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Introduction

Field theory is most successful in describing the process of scattering of par-
ticles in the context of the standard model, and in particular in the electro-
magnetic and weak interactions. The Large Electron Positron (LEP) collider
operated from 1989 until 2000. In a ring of 27 km in diameter, electrons
and positrons were accelerated in opposite directions to energies of approxi-
mately 45 GeV. This energy is equivalent to half the mass (expressed as energy
through E = mc?) of the neutral Z° vector boson mass, which mediates partof
the weak interactions. The Z° particle can thus be created in electron—positron
annihilation at the regions where the electron and positron beams intersect.
As a Z° can be formed out of an electron and its antiparticle, the positron, it
can also decay into these particles. Likewise it can decay in a muon—antimuon
pair and other combinations (like hadrons). The cross section for the forma-
tion of Z° particles shows a resonance peak around the energy where the Z°
particle can be formed. The width of this peak is a measure of the probability
of the decay of this particle. By the time you have worked yourself through
this course, you should be able to understand how to calculate this cross
section, which in a good approximation is given by

dra?E?)27
(E2 — M2,)? + M2,T%,’

g =

)

expressed in units wherei =c =1, o, = % ~ 1/137.037 is the fine-structure
constant, E is twice the beam energy, Mz, the mass and Iz the decay rate
(or width) of the Z° vector boson. The latter gets a contribution from all par-
ticles in which the Z° can decay, in particular from the decay in a neutrino
and antineutrino of the three known types (electron, muon, and tau neutri-
nos). Any other unknown neutrino type (assuming their mass to be smaller
than half the Z° mass) would contribute likewise. Neutrinos are very hard
to detect directly, as they have no charge and only interact through the weak
interactions (and gravity) with other matter. With the data obtained from the
LEP collider (Figure 1 is from the ALEPH collaboration), one has been able
to establish that there are no unknown types of light neutrinos, i.e., N, = 3,
which has important consequences (also for cosmology).

The main aim of this field theory course is to give the student a work-
ing knowledge and understanding of the theory of particles and fields, with
a description of the standard model towards the end. We feel that an es-
sential ingredient of any field theory course has to be to teach the student
how Feynman rules are derived from first principles. With the path integral

vil
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FIGURE 1

Comparison of standard model predictions to the observed cross section eTe™ — hadrons at the
Z resonance. The lower plot shows the ratio of the measured cross sections and the fit. Credit:
CERN.

approach this is feasible. Nevertheless, it is equally essential that the student
learns how to use these rules. This is why the problems form an integral part
of this course. As Julius Wess put it during his course as a Lorentz professor at
our institute, “You won’t become a good pianist by listening to good concerts.”

These lecture notes reflect the field theory courses I taught in the fall of
1992 at Utrecht, and in 1993, 1994, 1996, 1998, and 2000 at Leiden. I owe
much to my teachers in this field, Martinus Veltman and Gerard 't Hooft. As I
taught in Utrecht from "t Hooft’s lecture notes “Inleiding in de gequantiseerde
veldentheorie” (Utrecht, 1990), it is inevitable that there is some overlap. In
Leiden I spent roughly 25 percent longer in front of the classroom (three
lectures of 45 minutes each for 14 weeks), which allowed me to spend more
time and detail on certain aspects. The set of problems, 40 in total, were
initially compiled by Karel-Jan Schoutens with some additions by myself. In
their present form, they were edited by Jeroen Snippe.

Of the many books on field theory that exist by now, I recommend the stu-
dent to consider using Quantum Field Theory by C. Itzykson and J.-B. Zuber
(McGraw-Hill, New York, 1980) in addition to these lecture notes, because it
offers material substantially beyond the content of these notes. I will follow
to a large extent their conventions. I also recommend Diagrammatica: The Path



Introduction ix

to Feynman Diagrams, by M. Veltman (Cambridge University Press, 1994), for
its unique style. The discussion on unitarity is very informative, and it has an
appendix comparing different conventions. For more emphasis on the phe-
nomenological aspects of field theory, which are as important as the theoret-
ical aspects (a point Veltman often emphasised forcefully), I can recommend
Field Theory in Particle Physics by B. de Wit and ]J. Smith (North-Holland, Am-
sterdam, 1986). For path integrals, which form a crucial ingredient of these
lectures, the book Quantum Mechanics and Path Integrals by R.P. Feynman and
A.R. Hibbs (McGraw-Hill, New York, 1978) is a must. Finally, for an introduc-
tion to the standard model, useful towards the end of this course, the book
Gauge Theories of Weak Interactions, by J.C. Taylor (Cambridge University Press,
1976), is very valuable.

And More

Gerard 't Hooft finally wrote a summary of his lecture notes (192 in www.
phys.uu.nl/~thooft/gthpub.html, December 23, 2004). It is so good that I
must quote it here: Gerard "t Hooft, “The Conceptional Basis of Quantum
Field Theory,” in Handbook of the Philosophy of Science, Philosophy of Physics,
eds. J. Butterfield and J. Earman (Elsevier, Amsterdam, and Oxford, 2007),
Part A, pp. 661-729.

Of course I continued to give lectures on field theory, and taught it also
in 2002, 2004 and 2007. But I had a stroke on July 31, 2005. I recovered to
such an extent I could lecture again for two years; unfortunately some new
complications prevent me from teaching at present. This ‘And More” is written
in December 2012, but the remainder of this course (including numerous
corrections) was written before July 2005. Only one thing was corrected during
the 2007 course: 7 (l?) was interchanged with ﬁ*(E) in the equation that defines
a(k) and a'(k) in Equation (2.7).

Recently the masses of neutrinos have been more accurately determined,
but I have not updated that (because it would need more discussion). And fi-
nally, the LEP collider at CERN was replaced by LHC (Large Hadron Collider),
which circulates protons in either direction. They have found (July 4, 2012) a
particle that seems to be the Higgs at roughly 126 GeV. If true, this completes
the standard model, but that there is something beyond it is already clear.

Acknowledgments

These lecture notes were available in pdf, and I did not bother much to turn
them into a book. But at the end of July 2005 I had a stroke. Nevertheless, I
did teach again (in a modified format) and I want to thank Jasper Lukkezen,
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Louk Rademaker, Jorrit Rijnbeek and Jorn Venderbos for taking part, and
Aron Beekman for helping and rating the problems. I could not continue
with teaching, but I never give up.

Then, on November 13, 2012, Dr. John Navas, a physics senior acquisitions
editor at Taylor & Francis/CRC Press, approached me after he came across
my lecture notes. Would I publish this? The books they have are good, and I
worried a bit about how long I could maintain www.lorentz.leidenuniv.nl/
~vanbaal /FTcourse.html. They could process the LaTeX file, but I made sure
that he knew I had a stroke. But he continued with the publication, and I
am extremely grateful for it! The last message sent on January 15, 2013, ends
with: “It was extremely exciting to work with you, and you have already done
much of the work to turn it into a book.” This was his last day and he was
moving on to something else, so he might not have seen it. That is why I say
it again. Thank you John!

This job was taken over by Francesca McGowan, and I also thank her. I am
also grateful to Marcus Fontaine for coordinating the production and being
so flexible. I doubted, but I managed to correct the proofs at the deadline, and
before you proudly lies A Course in Field Theory.
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Field theory is the ultimate consequence of the attempts to reconcile the prin-
ciples of relativistic invariance with those of quantum mechanics. It is not
too difficult, with a lot of hindsight, to understand why a field needs to be
introduced. This is not an attempt to do justice to history—and perhaps one
should spare the student the long struggle to arrive at a consistent formula-
tion, which most likely has not completely crystalised yet either—but the tra-
ditional approach of introducing the concept is not very inspiring and most
often lacks physical motivation. In the following discussion I was inspired
by Relativistic Quantum Theory from V.B. Berestetskii, E.M. Lifshitz, and L.P.
Pitaevskii (Pergamon Press, Oxford, 1971). The argument goes back to L.D.
Landau and R.E. Peierls (1930).

An important consequence of relativistic invariance is that no information
should propagate at a speed greater than that of light. Information can only
propagate inside the future light cone. Consider the Schrédinger equation

JU(F, 1)
at

in

— HY(3, t). (1.1)

Relativistic invariance should require that W(%, t) = 0 for all (¥, t) outside
the light cone of the support Ny = {X|W¥(X, 0) # 0} of the wave function at
t =0, Figure 1.1.

Naturally, a first requirement should be that the Schrodinger equation itself
is relativistically invariant. For ordinary quantum mechanics, formulated in
terms of a potential

?,2
H=-—+V(x), (1.2)
2m

this is clearly not the case. Using the relation E? = p?c? + m?c*, the most
obvious attempt for a relativistically invariant wave equation would be the
Klein-Gordon equation

2W(X, t) _ 202 %W (X, t)

e T m*ct (%, t). (1.3)
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ct
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FIGURE 1.1
The (future) light cone for Ny.

However, for this equation the usual definition of probability density is not
conserved

o / LRV, DU, £) 0. (14)
As this is a consequence of the fact that the equation is second order in time,

this can be easily remedied, it seems, by taking the ‘square root” of the Klein—
Gordon equation

= 2
ihw — \/<_h2c288— + m2c4)\11(3?, t). (1.5)

ot X2

We shall show that this, however, violates the principle of causality, i.e., the
wave function propagates outside of its light cone, which is unacceptable.
Nevertheless, we will learn something important from that computation,
namely that negative energies seem unavoidable when trying to localise wave
functions within the light cone of Ny . But first we will provide a simple heuris-
tic argument based on the uncertainty relation.

From the uncertainty principle AxAp > 71/2 and the bound on the speed
involved in any measurement of the position, it follows that precision of a
measurement of the momentum is limited by the available time AtAp > 7i/c.
Only for a free particle, where momentum is conserved, would such a mea-
surement be possible, but in that case, of course, the position is completely
undetermined, consistent with the plane wave description of such a free par-
ticle (the light cone of Ny would in that case indeed give us no constraint).
More instructive is to look at how accurately we can determine the position
of a particle. As the momentum is bounded by the (positive) energy (p < E/c)
and as the maximal change in the momentum is of the order of p itself, we
find that Ax > i1i/p > hic/E, which coincides with the limit set by the de
Broglie wavelength.

If we take this seriously—that is, a position can in principle not be measured
with arbitrary accuracy—the notion of a wave function loses its meaning.
On the other hand, if we would like to localise the particle more accurately
than within its de Broglie wavelength, it seems to require an uncertainty in
momentum that can only be achieved by allowing for negative energy states.
But negative energy states will be interpreted as antiparticles, and once an-
tiparticles are introduced, which can annihilate with particles, particle num-
ber is no longer conserved and we likewise lose the notion of position of a
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particle. Only a free particle, as a plane wave, seems to be compatible with
relativistic invariance.

We will now verify by direct computation that localising the wave function
within the light cone will indeed require negative energy states. We consider
first the positive square root of the Klein-Gordon equation and solve the
Schrodinger equation for the initial condition W (X, 0) = §3(¥). From this we
can solve any initial condition by convolution. As the Schrodinger equation
is first order in time, the initial condition uniquely fixes the wave function
for all later times, and there will be a unique answer to the question whether
the wave function vanishes outside the light cone (i.e., for t > |X|). Problem 1
asks you to investigate this in the simpler case of one, instead of three, spatial
dimensions. For the latter we simply give the result here, using the fact that
in Fourier space the solution is trivial. Computing W(X, t) thus requires just
some skills in performing Fourier integrals.

\I’(J_C", t) — d3p eiﬁfc/hefitq/ p2c2+m2ct/h

(27ch)3
/ Pz dpsm(@)d@ zprcos(G)/h —ita/ p2c2+m2ct /h
o

=5 thz / p dpsin(pr /e~ P
_ _i 92 ood _cos(pr/n) it/ PG (16)
27%r ardt Jo / 2c2+m2c4

We now introduce

p = mcsinh(u), mcr/h = zcosh(v), mc?t/h = zsinh(v),
22 = m?c?(r? — 22 /2, (1.7)

such that (the last identity simply being the definition of the modified Bessel
function K,)

W%, t) = 4};2er arat/ du cos (zsinh(u) cosh(v))e g ~7sinh(v) cosh(u)

- 9?

00
— du efizsinh(uwtv) +€7izsinh(u7v)
8n2rc dr ot / ( )

—i —i 9?2
d h 1.
= 2n2rc orot / tcos (Z sin (u)) 272rc 9rdt Ko(2). (1.8)

Outside of the light cone, z is real (r?> > ¢?t?) and (¥, t) is purely imaginary.
It decays exponentially, but does not vanish! Inside the light cone we find
by analytic continuation [see, e.g., Appendix C of Relativistic Quantum Fields
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by J.D. Bjorken and S.D. Drell (McGraw Hill, New York, 1965)] the following
explicit expression

W(X,t) ! 3_2 (iYo(mc\/ c2t2 — r2/h) — sign(t)J,(mc+/ c?t? — rz/h)> ,

- 4rrc Orot

r? < 2. (1.9

If we want to insist on locality, i.e., W(X, t) = 0 for |X| > ct, and want to stay
as close as possible to the solutions of the Schrodinger equation, we could
take the real part of ¥ as the wave function. It satisfies the Klein-Gordon
equation but not its positive square root. ¥* is a solution of the negative
square root of the Klein-Gordon equation and corresponds to a negative en-
ergy solution. Apparently, localisation is only possible if we allow for negative
energy solutions.
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As position is no longer a quantum observable but free particles do not seem
tobe in contradiction with relativistic invariance, we can try to introduce such
a free particle as a quantum observable. This observable is hence described
by a plane wave

(%, 1) = e iot=THM 2.1)
which satisfies the Klein-Gordon equation

3¢, t %p(X, t
2 p(x )=—h2c2 p(x )+

op Py m*cto(X, t), (2.2)

where kg = v/¢2k2 + m2c* is the energy of the free particle. By superposition
of these plane waves, we can make a superposition of free particles, which is
therefore described by a field

o(F, 1) = (2h) =3 / dsk p(k, t)e'®3m, 2.3)

It satisfies the Klein-Gordon equation if the Fourier components o(k, 1) satisfy
the harmonic equation

25(k, t . - .-
—h2% = (c*k* + m*chHp(k, t) = K2(k)p(k, t). (2.4)
Its solutions split in positive and negative frequency components

gk, 1) = po(k)e ™ 1 p_(k)e M. 25)

The wave function, or rather the wave functional W(¢), describes the dis-
tribution over the various free particle states. The basic dynamical variables
are (k). These play the role the coordinates used to play in ordinary quan-
tum mechanics and will require quantisation. As they satisfy a simple har-
monic equation in time, it is natural to quantise them as harmonic oscillators.
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The Hamiltonian is then simply the sum of the harmonic oscillator Hamilto-
nian for each k, with frequency w(k) = ko(k)/h.

0V (p)
3

ih = HU¥(p) = Y H(k)W
R

k ? 9 (2.6)

H(K) = YA E)P + 1o®P19R) 2, 7(K) = - P

In a finite volume with periodic boundary conditions, the integral over the
momenta is replaced by a sum as the momenta are in that case discrete,
k = 2miih /L, 7 € 8. Like for the harmonic oscillator, we can introduce
annihilation and creation operators

a(k) = %(w(zzyp(l?) +i7(k))
2hw(k)
} 1 L ) 2.7)
a'l(k) = (0(k)@* (k) —i7*(K)),

2hw(k)

and express the field operator (the equivalent of the coordinates) in terms of
these creation and annihilation operators. To give the field operator its time
dependence, we have to invoke the Heisenberg picture, which gives ¢(X, t) =
e/, 0)e~'Hi/M Using the well-known fact that e'ft/ig(k)e~iH/M =
e=w®tg(k) and eH/Maf(k)e—iH!/" = ¢ie®igT(K), which is a consequence of
[a(k), H] = ho(k)a (k) and [aT(l?), H] = —hw(k)a'!(k), we find

p(EH=L"2)"

P2k, (k)

T(l;)e—i(%-}—kot)/h +a (]_(')ei(lzfc—knt)/h). (28)

In an infinite volume we replace L~ > by (2n71)72 [ dsk. Note that in the
Heisenberg picture, positive energy modes behave in time as e’f'/". Appar-
ently we can identify (up to a factor) ¢_(k) with a'(—k) and @, (k) with a(k),
which is compatible with ¢*(1€) = (7)(—12), required to describe a real field
(complex fields will be discussed in Problem 5).

The Hilbert space is now given by the product of the Hilbert spaces of each
k separately

g} >= [ [1m > ]_[ (k)nk 2.9)
P

with 7 the occupation number, which in field theory is now interpreted as
the number of free particles of momentum k, a definition that makes sense
as the energy of such a state is npk,(k) above the state with zero occupation
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number (the ‘vacuum’). It is the property of the harmonic oscillator that its
energy is linear in the occupation number, which makes the field theory in-
terpretation in terms of particles possible. The annihilation operator in this
language therefore removes a particle (lowering the energy by the appropri-
ate amount), which consequently can be interpreted as the annihilation of the
removed particle with an antiparticle (described by the annihilation opera-
tor). For areal scalar field, a particle is its own antiparticle and this description
is perhaps somewhat unfamiliar. But for the complex field of Problem 5, the
Fourier component with negative energy is independent of the one with pos-
itive energy, hence describing a separate degree of freedom, namely that of
an antiparticle with opposite charge.

Interactions between the particles are simply introduced by modifying the
Klein-Gordon equation to have nonlinear terms, after which in general the
different Fourier components no longer decouple. Field theory thus seems to
be nothing but the quantum mechanics of an infinite number of degrees of
freedom. It is, however, its physical interpretation that crucially differs from
that of ordinary quantum mechanics. It is this interpretation that is known as
second quantisation. We were forced to introduce the notion of fields and the
interpretation involving antiparticles when combining quantum mechanics
with relativistic invariance. We should therefore verify that indeed it does not
give rise to propagation of information with a speed larger than the speed of
light. This is implied by the following identity, which for the free scalar field
will be verified in Problem 6:

[p(% 1), p(F, )] =0, for (¥—¥)%> (t—t)%> (2.10)

It states that the action of an operator on the wave functional at a given space-
time point is independent of the action of the operator at another space-time
point, as long as these two points are not causally connected. Due to the
description of the time evolution with a Hamiltonian, which requires the
choice of a time coordinate, it remains to be established that these equations
are covariant under Lorentz transformations. We will resolve this by using
the path integral approach, in which the Lorentz invariance is intrinsic but
which can also be shown to be equivalent to the Hamiltonian formulation.

Before preparing for path integrals by discussing the action principle, we
would first like to address a simple physical consequence of the introduction
and subsequent quantisation of fields. It states that empty space (all occu-
pation numbers equal to zero) has nevertheless a nontrivial structure, in the
same way that the ground state of a hydrogen atom is nontrivial. Put differ-
ently, empty space is still full of zero-point fluctuations, which are, however,
only visible if we probe that empty space in one way or another. Also, for-
mally, as each zero-point energy is nonzero, the energy of the vacuum in field
theory seems to be infinite

Ep = Z k22 + m2ct = - 2. (2.11)
k
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AN

FIGURE 2.1
Vanishing field at the plates.

However (as long as gravity is left out of our considerations), one is only
sensitive to differences in energy. If we probe the vacuum, its energy can only
be put to zero for one particular value of the probe. The dependence of the
vacuum energy on the probe can be used to discover the nontrivial structure
of the vacuum.

A famous and elegant method for probing the vacuum was introduced by
Casimir [Proc. Kon. Ned. Acad. Wet., ser. B51 (1948) 793], who considered using
two conducting plates in empty space. The energy of the vacuum is a function
of the distance between the two plates, which gives a force. Strictly speaking,
we should discuss this in the situation of the quantised electromagnetic field
(see Itzykson and Zuber, par. 3-2-4), but the essential ingredient is that Fourier
components of the field are affected by the presence of the conducting plates.
We can also discuss this in the context of the simple scalar field we have
introduced before, by assuming that the field has to vanish at the plates, see
Figure 2.1. For simplicity we will also take the mass of the scalar particles to
vanish. If furthermore we use periodic boundary conditions in the two other
perpendicular directions over a distance L, then one easily verifies that the
force per unit area on the conducting plates is given by

2rhen whek\?
FL(x)=—dEo(x)/dx——ﬁE ZZ ( ) ( " ) (2.12)

72 k=1

where due to the vanishing boundary conditions the Fourier modes in the
x1 direction, perpendicular to the conducting walls, are given by sin(wkx; /x)
with k a positive integer, whereas the quantisation of the momenta in the
other two directions is as usual.

One can now formally take the infinite volume limit

. c d & o, (mhkN?
F(x) =L11_)TBOFL(X) Z—WE;/@P Pz—i—(T) . (2.13)
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The integral and the sum are clearly divergent, but as Casimir observed, in
practise no conducting plate can shield a field perfectly and, especially for
high frequency the boundary conditions should be modified. One can mimic
this by artificially cutting off the integral and sum at high momenta. We would
not expect the physical result to depend on the details of how we do this, as
otherwise we could use this experiment in an ingenious way to learn how
nature behaves at arbitrarily high energies. Indeed Casimir’s careful analysis
showed that the result is independent of the cutoff function chosen. It is an
important example of what we will later recognise as renormalisability of
field theory. Since the result is insensitive to the method of regularisation
[only an overall constant contribution to E,(x) depends on it, but that is not
observable, as we argued before], we can choose a convenient way to perform
the calculation. Details of this will be provided in Problem 2. The method of
calculation is known as dimensional regularisation, where one works in an
arbitrary dimension (n # 2) and then analytically extends the result to n = 2.
We will find that

c d & hk\?
¢ d e, (7HK
Foo=tm g 2o [ 40P+ ()

r(— 1)/2
= hn}(n + 1){(_11 _ 1)n3n/2h_cwx7(n+2).

87 I'(=1/2) @14

in which ¢(i) = Y j2, k' is the Riemann ¢ function. It can be analytically
extended to odd negative arguments, where in terms of Bernoulli coefficients
¢(1 —2i) = —By;/(2i). Also I'(—1) = —3iI'(—32) is finite, and we simply find
that

w2he

F(x) = — 1€
(%) =~ 15042

(2.15)
Please note that we have disregarded the space outside the conducting plates.
Imposing also periodic boundary conditions in that direction, one easily finds
that the region outside the plates contributes with F(L — x) to the force
and vanishes when L — oo. Therefore, the effect of the zero-point fluctu-
ations in the vacuum leads to a (very small) attractive force, which was ten
years later experimentally measured by Sparnaay [Physica, 24 (1958) 751]. An-
other famous example of the influence of zero-point fluctuations is the Lamb
shift in atomic spectra (hyperfine splittings), to be discussed at the end of
Chapter 22.
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Euler-Lagrange Equations
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The Klein—-Gordon equation in Lorentz covariant form [x = (ct, x, y, 2) =
(%03 X)]

gwauav(p(x) + ngo(x) =0, g/w = ’ (3.1)

S) -1

can be derived by variational calculus from an action principle

5= / dixL(9, 90 X), L(0, ug, X) = 13u0)® — V(0),

(3,0)* = 00" = " 0,00,  V(p) = tmPg?. (3.2)

We assume the field tobe given at the boundary of the domain M of integration
(typically assuming the field vanishes at infinity) and demand the action to
be stationary with respect to any variation ¢(x) — ¢(x) + d¢(x) of the field,

V
: a;@é“’)

85(p) = S(p + 8¢) — S(¢) = /M dyx <3M¢8u5€0 -

= / dyx <—8<p (aua"cp + aV(¢)>> + | duo(89pdie) =0, (3.3)
M e aM

where d,, o is the integration measure on the boundary d M. The variation §¢
is arbitratry, except at 9 M, where we assume d¢ vanishes, and this implies
the Euler-Lagrange equation

aV(p)

a, 0" —= =0, 3.4
10" + 9 (34)

which coincides with the Klein-Gordon equation. We can also write the Euler—
Lagrange equations for arbitrary action S(¢) in terms of functional derivatives

8S _ 85 . _8S
So(x)  Sp(x)  83,p(x)

=0, (3.5)

11



12 A Course in Field Theory

where § stands for the total functional derivative, which is then split accord-
ing to the explicit dependence of the action on the field and its derivatives
(usually an action will not contain higher than first-order space-time deriva-
tives). Please note that a functional derivative has the property d¢(x)/d¢(y) =
84(x — y), which is why in the above equation we take functional derivatives
of the action S and not, as one sees often, of the Lagrangian density L.

The big advantage of using an action principle is that S is a Lorentz scalar,
which makes it much easier to guarantee Lorentz covariance. As the action
will be the starting point of the path integral formulation of field theory,
Lorentz covariance is much easier to establish within this framework. (There
are instances where the regularisation, required to make sense of the path
integral, destroys the Lorentz invariance, like in string theory. Examples of
these anomalies will be discussed later for the breaking of scale invariance and
gauge invariance.) It is now simple to add interactions to the Klein-Gordon
equation by generalising the dependence of the ‘potential’ V(¢) to include
higher-order terms, like

V(p) = imp? + %904, (3.6)

which is known as a scalar ¢* field theory. Later we will see that one cannot
add arbitrary powers of the field to this potential, except in two dimensions.

As in classical field theory, we can derive from a Lagrangian with ¢(x) and
@(x) = 0¢(x)/dt as its independent variables, the Hamiltonian through a Leg-

endre transformation to the canonical pair of variables 7 (x) (the ‘momentum”)
and ¢(x) (the ‘coordinate”)

5S - . 3
7(x) = ——, H= /H(x)dgx = / ((x)@(x) — L(x))d3X. (3.7)
8¢(x)
The classical Hamilton equations of motion are given by
§H SH §H
/ = —— 7 = - 0 . .
Y5 YT T T e o)
For the Klein-Gordon field we simply find
H = 1 (x)* + 1(3i9(x))* + im*p?(x), (3.9)

and in Problem 5 one will see that this Hamiltonian coincides with Equa-
tion (2.6), if we substitute for ¢(x) Equation (2.8). For an interacting scalar
field one finds

H = 17(x)? + 1 (00(x))” + V(o(x)), (3.10)

which perhaps explains why V is called the potential.
It is well known that the Hamiltonian equations imply that H itself is con-
served with time, provided the Lagrangian (or Hamiltonian) has no explicit
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time dependence

/d3x (n(x) @ + ¢(x) ?)) =0. (3.11)

Conservation of energy is one of the most important laws of nature, and it
is instructive to derive it more directly from the fact that £ does not depend
explicitly on time. We define the Lagrangian L as an integral of the Lagrange
density £ over space, L = [ d3XL, such that

)
/d3x <3t§0(x) 50 (™) + (2 u‘ﬂ(x))m)

The last term contains a total derivative, which vanishes if we assume that
the field is time independent (or vanishes) at the boundary of the spatial
integration domain. The above equation becomes now

dL d d -
I dt/ 3 X @(x ) x) = E/ukx(p(x)n(x), (3.13)
which can also be expressed as
d - dH
E/u&x(go(x)n(x) -L)= - =0. (3.14)

In the same fashion one proves conservation of momentum in case the
Lagrangian does not explicitly depend on space (3.L/dx; = 0)

d -
0= dx, /dgx oy <a,gp(x)aaﬂq)(x)> = /dgxn(x)8i<p(x). (3.15)

The conserved momentum is hence given by

P, = /d35c'7r(x)3igo(x). (316)

Both conservation of momentum and energy are examples of conservation
laws that are consequence of symmetries (translation and time invariance).
They canbe derived as the space integral of the time component of a conserved
current or tensor

3, J"(x) =0, 3,T""(x) =0. (3.17)

In Problem 3 these quantities will be defined for a charged scalar field, where
J.(x) can be identified with the current, whose time component is the charge
density. Indeed the total charge is conserved. Assuming the current to vanish
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at spatial infinity, one easily finds

g / 07 Jo(x) = / 437 3,1 (x) = 0. (3.18)

The underlying principle is described by the Noether theorem, which implies
that if the Lagrangian £ is invariant under ¢ — ¢,, where A is a parameter
(such as a shift of the coordinates or a phase rotation of a complex field), then
the following current is conserved:

85 dpa(x)
(0u0(x)) OA

The proof is simple and uses the Euler-Lagrange equations to substitute
0,{85/8[9,¢(x)]} for 65/5¢(x)

O_dﬁ(m)_ 8§ dpa(x) 8S  9(dupa(n))
dA Sp(x) AA 8(dup(x)) A

B ( 58 )a%(x) 8S 30,0 (%))
"\o(ue() ) oA 8(3ue(x)  BA

We here considered the invariance under a global symmetry, but important
in nature are also the local symmetries, like the gauge invariance related to
local changes of phase and the general coordinate invariance in general rela-
tivity. Particularly with the latter in mind, we demand therefore that the action
S (and notjust £) is invariant under ¢(x) — @a(x)(x), with A an arbitrary func-
tion of space-time. This actually leads to the same conserved currents in case £
is also invariant. The same computation as above, still using the Euler-Lagrange
equations, shows that

Jhx) = 5 (3.19)

=3,J"x). (3.20)

_ 85
©SA(x)

= 3, J"(x). (3.21)

As an important example, we will discuss how this construction leads to
conservation of the energy-momentum tensor, using general coordinate in-
variance, which is the local version of translation invariance. For this we have
to make the action invariant under such local coordinate redefinitions. As long
as indices are contracted with the metric tensor g, £ will be invariant under
general coordinate transformations, due to the transformation property

ax* oxY
ox® 9xP

X =xt+e(x), ()= g (x). (3.22)
For global translation invariance, ¢* is constant, and equations (3.14) and
(3.15) can be easily generalised to show that the energy-momentum ten-
sor, Ty, = 3,9d,¢ — gL, is conserved [Equation (3.17)]. For ¢* not con-
stant, we note that the integration measure d,x is not a scalar under general
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coordinate transformations, but the associated Jacobian can be easily absorbed
by /— detg, where the determinant is applied to the 4 x 4 matrix g,,. For a
scalar field this leads to the following invariant action:

S= /d4x\/— detg (18" 0,900v0 — V(9)). (3.23)

For the original coordinates x of Minkowski space-time, the metric is given
as in Equation (3.1), in particular ,/— det g(x) = 1, and by expanding g to first
order in ¢*(x) we find

5= / dix(1 - 8,67(2))[18" 8,0 (D)0 0(®) — V(0(D))]
+ a(,s“(x)awp(x)aa(p(x). (3.24)

Now observe that ¢g/¥(x) is constant, such that the independent term of ¢ is
a function of X, integrated over X, which is simply the action itself, as ¥ now
plays the role of a dummy integration variable. The linear term in ¢ therefore
has to vanish, but note that it only involved the variation of the metric under
the general coordinate transformation. Hence,

0= /d4x £ (x) 04 (8" L(x) — 0" (x)9%p(x))
= —/d4x £, (x) 0, T (x), (3.25)

which implies conservation of the energy-momentum tensor (T, = H). From
the fact that 6g,, = —d,&, — dve,, 68" = _g;wzsgaﬂgﬁu and SJTetg _
19"/ — det gég,,, we derive the identity

8S

TH(x) = _25ng o

(3.26)

In taking the derivative with respect to the metric, it is important that any
Lorentz vector (like the derivative 9,¢) or tensor appears in the Lagrangian
withitsindices down. Furthermore, the result is to be evaluated for Minkowski
space. Equation (3.26) always gives a symmetric energy-momentum tensor
and from the derivation it is clear that the result holds not only for a simple
scalar field, but for any other bosonic field theory (fermions form an excep-
tion, see Problem 23) like the one for the electromagnetic field, which we
discuss now.

The field is given by the tensor F,,(x), with E'(x) = —F%(x) its electric
and Bi(x) = —1le;xF/*(x) its magnetic components. In terms of the vector
potential A,(x), one has

Fo(x) =0,A,(x) — 0, Au(x). (3.27)
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This already implies one of the Maxwell equations (through the so-called
Jacobi or integrability conditions)

a/LPU)\, + auF)\M + a)”PMV = 0. (328)

Written as "% 9, F,, = 0, they are easily seen (resp. for © = 0 and u = i) to
give
divB =0, 8B + rotE = 0. (3.29)

The dynamical equations determining the fields in terms of the currents, or
the sources, J* = (cp; ] ) are given by

1 o - - -
9 FH = E]” or divE =p, rotB—09E=7]. (3.30)

We have chosen Heaviside-Lorentz units and in the future we will also often
choose units such thatfi =c = 1.
These Maxwell equations follow from the following action:

Sem(]) = /d4X(— P (X)F(x) = Au(x) " (x)).- (3.31)

We note, as is well known, that the equations of motion imply that the current
is conserved. With Noether’s theorem this makes us suspect that this is caused
by a symmetry and indeed it is known that under the gauge transformation

Au(x) = Au(x) + 3, A(x) (3.32)

the theory does not change. Our action is invariant under this symmetry if
and only if the current is conserved. This gauge symmetry will play a crucial
role in the quantisation of the electromagnetic field.

An example of a conserved current can be defined for a complex scalar
field. Its action for a free particle is given by

S = / dyx (3,07 (0)3" 9(x) — 20" ()g(x). (3.33)

Itisinvariant under a phaserotation ¢(x) — exp(ie A)¢(x) and from Noether’s
theorem we deduce that

Ju(x) = ie(p(x)0,9™(x) — ¢™(x)0,0(x)) (3.34)

is conserved; see Problem 3. We can extend this global phase symmetry to a
local symmetry if we couple the scalar field minimally to the vector potential

S= /d4x (= 1Fu(x)F*(x) + (Dug)*(x) D g(x) — m*¢*(x)p(x)) ,
D, p(x) = 3,9(x) —ie Ay (x)p(x). (3.35)
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This guarantees the combined invariance under a local gauge transformation
o(x) — exp(ieA(x))o(x), Au(x) — Au(x) + 3, A(x), (3.36)

which makes the covariant derivative D, ¢(x) of the scalar field transform as
the scalar field itself, even for local phase rotations. Note that we can write
this action also as

S = Sem(J) + S0 + / dix e A, (x) A () o), (3.37)

with | as given in Equation (3.34). We leave it as an exercise to show how
the action of the electromagnetic field can be generalised to be invariant un-
der general coordinate transformations and to derive from this the energy-
momentum tensor. The result is given by

Sem(] =0) = —%/.d4xg“)‘g””FMFMV_detg,
T = %ngMFF;\U—F”)‘FV}\. (3.38)
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Tree-Level Diagrams
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In general, in the presence of interactions, the equations of motions cannot be
solved exactly, and one has to resort to a perturbative expansion in a small
parameter. We discuss the scalar case first, as it is as always the simplest.
We add to the Lagrangian density £ a so-called source term, which couples
linearly to the field ¢ (compare the driving force term for a harmonic oscillator)

L =1(3,9)* = V(p) — ] (e (). (4.1)

For sake of explicitness, we will take the following expression for the potential
V(p) = ing?(x) + £0’(x). 42)
The Euler-Lagrange equations are now given by

89" ¢ (%) +m*p(x) + 1gp*(x) + ] (x) = 0. (4.3)

If ¢ = 0t is easy to solve the equation (describing a free particle interacting
with a given source) in Fourier space. Introducing the Fourier coefficients

J(k) = / dyx ™ (x), @(k) = / dyxe™p(x),  (4.4)

(2r)? (2r)?

it follows that
(—k* +m?)p(k) + T (k) =0 or ¢(x) = /d43/ Glx=Jy), 45
where G is called the Green’s function, as it is the solution of the equation

(3,0 + )G (x — ) = —8a(x — ¥). (4.6)

Explicitly, it is given by the following Fourier integral

dik ik
_y) = . 47
Clx-y) / Qr)Y k2 —m2 + ie 47)

Please note our shorthand notation of k? for k, k* and k(x — ) for k,, (x* — y*).
A Green’s function is not uniquely specified by its second-order equations

19



20 A Course in Field Theory

but also requires boundary conditions. These boundary conditions are, as we
will see, specified by the term ie. Because of the interpretation of the negative
energy states as antiparticles, which travel ‘backwards’ in time, the quantum
theory will require that the positive energy part vanishes for past infinity,
whereas the negative energy part will be required to vanish for future infinity.
Classically this would not make sense, and we would require the solution to
vanish outside the future light cone. The effect of the i¢ prescription is to shift
the poles on the real axes to the complex ko plane at kg = %[(k2+m?) 1 —ig]. In
Chapter 5 we will see that this will imply the appropriate behaviour required
by the quantum theory.

Now that we have found the solution for the free field coupled to a source,
we can do perturbation in the strength of the coupling constant g.

3,0"p(x) + m(x) + ] (x) = —1g¢*(x) (4.8)

can be solved iteratively by substituting a series expansion for ¢(x),
() = ¢o(x) + g1(x) +g2a(x) +--- . (4.9)

Obviously we have
o) = [ diy G = 01 (1), (410)
whereas ¢1(x) will be determined by the equation

3,0" @1 (x) + m?e1(x) = —1g2(%). (4.11)

We can therefore interpret the right-hand side as a source (up to a minus sign)
and this allows us to solve ¢;(x) using the Green’s function

o) = 1 / day G(x — Y@(Y)

[ 66 = sy [ G =96 - )] ) (@dizdso. @12)
This looks particularly simple in Fourier space

1 1 /d J(p)] (k—p)
22n)2 k2 —m2 +ie | T (p2—m? tie)((k — p)2 — m? +ie)
(4.13)

Pr(k) =

It is clear that this can be continued iteratively, e.g.,

n—1
00" Pn(%) + mP0(x) = =1 Y @i(X)pu1-i(x), (4.14)
i=0
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which is solved by

ou(X) = 3 / 43y G(x — 1) (200(N)on1(1) + 201 (Dpna(y) +---). (415)

Here we have written out the terms in the sum explicitly to indicate that all
terms occur twice and are the product of two different terms, except for the
term 1, y) (y)? at n odd, which occurs once. In Fourier space one finds

1 1
212m)2 k2 —m2? +ie

% / dspQao(P)pnr(k — p) + 201(P)Bnalk — p)+ ). (416)

¢n(k) =

By induction it is now easy to prove that

o(x) = Z -—x+%>—<+%>—§+%>—<§

diagrams
+1 ’_<<X< +
#vernces
= diagira:ms N(diagram) / de,u <]1_][> G(x; — x)) ]‘[ J(x).  (417)

Here the index i, runs over all vertices and sources (so that it does not label the
four space-time components of a single point, frequently it will be assumed
that it is clear from the context what is meant), whereas ks runs only over
positions of the sources. The expression < i, j > stands for the pairs of points
in a diagram connected by a line (called propagator).

The Feynman rules to convert a diagram to the solution are apparently that
each line (propagator) between points x and y contributes G(x — y) and each
cross (source) at a point x contributes J (x). Furthermore, for each vertex at a
point x we insert [ dsx and a power of the coupling constant g. Finally each
diagram comes with an overall factor 1/N(diagram), being the inverse of the
order of the permutation group (interchange of lines and vertices) that leaves
the diagram invariant (which is also the number of ways the diagram can be
constructed out of its building blocks). We have derived these rules for the
case that A = 0, such that only three-point vertices appear. All that is required
to generalise this to the arbitrary case with n-point vertices is that each of these
comes with its own coupling constant (i.e., A for a four-point vertex). This is
the reason why these vertices are weighed by a factor 1/n!in the potential and
henceby afactor 1/(n—1)!in the equations of motion. [To be precise, if V(¢) =
gne" /1!, the equation of motion gives 92¢(x) + J (x) = —guo" " V(x)/(n — 1),
and the factor (n — 1)! is part of the combinatorics involved in interchanging
each of the n — 1 factors ¢ in the interaction term.]
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TABLE 4.1
Feynman rules.
Coordinate space Momentum space
ky
A
)x\ = g [dax ks/\kz = (2 a2 84(X"; ki) vertex
= G( ) = [dsk ! i
x y oy k - B R e |PTOPAETOT
= [dgx](x) |—= = J(k) source
x ~—k

It is straightforward to translate these Feynman rules to momentum space,
by inserting the Fourier expansion of each of the terms that occur. Each pro-
pagator which carries a momentum k is replaced by a factor 1/(k* —m?*+ie) and
[ dsk, each source with momentum k flowing in the source by a factor J (k),
each vertex by a factor of the coupling constant (i.e., g, for an n-point function),
a factor 1/(2m)? [for an n-point function a factor (27)*72"] and a momentum
conserving delta function, see Table 4.1. To understand why momentum is
conserved at each vertex we use that in the coordinate formulation each vertex
comes with an integration over its position. As each line entering the vertex
carries a Green’s function that depends on that position (this being the only
dependence), we see that a vertex at point x gives rise to

d4k e —iky(x—2%g)
fd4xHG(x_xw */d”l_[/(znﬁ K2 —m2 + ie)
dsk, iky Xy
_ (271)41—[/ o ;jmuﬂ ) (Zk) (4.18)

Conventions in the literature can differ on how the factors of i (which will
appear in the quantum theory) and 27 are distributed over the vertices and
propagators. Needless to say, the final answers have to be independent of the
chosen conventions.

As a last example in this section, we will look again at the electromagnetic
field (whose particles are called photons). In Fourier space the equations of
motion are given by

(—k8), + k k) A (k) = ]V (k). (4.19)

Unfortunately the matrix —k?3}, + k,k" has no inverse as k* is an eigenvector
with zero eigenvalue. This is a direct consequence of the gauge invariance as
the gauge transformation of Equation (3.32) in Fourier language reads

Au(k) — A, (k) + ik, Ak). (4.20)
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The component of A, in the direction of k,, is for obvious reasons called the
longitudinal component, which can be fixed to a particular value by a gauge
transformation. Fixing the longitudinal component of the electromagnetic
field (also called photon field) is called gauge fixing, and the gauge choice is
prescribed by the gauge condition. An important example is the so-called
Lorentz gauge

9, Ax) =0 or k, A (k) =0. (4.21)

Because of the gauge invariance, the choice of gauge has no effect on the equa-
tions of motion because the current is conserved, or k*J (k) = 0. The current
(i.e., the source) does not couple to the unphysical longitudinal component
of the photon field. It stresses again the importance of gauge invariance and
its associated conservation of currents.

To impose the gauge fixing, we can add a term to the Lagrangian which
enforces the gauge condition. Without such a term the action is stationary
under any longitudinal variation § A, (x) = 9, A(x) of the vector field, and
the added term should be such that stationarity in that direction imposes the
gauge condition. For any choice of the parameter « # 0 this is achieved by
the action

S= [dux( = FuOF" () ~ 0@ 4() - 4,(0] (). @22)

Indeed, the variation § A,(x) = 9, A(x) in the longitudinal direction leads to
the equation

—o f dyx 9,0" A(x)d, A”(x) =0, (4.23)

which implies the Lorentz gauge (assuming vanishing boundary conditions
for the vector potential at infinity).
The equations of motion for this action now yield

B EM(x) + 2d"9, A (x) = ] "(x), (4.24)
or in Fourier space
(= k28 + (1 — )k, k") A (k) = ]V (k), (4.25)
which is invertible, as long as o # 0. The result is given by
A= E B g 426)
k? +ie ‘ '

Thisis consequently the propagator of the electromagnetic field (in the Lorentz
gauge), also simply called the photon propagator. Like in the scalar case, it
can be used to perform a perturbative expansion for the classical equations
of motion.
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Note that the photon propagator simplifies dramatically if we choose = 1,
but all final results should be independent of the choice of « and even of the
choice of gauge fixing all together. This is the hard part in gauge theories.
One needs to fix the gauge to perform perturbation theory and then one
has to prove that the result does not depend on the choice of gauge fixing.
In quantum theory this is not entirely trivial, as the regularisation can break
the gauge invariance explicitly. Fortunately, there are regularisations that pre-
serve the gauge invariance, like dimensional regularisation, which we already
encountered in Chapter 2 (in discussing the Casimir effect). In the presence
of fermions, the situation can, however, be considerably more tricky. Some
different choices of gauge fixing will be explored in Problems 8 and 9.
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Hamiltonian Perturbation Theory
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We consider the Hamiltonian for a free scalar particle coupled to a source. We
will see that the source can be used to create particles from the vacuum in
quantum theory, and it forms an important ingredient, like for the derivation
of the classical perturbation theory of the previous chapter, in deriving scat-
tering amplitudes and cross sections. Also the Green’s function will reappear,
but now with a unique specification of the required boundary conditions
following from the time ordering in the quantum evolution equations.
For the Lagrangian

L= 10,00"p — im*p> —&] ¢, (5.1)

the Hamiltonian is given by
H= 1?4 1(09)" + 1m’e® + 2] ¢, (5.2)
where Z is a small expansion parameter. We will quantise the theory in a

finite volume V = [0, L]® with periodic boundary conditions, such that the
momenta are discrete, k = 277/L.

(X, t=0) = Z #
’ i \/2Vk, (k)
(X, t=0)=—i Z

a(k)e’™* 1 at(k)e~F¥),
( )

( (K)eiF aT(lz)e‘i’;'y‘) : (5.3)

The Hamiltonian is now given by H(t) = Hy + £Hi(t), and we work out the
perturbation theory in the Schrédinger representation. We have

= Zkoa?)(a*(l?)a(l?) +1)

T, b (a(—l?) 4 a*(ié)) . (54)

Hi(t) = / 3 (3 Do) = Y
T 2ko(F)

25
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here ] (k, t) is the Fourier coefficient of | (%, t), or
- 1 F 7 iR
JE 0 === Tk ne. (55)
k

Let us start at t = 0 with the vacuum state |0 >, which has the property that
a(k)|0 >= 0 for all momenta, then it follows that

%Nl(t) >= —i H(H)|¥(t) >, (5.6)

which can be evaluated by perturbing in .

&)
() > =e B >, B >= Y ba(t) >,
n=0

d . ; Hog i
EW”(t) > = —ie' B H (e BN, (1) > . (5.7)
Actually, by transforming to |¥(t) > we are using the interaction pic-
ture, which is the usual way of performing Hamiltonian perturbation theory

known from ordinary quantum mechanics. These equations can be solved
iteratively as follows

t
|\I’1(t) > = _1'/ dh el Hoti Hl(tl)e—rHotlm >,
0
A t . i R
[\Wo(t) > = —i/ dt et Hy (1)e 700 1By (1) >
0
t ) h ‘ A
= _/ dt ezHoh Hl(tl)/ dt, ezHo(tth)Hl(tz)eszmlO >,
0 0

t
W (t) > = —i / dty e Hy (h)e PN,y (h) >= - (5.8)
0

Please note the time ordering, which is essential as H;(t) does not commute
with Hi (t') for different t and . We can, for example, compute the probability
that at time t |[W(t) > is still in the ground state (whose energy we denote by
Eo, which will often be assumed to vanish)

t
< 0|W(t) > = e Bt < Q| J(t) >= e 'E! {1 — i;:f dty < O|Hy(t)|0 >
0

t b )
— & f dty | dty < O|Hi(k)e!P—E0&=t) H (£)]0 > +(’)(é3)}.
0 0
(5.9)

It is simple to see that the term linear in & will vanish, as the vacuum expecta-
tion values of the creation and annihilation operators vanish, i.e.,
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< 0]at|0 >=< 0]a|0 >= 0. To evaluate the remaining expectation value in
the above equation, we substitute H; in terms of the creation and annihilation
operators [see Equation (5.4)]

0p \/4ko(P)ko(K)
Xei(Ho*Eo)(tZ*fl)(a(_]_é) + aT(E))|0 -

< 0| Hy(t)e' Fo=E=) b (1)]0 > = 0l (a(—p) +a'(p))

_y M —ik®ti-t) (510)

Combining these results we find

< 0|W(t) > eiFot

W Tk t)] (K, tz) _ _
_1_ g2 JN TN AT lko(k) h—t) 3
=1-¢ E / dtl/ dt, Ko k) + O(&”)

—_ 1 _ 182 I( k tl)](k tZ) —lko Vb —t| _3
=1-1g Z/ dtl/ dt, o) +0@E.  (5.11)

Especially the last identity is useful to relate this to the Green’s function we
introduced in the previous section. Using contour deformation in the complex
o plane we find

/_ " piot _ 2711; =ikt (5.12)
— k3(k) +ie 2ko (k)

This can be shown as follows. When t > 0, we can deform the contour of inte-
gration to the upper half-plane (where ¢’ decays exponentially) and only the
poleatw = w_ = —ko(lz) +ie contributes, with a residue Zﬂie‘ikO(’?)t/[—Zko(lz)]
(see Figure 5.1). Instead, for t < 0 the contour needs to be deformed to the
lower half-plane and the pole at w = w; = ko(lz) — ie contributes with the
residue 27ie*®)! /[—2ko(K)] (note that the contour now runs clockwise, giving
an extra minus sign).

FIGURE 5.1
Contour deformation to define the integration.
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This means that we can rewrite Equation (5.11) as

| i, i I(w R0
tlir?o <0|w(t) > efot =1 — ZZ/ dw Tt ie + O(&%),
(5.13)
where
T (0, k) = / dt J (k, t)e't = Jzn— /}R de?dt J (x)e**.  (5.14)

The last expression should be replaced by (27)~2 Jre dax | (x)e’* in case the
volume is infinite. It is important to note that we have chosen [ (x) =
for t < 0. Equivalently we can start at t = —oo and integrate the quantum
equation of motion up to t = co. We have to require that | (x) vanishes
sufficiently rapidly at infinity.

In an infinite volume we therefore find for what is known as the vacuum
to vacuum amplitude of the scattering matrix

(

lim < 0w(t) > elfot =1 — —-Zfd k M + O(&%)

+

=1—5§fmmmecu—wuw+0@>
(5.15)

where G(x — y) is exactly the Green’s function we introduced in the previous
section. The so-called ie prescription, which is equivalent with specifying
the boundary conditions, has therefore been derived from the time ordering
in the Hamiltonian evolution of the system and is thus prescribed by the
requirement of causality. Note that we can use the diagrams introduced in the
previous section to express this result (taking Eq = 0 from now on) as

1L =3
<0l¥(t) >=1 2 8 2] + O(&”), (5.16)
where the factor of a half is a consequence of the symmetry under interchang-
ing the two sources.

For a complex scalar field, ¢ and ¢* are independent and we need to intro-
duce two sources by adding to the Lagrangian —¢] * — ¢*] (see Problem 17).
It is not too difficult to show that in this case

<0U() >=1—i X=X 10, (5.17)
&J gJ*
without a factor of one half because the sources | and ] * are independent
and cannot be interchanged. This is why in this case the propagator has a
direction.
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For simplicity we will start with a one-dimensional Hamiltonian

52

p . . hd

H=_—+V(®), =-—, 6.1

oy TV, P=oor (6.1)
where we have indicated a hat on top of operators to distinguish them from
number-valued coordinate and momentum. We wish to study the time-
evolution operator exp(—i HT/h). In the coordinate representation its matrix
is given by

—iHT/h

< x'le |x >, (6.2)

where |x > is the position eigenfunction. We will also need the momentum
eigenfunction|p >,i.e., p|p >= p|p >, whosewave function in the coordinate
space is given by

eipx/h 63
< x|p >= . .
Indeed, one verifies that
h o
Ifa<x|p >=p<x|p>. (6.4)

An important ingredient in deriving the path integral expression will be the
completeness relations

i:/dx |x >< x| and i:/dp|p >< pl. (6.5)
For arbitrary N we can use this to write
< x| My > = < &| (e’iHT/Nh)N |x >

// < JC/|€_7HT/NH|XN_1 > dxn_1

—iHT/Nh
< xn-1le N xN_p > dxn_a

—iHT/Nh [x0 > dxy

—iHT/Nh

< xle Ix1 > dxy < x1le BTN S 0 (6.6)

29
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We will now use the so-called Trotter formula
e*i(/H»B)/N — e*iA/NefiB/N(l + O(Niz)) (67)

for two operators A and B. This can be seen by expanding the exponents,
and the error term is actually of the form [A, B]/N?. (One can also use the
Campbell-Baker-Hausdorff formula, which will be introduced later). With
the Hamiltonian of Equation (6.1) this can be used to write for N — oo

e—iHT/NI _ ,—ip*T/2mNh ,—i V($)T/Nh_ 6.8)
By inserting the completeness relation for the momentum we can eliminate
the operators

< xipple TN > = /dl’i < xialpi >< pile TNy, >

pAT/2mNh , ~i V(2)T/Nh Ix;
1

A /dpi < Xip1lpi >< pile™'?

>
— /dpz < xi+1|pi > < pi|efip[2T/2mNhefiV(x,‘)T/Nh|xi >
eiPilip—=xi)/h rp2 v
= /dpl TE_I[ZWJFV(XI)]T/NH' (6'9)

This can be done for each matrix element occurring in Equation (6.6). Writing
At =T/N, xy = x' and xy = x we find

N-1  N-1

1\ o—iHT/h — 1 o [ TTdx [ dps

< X'|e |x>_A1]1£r;O/ /.1dxﬁ dp;
=

j=0
N-1

< [] < xalpi >< pile

i=0
e dpo Y7 [ dxidp;
=i 35 T S

. N-1 (. o
X exp [lhﬁ 3 <% _ % _ V(xi)):|. (6.10)

i=0

—I'HAt/h|x‘ >
1

It is important to observe that there is one more p integration than the number
of x integrations.

The integrals in the path integral are strongly oscillating and can only be
defined by analytic continuation. As parameter for this analytic continuation,
one chooses the time t. For At = T/N = —iT/N = —iAr, the Gaussian
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integral over the momenta is easily evaluated
* ipi(xiy —x)  plAT
dp; -=
/_oo pi &P [ 7 2mh

= 2mmh /At exp [—;mM], (6.11)

Ath

which leads to

1
mN \2N
< xle”HT/Mx > = lim ( )

N—oo \ 2 Th
N-1 Ar N1 (Xis1 —
X dxiexp | —— ( + V(x,))
/ 11 [ h & 2A72
(6.12)

or after substituting 7 = iT we find

1
IN
. . mN \?2
< x/le 0T x >~ = lim ( )

N—ooo \ 27iTh
N-1 ¢ N=
X / u dx; exp |: Z <ﬂ1(x1;1At2 — V(X,)):|
(6.13)

This is the definition of the path integral, but formally it will often be written
as
x(T)=x

< x| HTMx > = / Dx(t) expliS/hl,
x(0)=x

(6.14)

T
S =/ dt {1mi?(t) — V(x(1)},
0

since the discretised version of the action with x; = x(t = j At) is precisely

Sdiscrete = At Z ( L) - V(xl)> . (615)

It is important to note that the continuous expression is just a notation for the
discrete version of the path integral, but formal manipulations will be much
easier to perform in this continuous formulation. Furthermore, the integral is
only defined through the analytic continuation in time.

However, if we integrate over xy = xp this analytically continued path
integral, with T = —i7, has an important physical interpretation

(6.16)

B=T/h*

/dx < x|le HTMx >= Tr(e #H)
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Itis the quantum thermal partition function (the Boltzmann distribution) with
a temperature of i/ k7. In the continuous formulation we therefore have

Tr(e TH/M) = / . ()Dx(t) exp[—Sg /i] (6.17)

in which Sg is the so-called Euclidean action

Sp = /OTdt {;m(dx(r)/df)z + V(x(r))]. (6.18)

It is only in this Euclidean case that one can define the path integral in a
mathematically rigorous fashion on the class of piecewise continuous func-
tions in terms of the so-called Wiener measure

x(T)=x' T
/ AW, (T) = / o Dx(t) exp (— /0 %mic(t)zd‘c/Tl), (6.19)

meaning that this measure is independent of the way the path is discretised,
Figure 6.1.

For more details on this, see Quantum Physics: A Functional Integral Point of
View, by J. Glimm and A. Jaffe (2nd ed., Springer, New York, 1987).

We will now do an exact computation to give us some confidence in the
formalism. To be specific, what we will compute is the quantum partition
function for the harmonic oscillator, where V(x) = imw?x?

2=z Th) [ /ﬁdx'

At it1 — Xi 2
X exp [—%Z;m (%) + ;mw2x5]~ (6:20)

i=0

Note that we have now N integrations, because we also integrate over xp =
x(0) = x(7) = xy to implement the trace. The path involved is thus periodic
in time, a general feature of the expression for the quantum partition function

[ASWAVAN.N
RVAY,

Contributing path.
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in terms of a path integral. We now rescale

Yi =X L
Ath

to obtain the simple result

o= / / &Xp |~ Nz_l Wi — ) + 1%y | (6.22)
*/_ i=0 l

We can diagonalise the quadratic term by using Fourier transformation

(6.21)

IS!
S
>
N

1 N-1 )
=75 bee RN - p¥ =byn_y, bh=h. (6.23)
=0

It is easy to verify that the Jacobian for the change of variables y; — b, is
1, and one obtains a result that must look familiar from the classical small
oscillations problem for a finite number of weights connected by strings,

T

Note that if b, is complex, we mean by db, = dReb, dImb,. The integral can
now easily be evaluated

db, ST -
exp |:—% Z (4sin®(w¢/N) + &7) Ibz|2:|- (6.24)

1
=0

Z

N = (4 sin®(7¢/N) + &) 3 (6.25)

0

o~
Il

We can convert the product to a sum using a Laplace transform. We start with
the identity

N F > a=1/,—sx _ ,—s
log(A/u) = [111{%/0 dss* (e e™°h), (6.26)
such that
log[ Zn(@)/ Zy(@0)] = } lim / ds Qs @) — Q(s, @) (6:27)
[Z\O 0

We read off, from the definition of Zy, that Q is a sum of exponentials

Qs, @) =Y exp[—s (4sin*(me/N) +@?)] = Ne*@+D £,(0), (6.28)
=0
where
fs(x) — N Z 625 cos(2n(£+x)/N). (6.29)

=0
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This is a periodic function with period 1 [ f;(x + 1) = fs(x)], and its discrete
Fourier coefficients can be computed exactly

1 ) 1 N )
fs(k) — f dx ekast(x) — Nf dx eznszEZSCOS(ZJTX/N)
0 0

1

2
= — de e!Nkp25cos0) = [ (2s). (6.30)
27'[ 0

Please note that we have exchanged the sum over ¢ with extending the inte-
gration of x to the interval [0, N]. The last identity is one of the definitions
of the modified Bessel function, see, e.g., Handbook of Mathematical Functions,
by M. Abramowitz and I. Stegun (Dover, New York, 1978). The advantage of
these manipulations is that the Laplace transform of this Bessel function is
now (see the same reference)

foods e (s) = BV T (6.31)
0

A2 —1

and as we can express f;(x) as a sum over these Bessel functions

filx) = e Ig(2s), (6.32)

keZ

this allows us to evaluate Equation (6.27). For technical reasons, it is easier to
compute the variation of the free energy with the frequency, where the free
energy F is defined as

Zn(@) = exp[-BF (@)]. (6.33)
We therefore find (using 8 = 7 /h = NAt/h)

a oo a
~\ —(2+a")s
_85)1:(0)) =hw E /.5 dse Ink(25)

keZ
ho N
- Z[;@2+1+,/(;a)2+1)2—1] . (6:34)
2J/(1@* +1)2 -1{z

The geometric series is of course easily summed, but to make the result more
transparent we introduce the scaled effective frequency Q2

0T /N = wAt = & = 2sinh(1Q) (6.35)
and using the identity 1@* 4+ 1 = cosh(Q), we easily find that

At 0 1
——F(Q) =1 “Nek . — 1
woaal Zk;ze T—eNa

1 3 p—ONJ2
—Nﬁlog <71 —eNQ)' (6.36)
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The last identity can be seen as the free energy of the harmonic oscillator with
the frequency QN/7 = Q/Art, as it can also be written as

AT 3 1 8 O 1
2T r@) = ——2 ~(n+haN | 6.37
7ol @ ="Nig Og(nz_;e : (6.37)

Amazingly, even at finite N the Euclidean path integral agrees with the quan-
tum partition function of a harmonic oscillator, but with a frequency that is
modified by the discretisation; see Eqs. (6.21) and (6.35). It is trivial to check
now that the limit N — oo is well defined and gives the required result, since

lim QN/T = 0. (6.38)

In general the exact finite N path integral is no longer of a simple form.
Nevertheless, one can evaluate this exact expression in relatively simple terms
(which will verify the above result along a different route; see also Problem
10). So from now on, we will take the potential arbitrary and in a sense we
follow the derivation of the path integral in the reverse order.

;o i dp() N1 dxidp,-

At =R (ipi(xip —x)  p?
x exp [7 2 (T ~om VW)

i=0

N-1 N-1 A‘L’f?z
= /dpo 11:! /dx,-dpi ]l:!) < x]-+1|pj >< p,-lexp <— mifi )

( ArV(fc))
x exp | — 7 |x; >

N R N
=< x| {exp (— i;f:) exp <_Arr‘l/(x)>} [x >. (6.39)

This means that we can define an effective Hamiltonian by

_ Arf?z AtV(%) N
HN)T/h — — —
e = {exp ( G ) exp ( 5 ) } . (6.40)

But this Hamiltonian is not Hermitian as one easily checks from the above
expression, since under conjugation the order of the exponents containing the
kinetic and potential terms is reversed. This can be corrected in two ways

_ Arf?z AtV(%) Arf?z
Hi(N)At/h _
e = exp( T )exp( 7 exp 7 )

_ ATV(&) AT p? ATV(&)
H(N)At/i _ _ _
¢ P ( 2h ) P < 2mn ) <P 2n )

(6.41)
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leading to two equivalent expressions for the finite N path integral

2 .

ZN(X, x5 T) = < x'lexp (— i:ﬂi[ >exp(—H1(N)T/h)exP (j:n;;l ) x>
In(, 0 T) = < X'|exp (ATV(£)> exp (—Hao(N)T /1) exp (— AT;I(’?)) x>
(6:42)

In particular the partition function is given by
Zn = / dx Zy(x, x, T) = Tr(e”HNT/My = Tr(e~H(NT /Ry (6.43)

It is actually not too difficult to show that there exists a unitary transforma-
tion U, such that UH; Ut = H,, which shows that both choices are indeed
physically equivalent.

In principle we can now compute H;(N) for finite N as an expansion in
1/N, by using the so-called Campbell-Baker-Hausdorff formula

edeB =efAB)  F(A B)=A+B+ %[A, B] + %[A [A, B]]
1
+ 5 [B (B All+ -, (6.44)

which is a series in multiple commutators of the, in general, noncommuting
operators A and B. It can be derived by expanding the exponentials, but in
the mathematics literature more elegant constructions are known, based on
properties of Lie groups and Lie algebras. These objects will be discussed
in Chapter 18. For the harmonic oscillator, working out the products of the
exponential can be done to all orders and one finds (see Problem 10 for details)

52

ATH(N) = £

= oM + 1M Q%32 (6.45)

with @ defined as in Equation (6.35) and the effective masses M; defined by

_ 2mtanh(}Q) M — m sinh($2)

M —
! ATQ 2 AT

(6.46)

One can now explicitly verify that [compare this to Equation (6.37)]
Tr(exp(—Hi(N)T /h)) = Tr(exp(—Hy(N)T /h)) = exp ( — F(R)7T /). (6.47)

Now we have seen that, at least for some examples, the limit of increasingly
finer discretisation is in principle well defined, we can think of generalisation
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to an arbitrary number of dimensions (1) (for field theory even to an infinite
number of dimensions).

. AT
e~ HTMZ > = fD?c(t) exp [%/ dt L(X(t), Tc(t))}
T np() d nXi an
= dm | Gy f H (2rh)"
At L G — ) R
X exp [17 ; (pi T H(pi,xi))
) mN %nN
= lim g
N—oo \ 27iTh

N-1 At N-1
x / [ ] duxi exp [z‘7 > L(%, (Fiar — Fc,-)/At):|. (6.48)
i=1

i=0

We have purposely also given the expression that involves the path integral
as an integral over phase space, as it shows that the Gaussian integration over
the momenta effectuates the Legendre transform

22

. p _32
ipi—ip —iV() = -

- _ S5 2
i(p mx) +lmx
2m

—iV(F), (6.49)

which is equivalent to the stationary phase approximation for the momentum
integration

—i-P_o (6.50)
m

An other interesting example of the path integral is the case of the interac-
tion of a charged particle with a magnetic field. In that case one has for the
Hamiltonian

s s (p—eAR)?

H(p, %) = 5 + V(). (6.51)

Now, however, the matrix element < p;| exp(—i HAt/h)|X; > will depend on
the specific ordering for the position and momentum operators in H. Different
orderings differ by terms linear in 7z, or

AR)-D =D AR) +ihd; AX). (6.52)
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So, by choosing the so-called Coulomb gauge 9; A;(X¥) = 0, the problem
of operator ordering disappears. We leave it as an exercise to verify that the
action, obtained from the Legendre transform, is given by

szlfdt@miﬁ-vay+ﬁ-ﬁan. (6.53)

Under a gauge transformation A;(¥) — A;(X) + 8;A(X), one finds that the
action changes to Sy = S+e{A[X(T)] — A[¥(0)]}. Using the path integral this
means that

< X'|exp(—iHAT/h)|% > = exp (ieA(X') /h) < X|
x exp(—i HT/h)|% > exp (—ieA(X)/h). (6.54)

Since it is easily shown that Hy = exp [ieA(X)/h] H exp [ — ie A(X)/h], this
proves that the path integral derived from Equation (6.53) has the correct
properties under gauge transformations, despite the fact that the derivation
was performed by first going to the Coulomb gauge.

As long as the Hamiltonian is quadratic in the momenta, the stationary
phase approximation for the momentum integral is exact. However, also for
the coordinate integrals we can use the stationary phase approximation (exact
for a harmonic oscillator), which is related to the WKB approximation in
quantum mechanics. It gives a way of defining an expansion in /i, where in
accordance to the correspondence principle, the lowest-order term reproduces
the classical time evolution. Indeed the stationary phase condition

§5S 88 d S
Sxi(t)  8xi(t)  dt sxi(t)

-0 (6.55)

is precisely solved by the classical solutions, X (t), with X (0) = ¥ and X (T) =
X'. We expand around these solutions by writing

() = Fa(t) +4(t), §(0) =4(T) =0, (6.56)
such that

RLE)
8q'(H)8q1(t)
There is no term linear in g’ (), as this term is proportional to the equations

of motion, or equivalently to the stationary phase condition. For the simple
Lagrangian L = 1mx? — V(X) one has

() = S(i) +1 [ drdeq' (o) 7 +0@). (657

2°8(k)  _ N
satosg 5~ =0 (W + M),
32V (X)

M) = 5

PP (6.58)

|«'v:~'w ®*
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For the harmonic potential, V = 1mw?X?, where the stationary phase approxi-
mation is exact, i.e., there are no O(g°%) corrections. Introducing 4 (t), however,
splits the action in a classical piece that depends on the boundary conditions
and a quantum piece described by a harmonic oscillator action for the fluctua-
tions around the classical path that is independent of the boundary conditions

and the classical path
T .
S(x) = S(Xe1) +f dt (ymq * — ime*G ?). (6.59)
0

In practical situations one splits from the action the quadratic part in the
coordinates and velocities and considers the rest as a perturbation. In that
case x is the classical solution of the quadratic part only. As this can always
be solved exactly, and as nonquadratic path integrals can rarely be computed
explicitly, this will be the way in which we will derive the Feynman rules
for the quantum theory, in terms of which one can efficiently perform the
perturbative computations.
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For a scalar field in a finite volume V = [0, L]?, the Hamiltonian is given in
the Fourier representation by [see Equation (2.6)]

H= Y (a@E)P+ 1k +m)pk) P + V(@) + )] (—k 1).  (7.1)

k=2mii/L

As ¢(x) is real we have (77*(12) = @(—E). It is customary to write the quadratic
term in the fields (the mass term) explicitly, such that the potential V(g)
only contains the interaction terms. If we like, we could split the Fourier
modes in their real and imaginary components [the cos(X - k) and sin(% - k)
modes]. Or even simpler is to use Dirichlet boundary conditions, i.e., ¢(x) = 0
at the boundaries of the volume, such that the Fourier modes are given by
I j sin(mn;x;/L) (withn; > 0), with real coefficients. In either case, for V(¢) =
0 the Hamiltonian simply describes an infinite set of decoupled harmonic
oscillators, which can be truncated to a finite set by introducing a so-called
momentum cutoff [k| < A.In this case we know how to write the path integral,
even in the presence of interactions. The introduction of a cutoff is called a
regularisation. The field theory is called renormalisable if the limit A — oo
can be defined in a suitable way, often by varying the parameters in a suitable
way with the cutoff. The class of renormalisable field theory is relatively
small. For a finite momentum cutoff, the path integral is nothing but a simple
generalisation of the one we defined for quantum mechanics in n dimensions,
or in the absence of interactions

Z= hm l_[(ZmAt) N/Zf l_[ l_[dq)](k) exp |:1Atzz |‘p1+1(k2At2‘7’1(k)|2

—1(F% 4 1)1 ()12 — 9, ()] (=K, ]'At)}

T
/ Dy(k, t) exp (z‘ /O D 1k, )17 = 1k + mP) gk, 1)
k

— @k, ] (~k, t)}dt). (7.2)

41
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One of course identifies @ ]-(E) = @(E, t = jAt) and performing the Fourier
transformation once more, one can write

T
/0 dt Z (16 OF — 3@+ m) 1o, D - ok, ] (=K, D)

:f "”/ a2 (3 (0 (F, 1) — 1(0i0(%, )" — P (E, 1) = o(F, D] (%, 1))
=/V or ]d4x{ 8,0(x) 9" p(x) — 1ng?(x) — p(x)] (). (7.3)

The last expression is manifestly Lorentz invariant apart from the dependence
on the boundary conditions on the fields (which should disappear once we
take L and T to infinity). This will allow us to perform perturbation theory in
a Lorentz covariant way. (Things are somewhat subtle as any finite choice of
the momentum cutoff does break the Lorentz invariance, and there are some
theories where this is not restored when removing the cutoff, i.e., taking the
limit A — o0.) This achieves a substantial simplification over Hamiltonian
perturbation theory. It is now also trivial to reintroduce the interactions by
adding the potential term to the Lagrange density, and we find in yet another
shorthand notation for the measure the following expression for the path
integral (implicitly assuming that the boundary values ¢(¥, 0) and ¢(X, T)
are fixed, prescribed functions)

- / Do) eXp(l' /V i) — i)

Vi) - w(X)I(x)}>- 74)

In principle a path integral should be independent of the discretisation used
in order to define it. For the Euclidean path integral, one particular way that
is used quite often is the lattice discretisation, where instead of a momentum
cutoff one makes not only time but also space discrete. This means that the
field now lives on a lattice and its argument takes the values ja where j € ZZ*
and a is the so-called lattice spacing, which in the end should be taken to
zero. By suitably restricting the components of j, with appropriate boundary
conditions on the fields, one keeps space and time finite, V = a®M? and
7 = aN. This leads to an integral of the form

(27a) —NM /2/1—[01% exp (—a“Z Z (¢]+e,‘ —90]‘)2

+ %m2¢]2 + Vipj) + ]j‘/’j}) (7.5)
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where e, is a unit vector in the u direction, and ¢; is identified with ¢(aj). In
a sense, the momentum cutoff A is similar to the space-time cutoff 1/a. The
lattice formulation is very suitable for numerically evaluating the path inte-
gral, whereas the momentum cutoff is suitable for performing perturbation
theory around the quadratic approximation of the action. For the latter we
will compute, using the path integral, the same quantity as was calculated in
Chapter 5, using Hamiltonian perturbation theory.

In the presence of a source, the Hamiltonian depends on time and the
evolution operator has to be written in a way that takes the time ordering
into account. As the time evolution operator U(t) satisfies the Schrodinger
equation

i%u(t) — H(HU(t), U©0) =1, (7.6)

its solution can be written as (note the absence of 1/n!)

U(t) = Texp <—i /Ot H(t)dt)

> t b b1
= ;(—z) /0 dtl/(; /(; dt, H(t) - - H(t,). 7.7)

For convenience we introduce the notation

153
U(tz, i’l) = Texp <—l H(t)dt) P tz > H (78)
51
which satisfies the property that
U(i’3, tz)U(tz, t1) = U(t3, tl), t3 >t > 1. (79)

In Chapter 5 we calculated the matrix element < O|U(T)|0 > to second
order in the source (from now on we put & = 1). The Lagrangian relevant
for the path integral evaluation is given by £ = 19,9d*¢ — im*¢* — ] ¢, with
J(x) =0fort <Oandt > T (and for % ¢ [0, L]%). The vacuum |0 > is the
state where all k oscillators are in their ground state. It turns out that we do
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not need an explicit expression for this vacuum wave functional, denoted by
Yo({p(k)}) =< {@(k)}0 >. We have

<ou(mo > = [ [Tde(ds'(h) < 01w H) > < @ EIUDIGH) >
p
x < {p(p)}0 >, (7.10)

where {@(p)} plays the role of x and {¢'(p)} the role of x’. The path integral
expression for the evolution operator therefore becomes

< @ENUMDIFG) == [ Do) exp(// o(x) d4x)

= /ng(k) exp (i > {0 = m?) gk

K, ko

— ()] (—k)} ) (7.11)

We have here also performed the Fourier transformation with respect to time,
thereby converting the path integral measure D@(k, t) to the multiple inte-
gral over the (discrete temporal) Fourier components D¢(k), exactly as was
done in one dimension [see Equation(6.23)], hence we also find a unit Ja-
cobian for this change of variables. Obviously our notations are such that

k = (ko, k) and k* = k2 — k ? If we take the limit of space and time to infin-
ity (L - oo and T — o0), the sums over k can be converted into integrals.
Finally we note that the oscillatory integrals occurring in the path integral
can be dampened by replacing m? by m? — i¢ as this leads to replacement
exp [i [ L(p)dsx] — exp[i [ L(p)dsx — & [ ¢*dsx]. This prescription also al-
lows us to make the analytic continuation to imaginary time and coincides
with the prescription derived for the propagator in the Hamiltonian formu-
lation, so that causality is also properly implemented in the path integral ap-
proach. Torecover the result obtained in the Hamiltonian approach, we simply

split off a square
| )

k 2
X exp (——Zkz |]r(n2)|—i—18) (7.12)

<{@'(PHU(T){@(p)} >

= /D@(k) exp (i >R —m +ie)
i, ko

J (k)

DN (N
o0 — T e
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We can now shift the integration of @(k) over J (k)/(k* — m* + i¢) and
introduce the Green’s function in coordinate space [Equation (4.7)] to get

< I >
—exp (-~ [ dxday 106G - 01 )

x / Dp(k) exp (z’ > b= +ie>|¢(k)|2)

K ko
= exp (—% / daxday ] (x)G(x = )] (y)) <@ (eI p(p)} > .
(7.13)

In the last step it is crucial to note that the source is taken to vanish for
t <0and for t > T, as otherwise the shift we performed in the field would
have changed the boundary values. Using Equation (7.10) we now obtain the
remarkable result that

< OJU(T)I0 >=< 0le-HU=0T|0 > exp (—% [t 166 - (y))
(7.14)

to all orders in the source | . Even at the level of a noninteracting scalar field
theory, this demonstrates the dramatic simplifications that can arise from
using the path integral method for calculating quantum amplitudes. One
particular feature that is noteworthy in the path integral calculation is that
the part of the Lagrangian that is quadratic in the fields represents the inverse
propagator. This is no accident and is in general the way the (lowest-order)
propagator is directly read off from the Lagrangian, since the quadratic part
of the action is the starting point of the perturbative expansion. But before
we will derive the Feynman rules from the perturbative expansion, it will be
useful to emphasise that the time ordering, playing such an important role
in the Hamiltonian formulation, is automatically implemented by the path
integral. Furthermore, it will be helpful to understand in more detail how the
source can be used to create and annihilate particles, as this will be our tool
to write down the matrix elements of the evolution operator (the so-called
scattering matrix, or for short, S-matrix) with respect to the basis specified by
particlenumber and momentum (the so-called Fock space); see Equation (2.9).
In the Hamiltonian formulation we consider

< 019X, )X, h)I0 >, b >t, (7.15)
where the field operator [compare this to Equation (2.8)] is given by

P(x, 1) = e Mp(R)e M, (7.16)
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such that
< 0l HT=R)g(5")e~Hb=t) o (F)e~1HA|() >

< 0leAT|0 > '
(7.17)

< 01p(X', £)(X, 1)]0 >=

where we have made use of the fact that the vacuum |0 > is assumed to be an
eigenstate of the Hamiltonian H (without a source term). The normalisation
by < 0le~"HT|0 > is hence a rather trivial factor. We can even write a similar
expression in the presence of the source. In perturbation theory this would
not be needed, but it is useful from a general point of view to consider this
situation too.

In the presence of a time-dependent source one can write

< O[U(T)@(X', b)(X, )10 >=< OJU(T, k) p(x")U(tz, t1)@(X)U(41)[0 > .
(7.18)

In this case the field operators are of course given by
P(F, 1) = UM p(@DU(®), (7.19)

where in general U(t) depends on the source J. It is now trivial, but a bit
tedious, to convert this matrix element to a path integral. One first writes the
product of the operators as a product of matrices in a suitable representation
[e.g., the field representation |{¢(p)} >]. Each of the matrices for the three
evolution operators can be written as a path integral, excluding the integral
over the initial and final field components. The matrix product involves an
integral over the final field component of the matrix to the right, which is also
the initial field component for the matrix to the left. Without the insertion of
the field operators ¢(x), this would describe the fact that U(ts, t)U(tp, t1) =
U(ts, t1) in the path integral formulation, which simply means that one glues
the pathsin U(t3, t,) and U(ty, 1) together by integrating over @(E, ty). With the
field operator sandwiched between the two U matrices one simply includes
its eigenvalue in the integrand over the paths, since the field operator (or its
Fourier components) is diagonal on the states |{¢(p)} >. The final result can
be written as

/]‘[d@(fa)d@’(fa) < 01{¢'(P)) >
5

[}

X {f Dy(x) exp(i /: L dyx)p(X', 1) exp(i L dyx)

51
51
<ol mep [ L) < 010>, 720
0
where we implicitly assumed that the boundary conditions for the field ¢

in the path integral is in momentum space given by @(p, t = 0) = @(p) and
@(p, t =T) = @'(p). The way the time ordering in the path integral is manifest
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is now obvious. Note that the field expectation values can also be written in
terms of derivatives with respect to the sources, which is particularly simple
to derive in the path integral formulation

82
8] (R, )8 (3, h)

Since we assumed that |0 > is an eigenstate of H (i.e.,at ] = 0), < 0|U; —o(T) =
< 0le~*EoT (with Eq the vacuum energy) and we can bring the trivial phase
factor e~'EoT to the other side by normalising with < 0|U;_o(T)|0 >, as in
Equation (7.17).

< Olu(T){b(f// tZ)@(fr t1)|0 >=

<0U(T)|0>. (7.21)

R R 82 < 0|U(T)|0
< 0p(F, )P(E 1)I0 >, = [—<0|U(T)|0>-1 = )| >} ,
=0

8] (f// t2)8] (f, tl)
(7.22)

where in the path integral formulation one has

<o > = [ T]da()¢/G) < oltg' () >
p

T
x [ Doy expi /O Ld) < @PI0 >,  (7.23)

with the boundary conditions as listed below Equation (7.20).

To study the role the source plays in creating and annihilating particles, we
will calculate both in the Hamiltonian and in the path integral formulations
the matrix element

<plU(M)I0>, |p>=a’(p)0>. (7.24)
Hence |p > is the one-particle state with momentum p. Using the result of

Equations (5.7) and (5.8), which is equivalent to the result |¥(¢) >= U(#)|0 >,
we find for this matrix element in lowest nontrivial order

T
< plU(T)|0 > = —i/ dt < O|a(f;)ei(t—T)HoHl(t)e—itHo|0 -
0

T
=iy /O dt < 0la(p)e'PPH+ENE=DT (fc 1)
P

x~—— T e~iktg >
\/ 2ko(k)
—i(Eo+po(p)T T B L
S L ——— / dt ] (p, He'rod
V2po(p) Jo

' ﬁe*i(Eoﬂm(f’))T _
_Z —_—

T J (p).

(7.25)
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To write down the path integral result, we first express the annihilation
operator in terms of the field. From Equation (5.3) we find

a(p) +a'(—p) =,/ pO(Pf L3 p(R)ePE (7.26)

such that [using < Ola’(—p) = 0]

< pIU(T)|0 >= ,/2’”0—‘/(’3)/11355 e PY < 01p(X)U(T)I0>.  (7.27)

We now use Equations (7.14), (7.19) and an obvious generalisation of Equa-
tion (7.21), such that

< 019(X)U(T)|0 > = < 0|U(T)@(%, T)|0 >= < 0|U(T)|0 >

5]( T)
. 8

= ie_lEoTM(f T exp (—§/d4xd4y J (x)G(x — ?/)](y)>-

(7.28)

We evaluate this to linear order in the source |, using that in a finite volume
the Green'’s function is given by

2w k2 —m? +ie

1 dky e k=¥
Gr—y =12 /—0 S (7.29)
7

such that

< p|U(T)|O - — ﬂEgT /2P0(P /d = 7ipx/‘d4y G(x _ y)](y) +O(]3)
_ —lE(]T PO(P I(P)e ipoT 3
- | PotP) / e TOU). (7.30)

Note that in the last step we integrate over py as a dummy variable, which
in the expression for the Green’s function above is called kp—this renaming
is just for ease of notation. Also, xyp = T is assumed. For the py integration
we need the analytic behaviour of J(p) for imaginary py in order to see if
we are allowed to deform the integration contour such that only one of the
poles in the integrand contributes. Since J (p) = f dte'P'](p, t)/ V2, T (p)
will vanish for Impy — oo, whereas e =77 J (p) will vanish for Impy — —oo.
In Equation (7.30) the py integration can therefore be deformed to the lower
half-plane in a clockwise fashion giving a minus sign and a residue from the
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pole at py = po(p) = +/ p?* + m?, which yields the result

i Jre—iEntp(T
<plU(MI0 > = —i—F——=—](p)
Vv Po(p)

X exp (—% / dyxdsy J (x)G(x — y)](y)). (7.31)

To linear order in the source | this coincides with the result of Equation (7.25).
Again, the path integral trivially allows an extension to arbitrary order in the
source, as indicated.

For later use, we will also consider the matrix element

<OU(T)|p > = | P2 ”0 /d TelPT < OIU(T)@(R, 0)[0 >
2p0(p S ipE S< 0|U( )]0 >
=i /PP / R (7.32)

The analogue of Equation (7.30) becomes

<0|U(T)|?ﬂ>> e—iET | PO(p /d = sz/d4yG(x_y)](y)+O(]3)
— —IE(]T /PO(P / ]( TZ;T)Z(?—FO(]S)’ (733)

in which case xy = 0 is assumed. Now we must deform the contour for the py
integration to the upper half-plane in a counterclockwise fashion such that
the residue at the pole py = —po(p) contibutes. This gives, analogously to
Equation (7.31),

\/_6 iEoT
Vpo(p)

<O p >= iV J(—p)exp (—— [ daxisy 106 - y)](y))

(7.34)

Apart from the trivial difference of the factor exp(—ipoT), we see that the
amplitude for the annihilation of a one-particle state is proportional to ] (p)
whereas it is proportional (exactly with the same factor) to J(—p) for the
creation of a one-particle state [in both cases py = po(P)].
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Perturbative Expansion in Field Theory

DOI: 10.1201/b15364-8

As we have seen in the previous chapter [ [ Dp(x) where relevant includes
ground-state factors]

2], ) =< OUDI0 >= [ Dp(x) exp (i [ dix c(go)) (8.1)

will play the role of a generating functional for calculating expectation values
of products of field operators, which will now be studied in more detail. In
general the Lagrange density for a scalar field theory is given by

L(p) = L2(9p) — V(p) — ] ()9(x), 82)

where £,(¢) is quadratic in the fields, hence for a scalar field

L2(¢) = 1 (du0(x)0"p(x) — m*p*(x)),

(8.3)
Vo) = 20’0 + St @+

Asmentioned before, itis customary to not include the mass term in the poten-
tial V, such that V describes the interactions. We can add the interaction as an
operator, when evaluating the path integral for the quadratic approximation

L(p) = L2(9) — o(x)] (x),

Z(], g) = / Do(x) exp (z‘ / dax (La9) — 0(0)] (x)}) exp (—z‘ / dax V«o))

= < O|U(T)Texp <—if dsx V(@)) 0 >.
(8.4)
51
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We can now use the fact that

/Dﬁf’(x)nﬁo(x(/))eXP <i/d4X(£z(<ﬂ) —w(X)](X))>
]
is ‘
) U (5](x<j>)) /Dw(x) P (1 /d4x (Lale) = ‘/’(x)](x)))

= U (ﬁ) exp (—% / dyxdyy J ()G(x — y)] (y)>, (8.5)

to find a somewhat formal, but in an expansion with respect to the coupling
constants g,, well-defined expression for the fully interacting path integral

1,50 = (< f v (5505))

X exp (—% /d4xd4y](X)G(x - y)](?/))

= exp (—i f dyx V (%)) Z(]). (8.6)

We have assumed the vacuum energy to be normalised to zero, in absence of
interactions, such that Z(] = g, = 0) = 1. Equivalently, Z(J, g,) is synony-
mous with Z(J, g,)/Z(] = g» = 0). We now define G; as

Gy =log Z(], gn), (8.7)

where the dependence on the coupling constants in G; is implicit. We will
show that G can be seen as the sum of all connected diagrams. A diagram
is connected if it cannot be decomposed in the product of two diagrams that
are not connected. Note thatat ] = 0,iG; /T equals the energy of the ground
state as a function of the coupling constants, normalised so as to vanish at
zero couplings.

The different diagrams arise from the expansion of

ow (i [ v (575 )) = o (‘i [ o > (57 fx>>l> 58

in powers of g;. Each factor [i 8/8] (x)]l will represent an £-point vertex, with
coordinate x, which is to be integrated over. As we saw in the derivation of the
classical equations of motion, the integral over x in the Fourier representation
gives rise to conservation of momentum at the vertex. Using

1 f dik e (), ] (x) = / dik e ™ k), (8.9)

1
(27)?
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TABLE 8.1

Feynman rules for scalars.

Coordinate space Momentum space

“1(2m)426gy84(3" ki) | vertex

kl
)\ g [ dix /ggg

x ky
= —iG(x—y) = fd4km propagator
x y k
. = [dsx](x) 4)(/( = Jk) source
X -

we have for each vertex in the Fourier representation

, is \" . pe [ L (diky 8
_lgefd4x (—8](9()) = —igy(2m)"84 (;hi)) fl_[( 21)2 5T(k(].))>'

j=1

(8.10)
Note that factors of 27 are dropping out in the identities
] k)] (—k
xp (=5 [ duntuy 1060 - 01 ) = exp (—5 [ JELED ),
[ dix o1 = [k o] (b (5.11)

In the quantum theory we have to keep track of the factors i. Compared to the
Feynman rules of Chapter 4, the propagator will come with an extra factor
—i. A vertex will now carry a factor ig,[(27)?/i ]27( (in a finite volume this be-
comes ig,[v/2m V/i)*7']); see Table 8.1. To compute the vacuum energy, there
is an overall factor i since EqT =iGj—o =ilog Z(] =0, gx). The same factor
of i applies for using the tree-level diagrams to solve the classical equations
of motion. It is easy to see that these Feynman rules give identical results for
these tree-level diagrams, as compared to the Feynman rules introduced in
Chapter 4. The factors of i exactly cancel each other.

We note that the propagator connected to a source comes down whenever a
derivative in the source acts on Z,(] ); see Equation (8.7). When this derivative
acts on terms that have already come down from previous derivatives, one
of the sources connected to a propagator is removed and this connects that
propagator to the vertex associated to §/8] (x). As any derivative is connected
to a vertex, the propagator either runs between a vertex and a source >—x ,
between two vertices >—, or it connects two legs of the same vertex

—(). The possibility of closed loops did not occur in solving the classical
equations of motion and is specific to the quantum theory.
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To prove that G; only contains connected diagrams we write

Gy =log {exp (X(i8/8]))exp (Y(J))}1, (8.12)

with

X(i8/8] () = i [ dux V(3/5] (),

¥() = -4 [ didiy] GG - )] ) (5.13)

As ] (x)and /8] (x) form an algebra (similar to the algebra of * and p in quan-
tum mechanics, however generalised to infinite dimensions), also X and Y are
elements from the algebra, and we can express G; in a sum of multiple com-
mutators using the Campbell-Baker—-Hausdorff formula [see Equation (6.44)].

G, = <X+Y+;[X,Y]+%[X, [X, Y]]+%[Y, [y, X]] +---)1. (8.14)

Due to the multiple commutators, all components that do not commute are
connected. However, if the components would commute they would not con-
tribute to the commutators. This is even true if we do not put the derivatives
with respect to the source to zero, once they have been moved to the right
(this is why we consider the action on the identity).

The only thing that remains to be discussed is with which combinatorial
factor each diagram should contribute. This is, as in Chapter 4, with the inverse
of the order of the permutation group that leaves the topology of the diagram
unchanged. These combinatorial factors are clearly independent of the space-
time integrations and possible contractions of vector or other indices. We can
check them by reducing the path integral to zero dimensions, or ¢(x) — ¢
and Dy(x) — de. In other words, we replace the path integral by an ordinary
integral. As an example consider

Z(],8) = Cfdso exp (i {%sto— %ﬁ —wI})

. 3 .
— exp (—i% (%) ) exp (-%]MU). (8.15)
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The constant C is simply to normalise Z(] = g, = 0) = 1. Expanding the
exponents we get in lowest nontrivial order

2 . 6 . 3
21 =0 =1- 385 (57) (-51m77) -
2 9 6
= exp (i%m)3 (W) (J M_1])3 + O(gs))

_ . 5g2 3
= exp <124M3 +0(g ))

= exp (% O+ % O—0O+ O<g3)). (8.16)

In the last term, the numerical factors in front of the diagrams indicate the
combinatorial factors (for the first diagram a factor 2 from interchanging the
two vertices and a factor 3! from interchanging the three propagators; for the
second diagram the latter factor is replaced by 4 as we can only interchange
for each vertex the two legs that do not interconnect the two vertices). The
Feynman rules for this simple case are that each vertex gets a factor —g (in
zero dimensions there are no factors 27) and each propagator gets a factor
—i/M. In Problem 13 the exponentiation is checked for Z(J) to O(¢?) and
O(J %) (giving the simplest nontrivial check).

We will now show how the number of loops in a diagram is related to the
expansion in /. We can expect such a relation, as we have shown at the end of
Chapter 6 that the i — 0 limit is related to the classical equations of motion,
whereas we have shown in Chapter 4 that these classical equations are solved
by tree diagrams. If we call L the number of loops of a diagram, we will show
that

20,50 = [ Do exp (5 [ (€)= o)) = explG) M), G = YntGu,

L=0
(8.17)

where G ; is the sum of all connected diagrams with exactly L loops. This
means that a loop expansion is equivalent with an expansion in /. To prove
this we first note that due to reinstating /i the source term will get an extra
factor 1/7, the propagator a factor i, and the coupling constants g, are replaced
by gu/h. A diagram with V,, n-point vertices, E external lines (connected to a
source), and P propagators has therefore an extra overall factor of

RERP T R (8.18)
n=3
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We can relate this to the number of loops by noting that the number of mo-
mentum integrations (i.e., the number of independent momenta) in a diagram
equals the number of loops plus the number of external lines, minus one for
the overall conservation of energy and momentum, i.e.,, L + E — 1. On the
other hand, the number of momentum integrations is also the number of
propagators minus the number of delta functions coming from the vertices,
ie, P -3, 5V, Hence

L=1+P-E-) V, (8.19)
n=3

which implies that the total number of /i factors in a diagram is given by L — 1.
In the next chapters we will often consider so-called amputated diagrams,
where the external propagators connected to a source are taken off from the
expressions for the diagram. If we do not count these external propagators,
Equation (8.19) has tobe replacedby L =14+ P —)",_, V,, as there are exactly
E such external propagators.
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We would like to compute the amplitude for the transition of # incoming
particles at t = T, to £ outgoing particles at t = Toy in the limit where
Tout — o0 and T, — —oo. The difference with quantum mechanics is that the
particle number is no longer conserved.

out< ;_51/ ﬁZ/ sy ﬁ['Ell EZ/ ey ]zn >in
=< Py, Do PelU(Tous, T)lkr, Ko, oo K > 9.1)

In terms of creation and annihilation operators this can be written as

out< ﬁ]/ 52/ ey ﬁf'lzl/ EZ/ sy Izn >in
=< 0la(py)a(pa) - - a(P)U(Touy, Tin)a'(k1)a'(ka) - - af (k)10 >.  (9.2)

From Equations (7.26), (7.28), and (7.32) we know how to implement these
creation and annihilation operators on the generating functional Z(J, g,)

2po(P = 3
=1y /d " 8I(x =T - VP e oy

ooy - [2po(P) - —ipx_____° / N 0
a(p)_l \% /dee " 8](9( t= out) ZPO(P)ST(_ﬁ/t:TOUt).

9.3)

This implies the following identity for the scattering matrix

4 n
out< P1, Pas - Belkr o, ok == [ [a(B) [ [aT(k)) exp(G ), (9.4)
3 4

In principle, this allows us to calculate the scattering, taking T;, — —oo and
Tout — 0.

There is, however, a problem to associate the particle states in the presence
of interactions with the ones we have derived from the noninteracting theory.
The problem is that particles can have self-interactions long before and after
the different particles have scattered off each other. We have to reconsider our
notion of particle states, as in experiments we are unable to switch off these

57
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self-interactions. For simplicity we assume that the one-particle states are
stable, as in the simple scalar theory we have been considering. This implies
from conservation of probability that

/ A3k | our< Plk >im 2 =1, (9.5)

independently of p. In general, conservation of probability implies that the
S-matrix is unitary. Formally, unitarity of an S-matrix is guaranteed as soon
as the Hamiltonian is Hermitian. Because of the necessity to regulate the
quantum theory, e.g., by introducing a cutoff, this is generally no longer true
and one has to show that unitarity is restored when the cutoff is removed. If
this is not possible, the theory is ill-defined or at best does not make sense
above the energies where unitarity is violated.

For the free theory, unitarity is of course satisfied. In this case, the only
diagram contributing to G is the one with a single propagator connecting
two sources, which is also called the connected two-point function G?(])

. p 4 (5,07 (-5,
Gy =G?()) = —%//dtdsZ/ 21;0 e"po“‘s)w. (9.6)
P

—m?2+ie
This implies that (T = Tout — Tin)

dpo eiroT
27 p? —m? +ie
9.7)

out < PIF 210 = (7)) exp (GP 1),y = 2ipo( Do ; [

= e—lPo(P)T(gE,ﬁ ,
where the pj integration is performed by deforming the contour to the upper
half-plane, giving a contribution from the pole at pg = —po(p) only. Itis trivial
to see that this is the same as what can be obtained within the Hamiltonian
formulation.

In the presence of interactions, this result is no longer true, since the con-
nected two-point function will deviate from the one in the free theory. In this
case we can write (from now on the symmetry factors will be absorbed in the
expression associated to a diagram)

G§2)(])=M + x—@ + X—% 4.
_ X@_x, 9.8)

where we have written the connected two-point function in terms of the
one-particle irreducible (1PI) two-point function iX(p) (X is the so-called

self-energy)
iS(p) = @ (9.9)
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Ingeneral,alPI-graphisaconnected graph that remains connected when one
arbitrary propagator is being cut (except when cutting away a tadpole of the
form — ), which we will not allow. However, these tadpoles describe single
particles popping in or out of the vacuum, usually required to be absent. They
can be removed by shifts in the fields.). The external lines of these diagrams
will carry no propagator. The diagrams of Equation (9.8) can be converted to
the result

) . 2
] I _ —i .
E/.d4P|](P)| ipz—m2+i8+<P2_m2+i8> iX(p)
. 3
() (iz(”))2+"'}
—1 i 2 _71 - & '
—§/d4P|](P)| [pz_m2+i8;<p2—m2+i8) }

_ i | (p)I? _
=5 [ e =GP0, 9.10)

Normally the self-energy will not vanish at p?> = m?, such that the self-
interactions shift the pole in the two-point functlon to another value, 72,
ie.,

p?—m?*—3(p)=0 for p2=p>+m (9.11)

Consequently, the mass of the one-particle states is shifted (or renormalised).
As we cannot switch off the interactions in nature, the true or observable
mass is  and not m; the latter is also called the bare mass. The residue at the
poles (i.e., p?> = m?, called the mass-shell) will in general also change from
+7i/po(P) to £mwi Z/ po(P). On the mass-shell [i.e., | (p) vanishes rapidly as a
function of | p? — ?|] one therefore has

/d ZI](P)|2 ©.12)

pr—m2tie’
As long as the one-particle states are stable, Equation (9.5) needs to remain
valid, which can only be achieved [see Equation (9.7)] by rescaling the wave

functionals with a factor +/Z (this is called wavefunction renormalisation). It
implies that Equation (9.4) needs to be modified to

out< ﬁ]/ ﬁZI sy ﬁe'lzl/ IZZ/ .. k >in = l_[a ( Jr(k )eXp(G])|[ =07/

(9.13)
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where

NI—

L 2 ﬁz—i—ﬁlz S

P = z 8] (p,t =Tn)
. (9.14)
2

o 2,/p? + 2

a_(p) = Z ST(_f)r t= Tout)'

As for the free theory, each of these operators 4. (p) will replace one external
line (propagator plus source) by an appropriate wave-function factor and
puts these external lines on the mass-shell. We will call the connected n-
point function with amputated external lines the amputated connected n-

point function Gmp )(pl, P2, ..., Pn) (in general not one-particle irreducible),
ie.,

(n) — 2 . _1T(Pz) } (amp
G(T) —E{/dm =y i (p1, P2, -+, pn). (9.15)

Diagrammatically this looks as follows:

(9.16)

To get the S-matrix we have to compute [see Equation (9.13)]
4 n R 4
(Hﬁ_<ﬁi>na+<kf>ec’) = e[ ]a-()
i j=1 =0 i=1
n
x [Taw(ky) ( > 1‘[ {cmy )
j=1 '

rgr=t+n v
(9.17)
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The sum is over all possible partitions of £+ . Let us first consider the most
important term, corresponding to connected graphs, where g1 = £ + n

4

[ Ja-5i 1‘[a+ (kj) GE(])

i=1
—iJn Z/KP [ [=iy 7 2/p§ GE™ (=i}, (ki pe =AW’

4
i=1

. ¢ n
_ _27”V84(Zi=1 pi — Zj:l kj) Me+n({—}7i}/ {kj})e—izpéi’T' (9.18)

\/Hf=1 ZP(()i) v ]_[7‘=1 Zk(()j) 4

Here M, (a Lorentz scalar as we will see later) is the so-called reduced ma-
trix element with £ external lines, all on the mass-shell. Note that we have
extracted the trivial energy factors [remember that ) pé’)Tout LN 0 Tin =
3 Po (Tout Tn) =Y pg)T ], such that the limits T}, — —oo and Ty — o0
can be taken. Each 4(p). will act on one of the factors between curly brackets
in Equation (9.15). Concentrating on one such a factor we have

/d ~i] (NG (P, P -, )
4P p? —m? —X(p) +ie

_/ dip /d —i] (5, De™ GE™ (p, pa, ..., p) ©9.19)
N p2—m2 — 2(p) +ie ’ '

such that, using Equation (9.14)

IJ(P)G(amp)(p, P2 --) D)
(p)fd4 —X(p) +ie

— M / i EiPOTomGEamP)((pO/ B Pn)
T[Z po Pz_mz—E(P)+l£

(amp) , o
ivzvz G PP P i, 9.20)

V2po(P)V

Since Tyt — 00, we can extend the py contour integration to the upper half-

plane, under mild regularity conditions for GemP )(p, P2, .., pn) as Impy —
—oo (that can easily be shown to be satisfied at any finite order in perturbation
theory). Thus, the integral over py only gets a contribution from the pole

at pp = —po(p) = —/ p> + M2, with residue —Z/2po(p) [compare this to
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Equation (9.12)]. For the creation operators one similarly finds

. —iJ (PGE™ (p, pa, ..., p)
a+(p)/d4p P2 —m? — 5(p) +is

_ M/d eipoTinGgamp)((pO, ﬁ),...,pn)
wz | T =) e

(amp)
— —ivarvz S PP P i, ©21)

V2po(p)V

Likewise, as Ti, — —o00, we can now extend the py contour integration to
the lower half-plane [under the same regularity conditions for the amputated
n-point functions as for Equation (9.20) to be valid], such that we pick up
the contribution of the pole at py = po(p) with residue Z/2py(p). Combining
these results proves the first identity in Equation (9.18); the second is merely
a definition.

Note that the derivation is not valid for the case £ + n = 2, where the
generalisation of Equation (9.7) to the interacting case implies

out< Plk >in=a_(P)a,(k) exp(G))l,_, = 83k — p)eEormPIT_(9.22)

Here we used Equation (9.12) and the fact that exp(Gj—9) = exp(—iEoT),
which is often also normalised to 1, but till now we had only required this
to be the case at zero couplings. The reason this case is special is because
Equation (9.15) requires us to define for the amputated two-point function

G (py, p2) = i8s(p1 + p)(p? — m? — Z(p1) +ie), (9:23)

which vanishes on the mass-shell. In using Equation (9.20) and Equation (9.21)
it was implicitly assumed that the amputated Green’s function has no zero
that will cancel the pole.

The Feynman rules in momentum space for computing the reduced matrix
elements will obviously have to be modified for the external lines to a factor
—i~/2nVZ and an overall factor i /(27 V) [as always, in an infinite volume one
replaces V by (27)3]. If we associate a momentum delta function to a vertex
and a momentum integration to a propagator (as was done up to now), the
delta function for overall energy and momentum conservation should not
be written explicitly in Equation (9.18), since it is contained in the reduced
matrix element. Instead, if we choose to integrate over the independent loop
momenta, implementing energy and momentum conservation at each vertex
(as will be done from now on), the definition of Equation (9.18) is the appro-
priate one. The overall factors of i, 2 and V can be determined with the help
of the two identities

L=P+1-Y V, , E42P=) nV. (9.24)
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TABLE 9.1
Modified Feynman rules for scalars.
momentum space Itzykson and Zuber
ky ky
)T\ )T\ ] 4
=X = geand Y ki =0 =X = —i(2m)*ge8a(}"; ki) vertex
ks ky ky ky
_ 1 _ dsk i
k T Kk-m+ie k =/ 2r)* k2 —m? +ie propagator
% = JZ % = JZ external line
if % 1 loop factor

The proof for the first identity was discussed below Equation (8.19). For the
second identity we put a dot on each end of a propagator (~— ) and one

dot on each external line (*— ), giving a total of 2P + E dots. The same dots
can also be associated to each line of a vertex ( )\ ), giving ) " nV,, dots,

thus proving the second identity (see also Problem 15). To keep the derivation
general, we evaluate the overall factor in a finite volume

. L
i*Pl'fE+1iZ(n71)Vn(2ﬂV)*%Z(nfmvn(znv)%Efl — <ﬁ> . (925)

This implies that we can shift all numerical factors from the propagators,
vertices and external lines to a factori /(27 V) [ori /(27 )* in an infinite volume]
for each loop, giving the Feynman rules listed in Table 9.1 for an infinite
volume. Note that the extraction of the factor —27iV in the definition of M
is merely a convention (such that in lowest order M,, = g,). In the literature
many different conventions are being used. As an example, Table 9.1 compares
our Feynman rules with those of Itzykson and Zuber. Their convention for
M, is likewise to make it coincide to lowest order with the n-point vertex.
However, as the latter does already contain a factor —i(2)* (in a finite volume
—2miV), that factor should be absent in relating the reduced matrix element
to the amputated n-point function. Combining the extra factors of i and 27 in
the Feynman rules of Itzykson and Zuber gives i(27) 4P =2Vi(27)4EVi=P) =
[i/(27)*]F, guaranteeing equivalence of the two sets of Feynman rules.

Concerning the symmetry factor associated to a particular diagram, we
note the following. As we have generally fixed the external momenta, inter-
changing external lines is no longer allowed. But from Equation (9.15) we see
that the symmetry factor n!, to be taken into account for G%(J ), will be com-
pensated by the n derivatives on n sources. Hence, in computing the reduced
matrix elements, the symmetry factors are determined without allowing for
permutations on the external lines.

To conclude this chapter we return to Equation (9.17) and discuss the con-
tributions that will be associated to the diagrams that are not connected. Each
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factor of g,! is compensated for by the differentiations on {Ggr) (J )}q'. For the
corresponding connected components, the rules are identical to the ones spec-
ified above. In particular each connected component will carry its own factor
—i(27)*84(3_ pi) for the conservation of energy and momentum (p; is now
assumed to run over a subset of both the incoming and the negative of the
outgoing four momenta). In a physical picture the disconnected parts corre-
spond to situations where only a subset of the incoming particles will interact
with each other (the ones connected by a particular diagram). Quite often,
the experimental situation is such that the energy-momentum conservation
will only be compatible with the fully connected part. We just have to avoid
the incoming momenta to coincide with any of the outcoming momenta. In a
collider, this means one excludes particles that escape in the direction of the
beams, where indeed it is not possible to put a detector. As an illustration, we
will give the situation for n = ¢ = 2 and all momenta nonzero (to avoid tad-
pole diagrams, —()) to second order in the three-point coupling g3, putting
all other couplings to zero

out < P1, P2|k1r ko >in

= exp (—ilEo + i + p{71T) [agwl — k1)8a(pa - Ez>< - )

+83(Py — k2)83(p, — El)( e )

B )4 84(p1 + po — k1 — ko)
\/ 2p{"(27)32pP (27)32kP (27)32k P (277 )3

x( + > +(9(g§’)>:|. (9.26)

The first two diagrams, which have to be treated with special care [see
Equations (9.22) and (9.23)], represent the situation without scattering. By
definition they have no higher-order corrections.
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Cross Sections
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In many experimental situations, we are interested in the scattering of two
particles with momenta k; and k, to a state with n particles with momenta
pi, P2, -, Pn- We denote by fd3E1\I’1(IZ1)|E1 > and fdg,Ezq/z(EzHEz > the
wave functionals of the incoming particles. This is to describe the more real-
istic case of a wave packet. The amplitude for scattering to take place is hence
given by

A= i) / Ao 84( Xy pi — ki — ko) Maiu({—pi}, (k)
[T 268 (P2 [Ty 2k (K ) (2)°
x U (k1) Wy (k,)e LB+ =p0IT (10.1)

If we define the wave function in coordinate space as usual

. (x) = / _ dk
] J2Ko(B) 2y

we can compute the overlap of the two wave functions

e "R (K), (10.2)

/ dsk dsks
V2ol (@23 |2k 2y

/ dyx Wy (x)Ws(x)e'P* = (27)*

x 84(k1 4 ka — p) Uy (k1) Ba(kz) . (10.3)

We assume that over the range of momenta in the wave packets, the reduced
matrix elements are constant (which can be achieved with arbitrary precision
for arbitrarily narrow wave packets in momentum space). This allows us
to write for the scattering probability of two particles into n particles, with
momenta in between p; and p; + dp;,

n daD;
AW = IM((—pi}, (k)P TN
MU=p) BDESP [ ] 7
f(p) = / daxdyy Wi(x) W2(0) U7 () 3 (n)e P, .
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where p = >, pi = k1 + kp. The momenta k; in the reduced matrix element
are the central values of the wave packet in momentum space for the two
incoming particle beams. Under the same assumption that the momentum
spread in the beams is very small, the function f(p) will be highly peaked
around p = k; + k, such that

F(p) ~ 8u(p — Fr — o) / dap F(p) = 2m)'8u(p — 1 — ko)
x / dix| (1) P10 (x) 2. (10.5)

The quantities |¥;(x)|? are of course related to the probability densities of the
two particles in their respective beams,

pi(x) = (W (X)W, (x) — W;(x)8 Wi (x)) ~ 2k 1w (x) 12, (10.6)

again using the fact that the wave packet is highly peaked in momentum
space. Putting these results together we find

W= @) () pi — ki — k) IM((—pi), (R

n

dsp; f p1(x) p2(x)
5 d : 107
" 11:! 2p(pry@ny ] 4k ED (10.7)

Since p;(x) will depend on the experimental situation, we should normalise
with respect to the total number of possible interactions in the experimental
setup, also called the integrated luminosity L.

f dt L(t) = / 4 01(X)02(0)1F1 — Bal. (10.8)

Here [ d3X p1(x)p2(x) is the number of possible interactions per unit volume
ata given time and |0; — 7| is the relative velocity of the two beams. We have
assumed that one of the velocities is zero (fixed target) or that the two velocities
are parallel (colliding beams). Hence, L(t) = [ d3X p1(%, t)p2(X, t)|01 — 02| is a
flux, typically of the order of 10?® — 10®3cm2s™!. To consider the general case
we note that we can also write

/dt L(t) = (k1 - k)2 — m m2/d4 m;g;é()x). (10.9)

After all, for a fixed target situation k, = (115, 6), such that

B2 — g SR — e " 010
= = [01], .
E(()l)k(()2) E(()l)
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whereas for colliding beams of particles and antiparticles with mass m, where
ki =(E, k) = E(1,9) and k; = (E, —k) = E(1, —7), one finds

FDED = E2 =2|k|/E =2[7|, (10.11)

such that both expressions reduce to |7, — 7,|. We leave it as an exercise to
prove the result for the general case of parallel beams.

We can therefore define a machine-independent differential cross section
do by normalising the scattering probability by the total luminosity,

- IM({=pi}, ki DI? K ds pi
do = (27)*s i —Fk -k ! S = )
7= 4<;P 1 2) 4k - Ko)? — mPm2 EZPO(Pi)(2”)3

(10.12)

The parameter S is the inverse of the permutation factor for identical particles
in the final state, as a detector will not be able to distinguish them. This will
avoid double counting when performing the phase space integrals. If there
are 1, identical particles of sortr in the final state, S = [], 1/#,! (in the present
case S =1/n!).

Typical electromagnetic cross sections, as we will compute later, are of the
order of nanobarns (1 nb= 1073 cm?). With a luminosity of 10 cm=2s71,
approximately one collision event per second will take place. In the weak
interaction the cross sections are typically five to six orders of magnitude
smaller, such that not more than one event per day will take place in that
case.
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Decay Rates
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The definition of the decay rate (also called decay width) of an unstable par-
ticle is best defined by considering its self-energy,

2(p) = % @7 (11.1)

where the diagram for the 1PI two-point function is now to be evaluated
using the Feynman rules in Table 9.1 (pg. 63). The relation with the self-
energy follows from the fact that, apart from the overall factor i /(27)*, one
has for each of the two external lines an extra factor —i(27)2+/Z as compared
to the amputated 1PI two-point function; in total one therefore has —iZ
times the amputated two-point function. The latter indeed equals i £(p); see
Equation (9.9). We will now consider a simple example of a scalar field theory
with two types of fields, a field ¢(x) associated with a light particle (mass 1)
and a field o (x) associated with a heavy particle (mass M > 2m), which can
decay in the lighter particles if we allow for a coupling between one o and
two ¢ fields,

4
V(o, 9) = 180¢*, —< o =8 (11.2)
For the o two-point function in lowest order we find
p—k
— = — — . 11.3
- D oo
k

If o is a stable particle (i.e., M < 2m), the loop in the first diagram corresponds
to virtual ¢ particles moving between the vertices, since always k? # m? and
(k — p)? # m*. However, as soon as M > 2m, the loop integral will contain
contributions where the ¢ particles can be on the mass-shell and behave as
real particles, e.g., k* = m? and (k — p)? = m? in the first diagram. The real ¢
particles can escape to infinity, thereby describing the decay of the o particle.
Its number will reduce as a function of time.

Indeed we will see that only if M > 2m, the self-energy will be able to
develop a nonzero imaginary part, y = Im( — Z, Z,( p))|pzzMZ # 0. On the

69
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mass-shell the o propagator is in that case modified for ¢ > 0 to

/ dsp Zye '’ _ i d3p Z,e'P? o —it/P+M—iy
(2n)* p> — M2 +iy +ie (27)* P2+ M2 —iy

(11.4)

The poles py = £/ p2 + M? — iy are now complex and for y < M? one has
in a good approximation

eIV PHMETy it [PREME g gyt PR (11.5)

The amplitude of the wave function for the o particle consequently decays
with a decay rate of I'(p) = y// P2 + M?, and the lifetime of this particle is
hence t(p) =1/T(p).

We will evaluate the imaginary part of self-energy for the o two-point
function in Equation (11.3) first to lowest order in g

_ _g dsk 1
Im(—Ea(P))—Im< 3 (2].[)4 (kz—m2+i8)((k—P)z—m2+i8)>
=1Im <—% f dyx Gz(x)eip’f>, (11.6)

where we used the definition of the Green’s function, Equation (4.7). With the
help of Equation (5.12) we can write

G(x) =

dak eik* —iko(F)|t]
i / st e ¢ 11.7)

(2m)3  2ko(K)

which yields (after changing x to —x at the right place)
Im(— Z,(p)) = —1¢° / dyx(G(x)* + G*(—x)?)e'P*

dsk dsk _
:—22714/ E 2 s (f Ko — 7
SO | 3D any 2w @y 2 TR TP

x (805" + k6 = po) + 8" +k + po)),  (11.8)

where we have implicitly defined k(()j )= [k ]2 + m?. As we wish to study the

o two-point function at > 0 near the mass-shell, we can put pg = /p? + m?
as well. In particular, restricting ourselves to py > 0, gives

I'(p) =

Im(—Z, 5, 20}t sk dsk
m( (p))zg(”)/ 34 22 Sy(ky + k2 — p),

Po 4po 2k{M (27)3 2k$? (2713
(11.9)
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which is the result to lowest nontrivial order in g (to this order we can take
Zs =1).

To any order we can, however, decompose the part of the o self-energy, with
two ¢ particles as an intermediate state, in its 1P I components as follows

RN
3%
— (11.10)
SRR @7
55

where the full ¢ two-point function is given by 1/[p? —m? — %,(p) +ie], which
on the mass-shell reduces to Z,/(p* — @? + i¢), the only part that actually
contributes to Im[—Z, X,(p)]. The 1P ¢¢po three-point function can easily
be seen to be equal to My, ({—k;}, p)/(Z,+/Z,) (or its complex conjugate if in-
and outgoing lines are interchanged), since in lowest order it should coincide
with the ggpo three-point vertex. In this way we easily find the partial decay
rate dT'(p) to be

| Moo ({=ki}, p)2 I dsk;

. 4 ki —
dr(p) = 2n)*s4(Tiki — p) 270 L2k (2m)3

(11.11)

which, as it should be, is always positive. The symmetry factor S is the same
as for the cross section in Equation (10.12). The total decay rate is found by
integrating over the phase space of the outgoing particles I'(p) = [ dT'(p).
The large resemblance with the formula for the cross section is no coincidence,
as in both cases we have to calculate the probability for something to happen
(respectively a decay or a scattering). In its present form, the formula for I'(p)
is also valid for the decay of a particle in n other particles. The derivation is
almost identical, e.g., in Equation (11.8) one now encounters G"(x) instead of
G?(x) and ¢ now stands of course for the coupling constant of n ¢ fields to
the o field. It is not necessary for this coupling to occur in the Lagrangian; at
higher orders one can generate it from the lower couplings that do occur in
the Lagrangian.
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The Dirac Equation
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To obtain a Lorentz invariant Schrodinger equation, we considered the square
root of the Klein-Gordon equation. This had the disadvantage that the Hamil-
tonian H = /p2 + m? contains an infinite number of powers of p2/m?, the
parameter in which the square root should be expanded. It would have been
better to treat space and time on a more equal footing in the Schrodinger
equation. This is what Dirac took as his starting point. As the Schrodinger
equation is linear in py = i9/9t, one is looking for a Hamiltonian that is linear
in the momenta p; = i3/0x/ (= —p/).

av av
| — = HV = —iap— v, 12.1
i o iog P + Bm (12.1)

The question Dirac posed for himself was to find the simplest choice for «; and
B, such that the square of the Schrédinger equation gives the Klein—-Gordon
equation

pE = (—prag + pm)? = p* + m?. (12.2)

Dirac noted that only in case we allow a; and g to be noncommuting ob-
jects (i.e., matrices) can one satisfy these equations. The above equation is
equivalent to

ﬂz =1, %(Ol]‘ak + OtkOlj) = 15jk and aif+ paj = 0. (12.3)

Historically, Dirac first considered m s 0, but the massless case (m = 0) is
somewhat simpler, as it allows one to use § = 0 and ax = oy for a solution of
Equation (12.3). Here oy are the Pauli matrices, familiar from describing spin
one-half particles.

01 0 —i 10
o] = ’ Oy = ’ 03 = . (124)
10 i 0 0 -1

It is clear that two will be the smallest matrix dimension for which one can
solve the equation }(ajox + axaj) = Hej, ax} = 16k It is not hard to prove
that in a two-dimensional representation all solutions to this equation are
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given by
aj ==+Uo;U™, (12.5)

where U is an arbitrary nonsingular complex 2 x 2 matrix. We should, how-
ever, require that H (and hence «;) is Hermitian. This narrows U down to a
unitary matrix, since
ool = Uou U 'o/U = U(U'Us I \oyUT O U =1, (12.6)
such that U'Uo; = o;U'U for each j. The only 2 x 2 matrix that commutes
with all Pauli matrices is a multiple of the identity, which proves that U is
unitary (up to an irrelevant overall complex factor, which does not affect o).
Since the Hamiltonian is now a 2 x 2 matrix, the wave function W(x) be-
comes a complex two-dimensional vector, also called a spinor, which describes
particles with spin /2

Pow(x) = Fp - W (x). (12.7)

We have to demonstrate that the Dirac equation is covariant under Lorentz
transformations. We first put the boosts to zero, because we already know
from quantum mechanics how a spinor transforms under rotations

p—p =expla- i)fa, W(x) - W'(x) =exp (%J} . 3) W(x). (12.8)

Here L' are real 3 x 3 matrices that generate the rotations in IR®
Lijk = &ijk, (12.9)

such that [L’, L/] = L'L/ — L/L" = —s;jxL*. These reflect the commutation
relations of the generators io; /2. We will later, in the context of non-Abelian
gauge theories, show that this describes the fact that SU(2) (the group of
unitary transformations acting on the spinors) is a representation of SO(3)
(the group of rotations in R?). To show the covariance of the Dirac equation
under rotations, i.e.,

po¥(x) = Fp-oW¥(x) > po¥'(x') = Fp' - aV'(x), (12.10)

we work out the Dirac equation in the rotated frame. Using Equation (12.8)
we get

po¥(x) = Fp' - exp (—%5) . 3) G exp (%5) . 3) W(x), (12.11)

which should reduce to Eq. (12.7). To prove this, we use the following general
result for matrices X and Y

eXYe ™™ = exp(ad X)(Y), adX(Y)=I[X Y], (12.12)
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which is derived from the fact that f1(t) = e/XYe "X and f,(t) = exp[ad(tX)]Y
satisfy the same differential equation, d f;(t)/dt = [ X, fi(t)]. Sincealso f1(0) =
£2(0) it follows that f1(1) = f»(1), being the above equation. Applying this
resultto Y = oy and X = —iw - /2, using the fact that

the rh.s. of Equation (12.11) becomes Fp’ - ¢'¥(x) = Fp - 6 ¥(x), where
o' =exp(®- L)G.

The interpretation of this Schrédinger equation caused Dirac quite some
trouble, as its eigenvalues are +|p |, and it is not bounded from below. In
the scalar theory we could avoid this by just considering the positive root of
the Klein—-Gordon equation. Only when we required localisation of the wave
function inside the light cone were we forced to consider negative energy
states. In the present case, restricting to one of the eigenstates would break
the rotational invariance of the theory. For the massive case, Dirac first in-
correctly thought that the positive energy states describe the electron and the
negative energy states the proton. At that time antiparticles were unknown.
Antiparticles were predicted by Dirac because the only way he could make the
theory consistent was to invoke the Pauli principle and to fill all the negative
energy states. A hole in this sea of negative energy states, the so-called Dirac
sea, then corresponds to a state of positive energy. These holes describe the
antiparticle with the same mass as the particle. Obviously the particle number
will no longer be conserved and also the Dirac equation will require “second
quantisation” and the introduction of a field, which will be discussed later.

For the massive Dirac equation we need to find a matrix g that anticom-
mutes with all ;. For 2 x 2 matrices this is impossible, since the Pauli matrices
form a complete set of anticommuting matrices. The smallest size turns out
to be a 4 x 4 matrix. The following representation is usually chosen

4 1
w=|% 7 p=|" 9 | (12.14)

oi © o -1

for which the nonrelativistic limit has a simple form. For the massless case it
is often more convenient to use the so-called Weyl representation

w=|" . B= . (12.15)
@ —oi -1 ©

Weleaveitas an exercise for the student to show that these two representations
are related by a 4 x 4 unitary transformation U, i.e., * = Uy*U .
To study the covariance of the Dirac equation

poW(x) = (—a;pi + pm)W¥(x) (12.16)
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under Lorentz transformations [note that now W(x) has four complex com-
ponents], it will be profitable to introduce a ‘four-vector” y* of 4 x 4 matrices

v ="y = (8 Ba), (12.17)
such that the Dirac equation becomes
(—iy" o, +mW(x) = (=y pu +m)W(x) = (—p +m)¥(x) =0. (12.18)
The Dirac gamma matrices satisfy anticommuting relations
Y, vy =yly" +yiyt =28 (12.19)

As for the covariance under rotations, this equation is covariant under Lorentz
boosts if there exists a nonsingular complex 4 x 4 matrix S, such that ¥(x) —
W (x") = S¥(x) and

STly"S= K"y, (12.20)
where K*, is the Lorentz transformation acting on the momenta as p, =

K,"p, and on the coordinates as x*' = K*,x". Like for the rotations, K can
be written as an exponent

K = exp(w). (12.21)

Here w*, is a 4 x 4 matrix, which is antisymmetric when one of its indices is
raised or lowered by the metric @, = gu.0" = —®y,.
We will now prove that

i

S = S(w) = exp ( _ 1%0#“), o = Sy '] (12.22)

4

satisfies Equation (12.20). Using the antisymmetry of w,,, and Equation (12.19)
we find

i
[Zwuvalwr )/A:| = _%wuv[yuyvl V)L]

= —lo, (Y y 'y — v y*yY)
= lon (Y y"y' + v vty - 28
= Lo (Y’ — y*g") = oyt (12.23)

)LV)

Applying Equation (12.12) gives the proof for Equation (12.20). One says that
S(w) is a representation of K(w). Note that in general S(w) is not a unitary
transformation. This is because the boosts form a noncompact part of the
Lorentz group. There is, however, a relation between S" and S,

yOsty? =571, (12.24)

which is most easily proven in the Weyl representation, since 7#° = B com-
mutes with 6; i but anticommutes with & (as always Roman indices run from
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1 to 3 and Greek indices run from 0 to 3), whereas 6;; is Hermitian and 6o is
anti-Hermitian, as follows from the explicit expressions obtained from Equa-
tions (12.15), (12.17), and (12.22)

i . . O’k @

Gij =" =17, 7'l =eijk :
1] 2 1] @ O_k
] or ©
Gox = 50 = =[5, 7 = —i | . (12.25)
2 o —o

Note that Equations (12.20) and (12.22) are independent of the representation
in which we give the gamma matrices, as any two such representations have
to be related by a unitary transformation. In the Weyl representation S(w) is
block diagonal, like the Dirac equation for m = 0 (as &; is block diagonal). The
upper block corresponds to Equation (12.7) with the plus sign and the lower
block corresponds to the minus sign. We can verify Equation (12.8) by using
the fact that the Lorentz transformations contain the rotations through the
identification wy = —1é&;jxw;j. With wgr = 0, one finds S(w) = 1,®exp(iv-5/2),
i.e., it acts on each 2 x 2 block by the same unitary transformation.

The boost parameters are described by wy;. For a boost in the x direction,
we have that x = wp is related to the boost velocity by v; = — tanh(). For
K we find in this case

cosh(x) sinh(x) 0 O

_ | sinh(x) cosh(x) 0 0 (12.26)
0 0 1 0
0 0 0 1

In the Weyl representation, S splits again in two blocks, but one is the inverse
of the other (and neither is unitary). To be precise, S restricted to the upper-left
2 x 2 block equals exp(lwokox), whereas for the lower-right 2 x 2 block we
find exp(—Lwokox).

As S is not unitary, Wi(x)¥(x) is no longer invariant under Lorentz trans-
formations. But we claim it is nevertheless a probability density, namely the
time component j°(x) of a conserved current

j () = W)y Oy (x). (12.27)
We leave it as an exercise to show that the Dirac equation implies that the
current is conserved, 9, j*(x) = 0. The combination W'(x)y° will occur so

often that it has acquired its own symbol

W(x) = win)y". (12.28)
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It transforms under a Lorentz transformation as
W(x) - SW(x) and W(x) — W(x)SL (12.29)

We can use this to build the required Lorentz scalars, vectors, and tensors

scalar: U (W (x)= U(x)S1SW(x) =TU(x)¥(x)
vector: W' (x)y W/ (x') = W(x)S 1y SW(x) = KH, T(x)y" W(x)
tensor: W (X))o W/(x') = U(x)S~ 1o’ SW(x) = K, K", W (x)o™ W(x).

The Lagrangian is a Lorentz scalar, which we chose such that its equations of
motion reprodu(E the Dirac equation. As ¥(x) is complex, it can be considered
independent of W(x) and the following Lagrangian:

Spirac = / dex Lo = / dix T(x)(iy"d, —mW(r).  (12.30)

gives the Euler-Lagrange equations

5S 5S
22— (iy"d, — m)W(x) =0,

3W(x) 50 W(x)(—iy" 9, —m) =0. (12.31)

The second equation is the complex conjugate of the first, Wi(x)[i(y*)" 3,
+m] = 0, because the gamma matrices satisfy

)=y’ (12.32)
which follows from the fact that (y°)f = g7 = g = y% and () = (Ba;))T =
a; = —y', or from the explicit representation of the gamma matrices

1 . i
v e A (12.33)
o -1 -0 ©

0= W) (i(r") 9 +m)y° = T(iy°(r")1y° 8, +m)

— T(iy* d, +m). (12.34)

Hence

An important role will be played by a fifth gamma matrix
) @ 1z
ys =iyOyly?y® = , (12.35)
1L ©
which anticommutes with all y# (see Problem 21)

ysy' = —y'ys and (y5)° = lu. (12.36)
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This implies that we can introduce projection operators
P =1i(1%ys), (12.37)

which satisfy (P1)?> = Py and Py P, = 0. Their role is best described in the
Weyl representation, where

e o L ©
V5 = 1Y0Y172Y3 = 1100203 = , (12.38)
o -1

such that P, = (1 + 5) projects on the two upper and P_ = (1 — j5) on
the two lower components of the four spinors. In the massless case these two
components are decoupled,

-

—p-o —ml,

poW(x) = (=P -a +mB)¥(x) = R R 2 (12.39)
—-ml, p-o
Hence, for m = 0 we have
v, (x N
o= ") g =Fpsvw. (240
W_(x)

which is identical to Equation (12.7). The eigenstates of the projection op-
erators P, are called helicity eigenstates. As long as m # 0, helicity is not
conserved. But as we saw, for m = 0 the two helicity eigenstates decouple.
One can define in that case consistently a particle with a fixed helicity, whose
opposite helicity state does not occur (although its antiparticle has opposite
helicity). A very important example of such a particle is the neutrino, al-
though experiment has not yet been able to rule out a (tiny) mass for this
particle (m,, < 10eV). See Problem 22 for more details.

Apart from the invariance of the Dirac equation under Lorentz transfor-
mations and translations (which are obvious symmetries of Lpirac), we also
often want invariance under parity (x — —X) and time reversal (t — —t).
One easily checks that

PW(x) = W'(t, %) = po¥(t, ¥) and TW(x) = W'(~t ¥)
= ysny2WH(t, X)) (1241)

satisfy the Dirac equation, where P stands for parity and T for time rever-
sal. This implies that the Lorentz covariant combinations W (x)ysW(x) and
W(x)ysy*¥(x) are not invariant under parity and time reversal. They are
called pseudoscalars and pseudovectors. These combinations play an impor-
tant role in the weak interactions, where parity is not a symmetry. A third
discrete symmetry, charge conjugation C, will be discussed in Chapter 17.
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Plane Wave Solutions of the Dirac Equation
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As usual, the Dirac equation can be solved by Fourier decomposition in plane
waves,

W(x) = / &k B (kye k>, (13.1)
2ko(K)(27)3

where ¥(k) are complex four-vectors that satisfy
(k — m)W (k) = (k,y" —m)¥(k) =0, k3 = k% +m?. (13.2)
The Lorentz invariance implies
V(k') = S()¥(k), K, = K(w),"k,. (13.3)

As any k can be obtained from a boost to k = 0, all solutions of the Dirac
equation can be obtained from the ones at rest with k = 0 (see Problem 19)

(y%ko — m) ¥ (0) = ((ko —ml @ ) ¥ (0). (13.4)
%) —(ko +m)1,

We see that for kg > 0 (ko = m), there are two independent solutions both of
the form

oL ),

W, (0) = ( . ), (13.5)

1
where W, is a spin one-half two-spinor of which (0 is the spin-up and

0
( ) ) is the spin-down state. The identification of the spin degrees of freedom

follows from the behaviour of ¥ under rotations (which leave k= 6). We leave
it as an exercise to verify that also in the Dirac representation of the gamma
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matrices, like in the Weyl representation [see Equation (12.25)],

o ©
Oij = ijk (@ )/ (13.6)
Ok

such that W, is easily seen to transform under a rotation as in Eq. (12.8)
[compare this to the discussion following Equation (12.25)]. There are also
two solutions for ky < 0 (kg = —m) of the form

I_(0) = ( 0 ) (13.7)
Wp

1
where likewise W5 is a spin one-half two-spinor of which ( ) is the spin-up
0

0
and ( ) is the spin-down state, which transform under rotations as W 4.
1

For any frame, i.e., for any value of k, we will define the four independent
solutions of the Dirac equation as

1 0
Iz 2 k+m @ oo _ |0 @_ |1
ko =vVk2+m?2: u9k) = ——=u, ul’)= LUy = ,
NES I 0 0 0 0
0 0
0 0
N N 0 0
ko= —\k24+m2: o9(—k) = _Krm o, oV = , o =
m + lkol 1 0
0 1
(13.8)

These solutions naturally split in positive energy [u("‘)(k) witha =1, 2] and
negative energy [0(*)(— —k) witha =1, 2] solutions; for k=0andm#0 easily
seen to be proportional to the solutions lIJﬁE(O), tobe precise u(® (0) = u(“) /~2m

and v® (6) = v(()o‘) /~/2m. The normalisation we have chosen allows us to treat
massless fermions at the same footing. In that case we can, however, not
transform to the rest frame. This normalisation also implies that

u@ (K)uP (k) = —0@(=k)o P (=k) = 2mbys. (13.9)
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For example,

gy O+ )y O+ myug” g (4 m)ug”

@ () uP(K) = —
ue Ry (k) (m + ko) (m + ko)
B u (k2 +m? + 2pmyu) ul (k2 + m? + 2kom)ulf)
o (m + ko) o (m + ko)
= 2md,p, (13.10)

where we used k* = m? and u(“)y“u = 8488,0 [see Equation (12.33)]. The
computation for v("‘)(k) is left as an exercise. The fact that we find a result that
is independent of k is consistent with our claim that these spinors can also
be obtained by applying the appropriate boost to k =0, since W(k)¥(k) is a
Lorentz scalar.

That these spinors indeed satisfy Equation (13.2) follows from the fact that

(K —m)(k +m) = k> —m* =0. (13.11)

Note that v (k) can also be viewed as a positive energy solution for the
complex conjugate of the Dirac equation

ko=vk2+m2: (f+mo@k) =0. (13.12)

It will play the role of the wave function for the antiparticles (the holes) in the
Dirac field theory. To see that our plane waves have the correct amplitude,
we use the fact that the probability density can be defined in terms of the
zero-component p(x) of the conserved four-vector j*(x) = W(x)y*W(x) [see
Equation (12.27)], or

p(x) = Wix)w(x). (13.13)

Indeed, \T!"'(IZ)\IJ(IZ) transforms as a density, i.e., as the energy ko, and we find

u@ @) u® (k) = 0 (k) o P (k) = 2kobup,  u@(k) 0P (k) =0. (13.14)
This can be verified by a direct computation, e.g., (ko > 0),

a)t o) T T
o By o)) = ol (m = gyt om — o) 3 ol (k2 + k2 + m? — 2mkoy o)
m + ko N m + ko

@2 72 ©)
vy (kg +k2+m? + 2mko)v,
- = ko8, 13.15
o 08ap ( )

using vé“)Ty“vf)ﬁ ) = —8,084p [see Equation (12.33)]. We leave the other identi-
ties as an exercise.
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This implies that the plane wave solutions (ko = (k2 + m?))
u@ (k) ik 0@ (k)
V2@ J2ke(27)3

are normalised to one [of course, in a finite volume we replace (27)° by V and
[ dsk by >";]. As for the scalar field, we can introduce a Dirac field

e’k a=1,2, (13.16)

dsk 2 L L
U(x) = | ——== (ba(b)u(k)e ™ + d[(k)o™ (k)e™). (13.17)
/,/Zko(E)(Zn)3 ;( )

Since W(x) is complex, there is no relation between d, and b,. In the quan-
tum field theory, these will play the role of the annihilation operators for the
(anti-)particles.

Finally we note that, for m # 0, we can define projection operators (which
are 4 x 4 matrices)

2 Q) (1 ) (1

po m 2m
I (13.18)
o @ @) _ ket
v v m
A-(k) = - ; 2m = 2m

which can be verified from the explicit form of u and v, or by first computing
them in the rest frame where A .(0) = 1(1 £ »°). In that case we find
(Hf+m)(A+y°)(Ek+m)  £k+m

Al = 4dm(m + ko)  2m (13.19)

whose proof requires some gamma matrix gymnastics. Independent of the
frame A satisfy

AL(K) = As(k),  A(K)AL(k) =0. (13.20)

Note that Tr (Ai(lz)) = 2,aresult that can also be derived from Equation (13.9).
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The Dirac Hamiltonian
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In the Dirac equation we encountered an additional difficulty, namely that
the negative energy solutions even arise at the level of the classical theory. In
field theory the negative energy solutions had an interpretation in terms of
antiparticles, and the field theory Hamiltonian was still positive, and most
importantly, bounded from below (see Chapter 2 and Problem 5). The field
theory Hamiltonian for the Dirac field no longer has this property. The Hamil-
tonian can again be derived through a Legendre transform of the Lagrangian

S= /d4x L= /d4x W(x)(iy"au — m)¥(x). (14.1)
The canonical momentum is hence

7. (x) = = (U(0)iy?), =iv;(x), (14.2)

3w, (x)

such that
H= /d355 (72 (X)W, (%) — £) = /dgic W(x)(—iy!9j +m)w(x)
= /dﬁc Wi (x)(—iajd; +mp)W(x)

= [k k) Y (LRI (B ~ . (Brl(B). (14.3)

Note the resemblance with Equation (12.1) for the middle term. We used
Equation (13.17) for the expansion of the Dirac field in plane waves. From
this result it is clear that the Hamiltonian is not bounded from below, and this
would make the vacuum unstable, as the negative energy states, described
by the d, (), can lower the energy by an arbitrary amount. It is well known
how Dirac repaired this problem. He postulated that all negative energy states
are occupied, and that the states satisfy the Pauli principle, i.e., two particles
cannot occupy the same quantum state. (Itis only in that case that we can make
sense of what is meant with filling all negative energy states.) This implies
that one should use anticommuting relations for the creation and annihilation
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operators

{ba(K), bs(P)} = 0, {ba(k), bi(P)} = Sapbs(k — P),
{da(K), d(P)} = 0, {da(K), d}(P)} = Sapbs(k — P),
{do(K), bp(P)} = 0, {da(k), by(P)} = 0. (14.4)

Indeed, if we define a two-particle state as |k, p >= bi(k)b($)|0 > (suppress-
ing the spinor indices), the anticommutation relations imply that Ik, p >=
-1p, k>.

A hole in the Dirac sea is by definition the state that is obtained by anni-
hilating a negative energy state in the Dirac sea. As annihilation lowers the
total energy by the energy of the annihilated state, which in this case is nega-
tive, the net energy is raised. The wave function for the negative energy state
is given by exp(ikx)o(® (k)/+/ky and has momentum —k [ko = (k2 4 m?)2];
see Equation (13.8). The reason to associate its Fourier coefficient in Equa-
tion (13.17) with a creation operator di(l?), is that conservation of energy and
momentum implies that it creates an antiparticle as a hole in the Dirac sea,
with momentum k and helicity 1 for « = 2, whereas for « = 1 the helicity
is —1 (hence the helicity and momentum are opposite to the negative energy
state it annihilates). The wave function of an antiparticle with momentum k
is hence given by exp(—ikx)o@ (k)T //Ko. If we now use the anticommutation
relations of creation and annihilation operators (as a consequence of the Pauli
exclusion principle), we see that with the present interpretation the Dirac
Hamiltonian is bounded from below

H= f dsk ko(k) > (b;(E)ba(E) + df (k)d, (k) — 1). (14.5)

As in the case for scalar field theory, we can normalise the energy of the
vacuum state to zero by adding a (infinite) constant. Note that this constant
hasits sign opposite to the scalar case (and is in magnitude four times as large).
In so-called supersymmetric field theories, this is no longer an accident as
the Dirac fields will be related to the scalar fields by a symmetry, which is,
however, outside the scope of these lectures.

It is also important to note that the anticommuting relations are crucial to
guarantee locality of the Dirac field. In this case, Dirac fields specified in differ-
ent regions of space-time that are space-like separated should anticommute.
And indeed, in Problem 24 you are asked to prove that

(W, (x), ¥/ (x)} =0 for (x—)2<0. (14.6)

Also, as in the scalar theory, we can couple a source to the free Dirac field
(we again introduce & as the expansion parameter for taking the interactions
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due to the source into account in Hamiltonian perturbation theory)
L(x) = W(x)(iy"d, —m)W(x) — ET(x)¥(x) — ¥ ()T (),
H(x) = W(x)(—iyFop + m)W(x) + T (x)¥(x) + 80 (x)T(x), (14.7)

where, as before, the Hamiltonian H is the spatial integral over the
Hamiltonian density H(x), H = [ d3X H(x). Note that the sources J(x) and
J(x) are independent, as for a complex scalar field, see Problem 17. In Prob-
lem 24 you are asked to prove that in Hamiltonian perturbation theory one
obtains

T
< 0|Texp (—i/ H(t)dt) 10> BT =1 — i§2/d4xd4y J(x)Gp(x —v)
0
x J(y) + O)

=1—1 —>—X +O(§3)

&J 8J
(14.8)
where
dsp e~ ip(x—y) dip (¢+m)€7ip(x7y)
— ) = = . 14.
Cre=v= | oy pomtie Qn)t PP +ie (14.9)

Hence, the Green’s function for fermions is in Fourier space givenby Gr(p) =
(p — m +ie)~1, which is the inverse of the quadratic part of the Lagrangian,
as for the scalar fields. In Problem 24 it will be evident that, nevertheless,
the anticommuting properties of the Dirac field play a crucial role (compare
this to chapter 5). It becomes, however, plausible that there is also for the
fermions a path integral formulation, as splitting of a square [compare this to
Equations (7.11) and (7.12)] is independent of the details of the path integrals.
This will be the subject of the next chapter.

To conclude, we note that the coupling to an electromagnetic field A, (x)
should be achieved through the current j*(x), defined in Equation (12.27)

/d4x JH(x) Au(x) = /d4x W(x)y" Au(x) ¥ (x). (14.10)

Since this current is conserved, which can also be seen as a consequence of
the Noether theorem applied to the invariance of Equation (14.1) (the free
Dirac Lagrangian) under global phase transformations, the coupling is gauge
invariant. Using the minimal coupling defined as in Equation (3.35),

D, (x) = (9, —ie A, (x))W(x), (14.11)

one can fix the normalisation of the electromagnetic current to be | #(x) =
—ej*(x), since [compare this to Equation (3.31)]

T(x)(iy" Dy — m)(x) = U(x)(iy"d, — mW(x) +ej* Ay (x). (14.12)
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The current j#(x) is the charge density current, whose time component p(x)
at the quantum level is no longer positive definite. Using the anticommuting
properties of Equation (14.4) one finds

/daic p(X) = /d33c wix)w(x)
- / asE 3 (bLEb(E) + du (Rl (B)
_ / a5k Y (LR (R) — dl(Brda(B) +1)
= Qufe + / ask Y (L0 (E) — dl(Bdu(0).  (14.13)

The vacuum value of this operator is indicated by the (generally infinite)
constant /e, which can be normalised to zero. After all, we want the state
with all negative energy states occupied to have zero charge. With the above
normalisation of the electric current, | “(x) = —ej*(x), we see that the b modes
can be identified with the electrons with charge —e and the d modes with their
antiparticles, the positrons, with opposite electric charge +e. To summarise,
bi(lz) corresponds with the creation operator of a spin-up (¢ = 1) or a spin-
down (¢ = 2) electron of momentum k, whereas d;(lz) corresponds with the
creation operator of a spin-up (¢ = 2) or a spin-down (¢ = 1) positron of
momentum k.
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Path Integrals for Fermions
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For scalar fields, which describe bosons, we used real or complex numbers
(the eigenvalues of the operators) in order to perform the path integral. For
fermionic fields it is essential to build the anticommuting properties into the
path integral.

To this end we introduce a so-called Grassmann algebra, which exists of
Grassmann variables 6; that mutually anticommute

{6;,0;} =0,0; +0;6; = 0. (15.1)
In particular, a Grassmann variable squares to zero
6% = 0. (15.2)

A Grassmann variable can be multiplied by a complex number, with which
it commutes. A function of a single Grassmann variable has a finite Taylor
series

f(6) =ao+a16, (15.3)

and spans a two-dimensional (real or) complex vector space. This is exactly
what we need to describe a spin one-half particle. Let us introduce the fol-

lowing notation:
1 0
0 >= , 1>= . (15.4)
0 1

With respect to the Hamiltonian

-W 0
Hy =1 , (15.5)
0 W

|0 > is the vacuum state (i.e., the state with lowest energy) and we interpret
|1 > as the one-particle state (with energy W above the vacuum). An arbitrary
spinor can be written as a linear combination of these two states

W >=0a0|0 > +a1]1 >=a9|0 > +a:b'|0 >, (15.6)
89
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where b is the fermionic annihilation operator, which in the spinor represen-
tation is given by a 2 x 2 matrix

0 1 0 0
b= , bt = ) (15.7)
0 0 10

We note that b? = (b")? = 0, a property it has in common with a Grassmann
variable. We will now look for properties of § such that

V() =< 0|V >=ay+ a0 (15.8)

is a representation of the state |¥ >, similar to W(x) =< x|¥ > for the case
of a single bosonic (i.e., commuting, as opposed to anticommuting) degree of
freedom. In the latter case, the normalisation

/dx U*(x)W(x) =1 (15.9)

is an important property we would like to impose here too (keeping in mind
that for path integrals we need to insert completeness relations). As < 0| =
(1,0) and < 1] = (0, 1), we have

< W|=<O0lai+ < 1laj =< 1blaj+ < 1la}. (15.10)
As in Equation (15.8) (i.e., b' — 6), we anticipate
U*(0) =< V|0 >=agj0 +a7. (15.11)

We wish to define integration over Grassmann variables, such that the nor-
malisation of the wave function is as usual

< U >=|ao> + |a1* = /d@ U (0)W(6h). (15.12)

Since the norm should be a number, and as [d6 1 is itself a Grassmann
variable, the latter should vanish. For the same reason [ d6 6 (which is itself a
commuting object, as is any even product of Grassmann variables) can be seen
as a number. Demanding the so-called Grassmann integration to be linear in
the integrand, and using 6? = 0, all possible ingredients have been discussed.
Indeed,

/de 0=1, /d@ 1=0 (15.13)

is easily seen to give the desired result. Note that 46 is considered as an in-
dependent Grassmann variable (which is important to realise when multiple
Grassmann integrations are involved).
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We can now study the action of an operator (like a Hamiltonian H) on a
state, which in the spinor representation is given by 2 x 2 matrices.

My M, a f
MW >=|¥' > or oMz ey o) (514
My My ay a;

Translated to Grassmann variables, this gives
V'(0) = aj+a10 = Myag + Mipai + (Maiag + Mxoaq)0
= /de/ M(6, 0¥ (9, (15.15)

provided we define

M(6,0") = M0’ + M + Mn6'6 — Myy8
= Mn@’ + M, — M2199/ — M6. (1516)

Indeed,
/d@/ Mo, 9/)\1—’(9/) = /d@l (MH@/ + M — M2199/ — Mx6)(ag + a10/)

= /-df)/ {ao Mz — agMp6 + (a1 Mz + ao M)’
— (a0Mp1 + a1 Mp2)606'}
= [ 40/ 0't@1M + au) + (a0 + 11 Mez)o)
= Mupay + Mnag + (Maao + Mpoaq)6. (15.17)
The 2 x 2 identity matrix is hence represented by (note the sign)
1,(0,0) =0 —0, (15.18)
which can be used to write the infinitesimal evolution operator
exp(—i HAt) = 1, — i HAt + O(AF?), (15.19)

where H is a (possibly time-dependent) 2 x 2 matrix. In the Grassmann rep-
resentation, this reads

12(9, 9/) — lH(Q, Ql)At =0 -6 - iAt(Hlle/ + Hijp — H2199/ — H229)
- / 49 exp(0[12(6, 6') — iH(9, 0)At]).  (15.20)

The last identity is exact, and a consequence of the fact that the Taylor series
of any function of a Grassmann variable truncates

exp(fx) =1+ 0x, /d@ exp(fx) = x. (15.21)
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This is valid both for x as a Grassmann variable (in which case the ordering
of x with respect to # is important, with the opposite ordering the result is
—x) and for x as a complex number.

Another useful property of Grassmann integration is that (y is a number)

/d@ exp(6x + y) = xexp(y). (15.22)

To prove this, we use that

o0 1 , [e.¢] 1 ; oo
exp(0x + y) = Zﬁ Ox+y)" = Zay +9xZ n—1)'y
n=0 """ n= 1
= (14 0x) exp(y). (15.23)

In general it is not true that the exponential function retains the property
exp(x + y) = exp(x) exp(y), for x and y arbitrary elements of the Grassmann
algebra. It behaves as if x and y are matrices, as it should since the Grassmann
representation originates from a 2 x 2 matrix representation. More pre-
cisely

exp(8x) exp(8'y) = (1+0x)(14+60'y) =1+ (Ox +6'y) + L(8x +60'y)?
+1lox, 0yl
=exp (0x+0'y + 1[0, 6'y]). (15.24)
This means that the Campbell-Baker—-Hausdorff formula [Equation (6.44)]
can be extended to this case. It truncates after the single commutator term as
neither 6x nor Ay can appear more than once.
Let us apply this to the evolution operator, which in the Grassmann repre-
sentation is given by [see Equations (15.19) and (15.20)]
< O |U(tiva, 1)16; > = Ui (041, 0;)
/ 48 exp (B16; — 0rai H(L; 6131, 6) AL) + O(AB),
(15.25)

such that
/dé’i < O |U(tigr, 1)16; >< 6;| ¥ >

= /d@idéi exp (él [6; — 6;41 — 1 H(t;; 641, Qi)Ai’]) w(6;) + O(Atz), (15.26)
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which can be iterated, first by one step, to
/d@' < Oi2lU(tigo, )16; >< 6;|¥ >
= / d6;y1Ui1 (012, 6i41) / do; Ui (0i11, 0;) W (6;)

= /d9i+1déi+l exp (Fir1[0i11 — biyo — i H(tit1; 6i42, 0i01) At])

X /deidéi exp (Gi6; — i1 — i H(t; 0141, 6;) At]) W(6;) + O(AF).
(15.27)

Note that we have to be careful where we put the differentials, as they are
Grassmann variables themselves. If H is diagonal, as will often be the case
for the application we have in mind, exp (9[12(6, 6') — i H(6, 6") At]) will be
a commuting object (so-called Grassmann even) and it does not matter if we
put one of the differentials on one or the other side of the exponential. The
combination d6;df; is likewise Grassmann even, and the pair can be shifted
to any place in the expression for the path integral. Hence, provided H is
diagonal, any change in the ordering can at most be given an additional minus
sign. We now apply Equation (15.24) to the above product of exponentials,

exp (Bi1[6i41 — b2 — i H(ti41; 6ig2, 6i11) At])
x exp (6:[6; — 041 — i H(ti; 641, 6;) At])

i1
= exp (Z 6i{0; — 0j.1— i H(tj; 0j41, 0;) At}
=
— VAP[Bi 1 H(ti41; 042, 0i41), 0 H(E; 0141, 9i)]> (15.28)

and evaluate the commutator that appears in the exponent. With the explicit
expression for H [see Equation (15.20)] we find

/d91'+1 [0i11H(tit1; 042, 6i41), G H(t; 641, 65)]
= 20;110; (9i+2H21(t1+1)H12(ti) —6; H12(fi+1)H21(fi))~ (15.29)

For H diagonal the commutator term vanishes as was to be expected. In that
case, the Campbell-Baker-Hausdorff formula truncates to the trivial term
both in the matrix and in the Grassmann representations. This does not mean
that there are no discretisation errors in the fermionic path integral when H
is diagonal, as can be seen from Equation (15.19). To be precise, assuming for
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simplicity that H = —1Wos3, one has

2sin(A WAt
exp(—i HAE) = 15 — i{H - %Wtan(%WAt)lzl % (15.30)

which shows that At is effectively modified to 2 sin({ WAt)/ W (it is interest-
ing to contrast this with the result we found for the harmonic oscillator in
Chapter 6 and Problem 10), whereas H is shifted by a multiple of the identity
that vanishes linearly in At.

The generalisation of Equations (15.27) and (15.28) to N steps is now ob-
vious and for H diagonal one easily proves that the limit N — oo can be
taken:

/d@ < 0'|U(T,0)|0 >< 6|¥ >

= I\l]lm /d@o UN(QN = 9,, 9() = 9)\11(90)

N-1
I\lll_r)rgo]lj!)/dede exp(

N—

1
0i[6j — 6j.41 — i H(tj; 0j41, 9]')Af]> (),
=0

(15.31)

where, as usual, one has At = T/N. In complete analogy with Equation (6.10),
reinstating the dependence on Planck’s constant, we can write

< 9/|Texp(—i/H(t)dt/h)|c9 >
zhllgr;ofdeo E/d@jd@j

int R (10,011 —60)  ~

Il
l/:—l_l
g3

i

&
I
—

i

RS

2

R

int N= 6.0 —0) - Oip1+6;
con B (A0 )
j=0

/ DV (t)DY(t) exp [i f Tdt \IIT(t)(iat—i—W(t))\I/(t)] (15.32)
0

Here we have replaced § with W' (which in this case agrees with ¥, since in
one time and no space dimensions yy = 1) and 6 with ¥. We have indicated
the general case where W can depend on time, but in absence of this time de-
pendence, W is the energy of the one-particle state, created from the vacuum.
Since we identified 6 also with bT, the creation operator for the one-particle
state, we see that WWW = Whb' = —H + 1 W, which is what we expected
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from a relation between the Lagrangian and Hamiltonian (the term {W is of
course irrelevant).

As for scalar field theories, we will be mainly interested in vacuum expec-
tation values of the evolution operator. In the presence of a source term, this
will allow us to derive all required matrix elements. For the present case we
easily find the vacuum wave function to be

<010 >=1, < 0|6 >=96, (15.33)

such that

< 0|U(T)|0 > = fd@’ < 016’ >/d0 <0 |U(T)|0 >< 610 >
- /dede/ o' < 6'|U(T)|O > . (15.34)

The order of the differentials is important here. However, as in the case of
scalar field theories, we do not require the precise form of the vacuum wave
function(al) for performing perturbation theory.

Up to now we have described a spin one-half particle pinned-down at
a fixed position. It is obvious how this can be generalised to include the
quantum mechanical description of a moving spin one-half particle in a one-
dimensional potential V(x).If also W depends on the particle position [W(x)],
the Hamiltonian becomes

H = (fa—z + V(fc)) 1, — 1 W(%)os. (15.35)
2m

If we write < x, 0| >= W(x, §) = ap(x) + 0a1(x), the path integral is easily
found to be

<x, 60 |exp(—iHT /h)|x, 0 >

L dpodfy dp]dx]
_lefl—{r;o/ 2rh 1_[[ 40;40;

2

s oxp [ﬂNZ (p,-(x,-ﬂ %) Py 4 00— 0)

h = At 2m At
+ éjW(Xj)4(6j+12+ 6j)>}
= / Dx()DY(H)D¥(t)

T
X exp |:;—l / dt(imi*(t) — V(x(t)) + wi(t)[id; + W(x(t))]\ll(t))].
0
(15.36)

A careful derivation of this formula and a step-by-step comparison with the
matrix representation in the spin degrees of freedom can be found in Sections 1
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to 3 of the paper ‘Fermionic Coordinates and Supersymmetry in Quantum
Mechanics,” Nuclear Physics B196 (1982) 509, by P. Salomonson and ].W. van
Holten. For further details, see the lectures by L. Faddeev in ‘Methods in Field
Theory,” Les Houches, 1975, ed. R. Balian and J. Zinn-Justin.

It is now also straightforward to derive the path integral for the Dirac
Hamiltonian of the previous chapter. Using as a basis the plane waves con-
structed there, the Hamiltonian becomes a decoupled sum (in a finite volume)
for each k of four fermions, described by bJ{(Iz), b;(lz), dI (12) and d;(lz), each of
which can be described by its own 6. Associating the annihilation operators
with their respective § and performing the Fourier transformation back to
coordinate space, it is left as an exercise to show that the path integral for
fermions is given by

/DW(x)D\II(x) exp[% /d4x (W (x)(iy" 8, — m)W(x)

- J(0)W(x) — ¥(x)T(x)) } (15.37)

Since the fields W(x) and W(x) are Grassmann variables, also the sources
J(x) and J(x) are Grassmann variables. Their order in the above equation
is therefore important when used in further calculations. As promised, it is
as simple as for scalar field theories to calculate the dependence of this path
integral on the sources. Since Grassmann variables form a complex linear
space, we can perform all calculations as in the scalar case, provided we keep
track of the order of the Grassmann odd variables. In particular we can make
the replacement

W(x) - W(x)+ / dyx’ Gr(x — x)J(x),
_ _ (15.38)
U(x) — U(x)+ / dyx’ J(xXYGr(x' —x),

where Gp(x) is the Green’s function defined in Equation (14.9). The inte-
gration measure, as for commuting variables, is invariant under a shift by a
constant Grassmann variable, such that we obtain (as for the scalar case we
normalise the path integral to 1 for vanishing sources)

< 0|UJj(T)|0 > =< 0|Uj:j:0(T)|0 >
X exp (—i / dyxdsy J(x)Gr(x — y)J(y))

= < 0lUy—g=o(T)I0 > Zo(T, J). (1539)

Again, this result holds to arbitrary order in the sources, and agrees with what
can be derived to second order within Hamiltonian perturbation theory (see
Problem 24).
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Interactions are taken into account by adding higher-order terms to the
Lagrangian, where the order of the fermion fields is important. For example,
the Lagrangian for a fermionic and a scalar field is given by

L=L= V¥,V 0)-](@)ox) - T()¥(x) - ¥(x)T(x),

_ (15.40)
Ly = W(x)(iy"d, —m)W(x)+ 19,0(x)d"o(x) — 1MPo?(x).
We find as in Equation (8.6)
2,3,1, 8 = exp (—z’ [dsxv ( 7 T 5 fx))) 27, 7,1),
27,9, 1) =exp | =i [ duxdiy (1 (96~ ) ()
+ J0)Gr(x — I () ] (15.41)

Note the minus sign for the derivative with respect to 7 (x), which is because
the source stands behind the field component W(x). Derivatives of Grassmann
variables are simply defined as one would intuitively expect

d d da ,
El:O, %9:1, %9 =0, (15.42)
together with a generalised Leibnitz rule for functions f and g that are either

even or odd Grassmann variables, a property denoted by the sign or grading
s(=+1),

d d d
Tg & =srfr.8+ <%f> g (15.43)

By declaring the derivative to be a linear function on the Grassmann alge-
bra, it can be uniquely extended to this algebra from the above set of rules.
Note that these rules imply that the Grassmann integral over a total Grass-
mann derivative vanishes. Comparing with Equation (15.21) we note that
apparently Grassmann integration and differentiation are one and the same
thing: Both project on the coefficient in front of the Grassmann variable. The
vanishing of the integral over a total derivative and of the derivative of an
integral is in that perspective trivial. More importantly, to make sense of
Equation (15.41), one easily shows the following identity to hold:

d
70 exp(fx) = x. (15.44)

An example of an interaction between the fermions and a scalar field o is
given by the so-called Yukawa interaction

V(W(x), U(x), 0(x)) = g¥(x)¥(x)o(x). (15.45)
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SO -

FIGURE 15.1
Crossing two fermion lines gives a minus sign.

We can also consider the interaction of the fermions with the electromagnetic
field, whose quantisation will be undertaken in the next chapter. For this we
can take the minimal coupling in Equation (14.12) [see also Equation (14.10)],
such that

V(W(x), W(x), Au(x)) = —eW(x)y"W(x)Au(x), (15.46)

which will play a dominating role in describing quantum electrodynamics
(QED). ]

As before, log Z(J, J, | ) is the sum over connected diagrams. Diagrams
thatinvolve fermions necessarily have as many lines ending in a source 7 asin
asource J . This is because the Lagrangian is Grassmann even, a requirement
that can be related to the Lorentz invariance. It does not in general require
the Lagrangian to be bilinear in ¥ and W. In Chapter 19 and Problem 30,
we will discuss the four-Fermi interaction, ¥(x)y*W(x)¥(x)y,¥(x), which
is clearly Lorentz invariant and Grassmann even. However, for many of the
theories we discuss, the Lagrangian is bilinear in the fermionic fields, because
higher-order terms will generally not be renormalisable (except in one space
and one time dimension). If no higher-order fermionic interactions occur, a
fermionic line either forms a loop or it goes from a source J to a source J. As
changing the order of fermionic fields and sources gives a sign change, this has
consequences for the Feynman diagrams too. However, it is cumbersome to
determine the overall sign of a diagram. Fortunately, all we need is the relative
sign of the various diagrams that contribute to the Green’s function with a
fixed number of sources, since the overall sign drops out in our computations
of cross sections and decay rates. If one diagram can be obtained from the
other by crossing two fermion lines, this gives a relative minus sign, as for
Figure 15.1.

It also implies that each loop formed by a fermion line carries a minus sign.
Intuitively this follows, as is indicated in Figure 15.2 by the dashed box, from
the identity displayed in Figure 15.1.

FIGURE 15.2
Fermion loops carry a minus sign.



Path Integrals for Fermions 99

More accurately a fermion loop that connects vertices x; for k = 1 to n is
associated to

1% n(o—is s
W (g )W (% S N
IQ ()W () — g(&ﬂxk) Sj(xk)>
- ZTY [iGF(xk(l) — x2)iGFr(Xk@2) — Xk@3)) - - 1Gr (X — xk(l))] ,
{k}
(15.47)

where {k} stands for the various orders in which the vertices are connected.
For each vertex we have only indicated the fermionic part W(x;)W(x;). For
the examples of Equations (15.45) and (15.46), the scalar or vector field con-
tributions are not indicated, as they are not relevant for the fermion loop. The
trace is with respect to the spinor indices, which are not displayed explicitly
to keep the notation simple. We used that

) —i8
8T (xk(jy) 8T (xXk(j+1))

W (i) P (X 41) — — iGr(xx(j) — Xe(j+1),  (1548)

where an extra minus sign arises since in log Z»(7, J) [see Equation (15.39)]
J comes first, and has to be anticommuted with /8.7 before this derivative
can be taken. The overall minus sign comes from the term that closes the loop

U (xk(1)) AV (Xk(n)) = — AW (Xk()) W (Xk(1)), (15.49)

where A is Grassmann even. We contrast this, as an example, with a scalar
loop for the field ¢ that arises in the theory discussed in Chapter 11, which
is described by the Lagrangian £ = 1(d,¢)? — im?¢? + 1(3,0)> — 1M?c? —
19?0 — Jo — jo. One finds [k(n + 1) = k(1)]

1‘[¢<xk>so<xk> 1‘[(5;&) . (xk)) Z]‘[zc(xk<])—xk<]+1)> (15.50)

{k} j=1

which completes the demonstration of the extra minus sign for fermion loops.
Note that the factors of i, associated to the derivatives with respect to the
sources, are absorbed in the vertices for the Feynman rules in Table 8.1 on
page 53, which is why the propagator in that table equals —i times the Green’s
function. This is also the Feynman rule for the fermion propagator. But the
extra minus sign in the derivative with respect to the fermionic source J
[see Equation (15.41)] is not absorbed in the vertex in order to guarantee that
vertex factors are assigned as in the scalar theory. That minus sign is, however,
absorbed in Equation (15.48) due to the anticommuting nature of the fermionic
variables, which was in the first place the reason for the extra minus sign in
Equation (15.41) to appear. Only the overall minus sign required in closing a
fermion loop remains as an extra factor.
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Before we convert these Feynman rules to the ones involved in computing
the scattering matrix, cross sections, and decay rates [see pg. 63 and Equa-
tion (9.25)], we need to determine the wave-function factors to be inserted
for the external lines that correspond to the in- and outgoing fermion lines.
For this we express the creation and annihilation operators in terms of the
fermionic fields (at t = 0), such that their insertion in the operator formula-
tion can be converted in the path integral, as in the scalar case, to derivatives
with respect to the sources. Using Equation (13.17) and the orthogonality
relations of Equation (13.14), one finds [compare this to Equation (7.26)]

. @ (Bt ¥ .
by = 128 DY -ikng ),
\/sz(IZ) V(@2r)3
" OB [ dE e (15.51)
dl(k) = e (x),
S ! VL ry
and through conjugation we get
3% peas . UK
bl = [ et =L,
v(27) 2ko(k)
, (15.52)

d, (k) =

In the Hamiltonian formulation the scattering matrix is given by

out< (ﬁl/ al)/ (?2/ aZ)r sy (ﬁlr (X()|(I;1, 181)1 (1221 ﬂz)r Tty (I_éﬂ/ /311) >in

=< 0[ca, (P1)Car(P2) -+ Car (POU(Tout, Tin)ch, (k1) (K2) - - ¢ (k)10 >,
(15.53)

where in a shorthand notation we separate particles from antiparticles by the
helicity index

c1(k) =b1(k), ca(k) =ba(k), c3k) =di(k), ca(k) =da(k).  (15.54)

Like in Equation (9.3), the insertion of a field operator at the appropriate time
is in the path integral represented by a derivative with respect to the source

R 7/ u("‘)(k) 3 _is
bL(F) = / it
2k0(k)(27r)3 ” = Tin
[y M (k)]a —i8

[2ko (k) 8Tk, t = Tn)’
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ayly = 2B / ppofr___ 10 _ oW b
2k0(k)(27r 3J(Et=Ti) g ity 8Ta(k, t = Tir)
N (@) :
b — B / i e-F 1—5
2k0(k)(271 (%, t = Tou)
ul®) (k)* is

Zko(k) Uﬂ(_k/ t= Tout)

()
- V %0 (k) 3 _i
d, (k) = / d3x e~k ¥ %
J2Ko(o)27)? Ja (% = Tou)
() .
]
[2ko(K) 8Ja(—k, t = Tow)
(15.55)
such that

out< (P1, @1), (B2, @), ..., (B, @) |(k1, 1), Kz, Ba), -, (Kuy Bu) >in

4

8o, (Pi) Hcﬂ (k) exp(G 7 )|,y (15.56)
=1 j=1

The 6a(%) are, of course, defined in terms of Ea(E) and 30,(1_5) as in Equa-
tion (15.54). We continue as in Chapter 9 by first fixing the wave-function
and mass renormalisations in terms of the connected two-point function.
(We leave it as an exercise to show that in the absence of interactions
out< (?7/ Ol)|(k, ,3) >in= e*ipo(ﬁ)TS%,ﬁ&%ﬁ.)

GO, J) =»x——x + X—@ + X—% +
= x—@ﬁ, (15.57)

where the self-energy is now a 4 x 4 matrix given by (—ix) the amputated
1P1I two-point function

iSus(p) = r@—a . (15.58)

(The 1PI diagram equals X,;;(p), when evaluated with the Feynman rules
for the reduced matrix elements of Table 15.1 (pg. 106) by dropping the wave-
function factors.) The convention for these sort of diagrams is that momentum
flows in the direction of the arrow, which points to the first spinor index
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(here a). With these definitions the two-point function becomes

67, 7= d4pja(—P)[ ] Jp), (1559
ab

p—m—2(p)+ie

with between square brackets the inverse of the 4 x 4 matrix [p,y* — m —
% (p)+ielap, whichis the full propagator in the momentum representation for
the conventions on page. 63. Aslong as we don’t break the Lorentz invariance,
the full propagator near the poles is of the form of the free propagator with
a wave-function renormalisation factor Zr and a renormalised mass 71, such
that on the mass-shell one has [compare this to Equation (9.12)]

GA(J, J) = —iZF/d4pi(—p)[ ]7(;7). (15.60)

p—m+ie

Performing the wave-function renormalisation, we have to modify Equa-
tions (15.55) and (15.56) accordingly [compare these to Equations (9.13) and
(9.14)].

e
V2Zpvk? + 2 8Ju(k,t = Ti)’
ul® (k) is
ZZF /ié2 + ﬁ12 3;7&1(_]_51 t= Tout),
(@) (k)* is
V2ZpVk2 4 m2 8Ta(k,t =T)’
)

\IZZF‘/I_(;Z + 712 8*711(_121 t= Tout),

and, with the @‘i(l?) defined as in Equation (15.54),

be (k) =

b (k) =

(15.61)

s (k) =

ae (k) =

out< (?1/ al)r (?2/ 012)/ ceey (ﬁ@/ a@)l(%ll 181)/ (122/ ﬂZ)/ ceey (]znr ,Bn) >in
4 n

=[Te“ (o [ T2 k) exp(G I, - (15.62)

=1 j=1

To compute the wave-function factors for the external lines, we express

the n-point function in terms of amputated n-point functions, as in Equa-

tion (9.15), with the difference that there has to be an even number of external

lines, since the number of 7 and 7 sources has to be equal (we ignore for the

moment any other bosonic fields that might be present, including those in
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the external lines that will be obvious). The amputated n-point function will
now carry the spinor index of each of the external lines and one has

ﬁWJﬂE/H%WWWWWmquWth.)%ZM

~ | = —i
x ]1:! :jc]'(pj) |:—¢j —m—X(—=pj) +i8:|c]b/-

—1 5
) |:kj —m— 2<k]-)+igld jdf(kf)}- (15.63)

Note that we have assumed one particular ordering for the sources. Relative
signs of the diagrams are determined by the rules that were described above
(it is not difficult to convince oneself that with respect to the fermion lines,
any diagram can be generated from a given one by permuting fermion lines).
As in Equations (9.20) and (9.21), we can compute the action of é‘i(%), from
which the wave-function factors will be obtained. Like in Equation (9.19),
computing the action of b (p) and d¢ 9(p) we can restrict our attention to

) = 7 —i (amp) b
A= [ o) | S G
dsp = |: —jetpot }
- d a 7 .
[ [ 260| =5,
x GO (p, .y (15.64)

If we define as usual po(p) = /p?+ m? and for convenience of notation
change p to —p in Equation (15.64), we find

BQ(Q)A( . ) u(a)(P) [ e~ iPoTout :|
~(p " Varpo(p) Zr F—m—S(p) 4 e,

x GO (—p, b

~ (amp) b..
iSO T D (3 *(Vj'"”z)ab G P (=p, ..
1mug (P) 2p0(p) ZPO(?)(ZTF)?’

e~ Po(P) Tou (15.65)

which is obtained by deforming the pg integration contour to the lower half-
plane (since Toye — 00), and computing the contribution from the pole at
po = po(p), taking into account Equation (15.60). Its residue is proportional to
the matrix Zr (p+17) /2 po(p), which is most easily found using 1/(p—ri+ic) =
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(p+7i1) /(p? —m® +ie). We can now use the fact that the spinor u(®)(p) satisfies
the equations of motion [see Equation (13.2)], such that

(@ 5y P+ Map <<¢+m)* @ ) ((y prO+m) )
ERC e i) P BE TN ) (p)
= u@(D),. (15.66)

Consequently, Equation(15.65) becomes

(amp)
( p, c .) e_lpl)(ﬁ) out

V2po(p)(2)?

The wave-function factor for an outgoing electron is therefore given by u(®(p),
VZr . The convention is that the momentum flows out of the diagram, along
the arrow (see Table 15.1); this is why the amputated n-point function has —p
as its argument, like for the scalar case, where we defined for the amputated
n-point function all momenta to flow into the diagram. This means that in the
reduced matrix element M, the outgoing electron momenta occur precisely
as indicated in Equation (9.18).
By similar arguments we obtain from Equation (15.64)

A=) Ay = 2P [ e/ ]
wp \/47'[}?0(17 Zp —p—m—3(=p)+iel,

x GO (p, )b

. (=P )y GE™(p,
—iJ Q)7 0@ ipo(P)Tin
iv(2r)*Zr v, (p) 290(P) () ) e

(amp) b--
G ™ (p, .. )b otPo(P) T (15.68)

V2po(p)(27)?

such that the wave-function factor for an incoming antiparticle (positron) is
—0@(P),+/Zr. In this case the momentum flows against the arrow of the
fermion line, but does flow into the diagram as is required in the convention
of the reduced matrix element.

To compute the action of 5% 4(p) and d*(p), we restrict our attention to

bUPA(-- ) = —iu<a><fz>b¢<2n)4zF (15.67)

= i0@(p),V/(21)4Z;

(amp) —i ~
B(-- /d pCT P [rf m— E(P)+18Lja(p)
d am ipot o
4P /dtG( D,y [pj — leE(p)+z ] Jo(p, 1).

(15.69)
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One finds

eiPoTin
PHPEC- {/d’“ G p )i [rf = E(P)+18:| }

)
VA po(p) Zr
. G (p, .. )y (P +m)y
_ 2 4Z Cc 7 b--- a
N s Py 2m(D)
[), u("‘)(p)] eino(iﬁ)Tan
(amp)

iV @m)Zy 2%((;;,@1.));3_ W (e P, (15.70)

and (again for convenience changing p to —p)

(amp) —iPOTout
{/dpG p( pre o |: p—m—E(- P)+zs] }

)
Varpo(p)Zr

e GO, O (P )
_ 4Z c ’ b... - a
e V2po(p)27)>  2po(p)

x [)/Ov(a) ( ?,’)] e~ iPo(P)Tin

a“(p)B(---):

(amp)

. (=p, - _
=iV (27)* ZF ip(PTow (15,71
e 2po(p)(27)° e o7l

In both cases there is an extra minus sign from pulling §/8.7 through J in
Equation (15.63). The wave-function factor for an incoming electron is hence
ué"’) (P)v/Zr with the momentum flowing along the fermionic arrow, whereas
the wave-function factor of an outcoming antiparticle (or positron) is given by
—vl(,“)(fa)\/Z_ , Where the momentum flows opposite to the fermionic arrow.
The minus signs in front of some of the wave-function factors are irrelevant
(they can be absorbed in the overall sign ambiguity).

In Table 15.1 we summarise the Feynman rules that correspond to the
fermionic pieces in computing the reduced matrix elements. We have chosen
the convention that the incoming momenta flow in, and the outgoing mo-
menta flow out of the diagram. This guarantees that Equations (9.18), (10.12),
and (11.11) (resp. the scattering matrix, cross section, and decay rate) remain
valid in the presence of fermions. Consequently, all fermion momenta in the
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TABLE 15.1
Feynman rules for fermions.
ks

]1:1 ! Zz = g8y and ki =ky + k3 Yukawa vertex

#o ks
b/ﬁj\ﬂ = —eyl, andky=ky+k3 photon vertex
ky ky
P e = [me fermion propagator

Zr us? (k) ko = Vk2 + 2 | incoming electron

1i

VZE v@(K),, ko= k2 +m2 | incoming positron
g P

o k—+
a = JZr u(k),, ko=vk2+m? | outgoing electron
a, k Boms

Zr o\(k), ko =Vk2+ i | outgoing positron

T

—1xif (2?;1 for each fermion loop

-1 interchange of fermion lines

table flow from left to right. For conventions where momenta always flow
in the direction of the fermion arrow, the four momenta for wave-function
factors associated to in- and outgoing antiparticles (positrons) should be
reversed. Signs from fermion loops and exchanges of external lines will not
be implicit in diagrams, as only relative signs are known.
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Feynman Rules for Vector Fields

DOI: 10.1201/b15364-16

As before, the quantisation for vector fields starts by expanding the field
in plane waves and identifying the Fourier coefficients with creation and
annihilation operators:

B dsk
Au(x) = / Tt ;(

where 85{”(1?)6“"” are independent plane wave solutions of the equations of
motion. The index A enumerates the various solutions for fixed momentum.
They will be identified with the spin components or helicity eigenstates of
the vector.

We will first discuss the simpler case of a massive vector field, expected to
describe a massive spin-one particle. In Problem 12 we already saw that its
Lagrangian is given by

2, (F)e M (R)e = + ai(i?)e;”(l?)*eka) ., (16.1)

La=—1F, F" +1m*A A" — A, (x)]*(x), (16.2)
and that the free equations of motion (i.e., ] * = 0) are equivalent to
3, A(x) =0 and (8,0" +m*)A,(x) =0. (16.3)
As usual, this implies the on-shell condition k? = k2 4+ m?, but also
ke (k) = 0. (16.4)

It removes one of the four degrees of freedom of a four-vector. Three inde-
pendent components remain, exactly what would be required for a particle
with spin one. We may, for example, choose

eM0) =6, (=12 3) (16.5)

in the rest frame of the particle, which is extended to an arbitrary frame by
applying a Lorentz boost. They satisfy the Lorentz invariant normalisation

g eM (k) el (k) = -6 (16.6)
107
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The minus sign is just a consequence of the fact that in our conventions g;; =
—34ij. The spin wave functions also satisfy a completeness relation which is
given by

k.k,
A;w = ZE(A)(k () k)* _ (g/w _ #) , (16.7)

most easily proven in the rest frame. Since the spin wave functions are by con-
struction Lorentz vectors, the above expression forms a Lorentz tensor and
its on-shell extension to an arbitrary frame is therefore unique. It is easily seen
to project arbitrary vectors w,, on to vectors that satisfy k*w, = 0. The prop-
agator for the massive spin-one field was already computed in Problem 12:

K — (20 —5%)  AL®
— "/ v
MW\/\JU =B wiiie e _miis (16.8)

Especially for the massless spin-one field (i.e., the photon field) to be dis-
cussed below, it is advantageous to decompose the spin with respect to the
direction of the particle’s motion, which are called helicity eigenstates. We
have helicities 0 and £1, described by the spin wave functions

kI —ko -
€00 = (5, 20k}, e = 1v2 ((0(k) + ig? (k 16.9
w (k) - D) =2 (PR £igD (), (169
where k,, £ (k), ] (k) and &@ (k) form a complete set of real orthogonal
four-vectors. These new spin wave functions satisfy the same properties as
in egs. (16.6) and (16.7) and are also defined off-shell, where they satisfy

* kMkV
A (k) = ;gft)»)(k)gyb)(k) = — <gw -2 > ) (16.10)

Sums over A will, of course, run over the set {0, +, —} in this case. We leave it as

an exercise to verify that rotations over an angle « around the axis pointing in

the direction of k leaves ¢ (k) invariant and transforms £(* (k) to e*“&(* (k).
The Hamiltonian for the massive spin-one particles is given by

H = [ dsk ko 3 (alRras ) + 0, Fral ), (16.11)

A

which can be expressed in terms of three scalar fields ¢, A =1, 2, 3, as
H = [ &F (Um®F + 1 + ) 0,0 F)

= /dsﬁ?(%ﬂ§(5€)+ 100 (D) + 1m?gl (), (16.12)
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where we defined, as in egs. (2.6) and (2.7),
$.(0) = (a,(K) +a}(=K)) 1/ 2ko k),
7() = 5/ 2k0(B) (] () — a,(~F)).

The corresponding Lagrangian would be given by

(16.13)

Ly=) <%(3u(/’x(x))2 — 1@} (x) — gu(%)] ‘“(x)), (16.14)
A

where we have added a source for each scalar field. We introduce also a field
o for the component of the vector field along k. Writing

A0 = 50k + Y 00,
A

B 1. ~ (16.15)
Julk) = —j )k + 3 TV (e k),
A

asimple calculation shows that £ 4 = £, — 1[9,0(x)]*— 0o (x) j (x). We see that o
decouples from the other components and behaves like a scalar particle with
the wrong sign for the kinetic term. This would lead to serious inconsistencies,
which are circumvented if we take 9, ] *(x) = 0, such that we can put o = 0.

It is important to realise that it is the Lorentz invariance that requires us
to describe a spin-one particle by a four-vector. From the point of view of
the scalar degrees of freedom, ¢;,, this invariance seems to be lost when we
introduce interactions in the Lagrangian of eq. (16.14). Nevertheless, if we treat
A as a three-vector index (in some internal space) and demand the interactions
to be O(3) invariant with respect to this index (i.e., invariance under rigid
rotations and reflections in the internal space), then we claim that the resulting
interactions do respect the Lorentz invariance. The reason is simple, because
the O(3) invariance requires that the A index is always pairwise contracted.
Equations (16.10) and (16.15) guarantee that such a pair, written in terms of
the vector field A,(x), is a Lorentz scalar as far as it concerns the dependence
on A, which is sufficient if the Lagrangian is Lorentz invariant when treating
A as a dummy label. To eliminate the o field we have to enforce 9, A*(x) =0,
not only on-shell but also off-shell. This can be achieved by adding to eq. (16.2)
a term —A(x)d, A*(x) (compare this to Problem 8). Using

/ DA, (x)DA(x) exp [—i / dux A(x)BMA“(x)] - / DAK) T8k, A4(K)),
k
(16.16)

we see that the so-called Lagrange multiplier field A(x) plays the role of remov-
ing the unwanted degree of freedom. Since we modified the theory off-shell,
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the propagator in eq. (16.8) has to be changed also, by replacing A(k) by its
off-shell value A(k) [eq. (16.10)]. If none of the vertices or sources couple to the
o field, we might just as well replace it by —g,,,. There are a number of other
ways to eliminate the o degree of freedom; see, e.g., Section 3-2-3 in Itzykson
and Zuber. We will come back to massive vector particles in Chapter 19.

For the computation of the scattering matrix, we express the annihilation
and creation operators in terms of the vector fields att = 0, using the relations

a; (k) = —\/Zkoﬁsfﬁa?)* f \/i A F)eFE

(27)3
(16.17)

- " > dsx . 7
TRy 9] 3 (2 pik-%
a, (k) = =/ 2ko(k)e,” (k) / At(x)e'™™,
V(2r)3
which in the path integral turn into

a] (k) = /2o (k)P (k) 19

‘ST/A(E/ t= Tin),

3 —— s (16.18)
) = Y 2o®e O o s
" st — dou

which is identical to eq. (9.3), when re-expressed in terms of | *). Like for
scalar and fermion fields, there will be a mass and wave-function (denoted by
Z 4) renormalisation, determined through the self-energy of the vector field,
which is now a Lorentz tensor of rank two. It is proportional to A, (k) [to
guarantee that the scalar field o introduced above decouples from the other
fields; alternatively it can be seen as a consequence of the O(3) invariance with
respect to the index A]. We can consequently define

Z0(p) = Aw(p)Zalp). (16.19)

The n-point Green’s functions can now be written in terms of amputated
Green’s functions that carry four-vector indices for each external spin-one
line,

n o —A v(p)
ng)(] )E/ dapi TM(pj) LAy (P ;
" ]11 4Pj ) AP p; —m?—Ta(p)) +ie
<GP (pr, pa, o ), (16.20)

Using the fact that on-shell A" (k)e( (k) = —sl(j)(lz), we find for the incoming
spin-one line a wave-function factor v/Ze{}) (k) and for the outgoing line a
factor «/ZASf})(E)*.
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For amassless spin-one field (the photon), we would expect the helicity zero
component of the vector field to be absent. First we have to redefine, however,
what we would mean by the zero helicity component, because eq. (16.9) is
singular in the limit of zero mass. We take as our definition

-

O (k) = (k) = 172 <1, %) ) (k) = (o, §i(1¥)), (16.21)

with k - 5:(k) = 0. These still form with k,, four independent four-vectors
and el(f) (k) are still transverse polarisations. However, it is no longer true that
k() (k) will vanish on-shell (i.e., atk? = 0). This is easily seen to imply that on-
shell ag(k) = 0.1In other words, on-shell there is no longitudinal component for
the photon. The extra degree of freedom is removed by the gauge invariance
of the massless vector field, as was discussed at the end of Chapter 4 and in
Problem 9. To perform the quantisation of the theory, one can go about as in
the massive case. Due to the presence of the four-vector n(k), it will be much
more cumbersome to demonstrate the Lorentz invariance. In Chapter 20 it
will be shown how in principle in any gauge the path integral can be defined
and that the result is independent of the chosen gauge. One could then choose
a gauge that allows us to show the equivalence between the path integral and
the canonical quantisation. However, it is the great advantage of the path
integral formulation that calculations can be performed in a gauge in which
the Lorentz invariance is manifest. The gauge most suitable for that purpose
is, of course, the Lorentz gauge 9, A*(x) = 0; see eqs. (4.21) and (4.22). The
propagator is read off from eq. (4.26)

k (g/w (1- l);fzuky ) A("‘)(k)
o +ie Y
— = 16.22
”\f\/\fbv k?+ie K2+ig’ (1622)

where « is an arbitrary parameter, on which physical observables like cross
sections and decay rates should not depend. It is in general not true anymore
that the self-energy is proportional to A{®)(k), but the gauge invariance does
guarantee that ¥, (k) 7" (k) is independent of « for any conserved current; i.e.,
k, j*(k) = 0. It can be shown that this in general implies

Z(k) = AL ()2 (K), (16.23)

for some, possibly infinite, ’. Apart from a wave-function renormalisation
(Z4), the gauge-fixing parameter « will in principle have to be renormalised
too. One still has for any value of « that A@(k),"e(® (k) = —eﬁt)(lz). The
wave-function factors for external photon lines are therefore identical to the
ones for the massive case, except that now only two helicity states can ap-
pear. It is an important consequence of gauge invariance that unphysical de-
grees of freedom decouple in the physical amplitudes. It also implies that the
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TABLE 16.1

Feynman rules for photons.

A Course in Field Theory

k

[a%aVaVaV
u v

u

A

Nk —
u

Do

A k—

1, kuk
_<g“” =g k2+is>
k2 +ie
VZael ()
VZaeP ()

photon propagator (Lorentz gauge)

incoming photon

outgoing photon

self-energy vanishes on shell (see Problem 39), such that it will not give rise to
a renormalisation of the mass. The photon remains massless. That the gauge
invariance must be crucial here is clear, as a massive photon would have one
extra degree of freedom. We will come back to this point in Chapter 19. In
Table 16.1 we summarise the Feynman rules.
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Quantum Electrodynamics—QED
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QED is the field theory that describes the interaction between the photon and
the charged fermions. In the Lorentz gauge [see Equations (4.21) and (4.22)],
the Lagrangian is given by

L = —1Fu()F™(x) — 1a(3, A0)) + D U r(x)(iy* Dy, — ms) W ().
7

(17.1)

Here f is the so-called flavour index, which distinguishes the various types
of fermions (electrons, protons, etc.). The covariant derivative D, is given as
before [see Equations (3.35) and (14.11)] by

Dy (x) = (0, +ig £ Au(x)) W s (). (17.2)

For electrons we have g5 = —e and for protons gy = e. For « = 0 the La-
grangian is invariant under gauge transformations

Au(x) = Au(x) + 0, A(x), Wi(x) = exp (—iqrA(x))Ws(x). (17.3)

The Feynman rules are collected in Table 17.1.

Before calculating cross sections we wish to discuss in more detail the helic-
ity of the fermions and its relation to charge conjugation C. The latter relates,
say, electrons to positrons, or in general particles to antiparticles, which is an
important symmetry of the theory. It, as well as parity (P) and time rever-
sal (T) symmetry, can be separately broken, but the combination CPT is to
be unbroken to allow for a local, relativistic invariant field theory. The spin
components of the solutions in Equation (13.8) were based on a decomposi-
tion along the z axis in the rest frame. Helicity, as for the photon, is defined
by decomposing the spin in the direction of motion, k. It is hence defined in
terms of the eigenvalues of the operator

k.TE ki Sijkdij(%k'o- ®_>). (17.4)

4k| %) ko

(J is the spin part of the angular momentum operator, the equivalent of
1o for a two-component spinor.) This holds both in the Dirac and Weyl

113
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TABLE 17.1
Feynman rules for QED.
1. kuk,
¢ ‘(g“”‘“‘akuig) )
[AA%AYAY] =
m v = 2 1ie photon propagator (Lorentz gauge)
Mo ks
b t s =1 vip and ki =k + k3 photon vertex (fermion charge is q)
ky ky
1 .
bk a [m]ab fermion propagator

representations. It is easy to verify that [k - J. k=0, e.g., by making use
of the fact that in the Dirac representation

kl, k-G
p=| 07 71 (17.5)
k.5 —kl,

This 1mphes that we can choose u( ) and v((f‘) to be eigenstates of the helicity
operator k - g (consequently they become functions of k)

kT Ok =+19(k). (17.6)

Instead of the label o, we can use =+ to indicate the helicity and we have

By = ey, k- ugh) = 4R,
m —+ ko
o®) = i, kT =gk, @77

Note the flip of helicity for the positron wave functions. For k = (0, 0, k) these
eigenstates coincide with the decomposition in Equation (13.8). It is clear that
we can define

R =| o |, k-5euk) = euk),

vy (k) = 0 | k-oxek)=Fxe(h), (17.8)
Xi(’%)

with g1 and x4 each an orthonormal set of two-component spinors. They can
be related to each other by

xx(k) = —ioapt (k). (17.9)
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Indeed, when we use that

02010, = —07, i=1,2, 3, (17.10)
which expresses the fact that SU(2) is so-called pseudo real, we find

k-6 (—ioagi(k)) = (—ik- 5*029%(]%))* = (imk -5 ‘/’i(k))*

As Equation (17.9) relates the components of the electron wave function to
those of the positron wave function, it is the basis of the charge conjugation
symmetry, which relates the solutions of the Dirac equation to solutions of the
complex conjugate Dirac equation [see Equation (12.31)], which indeed inter-
changes positive and negative energy solutions, i.e., particles and antiparti-
cles. To formulate this symmetry in the four-component spinor language, one
introduces the charge conjugation matrix (in the Dirac representation)

—i
C=—iyy2=|© 2, (17.12)
—ioy @
which satisfies
cl=cl=—C, CyuC' =~y (17.13)

This can be proven from the explicit form of the Dirac matrices. The equivalent
of Equation (17.10) is given by

y2yuy2 ==V, (17.14)
It is now easy to verify that
vp(k) = Ct.(k),  us(k) = Col(K). (17.15)

We just need to prove one of these identities, because charge conjugation is
an involution, i.e., applying it twice gives the identity

t
C(CF) = CylCryiw = w. (17.16)
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We find
1 (k)
7 e o e o (B +m)
C”;(k) = CV(;”i(k) = Zy2u:t(k) = Wzm

*(k *(k
=k +m) . %:( ) ~ —k+m) (o ios ‘Pi( )
V¥ Tkol B

2177/ 0
m+ |‘EO| —ior, @

&% 0 | =o®. (17.17)
xx(k

Under charge conjugation the charge that appears in the covariant deriva-
tive in Equation (17.2) should change sign too. To show this we multiply the
complex conjugate of the Dirac equation with iy?

iv? [(—ivu (3" —ie A") + m) W]" = (iy*y)y2(3" +ie AY) +m) (iy> ™)
= (—iyu (3" +ie A) +m) (CT'). (17.18)

That charge conjugation is really a symmetry of the quantum theory is most
convincingly demonstrated by the fact that the Dirac Lagrangian is invariant

under charge conjugation. Using C¥' = W!y#Cfyy = —W'C~?, the anticom-
muting properties of the fermi fields and partial integration, we find

/d4x CY' (iy, (9" +ie A*) —m) CT'

_ fd4x — WO (iy, (8" + ie AY) — m) CT

_ /d4x — W (=i (0" +ieAY) — m) T

= /d4x W (iy, (3" —ie A*) —m) W. (17.19)
In particular we see that the electromagnetic current generated by the fermi
fields transforms as required for the interchange of particles and antiparticles,

under which the charge changes sign

=Ty S —Ty,w. (17.20)

An important consequence of the charge conjugation symmetry is Furry’s
theorem, which states that a fermionic loop with an odd number of vertices
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ky

ky k,

FIGURE 17.1
Fermion loops with an odd number of photons.

will not contribute to the amplitude. Consider a fermion loop as in Fig-
ure 17.1(a) for which the Feynman rules lead to the expression (note that spinor
index contractions run against the arrow of the fermion line and )", k; = 0)

1 1 1
nTr . J251 - 1253 . M3 4 Hn .
1 (;ﬁ—m—l—zay yﬁ+k1—m+zay yﬁ+k1+kz—m+zay v )
(17.21)

Using the fact that for any matrix A we have Tr(A) = Tr(A") = Tr(CA'C™Y),
we convert Equation (17.21) to the expression

1 1
— )T [ yhn ... s e _m
=0 (V Tk —h-mtie) —p—k-mrie
1
X —, (17.22)
—p—m-+ie

which is exactly (—1)" times the result of the Feynman diagram that is ob-
tained by inverting the orientation of the fermion line (i.e., the vertices are
connected in the reversed order) as indicated in Figure 17.1(b). As both dia-
grams will occur, their contributions will cancel whenever n is odd. It confirms
the intuition that particles and antiparticles contribute equally, except for their
opposite charge factors (£g)".

We will now calculate the cross section for electron-electron scattering (the
so-called Meller cross section). In lowest nontrivial order there are only two
diagrams that contribute, as indicated in Figure 17.2.

The labels t; and s; indicate the helicities of the incoming and outgoing
electrons. The scattering matrix (ignoring the time-dependent phase factor)

ky ty Py Sy ky ty
Py S
by s1
ky 1y Py s ky t

FIGURE 17.2
Diagrams that contribute to the electron—electron scattering.
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for this process is given by

out< (P1,51), (P2, 52)I(k1, 1), (k2, 1) >in

84(p1 + p2 — k1 — k) M({(=p1, 1), (= p2, 52}, {(k1, 1), (ka, £2)})
V2P0 (P @r)32pR (B2) (2)32K D (k) 222k (o) (20)°

_ 18u(p1+p2 — k1 — ko) {ﬂsl(Pl)ﬁ’V“uﬁ (k1)gpuvits, (p2)ey " uy, (k2)

(4m)2,/ pi p @Dk (k1 — p1)* +ie

_ us1(Pl)eV'uutz(kz)guvusz(PZ)eV ut1(k1)}
(k1 — p2)? +ie

= —i(2n)*

(17.23)

The relative minus sign is, of course, a consequence of the so-called Fermi-
Diracstatistics, which implements the Pauli principle. We gotrid of the gauge-
dependent part of the photon propagator (see Table 17.1) by using the fact
that the currents generated by #(p)y*u;(k) are conserved, such that

s (p)y u(k)(pu — k) = as(p)[(p —m) — (k —m)Jus (k) =0, (17.24)

because on-shell (¥ — m)u(k) = 0 [and hence also (k) (f — m) = 0]. Indirectly,
through current conservation, this is related to gauge invariance. It guaran-
tees that the longitudinal component of the photon does not contribute to
the scattering matrix, which is thus seen not to depend on the gauge-fixing
parameter «.

The differential cross section for unpolarised electron—electron scattering is
given by [see Equation (10.12); from now on we will drop the distinction
between k; and k;]

p Z dsp1 d3 P (27)484(p1 + p2 — k1 — k2)

= 2 000 @0 ()@Y 4 e

x1 Z IM({(—p1, s1), (—p2, )}, {(ka, 1), (ka, 2)}) 1%, (17.25)

t, b

where |}, , stands for averaging over the polarisations of the incoming
electrons For the total cross section, we should multiply with a factor of
! to avoid double counting the identical outgoing electrons, or restrict the
scattering angle 6 to the interval 6 € [0, 7/2], when integrating over the
outgoing momenta. The latter convention will be followed here. In the center
of mass system, the scattered particles move back to back in a direction which
is only determined modulo 7, which is why 6 € [0, 7/2], with 6 measured
from the incoming particle direction (also defined modulo ).
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FIGURE 17.3
Graphical representation of Equation (17.26).

To calculate | M|?> we use

Zus(p)mm(k)(us(p)yvut(k> =Y a(p) (k) (k) yoy, vous (p)

s, t
=Tr(y, Y (0) @ (k) Y us(p) @ (p) ) = Te(vulk + mym(p + m)),
(17.26)

which can be represented graphically as in Figure 17.3. Hence, we add a
Feynman rule for the so-called cut fermion propagator
k
b—»G—a = sign(ko) (f + m)ap. (17.27)
For antiparticles kg < 0 [see Equation (13.18) for the extra minus sign]. These
results can be generalised to other fields too, by noting that our conventions
have been such that the propagators can be written as

> 05(k) ® Bp(k)*

k2 —m?2+ie

(17.28)

where ¢ﬁ(12) are the wave functions for the incoming lines and 6),3(12)* for the
outgoing lines, with g labelling the internal degrees of freedom [compare this
to Equation (16.8)].

We can now use this result to compute |M|?

Y IMP=

s1,52,t1, b

: >+(p1 <« )

((k1 — p1)? +ie) ((kz — p2)? + i)

Te[y (s + m)y" (B2 + m)yu(ls + m)yu(p1 + m)]
((kl - pl)z + 18) ((kl — P2)2 + 18)

_ 64{T1"[J/”“(k1 +m)y' (¢ + m)] Tl"[)’u(kz +m)y, (P + m)]

+(p1 <— p2). (17.29)
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To compute the traces over the gamma matrices, we use the following
identities (Problem 21):

Tr(]/p_yv) = 4g;w/ TI‘(J/uVu)/aVﬂ) = 4(guugotﬂ + 8up8av — gp_agvﬁ)/
D VivaVpyt =48us D Vo VaVp¥" = —2¥8Valrr (17.30)

I I

and the fact that the trace over an odd number of gamma matrices vanishes.
This implies

Te (v (k + m)y(p + m)) = Te(yukvop) + 4m* g
=4(m* —k - p)guv + 4k, py +4k,p,,  (17.31)

and

Z Yk +m)y (P +m)y* = =2y — 2m*y, + dmk, + dmp,. (17.32)
n

Together with momentum conservation (p1 + p» = k1 + k2) and the on-shell
conditions (p? = p3 = k? = k3 = m?), which imply identities like p; - p» =
k1 - kp, we find

> IMP

s1,52,h, b
_ [ 16880 — ki ) + K pi + K ) (G 07 — Ko ) + KP4 K
((ky = p1)2 +ig)((ka — p2)* +ie)

_ T@pay e + 2y — dmky — dmp3) (s + )y, + )]

((ky — p1)? +ig)((ky — p2)? +ic)

= 32e4{ ko) o (ks pa)” + 201 pa — ki - K)

((ky = p1)2 + izs)2
(k1 - k2)? — 2m%ky - ko

- ((ky — p)2 +ie)((ky — p2)* +ie) +(p1 < p2). (17.33)

+(p1 < p2)

The parameter « determines the relative sign of the ‘crossed’” diagrams in
Equation (17.29), which arise from multiplying the direct electron—electron
scattering diagram with the complex conjugate of the one where the outgoing
fermion lines were crossed. For Fermi-Dirac statistics k = —1. By keeping
track of the dependence on «, one sees how scattering experiments can be
used to verify the anticommuting nature of the electrons.

We finally perform some kinematics and express the differential cross sec-
tion in terms of the scattering angle . We define in the center of mass frame
K=k=pP=pl=E, pr=-pr=phki=-k =k with |p| =k

(17.34)
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Defining 6 to be the angle between k and p, i.e. p - k = k2 cos 6, we have

ki ko= E2+k?=2E%—m?
ki-p1= E2 —k%cosf = E%(1 — cos ) + m? cos 6,
ki-pr= E%+k2cosh = E?(1 + cos8) — m?cos 6,
(p2 —k1)? = —4k?cos?(160), (p1 —ki)? = —4k?sin?(16),
(kr - k1)> — m* = AEX(E? — m?) = 4k2E2. (17.35)

Finally we use the identity (2 is the solid angle, dQ2 = sin0d0d¢)

/d3ﬁ1d3f72 54(p1 + Pz—k1 —kz) = f pzdde(S (2\/f72+m2 —2\/122+m2)

= /dQ LEIK|. (17.36)

Collecting all terms we find for Equation (17.25) the result

do 1 @m)* Ek| | ) 1 )
_— = . = . g |M| = X0 5= |M| ’
A2 (2E@r)y)’  4vak2E? Xf:t 20m2E? Zt
(17.37)
Wlth Zsl,sz,tl,tz |M|2 given by

32e4{ (2E2—m*)*+[E?(1+cos ) —mzcosq9]2+2m2[E2(1+cos 0) —m2cos 6 +m?—2E?]
16(k2)2 sin*(16)
N (2E*—m?)>4[E2(1—cos ) + mzcosﬁe]z—i— 2m*[E2(1—cos 8) +m?cos O +m>—2E?]
16(k?2)? cos*(16)

2(2E%-m?)(2E%-3m?)
16(k 2)2 sin?( 160) cos?(10)

32¢* { [(2E?—m?)*+ E*+(E?— m?)*cos? 6 +2m?(m*— E?)]( cos*(16) +sin*(16))
1
sin* 6

" (ke
+Cos9[2E2(E2—m2)+2m2(E2—m2)](cos4(%9) —sin*(10))
sin* 6
2(2E%—m2)(2E>—3n?)
" 4sin®0 }

_ 16¢*
(k)2

4(2E2—m?)?  3(2E?-—m?)*—m* 4+« (2E?—m?)(2E%—3m?)
sin*@ sin? 9

7

{(El_m2)2+

(17.38)
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FIGURE 17.4

Diagrams that contribute to the electron-photon scattering.

yielding (o, = % = 47“;1 i 1%—7 is the fine-structure constant and x = —1)

da_aez(ZEz—mz)z{ 4 3 (E2 — m?)? (1+ 4 )}

dQ ~ 4E2(E2—m?)?|sin*0  sin2f = (2E2 —m?)? sin? 6
(17.39)

This cross sectionisinvariantunder§ — m —6, such that we cannot tell the two
outgoing electrons apart, as it should be. For electron-electron scattering we
have to put « = —1, but we see from the dependence on « in Equation (17.38)
that one can easily distinguish experimentally if electrons behave according
to the Fermi-Dirac statistics.

In Problem 29 electron—positron scattering is studied within the final state
an electron and a positron (Bhabha scattering) or a muon and an antimuon.
Both for e7e~ — e¢“¢~ and e"e™ — e~e™, one cannot take 6 too close to
zero (or w for e~e™). Apart from the fact that the detector would be in the
way of the beam, it is fundamentally impossible to distinguish the scattered
particlesat® = 0 (and = n fore~e~) from those in the beam. The divergence
of the differential cross section was therefore to be expected. For e et —>
w~ ' this divergence is absent and one can define the total cross section by
integrating over all angles. For E > m, and E > m, one finds (see Problem
29) o = lwa2i*c?/E? = 21.7nb/E*(GeV).

We now discuss electron—photon scattering, also known as Compton scat-
tering. The resulting cross section is called the Klein-Nishina formula. There
are again two diagrams that contribute in lowest nontrivial order to the scat-
tering matrix, Figure 17.4. The cross section is now given by

dsp’ dsk' r)*su(p+p —k —K)
do = _ —
’ Z: 2po(p')(2m)3 2k} (k') (27)3 4lp - k|
<1 IM{(=p, 8, (K, ) (s s), (k, 1))
s, t

2
7

(17.40)

where, as for electron—electron scattering, we will discuss unpolarised cross
sections. This requires averaging over the polarisations of the incoming parti-
cles (at the end of this chapter we will mention the dependence on the photon
polarisations). Note that the photon has also two helicity eigenstates, together
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with the electron ), contains four terms. The reduced matrix element for
the two diagrams is given by

i (pey el (K')*(p + K +m)ey el (k)us(p)
(p+k)?—m?+ie

M= + ((k, £) «— (=K, ).

(17.41)

We leave it as an exercise to verify that the cut photon propagator, for the
choice of polarisations discussed in Equation (16.21), is given by (k? = 0)

k
kun, (k) + k,n,(k)
= (t)k (t)k*:_ v_ﬂ« M ]
va ;eﬂ()sv() (gﬂ k()
(17.42)
Like for electron—electron scattering, we can compute | M |? graphically by
v <~k
Z IM|? = ( p+k P4k p'—k ) + (k' <— —k)
s1,82,t1, b

_ | TGk my (P m)y T (P A Ry (f +m)]
((p +k)2 —m?2+ is)2

Te[y (P + K+ m)y (P + m)y™ (p — K +m)y” (¥ +m)]
((p+k)?—m?+ie) ((p—k)?—m?+ie)

X Z gg/)(k,)g;(f’,)(k,)* Z&‘f}t,)(k)&‘]()t)(k)* (K <> —k).
t'=+ t=+
(17.43)

The gauge invariance (i.e., conservation of the fermionic current) is again
instrumental in decoupling the longitudinal component of the photon field.
In this case the argument is somewhat more subtle. Consider, for example,
the term from the cut photon propagators that contains k,. It gives rise to the
combination (using that p? = m?)

(P+E+myk(p+m)=F+E+m{(P+K§—m)— (P —m)}(p+m)
= ((p +Kk)* =m®)(p + m). (17.44)

This means that one of the photon vertices is removed. There remain two
diagrams, each with one fermion loop and with an odd number of vertices.
Furry’s theorem tells us that these two diagrams add to zero. We may there-
fore just as well replace the cut photon propagator by —g,.. Using this we
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find

s1,52,t1, b2

MR = 64{Tr[3/“(¢ MY (P Pk + )]
((p +K)2 —m? + i)

Te[y (P + Kk +m)y" (P +m)yu(p — K +m)y(p +m)]
(p+k)?—m?+ie) ((p— k)2 —m? +ic)

+(k' < —k). (17.45)

Taking the incoming electron at rest [p = (m, 0)], following similar steps as
for electron—electron scattering, one will arrive at the result

do o (KN (ko K, .,
do _ k\ (ko K _ 17.4
i~ om <k0> (k6 T O™ 9)’ (1746)

where 6 is the angle of the scattered photon with the direction of the incident
photon. From energy and momentum conservation, one finds that

k) = o
07 1+ (ko/m)(1 — cosB)”

(17.47)

For a detailed derivation we refer to Section 5-2-1 of Itzykson and Zuber and
to Section 86 of Berestetskii et al. (see Chapter 1 for the reference).

In Itzykson and Zuber, as for most other textbooks, the result is derived by
choosing the photon polarisation such that e(k) - p = 0 [keeping e(k) - k = 0].
With this choice it is even possible to determine the polarised cross section
(the polarisation of the electron is assumed not to be observed)

do o (KN (ko K
— = (2) (S +2+4(-e)> 2], 17.4
<dQ>pol 4m? <ko> <k6+ko+ (e ) (17:49)

where ¢ and ¢’ are the polarisations of resp. the incident and scattered photon.
When k) « m, one obtains the well-known Thomson formula

do a? ,
<E) = g - g)2. (17.49)
po

The unpolarised cross section in this limit is obtained by summing over the
scattered and averaging over the incident polarisations

2
do o

iQ ~ 2m?

8ra?
3m2

(14cos?0) and o = (17.50)
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Non-Abelian Gauge Theories
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Quantum electrodynamics is an example of a U(1) gauge theory. U(1) is the
group of the unimodular complex numbers and determines the transforma-
tion of the charged fields

W(x) = exp (—ig A(x))¥(x) = g(x)¥(x). (18.1)

It forms a group, which means that for any two elements g, i € U(1), the
product is also in U(1). Furthermore, any element has an inverse ¢!, which
satisfies gg~! = ¢7'¢ = 1. The unit 1 satisfies g1 = 1g = g, for any ¢ € U(1).
U(1) is called an Abelian group because its product is commutative. For every
g, heUQ),gh =hg.

It is now tempting to generalise this to other, in general, noncommutative
groups, which are called non-Abelian groups. It was the way how Yang and
Mills discovered SU(2) gauge theories in 1954. Like for U(1) gauge theories,
they made the SU(2) transformation into a local one, where at every point
the field can be transformed independently. (It should be noted that they
were originally after describing the isospin symmetry that relates protons to
neutrons, which form a so-called isospin doublet.)

The simplest non-Abelian gauge group, for which no longer gh = hg,
is SU(2). This group is well known from the description of spin one-half
particles. It has a two-dimensional (spinor) representation, which can also be
seen as a representation of the rotation group SO(3). As alocal gauge theory, it
does no longer act on the spinor indices but on indices related to some internal
space, giving rise to so-called internal symmetries. The way the gauge group
G acts on the fields W is described by a representation of the group G. A
representation defines a mapping p from G to the space of linear mappings
Map(V), of the linear vector space V into itself:

p:G—Map(V), p(g):V-—>1V. (18.2)

Mostly, V will be either IR" orC", in which case p(g) is resp. a real or a complex
n x nmatrix. For p to be a representation, it has to preserve the group structure
of G

p(@)o(h) = p(gh),  p(1) = idy. (18.3)

125
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We will generally restrict the gauge symmetries to Lie groups for which one
can write any group element as an exponential of a Lie algebra element

g=exp(X), XelLg. (18.4)

This Lie algebra has a noncommutative, antisymmetric bilinear product [re-
quired to satisfy the Jabobi identity, as defined in eq. (18.12)]

(XY)eLexLe—[XY]eLe. (18.5)

The Campbell-Baker-Hausdorff formula expresses that the logarithm of
exp(X) exp(Y) is an element of the Lie algebra, i.e., the product of two expo-
nentials is again an exponential.

F(X,Y) =log (exp(X) exp(Y)) = X+ Y + 3[X, Y]+ 3[ X, [X, Y]]
+3[Y, [Y, X]]+ - € Lg. (18.6)

This formula will be of great help in finding a simple criterion for p to be a rep-
resentation, satisfying eq. (18.3). Apart from the group structure of Map(V),
it also has a Lie algebra structure (the commutator of two n x n matrices is
again an n x n matrix). The representations of the group can be easily restricted
to the Lie algebra

p: Lg — Map(V), (18.7)
in a way that preserves the Lie algebra structure

p([X, Y]) = [p(X), p(Y)] = p(X)p(Y) — p(Y)0(X). (18.8)

It is more or less by construction that we require

p(exp(X)) = exp (p(X)), (18.9)

where on the left-hand side p is the group representation and on the right-
hand side it is the Lie algebra representation. Without causing too much
confusion, we can use the same symbol for the two objects. As a Lie algebra
forms a linear vector space, we can define a basis on L¢

Z=Y zT"elg, z eR(orC), T"eLg. (18.10)

a=1
In here n is the dimension of the Lie algebra (and the Lie group if, as we
will assume throughout, the exponential is locally an invertible mapping).

The commutator, also called a Lie product, is completely determined by the
structure constants fﬂ be

[T°, TP =" fan T". (18.11)

c
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Using the Jacobi identity
(XY, Z]] +[Y. [Z X]]+ [Z [X Y]] =0, (18.12)

applied to X = T%, Y = T? and Z = T¢, we find (from now on sums over
repeated group indices are implicit)

fbcdfade + fcudfbde + fabdfcde =0. (18-13)

This precisely coincides with the commutation relations of the so-called ad-
joint representation

(To)pe = £ad(Toc = fach- (18.14)
Indeed, one easily verifies that
[paa(T"), pad(Tb)] = fabcPad(T°). (18.15)

In general, since a representation preserves the commutation relations, it
also preserves the structure constants in terms of p(T") = T], which forms
a basis for the linear representation space which is contained in V. They are
called the generators of the representation. With the help of eq. (18.6), we
easily verify that p is a representation if and only if

[T, T/ = fur Ty (18.16)

This is because under the action of p one simply replaces T* by T/

,0<exp(x,Z T”)) = p(exp(X)) = exp(,o(X)) = exp(xﬂ Tj). (18.17)

Similarly, the Campbell-Baker-Hausdorff formula, when expressed with re-
spect to the Lie algebra basis {T*}

exp(xaTﬂ) exp(beb) = exp({xu + Yo + 2% Ye foea + 5 (XaXp e
+yd]/bxc)fbcefdea + - }Ta). (1818)

directly determines the multiplication of the representation of group elements
by replacing T* by T}/, provided eq. (18.16) is satisfied. Note that the structure
constants are antisymmetric with respect to the first two indices. They are also
invariant under cyclic permutations of the indices. This follows from the cyclic
property of the trace

fand T(TATE) = Te(TZ, THTS) = T(TATE, TED) = fooa T(TETY),  (18.19)
and from the fact that for compact groups the generators can be normalised
such that

Tr(Thha Ting) = —$0ab, (18.20)
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where T ; are the generators of the so-called fundamental or defining rep-
resentation of the group G. This matrix representation is usually identified
with the group (or algebra) itself, which till now was seen more as an abstract
entity. The simplest example is SU(2), the set of complex unitary 2 x 2 ma-
trices with unit determinant. Its fundamental representation coincides with
the spinor or spin one-half representation. The structure constants and the
generators of the fundamental and adjoint representations were considered
in Chapter 12 [see eq. (12.9)]

Tia = —%O”, fabe = €abe,  Paa(T") = —L". (18.21)

Because the Campbell-Baker-Hausdorff formula plays such a crucial role
in the theory and in the practical implementation of group representations,
we will now provide a more abstract derivation of eq. (18.6) to all orders. The
proof simply states how the Taylor expansion products of Lie algebra elements
are regrouped in multiple commutators. A crucial ingredient for deriving the
Campbell-Baker-Hausdorff is the so-called derivation D, that maps a product
of Lie algebra elements into a multiple commutator.

DX=X, DXyX, - Xi=[Xqy [Xp - [Xi, Xi]l-1 s>1 (1822
We also define for these products the adjoint map, ad, introduced in eq. (12.12)
adX;, X, -+ Xi, = adXjadX;, - --ad X, (18.23)

which is easily seen to satisfy
ad([X, Y]) = [ad X, adY]. (18.24)

It is more or less by definition that for any two products 1 and v of Lie algebra
elements

D(uv) = aduDo. (18.25)
For two Lie algebra elements X and Y, it can easily be shown that

DIX, Y] = D(XY) — D(YX) = adXDY — adYDX
= [X, DY] + [PX, Y] (18.26)

and this allows us to prove by induction that a monomial Q (a polynomial
of which all terms are of the same order) of degree m in terms of Lie algebra
elements X;,i =1, 2, ..., s is an element of the Lie algebra (i.e., can be written
as multiple commutators, called a Lie monomial) if and only if DQ = mQ. If
this equation is satisfied, it is clear from the definition of a derivation that Q is
a Lie monomial. So it is sufficient to prove that the equation is satisfied for Q as
a Lie monomial. In that case Q is a sum of terms, each of which can be written
as ad(X;,) QY with QY a Lie monomial of degree m — 1. Using eq. (18.26)
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therefore yields Dad(X;,) Q' = ad(X;,)PQW + ad(X;,) Q. Induction in m
gives the required result.

Now it is trivial to regroup the terms in the Taylor expansion of eq. (18.6) in
multiple commutators. From the fact that any group element can be written
as the exponent of a Lie algebra element, we know that F(X,Y) € L¢ (at
the worst one needs to restrict X and Y to sufficiently small neighbourhoods
of the origin in L¢). Consequently, in the Taylor expansion of F(X, Y), the
collection of all terms at fixed order m, denoted by F,(X, Y), is a monomial
in Xand Y, and F,,(X, Y) is an element of the Lie algebra such that

F(X,Y)=) Fu(XY), Fu(XY)= %DFM(X, Y). (18.27)

It is not difficult to work out the Taylor expansion for F (X, Y)

F(X,Y) = log (exp(X) exp(Y)) = log (1 Ly Xz‘y;‘)

il
itj=0 J°

(—1yk1 xiyi\"
:Xk: 2 (Z l_!],!), (18.28)

i+j>0

from which we easily obtain the explicit expression for the Campbell-Baker—
Hausdorff formula in terms of multiple commutators,

Z (_1)k71 D (X;ﬂ Y71 XP2Yyqz ... XPk Yﬂk)
km pilgilpalgal - - - prlgy!
(18.29)

F(X,Y)=>

Mk, Y piHaj=m, pi+q;>0}

We leave it to the industrious student to verify that

Fi(X,Y)=X+Y, F(XY)=1i[XY]
F3(X,Y) = 4 {(@dX)*Y + (adY)*X}, F4(X, Y) = —ad XadYad X(Y),
F5(X, Y) = — % {(@adX)*Y + (adY)* X} + 5% {ad X(adY)’ X + adY(ad X)*Y}

360

— 4 {adXadY(ad X)*Y + adYad X(adY)*X} . (18.30)

After this intermezzo we return to the issue of constructing non-Abelian
gauge theories. The simplest way is by generalising first the covariant deriva-
tive. U(1) gauge transformations act on a complex field as in eq. (18.1), and
the covariant derivative is designed such that

D, ¥(x) = g(x)D,¥(x). (18.31)

Since the gauge field transforms as in eq. (17.3), this is easily seen to imply
that the covariant derivative is defined as in eq. (17.2) [these formula are of
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course also valid for complex scalar fields; compare this to eq. (3.36)]. For a
non-Abelian gauge theory, we consider first a field W that transforms as an
irreducible representation (i.e., there is no nontrivial linear subspace that is
left invariant under the action of all gauge group elements)

W SW = p(g)W. (18.32)

In the following, as in the literature, we shall no longer make a distinction
between g and p(g). It will always be clear from the context what is intended.
The vector potential should now be an element of the Lie algebra L (more
precisely a representation thereof)

A, = AT (18.33)

For U(1), which is one dimensional, we need to define T' = i. The Lie algebra
of the group consisting of the unimodular complex numbers is the set of
imaginary numbers Ly;) = iIR. Note that as an exception this generator is
normalised different from eq. (18.20), so as not to introduce unconventional
normalisations elsewhere. The real valued vector potential A, will now be
denoted by A}, and we see that under a gauge transformation

Ay —8A =gA8 T — 771 (0,8)8 = gAg T + 7 g0u(s7).  (18.34)

This is the form that generalises directly to the non-Abelian gauge groups
with the covariant derivative defined by

D,V = (3, +9qA) Y, (18.35)

where A, = A} T} is a matrix acting on the fields W. We leave it as an exercise
to verify that under a gauge transformation, eq. (18.31) remains valid for the
non-Abelian case.

It is now a trivial matter to construct a Lagrangian that is invariant un-
der local gauge transformation. Assuming the representation is unitary, for a
scalar field ¥ one has

Ly = (D,W)' D*w — 2wty (18.36)

whereas if W is a Dirac field, carrying both spinor (representation of the
Lorentz group) and group indices, one has

Ly =V (iy*D, —m)¥, W=wiy (18.37)

where W' is the Hermitian conjugate both with respect to the spinor and the
group (representation) indices.

The part of the Lagrangian that describes the self-interactions of the vector
field A, has to be invariant under local gauge transformations too. In that
respect U(1) or Abelian gauge theories are special, since the homogeneous
part of the transformation of the vector potential is trivial, ¢ A,¢g~! = A,. For
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non-Abelian gauge transformations, this is no longer true. For U(1) one easily
verifies that

D,D,¥ — D,D,¥ =[D,, D,]¥ =iqF},V, (18.38)

where F, = 8,A] — 9,4 is the electromagnetic field strength; compare
this to eq. (3.27). Because the covariant derivative transforms in a simple
way under gauge transformations, this formula can be directly generalised
to non-Abelian gauge theories

Fu=q '[D,, D,] 5 gFug . (18.39)

For U(1), where g is a number, this means that the field strength is gauge in-
variant, as was noted before. For non-Abelian gauge theories the field strength
itself is not gauge invariant. Nevertheless, it is simple to construct a gauge-
invariant action for the gauge field

L= 3Tr(F,,F"") = —1F; FI*, (18.40)
where F/, are the components of the field strength with respect to the Lie
algebra basis,

Fuv=FLT" = (8, A% — 8, A% + q fanc AL, AS) T (18.41)

We see from L4 and Ly that g plays the role of an expansion parameter.
For ¢ = 0 we have n = dim(G) noninteracting photon fields. They couple
with strength g to the scalar or Dirac fields. For non-Abelian gauge theories,
in addition the vector field couples to itself. These self-interactions guarantee
that there is invariance under the gauge group G, which is much bigger than
U(1)", which is the symmetry that seems implied by the g = 0 limit. The
non-Abelian gauge invariance fixes the “charges” of the fields with respect to
each of these U(1) gauge factors. Without the non-Abelian gauge symmetry,
there would have been 7 independent ‘charges.’

The Lagrangian £ 4 is the one that was discovered in 1954 by C.N. Yang and
R.L. Mills. The Euler-Lagrange equations for the Lagrangian £ 4 are called the
Yang-Mills equations. One easily shows that

0. F +qfunc ALFL” =0 or [D,, F*'] = 8,F" +q[A,, F*1=0. (1842)

For the coupling to fermions we read off from eq. (18.37) what the current for
the Yang-Mills field is

Ly =VW(iy"D, —m)¥ = W(iy"d, —m)V +ig AWy "T"W. (18.43)
The current is therefore given by

7= —igUy, T (18.44)
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The coupled Yang-Mills equations read
uFM +qfanc AFN =], (18.45)

In Problem 31 it will be shown that the current is not gauge invariant, unlike
for Abelian gauge symmetries. Closely related is the fact that it is no longer
true that the current is conserved, i.e., 9* ] u 7 0. Instead, it will be shown in
Problem 31 that 8] + ¢ fapc Ay ] = 0.
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We have seen in Problem 30 that the four-Fermi interaction in good approxi-
mation can be written in terms of the exchange of a heavy vector particle. In
lowest order we have resp. the diagrams in Figures 19.1(a) and 19.1(b). The
first diagram comes from a four-fermion interaction term that can be written
in terms of the product of two currents ], J*, where ], = Wy, V. Here each
fermion line typically carries its own flavour index, which was suppressed
for simplicity. Figure 19.1(b) can be seen to effectively correspond to

. o — Kk, /M2
—J"*(=k) (%) TV (k). (19.1)

At values of the exchanged momentum k? <« M?, one will not see a difference
between these two processes, provided the coupling constant for the four-
Fermi interactions [Figure 19.1(a)] is chosen suitably (see Problem 30). This
is because for small k?, the propagator can be replaced by g,,/M?, which
indeed converts eq. (19.1) to ] #],,/ M?. It shows that the four-Fermi coupling
constant is proportional to M~2, such that its weakness is explained by the
heavy mass of the vector particle that mediates the interactions. Examples of
four-Fermi interactions occur in the theory of g-decay, for example, the decay
of a neutron into a proton, an electron and an antineutrino. In that case the
current also contains a y° (Problem 40).

It turns out that the four-Fermi theory cannot be renormalised. Its quantum
corrections give rise to an infinite number of divergent terms that cannot be
reabsorbed in a redefinition of a Lagrangian with a finite number of interac-
tions. With the interaction resolved at higher energies by the exchange of a
massive vector particle, the situation is considerably better. But it becomes
crucial for the currents in question to be conserved, such that the k,k, part
in the propagator has no effect. It would give rise to violations of unitarity
in the scattering matrix at high energies [the o field defined in eq. (16.15) has
the wrong sign for its kinetic part]. To enforce current conservation, we typ-
ically use gauge invariance. But gauge invariance would protect the vector
particle from having a mass. The big puzzle therefore was how to describe a
massive vector particle that is nevertheless associated to the vector potential
of a gauge field.
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FIGURE 19.1
Lowest order diagrams.

The answer can be found in the theory of superconductivity, which prevents
magnetic field lines from penetrating in a superconducting sample. If there
is, however, penetration in the form of a quantised flux tube, the magnetic
field decays exponentially outside the flux tube. This would indicate a mass
term for the electromagnetic field within the superconductor. The Landau-
Ginzburg theory that gives an effective description of this phenomenon [the
microscopic description being given by the Bardeen-Cooper—Schrieffer (BCS)
theory of Cooper pairs] precisely coincides with scalar quantum electrody-
namics.

L=—-1F,F* + (Dﬂtp)* D'o — k@™o — 1A ((p*cp)2 . (19.2)

In the Landau-Ginzburg theory, ¢ describes the Cooper pairs. It is also called
the order parameter of the BCS theory. In usual scalar quantum electrody-
namics, we would put k = m?, where m is the mass of the charged scalar
field. But in the Landau—-Ginzburg theory of superconductivity, it happens to
be the case that « is negative. In that case the potential V(¢) for the scalar field
has the shape of a Mexican hat, Figure 19.2.

The minimum of the potential is no longer at ¢ = 0, but at ¢*¢ = —2«/2,
and is independent of the phase of ¢. To find the physical excitations of this
theory, we have to expand around the minimum. With a global phase rotation
we can choose the point to expand around to be real,

90 = v/ —2k/%. (19.3)

But this immediately implies that the quadratic terms in the gauge field give
rise to a mass term for the photon field

|D,pol* = e* A A = IMPA LAY, M =2ey/—ic/h. (19.4)

Furthermore, from the degeneracy of the minimum of the potential it follows
that the fluctuation along that minimum [the phase in ¢ = ¢yexp(ix)] has
no mass (this is related to the famous Goldstone theorem, which states that if
choosing a minimum of the potential would break the symmetry, called spon-
taneous symmetry breaking, there is always a massless particle). However,
this phase x is precisely related to the gauge invariance and can be rotated
away by a gauge transformation. On the one hand x corresponds to a mass-
less excitation; on the other hand it is the unphysical longitudinal component
of the gauge field. But the photon becomes massive and has to develop an
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Im (¢)

FIGURE 19.2
The Mexican hat potential V(¢).

additional physical polarisation, which is precisely the longitudinal compo-
nent. In a prosaic way one states that the massless excitation (called a would-be
Goldstone boson) was ‘eaten” by the longitudinal component of the photon,
which in the process got a mass (‘got fat’).

This means we have four massive degrees of freedom, three for the massive
vector particle and one for the absolute value of the complex scalar field
(its mass is determined by the quadratic part of the potential in the radial
direction at ¢ = ¢p). This is exactly the same number as for ordinary scalar
electrodynamics where ¥ > 0, because in that case the massless photon has
only two degrees of freedom, whereas the complex scalar field represents two
massive real scalar fields. It looks, however, like there is a discontinuity in the
description of these degrees of freedom when approaching « = 0. But the
interpretation of the phase of the complex field as a longitudinal component
of the vector field is simply a matter of choosing a particular gauge. To count
the number of degrees of freedom, we implicitly made two different gauge
choices

k>0: 9,A"=0, Lorentzgauge,

k <0: Ime=0 Unitary gauge. (19.5)
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There is a gauge, called the 't Hooft gauge, that interpolates between these
two gauges

F =09, A" —2iespolm ¢ =0, "t Hooft gauge. (19.6)

Rather than adding to the Lagrangian the gauge-fixing term Lgf = —1ar(d,
A")?, one adds L = —1aF?. At§ = 0 this corresponds to the Lorentz gauge,
and at £ = oo to the unitary gauge. For the choice 't Hooft made (¢ = 1/a),
the terms that mix (¢ — ¢p) and A, at quadratic order disappear and one
easily reads off the masses. Gauge fixing will be discussed in the next chapter,
where it will be shown how extra unphysical degrees of freedom appear in
the path integral, so as to cancel the unphysical components of the gauge and
scalar fields. The scalar field, whose interactions give the gauge field a mass,
is called the Higgs field. Problems 34 and 35 discuss the Higgs mechanism in
detail for the Georgi—Glashow model, which is a non-Abelian gauge theory
with gauge group SO(3), coupled to an SO(3) vector of scalar fields ¢“.
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The quantisation of gauge theories in the path integral formalism requires
more discussion, since the gauge condition (like the Lorentz gauge 9, A* = 0)
seems to remove only one degree of freedom of the two that are eliminated
in the Hamiltonian formulation (see Chapter 16). From a simple example it is
easily demonstrated what the effect of gauge fixing on a (path) integral is. For
this we take f(X) to be a function on R?, which is invariant under rotations
around the origin, such that it is a function f(r) of the radiusr = |X| only. The
symmetry group is hence SO(3), and we can attempt to compute the integral
[ dsX f(%) by introducing a ‘gauge’ fixing condition like x, = x3 = 0. But it is
clear that

[ sk Gy # [ sk sGste) D = [ i, (20.1)

We know very well that we need a Jacobian factor for the radial integral

/d;ﬁc f(x) =4n /:Orzdr f(r). (20.2)

This Jacobian, arising in the change of variable to the invariant radial coor-
dinates and the angular coordinates, can be properly incorporated following
the method introduced by Faddeev and Popov. The starting point is a straight-
forward generalisation of the identity [dx |f'(x)[8[ f(x)] = 1, assuming the
equation f(x) = 0 to have precisely one solution (in a sense the right-hand
side of the equation counts the number of zeros). It reads

1= / Dg | det (M(% A))I8(F (3 4)), (20.3)

where F(A) € L is the gauge-fixing function [with the gauge condition
F(A) =0, eg., F(A = 3, A* = 0]. The gauge transformation g of the gauge
field Aisindicated by & A; see Equation (18.34). Furthermore, M(A) : L — L¢
plays the role of the Jacobian,

OFEA) _ IF(RA)

g = — = . 0
M@ A) % i atX=0 (20.4)
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Equivalently, with respect to the Lie algebra basis, where 7(A) = F,(A)T*,
one has
dF, (exp(th) A

To relate this to the previous equation, one makes use of the fact that
"EA) =) 4, (20.6)

which states that two successive gauge transformations, ¢ and h, give the
same result as a single gauge transformation with hg.

As an example we consider the Lorentz gauge, with 7(A) = 9, A", for
which

FEPX A) — F(A) = —q 78, D (A(X) + O(XD), (20.7)
where D!, (A) is the covariant derivative in the adjoint representation
Di(A(X) = 9" X +q[A*, X]. (20.8)
With respect to the Lie algebra basis, this gives
qMap(A) = —83p9,,0" + q fape (3" A, + AL 9"). (20.9)

For an Abelian gauge theory, the structure constants f,,. vanish and M(A)
becomes independent of the gauge field. This means that det[ M(A)] can be
absorbed in an overall normalisation of the path integral. For non-Abelian
gauge theories this is no longer possible. Before describing how the A depen-
dence of det[M(A)] is incorporated, it is important to note that we assumed
the gauge condition F (8 A) = 0 to have precisely one solution, which can be
arranged with the help of Equation (20.6) to occur at g = 1, in which case A
is said to satisfy the gauge condition. This is, in general, not correct, as was
discovered by Gribov. Even in our simple problem on IR?, the gauge condition
x; = x3 = 0 does not uniquely specify the gauge, because we can go from
(r,0,0) to (—r, 0, 0) through a rotation over 180 degrees. We have to introduce
a further restriction to get the identity

[ sk Gy = [ i 2 seppren) G, (20.10)

where 6(x) = 0 for x < 0 and 6(x) = 1 for x > 0. In perturbation theory
only the gauge fields near the origin in field space are relevant, and gauge
conditions are chosen so as to avoid this problem in a small neighbourhood of
the origin. The Lorentz gauge is such a gauge condition, and the gauge fixing
or Gribov ambiguity is not an issue for computing quantities in perturbation
theory in g.

We still need to define what we mean by Dg in Equation (20.3). It stands
for the integration measure [[, dg(x), with dg(x) for every x defined as the
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so-called Haar measure on the group. It is best described in the example
of SU(2), which as a space is isomorphic with S®. When S® is embedded
in R* as a unit sphere, ni = 1, it is not too difficult to see that g = n4 +
ioxny gives an element of SU(2), whereas exp(i xskox) = cos(x) +1 sin(x)skox,
with s? = 1 shows that any element of SU(2) can be written in terms of 7.
The Haar measure coincides with the standard integration measure on Ss3,
f dgn 8(ni —1). The Haar measure is, in general, invariant under the change
of variables ¢ — hg and ¢ — gh, for h some fixed group element. We can
insert Equation (20.3) in the path integral to obtain

Z= / DA,Dg det (M(5 A))5(F(E A)) exp (iS(A)). (20.11)

We now use that the action S(A) is invariant under gauge transformations.
We leave it as an exercise to verify that likewise DA, is invariant under the
change of variables A — & A, which trivially implies that

Z= / DA,Dg det(M(A))3(F(A))exp (iS(A)). (20.12)

The dependence of the integrand on g has disappeared, and the integration
over g gives an overall (infinite) normalisation factor, which is irrelevant. We
next note that Z has to be independent of the gauge-fixing function F, in
particular 7(A) — Y is just as good for the gauge fixing [provided, of course,
we show that F($ A) = Y has a solution]. This modification does not affect
the so-called Faddeev-Popov operator M(A) and we find

Z= / DA, det (M(A))8§(F(A) —Y)exp (iS(4)), (20.13)

independent of Y. Suitably normalising DY we can define

/DYexp <—%i/d4x Yuz(x)) =1, (20.14)

which combined with the previous equation gives
7 = / DYDA, det (M(A))3(F(A) —Y)exp (i / dyx L(A) — %‘Y}(x))
= / DA, det (M(A)) exp (i / dyx L(A) — %ff(A)) . (20.15)

For U(1) gauge theories with F(A) = 9, A*, this precisely reproduces the
action of Equation (4.22) in the Lorentz gauge, and in that case det[M(A)] is
a constant.

For non-Abelian gauge theories we are left with the task of computing
det[M(A)] for each A, which is no longer constant. But here the path integral
over Grassmann variables comes to the rescue. In Problem 25 we have seen
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that
/DﬁDn exp (i/d4x ﬁ”(x)qMab(A)nb(x)) = det (M(4)), (20.16)

up to an overall normalisation. This implies that the path integral can also be
written in the Lorentz gauge as

Z =/DAMDT7D17 exp {i/d4x C(A)—%(au "(x))z—i— G (x)[0,n" (x)
+ qfabcAZ(x)nC(x)]}. (20.17)

Since 7 and 7 are auxiliary fields, they should never appear as external lines.
They are therefore called ghosts. Ghosts can only appear in loops and because
of the fermionic nature of the ghost variables, every such loop gives a minus
sign. The Feynman rules for the Lorentz gauge are given in Table 20.1.

Because one can easily derive that for a complex scalar field (up to an overall
constant)

1

[P0 p0 e (i [ duxigmr ) ) = s @9

we can view a ghost as the elimination of a complex degree of freedom. It is
in this way that in the path integral the two unphysical degrees of freedom of
a Lorentz vector are eliminated. For QED both the ghost and the unphysical
degrees of freedom have no interactions and cannot appear as external lines
either, which is why in QED the introduction of ghosts was never necessary
for a consistent description of the theory. For non-Abelian gauge theories,
because of the interaction of the ghost with the gauge field, ghosts can no
longer be ignored. To have the ghosts eliminate the unphysical degrees of
freedom, one should have the ‘masses’ (poles) of the ghosts coincide with the
‘masses’ of the unphysical degrees of freedom. Furthermore the couplings of

TABLE 20.1

Feynman rules for ghosts.

no external ghost lines
k
. - b =  (GM) Y(A=0),p = kzsﬂﬁ ghost propagator (Lorentz gauge)
n 56 ks
WS L . = —iqfapcky ghost vertex (Lorentz gauge)
b, ko a,ky
.. dsk
-1 loop £
i 20f oop factor
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the ghost and unphysical fields to the physical fields should be related. This
is verified explicitly for the Georgi-Glashow model in Problem 35. In general
it is guaranteed by the existence of an extra symmetry, discovered by Becchi,
Rouet, and Stora, called the BRS symmetry s, which, for example, acts on the
gauge field as follows:

sA* =D, (20.19)

This is precisely an infinitesimal gauge transformation. For more details, see
Itzykson and Zuber, Section 12-4-1.
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The standard model describes the electromagnetic and weak interactions, uni-
fied in the so-called electro-weak theory of Glashow—Weinberg—Salam with
the gauge group U(1) x SU(2) and the strong interactions, known as quantum
chromodynamics (QCD) with gauge group SU(3). Theory and experiment,
where tested, agree very well up to about 100 GeV, the energies reached by
present-day accelerators. Now that the top quark has been found, at a mass
of 174 GeV, only the Higgs particle remains to be detected. Its mass should be
smaller than 1000 GeV (i.e., 1 TeV = Terra electronvolt) according to present-
day theoretical insight. Gravitation has been left out so far. Its natural scale in
energy where quantum effects would become important is the Planck energy,
Ep = /hc®/G ~ 10" GeV. Itis very well possible that a number of the funda-
mental parameters in the standard model will be determined, either directly
or indirectly, by gravitational interactions. The standard model should then
be considered as an effective field theory. The theory for which the standard
model describes its effective low-energy behaviour is called a unified theory.
An intermediate stage, which does not yet include gravity is the so-called
grand unified theory (GUT). The simplest version unifies the electro-weak and
strong interactions using a gauge group SU(5) [which has U(1)xSU(2)xSU(3)
as a subgroup], thereby reducing the number of free parameters consider-
ably. These GUTs predict proton decay, albeit at the tremendously low rate
of one decay in every 10°°~3lyears. Nevertheless, a swimming pool of (10 m)?
contains enough protons to verify that the proton decay is slower than can
be comfortably accommodated by GUTs. Candidates that unify the standard
model with gravity in the form of string theories and supergravity have been
unable to provide predictions that either rule them out experimentally or
provide evidence in favour of these theories. Much is therefore still to be
discovered, in particular because theoretical insight of the last ten years has
shown that a Higgs field is most likely not fundamental, although it is not
yet ruled out that it will show its structure only at Planck energies. If that is
the case, the mass of the Higgs should, however, not be much bigger than 100
GeV.

The standard model consists of gauge fields B, [for U(1)], W} [for SU(2)]
and AZ [for SU(3), where a runs from 1 to 8, to be discussed later]. These gauge

fields have interactions with a Higgs field ¢ € €2, which transforms under
SU(2) as a spin one-half representation (i.e., the fundamental representation)
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with a coupling constant g. Under U(1) this Higgs field transforms with a
coupling constant —1g’, whereas it is neutral under SU(3). These couplings
are represented in the covariant derivative

. . 3
1 1
Dy$ = 8¢ — 58'Bud — Eg Y Wiouh. 1.1)
a=1

The potential for the Higgs field causes spontaneous breaking of part of the
symmetries

A , A
V(g) = 1(¢'¢ — F*)* = ko' + 7(¢'9)* + const, (21.2)
where k = —1AF2. In this case the minimum of the potential, also called the

vacuum, is degenerate on a three-dimensional sphere, specified by ¢'¢ = F?
(¢ € C* ~ R*), which would give rise to three massless scalar particles ac-
cording to the Goldstone theorem, but all three will be ‘eaten’ by longitudinal
components of the gauge-fields to which the Higgs field couples. We note that
there are four gauge-field components, B, and W} fora = 1,2 and 3. Indeed
one combination among these four will not have something to ‘eat” and will
therefore stay massless. It plays the role of the photon field as we got to know
itin QED. To see this, write

¢ = (°)+(“’1) E¢0+(¢1), (21.3)
F @2 ©2

2r2 2
g: [(W)” + (W2)] + %[g/B,L — W (14)

u ©

such that

(Dugo) D" =

Apparently, the vector fields W}? will have a mass My = 1V/2¢F, whereas
the linear combination

/

'B. — WS
_8ou T8 sin@yB,, — cosOwW>, tanby = <, (21.5)

/g2 + g/Z

receives a mass my = 1v/2F (g2 +g' )z = My/ cos By. The linear combination
perpendicular to Z,,,

Zy

oq |OQ

AT = cos Oy By, + sin 0w W2, (21.6)

remains massless. This gauge field defines a U(1) subgroup of SU(2) x U(1) that
leaves ¢y invariant. This U(1) subgroup is a combination of the U(1) subgroup
of SU(2) generated by exp(i xo3) and the phase rotations exp(i x) associated
with the explicit U(1) group with B, as its gauge field. It is trivial to verify
that the product of these group elements, exp(i x) exp(i x 03), indeed leaves ¢y
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invariant. The gauge symmetry associated with this so-called diagonal U(1)
subgroup therefore remains unbroken and corresponds to electromagnetism.

The Higgs field has three massless components, Re ¢1, Im ¢; and Img;, all
eaten by the vector particles W and Z, and one massive component = Re ¢,
with a mass

m, = ~/—2k = /AF. (21.7)

It is this component that is called the Higgs field. It does not couple to AT",
because like ¢y, also 7 is not affected by the transformation exp(i x ) exp(i x 03).
Alternatively, this can be seen from the covariant derivative

1 ig ig .
D, - {aﬂ — S @W, + W) + 52 ” (cos? oz — sin? Ow) Z,

— sinbw(os + 1)A;m} 7 (21.8)

2 ¥2
Using the fact that

2 0

o3+1= , (21.9)
00

itis clear that ¢ has no electric charge, whereas ¢; has a charge g = —g sin 6.

As these are would-be Goldstone bosons, ‘eaten’ by the vector fields, it will
turn out that the combinations Wy = %\/E(W; F iW?2) are charged with an
electric charge of e, where

e = —gsinfy. (21.10)

As a consequence, the two coupling constants ¢ and g’ are determined by
the electric charge e and the so-called weak mixing angle 6y, also called the
Weinberg angle. From experiment it follows that sin” 6y & 0.23. The Z vector
field will remain neutral under the electromagnetic interactions. To verify the
charge assignment to the vector fields, we have to find the coupling of the
various fields to A7". For this it is sufficient to consider the following part of
the Lagrangian:

2
Lo =—1 (8, W — 8, W" + geanc WWE)* — 1 (3B, — 8,B,)°, (21.11)

with the obvious shorthand notations like (F ZU)Z = Fj Fi". After some alge-
bra the above equation can be rewritten as

Lwp = —1 (FSN +ie(WS W, — WiW,))?
—1 (942 — 3, Z,, + ig cos O (WI W, — W W)’
1D W, — DS™W, —ig cosOw(Z, W, — Z,W,)?,  (21.12)
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where we have defined
Dzm =9, — ieAff“, Flflv“ =9, A" — aVA;f“. (21.13)

We immediately read-off that our charge assignments for Z and W* have
been correct. Note that the vector field WMi has an extra magnetic moment
because of its coupling to F7!

Lmagn.mom. = —ieF W W, (21.14)

which is a direct consequence of the spin of the vector field. (The magnetic
moment for the Dirac field is discussed in Problem 32.)

We now introduce the fermions in the standard model. They are arranged
according to families. The first family with the smallest masses consists of the
electron, the neutrino, the up quark and the down quark. Essential in the
standard model is that invariance under parity is broken explicitly by the
weak interactions (as has been observed in the beta decay of cobalt-60; see
Problem 40). This is achieved by coupling the left- and right-handed helicity
eigenstates of the fermions differently to the gauge fields. It should be stressed
that the standard model does not explain why parity is violated; it was put
in ‘by hand.” For each fermion we define

Ul =11 - p)w, R =11+ p)w. (21.15)
The Dirac Lagrangian in terms of these helicity eigenstates can be written as

Loy =T(iy"d, —m)W = T (iy"8,)Wr + T (iy"a,)w’
(Tl 4 PRy, (21.16)

such that different transformation rules for WXL enforce m = 0, i.e., the ab-
sence of an explicit mass term. The beauty of the Higgs mechanism is that it
also provides a mass for the fermions. This is achieved by coupling the scalar
field ¢ to the fermions, using a Yukawa coupling

Lo =—y(T ¢Iwl + T k), (21.17)

where y is the Yukawa coupling constant. It also immediately fixes the rep-
resentation to which W*L should belong. Since the Lagrangian has to be
invariant with respect to the gauge symmetries, and since the scalar field
is in the fundamental representation of SU(2), we require that W’ is also in
the fundamental representation, i.e., it is a doublet. On the other hand wR
is taken to be invariant under SU(2) (also called the singlet representation).
The couplings of the fermions to the gauge field B, have to be chosen such
that the Lagrangian is neutral. This coupling is parametrised by the so-called
hypercharge Y, in units of —1g’.

Yu=Y(@) =1 Yr=Y.—1, Y =YWk, (21.18)
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The mass of the fermions is now read-off from eq. (21.17) by replacing ¢ with
its so-called vacuum expectation value ¢

Lyy = —yF (T W} + Ty wk), (21.19)

where the index on WL indicates the so-called isospin index, the spinor index
of the two-dimensional fundamental representation for the internal SU(2)
symmetry group. We also see that W] remains massless and this is exactly
the neutrino. The electron is identified with the pair (¥'*, W}) and has a mass
m, = yF. We want the neutrino to have no electric charge and this fixes the
hypercharge of W It is most easily determined from the covariant derivative,
acting on the left-handed fermion, defined as in egs. (21.1) and (21.8), since
both are in the same representation. (Electron and neutrino are also neutral
with respect to the strong interactions; the situation for the quarks will be
discussed below.)

i i .
D”\IJL = {8/L — g(alwll + O'zI/Vi) + 2CO§9W(C052 Owos — Y1, sin? Qw)ZM

igsin by

(o5 + YL)A;m}wL. (21.20)

To make W decouple from the electromagnetic field, we require
Y, =-1, Yr=-2. (21.21)

This also allows us to find the electric charge of Wl to be gsinfy = —e,
which as it should be, coincides with the electron charge. The right-handed
component should of course have the same electric charge. In that case the
covariant derivative is given by

2
= (3y — ie A —ietan Oy Z,) WX, (21.22)

D, Wk = (au - EYRBM) wR = (au - %YR[siHGWZM + Cos@wA‘Zm]) wR

with the expected coupling to the electromagnetic field. Note that we can
summarise our assignments of the electric charge by introducing the charge
operator in terms of the hypercharge and the so-called isospin operator I3

Q" = (3Y + I)e. (21.23)

On a doublet (V% and ¢) one has I3 = 103, whereas I3 = 0 on a singlet (U'®).
We now discuss quarks. There the weak interactions also act differently on
the left- and right-handed components. The left-handed up and down quarks
are combined in a doublet representation for SU(2). If we denote the quark
fields by g, we assign g} to the left-handed component of the up quark (also
denoted by ul) and g4 to the left-handed component of the down quark (d1).



148 A Course in Field Theory

This doublet gets a hypercharge Y(q) = 1, from which we read off the electric

charges
L 2L
em L _ ~em [ Y I
Q™Mg" =Q (dL) = (TEdL). (21.24)

The right-handed components of both the up and down quarks are singlets
under SU(2) and their hypercharges are chosen to ensure that they have the
same electric charge as for their left-handed partners

Y(uR)zg and Y(dR):—g. (21.25)

The quarks transform nontrivially under SU(3), the gauge group of the
strong interactions. They form complex vectors in the three-dimensional defin-
ing or fundamental representation of SU(3). The generators for SU(3) are
given by

(0 1 (0 —i ({1 0 O
i i i
T = —— , T?P=—— , TP=—= — ,
> 7| > 0 -1 0
0 0 0 0 O
. (0 0 —i (0 0 O
4 i 5 i p i
= —= ’ = -3 s T° = —= s
T 5 0 T > 0 0 O > 0 1
1 00 i 0 0 010
({0 0 O ’ 1 0 0
i i
T7=—10 0 —-i| T*=—=|0 1 o0 | 21.26
5 Wi (21.26)
i 0 0 0 -2
normalised in accordance with eq. (18.20). (In terms of the so-called Gell-
Mann matrices, one has T? = —i},/2.) We leave it as an exercise to deter-
mine the structure constants. Note that the Lie algebra for the group SU(N)
is given by traceless and antihermitian (X' = —X) complex N x N ma-

trices. The dimension of this Lie algebra is easily seen to be N> — 1. Note
that det[exp(X)] = exp[Tr(X)], such that exp(X) has determinant one. Also,
exp(X) ! = exp(—X) = exp(X") = exp(X)' guarantees that exp(X) is a uni-
tary matrix.

The fractional electric charge of the quarks is not observable (otherwise
we would have had a different unit for electric charge). The reason is that
quarks are conjectured to always form bound states that are neutral under
SU(3). This can be achieved by either taking three quarks in an antisymmetric
combination to form a SU(3) singlet or by combining a quark and an antiquark.
In the first case one has a baryon, of which the proton (uud) and the neutron
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(udd) are examples. The quark-antiquark bound state is called a meson, of
which the pions are examples (e.g., 7+ = ud and 7~ = id). The bar over the
symbol of a particle of course denotes the antiparticle. Rather prosaically one
associates to the three SU(3) components of the quark field the property colour.
Choosing the three basic colours red, blue, and green makes a bound state of
three quarks in an antisymmetric wave function, where hence all colours are
different, into a colourless composite. Similarly, combining a quark and an
antiquark gives a colourless combination. It is not too difficult to show that a
bound state of quarks and antiquarks is a singlet under SU(3) if and only if
the net colour is white. It is now also easily verified that with the particular
fractional electric charges assigned to the quarks, a colourless combination
always has an electric charge that is an integer multiple of the electron charge.
For this note that both quarks have modulo ¢, an electric charge equal to —1e,
whereas both antiquarks have modulo e charge of le. Three quarks bound
together therefore have zero charge modulo e. The same holds for a quark-
antiquark bound state.

That the strong interactions really are strong follows from the fact that a
quark and antiquark cannot be separated without creating a quark—antiquark
pair from the vacuum, to make sure that the separated components remain
neutral under SU(3). This is achieved by combining the quark (antiquark) of
the pair created with the antiquark (quark) we try to separate. The mecha-
nism that prevents free quarks from appearing is called confinement, which
still lacks a solid theoretical understanding. Because the coupling constant is
strong, a perturbative expansion is no longer applicable. That nevertheless
the theory of the strong interactions is believed to be the correct theory to
describe the forces amongst the quarks (and therefore indirectly the nuclear
forces) follows from the remarkable property that at high energies the effec-
tive coupling constant is small, and at infinite energy even zero. This is called
asymptotic freedom and will only briefly be discussed in the next chapter.
For a more detailed discussion we refer to Itzykson and Zuber. In Table 21.1
we list the gauge particles of the standard model.

The strong interactions do not break parity invariance; i.e., the eight gluons
Al couple to the left-handed and right-handed components of the quark
fields in the same way. However, the so-called Cabibbo-Kobayashi-Maskawa
(CKM) mixing with two other families of quarks (the strange and charm
quark on the one hand and the bottom and top quark on the other hand)
gives in a very subtle way rise to violation of C P, that is the combination of
charge conjugation and parity (equivalent to time reversal T, since CPT is

TABLE 21.1
Gauge particles.

Name Charge Spin Mass Force
Y photon 0 1 0 electromagnetism
A gluon 0 1 0 strong force
W* W particle +e 1 80GeV weak force
Z  Zparticle 0 1 91 GeV weak force
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TABLE 21.2
Fermion families.
Name Charge Spin Mass
d down quark -e/3 1/2 10 MeV
u up quark 2e¢/3 1/2 5MeV
e electron -e 1/2 511 keV
Ve  neutrino 0 1/2 0(<10eV)
s strange quark /3 1/2 250 MeV
c charm quark 2e/3 1/2 1.5 GeV
“w muon -e 1/2 106 MeV
v,  muon-neutrino 0 1/2 0(<0.5 MeV)
b bottom quark -e/3 1/2 4.8 GeV
t top quark 2e/3 1/2 174 GeV
T tau -e 1/2 1.8 GeV
v  tau-neutrino 0 1/2  0(<164 MeV)

conserved). The electron and neutrino, called leptons, in the first family are
replaced by the muon and its neutrino for the second family and by the tau
and associated neutrino for the third family. The experiments described in the
introduction (see Problem 37) have shown that there are no more than three
of these families with massless neutrinos. In the standard model there is room
to add a right-handed partner for the neutrino field, which couples to none of
the gauge fields. With a suitably chosen Yukawa coupling, the neutrino can
be given an arbitrarily small mass. It is experimentally very hard to measure
the mass of the neutrino; only upper bounds have been established. Table 21.2
lists the properties of all the fermions observed in the standard model (the
top quark was only discovered in 1994 at Fermilab). For much more on the
standard model, see in particular the book by J.C. Taylor mentioned in the
introduction.
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Loop Corrections and Renormalisation
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Up to now, we have only considered the lowest-order calculations of cross
sections, for which it is sufficient to consider tree-level diagrams that do not
contain any loops. Loop integrals typically give rise to infinities, which can
be regularised by considering, for example, a cutoff in momentum space, as
was discussed in Chapter 7. Another possibility of regularising the theory
is by discretising space-time, amounting to a lattice formulation; see Equa-
tion (7.5). In both of these cases there exists a maximal energy (equivalent to
a minimal distance). The parameters, like the coupling constants, masses and
field renormalisation constants, will depend on this cutoff parameter, gener-
ically denoted by an energy A or a distance a = 1/A. How to give a physical
definition of the mass in terms of the full propagator and why field renor-
malisation is necessary was discussed in Chapter 9. For the renormalisation
of the coupling constant, it is best to define the physical coupling constant
in terms of a particular scattering process, as that is what can be measured
in experiment. Alternatively, as these are strongly related, the physical cou-
plings can be defined in terms of an amputated 1P n-point function, with
prescribed momenta assigned to the external lines, all proportional to an en-
ergy scale called u <« A. As an example consider the self-interacting scalar
field, with a four-point coupling A [see, for example, Equation (21.2)]. We de-
fine the physical four-point coupling constant in terms of the 1P four-point
function with the momenta on the amputated lines set to some particular
value proportional to u (the precise choice is not important for the present
discussion). It is clear that this gives a function Aeg(4, i1, A). The dependence
on other coupling constants and the mass parameters is left implicit.

The theory is considered renormalisable if we can remove the cutoff by
adjusting A (also called the bare coupling constant) in such a way that at a
fixed value = po the renormalised coupling Ar stays finite and takes on
a prescribed (i.e., measured) value. It is then obvious that the renormalised
coupling constant Ar(u) = Areg[A(A), u, A] is a function of u, coinciding
at o with the prescribed value Ag. Since the physical coupling constant is
computed in terms of the full 1PI four-point function, the dependence on
the energy scale is caused by quantum corrections. Since the vacuum in field
theories is not really empty, as was discussed in the context of the Casimir
effect in Chapter 2, the computation is not much different from calculating
effective interactions in a polarised medium. In this case the polarisation
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is due to the virtual particles that describe the quantum fluctuations (zero-
point fluctuations) of the vacuum, and is therefore also called the vacuum
polarisation. The energy-dependent couplings are called running couplings.
It should be emphasised that the running of the couplings is a manifestation
of an anomaly (called the conformal anomaly), which is the breaking of a
symmetry of the Lagrangian by the quantum corrections. In the absence of
a mass, the scalar field theory with a ¢* interaction is at the classical level
invariant under scale transformations, ¢(x) — x¢(x/k), where « is the scale
parameter. It is obvious that the regularised couplings are not invariant under
such a rescaling because of the presence of a cutoff. What is not obvious is that,
for the simple field theories we have been considering in four dimensions, the
scale independence cannot be recovered by removing the cutoff (i.e., taking
A — 00).

By adjusting the bare coupling constants of the theory as a function of the
cutoff A, to ensure that all regularised couplings stay finite when the cutoff is
moved to infinity, the calculations can be arranged such that nowhere explicit
infinities occur. When we say that the contributions of the loops diverge, we
mean that without adjusting the bare coupling constant, their contributions
are infinite in the limit A — oco. A theory is called renormalisable if only
a finite number of bare coupling constants needs to be adjusted to have all
1P1I n-point functions finite. This can be shown to be equivalent to all 1PI
n-point functions to be completely determined as a function of a finite number
of renormalised couplings, called relevant couplings. It is only in such an
instance that quantum field theory has predictive power. Renormalisability
is therefore a necessary requirement for the theory to be insensitive to what
happens at very high energies with a maximal amount of predictive power.
The standard model falls in this class of theories.

Theoretical studies of the last five years or so have shown that the self-
coupling of the Higgs field will most likely vanish if we really take A — oo,
albeit in a logarithmic way. Loosely speaking the running of this coupling
is such that the renormalised coupling increases with increasing energy. The
only way it can be avoided (that the renormalised coupling will become infi-
nite at some finite energy) is to either take the renormalised coupling equal to
zero or to keep the cutoff finite. It depends on the parameters of the model, in
particular the Higgs mass, how large the cutoff should be. If the Higgs mass
is relatively light, this can be at the Planck scale and has little consequence for
the theory. If, however, the Higgs mass turns out to be in the order of 1 TeV,
the cutoff has to be roughly smaller than 10 TeV.

As we can measure the self-coupling of the Higgs field and related quanti-
ties to be nontrivial (which is, of course, crucial for the spontaneous symmetry
breaking and giving a mass to the W and Z particles), the scalar sector of the
standard model depends in a rather subtle way on what happens at higher
energies. This sensitivity to high energies is, however, much weaker than in
nonrenormalisable theories like for the four-fermi interactions. It is outside
the scope of these lectures to describe the computations necessary to make
the above more precise. In the following we give a sample calculation that
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will provide the technical ingredients to perform such calculations and to il-
lustrate some of these issues in a simple setting. Also, Problems 2, 38, and 39
illustrate further ingredients that are pertinent to renormalising field theories.

Let us end this discussion by noting that a running coupling can, of course,
either increase or decrease at increasing energy. The Higgs self-coupling and
the electromagnetic coupling constant e are examples of couplings that in-
crease at high energies. For the electric charge e, this increase is very tiny and
the cutoff can be chosen much bigger than the Planck energy. The analogy
with a polarised medium is that the virtual particles in the field of a charged
particle will screen its charge at large distances. When we probe the charged
particle at ever smaller distances, the effective charge becomes less screened
and increases. Due to the self-interactions of a non-Abelian gauge field, its
charges show the effect of antiscreening. Here the effective charge becomes
bigger at larger distances. For the strong interactions this is one way to un-
derstand confinement. The energy of a single quark within a spherical shell
would increase without bound with increasing radius. A free quark would
carry an infinite energy. To the contrary, at decreasing separations, the effec-
tive charge becomes weaker and weaker and the quarks start to behave as free
particles. This is the asymptotic freedom mentioned in the previous chapter.

We will now consider to one-loop order the self-energy for the scalar field
¢ with a mass m, coupled to two flavours of fermions with masses m; and m;,
coupled through Yukawa couplings described by the Lagrangian

L= 3(0,0)" — 1mP* — 1hg® + Y Wi (iy" o, — mi) W
i
—g¢ (YY) + Yo ¥y). (22.1)

The self-energy for the scalar field in one-loop order splits in two contributions
¥; and %, from a fermion and a scalar loop (in this order Z = 1):

ml,k k
) =S+ 3 =— — -+ — . 222
wemen== o e e
ma, g+ gtk

The numerical expressions for X1 and %, are given by

_ /d Te((k + mi)(k +q +m2))
== (2 A k2 —m? +ie)((k +q)2 —m3 +ie)

2 1 (22.3)

2(2m)4 /d k (k? —m2 +ie)((k +q)% —m? +ig)

¥ =

Using Equation (11.1), requires us to employ the Feynman rules of Table 9.1
to obtain these expressions. [Alternatively the Feynman rules of Table 8.1 can
be used, provided the self-energy is defined through Equation (9.9).] These
integrals are obviously divergent. Introducing a momentum cutoff A we find
¥ ~ A?and ¥, ~ log A to lowest nontrivial order in 1/A. One says that ¥;
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is quadratically and X, logarithmically divergent. To simplify the integrands
we discuss the Feynman trick

1 1
- = dx ——— 22.4
/0 g (ax +b(1 —x))2 229

which we can apply to the computation of ¥; by substitutinga = (k +g)? —
m% +icand b = k? — m% + ie. For X, we have the same assignment, with
in addition my; = my = m. It is useful to also have the generalisation of the
Feynman trick for an arbitrary product of scalar propagators,

(n ) - n;f(_lzﬁ?% “(/ i)

k k =i
x8 (Z X — 1) (Z aix,) , (22.5)
i=1 i=1

which is proven by induction. In here I'(z) is the gamma function, which
satisfies I'(z + 1) = zI'(z), ['(n + 1) = n! and I'(}) = /7 [see Problem 2(b)].
Consequently we find

41g
= on )4/d4k/ dx

k> +k-q +mymy
x 50

((k +(1- x)q) +x(1 —x)g2 — xm? — (1 — x)m3 + 15)

1

i !
= [ dik [ dx . (22.6)
2(2m)* / /0 ((k +(1=x)q)" +x(1 - x)g2 — m? + i€)2

We will show how to regularise these two integrals in two different ways.
First we use dimensional regularisation introduced by 't Hooft and Veltman
(see Problem 2) and then discuss Pauli-Villars regularisation. In dimensional
regularisation the loop integrations are replaced by integrals in 7, instead of
four, dimensions. The momentum integrations are always of the form

k2)a
Lo g(M) = /d k Mo (22.7)

We can evaluate this integral by performing the so-called Wick rotation, where
we replace the integral over Rekg by an integration over Imky. The integral
over the two quarter circles indicated in Figure 22.1 will vanish as the radius
tends to infinity. As there are no poles inside the contour of integration, we
find
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Im kg

Re ky

FIGURE 22.1
Wick rotation.

(k*)

2 _ 32, %2
YT K> =k2+k2  (22.8)

I s (M) = i(—1)** / dok

We note that the integrand is a purely radial integral and as the surface area
of an n-dimensional sphere is analytically known [S, = 27"/?/T'(n/2), e.g.,
S, =2m, S =4n, S, =27?,...], we obtain
27'["/2 r20¢

iy
'(n/2) (r2+ M2 —ig)p
(=) Pa"T(a 4+ n/2)T(B — a — 1/2)
B (M? —ig)P=«="2L(B)T'(n/2)

Lnap(M) = i(=1)*"°

(22.9)

We used the integral representation of the beta function

_Tmrk) [ 21
B0LK) = Fo o _/0 4z (22.10)

Shifting the integration variable k — k — (1 — x)q, we find

4zg —(1-2x)k-g ~|—m1m2~|—x(x—1)q
= fd k/ dx
- (2n)* (k% — ME,q +ig)?

z—i/dkfldx ! (22.11)
2T 20emd ] T )y T (R = M2, +ie)? '

where

7

]\%i,q = xm% + (1 - x)m% - x(l - x)q2 and ]V[;q = m2 - x(l — x)qz,
(22.12)

which allows us to express X; in terms of the integrals I, ,, g(111)

Py = 8 [ )+ (s — 50— 007 o)

! (2m)* Jo AT o e
I (22.13)

So=—— | dxlI, ,q)-
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Substituting the expressions for I, 4 s(M) from Equation (22.9), we find
n/2 — x(1 — 2
5, = & / dx 1@ — gy = X0 = 007)
@m)* Jo (M2, —ie)2"/2T(2)
I'(1+n/2)T(1 - n/2) }
(BB, —ie) " T (T (n/2)

22 r@—n/2)
BRTeE /0 = (M2, —ig) 2T (2)" (22.14)

This can be further simplified using

rl+n/2)l(1—n/2)  n

rQ—n2C(n2)  2-n' (22.15)
such that
s _ 4¢27"?T (2 — n/2) /1 i (mimy —x(1—=x)g>)  n/(2—n)
' (2m)* (M}% —ig)2n/2 (M%q P
AT (2 — n/2)
L / dx 18)2 L (22.16)

The divergent part is now fully contained in I'(2 — 11/2), because

1+ 31(4—n)) 2
1(4 —n) C4—n

rQ-n/2) = —y+0(A-—n), (2217

where y = 0.57721... is the Euler constant. We expand X; around n = 4

2 1
_ & 2 (n—4)/2/
== o (a2 )= [

mymy — x(1 = x)g% + (2 + 1(4 - ”))M)%,q
X (]M%q _ is)(47n)/2

2 1
= (zi)z (4 2 o V)/ dx {(Wllﬂ”lz —3x(1— x)q2 + me% +2(1 - x)m%)
- 0

A R

(1)

41— + Eio) +0(4 —n),

(=1)

)y
42_—n +304+04 —n). (22.18)
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Note that g% = g3 — 4 and that the coupling constant A for the scalar three-
point coupling has the dimension of mass. We have split the result for ¥; in
a pole term with residue £{ ™" and a finite part £* for n — 4.

2 1
R I T Y

x (mymy + 3x(x — 1)g% + 2xm3 +2(1 — x)m%)),

)“2 1
0) _ 2 j
= = 8 /0 dx (log (z[M;, —ie]) +v),
(-1) g 2 2 2 (-1 »
X U= 572 (mymy +mi+m; —3q%), X, ' =-— (4m)2° (22.19)

We now note that the pole terms are of the same form as the tree-level
expressions obtained from the following extra term in the Lagrangian:

AL = 1a(d,9)* — b (22.20)

This means that we can choose a and b so as to precisely cancel the pole terms.
To lowest order we therefore have

S (L+AL) =%,L)+b—ag? =20+ 50+ om—4), (2221)
from which we can solve for a and b in terms of El-(_l)

__ & 1 b= L
T @n)?24—n’ ~ \(4n)?2  2n2

(mymy +m? + m%)) ﬁ (22.22)
Note that as long as we stay away from n = 4 everything is well defined,
including a and b. The limit n — 4 is to be taken after we have expressed
everything in terms of the renormalised coupling constants and masses. We
have taken here a slightly different approach for renormalising the theory.
Rather than computing at n # 4 physical processes to fix the renormalised
couplings, we have started with renormalised couplings and determined how
they have to depend on the bare couplings so as to cancel any infinities that
might arise as n — 4. It is clear that these two procedures are equivalent.
For the physical interpretation, the first procedure (due to Wilson) is more
transparent; in a loop expansion, the second procedure is more natural. To
find the bare mass and the field renormalisation (for the bare A coupling, we
should have considered the 1P three-point function with three ¢ external
lines), we write to one-loop order

Lg=L+AL= %(3M§03)2 - %m%ga%, m% =

08 =/ Zy0 =1 +ap. (22.23)
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my
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FIGURE 22.2
Four point diagram with fermion loop.

Often it can be determined by power-counting (of momenta) which dia-
grams giverise to divergencies forn — 4or A — oo. The infinities correspond
to local counter terms (i.e, with a finite number of space-time derivatives)
in the Lagrangian. For the theory in Equation (22.1), power counting easily
shows that the ¢ four-point function is logarithmically divergent at one-loop
order; see the Feynman diagram, Figure 22.2. We therefore need to introduce
an independent parameter for the ¢ four-point coupling, so as to adjust its
bare coupling to depend in the proper way on the cutoff, to ensure that we
can remove it. It can be shown that after adding to the Lagrangian in Equa-
tion (22.1) the term —A4¢*/4!, the theory becomes renormalisable to all orders
in the loop expansion. The relevant parameters are m, my, m,, g, » and A4.

As we have seen in Chapter 11, X,(q) should have a nonvanishing imag-
inary part if the scalar particle is unstable. It is clear that the scalar particle
itself cannot decay in two scalar particles, but when m; + m; < m it could
decay in two fermions. Indeed, it is not difficult to show that on the mass shell

(g2 = m?) = is real

2

1
O2_ 2y _* 124 2
(g _m)_g(zn)zf0 dx log[(x — 1)" 4+ ]+ y +log(m°m) € R.

(22.24)

We will show that Imx{” (42 = m2) # 0 if and only if g2 > (m; 4 m,)?, called
the threshold for decay. The only way 250) can develop an imaginary part is
when the argument of the logarithm in Equation (22.19) becomes negative.
The threshold is therefore determined by

min{Mf/“x € [0, 11} = min{xm] + (1 — x)m3 — x(1 — x)g*|x € [0, 1]} < 0.
(22.25)

Let us first consider the simplest case of equal fermion masses, m; = mj,. In
that case

min{Mﬁ/“x €l0,1]} =mi — 19> (m =my), (22.26)

and the threshold is determined by g% > 4m? = (m; + my)?. For the general
case of unequal fermion masses, the minimum is obtained for x = 1[1+
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(m3 — m?)/q?]. After some algebra we find

min{Mf/q Ix e R} = f (1 _ (m ;2m2)2> <(m1 ;-27112)2

4
which is indeed negative for g> > (m; + my)?. The value of x where this
minimum is attained does not lie in the interval [0, 1] if |(m? — m3)/q?| > 1,
which can be used to rule out the other region, q2 < (my; — my)?, where
Equation (22.27) is negative. This therefore proves that the kinematically de-
termined threshold coincides with the threshold for ImX(g) # 0, as was
assumed in Chapter 11.

A major advantage of dimensional regularisation is that it preserves the
Lorentz and gauge invariances. Furthermore, it is a local regulator. The lattice
regularisation also can be arranged to preserve the gauge invariance, but
locality and Lorentz invariance are only valid at distances much bigger than
the lattice spacing 2. A momentum cutoff breaks both the Lorentz and gauge
invariance. Pauli-Villars regularisation is aimed at having a regulator that
preserves the Lorentz invariance. We will describe it for the Lagrangian of
Equation (22.1), using again the computation of X,(g) to one-loop order as an
illustration. For each of the original fields ¢ and ¥(;y one adds extra (ghost)
fields, with either the same (e, > 0) or opposite (e, < 0) statistics. This means
that a loop of these ghost fields gets an additional factor e,. Furthermore,
the mass of these ghost fields is shifted over M, with respect to the original
(“parent”) field. (Alternatively, if the original field is a boson, one can shift m?
over M?; see Problem 39. With the present prescription we can treat bosons
and fermions on the same footing.) By defining ey = 1 and My = 0, the
index £ = 0 describes the original fields of the model. We define furthermore
M, = by A with A > m, my, my. To regularise ¥, by Pauli-Villars’ method,
we choose

- 1) . (22.27)

ee=(1,-1,2,—2) and b, = (0,43, 1); (22.28)

in other words the scalar and two fermion fields each has three ghost fields
associated to them but with nonstandard weights for the loops. We could
stick to standard weights, such that these ghost fields can be described in
terms of either Grassmann or bosonic variables by taking |e,| fields, having
either the same (e, > 0) or reversed (e, < 0) statistics with respect to the
original (“parent’) field. It is straightforward to give the self-energy including
the contribution of the ghost fields

3
2,V (q) = Zez{zl(ml +beA, my +beA;q) + Zo(m + bgA;q)}, (22.29)
=0

in an obvious notation. The weights are chosen such that the momentum in-
tegrals can all be performed. Nevertheless, the masses of the ghost particles,
all proportional to A, now play the role of a momentum cutoff, as the La-
grangian will at that energy scale no longer describe a physical theory. It is
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still convenient to evaluate the integrals in 7, rather than in four dimensions.
We will see that Equation (22.28) guarantees that the terms proportional to
(4 — n)~! exactly cancel. Indeed, using Equation (22.19)

3
Zez (25_1)(1111 +beA, my+beA;q) + Zg_l)(m + bgA;q))
=0

3 2
=3 e (£ (Om -+ beA)m + B0) + 1+ DAY+ (2 + i)
=0

B g2q2 )»2 >

(27)>  (47)

2 2 2_152)_1)2 3
_8 (m1m2+m12‘:;12 19°)—4% Zeg (m1+1112)g AZwbe

€

an A2 Zeebz =0. (22.30)

The finite result that remains (replacing X~V in the equation above by =) is
nevertheless still dependent on A. To keep the following computation trans-
parent we take my = my

2

1
Z;’V(q) = (2%1)2 /(; dx;egll — 3y —3log (7 [(m1 + beA)? — x(1 — x)qZ])}

x [(m1 4+ beA)* — x(1 — x)g?]
2

A ! 2 2
+m/0 dx;f,’g{log(n[(m%—b(gA) —x(1—x)q ])—i—y}

2 1
- _(g’f[)Z /o dxz(:f—’e log ((m1 +beA)? — x(1 — x)q?)

x [(m1 4+ beA)* — x(1 — x)g7]

22 1 , 2
+W/O dx;eelog((mq-bﬂ\) —X(l—x)q )

2 1
= ﬁ/ dx log (m* — x(1 — x)q?)

(271)2 / dx log (m3 — x(1 — x)q?) [m} — x(1 — x)q°]

+a1A% + aA + a3 log A + auq logA +as +a6q2 + O(1/A).
(22.31)

The precise values of the coefficients a; are not very important but can be
calculated explicitly with some effort. All A-dependent terms can be absorbed
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in a redefinition of Z, and the mass of the scalar field, such that

3 2 1
EY(0) =~ [ tog (i = x(1 = )g?) [ — 21— )g?]
2

(2 Sy log (m* — x(1 — x)q?) + as + aeq>. (22.32)

Note that in dimensional regularisation (Dr) we found the result Eio) + EEO)
or

2 1
EER(q) = _(;i)z /(; dx {108 [7r (m] —x(1 —x)q%)] +y — %}

x [m% —x(1— x)q2]
)LZ

1
+8(27r)2 fo dx {log [z (m* — x(1—x)q%)] + y}. (22.33)

However, the difference %}V (q) — Z)%(q) = as — by + (a5 — b2)q?, where

. A2(y +logm) 8 2m2(3y + 3logmw — 1)
T 8(2n)? 2n)2 /
g m1(3y +3logm —1)
6(2m)?2 ’

by =

(22.34)

can be absorbed in a finite redefinition of the mass and of Z,. If we define the
renormalised coupling in terms of some physical scattering process, such an
ambiguity of course cannot arise. In that case there is a unique relation be-
tween the bare and renormalised parameters. This relation, however, depends
on the regularisation used.

We will now discuss, without a detailed derivation, the renormalisation
of gauge theories to one-loop order in dimensional regularisation. The bare
Lagrangian is given by

L= —1(3"Ap — 3" A)? — 1ap(d, Af)” + Wp(iy"0, — mp)¥p
+ep AyVpy, Vs. (22.35)
In n dimensions we still want the action to be dimensionless (i = 1), which

implies that £/u" is dimensionless. From this we derive the dimensions of
the fields and the parameters in #n dimensions,

1

(A1 = ud", lapl=1, [Us]=[Tp]=pi"},
[mpl =, [es] = p> 2" (22.36)
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If we define (as is customary) ¢ = 4 — n, we find (for details see Itzykson and
Zuber, e.g., Sections 7-1 and 8-4. They use slightly different notations.):

_1, _1, e 1 2
A%EM 24\/ZAA'M':/_,L 2‘(1—?'54_"') A#,
( 3¢ 1 )
mp=Zym=1—— -—4.--|m,
€
1 1 2 1 2
Yp = pu 2° Zq,\l/:Mz$<1__._+...> v,
21
ap = Zyo = l—}—e—'——i--“)(x,

2
ep =t Ze =pt (14 —— 2 4. e (22.37)
1272 ¢

We note that to one-loop order A* = ey A and ap/e% are finite for n — 4.
This is not an accident but the consequence of a so-called Ward identity,
which as a consequence of the gauge symmetry (through the BRS invariance
mentioned at the end of Chapter 20) relates different Z factors,

72 =7,=1/Za. (22.38)

e

It is therefore sometimes much more convenient to use

1 op — .
L=——(0"A" —93"A"? — — (8, A + Wg(iy"D, — mp)Vg,
43%—;( ) 2(323( " ) B( Y 0 B) B
Dt = 9t —i A*. (22.39)

To all orders in the loop expansion, the field A* and the gauge-fixing param-
eter a/e? remain free of renormalisations. The same holds for non-Abelian
gauge theories. By absorbing the charge g (called coupling constant ¢ = g
henceforth) in the gauge field, the Lagrangian can be expressed as

L= %Tr(Fju) + a—fTr(auA")z + Up(iy" D, —mp)Wp,  (22.40)
283 8B

where the gauge field and the gauge-fixing parameter receive no renormalisa-
tions; in other words they are already the renormalised field and gauge-fixing
parameter. The field strength F,,, and covariant derivative D, are now given
by [compare this to Equations (18.35) and (18.41)]

Dy =0+ A, Fu=0d,A — A +[A, Al (22.41)
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If the gauge group is SU(N) and there are 7 flavours of fermions the renor-
malisation of the coupling constant is given by (see Itzykson and Zuber
Section 12-3-4)

1, 1, 1IN —2n 2 1
9B = U7y = 1 (1_(%Tf)g.;+...>g, (22.42)

As long as the number of fermion flavours is small enough, we see that the
one-loop corrections to the bare coupling constant differ in sign from the
equivalent expression for the Abelian case. It is the self-interactions of the
non-Abelian gauge fields that are responsible for the asymptotic freedom of
its running coupling constant. The running of the coupling is expressed in
terms of the so-called beta function

9g(gs(e), 1 €)

, (22.43)
o

B(g) =n

where the derivative is taken at fixed ¢ and g (§ = gr). For non-Abelian
gauge theories one finds (u¢ is an integration constant)

(11N —2ny)g>

bl = - S o),
gZ(’u) = ( 2472 nf) 10g(M/MO) + O(gz(u“))r

whereas for QED (coupled to 1y flavours of fermions)

nye
1272

+ 0%, 1 _ —n—leog(u/ﬂo) + O(e*(1)). (22.45)

Ble) = 200 P

For other regularisations the computation of the running coupling constant is
similar, except that ¢ is replaced roughly by 1/log(A). To the order displayed,
the beta functions do not depend on the regularisation scheme.

Itis perhaps appropriate to end these lecture notes with as classic an experi-
mental test of renormalisation effects in field theory as the one for the Casimir
energy in Chapter 2. It concerns the Lamb shift, measured in 1947, which is
the very small energy splitting of the 251 and 2P, orbitals in hydrogen atoms,
receiving a contribution from vacuum polarisation effects (for a discussion of
the other contributions, see Section 7-3-2 of Itzykson and Zuber). In Problem
39 it will be shown that to one-loop order the photon vacuum polarisation is
given by [compare this to Equations (16.22) and (16.23); in the Landau gauge,
o — 00, we can drop the A@ factors]

(@) = =A% — a%9") (@) A (). (22.46)
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From the results of Problem 39, where w is computed with Pauli-Villars
regularisation, it can be deduced that (i is the electron mass)

w(q®) =alog(A/m) +b+cq* for g*>— 0, A — oo. (22.47)

The precise values of the coefficients a and b are not very important, as the
combination a log(A /m)+b can be absorbed in the field renormalisation (this
means thata can be read off from Z4 given above). In Section 7-1-1 of Itzykson
and Zuber it is shown that ¢ = e?/(607?m?). In the static limit, as is relevant
for the hydrogen atom, g% = — % and the photon exchange can be accurately
described by the Coulomb potential

ﬁ 7
e, / daq (22.48)

which due to the vacuum polarisation is replaced by

1qr .
— iqr
¢ /d” PO+ o(-52) - [ (*2+C+ )

e? et
=———-—=3 22.49
e e =
The extra delta-function interaction, that arises from the vacuum fluctuations,
only affects the wave functions that do not vanish in the origin. Consequently,
only the energy of the S orbitals will be shifted by this correction
4mo e’

AE(VIS%) = —m, O = E, (2250)

where 7 is the radial quantum number and «, is the fine-structure constant.
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Problems

DOI: 10.1201/b15364-23

1. Violation of causality in 1 + 1 dimensions
In the lecture notes it is shown that in 3 + 1 dimensions the
Hamiltonian H = \/m?c* + p?c2, where p = —ihV, givesrise to viola-
tion of causality. In this exercise we will conclude that this is not a spe-
cial property of this dimension by considering the 1+ 1 dimensional
case.
(a) Give the exact plane wave solutions of Schrédinger’s equation

for the Hamiltonian H = \/m?c* + p2c*.
(b) Let yo(x, t) be the solution of Schrodinger’s equation with initial
condition y(x, 0) = §(x).Itfollowsthaty(x, t) = [dyf(y)Yo(x—
y, t) is also a solution (for which initial condition?). Therefore it
is sufficient to study the time evolution of /.
Fourier expand vy (x, t) and rewrite this expression as

Yolx, t) = éatKo(z), with Ky(z) = /:Odycos (zsinh(y)),

2.2
, mc

z° = P (x2 — c2t2).

(Ko is a modified Bessel function, whence the above expression
can be rewritten in terms of ordinary Bessel functions. See, for
example, Abromowitz and Stegun’s handbook for details.)

(c) Show that for m # 0 the solution violates causality.

(d) Prove that Re(v/0) = (Yo + /) /2 respects causality but does not
satisfy Schrodinger’s equation. Show that y§ is a solution of the
time-inverted Schrodinger equation, or equivalently Schrodinger’s
equation with opposite (negative) Hamiltonian. Prove that both
Yo and ] satisfy the Klein-Gordon equation and that Re(yy) is
the unique solution that respects causality.

2. Casimir effect
In quantum field theory the vacuum energy depends on the spatial
volume. In the lecture notes it has been derived that a free scalar

165
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massless field which is spatially contained between two infinite par-
allel planes with separation x has an energy per unit area

1 = ) nhem
E(x) = 24(%%)2;/,1 k,/k2+(—x )2.

=1

This expression is divergent but can be made finite in a sensible way
by subtraction of a corresponding slice in infinite volume, i.e., with-
out boundary conditions in the x direction. An alternative way of
getting rid of the unphysical infinite part is so-called dimensional
regularisation. The above integral (the sum will be attacked analo-
gously later) falls into a class of integrals that is parametrised by (a.o.)
the dimension. The method then consists of computing the conver-
gent integrals within this class, and redefining the divergent ones
by analytic continuation (in the set of parameters) of the convergent
outcomes.
For the case at hand, the following class of integrals is useful:

kZA
In,k,u(“) = /dnkm (7’[ eIN; A, u EC,’ Ol2 > O)

For 2Re(A» — u) + n < 0 this is convergent (and analytic). For n = 2,
A =0, u = —1/2 it reduces to the integral in E(x). Assume for the
time being that 2Re(A — ) +n < 0.

(a) Change to spherical coordinates and derive

1 31 n—11
@) =78 (1,5)B(5,5) B (=3
e =7 < 2) <2 2) ( 2 2)

n n _
— == _> O[rH—ZX 2;}./

B(x
x(+2 5

where B is the so-called beta function:
B(x, y) = 2fooodt P14 £2) 7Y,

(b) Let the gamma function be defined as
I'(x) = /O ” dt " te" (Re(x) > 0).

Show that I'(x + 1) = xI'(x) and I'(1/2) = /7. Also prove

_ Ty

Bl y) = T(x+y)

(c) Now write I, ;. () in terms of gamma functions. Note that I'(x)
canbe continued analytically to Re(x) < Ousing I'(x+1) = xT'(x).
Therefore we can also continue I analytically to parameter values
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for which the original integral was divergent. Also notice that the
dimension # can now be given arbitrary complex values without
difficulties. Show that after having done these regularisations we
obtain

0 L T 1)/2
E(x) = Ex(x), En(x)= Ve Z (\/Zﬁxm> ( ]"((il_’;Z))/ )

m=1

(d) Only the summation over m remains to be regularised. Define
the zeta function

¢(x) = Zm_x (Re(x) > 1).
m=1

For x = —3 this coincides with the relevant divergent summation.
Like for the integrals, we would like to replace this expression
by the analytic continuation of £(x)|ge(x)>1 to Re(x) < 1. This
continuation satisfies

_ (_1)n+1 B,

((l-n)="—"—"" neN, (23.1)

where B,, are the Bernoulli numbers:

s " t
Z B”_l = et—1°
=0 n.

t

Derive eq. (23.1) by expanding /(e — 1) ine™!, and e~ in t (be

careful with the t° term).

Hint: Introduce new parameters that enable change of summa-
tion order. In the end continue back to the relevant parameter

values.
Finally compute the fully regularised energy per area E(x) and
pressure F(x) = —d E(x)/dx. Given the Bernoulli number B; =

—1/30, evaluate this pressure for x = 1um.

3. Euler-Lagrange equation
Let ¢(x) = ¢(X, t) be a complex scalar field with action functional
S = [d*xL(x). L is the so-called Lagrange density [the Lagrangian
is L(t) = [d3XL(%, b)]:

L(x) = 3,0*(x)8"p(x) — m*$* (1) (x),

with metric g*” = diag(1l, —1, —1, —1) and units such that 7 = 1,

c=1.
(a) Proveby variational calculus the Euler-Lagrange equation (equa-
tion of motion) #(Sx) = 0, ; (aj;(x)) and show that this gives the

Klein—Gordon equation.
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(b) Given the energy-momentum tensor

Tuv(x) = 3M¢*(X)8U¢(X) + 3V¢*(X)3M¢(X) - guvc(x)/

show that 9, T*" = 0.

(c) Given the current density

Ju) = i(#*()3,8() = (29" ()6 (),

show that 9, ] #(x) = 0.

(d) Prove that the total energy E, momentum P; and charge Q,
givenby E(t) = [d3XTy (X, t), Pi(t) = [d3XTyi(%, t) and Q(t) =
[d®%]o(%, t), are conserved.

4. Creation and annihilation operators

We start from operators p and g satisfying canonical commutation

relations [p, ] = —ih. Define

1 1
4=—(wg+ip), al = ——(wg —ip), N=a'la.
%(wq ) %(wq p)

(a) Show that [a,a'] = 1. Also calculate the commutators [a, N],
[af, N]and [(a")", N].
(b) Define |n) by N|n) = n|n), (n|n) = 1. Show that

any =c,;in—1), alln)=ciin+1),  |n)=cu(a)"0).

Compute c,, ¢}, c, and show that they can be chosen real.
Given an algebra of operators and commutation relations, we
mean by the associated Hilbert space the (smallest) Hilbert space
that may be used to incorporate the algebra. What is the associ-
ated Hilbert space in the present case?
(c) Derive a matrix representation for the operators a, a’ and N.

(d) Now consider operators with anticommutation relations
{br/ b;} = 87,5/ {br/ bs} = {brT/ bl} = 0/

where {X, Y} = XY + YX. What is the corresponding Hilbert
space?

Define N, = bjbr. What are the possible eigenvalues of N,?
Construct a matrix representation for the operators b,, bl and

N;. Why is the algebra generated by b, and bl, with the above
anticommutation relations, suitable for describing fermions?

Prove that exchanging b, and b{ can be described by a unitary
transformation.
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(e) The BCS theory of superconductivity uses the following opera-
tors that describe annihilation and creation of electron pairs:

- —b - b- —pt pt
g =b_g by, ck bkrb—u

Prove that [cg, cp] = [ci, c;] = 0 and calculate [cg, c;]. Also de-
termine the Hilbert space and the action of the operators on this
Hilbert space. Would you call the electron pairs fermions or rather
bosons?

5. Real and complex fields
Let us consider a real scalar field ¢(x) and a Hamiltonian

H= [ { 00+ g (s00) + m¢2<x>}

where 7 (x) = d¢(x) is the canonical momentum. For quantisation
we postulate the following commutators at some time ¢, say ¢ = 0.
(Argue briefly why these relations are compatible with causality.)

[7(x), (W] Ly=p=0= [(x), (Y] lxy=y=0=0;
[7(x), (W] lxy=ypp=0= —i83(X — H).

Write the Fourier decomposition of ¢(x) as follows:
_ 1 37 1 N, —ikx T pikx
o) = s [ AR (aBe i a(Be™),

where kx = kot — k - ¥ and ko = 4k~ + m2.

Remark: ¢(X, t) is the Heisenberg representation of ¢(%, 0). This can
be verified explicitly at the end of part (d).

(a) Give the Fourier decomposition of 7(x). Why can we (formally)
set w(X, xo = 0) = —id/d¢p(X, xp = 0)?

(b) Derive the commutation relations for a(lz) and aT(lz).

(c) What is the associated Hilbert space?

(d) Write the Hamiltonian H in terms of the occupation number (den-

sity) operators N(Iz) = aT(lz)a(IZ). Note that H is time indepen-
dent.
It is impossible to define a total charge Q for a real field ¢(x) (in
a nontrivial way). Basically this is because a real field describes
particles that are their own antiparticles. Therefore let us intro-
duce a complex field ¢ # ¢! with Hamiltonian

H= / Pt (1)(x) + 30! (1) dip(x) + 12 (1) p(0)),

where 7(x) = d¢f(x), 7(x) = d0(x).
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(e) Show that H = [d 3% Too (see Problem 3 for the definition of T),,,
in which classical fields now become operator fields).
The nontrivial commutators are postulated to be

[7(x), 9(N)] lrp=yo=0= [7"(x), @' (Y] Ixp=yo=0= —i83(% — ¥).

Let us write ¢(x) = [¢1(x) + ig2(x)]/+/2 and substitute for the
real fields ¢;(x) the Fourier decompositions in terms of a;(k) and

al (k).
(f) Givea (12) and b(lZ) in terms of ai(lz) such that

1 21 L L
o(x) = f d’k m(a(k)e*’kubf(k)em),

Also derive the Fourier decompositions of ¢'(x), 7(x) and 7 (x).
(g) Gi\ie thg mutual gommutation relations for the operators a(E),
a'(k), b(k) and bf(k).
(h) Write H in terms of N(k) = a'(k)a(k) and N?(k) = bt (K)b(k).
We would like to interpret the particles created by b' as the

antiparticles of the ones created by a'. This allows us to define
the total charge

Q = const.(#particles — #antiparticles)

— (22)3 / RN (k) — NP (k).

(att =0).
(i) Prove that Q is conserved. Also show that Q can be written as

Q= /d%?p(x) + constant,

where p(x) = —ie{(3:¢")(x)p(x)—¢!(x)(3:¢)(x)}. Note that p(x) =
eJo(x) (see Problem 3).

6. Commutation relations and causality
We reconsider the Hermitian operator field

1 z 1 7\, —ikx T\ pikx
o(x) = (Zn)3/d3km(a(k)e 4 al(k)e™).

In Problem 5 commutation relations {[¢(x), ¢(¥)] |x=y—0= 0 etc.} and
a Hamiltonian have been introduced. Use these for deriving an inte-
gral representation for

Alx —y) = [p(x), o(Y)];

x, y arbitrary.
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Show that A(x —y) = 0 whenever xy = yo (xp arbitrary). Also show
that A(x — y) is Lorentz invariant and use this for generalising the
result to x, y with (x — y)? < 0 (i.e., spatially separated).

Hint: Prove that [ d%k = [ d*k58(k? — m2)6(ko)2ko, where 6 is the step
function.

7. Feynman rules for a classical field
Consider real fields ¢; and ¢, as described by the Lagrangian

1 1
E[ﬂ”lz au(plf ©2, 3M<P2] = Eau(plau‘pl + Eau@aﬂpr

1 1
—golog [1 + Egl((pl - F)z} - Egzsﬁlwg-

(a) Determine the dimension of the fields ¢; and the constants g;, F.
(Remember that for i = 1, ¢ = 1 all dimensions are powers of
[[] = [m]~}; also the action S = [ d*xL(x) is dimensionless.)

(b) In a perturbative calculation = ¢; — F and ¢, are chosen as
fundamental fields. Explain why.

Expand £ in ¢ and ¢, (up to 4th-order terms). Write the re-
sult as £ = Ly + Lin, where £y are the quadratic terms and
Lint contains the interaction terms. What are the masses of the
fields @ and ¢,?

(c) We now introduce source terms —] - @ and —J5 - ¢,. Derive the
Feynman rules for the perturbative expansion using the (classi-
cal) method in the lecture notes (pp. 19-22). Use the following
notation:

G —J

,,,,,, Gz ,,,,,0]2 etc.

8. Photon propagator
Gauge invariance complicates the derivation of the photon propaga-
tor (see lecture notes p.22-23). In this exercise we will fix the gauge
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by using the following Lagrangian:

L(x) = —jIFW(x)F‘”(X) — Mx)0, A" (x) — ] u(x) A" ().

This describes a photon field A, and a Lagrange multiplier A in the
presence of an external (i.e., not dynamical) source J,,.
(@) Use partial integration to write the quadratic part of the action

as
24,2 M(( )
A

where M is a Hermitian 5 x 5 matrix operator. The inner product
’ includes an integration over space-time.

(b) Show that M is invertible and that the corresponding photon
propagator is the same as in the so-called Landau gauge o — oo
(lecture notes p. 23).

Hint: Work in Fourier space.

9. Coulomb gauge and temporal gauge
The gauge freedom of the photon field can be eliminated through
an extra constraint besides the equations of motion (imposing the
constraint is usually called ‘choosing a gauge’). Examples:

(1) Lorentz gauge 9, A* =0
(2) Coulomb gauge 9; Ai=V-A=0
(3) temporal gauge Ay = 0.

Here we will analyze the conditions (2) and (3). These are not Lorentz

invariant, but expose the photon’s degrees of freedom nicely.

(a) Show that (2) or (3) can always be realised after an appropriate
gauge transformation A,(x) — A,(x) + 9,A(x). Furthermore
show that (2) and (3) can be imposed simultaneously in the ab-
sence of sources (i.e., J, = 0).

(b) The transversal (T) and longitudinal (L) components of an arbi-
trary vector field v are defined as follows:

5=5T+Z_5L, %-%:O,%xzﬁ:a
Write down the relations between A and E, B in terms of their
T and L components. Also express Maxwell’s equations in these
components. Here A, E and B stand for the vector potential,
electric field and magnetic field, respectively.

(c) Coulomb gauge
Show that Ay(X, t) is completely determined by p(¥’, t) and the
spatial boundary conditions at time ¢ (hence the name
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‘instantaneous Coulomb potential’). It follows that the longitudi-
nal component of the physical field E isnota degree of freedom in
the radiation field. (Why? What do we mean exactly by a degree
of freedom in a classical system?)
Temporal gauge
Show that Ay is completely determined by the charge distribution
p and the spatial boundary conditions, together with an initial
condition A (X, t — —o0). Show (again) that E is not a degree
of freedom in the radiation field.
10. Preparation for the path integral

Consider a one-dimensional harmonic oscillator with the Hamiltonian

H = o + ymw*§® Here p = ;4 and § is the position operator, so

that < g|H|p >= \/%_ne””qh(p, q) with h(p, q) = £ + Jmaw?q?.

(a) Prove the following exact identity (6t = T/n):

dqidp,'
27

dpy
2 4

1=

n—1
Kn(‘]n/ qO/ T) = /
1

n

X exp |:i {pi(q; —q]-_1)—h(PMj)5t}}

j=1

< .| Lex i1 205, exp (i 220 n| >
qnl {exp 5078t Jexp (=i~ )t Iq0 >

(b) Show that K,(q., go, T) =< qul exp(—i ™ 425t)T" exp(i "2 425t)
|g0 >, where T = exp(—i%qz&f)exp(—if%)exp(—imT‘“quBt).
Prove that 7 is a unitary operator.

(c) We are going to prove that 7 = exp(—i Hst), where H is also a
harmonic oscillator Hamiltonian: H = —2}3\—; + 1MQ%32.

NOTE: Until that is proven, one should of course use 7 as defined
in part (b).
1. Show that [p, §] = —i implies

[e°”, 3] = —2iape®” and [e“T, p] = 2iade*?
for any o € C. Now solve the ‘eigenvalue equation’
T(ktf +Arsp) = pa(ied +12p)T
(kx, 2z, ny €C). Show that py = exp(+iQ2§t), with Q defined
by sin(328t) = jwdt.

2. Determine the commutation relations between «,.4 + A4 p and
k_§+X_p.For whichnormalisation are we dealing with creation
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and annihilation operatorsaf, 2? Show that the corresponding
Hamiltonian is given by H, with M = m sin(Q28t)/(258t).

3. Now that («, A, )1 are known, the eigenvalue equation de-
termines 7 uniquely up to a p, § independent factor. Prove
that 7 = C exp(—id'aQst) satisfies the equation (C € C). Use
the definition of 7 to show that C = exp(—3iQ6t).

Hint: Since C is independent of p, 4, it can be determined by
calculating (0|7|0) with |0) the H-vacuum (4|0) = 0). First
evaluate (p|exp(—i mTquZ(StHO) = Aexp(—Bp?/2), with Aand
B defined appropriately.
(d) Use the above result to show that lim, . Ki(qu, g0, T) =
< Q11|37iHT|qO >
11. Path integral for a free particle
We sstart from the path integral for the evolution operator associated to
Schrodinger’s equation (lecture notes p. 30). As Lagrangian we take
L(g,q) = im4?, and problems from integrating rapidly oscillating
functions are avoided by choosing so-called Euclidean time r =i T.
The path integral then becomes (with dz = 7/n and for n — oo):

m 2 (=1
(" IU(D)lg) = | 5= ( /dq) e S0 ), (23.2)
[27181] 111 /

where g9 = g and q,, = g/, and with action

n 2
mlag, —qgi._
5(g0, 91, .-, Gn) = Z 5 [%} ST,

j=1

The Euclidean evolution operator is U(t) = exp(—Hrt), H being the
usual quantum mechanical Hamiltonian associated to L.
Upon defining

U@, ©) = @IU)I0) ™™ g 1Uu()lg), §=49"—q,

U(g, v) satisfies the Euclidean Schrédinger equation by construction.
Due to the Euclidean time this is a diffusion equation:

_ o 1 9
u(, 0) = 5(3), 7U(q,r)=%8qzll(q,t) (23.3)

(a) Determine U(§, ) by solving eq. (23.3) (use a Fourier transform).

(b) In this simple case the path integral in eq. (23.2) can be calculated
explicitly. We will do this by changing variables

]/1211]—11]—1/ j=1,2,"',7’l.

Show that ]_[’]1;% dqj = (H?’:l dy;)8(q — Z?/:l Yjr).
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The § function can be written as
o 1 s .
sla->v)= —/dweXP<lw(ny —q>>.
=1 2n =1

These steps reduce the path integral to a product of Gaussian
integrals. Perform the integrations and verify that the outcome
equals the result in (a).

12. Massive vector fields

The following Lagrangian (mass m # 0) describes a massive vector
field,

L=—1F, F" + im*A, A"

(a) Show that this Lagrangian is not gauge invariant.

(b) Determine the equations of motion for the field A,(x). Show that
these are equivalent to

A =0 (x) , (*+m)A, =0.

Remark: The condition (*), being a gauge choice in the massless
case (see Problem 8), is now imposed by the equations of motion!

(c) Bring £ to the form ; A, M*’ A, (more precisely, use partial inte-
gration to find an M such that this gives the same action—and
therefore the same equations of motion). Construct the inverse
of the operator M (use a Fourier transform).

(d) Now add asource term: —J,, A* with 9, ] * = 0. Which expression
for A, (k) is associated to the following Feynman diagram?

Are there other diagrams in this model contributing to A, (k)?

(M™1),,, consists of two terms. Show that one of them drops out
of (M™1),,,(k) ] ¥(k), and thatlim,,_.o(M™1) ., (k) ] (k) exists. Com-
pare this limit to the Maxwell propagator (lecture notes p. 23) for
a =1, the so-called Feynman gauge.

13. Perturbative approach to the path integral

In this exercise we will treat perturbatively the generating function
Z(] ) for a real scalar ¢3 theory. The Lagrangian reads

L=Ls— Vit — ] ¢, with Vigg = §¢3, Ly =19G g,

Gt = —(8,0" +m?).



176

A Course in Field Theory

In the lecture notes (p. 52) it has been shown that the path integral
can be reduced to

(a)

(b)

(©
(d)

(e)

Z(]) = e~ [ xVinligim) =5 [d'y [ d'2] (NC(1.2)] @),

Show that

1 1
Z(J)=1+<—§H—§®)

1 i i X
+(§% 5 ] - 1%)
+O(]%) + 0(8).

Here x—x = [d*x [d*y] (x)G(x, y)] (y) etc. (do not work in
Fourier space).

N.B. In this exercise you are not supposed to work out the ana-
lytical expressions associated to the Feynman diagrams.

Read pages 103-105 from Diagrammar (cds.cern.ch/record/
186259/ files/CERN-73-09.pdf) carefully. Verify that the combi-
natorial factors in the above expression are correctly given by the
Diagrammar prescription.

Remark: In this prescription the sources | should be considered
as 1-vertices.

Show up to first order in ¢ and fourth order in | that Z(J) =
exp[G(])], G(J ) being the sum of connected diagrams.

The ‘n-point function” can be expressed in the following way:

1 ) )
(@ @1) = (Olgy - - - ¢1]0) = 70 <iﬁ...iﬁ2(])>
n J=0

[¢i = @(Xi, ti), tiy1 > i, |0) = ground state in absence of | ]. This
is why Z(]) is called the generating function.

Substitute the result of part (a) to obtain the one-, two-, three-
and four-point functions up to order g. Argue that the product
rule guarantees that the Diagrammar prescriptions for diagrams
in Z(J) and (¢, ---¢1) are consistent, and verify explicitly the
correctness of the Diagrammar prescription for the one-, two-,
three- and four-point functions to the given order in g.

Show nonperturbatively that

8]

For n > 2 similar expressions hold. This means that G(]) is the
generator of quantum fluctuations.

) )
<i5—i—G( ])) — (0201) — (g2} {1).
J1 J=0
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14. Combinatorial factors
(a) Given a real scalar field ¢ with interaction

;92 3 B 4
th—grp +E(P/

determine the combinatorial factors of the following diagrams
[see the discussion on pp. 54 to 56 or the section on combi-
natorial factors in ‘Diagrammar’, CERN Yellow report 73-9, by
G. 't Hooft and M. Veltman, reprinted in Under the Spell of the
Gauge Principle by G. 't Hooft (World Scientific, Singapore, 1994)]

1p2 ;12 Z;ZYB;% 2,000

(b) Consider the following models:
I Scalar field A,

A
L=10,A0"A— im*A> — §A3 — JA

IT Scalar fields A and B with equal mass,
L=19,A"A+18,Bo"B — \m? A% — im*B? — %AZB ~ JA

We limit ourselves to diagrams with an even number of external
Alines (and no external B’s). Let us pose the question whether we
can make a distinction between the above models from knowl-
edge of the amplitudes for its diagrams.
1. Let us first consider tree diagrams.
e Show that A and u can be chosen such that the models
Iand II give an identical four-point function:

g -y

+ Show that the six-point function is different for the
models I, II.
2. Proceed to show that at one-loop level even the two-point
function, which at tree level is trivially the same, is different
for the models I, II.

15. Quantum corrections
In this exercise we set out to prove that the expansion of Feynman
diagrams in the number of loops amounts to an expansion in powers
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of 1. We consider a real scalar field theory with an arbitrary interaction
potential:

Vint = Z %‘pn-

n>3 "

To each Feynman diagram we associate the following quantities: E, I,

L and V,, (number of external lines, internal lines, loops, and vertices

with 7 lines, respectively).

(a) Prove that for any connected diagram the following relations
hold:

L=I1+1-Y,,V
D ous3nVu=E +2L

Hint: Any diagram can be reduced to a tree diagram (i.e., a di-
agram with no loops) by cutting L times appropriate internal
lines (this is the precise definition of L). Determine how E, I,
L, YV, and > nV, have changed after one such cut. Another
operation is the amputation of an external leg. Find the change
in the above quantities for this operation too. Finally determine
these quantities for a simple diagram in order to obtain the ‘initial
condition’.

(b) Since we are looking for quantum effects, we do not takez =1
(for convenience we keep ¢ = 1, though). Powers of /i can now
pop up at several places in the Lagrangian. We can limit the
number of such places by conveniently choosing the dimensions
of ¢, | and {g,}. Show that this can be done in such a way
that

h#1 2

T m
=L-J¢ E %%wa“w—%h—zwz—

Ly

I
—_

8n »n

|
e n:

—Jo,

but that the 7 dependence in the quadratic part cannot be re-
moved.

NOTE: For /i # 1, mass and 1/length have independent dimen-
sions.

Remark: It is natural to require that the classical theory (i.e., the
Euler-Lagrange equations) is independent of 7. The above result
then implies that m ~ i, so that even in the classical theory the
mass is an effective parameter of quantum mechanical origin.
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Show that the path integral now reads
zu>=c/iwﬁﬂwhwmyummq

(C independent of |).

(c) We absorb the factor 7z in exponent of Z(] ) into the quadratic part
of £ by defining

p=h"g, ] =7,

This gives
zZ(J)=C / Dget [ [£(p00) T 0]

What is the expression for £(¢)? Show that the propagator for
the field ¢ does not have any /i dependence. This means that
all factors of 71 in a diagram come from the vertices (and external
lines). Express the total power of 1 in terms of {V,,} (and E). Finally
make use of the results in (a) to prove that this power equals L,
up to a function of E alone.

(d) Show that for a model with only four-point interactions (g, = 0
for n # 4) the expansion in the number of loops L can be inter-
preted as an expansion in powers of g.

16. Legendre transformation and classical limit
In this exercise we will consider the connection between quantum
field theory and classical field theory once more. Therefore take 7 # 1
again. As explained in the previous exercise, we then have

Z[] ] = / Dyeh [ #L=T9) = [ Dyeh U9, (23.4)

where 5[], ¢]is independent of /. Furthermore, Z[] | = exp(G[] 1/%),
% being the sum of connected diagrams. The overall factor of /i has
been conveniently chosen 1/# so that

GlJ1=> n'GwlJ], (L =#loops)
L=0

with fi-independent G(1)[J]’s. A saddle point or stationary phase
approximation (i — 0) of eq. (23.4) then immediately gives

GollT=1iSl], ealJ 11 (23.5)

Here @[] ]is the solution of the Euler-Lagrange equations §S[], ¢]/
8¢ = 0 (hence the subscript ‘cl’, for ‘classical’). This saddle point
¢dlJ ] is unique under the assumption that in eq. (23.4) only fields
vanishing (sufficiently fast) at infinity are integrated over.
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Let us inspect if eq. (23.5) is reproduced by perturbation theory.
For convenience we limit ourselves to ¢ theory, whose Lagrangian
has already been introduced in Problem 13.

(a) 1. Substitute the expansion of ¢q[]], as given on p. 21 of the
lecture notes, in the action in order to obtain

=[], pal] 1] = § *—x + 1 X\f +1 H +0(]°).

Verify explicitly that eq. (23.5) holds to this orderin J .
2. It follows from the path integral that [compare this to exercise
13(d)]

_ 8G[J ]
@ 1(x) = lr(x). (23.6)

Here (p)[] ] stands for the expectation value of the Heisenberg
operator ¢(x) = ¢(X, t) in the groundstate |0)[] ] of the Hamil-
tonian H[] ], i.e., in the presence of a source | . Note that (¢)[] ]
is an ordinary real valued field, and not an operator field. Also
note that in each point x it is a functional of | .

Show up to third order in | that

@] 1= eal] 1+ On). (23.7)

(b) Now let us see if we can generalise these results to arbitrary
order in |. Brute force as used in (a) is of no use here because
this method generates the combinatorial factors for S [], wal] ]]
in an almost intractable way. The proper framework for the proof
is the formalism of Legendre transformations (see Itzykson and
Zuber for more details).

We assume that eq. (23.6) is invertible to | (x) = J [{¢)](x). This
allows us to define a functional I on (¢) via a Legendre transform:

iT[lp)] = Gl )1 +i(J )], (¢)), (23.8)
with (f, §) = [d*xf(x)g(x). Derive from eq. (23.6) that

ST'[{¢)]
8(p)(x)

= ] [@)](x). (23.9)
Hint: The chain rule for functional derivatives reads:

Sf[glh] [ .4 Sflg]
Sh(x) _/d 83(y)

5g[hl(y)
g=gm) SR(X)
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Remark: An important example of a Legendre transform is the
relation between a Lagrangian and its Hamiltonian: H(g, p) =
pq(p) — L(q,(p)) with p = 9L(q, §)/34. (The position 4 plays

no role in this transformation.)
(c) 1. Itis useful to Taylor expand G[] ] around | = 0:

G[J]= Z il /d4x1 - 'd4an(n)(x1/ e xn) ] () - T ().
n=1

n!

Why can we disregard the nn = 0 contribution?

NOTE: G is precisely the connected n-point function as de-
fined in Problem 13.

We also expand I'[{¢)] around (¢)[] = 0]. For simplicity we
limit ourselves to the case (¢)[0] = 0.

x 1
Ml =) Hfd“xl cdt DO (x,  ) () () - () (3).

n=2

Why do the n =0, 1 terms vanish?

2. T canbe obtained from {G""="} by differentiating eq. (23.6)
n — 1 times with respect to (¢) and then setting (¢) = 0 (corre-
sponding to ] [{(¢)] = 0). Show that

r® =i(G®)-1, ré® = _jG® amp,

where ‘amp’ means amputation:

GMWImP(xy, -, x) = / [TE* (G (i, 1)) G, -, )
i=1

Argue that G®amP = GO The latter stands for the sum of ‘1
particle irreducible” diagrams, i.e., amputated diagrams that
are still connected after cutting one arbitrary internal line. In
general the following holds:

r = —iGMW". (n > 3)

You are not asked to prove this, but it might be enlightening
to check it for n = 4.
3. Use the above to show that, to order #°,

P&, y) = —8u(x—1)(3,0" +12), T (x1, %2, %3)
= —g84(x1—x2)84(x2—x3),

whereas ng)) = 0 for n > 4. Also show that

Col{e)] = S[J =0, (p)].
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(d) Show that, to Oth order in 1, eq. (23.9) is just the Euler-Lagrange

equation (for (¢)). Under whatboundary conditions can you now
prove eq. (23.7)? Finally prove eq. (23.5).
Remark: The above shows that I'[(¢)] may be viewed as a quan-
tum mechanical generalisation of the classical action (without
source term). The physical relevance of this particular general-
isation comes from eq. (23.9). Apparently the observable (¢)[]]
is governed by this generalised Euler-Lagrange equation. The
quantum corrections usually cause (¢)[] ] # ¢al[J]. For ] =0a
symmetry often prohibits such a shift, but for ] — 0 the shift
may still be possible. In such a case (¢)[J] — 0], and therefore
|0)[] — 0], is less symmetric than ¢q[] — 0]. This means that
quantum fluctuations can (spontaneously) break a symmetry.

17. Feynman rules for complex fields
If two real scalar fields, ¢; and ¢, are governed by the Lagrangian

L1, ¢2) = 13,019" 01 + 13,020 0 — 1m*(¢? + ¢3)
V(@i +¢3) — J1g1 — 22

thenitis possible to give an equivalent formulation using the complex
fields

¢ = qﬂlji(ﬂz; @ = ¢17¢2; J = llj-[ilz; J* = ll:/%lZ

which transforms to the Lagrangian
L(p, ¢) = 9,90 9" —mPp* o — V(20*0) — [ *¢ — ] ¢*

(see Problem 5 for the interpretation of ¢ and ¢* in terms of particles
and antiparticles). Among the Feynman rules we now find oriented
lines:

X—=—X

J J*

(a) Which two processes are described by this diagram?
(b) Give all Feynman rules for the model with

V(2¢%p) = 1g(p*p)*.

(c) For this potential write down all connected diagrams with at
most two loops contributing to

&
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18. Elementary scalar processes
Consider three real scalar fields (A, B, C) described by the Lagrangian

L= 1(3,A"A+3,Bd"B +9,Co"C — m4A* — myB?
—mEC? — gaA°C — gpB*C).

(a) Ifmc > 2maC particle can decay into two Aparticles. To lowest
order (in the couplings) this process is associated to the Feynman
diagram

c M
g ——
A-p2 .

Determine the S-matrix element o, ( p1 p219 )i, to this order (lecture
notes p. 61). Also give an expression for the decay width I'(C —
2 A). Work out this expression for a C particle at rest (§ = 0).
Detgrmine the behaviour of I'(C — 2A) for m¢c > 2m 4, and for
mc —zna « 1.

Gi;nfce the total width T'(C) if mc > 2mp too. Also express the
expected C-lifetime () in terms of I'(C).

(b) Another possible process is the elastic scattering of two particles
Aand B, schematically

p1 }/P:”

P2 B

Ps -
Write down the single diagram that contributes to this process
to lowest order. Derive expressions both for the matrix element
out{P3palp1p2)in and for the differential cross section do
(AB — AB).

In the center of mass (CM) frame the process looks like this:

ps
] ji
PP —> ~——pP2=—mN
e
P4 = —ps3

In this frame the differential cross section only depends on the
external momenta through p = |p1| and 6 = Z(p1, p3). Work out
;%( p, 0) in case of equal masses m 4 = mp = m. To this purpose,
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first prove these intermediate steps:
; d*ps d°p ™

() [ ou(pst pa—pr—p2) = 2—;+7

(i) [(p1 - p2)? — m3m3]V2 ' 2p /p? + .

Calculate the total cross section 0 (AB — AB) by integrating over
all directions €.

Show that in the limit mc — oo, while keeping A = gags/ m%
constant, 6 (AB — AB) is the same as for a model with only A
and B particles and interaction

A
sz—ZﬁB?

19. Lorentz transformation for spinors

An electron is observed in a frame %, where it has velocity v along the
3-axis. Its rest frame is called X'. In ¥’ the electron’s wave function is
given by

v(x) =

(Weyl representation)

(Due to the volume factor V', ¥’ has a volume-independent norm

and one can take V' — o0.)

(a) Verify that this is indeed a positive energy, zero momentum so-
lution of the Dirac equation. What is its spin? Transform the so-
lution to the ‘conventional representation” of the lecture notes
p-75.

(b) The wave function ¢ in the ¥ frame can be determined via a
Lorentz transformation. Show that the transformation K = (K*,)
from coordinates on ¥ to coordinates on X’ [i.e., (x")* = K*x"]
can be written as

K =e " with



Problems 185

3
, sinh(a) = %, cosh(a) = %

= O O O
o o o O
o o o o
o o o =

(c) Show that the induced transformation of spinors is given by
— « Cainh (2 403
S= cosh(z)l—i—zsmh(z)a

with o#” as in the lecture notes (p. 77).

(d) Determine ¥/(x) = S~!y/(Kx) in the Weyl representation. Ver-
ify explicitly in the ¥ frame that this is a solution of the Dirac
equation with the correct momentum. Finally transform y to the
conventional representation.

20. Lorentz algebra vs. su(2) xsu(2)
Using the property that the (Euclidean) Lorentz algebra is isomor-
phic to su(2)xsu(2) one can easily classify all its finite dimensional
representations [su(2) is the Lie algebra of SU(2)]. We will analyse
this situation in the present exercise.
(a) Show that the matrices L*" defined by

(L;w)aﬂ — guagg _ gvotgll;,

generate the Lorentz group (compare this to part (b) of the pre-
vious exercise). Furthermore prove that

[LH, LPO] = g"P LM 4 gHo L™ — gMPLY — " L1,
(b) Define
JiE = 1GeLF £iLeo). (e123 = +1).

Determine all commutators [] ii, ] ]-i] and conclude that the Eu-
clidean Lorentz algebra is isomorphic to su(2) x su(2).

(c) Itis well known that the set of all finite dimensional representa-
tions of su(2) = so(3) is given by {p|l =0, 3,1, 3, ...}, where

po(Ji) = 0
pi(Ji) = —Loi € su(2)
p1(Ji) L; € 50(3)
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For each pair (a, b) witha, b € {0, }, 1, 3, ...} an irreducible rep-
resentation of the Euclidean Lorentz algebra can now be defined:

Pa,b) = Pa & Pp-

In particular p = P10 and p = P, 1y are defined through

p(J7)¥ = —5oin
P(]i+)1//1 =0
p(J )¥2=0
p(J ) = —Loivn.

Subsequently we can construct the (reducible) representation p @
p acting on pairs (Y1, ¥2).
Give the action of (p ® ,b)(]ii) on (Y, ¥»).

(d) Now derive the action of (p @ p)(L"*") on (1, ¥2) and note that
these objects are precisely the generators — 50" in the Weyl rep-
resentation (lecture notes p. 77).

21. y algebra
The defining property of the y matrices y! --- y*is

y*, v"1=2¢"1 pn,v=0123.
Furthermore one defines y° = iy%y!y2y?>.

(a) Show that
{VM/ VS} =0, (VS)Z =1

(b) Let Tr(y*ry#2...yH) denote the trace over n y-matrices (take
ni €10,1,2,3}).
1. Prove that such a trace equals zero for n odd. Also prove that

Try® =0.
2. Compute
Tr(y*y")
Tr(y"y"y°)
Te(y"y"y"y?)
Te(y*y vy v®).

(c) Prove the following identities:

YOVEY Y P Ve = —2yPyVyH

yryly? + vyt = iTr(y v YY) Ve.
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22. Majorana and Weyl fermions
(a) Given any set of gamma matrices {y*} another set is defined by

y*=Uutyru, utu=1.
1. Take {y*} to be

0 1 0 i 0 (oF]
Yy = ;Y =
0 —1 —0; 0

(the ‘conventional representation” on pp. 75, 78 of the lecture
notes) and choose

U=o0Q j(01 —io3) + 03 ® 3(01 +i03)

1[o1+io3 o1 —io3

2\ o1 —ios —(o1+io3)

Show that U is unitary and that the set {y’*} is given by

1 . 2 . .
Y0=0;3®R0, y'=-i®o, y?=im®0n, y®=-i®oay.

Note that all y’ matrices are purely imaginary.
2. This so-called Majorana representation {y’*} allows us to im-
pose the following;:

Yy* =1  (Majorana condition)

[with ¥ = y(x)]. Show that this is consistent with the Dirac
equation.
3. Prove that the condition implies ¥y = 0.

Remark: This result is no longer valid for anticommuting
v, ¥

4. How can we interpret Majorana fermions? (charge; antiparti-
cles?)

(b) Another possible condition on fermions is
V= (Weyl condition)

1. Use the Dirac equation to prove that necessarily m = 0.

2. Prove that Weyl fermions w and  satisfy oy = 0.

3. The helicity operator >k (withk = k / |Iz|) is defined via ! =
Leijko/*. Show that in the original y representation of part
(a)(1) this reads
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Also prove that (£ - k)2 = 1.
4. Show that for m = 0 the plane wave solutions of the Dirac
equation can be written as

> X
ko=+E: Uk =
o=+ (k) @ P
e -E: U®=|"C 'E)X).
X

Determine the action on Uy of the chirality operator y° and

the helicity operator ¥ - k. In particular show that their action
is the same, up to signs.

5. Conclude that a massless spinor satisfying the Weyl condi-

tion can either describe right-handed particles or left-handed
antiparticles. Here right- (left) handed means having positive
(negative) helicity.
Remark: From (b)(3) it is clear that helicity equals the (anti-)
particle’s spin component in its direction of movement. There-
fore the helicity operator commutes with the Dirac equation
for any mass m, this equation being Lorentz (hence rotation)
covariant. Chirality, however, is only a good quantum number
in the massless case.

(c) Is it possible to realise the Majorana and Weyl conditions simul-
taneously?

23. Dirac equation
We start from the Dirac action

Soirac = / A (x) (i "9, — m)w(x).

(a) In the lecture notes (p. 14) the energy-momentum tensor T+"
has been constructed for the (scalar) bosonic case. As this con-
struction uses general coordinate invariance, its generalisation
to fermions is complicated (the formulation of spinors in gen-
eral relativity is involved). For this we refer to Section 10 of
‘The Spacetime Approach to Quantum Field Theory,” by B.S. De-
Witt in Relativity, Groups and Topology 1I, ed. B.S. DeWitt and R.
Stora (North-Holland, Amsterdam, 1984). The generalisation of
eq. (3.20) yields an energy-momentum tensor that is no longer
symmetric:

T = giy"d"y — g (iy o, — m)y
1 7 A __puv n__Av vV __ A
+ZBA(1/f(y o' —yte™ +y'o )w).
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Use the equations of motion to show that 3, T*” = 0 and that the
energy-momentum tensor is equivalent to the following sym-
metric result:

1/. - - -
T = 2 (Fiy" o' v + Fiy* o'y — 0" D)iy"y — (" D)iy'y).

It is possible, however, to use only translational invariance (and
of course, as always for Noether currents, the equations of mo-
tion). This derivation is very close in spirit to the discussion on
pg- 14 and to eq. (3.20). Show that translational invariance can be
formulated in the following way:

LIYa, Ua, 3u¥n, 0,WA1(x — A) = L[Y, ¥, 8,9, 3, ¥](x),
(23.10)

where YA (x) = ¢¥(x + A) (A independent of x), etc.

Expand the left-hand side of eq. (23.10) to first order in A. Now
use the equations of motion, and eq. (23.10), to prove that 3, T"" =
0 for

T = griy"d"y — " Y (iy®de —m)y.

Also verity explicitly from the Dirac equation that 3, T*" = 0 is
satisfied.

Show that all three definitions of the energy-momentum ten-
sor give the same results for H = [dsX Too and P; = [ dsX Ty,
that these quantitities are conserved and that for a plane wave
solution of the Dirac equation with momentum k (see Chapter 13)
they coincide, as it should be, with the energy and momentum
of that solution, i.e., H = ko(lz) and P; =k;.

(b) Now add interactions and (external) sources:

L= EDirac — Vint + »Csource/ Vint = ig({bw)z/
[:source = —(Tlﬂ + ]{0)

What are the corresponding Euler-Lagrange equations for 4 and
¥? Solve these equations in a perturbative way, like in the scalar
case (Problem 7; pp. 19-22 of the lecture notes). In particular give
the Feynman rules for the equivalent diagrammatic expansion.
For the lowest order result use the following notation:

w:—%< ’

J
Y= —>—x
]
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24. Canonical formalism for spinors
(a) 1. On p. 84 of the lecture notes creation and annihilation opera-
tors for the Dirac field are introduced:

d3k 1 TN (@) (T, —ikx TN (@) (T pikx
¥(x) = / W\/TTO Z (ba(k)u (k)e + dy (k)0 (k)e ),
a=1

with ko = +vk2 + m2. Give the corresponding expression for
V.

2. Postulate anticommutation relations as on p. 86:
(o (R), by (K)) = (da(k), dy(K')) = 6008°(k — K):
the remaining anticommutators are zero. Show that

{Va(x), Y5(¥)} = (Ya(x), ¥p(y)} =0 and
{Wa(x), Yp(y)} = (iy" 8, + m)epA(x —y), with

dsl_é L (efik(xfy) _ eik(xfy))
(27‘[)3 2k0

Alx —y) =

(and 9, = 9/9x*). Compare with Problem 6 and conclude that
causality is respected.

3. Alternatively, postulate commutation relations (substitute{, } —
[, ]in above anticommutation relations). Show that

[Wa(x), Y] = [Va(x), P5(y)] =0 and
[Va(x), Pp(N)] = (iy"0, + m)upA(x —y), with
A3k 1
(27)3 2kg

A(x—y) = (e7HE=0) 4 oiKG-D)Y |

Conclude that causality is violated.

Remark: This result can be generalised to a theorem stating that
any local quantum field theory that respects causality admits only
fermions with half integer spin and bosons with integer spin.

(b) Add a source term [y + ¢] to the Dirac Hamiltonian density
U(—iy'd; + m)y, J4(x) and J,(x) being anticommuting external
fields. Expand (0| exp(—i Ht)|0) up to second order in the sources.
To this purpose use the Hamiltonian perturbation formalism (lec-
ture notes pp. 25-28); use the properties of u, v (p. 84) and the
gamma matrices to simplify the spinor structure. Your final result
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should be

(0le~"Ht|0)e Bt =1 —§ / d*xd*y] (X)Gr(x — )] (y) + - with

Ak Kyt m ey

G-V = | Gt

Note that Gr is precisely the classical fermion propagator of the
previous exercise.

25. Anticommuting variables
In this exercise Greek letters denote anticommuting variables, ordi-
nary letters commuting ones.

(a)

(b)

Compute the following integrals:

/d@eg”, /de ! ,/deln(1+0).
1—ab

Given the following linear relation between two sets of n-indepen-
dent anticommuting variables,

n
ni =Y Bijo),
j=1

show that (for invertible B)

1
dmdny ---dn, = mdeldez <o do,.
Compare this to the case of commuting variables.

Hint: Consider the most general function of n anticommuting
variables, which is a polynomial of degree n. Analyse its be-
haviour under integrations and linear transformations on the
variables.

Prove that, for independent n;, 7,
/d'hdr‘h < dndie A = det A.

Use this result to prove the following result, which holds for any
antisymmetric matrix A:

fdgl oo dB,e1%%i% = +/det A,
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Hint: Substitute n; = 6; +i6;, n; = 6; — i6;.
(d) Given a smooth function f satisfying lim, ., f(y) = 0, prove
that

/dxldxzdedéf(x% + 22 +80) = —nf(0).

26. One-loop Feynman diagrams
Consider a model consisting of fermions v and real scalar particles
¢ with interaction

Vine = glpfﬂlﬁ

Determine the reduced matrix elements corresponding to the follow-
ing diagrams (do not work out the analytical expressions):

1. ¢ self-energy - Q -

2. Y self-energy * '

3. vertex correction - — - ﬁ |

27. Compton scattering for pions
At not-too-high energies the pion-photon interaction is well approx-
imated by scalar QED:

L=—1F, F" 4 (8, —ieA,)*(d" +icA")p — m*p*p.

The pion (™) is described by the complex scalar field ¢, the photon
(y) by the vector field A, (Fu, = 0, A, — 3, Ay).
(a) Show that the three-point vertex is given by

rs

=e(pu+49u),

and give the other Feynman rules in the Lorentz gauge.

(b) Which Feynman diagrams contribute, to ordere?,tor~y — 7~y
elastic scattering?

(c) The initial and final photon states are plane waves:
8:?(]2)87ikixi Ezut(l_('/)efik/ix,'

V(27)32k, rep J @)k,
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Express the reduced matrix element for the scattering process, to
order e?, in terms of the polarisation vectors ¢™°" and the exter-
nal momenta. Use the following notation:

8;?(];) \kk\ k,/} g(u)ut(l_é/)

(d) Using the result of part (c) prove (to order e?) that the S-matrix
vanishes whenever the initial or final photon is longitudinal (i.e.,
au(l_c') ~ k,). Explain which property of the model is responsible
for this.

(e) Give all Feynman diagrams that are needed for an order ¢° cal-
culation of the cross section. Which of them are UV divergent, i.e.,
which give rise to expressions that diverge due to integrations
over large momenta?

28. Elementary fermionic processes

Let us reconsider the situation in Problem 18, with the bosonic fields

A and B replaced by fermionic fields ¥4 and . The Lagrangian

now is

L =13,Co"C — tmgC*> + Ya(i # —ma)ya+ Up(i § — mp)¥p
—8AVaCy¥a — gpYBC¥p.

(a) For mc > 2my, C can decay into A and anti-A according to the

diagram
/
q P1

p2
Determine like in Problem 18(a) the S-matrix element and the
decay width I', which now are functions of the fermion spins.
Perform a summation over all possible spins to obtain the ex-
pected lifetime of C.

Hint: Some properties of the 1 and v spinors (lecture notes p. 84)
are very useful here.
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(b) Scattering of Aand B is described by

A\\//A

B//\\B

Write down the analytic expression for the corresponding
S-matrix element.

Now assume that m 4 = mp and work in the CM frame. Deter-
mine the differential cross section do(AB — AB). Average over
the incoming spins and sum over the outgoing spins. For which
experimental situation is this justified?

Work out your result as a function of the CM variables |p| and
0. As a check it is given that do/d 2 is spherically symmetric for
mc = 2m A-

29. e~e™ collisions in QED
The QED Lagrangian with two flavours, electrons and muons, reads

L= _iFlelw - %agauge(auAM)z + Z lpf(iVMDu - mf)‘pf/

f=e,u

where D, = 9, —ie A, (lecture notes p. 113).
(a) e"e™ — e~e™ (Bhabha scattering)
Which two diagrams contribute to lowest order?
In the lecture notes the Maller (e "¢~ — e~ e ™) differential cross
section is calculated. Perform an analogous calculation to obtain

(in the CM frame)
d
%(e‘fr —e7et)
& { (2E2 — m?)? —8E* +m*
~ 16E% | (E2 — m2)2sin*(6/2)  E2(E2 — m2)sin’(6/2)
12E* +m*  4(2E2 — m?)(E? — m?) sin%(6/2)
E+ E4
4(E? — m?)?sin*(6/2)
E4 ’

where o = e2/4w, m = m,; E and 0 are the CM variables for the
energy of the incoming electron resp. the angle between the in-
and outgoing electrons.

Note that unlike in the Meller case there is no divergence at
6 = m. What is the reason for this?
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(b) eet — puut
How many diagrams contribute to lowest order?
Show that in the CM frame, and in the limit m,/E, m,/E — 0,

do 2

490 -+ - =% 1 2
dQ(ee —> uu) 16E2( + cos” 6).

Calculate the total cross section. Use dimensional analysis to ex-
press your result in units f1, ¢ # 1.

30. Weak interaction in the standard model
The Lagrangian given below describes a simplified version of the
standard model. This simplification, which only contains fermions
¥ and massive vector bosons W), captures the mechanism through
which the standard model gives rise to an effective four-fermion in-
teraction.

LWy, ¥) = =iFu F + IMPW, W+ G (iy "0, — m)y + W (Fy ")

with F,, = 9, W, — 3, W,,.
(a) Give the Feynman rules.

(b) We restrict ourselves to tree diagrams which satisfy two condi-
tions: (1) all external lines are fermionic; (2) p* < M? for all mo-
menta p,. Show that such diagrams can effectively be described
by

A

£effective(w) = 1/7(1'3/”3;; —m)y — W(‘Z’V”W(@Vﬂ”)

and express the parameter A in terms of ¢ and M.

31. Gauge fields
In this exercise we use the following gauge-field conventions (com-
pare this to the lecture notes):

A;L = QAZT(Z, Fp_v = qFZVT’Z/ [Tu/ Th] = fabCTC/
Tr(T°T®) = —18,5, D, =0, + A,
F/w = [D;/./ Dv]
= ay_Av - 8VA/I. + [A/u Av]/

where {T“} spans a matrix representation p(L¢) of the Lie algebra.
Note that we absorb the coupling g in A,.

(a) Notation: X, Y, Z stand for arbitrary elements of the Lie algebra

p(Lg).
In the lecture notes the generators of the adjoint representation
are defined as

(adTa)bc = _fabc-
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Show that this representation can be thought of as acting on the
Lie algebra itself, in the following way:

(@dT*)Y = [T, Y].

Also prove from this formula that X — adX indeed is a rep-
resentation of the Lie algebra, i.e., prove that it is a linear map,
satisfying

(@d[X, Y]) = [(ad X), (adY)].

Hint: Work out (ad[X, Y]) Z, using the Jacobi identity [ X, [Y, Z]]

+ cyclic = 0 (which can be seen to hold trivially by expanding
the commutators).
Finally prove that

eAdXy _ ,Xy,-X,

This means that the adjoint representation of the group G is a
conjugation. Therefore gauge transformations act on the field
strength through the adjoint group representation (as F,, —
¢F,,g71, lecture notes p. 131).

(b) Define DYYX = (adD,)X = [0, + A, X] = (3,X) + [A,, X].
Prove that

DEYDEVFH = 0.

Hint: What is [D?Y, D&V]?

(c) The gauge-invariant Lagrangian for a fermion field coupled to a
dynamical SU(N) gauge field is (lecture notes pp. 130, 131)

o 1 ,
L= w(ZJ/MDM — m)w + ﬁTr(FMVFM ) =

o 1 2 .
= P(iy"d, — m)y + ﬁTr(F,“F’”) + q—zTr(]ﬂAﬂ) with
JH=q]"T, M = —igyy" Ty,

Derive the Euler-Lagrange equations:

ad v v
DEVFm =T (23.11)
(iy"Dy, —m)y =0 (23.12)
Show from eq. (23.11) that
ad
DEYH = 0.

Show that this equation follows from eq. (23.12) as well.
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(d) Use the Jacobi identity to prove the Bianchi identity:
ij‘d)F v + cyclic = 0.

Show that for electromagnetism [G =U(1)] this gives the homo-
geneous Maxwell equations.

32. Dirac equation with gauge fields
(a) By construction the Klein—-Gordon equation is obtained from the
free Dirac equation in the following way:

0= —(iy"d, +m)(iy"d, —m)y = (8% + m*)y.

Analogously prove from the Yang-Mills Dirac equation [Prob-
lem 31(c) eq. (23.12)] that

(D* +m?* — ;0" F )¢ =0. (23.13)
(b) Now specify to electromagnetism,
T=iqg=-—e, F,=0,A —0,A,, etc

Choose the gauge Ay = 0 and turn off the electric field by assum-
ing that 3; A = 0. Show that eq. (23.13) reduces to

5-B 0
(D2+mz)w+e(‘7 ) ﬁ)wzo.
0 o-B

Write ¢ = (156 ) and define the two-spinor ¥}, to be
s

Vsch =¢""vc
(subtraction of the rest energy from the Hamiltonian). Show that!

s (+ed? e

.0 I
“om ﬁwsch +1§‘/’sch = [T + %(U ' B):| Vsch-

Show that in the nonrelativistic limit this equation simplifies to
the well-known Schrédinger equation for an electron in a mag-
netic field, i.e.,

.0

i57Vsch = HYsch

1 - e ~
H=_—(p+eA)?>+ —( - B).
7 (P e+ o (o B)

! Please note: To respect covariance py = —i9/3x*, whereas p* = —i9/9x* or p = (p, p?, p°) =
—iV as used in nonrelativistic quantum mechanics.
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33. Linear sigma model
The Lagrangian for the linear sigma model reads

L= 1[0,¢3"¢ + 3,00"c] + 1u[|¢]* + (0 +0)°]
—gllgl* + (o + )P,

where ¢ is the pion field (three real components), o is the sigma

field (one real component), v a constant and p, g are real positive

parameters.

(a) Show that this Lagrangian contains a linear term oo and express
« in terms of 1, ¢ and v. What is the Feynman rule for such a
term?

For a # 0, this Feynman rule makes the perturbative ap-
proach unnecessarily complicated. Argue that this complication
is avoided when v is such that g = 0 and o = 0 corresponds to
the minumum of the potential associated to the Lagrangian.

Determine v, and show that the ¢ and o masses are 0 resp. j.

(b) Show that the Lagrangian is invariant under the global infinites-
imal (isospin) transformations

a0 (x) =0, Sapi(x) = —&ijkAjor(x), (23.14)

and also under the global transformations

Seo(x) = —p(x) £, 8:p(x) = (o(x) +0)E.  (23.15)

Now write egs. (23.14) and (23.15) in matrix notation w.r.t. the
four-component vector ¢, (x) by defining ¢4(x) = o(x) + v (ie.,
write 859, (x) = A;L!,0,(x), w.rt. 8:0,(x) = &K, 0,(x) for suit-
ably defined 4 x 4 matrices L’ and K'). Prove that L’ and K’ span
the space of real antisymmetric 4 x 4 matrices.

Conclude that egs. (23.14) and (23.15) are in fact infinitesi-
mal SO(4) transformations. Verify this by showing that the La-
grangian, written in terms of the four-component vector ¢, is
manifestly SO(4) invariant.

(c) Give the Noether currents associated to egs. (23.14) and (23.15)

34. Higgs mechanism 4 .
We consider a model with real scalar fields ¢’ and vector fields A,
i =1, 2, 3. These fields transform in the fundamental representation
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of an internal group SO(3), with generators
(T = —€jx i,j, k=123
In particular the covariant derivative and field tensor read

(Dug) = 3,9 — gewij Alg/,
F;lw = altAi; - aUAil. +g€1’]'kA;]AA|]i'

The Lagrangian is taken to be
L= —%PLVF“”I' + 1(D,¢) (D )" — V(|¢|*) with potential
V(e?) = £ll9”* — F2P, A F > 0.

The (0-loop) vacuum expectation value (vev) of the scalar fields is
chosen to be

0
@(x))=F =| 0 [, (Fconstant).
F

(a) Explain why this is a valid choice for the vev. Show that this vev
is invariant under a one dimensional subgroup of SO(3).

(b) Define ¢3' = ¢' — F', and expand the Lagrangian in terms of ¢’
and AL. Note that the quadratic part of the Lagrangian contains
off-diagonal elements (mixing A and ¢). In general such terms
can be handled by diagonalisation (redefining A and ¢ in terms
of each other in an appropriate way), but anticipating the gauge
choice in part (c) you may neglect them here.

Interpret the various terms (mass terms, kinetic terms, interac-
tion terms). Give the masses for the fields A, and ¢' (i = 1,2,3),
and also the couplings for the following three-vertices:

- 1
903 Au

@ Al

(c) Show that we can choose the gauge such that

p'=¢"=0.
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35.

36.

(d)
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Does this completely fix the gauge?

This model contains nine physical degrees of freedom (dof).
Read off from the quadratic terms how in the above gauge these
physical dof are distributed over the fields.

Reconsider the situation for a different potential, V(|¢|?) = 1m?|¢|>.
What is the ¢ vev in this case? Read off the number of physical
dof again (¢! = ¢? = 0 is not a convenient gauge choice now.
Why?).

Higgs effect and ghosts
Take the model in the previous exercise and add the following gauge-
fixing term to the Lagrangian:

(@)

(b)

(©

(d)

Egauge f— —%fuz , fg = 8;LAM’1 — Cg_léubcpbwc'

Expand £ + £&5¢ up to quadratic terms in A and ¢* = ¢ — F“.
For convenience choose F? = F§,3, as in the previous exercise.
Show that due to the special gauge choice, the quadratic terms
mixing A and ¢ cancel among £ and £8%"8°,

Determine how F, transforms under infinitesimal local gauge
transformations ¢ — Qg; A, = AAT" - QA,Q ' +¢7'Q0, Q!
with Q;; = (exp(A"T"));j = 8ij — A"€ij, and write the result as
8F, = My, Al (compare this to lecture notes pp. 137, 138). Read
off the ghost masses.

Determine the vector, scalar and ghost propagators as a function
of a. Which limits correspond to the transversal gauge (9, A** =
0) and the unitary gauge (p' = @* = 0, as in part (c) of the
previous exercise)?

Which poles in the propagators correspond to physical masses?
Check that unphysical poles always coincide mutually, and argue
why this is necessary.

Elektroweak interactions in the standard model
If ¢ isan SU(2) doublet and has U(1) hypercharge —3Yg’, its covariant
derivative reads [for SU(2) generators —io, /2 and U(1) generator i]

D,ﬂﬂ = BMW — %igouWZl// - %lYg/Bulﬂ

L R

Itis given that the fermion fieldse”, e® (electron), v (neutrino), u®, uR,
dt,dR (up and down quarks) have the following SU(2)xU(1)
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properties:

vl = . doublet Y = -1
e

YR =R singlet Y = -2

vi= ") doublet v =1

q9 = dL - 3

YR =uR singlet Y = +4%

YR =dR singlet Y = -2

Furthermore, we reformulate the gauge fields:

1
+ 1__ A2
Wi = S WiF i,
Z, = —WS cosfw + B, sinfy, AT = Wj sin 6w + B, cos Oy,

and o4 = 01 + i(fz.
(a) Write the covariant derivative of ¥/ and ¢} in terms of W,
Z,, A‘;Lm and o, 0_, 03.

(b) We require the interaction between the electron fields e’, e and
the photon field A7™ to be the same as in quantum electrodynam-
ics (QED). Derive from this requirement two relations between
8, &', Ow and the electron charge —e.

(c) Work out the relevant covariant derivatives to determine the elec-
tromagnetic charge of the neutrino and the up and down quarks.
Also analyse the electromagnetic properties of the fields Wy and
Z,.. Discuss the particle interpretation of the complex fields W

(d) The Lagrangian of the standard model contains (a.o.) the follow-
ing terms:

il/_/eLVMDuweL + il/_/eRVMDuweR-

Determine from this all possible three-vertices of type %{ ,

where ~~ stands for W, W, or Z,,and —— for el eRor
V.
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(e) The standard model allows for the process W= — el + . It is
given that the decay rate I'y equals

1
='W —e v) T 2 My
T

(My is the mass of W~, the masses of e%, eR and v are neglected).
Use your results from part (d) to express the decay rates I'y =
I['(Z — eReR)and I'; = I'(Z — vD) in terms of Iy and Oyy.

(f) Show that
[(Z — etel) £ 1(Z — eRe®)

and interpret this result.

37. LEP experiment

Since 1989 CERN has been operating the Large Electron—Positron
(LEP) collider, a ring with a circumference of 27 km. Electrons (¢ ~) and
positrons (e™) are accelerated in opposite directions, each reaching
an energy (E) of about 45 GeV. The CM energy (2E) in a collision
is comparable to the mass of the neutral vector boson Z that was
encountered in the previous exercise. From Heisenberg’s uncertainty
relation it is then clear that a Z boson created in the collision can exist
for a relatively long time. This gives rise to a so-called resonance in
the electron—positron cross section. In the present exercise we will
analyse this phenomenon for the process ete™ — u*tu~.

The following part of the standard model Lagrangian (in the uni-
tary gauge) suffices for a leading order calculation:

L=—28,2Z,—8,2,)"Z" —d"Z") + 1 M2 Z, 7" +

- e -
+ {Wf(i)/”a —mp)y — —=YrZ V“Vs%ﬁf}-
f;ﬂ 2 \/5 "

In this Lagrangian the spinor field v,) describes the electron (muon)
with mass m,(,) = 0.511 MeV (105.7 MeV), while the Z particle (with
mass Mz = 91.2 GeV) is described by the vector field Z,. For conve-
nience the Weinberg angle 6y has been approximated (sin2 Ow = 0.25
instead of sin? Oy = 0.23). As can be seen from part (d) of the previ-
ous exercise, this considerably simplifies the interaction between the
Z particle and the fermions. The Feynman rules now are

kuk,
k _(guu M ) k (mf + )/Mku)ab
A 5 = s
v k M; + ie’” b a k2 — my +ie

b%—ﬁ = —(V ¥5)ab-
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(a) Give all Feynman diagrams and the S matrix forete™ — utpu~
via a Z particle. Also give the Feynman diagrams for ete™ —
ete” via a Z particle.

(b) Prove from the Dirac equation that @ (p)y"v*2(q)(p. + g,) = 0
and the same for u < v. Here u*(p) [v°(p)] is a Dirac spinor
describing a particle [antiparticle] with arbitrary spin s. For QED,
explain why these equalities are related to U(1) gauge invariance.

(c) Show like in part (b) that @' (p)y*y50°2(q)(p. + qu) = 2m 0 (p)
y50°2(q) and derive an analogous formula for u < v. Here m
stands for the fermion mass.

(d) Thetypical energy scale in the LEP experiment is Mz. This means
that m, and m,, can be neglected. Show that this implies that in
part (a) the Z propagator can be replaced by

—&8uv
k2 — M2 +ie’

(e) In the lecture notes (pp. 59, 70) it is explained that quantum cor-
rections modify the propagator. Show for the present case that
the Z propagator will be modified to

_ZZg;w
k2 — M2 +iMzTz +ie

(Zz = Z’s wave-function renormalisation; I'y =Z’s total decay
rate).

To a good approximation the k dependence of I'; may be ne-
glected near the resonance. Furthermore, O(e?) corrections to Zz
will be neglected too, i.e., we take Zz = 1. Why is 'z # 0?

(f) In your calculation below you may (or rather should) use the
result from Problem 29(b), namely that in QED the total cross
section for ete™ — ptu~ (ie., via a photon) equals % Here «

is the fine structure constant, the fermion masses are neglected,

and the incoming particles are not polarised.

Show that the total cross section o for ete™ — putu~ viaa Z
particle equals, for unpolarised electron—positron bundles and in
the approximations discussed before,

lra?(4E /3)?
((2E)2 — M2)® + M2T2

Remark: Since I'y « My (see below) it is clear from the above
formulas that near the resonance photon ‘exchange’ can be ne-
glected. Also Higgs ‘exchange’, possible in the standard model,
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is negligible, as the coupling between the Higgs particle and
fermions is proportional to m ¢/ Mz (K e).

Figure 1 on page viii shows the LEP data (in the figure Energy =
2E). Explain this plot qualitatively from your calculations, and
extract I'z.

Note that each fermion—antifermion pair, into which the Z par-
ticle can decay will give a positive contribution to I'z. As also
neutrinos contribute, one has been able to determine the exis-
tence of precisely three (light) neutrino types.

38. One-loop calculation with scalar fields
A model with scalar fields ¢y, ¢1 and ¢, is described by the Lagrangian

L = 18,008 @0 + 3,018" 01 + 8,020" 2 — M35 — M7
—M2p3 — howogs — M@r13),

with M > mq > 3my.

(@)

(b)

(©

(d)

Even though there is no direct interaction between ¢ and ¢y, the
model gives rise to diagrams with only external gy and ¢; lines.
Clarify this statement by drawing some diagrams contributing to
the processes 91 — @o@owo and 199 — @1¢9. Use the following
notation for the propagators:

Yo— — — — — $2
Consider the diagram
—q
- = — ¢
P/’
—q ,
1 bp—q
q - p . 7// — (po /
-4 =9-49

Give the associated S-matrix element without working out the
d*p integration yet.
The S-matrix element contains the following expression:
89,9
_[d'p iMA3
S Jemt(p2 - M tie)((p— )2 - M2 +ie)((p — )2 — M + ie)

Argue that g(g, q’) can be viewed as the effective coupling con-
stant for the leading order contribution to the process 91 — ¢p¢o.
Do you expect g(g, q’) to be real or complex?

Compute g(g, q) with the techniques introduced in the lecture
notes pp. 153-156: write g(g, q’) as an integral over a function
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of the form I, o 4(71). To this purpose use a Wick rotation, the
Feynman trick, and a shift of the integration variable p. Write the
relevant function I, 4 g(771) in terms of Gamma functions.

(e) Assuminggq,q’,q" on-shell, computeg?,4?and q-q’, and observe
that these scalars are much smaller than M?. Use this observation
to expand your result from part (d) in terms of 1/ M?. In this way
show that

2 4
Com clm m
8(9,9) = WJ“ YR +O<M6>
and calculate gy, co, c1.

39. Vacuum polarisation and Pauli-Villars regularisation
QED, quantum electrodynamics, is the field theory of minimally cou-
pled photons and electrons. Their fields are a U(1) vector field A, and
a spinor field ¥(x), governed by the Lagrangian

EQED[A/ W = £photon + Lelectron + Lint =
= —iF F" + 9 (iy" o, —myy + e A (Yy" ).

Choosing the Landau gauge (@ — oo, lecture notes p. 23) the two-
point function reads to Oth order

2V [9°8ur — tmu]>-

oy =100 =D (i

[the propagator equals i [1{)(q); compare this to Problem 13]. We are

interested in the leading correction to il'[E?g(q), the so-called vacuum
polarisation:

\\pp J W; =HE}3(‘7)'

(a) Show that
M) = O (@) ()NIF)(q),

with

e’ m+y-(iq +p)
po _ 4 o
W =~y [T (7 e
, m+y-(p—1q) >
V=t +is)

Note that this expression is divergent.
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(b) Compute the trace in the above expression using your results
from Problem 21.

N.B.: Throughout the present exercise do not assume g on-shell.

(c) Show that q,0”°(q) = 0 [strictly speaking this is only valid after
regularisation as in part (e)]. From this conclude that w”? (g) takes
the form

o (1) = 0(@})(9°g" —9°9°).
(d) Determine the scalar function w(g?) by contracting the above

expression with g,

(e) Theresultin part(d) containsadivergentd*p integration. This di-
vergence will now be regularised by the method of Pauli-Villars.
In this method attention shifts from w(g?, m) = w(g?) to the sum

67)(972) = Z Csw(qu ms),

5>0

where Cyp = 1 and my = m. Here the sum should be performed
before doing the d*p integration.

Show that @(g?) is of the form

P2+m2P0
=02 — d4 C.— - s _ ,
) / pXS: SP4+m§P2+m;1P0+i8

where P, and P, are polynomials of degree in p and of arbitrary
degree in q; furthermore they are independent of ;.

Expand the quotient I; [appearing within the sum and integra-
tion in @(g2)] for large values of p*:

P2 2 PO P2P2 —6
I.=C.,— +C —_— - — (@) .
=Gy T smS[m Pf]+ )

Show that the conditions ", Cs = 0, Y, Csm? = 0 guarantee that
@(g?) is given by a convergent integral.

Remark: Closer inspection shows that the second term in I
is only of order p~®. The naive conclusion that the condition
Y-, Csm? = 0 is superfluous is wrong, as the cancellation of the
p~* contribution does not take place at the level of w”?. Hence
leaving out the second condition makes the derivation in part (c)
invalid.

(f) A solution to the conditions is

Co = 1, C1 = 1, Cz - _2/

m(z) = m?, m% =m?> +2A?, m% =m?+ A?,
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for arbitrary A2. Show that for this choice ®(q2) gives the same
vacuum polarisation as a model consisting of the photon field
and the following fields:

(mass)? statistics

Yo m? Fermi
Y1 m?+4+2A? Fermi
Yo m? 4+ A2 Bose
Y3 m? 4+ A2 Bose

with a Lagrangian

3
L= £ph0ton + Z szs [iyﬂ(au - iEAu) + ms] Vs.
5=0

(g) Remark: The situation in part (f) describes the regularised theory.
To return to the true theory we would like to eliminate the fields
¥1,2,3 by pushing their masses to infinity, i.e., by taking the limit
A? — oco. However, careful inspection shows that @(4?) diverges
as a function of A%:

2500 A?
(g% A?) N2 log< ) .

m2

This divergence can be absorbed in a wave-function renormali-
sation, which will never appear in physical quantities.

40. Beta decay of the neutron
Through the weak interactions a neutron (N) can decay in a proton
(P), an electron (¢) and an antineutrino (7). At quark level, this so-
called beta decay readsd — u+e+7°. The following interaction term
in the Lagrangian of the standard model is relevant to this decay:

Lint = % (W, 0 v Y + W, Bl v e + hec.)

(h.c. = Hermitian conjugate, ¥ = 122y).
(a) Give the lowest order Feynman diagram for the above process
(for quarks).

(b) Show that if the external momenta are much smaller than the
W boson mass My, we can just as well consider the effective
interaction

G . ]
Ll = -5 (Far™ (1 — y5)Vutue vu(1 — y5)¥e) + hc. (23.16)

and express the so-called Fermi-constant G in terms of g and Myy.
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(c) Prove that S&ff = [d*xceft
int

& is not invariant under parity.
(d) Since the proton and neutron are built out of three quarks (N =
ddu, P = uud), one can derive from eq. (23.16) an effective La-

grangian for neutron decay.

< G . -
Lo = =5 (UL =y yrie i = y)¥e) + e,
(23.17)

Through QCD-effects o will deviate from 1. In good approxi-
mation one has « = 1.22.

Give the reduced matrix element M for the decay of the neu-
tron. Use the following conventions for the momenta (p, k;) and
spins (s, t;):

P e

ki, t
1,1 /]{2, tz
. \]is, t3

N D¢
(e) During the beta decay of the neutron, which is assumed at rest,
only the momentum of the electron (k;) is measured. Using a
magnetic field the spin of the neutronis aligned along the positive
z axis.
Give the expression for the spinor uy for this polarisation and
prove that

G2
> IMP = Tty (1 = ay) (s + mp)y (L= ey

t, b, t3

Te((Ky +me)yo(1 = ys)K37u(1 = y5)).  (23.18)

Here m,, mp and my are the masses of resp. the electron, proton
and neutron. We work in the limit my — oo, mp — oo, but we
keep Am = my — mp fixed.

(f) Show that in this limit

any" (1 —ays)(fy +mp)y"(1 — ays)un
= dm7 (cg" — a(8)8y + 84 8y) — i),
withc* =1foru =0and ¢* = —a? foru =1,2,3; 9128 = —1,
g""P? completely antisymmetric; g is the metricdiag(1, —1, —1, —1).
Prove that the “partial” decay width is given by

T 2e(a — 1) |7€2| 3
dry = f(lka)) (1 14302 (k) cos@) d’ky,  (23.19)
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where 6 is the angle with the positive z axis, along which the
electron is detected.
Hint: Prove first that in the limit my, mp — oo conservation of
energy implies that

Am = [ks| 4 /m2 + k2|2,

Explain why the unpolarised partial decay width is given by
AT = f(lka))d%k, ?

Compute from this the lifetime of the neutron in the approxi-
mation that m,/Am = 0 (in reality m,/Am =~ 0.4, which leads
roughly to a correction with a factor 2). In units where#i = ¢ =1,
you may use that

Am =2.0-10"s71,
mp

— =73.10%
Am

G =1.0-10"mp".
Already in 1957 (breaking of) invariance under parity in the weak
interactions was tested. Free neutrons are experimentally hard to
handle. This is why a piece of cobalt (Co®’) was used, whose nu-

cleus changes under beta decay into nickel (Ni®’). Schematically
the following result was obtained:

-

e\eTB/
e<+— Cobalt ——e¢
TN

e

e e
(that is a bigger electron flux in the direction of —B than in the
direction of B, where B is the applied magnetic field).

Argue why this experiment demonstrated the violation of invari-
ance under parity transformations.

NOTE: Nuclear complications make the precise computations for
Co® rather more difficult than those for a free neutron. The result
is nevertheless given by eq. (23.19), but with appropriately mod-
ified «. For the above question this is not relevant; to conclude
that parity invariance (mirror symmetry) is broken, the details of
the underlying theory are not required.
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1PI diagram for fermions, 101-102

A

Abelian gauge fixing, 138
Abelian group, 125
Action principle, 7, 11
advantage of use, 12
Amputated connected n-point
function, 60
Amputated n-point function, 63
Amputated two-point function, 62
Annihilation amplitude, 49
Annihilation operators, 6
action of, 7
anticommuting relations for,
85-86
for anti-particles, 84
and creation operators, Problem 4,
168-169
in scattering matrix calculation, 57
vacuum expectation values, 26-27
Anticommuting matrices, 75
Anticommuting relations for Dirac
field, 86
Anticommuting variables, Problem
25,191-192
Antimuon scattering, 122
Antiparticles
annihilation of particles, 2-3
annihilation operators for, 84
with opposite charge, 7
predicted by Dirac, 75
travel backwards in time, 20
Antiquarks, 148-149
Antiscreening, 153
Arbitrary action in terms of
functional derivatives, 11-12
Asymptotic freedom, 149, 153

B

Bardeen-Cooper-Schrieffer (BCS)
theory, 134
Bare coupling constant, 151-152
one-loop correction, 163

Baryon, 148-149
BCS, see Bardeen-Cooper-Schrieffer
(BCS) theory
Becchi, Rouet, Stora (BRS) invariance,
162
Becchi, Rouet, Stora (BRS) symmetry,
141
Bernoulli coefficients, 9
Bessel function, modified, 3, 34
Beta decay
of cobalt-60, 146
four-Fermi interaction, 133
Problem 40, 207-209
Beta function, 163
Bhabha scattering, 122
Problem 29, 122, 194-195
Boltzmann distribution in quantum
thermal partition
function, 32
Bosonic field theory, 15
Bosonic variables for ghost
fields, 159
Bosons described by scalar
fields, 89
Bottom quark, 149
BRS, see Becchi, Rouet, Stora (BRS)

C

Cabibbo-Kobayashi-Maskawa (CKM)
mixing, 149
Campbell-Baker-Hausdorff formula,
30, 36
derivation, 128
for fermions, 92, 93
in Lie algebra, 126, 127
use of, 54
Canonical formalism for spinors,
Problem 24, 190-191
Casimir effect, 151-152
Problem 2, 165-167
Casimir energy, 163
Causality
requirement of, 28
violation of principle, 2
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Center of mass frame, 120-121
Charge conjugation, 79, 113, 149-150
symmetry of, 115
symmetry of QED, 116
Charge density, 13
Charge density current, 88
Charge operator, 147
Charged field transformation, 125
Charged scalar field, Problem 3, 13,
167-168
Charm quark, 149
CKM, see Cabibbo-Kobayashi-
Maskawa (CKM)
mixing
Classical limit and Legendre
transformation, Problem 16,
179-182
Classical path, fluctuations around, 39
Closed loops in quantum theory, 53
Colliding beams, 66-67
Colour property, 149
Combinatorial factors, Problem 14,
177
Commutation relations and causality,
Problem 6, 170-171
Commutators, 54
Completeness relations, 29
Complex fields
Feynman rules, 182-183
Problem 5, 6, 169-170
Problem 17, 182-183
Complex scalar field, Problem 17, 87,
182-183
Compton scattering; see also
Electron-photon scattering
Problem 27, 192-193
Conducting plates
shielding by, 9
vanishing field at, 8
Confinement of quarks, 149, 153
Conformal anomaly, 152
Conservation laws, 13-14
Conservation of current, 14, 16, 133
effect on equations of motion, 23
example, 16
implied by Dirac equation, 77
Conservation of energy, 13-14
factors for, 64
Conservation of Fermionic current,
123

Index

Conservation of momentum, 13-14
equations for, 13
factors for, 64
integral representation, 52-53
Conservation of probability, 58
Conserved currents, 14
Continuous expression vs. discrete
version, 31
Contour deformation
in the complex plane, 27
to upper half-plane, 49
Contour integration in lower
half-plane, 62
Cooper pairs, 134
Coordinate transformation, 14-15
Correspondence principle, 38
Coulomb gauge
temporal gauge, Problem 9,
172-173
use of, 38
Coulomb potential, 164
Counter terms, 158
Coupling constant, 20
bare, 151-152
dimension of mass, 157
electric charge and weak mixing
angle, 145
four-Fermi, 133
one-loop correction, 163
running couplings, 152, 153
in tree-level diagram, 21
Covariant derivative, 113
for non-Abelian gauge theories,
129-130
CPT, 113
Creation operators, 6
and annihilation operators,
Problem 4, 168-169
anticommuting relations for,
85-86
in scattering matrix
calculation, 57
vacuum expectation values,
26-27
Cross sections, 65-67
derivation of, 25
diagrams without loops, 151
invariant, 122
machine-independent differential,
66—67
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polarised, 124
typical dimensions, 67
unpolarised, 122-123, 124
Current conservation, 14, 118, 133
Current not gauge invariant, Problem
31,132, 195-197
Cut fermion propagator, 119
Cut photon propagator, 123-124
Cutoff parameters, 151
removal of, 152

D

de Broglie wavelength limit of
position determination, 2
Decay rates, 69-71
definition, 69
partial, 71
Decay threshold, 158
Decay width, see Decay rates
Deformation of contour, 27
Deformation of integration
contour, 48
Diagonalise quadratic term, 33
Diagrams
connection state, 52
dots on propagator, 63
external lines in, 56
loops in, 56
signs in, 105-106
Dimensional regularisation, 154
of gauge theories, 161
Dirac equation, 73-79
bounds of, 86
complex conjugate of, 83
covariance under Lorentz
transformations, 75-76
with gauge fields, Problem 32, 197
negative energy solutions in
classical theory, 85
path integral for, 96
plane wave solutions, 81-84
Problem 5, 85, 169-170
Problem 19, 81, 184-185
Problem 23, 15, 188-189
Dirac field
extra magnetic moment, 146
in plane wave solution, 84
Dirac gamma matrices, 76
Dirac Hamiltonian, 85-88
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Dirac sea, 75
hole in, 86

Dirichlet boundary conditions, 41

Discrete space, 42

Discrete version vs. continuous
expression, 31

Discretisation errors in fermionic
path integral, 93-94

Discretised version, 31

Down quark, 146

Dummy integration variable, 15

E

Effective frequency, 34
Effective masses, 36
Eigenstate helicity, 79
Eigenstate of Hamiltonian, 46
Electromagnetic coupling constant,
153
Electromagnetic field equations,
22-23
Electromagnetism and gauge
symmetry, 145
Electron charge, 147
Electron, 146
Electron-electron scattering, 118
Electron-photon scattering, 122
Electron-positron annihilation creates
Z, particle, vii
Electron-positron collisions in QED,
Problem 29, 194-195
Electron-positron scattering, 122
Problem 29, 122, 194-195
Electroweak interactions in the
standard model, Problem 36,
200-202
Electro-weak theory, 143
Elementary fermionic processes,
Problem 28, 193-194
Elementary scalar processes, Problem
18,183-184
Empty space
nontrivial structure, 7, 8
zero-point fluctuations, 7
Energy
conservation of, 13-14
split on signs, 82
Energy modes, 6
Energy states, negative, 75
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Energy-momentum tensor, 14-15
conservation of, 14
symmetric, 15

Equations of motion, 12
effect of conservation of

current, 23
solution of, 19

Euclidean action, 32

Euler constant, 156

Euler-Lagrange equations, 11-17, 78
coincides with Klein-Gordon

equation, 11-12
Problem 3, 167-168

Evolution operator, 43
path integral expression, 44

Extension to arbitrary order, 49

External lines in diagram, 56
for fermions, 102-103

F

Faddeev-Popov operator, 139
Families of fermions, 146
Fermi fields and electromagnetic
current generated, 116
Fermi-Dirac statistics, 118, 120
electron behavior under, 122
Fermion families, Problem 37, 150,
202-204
Fermion line inversion, 117
Fermion propagator, 119
Fermionic annihilation operator, 90
Fermionic arrow, 105-106
Fermionic current conservation, 123
Fermionic fields, 89
Fermionic lines, 98
Fermionic loops, 98-99
Furry’s theorem, 116-117
Fermionic processes, Problem 28,
193-194
Fermions
decay into, 158
exception to bosonic field theory,
15
families, 146, 150
Feynman rule for propagator, 99
Feynman rules for scattering and
decay, 100
flavours of, 163
gauge fixing in presence of, 24

Index

interaction with electromagnetic
field, 98
loop signs, 106
mass provided by Higgs
mechanism, 146
path integrals for, 89-106
Problem 23, 15, 188-189
renormalisations, 101
spin degrees of freedom, 95-96
types of, 113
vacuum wave function, 95
Feynman diagrams, Problem 26, 192
Feynman rules
for a classical field, Problem 7,
171
for complex fields, Problem 17,
182-183
conversion to momentum space,
22
to convert tree-level diagram to
solution, 21
derivation of, 39
equality of forms of, 53
for fermion propagator, 99
for fermion scattering and decay,
100
for fermionic pieces, 105-106
for Lorentz gauge, 140
in momentum space, 62
for PI two-point function, 69
for quantum electrodynamics,
113-114
symmetry of, 113
for vector fields, 107-112
Feynman trick, 154
Field coupled to a source, 19-20
Field expectation values, 47
Field operator
diagonal of matrix, 46
in terms of operators, 6
time dependence, 6
Field renormalisation, 151
Field superposition of free
particles, 5
Field theory
noninteracting scalar, 45
physical interpretation, 7
quantum mechanics of an infinite
number of degrees of
freedom, 7
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reconciliation of relativistic
invariance with quantum
mechanics, 1
renormalisability, 9
renormalisability, Problem 29, 9,
194-195
renormalisable, 41
scalar, 12
second quantisation, 7
supersymmetric, 86
Fine structure constant, vii
Flavour index, 113
for each fermion line, 133
Flavours of fermions, 163
Flux tube, 134
Fock space, 45
Four-Fermi interaction
Problem 30, 98, 133, 195
Problem 40, 133, 207-209
Four-Fermi theory, 133
Fourier coefficient computation, 34
Fourier decomposition in Dirac
equation solution, 81
Fourier mode splitting, 41
Fourier transform to diagonalise
quadratic term, 33
Four-point coupling, 151
Four-vector, 108-109
Fractional electric charge of quarks,
148-149
Free energy
of harmonic oscillator, 35
variation with frequency, 34
Free field coupled to a source, 19-20
Free particle
path integral, Problem 11, 174-175
as plane wave, 5
as quantum observable, 5
Free particle superposition as field, 5
Free scalar field, Problem 6, 7, 170-171
Frequency component split, 5
Functional derivatives of the action,
11-12
Furry’s theorem, 116-117, 123-124

G

Gamma algebra, Problem 21, 186
Gamma matrices, 78
manipulations, 83
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Problem 21, 78, 120, 186
traces over, 120
Gauge choices, 23, 135
Gauge condition enforcing, 23
Gauge fields
coupling to helicity eigenstates,
146
Dirac equation, Problem 32, 197
for gauge groups, 143-144
interaction with Higgs field,
143-144
Problem 31, 195-197
Gauge fixing, 23, 137-141
condition for, 137
effect of, 137
Problem 8, 24, 171-172
Problem 9, 24, 172-173
Gauge groups
SO(3), 136
SU(3), 143
SuU(5), 143
U(1) x SU(_2), 143
Gauge invariance
dimensional regularisation for
preservation, 159
to enforce current conservation,
133
photon cross sections, 123
preserving, 24
Problem 9, 111, 172-173
Gauge symmetries, 126
and electromagnetism, 145
Gauge theories
gauge fixing in, 24
local, 125
renormalisations of, 161-162
Gauge transformation
action change, 38
local, 17
Gauge-fixing function, 137
Gauge-fixing parameter, 111, 118
Gauge-fixing term, 136
Gell-Mann matrices, 148
General coordinate invariance, 14
Georgi-Glashow model
Problem 34, 136, 198-200
Problem 35, 136, 141, 200
Ghost fields
loop of, 159
Problem 39, 159, 205-207
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Ghost particles
mass role in momentum cutoff, 159
Ghosts
definition, 140
Fenman rules for, 140
gauge fixing and, 137-141
must be considered in non-Abelian
gauge theories, 140-141
Glashow-Weinberg-Salam
electro-weak theory, 143
Global phase symmetry, 16
Global symmetry invariance, 14
Global translation invariance, 14-15
Gluons, 149
Goldstone boson
‘eaten’ by vector fields, 145
would-be, 135
Goldstone theorem, 144
Grand unified theory (GUT), 143
Grassman even, 93
Lagrangian, 98
Grassman odd, 97
Grassman variables
for fermions, 96
for ghost fields, 159
properties of, 89-93
Grassmann algebra, 89ff
Gravity in unified theory, 143
Green’s function, 19-20
amputated, 62
amputated for vector fields,
110-111
boundary conditions for, 25
for fermions, 96
Gribov ambiguity, 138
Group defining representation, 128
GUT, see Grand unified theory (GUT)

H

Haar measure, 139
Hamiltonian equations
conserved with time, 12-13
effective, 35
of motion, 12
Hamiltonian formulation equivalent
to Lorentz, 7
Hamiltonian perturbation theory,
25-28
Harmonic equation split solutions, 5
Harmonic oscillator free energy, 35

Index

Harmonic oscillators, 5-6
infinite set of decoupled, 41
Problem 10, 35, 36, 173-174
properties of, 7

Harmonic potential, 39

Hat (") on operators, 29

Heaviside-Lorentz units, 16

Heisenberg picture for time

dependence, 6

Helicity
defining, 113
for electrons in QED, 117-118
flip for positrons, 114

Helicity eigenstates, 79, 108
coupling to gauge fields, 146
for massless particles, 111-112
of photon, 123-124

Helicity index, 100

Higgs effect and ghosts, Problem 35,

200

Higgs field, 136
broken symmetries, 144
interactions with gauge fields,

143-144
massless components, 145
not fundamental, 143
self-coupling, 152, 153

Higgs mass, 152

Higgs mechanism, 133-136
Problem 34, 198-200
provides mass for fermions, 146

Higgs particle detection, 143

Hilbert space, 6
Problem 1, 7, 165

Hypercharge, 146-147

Hyperfine splittings, 9

I

ie prescription, 28

Independent action, Problem 6, 7,
170-171

Infinite volume limit, 8

Integrals, oscillating, 30-31

Integrated luminosity, 6667

Integration contour deformation, 48

Integration measure, 138-139

Interacting scalar field, 12

Interaction picture, 26

Interactions, adding higher-order
terms for, 97



Index

Invariance
general coordinate, 14
under global symmetry, 14
under parity, 79

Isospin doublet, 125

Isospin index, 147

Isospin operator, 147

J

Jacobi identity, 127
Jacobian absorption, 15

K

Kappa, 120

Klein-Gordon equation, 1-2
in Lorentz covariant form, 11
with nonlinear terms, 7
satisfied by plane wave, 5
square root of, 73

Klein-Nishina formula, 122

L

Lagrange density
adding potential term, 42
integral over space, 13
for scalar field, 51
Lagrange equations in terms of
functional derivatives, 11-12
Lagrange multiplier field, Problem 8,
109, 171-172
Lagrangian, definition, 13
Lagrangian density, 12
Lamb shift, 163
in atomic spectra, 9
Landau gauge, 163
Landau-Ginzburg theory, 134
Laplace transform to convert product
to sum, 33
Large Electron Positron (LEP)
collider, vii, ix
Problem 37, 202-204
Large Hadron Collider (LHC), ix
Lattice discretisation, 42
Lattice formulation, 43
Lattice regularisation, 159
Lattice spacing, 42
Legendre transformation
to canonical pair of variables, 12
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classical limit, Problem 16, 179-182
Gaussian integration over
momenta, 37
Leibnitz rule, 97
LEP, see Large Electron Positron (LEP)
collider
Leptons, 150
LHC, see Large Hadron Collider
(LHC)
Lie algebras, 36, 126
in gauge fixing, 138
linear vector space, 126
Lie groups, 36
gauge symmetries, 126
Lie monomial, 128-129
Lie product, 126
Linear mappings, 125
Linear sigma model, Problem 33, 198
Linear vector space in Lie algebra, 126
Local counter terms, 158
Local gauge theories, 125
Local gauge transformation, 17
Local symmetry, 16
invariance under, 14
Locality as close as possible to
Schrodinger solutions, 4
Localizing wave functions with light
cone, 2
Loops, 9
closed, 53, 55
contributions diverge, 152
corrections and renormalisation,
151-164
expansion, 55
in fermion lines, 98-99
of ghost fields, 159
number in diagram, 55, 56
Lorentz algebra vs. su(2)xsu(2),
Problem 20, 185-186
Lorentz boosts, 76
Lorentz covariance, establishing, 12
Lorentz gauge, 23, 136
Lorentz invariance, 42
destruction of Lorentz invariance,
12
dimensional regularisation for
preservation, 159
for Dirac equation solution, 81
and Grassman even, 98
intrinsic, 7
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massless particles, 111
required form, 109
Lorentz invariant Schrodinger
equation, 73
Lorentz scalars, vectors, tensors, 61,
78
Lorentz transformations
covariance under, 7
for spinors, Problem 19, 184-185
Lorentz vector or tensor
indices down, 15
for spin-one particle, 108
Lower half-plane, 62
Luminosity, integrated, 66-67

M

Magnetic moment for Dirac field, 146
Problem 32, 146, 197
Majorana and Weyl fermions,
Problem 22, 187-188
Mass
effective, 36
renormalised, 59
shifted, 59
Mass term inclusion, 51
Massive vector fields, Problem 12, 175
Massive vector particles, 133
Problem 12, 107-108, 175
Massless excitation, 134-135
Massless particle vector field, 111
Massless vector field, Problem 9, 111,
172-173
Mass-shell, 59
Matrices as noncommuting objects, 73
Matrix element conversion to path
integral, 46
Maxwell equations, 16
Mesons, 149
Metric tensor, 14
Mexican hat potential, 135
Minkowski space-time, 15
Modified Bessel function, 3
Modulo charge, 149
Magiller cross section, 117-118
Momentum
bounds for a particle, 2
canonical for Dirac equation, 85
completeness relation, 30
conservation in integral
representation, 52-53

Index

conservation in tree-level diagram,
22
conservation of, 13-14
cutoff, 41, 43
delta function, 62
derivation of, 12
direction of flow in diagram, 104
discrete, 25
eigenfunction, 29
exchanged, 133
flow of for fermions, 105-106
Gaussian integration over, 37
independent loop, 62
integration to a propagator, 62
outgoing, 118
power-counting, 158
Monomial in Lie algebra, 128-129
Motion equations, 12
Multiple commutators, 54
Muon scattering, 122

N

Negative energy component, 7
Negative energy solutions, 4
Negative energy states, 75
as antiparticles, 20
as equation solution, 4
implied by momentum
uncertainty, 2
necessity of, 3
Neutrino
detection of, vii
mass of, 79
measuring mass of, 150
neutrino family, 146
types of, vii
Neutrino mass, Problem 22, 79,
187-188
Neutron beta decay, Problem 40,
207-209
Noether’s theorem, 14, 16, 87
Non-Abelian gauge theories, 74,
125-132
gauge fixing, 138
path integral over Grassmann
variables, 139-140
Problem 25, 140, 191-192
Noncommuting objects, 73
Nonvanishing imaginary part,
158
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(0]

Occupation number, definition, 6

Occupation number zero, 7; see also
Vacuum

Off-shell condition, 109-110

One-loop calculation with scalar
fields, Problem 38, 204-205

One-loop Feynman diagrams,
Problem 26, 192

One-loop order, 153

On-shell condition, 109-110

Operators, see Annihilation operators;
Creation operators

Order extension to arbitrary, 49

Order parameter, 134

Oscillating integrals, 30-31

Oscillators in their ground state, 43

P

Pairwise contraction, 109
Parameter kappa, 120
Parity, 113
in quarks, 149-150
violation not in standard model,
146
Particle position
accuracy of position, 2
eigenfunction, 29
not a quantum observable, 5
wave function meaning, 2
Particle scattering description, vii
Particles; see also Decay rates; Free
particle
annihilation by antiparticles, 2-3
in collider, 64
creation from vacuum, 25
‘eaten,” 144
free particle as plane wave, 3
interaction of charged with
magnetic field, 37
lifetimes of, 70
one particle states stable, 58
Partition function, 36
Path integrals
annihilation operator in, 48
approach, vii-viii, 7
evolution operator expression, 44
for fermions, 89-106
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for a free particle, Problem 11,
174-175
matrix element conversion to, 46
perturbative approach, Problem
13,175-176
physical interpretation, 31
preparation, Problem 10, 173-174
Pauli matrices, 73-74
Pauli principle
Fermi-Dirac statistics and, 118
occupied states, 85
Pauli-Villars regularisation, 154
for Lorentz invariance
preservation, 159
Problem 39, 164, 205-207
Periodic boundary conditions, 8
Permutation group, 21
Perturbation in strength of coupling
constant, 20
Perturbation theory
contour integration, 61-62
derivation of, 25
Lorentz covariant way, 42
Problem 24, 87, 96, 190-191
relevant gauge fields, 138
Perturbation use to simplify
calculation, 39
Perturbative approach to the path
integral, Problem 13,
175-176
Perturbative expansion, 19
in field theory, 51-56
Photon field, 23
Photon mass term, 134-135
Photon massless state, 112
Photon propagator, 2324
cut, 123-124
Problem 8, 171-172
Photon vacuum polarisation,
Problem 39, 163, 205-207
Photons in electromagnetic field
equations, 22-23
Physical interpretation of path
integral, 31
PI two-point function, 69
Pl-graph, 59
Pions, 149
Compton scattering, Problem 27,
192-193
Planck energies, 143
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Planck’s constant dependence, 94
Plane wave
amplitude of, 83
in Dirac field theory, 83
free particle, 3
solutions normalised, 84
Position, see Particle position
Positive energy component, 7
Positive energy modes, 6
Positron-electron collisions in QED,
Problem 29, 194-195
Potential, 12
Power-counting of momenta, 158
Preparation for the path integral,
Problem 10, 173-174
Principle of causality, see Causality
Probability, conservation of, 58
Probability density, 77
not conserved, 2
Problem 1, 3,7
violation of causality in 1 41
dimensions, 165
Problem 2,9, 152
Casimir effect, 165-167
dimensional regularisation, 154
Problem 3, 13, 16
Euler-Lagrange equations,
167-168
Problem 4, creation and annihilation
operators, 168-169
Problem 5,7, 12
complex fields, 6
Dirac equation, 85
real and complex fields,
169-170
Problem 6
commutation relations and
causality, 170-171
independent action, 7
Problem 7, Feynman rules for a
classical field, 171
Problem 8
gauge fixing, 24
Lagrange multiplier field, 109
photon propagator, 171-172
Problem 9
Coulomb gauge and temporal
gauge, 172-173
gauge fixing, 24
gauge invariance, 111

Index

Problem 10
harmonic oscillator, 35, 36, 94
preparation for the path integral,
173-174
Problem 11, path integral for a free
particle, 174-175
Problem 12
massive vector field, 107-108
vector fields, 175
Problem 13, 55
perturbative approach to the path
integral, 175-176
Problem 14, combinatorial factors, 177
Problem 15, 63
quantum corrections, 177-178
Problem 16, Legendre transformation
and classical limit, 179-182
Problem 17, 28
complex fields Feynman rules,
182-183
complex scalar field, 87
Problem 18
elementary scalar processes,
183-184
Problem 19
Dirac equation, 81
Lorentz transformation for
spinors, 184-185
Problem 20, Lorentz algebra vs.
su(2) x su(2), 185-186
Problem 21
gamma algebra, 186
gamma matrices, 120
gamma matrix, 78
Problem 22
Majorana and Weyl fermions,
187-188
neutrino mass, 79
Problem 23
Dirac equation, 188-189
fermions, 15
Problem 24
canonical formalism for spinors,
190-191
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Lie algebra for, 130
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Unified theory, 143
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energy of, 8
in field theories, 151-152
infinite energy of, 7
minimum of potential, 144
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state normalisation, 86
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number, 6-7
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Vacuum expectation values, 26-27,
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Variational calculus derivation, 11
Vector fields
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Vector particles, massive, 133
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Veltman dimensional regularisation,
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Wave function
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localisation of, 75
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Weak interaction in the standard
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Wiener measure, 32
WKB approximation, 38
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Yang-Mills equations, 131-132

Yukawa coupling, 150, 153
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Yukawa interaction, 97-98
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Z, particle creation, vii
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Zy vector boson, vii
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Zero-point fluctuations, 7, 152
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hyperfine splittings, 9
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