that the vorticity tensor Ω satisfies a linear differen-
tial homogeneous system along the flow lines, and hence we have the
following corollary:

Corollary IX.9.2 If a smooth (barotropic) flow has vanishing vorti-
city on a 3-submanifold transversal to the flow lines, it has a vanishing
vorticity on the domain of spacetime spanned by these flow lines.

IX.9.3 General perfect fluid enthalpy h

For non-barotropic fluids with equation of state depending on the
entropy S, one introduces the enthalpy h, defined through the thermo-
dynamic identity

dh ≡ r−1dp+ TdS, (IX.9.9)

or, equivalently, because of the thermodynamic identity (5.3),

dh ≡ d[r−1(μ+ p)], we set h := r−1(μ+ p), (IX.9.10)

and now define the dynamical velocity by

Cα := huα, setting Ωαβ := ∇αCβ −∇βCα. (IX.9.11)

Exercise IX.9.4 Show that

Cα∇βCα = −h∂βh. (IX.9.12)

Exercise IX.9.5 Show that the equations of motion are equivalent to

(hT )−1CαΩαβ = ∂βS. (IX.9.13)
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IX.10 Irrotational flows

IX.10.1 Definition and properties

A flow with zero vorticity is called irrotational, its trajectories are
orthogonal hypersurfaces, since the equations ∇αCβ −∇βCα = 0 imply
that there exists on spacetime (at least locally) a function Φ such that

Cα = ∂αΦ.

Theorem IX.10.1 The irrotational flow of a perfect fluid is governed
by a quasilinear wave-type equation.31 31Fourès (Choquet)-Bruhat (1958).

Proof. When the flow is irrotational, (9.3) is satisfied identically while
(9.4) reads [

gαβ + (1 − μ′
p)u

αuβ
]
∇α∂βΦ = 0. (IX.10.1)

In this equation, the quantities u and p are given functions of Φ and ∂Φ.
Indeed, by definition,

gαβ∂αΦ∂βΦ ≡ −f2 and uα ≡ ∂αΦ
f

,

while p can be expressed in terms of f, and hence of ∂Φ, by inverting
the relation (9.1).

The characteristic cone of this quasilinear second-order differential
equation for Φ is given by the quadratic form[

gαβ + (1 − μ′
p)u

αuβ
]
XαXβ = 0, (IX.10.2)

whose dual is the sound cone. This quadratic form is of Lorentzian signa-
ture if and only if μ′

p > 0; the equation satisfied by Φ is then hyperbolic.
It is causal (the sound cone is interior to the light cone) if μ′

p ≥ 1. �
Remark IX.10.1 In the case of a stiff fluid, μ′

p = 1, the equation for
Φ reduces to the usual linear wave equation.

Exercise IX.10.1 Check the quadratic form (10.2) using (6.9).

IX.10.2 Coupling with the Einstein equations

The Einstein equations in harmonic gauge with source given by an ir-
rotational flow, together with the equation for Φ, form a second-order
quasidiagonal system whose principal parts are the wave operator of the
spacetime metric or the sound wave operator. It is a causal hyperbolic
system if μ′

p ≥ 1.

Remark IX.10.2 The solution can be interpreted as an Einsteinian
spacetime with source an irrotational flow as long as ∂Φ is timelike, i.e.
gαβ∂αΦ∂βΦ < 0.

Exercise IX.10.2 Formulate the Cauchy problem and a local exist-
ence theorem for the Einstein equations coupled with a perfect fluid in
irrotational flow.
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IX.11 Equations in a flow-adapted frame

It was stressed long ago by Cattaneo and Ferrarese3232Cattaneo (1959), Ferrarese (1963),
and Ferrarese and Bini (2007).

that the natural
physical quantities are timelines and not spacelike submanifolds. Using
the same kind of formalism as given in Chapter VII for Cauchy adapted
frames, but for Lorentzian frames with time axis tangent to the timelines
(time-adapted frames) Friedrich3333Friedrich (1998). has written the perfect fluid equations
as a symmetric system for the pressure and the connection coefficients.
This system is hyperbolic with respect to a time function, but only under
additional appropriate conditions.3434See YCB-OUP2009, Chapter IX,

Section 14, or Choquet-Bruhat and
York (1998), which uses the Riemann
tensor, instead of the Weyl tensor used
by Friedrich. IX.12 Shocks

A shock is a discontinuity in the fluid variables across a timelike n-
manifold (n = 3 in the classical case). The stress–energy tensor is then
discontinuous; its derivative is meaningful only in a generalized sense.

The relativistic Rankine–Hugoniot equations express the van-
ishing of the divergence of the stress–energy tensor in the space of
generalized functions (distributions); they are

nα[Tαβ ] = 0,

where n is the spacelike normal to the timelike shock front Σ and [Tαβ ]
is a measure with support Σ. A deep study of the formation of shocks
for fluids in Special Relativity has been made by Christodoulou.3535Christodoulou (2007).

IX.13 Charged fluids

IX.13.1 Equations

The stress–energy tensor of a charged perfect fluid is the sum of the
stress–energy tensor of the fluid variables and the Maxwell tensor of the
electromagnetic field F :

Tαβ = T
(fluid)
αβ + ταβ , (IX.13.1)

with

T
(fluid)
αβ := (μ+ p)uαuβ + pgαβ (IX.13.2)

and

ταβ = Fα
λFβλ − 1

4
gαβF

λμFλμ. (IX.13.3)

The state of the charged fluid is governed by the Einstein equations

Sαβ = Tαβ , (IX.13.4)

the Maxwell equations, with J the electric current,

dF = 0 and ∇ · F = J, i.e. ∇αF
αβ = JB , (IX.13.5)
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and the conservation equations, which are

∇αT
αβ ≡ ∇α(Tαβ

(fluid) + ταβ) = 0. (IX.13.6)

Using previous formulas, we see that these conservation equations read

(μ+ p)uα∇αu
β + gαβ∂αp+ uβ [∇α(μ+ p)uα] + JλF

βλ = 0. (IX.13.7)

Classically, the electric current J is the sum of a convection and a
conduction current:

Jλ = quλ + σEλ, Eλ = uμFμλ, (IX.13.8)

where q is a scalar function (the electric charge density), σ is the electric
conductivity (in general assumed to be constant), and E is the electric
field.

The current J satisfies the conservation equation

∇αJ
α = 0. (IX.13.9)

As for uncharged fluids, taking the contracted product of (13.7) with u
gives a continuity equation

(μ+ p)∇αu
α + uα∂αμ− σEαEα = 0 (IX.13.10)

and equations of motion

(μ+p)uα∇αu
β+gαβ∂αp+uβ(uα∂αp+σEαEα)+JλF

βλ = 0. (IX.13.11)

Modulo initial conditions, as in the vacuum case (see Chapter VIII), the
Maxwell equations are equivalent to wave-type equations

(dδ + δd)F = dJ. (IX.13.12)

One can add to these equations the law of particle number conservation

∇α(ruα) = 0 (IX.13.13)

and consider that μ is a function of p and r. If the equation of state is
given by μ as a function of the pressure p and entropy S, then (13.13)
must be replaced by a thermodynamic law.

IX.13.2 Fluids with zero conductivity

When the conductivity is zero, the Lorentz force reduces to qE, which is
orthogonal to the flow vector u and hence does not furnish any work. One
says that the fluid is non-dissipative. The first law of thermodynamics
and particle number conservation then imply, as in the uncharged case,
the law of conservation of entropy:

uα∂αS = 0.



228 Relativistic fluids

The Euler–entropy equations are then expected to be a hyperbolic
system. This is confirmed by the following theorem:

Theorem IX.13.1 The Einstein equations in wave gauge with sources
an electromagnetic field of potential in Lorentz gauge and a charged per-
fect fluid with equation of state μ = μ(p, S) and with zero conductivity
(σ ≡ 0) are, if μ′

p > 0, a hyperbolic system for g, q, u, p, and the
electromagnetic potential A. This system is causal if μ′

p ≥ 1.

A solution of the Cauchy problem for the full Einstein–Maxwell–
charged fluid system, for initial data satisfying the constraints, can be
deduced by methods analogous to those used for uncharged fluids. Apart
from the addition of electromagnetic wave fronts, the wave fronts are the
same as for uncharged fluids.

IX.13.3 Fluids with finite conductivity

When the conductivity σ is finite, the Lorentz force is no longer orthog-
onal to u: it works under the fluid flow. The fluid is called dissipative and
its properties are expected to be different from those of non-dissipative
fluids. Indeed, experiments show, for example, that no shock wave propa-
gates in charged mercury, a liquid with non-zero conductivity. This fact
suggests that for such a fluid, the Cauchy problem is not well posed in
spaces of functions with a finite number of derivatives. Indeed the first
law of thermodynamics now gives the entropy equation (S increases
along the flow lines if σ > 0, as physically predicted)

Tuα∂αS = σEαEα.

The equation expressing conservation of the electric current J,

∇α(quα + σuλF
αλ) = 0, (IX.13.14)

contains derivatives of the electromagnetic field F, and hence second
derivatives of the potential A. The characteristic determinant of the
Euler–entropy–electromagnetic system is the same as in the case of zero
conductivity, but the characteristic matrix is no longer diagonalizable;
the system is not hyperbolic in the sense defined before.

Fluids with finite, non-zero, conductivity are a physical example36

36Choquet-Bruhat (1965). of Leray–Ohya hyperbolic systems (which the authors called ‘non-
strictly hyperbolic’). Such systems have solutions in Gevrey classes,
spaces of C∞ functions whose derivatives satisfy inequalities weaker
than the inequalities satisfies by the derivatives of analytic functions
that ensure the convergence of their Taylor series. These Gevrey classes
enjoy the property fundamental in Relativity of being able to possess a
compact support without being identically zero. This permits the limi-
tation by the speed of light of signal solutions of Leray–Ohya hyperbolic
systems.

It can be proved that if μ′
p ≥ 1, then the reduced Einstein–Maxwell–

Euler–entropy system of a charged perfect fluid with finite, non-zero,
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conductivity is Leray–Ohya hyperbolic (and causal) but not hyperbolic
(in the strict sense).37 37K. O. Friedrichs has obtained for a

charged perfect fluid with non-zero fi-
nite conductivity a symmetric hyper-
bolic system, but by modifying the
equations in a way that is not physic-
ally justified.

IX.14 Magnetohydrodynamics

In the case where the electric conductivity is so large that it can be con-
sidered as infinite, the proper-frame electric field Eα = uβFαβ becomes
negligible. The case of a zero electric field is called magnetohydrodynam-
ics.38 38Equations for magnetohydrodynam-

ics in Special Relativity, keeping terms
neglected in classical magnetohydro-
dynamics, were obtained by Hoffman
and Teller (1950). In General Relativ-
ity, they were first written down and
studied by Bruhat (Choquet-Bruhat)
(1960).

It plays a fundamental role in plasma physics.

IX.14.1 Equations

In three space dimensions, for a fluid with infinite conductivity
σ = ∞, the electromagnetic field reduces, in the local frame defined
by the fluid velocity, to the magnetic vector H. The second Maxwell
equation δF = J is replaced by

Eα := uβF
βα = 0. (IX.14.1)

From the definition of the vector H (orthogonal to u),

Hα = uβ(F ∗)βα, (IX.14.2)

one deduces

(F ∗)βα = Hαuβ −Hβuα. (IX.14.3)

A straightforward calculation gives the following expression for the
Maxwell tensor:

ταβ ≡
(
uαuβ +

1
2
gαβ

)
|H|2 −HαHβ . (IX.14.4)

The first Maxwell equation dF = 0 becomes

∇α(F ∗)βα ≡ ∇α(Hαuβ −Hβuα) = 0. (IX.14.5)

Modulo these equations, the divergence of τ is found to be

∇ατ
αβ =

(
uαuβ +

1
2
gαβ

)
∂α|H|2 + |H|2∇α(uαuβ) −∇α(HαHβ).

(IX.14.6)

Straightforward computation shows that it is a vector orthogonal both
to u and to H.

The Lorentz force ∇ατ
αβ being orthogonal to u, the continuity equa-

tion for a fluid of infinite conductivity is the same as for an uncharged
fluid, namely

∇α[(μ+ p)uα] − uα∂αp = 0. (IX.14.7)

The equations of motion read

(μ+ p)uα∇αu
β + (gαβ + uβuα)∂αp+ ∇ατ

αβ = 0. (IX.14.8)
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IX.14.2 Wave fronts

A straightforward computation shows that the characteristic polynomial
of the first-order system (14.5), (14.7), (14.8) factorizes as

[(μ+ p)a2 − b2]2D, with a := uαXα, b := HαXα, (IX.14.9)

and with D a fourth-order polynomial in X:

D ≡ (μ′
p − 1)(μ+ p)a4 + [(μ+ p+ |H|2μ′

p)a
2 − b2]XαXα. (IX.14.10)

The fourth-order cone D = 0 is called the magneto-acoustic cone.
The second-order cone, which enters as a double factor in (14.9),

(μ+ p)a2 − b2 = 0, (IX.14.11)

is called the Alfvén cone. It is composed of two hyperplanes

[(μ+ p)
1
2uα ±Hα]Xα = 0. (IX.14.12)

The corresponding wave fronts, tangent to the dual of a Alfvén plane,
are called Alfvén waves.

In the proper frame of the fluid, the normals ν to the Alfvén waves
satisfy the equations

(μ+ p)
1
2 ν0 ±Hiνi = 0, (IX.14.13)

The propagation speed of the Alfvén waves is calculated using the
general formula

|V |2 =
(uανα)2

(uαuβ + gαβ)νανβ
. (IX.14.14)

One finds that

|VAlf| = (μ+ p)−
1
2 |Hν̄ |, (IX.14.15)

where Hν is the scalar product of H (a space vector) with the projection
on space (normed to 1) of the normal ν to the wave front.

The wave fronts whose normals lie on the magnetoacoustic cone D = 0
are called magnetoacoustic wave fronts. The equation of the magne-
toacoustic cone is a polynomial of order 4 in ν, the normal to a wave
front, which reads, in a proper rest frame of the fluid,

μ′
p(μ+ p+H2)(ν̃0)4 − ν̃2

0(μ+ p+ |H|2μ′
p +H2

ν̃ ) +H2
ν̃ = 0, (IX.14.16)

where we have denoted

ν̃ =
ν∑

i[ν
2
i ]1/2

and Hν̃ = Hiν̃
i. (IX.14.17)

We deduce from this formula, solved for the unknown ν̃2
0 , the two mag-

netoacoustic wave speeds. Both are well defined, because |Hν̃ | ≤ |H|,
and less than 1, the speed of light, if μ′

p ≥ 1. They are

|V |2MA =
μ+ p+ |H|2μ′

p +H2
ν̃ ± [(μ+ p+ |H|2μ′

p +H2
ν̃ )2 − 4H2

ν̃μ
′
p(μ+ p+H2)]

1
2

2μ′
p(μ+ p+H2)

. (IX.14.18)
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The rapid wave speed corresponds to the plus sign and the slow wave
speed to the minus sign.

Study of the characteristic determinant shows39 39See Choquet-Bruhat (1966).that the system is a
Leray–Ohya-type hyperbolic system—the fact that Alfvén wave fronts
are tangent to the magnetosonic wave fronts does not permit one to
conclude its (strict) Leray hyperbolicity. However, the system has been
proved to be symmetrizable hyperbolic40 40See Anile (1989)., both by the general method of
Lax–Boillat and Ruggeri, and directly (at least in special Relativity) by
K.O. Friedrichs. This hyperbolicity could be foreseen physically by the
existence of shock waves41

41General relativistic equations were
given by Bruhat (Choquet-Bruhat)
(1960) and were studied in depth by
Lichnerowicz (1967).

and of high-frequency waves42

42Anile and Greco (1978).

propagating
according to first-order differential equations.

IX.15 Yang–Mills fluids (quark–gluon
plasmas)

Although Yang–Mills charges are not manifest at ordinary scales, plas-
mas of quarks and gluons exist under extreme circumstances.43 43Extremely briefly in Earth-based la-

boratories. Astrophysicists have conjec-
tured that they are present in the cores
of neutron stars.

Their
properties have analogies, but also differences, with those of electro-
magnetic plasmas. The equations look formally the same. The Maxwell
stress–energy tensor is replaced by the Yang–Mills stress–energy tensor
and the electric current by the Lie-algebra-valued Yang–Mills current

Jα = γuα + σF βαuβ ,

where γ is a function on spacetime taking its values in the same
Lie algebra as the Yang–Mills field F and σ is a number, the fluid
conductivity.

The mathematical properties of Yang–Mills fluids are44 44See Choquet-Bruhat (1992).quite simi-
lar to those of electrically charged fluids, at least locally, in the case of
finite conductivity.

In the case of infinite conductivity, however, a remarkable property
occurs: the wave fronts do not split into analogies of Alfvén waves and
acoustic waves, but are at each point tangent to an undecomposable
sixth-order cone.45 45Choquet-Bruhat (1992b, 1993).

IX.16 Viscous fluids

There have been many discussions of equations for relativistic viscous
fluids and a relativistic heat equation. Most proposals for such equations
were motivated by the desire to obtain a causal theory, that is, one de-
scribed by partial differential equations of hyperbolic type, with a causal
domain of dependence, whereas the usual Fourier law of heat transfer
as well as the viscous fluid Navier–Stokes equations of Newtonian mech-
anics are of parabolic type, corresponding to an infinite propagation
speed. We will see in Chapter X some results for the approximation
beyond perfect fluids obtained in the framework of Relativity.
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IX.16.1 Generalized Navier–Stokes equations

The Einstein equivalence principle would give us an expression for the
stress–energy tensor of a viscous fluid in General Relativity if we knew of
such as expression in Special Relativity. However, this is not the case—
there is no general consensus about such a tensor in Special Relativity,
everyone being influenced in his choice by his own background. The dif-
ference between various authors begins already at the physical definition
of the flow vector4646Landau and Lifshitz (1987) link u

with some density of energy, choosing u
such that the stress tensor is orthogonal
to u.

u. We will stick to the simplest definition, consider-
ing u as the flux density vector for the particle number r. This quantity
satisfies the conservation law

∇α(ruα) = 0. (IX.16.1)

It was remarked previously that the components T 00, T 0i, T ij of the
stress–energy tensor T in a proper frame represented respectively the
energy, momentum, and stresses of the fluid with respect to this frame.
For perfect fluids, the expressions for these quantities were taken as their
classical analogues, which themselves result from first principles.

In non-relativistic mechanics, the stress tensor of a viscous fluid is
obtained by considering it as a linearized perturbation σ of the perfect
fluid stress tensor, a perturbation due to the deformation tensor of the
flow lines. In inertial coordinates of absolute space, this deformation
tensor is

Dij :=
∂vi

∂xj
+
∂vj

∂xi
. (IX.16.2)

One writes the classical Navier–Stokes equations for viscous fluids by
introducing the expansion and the shear of the flow lines (in Euclidean
space E3). The contribution of rotational flow is discarded, on the basis
that it corresponds to rigid motions, which do not generate stresses. The
Newtonian stress tensor of a viscous fluid is then written as the
sum of the stress tensor pδij of a perfect fluid and a symmetric 2-tensor
given by

σij := λδij
∂vk

∂xk
+ ν

(
Dij −

2
3
δij
∂vk

∂xk

)
. (IX.16.3)

The scalar coefficients, in general considered as constants, are called the
bulk viscosity and the shear viscosity.

The extension of the tensor σ to Relativity is ambiguous, owing on
the one hand to the absence of absolute space and on the other hand
to the equivalence of mass with energy, and hence with the work of the
friction forces due to viscosity. The following tensor has been proposed
as a relativistic generalization of the classical one:

Tαβ := (μ+ p)uαuβ + pgαβ + σαβ , (IX.16.4)

with σ the viscosity stress tensor, linear in the first derivatives of u
and orthogonal to u,

σαβ = λπαβ∇ρu
ρ + νπρ

απ
σ
β (∇ρuσ + ∇ρuσ), (IX.16.5)
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where π is the projection tensor47 47Note that the coefficients λ and ν do
not have quite the same interpretation
as in Newtonian mechanics.παβ := gαβ + uαuβ . (IX.16.6)

Some authors add to T a ‘momentum term’

uαqβ + uβqα, (IX.16.7)

supposed to represent a heat flow resulting from friction. The problem is
then to write an equation to determine q and justify the symmetrization
in (16.7).

The equations for ∇αT
αβ deduced from (16.4) and (16.5) are rather

complicated. They have been studied in detail by G. Pichon48 48Pichon (1965).in the case
when ∇αu

α = 0, called an incompressible fluid. He has shown that for
large enough μ+ p, they are of parabolic type, corresponding therefore
to infinite propagation speed.

IX.16.2 A Leray–Ohya hyperbolic system for viscous
fluids

We have seen that the vector that leads to the generalization of classical
properties of irrotational motion, for perfect fluids, is the dynamical
velocity C := h u, with h the enthalpy (see Section IX.9.3). We define
for this vector C the shear, the vorticity tensor, and the expansion of the
congruence of its trajectories (the flow lines of the fluid) by the usual
decomposition. In the case n+ 1 = 4,

∇αCβ =
1
2
Ωαβ + Σαβ +

1
4
Θgαβ ,

with Ω the vorticity tensor,

Ωαβ := ∇ρCσ −∇ρCσ.

In the case of a perfect fluid, Ω is orthogonal to C (i.e. to u). The scalar
Θ is the expansion of the congruence defined by the vector field C:

Θ := ∇αC
α.

We have seen that Θ is zero if and only if the fluid is incompressible (in
the relativistic sense). The symmetric tensor Σ is the shear, which has
zero trace:

Σαβ :=
1
2
(∇αCβ + ∇βCα) − 1

4
gαβ∇λC

λ.

We propose to take as stress–energy tensor of a viscous fluid the tensor

Tαβ = (μ+ p)uαuβ + gαβp+ T̃αβ , (IX.16.8)

where T̃αβ is the part of T due to viscosity, a perturbation of the perfect
fluid stress–energy tensor, linear in ∇C, of the form

T̃αβ := λΘgαβ + νΣαβ , (IX.16.9)
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with λ and ν viscosity coefficients depending on the particular fluid
under consideration. The conservation laws ∇αT

αβ = 0 are then second-
order equations for the dynamical velocity C with principal part

λgαβ∇α∇λC
λ + ν∇α

[
1
2
(∇αCβ + ∇βCα) − 1

4
gαβ∇λC

λ

]

=
ν

2
(∇α∇αCβ + ∇α∇βCα) +

(
λ− 1

4
ν

)
∇β∇αC

α.

The 4 × 4 characteristic matrix has elements
ν

2
XαX

αCβ + aXαX
βCα, a :=

ν

4
+ λ.

To compute the characteristic determinant, we choose a frame where
X2 = X3 = 0. The matrix then reads⎛

⎜⎜⎜⎜⎜⎜⎝

ν

2
XαXα + αX0X

0 aX1X
0 0 0

aX0X
1 ν

2
XαXα + αX1X

1 0 0

0 0
ν

2
XαXα 0

0 0 0
ν

2
XαXα

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(IX.16.10)
The characteristic determinant is then

Δ(X) ≡ P (X)
(ν

2
+ a

)2

(XαXα)2,

with

P (X) :=
(ν

2
XαXα + αX0X

0
)(ν

2
XαXα + αX1X

1
)
− a2X1X1X

0X0,

i.e.

P (X) :=
(ν

2
XαXα

)2

+
ν

2
XαXα(αXαX

α) ≡ ν

2

(ν
2

+ a
)

(XαXα)2.

The proposed system is Leray–Ohya hyperbolic (Gevrey class of index
2) and causal, a satisfactory property for a relativistic theory.

It can be conjectured that a solution of the proposed relativistic
Navier–Stokes equations converges to a solution of the perfect fluid
equations when λ and ν tend to zero.

IX.17 The heat equation

We personally think that heat transfer is a collective effect; the Fourier
equation corresponds in fact to some asymptotic steady state.4949A singular perturbation with higher

derivative has been proposed by Ver-
notte to give an account of the few
moments occurring before the steady
state is attained. Vernotte’s idea has
been extended to General Relativity by
Cattaneo.

It is
not surprising that it does not translate readily into relativistic causal
equations. The classical heat equation appears after the study of the
Brownian motion, unfortunately the extension to Relativity of the study
of Brownian motion is still in its infancy, owing to several difficulties, in
particular the lack of absolute time.
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The Müller–Ruggeri extended thermodynamics theory offers a way to
treat dissipative phenomena in a relativistic context (see Chapter X).

IX.18 Conclusion

The relativistic theory of perfect fluids is mathematically and physic-
ally50 50In spite of problems with the choice

of an equation of state for the fluid,
particularly when the whole cosmos is
concerned, although it is unlikely that
its content can be modelled by a perfect
fluid.

satisfactory. With proper definitions, the theorems of classical
(i.e. non-relativistic) perfect fluid theory are valid. Global mathemat-
ical problems remain mostly open, but this is also the case for classical
fluids in spite of recent progress. A book by Christodoulou51

51Christodoulou (2007).

treats in
depth three-dimensional perfect fluids in special Relativity up to shock
formation.

IX.19 Solution of Exercise IX.6.2

Light cone: The light rays issuing from a given point satisfy the
equations

dxα

dλ
= gαβpβ , gαβpαpβ = 0. (IX.19.1)

Hence, with the usual identification of the tangent and cotangent space
to V through the metric g,

gαβv
αvβ = 0, vα := gαβpβ .

IX.20 Problems

IX.20.1 Specific volume

Show by integrating the equation

∇α(ruα) = 0

and using the Stokes formula that the t-dependent space scalar

r̄ ≡ ru0N (IX.20.1)

represents the density of flow lines crossing a spacelike submanifold,
where N denotes the spacetime lapse.

IX.20.2 Motion of isolated bodies

Denote by (V, g, r, u) the manifold, spacetime metric, and perfect fluid
flow solution of the Einstein equation with perfect fluid source with
initial data (ḡ,K, v̄, r̄) on a manifold M satisfying the hypothesis of
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the existence and uniqueness theorem. Assume that the support of the
initial density r̄ is the closure ω̄ of some open subset ω ⊂M, which has
several disconnected components, spaces occupied by material bodies at
the initial time.

Show that the solution does not depend on the ‘unphysical’ data of v̄
where r̄ vanishes.

Extend the property to charged dust.

Solution

Equations (2.4) and (2.3) show that the support of r is contained in
the geodesic tube Ω generated by geodesics of g tangent to ū issuing
from points in ω̄. Let v̄1 be another initial value for u, such that v̄1 = v̄
on ω̄. The geodesic tube Ω1 of g corresponding to v̄1 coincides with Ω;
therefore, u1 = u in Ω. Since r = 0 outside Ω, the dust stress–energy
tensors ru⊗ u and ru1 ⊗ u1 with u1 = u in Ω coincide on the whole of
V ; therefore, the triple (g, r, u1) satisfies the Einstein dust system on V.
By the uniqueness theorem, it coincides, up to isometry, with another
solution (g1, r1, u1) taking the same initial values, i.e. g1 = g, r1 = r on
V and u1 = u in the domain Ω1 = Ω of the presence of a fluid flow.

The theorem on the motion of isolated bodies extends to the case of
charged dust if we reasonably make q̄/r̄ = 0 outside the support of r̄
because the flow lines of u depend only on g and F, while the right-hand
sides of (3.10) vanish outside the support of r̄.

IX.20.3 Euler equations for the dynamic velocity

Recall that

CαCα = −f2, hence Cα∇βCα = −f∂βf.

Write the equations of motion and the energy equation of a perfect fluid
in terms of the dynamic velocity.

Solution

We deduce from the definition of the index f that

∂ log f
∂p

=
1

μ+ p
, hence

∂p

∂ log f
= μ+ p,

∂p

∂f2
=
μ+ p

2f2
,

∂p

∂f2
=

∂p

∂ log f
∂ log f
∂f

(
∂f2

∂f

)−1

= (μ+ p)
1
f

1
2f
.

Hence

∂αp =
∂p

∂f2
2f∂αf, hence

∂αp

μ+ p
= f−1∂αf = −f−2Cβ∇αCβ .
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Recall that the Euler equations of motion are

uα∇αuβ + (gα
β + uαuβ)

∂αp

μ+ p
= 0.

We have

uα∇αuβ ≡ f−1Cα∇α(f−1Cβ) ≡ f−2(Cα∇αCβ − f−2CαCβf∂αf)
(IX.20.2)

and

(gα
β +uαuβ)

∂αp

μ+ p
= (gα

β +uαuβ)f−2f∂αf ≡ f−2(f∂βf+f−2CαCβf∂αf),

(IX.20.3)
which reads

uα∇αuβ + (gα
β + uαuβ)

∂αp

μ+ p
≡ f−2(Cα∇αCβ − Cα∇βCα),

and hence, for the equations of motion,

CαΩαβ = 0. (IX.20.4)

The energy (also called continuity) equation for a barotropic fluid
reads

∇αu
α + uαμ′

p

∂αp

μ+ p
= 0, μ′

p :=
dμ

dp
. (IX.20.5)

We have

∇αu
α + uαμ′

p

∂αp

μ+ p
≡ ∇α(f−1Cα) + f−1Cαμ′

pf
−2f∂αf

≡ f−1
[
∇αC

α + Cαf−2(−1 + μ′
p)
]
.

Hence, for the energy equation,

∇αC
α + f−2(−1 + μ′

p)C
α∂αf = 0.

This reduces to ∇αC
α = 0 if μ′

p = 1 (incompressible fluids).

IX.20.4 Hyperbolic Leray system for the dynamical
velocity

1. Prove that the equations satisfied by the dynamical velocity C,

CαΩαβ = 0 with Ωαβ := ∇αCβ −∇βCα

and

∇αC
α = (μ′

p − 1)
Cα

CλCλ
Cβ∇αCβ ,

imply, when δΩ is known, that C satisfies a quasidiagonal system of
second-order differential equations that is hyperbolic if dμ/dp > 0.

2. Show that C satisfies a quasilinear quasidiagonal third-order system,
which is hyperbolic and causal if dμ/dp > 1.
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Solution

1. For C considered as a 1-form, we have the identity (see Chapter I)

{(dδ + δd)C}γ ≡ −gαβ∇α∇βCγ +Rα
γCα. (IX.20.6)

The definitions of the rotational and the energy equations give

dC = Ω and δC :≡ −∇αC
α = −(μ′

p − 1)
Cα

CλCλ
Cβ∂αCβ .

(IX.20.7)
It results from (20.6) and (20.7) that

gαβ∇α∇βCλ −Rα
λCα = −∇γ

[
(μ′

p − 1)
Cα

CλCλ
Cβ∂αCβ

]
+ ∇αΩαγ .

(IX.20.8)
We compute

∇γ

[
(μ′

p − 1)
Cα

CλCλ
Cβ∇αCβ

]
≡ A(μ′

p − 1) +B∂γ(μ′
p − 1),

where we have set

A := ∇γ

(
Cα

CλCλ
Cβ∇αCβ

)
, and B :=

CαCβ

CλCλ
∇αCβ .

It holds that

A ≡ CαCβ

CλCλ
∇γ∇αCβ +

(
∇γ

CαCβ

CλCλ

)
(∇αCβ).

By the antisymmetry of the Riemann tensor, we have

CαCβ∇γ∇αCβ ≡ CαCβ(∇α∇γCβ +Rγα,βρ C
ρ) ≡ CαCβ∇α∇γCβ .

By the definition of the vorticity Ω,

CαCβ∇α∇γCβ ≡ CαCβ∇α(Ωγβ + ∇βCγ)

≡ CαCβ∇α∇βCγ + CβCα∇αΩγβ ,

with, by the Helmholtz equation,

Cα∇αΩγβ = Ωβα∇γC
α + Ωαγ∇βC

α. (IX.20.9)

Therefore,

A ≡ 1
CλCλ

[
CαCβ∇α∇βCγ + Cβ(Ωβα∇γC

α + Ωαγ∇βC
α)
]

+
(
∇γ

CαCβ

CλCλ

)
(∇αCβ).

We deduce from these computations, since Ω is of first order in
C, that when ∇αΩαγ is known, the dynamical velocity C satis-
fies a system of quasidiagonal second-order equations with principal
operator

(�g,CC)γ :=
[
gαβ + (μ′

p − 1)
(
CαCβ

CλCλ

)]
∇α∇βCγ . (IX.20.10)
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The first-order terms in C are

Dγ := (μ′
p − 1)

[
− Ωγβ

CλCλ
Cα∇αC

β +
(
∇γ

CαCβ

CλCλ

)
(∇αCβ)

]
.

In a proper frame, the corresponding characteristic polynomial is

− μ′
pX

2
0 +

∑
(Xi)2. (IX.20.11)

It is hyperbolic if μ′
p > 0, causal if μ′

p ≥ 1. It reduces to the Minkowski
polynomial for μ′

p = 1.
2. Since ∇αΩαβ is second-order in C, the principal part of the full oper-

ator does not reduce to the operator (20.10). To obtain a hyperbolic
operator for C, we take the derivative of (20.4) in the direction of C.
We have

Cλ∇λ∇αΩα
β ≡ ∇α(Cλ∇λΩαβ) − (∇αCλ)∇λΩαβ .

Hence, modulo the Helmholtz equations, Cλ∇λ∇αΩα
β is a quadratic

polynomial in ∇C and ∇2C, namely

Eβ :=Cλ∇λ∇αΩα
β

=∇α
(
Ωβλ∇αC

λ + Ωλα∇βC
λ
)
−
(
∇αCλ

)
∇λΩαβ .

(IX.20.12)

We have proved that Cα(∇α�C,gC + δΩ) is a quasidiagonal third-
order system with characteristic polynomial in a proper frame

fX0

[
−μ′

pX
2
0 +

∑
(Xi)2

]
.

The lower second-order terms in C are

Cα∇αDγ + Eγ .

IX.20.5 Geodesics of conformal metric

Show that the trajectories of the dynamical velocity C := fu are
geodesics of the metric g̃ := f2g conformal to the original spacetime
metric g.

Solution

If g̃ = f2g, it holds that

∇̃βCα −∇βCα = (Γλ
βα − Γ̃λ

βα)Cλ

= −f−3
(
∂αfCβ + ∂βfCα − gαβg

λμ∂μfCλ

)
,

(IX.20.13)

and hence, using (9.5) and (9.4),

Cβ∇̃βCα = Cβ∇αCβ − f−2∂αfC
βCβ = 0. (IX.20.14)
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IX.20.6 Cosmological equation of state p = (γ − 1)μ

Take the cosmological equation of state p = (γ − 1)μ.

1. Compute the index f.
2. Compute the energy equation.

Solution

1. If p = (γ − 1)μ, then the index f is given by

f ≡ exp
[∫

(γ − 1) dp
γp

]
,

and hence, up to an irrelevant multiplicative constant,

f ≡ p(γ−1)/γ , p = fγ/(γ−1).

2. If p = (γ − 1)μ, then

μ′
p − 1 =

2 − γ

γ − 1
,

and the energy equation reads

∇αC
α +

2 − γ

γ − 1
CαCβ

CλCλ
∇αCβ = 0. (IX.20.15)
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X.1 Introduction

In kinetic theory, the matter, usually called a plasma, is composed of
a collection of particles whose size is negligible at the considered scale:
rarefied gases in the laboratory, stars in galaxies, or even clusters of
galaxies at the cosmological scale. The number of particles is so great and
their motion so chaotic that it is impossible to observe their individual
motion.

We have introduced in Chapter IX equations for perfect fluids in Gen-
eral Relativity as a direct consequence of the perfect fluid equations in
Special Relativity and the equivalence principle. We have seen that they
are quite satisfactory mathematically as well as physically. We have also
seen that there are no compelling macroscopic considerations leading to
satisfactory relativistic equations for dissipative fluids, even in Special
Relativity. The classical Navier–Stokes equations lead, like the Fourier
law of heat transfer, to equations of parabolic type, and hence to an infin-
ite propagation speed of signals, which is incompatible with relativistic
causality. The formal generalizations of these equations with the aim of
obtaining hyperbolic equations lack general justification and there is no
consensus about them.

An a posteriori justification of the non-relativistic Euler and Navier–
Stokes macroscopic equations is to deduce them from the motion of the
fluid particles at the microscopic scale and the statistical hypothesis of
classical kinetic theory. It presents no conceptual difficulty to extend
the setting of kinetic theory to Special as well as to General Relativity.
It is straightforward to construct an energy–momentum vector and a
stress–energy tensor for kinetic matter and to couple the latter with
the Einstein equations. The collective motion of collisionless particles is
naturally modelled and leads to conservation equations for the stress–
energy tensor. A case of particular interest in General Relativity is when
the ‘particles’ are stars in galaxies, or even galaxies in clusters of galaxies.
It is then appropriate to take the charges to be zero and the masses to
have values1 1And not discrete values, while this is

the case for electromagnetic plasmas.
between two positive numbers.

When the particles undergo collisions, one can write a Boltzmann
equation, and a coherent Einstein–Boltzmann system, for an appropri-
ate choice of the collision cross-section. The problem is the choice of a
physically reasonable cross-section; this problem arises already in the
non-relativistic case, but is especially delicate when it is stars or galax-
ies that collide. The Boltzmann equation arises in Special Relativity for
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plasmas of elementary particles with a finite number of distinct proper
masses and charges; the gravitational field is then negligible under usual
circumstances. However, the general relativistic Boltzmann equation is
possibly important for obtaining equations for dissipative relativistic
fluids as approximations.

Throughout this chapter, as in previous chapters, we assume that the
spacetime (V, g) is an oriented and time-oriented Lorentzian manifold,
the tangent bundle TV is oriented by the orientation of V, and all fibres
are positively oriented. We treat the (n+1)-dimensional case, specifying
n = 3 when it enjoys special properties.

X.2 Distribution function

X.2.1 Definition

It is assumed that the state of the matter in a spacetime (V, g) is
represented22Representation by a many-particle

distribution function is possible, but
difficult to handle. Representation by
a one-particle distribution function is
linked with the onset of chaos. The
mathematical justification of the onset
of chaos in relativistic dynamics is a
largely open problem.

by a ‘one-particle distribution function’. This distribution
function f is interpreted as the density of particles at a point x ∈ V
that have a momentum p ∈ TxV , the tangent space to V at x. In a
relativistic theory, the momentum p is a future timelike or null vector
whose components define the energy and momentum of the particle with
respect to a Lorentzian frame. With our signature conventions, it holds
that3

3In local coordinates, g(p, p) ≡
gαβpαpβ .

g(p, p) = −m2, with m the rest mass of the particle. In view of
applications to astrophysics, we do not assume a priori that it is the
same for all particles. We state a definition:

Definition X.2.1 A distribution function f is a non-negative sca-
lar function on the so-called phase space PV , a subbundle of the tangent
bundle TV to the spacetime V :

f : PV → R by (x, p) �→ f(x, p), with x ∈ V , p ∈ Px ⊂ TxV.
(X.2.1)

If (V, g) is a Lorentzian manifold, then the fibre Px at x is such that
gx(p, p) ≤ 0 and, in a time-oriented frame, p0 ≥ 0.

Remark X.2.1 If a particle has positive rest mass, then it holds that
p0 > 0 in a time-oriented frame.

If a particle has zero rest mass, then p0 can vanish only if p itself
vanishes. The value p = 0 is, from the mathematical point of view, a
singular point of the vector field X. On the other hand, relativistic phys-
ics says that particles with zero mass move with the speed of light, the
component p0 in an orthonormal frame is the energy with respect to an
observer at rest in this frame, and quantum theory tells us that it does
not vanish, i.e. p0 > 0.

X.2.2 Interpretation

The physical meaning of the distribution function is that it gives a mean4

4In the sense of the Gibbs ensemble. ‘presence number’ density of particles in phase space. More precisely,
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we denote by θ the 2(n + 1)-volume form on TV, i.e. with θx and θp

respectively the volume forms on V and TxV ,

θ := θx ∧ θp. (X.2.2)

In local coordinates, θx and θp are given by

θx = |Det g| 12 dx0 ∧ dx1 . . . ∧ dxn, θp := |Det g| 12 dp0 ∧ dp1 . . . ∧ dpn.
(X.2.3)

X.2.3 Moments of the distribution function

The moments of f are functions or tensors on V obtained by integration
on the fibres of the phase space PV of products of f by tensor products
of p with itself.

Moment of order zero

This is by definition the integral on the fibre Px of the distribution
function:5 5Recall that the integral on an oriented

(n + 1)-manifold Px, with orientation
defined by the order of coordinates
x0, . . . , xn, of the exterior differential
form f(p)θp is equal to the calculus
integral∫

Px

f(p)θp =

∫
Px

f(p) dp0 . . . dpn.

r0(x) :=
∫
Px

fθp. (X.2.4)

It is a ‘density of presence’ in spacetime.

First and second moments

The first moment of f is a vector field on V defined by

Pα(x) :=
∫
Px

pαf(x, p)θp. (X.2.5)

If the spacetime is time-oriented and the particles have non-negative rest
mass and travel towards the future, i.e. if pα is future causal (timelike
or null), then the fibre Px is included in the subset p0 > 0. The vector
fpα is then also causal and future-directed, since f ≥ 0, and the same
is true of the first moment Pα.

Out of the first moment, one extracts a scalar r ≥ 0 interpreted as
the square of a specific rest mass density given by

r2 := −PαPα. (X.2.6)

If P is timelike, then r > 0 and one deduces from the first moment a
unit vector U interpreted as the macroscopic flow velocity and given by

Uα := r−1Pα. (X.2.7)

A sufficient condition for P to be timelike is that the particles have
positive mass, since then all p, and hence also P, are timelike.

The second moment of the distribution function f is the symmetric
2-tensor on spacetime given by

Tαβ(x) :=
∫
Px

f(x, p)pαpβθp. (X.2.8)

It is interpreted as the stress–energy tensor of the distribution f.
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Theorem X.2.1 If a distribution function f depends on p only through
a scalar product Uαp

α, with Uα a given timelike vector on spacetime,
then the first and second moments of f read respectively as the momen-
tum vector and the stress–energy tensor of a perfect fluid. The unit flow
velocity is collinear with U.

Proof. Assume that

f(x, p) ≡ F (x,Uα(x)pα). (X.2.9)

The first moment of f is then

Pα(x) ≡
∫
Px

pαF (x,Uα(x)pα)θp. (X.2.10)

Take at x an orthonormal Lorentzian frame with time axis collinear with
U. In this frame, Uα(x) = −λ(x)δ0α, with λ := (−UαU

α)
1
2 , and hence we

have the following:

1. The first moment of f has components at x such that

P i(x) =
∫
Px

piF (x,−λ(x)p0)θp = 0, (X.2.11)

because the integrand is antisymmetric in the pi while F is positive.
The vector P is therefore collinear with the time axis. The component
P 0 in the orthonormal frame,

P 0(x) =
∫
Px

p0F (x,−λ(x)p0)θp, (X.2.12)

is the macroscopic rest mass density (the presence number density if
all particles have the same mass normalized to 1).

2. In the same frame, the same antisymmetry considerations imply that
T 0i = 0 and T ij = 0 for i 
= j. The equality of the components
T ii, i = 1, . . . , n,

T ii =
∫
Px

(pi)2F (x,−λ(x)p0)θp, (X.2.13)

results from the invariance under rotations in momentum space of
the function F and the volume element θp. The component T 00 is the
positive function

T 00 =
∫
Px

(p0)2F (x,−λ(x)p0)θp. (X.2.14)

The tensor T is therefore the stress–energy tensor of a perfect fluid
with flow vector u = λ−1U, specific energy given by (2.17), and
pressure computed from 2.13.

�
Remark X.2.2 The physical interpretation of the first moment that
we have given coincides with the interpretation chosen by Marle66Marle (1969). and
with Eckart’s original definition.77Eckart (1940). For a discussion and interpretation
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of the second moment in the general case (dissipative fluids), see the
discussion in Marle’s paper on pp. 137–143.

Higher moments

Higher moments are defined as totally symmetric tensors on V
given by

Mα1...αp :=
∫
Px

f(x, p)pα1 . . . pαpθp. (X.2.15)

They play an important role in the Müller–Ruggeri extended thermo-
dynamics.

X.2.4 Particles of a given rest mass

Stars or galaxies do not have the same rest mass, but the original kinetic
theory was constructed for the case of gases in laboratories, composed
of molecules with the same rest mass m. In that case, the phase space
over (V, g), denoted by Pm,V , has for fibre Pm,x the mass hyperboloid
(also called the mass shell)

Pm,x ≡ Px ∩ {g(p, p) = −m2}. (X.2.16)

In the case of particles of a given mass m, the volume form θm,p on the
mass shell Pm,x is, taking the pi as local coordinates on Pm,x (then p0

is a function of x and pi),

θm,p =
|Det g| 12
p0

dp1 ∧ . . . ∧ dpn. (X.2.17)

Exercise X.2.1 Prove this formula using the Leray definition

d

[
1
2
(g(p, p) −m2)

]
∧ θm,p = θp. (X.2.18)

The moments can be defined by the same formula as in Section X.2.3,
by integration on the mass shell and replacing θp by θm,p.

One can also consider the case of N different particles with different
masses mI , I = 1, 2, . . . , N ; there are then N different phase spaces
PmI ,V , and different distribution functions fI . The moments to consider
are the sums of the corresponding moments; for example, the second
moment is

Tαβ(x) :=
∑

I

∫
Pma ,x

fI(x, p)pαpβθmI ,p. (X.2.19)

For details see the article by Marle.8 8Marle (1969).
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X.3 Vlasov equations

In the Vlasov models, one assumes that the gas is so rarefied that the
particle trajectories do not scatter (i.e. one neglects collisions between
particles). Their motion is determined by the average fields they generate
on spacetime.

X.3.1 General relativistic (GR)–Vlasov equation

In a curved spacetime of General Relativity, in the absence of non-
gravitational forces, each particle follows a geodesic of the spacetime
metric g. We have seen (Chapter I, Section I.8) that the differential
system satisfied by a geodesic in the tangent space TV of a pseudo-
Riemannian manifold (V, g) reads in local coordinates, with λ called a
canonical affine parameter,

pα :=
dxα

dλ
,

dpα

dλ
= Gα, with Gα := −Γα

λμp
λpμ, (X.3.1)

where Γα
λμ are the Christoffel symbols of the metric g. In other words,

the trajectory of a particle in TV is an element of the geodesic flow
generated by the vector field X = (p,G) whose components pα, Gα in
a local trivialization of TV over the domain of a chart of V are given
by (3.1).

Exercise X.3.1 Show by direct calculation that X = (p,G) is indeed
a vector field on the tangent bundle TV.

In a collisionless model, the physical law of conservation of particles,
together with the invariance of the volume form in TV under the geo-
desic flow (Liouville’s theorem; see Problem X.14.1) imposes that the
distribution function f be constant under this flow, that is, that it sat-
isfy the following first-order linear differential equation, which we call
the GR–Vlasov equation:

LXf ≡ pα ∂f

∂xα
− Γα

λμp
λpμ ∂f

∂pα
= 0. (X.3.2)

We have interpreted the scalar −g(p, p) as the square of the rest
mass of the particle. The following lemma, the formulation of a prop-
erty already seen in other contexts, makes this interpretation physically
consistent:

Lemma X.3.1 In a GR–Vlasov plasma, the scalar g(p, p) is constant
under the geodesic flow; that is,

LX{g(p, p)} := pα ∂g(p, p)
∂xα

+Gα ∂g(p, p)
∂pα

≡ 0, Gα := −Γα
λμp

λpμ.

Exercise X.3.2 Prove this identity.

Hint: Use the values of the Christoffel symbols.
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For particles with a given rest mass, it is convenient to take as coord-
inates on the phase space Pm the 2n+1 numbers xα, pi. The distribution
function fm in such coordinates is

fm(xα, pi) = f(xα, pi, p0(pi)). (X.3.3)

Exercise X.3.3 Prove that gαβp
αpβ = −m2 implies

∂p0

∂pi
= − pi

p0
,

∂p0

∂xα
= −p

λpμ

2p0

∂gλμ

∂xα
. (X.3.4)

Deduce from this definition and identities that the Vlasov equation takes
the form, with bounded coefficients,9 9Choquet-Bruhat (1971b).

∂fm

∂x0
+
pi

p0

∂fm

∂xi
+
Gi

p0

∂fm

∂pi
= 0.

X.3.2 EM–GR–Vlasov equation

When, in addition to gravitation, the particles are subjected to some
given force, represented by a vector Φ tangent to the spacetime V, the
vector Y tangent to the particle trajectories in the phase space PV over
a spacetime (V, g) is

Y = (p,G+ Φ), i.e. (Y A) = (pα, Gβ + Φβ). (X.3.5)

If the volume form θ is invariant under the flow of Y, that is, if
LY θ = 0, then particle number conservation gives for the distribution
function f a generalized GR–Vlasov equation

LY f ≡ pα ∂f

∂xα
+ (−Γα

λμp
λpμ + Φα)

∂f

∂pα
= 0. (X.3.6)

Lemma X.3.2 LY θ = 0 if ∂Φα/∂pα ≡ 0.

Exercise X.3.4 Prove this result.

Hint: Use the identity LY θ ≡ d(iY θ) + iY (dθ).

If the particles have electric charge e and move in an electromagnetic
field F , then their trajectories have tangent vectors in phase space

Y = (pα, Gα + Φα), with Φα ≡ e|g(p, p)|− 1
2Fαβpβ . (X.3.7)

We deduce from the expression for Φ and the antisymmetry of F that

∂Φα

∂pα
≡ 0.

Therefore, the volume form θ is invariant under the flow of Y, and particle
number conservation gives the EM–GR–Vlasov equation

LY f ≡ pα ∂f

∂xα
+ (−Γα

λμp
λpμ + e|g(p, p)|− 1

2Fαβpβ)
∂f

∂pα
= 0. (X.3.8)
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The following lemma provides a coherent consideration of an EM–GR
plasma where particles have both the same mass and the same charge.

Lemma X.3.3 In an EM–GR–Vlasov plasma, the scalar g(p, p) is
constant along an orbit of Y in TV ; that is,

pα ∂g(p, p)
∂xα

+ (Gα + em−1Fαβpβ)
∂g(p, p)
∂pα

≡ 0.

The proof is an easy consequence of the lemma proved in the purely
gravitational case, because

∂g(p, p)
∂pα

≡ ∂(gλμp
λpμ)

∂pα
= 2pα and Fαβpβpα = 0,

by the antisymmetry of F.

Exercise X.3.5 Prove that if the particles all have the same mass m,
then the distribution function fm satisfies on Pm the following reduced
EM–GR–Vlasov equation:

∂fm

∂x0
+
pi

p0

∂fm

∂xi
+
Gi + Φi

p0

∂fm

∂pi
= 0.

The EM–GR–Vlasov equation can be generalized to particles with
random charges (see Problem X.14.2).

X.3.3 Yang–Mills plasmas

Yang–Mills plasmas were not observed in laboratories until high-
energy particle colliders were able to decompose baryons into their
constitutive quarks and gluons. The Yang–Mills–Vlasov1010Choquet-Bruhat and Noutchegueme

(1986). See also YCB-OUP2009, Chap-
ter X, Section 3.3.

equation is
analogous to the EM–Vlasov equation, but the electromagnetic field is
replaced by a Yang–Mills field taking its values in a Lie algebra G and
the electric charge e, a constant, is replaced by a function q on the space-
time V with values in the Lie algebra G. The phase space for the kinetic
theory is now the product PV ×G. Although the gravitational field does
not seem to play a role at the scale of Yang–Mills plasmas, we write the
general relativistic equations here. The trajectory of a particle in this
phase space is a solution of the differential system

dxα

ds
= pα,

dpα

ds
= Gα + q · Fαβpβ ,

dq

ds
= Q := −pα[Aα,, q], (X.3.9)

where [.,.] is the bracket in the Lie algebra G, i.e. [Aα,, q]a :=
cabcA

b
αq

c. The distribution function f is now a function of x, p, q. In
the absence of collisions and other forces, f satisfies the Einstein–Yang–
Mills–Vlasov equation

pα ∂f

∂xα
+ (Gα + q · Fαβpβ)

∂f

∂pα
+Qa ∂f

∂qα
= 0. (X.3.10)

A realistic plasma may contain N charged particles of different
kinds,1111A case treated in Marle (1969). with rest masses mI and electric charges eI ; their momenta lie
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in mass hyperboloids gαβp
αpβ = −m2

I . If we take the pi as coordinates
on these mass hyperboloids and denote by fmI

(x, p) their distribution
functions, then each fmI

satisfies a reduced EM–GR–Vlasov equation
on a phase space PmI

.

X.4 Solution of a Vlasov equation

X.4.1 Construction

Let (V, g) be a Lorentzian manifold. Assume given on the tangent spaces
to V, TM0V, at points of an initial hypersurface M0 ⊂ V , a function f̄
that will be the initial value of a distribution function f solution of the
Einstein–Vlasov equation, at least in a neighbourhood of TM0V .

The GR–Vlasov equation is a linear first-order partial differential
equation

LXf := pα ∂f(x, p)
∂xα

+Gα(x, p)
∂f(x, p)
∂pα

= 0.

As is classical for solving such an equation, we transform it into an
ordinary differential equation by solving the differential system called
the characteristic system:

dxα

dλ
= pα,

dpα

dλ
= Gα ≡ −Γα

λμp
λpμ. (X.4.1)

Let x0 = 0 be the equation of M0. Denote by ξi and πα coordinates of
a point of ξ ∈ M0 and a point π ∈ TξV, the tangent space to V at ξ.
Assume given a function f̄(ξ, π); then the quasilinear first-order differ-
ential system (4.1) has, for λ small enough, one and only one solution,12

12A local C1 solution exists, i.e. a
mapping (ξ, π) �→ (x(λ), p(λ)) for λ
small enough, if the coefficients of the
differential system are C1, i.e. if the
spacetime metric is C2. The solution
is unique if the coefficients are Lips-
chitzian in x and p, and hence if the
spacetime metric is C1,1 (i.e. C1 with
Lipschitzian derivatives).

a geodesic flow that takes, for λ = 0, the given values (ξ, π):

xα = φα(λ, ξ, π), pα = ψα(λ, ξ, π), ξ := (ξi), π := (πα),

with

φ0(0, ξ, π) = 0, φi(0, ξ, π) = ξi, ψα(0, ξ, π) = πα. (X.4.2)

Inserting these functions φα and ψα into the Vlasov equation gives the
following ordinary differential equation along the trajectory issuing from
(ξ, π):

df{(φ, ψ)(λ, ξ, π)}
dλ

= 0;

that is, f is constant along the trajectory, i.e.

f{(φ, ψ)(λ, ξ, π)} = f̄{(φ, ψ)(0, ξ, π)}.

The mapping Λ : (λ, ξi, πα) �→ (xα, pα) reduces to the identity for
λ = 0; it is therefore invertible13

13In other words, the geodesic flow has
no conjugate point.(if C1) for small enough λ, i.e. in
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a neighbourhood of M0. The inverse mapping Λ−1 gives the following
solution of the GR–Vlasov equation:

f(x, p) ≡ f̄(ξ(x, p), π(x, p)). (X.4.3)

The same procedure gives the general solution of an EM–GR–Vlasov
equation.

Exercise X.4.1 Write the characteristic system of an EM–GR–Vlasov
equation.

X.4.2 Global existence theorem

The construction given in Section X.4.1 breaks down when the geodesic
flow ceases to be regular. However, this breakdown does not imply that
the Cauchy problem for the GR–Vlasov equation does not have a global
solution.14

14This global existence holds, in ap-
propriate functional spaces, for lin-
ear hyperbolic equations, in particular
wave equations in a Lorentzian metric
whose null rays issuing from a point do
not necessarily constitute (out of this
point) a smooth hypersurface.

This solution is not given by the formula (4.3), but its global
existence can be proven by using energy-type estimates for first-order
linear equations. We state a theorem,1515Choquet-Bruhat (1971b). leaving to the interested reader
the formulation of relevant functional spaces.

Theorem X.4.1 The Cauchy problem for the GR–Vlasov equation on
the phase space PV of a regularly sliced (n + 1)-dimensional spacetime
(V, g), with data f̄ on PM̄ , M̄ := M × {0}, admits one and only one
solution f on PV .

It is probably possible to prove global existence on the tangent bundle
of a globally hyperbolic manifold with appropriate hypotheses on the
initial manifold and initial data.

X.4.3 Stress–energy tensor

The stress–energy tensor of a distribution f is its second moment:

Tαβ(x) :=
∫
Px

f(x, p)pαpβθp. (X.4.4)

It is defined at x ∈ V if fpαpβ is integrable on the fibre Px of the phase
space, which requires a proper fall off of f in p at infinity in Px, satisfied
in particular if f has compact support in p; this compactness results
in a neighbourhood of M̄ from the compactness of the support of the
initial f̄ .

More generally, consider the case of interest for astrophysics:

0 < m2 ≤ −g(p, p) ≤M2.

It holds that pαpβ/(p0)2 is uniformly bounded on PV , and hence the
integrals (4.4) are defined if∫

Px

(p0)2f(x, p)θp

is defined.
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X.5 The Einstein–Vlasov system

X.5.1 Equations

The Einstein–Vlasov system comprises the Einstein equations for a
Lorentzian metric g with source the second moment of a distribution
function f, coupled with the GR–Vlasov equation for f :

Sαβ = Tαβ , with Sαβ := Rαβ − 1
2
gαβR, (X.5.1)

Tαβ(x) :=
∫
Px

f(x, p)pαpβθp, θp := |Det g| 12 dp0dp1 . . . dpn, (X.5.2)

coupled with

LXf ≡ pα ∂f

∂xα
+Gα ∂f

∂pα
= 0, Gα := −Γα

λμp
λpμ. (X.5.3)

X.5.2 Conservation law

The Einstein–Vlasov system is coherent if the stress–energy tensor (5.2)
satisfies the conservation law

∇αT
αβ = 0.

We prove the following more general theorem:16 16For the first moment, this expresses
the conservation law of the macroscopic
momentum.Theorem X.5.1 If the distribution f satisfies the GR–Vlasov equation

LXf = 0, then its moments satisfy the conservation laws

∇α1M
α1α2...αp = 0, (X.5.4)

where ∇ is the covariant derivative in the spacetime metric g.

Proof. We choose at the point x coordinates such that the first deriva-
tives ∂αgλμ := (∂/∂xα)gλμ, and hence the Christoffel symbols, vanish at
x. At that point, in these coordinates, it holds that

∇α1M
α1α2...αp =

∂

∂xα1
Mα1α2...αp .

It also holds that (∂/∂xα)θp = θp, since (∂/∂xα)(Det g)
1
2 = 0 when

∂αgλμ = 0. Therefore,

∂

∂xα1
Mα1α2...αp =

∂

∂xα1

∫
Px

f(x, p)pα1 . . . pαpθp

=
∫
Px

∂

∂xα1
f(x, p)pα1 . . . pαpθp,

but when the Christoffel symbols are zero,∫
Px

∂

∂xα1
f(x, p)pα1 . . . pαpθp =

∫
Px

LXf(x, p)pα2 . . . pαpθp. (X.5.5)
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We have obtained a relation between tensors on V at an arbitrary point
in particular coordinates; in arbitrary coordinates, it reads

∇α1M
α1α2...αp ≡

∫
Px

LXf(x, p)pα2 . . . pαpθp. (X.5.6)

�

X.6 The Cauchy problem

In a Cauchy problem, one looks for solutions of a system of differential or
integrodifferential equations taking given data on an initial hypersurface.
A local-in-time existence theorem for a solution of the Cauchy problem
for the coupled Einstein–Vlasov system was proved long ago;1717Choquet-Bruhat (1971b), for par-

ticles with a given rest mass. For par-
ticles with rest mass in a range of
positive numbers, see YCB-OUP2009,
Chapter X.

here we
will only give the idea of the proof and state the main results.

As in the general case of Einstein equations with source a stress–
energy tensor satisfying the conservation laws, the solution of the
Cauchy problem for the Einstein equations with a kinetic source splits
into an elliptic system called the constraints for Cauchy data on the
initial hypersurface and a hyperbolic evolution system for the metric
in a suitably chosen gauge, for example a wave gauge. This evolution
system is coupled with an evolution system for the source, here a
Vlasov equation. The solution in wave gauge is proved, as always, to be
a solution of the full Einstein equations by using the conservation law
satisfied by the stress–energy tensor—here it is a distribution function
solution of the GR–Vlasov equation.

X.6.1 Cauchy data and constraints

An initial data set for the Einstein–Vlasov system (see Chapter VIII)
is a quadruplet (M, ḡ,K, f̄), where M is a hypersurface of a differen-
tiable manifold V, ḡ and K are respectively a properly Riemannian
and a symmetric 2-tensor on M, while f̄ is a function on the bundle
PM := ∪x∈MPx(V ) corresponding to the kind of particles we consider.

As always, the data must satisfy on M the Hamiltonian constraint

R(ḡ) − |K|2ḡ + (trḡ K)2 = 2N2T̄ 00 (X.6.1)

and the momentum constraint

∇̄.K − ∇̄trK = N̄ T̄ 0i, (X.6.2)

T̄αβ(x) =
∫

Px

f̄(x, p)pαpβθp, x ∈M, p ∈ Px(V ).

A general property of the Einstein equations is that the conformally
formulated constraints decouple if the initial manifold has constant mean
extrinsic curvature and the source has zero momentum, i.e. T̄ 0i = 0.
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Exercise X.6.1 Show that T̄ 0i(x) = 0 if f̄(x, p0, pi) = f̄(x, p0,−pi).

In the Maxwell–Einstein–Vlasov case, the Cauchy data on M0 are,
in addition to ḡ, K, and f̄ , the data F̄αβ of Fαβ on M0.

Exercise X.6.2 Write the system of constraints satisfied by ḡ,K, F̄ .

X.6.2 Evolution

As is often the case for a coupled system, a general method to solve the
Einstein equations in wave gauge coupled with a GR–Vlasov equation
is by iteration: find a solution f1 of the Vlasov equation for a given
Lorentzian metric g1; then look for a solution g2 of the reduced Ein-
stein equations with source f1; then iterate and study the convergence
of the iteration, either numerically or mathematically. The mathemat-
ical method used by Choquet-Bruhat18 18Choquet-Bruhat (1971b).to prove the existence of these
iterates and their convergence is through classical energy estimates for
wave equations for the metric and weighted-in-p0 energy estimates for
the Vlasov equation to be satisfied by the function f . It is probably pos-
sible to use instead constructive methods, relying on the parametrix in
the Einstein case and the formula (4.3) for the Vlasov part.

X.6.3 Local existence and uniqueness theorem

We state the theorem, leaving the formulation of relevant functional
spaces to the interested reader:

Theorem X.6.1 The Cauchy problem for the Einstein–Vlasov system
with initial data (ḡ,K) on M, f̄ , on PM , satisfying the constraints, ad-
mits a solution (g, f) on V� × PV , with V� := M × [0, �]), and � small
enough.

X.6.4 Global theorems

The collisionless kinetic theory having no global problems of its own,
one may hope to extend to the Einstein–Vlasov system global results
obtained for the vacuum Einstein equations. Such results are already
hard to prove. Global existence theorems, or proofs of the cosmic cen-
sorship conjectures, for the Einstein–Vlasov system have been obtained
only in the presence of an isometry group. The first global existence
theorem, for small initial data, was proved by Rein and Rendall19 19Rein and Rendall (1992).in the
case of spherical symmetry. A paper by Dafermos and Rendall20 20Dafermos and Rendall (2006).proves
cosmic censorship in the case of surface-symmetric compactly supported
initial data. References to other global results concerning the Einstein–
Vlasov system can be found in that paper and in a review by Rendall.21 21Rendall (2005).
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X.7 The Maxwell–Einstein–Vlasov system

Charged particles in a kinetic model generate by their motion an average
electric current J, and hence an electromagnetic field, a 2-form F.

X.7.1 Particles with given rest mass and charge

If all particles have the same charge e and rest mass m, the current is

Jα(x) = m−1e

∫
Pm,x

f(x, p)pαθm,p. (X.7.1)

The electromagnetic field satisfies on V the Maxwell equations

dF = 0, δF = J, i.e. ∇αF
αβ = Jβ . (X.7.2)

The Maxwell–Einstein–Vlasov system2222The Maxwell–Vlasov system in Spe-
cial Relativity has been studied exten-
sively.

is the coupled system of these
Maxwell equations with the EM–GR–Vlasov equation together with the
Einstein equations with source a stress–energy tensor that is the sum of
the second moment of the distribution function f and the stress–energy
tensor τ of the electromagnetic field:

Sαβ = Tαβ ≡
∫
Px×R

f(x, p, e)pαpβθp de+ ταβ ,

ταβ ≡ Fα
λF

βλ − 1
4
gαβFλμF

λμ.

The following theorem makes the system coherent:2323Recall that ∇αSαβ ≡ 0 and
∇α∇βF αβ ≡ 0 for any metric g and
2-form F. Theorem X.7.1

1. If the distribution function f satisfies the EM–GR–Vlasov equation,
then the current J has zero divergence.

2. If, in addition, F satisfies the Maxwell equations, then the stress–
energy tensor T is divergence-free.

Proof. 1. The electric current is given by the product with m−1e of the
first moment of f :

Jα ≡ m−1e

∫
Px

pαf(x, p)θp. (X.7.3)

Hence, by (5.6),

∇αJ
α = m−1e

∫
Px

LXf(x, p)θp, (X.7.4)

which implies, if LY f(x, p) ≡ LXf(x, p) + Φα∂f(x, p)/∂pα = 0,

∇αJ
α = −m−1e

∫
Px

∫
Px

Φα ∂f(x, p)
∂pα

θp. (X.7.5)
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Using integration by parts and the equality ∂Φα/∂pα = 0 gives

∫
Px

Φα ∂f(x, p)
∂pα

θp = −
∫
Px

f(x, p)
∂Φα

∂pα
θp = 0, (X.7.6)

and hence

∇αJ
α = 0.

2. Analogous reasoning gives for the second moment when LY f = 0

∇αM
αβ =

∫
Px

−Φα ∂f

∂pα
pβθp. (X.7.7)

The calculus identity

Φα ∂f

∂pα
pβ ≡ ∂

∂pα
(Φαfpβ) − ∂Φα

∂pα
fpβ − Φβf, (X.7.8)

integration by parts, the property ∂Φα/∂pα = 0, and antisymmetry of
F show that

∇αM
αβ = −

∫
Px

Φβfθp ≡ −e
∫
Px

Fλ
βpλθp. (X.7.9)

We have seen in Chapter III that the divergence of the Maxwell tensor
is, if F satisfies the Maxwell equations,

∇ατ
αβ = JλFλ

β ≡ e

∫
Px

Fλ
βpλfθp. (X.7.10)

We have proved that

∇α(Mαβ + ταβ) = 0 if LY f = 0. �

The local existence theorem (Theorem X.6.1) extends to the Maxwell–
Einstein–Vlasov system modulo hypotheses on the electromagnetic data
(see the fluid case).

X.7.2 Particles with random masses and charges

If the particles have random masses and charges, then the electric current
is given, at each point x ∈ V , by

Jα(x) =
∫
Px×R

f(x, p, e)pαθp de. (X.7.11)

See Problem X.14.2 for the local existence theorem in this case.
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X.8 Boltzmann equation. Definitions

When the particles undergo collisions, their trajectories in phase space
are no longer connected integral curves of the vector field X: their mo-
menta undergo jumps on crossing other trajectories. Consequently, the
derivative of the distribution function f along X is no longer zero. In
the Boltzmann model, this derivative is equal to the so-called collision
operator If :

LXf = If. (X.8.1)

If is a quadratically nonlinear integral operator that is being interpreted
as being linked with the probability that two particles of momenta re-
spectively p′ and q′ collide at x and give, after the shock, two particles,
one with momentum p and the other with momentum q. One says that
the shock is elastic when the following law of conservation of momentum
holds:2424This law assumes that there is no

change in internal properties of the
particles. p′ + q′ = p+ q. (X.8.2)

This equation defines a submanifold Σ in the fibre (×Px)4. For fixed
p, q, one denotes by Σpq the submanifold of (×Px)2 defined by (8.2).
The volume element ξ′ (Leray form) in Σpq is such that

ξ′ ∧ (∧
α
(d(p′α + q′α)) = θp′ ∧ θq′ . (X.8.3)

The collision operator is

(If)(x, p) ≡
∫
Px(q)

∫
Σpq

[f(x, p′)f(x, q′) − f(x, p)f(x, q)]

×A(x, p, q, p′, q′)ξ′ ∧ θq.

(X.8.4)

The function A(x, p, q, p′, q′) is called the shock cross-section. It is a
phenomenological quantity that depends on the physics of the shocks. No
explicit expression is known for it in Relativity.2525For a mathematical study of the

Boltzmann equation in classical mech-
anics, one may consult the review art-
icle by Villani (2002).

A generally admitted
property is the reversibility of elastic shocks, namely

A(x, p, q, p′, q′) = A(x, p′, q′, p, q). (X.8.5)

Lemma X.8.1 When the particles have all the same, non-zero, proper
mass m, the integral on Σpq can be written by using a formula of the
type, with θ, ϕ canonical angular parameters on the sphere S2,

A(x, p, q, p′, q′)ξ′ = S(x, p, q, θ, ϕ) sin θ dθ ∧ dϕ.

Proof. Introduce at the point x, for a given pair p, q of timelike vectors,
an orthonormal Lorentz frame with time axis e0 in the direction of p+q.
Set p + q = 2λe0, 2λ = [−g(p + q)]1/2. Then also p′ + q′ = 2λe0, and
since p, q, p′, q′ are timelike vectors with length m,

pαqα = p′αq′α = m2 − 2λ2 ≤ −m2.

In such a frame, p0 + q0 = p′0 + q′0 = 2λ, while pi + qi = p′i +
q′i = 0; hence Σ(pi)2 = Σ(qi)2, and therefore p0 = q0 = λ, while
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Σ(pi)2 = λ2 − m2 =: α2. The same properties hold for the primed
variables; in this frame, Σpq is represented by α2-sphere, Σ(p′i)2 = α2

of radius α in the plane p′0 = λ . It holds that

α =
1
2
(−pαqα −m2)1/2 =

1
2
g(p− q, p− q)1/2.

Take a vector parallel to p− q (which is orthogonal to p+ q = 2λe0) as
axis for polar coordinates θ, ϕ on Σpq, denoting by θ the angle between
the space vectors p− q and p′ − q′; the definition of ξ′ then gives

ξ′ = (2λ)−1α sin θ dθ ∧ dϕ.

The given relation holds with

S(p, q, θ, ϕ) = A(x, p, q, p′, q′)(2λ)−1α, (X.8.6)

where on the sphere Σpq both p′ and q′ are given by the θ-, ϕ-dependent
4-vectors

p′Σpq
= q′Σpq

=
{
−1

2
g(p+ q)1/2,

1
2
g(p− q, p− q)1/2(cos θ, sin θ cosϕ, sin θ sinϕ)

}
.

(X.8.7)
�

X.9 Moments and conservation laws

The moments of a distribution function f have been defined in Sec-
tion X.2 by integrals over a fibre in phase space. The moment of order
n is

Tα1...αn(x) =:
∫
Px

pα1 . . . pαnf(x, p)θp. (X.9.1)

It satisfies the identity

∇αT
αα2...αn ≡

∫
Px

pα2 . . . pαnLXf(x, p)θp. (X.9.2)

The right-hand side is zero if f satisfies the Vlasov equation.
We have interpreted the first and second moments as giving respect-

ively the proper rest-mass–momentum vector and the stress–energy
tensor of the macroscopic matter corresponding to the distribution
function f . We prove a lemma, important for the coherence with the Ein-
stein equations, when f satisfies a Boltzmann equation with reversible
collisions:

Lemma X.9.1 The first and second moments of a distribution f sat-
isfying a Boltzmann equation on a spacetime (V, g) have zero divergence
in the spacetime metric if the collisions are reversible.
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Proof. The first moment of f is the vector field on V, interpreted as
proper rest-mass–energy–momentum density, given by

Pα :=
∫
Px

pαf(x, p)θp. (X.9.3)

The equation (9.2) reads in this case

∇αP
α ≡

∫
Px

LXf(x, p)θp =
∫
Px

(If)(x, p)θp. (X.9.4)

The second moment of f, interpreted as the stress–energy tensor, is
defined by

Tαβ :=
∫
Px

pαpβf(x, p)θp. (X.9.5)

For f satisfying a Boltzmann equation, we have

∇αT
αβ ≡

∫
Px

pβ(If)(x, p)ωp. (X.9.6)

Standard calculus, which we leave to the reader as an exercise, shows
that, for reversible collisions, (9.4) and (9.6) have zero right-hand sides.

In the case of particles with non-zero rest mass, we have set Pα = ruα,
with u the unit flow vector of the macroscopic matter corresponding to
the distribution function f. Equation (9.4) is identical to the matter
conservation law found for fluids:

∇α(ruα) = 0. (X.9.7)

Equation (9.6),

∇αT
αβ = 0, (X.9.8)

is to be satisfied by all stress–energy tensors in General Relativity. �

The higher moments do not satisfy conservation laws, but form an
infinite hierarchy; see Section X.11.

X.10 Einstein–Boltzmann system

The Einstein equations with source the stress–energy tensor of a dis-
tribution function f satisfying a Boltzmann equation form a coherent
system if the collision operator is such that the stress–energy tensor is
conservative. We have said that this property holds if the collisions are
reversible.

It has been proved2626Bancel (1973) for the Boltzmann
equation and Bancel and Choquet-
Bruhat (1973) for the coupled system.

that the local Cauchy problem, with initial data
set (M, ḡ,K, f̄), is well posed for such a Einstein–Boltzmann system.

The same kinds of results hold for an Einstein–Maxwell–Boltzmann
system obtained on replacing the GR–Vlasov operator by the EM–
Vlasov operator.
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X.11 Thermodynamics

One of the main reasons for the interest in relativistic kinetic theory is
the possibility of obtaining the laws of thermodynamics in a relativistic
context. The problem is already difficult in Special Relativity, and new
challenges arise in General Relativity because of the non-existence of an
equilibrium distribution function in a non-stationary universe.

X.11.1 Entropy and the H theorem

The entropy density of a one-particle distribution f was computed by
Boltzmann to be in phase space the function27

27Boltzmann’s constant k is the quo-
tient of the perfect gas constant and
Avogadro’s number, with the value
1.3806568 J K−1.

−k(f log f)(x, p). The
entropy flux in spacetime is the future-directed timelike vector28

28From its physical definition, it holds
that 0 ≤ f ≤ 1; hence −f log f ≥ 0.

Hα(x) := −k
∫
Px

pα(f log f)(x, p)θp. (X.11.1)

The following theorem is the relativistic formulation of a theorem well
known in non-relativistic thermodynamics:

Theorem X.11.1 (H theorem) If collisions are reversible and satisfy
the symmetry property (8.5), then the entropy flux Hα is such that

∇αH
α ≥ 0. (X.11.2)

Proof. The divergence of H is found to be, by a computation similar to
a previous one,

(∇αH
α)(x) ≡ −k

∫
Px

(LX [f log f ])(x, p)θp

≡ −k
∫
Px

(LXf [log f + 1])(x, p)θp.

(X.11.3)

Using the Boltzmann equation and the reversibility of collisions, which
implies that∫

Px(q)

∫
Σpq

[f(x, p′)f(x, q′)−f(x, p)f(x, q)]A(x, p, q, p′, q′)ξ′∧θq∧θp = 0,

(X.11.4)
we find that

(∇αH
α)(x) = −k

∫
Px(q)

∫
Σpq

[f(x, p′)f(x, q′) − f(x, p)f(x, q)]

×(log f)(x, p)A(x, p, q, p′, q′)ξ′ ∧ θq ∧ θp. (X.11.5)

Making, moreover, the natural assumption of symmetry,

A(x, p, q, p′, q′) = A(x, q, p, p′, q′), (X.11.6)
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we rewrite the above divergence as follows (the dependence on x has
been made implicit for brevity):

∇αH
α = −k

4

∫
Px(q)

∫
Σpq

[f(p′)f(q′) − f(p)f(q)]

× log
[
f(p)f(q)
f(p′)f(q′)

]
A(p, q, p′, q′)ξ′ ∧ ωq ∧ ωp, (X.11.7)

which is non-negative2929Because (a − b)(log a − log b) ≥ 0. when A is non-negative. �
The gas is said to be in thermal equilibrium if ∇αH

α = 0. A general
relativistic gas undergoing collisions will not in general attain in a finite
time thermal equilibrium (see Section X.11.2).

We can make a simple link between the microscopic and macroscopic
properties of the gas when the distribution f is isotropic in phase space,
namely when there exists a timelike vector v on spacetime such that f
depends only on vαp

α. We have seen (Section X.2) that the macroscopic
gas is then a perfect fluid with momentum flow P collinear with V . The
same type of proof gives the following lemma:

Lemma X.11.1 Assume there exists on spacetime a timelike vector V
such that the function f is symmetric in the spaces orthogonal to V, i.e.
in each fibre,

f(x, q) = f(x, p) if Vαp
α = Vαq

α and p̄ = −q̄, (X.11.8)

where p̄ and q̄ denote respectively the projections of p and q on the sub-
space orthogonal to V. Then the first moment P = rU as well as the
entropy vector H are collinear with V.

Lemma X.11.2 When the vectors H and P are collinear, one defines
a positive specific scalar entropy S by setting

Hα = SPα. (X.11.9)

This specific entropy S satisfies on spacetime the inequality

Pα∂αS ≥ 0. (X.11.10)

Proof. The lemma follows from inequality ∇αH
α ≥ 0 and the conser-

vation law ∇αP
α = 0. �

When f does not have the property (11.8), the entropy and matter
flux are not collinear.

In all cases, integrating (11.2) on a spacelike slice VT , with compact
space or appropriate boundary conditions at spacelike infinity, we find
that ∫

MT

H0Nμḡ ≥
∫

M0

H0Nμḡ. (X.11.11)

Exercise X.11.1 Prove this inequality.

The inequality (11.11) leads some cosmologists to think that it is the
expansion of the universe that permits its ever-increasing organization
from an initial anisotropy of f.
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X.11.2 Maxwell–Jüttner equilibrium distribution

A gas is considered to be in thermal equilibrium if its entropy is
conserved in the sense that

∇αH
α = 0. (X.11.12)

Equation (11.3) shows that a sufficient condition for this equality to hold
is that the distribution function f be conserved along the trajectories
of X in phase space, i.e. LXf = 0. This condition is, in a Boltzmann
framework,

I(f) =0. (X.11.13)

A sufficient condition for this equality to hold is that at each point x of
spacetime, the function f is such that

f(p′)f(q′) − f(p)f(q) = 0, if p+ q = p′ + q′. (X.11.14)

This condition is also necessary if A(p, q, p′, q′) is strictly positive. It can
also be proved to hold under weaker assumptions.30 30Marle (1969), p. 94.It can immediately
be checked that a solution of the above functional equation is

f(x, p) = a(x) exp[bα(x)pα], (X.11.15)

with a a positive scalar function and b a covariant vector on spacetime. It
can be proved that all continuous solutions of (11.14) are of this form. If
a is non-negative, the same is true of f ; if, moreover, b is future timelike,
then bα(x)pα < 0 and f(x, .) is integrable on Px. Such functions are
called Maxwell–Jüttner distributions.

For such a Maxwell–Jüttner distribution f , we find by straightforward
computation that

LXf ≡ ebλpλ

[
pα ∂a

∂xα
+

1
2
pαpβ(∇αbβ + ∇βbα)

]
. (X.11.16)

A function f given by (11.15) will satisfy LXf = 0 on phase space if and
only if on spacetime it holds that ∂a/∂xα = 0 and ∇αbβ + ∇βbα = 0,
that is, iff a is a constant and b is a Killing vector field: the spacetime
must therefore be stationary to admit a thermal equilibrium distribution
function—an unsurprising result.

We deduce from Theorem X.2.1 that the rest-mass–momentum vector
and the stress–energy tensor on spacetime associated with a Maxwell–
Jüttner distribution with a timelike vector b are those of a perfect fluid
with flow vector collinear to b. The same kind of proof shows that the
entropy vector H is collinear to b, and hence to u. The integrals giv-
ing the moments can be expressed through modified Bessel functions of
the second kind and index n.31 31See Pichon (1967) and Marle (1969).The scalar (−bαbα)

1
2 is interpreted as

the inverse of the product of the absolute temperature by Boltzmann’s
constant:

(−bαbα)
1
2 = (kT )−1. (X.11.17)
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Remark X.11.1 If the particles have zero mass (e.g. photons), one
can satisfy the condition LXf = 0 only by imposing that b is a conformal
Killing vector field, i.e. ∇αbβ + ∇βbα = λgαβ . This is the reason why
Robertson and Walker used the Planck distribution for photons in their
expanding spacetimes.

X.11.3 Dissipative fluids

In classical mechanics, the Navier–Stokes equations can be obtained from
a distribution function that is a first-order perturbation of the Max-
well equilibrium distribution, either by the Chapman–Enskog method
or by Grad’s polynomial expansion method. Both methods have been
extended by Marle, who found the stress–energy tensor corresponding
to a first-order perturbation of the Maxwell–Jüttner distribution. The
corresponding, very complex, system of equations have been shown to be
of hyperbolic type only in some simplified cases. The fact that thermal
equilibrium is not compatible with non-stationary spacetimes limits the
validity of such equations in General Relativity.

X.12 Extended thermodynamics

The objective of extended thermodynamics3232See, for a summary, YCB-OUP 2009,
Chapter X, Section 11 (contributed by
Tommaso Ruggeri) and, for a complete
exposition, Müller and Ruggeri (1998).

is to obtain equations for
fluids in General Relativity that respect fundamental physical laws and
also the relativistic causality principle. It uses for general relativistic
fluids, in addition to the usual first moment Pα(x) and second moment
Tαβ(x), higher moments and relations between them that are physically
and mathematically meaningful.

X.13 Solutions of selected exercises

Exercise X.3.1

Let xα′
be another coordinate system in V. Set

Aα′
α :=

∂xα′

∂xα
.

The corresponding change of components of a vector in TxV is

pα′
=
∂xα′

∂xα
pα = Aα′

α p
α.

Therefore, the change of coordinates (xα, pα) → (xα′
, pα′

) in TV implies

∂pα′

∂pα
= Aα′

α ,
∂pα′

∂xβ
= ∂β(Aα′

α p
α). (X.13.1)
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Hence, for the components (pα′
, Gα′

) of X in the new coordinates on TV,

pα′
= Aα′

α p
α, Gα′

= pβ∂β(Aα′
α p

α) −Aα′
α Γα

λμp
λpμ.

We know that (see Chapter I)

Γα′
β′γ′ = Aα′

α ∂β′Aα
γ′ +Aα′

α A
β
β′A

γ
γ′Γα

βγ . (X.13.2)

Some straightforward manipulations shows that

Gα′ ≡ −Γα′
β′γ′pβ′

pγ′
. (X.13.3)

Exercise X.3.2

LXg(p, p) ≡ pαpλpμ ∂gλμ

∂xα
− 2gαρp

ρΓα
λμp

λpμ

≡ pαpλpμ ∂gλμ

∂xα
− gαρp

ρgαν [λμ, ν]pλpμ

≡ pαpλpμ

(
∂gλμ

∂xα
− [λμ, α]

)
≡ 2pαpλpμ

(
∂gλμ

∂xα
− ∂gλα

∂xμ

)
≡ 0.

Exercise X.3.3

gαβp
αpβ = constant implies

2g00p0 ∂p
0

∂pi
+ 2g0jp

j ∂p
0

∂pi
+ 2g0ip

0 + 2gijp
j ≡ 2p0

∂p0

∂pi
+ 2pi = 0;

hence

∂p0

∂pi
= − pi

p0
.

We have fm(x, p) := f(x, p0, pi), with gλμp
λpμ = −m2, and hence

∂fm

∂xα
=

∂f

∂xα
− pλpμ

2p0

∂gλμ

∂xα

∂f

∂p0
and

∂fm

∂pi
=
∂f

∂pi
− pi

p0

∂f

∂p0
,

from which the result follows.

Exercise X.6.1

For an arbitrary function such that φ(t) = φ(−t), it holds that∫ +∞

−∞
φ(t)t dt =

∫ 0

−∞
φ(t)t dt+

∫ +∞

0

φ(t)t dt = 0,

because ∫ 0

−∞
φ(t)t dt =

∫ 0

∞
φ(−t′)t′ dt′ = −

∫ ∞

0

φ(−t′)t′ dt′.
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X.14 Problems

X.14.1 Liouville’s theorem and generalization

We have shown in Problem I.14.1 in Chapter I that the volume form θ of
the tangent bundle TV of a Lorentzian spacetime is invariant under the
geodesic flow; that is, with LX denoting the Lie derivative with respect
to the vector X = (pα, Gα), it holds that LXθ = 0.

Using the identity LY ≡ d(iY θ)+iY dθ, show that the volume form θ is
invariant under the flow of a vector Y = (pα, Gα +Φα) if Φ is orthogonal
to p and has a vanishing divergence.

Solution

The volume form on TV is

θ := |Det g|dx0 ∧ . . . ∧ dxn ∧ dp0 ∧ . . . ∧ dpn.

Recall that LY θ ≡ d(iY θ)+ iY dθ. Since the volume form is of maximum
degree on TV , we have dθ ≡ 0, and hence LY θ = diY θ. The linearity of
the interior product gives

iY θ = iXθ + i(0,Φ)θ.

We already know that d(iXθ) = 0. We set θ = θx + θp; then

i(0,Φ)θ = θx ∧ iΦθp, (X.14.1)

with

(iΦθp)α1...αn
= Φα(θp)αα1...αn

,

and hence, because of antisymmetry,

d(iΦθp) =
∂Φα

∂pα
θp = 0 if

∂Φα

∂pα
= 0.

When Φα = Fα
βp

β , it holds that

∂Φα

∂pα
= Fα

α = 0.

X.14.2 Vlasov equation for particles with random
charges

Assume that the considered ‘particles’ have, like momenta, random elec-
tric charges. The phase space FV is the bundle over V whose fibre FxV
is the product PxV × I, with I an interval of R. The volume form in FV

is the product, with θ given by (2.2),

θe := θ ∧ de.
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The particles create an average electromagnetic field F and are subjected
to the Lorentz force

Φα := Fαβjβ ,

where jβ is the electric current associated to a particle of momentum p
and charge e located at x, i.e. with u denoting its unit velocity,

jβ = euβ ≡ e|g(p, p|− 1
2 pβ .

We denote by Ye the vector field on TV ×R with components

pα, Gα + Φα, 1.

The volume form θe is clearly invariant under the flow of Ye, as θ was
under the flow of Y ; that is, LY θe = 0. Particle number conservation
gives for the distribution function f the EM–GR–Vlasov equation
with random charges:

LY f ≡ pα ∂fe

∂xα
+ (−Γα

λμp
λpμ + Fα

βj
β)
∂fe

∂pα
+
∂fe

∂e
= 0. (X.14.2)

X.14.3 Distribution function on a Robertson–Walker
spacetime with Vlasov source

Consider a spacetime M ×R with a Robertson–Walker metric.

g ≡ −dt2 +R2(t)σ2, with σ2 ≡ γijdx
idxj .

σ is a given Riemannian metric on M.

1. Derive the Einstein–Vlasov equation for a general distribution func-
tion f .

2. Look for a solution fm depending only on t and p0 for particles of a
given rest mass m. Show that it satisfies the equation

R
∂fm

∂R
−
[
(p0)2 −m2

] 1
p0

∂fm

∂p0
= 0.

3. Show that fm is an arbitrary function of the scalar R2
[
(p0)2 −m2

]
.

4. Suppose that fm vanishes at time t0 for particles with momentum
such that

(p0)2 ≥ m2 + kR−2(t0), k some constant.

Show that the maximum possible energy p0 of particles with a given
rest mass decreases with expansion, as foreseen physically.
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Solution

1. Straightforward computation of Gα ≡ −Γα
λμp

λpμ gives

LXf ≡ pα ∂f

∂xα
−RR′γijp

ipj ∂f

∂p0
− 2R−1R′p0pi ∂f

∂pi
.

For particles of a given rest mass m, i.e. such that

R2γijp
ipj = (p0)2 −m2,

the equation for a distribution fm depending only on t and p0 reduces
to

p0 ∂fm

∂t
−R−1R′ [(p0)2 −m2

] ∂fm

∂p0
= 0.

Taking R instead of t as a variable, the equation reads as the following
linear first-order partial differential equation:

R
∂fm

∂R
−
[
(p0)2 −m2

] 1
p0

∂fm

∂p0
= 0.

The general solution is constant along the rays (bicharacteristics) that
satisfy the differential system

dR

R
= − p0 dp0

(p0)2 −m2
= dλ.

These rays are such that

logR+
1
2

log
[
(p0)2 −m2

]
= constant, i.e. R2

[
(p0)2 −m2

]
= constant.

The distribution fm is therefore an arbitrary function of the scalar
R2
[
(p0)2 −m2

]
. Suppose, for instance, that fm vanishes at time t0 for

particles with momentum such that

(p0)2 ≥ m2 + kR−2(t0).

Then the function fm vanishes at time t for particles with momentum

(p0)2 ≥ m2 + kR−2(t).

Hence the maximum possible energy p0 of particles with a given rest
mass decreases with t if R increases.
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Choquet-Bruhat, Y. (2009). General Relativity and the Einstein Equa-
tions. Oxford University Press, Oxford. [Referred to in the notes as
YCB-OUP2009]

Choquet-Bruhat, Y. and Christodoulou, D. (1981). Acta Math 146, 129–
150.
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107–132.
Damour, T. and Deruelle, N. (1986). Ann. Inst. Henri Poincaré A 44,
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pp. 173–186. Birkhäuser, Basel.
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