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Section Title

Preface

Volume 101 in the series World Reviews of Nutrition and Dietetics consists of selected 

papers presented at the Third Congress of the International Society of Nutrigenetics/

Nutrigenomics (ISNN). The congress was held at the National Institutes of Health 

(NIH) campus in Bethesda (Md., USA) on October 21–23, 2009. The congress was truly 

international, with speakers and participants from 14 countries of North and South 

America, Europe, Asia and Africa. The congress was co-chaired by Dr. John Milner of 

the National Cancer Institute, NIH, and Dr. Artemis P. Simopoulos, President of the 

ISNN. The congress’s focus was that ‘research and its translation into medical prac-

tice and dietary recommendations must be based on a solid foundation of knowledge 

derived from studies on nutrigenetics and nutrigenomics’. The congress consisted of 

7 sessions. In keeping with the theme of the congress, sessions I and II addressed 

‘Frontiers in Nutrigenetics’, session III focused on ‘Frontiers in Epigenetics’, session 

IV addressed the ‘Impact of Transcriptomics on Nutrigenomics’, session V centered 

on ‘Non-coding RNAs and Post-translational Gene Regulation’, session VI was called 

‘Moving Beyond Genomics’, and session VII was titled on ‘Frontiers in Nutrigenetics/

Nutrigenomics. Building Partnerships: the Challenges and Opportunities Facing 

Governments, International Organizations, Academia and Industry’.

Dr. Simopoulos and Dr. Milner opened the congress and welcomed everyone. 

The keynote address was given by Dr. Raffaele De Caterina, Vice-President of the 

ISNN who spoke on ‘Opportunities and Challenges in Nutrigenetics/Nutrigenomics 

and Health.’ Dr. De Caterina emphasized that, like drugs, nutrients have the ability to 

interact and modulate molecular mechanisms underlying an organism’s physiologi-

cal functions. Awareness of the different effects of nutrients according to our genetic 

constitution (nutrigenetics) and how nutrients may affect gene expression (nutrig-

enomics) is prompting a revolution in the field of nutrition. Nutritional sciences have 

always studied the effects of nutrients in terms of ‘average’ responses, without bother-

ing much about inter-individual variability and the underlying causes. The creation 

of nutrigenetics and nutrigenomics, with distinct approaches to elucidate the inter-

action between diet and genes, but with the common ultimate goal of optimizing 

health through personalized diet, provides powerful approaches to unravel the com-

plex relationships among nutritional molecules, genetic variants and the biological 

Section Title

 XI



XII Preface

system. Translated as the simple concept of ‘personalized nutrition’ the promise of 

nutrigenetics/nutrigenomics is a major step forward in the understanding of indi-

vidual responses to a component nutrient or to our changing environment. Referring 

to the future, Dr. De Caterina stated two major challenges. One is the reluctance to 

embrace this concept, primarily due to the fear of being unable to manage the over-

whelming quantity and complexity of biological data that will require interpretation 

and – to a large extent – simplification to be translated into practical messages. The 

danger of the consequent simplification would be to take the results of a single study 

on a very specific outcome, very often on intermediate (surrogate) endpoints, and to 

infer that such results are applicable to the complexity of a living organism, where no 

single organ or tissue is independent of the others. The second challenge is the need 

to be aware that the area of ‘personalized nutrition’ is seen by disguised amateurs as a 

golden opportunity for marketing enterprises before solid knowledge in any specific 

area is acquired. Although the first challenge is manageable by the ever-increasing 

availability of biomedical and statistical tools and the wisdom necessary in health 

inference – a general problem in medical science – the second challenge requires great 

attention and wisdom and poses important ethical and scientific issues. A scientific 

society, such as the ISNN, devoted to the study of nutrigenetics/nutrigenomics can 

indeed serve the commendable roles of (1) promoting science and favoring scientific 

communication and (2) permanently working as a ‘clearing house’ to prevent disqual-

ifying logical jumps, correct or stop unwarranted claims, and prevent the creation of 

unwarranted expectations in patients and in the general public.

In the next paper Dr. Lynnette Ferguson focuses on ‘Genome-Wide Association 

Studies and Diet’. Dr. Ferguson points out that genome-wide association studies 

(GWAS) are not only validating genes and single-nucleotide polymorphisms (SNPs) 

that have been anticipated by knowledge of biochemical pathways, but are also reveal-

ing new gene-disease associations not anticipated from prior knowledge (e.g. Crohn’s 

disease). Dr. Ferguson emphasizes that current GWAS methods need to be comple-

mented with innovative methodologies in order to characterize the impact of food 

and to take the field to another level of value for human diet, development and opti-

mized health through personalized nutrition. 

Genetic variants are caused by SNPs through substitutions, additions or dele-

tions. Copy number variants are the most recent discovery that accounts for genetic 

variation in humans and may be responsible for much more individuality than 

previously considered. In their paper, ‘Copy Number Variation, Eicosapentaenoic 

Acid and Neurological Disorders’ Dr. Basant Puri and Dr. Mehar Manku discuss 

the way in which the clinical response of neurological disorders to treatment with 

the semi-synthetic omega-3 long-chain polyunsaturated fatty acid derivative ethyl-

eicosapentaenoic acid (ethyl-EPA) varies according to copy number variation. Two 

examples of neurological disorders are given, namely Huntington’s disease, which is 

caused by increased CAG repeats at 4p16.3, and myalgic encephalomyelitis, which 

has recently been associated with evidence of retroviral infection with XMRV. These 
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findings are likely to apply to other neurological disorders and indeed also to the 

differential response to ethyl-EPA of psychiatric disorders, such as depression and 

schizophrenia.

Obesity is a multigenetic and multifactorial condition in which SNPs involved in 

the regulation of food intake (e.g. MC4R, LEP, LEPLR, POMC, FTO) fat metabo-

lism and thermogenesis (e.g. PPARG, ADBRs, UCPs) inflammation, and signaling 

(e.g. IL-6, ADIPOQ, CD36) induce different responses to energy-restricted diets, or 

macronutrient content (fat or fiber) during weight loss, along with beneficial effects 

on elements such as insulin sensitivity, lipid biomarkers and satiety. Dr. Amelia 

Marti and colleagues in their paper ‘Nutrigenetics: A Tool to Provide Personalized 

Nutritional Therapy for the Obese’ present an extensive review of the field. Their 

review includes observational studies that showcase gene-nutrient interactions on 

weight gain and international studies on genetic modification effects following weight 

loss and maintenance.

There have been many studies on the relationship between diet and various forms 

of cancer. Among those that have been studied extensively are the carcinogenic 

actions of compounds during cooking of meat, such as heterocyclic amines (HCAs), 

polycyclic aromatic hydrocarbons (PAHs) and N-nitroso compounds (NOCs). In 

their paper ‘Xenobiotic Metabolizing Genes, Meat-Related Exposures, and Risk of 

Advanced Colorectal Adenoma,’ Dr. Leah Ferrucci and colleagues evaluate SNPs 

in xenobiotic metabolizing enzyme genes and possible alteration in the activation/

detoxification of HCAs, PAHs and NOCs. A number of possible interactions are 

noted between certain SNPs in relation to colorectal adenoma. The authors conclude 

that common variants in xenobiotic metabolizing enzyme genes may modify the 

association of HCAs, PAHs and NOCs and advanced colorectal adenoma, but further 

investigations in other populations are needed.

Animal models with kidney transplants have unequivocally shown that hyper-

tension follows the kidney. There is also evidence for differential, possibly additive, 

influences of central versus kidney-specific hormonal blood pressure control of salt 

balance. In any homeostatic system, such as salt balance, multiple factors are involved 

in counteracting any factor that perturbs the system. These compensating factors, if 

working efficiently, should return the system back to balance. Should environmental 

or genetic effects prevent appropriate compensation over the long term, hypertension 

will likely develop. However, there are also likely to be genetic initiating factors that 

would lead to hypertension if not adequately compensated and that may be strong 

enough so that complete compensation is not attained. Dr. Steven Hunt in his paper 

‘Strategies to Improve Detection of Hypertension Genes’ points out that when study-

ing the genetics of the initiating factors, associations will be masked by the degree 

of compensation and perhaps not even found if compensation is nearly complete. 

Detecting the genetic initiators may require studying associations after acute interven-

tions and prior to long-term compensation. Detection also may depend on the genetic 

backgrounds of the subjects being studied: subjects with few hypertension genes may 
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show little association with any particular gene, whereas subjects with many hyper-

tension-susceptibility genes may show strong associations. Although some genes have 

been consistently related to elevated blood pressure and hypertension, the observed 

effects of these genes are small and difficult to replicate. These common genes have 

almost always been related to renal electrolyte handling, similar to mechanisms of the 

rarer monogenic hypertension disorders. Several large studies now have the power to 

detect hypertension genes with smaller effect sizes and to assess interactions with diet 

and other environmental risk factors for hypertension. Intervention studies appear to 

magnify the baseline effects of genes so that they are more easily detected. In addition 

to genetic interactions with dietary salt on blood pressure, there appear to be impor-

tant but less understood genetic interactions with dietary fat and cholesterol on blood 

pressure pathways. Multiple interventions – including less dietary salt, increased 

dietary potassium, increased intake of fruits and vegetables, lower fat intake, weight 

loss and drug treatment – appear to help reduce blood pressure to a greater extent 

in subjects genetically susceptible to hypertension than those not as susceptible. It 

appears that those at highest genetic risk of hypertension show a greater improve-

ment in blood pressure for interventions that target the defective genetic pathways 

than do those at low risk. There remains an urgent need for the addition of dietary 

and pharmacologic interventions to genetic studies and vice versa, so that biologi-

cal mechanisms may be uncovered, represented by these statistical interactions, and 

additional interactions discovered. Knowledge arising from such studies may be used 

to design specific dietary, exercise, weight loss and drug interventions for the subset 

of patients that will benefit the most from that intervention.

For the past century, broad social development has been reflected in changes in 

height. There is convincing evidence from population studies that achieved height 

marks a significantly increased risk for some cancers. Major cancers are associated 

with increased adiposity, especially with centrally deposited fat for some. Thus, find-

ings of epidemiological studies of the relationship between prenatal growth and risk 

for specific cancers, metabolic disease and cardiovascular disease suggest that early life 

environment is a causal component in the etiology of these conditions. Mechanistic 

studies provide some evidence that explains how variations of diet within the normal 

range of consumption in early life can set later susceptibility through processes such 

as DNA methylation and covalent modifications to histones. Dr. Alan Jackson and 

colleagues in their paper ‘Diet, Nutrition and Modulation of Genomic Expression 

in Fetal Origins of Adult Disease’ state that nutrient interventions in laboratory 

animals during pregnancy and/or lactation show that there is developmental plas-

ticity to environmental stimuli that induces a phenotype that confers survival advan-

tage in the short term but increases susceptibility to pathology in the longer term. 

These influences can be modified by the dietary pattern during the weaning period, 

demonstrating an important interaction between prenatal nutrition and food con-

sumption during later life. This is further implied by the common role for altered epi-

genetic regulation of specific genes and of altered Dnmt activity. Thus, risk of these 
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seemingly heterogeneous patterns of ill health may reflect a continuum of develop-

mental changes that operate through the same enzymes and pathways that induce 

epigenetic regulation of specific genes. Risk of specific diseases may reflect the nature 

and/or magnitude of the environmental exposure during early life. It is not known 

how these environmental cues may be targeted in a manner that induces altered epi-

genetic regulation of specific genes or of individual CpG dinucleotides and so lead 

to increased risk of different disease processes. However, such specificity is implied 

by emerging evidence that the magnitude of the maternal nutritional challenge and 

the relative amount of specific nutrients in the maternal diet induce directionally 

opposite changes in the physiology and epigenotype of the offspring. Overall, these 

findings support the concept that a range of prenatal nutritional environments, from 

constraint to abundance, may induce risk of ultimate different pathological processes. 

The induced epigenetic changes are likely to be permissive for altered gene expression 

and hence determine the interaction between an organism and its environment over 

the life course and, in turn, determine whether increased risk due to the early-life 

environment becomes disease in later life.

Dr. Steven H. Ziesel in his manuscript ‘Choline: Clinical Nutrigenetic/Nutrigenomic 

Approaches for Identification of Functions and Dietary Requirements’ points out 

that whereas GWAS examine correlations between variants and diseases in terms of 

thousands of subjects are a mainstay of nutrigenetics/nutrigenomics, less common 

are the studies that examine the effects of genetic variants on nutritional phenotypes 

using clinical studies involving smaller numbers of studies – clinical nutrigenetics/

nutrigenomics. Dr. Ziesel noted in his and other studies with choline as an example 

of clinical nutrigenetics. In animal models, there is a critical period during pregnancy 

when dietary choline intake modulates fetal brain development with structural and 

functional consequences that last throughout the entire life of the offspring. Maternal 

intake of diets low in choline negatively impacts the proliferation and survival of 

neuronal and glial progenitor cells in the fetal hippocampus, septum and cortex, 

whereas maternal diets high in choline exert the opposite effects on brain develop-

ment, increasing progenitor cell proliferation and survival and enhancing memory 

function. One mechanism mediating these changes involves the epigenetic modifica-

tion of genes in fetal brain that are important regulators of cell division, apoptosis and 

neural differentiation.

The following paper, by Dr. Irfan Rahman and Dr. Sangwoon Chung, is entitled 

‘Dietary Polyphenols, Deacetylases and Chromatin Remodeling in Inflammation’. 

The therapeutic benefits of fruits and vegetables, tea and wine are mostly attributed 

to the presence of phenolic compounds. Naturally occurring dietary polyphenols 

such as curcumin (diferuloylmethane) an active component of the spice turmeric and 

resveratrol (phytoalexin), a flavanoid found in red wine, can directly scavenge reac-

tive oxygen species and modulate signaling pathways mediated by NF-κB and MAP 

kinase pathways and up-regulate glutathione/phase II enzyme biosynthesis via activa-

tion of Nrf2. They also down-regulate the expression of pro-inflammatory mediators, 
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matrix metalloproteinases, adhesion molecules, and growth-factor receptor genes 

by inhibiting histone acetyltransferase activity and activating histone deacetylase 

(HDAC)/sirtuins(SIRTs). The expression of NF-κB-dependent pro-inflammatory 

genes in response to oxidative stress is regulated by the acetylation-deacetylation 

status of histones bound to the DNA. It has been reported in severe asthma and in 

chronic obstructive pulmonary disease (COPD) patients, that oxidative stress not 

only activates the NF-κB pathway but also alters the histone acetylation and deacety-

lation balance via post-translational modification of HDACs. Corticosteroids have 

been one of the major modes of therapy against respiratory diseases such as asthma 

and COPD. Failure of corticosteroids to ameliorate such disease conditions has been 

attributed to their failure to recruit either HDAC2 or SIRT1 or to the presence of an 

oxidatively/post-translationally modified HDAC2/SIRT1 in asthmatics and COPD 

patients. Dietary polyphenols such as curcumin, resveratrol and catechins have been 

reported to modulate epigenetic alterations in various experimental models. The 

anti-inflammatory properties of curcumin, resveratrol and catechins may be due to 

their ability to induce HDACs/SIRT1 activity, and thereby restore the efficacy of glu-

cocorticoids or overcome its resistance. Thus, these polyphenolic compounds have 

value as antioxidant, anti-inflammatory and adjuvant therapies with steroids against 

chronic inflammatory epigenetically regulated diseases. The current knowledge on 

the mechanism of action of these polyphenols in the light of deacetylases in regula-

tion of chromatin remodeling in inflammation is extensively presented.

Dr. Emily Ho and Dr. Roderick Dashwood in their manuscript ‘Dietary 

Manipulation of Histone Structure and Function’ point out that the influence of epi-

genetic alterations during cancer has gained increasing attention and has resulted in a 

paradigm shift in our understanding of mechanisms leading to cancer susceptibility. 

The reversible acetylation of histones is an important mechanism of gene regulation. 

Targeting the epigenome, including the use of HDAC inhibitors, is a novel strategy 

for cancer chemoprevention. The authors have found that sulforaphane, a compound 

found in cruciferous vegetables, inhibits HDAC activity in human colorectal and pros-

tate cancer cells. The ability of sulforaphane to target aberrant acetylation patterns, in 

addition to effects on phase 2 enzymes, may make it an effective chemoprevention 

agent. Other dietary agents such as butyrate, allyl sulfides and organoselenium com-

pounds have also shown promise as HDAC inhibitors. These studies are significant 

because of the potential to qualify or change recommendations for high-risk can-

cer patients, thereby increasing their survival through simple dietary choices, such 

as incorporating easily accessible foods into a patient’s diet. The findings provide a 

scientific foundation for future large-scale human clinical intervention studies with 

dietary agents that affect the epigenome.

The adipose tissue plays a key role in energy storage but is also a major endo-

crine organ, communicating with the brain and peripheral tissues through mediators 

known as adipokines. Adipose tissue function has been implicated in the develop-

ment of obesity-related diseases such as diabetes, cardiovascular disease and cancer. 
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Thus, regulation of genes in adipose tissue may be important in the pathogenesis 

of obesity and obesity-related diseases. In their paper ‘Changes in Human Adipose 

Tissue Gene Expression during Diet-Induced Weight Loss,’ Dr. Per-Arne Svensson 

and colleagues state that changes in energy availability have profound effects on adi-

pose tissue metabolism. Expression profiling of human adipose tissue has been used 

extensively to gain insights into genes and mechanisms implicated in the develop-

ment of obesity and related metabolic disease. The study of expression profiles from 

adipose tissue during caloric restriction is a valuable tool to gain such insights. In 

their review, the authors summarize the major findings from human adipose tissue 

expression profiling studies performed on subjects undergoing diet-induced weight 

loss treatment, and the current knowledge on 3 different genes/groups of genes that 

are regulated in human adipose tissue by diet-induced weight loss.

Dr. Karol Thompson in her manuscript ‘Toxicogenomics and Studies of Genomic 

Effects of Dietary Components’ points out that toxicogenomics analyses are recog-

nized to be of value in assessments of the clinical relevance of adverse events that 

are observed in animal models. Resources have been developed to help interpret 

gene expression profiles within the context of a study. Reference compound datasets 

and pathway mapping tools provide a basis for differentiating pharmacologic from 

toxicologic effects.  From large sets of gene expression data from control groups in 

toxicogenomics studies, the normal range of variability of individual genes and the 

contribution of study factors to baseline variability can be assessed. Sources of biolog-

ical and technical noise can be controlled using performance standards and metrics 

that have been developed for rat and human samples. These resources, in content or 

design, have crossover applications of interest and utility to nutrigenomics research.

Altered expression of microRNAs is frequently detected during tumor develop-

ment; however, it has not been established if variations in the expression of specific 

microRNAs are associated with differences in the susceptibility to tumorigenesis. 

Dr. Athena Starlard-Davenport and colleagues in their manuscript ‘Dietary Methyl 

Deficiency, microRNA Expression and Susceptibility to Liver Carcinogenesis’ report 

that inbred male mice (C57BL/6J and DBA/2J) were fed a lipogenic methyl-deficient 

diet, which causes liver injury that progresses to liver tumors. Differentially expressed 

microRNAs were identified by μParaflo microRNA microarray analysis and vali-

dated by quantitative reverse transcription PCR. They identified 74 significantly up- 

or down-regulated microRNAs, including miR-29c, miR-34a, miR-122, miR-155, 

miR-200b, miR-200c and miR-221, in the livers of mice fed a methyl-deficient diet 

for 12 weeks as compared to their age-matched control mice. The targets for these 

microRNAs are known to affect cell proliferation, apoptosis, lipid metabolism, oxida-

tive stress, DNA methylation and inflammation. Interestingly, DBA/2J mice, which 

develop more extensive hepatic steatosis-specific pathomorphological changes, had a 

greater extent of miR-29c, miR-34a, miR-155 and miR-200b expression. These results 

demonstrate that alterations in expression of microRNAs are a prominent event during 

early stages of liver carcinogenesis induced by methyl deficiency. More importantly, 
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the data link alterations in microRNA expression to the pathogenesis of liver cancer 

and strongly suggest that differences in the susceptibility to liver carcinogenesis may 

be determined by the differences in the microRNA expression response.

A developmental dysregulation of glutathione (GSH) synthesis of genetic origin 

leading to oxidative stress, when combined with environmental risk factors generat-

ing reactive oxygen species, can play a critical role in inducing schizophrenia phe-

notypes. GSH, a major redox regulator and antioxidant, is essential for protection 

against cellular oxidative damage. Dr. Kim Do and colleagues in their paper ‘Redox 

Dysregulation and Oxidative Stress in Schizophrenia: Nutrigenetics as a Challenge 

in Psychiatric Diseases Prevention’ review the results obtained through a reverse 

translational approach showing redox dysregulation of genetic origin in schizophre-

nia patients. Patients have decreased GSH levels in cerebrospinal fluid and prefrontal 

cortex and abnormal GSH synthesis: a GAG trinucleotide repeat polymorphism in 

the rate-limiting GSH synthesizing glutamate-cysteine ligase (GCL) catalytic subunit 

(GCLC) gene is associated with the disease. The associated genotypes correlate with 

decreased GCLC mRNA, protein expressions, GCL activity and GSH content. As 

demonstrated in various models, such redox dysregulation underlies structural and 

functional connectivity anomalies and behavioral deficits. In a clinical trial, the GSH 

precursor N-acetyl cysteine improved both negative symptoms and auditory evoked 

potentials. Thus, a genetic GSH synthesis impairment represents one major risk fac-

tor in schizophrenia. Redox dysregulation may constitute a ‘hub’ where genetic and 

environmental vulnerability factors converge and their timing during neurodevelop-

ment might influence disease phenotypes.

The relationship between nutrition and food production is one that must be con-

sidered in any discussion of the value of nutrigenomics. The goal of the development 

of individualized dietary guidance is dependent on the availability and composition 

of the agricultural commodities that make up the food supply. Dr. Joseph Spence in 

the chapter ‘Nutrigenomics and Agriculture: A Perspective’ explores the recent exam-

ple of genomic prediction in dairy cattle. The lessons learned in application of the 

genome-based technologies are related to the development of dietary guidance for 

humans. An examination of the success of genetic prediction suggests that the iden-

tification of individuals at risk for nutritionally related diseases is possible and could 

form the basis for individualized nutritional advice and guidance. Potential problems 

in the development of such advice and how an individual might use that information 

to change their diet are of concern. The use of genomic tools to identify individuals at 

risk of nutritionally related diseases and to develop individualized dietary advice are 

possible but is not without pitfalls and problems that will need to be addressed.

Dr. Peter Gillies and Dr. Penny M. Kris-Etherton in their paper ‘Opportunities 

and Challenges in Nutrigenetics/Nutrigenomics: Building Industry-Academia 

Partnerships’ state that the intersection of industry and academia creates a Venn 

space wherein knowledge, experience and nutrigenomic technology can be lever-

aged to produce healthier foods and dietary supplements. Notably, such products 
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are expected to have unprecedented nutritional pharmacology based on emerging 

principles of molecular nutrition. As the health-promoting properties of functional 

foods and dietary supplements increase, so does the need to resolve the ‘nutrient-

drug’ debate. In this regard, the translational science of nutrigenomics involves every-

thing from DNA to the FDA, and everybody from the private to the public sectors. 

The complexity and expense of this science, coupled with its potential for commercial 

application, inevitably draws industry and academia closer together as collaborators 

and partners. Although such ties are viewed by some as suspicious, fraught with bias 

and rife with conflict of interest, relationships based on shared ethical values, rigor-

ous science and carefully selected projects, can be transparent and mutually benefi-

cial. The experience of DuPont and the Pennsylvania State University is offered as 

a heuristic example of a successful industry-academic partnership and is presented 

herein in the context of omega-3 fatty acid research and molecular nutrition.

Another collaborative approach is presented by Dr. Lynnette Ferguson and col-

leagues in their manuscript ‘Tailoring Foods to Match People’s Genes in New Zealand: 

Opportunities for Collaboration’. They point out that Nutrigenomics New Zealand 

is tasked with developing the necessary competence for the development of gene-

specific personalized foods (i.e. nutrigenetics). Initial work considers the response 

of 1 gene or gene variant, usually in the form of a SNP, to individual nutrients. The 

authors use Crohn’s disease as proof of principle. Knowledge of key human Crohn’s 

disease SNPs is incorporated into the design of isogenic cell lines, with and without 

the variant SNP of interest. Food extracts and components are tested for their abil-

ity to restore the normal phenotype in cellular models, before more selective test-

ing in relevant animal models. In parallel, New Zealand Crohn’s disease and control 

populations are tested for key genetic variants, and this information is compared with 

detailed dietary analysis. For example, a range of different foods show different toler-

ances in individuals carrying variants in an important Crohn’s disease gene, NOD2. 

A substantial component of the program relies on high-quality data management, 

bioinformatics and biostatistics. International linkages will be essential for enhanced 

success of this program. In particular, testing hypotheses on gene-diet interactions 

will require large numbers of individuals in collaborative studies, with coordinated 

dietary and genotyping methods, to ensure that conclusions are adequately powered.

These proceedings should be of interest not only to scientists carrying out nutri-

genetics/nutrigenomics research in academia, government and industry, but also to 

anyone interested in the future of personalized medicine, personalized nutrition and 

the future of agriculture. Such people would include physicians, geneticists, nutri-

tionists, dieticians, food scientists, agriculturists in animal husbandry and horticul-

ture, plant pathologists and persons interested in policy development in academia, 

industry and government.

Artemis P. Simopoulos, Washington, D.C.

John A. Milner, Bethesda, Md.
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Opportunities and Challenges in 
Nutrigenetics/Nutrigenomics and Health
Raffaele De Caterina

G. d’Annunzio University, Chieti and CNR Institute of Clinical Physiology, Pisa, Italy

Looking into the crystal ball to predict the future is always a risky operation. We are, 

however, confronted by this challenge when asked to provide, for others and our-

selves, a vision of the evolution of a scientific area. As the essayist Jonathan Swift 

wrote: ‘Vision is the art of seeing things invisible.’ It is the attempt to imagine what is 

behind the curtain of current knowledge and wisdom. Nutrigenetics/nutrigenomics 

is a novel area of scientific research, its roots do not run deep in a glorious past but 

instead it looks towards the future. The symbol of the recently founded International 

Society of Nutrigenetics/Nutrigenomics (ISNN) is a tree bearing fruit, reflecting this 

sense of optimism. But it is a tree in springtime, when the fruits are foreseeable, but 

not yet within reach. 

In this brief introductory chapter I will analyze some of the current needs of this 

new discipline. I will try to delineate the unique opportunities, and anticipate at least 

some of the challenges ahead.

Why Nutrigenetics/Nutrigenomics?

As living organisms, we are all the product of the interaction of our genes with our envi-

ronment. Both genes and environment are essential components of life. Contrary to 

monogenic diseases, where a mutation in one single gene can be the sole cause and the 

‘essence’ of a disease (e.g. sickle cell anemia), most global acquired diseases, such as cor-

onary heart disease and cancer, are under the influence of a very large number of genes, 

and are always profoundly influenced by the environment. Therefore, acquired chronic 

diseases are paradigmatic examples of gene-environment interactions, where it is diffi-

cult to say which is predominant. Although family history can often be found in patients 

suffering an acute myocardial infarction, siblings in the same family are often unaffected, 

illustrating the principle that in such cases we inherit propensities, not inevitabilities. 
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Whatever the relative proportions of genetic and environmental factors that we may 

try to evaluate in such cases, the fact is that genes and environment are not entities in 

isolation, but they deeply interact with each other. The influence is bidirectional, in 

the sense that genes can affect factors that we recognize as environmentally modifi-

able (e.g. serum cholesterol), and environmental factors can affect gene expression. 

Nutrients are most likely the main environmental factors which we are exposed to, 

and they also interact with our genes bidirectionally. Coronary heart disease, which 

is now the leading cause of death and disability worldwide [1], is a case in point. In 

52 countries spread across every inhabited continent, a study of the occurrence of a 

first myocardial infarction estimated that 9 known risk factors (smoking, history of 

hypertension or diabetes, waist/hip ratio, dietary patterns, physical activity, consump-

tion of alcohol, blood apolipoproteins, and psychosocial factors) account for 90% of 

the population-attributable risk in men and 94% in women [2].

Three considerations appear to me extremely relevant here: (1) the above risk fac-

tors, including dietary pattern and the propensity for alcohol consumption, are all 

under genetic influence; (2) all these factors are modifiable, they are not at all inevi-

table; (3) six of these nine risk factors are influenced by the diet (or are themselves 

dietary patterns) and they interact with physical activity, which in the above analysis 

was also accounted for as an independent factor. Thus, nutritional factors, which were 

the first example given in molecular biology for ways to control gene expression (see 

the operon theory by Jacob and Monod [3]) are the best example I can give of how 

the environment influences our genes, and are themselves influenced by our genes. 

Indeed the terms ‘nutrigenetics’ (how the genetic constitution modulates the response 

to nutrients) and ‘nutrigenomics’ (how nutrients affect gene expression) are them-

selves intertwined, and are largely understandable as two faces of the same coin [4].

Opportunities

Nutrigenetics/nutrigenomics has an increasing public profile and is attracting the 

attention of the media. In its 2007 special report into nutrition, The Economist, a cur-

rent affairs magazine, carried the following text:

Some people eat three-egg omelettes topped with slivers of bacon and show no sign of a spike in 

cholesterol. Some people indulge in one chocolate bar after another and stay as thin as a rake. 

Many, however, are less fortunate. Current research suggests that the culprit may be found in one’s 

genes. Differences in genetic make-up may not only determine the ability to metabolize certain 

nutrients, such as fats and lactose, but also susceptibility to disease.

The good news is that, within five years or so, researchers should learn how to modify people’s 

diets to thereby prevent or delay the onset of a possible illness. At least, that is the goal of nutritional 

genomics, a new field that studies how genes and diet interact [5].

In this way, the media reflects and drives public interest in nutrigenetics/nutrig-

enomics, seeing it as holding the promise of personalized nutrition where each indi-

vidual’s diet is devised to best interact with his or her genetic make-up. This is the 
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unique opportunity of this new discipline as it deepens its roots in nutrition, preven-

tive medicine, clinical disciplines, genetics and molecular biology and systems biol-

ogy. It gives rise to the possibility of exploiting subcellular, cellular and preclinical 

animal models and also to provide a unique way of synthesis, a unique new idea. 

Thomas Aquinas, the 13th century theologian and philosopher, stated: ‘The essence 

of the human being is to take two concepts which are themselves abstract, then to put 

them together to form a new abstract concept which is unlike the two original ones.’ 

This applies to the combination of the concepts that give rise to an entirely new indi-

vidual entity. Nutrigenetics/nutrigenomics is indeed a single leap forward of the imag-

ination, opening a new area of investigation with enormous potential consequences.

Although nutrition obviously predates pharmaceutics in human history, interestingly 

nutrigenetics is an expansion of concepts seen in pharmacogenetics: an attempt to better 

understand the reasons underlying variability of individual responses to the environ-

ment. Thus, nutrigenetics is an attempt to make sense of the inter-individual variation 

in our responses to diet – the main environmental factor – in the way that we are now 

approaching an understanding of why people react differently to the same antiplatelet 

drug [6] in terms of inhibition of platelet function and how this translates into a greater 

or lesser protective effect against myocardial infarction. Indeed, we now have excellent 

examples of genetic variants affecting the probability of a disease, and of nutrients able to 

modify such probability. For example, insertion/deletion gene variants in the promoter 

region of 5-lipoxygenase, affecting the production of leukotrienes, are related to the risk 

of increased intima-media thickness in the carotid arteries (a proxy for the burden of ath-

erosclerosis), but such genetic influence can be totally abrogated by increased intake of 

omega-3 fatty acids, known sources of weaker leukotrienes and alternatives to the main 

eicosanoids derived from omega-6 fatty acids [7, 8]. And we have, likewise, examples of 

direct control by nutrients of gene expression, examples being – from my own personal 

interest – the modulation of expression of adhesion molecules and of the inflammatory 

enzyme cyclooxygenase-2 by omega-3 fatty acids [9, 10]. 

The background science is there, but how close are we to the goal of implement-

ing personalized nutrition based on genetic knowledge? We are not there yet. I will 

briefly explain why.

We already now know, by-and-large, how to modify people’s diets to prevent or 

delay the onset of a possible illness, but we know this in terms of ‘average’ responses 

of groups of subjects to a given change in the diet. We also have excellent cases where 

dietary habits that can be good for some can be bad for others, for example, in attempts 

at understanding the responses of lipid metabolism to the intake of polyunsaturated 

fatty acids [11].

However, most such studies have not yet come full circle to establish a solid ground 

for health claims. The reasons are:

– Most studies performed have been either complex nutritional interventions or 

they isolated the eff ect of a single nutritional component. So far there has never 

been a combination of the 2 approaches with the same aim. Th e result is that, 
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with the fi rst approach, we cannot ascribe the eff ect observed to one single dietary 

factor, and with the second, we cannot exclude the abrogation or the reversal of the 

eff ect by contrasting eff ects from other nutrients, due to scarce or actually absent 

knowledge on the eff ects of interactions with other dietary components.

– Th ere is usually in such studies little or no knowledge of the overall eff ect on the 

organism. We study single outcomes, thought to be related to a more general 

endpoint (I use the terms ‘outcomes’ and ‘endpoint’ deliberately), but we have not 

proved so far the eff ect on the general endpoint itself.

Challenges

As researchers in a new discipline, those working in nutrigenetics/nutrigenomics are 

energized by the excitement of navigating uncharted waters, but we must not allow 

our enthusiasm to blind us to the problems. Sailors venturing into the Arctic sea 

know that most of the dangers lie below the surface, and because these dangers are 

not readily visible there is a risk of trivializing them, rendering them more insidious. 

It is important at the very beginning of the life of a new discipline to recognize and 

manage upfront these difficulties, as if they are left unchecked they may undermine 

the credibility of the entire field. 

I see major challenges in the following areas:

– relying on surrogate/intermediate endpoints;

– issuing premature health claims;

– underestimating the fi nancial interests involved;

– misjudging ethical and legal implications.

Surrogate Endpoints

We need surrogate endpoints. At the beginning of a clinical investigation we need 

readily measurable and obtainable parameters that give us a sense of where that 

research topic is going. In the two examples given before [7, 8], the measurement of 

the intima-media thickness as a proxy for atherosclerosis is logical, understandable, 

and supported by good evidence of its relationship to more concrete endpoints. For 

the relationship of polyunsaturated fatty acid intake to the blood levels of HDL cho-

lesterol, in the other example given above [11], HDL cholesterol is a lipid parameter 

related to the firmer endpoint of coronary heart disease morbidity and mortality.

However, in addition to often being of little importance to patients, surrogates 

may lead to misleading and erroneous conclusions [12]. Endpoints are indeed a first 

approximation to the disease we are trying to prevent, but they must be substantiated 

at some point with firmer evaluations. The history of clinical pharmacology is replete 

with examples of drugs found to be effective in large-scale trials on some intermediate 

outcome and then proven in the end to cause harm rather than benefit on the same 

disease process that is known to be related to the intermediate outcome investigated. 
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An example is hormone replacement therapy, which was found to favorably affect 

atherosclerosis progression and yet caused increased – rather than decreased – car-

diovascular deaths because of an unexpectedly high excess risk of thrombosis [13]. 

There is also the more recent unfortunate story of the cholesterol ester transfer pro-

tein inhibitor torcetrapib, found to be very effective in raising HDL-cholesterol, and 

yet causing more harm than benefit in treated patients, likely due to some unantici-

pated off-target detrimental effect of the specific drug used [14]. How much of the 

currently performed nutrigenetic/nutrigenomic research goes down the road to the 

point of showing the ultimate health consequences of personalized nutrition? I would 

assert that no such examples yet exist. There must be a way to come to full circle to 

demonstrate the clinical relevance of operating differentially in different patient cat-

egories. Until this process is completed, it is premature to make health claims.

Premature Health Claims

As a consequence of the current weaknesses in evidence, most of the other challenges 

come from the temptation to rapidly exploit the burgeoning amount of knowledge 

being acquired for rushed, unwarranted health claims, linked immediately to finan-

cial interests. While industrial interests can help the development of sound scientific 

research, they can also thwart it, ultimately discrediting it. It is easy to understand the 

willingness of manufacturers to sell their genetic tests even if doctors do not know 

what to do with them [15]. Similarly, it is easy to anticipate (actually, to witness) the 

creation of companies wishing to ride the horse of the trendy business of personalized 

nutrition, selling recipes claiming to be ‘good for you’ and ‘based on the latest scien-

tific developments’. This is a huge problem that has to be faced properly.

Ethical and Legal Implications

Last, but not least, there are ethical and legal implications in the area of genetic testing 

[16] and of nutrigenetics [17] that need to be known and carefully approached. These 

involve:

– the management of genetic information;

– consent, confi dentiality, familial consequences, testing children; 

– non-medical uses of information by employers and insurers.

The handling of genetic information is an area fraught with difficulty. For example, 

we know that a mutation in apolipoprotein E (e4/e4) that is found in 14% of the UK 

and US populations is linked to an increased risk of early cardiovascular disease, and 

such risk can be modified with diet. This genotype is, however, also linked with a 60% 

increased risk of developing Alzheimer’s disease, where it is not clear whether chang-

ing dietary fat intake favorably or unfavorably affects the risk of Alzheimer’s disease.

We must also consider the fact that, in general, it is well established that having 

a healthy diet and lifestyle are of paramount importance. We should therefore not 

risk diluting these messages with premature speculation and resist the temptation to 

raise expectations that may later prove unrealistic. It is also important not to frighten 
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people with results of genetic tests showing they have increased risk for a condition 

that could be modifiable with an expensive and at this time still unproven ‘personal-

ized’ diet. In other words, we should continue looking at what we have already on 

our shelves, where there are already dietary choices known to be healthier than oth-

ers, independent of any knowledge of individuals’ genetic constitution. These include 

foods derived from organic and free-range animal farming (which not just affect our 

genes, but also involve ethical choices), low-fat products, products with a low glycemic 

index, increased intake of fish, fruits and vegetables, friendly bacteria products, folic 

acid to prevent neural tube defects and severe cases of hyperhomocysteinemia, vita-

mins for children and older age groups to combat absolute or relative deficiencies. 

How to Deal with the Challenges

Meeting these challenges is a daunting prospect and fighting this battle will be difficult, 

more so if those in the field act only individually. It is for this reason that there is a great 

need for a scientific society with the mission to select and give voice to sound scientific 

information in an extremely complex, crowded and ‘polluted’ arena. The ISNN aims to 

act as a clearing house for media and scientific information, and place itself in an inter-

mediate position between investigators and industry. In his welcome note on the orga-

nization’s website, society president Dr. Artemis P. Simopoulos wrote that the purpose 

of the ISNN is to ‘increase understanding through research and education of profes-

sionals and the general public of the role of genetic variation and dietary response and 

the role of nutrients in gene expression’ [18]. Dr. Simopoulos continued that important 

aims of the ISNN include serving as a clearing-house for the media in disseminating 

facts regarding the role of genetic variation and dietary response and the role of nutri-

ents in gene expression, assisting in interpreting the new facts into sound nutritional 

advice for the public, and establishing science and education committees. The ISNN 

provides an opportunity for an ethical alliance of scientists motivated by genuine sci-

ence to advance knowledge, but also to act as a transmission chain to the public.

We are humbled by the magnitude of the task, but also proud and thrilled by the 

opportunities and the challenges ahead.
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Towards the end of the 20th century, we were successfully beginning to understand 

part of the genetic basis of some human diseases. Up to that time, progress had been 

relatively slow, largely depending upon establishing familial associations, and some-

what laboriously measured variations in candidate genes. This was usually in the 

form of single nucleotide polymorphisms (SNPs), measured one at a time with labor-

intensive methods such as restriction fragment length polymorphism [1]. However, 

since the initial publication of work on the human genome [2], major advances in 

genotyping capability and reductions in cost, coupled with large collaborative pop-

ulation groups are enabling exponential advances in our understanding of human 

genetic variation. Genome-wide association studies (GWAS) are greatly increasing 

our understanding of the genetic basis of human disease, especially complex disease. 

Perhaps more importantly, they are more generally enhancing our knowledge of far 

more subtle differences between individuals, including behavioral characteristics, 

health, ‘wellness’ and performance. An analysis of GWAS publications since their first 

appearance in 2003 (fig. 1) emphasizes why Pennisi [3] described such studies as the 

breakthrough of the year in enabling knowledge of what makes each of us unique.

Since the earliest GWAS papers, there have been a number of commentaries in 

high-impact scientific journals, including a supplement in Nature (October 8), 

described as ‘Human Genetics 2009’. The editorial points to the enhanced flow of 

human genetic information and the way that high density gene chip information is 

being utilized by online direct-to-consumer companies who claim to be predicting 

human health at the individual level. What is not being considered, however, is the 

key information that may be necessary to enable genetic data to predict human health 

or, more importantly, to develop strategies to modify the genetic predictions. That is, 

a parallel and integrated assessment of diet and environmental factors. In 2005, we 

commented on the need for international collaborative efforts in nutrigenomics to 

enable better understanding of the basis of human disease and ‘wellness’ characteris-

tics that differ among individuals [4]. However, while there has been a proliferation 
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of studies on the genetic basis of disease (fig. 1), for the most part these have not been 

accompanied by stringent dietary and environmental data. It is suggested that this 

should become an essential input to such studies in the future.

Monogenic Disorders and Complex Disease

For much of the 20th century, knowledge of the genetic basis of human disease was 

limited to single-gene or Mendelian disease, where familial association is somewhat 

obvious. Most of these mutations are in the form of SNPs involving either missense 

or nonsense mutations [5]. Once the disease was accurately phenotyped and familial 

associations identified, it became relatively clear which gene was important. However, 

such diseases are relatively rare, and most of the common diseases are more complex, 

involving multiple genes and interactions with environment, including diet.

With complex disease, association studies are the only realistic approach, using 

large numbers of unrelated cases and controls, or family groupings such as trios 

involving 2 parents and an affected child [6]. Large numbers of markers that cover the 

genome are required to identify genes in complex disease. Perhaps more importantly, 

the presence or absence of a single gene variant is not usually sufficient to explain 

the disease phenotype. There is good reason to believe that genetic predisposition 

to complex disease is due to minor variations in a large number of genes, and their 

ability to interact with specific environmental factors. While these complex diseases 

are much more difficult to study, this knowledge may become increasingly impor-

tant, since they are the most common cause of death in humans [7, 8]. There are, of-

course, even more technical challenges in gaining an effective understanding of the 

human diet than of genes [9].

2003 2004 2005 2006 2007 2008 2009

Year of publication
N
u
m

b
e
r 
o
f 
G
W
A
S

 p
u

b
lic
a
ti
o
n
s

0

200

400

600

800

1,000

1,200

1,400

Fig. 1. Number of genome-

wide association studies 

reported each year since 2003 

in a PubMed literature search.



10 Ferguson

Enabling Technologies in GWAS

Although the first GWAS appeared in the literature in 2003, the initial tools did 

not cover a representative area of the human genome. In 2004, Ishkanian et al. 

[10] described a tiling resolution DNA microarray that they described as showing 

‘complete coverage’ of the human genome. Such tools are essential starting blocks 

for GWAS studies, which are based on enabling genotype-phenotype correlations, 

using the same principles as candidate gene studies. However, such studies are 

hypothesis free, since the variants measured span the entire human genome. The 

international HapMap project recognized the need for studies of this sort, and 

sought to characterize the major SNPs across the genome, and in different human 

population groups [11]. The notion was that these would provide an idea of popu-

lation structure on all ‘common’ SNPs (>5% frequency), in 2 phases of increasing 

density across the genome. This would be supplemented by deep re-sequencing as 

appropriate. This resource has provided the enabling technology for genetic vari-

ant assays using gene chips, now able to cover more than 1 million SNPs across 

the genome. The 2 main genotyping providers are Affymetrix, whose variants are 

randomly distributed, and Illumina, who have utilized more highly selected tag-

ging SNPs. Either or both of these gene chips are ideal to measure a large number 

of SNPs and also copy number variants [12]. Deep re-sequencing techniques are 

also available for interrogating specific areas of the genome. Large collaborative 

databases are essential for providing the necessary statistical power for confidence 

in data interpretation.

GWAS: Why Are They Important?

GWAS provide an important mechanism for moving away from candidate gene stud-

ies, which select genes for study based on known or suspected disease mechanisms. 

Instead, GWAS permit a comprehensive scan of the genome in an unbiased fashion. 

By this means they have drawn out associations with genes not previously suspected 

of being related to the disease. They permit examination of inherited genetic variabil-

ity at unprecedented levels of resolution, and have even picked up some associations 

in regions not even known to harbor genes. The methods continue to be refined. In 

their 2009 review, Ioannidis et al. [13] recommend large-scale exact replication across 

both similar and diverse populations, fine mapping and resequencing, determination 

of the most informative markers and multiple independent informative loci, incorpo-

ration of functional information, and improved phenotype mapping of the implicated 

genetic effects. Even where replication proves that an effect exists, definitive identifi-

cation of the causal variant is often elusive. While these are all important points, it is 

of concern that even the excellent Ioannidis et al. review fails to consider diet as one 

of the missing variables.
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Crohn’s disease provides a good example of the power of this methodology. 

Candidate gene studies very slowly uncovered some of the genetic basis for this 

disease, with an initial report on the first disease gene, Nucleotide oligomerisation 

domain 2 (NOD2) in 2001 [14]. Other genes were slowly and sometimes unconvinc-

ingly revealed, including other immune recognition genes such as Toll-like receptor 4 

(TLR4) [15]. However, the first publications of GWAS on this disease [16, 17] revealed 

the importance of SNPs in hitherto unsuspected genes, including the interleukin 23 

receptor, IL23R, and the autophagy gene, ATG16L1. These genes both involve response 

to environmental factors, especially bacteria and diet. GWAS methodology continues 

to yield important findings on the genetic basis of this disease [18]. However, studies 

on dietary interactions are substantially lagging behind the genetic evidence.

Use of Gene Chips and GWAS Datasets in Personalized Health Predictions

The publication of this burgeoning number of datasets has led to a proliferation of 

online genetic testing companies, which purport to provide a measure of genetic risk 

to an individual, who has provided saliva or buccal swab samples for DNA isolation 

and genotyping. Inevitably, there has been concern expressed about their relevance. 

For example, Ng et al. [19], compared data provided by 2 different direct-to-consumer 

genetics-testing companies on a small number of individuals, to find quite significant 

differences in the predictions claimed. For their 5 test individuals, in predictions of 7 

diseases only 50% or fewer of the predictions agreed between the 2 companies. Their 

information showed that the accuracy of the raw data was high. However, they ques-

tioned whether the predicted disease risks had clinical validity, and how well a genetic 

variant correlates with a specific disease or condition. They found that the companies 

showed very similar predictions for diseases where the genetic risk was convincing, 

and they concluded that companies should communicate high risks better than they 

are currently doing. They also suggested that test data would become more relevant 

to human health if the companies tested for drug response markers. They pointed to 

differences between the genetic basis of disease in different ethnicities, and suggested 

that the information gathered should include consideration of behavior. Surprisingly, 

however, they failed to highlight the potential importance of diet and/or environ-

ment. Their 9 recommendations are reproduced in table 1.

Celiac disease provides an example where Ng et al. [19] showed good agreement 

between direct-to-consumer testing companies. Celiac disease represents a major 

food intolerance, with a current prevalence rate of approximately 1 per 100 individu-

als in the population [20]. This disease is characterized by a lifelong intolerance to 

gluten, which is found in wheat, barley and rye, and products derived from them. The 

most effective treatment for celiac disease is nutritional [21] and remission of symp-

toms can be well maintained in the absence of gluten. At present, this disease is usually 

diagnosed phenotypically, once symptoms have developed, and requires an invasive 
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small intestinal biopsy for diagnosis. However, twin studies provide good evidence for 

a genetic basis of the disease, with 10% of first-degree relatives being affected, and 75% 

concordance between monozygotic twins [22]. Several genes are clearly involved, but 

the most consistent genetic component depends on the variants in HLA-DQ (DQ2 

and/or DQ8) genes [23]. The main genes in celiac disease lead to a 7-fold increased 

disease risk, and can be diagnosed fairly consistently, either on a phenotype or geno-

type level. More recent GWAS also give insight into the other relevant genes for this 

disease [24]. There would seem to be a case for earlier genetic diagnosis in susceptible 

families, avoiding the inevitable suffering associated with the presence of symptoms.

Where slightly different interpretations occurred was where one company had 

kept up with the very latest literature but other companies had not. Crohn’s disease 

provided an example where there were inconsistencies in diagnosis. Even though this 

disease has proved remarkably tractable in GWAS studies, with very strong probabili-

ties of accurate diagnosis of genes [25], individually these have very low relative risks. 

This may suggest the importance of environmental interactions.

Gene-Diet Interactions: Crohn’s Disease

The genetic basis of Crohn’s disease has not been as easy to characterize as celiac 

disease. The genetic basis of the disease is, as with celiac disease, supported by twin 

studies. For example, Tysk et al. [26] have shown strong familial associations and 

around 44% concordance between monozygotic twins. Although key genes have been 

revealed by GWAS and other approaches, the odds ratios associated with individual 

risk alleles are not spectacular [25]. Furthermore, although key dietary items have 

been revealed, unlike celiac disease, there is no ‘one size fits all’ solution. For example, 

in our own studies, wheat products, dairy foods, red wine, corn, mushrooms, soy 

Table 1. Recommendations for improvement of direct-to-consumer genetic testing, as identified 

by Ng et al. [19].

Addressed to Recommendation

Industry Report the genetic contribution for the markers tested

Focus on high-risk predictions

Directly genotype risk markers

Test pharmacogenomic markers

Agree on strong-effect markers

Community Monitor behavioral outcomes

Carry out prospective studies

Replicate associated markers in other ethnicities

Sequence rather than genotype
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milk and yoghurt are all examples of foods for which a number of individuals with the 

disease report an exacerbation of risk. However, there are also a proportion of indi-

viduals who consistently report that they appear to benefit from regularly eating one 

or more of these foods. We have been able to demonstrate that at least some of these 

apparently inconsistent data, for example with mushrooms, are a result of gene-diet 

interactions [27]. In this example, a genetic variant in a solute transporter molecule, 

OCTN1, appeared important for Crohn’s disease risk in some overseas populations; 

it did not show statistically significant association with disease risk in a New Zealand 

population. However, when the ability to tolerate mushrooms was factored in, those 

individuals with strong mushroom intolerance showed significantly enhanced levels 

of the OCTN1 variant as compared with the control population.

The experience with Crohn’s disease leads to caution in interpreting dietary informa-

tion in such a complex disease. There is a considerable effort to increase the sensitivity 

and accuracy of dietary information [9]. However, more accurate dietary question-

naires reveal a typical eating pattern for the individual. From an analysis of such data 

for an individual with Crohn’s disease, one might conclude that a deficiency of wheat 

products, dairy foods, red wine, corn, mushrooms, soy milk and yoghurt has led to the 

development of the disease. However, the actual picture is likely to be the complete con-

verse of this. The observation is that, when he or she actually eats these dietary items, 

disease symptoms develop, and thus the individuals learn to avoid foods that trigger 

symptoms. This means that it is the presence rather than the absence of these items 

that actually led to the establishment of symptoms of the disease. This is the complete 

converse of traditional dietary interpretation, and may lead the way to different think-

ing about dietary studies in association with GWAS. Certainly, effective methods are 

increasingly becoming available [28]. However such studies are performed, it is essen-

tial that they are done if we are to uncover the true role of genetic variants, and the 

interplay with diet and environment, in the etiology of complex disease.
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It has been suggested that nutrigenomics, the study of the effects of nutrients on 

molecular level biological processes and the variable effects of nutrients on indi-

viduals, represents the new frontier of nutrition science [1]. One particular nutri-

ent, eicosapentaenoic acid (EPA), is an important n–3 long-chain polyunsaturated 

fatty acid which has multiple important functions. The use of the semi-synthetic 

derivative ethyl-eicosapentaenoic acid (ethyl-EPA) in the treatment and prevention 

of certain neurological and cardiovascular disorders is becoming increasingly well 

known. In this paper, we discuss the early evidence that individual response to ethyl-

EPA might be a function of copy number variation. To this end, the research carried 

out in Huntington’s disease is germane, given that the genetic cause (increased CAG 

repeats) of this neurological disorder are well characterized, and that differences in 

the number of CAG repeats in Huntington’s disease can be measured. Similarly, given 

the recent finding of retroviral infection being common in myalgic encephalomyeli-

tis, the response of patients with the latter neurological disorder to ethyl-EPA might 

also be expected to show differences related to copy number variation.

Ethyl-EPA

EPA (C20:5n–3) is a long-chain n–3 polyunsaturated fatty acid that is a natural 

metabolite of the short-chain essential fatty acid α-linolenic acid. It is labile and can 

degrade rapidly. Ethyl-EPA is a semi-synthetic, highly purified EPA derivative which 

is more stable. Following oral administration and absorption, ethyl-EPA is acted on 

by esterases, particularly pancreatic lipase, to release EPA, so that ethyl-EPA acts as 
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a pro-drug [2]. The EPA cyclo-oxygenase and the lipoxygenase metabolites include 

biologically active eicosanoids such as 3-series prostaglandins and resolvins [3]. EPA 

also down-regulates IL-1β-induced prostaglandin H synthase 2 expression in human 

microvascular endothelial cells, probably through its 5-lipoxygenase-dependent 

metabolites (EPA suppresses p38 mitogen-activated protein kinase phosphorylation 

in stimulated pulmonary microvascular endothelial cells) [4]. In respect of neurologi-

cal disorders associated with cerebral atrophy, it is important to note that since pros-

taglandin biosynthesis can directly induce apoptosis in mammalian neuronal cells 

[5, 6], down-regulation of the prostaglandin synthesizing enzyme cascade might be 

associated with a protective effect of EPA against apoptotic changes in the brain [2].

Huntington’s Disease

Huntington’s disease is an autosomal dominant disease caused by an unstable expan-

sion of CAG trinucleotide triplet repeats in the huntingtin gene at 4p16.3. The 

CAG repeats are transcribed and translated into polyglutamine expansion (polyQ) 

stretches, and the length of the repeats has been shown to correlate inversely with the 

age of onset of the disease [7, 8]. It is characterized by motor dysfunction; chorea and 

incoordination occur relatively early and dystonia, rigidity, and bradykinesia become 

more prominent with time. Death usually occurs within 15–25 years of onset of motor 

symptomatology [9, 10]. In terms of characteristic neuropathological changes, central, 

particularly striatal, neuronal degeneration takes place, to which mitochondrial dys-

function might contribute [11, 12]. The mechanism of such mitochondrial damage is 

not known at the time of writing, but there is evidence for an involvement of the c-Jun 

amino-terminal kinase (JNK) pathway induced by stress-signal kinase 1 (SEK1), for 

a specific role of p53 in the mitochondria-associated cellular dysfunction and behav-

ioral abnormalities, and for possible mediation by nuclear factor-κB (NF-κB) [2].

It is noteworthy that EPA targets mitochondrial function and affects gene expres-

sion by acting on transcription factors such as peroxisome proliferator-activated 

receptors and also acts on the JNK and NF-κB pathways [13–15]. EPA inhibits phor-

bol 12-tetradecanoate 13-acetate-induced JNK-AP-1 transactivation and subsequent 

cellular transformation [16], deoxynivalenol-induced JNK activation in macrophages 

[17], lipopolysaccharide (LPS)-induced JNK activation in macrophages [18], LPS-

induced JNK activation in microglia [19], and amyloid-β-induced JNK activation in 

the hippocampus [20, 21]. EPA has also been shown to inhibit tumor necrosis factor 

mRNA expression in LPS-stimulated macrophages and LPS-stimulated monocytes, 

possibly by reducing NF-κB activation by reducing the P65/P50 NF-κB dimers [22] 

or by inhibiting phosphorylation of the inhibitory subunit IκB, thereby keeping it in 

the non-phosphorylated form that in turn keeps NF-κB in an inactive form [19, 23]. 

In patients with bipolar disorder, ethyl-EPA treatment is associated with increased 

cerebral N-acetylaspartate, a putative marker of neuronal integrity [24].
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A small 6-month randomized double-blind placebo-controlled trial of pure ethyl-

EPA in stage III Huntington’s disease showed that the fatty acid intervention was associ-

ated with improvement on the orofacial component of the Unified Huntington’s Disease 

Rating Scale, while all the patients on placebo deteriorated on this scale [25]. Following 

subvoxel sinc-interpolation-based registration of follow-up 3D MRI brain scans with 

baseline scans [26], subtraction images showed that while the placebo was associated 

with progressive cerebral atrophy, the ethyl-EPA was associated with a reverse process 

[25]. A subsequent multi-center large-scale randomized placebo-controlled trial of 

ethyl-EPA was carried out. A pre hoc hypothesis was put forward by one of the authors, 

the late Prof. David Horrobin, suggesting that a genetic influence was likely in respect 

of the response to ethyl-EPA; he therefore suggested (before the study took place) that 

the results should be dichotomized around the median CAG repeat number. Indeed, 

the study went on to show that patients in the per protocol group as well as those with 

a lower CAG repeat number showed clinical improvement with ethyl-EPA compared 

with placebo [27], thus confirming Prof. Horrobin’s hypothesis regarding the impor-

tance of considering pharmacogenetic factors in using EPA in this disease. Treatment 

with ethyl-EPA was again found to be associated with improved cerebral structure on 

MRI brain scans carried out in the patients attending the lead research center [2].

Myalgic Encephalomyelitis

Myalgic encephalomyelitis is a devastating disease which, according to the Revised 

CDC (Centers for Disease Control and Prevention) Criteria, include the following 

symptoms and signs (in addition to chronic fatigue): impaired memory or concentra-

tion; sore throat; tender cervical or axillary lymph nodes; myalgia; multi-joint pains; 

new headaches; unrefreshing sleep, and post-exertion malaise [28].

Three proton neurospectroscopy studies of myalgic encephalomyelitis, 2 systematic 

[29, 30] and 1 non-systematic [31], have reported an increased level of free choline-

containing compounds in the brain [32]. It has been hypothesized that this may be the 

result of reduced incorporation of the choline polar head group in phospholipid mole-

cules at the Sn3 position in both outer cell membranes and intracellular organelle mem-

branes in neurons and glial cells in this disease, which may, in turn, result from impaired 

biosynthesis of membrane phospholipid molecules in the brain, as a result of reduced 

biosynthesis of long-chain polyunsaturated fatty acids (required at the Sn2 position of 

phospholipids) owing to putative viral infectious inhibition of the first long-chain poly-

unsaturated fatty acid biosynthetic step catalyzed by delta-6-desaturase [33, 34].

DNA from a human gammaretrovirus, xenotropic murine leukemia virus-related 

virus (XMRV), has recently been identified in peripheral blood mononuclear cells in 

67% of patients compared with fewer than 4% of healthy controls [35]. Within a month 

of that publication, the same group announced that the proportion of patients showing 

evidence of XMRV infection was 95%. Cell culture experiments revealed that patient-
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derived XMRV is infectious and that both cell-associated and cell-free transmission of 

the virus are possible. Secondary viral infections were established in uninfected pri-

mary lymphocytes and indicator cell lines following exposure to activated peripheral 

blood mononuclear cells, B cells, T cells, or plasma derived from patients [35].

Interestingly, 2 placebo-controlled double-blind trials of the use of fatty acids, 

including EPA, in myalgic encephalomyelitis patients have given contrasting results. 

The earlier one, by Behan et al. [36], demonstrated significant benefit, while the sec-

ond, by Peet and coworkers [37], was negative. Structural neuroimaging in a case 

report of treatment with high EPA-containing fatty acid supplementation has shown 

that clinical improvement in myalgic encephalomyelitis appears to be associated with 

marked reduction in the ventricle-to-brain ratio [38].

Retroviruses possess the ability to insert DNA copies (proviruses) of a viral 

genome into the chromosome of the host cell [39]. In respect of XMRV, which has 

also been associated with a subset of patients with prostate cancer, different retrovirus 

strains have been found in patients with myalgic encephalomyelitis and prostate can-

cer, although in all XMRV-positive myalgic encephalomyelitis cases the XMRV gag 

(736 nt) and env (352 nt) sequences were more than 99% similar to those previously 

reported for 3 prostate tumor-associated XMRV strains in a recent study [35]. Thus, 

if a retrovirus does have an etiological role in myalgic encephalomyelitis, copy num-

ber variation may be expected, and this in turn might partly account for variation in 

response to the virucidal properties of ethyl-EPA [40].

Conclusions

In this paper we have seen how the differential response of neurological disorders to 

treatment with ethyl-EPA may be a function of copy number variation. Future clini-

cal studies involving ethyl-EPA should, when practicable, include genetic data from 

patients so that such a differential response may be better elucidated. This genetic 

influence may also account for the differential response to ethyl-EPA of patients suf-

fering from psychiatric disorders such as depression and schizophrenia.
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Obesity is a multifactorial disorder in which excessive body fat deposition arises 

when energy intake is higher than energy expenditure [1]. The growing prevalence 

of obesity around the world is mainly attributed to changes in lifestyle (e.g. increased 

consumption of high energy-yielding foods enriched with carbohydrates and fats, or 

reduced physical activity) that may impact genetic susceptibility [2]. More than 1 bil-

lion people are currently overweight or obese [3]. This health burden is worsened 

because an excess in body adipose tissue is associated with clinical complications 

such as diabetes, hypertension, dyslipemia, impaired immune competence, hormonal 

disturbances, some types of cancer and higher mortality rates [4].

Many theories have been proposed to explain the origin of this epidemic, such as 

the thrifty gene or genetically based hypotheses, the fetal programming hypothesis, the 

environmental (unbalanced diets and sedentary lifestyles) hypothesis, the ethnic shift 

hypothesis or the assortative mating hypothesis, all of which underline the complex 

theory that suggests that there is not a single cause of obesity but it is a consequence 

of an interaction between genetic and lifestyle influences [5].The mutual interactions 

between the genetic profile and the environment undoubtedly complicate the under-

standing of the specific roles of genes and external influences in obesity [6].

Current obesity treatments are based on [7]:

– dietary strategies to reduce energy intake or manipulate macronutrient 

distribution;

–  exercise programs to increase physical activity; 

– behavioral or psychological approaches; 

– pharmacological prescriptions to increase thermogenesis or reduce appetite or 

food utilization; 

– surgical procedures to control nutrient absorption. 

In this context, identification of additional candidate genes may allow for the pro-

vision of more individualized recommendations (dietary advice, physical activity 
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and/or drug therapy) to prevent excessive weight gain and achieve effective weight 

loss and successful long-term maintenance of weight reduction on the basis of an 

identified genetic predisposition [4]. Therefore, the interactions between the most 

relevant gene polymorphisms affecting the amount and composition of weight loss as 

well as the changes in obesity-associated risk factors depending on the characteristics 

of the nutritional strategy (energy deficit and dietary macronutrient distribution) are 

under investigation [8]. In the future, the advances in molecular and genetic biotech-

nology will pave the way to combine research for new candidate genes, the identifica-

tion of novel polymorphisms and the profiling of gene expression patterns putatively 

involved in gene-nutrient interactions concerning weight homeostasis [9].

Indeed, linkage studies, candidate gene association investigations and genome-wide 

association studies (GWAS) will contribute to substantial advances in nutrigenetic-

based personalized therapies, which will also benefit from advances in phenotype 

measurements including photonic scanners, air displacement pletismography, CT 

and MRI, US and validated dietary intake measurements [5]. Also, scientific progress 

on omics technologies will extend beyond common single nucleotide polymorphism 

(SNPs) and screen the role of copy number variation, siRNA and miRNA involve-

ment, as well as epigenetic changes affecting DNA methylation, chromatin folding, 

covalent histone modifications and polycombs affecting gene-environment interac-

tions and obesity [10].

Observational Studies Evidencing Gene-Nutrient Interactions on Weight Gain

Gene-environment interactions can be assessed through cross-sectional and retro-

spective case-control designs when information on dietary patterns and lifestyles as 

well as on genotyping is available [11]. These research approaches have been success-

fully focused on candidate genes related to appetite control (e.g. LEP, MC4R, FTO), 

energy and lipid utilization (e.g. ADBRs, UCPs, APOA5), adipocyte metabolism 

and signaling [e.g. peroxisome proliferator-activated receptor (PPAR), interleukin-6 

(IL6)], where the outcome variables were obesity risk, BMI, body composition or 

appetite/satiety measurements (table 1).

Genes Regulating Food/Energy Intake

The assessment of several polymorphisms in candidate obesity genes and their inter-

actions with the dietary intake of n–6 polyunsaturated fatty acids in a subsample of 

the EPIC-Heidelberg cohort revealed an increased obesity risk for variants of the lep-

tin gene, which encodes a protein participating in food intake regulation and body 

weight homeostasis [12]. Also, the highly polymorphic melanocortin receptor 4 gene 

(MC4R), which is involved in appetite control at the central nervous system level, 

may show an interaction with dietary intake in obese subjects since carriers of the 

103I allele had significantly higher daily energy and carbohydrate intakes than did 
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Table 1. Selected observational studies concerning gene × nutritional intake interactions on obesity/adiposity 

markers

Gene(s) Ref. Controlled 

nutritional factor  

Main variable Effect modification/outcome depending 

on gene polymorphism

PPARG Luan, 

2001 [20]

Total fat 

P/S ratio

BMI BMI was greater among Ala allele carriers 

only when the P/S ratio was low, and in Pro 

homozygotes when this ratio is high.

PPARG Marti, 

2002 [23]

CHO BMI/

obesity risk

Pro 12 Ala carriers were associated with 

increased risk of obesity in those subjects 

in which >49% energy came from CHO.

11 genes

(15 SNPs)

Nieters, 

2002 [12 ]

n–6 PUFA Obesity risk A substantial elevation of obesity risk with 

increasing intake of n–6 fatty acids in 

carriers (1 or 2 alleles) of TNFα, leptin and 

PPARG variants. 

ADBR2 Martinez, 

2003 [15]

CHO 

CHO/fat ratio

BMI/

obesity risk

Women with a high CHO intake (>49% VET) 

had greater risk of obesity in Gln27Gln 

heterozygotes.

PPARG Memisoglu, 

2003 [21]

Total fat 

MUFA

BMI Intake of monounsaturated fat was 

inversely associated with BMI among 12 

Ala variant carriers.

PPARA Robitaille, 

2004 [24]

Total fat 

MUFA

WC Saturated fat intake was related to WC only 

in Leu162Leu homozygotes.

PPARG Nelson, 

2007 [22]

PUFA BMI Polyunsaturated fat consumption induced 

higher BMI values in Ala carriers of the 

Pro12 Ala variant.

UCP3 Dancott, 

2004 [18]

Energy intake Body 

composition

No evidence of interaction between 

UCP3-5 and UCP3-55 in regard to dietary 

intake. 

ADBR3 Miyaki, 

2005 [16]

Total energy Obesity risk Arg 64 allele carriers were associated with 

higher obesity risk than Trp64Trp 

homozygotes only in the highest energy 

consumers. 

APOA5 Corella, 

2007 [17]

Energy and fat 

intake

BMI Carriers of the Apo45-1131C allele had 

lower obesity risk only when in the high fat 

intake group, but higher obesity risk with 

low fat intake.

IL6R Song, 

2007 [25]

Total energy BMI/WC Association between higher energy intake 

and abdominal obesity in T allele carriers of 

the Asp358 Ala polymorphism.

FTO Timpson, 

2008 [14]

Macronutrient 

intake

Appetite/

satiety

Children carrying the A variant allele 

(rs9939609AT) showed higher calorie and 

total fat intake. 
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non-carriers [13]. Another gene that has been found to be related to appetite in chil-

dren and that may show a diet × gene interaction is the fat mass and obesity associ-

ated locus (FTO), since the rs 9939609 AT polymorphism may stimulate energy and 

fat intake [14].

Genes Regulating Energy and Lipid Utilization

The gene encoding for the adrenergic receptor 2 protein (ADBR2), which is involved 

in lipolysis and other metabolic functions, has been found to participate in a gene-

environment interaction since women carrying the Gln variant had 2.56 times greater 

risk of obesity with a high carbohydrate intake (>45% energy). Similarly, a higher car-

bohydrate/fat ratio (>1.77) was significantly associated with being obese as affected 

by the Glu allele [15]. Moreover, a high energy intake interacted with the Trp64Arg 

polymorphism of ADBR3, another gene participating in lipid utilization which led to 

a significant increase in the risk of obesity of Japanese men [16].

Interestingly, the apolipoprotein A5 (APOA5) –1131T>C SNP, which is involved 

in triglyceride metabolism, appears to modulate the effect of fat intake on BMI and 

obesity risk in both men and women [17]. On the other hand, the –5 and –55 genetic 

variants of the uncoupling protein UCP3 gene, which participates in thermogenesis, 

showed no modulation of body composition induced by the energy intake [18].

Genes Regulating Adipogenesis and Adipokines

The importance of the nuclear peroxisome proliferator-activated receptor gamma 

(PPARG) regulating adipogenesis and adipocyte differentiation has been demonstrated 

in families with loss-of-function mutations, whose gene expression in sensitive to fatty 

acids [19]. An interaction between the Pro12Ala polymorphism PPARG and total 

fat intake or the P/S ratio (unsaturated score) was found on BMI, Ala allele carriers 

had greater BMI when the P/S ratio was low [20]. Some of these findings were only 

partly confirmed in another study, which showed that polyunsaturated fat consump-

tion induced higher BMI values in Ala carriers of the Pro12Ala polymorphism [21]. 

Table 1. Continued

Gene(s) Ref. Controlled 

nutritional factor  

Main variable Effect modification/outcome depending 

on gene polymorphism

MC4R Pichler, 

2008 [13]

Macronutrient 

intake

BMI High CHO consumption was associated 

with BMI in those V103I risk allele carriers.

ADBR = Adrenoreceptor; APO = apoenzyme; CHO = carbohydrate; FTO = fat mass and obesity associated gene; IL6 

= interleukin-6 receptor; MC4R = melanocortin receptor; MUFA = monounsaturated fatty acid; PPAR = peroxisome 

proliferator-activated receptor; P/S ratio = ratio of polyunsaturated to saturated fatty acids; PUFA = polyunsatu-

rated fatty acid; WC = waist circumference
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Moreover, another trial concerning this PPARG gene variant revealed that associa-

tions between total fat monounsaturated fatty acid intake with BMI were different in 

PPARG 12Ala variant allele-carriers compared with non-carriers [22]. Thus, the intake 

of monounsaturated fatty acid was not associated with BMI among homozygous wild-

type women, but was inversely associated with this adiposity marker among 12Ala vari-

ant allele carriers. Furthermore, a case-control study with 313 subjects, reported that 

Ala carriers were associated with an increased risk of obesity in those subjects consum-

ing >49% total energy from carbohydrates [23], while the Pro12Ala genotype showed 

the opposite trend. On the other hand, an association between the PPAR alfa-L162V 

polymorphism and waist circumference was only identified for saturated fat intake 

in Leu162Leu homozygotes [24]. Functions of the IL6 receptor may be affected by an 

interaction between the GG vs. TT+GT genotypes: Asp358Ala gene variant and dietary 

energy, which modifies the risk for abdominal obesity waist circumference [25].

Intervention Studies Concerning Genetic Modification Effects on Weight Loss and 

Maintenance

Nutritional intervention trials provide more reliable evidence concerning the assess-

ment of interactions between the genetic make-up and dietary factors than obser-

vational studies, since various sources of biase are minimized [4]. In this context, a 

number of studies have focused on genes regulating energy intake [e.g. MC3R, pro-

opiomelanocortin (POMC), LEP, LEPLR, FTO], lipid metabolism and adipogenesis 

[e.g. PLIN, APOA5, LIPC, fatty acid binding protein 2 (FABP2), PPARG], thermo-

genesis (e.g. ADBRs, UCPs) and adipokine synthesis (e.g. ADIPOQ, IL6), whose 

functions may be influenced by the dietary intake and, therefore, have an impact on 

body weight gain and composition (table 2).

Genes Regulating Food/Energy Intake

Mutations in genes encoding neuropeptides such as MC4R or POMC, which partici-

pate in the hypothalamic axis controlling appetite and satiety, may specifically modify 

the response to weight-lowering treatments [5]. This outcome has been demonstrated 

for 2 variants concerning the MC3R gene (CI7A and 6241A), which interacted in 

childhood obesity affecting weight loss after following a well-designed energy-

restricted program [26], but not for the R236G substitution in the POMC gene [27]. 

A lifestyle adaptation produced no effect in weight loss or fat distribution depend-

ing on the recently described FTO gene [28]. However, a modification in the effect 

produced by a hypocaloric diet plus exercise on the gene make-up concerning the 

LEPR gene was found for the AA genotype (Lys656Lys), which showed a higher fat 

mass loss compared to minor allele carriers [29]. Furthermore, the A-2549 allele for 

the LEP gene was associated with lower BMI and leptinemia in women following a 

hypocaloric diet [30].
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Table 2. Selected genes and nutritional interactions concerning weight loss and maintenance after different nutritional 

interventions

Gene(s) Ref. Nutritional 

intervention

Main variable Effect modification/outcome depending 

on gene polymorphism

LEP Mammes, 

1998 [30]

Low calorie 

diet

Leptin levels The A–2549 allele was associated with 

lower BMI reduction in women.

ADRB3 Nakamura, 

2000 [41]

3-month 

weight reduction 

program

Visceral/

subcutaneous 

fat area

After 3 months, changes in visceral fat 

areas in 64 Arg/64 Arg subjects were 

smaller than those in 64 Trp/64 Trp 

subjects.

UCP3 ×

ADBR3

Kim, 

2004 [40]

12-week low 

calorie diet

BMI and fat 

distribution

After 12 weeks, wild-type group showed 

the highest decreases in total and 

visceral fat areas,  followed by ‘only UPC3 

variant’ group.

APOA5 Aberle, 

2005 [33]

Short-term fat 

restriction

BMI change 

(kg/m2)

Weight reduction was higher in C allele 

carriers of the 1131T>C polymorphism

PLIN Corella, 

2005 [32]

Low calorie diet Weight loss (kg) GG homozygotes lost more weight than 

A allele carriers

IL6 × 

PPARG

Goyenechea, 

2006 [43]

Energy restricted 

diet

Weight regain 

(kg)

The C allele: IL6 partially protected 

against weight regain, while the 2 

variants improved the ability for weight 

maintenance.

LIPC Santos, 

2006 [34]

Different CHO 

content in 

hypocaloric diet

Weight loss 

(kg)

Lower obesity risk linked to the 514C>T 

polymorphism and high intake of fiber.

PLIN 

(7 SNPs)

Jang, 

2006 [31]

12-week calorie 

restriction

Abdominal fat 

area (cm)

Subjects with nGA/nGA haplotype at 

SNPs 11482G>A/14995A>T had 

increased FFA levels with a rapid loss in 

abdominal fat, whereas GA/GA 

haplotype carriers reduced FFA levels.

POMC Santoro, 

2006 [27]

Hypocaloric 

balanced diet

Weight loss (kg) The R236G substitution does not 

preclude the possibility to lose weight in 

obese children.

UCP3 Cha, 

2006 [38]

1-month very 

low calorie diet

Weight loss (kg) Haplotype ht1 [CGTACC] was significantly 

associated with an increased reduction 

in body weight.

UCP2-3 Yoon, 

2007 [39]

1-month very 

low calorie diet

Fat loss (%) Common haplotype, UCP2-UCP3-ht1 

(GGCdelCGTACC), and a promoter SNP of 

UCP2, UCP2−866G>A, were associated 

with VLCD-induced fat mass reduction.

ADBR3 Shiwaku, 

2007 [37]

Low calorie diet 

and exercise

Weight loss (kg) Arg64 allele carriers lost less weight 

than Trp64Trp homozygotes
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Genes Affecting Lipid Metabolism and Adipogenesis

The function of some gene polymorphisms related to lipid metabolism such as PLIN 

(Perilipin), APOA5 (apoprotein A5), LIPC (hepatic lipase) or FABP (fatty acid bind-

ing protein) may be differentially affected by the slimming program depending on 

the variant. Thus, the genetic variation at the perilipin locus has been associated with 

changes in abdominal fat reduction following a hypocaloric diet prescribed to mildly 

lose weight [31]. Also, PLIN11482A carriers are apparently resistant to weight loss [32]. 

In addition, weight reduction was higher in C allele carriers of the APOA5 1131T>C 

polymorphism [33] when submitted to short-term fat restriction. Other gene vari-

ants that have been found to interact with the weight-lowering process following an 

Table 2. Continued

Gene(s) Ref. Nutritional 

intervention

Main variable Effect modification/outcome depending 

on gene polymorphism

MC3R Santoro, 

2007 [26]

Weight loss 

program

BMI change 

(kg/m2)

After 12-month follow-up carriers of 

C17A and 6241A variants showed a 

significantly higher BMI z score.

FABP2 De Luis, 

2008 [35]

Low calorie diet 

and exercise

Fat loss (%) The allele carriers had greater decrease 

in fat mass than Ala54Ala homozygotes.

FABP2 De Luis, 

2008 [29]

Hypocaloric diets 

(low carb/low fat)

BMI, fat loss 

and WC

Similar weight loss is achieved 

depending on the Ala54Thr 

polymorphism with both diets.

FTO Haupt, 

2008 [28]

Lifestyle 

modification

Weight loss (kg) 

and fat 

distribution (%)

No effect of the intervention on assessed 

variables.

ADIPOQ Goyenechea, 

2009 [42]

Energy restricted 

diet

Weight (re)gain 

(kg)

The A allele on the –11391G/A 

polymorphism provides protection 

against weight regain.

LEPR Abete, 

2009 [45]

Energy 

restriction

Fat mass loss (%) The AA genotype group (Lys109Arg) 

showed a higher fat carrier loss 

compared to minor allele carriers.

PPARG Razquin, 

2009 [36]

Mediterranean 

diet

Waist 

circumference

The 12 Ala allele carriers reduce more 

waist circumference compared with wild-

type subjects that followed a 

Mediterranean dietary pattern.

ADBR = Adrenoreceptor; ADIPOQ = adiponectin; APO = apoenzyme; FABP = fatty acid binding protein; FTO = fat mass and 

obesity associated gene;  IL6 = interleukin 6; LEP = leptin; LEPR = leptin receptor; MC3R = melanocortin receptor; PLIN = 

perilipin; POMC = pro-opiomelanocortin; PPAR = peroxisome proliferator-activated receptor; UCP-3 = uncoupling protein 3; 

WC = waist circumference.



28 Marti · Goyenechea · Martínez

energy-restriction approach are those of the LIPC 514CT polymorphism, in which 

fiber intake may produce a multiplicative effect [34]. A mutation in the gene encoding 

for FABP interacted with the fat-loss process, since Thr allele carriers had a greater 

decrease in adipose tissue mass than Ala54Ala homozygotes [35]. Finally, it has been 

reported that a Mediterranean diet pattern within the PREDIMED trial protects 

against waist circumference enlargement in 12Ala carriers for the PPARG gene [36].

Genes Involving Proteins Related to Thermogenesis Processes

At least 2 genes involved in energy yielding processes have been implicated in weight-

loss interactions between genes and dietary intake: ADBR3 and UCP3. Thus, the 

Arg64 allele carriers lost less weight than Trp64Trp homozygotes for the ADBR3 gene 

when submitted to a very low calorie diet combined with exercise [37], while the 

UCP2 –866G>A and the major haplotype [CGCdelCGTACC] had a differentially 

significant reduction in fat mass in the obese following a very restricted energy diet 

[38]. One of the effects of UCP3 haplotypes on obesity phenotypes was dependent on 

very low calorie diets [39]. Interestingly, a combined action of 2 different polymor-

phisms concerning the UCP3 promoter and ADBR3 genes was evidenced since an 

effect was only found on fat distribution for homozygotes under the same low calorie 

diet [40]. Interestingly, the Trp64Arg polymorphism on the ADBR3 gene may affect 

regional distribution of fat loss [41].

Genes Encoding Adipokines and Proteins Related to Adipocyte Metabolism

Additional evidence about gene × nutrient interactions on weight homeostasis 

after following a hypocaloric diet was described for an adipokine gene: adiponectin 

(ADIPOQ). The A allele on the –11391G/A gene polymorphism provides protection 

against weight regain [42]. Also, a synergetic outcome was demonstrated for obese 

subjects carrying the IL6 174 C>G and Pro12Ala polymorphisms, who were pro-

tected against weight regain [43].

Nutritional Studies Concerning Gene-Dependent Effects on Obesity-Related 

Manifestations

Obesity is often accompanied by a number of clinical complications, some of which 

can substantially improve after following adequate nutritional advice. Obesity is depen-

dent on the individual genetic make-up, which has been shown by some SNPs affecting 

genes that are involved in lipid metabolism and on weight homeostasis (table 3).

Changes in insulin resistance or dyslipemia showing an effect modification 

induced by an energy-restricted diet have been described for some genes affecting a 

single nucleotide CD36 (–22674T/C) promoter SNP [44], LEPR (Lys109Arg) variant 

[45], PGC1α (Gly482Ser) missense mutation [46]. Also, n–3 fatty acid supplementa-

tion may modify the TG response depending on the Pro12Ala polymorphism [47]. 
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Another trial investigating the role of macronutrient intake within hypocaloric diets 

demonstrated that under a low fat diet Lys65Lys homozygote carriers of the LEPR 

polymorphism showed a greater reduction in plasma leptin [29]. The participation 

of fat intake on insulin resistance depending on the genotype was evidenced in an 

Table 3. Selected nutritionally slimming intervention studies concerning gene-nutrition interactions with favor-

able effects on metabolic markers accompanying obesity

Gene(s) Ref. Nutritional 

intervention

Main variable Effect modification/

outcome depending on 

gene polymorphism

FABP2 Georgopoulos, 

2000 [50]

Saturated fat 

overload

Triacylglycerol Saturated fat load produces  higher 

hypertrigliceridemia in allele T carriers 

(A54T).

PPARG Lindi, 

2003 [47] 

n–3 fatty acid 

supplementation

Serum 

triglycerides

Carriers of the Ala12 allele had lower 

triglycerides in response to n–3 fatty acid 

supplementation compared to ProPro 

subjects.

APOE Moreno, 

2005 [49] 

PUFA/SFA intake Insulin 

sensitivity

Carriers of the G variant allele 

(–219G→T) specifically reduced insulin 

resistance when fed on diet rich in 

monounsaturated fat.

PPARG × 

ADRB2

Rosado, 

2007 [51]

Hypocaloric diet Satiety Carriers of the Ala12 allele (PPARG) had 

higher satiety and fat oxidation than 

ProPro subjects.

ADIPO Q Perez-Martinez, 

2008 [48]

CHO/fat intake Insulin 

resistance 

Homozygote CC men (–11377 C/G) 

improved insulin sensitivity when fed on 

diets low in saturated fat.

CD 36 

promoter

Goyenechea, 

2008 [44]

Low calorie diet Total 

cholesterol 

Allele –22674C is associated with 

improved lipid profile during weight loss 

maintenance.

LEPR De Luis, 

2008 [29]

Low fat/low CHO

hypocaloric diets

Leptin Lys65Lys homocygote carriers under a 

low-fat diet reduced more leptin levels 

plasma.

PGC1α Goyenechea, 

2008 [46]

Low calorie diet Insulin 

sensitivity

Enhanced short-term improvement on 

insulin response in carriers of the 

gly482Ser variant.

ADBR = Adrenoreceptor; ADIPOQ = adiponectin; APO = apoenzyme; FABP = fatty acid binding protein; LEPR = 

leptin receptor; PCG1α = peroxisome proliferator-activated receptor gamma coactivator α; PPAR = peroxisome 

proliferator-activated receptor; PPARG = peroxisome proliferator-activated receptor gamma coactivator; PUFA = 

polyunsaturated fatty acid; SFA = saturated fatty acid.
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experiment in which homozygous CC men carrying the –11377C/G polymorphism 

for the ADIPOQ gene improved insulin sensitivity when fed on diets low in saturated 

fat [48]. This study complemented other research that found that carriers of the G 

variant allele (–219G→T) of the APOE gene specifically reduced insulin resistance 

when fed a diet rich in monounsaturated fatty acids [49]. Another study observed that 

a saturated fat load was associated with a greater elevation in postprandial triglycer-

ides in the Thr54/Thr54 polymorphism of the FABP2 gene [50]. On the other hand, 

an interaction between variants in PPARG and ADBR2 genes affecting eating behav-

ior and body composition was found when a hypocaloric diet was prescribed [51].

Conclusions

Genotype-environment interactions arise when the response of a phenotype (e.g. 

body weight) to environmental changes (e.g. overfeeding) depends on the individual’s 

genetic background [4]. Most of the genetic studies on human obesity have assumed 

the absence of genotype-environment interactions simply because of the difficulties 

in assessing such interactive effects in quantitative genetic models.

There are several plausible scenarios for the interaction between genetic and envi-

ronmental factors. A higher obesity risk (represented by a quantitative trait BMI) will 

arise from the presence of obesity-related gene variants and environmental influences 

(i.e. high consumption of carbohydrates, low levels of physical activity) for a popula-

tion carrying a given polymorphism. Indeed, individuals inherit a number of gene 

variants in key loci, but they also make specific lifestyle choices (e.g. low-fat vs. high-

fat diets, high vs. low levels of physical activity) that affect weight gain or loss. Thus, 

while environmental factors may be changed in the short term, genetic factors can 

not, but they might interplay [52].

The gene-environment relationship is a key issue not only in understanding the 

pathogenesis of multifactorial diseases, but also in designing appropriate treatments, 

such as ‘personalized nutrition’ [53]. Indeed, the large-scale European intervention 

trial NUGENOB concerning the comparison of the impact of more than 40 genetic 

polymorphisms on weight loss with hypocaloric diets containing different macronu-

trient distributions showed that much work is required in this area and that gene 

expression profiling is involved in body weight and composition control [54–56].
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The potential for carcinogenic action of meat-related exposures, such as heterocy-

clic amines (HCAs), polycyclic aromatic hydrocarbons (PAHs), and N-nitroso com-

pounds (NOCs) [1, 2], might explain positive associations between red and processed 

meat intake and colorectal neoplasia [3]. HCAs and PAHs are formed in meats cooked 

well-done at high temperatures [4] and produce intestinal tumors in rodents [5–7]. 

NOCs are some of the strongest known chemical carcinogens [2] and induce tumors 

in both the colon and rectum of numerous animal species [8]. Nitrate and nitrite, 

which are added to processed meats, can form NOCs [9]. NOCs can also form endog-

enously in the colon through the conversion of nitrate and nitrite [10], a reaction 

which is thought to be catalyzed by heme iron from red meat [11, 12].

HCAs, PAHs, and some NOCs are considered procarcinogens, as they require 

metabolic activation to attain full potential. Phase I and phase II xenobiotic metab-

olizing enzymes (XMEs) are involved in the activation and detoxification of these 

substrates [13–17]. Single nucleotide polymorphisms (SNPs) in genes that encode 

XMEs are hypothesized to alter enzyme expression and function [14], resulting in 

differential metabolism of xenobiotics between individuals [18]. A number of col-

orectal adenoma studies have evaluated interactions between XME genes and meat 

consumption with inconsistent results [19–30], but the majority of these investigated 

a limited number of genes. In addition, HCAs and PAHs from meat were estimated 

in just 2 studies [21, 22], while only 1 prior analysis evaluated nitrate/nitrite from 

processed meat [28].
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Utilizing detailed meat-cooking data, we investigated the interaction of HCAs, 

PAHs, and nitrate/nitrite from meat with several XME gene variants in relation to 

advanced colorectal adenoma. Examining these interactions with asymptomatic col-

orectal adenomas, precursors to colorectal cancer [31–33], is valuable as diet should 

not have been altered by disease. Our analysis expands on findings of increased risk of 

prevalent colorectal adenoma with well-done red meat and cooking-related mutagens 

in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial [34].

Materials and Methods

Study Population

The PLCO Cancer Screening Trial is a randomized, multi-center clinical trial investigating the 

efficacy of screening for prostate, lung, colorectal and ovarian cancer [35, 36]. Participants aged 

55–74 were recruited from 10 centers in the United States. Participants completed a self-adminis-

tered baseline risk factor questionnaire, a food frequency questionnaire (FFQ), and provided bio-

logical samples. The study was approved by the institutional review boards at the National Cancer 

Institute and the 10 study centers. All participants provided written informed consent.

Cases and controls for this study were selected from participants enrolled in the screening arm 

of the PLCO Cancer Screening Trial between 1993 and 1999 (n = 77,483). At baseline, participants 

in the screening arm underwent flexible sigmoidoscopy of the distal colorectum (60 cm). Those 

with neoplastic lesions were referred for full colonoscopic examination and diagnostic work-up by 

the participant’s personal physician. Trained abstractors obtained medical records and pathology 

reports pertaining to removed lesions, and lesions were coded according to location, size and 

morphology.

Participants were eligible for this study if they had: (1) undergone a successful sigmoidoscopy 

with insertion to at least 50 cm with > 90% of mucosa visible or a suspect lesion identified; (2) 

completed the baseline risk factor questionnaire, and (3) provided a blood sample for use in 

etiologic studies. Of the 42,037 participants meeting these criteria, 4,834 were further excluded due 

to self-reported history of Crohn’s disease, ulcerative colitis, familial polyposis, Gardner’s syndrome, 

colorectal polyps, or cancer (other than non-melanoma skin cancer). We randomly selected 772 of 

the 1,234 cases with at least 1 distal (descending colon and sigmoid or rectum) advanced colorectal 

adenoma for genotyping. Advanced adenomas were those with at least 1 of the following 3 

characteristics: (1) size of ≥ 1 cm; (2) high-grade dysplasia, or (3) villous components, including 

tubulovillous. Of the 26,651 controls with a negative sigmoidoscopy (no polyps or other suspect 

lesion detected), we selected 777 controls frequency-matched to cases by gender and ethnicity 

(non-Hispanic white, non-Hispanic black, and other). Participants with insufficient dietary data 

(missed 7 or more food items on the FFQ, n = 83) were further excluded, leaving a total of 720 

advanced colorectal adenoma cases and 746 controls.

Gene Selection and Genotyping

All genes and SNPs were selected a priori based on known or suggested functional relevance and a 

minor allele frequency of ≥ 5% in Caucasians (Appendix 1). DNA was extracted from stored buffy 

coat or whole blood samples using Qiagen standard protocols (QIAamp DNA Blood Midi or Maxi 

kit; www1.qiagen.com). All genotyping was conducted at the Core Genotyping Facility of the 

Division of Cancer Epidemiology and Genetics, National Cancer Institute, using TaqMan (Applied 

Biosystems, Foster City, Calif., USA; www.appliedbiosystems.com). All of the assays were validated 

and optimized and methods specific to GSTM1, GSTT1 and GSTP1 have been reported elsewhere 
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[37]. Internal laboratory quality controls were Coriell DNA samples consisting of homozygous 

major allele, heterozygous and homozygous minor allele genotypes for each polymorphism under 

investigation. In every 384 samples, there were 4 of each control type and 4 no template controls. 

External blinded quality controls from 40 individuals were also interspersed and showed > 99% 

interassay concordance. Genotyping data were obtained for > 90% of subjects, with data missing 

for the following reasons: insufficient DNA, genotyping failures, or fingerprint profile review show-

ing subject-specific ambiguities.

Dietary Data

Participants completed a 137-item FFQ with a detailed meat-cooking module on their usual diet 

during the previous year. Most (89%) participants in the trial completed the FFQ prior to or the 

same day as the sigmoidoscopy. Using the Computerized Heterocyclic Amines Resource for Research 

in Epidemiology of Disease (CHARRED; www.charred.cancer.gov) software application [4], we gen-

erated intake estimates of 2 HCAs (ng/day): 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline 

(MeIQx), and 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP), as well as benzo[a]

pyrene (B[a]P). We estimated nitrate and nitrite from processed meats using a nitrate/nitrite data-

base based on laboratory measured values of these compounds from 10 types of processed meat 

samples that represented 90% of the processed meat consumed in the United States [4].

Statistical Analysis

We evaluated departure from Hardy-Weinberg equilibrium among the controls using Pearson’s χ2 

tests. ORs and 95% CIs for the association between genotypes and advanced colorectal adenoma 

were calculated using unconditional logistic regression, adjusting for gender, ethnicity (non-His-

panic white, non-Hispanic black, other), and age (continuous). To evaluate the association between 

hypothesized gene pathways and colorectal adenoma, we included all the SNPs for genes poten-

tially involved in the metabolism of each substrate in a model and compared it to a null model. We 

also conducted gene-specific global tests of association by including all of the SNPs in a given gene 

in a model and compared that to a null model that included none of the SNPs [38]. SNPs were 

coded with 2 dummy variables corresponding to the variant genotypes. The likelihood-ratio test 

for the gene-specific global test had 2k degrees of freedom (k representing the number of SNPs for 

the gene). Tests for linear trend were based on assigning ordinal values (0, 1 and 2) to the most 

prevalent genotypes in order of homozygous for the common allele, heterozygous and homozygous 

for the rare allele.

We evaluated effect modification of the associations between the meat-related exposure and 

colorectal adenoma by each of the XME genotype variants. We compared models with all of the 

cross product terms (diet on the continuous scale by genotype) to null models that included only 

the main effects. If this likelihood ratio test was statistically significant at the 0.05 level, we examined 

the effect of the dietary variable as a continuous measure stratified by genotype. Finally, to account 

for multiple comparisons, we corrected the p values for interactions using the False Discovery Rate 

[39].

Results

Cases and controls were similar with respect to the matching factors of gender and 

ethnicity (table 1). Cases tended to be older and were more likely to be current smok-

ers and to have a first-degree relative with colorectal cancer. Cases also had fewer 

years of education and lower levels of physical activity compared to controls.
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Table 1. Baseline characteristics of subjects in a nested case-control study of advanced colorectal adenoma in the 

PLCO Cancer Screening Trial (n = 1,466).

Characteristics Cases

(n = 720)a

Controls

(n = 746)a

p valueb

Age, years 63.1 ± 5.2 61.9 ± 5.2 <0.01

Gender, n (%) 0.74

 Male 501 (69.6) 513 (68.8)

 Female 219 (30.4) 233 (31.2)

Ethnicity, n (%) 0.81

 Non-Hispanic white 681 (94.6) 704 (94.4)

 Non-Hispanic black 15 (2.1) 19 (2.6)

 Other 24 (3.3) 23 (3.1)

Study center, n (%) <0.01

 Colorado 65 (9.0) 84 (11.3)

 Georgetown 36 (5.0) 43 (5.8)

 Hawaii 14 (1.9) 13 (1.7)

 Henry Ford Health System 61 (8.5) 90 (12.1)

 Minnesota 136 (18.9) 173 (23.2)

 Washington 77 (10.7) 75 (10.1)

 Pittsburg 112 (15.6) 58 (7.8)

 Utah 62 (8.6) 38 (5.1)

 Marshfield 130 (18.1) 156 (20.9)

 Alabama 27 (3.8) 16 (2.1)

First degree family history of colorectal cancer, n (%) 90 (12.5) 67 (9.0) 0.03

Education, n (%) 0.04

 12 years or less 245 (34.0) 217 (29.1)

 At least some college 475 (66.0) 528 (70.9)

Body mass index (kg/m2) 27.9 ± 4.8 27.5 ± 4.6 0.09

Physical activity (h/week) 2.5 ± 1.8 2.8 ± 1.8 <0.01

Regular use of NSAIDs, n (%) 418 (58.1) 449 (60.2) 0.42

Smoking status, n (%) <0.01

 Never 243 (33.8) 300 (40.2)

 Former cigarette smoker 344 (47.8) 353 (47.3)

 Current cigarette smoker 98 (13.6) 50 (6.7)

 Never cigarettes, but pipe and cigar 34 (4.7) 43 (5.8)

Alcohol (g/day) 14.5 ± 25.1 12.6 ± 24.0 0.27

Total caloric intake (kcal/day) 2,114 ± 834 2,168 ± 827 0.17

Red meat (g/day) 86.8 ± 64.3 87.7 ± 67.6 0.88

MeIQx (ng/day) 37.0 ± 51.8 35.8 ± 43.7 0.86

PhIP (ng/day) 203.1 ± 461.4 205.8 ± 458.6 0.83

B[a]P (ng/day) 30.7 ± 57.1 31.5 ± 53.3 0.92

Data are means ± standard deviations unless otherwise indicated. 

NSAIDs = non-steroidal anti-inflammatory drugs.
a Numbers may not sum to total due to missing values
b p values are for χ2 test for categorical variables and Wilcoxon rank sum test for continuous variables.
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Our investigation of XME pathways, in which we identified the multiple genes 

hypothesized to be involved in the metabolism of HCAs, PAHs and NOCs, yielded 

no statistically significant findings in relation to colorectal adenoma (table 2). Our 

results for EPHX1, GSTM1, GSTM2, GSTT1, NAT1 and NAT2 were similar to previ-

ously published results in the larger advanced colorectal adenoma PLCO case-control 

subset [37, 40–42] (data not shown). Expanding upon these earlier analyses, in our 

gene-specific global tests, we found associations for GSTM1 (p value for global test 

= 0.03) and NAT1 (p value for global test = 0.05) with advanced colorectal adenoma 

(data not shown). For individual genes and SNPs, we did not find any statistically 

significant associations between CYP1A1, CYP1B1, CYP2A6, CYP2C9, CYP2E1, 

CYP3A4, NQO1, SULT1A1, or SULT1A2, and advanced colorectal adenoma in this 

population (data not shown).

We found a suggestive interaction between intake of PhIP and variation in CYP1B1 

(rs10012 p for interaction = 0.019; rs1056836 p for interaction = 0.019) and NQO1 (p 

for interaction = 0.007) with advanced colorectal adenoma (table 3). We also found 

evidence of interaction with intake of B[a]P for variation in CYP1B1 (p for interac-

tion = 0.005) and CYP3A4 (p for interaction = 0.021). In addition, there was a pos-

sible interaction with intake of nitrate/nitrite and CYP1A1 (p for interaction = 0.022). 

However, when we corrected for multiple comparisons, none of the resulting p values 

for interaction fell below a False Discovery Rate threshold of 0.20. When stratified 

by genotype, for CYP1B1 rs10012, there was a statistically significant increased risk 

of colorectal adenoma with increasing intake of PhIP for participants with either the 

CG/GG genotypes (OR = 1.53; 95%CI = 1.02–2.30) and risk was also elevated among 

those with the CC genotype for CYP1B1 rs1056836 (OR = 1.86; 95%CI = 1.07–3.22).

Discussion

Overall, we observed evidence of possible interactions between intake of meat-related 

HCAs, PAHs, and nitrate/nitrite and genetic variants in CYP1A1, CYP1B1, CYP3A4, 

Table 2. Meat exposure XME gene pathways in relation to advanced colorectal adenoma

Meat 

exposure

Genes p valuea

HCAs CYP1A1, NAT1, NAT2, SULT1A1, SULT1A2 0.312

PAHs CYP1A1, CYP1B1, CYP3A4, EPHX1, GSTM1, GSTP1, GSTT1, NQO1, SULT1A1, SULT1A2 0.172

NOCs CYP2A6, CYP2C9, CYP2E1, GSTM1, GSTT1, GSTP1, NAT1, NAT2, NQO1 0.225

a Global pathway test based on inclusion of all SNPs for a given pathway compared to a model without any SNPs.
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and NQO1 with risk of advanced colorectal adenoma in the PLCO Cancer Screening 

Trial. Yet, when stratified by genotype, strong variation in risk of colorectal adenoma 

with increasing intake of the meat-related exposures was not obvious and correc-

tion for multiple comparisons indicated our findings may be due to chance. We did 

not observe any statistically significant main effects for CYP1A1, CYP1B1, CYP2A6, 

CYP2C9, CYP2E1, CYP3A4, NQO1, SULT1A1 or SULT1A2 on risk of advanced col-

orectal adenoma. Our gene-based analyses for GSTM1 and NAT1 support previously 

reported SNP based analyses in PLCO [37, 41].

Table 3. ORs and 95% CIs for the association between dietary variables and advanced colorectal adenoma stratified by 

genotype. 

Dietary 

intake

Gene Locus Genotype Cases/

controls

ORa pinteraction
b Correctedc 

pinteraction

PhIP per

1,000 

ng/day

CYP1B1 rs10012 CC 344/375 0.81 (0.58–1.12) 0.019 0.384

CG 293/296 1.47 (0.93–2.30)

GG 71/59 1.76 (0.60–5.21)

CG/GG 364/355 1.53 (1.02–2.30)

CYP1B1 rs1056836 CC 232/250 1.86 (1.07–3.22) 0.019 0.384

CG 337/344 0.86 (0.64–1.15)

GG 137/137 0.82 (0.33–2.08)

CG/GG 474/481 0.85 (0.64–1.13)

NQO1 rs1800566 CC 416/474 1.03 (0.76–1.40) 0.007 0.340

CT 244/225 0.99 (0.60–1.61)

TT 25/17 –

CT/TT 269/242 0.80 (0.52–1.24)

B[a]P 

per 100 

ng/day

CYP1B1 rs10012 CC 344/375 0.74 (0.55–1.00) 0.005 0.340

CG 293/296 1.25 (0.94–1.68)

GG 71/59 1.66 (0.73–3.81)

CG/GG 364/355 1.29 (0.99–1.68)

CYP3A4 rs2242480 GG 558/579 1.02 (0.83–1.21) 0.021 0.384

GA 126/131 1.13 (0.69–1.85)

AA 12/14 –

GA/AA 138/145 0.89 (0.56–1.42)

Nitrate + 

Nitrite

per 0.5 

mg/day

CYP1A1 rs1048943 AA 646/684 1.03 (0.92–1.15) 0.022 0.384

AG 44/38 1.11 (0.75–1.59)

GG 2/3 –

AG/GG 46/41 1.14 (0.79–1.64)

Data are limited to SNPs with statistically significant tests for interaction before correction.
aAdjusted for age, gender and ethnicity.
bLikelihood ratio test for model with cross-product terms of dietary variables (coded as continuous) with the genotype vari-

ables (coded as dummy variables) compared to null model with only main effects for dietary variables and genotypes.
cBased on false discovery rate.
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A strength of this analysis was our substrate-oriented pathway-based approach, in 

which we assessed a range of XME genes involved in the activation and detoxifica-

tion of xenobiotics, and comprehensively examined interactions with meat-related 

intake of HCAs, PAHs and nitrate/nitrite. Our study was further strengthened by the 

inclusion of advanced colorectal adenoma cases, an outcome clinically relevant for 

progression to colorectal cancer. Importantly, since adenomas are largely asymptom-

atic, it is unlikely that cases would have changed their dietary habits. In addition, the 

majority of participants completed the FFQ prior to diagnosis, reducing the potential 

for recall bias. Our sample size is larger than many prior XME gene-meat interac-

tion studies of colorectal adenoma and few have quantitatively estimated intake of 

the specific potentially carcinogenic meat-related exposures, instead relying on meat 

cooking method or doneness level as proxies.

A limitation of our analysis, like other studies of gene-environment interactions, 

is limited power to observe small associations and the potential for chance findings 

due to multiple comparisons. To gain power, we used a method for testing gene-

environment interactions that assumes independence of the gene and the environ-

mental factor [43], but in general, we did not observe smaller p values (data not 

shown). Future research of XME gene-meat interactions should assess both activat-

ing and detoxifying XME genes and evaluate the more specific meat-related expo-

sures, rather than overall meat intake or meat cooking method/doneness. Yet these 

analyses can become complex, as there is a certain amount of error associated with 

the measurement of dietary exposures and their associated exposures. Finally, our 

measure of nitrate/nitrite is a proxy for processed meat-related exposure to NOCs 

and the nitrate/nitrite database does not contain data on the levels of these com-

pounds in other foods.

In our interaction analyses, there was variation in the association between the 

meat-related variables and advanced colorectal adenoma across the CYP1B1 geno-

types. CYP1B1 is involved in the metabolism of PAHs [14, 15, 44] and in fact, we did 

see a suggestive interaction with B[a]P, a known marker of PAHs [4]. Other studies 

have also found similar effect modification of the association between well-done red 

meat or total meat on colorectal cancer risk by combined CYP1B1 variants [45, 46]. 

However, specific functional data for this variant and PAH metabolism are lacking 

and further work is required to characterize the biological mechanism underlying 

this potential interaction.

We found increased risk of colorectal adenoma with increasing PhIP intake 

among participants with the less common allele of CYP1B1 rs10012 compared to 

the common allele and participants with the CYP1B1 rs1056836 common allele 

(CC). Functionality of these variants in relation to PhIP is not well-characterized 

and, thus far, has been studied only in combination with other SNPs for this gene 

[47]. Another possible reason for an interaction between PhIP and the CYP1B1 

rs10012 variant is the relatively high correlation between PhIP and B[a]P (0.58) in 

our population.
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Variation in the association between our dietary variables and risk of colorectal 

adenoma by CYP1A1, CYP3A4, and NQO1 was not straightforward. As hypothesized 

[48, 49], we did observe a suggestive interaction between CYP3A4 variants and B[a]P 

intake on risk of advanced colorectal adenoma, but there have been no other studies of 

interaction with meat intake to verify this observation. CYP3A4 is more common than 

other CYP3A isoforms in the intestine [50] and there is also wide range in expression 

levels of this enzyme across individuals [51], but little evidence as to which genetic vari-

ants control this variation [52]. One study of CYP1A1 noted increased risk of colorectal 

adenoma among those with high meat intake [27]; however, 3 studies of colorectal can-

cer did not observe effect modification by meat [45, 53] or HCA intake [54]. One other 

study of colorectal cancer observed a possible interaction between NQO1 phenotypes 

and red meat intake [55].

In general, there is little consensus in the literature for XME gene-meat interac-

tions in relation to colorectal neoplasia for CYP2A6 phenotypes [28, 56], CYP2E1 [46, 

57, 58], EPHX1 [19, 25–27, 30, 55, 59], or SULT1A1 [20, 27, 45, 60–62]. In addition, 

there are limited data on CYP2C9 [46] and SULT1A2 [27]. Although we did not find 

evidence of effect modification by NAT1 or NAT2, studies of these genotypes or phe-

notypes point toward an increased risk of colorectal neoplasia for rapid acetylators 

with high intake of meat, HCAs or PAHs [21, 22, 63–65]. Overall, these varied results 

could be due to several reasons, including differences in study populations and the 

study of adenomas versus cancer.

Our approach focused on a wide range of genes involved in the metabolism of 3 

groups of potentially carcinogenic meat-related exposures: HCAs, PAHs, and nitrate/

nitrite. Given our sample size, these analyses were largely exploratory. The substrate-

focused pathway-based approach encompasses the multiple levels at which these 

potentially carcinogenic meat-related exposures are activated or detoxified in the 

body. With future consortial efforts, studies will have the opportunity to investigate 

potential effect modification of the association between meat-related exposures and 

colorectal adenoma by XME gene variants in greater detail.
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Appendix 1. XME genes included in main effect (pathway, gene and SNP) and/or 

interaction analyses

Gene Locus

CYP1A1 Ex7+129C>A (T461N; rs1799814)

Ex7+131A>G (I462V; rs1048943)a

CYP1B1 Ex2+143C>G (R48G; rs10012)

Ex3+251G>C (V432L; rs1056836)

CYP2A6 Ex3-15T>A (L160H; rs1801272)

CYP2C9 Ex3-52C>T (R144C; rs1799853)

CYP2E1 -332T>A (rs2070673) 

IVS4+23T>C (rs6413421)

CYP3A4 IVS10+12G>A (rs2242480)

EPHX1b Ex3-28T>C (Y113H; rs1051740)

Ex4+52A>G (H139R; rs2234922)

GSTM1c Ex4+10+>-  (rs1065411)

GSTP1c Ex5-24A>G  (I105V; rs1695)

Ex17-4C>T (H1085H; rs1799817) 

GSTT1c Ex5-49+>-  (rs4630)

NAT1a Ex3-177A>T (T1088A; rs1057126)

Ex3-170A>C (C1095A; rs15561)

IVS2-338C>T (C-334T; rs4986988)

IVS2-34A>T (A-40T; rs4986989)

NAT2a Ex2-367G>A (R268K; rs1208) 

Ex2-313G>A (G286E; rs1799931)

Ex2+288C>T (Y94Y; rs1041983)  

Ex2+347T>C (I114T; rs1801280)  

Ex2+487C>T (L161L; rs1799929) 

Ex2-580G>A (R197Q; rs1799930)

NQO1 Ex4-3C>T (R139W; rs4986998)

Ex6+40C>T (P187S; rs1800566)a

SULT1A1 Ex10+127A>G (G212G; rs6839)

SULT1A2 336bp 3’ of STP (rs3194168) 

a SNP main effects previously published for advanced colorectal adenoma in the 

PLCO Cancer Screening Trial.
b SNP main effects and interactions with red meat and dietary B[a]P previously 

published for advanced colorectal adenoma in the PLCO Cancer Screening Trial.
c SNP main effects and interactions with red meat, HCAs and B[a]P previously pub-

lished for advanced colorectal adenoma in the PLCO Cancer Screening Trial.



Meat-Related Xenobiotic Metabolizing Genes in Colorectal Adenoma 43

 1 Sinha R, Norat T: Meat cooking and cancer risk. 

IARC Sci Publ 2002;156:181–186.

 2 Cross AJ, Sinha R: Meat-related mutagens/carcino-

gens in the etiology of colorectal cancer. Environ 

Mol Mutagen 2004;44:44–55.

 3 World Cancer Research Fund/American Institute 

for Cancer Research: Food, Nutrition, Physical 

Activity, and the Prevention of Cancer: A Global 

Perspective. Washington DC, AICR, 2007.

 4 Sinha R, Cross A, Curtin J, et al: Development of a 

food frequency questionnaire module and databases 

for compounds in cooked and processed meats. Mol 

Nutr Food Res 2005;49:648–655.

 5 Ito N, Hasegawa R, Sano M, et al: A new colon and 

mammary carcinogen in cooked food, 2-amino-1-

methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). 

Carcinogenesis 1991;121503–1506.

 6 Ochiai M, Imai H, Sugimura T, Nagao M, Nakagama 

H: Induction of intestinal tumors and lymphomas 

in C57BL/6N mice by a food-borne carcinogen, 

2-amino-1-methyl-6-phenylimidazo[4,5-b]pyri-

dine. Jpn J Cancer Res 2002;93:478–483.

 7 Ohgaki H, Takayama S, Sugimura T: Carcino-

genicities of heterocyclic amines in cooked food. 

Mut Res 1991;259:399–410.

 8 Bogovski P, Bogovski S: Animal Species in which 

N-nitroso compounds induce cancer. Int J Cancer 

1981;27:471–474.

 9 Mirvish SS: Role of N-nitroso compounds (NOC) 

and N-nitrosation in etiology of gastric, esophageal, 

nasopharyngeal and bladder cancer and contribu-

tion to cancer of known exposures to NOC. Cancer 

Lett 1995;93:17–48.

10 Mirvish SS, Haorah J, Zhou L, et al: Total N-nitroso 

compounds and their precursors in hot dogs and in 

the gastrointestinal tract and feces of rats and mice: 

possible etiologic agents for colon cancer. J Nutr 

2002;132(suppl 11):3526S–3529S.

11 Cross AJ, Pollock JR, Bingham SA: Haem, not pro-

tein or inorganic iron, is responsible for endogenous 

intestinal N-nitrosation arising from red meat. 

Cancer Res 2003;63:2358–2360.

12 Hughes R, Cross AJ, Pollock JR, Bingham S: Dose-

dependent effect of dietary meat on endogenous 

colonic N-nitrosation. Carcinogenesis 2001;22:199–

202.

13 Xue W, Warshawsky D: Metabolic activation of 

polycyclic and heterocyclic aromatic hydrocarbons 

and DNA damage: a review. Toxicol Appl Pharmacol 

2005;206:73–93.

14 Shimada T: Xenobiotic-metabolizing enzymes 

involved in activation and detoxification of carcino-

genic polycyclic aromatic hydrocarbons. Drug 

Metab Pharmacokinet 2006;21:257–276.

15 Nebert DW, Dalton TP: The role of cytochrome 

P450 enzymes in endogenous signalling pathways 

and environmental carcinogenesis. Nat Rev Cancer 

2006;6:947–960.

16 Glatt H, Pabel U, Meinl W, et al: Bioactivation of the 

heterocyclic aromatic amine 2-amino-3-methyl-9H-

pyrido [2,3-b]indole (MeAalphaC) in recombinant 

test systems expressing human xenobiotic- metabo-

lizing enzymes. Carcinogenesis 2004;25:801–807.

17 Muckel E, Frandsen H, Glatt HR: Heterologous 

expression of human N-acetyltransferases 1 and 2 

and sulfotransferase 1A1 in Salmonella typhimu-

rium for mutagenicity testing of heterocyclic 

amines. Food Chem Toxicol 2002;40:1063–1068.

18 Turesky RJ: Interspecies metabolism of heterocyclic 

aromatic amines and the uncertainties in extrapola-

tion of animal toxicity data for human risk assess-

ment. Mol Nutr Food Res 2005;49:101–117.

19 Tranah GJ, Giovannucci E, Ma J, et al: Epoxide 

hydrolase polymorphisms, cigarette smoking and 

risk of colorectal adenoma in the Nurses’ Health 

Study and the Health Professionals Follow-up Study. 

Carcinogenesis 2004;25:1211–1218.

20 Tiemersma EW, Voskuil DW, Bunschoten A, et al: 

Risk of colorectal adenomas in relation to meat con-

sumption, meat preparation, and genetic suscepti-

bility in a Dutch population. Cancer Causes Control 

2004;15:225–236.

21 Shin A, Shrubsole MJ, Rice JM, et al: Meat intake, 

heterocyclic amine exposure, and metabolizing 

enzyme polymorphisms in relation to colorectal 

polyp risk. Cancer Epidemiol Biomarkers Prev 

2008;17:320–329.

22 Ishibe N, Sinha R, Hein DW, et al: Genetic polymor-

phisms in heterocyclic amine metabolism and risk 

of colorectal adenomas. Pharmacogenetics 2002;12: 

145–150.

23 Roberts-Thomson IC, Ryan P, Khoo KK, et al: Diet, 

acetylator phenotype, and risk of colorectal neopla-

sia. Lancet 1996;347:1372–1374.

24 Tiemersma EW, Kloosterman J, Bunschoten A, Kok 

FJ, Kampman E: Role of EPHX genotype in the 

associations of smoking and diet with colorectal 

adenomas. IARC Sci Publ 2002;156:491–493.

25 Ulrich CM, Bigler J, Whitton JA, et al: Epoxide 

hydrolase Tyr113His polymorphism is associated 

with elevated risk of colorectal polyps in the pres-

ence of smoking and high meat intake. Cancer 

Epidemiol Biomarkers Prev 2001;10:875–882.

References



44 Ferrucci · Cross · Gunter · Ahn · Mayne · Ma · Chanock · Yeager · Graubard · Berndt · Huang · Hayes · Sinha

26 Cortessis V, Siegmund K, Chen Q, et al: A case-con-

trol study of microsomal epoxide hydrolase, smok-

ing, meat consumption, glutathione S-transferase 

M3, and risk of colorectal adenomas. Cancer Res 

2001;61:2381–2385.

27 Goode EL, Potter JD, Bamlet WR, Rider DN, Bigler 

J: Inherited variation in carcinogen-metabolizing 

enzymes and risk of colorectal polyps. Carcino-

genesis 2007;28:328–341.

28 Ward MH, Cross AJ, Divan H, et al: Processed meat 

intake, CYP2A6 activity and risk of colorectal ade-

noma. Carcinogenesis 2007;28:1210–1216.

29 Saebo M, Skjelbred CF, Brekke Li K, et al: CYP1A2 

164 A→C polymorphism, cigarette smoking, con-

sumption of well-done red meat and risk of devel-

oping colorectal adenomas and carcinomas. 

Anticancer Res 2008;28:2289–2295.

30 Skjelbred CF, Saebo M, Hjartaker A, et al: Meat, veg-

etables and genetic polymorphisms and the risk of 

colorectal carcinomas and adenomas. BMC Cancer 

2007;7:228.

31 Winawer SJ, Zauber AG, Ho MN, et al:. Prevention 

of colorectal cancer by colonoscopic polypectomy. 

The National Polyp Study Workgroup. N Engl J 

Med 1993;329:1977–1981.

32 Anderson WF, Guyton KZ, Hiatt RA,et al: Colorectal 

cancer screening for persons at average risk. J Natl 

Cancer Inst 2002;94:1126–1133.

33 Stryker SJ, Wolff BG, Culp CE, et al: Natural history 

of untreated colonic polyps. Gastroenterology 1987; 

93:1009–1013.

34 Sinha R, Peters U, Cross AJ, et al: Meat, meat cook-

ing methods and preservation, and risk for colorec-

tal adenoma. Cancer Res 2005;65:8034–8041.

35 Prorok PC, Andriole GL, Bresalier RS, et al: Design 

of the Prostate, Lung, Colorectal and Ovarian 

(PLCO) Cancer Screening Trial. Control Clin Trials 

2000;21(suppl 6):273S–309S.

36 Gohagan JK, Prorok PC, Hayes RB, Kramer BS: The 

Prostate, Lung, Colorectal and Ovarian (PLCO) 

Cancer Screening Trial of the National Cancer 

Institute: history, organization, and status. Control 

Clin Trials 2000;21(suppl 6):251S–272S.

37 Moore LE, Huang WY, Chatterjee N, et al : GSTM1, 

GSTT1, and GSTP1 polymorphisms and risk of 

advanced colorectal adenoma. Cancer Epidemiol 

Biomarkers Prev 2005;14:1823–1827.

38 Chapman JM, Cooper JD, Todd JA, Clayton DG: 

Detecting disease associations due to linkage dis-

equilibrium using haplotype tags: a class of tests and 

the determinants of statistical power. Hum Hered 

2003;56:18–31.

39 Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I: 

Controlling the false discovery rate in behavior 

genetics research. Behav Brain Res 2001;125:279–

284.

40 Huang WY, Chatterjee N, Chanock S, et al: 

Microsomal epoxide hydrolase polymorphisms and 

risk for advanced colorectal adenoma. Cancer 

Epidemiol Biomarkers Prev 2005;14:152–157.

41 Moslehi R, Chatterjee N, Church TR, et al: Cigarette 

smoking, N-acetyltransferase genes and the risk of 

advanced colorectal adenoma. Pharmacogenomics 

2006;7:819–829.

42 Hou L, Chatterjee N, Huang WY, et al: CYP1A1 

Val462 and NQO1 Ser187 polymorphisms, cigarette 

use, and risk for colorectal adenoma. Carcinogenesis 

2005;26:1122–1128.

43 Mukherjee B, Chatterjee N: Exploiting gene-envi-

ronment independence for analysis of case-control 

studies: an empirical bayes-type shrinkage estima-

tor to trade-off between bias and efficiency. 

Biometrics 2008;64:685–694.

44 Shimada T, Fujii-Kuriyama Y: Metabolic activation 

of polycyclic aromatic hydrocarbons to carcinogens 

by cytochromes P450 1A1 and 1B1. Cancer Sci 

2004;95:1–6.

45 Cotterchio M, Boucher BA, Manno M, et al: Red 

meat intake, doneness, polymorphisms in genes 

that encode carcinogen-metabolizing enzymes, and 

colorectal cancer risk. Cancer Epidemiol Biomarkers 

Prev 2008;17:3098–3107.

46 Kury S, Buecher B, Robiou-du-Pont S, et al: 

Combinations of cytochrome P450 gene polymor-

phisms enhancing the risk for sporadic colorectal 

cancer related to red meat consumption. Cancer 

Epidemiol Biomarkers Prev 2007;16:1460–1467.

47 Han JF, He XY, Herrington JS, et al: Metabolism of 

2-amino-1-methyl-6-phenylimidazo[4,5-b]pyri-

dine (PhIP) by human CYP1B1 genetic variants. 

Drug Metab Dispos 2008;36:745–752.

48 Rihs HP, Pesch B, Kappler M, et al: Occupational 

exposure to polycyclic aromatic hydrocarbons in 

German industries: association between exogenous 

exposure and urinary metabolites and its modula-

tion by enzyme polymorphisms. Toxicol Lett 2005; 

157:241–255.

49 Lamba JK, Lin YS, Schuetz EG, Thummel KE: 

Genetic contribution to variable human CYP3A-

mediated metabolism. Adv Drug Deliv Rev 2002; 

54:1271–1294.

50 Canaparo R, Finnstrom N, Serpe L, et al: Expression 

of CYP3A isoforms and P-glycoprotein in human 

stomach, jejunum and ileum. Clin Exp Pharmacol 

Physiol 2007;34:1138–1144.

51 Shimada T, Yamazaki H, Mimura M, Inui Y, 

Guengerich FP: Interindividual variations in human 

liver cytochrome P-450 enzymes involved in the 

oxidation of drugs, carcinogens and toxic chemi-

cals: studies with liver microsomes of 30 Japanese 

and 30 Caucasians. J Pharmacol Exp Ther 1994;270: 

414–423.



Meat-Related Xenobiotic Metabolizing Genes in Colorectal Adenoma 45

52 Wojnowski L, Kamdem LK: Clinical implications of 

CYP3A polymorphisms. Expert Opin Drug Metab 

Toxicol 2006;2:171–182.

53 Murtaugh MA, Sweeney C, Ma KN, Caan BJ, 

Slattery ML: The CYP1A1 genotype may alter the 

association of meat consumption patterns and prep-

aration with the risk of colorectal cancer in men and 

women. J Nutr 2005;135:179–186.

54 Kobayashi M, Otani T, Iwasaki M, et al. Association 

between dietary heterocyclic amine levels, genetic 

polymorphisms of NAT2, CYP1A1, and CYP1A2 

and risk of colorectal cancer: a hospital-based case-

control study in Japan. Scand J Gastroenterol 2009: 

1–8.

55 Turner F, Smith G, Sachse C, et al: Vegetable, fruit 

and meat consumption and potential risk modify-

ing genes in relation to colorectal cancer. Int J 

Cancer 2004;112:259–264.

56 Nowell S, Sweeney C, Hammons G, Kadlubar FF, 

Lang NP: CYP2A6 activity determined by caffeine 

phenotyping: association with colorectal cancer 

risk. Cancer Epidemiol Biomarkers Prev 2002;11: 

377–383.

57 Le Marchand L, Donlon T, Seifried A, Wilkens LR: 

Red meat intake, CYP2E1 genetic polymorphisms, 

and colorectal cancer risk. Cancer Epidemiol 

Biomarkers Prev 2002;11:1019–1024.

58 Morita M, Le Marchand L, Kono S, et al: Genetic 

polymorphisms of CYP2E1 and risk of colorectal 

cancer: the Fukuoka Colorectal Cancer Study. 

Cancer Epidemiol Biomarkers Prev 2009;18:235–

241.

59 Robien K, Curtin K, Ulrich CM, et al: Microsomal 

epoxide hydrolase polymorphisms are not associ-

ated with colon cancer risk. Cancer Epidemiol 

Biomarkers Prev 2005;14:1350–1352.

60 Lilla C, Risch A, Verla-Tebit E, et al: SULT1A1 gen-

otype and susceptibility to colorectal cancer. Int J 

Cancer 2007;120:201–206.

61 Tiemersma EW, Kampman E, Bueno de Mesquita 

HB, et al: Meat consumption, cigarette smoking, 

and genetic susceptibility in the etiology of colorec-

tal cancer: results from a Dutch prospective study. 

Cancer Causes Control 2002;13:383–393.

62 Moreno V, Glatt H, Guino E, et al: Polymorphisms 

in sulfotransferases SULT1A1 and SULT1A2 are not 

related to colorectal cancer. Int J Cancer 2005; 

113:683–686.

63 Lilla C, Verla-Tebit E, Risch A, et al: Effect of NAT1 

and NAT2 genetic polymorphisms on colorectal 

cancer risk associated with exposure to tobacco 

smoke and meat consumption. Cancer Epidemiol 

Biomarkers Prev 2006;15:99–107.

64 Nothlings U, Yamamoto JF, Wilkens LR, et al: Meat 

and heterocyclic amine intake, smoking, NAT1 and 

NAT2 polymorphisms, and colorectal cancer risk in 

the multiethnic cohort study. Cancer Epidemiol 

Biomarkers Prev 2009;18:2098–2106.

65 Yeh CC, Sung FC, Tang R, Chang-Chieh CR, Hsieh 

LL: Polymorphisms of cytochrome P450 1A2 and 

N-acetyltransferase genes, meat consumption, and 

risk of colorectal cancer. Dis Colon Rectum 2009; 

52:104–111.

Rashmi Sinha

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 

Department of Health and Human Services

Bethesda, MD 20892 (USA)

Tel. +1 301-496-6426, Fax +1 301-496-6829, E-Mail sinhar@mail.nih.gov



Simopoulos AP, Milner JA (eds): Personalized Nutrition.

World Rev Nutr Diet. Basel, Karger, 2010, vol 101, pp 46–55

Strategies to Improve Detection of 
Hypertension Genes
Steven C. Hunt

Cardiovascular Genetics Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA

The identification of genes that are associated with hypertension has been a slower 

process than for other diseases, despite a similar heritability in many cases. This is, 

in part, likely to be a result of a great number of genes being involved with the blood 

pressure control pathways and their accompanying small effects on the phenotypes 

that are being measured. 

With blood pressure fluctuating so acutely with changes in posture, stress, activity 

level, and even while talking, strong responses to these fluctuations are required to 

keep blood pressure appropriate for tissue perfusion and cellular function. Because 

of the importance of blood pressure control, there are redundant compensatory path-

ways for this pressure normalization. Therefore, a gene that may compromise one 

pathway may not be found to be associated with hypertension because other path-

ways can adequately compensate and normalize the phenotypes being studied. What 

might be detected in these situations are associations of a gene with the compensating 

factors that change to normalize a causal pathway. The altered levels of the compen-

sating factors will likely be smaller than the causal phenotype levels if there were no 

compensation, and are probably more difficult to detect. Both initiating genes and 

compensating genes are involved in eventual hypertension development, in line with 

the strong polygenic nature of hypertension.

Recent genome-wide association studies (GWAS) have begun to suggest genes 

related to hypertension and blood pressure levels [1–9]. Comparing the results of each 

GWAS as a whole, there is little overlap of the significant gene associations. When tar-

geted in silico look-ups of association regions are done in other GWAS, a few genes 

are then replicated because the penalty for multiple corrections is decreased. These 

few genes, such as SH2B3 or CACNB2, show very small influences on blood pressure 

in accordance with the theory of large numbers of genes working together in path-

ways for fine blood pressure control. Interestingly, few of the physiological candidate 

genes that have been found associated with hypertension over the last 20 years of 

research have been replicated by GWAS. 
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In light of these difficulties, elucidation of a few concepts suggested by the litera-

ture may increase the ability to detect more genes and to verify the genes already 

suggested for their involvement with hypertension. These include: (1) selecting of 

subjects with strong family histories of hypertension; (2) identifying age ranges that 

show the highest heritability of blood pressure in the target population; (3) measur-

ing local tissue-specific electrolyte or hormone concentrations in addition to systemic 

concentrations; (4) using acute interventions to investigate genetic interactions with 

environmental factors such as diet, activity and stress; (5) determining the appro-

priate time window after intervention to identify initiators versus compensators of 

blood pressure elevation; (6) genotyping subjects involved in large clinical trials to 

detect intervention interactions with genotype, and (7) increasing the density of SNPs 

in and around candidate genes for hypertension in genome-wide or candidate gene 

association studies.

Subject Selection

Persons with strong family histories of hypertension, still the strongest genetic risk 

factor we have to predict future hypertension [10, 11], are more likely to have mul-

tiple genes predisposing to blood pressure elevation. Not only are these persons likely 

to have more hypertension genes, the genes shared among family members are suf-

ficiently expressed to lead to hypertension in multiple family members – in genetic 

terms they are penetrant genes. Unaffected relatives in families with strong histories 

of hypertension have significantly higher risks of developing hypertension compared 

to the general population [10, 12]. Relative risks above 2 are almost always seen in a 

positive family history of hypertension compared to relative risks for a specific gene 

in large hypertension genome-wide association studies in the 1.1–1.5 range. From 

birth to young adulthood, the combined effects of these genes seem to be adequately 

compensated, as hypertension does not generally develop until ages 40 or older. Aging 

is an extremely strong risk factor for hypertension, with the lifetime risk of hyperten-

sion approaching 90%, as reported in the Framingham Heart Study [13]. This result 

suggests that compensating mechanisms may lose their effectiveness with age allow-

ing the effects of initiating hypertension genes to be detected.

While a proportion of the non-genetic variance in blood pressure is due to mea-

surement errors and random variation, a significant part is the result of environmental 

factors. Selection of hypertensive subjects who have more environmental risk factors 

as opposed to stronger genetic predispositions may lead to difficulties in detecting 

genes with small effects even though the combination of genetic and environmental 

risk factors may increase the risk of hypertension. On the other hand, selection of 

high-risk subjects and modulation of environmental risk factors should allow detailed 

investigation of gene and environment interactions and will likely improve the ability 

to detect hypertension genes.
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Selecting an Intervention

In the detection of initiating factors, one must correctly choose an intervention 

that affects the initiating genes by increasing or decreasing expression. One obvious 

choice would be dietary salt manipulation or saline infusions. Since 40–50% of the 

population appear to have blood pressures that are quite responsive to salt, this has 

been the most frequent intervention. It is still unclear whether sodium changes from 

low to high or high to low are best to unmask sodium excretion abnormalities. A 

feeding study in Japan showed differences in sodium excretion between salt-sensitive 

and salt-resistant subjects when changed from a low to high salt diet, but not vice 

versa [14]. However, an earlier study found that compared to salt-resistant patients, 

salt-sensitive patients had blunted renal responses when sodium intake was reduced 

rather than increased [15]. Saline infusions have been effective in validating the asso-

ciation of the alpha adducin gene with hypertension [16]. Weight loss interventions 

would be expected to affect the salt sensitivity pathways, as obese subjects are more 

likely to be salt sensitive, and salt sensitivity is decreased following weight loss [17]. 

Other interventions include potassium supplementation, angiotensin II infusions, 

antihypertensive medication institution, and stressed blood pressure procedures such 

as posture change, isometric handgrip procedures, exercise and mental challenges.

Study Time Windows

Animal models suggest that when the blood pressure system is stressed with high salt 

intake, an initial genetic response may be only transiently expressed. Compensatory 

mechanisms quickly counteract the abnormal genetic response to the initial stres-

sor, reducing the blood pressure back to normal or near-normal levels. The Japanese 

salt study referenced above [14], showed that the sodium excretion differences were 

maintained between salt-sensitive and salt-resistant subjects only for a few days after 

the intervention, after which the excretion curves became similar again. Investigating 

the causes of the delayed sodium excretion would be effective during that window but 

not before or after.

Figure 1 shows a genetic cause of hypertension, the knockout of the microsomal 

prostaglandin E synthase-1 gene in the mouse [18]. Chronic salt loading acts as an 

initiator of sodium retention in the knockout mouse during days 1–3. This sodium 

retention is subsequently hidden or normalized after compensating mechanisms 

increasing sodium excretion are activated, even when sodium loading continues. 

Measuring sodium balance after day 3 in the 2 mouse strains would not identify this 

gene as being associated with sodium balance. The compensatory factors that are 

invoked to normalize the sodium retention are blood pressure increases that lead to 

premature death in these mice. In this case, the blood pressure difference would be 

detected as a compensating factor or the result of a compensating factor, but in other 
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examples, the compensating factor might not be measured in the experiment, and 

it may not lead to elevated blood pressure. It seems likely that there may be time 

windows throughout life when specific genetic factors have greater expression and 

contribute to the development of hypertension.

The existence of these time windows is further suggested by the low infant twin 

blood pressure heritability [19]. Adult twin blood pressure heritability is much larger 

[20–22] and suggests that heritability is not constant over age [23–26]. Results from 

the HyperGEN study, fitting both the traditional constant heritability model and a 

model that allows heritability to change with age (fig. 2), suggests that blood pressure 

heritability is much larger in particular age ranges [26]. The maximum heritability 

also differs by racial group, suggesting that different populations may have differ-

ent heritability patterns. For systolic blood pressure, blacks had an estimated peak 

heritability of 0.68 at age 59 compared to an average heritability of 0.29; whites had 

an estimated peak heritability of 0.69 at age 74 compared to an average heritability of 

0.24. The differences between the peak and average heritability were highly signifi-

cant (p < 10–12). If these results are verified in other populations, they suggest that in 

order to maximize the ability to detect hypertension genes, the population-specific 

age-dependent heritability should first be estimated and subjects selected within the 

maximum range.

Tissue versus Central Phenotype Measurement

The importance of the kidney in blood pressure control and hypertension develop-

ment and tissue-specific gene expression was shown in elegant experiments in which 

the AT1R gene was knocked out either systemically or just in the kidney [27]. In mice 
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where the AT1R gene was systemically knocked out but which then received a trans-

plant of a normal kidney with functioning AT1 receptors, blood pressure increased 

and hypertension eventually developed during chronic angiotensin II infusion. 

When the AT1R gene was functional systemically and a kidney with the AT1R gene 

knocked out was transplanted into the mouse, hypertension did not develop during 

angiotensin II infusion. The study concluded that both central and kidney AT1 recep-

tors help control blood pressure, but that the kidney receptors were required for the 

development of hypertension. These experiments also confirmed the earlier trans-

plant experiments that showed that hypertension follows the kidney [28]. Kidneys 

transplanted from normotensive rats into hypertensive rats removed the hyperten-

sion and kidneys transplanted from hypertensive rats into normotensive rats caused 

hypertension. These experiments suggest that if polymorphims in kidney expressed 

genes such as the AT1R gene are associated with hypertension, one should measure 

the intermediate phenotypes in the kidney rather than systemically.

An example of such an intermediate phenotype is plasma angiotensinogen. 

Experiments on the relevance of circulating angiotensinogen versus angiotensinogen 

acting locally in the renal tubules show that kidney-specific angiotensinogen and the 

resulting angiotensin II produced play important roles in sodium excretion some-

what independently of circulating angiotensin II [29–31]. This reinforces the concept 
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that the tissue in which hypertension risk factors are measured may be critical for 

detecting gene associations.

Intervention Studies

Some genes have been consistently related to elevated blood pressure and hypertension 

but the observed effects of these genes are small and therefore hard to replicate in all stud-

ies. The majority of the associated genes have been related to renal electrolyte handling, 

similar to mechanisms of the rarer monogenic hypertension disorders, possibly because 

this class of genes have been studied to a greater extent than genes not acting primarily in 

the kidney. The greater number of positive findings in the kidney-related genes may also 

be a result of the kidney genes having slightly larger effect sizes. The GWAS are begin-

ning to find associations for a number of genes that are not specifically kidney related. 

Because there are many causes of hypertension, it would be expected that any one gene 

would only have a small effect when averaged across large numbers of people.

Intervention studies are one strategy that appear to magnify the baseline effects of 

genes so that they are more easily detected. Multiple interventions including reduced 

dietary salt, increased dietary potassium, increased fruits and vegetables, lower fat 

intake, weight loss, and drug treatment appear to help reduce blood pressure to a 

greater extent in subjects genetically susceptible to hypertension than in those not 

as susceptible. The results support the concept that those at highest genetic risk of 

hypertension compared to those at low risk show a greater improvement in blood 

pressure for interventions that target the defective genetic pathways.

Table 1 summarizes 3 clinical trials in which individuals at a greater risk of hyper-

tension due to the -6A polymorphism in the AGT gene had the greatest reductions 

in blood pressure after intervention [32–34]. The Trials of Hypertension Prevention 

Table 1. Systolic and diastolic blood pressure reductions by angiotensinogen (AGT) genotypes after 

intervention in 3 clinical trials. From Hunt [40]

AGT G-6A

AA GA GG AA-GG difference

TOHP Na reduction –2.7/–2.2 –1.3/–0.7 –0.2/1.1 –2.5/–1.5

TOHP weight loss –3.5/–2.4 –0.9/–1 –1.1/0.3 –2.6/–1.4

SAGA salt diet –8.6/–3.9 –9.0/–5.2 –5.3/–1.0 –3.3/–2.9

DASH fruit/vegetable diet –5.2/–3.0 –2.3/–1.2 –1.3/0.3 –3.9/–3.3

DASH diet –6.9/–3.5 –5.6/–3.2 –2.8/0.2 –4.1/–3.7

All blood pressure data are in mm Hg. TOHP = Trials of Hypertension Prevention II [33]; SAGA = Dutch 

clinical trial using SAGA salt [32]; DASH = Dietary Approaches to Stop Hypertension [34].
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II enrolled subjects with borderline hypertension, the Dietary Approaches to Stop 

Hypertension (DASH) trial enrolled borderline or stage 1 hypertensive subjects, and 

the Dutch SAGA salt trial enrolled never-treated hypertensive subjects. All 3 trials 

showed a significant difference across AGT genotypes for change in blood pressure 

with the intervention. While sodium reduction was involved in 2 of the trials, similar 

results could be seen for weight loss [33], potassium supplementation [32] and the 

DASH diet even when sodium was held constant [34]. All interventions that target the 

genetically compromised pathway are likely to be effective in controlling blood pres-

sure. Therefore, the -6A subjects on average appear to be salt sensitive and respond 

well to appropriate interventions despite their higher baseline risk for hypertension. 

Subjects with the AGT -6G alleles would not be expected to respond as well and other 

interventions may be more effective.

The genetic effects of the -6A AGT allele on blood pressure can probably be eas-

ily confounded by other mechanisms. Obesity and the associated increase in adi-

pocytes, which are an important source of circulating angiotensinogen, may have 

larger effects on blood pressure than the AGT gene in normal-weight subjects [35]. 

The combination of obesity with AGT should magnify the risks of hypertension 

beyond the additive effects of either one alone, even though it would be difficult to 

differentiate between the 2 risk factors. Higher LDL-C levels increase blood pres-

sure responses to infused angiotensin II, making blood pressure more sensitive to 

angiotensin II even though the baseline blood pressure levels may not be elevated 

[36, 37]. Greater blood pressure reactivity in the presence of high LDL-C may 

interact with stress and other environmental factors to eventually result in hyper-

tension. Polymorphisms at the AT1 receptor also may affect the renin-angiotensin 

physiological pathway, with CC homozygotes at position A1166C of the AT1R gene 

showing smaller blood pressure responses to infused angiotensin II than A allele 

carriers [36].

Improving Genome-Wide Association Results

Genomic-wide association analyses of many common disease traits have been very 

successful at finding new genes [38]. Hypertension and blood pressure traits had 

had fewer genes suggested from these studies until very large meta analyses were 

performed that were powered sufficiently to detect very small genetic effects [5, 7]. 

While these genes need further validation, it is noteworthy that few of the physiologi-

cal candidate genes found to be associated with hypertension have been detected in 

the genome-wide scans. This suggests that other unknown but important genes for 

hypertension are also being missed. An important reason appears to be that the den-

sity of the SNPs on the arrays are not sufficient around these candidate genes [39]. 

Only 52% of the HAPMAP SNPs in 160 hypertension candidate genes were captured 

by the Affymetrix 500k array. The greater the density of SNPs in a candidate gene, 



Genetics of Human Hypertension 53

the greater the likelihood that an association can be found. More dense arrays are 

now available, but additional efforts should be made to target known candidate genes 

in these large studies. In addition, the less common SNPs should not be routinely 

excluded, as the sample size in these meta analyses may be sufficient to detect associa-

tions with SNPs with allele frequencies in the 0.5–5% range. Validated results from 

the genome-wide studies should be analyzed in existing clinical trials to test for inter-

vention interactions, as has been done for AGT.

Summary

Multiple factors contribute to the development of hypertension, including genetic 

factors and environmental exposures. Various pathophysiological mechanisms are at 

play in the pathogenesis of hypertension and this pathogenesis, by necessity, exhibits 

substantial variation at the level of the individual, as it depends on the relative con-

tribution of inherited genes and individual lifetime environmental exposures. Over 

time, long-term compensatory mechanisms, including responses to either chronic 

hypertension or to therapeutic intervention, can only obscure the initiating mech-

anisms of disease. Acute compensating mechanisms can also mask initiating gene 

effects during or after an intervention, so that early phenotype assessments during 

the intervention may be more likely to detect the genetic initiators. Compensatory 

mechanisms, working over days, weeks or even years, will likely be variably effective 

in minimizing the expected blood pressure rise, making it difficult to detect genetic 

initiating mechanisms in cross-sectional, ‘steady state’, or ‘in balance’ studies. If the 

lifetime risk of hypertension indeed approaches 90% [13], the power to identify 

genetic factors can only decrease with duration of disease and treatment, and predic-

tion of hypertension becomes of vanishing significance. With multiple factors at play, 

we cannot expect that all causes are mutually exclusive, but it is reasonable to assume 

that one of these mechanisms is predominant in the initiation of the disease in any 

one individual. Given the heterogeneity of essential hypertension argued above, it 

becomes evident that the chance of identifying genetic factors that contribute to dis-

ease development will be greatest if study subjects at highest genetic predisposition 

are observed during age ranges when heritability is at a maximum, using the cor-

rect phenotypes, measured in the correct tissues, during the correct time window. 

Genes found to be significant in such studies should be densely typed in clinical trials 

and large population studies to assess public health and clinical applications of the 

findings.

Acknowledgments

This work was supported by NIH grants AG18734 and HL090668.



54 Hunt

 1 Wellcome Trust Case Control Consortium: 

Genome-wide association study of 14,000 cases of 

seven common diseases and 3,000 shared controls. 

Nature 2007; 447:661–678.

 2 Levy D, Larson MG, Benjamin EJ, et al: Framingham 

Heart Study 100K Project: genome-wide associa-

tions for blood pressure and arterial stiffness. BMC 

Med Genet 2007;8(suppl 1):S3.

 3 Sabatti C, Service SK, Hartikainen AL, et al: 

Genome-wide association analysis of metabolic 

traits in a birth cohort from a founder population. 

Nat Genet 2009;41:35–46.

 4 Wang Y, O’Connell JR, McArdle PF, et al: Whole-

genome association study identifies STK39 as a 

hypertension susceptibility gene. Proc Natl Acad Sci 

USA 2009;106:226–231.

 5 Newton-Cheh C, Johnson T, Gateva V, et al: 

Genome-wide association study identifies eight loci 

associated with blood pressure. Nat Genet 2009;41: 

666–676.

 6 Org E, Eyheramendy S, Juhanson P, et al: Genome-

wide scan identifies CDH13 as a novel susceptibility 

locus contributing to blood pressure determination 

in two European populations. Hum Mol Genet 

2009;18:2288–2296.

 7 Levy D, Ehret GB, Rice K, et al: Genome-wide asso-

ciation study of blood pressure and hypertension. 

Nat Genet 2009;41:677–687.

 8 Yang HC, Liang YJ, Wu YL, et al: Genome-wide 

association study of young-onset hypertension in 

the Han Chinese population of Taiwan. PLoS One 

2009;4:e5459.

 9 Adeyemo A, Gerry N, Chen G, et al: A genome-

wide association study of hypertension and blood 

pressure in African Americans. PLoS Genet 2009;5: 

e1000564.

10 Hunt SC, Williams RR, Barlow GK: A comparison 

of positive family history definitions for defining 

risk of future disease. J Chron Dis 1986;39:809–

821.

11 Hunt SC, Gwinn M, Adams TD: Family history 

assessment: strategies for prevention of cardiovas-

cular disease. Am J Prev Med 2003;24:136–142.

12 Williams RR, Hunt SC, Heiss G, et al: Usefulness of 

cardiovascular family history data for population-

based preventive medicine and medical research 

(the Health Family Tree Study and the NHLBI 

Family Heart Study). Am J Cardiol 2001;87:129–

135.

13 Vasan RS, Beiser A, Seshadri S, et al. Residual life-

time risk for developing hypertension in middle-

aged women and men: The Framingham Heart 

Study. Jama. 2002 Feb 27;287(8):1003–10.

14 Sanada H, Yatabe J, Midorikawa S, et al: Single-

nucleotide polymorphisms for diagnosis of salt-sen-

sitive hypertension. Clin Chem 2006;52:352– 360.

15 Weinberger MH, Stegner JE, Fineberg NS: A com-

parison of two tests for the assessment of blood pres-

sure responses to sodium. Am J Hypertens 1993; 

6:179–184.

16 Manunta P, Cusi D, Barlassina C, et al: Alpha-

adducin polymorphisms and renal sodium handling 

in essential hypertensive patients. Kidney Int 1998; 

53:1471–1478.

17 Rocchini AP, Key J, Bordie D, et al: The effect of 

weight loss on the sensitivity of blood pressure to 

sodium in obese adolescents. N Engl J Med 1989; 

321:580–585.

18 Jia Z, Zhang A, Zhang H, Dong Z, Yang T: Deletion 

of microsomal prostaglandin E synthase-1 increases 

sensitivity to salt loading and angiotensin II infu-

sion. Circ Res 2006;99:1243–1251.

19 Levine RS, Hennekens CH, Perry A, et al: Genetic 

variance of blood pressure levels in infant twins. 

Am J Epidemiol 1982;116:759–764.

20 Feinleib M, Garrison RJ, Fabsitz R, et al: The NHLBI 

twin study of cardiovascular disease risk factors: 

methodology and summary of results. Am J 

Epidemiol 1977;106:284–295.

21 Miller JZ, Weinberger MH, Christian JC, Daugherty 

SA: Familial resemblance in the blood pressure 

response to sodium restriction. Am J Epidemiol 

1987;126:822–830.

22 Hunt SC, Hasstedt SJ, Kuida H, et al: Genetic herita-

bility and common environmental components of 

resting and stressed blood pressures, lipids, and 

body mass index in Utah pedigrees and twins. Am J 

Epidemiol 1989;129:625–638.

23 Vaughn TT, Pletscher LS, Peripato A, et al: Mapping 

quantitative trait loci for murine growth: a closer 

look at genetic architecture. Genet Res 1999;74:313–

322.

24 Pérusse L, Moll PP, Sing CF: Evidence that a single 

gene with gender- and age-dependent effects influ-

ences systolic blood pressure determination in a 

population-based sample. Am J Hum Genet 1991; 

49:94–105.

25 Cheng LS-C, Carmelli D, Hunt SC, Williams RR: 

Evidence for a major gene influencing 7-year 

increases in diastolic blood pressure with age. Am J 

Hum Genet 1995;57:1169–1177.

26 Shi G, Gu CC, Kraja AT, et al: Genetic effect on 

blood pressure is modulated by age: the 

Hypertension Genetic Epidemiology Network 

Study. Hypertension 2009;53:35–41.

References



Genetics of Human Hypertension 55

27 Crowley SD, Gurley SB, Oliverio MI, et al: Distinct 

roles for the kidney and systemic tissues in blood 

pressure regulation by the renin-angiotensin sys-

tem. J Clin Invest 2005;115:1092–1099.

28 Dahl LK, Heine M, Thompson K: Genetic influence 

of the kidneys on blood pressure: evidence from 

chronic renal homografts in rats with opposite pre-

dispositions to hypertension. Circ Res 1974;40:94–

101.

29 Rohrwasser A, Morgan T, Dillon HF, et al: Elements 

of a paracrine tubular renin-angiotensin system 

along the entire nephron. Hypertension 1999;34: 

265–1274.

30 Navar LG, Nishiyama A: Why are angiotensin con-

centrations so high in the kidney? Curr Opin 

Nephrol Hypertens 2004;13:107–115.

31 Kobori H, Alper AB Jr, Shenava R, et al: Urinary 

angiotensinogen as a novel biomarker of the intra-

renal renin-angiotensin system status in hyperten-

sive patients. Hypertension 2009;53:344–350.

32 Hunt SC, Geleijnse JM, Wu LL, et al: Enhanced 

blood pressure response to mild sodium reduction 

in subjects with the 235T variant of the angio-

tensinogen gene. Am J Hypertens 1999;12:460–466.

33 Hunt SC, Cook NR, Oberman A, et al: 

Angiotensinogen genotype, sodium reduction, 

weight loss, and prevention of hypertension: trials 

of hypertension prevention, phase II. Hypertension 

1998;32:393–401.

34 Svetkey LP, Moore TJ, Simons-Morton DG, et al: 

Angiotensinogen genotype and blood pressure 

response in the Dietary Approaches to Stop 

Hypertension (DASH) study. J Hypertens 2001;19: 

1949–1956.

35 Janke J, Engeli S, Gorzelniak K, Luft FC, Sharma 

AM: Mature adipocytes inhibit in vitro differentia-

tion of human preadipocytes via angiotensin type 1 

receptors. Diabetes 2002;51:1699–1707.

36 Vuagnat A, Giacche M, Hopkins PN, et al: Blood 

pressure response to angiotensin II, low-density 

lipoprotein cholesterol and polymorphisms of the 

angiotensin II type 1 receptor gene in hypertensive 

sibling pairs. J Mol Med 2001;79:175–183.

37 Nickenig G, Sachinidis A, Michaelsen F, et al: 

Upregulation of vascular angiotensin II receptor 

gene expression by low-density lipoprotein in vas-

cular smooth muscle cells. Circulation 1997;95:473–

478.

38 Manolio TA, Collins FS: The HapMap and genome-

wide association studies in diagnosis and therapy. 

Annu Rev Med 2009;60:443–456.

39 Sober S, Org E, Kepp K, et al: Targeting 160 candi-

date genes for blood pressure regulation with a 

genome-wide genotyping array. PLoS One 2009; 

4:e6034.

40 Hunt SC: Genetic architecture of complex traits pre-

disposing to nephropathy: hypertension. Semin 

Nephrol, in press.

Steven C. Hunt, PhD

Cardiovascular Genetics Division, University of Utah

420 Chipeta Way, Room 1160

Salt Lake City, Utah 84108 (USA)

Tel. +1 801 581 3888, ext. 234, Fax +1 801 581 6862, E-Mail steve.hunt@utah.edu



Simopoulos AP, Milner JA (eds): Personalized Nutrition.

World Rev Nutr Diet. Basel, Karger, 2010, vol 101, pp 56–72

Diet, Nutrition and Modulation of Genomic 
Expression in Fetal Origins of Adult Disease
Alan A. Jacksona,b � Graham C. Burdgea � Karen A. Lillycropb,c

aInstitute of Human Nutrition, University of Southampton School of Medicine, Southampton General Hospital, 
bNational Institutes of Health Research, Nutrition Biomedical Research Unit, Southampton Universities NHS 

Trust, Southampton General Hospital, cDevelopmental and Cell Biology, University of Southampton School of 

Biological Sciences, Southampton, UK

The greatest burden of ill-health for adults in most societies relates to disorders of 

the cardiovascular system and to cancers [1]. These diseases are caused by lifestyle 

choices in which poor diet and relatively low levels of activity play a major role [1]. 

There is a large body of literature which shows that environmental exposures, includ-

ing nutrition, play a significant role in the etiology of the disease, but there is vari-

able susceptibility amongst individuals exposed to seemingly similar risk factors or 

environments. Cancer is a condition which results from a derangement in the cel-

lular processes which regulate cell division, terminal differentiation and apoptosis, 

with damage to the genetic material of the cell being central. Exposures which lead to 

these derangements usually precede the appearance of the clinical disease by a pro-

longed period of time, often several decades [2]. While gene mutation has a role in 

the etiology of cancer, there is increasing evidence showing that epigenetic processes 

such as DNA methylation and covalent modification to histones are also involved 

[3]. Epigenetic changes of this kind represent potential for altered gene activity, and 

hence cellular dysregulation. However, the underlying propensity may only be mani-

fest when the gene is exposed to an appropriate environmental signal with the direc-

tion of the response and nature of the cellular dysregulation a function of the specific 

epigenetic change [4, 5].

It has been known for many years that exposure of the individual to nutritional 

and other environmental challenges during critical periods of early development can 

markedly affect later size, shape, structure, function and behavior. However, Barker 

et al. [6] were the first to provide clear evidence that there might also be a direct 

link between early nutritional exposure and risk of chronic disease, building the evi-

dence that is supportive of a causal association [6, 7]. In this they have refined a new 

conceptual approach to the way in which we consider the evolution of this group of 



Diet, Nutrition and Genomic Expression in Fetal Origins of Adult Disease 57

diseases based upon a new developmental model, the so called ‘fetal origins hypoth-

esis’. Based initially on ecological observations and later on retrospective cohort stud-

ies, there is now a considerable body of epidemiological and experimental data that 

supports the hypothesis. In the earlier observations, the size and shape of the baby at 

birth was shown to be related to the risk during adult life of coronary heart disease, 

hypertension, stroke, type 2 diabetes, obesity and some cancers [6]. These relations 

were shown to be graded across the usual range of birth weights seen in the popula-

tion and not a special feature of very high or very low birth weight, indicating that 

they might be a consequence of the usual range of exposure found within a popula-

tion [4, 7]. The results have been reproduced across a number of populations, and 

although there may be some debate around the details, the general principal appears 

to apply widely [4, 6, 7].

Epidemiology

Methodologically, the major advance was to be able to identify groups of adults in 

whom size at birth had been recorded with reliability and could be related on an 

individual basis to current health, risk of chronic disease, morbidity or mortality 

from specific disease conditions [8]. By identifying such populations it has been 

possible to carry out a range of elegant retrospective cohort investigations pro-

viding clear evidence that the pace and pathway of early growth is a major risk 

factor for this particular group of chronic diseases [6, 8]. The first studies were 

carried out in Hertfordshire (England), where it was shown that for both men and 

women as birth weight increased, the risk of death from coronary heart disease 

decreased. Based on observations of this kind, the ‘fetal origins hypothesis’ pro-

poses that poor nutritional exposure during early development of the fertilized 

ovum, embryo, fetus, infant or child permanently determines the structure and 

function of the body through the process of programming [7–9]. This translation 

of genotype into a defined phenotype from a very early stage of development, sets 

the basis upon which all later exposures, nutritional and those of the wider envi-

ronment, build. It defines the opportunity and limit for future structure and func-

tion [8–10]. More refined exploration of other data sets in which more detailed 

data are available for later growth during childhood and adolescence, such as the 

Helsinki Birth Cohort, provide the opportunity to identify particular pathways of 

growth that may be associated with particular disease outcomes [6]. Together these 

explorations provide a rich description of how the structural phenotype captured 

simply as measures of size, shape and body composition mark differences in the 

functional phenotype which in themselves presage variable vulnerability to a wider 

range of environmental challenges, which can ultimately lead to ill-health [6, 7]. 

These findings from these observational studies are supported by evidence derived 

from ‘natural’ experiments.
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Experiments of Nature

The most well explored human model of a defined intervention for a specific period 

of time is given by the experience provided as a result of the Dutch famine during 

1944–1945. This was a sharply defined period of severe food shortage for a popula-

tion which previously had enjoyed reasonable nutritional health. During this period 

the food ration fell below 1,000 kcal/day and even the extra rations allowed for preg-

nant and lactating women and young children could not be provided [11, 12]. The 

change in food availability had a disastrous effect on the population, but although fer-

tility decreased women continued to become pregnant and deliver babies and health 

records continued to be kept. It has been possible to time the relative exposure of 

the famine in relation to the time of conception and the progress of the pregnancies. 

Women who were exposed early in pregnancy, around the time of embryonic growth 

and the elaboration of the early fetal form had babies which were of relatively good 

size, but later in life suffered the more extensive and severe manifestations of ill health 

for a range of systems. Those exposed during later pregnancy, at a time when many of 

the structures and functions of the fetus have been established, but when the weight 

gained is greatest, had babies who were most obviously affected by having a lower 

birth weight. They still carried an increased risk for later ill health, but this was less 

marked than those exposed during the earlier stages of development. Those fetuses 

exposed to famine during late gestation were more likely to demonstrate impaired 

glucose tolerance during adult life. Those exposed in mid-gestation had an increased 

likelihood of impaired glucose tolerance, but also were more likely to display microal-

buminuria indicative of altered renal function or obstructive airways disease indica-

tive of altered respiratory function. Exposure early in gestation was associated with 

later glucose intolerance, an atherogenic lipid profile, altered blood coagulation, obe-

sity, stress sensitivity, coronary heart disease and breast cancer [11, 12].

These observations demonstrate an effect on a wide range of functions and sys-

tems, variability in outcome in relation to the timing of the exposure indicative of 

special tissue vulnerability at sensitive periods of development, disjunction between 

the specific functional effects and the size of the baby at birth. In addition to the spe-

cific time-related effects from one tissue or system to another, there is also evidence 

that for those conceived during the famine there was an increased risk of schizophre-

nia, anti-social personality disorder, and congenital neural defects, demonstrating a 

wide range of effects on the central nervous system [11, 12]. The vulnerability implied 

by increased sensitivity and stress responsiveness increases the potential susceptibility 

to all stressors and associated metabolic consequences. Importantly, stressors interact 

with and impact upon nutritional state and wellbeing through a range of effects that 

include altered appetite, modification in the delivery of nutrients to tissues, altered 

tissue demands for nutrients and increased nutrient losses. The effects found on liver 

function (coagulation changes and lipid profiles) and renal health (micralbuminuria) 

imply the likelihood of altered responsiveness to potential or actual environmental 



Diet, Nutrition and Genomic Expression in Fetal Origins of Adult Disease 59

toxins, including carcinogens, altered excretion, modified inter-organ co-operativity 

and integration of function [11, 12]. Not all of the effects should be construed as 

being necessarily negative. Those women who were exposed to the famine during 

their own fetal life later showed increased reproductive success [13]. Importantly it 

has been shown the effects can be passed on to the third generation, arguing strongly 

for non-genomic transmission of information or memory [14].

Thus, birth size provides some useful information, but has to be seen as a relatively 

crude indicator of the intrauterine nutritional exposure and experience, patterns of 

exposure during fetal life set structure and functionality that have long-term impact 

on the capacity of individual tissues to function and their integration as components 

of a whole body system, growth and development after birth may be modulated by 

experience before birth, but how current environmental exposure builds on that 

experience is itself of importance for later health or disease risk.

Cancer Risk and Early Life

The fundamental lesion in cancer is damage to DNA, which can be brought about 

by a range of physical, chemical or microbiological factors. Because the cell usually 

has mechanisms to protect itself, sustained damage to DNA must take place against a 

background of a cellular capability that is inadequate to cope by protecting or effec-

tively repairing the damaged DNA. The capability of the cell to achieve effective 

prevention or repair depends upon the cellular microenvironment, in particular the 

nutrient microenvironment of the cell. This microenvironment reflects the overall 

nutritional wellbeing of the individual, a balance between nutrient intake and the 

specific nutrient demands for usual activity and coping with the rigors imposed by 

the wider external environment [4]. Cells that contain critically damaged DNA but 

do not undergo apoptosis are potentially neoplastic. Dysregulation of the life cycle of 

individual cells is, therefore a fundamental feature of cancer causation. This is in part 

determined by the immediate nutrient environment, but also by the nutrient environ-

ment experienced during very early development [4, 5].

The studies from the women who experienced the Dutch hunger winter during 

early life showed that there was a 5 times increase in risk of developing cancer of the 

breast in women exposed to famine while in utero [15]. Birth size has been related 

to increased risk of breast cancer in a number of studies and, in general, larger size 

at birth is associated with an increased risk of cancer of the breast [2, 5]. In 2007 the 

World Cancer Research Fund and American Institute of Cancer Research [2] pro-

duced the most comprehensive review of any aspect of the medical literature ever 

conducted. This global effort by some of the world’s leading nutrition and cancer sci-

entists identified major factors related to the foods eaten, nutritional status achieved 

and physical activity undertaken as causal factors for major cancers. This analysis was 

comprehensive, detailed and rigorous, using sound, validated methods and hence its 



60 Jackson · Burdge · Lillycrop

conclusions are the most authoritative statement there is currently on the causes of 

cancer. It is estimated that on average at least 30% of cancers could be prevented with 

appropriate modifications to diet and lifestyle, and in some situations as much as 70% 

[16]. There is convincing evidence that abdominal fatness causes colorectal cancer, 

and probably causes cancer of the pancreas and endometrium and pre-menopausal 

breast cancer. There is also convincing evidence that achieved height ‘causes’ colorec-

tal and postmenopausal breast cancer, and probably ‘causes’ cancer of the pancreas 

and ovary and premenopausal breast cancer. This very strong relationship between 

achieved height itself and specific cancer cannot be a direct effect of height on the risk 

of cancer, but must be a reflection that the complex of factors that contribute to the 

achievement of height, must also relate strongly, and probably directly to the factors 

which increase the risk of cancer. Other aspects of development of the bony skel-

eton have been related to cancer in women in the Helsinki Birth Cohort, where 300 

women were diagnosed with breast cancer [6]. Growth of bony skeleton is important 

for reproductive health in many ways, but most critically during child birth where 

small pelvic bones increase the risk of obstructed labor. Small pelvic bones are often a 

persistent consequence of poor nutrition during infancy and childhood. In Helsinki, 

the dimensions of the mothers’ bony pelvis were measured routinely in order to assess 

the likelihood of an obstructed labor. A higher risk of either breast cancer or ovar-

ian cancer in the daughter was associated with the shape and pattern of the mother’s 

pelvis, itself a marker of the mother’s sex hormone status around the time her repro-

ductive capability was being established [17, 18]. The stem cells for the breast form at 

around 6 weeks after conception and the authors postulated that higher concentra-

tions of sex hormones in the mother around this time gave rise to genetic instability 

in the differentiating putative breast cells in their daughters [17]. Further, they found 

that broader hips in the mother were predictive of ovarian cancer in their daughters, 

leading to the suggestion that ovarian cancer may be initiated by exposure of the fetal 

ovary to maternal sex hormones [18].

Growth and Development

Growth is a complex process that takes place in both space and time. Early expo-

sures can have lasting effects, both on structure and on function. The most obvi-

ous example of this is when a noxious exposure acts during a sensitive period of the 

development of a tissue or organ, impairing the development and leading to lifelong 

alterations of structure, for example with teratogens such as thalidomide or hypervi-

taminosis A [19, 20]. However, a limitation or lack of a specific nutrient can have an 

equally damaging structural effect, such as hypovitaminosis A, or poor folate status 

and neural tube defects [21, 22]. These obvious structural changes at the level of the 

whole body are extreme forms of less dramatic damage which can be inflicted at the 

cellular or subcellular levels.
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An understanding of how early nutritional exposure enables normal growth and 

body proportions, measured indirectly as achieved height and weight, is an impera-

tive if the relationships identified in epidemiological studies of populations are to be 

interpreted [7, 9, 10, 23, 24]. Growth is a structured process which includes increases 

in length and mass, changes in body composition and relative proportions and matu-

ration of function. The elaboration of the processes that enable structure and func-

tion at every stage of growth and development result from a complex interaction 

amongst genetic endowment and the hormonal milieu with the availability of energy 

and nutrients to fuel and enable cellular elaboration [25]. In an article in the Lancet 

in 1970, Elsie Widdowson used the term ‘harmony of growth’ to capture the pace, 

proportions and partitioning of nutrients that are fundamental for the achievement 

of normal growth, appropriate body proportions and effective maturation of function 

[26]. Thus, growth and development are tightly organized and regulated processes 

with complex and subtle changes taking place in space and time, with each successive 

change being dependent upon and determined by having achieved the early stages 

with a measure of success. Any significant constraint at any particular stage of devel-

opment may lead to alteration of structure and function, which may be difficult or 

impossible to repair or make good at later times. Any tissue or organ is particularly 

vulnerable at the time of rapid cellular replication, leading to sensitive periods during 

development which differ in their critical timing from tissue to tissue or from func-

tion to function. Throughout there is a close interdependent relationship between 

structure and function, thereby capturing a memory of differences in earlier expo-

sure to an altered cellular or tissue, hormonal or nutritional milieu. For any complex 

organism, this variability in structure and function can obtain at any or every level of 

organization, extending from the molecular and subcellular, through the organization 

and regulation of cells, tissues and organs, up to whole body integration of responses 

to wider environmental challenge. Size at any age is a relatively crude summary state-

ment of the extent to which the availability of energy and pattern of nutrients matches 

that required for that stage of development, and size at birth is a very crude summary 

of the nutrients that have been available to the fetus.

The size of newborn babies and their growth during infancy and childhood have 

changed over time [27, 28]. During approximately the last 100–150 years, children 

have been getting larger and growing to maturity more rapidly, known as the secu-

lar trend in growth with progressively greater final adult height in many developed 

countries. Thus, within the same population there has been a progressive increase in 

attained adult height for both males and females, a reflection of increased height at 

5–7 years of age of 1–2 cm every 10 years [27, 28]. This has been associated with a 

decrease in the age of menarche from around 16 to around 13 years of age in the 100 

years from 1860 [27]. For a number of countries in western Europe this attained adult 

height appears to have achieved a plateau of around 1.8 m, for example in Denmark, 

Sweden, Norway and the Netherlands. It has been suggested that the plateau is 

achieved around 18 years following post-neonatal mortality falling to around 4/1,000 
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deliveries [23, 24]. In many senses this increase in height is indicative of improvement 

in public health and much of the increase has been attributed to factors that contrib-

ute to improved nutrition from a very early age. Importantly if achieved height is a 

risk factor for some cancers and there has been a secular trend in height over many 

years, what are the common factors that underlie this important relationship?

Size and Body Composition at Birth

The new growth standards developed by WHO show how infants and children 

should grow when provided with the opportunity for a healthy environment [29]. 

Across the globe the pattern of growth of children from a wide range of backgrounds 

is similar. However, even within this similarity for all populations there is variability 

within the normal range. The suggestion posed by the ‘fetal origins hypothesis’ is that 

even within this observed ‘normal’ range of variability there is differential risk of later 

chronic disease.

There has been the general observation that infants who are smaller at birth tend 

to have a different body composition to those who are heavier, most notably that they 

are relatively more adipose. An extreme example of this difference has been noted 

in populations where size at birth is very low, for example in India. Yajnick et al. 

[30] have described the phenotype of the Indian baby as being fat/thin, a pattern that 

is carried through to adulthood and marks the phenotype which is closely associ-

ated with the cardio-metabolic syndrome. Although the baby may be small at birth 

the relative deficit of different body compartments is not equal. There are substantial 

deficits in length and lean tissue, but relative preservation of adipose tissue, especially 

centrally placed adipose. This population has substantially increased risk of type 2 

diabetes, associated with relative adiposity throughout life, which may be directly 

associated with dietary limitations of vitamin B12 [31]. One important question is 

whether this is a peculiarly Indian phenotype and problem, or simply an extreme 

example of a more common phenotypic difference in size and shape, and also for 

wider aspects of metabolic function.

Kensara et al. [32, 33] compared the extent to which early life variability in size 

relates to differences in size, shape and whole body function later in life using the 

Hertfordshire cohort and comparing individuals from the lowest and highest fifths of 

birth size within the ‘normal’ range. These men were studied when they were around 

70 years old. At this age the percentage body fat was about 5% greater for those of 

lower birth weight compared with those of higher birth weight. This meant that for 

the same weight or BMI at 70 years of age, those of lower birth weight had reduced 

lean mass, but greater fat mass, especially greater central fat [32]. Resting metabolic 

rate (RMR) was measured as a summary statement of metabolic activity and 38% of 

the variability in RMR could be explained by variation in current size (height and 

weight) and size at birth. Those in the lower birth weight category had lower resting 
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expenditure, 32% of which was explained by differences in birth size, indicative of 

a reduced metabolic demand, a reduced metabolic capacity, and altered cellular 

environment. Size at birth uniquely explained 17% of the variability, more than cur-

rent size which uniquely explained 6% of the variability, with 15% of the variability 

explained on a shared basis by size at birth and current height and weight [33]. The 

compositional changes meant that for any given BMI the men of lower birth weight 

had 5% more fat [32]. Therefore, the differences in body composition identified for 

the Indian baby with the fat/thin phenotype may represent a more general differ-

ence in phenotype associated with differences in size at birth, which in itself marks 

important variability in overall and specific metabolic function and efficiency [34]. 

Although differences in genotype may explain a part of this variability, the observa-

tion that the WHO growth standards apply globally [29] indicate that there are major 

environmental factors that impact on the variability, which include nutrition factors, 

either directly or indirectly.

Developmental Plasticity

The epidemiological and metabolic studies carried out in humans argue strongly that 

nutrient exposure from the earliest stages of life can exert an impact on functional 

capability at all later ages, indicating that a single genotype can give rise to a range 

of different phenotypes. This process, characterized as developmental plasticity, is a 

widespread biological phenomenon which is considered to enable survival in range 

of environments, and the ability to cope with the range of stresses or stressors expe-

rienced from one situation to another [35]. This variable phenotype may promote 

the ability to cope in the short term, but carries with it potential vulnerability in the 

longer term especially if the later environment exposes phenotypic susceptibility. 

Greater achieved height and central adiposity may confer advantages under some cir-

cumstances, but they are not necessarily an unalloyed benefit. It is very difficult to 

explore these relationships mechanistically in humans, given the long time between 

the exposure and the outcome, and animal models provide a valuable opportunity to 

determine possible mechanisms in some detail.

Animal Models

There are a wide range of studies on the reproductive performance in animals – con-

ducted for the purpose of enhancing animal husbandry – which have explored the 

effects of general or specific nutritional interventions before or during pregnancy, 

during lactation and during the later life of the offspring. These generally have an 

interest in relatively short-term outcomes, determined by market considerations. It 

is clear that more extreme dietary manipulations lead to adverse outcomes in the 
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short and longer term, with the specific consequence being determined by the timing, 

severity and duration of the insult [7, 19–22]. An important observation which arises 

from the epidemiological studies is that for chronic non-communicable disease the 

variability in risk is seen as a graded effect within the usual variability of birth size 

and growth within the population. For the diet or nutritional exposure to operate 

as an important factor in promoting or enabling the altered risk in outcome would 

require that the effects of importance should be demonstrable across the range of 

intakes usually seen and considered to be compatible with health within the popula-

tion. Further, if the impact is cumulative during life it might be explained simply by 

sensitive periods during development leading to differences in structure and function 

which constrain the maximal capability of one or other function, or limit the abil-

ity to regulate and integrate [7, 25]. However the observation that these effects can 

be communicated between generations, and by embryo transfer, requires acquired 

genetic mechanisms of retained memory, considered most likely to be through epige-

netic processes such as DNA methylation and covalent modification of histones [5]. 

This potentially implicates those processes through which 1-carbon moieties such as 

methyl groups are made available to metabolism and the mechanisms through which 

methylation of the promoter region of specific regulatory genes is enhanced or con-

strained from one situation to another [5].

The induction of changes to the phenotype of the offspring, in response to the 

prenatal environment, that persists throughout the lifespan implies stable changes to 

gene transcription resulting in altered activities of metabolic pathways and the set 

point homeostatic control processes and in differences in the structure of tissues. One 

important consideration in understanding the mechanism responsible for phenotype 

induction is the interaction between any process resulting in different phenotypes, 

environmental cues and gene polymorphisms, in particular those located in gene 

promoters. Studies on gene expression demonstrate stable effects on transcription [5]. 

Importantly, some of the genes which showed altered expression following prenatal 

undernutrition are transcription factors which affect multiple pathways in develop-

ment and nutrient homeostasis: for example PPARα and the glucocorticoid receptor 

(GR) [36]. Modified regulation of expression of a few key transcription factors may 

alter the activities of a large number of metabolic and developmental pathways. The 

methylation of CpG dinucleotides which are clustered at the 5� promoter regions of 

genes, confers stable silencing of transcription. Methylation patterns are largely estab-

lished during embryogenesis or in early postnatal life [37]. DNA methylation also 

plays a key role in cell differentiation by silencing the expression of specific genes dur-

ing development and differentiation of individual tissues, and thus the timing of gene 

methylation is tissue and gene-specific [38, 39]. Covalent modifications of histones 

influence chromatin structure and hence the ability of transcriptional machinery to 

gain access to DNA. DNA methylation can induce transcriptional silencing by block-

ing the binding of transcription factors and/or through promoting the binding of the 

methyl CpG binding protein (MeCP)-2. The latter binds to methylated cytosines and, 
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in turn, recruits histone-modifying complexes composed of deacetylases and histone 

methyl transferases to the DNA, resulting in a closed chromatin structure and tran-

scriptional silencing [40, 41].

Epigenetic regulation of gene promoters is established during development and is 

responsible for patterns of transcriptional expression and silencing in adults, pertur-

bations to this process represent a candidate molecular mechanism for induction of 

persistent alterations in phenotype by the environment early in life. Perturbations as 

diverse as lack of maternal grooming, uterine artery ligation or embryo culture have 

been shown to lead to epigenetic modulation of transcription, structural and func-

tional effects in the short and long term [5, 42–45].

Varying the maternal intake of nutrients involved in 1-carbon metabolism across 

a wide range can induce graded changes in DNA methylation and gene expression 

in the offspring, which persist into adulthood [45]. However, for this mechanism to 

operate in the induction of phenotypes associated with the ‘fetal origins hypothesis’ 

would require that it can operate within the range of dietary intakes typical for a pop-

ulation. Feeding a diet which is adequate but restricted in protein to pregnant rats is 

a well established model of phenotype induction. This is because feeding pregnant 

dams graded amounts of protein across a range of intakes not associated with any 

obvious pathology leads to graded increases in blood pressure in the offspring [46]. 

This modest change to maternal macronutrient intake during pregnancy induced 

hypomethylation of the PPARα and GR promoter and increased expression of PPARα 

and GR in the liver of the offspring. There was also an increase in the expression of 

PPARα and GR target genes such acyl-CoA oxidase and phosphoenolpyruvate car-

boxykinase, respectively, supporting the suggestion that altered epigenetic regulation 

of transcription factors modifies that activities of important metabolic pathways [36, 

47]. Sequence analysis of the PPARα promoter showed that the methylation status of 

only a few CpG dinucleotides was altered by the reduced protein diet during preg-

nancy [48]. This suggests that the process of induced epigenetic change is targeted 

and that the resulting change in transcription may reflect changes in the interaction 

of the gene with relatively few transcription factors, thus inducing specific changes 

in the regulation of gene function and hence response to environmental differences. 

Methylation of the PPARα and GR promoters was also reduced in the heart of animals 

whose mothers had been exposed to a reduced protein diet during pregnancy [5]. 

Further, the PPARα promoter was hypomethylated in the whole umbilical cord off-

spring of rats fed a reduced protein diet during pregnancy [5], suggesting that hypom-

ethylation of PPARα and GR promoters had already been established very early in 

pregnancy, before cell lineages had become definitively established. Hypomethylation 

of the GR promoter was associated with an increase in histone modifications which 

facilitate transcription while those that suppress gene expression were reduced or 

unchanged [47].

Induction of the altered phenotype (hypertension and endothelial function) in 

the offspring of rats fed the reduced protein diet during pregnancy was prevented 
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by supplementation of this diet with glycine or folic acid [49–51]. Hypomethylation 

of the hepatic PPARα and GR promoters was also prevented by the addition of 5 

times more folic acid than contained in the reduced protein diet [36]. Thus, 1-car-

bon metabolism plays a central role in the induction of an altered phenotype. In this 

model there is an important interaction between the metabolism of macronutrients 

and micronutrients, and further that these interactions operate through differential 

methylation of the promoter region of regulatory genes through seemingly epigenetic 

mechanisms. The regulatory genes themselves play a central role in metabolic inte-

gration in terms of responsiveness to stress (GR), and macronutrient partitioning and 

central fat deposition (PPARα). Feeding the reduced protein diet during pregnancy in 

the F0-generation results in elevated blood pressure, endothelial dysfunction, insulin 

resistance and adverse glucose homeostasis in the F1, F2 and even the F3 generations, 

despite no further unusual dietary exposure for subsequent generations [52–55]. This 

implies that transmission of a phenotype induced in the F1 generation to the F2 gen-

eration and further into the F3 generation may involve preservation of levels of DNA 

methylation of specific genes. As the female line appears sufficient for transmission 

of this epigenetic information between generations the level of methylation of the 

PPARα and GR promoters in gametes must be similar to that of somatic cells.

The de novo methylation of CpG dinucleotides is catalyzed by DNA methyltrans-

ferase (Dnmt) 3a and 3b. The pattern of methylation is maintained through mitosis 

by gene-specific methylation of hemimethylated DNA by Dnmt1 [37]. Changes in the 

activity of Dnmt as a result of altered 1-carbon metabolism represent one candidate 

mechanism for transmission of information regarding maternal 1-carbon metabo-

lism status to the fetus for induction of modified epigenetic regulation of transcrip-

tion and thus modified phenotype. Feeding the reduced protein diet to rats during 

pregnancy induced a reduction in Dnmt1 expression and in the binding of Dnmt1 

at the GR promoter. [47]. However, the expression of Dnmt3a, Dnmt3b and methyl 

binding domain-2, and the binding of Dnmt3a at the GR promoter were unaltered 

[47]. This suggests that hypomethylation of the GR promoter in the liver of the off-

spring and probably other genes including PPARα, is induced by the maternal diet as 

a result of a lower capacity to maintain patterns of cytosine methylation during mito-

sis. Modulation of Dnmt1 expression by differences in 1-carbon metabolism provide 

a link between maternal diet and epigenetic regulation of gene expression in the fetus. 

This is supported by the finding that lower Dnmt1 expression induced by the reduced 

protein diet during pregnancy was prevented by increasing the folic acid content of 

the diet. [47] and is consistent with the a central role for Dnmt1 in the induction of an 

altered phenotype [49, 50].

We suggest 2 possible mechanisms by which feeding a reduced protein diet during 

pregnancy may alter 1-carbon metabolism. Firstly, it is possible that a decreased avail-

ability of glycine leads to an altered flux of methyl groups between different metabolic 

fates and a constraint on the remethylation of homocysteine to methionine [56, 57]. 

Second, increased maternal corticosteroid levels [58], possibly a result of the stress 
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induced by constrained nutrient availability, may reduce folic acid availability [59]. 

The latter could explain how maternal corticosteroid blockade prevents the induction 

of hypertension in the offspring of mothers who had reduced protein diets during 

pregnancy [60], as well as prevention of altered phenotype by folic acid administra-

tion [36, 50].

Based upon current data, we have suggested a mechanism for the induction of an 

altered phenotype in the offspring as a consequence of nutrient constraint during 

pregnancy in which promoter methylation is lost in a gene-specific manner during 

mitosis due to decreased Dnmt1 expression and activity [5, 36, 61]. This is accompa-

nied by reduced binding of the MeCP2-histone deacetylase-histone methyltransferase 

complex leading to persistence of histone modifications that permit transcription.

Epigenetics and Cancer

A change in the epigenetic regulation of genes has been implicated as a causal 

mechanism in specific cancers including lung, prostate, breast [62], colon [63] and 

hemopoietic cancers [64]. Specifically, increased cancer risk is associated with global 

hypomethylation of the genome with concurrent hypermethylation or hypomethyla-

tion of the promoter of specific genes. The mechanism by which global hypomethy-

lation is induced is unclear, but may reflect the global decline in DNA methylation 

associated with increasing age [62]. The age-related decline in global hypomethylation 

is related to a reduction in Dnmt1 activity [65] which, in turn, may induce expression 

of oncogenes such as c-Myc and c-N-ras. [65]. Thus, it appears that modulation of 

Dnmt1 activity is a key regulatory step in both fetal programming and in the induc-

tion of tumorigenesis This may be accompanied by de novo methylation of tumor 

suppressor genes [66] by increased Dnmt3a activity, leading to aberrant activation of 

genes involved in cell proliferation and cell differentiation [67]. Together these changes 

represent a shift in the regulation of gene control which, in turn, may predispose the 

genome to further changes in methylation, which result ultimately in neoplasia.

Conclusion

The observation that nutrition in early life can induce both hypomethylation and 

hypermethylation of specific CpG dinucleotides suggests a mechanism for induc-

tion of different disease endpoints (e.g. metabolic disease of cancer) by variation in 

the same environmental exposure, which is marked by differences in the direction of 

association between birth weight and disease risk. One particular example of the role 

of epigenetics in modulating gene activity by shifting the balance between agonist and 

suppressor proteins is the induction tumorigenesis by activation of telomerase in dif-

ferentiated cells. Telomerase activity is down-regulated in most cells during terminal 
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differentiation in embryogenesis as a result of methylation of the CpG promoter 

region. It has been proposed that activation of telomerase in preneoplastic cells is 

due to a shift in the regulation between the activator c-Myc and the suppressor WT1, 

by changes in the methylation status of specific CpG within the binding domains of 

these transcription factors in the promoter of the catalytic sub-unit which confers RT 

activity (hTERT) [68]. One consequence of hTERT activation is to increase Dnmt1 

activity [69], which leads to copying of aberrant patterns of cytosine methylation. 

This suggests a synergistic role for hTERT and Dnmt1 in controlling cell proliferation 

and the methylation status of the genome.

The addition of supplemental folic acid to the reduced protein diet provided during 

pregnancy reversed many of the effects of the low protein diet on blood pressure and 

vascular reactivity as well as on the methylation of the promoter region for PPARα and 

GR and their relative expression in the offspring. By contrast when the control protein 

diet was supplemented with folic acid the effects on the offspring were very different, 

with an increase in blood pressure and increases in the concentration of triacylglyc-

erol and non-esterified fatty acids in the blood [70]. If the addition of supplemental 

folic acid to the reduced protein diet provided during pregnancy reversed many of the 

phenotypic and epigenetic effects of the low protein diet in the offspring would a simi-

lar effect be seen if the supplemental folic acid were provided to the offspring post-

natally? Supplementation with folic acid postnatally induced increased weight gain, 

lower plasma β-hydroxybutyrate concentration and increased hepatic and plasma 

triacylglycerol concentration compared with offspring not given supplemental folic 

acid. In the liver of folic acid supplemented offspring there was an increased methyla-

tion of the promoter region for PPARα and the GR, and a decrease in the methyla-

tion of the promoter region for the insulin receptor, with reciprocal changes in mRNA 

expression. Hence increased intakes of supplemental folic acid intake during the juve-

nile period did not simply reverse the phenotype induced by the maternal diet, but 

produced distinct changes in both the phenotype and the epigenotype. This indicates 

that the effect of the increased intake of folic acid is contingent on the timing of the 

supplementation relative to the developmental stage of the organism and the overall 

nutrient pattern within the diet. Importantly, whereas during pregnancy the effect of 

the supplemental folic acid is buffered by maternal metabolism, the juvenile offspring 

were exposed directly to folic acid provided in the diet [71]. Bidirectional responses in 

relation to the previous nutritional exposure have also been shown for other systems, 

for example in rats the expression of 11β-hydroxysteroid dehydrogenase-2 in response 

to leptin administration from day 3 to 10 of life was increased in the offspring of well 

nourished mothers, but decreased in the offspring of undernourished mothers: by 

contrast leptin suppressed expression of PPARα in maternally well nourished off-

spring and enhanced expression in maternally undernourished offspring [72].

The observational evidence from epidemiological studies is substantial. Not sur-

prisingly, not all of the evidence fits in a simple way, but there is a substantial weight 

of evidence that argues that patterns of growth and development during fetal life, 
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infancy and childhood relate strongly to the risk of non-communicable disease dur-

ing later adult life. The experience drawn from the Dutch winter famine, where there 

was limited exposure to a very low food intake for a defined period of time, is sup-

portive. Moreover it provides evidence that the timing as well as the severity of the 

exposure lead to differences in the phenotypic outcome in terms of markers of risk 

for later ill-health as well as specific disease patterns. Taken together, the evidence 

argues that the variability in risk cannot be explained simply on the basis of genetic 

or genomic variability, but appears to be a complex interaction of nutrient exposure 

and the hormonal milieu at the critical time when tissues and systems are especially 

sensitive to environmental perturbations, which modifies the opportunity for genetic 

expression, most likely through epigenetic mechanisms. Animal studies show that 

modest manipulations of the maternal diet during pregnancy can lead to epigenetic 

changes in the promoter region of critical regulatory genes, which are carried through 

generations. These epigenetic changes lead directly to differential expression of the 

genes and a shift in the set point and responsiveness of regulatory systems. It appears 

that it is this shift that alters responsiveness of the organism to wider environmental 

or nutritional perturbations, lowering the threshold for adverse effects and increasing 

susceptibility to abnormal function. The evidence suggests that aspects of the regu-

lation and control of 1-carbon metabolism are of particular importance in setting 

the extent of epigenetic modification and, our understanding of the critical factors 

that determine and control these interactions needs greater refinement. At each age 

the response to current nutritional exposure appears to be modified to an extent by 

previous nutritional experience. It appears that metabolic plasticity is directionally 

dependent on earlier nutritional status and we still do not know what might underlie 

this response. Population studies show that whereas higher birth weight within an 

acceptable range is related to better long-term outcome for many of the health issues 

of concern, such as cardiovascular disease and type 2 diabetes, the opposite is true for 

cancers such as those of the breast and prostate. If the objective is to move to inter-

ventions that will protect the population from ill-health there is an important and 

urgent need to understand the basis of these different relationships to ensure that the 

public health implications can be appreciated.
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Nutrigenetics/nutrigenomics (the study of the bidirectional interactions between genes 

and diet) is a rapidly developing field that is changing research and practice in human 

nutrition. Though eventually nutrition clinicians may be able to provide personalized 

nutrition recommendations, in the immediate future they are most likely to use this 

knowledge to improve dietary recommendations for populations. Currently, estimated 

average requirements are used to set dietary reference intakes because scientists can-

not adequately identify subsets of the population that differ in requirement for a nutri-

ent. Recommended intake levels must exceed the actual required intake for most of 

the population in order to assure that individuals with the highest requirement ingest 

adequate amounts of the nutrient. As a result, dietary reference intake levels often are 

set so high that diet guidelines suggest almost unattainable intakes of some foods. Once 

it is possible to identify common subgroups that differ in nutrient requirements using 

nutrigenetic/nutrigenomic profiling, targeted interventions and recommendations can 

be refined. In addition, when a large variance exists in response to a nutrient, statistical 

analyses often argue for a null effect. If responders could be differentiated from nonre-

sponders based on nutrigenetic/nutrigenomic profiling, this statistical noise could be 

eliminated and the sensitivity of nutrition research greatly increased.

Challenges for Clinical Nutrigenetics/Nutrigenomics

The first challenge for developing clinical nutrigenetics/nutrigenomics is the grow-

ing misconception that only very large studies can develop evidence for associations 

between single nucleotide polymorphisms (SNPs) and phenotypes. The use of genome-

wide profiling of common single nucleotide polymorphisms (SNPs) to identify such 
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associations has become common. These genome-wide association studies (GWAS) 

often screen thousands to millions of genes and their variants in thousands of subjects. 

In order to avoid the issue of multiplicity, and because of expected modest effect sizes, 

the scientific community has adopted strict definitions of statistical significance (e.g. 

p < 5 × 10–7 [1]), which dictate the need for large sample sizes typically involving thou-

sands of subjects. It is important to note that these definitions were adopted assuming 

an individual SNP has a small effect size and that large numbers of randomly selected 

SNPs are being screened for an association with a phenotype. Because of the enor-

mous number of genotype-phenotype associations tested in a genome-wide study, 

spurious associations will substantially outnumber true ones unless rigorous statisti-

cal thresholds are applied; smaller p values generally provide greater support for a true 

association. However, standard Bonferroni correction is overly conservative because 

it assumes the independence of all tests performed, but in many association studies 

markers are not independent because they are in linkage disequilibrium.

Sadly, this growing consensus for requiring p values < 5 × 10–7 makes clinical 

nutrigenetics/nutrigenomics virtually impossible. Inherently, such studies involve 

tens to hundreds but not thousands of subjects and often measure phenotype param-

eters that are not practically measured in large populations. If the phenotype to be 

explained is not easily detected in thousands of people, a population GWAS approach 

is not possible. For example, we later discuss studies on fatty liver that require con-

trolled diet conditions and mass resonance imaging. It might be possible to perform 

such studies on hundreds of people, but certainly not on tens of thousands. For clini-

cal nutrigenetics/nutrigenomics approaches to be viable we need to use study designs 

that allow less stringent p values than are used for GWAS studies. The appropriate 

design elements have already been considered by the scientific panel that suggested 

the rigorous p values for GWAS studies [1].

Reasons that are appropriate for lowering the threshold for calling a finding of a par-

ticular SNP-phenotype association are the selection of targeted SNPs based on knowl-

edge of the underlying processes causing the phenotype (e.g. selecting the gene for 

endogenous biosynthesis of a nutrient when studying the phenotype associated with 

deficiency of the nutrient), or selecting SNPs that are likely to result in defective pro-

tein products (such as non-synonymous coding SNPs) [1]. Selection of SNPs for which 

there is credible laboratory evidence or a validated in silico prediction a priori permits 

accepting a less rigorous p value; however, creating a credible biological hypothesis post 

hoc is not acceptable [1]. The lowering of the threshold for positively identifying a par-

ticular SNP-phenotype association must be declared before initiation of the analysis and 

not once the analysis has begun [1]. Additional information gathered from laboratory 

techniques, bioinformatic tools and a priori biological insight should be used to provide 

plausibility for interpreting genetic association findings [1]. It is important to limit the 

number of candidate SNPs considered as the number of multiple comparisons made in 

the analysis drives the possibility of false discovery. Inherently, small sample sizes can 

provide imprecise or incorrect estimates of the magnitude of the observed effects; thus, 
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the effect size must be large enough to stand out from such noise. An estimated effect 

size that is large (that is, with an odds ratio greater than 2) in a small but well-powered 

study can lend credence to an association, because unknown confounding factors are 

less likely to produce large effects [1]. Finally, replication of the association between 

SNP and phenotype in an independent study is important.

Thus, though some geneticists initially expressed doubts about results generated 

in clinical nutrigenetics/nutrigenomics because they reflexively expect large popula-

tion studies with very small p values, there are reasonable study designs under which 

clinical nutrigenetics/nutrigenomics is not only possible but practical (targeted and 

small number of SNPs studied based on biological insights with SNPs that have a 

large effect size and results that can be replicated).

Other Considerations before Undertaking Clinical Nutrigenetics/Nutrigenomics

In GWAS or clinical nutrigenetics/nutrigenomic studies, a haplotype associated with 

the phenotype of interest can be identified. The identified polymorphism is rarely 

the actual phenotype-causing variant, but is more likely to be correlated, or in link-

age disequilibrium with the functional SNP. Because SNP arrays do not assay every 

polymorphism in a genomic region, it is not possible to identify all the surround-

ing genetic variants that are correlated with the identified marker. However, we can 

define the boundaries within the gene where sequencing or subsequent fine-mapping 

experiments are appropriate [2].

Prototype Experiment in Nutrigenetics/Nutrigenomics: Studies on Choline 

Deficiency

The case study of the effects of genetic variation on dietary requirements for cho-

line provides an excellent example of how clinical nutrigenetics/nutrigenomics can 

be used. In these studies, SNPs in the gene responsible for de novo biosynthesis of 

choline were associated with the risk for developing choline deficiency (phenotype). 

When young women were found to be resistant to developing choline deficiency, the 

role of estrogen in induction of choline biosynthesis was identified. In addition, the 

effects of choline on epigenetic regulation of gene expression were studied.

Choline Metabolism

Choline is involved in 3 major pathways: acetylcholine synthesis, methyl donation via 

betaine, and phosphatidylcholine synthesis [3]. Choline, via its irreversible oxidation 

to betaine [4], methylates homocysteine to form methionine. This is the precursor for 
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synthesis of S-adenosylmethionine, the universal methyl donor needed for methyla-

tion of DNA, RNA and proteins. It is important to realize that choline, methionine 

and folate metabolism are inter-related at the step that homocysteine is methylated to 

form methionine [5]. Perturbing metabolism of one of the methyl-donors results in 

compensatory changes in the other methyl-donors due to the intermingling of these 

metabolic pathways [6–8]. Rats treated with the anti-folate, methotrexate, had dimin-

ished pools of choline metabolites in liver [7, 9]. Rats ingesting a choline-deficient 

diet had diminished tissue concentrations of methionine and S-adenosylmethionine 

[10] and doubled plasma homocysteine concentrations [11]. Humans who were cho-

line deficient, even when fed adequate amounts of folic acid, had diminished capacity 

to methylate homocysteine [12].

Most of the foods we eat contain various amounts of choline, choline esters and 

betaine [13], and in 2004 the United States Department of Agriculture released a data-

base on choline content in common foods (www.nal.usda.gov/fnic/foodcomp/Data/

Choline/Choline.pdf). The foods with greatest abundance of choline are of animal 

origin, especially eggs and liver. Human breast milk also is a good source of free cho-

line and choline esters [14], and the manufacturers of infant formulas have recently 

modified the content of choline compounds to levels similar with the ones in human 

breast milk [14, 15]. The only source of choline other than diet is de novo biosynthe-

sis of phosphatidylcholine catalyzed by phosphatidylethanolamine-N-methyltrans-

ferase (PEMT) in liver. This enzyme uses S-adenosylmethionine as a methyl donor 

and forms a new choline moiety [16].

Studies in humans show that dietary choline is required (reviewed in [3] and dis-

cussed later). In 1998, the US Institute of Medicine (Food and Nutrition Board) estab-

lished for the first time adequate intake (AI) and tolerable upper intake limit values for 

choline, based on limited human studies [17] The AI is 550 mg/70 kg body weight, with 

upward adjustment in pregnant and lactating women; the upper intake limit ranges 

from 1,000 mg/day in children to 3,500 mg/day in adults [17]. For some age categories 

for which adequate data were missing, AI values have been set by extrapolating from 

adult values (for ages 1–18 years), and from infants (for ages 7–12 months) [17]. The 

2005 NHANES survey reported that most people do not achieve the recommended 

AI for choline [18]. In participants from the Framingham Offspring Study the mean 

intake for total choline (energy adjusted) was below the AI values, with a mean intake 

of 313 mg/day; moreover, there was an inverse association between choline intake and 

plasma total homocysteine concentration in subjects with low folate intakes [19].

Consequences of Dietary Choline Deficiency in Humans

Using a clinical methodology for phenotyping individuals with respect to their sus-

ceptibility to developing organ dysfunction when fed a low choline diet [12, 20–22], 

adult men and women (pre- and postmenopausal) aged 18–70 years were admitted 
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to the General Clinical Research Center, UNC Chapel Hill and fed a standard diet 

containing a known amount of choline (550 mg/70 kg/day; baseline). On day 11, sub-

jects were placed on a diet containing <50 mg choline/day for up to 42 days. Blood 

and urine were collected to measure various experimental parameters of dietary 

choline status, and markers of organ dysfunction and liver fat were assessed. If at 

some point during the depletion period functional markers indicated organ dysfunc-

tion associated with choline deficiency, subjects were switched to a diet containing 

choline until replete. Most men and postmenopausal women fed low choline diets 

under controlled conditions developed reversible fatty liver (measure by mass reso-

nance spectroscopy) as well as liver and muscle damage, while 56% of premenopausal 

women were resistant to developing choline deficiency [22]. This observation imme-

diately suggested that estrogen moderated the dietary requirement for choline, and, 

indeed, estrogen induces the gene (PEMT) that makes endogenous synthesis of cho-

line possible [23]. The classic actions of estrogen occur through its receptors ERα 

and ERβ which bind as homodimers or heterodimers to estrogen response elements 

(EREs) in the promoters of many estrogen-responsive genes [24]. The consensus ERE 

(PuGGTCAnnnTGACCPy) [24] and some imperfect ERE half site motifs (ERE1/2) 

bind with ERα and ERβ [25–27]. There are multiple EREs in the promoter region(s) 

of the PEMT gene [23] and estrogen caused a marked up-regulation in PEMT mRNA 

expression and enzyme activity in human hepatocytes [23]. Thus, premenopausal 

women have an enhanced capacity for de novo biosynthesis of choline moiety. During 

pregnancy, estradiol concentration rises from approximately 1 to 60 nM at term [28, 

29], suggesting that capacity for endogenous synthesis of choline is highest during the 

period when females need to support fetal development.

Pregnancy and lactation are times when demand for choline is especially high. 

Large amounts of choline are delivered to the fetus across the placenta, where cho-

line transport systems pump it against a concentration gradient [30, 31] and deplete 

maternal plasma choline in humans [32]. Plasma or serum choline concentrations 

are 6- to 7-fold higher in the fetus and newborn than they are in the adult [33, 

34]. High levels of choline circulating in the neonate presumably ensure enhanced 

availability of choline to tissues. It is interesting that despite enhanced capacity to 

synthesize choline, the demand for this nutrient is so high that stores are depleted 

during pregnancy. Pregnant rats had diminished total liver choline compounds 

compared to non-mated controls and become as sensitive to choline-deficient diets 

as were male rats [35]. Because milk contains a great deal of choline, lactation fur-

ther increases maternal demand for choline, resulting in further depletion of tissue 

stores [35, 36]. These observations suggest that women depend on high rates of 

PEMT activity, as well as on dietary intake of choline to sustain normal pregnancy. 

Pemt–/– mice abort pregnancies at around 9–10 days of gestation unless fed supple-

mental choline (personal observation; [37]). As discussed later, choline nutriture 

during pregnancy is especially important because it influences brain development 

in the fetus [38–50].
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Genetic Variation in Dietary Requirements for Choline

Though premenopausal women should be resistant to choline deficiency because 

of estrogen, a significant portion of them (44%) developed organ dysfunction when 

deprived of choline [22]. Genetic variation likely underlies these differences in 

dietary requirements. As noted earlier, PEMT encodes for a protein responsible for 

endogenous formation of choline, and 78% of female carriers of the variant (C) allele 

in a SNP in the promoter region of the PEMT gene (rs12325817) developed organ 

dysfunction when fed a low choline diet (OR 25, p < 0.00005; p value based on 64 

women studied) [51]. The frequency of this variant allele was 0.74 in North Carolina. 

The risk haplotype abrogated the induction of PEMT by estrogen, while the wild-type 

haplotype did not [Resseguie et al., manuscript submitted]. The SNP rs12325817 is 

not located in an estrogen response element but probably is in linkage disequilibrium 

with a functional SNP within such a response element.

Other SNPs in choline metabolism genes may have some influence on the dietary 

requirements for choline, though the p values for these associations are not as robust 

as for rs12325817. The first of 2 SNPs in the coding region of the choline dehydro-

genase gene (CHDH; rs9001) had a protective effect on susceptibility to choline 

deficiency, while a second CHDH variant (rs12676) was associated with increased 

susceptibility [51]. We did not have the power in this study to identify any association 

of a SNP in the betaine:homocysteine methyltransferase gene (BHMT; rs3733890) 

with susceptibility to choline deficiency [51].

Genetic variants of genes in folate metabolism also modified the susceptibility 

of these subjects to choline deficiency [52]. Premenopausal women who were car-

riers of the very common 5,10-methylenetetrahydrofolate dehydrogenase-G1958A 

(MTHFD1; rs2236225) gene allele were more than 15 times as likely as non-carriers 

to develop signs of choline deficiency (p < 0.0001) on the low choline diet. Sixty-three 

percent of our study population had at least 1 allele for this SNP. The rs2236225 poly-

morphism alters the delicately balanced flux between 5,10-methylene tetrahydrofo-

late and 10-formyl tetrahydrofolate and thereby influences the availability of 5-methyl 

THF for homocysteine remethylation [53]. This increases demand for choline as a 

methyl-group donor. It is of interest that the risk of having a child with a neural tube 

defect increases in mothers with the rs2236225 SNP [54]. We did not have sufficient 

power in the study to detect any effects of other folate metabolism SNPs (C677T and 

A1298C polymorphisms of the 5,10-methylene tetrahydrofolate reductase gene and 

the A80C polymorphism of the reduced folate carrier 1 gene) [52].

Choline and Neural Development

Rats and mice fed a low choline diet in late pregnancy (gestational days 12 to 17 in 

mice, days 12 to 18 or 20 in rats) had reduced neural progenitor cell proliferation and 
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increased apoptosis in fetal hippocampus and cortex [38, 44, 55]. Similar outcomes 

were reported when pregnant mice are fed a low-folate diet [56], suggesting, again, 

potential synergistic mechanisms of action between folate and choline.

The mechanisms associating choline deficiency with decreased cell proliferation 

are, in part, related to the over-expression of cyclin-dependent kinase inhibitors 

(Cdkn) like p27Kip1 [40], p15Ink4b [40, 45] and Cdkn3 [45, 57], suggesting that 

choline deficiency inhibits cell proliferation by inducing G1 arrest due to the inhibi-

tion of the interaction between cyclin-dependent kinases and cyclins. Using mouse 

hippocampal and cortical progenitor cells exposed to choline deficiency for 48 h, 

oligonucleotide-array analysis of gene expression showed expression changes in more 

than a thousand genes, of which 331 were related to cell division, apoptosis, neuronal 

and glial differentiation, methyl metabolism, and calcium-binding protein ontology 

classes [58], consistent with the phenotype of reduced cell proliferation, increased 

apoptosis, and increased differentiation.

Choline Deficiency Alters Gene Expression via Epigenetic Mechanisms

Neural development is influenced by DNA methylation. Overall levels of methylation 

decrease as neuronal differentiation proceeds [59] and the treatment of neural pro-

genitor cells with demethylating agents induces them to differentiate into cholinergic 

and adrenergic neurons [60]. Although the relationship between nutrition and epige-

netics has been firmly established in the last few years [61], less is known about the role 

nutrition has in the epigenetic regulation of fetal brain development. Because dietary 

choline is an important player in the maintenance of the S-adenosylmethionine pool 

(the methyl donor for DNA methylation), along with folate and methionine, it is rea-

sonable to expect that choline influences the epigenetic status of the developing brain. 

Global DNA methylation is decreased in the neuroepithelial layer of the hippocam-

pus in choline deficient mouse fetal brains. Along with decreased global methyla-

tion, changes in gene-specific methylation were reported, where a cyclin-dependent 

kinase (Cdkn3) was hypo-methylated in its promoter by choline deficiency [45, 57] 

in the progenitor layer of the hippocampus. These alterations were associated with 

increased protein expression of this cyclin-dependent kinase inhibitor [45], and this 

model is consistent with previous findings showing that there is epigenetic regulation 

of cyclin-dependent kinase inhibitors that regulate cell proliferation [62].

Long-Lasting Consequences of Prenatal Choline Availability

The changes induced by dietary choline in fetal brain have long-lasting effects that alter 

brain function throughout life. Maternal dietary choline availability during late preg-

nancy was associated with long-lasting changes in the hippocampal function of the adult 
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offspring. Choline supplementation during this period enhanced visuo-spatial and 

auditory memory in the adult rats throughout their life-span [63–67]. It also enhanced 

a property of the hippocampus, long-term potentiation [46, 68, 69]. The offspring from 

mothers fed a choline-deficient diet manifested opposite outcomes [64, 68].

Implications for Human Brain Development

It is always difficult to extrapolate findings reported using animal models to humans. 

However, limited data are available to support the hypothesis that similar mechanisms 

are involved in humans. Due to ethical constraints, no studies are available in children 

or pregnant mothers to validate the rodent model. Because the 2005 National Health 

and Nutrition Examination Survey (NHANES) data suggests that pregnant women do 

not consume adequate amounts of choline [18], and case-control studies in California 

suggest that women eating lower choline diets are at increased risk for giving birth to 

babies with neural tube defects [70] and cleft palate [71], the recommendation that 

pregnant women should attempt to consume diets adequate in choline seems reason-

able. In addition, because half of the population has gene polymorphisms that affect 

choline and folate metabolism [52, 72], it is likely that different individuals may have 

different dietary requirements for choline and may need to pay special attention to 

choline intake during pregnancy.
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The therapeutic benefits of fruits, vegetables, tea and wine are mostly attributed to 

the presence of phenolic compounds. Naturally occurring dietary polyphenols, such 

as curcumin (diferuloylmethane, an active component of spice turmeric) and res-

veratrol (phytoalexin, a flavanoid found in red wine) can modulate signaling path-

ways mediated via NF-κB and MAP kinase, and up-regulate glutathione biosynthesis 

genes through activation of Nrf2. Polyphenols also down-regulate the expression of 

pro-inflammatory mediators, matrix metalloproteinases and adhesion molecules by 

inhibiting histone acetyltransferase (HAT) activity and activating histone deacety-

lases (HDACs)/sirtuins. It has been reported that in severe asthma and in chronic 

obstructive pulmonary disease (COPD) patients, oxidative stress not only activates 

the NF-κB pathway but also alters the histone acetylation and deacetylation balance 

via post-translational modifications of HDACs. Corticosteroids have been one the 

major modes of therapy against various respiratory diseases, such as asthma and 

COPD. Failure of corticosteroids to ameliorate such disease conditions is due to the 

reduction of HDAC2 and SIRT1 levels/activities in lungs of asthmatics and COPD 

patients. Dietary polyphenols, such as curcumin, resveratrol, and catechins have been 

reported to modulate epigenetic alterations in various experimental models. The 

anti-inflammatory property of curcumin, resveratrol, and catechins is associated with 

their ability to induce HDAC activity and thereby restore the efficacy of glucocorti-

coids or overcome its resistance. Thus, these polyphenolic compounds have thera-

peutic value as antioxidants, anti-inflammatory therapy and adjuvant therapy with 

steroids against chronic inflammatory and epigenetically-regulated diseases. In this 

chapter we present the current knowledge on the mode of action of these polyphenols 

in the light of HDACs.
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Polyphenols: An Overview

A variety of dietary plants contain polyphenols which impart disease prevention abil-

ities to fruits and vegetables. Polyphenols are secondary metabolites of plants and 

represent a vast group of compounds having aromatic ring(s), characterized by pres-

ence of one or more hydroxyl groups with varying structural complexities. The most 

widely distributed group of plant phenolics are flavonoids. The flavonoids subclasses 

comprise of flavonols, flavones, flavanols, isoflavones, antocyanidins, and others. In 

this chapter, we will consider the biological properties, with special reference to epi-

genetics (histone acetylation/deacetylation) and inflammation, of some well-known 

and well-studied polyphenols, such as resveratrol, curcumin, and catechins.

Modulation of Inflammation by Polyphenols

Investigations into the mechanism of action of polyphenols have revealed that poly-

phenols may modulate cellular signaling during inflammation [1–3]. In the following 

sections, some individual polyphenolic compounds will be discussed, especially their 

anti-inflammatory properties which impart their effects via chromatin/epigenetics-

deacetylase modifications (fig. 1).

Resveratrol

Resveratrol (3,5,4�-trihydroxystilbene) is a phytoalexin and was first discovered in 

grapes in 1976. It contains 2 phenolic rings connected by a double bond and has 
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2 isoforms: trans-resveratrol and cis-resveratrol, with the former being more stable 

[4]. Recently, it has been reported that resveratrol can inhibit inflammatory cytokine 

expression in response to lipopolysaccharide challenge in rat lungs [5]. Resveratrol 

can also inhibit the activation of transcription factors, such as NF-κB and AP-1 in 

monocytic U937 cells and alveolar epithelial A549 cells [6, 7]. Resveratrol can inhibit 

phorbol ester (PMA)-induced cyclooxygenase-2 (COX-2) activation, matrix met-

alloproteinases, adhesion molecules, and inducible nitric oxide synthase gene via 

down-modulation of NF-κB activation [8, 9]. Furthermore, resveratrol inhibits the 

activation of c-Jun N-terminal kinases (JNK) [10] and its upstream kinase, mitogen-

activated protein kinase [11]. Therefore, it appears that resveratrol can modulate a 

variety of pro-inflammatory pathways via inhibiting NF-κB and MAPK activation.

Curcumin

Curcumin, a yellow-colored compound, is a member of the curcuminoid family of 

compounds obtained from the rhizome of Curcuma longa L. (family Zingiberaceae). 

Curcumin is one of the most extensively studied polyphenols and is reported to have 

a wide variety of effects, such as anti-inflammatory, antibacterial, antiviral, antifun-

gal, antitumor, antispasmodic and hepatoprotective [12].

Curcumin inhibits NF-κB activation, along with suppressing IL-8 release, COX-2 

expression, and neutrophil recruitment in the lung [2]. Curcumin inhibits cigarette 

smoke-induced NF-κB activation by inhibiting IκBα kinase in human lung epithe-

lial cells [13]. Similar to resveratrol, curcumin also down-regulates various NF-κB-

regulated genes that are involved in inflammation, such as leukotrienes, phospholipase 

A2, 5-lipoxygenase, adhesion molecules, inducible nitric oxide synthase and COX-2. 

In different cell types, various kinase signaling pathways, such as JNK, p38, AKT, 

JAK, ERK and PKC, are also modulated by curcumin [14]. Therefore, to identify the 

actual mechanism by which curcumin exerts its anti-inflammatory effects is com-

plicated by its pleiotropic nature due to its ability to target so many different cellular 

signaling pathways. However, it may be possible that the ability of curcumin to pre-

vent cross-talk between myriad signaling pathways might be a pre-requisite for its 

anti-inflammatory properties.

Catechins

These are monomeric flavanols comprising of chemically similar compounds, such 

as catechin, epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin 

gallate (EGCG) [15]. EGCG predominates among the various tea polyphenols and 

is considered to be the major therapeutic agent. EGCG has been shown to inhibit 

cigarette smoke extract-induced pro-inflammatory cytokine release in lung epithelial 

cells [16]. EGCG decreased NF-κB activity through hypoacetylation of RelA/p65 by 

directly inhibiting the activity of HAT [17]. EGCG has also been shown to modulate 

NF-κB/AP-1 activity in PMA-stimulated mouse epidermal JB6 cells via inactivation 

of AP-1 [18] and/or NF-κB [19]. Similar to curcumin, green tea polyphenols also 
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modulate myriad inflammatory signaling pathways [9] and therefore a single path-

way cannot be assigned to the anti-inflammatory properties of these compounds.

Deacetylases and Inflammation

HDACs remove acetyl moieties from the ε-acetamido group on lysine residues of 

histones. The resulting deacetylation leads to chromatin condensation and therefore 

gene silencing. In addition to deacetylation of histones, HDACs can also deacetylate 

non-histone proteins, such as NF-κB, thus regulating NF-κB-dependent pro-inflam-

matory gene transcription [20]. Earlier investigations from our laboratory have shown 

that cigarette smoke-induced reduction in HDAC2 was concomitant to increased lev-

els of total and acetylated RelA/p65 [20, 21]. Furthermore, the study revealed that 

RelA/p65 interacts with HDAC2 and RelA/p65 is retained in the nucleus, leading to 

activation of pro-inflammatory gene transcription when HDAC2 is deficient [20, 21]. 

It is important to note that there is a significant decrement in the expression/activ-

ity of HDAC2 in lung parenchyma, bronchial biopsies and alveolar macrophages of 

COPD patients [22]. Decrease in the expression/activity of HDAC2 negatively cor-

related with the disease severity and the intensity of lung inflammation [22, 23]. In 

contrast to increased HAT activity in bronchial biopsies and alveolar macrophages 

of asthmatics [24], there was no observed alteration in HAT activity in the lungs of 

COPD subjects [23].

Sirtuins (SIRT) belong to class III HDACs. They were the first to be reported to 

determine life span in yeast and the nematode. Unlike class I and II deacetylases, sir-

tuins are NAD+-dependent and are not inhibited by trichostatin A [25]. Since sirtuins 

require NAD+ coming from metabolic reactions, it is hypothesized that sirtuins might 

act as a molecular link between cellular metabolic status (expressed by the NAD+/

NADH levels) and cellular transcription [26]. The best characterized and studied 

among the sirtuins is SIRT1, which is activated by polyphenolic compounds such as 

resveratrol. It is a nuclear deacetylase which primarily but not exclusively deacetylates 

proteins involved in transcriptional regulation. SIRT1 can therefore influence a wide 

range of physiological aspects, such as apoptosis/cell survival, autophagy, chromatin 

remodeling, gene transcription, senescence, endocrine signaling, and differentiation.

HDAC2 and Steroid Resistance

Chronic resistance to glucocorticoids is observed in patients with moderate to severe 

COPD and in asthmatics who smoke. HDAC2 is an important mediator of gluco-

corticoid activity and is found to be reduced in lungs of COPD patients and those of 

rodents exposed to oxidative stress or cigarette smoke. Molecular mechanisms, such 

as activation of NF-κB and mitogen-activated protein kinase pathways, over-activa-

tion AP-1, reduced HDAC2 expression, and increased macrophage migration inhibi-

tory factor have been implicated in onset of glucocorticoid resistance [27].
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HDAC2 is required for the anti-inflammatory effects of glucocorticoids in COPD 

patients. Thus, reduction in the levels/activity of HDAC2 leads to corticosteroid 

resistance in such patients [22, 28]. Polyphenolic compounds, such as theophylline 

have been shown to significantly increase HDAC2 activity thereby enhancing dex-

amethasone-induced suppression of IL-8 release in alveolar macrophage of COPD 

subjects [29] and exacerbations of COPD patients [30]. Furthermore, the ability of 

the HDAC2 to deacetylate glucocorticoid receptor (GR) enables GR to associate with 

RelA/p65, which leads to the attenuation of pro-inflammatory gene transcription 

[28]. Therefore, therapeutic restoration of HDAC2-dependent deacetylation of RelA/

p65 and GR appears to be a good strategy for enhancing glucocorticoid sensitivity.

Sirtuins and Epigenetic Changes

The epigenetic effects of SIRT1 can be appreciated in view of the ability of SIRT1 to 

deacetylate various transcription factors such as p53, forkhead transcription factor 

(FOXO), NF-κB, and histone proteins. Some of the physiological phenomena regulated 

by these transcription factors in response to environmental and toxic challenges incl-

ude stress resistance, apoptosis, and inflammation [31]. While acetylation of FOXO3 

leads to its inactivation, deacetylation by SIRT1 leads to its activation. Therefore, it 

can be surmised that SIRT1-mediated deacetylation of FOXO3 can induce cell cycle 

arrest, a phenomena altered in cancer cells. Furthermore, increased transcription 

of GADD45 (DNA repair system) and MnSOD (reactive oxygen detoxification) is a 

direct physiological consequence of deacetylation of FOXO3 by SIRT1 [32].

A series of reports have now emphasized the role of SIRT1 in epigenetic regulation 

of gene expression in cancer cells. Hyperacetylation of H4-K16 and decreased trim-

ethylation of H3-K9 and H4-K20 have been observed after down-regulation of SIRT1 

by siRNA in mammalian cells [33]. SIRT1 preferentially deacetylates H4-K16 in vitro 

[33]. In addition, loss of H4-K16 acetylation and H4-K20 trimethylation has been a 

hallmark in various tumors and tumor-derived cell lines, suggesting that these modi-

fications may be characteristic epigenetic markers of cancer [34]. Promoter regions of 

tumor-suppressor genes whose DNA are hypermethylated and are silenced in many 

types of cancers are characteristic sites of localization of SIRT1 [35]. Such silenced 

genes were up-regulated in breast and colon cancer sells by down-regulation of SIRT1 

levels/activity via increased H4-K16 as well as H3-K9 acetylation in such promot-

ers [35]. Thus SIRT1-mediated epigenetic changes may play an important role in the 

modulation of various types of cancers and modulation of SIRT1 by polyphenols may 

serve as a chemopreventive agent.

Modulation of Deacetylases by Dietary Polyphenols

Dietary polyphenols, such as resveratrol, curcumin and catechins are shown to mod-

ulate NF-κB activation and chromatin remodeling through modulation of SIRT1 and 
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HDAC2 activity attenuating inflammatory gene expression in lung epithelium and 

macrophages (fig. 2). NF-κB (due to intrinsic HAT activity) can lead to acetylation of 

histones thus causing epigenetic effects.

Modulation of SIRT1

A wide variety of compounds have now been identified, which can inhibit and/or 

activate sirtuins. Resveratrol, which activates SIRT1, deactivates p53 by significantly 

inhibiting p53 acetylation or by increased deacetylation of p53 [36] and protects from 

p53-mediated cellular apoptosis. In addition, resveratrol can also impart protection 
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Fig. 2. Regulation of lung inflammation and chromatin remodeling by polyphenols. Dietary polyphe-

nols modulate cigarette smoke and oxidants-mediated human lung inflammation by regulation of his-

tone modifications. Cigarette smoke/oxidants inhibit histone deacetylases, such as SIRT1 and HDAC2 

(by post-translational modifications), and/or trigger cellular signaling process leading to histone modi-

fications. These epigenetic changes can cause abnormal activation or silencing of genes subsequent 

transcriptional repression or activation. Dietary polyphenols inhibit degradation of SIRT1 and HDAC2, 

and restore glucocorticoid efficacy, culminating in inhibition of chronic inflammatory response in the 

lung. Ac = acetylated, p = phosphorylated, NO2 = nitric oxide, GR = glucocorticoid receptor.
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against Bax-induced apoptosis by favoring SIRT1-induced formation of Ku70-Bax 

complex [37]. Resveratrol has also been reported to increase DNA repair capacity and 

stress resistance by FOXO1/3-dependent expression of GADD43 and p27kip1 [38]. 

Such an effect has also been reported for other sirtuin-activating natural products, 

such as quercetin. Thus, resveratrol can impart cellular protection via modulating 

multiple targets.

Alternatively, cancer cells might be targeted using sirtuin inhibitors. These 

inhibitors induce cell damage by sensitizing the cells to p53-dependent apoptosis 

[36]. Pharmacological inhibition of SIRT1 decreases cellular resistance to stress and 

hence promotes cellular apoptosis due to reduced constraint on FOXO3/4 other-

wise inhibited by SIRT1 [39]. SIRT1 is known to sensitize tumor cells to TNF-α-

induced cell death via inhibiting transactivation of NF-κB [40]. Thus it appears 

that SIRT1 inhibitors might yield cytoprotective effects by desensitizing the cells 

to TNF-α and therefore prevent cell death. Recently, it has been shown that SIRT1 

activators also inhibit NF-κB-mediated inflammatory mediators release and pos-

sibly overcome steroid-resistance in response to oxidative stress [41–43]. Therefore, 

it can be surmised that modulators of sirtuins might act as novel anti-inflamma-

tory drugs via modulation of NF-κB. Furthermore, reports emerge it is becoming 

increasingly attractive to consider whether a combination of sirtuin inhibitors and 

DNA damaging anti-tumor drugs might offer a novel strategy for effective chemo-

therapeutic cancer therapy.

Modulation of HDACs

Inhibition of HDACs is a new concept in cancer chemoprevention. Of the many 

HDAC inhibitors known, butyrate, diallyl disulfide, and sulforaphane (SFN) are 

reported to exhibit anticancer properties [44]. However, in contrast to the tradi-

tional HDAC inhibitors, such as trichostatin A or SAHA, which are effective at lower 

concentrations (nanomolar range), the new range of dietary HDAC inhibitors are 

required in greater concentrations (micromolar range) [45]. Therefore, it is impor-

tant to determine whether or not the concentrations of the new class of inhibitors are 

achieved under normal physiological conditions.

Of all the types of HDAC inhibitors known, butyrate is the smallest in size and can 

fully fit into the HDAC active site. The inhibitory effect of butyrate is exhibited in 

vitro between the high micromolar to low millimolar range, which might be achiev-

able in the intestinal tract. The possibility of achievement of such a high concentra-

tion within the intestinal tract arises from the fact that colonocytes use butyrate as 

an oxidative fuel.  Diallyl disulfide, found in garlic, is another HDAC inhibitor [46]. 

In vivo, it is metabolically converted to S-allylmercaptocysteine and its structure is 

similar to butyrate except that it has a ‘spacer’ ending with a carboxylate group [47]. 

SFN-cysteine contains a similar spacer and is a metabolite of SFN found in broc-

coli and broccoli sprouts. In the concentration range 3–15 mM, SFN-cysteine sig-

nificantly inhibits HDAC activity [48]. In contrast, the parent compound SFN alone 
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had no effect on HDAC activity. However, little is known about the distribution and 

concentrations of SFN and its active form(s) in different tissues. Although there are 

many dietary compounds that have HDAC inhibitory properties, more investigations 

are required in order to understand their bioavailability and the achievable concen-

trations of these compounds within the body.

Restoration of glucocorticoid function by curcumin is mediated through up-reg-

ulation of HDAC2 activity and restoration of HDAC1 and HDAC3 levels [20, 21]. 

Therefore, polyphenol-dependent redressing of HAT-HDAC imbalance has a signifi-

cant impact on the epigenome and therefore inflammation, a concept that is corrobo-

rated by another report showing the ability of curcumin to inhibit HAT activity at 

very high concentration (100 mM) and stalling NF-κB-mediated histone acetylation 

[49]. Alternative mechanisms of polyphenol-mediated inhibition of inflammatory 

response could be through the reversing post-translational protein modifications of 

HDAC2 induced by oxidants and reactive aldehydes.

Corticosteroids have been one the major modes of therapy against various respira-

tory diseases, such as asthma and COPD. Failure of corticosteroids to ameliorate such 

disease conditions has been attributed to their failure to either recruit HDAC2 and 

SIRT1 or to the presence of an oxidatively modified HDAC2/SIRT1 in asthmatics and 

COPD patients. As discussed above, modulation of HDAC2/SIRT1 by dietary poly-

phenolic compounds may be useful in overcoming the steroid resistance in patients 

with asthma and COPD.

Conclusions

Epigenetics changes are increasingly believed to modulate the development and pro-

gression of many diseases including cancer and chronic respiratory disorders. It is 

important to understand whether or not a common target is shared by the class I & 

II HDACs and sirtuins, so that a common therapeutic agent may be designed. Recent 

reports highlight the pharmacological significance of sirtuin-modulating drugs, and 

also suggest that identification of substrates specifically targeted by a single class of 

deacetylases, e.g. SIRT1 would have considerable therapeutic implications in chronic 

inflammatory diseases.

There are emerging reports that epigenetic alterations might be associated with 

chronic lung diseases. Recent advances in asthma and COPD research have suggested 

that epigenetic mechanisms, such as genomic imprinting, histone modification, DNA 

methylation of regulatory sequences other genes, and regulation by microRNA may 

also contribute to the susceptibility and complexity of the disease (including in utero) 

and hence dietary polyphenols may play a pivotal role in regulating these epigenetic 

modifications. The anti-inflammatory property of curcumin, resveratrol, and cate-

chins may be due to their ability to induce HDAC2 activity and thereby restore the effi-

cacy of glucocorticoids or overcome its resistance. Thus, regulation of inflammation 
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Epigenetics is the study of the regulation of gene activity that is not dependent on 

nucleotide sequence; this may include heritable changes in gene activity and expres-

sion, but also long-term alterations in the transcriptional potential of a cell that are 

not heritable. These features are potentially reversible and may affect genomic stability 

and expression of genes. In recent years, great strides have been made in understand-

ing the many molecular sequences and patterns that determine which genes can be 

turned on and off. This work has made it increasingly clear that in addition to genetic 

changes, the epigenome is just as critical as the DNA sequence itself for healthy human 

development. Importantly, dietary factors and specific nutrients can modulate epige-

netic alterations and alter susceptibility to disease. As the field of epigenetics grows, a 

whole new level of thinking has emerged as to the impact of nutrients on regulation 

of gene expression and disease susceptibility. For example, the classic view of cancer 

etiology is that genetic alterations (via genotoxic agents) damage DNA structure and 

induce mutations resulting in non-functional proteins that lead to disease progression. 

Aberrant epigenetic events such as DNA hypermethylation and altered histone acety-

lation have been observed in cancer. To control histone acetylation, a balance exists in 

normal cells between histone acetyltransferase and histone deacetylase (HDAC) activ-

ities, and when this balance is disrupted, cancer development can ensue. HDAC activ-

ity increases in metastatic cells compared with normal prostate, and global changes 

in acetylation pattern predict prostate cancer risk and recurrence [1]. Targeting the 

epigenome, including the use of HDAC and DNA methyltransferase (DNMT) inhibi-

tors, is an evolving strategy for cancer chemoprevention and both have shown prom-

ise in cancer clinical trials [2]. Essential micronutrients such as biotin, B12 and folate, 

and phytochemicals such as sulforaphane and allyl compounds can impact epigenetic 

events as a novel mechanism of action. This chapter highlights the interactions among 

nutrients, epigenetics and cancer susceptibility. In particular, we focus on the impact 
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of specific nutrients and food components, such as sulforaphane, on histone modifica-

tions that can alter gene expression and influence cancer progression.

Use of Histone Deacetylase Inhibitors in Cancer Prevention

Post-translational modifications to histone proteins have been linked to the tran-

scriptional status of chromatin. Modifications of histones include, but are not limited 

to, phosphorylation, biotinylation, methylation and acetylation. The reversible acety-

lation of nuclear histones is one of the better characterized histone modifications and 

is an important mechanism of gene regulation. In general, addition of acetyl groups 

to histones by histone acetyltransferase enzymes results in an ‘open’ chromatin con-

formation, facilitating gene expression by allowing transcription factors access to 

DNA. Removal of acetyl groups by HDACs results in a ‘closed’ conformation, which 

represses transcription. The HDACs can be divided into 4 classes based on their struc-

ture and sequence homology: class I consists of HDACs 1, 2, 3 and 8; class II includes 

HDACs 4, 5, 6, 7, 9 and 10; class III enzymes comprise the NAD-dependent Sir2-

related proteins, and class IV contains HDAC11. Class I and II HDACs belong to the 

classical HDACs and their activities are inhibited by trichostatin A. Class III HDACs 

are homologous to the yeast Sir2 deacetylases and are a family of proteins classified 

as sirtuins that are not affected by trichostatin A. Class I HDACs are homologous 

to the yeast Rpd3 and are primarily found in nuclear complexes. Class II HDACs 

are homologous to the yeast protein Hda1, and are capable of translocating in and 

out of the nucleus. In addition to histone core proteins, several non-histone proteins 

have been identified that are targeted, especially by class II HDAC enzymes. Targets 

include cellular proteins such as transcription factors (e.g. p53, androgen receptor, 

NF-κB), structural (e.g. tubulin) and chaperone proteins (e.g. hsp90), to name a few. 

Thus, the effects of HDAC inhibitors may be attributed to mechanisms that involve 

both direct chromatin remodeling and specific modifications to other (non-histone) 

proteins. When dealing with agents that effect both histone and non-histone acetyla-

tion status, the term ‘KDAC’ has been proposed for ‘lysine deacetylase’ inhibitors (the 

letter ‘K’ being the biochemical abbreviation for lysine).

Increased HDAC activity and expression is common in many cancer malignancies, 

and can result in repression of transcription that results in a deregulation of differ-

entiation status, cell cycle checkpoint controls and apoptotic mechanisms. Moreover, 

tumor suppressor genes, such as p21 appear to be targets of HDACs and are ‘turned 

off ’ by deacetylation. Prostate cancer cells also exhibit aberrant acetylation patterns. 

In human patient samples, global decreases in histone acetylation state corresponded 

with increased grade of cancer and risk of prostate cancer recurrence [1]. Importantly, 

inhibitors of HDAC, including suberoylanilide hydroxamic acid (SAHA), valproic 

acid, depsipeptide, and sodium butyrate have been demonstrated to be effective 

against prostate cancer cell lines and xenograft models [3, 4]. Specific genes associated 
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with prostate cancer, such as tubulin, coxsackie and adenovirus receptor, liver can-

cer-1 (DLC-1) and KLF-6, have also shown to be hypoacetylated and repressed in 

prostate cancers [5–7]. The use of class I and II HDAC inhibitors in cancer chemo-

prevention and therapy has gained significant interest. Several ongoing clinical trials 

are attempting to establish the chemotherapeutic efficacy of HDAC inhibitors, based 

on evidence that cancer cells undergo cell cycle arrest, differentiation and apoptosis 

in vitro, and that tumor volume and/or number may be reduced in animal models. 

HDAC inhibitors have been shown to increase global acetylation as well as acetylation 

associated with specific gene promoters. Although the equilibrium is shifted toward 

greater histone acetylation after treatment with HDAC inhibitors, the expression of 

only a relatively small number of genes is altered in an upward or downward direction 

[8]. Importantly, only neoplastically transformed cells appear to respond to increased 

acetylation by undergoing differentiation, cell cycle arrest or apoptosis; normal cells, 

despite the increased acetylation, do not respond in this manner to HDAC inhibitors 

[9]. Thus, effects of HDAC inhibitors on apoptosis and anti-proliferation appear to 

be selective to cancer, not normal cells, although the mechanism is poorly under-

stood. In general, HDAC inhibitors have been subdivided into several classifications: 

short chain fatty acids, hydroxamic acids, cyclic tetrapeptides, and benzamides [10, 

11]. Most have a conserved structure and act by blocking the HDAC catalytic site. 

Many of these pharmacological HDAC inhibitors have been used in phase I and I/II 

clinical trials, with promising results [12]. However, many of these compounds also 

exhibit several associated side-effects and toxicities. For example, valproic acid and 

trichostatin A have been associated with developmental abnormalities such as neural 

tube defects [13]. The use of SAHA has also been associated with several hematologic 

toxicities such as myelosuppression and thrombocytopenia [14]. Many of these drugs 

must also be administered i.v., a less than ideal route of administration for patients. 

Although there has been some attempt to develop oral HDAC inhibitor drugs, these 

also have side-effects such as fatigue, anorexia, dehydration and GI upset [14, 15].  

The identification of HDAC inhibitors, with low toxicity but therapeutic efficacy, is 

an important area of research.

Dietary Inhibitors of Histone Deacetylases

Recent studies also suggest that sulforaphane (SFN), an isothiocyanate derived from 

cruciferous vegetables, is an inhibitor of HDAC activity and offers protection against 

tumor development during the ‘post-initiation’ phase of carcinogenesis. The general 

structure of HDAC inhibitors is comprised of a functional group at one end that inter-

acts with a zinc atom and neighboring amino acids at the base of the HDAC active site, 

a spacer that fits into the channel of the active site, and a cap group which is hypoth-

esized to interact with external amino acid residues [16, 17]. Based on the similarity 

of SFN metabolites to the conserved structure of HDAC inhibitors, we hypothesized 



98 Ho · Dashwood

that SFN could effectively inhibit HDAC activity. SFN is metabolized via the mercap-

turic acid pathway, starting with glutathione conjugation by glutathione-S-transferase 

(GST). Subsequent steps generate SFN-cysteine (SFN-Cys) followed by SFN-N-

acetylcysteine. Based on modeling and in vitro work [18–20], it has been hypoth-

esized that SFN-N-acetylcysteine or SFN-cysteine are the active HDAC inhibitors. 

This was supported by metabolite studies, showing significant levels of SFN-cysteine 

generated in SFN-treated prostate cancer cells [Clark J, Ho E, unpubl data]. Molecular 

modeling in the active site of an HDAC enzyme provided evidence that SFN-cysteine 

docked in the HDAC pocket as a competitive inhibitor [21]. In BPH1, PC3 and LnCap 

prostate cancer cells, SFN inhibited HDAC activity with a concomitant increase in 

global histone acetylation, increased acetylated histone H4 interactions with the P21 

and Bax promoter, and induced p21 and Bax mRNA and protein levels [22]. SFN 

also decreased the expression of HDAC6, a class II HDAC and induced concomitant 

increases in acetyl-tubulin levels [unpubl. data]. HDAC inhibition coincided with the 

induction of G2/M phase cell cycle arrest and apoptosis, as indicated by multi-caspase 

activation [22]. HDAC inhibition by SFN has also been established in several other 

cancer cell lines, including breast and colon [21, 23], suggesting the effects are not 

specific to the prostate. In HCT116 human colorectal cancer cells treated with SFN 

there were decreases in HDAC activity, increased global histone acetylation, and a 

selective increase in histone acetylation at the p21 promoter [21]. HT29 colon cancer 

cells, which lack endogenous Nrf2 protein, as well as Nrf2–/– mouse embryonic fibro-

blasts, both exhibited an HDAC inhibitory response to SFN treatment. These results 

indicated the possibility of a separate SFN chemoprevention pathway distinct from 

the classic Nrf2 pathway [24]. Importantly, the effects of SFN do appear to be tumor 

cell specific. We have found that 3–15 μM SFN induces potent HDAC inhibition and 

G2/M arrest in PC3 cancer cells, but have no effect on normal prostate epithelial cells 

[unpubl. data]. These data support the hypothesis that HDAC inhibition may be an 

important mechanism of chemoprevention for SFN and similar pharmacological 

HDAC inhibitors, the cytotoxic effects are specific to cancer, not normal cells.

In vivo, dietary SFN supplementation resulted in slower tumor growth and sig-

nificant HDAC inhibition in the PC3 xenografts, as well as HDAC inhibition in the 

prostate and circulating peripheral blood mononuclear cells [25]. In other dietary 

studies examining intestinal cancer, Apcmin mice were fed ~6 μmol SFN per day for 10 

weeks. In these experiments a significant decrease in intestinal polyps and an increase 

in global acetylated histones H3 and H4 were observed, with specific increases at the 

Bax and p21 promoters [26]. From these studies it can be concluded that HDAC inhi-

bition represents a novel chemoprevention mechanism by which SFN might promote 

cell cycle arrest and apoptosis in vivo. To date very few human clinical trials have 

evaluated the effects of SFN on cancer outcome; however, several pilot and phase 

I human SFN trials have been conducted utilizing different sources of SFN. In our 

laboratory, a small intervention study was performed to determine if the HDAC inhi-

bition effects observed in cell culture and mice could be translated into humans. In 
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clinical trials using pharmacological HDAC inhibitors such as SAHA, alterations in 

acetylated histone status in peripheral blood cell samples are used as a biomarker for 

HDAC inhibitory efficacy. In normal healthy volunteers, after the ingestion of 68 g of 

broccoli sprouts, a significant decrease in HDAC activity was evident in peripheral 

blood mononuclear cells with a concomitant increase in acetylated histones H3 and 

H4 [25]. Broccoli sprouts are a rich source of glucoraphanin, the precursor of SFN; 

thus, these data give preliminary evidence for the ability of dietary SFN to inhibit 

HDAC activity in humans. Follow-up studies will examine the relationship between 

specific SFN metabolites in the circulation and HDAC inhibition.

In addition to SFN, there are many other known and putative diet-derived HDAC 

inhibitors. Experiments with structurally related isothiocyanates such as sulforaphene, 

erucin and phenylbutyl isothiocyanate, had comparable HDAC inhibitory activities 

[20]. Butyrate is the smallest known HDAC inhibitor [reviewed in 27], and contains 

a simple 3-carbon ‘spacer’ attached to a carboxylic acid group. This compound is 

derived from the fermentation of dietary fiber and represents the primary metabolic 

fuel for the colonocytes, where it is present at millimolar concentrations. Recent stud-

ies have confirmed that butyrate acts as a competitive HDAC inhibitor [28]. A second 

class of dietary agents reported to inhibit HDAC activity in vitro is the garlic organo-

sulfur compounds, such as DADS and S-allylmercaptocysteine [29], which can be 

metabolized to allyl mercaptan, a competitive HDAC inhibitor [29]. Treatment of 

human colon cancer cells with allyl mercaptan induced rapid histone acetylation 

along with HDAC inhibition, resulting in increased association of acetylated histones 

and Sp3 transcription factor binding to the promoter element of P21Waf1, thereby 

increasing both p21 mRNA and protein expression and triggering cell cycle arrest 

[30]. More recently, α-keto acid metabolites of organoselenium compounds have also 

been identified as novel HDAC inhibitors in both colon and prostate cancer cells. In 

particular, the metabolite methylselenopyruvate caused HDAC inhibition, increases 

in acetylated histone and p21 promoter activity, and concomitant increases in apop-

tosis and cell cycle arrest at concentrations as low as 2 μM [31, 32].

Future Directions and Conclusions

In addition to histone modifications, methylation of CpG islands in promoter elements 

is a major epigenetic controlling event for gene silencing [33–35].  In fact, transcrip-

tional silencing by aberrant hypermethylation of CpG islands has been reported in 

nearly every tumor type [36, 37]. Many of the commonly silenced genes include tumor-

suppressor genes and genes involved in carcinogen detoxification, hormonal responses 

and cell cycle control [37–40]. Both DNA hypermethylation and histone modifications 

are closely related aspects of chromatin remodeling. Epigenetic control of gene expres-

sion often requires the cooperation and interaction of both mechanisms, and disrup-

tion in these processes can lead to genomic instability and gene silencing, resulting in 
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cancer progression. Interestingly, DNMT1 also appears to direct histone modifications 

by recruiting HDACs [41]. Methylation of CpG sequences by DNMT1 binds specific 

methylated DNA binding (MBD) proteins such as MeCP2 and MBD2. This MBD bind-

ing complex recruits a complex of transcriptional repressors, including HDACs, which 

results in chromatin-associated gene silencing [42, 43]. This relationship between DNA 

methylation and chromatin remodeling suggests significant cross-talk among distinct 

epigenetic pathways that control gene silencing/unsilencing. Indeed, the combination 

of pharmacological DNMT inhibitors and HDAC inhibitors has been explored as a 

potential anti-tumor therapy [44, 45].  However, DNMT inhibitor drugs have potential 

hazards and side effects because they often require incorporation into DNA, thereby 

targeting cells dividing in S phase, leading to greater toxicity [46, 47]. Recently, dietary 

agents that have dual action of promoter methylation and HDAC inhibition have 

been identified. Phenethyl isothiocyanate (PEITC), an isothiocyanate related to SFN 

and which is found in cruciferous vegetables such as watercress, was shown to reverse 

hypermethylation of GSTP1 promoter elements in androgen-dependent and andro-

gen-independent prostate cancer cells. Concurrent with demethylation effects, phen-

ethyl isothiocyanate (2–5 μM) inhibited HDAC activity and increase acetylated histone 

status. At the doses tested, phenethyl isothiocyanate was more effective towards pro-

moter demethylation and HDAC inhibition than chemical DNMT and HDAC inhibi-

tors, 5-aza and trichostatin A [48]. Different epigenetic modifications clearly appear to 

work together to coordinate and maintain gene expression patterns in the cell. Further 

work examining the possible cross-talk between various epigenetic modifications after 

exposure to dietary epigenetic modulators appears to be warranted.

Overall, the identification of dietary agents that target HDAC and/or DNA methy-

lation with few side effects is an important area of research [reviewed in 20, 49, 50], 

and aligns with the National Institutes of Health’s Roadmap priority area on ‘epigenet-

ics’. Many of these dietary agents have multiple actions on various pathways during 

carcinogenesis, and their ability to target several mechanisms, including epigenetic 

targets, may increase their efficacy as chemoprevention agents. Further, the use of 

dietary strategies to inhibit HDACs or other epigenetic modifiers as chemopreven-

tion agents is significant because of the ease of implementation into clinical trials, due 

to their relatively non-toxic nature. Ultimately, these types of study have the potential 

to decrease prevalence of various cancers and/or increase survival through simple 

dietary choices, such as incorporating easily accessible foods into a patient’s diet.
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Obesity

Obesity can be described as the accumulation of adipose tissue to the extent that health 

may be impaired. An excess of body fat, and in particular of abdominal fat, is associ-

ated with multiple complications, leading to poor health. With increasing degrees of 

obesity there are increasing risks of a wide range of obesity complications and pre-

mature death [1–3]. The definition of obesity is based on BMI, which is calculated as 

weight in kilograms divided by height in meters squared (kg/m2). Obesity is defined 

as a BMI greater than 30 kg/m2, and overweight is defined as a BMI between 25 and 

30 kg/m2. In Europe, the prevalence of obesity in men ranges from 4 to 28% and in 

women from 6 to 36%. There is considerable geographic variation, with prevalence 

rates in Central, Eastern and Southern Europe being higher than those in Western 

and Northern Europe [4]. In the United States, it is estimated that about one third of 

the adult population is obese [5].

The metabolic syndrome is a term that refers to a collection of obesity-related 

metabolic abnormalities/risk factors that often co-occur in the same individuals [6]. 

The metabolic syndrome is defined in various ways, but the essential components 

are obesity, glucose intolerance, insulin resistance, lipid disturbances and hyperten-

sion, all well documented risk factors for cardiovascular disease [7–10]. The avail-

able evidence suggests that even modest weight reductions in obese subjects lead to 

improvement in health outcomes [11–13]. Perhaps weight reduction has the most 

pronounced effects on diabetes risk. Studies have shown that intensive lifestyle modi-

fication can reduce the risk of developing diabetes in subjects with impaired glucose 

tolerance [13, 14], and the Swedish Obese Subjects study found drastic reduction in 

diabetes incidence 10 years after bariatric surgery [15].
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Obesity Treatment

Obesity is a chronic condition that is difficult to treat. Unless adipose tissue is surgi-

cally removed (e.g. liposuction or omentectomy), the only way to lose fat is through 

negative energy balance. Theoretically this can be achieved by reduced food intake, 

reduced energy uptake, increased energy expenditure, or a combination of these.

A very low calorie diet (VLCD) or a very low energy diet is defined as a diet with an 

energy content of less than 800 kcal/day but which still contains adequate amounts of 

proteins, essential fatty acids, carbohydrates and the recommended daily allowances 

of vitamins and minerals. Ordinary food is replaced by 3–5 VLCD meals together 

with 2–2.5 l of non-energy fluid per day. At the end of the VLCD period, ordinary 

food is gradually reintroduced over 2–4 weeks. In medical treatment programs, 

VLCD is often used over 12–16 weeks and results in average weight losses of 1.5–2.5 

kg/week [16, 17]. VLCDs are mainly indicated in obese patients with disorders or risk 

factors that can be immediately improved by weight loss (e.g. type 2 diabetes) and 

when rapid weight loss is needed before a major surgical procedure. There is usually 

a rebound in weight after VLCD treatment programs, and it is crucial that the VLCD 

phase is followed by active weight maintenance programs [17].

Obesity surgery provides the greatest degree of sustained weight loss for severely 

obese patients [18]. On average, surgical treatment for obesity results in 20–40 kg of 

weight loss and a 10–15 kg/m2 reduction in BMI [19, 20]. Surgical obesity treatment 

is generally considered for adult patients if they have a BMI greater than 40 kg/m2, or 

a BMI greater than 35 kg/m2 with serious comorbid conditions such as sleep apnea, 

diabetes mellitus or joint disease [21].

Adipose Tissue

Adipose tissue plays a key role in the development of obesity and metabolic com-

plications, functioning both as an energy store and as a major endocrine organ. The 

adipocyte is the main cell type in adipose tissue, but the tissue is also comprised of 

adipocyte precursor cells, stromal vascular cells, immune cells and nerve cells [22]. In 

mammals, there are 2 types of adipose tissue: white adipose tissue, which has mainly 

energy-storing functions, and brown adipose tissue, which is mainly thermogenic. 

White adipocytes are characterized by a single large lipid droplet that occupies the 

major part of the cytoplasmic space, whereas brown adipocytes contain multiple 

smaller lipid droplets and a large number of mitochondria. Brown adipose tissue is 

abundant in small mammals and in newborns of larger mammals, including humans 

[23]. In contrast to what was previously believed, a substantial fraction of adult 

humans possess some amount of active brown adipose tissue [24]. What may also be 

of physiological significance, although not yet shown in humans, is that white adi-

pocytes have the ability to acquire brown adipocyte features under various stimuli 
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[25–27]. So far, gene expression in human brown adipose tissue has only been inves-

tigated in one study [28].

Expression Profiling of Human Adipose Tissue during Diet-Induced Weight Loss

Expression profiling using microarrays has been used to explore genes and mecha-

nisms that may be implicated in the development of human disease. Microarray 

technology makes it possible to measure the expression level of thousands of genes 

simultaneously. The microarray consists of a coated glass surface on which probes 

for different gene transcripts have been synthesized or spotted onto the glass surface. 

Samples of labeled RNA are hybridized to the probes on the glass surface and the 

amount of each specific transcript can be quantified by measuring the amount of flo-

rescence emitted from each probe.

Expression profiling has been extensively used in the investigation of human obe-

sity. Several tissues such as the hypothalamus, gut and the liver play key roles in the 

development of obesity and obesity-related metabolic disorders. The adipose tissue 

is, due to its importance and relatively easy accessibility, the main site where gene 

expression has been studied.

Several expression profiling studies have been published describing expression 

changes in adipose tissue during diet-induced weight loss (table 1). Direct compari-

son of these studies to get a general answer to the question of which genes in adipose 

tissue are regulated by diet-induced weight loss is an interesting concept. However, 

differences between the studies (e.g. in study populations, dietary intervention, degree 

of weight loss and the microarray system used) makes such direct comparisons chal-

lenging. It has also recently been shown that factors such as biopsy collection proce-

dures have an impact on the expression profile [29].

In table 1 we summarize the current literature regarding human adipose tissue 

expression profiling studies investigating the impact of diet-induced weight loss. 

Expression profiling after bariatric surgery has not been included in this table. All 

studies listed used energy-reduced diets and needle aspiration of subcutaneous adi-

pose tissue but they have reported different major findings. This is probably due to 

the differences in study design and differences in microarray platforms used, but it 

may also reflect that the different research groups choose to focus on different aspects 

of the expression profiling results.

The first human adipose tissue expression profiling study of the effects of diet-

induced weight loss was published by Clement et al. in 2004 [30]. They show that 

weight loss improves the inflammatory profile of obese subjects through a decrease of 

pro-inflammatory factors and an increase of anti-inflammatory molecules in adipose 

tissue. In a study published in 2005, Dahlman et al. [31] concluded that the weight loss 

resulted in a coordinated reduction in the expression of genes regulating the produc-

tion of polyunsaturated fatty acids. In the study by Mutch et al. [32] both responders 
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and non-responders to the weight loss treatment were included. They conclude that 

the adipose gene expression profile prior to the intervention differed between the 

responders and non-responders and that this may be used to predict weight loss [32]. 

In the study by Chapel et al. from 2008 [33] two different weight loss diets were used 

(low fat, high carbohydrate or moderate fat, low carbohydrate diet). They conclude 

that the energy restriction had a more pronounced impact on gene expression than 

did the macronutrient composition [33]. Kolehmainen et al. used a long-term weight 

reduction treatment and showed that genes regulating the extracellular matrix and 

cell death showed a strong down-regulation after weight loss [34]. In a recent study 

by Chapel et al. it was concluded that adipose tissue macrophages and adipocytes dis-

play distinct patterns of gene regulation during various phases of the dietary weight 

loss program [35]. Together, these studies highlight the large number of processes in 

Table 1. Human adipose tissue expression profiling studies investigating the impact of diet-induced weight loss

Ref. Subjects na Sex, 

M/F

Dietary 

intervention

Time points 

investigated

Weight loss, 

kg

Clement, 

2004 [30]

Obese 10 0/10 VLCD: 800 kcal/day 0, 4 wks 6 

Sjöholm, 

2005 [36]

Obese 24 18/6 VLCD: 450 kcal/d (wks 0–16); 

food reintroduction 

(wks 16–18)

0, 8, 16, 18 

wks

28

Dahlman, 

2005 [31]

Obese 23 0/23 IEER-600 kcal/day 0, 10 wks 8 

Mutch, 

2007 [32]

Obese 27 R  0/27 LF, IEER-600 kcal/day 0, 10 wks >8 

27 NR 0/27 LF, IEER-600 kcal/day <4

Capel, 

2008 [33]

Obese 24 0/24 LF, IEER-600 kcal/day  0, 10 wks 6.8

24 0/24 MF, IEER-600 kcal/day 6.9

Kolehmainen, 

2008 [34]

Overweight 

or obese

9 5/4 Weight reduction program 

(wks 0–12); weight maintenance 

diet (wks 12–33)

0, 33 wks 8

Capel, 

2009 [35]

Obese 8 0/8 VLCD: 800 kcal/day (months 0–1); 

LCD, IEER-600 kcal/day (months 1–3); 

weight maintenance diet 

(months 3–7)

0, 1, 3, 7 

months

10.2b

IEER = Individually estimated energy requirement; LF = low-fat, high-carbohydrate diet; MF = moderate-fat, low-carbohy-

drate diet; NR = non-responders to the diet; R = responders to the diet; wks = weeks. 
a Number and sex of subjects included in the microarray analysis. 
b All 22 subjects in the study to end of LCD.
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the adipose tissue that are affected by dietary-induced weight loss. Furthermore, they 

illustrate the potential of expression profiling to identify systematic changes in groups 

of genes that may be of importance for adipose tissue function.

In our study, below denoted the Gothenburg microarray VLCD study, 24 obese 

subjects were given a VLCD treatment containing 450 kcal/day for 16 weeks, fol-

lowed by a 2-week period when regular food was gradually reintroduced [36–39]. 

Study assessments were performed and adipose tissue biopsies were taken at baseline, 

after 8 weeks of diet, after 16 weeks of diet and at week 18 when regular food had 

been reintroduced. This dietary intervention resulted in a mean weight loss of 28 kg 

and a reduction in BMI of 8.7 kg/m2 after 18 weeks [39]. This weight loss is much 

larger than in the other adipose tissue expression profiling studies (table 1) and the 

repeated sampling in this study and the inclusion of the re-feeding time point (week 

18) enables the grouping of genes into specific expression patterns. Two commonly 

observed expression patterns are illustrated in figure 1. These patterns are interest-

ing because they may provide information on the physiological factors controlling 

the adipose tissue expression of genes included in these groups. The first group (fig. 

1a) includes genes that respond to the changes in body weight or improvement in 

metabolic status during the weight loss treatment. Correlation analysis of the expres-

sion level of a gene and the clinical phenotypes of the subjects may provide additional 

information on parameters relevant for the adipose tissue expression of the gene. The 

second group (fig. 1b) includes genes that respond to changes in energy intake.

The sections below highlight some of the genes identified as regulated by diet-

induced weight loss in the Gothenburg microarray VLCD-study and reviews the cur-

rent knowledge on these genes in relation to obesity and obesity-related disorders.
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Fig. 1. Schematic illustration of 2 major adipose tissue expression patterns observed in the 

Gothenburg microarray VLCD study. a Gene expression pattern that follows the weight loss of the 

subjects (solid line) or the inverse pattern of the weight loss of the subjects (dashed line). b Gene 

expression pattern that follows the caloric intake of the subjects (solid line) or the inverse pattern of 

the caloric intake of the subjects (dashed line). Wk = Week.
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Serum Amyloid A Expression in Human Adipose Tissue and Association with 

Metabolic Disease

Serum amyloid A (SAA) was originally believed to be only a liver-derived acute phase 

protein displaying up to a thousand-fold concentration increase when induced by 

inflammation or infection [40, 41]. However, using expression profiling, we and oth-

ers have revealed that human adipose tissue is a main site of expression for acute 

phase SAA family members (i.e. SAA1 and SAA2) during conditions of non-acute 

phase [36, 42, 43].

Obesity is associated with a low-grade chronic inflammation, including slightly ele-

vated circulating levels of inflammatory factors [44, 45]. Several observations suggest 

that SAA is implicated in both glucose/lipid metabolism and inflammation in adipose 

tissue [46–49] and it is possible that the increase in circulating levels of SAA con-

tributes to obesity-related complications such as atherosclerosis and thrombosis [50, 

51]. Yang et al. [43] have shown that in vitro treatment of isolated human adipocytes 

with recombinant SAA causes a significant increase in basal lipolysis. Furthermore, 

they have shown that SAA is a potent pro-inflammatory mediator in adipose tissue 

stromal-vascular cells, monocytes and endothelial cells [43]. When released into the 

circulation, SAA rapidly associates with HDL, displacing ApoAI and thereby possibly 

affecting HDL function. Several lines of evidence point towards a role for SAA-HDL 

in atherosclerosis [41, 52–54] and serum levels of SAA have been suggested to predict 

cardiovascular risk [51, 55–57].

It is a well-established fact that weight loss is associated with an improvement of 

the systemic inflammatory status, and weight loss has been shown to be associated 

with decreases in C-reactive protein, IL-6 and SAA [36, 58, 59]. In the Gothenburg 

microarray VLCD study, SAA expression in adipose tissue was down-regulated dur-

ing the diet-induced weight loss. The expression of SAA remained low also during 

the re-feeding phase of the study [36]. The adipose tissue SAA expression was also 

mirrored by decreased SAA levels in serum, and SAA serum levels correlated with 

total and subcutaneous adipose tissue area, BMI and serum insulin [36]. Yang et al. 

[43] have shown that SAA mRNA levels and SAA secretion from adipose tissue are 

correlated with BMI and that serum levels of SAA decrease significantly after weight 

loss. Furthermore, the improvement in insulin sensitivity correlates with the decrease 

in circulating SAA levels after weight loss [43]. Changes in SAA concentrations also 

correlated with the variation in BMI and with changes in inflammatory markers in a 

study by Poitou et al. [59].

It has been shown that large adipocyte size is associated with insulin resistance 

and that adipocyte hypertrophy is an independent predictor of type 2 diabetes [60]. 

We have shown that adipocyte size is important for SAA expression, i.e. large adipo-

cytes express higher levels of SAA than small adipocytes [61]. In addition, we and 

Poitou et al. have shown that SAA protein expression is also linked to adipocyte size 

[61, 62]. Hence, it has been speculated that serum levels of SAA could be affected by 
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adipocyte size, but the studies trying to identify such a link have so far produced con-

flicting results [43, 59, 63]. Based on our results in a recent study, we suggest that it is 

important to consider measures of glycemic control and gender when analyzing cor-

relations between serum levels of SAA and metabolic and inflammatory parameters 

[64]. However, we found no evidence that serum levels of SAA are independently 

associated with adipocyte size. Instead, SAA levels correlated with a general increase 

in adiposity and inflammation [64].

It is well established that steady-state serum levels of SAA are strongly linked to obe-

sity, insulin resistance, type 2 diabetes and coronary artery disease [51, 65] but further 

studies are needed to establish whether SAA is just an innocent bystander or an actual 

cause of obesity-associated diseases such as type 2 diabetes and atherosclerosis.

CIDE Family

The cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) fam-

ily consists of 3 highly homologous proteins: CIDEA, CIDEB and CIDEC [66]. 

The CIDE proteins were originally identified by their sequence homology to the 

N-terminal region of the DNA fragmentation factor A (DFFA/DFF45) [66], which 

triggers DNA fragmentation during apoptosis. All 3 CIDE proteins have been found 

to activate apoptosis in mammalian cells [66, 67]. Gene disruption of these 3 genes in 

mice has revealed that they also play important roles in various aspects of metabolism. 

All 3 mice models (Cidea–/–, Cideb–/– and Cidec–/–) display lean phenotypes and are 

resistant to diet-induced obesity [68]. In mice, Cidea is specifically expressed in BAT 

[69], Cideb predominantly expressed in the liver [70] and Cidec is mainly expressed 

in WAT [69]. It is noteworthy that despite the differences in tissue distribution of 

Cidea, Cideb and Cidec gene expression, disruption of each of these genes in mice 

generates a metabolic phenotype with striking similarities, such as reduced plasma 

triacylglycerol and non-esterified fatty acid levels, decreased leptin levels, decreased 

lipid content in white adipocytes and increased glucose disposal rates [68]. Proteins 

of the CIDE family members have been localized to the mitochondria, endoplasmatic 

reticulum and lipid droplets. The mitochondrial function of CIDE-family members 

is most likely related to the apoptotic function of these genes. From a metabolic per-

spective, the view of CIDE family members as lipid droplet-binding proteins is very 

interesting [68].

There are also data supporting the idea that members of the CIDE family play 

important roles also in human metabolism [71–73]. However, one striking difference 

between humans and mice is the tissue distribution of CIDEA expression. In humans, 

CIDEA and CIDEC are co-expressed in WAT [74, 75]. In cultured adipocytes, siRNA-

mediated knockdown of either CIDEA or CIDEC result in increased lipolysis [71, 

75], indicating that the 2 proteins have overlapping functions in the adipocyte. In the 

Gothenburg microarray VLCD study the expression of CIDEA is up-regulated during 



110 Svensson · Gummesson · Carlsson · Sjöholm

the caloric restriction phase and returns towards baseline levels during the re-feeding 

phase [74]. However, in the same study the expression of CIDEC is down-regulated 

during the caloric restriction phase [75], indicating that there may be functional dif-

ferences between CIDEA and CIDEC. The expression pattern of both CIDEA and 

CIDEC in the Gothenburg microarray VLCD study indicate that it is mainly the 

caloric restriction per se and not the weight reduction that affects the expression of 

these genes in WAT. Further studies in human WAT and adipocytes are needed to 

determine the direct mechanisms controlling the expression of these 2 genes and the 

functional relevance of the observed differential responses to caloric intake.

A Local Activin B Signaling System in Adipose Tissue?

During a microarray-based search for genes specifically expressed in human adipo-

cytes, we identified the inhibin beta B (INHBB) gene as being very highly expressed 

in adipocytes. The INHBB gene encodes the activin βB subunit which homodimerizes 

to form activin B [76]. We have shown that INHBB expression in WAT is higher in 

obese than lean subjects [77]. This is in line with data from the Gothenburg microar-

ray VLCD study showing that INHBB expression in WAT is reduced both during the 

caloric restriction phase and the re-feeding phase of the study. This indicates that 

the caloric intake itself is not a major regulator of INHBB expression [38]. However, 

Hoggard et al. [78] have recently shown that Inhbb expression in mouse epididymal 

WAT is down-regulated during a 24-hour fasting period and returns to baseline lev-

els during re-feeding. In the same study they also showed that insulin treatment of 

primary cultures of differentiated adipocytes results in increased Inhbb expression. 

This suggests that the decreased insulin levels during the Gothenburg microarray 

VLCD study may explain why INHBB expression levels are also reduced during the 

re-feeding phase.

For activin B to have local effects in the adipose tissue it requires the co-expression 

of activin receptors. Activins interact with receptor complexes consisting of 2 recep-

tors, types I and II, both of which are serine/threonine kinases [79]. There are 7 type 

I receptors, referred to as activin receptor-like kinases (ALK) 1–7. ALK4 and ALK7 

appear to function as type 1 receptors for activin B [79, 80]. We have shown that 

ALK7 is adipose tissue specific in its expression pattern [77]. The expression of ALK7 

in WAT is, in contrast to INHBB, at lower levels in obese subjects than in lean sub-

jects [77]. The adipose tissue ALK7 expression correlated with several measurements 

of body fat, carbohydrate metabolism and lipid metabolism. The regulation of ALK7 

during diet-induced weight loss is still unclear. Available data indicate that human 

adipose tissue expresses components necessary for a local activin signaling system 

and that some of these components (INHBB and ALK7) are specific for adipose tissue. 

The difference in expression between INHBB and ALK7 in obese subjects compared 

to lean subjects makes it hard to predict if increased or decreased signaling is related 
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to human obesity. The importance of a local activin signaling system is illustrated by 

studies showing that ALK7 deficient mice have reduced fat accumulation and par-

tial resistance to diet-induced obesity [81], indicating that increased signaling could 

also be associated with obesity in humans. Further mechanistic studies are needed to 

reveal how adipocyte function is affected by this local activin signaling system.

Conclusions

Expression profiling of human adipose tissue during diet-induced weight loss has iden-

tified several genes that affect human obesity and obesity-related metabolic disease. 

These studies also highlight the drastic changes that occur in the adipose tissue during 

the weight loss. The investigation of multiple time points during diet-induced weight 

loss and the combination of expression profiling data from several sources enable 

researchers to gain more detailed information on the regulation of gene expression 

in adipose tissue. In the future, more sophisticated experimental designs and better 

analytical tools will most likely increase our knowledge of mechanisms of importance 

for the development of human obesity and obesity-related metabolic disease.
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During the past 10 years, the use of transcriptomics, or genome-wide measurements 

of gene expression, has become more routine in toxicology studies. In the area of 

drug discovery and development, expression profiling is recognized to add value to 

preclinical studies for certain types of toxicities [1]. Preclinical, multiple dose stud-

ies on drug candidates are performed to identify toxicities that are dose limiting in 

order to estimate a therapeutic margin of safety for clinical studies. Genomics data 

can provide mechanistic information for assessing the relevance of nonclinical find-

ings to humans. In many cases, toxicogenomic changes occur prior to the appearance 

of microscopic lesions observed by histopathologic examination and provide earlier 

detection of the adverse drug effects that can be seen using traditional endpoints only 

after longer exposure times. One area of toxicology where genomics technology could 

potentially have a great impact is carcinogenicity testing. Genomic approaches could 

be used to modernize the current paradigm of lifetime dosing studies in rodents 

through the application of more mechanistic approaches [2].

An increased use of pharmacogenomics in drug development was spurred on by 

guidelines issued by the US Food and Drug Administration (FDA), which defined the 

process for the submission and review of genomics data on new drug candidates [3]. 

Significant advancements in toxicogenomics have been made by research consortia 

that joined the collective experience of industry, government and academic scien-

tists in investigating some of the fundamental issues that influence the technical and 

biological variation in expression data. These consortia include the ILSI Health and 

Environmental Sciences Institute (HESI) Technical Committee on the Application 

of Genomics in Mechanism-Based Risk Assessment [4], the NIEHS Toxicogenomics 

Research Consortium [5], the MicroArray Quality Control (MAQC) project [6], and 

an FDA collaborative project on universal reference materials [7]. Key findings from 

these collaborative programs that are important for reproducibility and interpretability 
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of gene expression profiling between centers and which can be extrapolated to other 

biomedical investigations are summarized below.

Reference Materials and Methods to Improve and Monitor Laboratory Proficiency in 

Microarray Assays

Technical variation in microarray assays can be significant if not controlled by the use 

of unified metrics and standards to index performance levels and monitor for drift in 

performance over time. A system for evaluating laboratory performance and process 

improvement for microarray assays has been developed that uses 2 reference samples 

that are composed of mixes of different tissue or cell line RNAs that are easily prepared 

by laboratories that conduct rodent studies or from commercial sources [7]. The 2 

reference samples are composed of total RNA from 4 rat tissues with dissimilar expres-

sion and contain tissue-selective analytes at defined target ratios for measuring perfor-

mance on rat whole-genome arrays [7]. Certain tissues that contain higher numbers 

of specifically expressed genes compared to other tissues in global gene expression 

analyses (e.g. liver, brain, skeletal muscle and heart [8]) can be used as components of 

a mixed tissue RNA control for the organism under study. When these tissue RNAs are 

mixed in different proportions, the ratio in signal level of the identified tissue-selective 

genes can be predicted from the ratios of the tissue RNA in the mixes. Mixing several 

different tissue RNAs within one sample allows measurement of several target ratios 

between just 2 samples. The rat mixed-tissue RNA reference material (MTRRM) con-

tains 1 sample (Mix1) of 10% testis, 40% brain, 30% liver and 20% kidney RNA and the 

second sample (Mix2) that is composed of 40% testis, 20% brain, 20% liver and 20% 

kidney RNA. This design allows 4 defined target ratios (4, 2, 1.5, and 1) to be measured 

using a subset of probes for transcripts predominantly expressed in 1 of the 4 tissues. 

A proof of concept study demonstrated that the MTRRM could be applied in perfor-

mance assessments on multiple rat expression array formats (Affymetrix, Agilent, and 

CodeLink) using a defined set of tissue-selective probes [7]. A similar approach is cur-

rently being developed for human gene expression microarrays. Larger universal sets 

of external RNA controls that are currently under development will also be of utility 

for comprehensive indexing of performance on platforms where the corresponding 

probes have been included in the design [9].

Microarray assay performance can be assessed with the MTRRM using a relevant 

metric for diagnostic tests: the accuracy of detecting changes in expression, mea-

sured as the area under the curve (AUC) from receiver-operating characteristic plots. 

This method has been used to compare overall performance in a proficiency test-

ing program using rat mixed tissue samples [10] and with the data generated on 5 

commercial human whole-genome microarray platforms for the MicroArray Quality 

Control (MAQC) project [11]. Of the AUCs that are derived to measure the diag-

nostic accuracy of detection of each set of true positive changes (4-, 2- and 1.5-fold, 
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using a 1:1 set as the true negative fraction), the AUC for 1.5-fold change detec-

tion was the more sensitive measure for evaluating overall performance, because it 

approaches the technical limit for reliable discrimination of differences between 2 

microarray samples.

Identification of Factors that Increase Biological Noise in Gene Expression Studies

Toxicogenomics studies can be quite variable in design, even when they are a part of 

routine non-GLP safety studies where expression profiling was included as an addi-

tional endpoint. Common variables include the specific dosing regimen (vehicle, 

route, duration) and factors known to have confounding effects in toxicity studies 

(strain, supplier, gender, diet and age) [12]. In addition, although fasting has a known 

strong impact on liver gene expression, it is common practice to fast animals over-

night prior to the end of a toxicology study to enhance the evaluation of liver histopa-

thology. To examine the impact of variations in toxicogenomics study design on gene 

expression, a working group of the HESI Technical Committee on the Application 

of Genomics in Mechanism-Based Risk Assessment developed a public dataset of 

microarray expression data from rats that served as controls in toxicity studies [13]. 

The dataset contains Affymetrix microarray data for over 500 samples of control rat 

liver and kidney from 16 different institutions and 48 in-life studies, along with 35 

biological and technical factors that describe a wide range of study characteristics. 

The types of data that were collected are listed in table 1. From an analysis of this 

dataset, it was found that the key sources of variability in expression across control 

animals were differences in gender, strain, organ section in kidney and fasting state 

Table 1. Number of baseline expression datasets for 4 variables in the Baseline 

Expression Data Set [13]

Variable Type Datasets, n

Array RGU34A 192

RAE230A 213

RAE230 20 131

Tissue liver 396

kidney 140

Strain Sprague-Dawley 302

Wistar 210

F344/N 24

Gender male 436

female 100
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in liver. These findings can be incorporated into designs of public repositories of 

microarray data to include factors that should be among the minimal information 

reported as descriptors of gene profiling studies for data exchange. Additionally, this 

dataset serves as a resource to generate robust lists of genes with differential expres-

sion in liver between certain study factors (e.g. gender or fasting) that are commut-

able for other applications.

Large sets of control microarray data can also be used to identify gene tran-

scripts and associated pathways that have a high degree of baseline variability (i.e. 

not attributable to any known study factor). In the human liver transcriptome, the 

most variable genes are primarily involved in drug and intermediary metabolism, 

inflammation, and cell cycle control [14]. The genes with the highest variance in 

control rat liver included 3 gene transcripts that encode proteins involved in bile acid 

and cholesterol synthesis (Hmgcr, Sqle and Idi) [13]. These 3 genes have significantly 

reduced expression in the liver of fasted animals in this dataset. However, as shown 

in an analysis of 179 control rat samples assayed on Affymetrix RAE230A arrays 

(fig. 1), significant variation in baseline expression of Hmgcr and Sqle occurs within 

groups of fasted and non-fasted liver RNA samples, as well as between fasting and 

non-fasting groups. Part of this variance could be due to differences in the timing of 

sample collection. Hmgcr, Sqle and Idi have been shown to exhibit a circadian oscil-

lation of expression in liver that peaks 4 h into the dark phase [15]. Reference lists 
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Fig. 1. Baseline levels of expression in rat liver of 2 high variance genes in the cholesterol biosynthe-

sis pathway. Histograms of liver gene expression levels for Hmgcr (black lines) and Sqle (grey lines) 

are shown for samples from fasted (dotted line; n = 84) and non-fasted (solid line; n = 96) rats. The 

data is from 179 control animal samples that were collected on Affymetrix RAE230A arrays and nor-

malized using robust multi-array average.
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of genes regulated by fasting and by the light/dark cycle can be important tools for 

interpreting observed differences within control groups, as well as between treatment 

and control groups.

In addition to the use of pathway mapping tools, reference sets of gene expression 

data (‘knowledge sets’) help differentiate adverse from adaptive effects in treatment-

related gene profiles observed in toxicogenomics studies. For example, in an inves-

tigation of the mechanism of skeletal muscle injury induced by treatment with the 

antimalarial drug chloroquine, a phospholipidotic compound, we observed a dose-

related reduction in weight gain due to drug palatability over the 4-week course of 

the study [16]. To investigate the impact of decreased body weight on the dose-related 

increase in muscle autophagy observed with chloroquine treatment, gene expression 

profiling was conducted on soleus, the most affected muscle type, and compared to 

an internal reference set of genes changed by 24 h fasting in soleus. A subset of genes 

significantly changed by chloroquine treatment are also regulated by 24 h fasting, but 

changed in an opposite direction which is characteristic of prolonged reduction in 

caloric intake. The reference set of fasting-induced changes in type I skeletal muscle 

was an important tool in identifying adaptive responses within a treatment-induced 

expression profile.

Phenotypic Anchoring to Supply a Biological Context for Interpreting Gene 

Expression Data

Phenotypic anchoring in toxicogenomics refers to relating expression values to either 

traditional measures of toxicity, like histopathology or clinical chemistry values, or 

to molecular toxicology endpoints, such as the type and incidence of DNA adducts. 

Biological variability in response to chemicals makes phenotypic anchoring of toxi-

cogenomic data necessary for biologically meaningful meta-analysis of gene expres-

sion data [17]. Correlation of gene changes to adverse effects may require the use of 

endpoints that are more sensitive than routine toxicity measures, as shown by Powell 

et al. [18] using acetaminophen-induced liver injury as a model. A dose of acetamin-

ophen that significantly increased a set of oxidative stress-associated genes but was 

sub-toxic on the basis of histopathological change, was found to cause an increased 

incidence of more sensitive biochemical markers of oxidative stress in liver (i.e. nitro-

tyrosine adducts and 8-hydroxy-deoxyguanosine lesions).

For toxicogenomic studies, there are certain control groups that can be incorpo-

rated into the study design that can aid in linking expression data to biological end-

points of interest.  A toxicogenomics study of unusual depth that was designed by a 

working group in the HESI technical committee on genomics will inform the field 

on the added value of multiple comparator groups to the mechanistic understanding 

of toxicity, using doxorubicin cardiotoxicity as the example [19]. Control and treat-

ment groups that were included to provide additional comparisons for linking gene 
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expression changes to toxicity include: (1) a noncardiotoxic drug (etoposide) that 

has the same therapeutic target activity (inhibition of topoisomerase II) at an equal 

pharmacologic dose; (2) a cardioprotectant (dexrazoxane) that reduced doxorubicin 

cardiotoxicity; (3) expression profiling on a non-target tissue (skeletal muscle); (4) 

a dose range that includes a sub-toxic dose, and (5) a time course that includes time 

points prior to the detection of histopathological lesions.

Reference Sets that Aid in the Interpretation of Adverse versus Adaptive Effects

Large reference sets of expression changes that contain data for a wide variety of con-

ditions relevant to the biological process under study and that are coupled to tradi-

tional measurements of physiological, metabolic or pathologic state can be useful for 

determining the specificity of transcriptional changes within the context of a study 

[1]. Reference sets for toxicogenomics contain expression data for a diverse set of 

drugs and model toxicants, along with histopathology scores and clinical chemistry 

values. This content can be used to develop gene signature classifiers for pathologic 

or pharmacologic endpoints, such as was derived with a large commercial set of 

liver microarray data that is now in the public domain [20]. One example of phar-

macologic classifiers is the increase in both Hmgcr and Sqle expression in liver that 

is characteristic of the cholesterol-lowering statin drugs, as an adaptive response to 

their pharmacologic activity as inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A 

reductase. Pharmacologic signatures can be useful in determinations of whether toxic 

effects in non-target tissues occur through off-target or on-target mechanisms (e.g. in 

statin-related rhabdomyolysis) [21].

The Chemical Effects in Biological Systems (CEBS) knowledgebase is a large public 

database designed for housing and for structured querying of biomedical data from 

several data streams, including genomics and other -omics data with its associated 

metadata [22]. In developing CEBS and other toxicogenomics databases, much atten-

tion was paid to standardizing the experimental descriptors to facilitate secondary 

analysis of the database content [23]. For toxicogenomics, these descriptors expand 

upon the Minimal Information About a Microarray Experiment (MIAME) standard 

to include, for example, a study timeline of treatments, observations, and sample col-

lecting, and study exit details on the checklist.

Comprehensive datasets developed for pharmacologic research that may also 

have utility in nutrigenomics research include those that compare basal and induced 

expression levels of drug metabolism genes in humans and preclinical model species 

[24–26]. The published catalog of genes in rat liver that exhibit circadian variation in 

expression is a resource for investigating confounding effects in toxicogenomics or 

nutrigenomics research [15]. For example, this set would enable testing the hypoth-

esis that dysregulation of circadian oscillations by treatment effects like weight loss is 

a contributing source of gene expression changes within a study.
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Conclusions

Based on the collective experience gained in consortia that were formed to address 

important issues in toxicogenomics, several key concepts have been formulated 

that are equally applicable to genomic investigations of other biological endpoints. 

Following these recommendations will allow investigators to advance the science in 

other biomedical fields using genomic technology. These observations are that: (1) 

sources of technical noise should be controlled through the use of reference mate-

rials and methods to improve and monitor laboratory proficiency in performing 

microarray assays; (2) it is important to identify factors that affect biological noise 

in gene expression studies; (3) with external sources of genomic data, it is important 

to preserve the biological context of the study, and (4) different areas of biomedical 

investigation should establish appropriate reference sets that relate expression data to 

relevant biological endpoints.
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MicroRNAs (miRNAs) are small 21–25 nucleotide-long non-coding RNAs that have 

emerged as key negative post-transcriptional regulators of gene expression [1, 2]. 

Currently there are more than 700 mammalian miRNAs that can potentially target up 

to one-third of protein-coding human genes [1] involved in diverse physiological and 

pathological processes, including cancer [3, 4]. Indeed, aberrant levels of miRNAs 

have been reported in all major human malignancies [5, 6]. In tumors, altered expres-

sion of miRNAs has been demonstrated to inhibit tumor suppressor genes or inap-

propriately activate oncogenes and has been associated with every aspect of tumor 

biology, including tumor progression, invasiveness, metastasis, and acquisition of 

resistance by malignant cells to chemotherapeutic agents [3, 4, 7, 8]. These observa-

tions lead to the suggestion that aberrant expression of miRNAs may contribute to 

tumorigenesis [9]. However, most of the tumor-miRNA-related studies are based on 

expression analysis of miRNAs in tumors in comparison with corresponding adjacent 

normal tissues [4–6]. The altered expression of any given miRNA in neoplastic cells is 

not sufficient to address conclusively the role of these changes in tumorigenesis [10]. 

Additionally, despite the established biological significance of miRNA dysregulation 

in neoplastic cells, there is a lack of knowledge on the role of miRNAs during early 

stages of tumor development, especially if variations in the expression of specific 

miRNAs are associated with differences in the susceptibility to tumorigenesis.

A.S.-D. and V.T contributed equally to this work.
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In light of these considerations, the goals of this study were to: (1) define the role of 

miRNA dysregulation in early stages of liver carcinogenesis, and (2) determine how 

these alterations in miRNA expression may be mechanistically linked to the patho-

genesis of liver cancer induced by dietary methyl deficiency.

Materials and Methods

Animals, Diets and Experimental Design

Male C57BL/6J and DBA/2J mice (Jackson Laboratory, Bar Harbor, Me., USA) were housed in ster-

ilized cages in a temperature-controlled  room (24°C) with a 12-hour light/dark cycle, and given ad 

libitum access to purified water and NIH-31 pelleted diet (Purina Mills, Richmond, Ind., USA). At 8 

weeks of age, the mice from each strain were allocated randomly into 2 groups, 1 control and 1 

experimental. The mice in the experimental group were maintained on a low methionine (0.18%) 

diet, lacking in choline and folic acid (Dyets Inc, Bethlehem, Pa., USA) for 12 weeks. The mice in the 

control group received a diet supplemented with 0.4% methionine, 0.3% choline bitartrate and 2 

mg/kg folic acid. Diets were stored at 4°C and given ad libitum, with twice a week replacement. Five 

experimental and 5 control mice were sacrificed at 12 weeks after diet initiation. The livers were 

excised, frozen immediately in liquid nitrogen, and stored at –80°C for subsequent analyses. All 

animal experimental procedures were carried out in accordance with the animal study protocol 

approved by the National Center for Toxicological Research Animal Care and Use Committee.

RNA Extraction and miRNA Microarray Expression Analysis

Total RNA was extracted from the liver tissue using miRNAeasy Mini Kit (Qiagen, Valencia, Calif, 

USA) according to the manufacturer’s instructions. The miRNA microarray analysis was per-

formed by LC Sciences (Houston, Tex., USA), as reported previously in detail [11].

miRNA Expression Analysis by Quantitative Reverse Transcription Real-Time PCR

Total RNA (200 ng) was used for qRT-PCRs of the miR-29c, miR-34a, miR-122, miR-155, miR-192, 

miR-200b, miR-203 and miR-221, utilizing TaqMan miRNA assays (Applied Biosystems, Foster 

City, Calif., USA), according to the manufacturer’s instructions. snoRNA202 was used as an endog-

enous control. The relative amount of each miRNA was measured using the 2–ΔΔCt method [12]. All 

qRT-PCR reactions were conducted in triplicate and repeated twice.

Gene Expression Analysis by qRT-PCR

Total RNA (10 μg) was reverse transcribed using random primers and a high-capacity cDNA 

archive kit (Applied Biosystems), according to the manufacturer’s protocol. The expression of the 

α-smooth muscle actin (α-Sma) gene was measured by qRT-PCR, using Taqman® gene expression 

assay (Mm00725412_s1; Applied Biosystems).

Western Blot Analysis of Protein Expression

The levels of cyclin G1 (Ccng1), cyclogenase 2 (Cox2), E2F transcription factor 3 (E2f3), and 

CCAAT enhancer binding protein beta (C/ebp-β) proteins were determined by Western immuno-

blot analysis [13].

Statistical Analysis

Results are presented as mean ± SD. Statistical analyses were conducted by 1-way ANOVA, using 

treatment and weeks as fixed factors. Pair-wise comparisons were conducted by the Student-

Newman-Keuls test. p values <0.05 were considered significant.
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Results and Discussion

Dysregulation of miRNAs in the Livers of C57BL/6J Mice Fed a Methyl-Deficient Diet

miRNA microarrays were used to analyze the miRNA expression profiles in the livers 

of control C57BL/6J mice and C57BL/6J mice fed a methyl-deficient diet that causes 

a liver pathological state similar to human nonalcoholic fatty liver disease [14]. We 

identified 74 miRNAs (40 up-regulated and 34 down-regulated) that were differen-

tially expressed (p < 0.05), including miR-15a, miR-29c, miR-30a, miR-34a, miR-101a, 

miR-107, miR-122, miR-155, miR-200b, miR-200c, miR-221, miR-222 and miR-224 

in the livers of the C57BL/6J methyl-deficient mice (fig. 1a). The results obtained by 

miRNA microarray analysis were confirmed by qRT-PCR (fig. 2a).

Functions of Dysregulated miRNAs

Dysregulated miRNAs are known to affect cell proliferation, apoptosis, lipid metabo-

lism, oxidative stress, DNA methylation and inflammation. These processes are sub-

stantially compromised in pathological states associated with hepatocarcinogenesis. 

Specifically, it is well-established that altered lipid metabolism, oxidative stress, apop-

tosis and epigenetic alterations may directly trigger hepatic steatosis, a condition that 

has been shown to progress to hepatocellular carcinoma [15–17].

Among the down-regulated miRNAs, miR-15a, miR-30a, miR-101a and miR-122 

are of particular interest. Previously, we and other investigators have demonstrated 

a substantial down-regulation of liver-specific miR-122 during liver carcinogenesis 

and in primary hepatocellular carcinomas [18–21]. Recently, a significant decrease 

in miR-122 expression has been observed in individuals with non-alcoholic steato-

hepatitis [22]. The down-regulation of miR-122 in the livers of C57BL/6J mice fed a 

methyl-deficient diet was accompanied by increased level of Ccng1 protein (fig. 1b). 

The altered expression of CCNG1 [19] and other confirmed targets of miR-122, such 

as fatty acid synthase [22, 23], sterol regulatory element-binding protein-1c [22, 23], 

cationic amino acid transporter (CAT1; SLC7A1) [24], and BCL-W, an anti-apoptotic 

member of BCL2 family member [25], has frequently been observed during hepato-

carcinogenesis and has been attributed to the pathogenesis of liver cancer.

Feeding C57BL/6J mice a methyl-deficient diet for 12 weeks resulted in decreased 

expression of miR-101a and miR-101b (fig. 1a). One of the confirmed targets for 

miR-101a is Cox-2 [26], which is substantially up-regulated in the livers of mice 

exposed to the methyl-deficient diet (fig. 1b). The increased expression of COX-2 

has been detected during human and rodent liver tumor development [27, 28] and is 

currently considered as an attractive target for chemoprevention during early stages 

of hepatocarcinogenesis. Additionally, recent evidence has demonstrated that miR-

101 targets FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene [29], 

a key component of the liver oncogenic network [30].

Another down-regulated miRNA in the livers of mice fed the methyl-deficient 

diet is miR-15a, one of the first miRNA’s discovered to be dysregulated in cancer [31]. 
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Fig. 1. Dysregulation of miRNA expression in the livers of C57BL/6J mice fed a methyl-deficient diet 

for 12 weeks. a Hierarchical clustering of the differentially expressed miRNA genes (as determined by 

ANOVA) in the livers of control and methyl-deficient (MD) mice. Rows show miRNA, while columns 

show independent biological replicates. For each miRNA red indicates high expression levels and 

green indicates low expression levels. Each miRNA listed is significantly differentially expressed (p < 

0.05; n = 3). b Western blot analysis of Ccng1 (miR-122), COX-2 (miR-101a), E2f3 (miR-34a and miR-

200b) and Cebp/β (miR-155) proteins in the livers of control and methyl-deficient mice. c qRT-PCR 

analysis of α-Sma gene in the livers of control and methyl-deficient mice (mean ± SD; n = 5). d 

Apoptotic cell death in the livers of control and methyl-deficient mice as detected by TUNEL assay 

(mean ± SD; n = 5).



Dietary Methyl Deficiency, miRNA Expression and Liver Carcinogenesis 127

miR-15a targets multiple oncogenic pathways, including BCL2, cyclin D1 (CCND1) 

and WNT3A signaling [31], a pathway that triggers the activation of hepatic stel-

late cells and progression of hepatic fibrosis [32]. miR-107 [20] and let-7a and let-

7d [33], which are down-regulated (miR-107) and up-regulated (let-7a and let-7d) 

in the livers of methyl-deficient mice (fig. 1a), have also been associated with the 

pathogenesis of hepatic steatosis, fibrosis and hepatocarcinogenesis. Indeed, figure 

1c shows an increase in expression of the α-Sma gene, a marker of hepatic stellate 

cell activation and fibrosis development [34] in the livers of mice fed the methyl-

deficient diet.
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miR-34a, miR-155, miR-200b and miR-221 were the most up-regulated miRNAs 

among the differentially expressed miRNAs in the livers of methyl-deficient C57BL/6J 

mice (figs. 1a and 2). The transcription factor E2f3, a critical regulator of the p53 network, 

is one of the targets for these miRNAs as reported in Targetscan 5.1 (www.targetscan.org) 

and in other reports [35, 36]. Furthermore, there is a solid connection between miR-34 

and the p53 apoptotic pathway [37–39], which plays a pivotal role in the pathogenesis 

of liver injury regardless of its etiology, and especially in non-alcoholic hepatosteatitis 

[40, 41]. Figure 1d shows the increased apoptosis in the livers of C57BL/6J mice fed a 

methyl-deficient diet. Additionally, recent evidence has demonstrated the importance 

of miR-34a, not only in apoptosis, but also in non-apoptotic cell death in vivo [42].

The over-expression of miR-155 and miR-221 has been frequently detected dur-

ing tumor development [43, 44]. The up-regulation of these miRNAs has been 

associated with activation of the extracellular signal-regulated (ERK) and phosphati-

dylinositol 3-kinase (PI3)-AKT pathways, 2 pathways frequently disturbed during 

liver tumorigenesis. Furthermore, the results of a recent study have demonstrated 

that miR-221 targets and down-regulates pro-apoptotic BCL2-modifying factor dur-

ing human hepatocarcinogenesis [45]. It is well-established that one of the hallmarks 

of the carcinogenic process is a dysregulation of cell proliferation and apoptosis [46]. 

In this context, the altered expression of miR-34a, miR-155, miR-200b and miR-

221 in the livers of methyl-deficient mice illustrates the critical role of miRNA in 

the disruption of the delicate balance between cell division and apoptosis during 

carcinogenesis.

In a previous study [17], we demonstrated that feeding DBA/2J mice a lipogenic 

methyl-deficient diet resulted in more prominent pathomorphological and molecular 

changes in the livers, including DNA hypomethylation, a greater severity of steatosis 

and necrosis, and oval cell proliferation, as compared to C57BL/6J mice. Interestingly, 

we detected strain-specific significant differences in the expression of miR-29c, 

miR-34a, miR-155 and miR-200b in the livers of C57BL/6J (fig. 2a) and DBA/2J 

methyl-deficient mice (fig. 2b). Specifically, the expression of miR-34a, miR-155 and 

miR-200b in the livers of DBA/2J mice fed the methyl-deficient diet was, respectively, 

4.9, 5.9 and 3.0 times greater than in methyl-deficient C57BL/6J mice. Likewise, the 

livers of C57BL/6J mice were characterized by a more pronounced down-regulation 

of miR-29c. The aberrant expression of these miRNAs is associated with an altered 

DNA methylation status (miR-29c), increased cell death (miR-34a and miR-200b), 

and liver steatosis and fibrosis (miR-155). miR-155, which was the most differentially 

expressed miRNA in the livers of DBA/2J and C57BL/6J mice fed the methyl-defi-

cient diet, activates the AKT signaling pathway [47], triggering oval cell proliferation 

[48], a fundamental event in hepatocarcinogenesis.

In conclusion, these findings demonstrate that alterations in expression of miRNAs 

are a prominent event during early stages of liver carcinogenesis induced by methyl 

deficiency and strongly suggest that differences in the susceptibility to liver carcino-

genesis may be determined by the variations in miRNA expression response. More 
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Schizophrenia is a major psychiatric brain disease with potentially devastating effects. It 

strikes in adolescence and young adulthood and can last a lifetime. It affects about 1% of 

the world’s population, is destructive for the individual, family and society, and consti-

tutes a major costly public health problem. It develops progressively, most often unde-

tected during childhood and adolescence in a pre-morbid phase. This usually leads to 

the onset of psychosis at between 18 and 25 years of age, often evolving toward invalidity. 

Approximately two-thirds of those who develop schizophrenia require assistance from 

health care providers (such as government and social security systems) within a few 

years of onset. The majority of people who develop schizophrenia are unable to return to 

work or school and may have difficulties in maintaining normal social interactions [1].

The symptoms of schizophrenia are classically divided into categories of positive 

symptoms (delusions, hallucinations, thought disorder) and negative ones (e.g. defi-

cits in social abilities, poverty of speech, affective flattening). The patients also present 

other discrete, but more permanent dysfunctions, such as cognitive deficits (problems 

with attention, specific forms of memory, executive functions) and perceptual instabil-

ity (basic symptoms) that are now thought to be central to patients’ behavioral distur-

bances and functional disability. Moreover, patients with schizophrenia also present 

non-specific symptoms such as anxiety, depression, obsessive behavior, drug and alco-

hol abuse and suicidal tendency (10% incidence). While present antipsychotic treat-

ments are relatively effective against positive symptoms, they are almost ineffectual 

for negative and cognitive ones. Indeed, even in patients stabilized with present antip-

sychotics, these negative and cognitive symptoms are impediments to the social and 

professional integration of young individuals from the time of disease onset [1–3].

Despite a growing understanding of its neurochemical anomalies, schizophrenia 

remains an elusive and multifaceted disorder and available evidence regarding its 
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onset and etiology point to a complex interplay of genetic, environmental and devel-

opmental factors. Various pathophysiological hypotheses have been put forward, 

which account for available evidence to varying degrees. Globally, they involve dys-

functions in neurotransmission and impairments of functional connectivity.

Genetic Factors

It is well established from twin and adoption studies that schizophrenia is highly herita-

ble, but in a complex manner, with a concordance rate of ~50% for monozygotic twins 

and a heritability of 80% [4]. Numerous studies have focused on identifying genetic vul-

nerability factors. Results from several genome-wide scans [5–8] have identified chro-

mosomal regions of interest, and cumulative evidence from replication efforts suggest 

that schizophrenia susceptibility genes may be found on chromosomes 1, 6, 8, 10, 13 and 

22 [see reviews in 9–11]. Very recent studies from large genome-wide scans in multiple, 

large cohorts that have identified both rare high-risk mutations (RR: 2–14) [12–15] and 

common low-risk variations on chromosome 2 (ZnF804A) and 11 (RR: 1.09–1.19) [16] 

and in the HLA and histone regions on chromosome 6 [17]. Similarly, studies that have 

adopted a family-based approach have identified a balanced translocation that dis-

rupts the DISC1 gene [18], as well as the neuregulin gene [19], while hypothesis-driven 

approaches based on biological findings of deficits in the ability to cope with oxidative 

stress in patients with schizophrenia have implicated gene variants in the biosynthesis 

of glutathione as susceptibility factors of the illness [20, 21]. Moreover, understanding 

how genetic variation at each locus confers susceptibility and/or protection, or what is 

the contribution of each gene, their relationship with the phenotype and their interac-

tion with environmental risk factors [22, 23] remains a great challenge.

Environmental Factors

These include exposure to viral infections [24], autoimmune, toxic or traumatic insults 

and stress during gestation, birth or childhood [25–27] that have been implicated in 

the pathogenesis of schizophrenia. Recently, models based on epigenetic factors and 

an interaction between a susceptible genotype and environmental factors have been 

proposed for this puzzlingly complex disease [28].

Developmental Factors

In attempting to produce a unifying concept of the etiology of schizophrenia, research-

ers have posited that these biological mechanisms have their origins in developmen-

tal processes that emerge prior to the onset of clinical symptoms. Indeed, evidence for 
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pre- and perinatal epidemiological risk factors of schizophrenia, and for premorbid 

dysfunction during infancy and childhood have led to the formulation of the so-called 

neurodevelopmental hypothesis: schizophrenia is viewed as resulting from etiological 

events acting between conception and birth, and interfering with normal maturational 

processes of the central nervous system [29–31]. Moreover, it is also hypothesized that 

the interaction between a hereditary predisposition and early neurodevelopmental 

insults results in defective connectivity between a number of brain regions, including 

the midbrain, nucleus accumbens, thalamus, temporo-limbic (including hippocampus) 

and prefrontal cortices [2, 32–34]. This defective neural circuitry is then vulnerable to 

dysfunction when unmasked by developmental processes and events of adolescence 

(myelination, synaptic pruning and hormonal effects of puberty on the central nervous 

system) and exposure to stressors as the individual enters high-risk ages [3, 31, 35].

Neurotransmission Dysfunction 

A number of theories implicate aberrant neurotransmission systems in schizophrenia, 

in particular, aberrant dopaminergic [36–38], glutamatergic [39–41] and γ-amino-

butyric acid (GABA)-ergic systems [42–46] involving dysfunctions in presynaptic 

storage, vesicular transport, release, re-uptake and metabolic mechanisms [3, 47]. It is 

unclear, however, to what extent such neurochemical findings reflect primary causes 

rather than secondary effects of the pathology, including compensatory mechanisms 

or environmental interactions.

Impaired Structural Connectivity

Multiple lines of evidence suggest that schizophrenia is associated with abnormalities 

in neural circuitry and impaired structural connectivity. Post-mortem histological 

studies have shown anomalies at the level of dendritic spines [48–51] and decreases 

in numbers of inhibitory GABA-parvalbumin interneurons in the prefrontal cortex 

[46, 52]. Moreover, recent advances in diffusion tensor imaging have allowed in vivo 

explorations of anatomical connectivity in the human brain. These have pointed to 

connectivity abnormalities in fronto-parietal and fronto-temporal circuitry in schizo-

phrenia [for reviews see 53, 54]. Further evidence for anomalies in information inte-

gration across brain networks is accumulating. 

Impaired Functional Connectivity 

This is based on the study of dynamic, context-dependent processes, which require the 

preferential recruitment of context-relevant networks over others [55–57]. Evidence 
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is emerging in schizophrenia for an impairment in both local and long-range syn-

chronization in a range of cognitive and perceptual tasks [58–61]. Such perturbation 

of brain connectivity might be associated with functional anomalies of dopaminergic, 

glutamatergic and GABA-ergic systems [62–64]. The connectivity argument is rein-

forced by the fact that the age of onset of full-blown psychosis corresponds to the mat-

uration of myelinated pathways, in particular those involving the prefrontal cortex.

In summary, existing neuroanatomical, neurochemical, neurophysiological and 

psychopathological arguments converge to suggest that schizophrenia may be con-

sidered as a developmental syndrome involving faulty connectivity and neurotrans-

mission and it is likely to have complex origins deriving from multiple genetic and 

environmental factors.

Redox/Glutathione Dysregulation Is a Vulnerability Factor in Schizophrenia

In the present review, we will emphasize the need to identify a ‘hub’ or ‘final com-

mon pathway’ leading to schizophrenia, a hub on which various known causal factors 

converge and from which established patho-physiological impairments originate. 

Through a reverse translational approach [65], we have identified a candidate hub 

related to redox dysregulation. The hub of redox dysregulation/oxidative stress result-

ing from a genetic impairment of glutathione (GSH) synthesis fulfills such require-

ments: it represents a complex interplay between genetic and environmental factors 

during brain development, which leads to impaired neuronal integrity and connec-

tivity and sets off a cascade of events that extend into adult life (fig. 1).

The tripeptide GSH (γ-glutamyl-cysteine-glycine), known as the major intracel-

lular non-protein antioxidant, is required (1) for protection against cellular damage 

due to reactive oxygen and nitrogen species (ROS and RNS) and detoxification of 

environmental toxins and reactive metabolites [66], and (2) for the maintenance of 

the thiol redox status which is critical for redox-sensitive processes [67] such as cell 

cycle regulation and cell differentiation [68], receptor activation (e.g. N-methyl-d-

aspartate, NMDA, receptor [69]), signal transduction (e.g. H-Ras, PTP-1B) and tran-

scription factor binding to DNA (e.g. Nrf-2, NF-κB) [67]. GSH deficiency will induce 

oxidative stress, leading to deleterious peroxidations of lipids, proteins and DNAs, 

altering lipid metabolism and affecting mitochondrial function [70].

Substantial evidence of oxidative damage has been observed in peripheral tis-

sues and post-mortem brain of schizophrenia patients [71–78]. However, variabil-

ity in these results highlights the contribution of the diverse genotypes and tissues 

studied [for review see 79]. It remains unclear if the responsible oxidative stress was 

due to environmental factors or was of genetic origin, preventing the affected brain 

areas from reacting adequately to oxidative stress. We propose that a primary genetic 

defect of GSH synthesis is at the origin of the failure of antioxidant defenses in schizo-

phrenia. This implies the involvement of a critical neurodevelopmental component 
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in schizophrenia when compared with neurodegenerative disorders. Indeed, there is 

also increasing evidence for the involvement of oxidative stress-induced cellular dam-

age in the pathogenesis of various neurodegenerative diseases such as Parkinson’s, 

Alzheimer’s and Huntington’s. However, in these cases, ROS/RNS increase and GSH 

depletion appears to be a downstream consequences of other primary causes (such 

as mitochondrial complex I dysfunction in Parkinson’s disease, amyloid-β peptide 

toxicity in Alzheimer’s disease, and huntingtin-related mitochondrial dysfunction in 

Huntington’s disease) [70].

An association between schizophrenia and a trinucleotide repeat polymorphism 

in the key gene responsible for GSH synthesis has been recently demonstrated, which 

suggests a genetic origin for the dysregulation of the redox system seen in the disease 

[21]. Indeed, patients suffering from schizophrenia present a brain deficit in the GSH 

system which is of genetic origin: (1) GSH levels in the brain and cerebrospinal fluid 

are decreased [80–82]; (2) glutamate cysteine ligase (GCL) activity and GSH synthe-

sis are decreased in patients’ fibroblasts under oxidative stress conditions [21], and 

(3) allelic variants of the key GSH-synthesizing enzyme the GCL-modulatory subunit 
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(GCLM) [20] and catalytic subunit (GCLC) [21] are associated with the disease. In 

particular, in 2 case-control studies with a total of 570 patients and 797 controls, a GAG 

trinucleotide with 7, 8 or 9 repeat polymorphisms in the GCLC gene showed a signifi-

cant intergroup difference regarding the overall genotype distribution [21]: the GCLC 

genotypes 7/7 and 7/9 are more frequent in controls (‘low risk’ genotypes), while 8/7, 

8/8, 8/9 and 9/9 are more frequent in patients (‘high risk’ genotypes). This polymor-

phism has functional consequences: the high-risk genotypes had lower GCL activity, 

GCLC protein expression and GSH content than subjects with low risk. Interestingly, 

the high-risk genotype is present in 36–40% of patients and is 3 times more frequent 

in patients. This is consistent with the decreased GSH levels in the cerebrospinal fluid 

and medial prefrontal cortex in vivo [80, 82], as well as in post-mortem striatum [81]. 

Furthermore, high-risk genotype patients have lower fibroblast GSH levels and higher 

plasmatic free oxidized cysteine levels than low-risk ones (Gysin et al., in prepara-

tion), pointing to generalized oxidative systemic conditions [76, 83].

Taken together, these results provide evidence that polymorphisms in the key 

GSH-synthesizing genes are associated with schizophrenia, leading to a redox dysreg-

ulation favoring oxidative and nitrosative stress consequences. These results inspired 

the development of the ‘glutathione hypothesis’ [84]: brain deficits in the GSH sys-

tem would lead to both a functional and a structural disconnectivity, which could 

be a basis of the disease etiology. Moreover, results gathered in experimental mod-

els, revealed that a decrease in GSH, particularly during development, induces mor-

phological [85, 86], electrophysiological [87, 88] and behavioral [89–91] anomalies 

analogous to those observed in the disease (see ‘Developmental animal models with 

redox dysregulation’, below), thus providing additional support to the hypothesis.

Pathophysiological Mechanisms

We thus propose that a redox/antioxidant dysregulation due to GSH deficit could 

represent a vulnerability factor in the early phase of brain development in schizo-

phrenia. Combined with other genetic and environmental factors, it could favor the 

development of the disease [84]. Life event stresses, through hypothalamic-pituitary-

adrenal axis stimulation, induce substantial dopamine release [92–94]. This could 

result, when combined with GSH deficit, in an increase in ROS and thus in oxida-

tive damage to lipids, proteins and DNA [95], leading during brain development and 

maturation to progressive structural and functional disconnectivity.

Low GSH and Structural Problems

As GSH is the main non-protein cellular redox regulator, protecting against cell dam-

age due to ROS, this deficit would be particularly damaging in brain regions rich in 
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dopamine (e.g. prefrontal cortex), whose metabolism generates ROS. This mecha-

nism could be responsible for morphological alterations such as anomalies of den-

dritic spines and of parvalbumin-positive inhibitory interneurones in prefrontal 

cortex [46, 49, 96].

Low GSH and Functional Problems

A GSH deficit would also depress NMDA (glutamate) receptor responses [97], a phe-

nomenon known to be involved in perturbations of sensory and cognitive functions 

in schizophrenia [64], as demonstrated by the psychotomimetic action of the NMDA 

antagonist phencyclidine [98]. Indeed, GSH potentiates the glutamate response of the 

NMDA receptor (NMDAR) through interaction at the redox site [97]. This action 

could be depressed in case of a GSH deficit, leading to effects similar to those induced 

by phencyclidine. In summary, the framework of the ‘glutathione hypothesis’ can 

integrate both dopamine and glutamate theories.

Hub of GSH Deficit

The etiological hub of GSH deficit can have many causes via an interaction between 

genetic and environmental factors [84] (fig. 1). Besides the GSH regulatory genes 

described above, some other genetic factors identified as implicated in schizophrenia 

could also lead to a redox imbalance and an oxidative stress. Indeed, a positive asso-

ciation with schizophrenia has been found for a SNP in PRODH which increases the 

proline oxidase (PRODH) activity, reported to promote ROS generation [99, 100]. On 

the other hand, various environmental insults known to be schizophrenia risk factors 

all lead to a GSH deficit: viral infections [24], inflammation, toxic or traumatic insults 

and stress during gestation or birth or childhood, psycho-social stress and perhaps 

even diet and post-natal exposure to toxins [25–27]. It is thus likely that such insults, 

particularly when combined with a genetically deficient redox system, will cause oxi-

dative stress and damaging peroxidations. Impacts during early development may 

become apparent only in adulthood. Exposure to oxidative stress at various develop-

mental stages affects at least 2 essential cerebral processes that are dysfunctional in 

schizophrenia (fig. 1): (1) reductions in parvalbumin (PV) fast spiking GABAergic 

interneurons (FSGI) [46] known to be crucial for brain oscillatory activity [101], and 

(2) deficient myelination [102].

Reductions in PV FSGI 

The NMDAR, which is essential for synaptic plasticity, learning and memory, pos-

sesses a redox site which modulates its activity: it is depressed under oxidizing con-

ditions and thus hypoactive when GSH is low [97]. Antagonists of the NMDAR 
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(phencyclidine, ketamine) are known to induce psychotic states in normal subjects 

and worsen the symptoms of patients [98]. At the cellular level, the prefrontal cortex 

FSGI show a decrease of PV and GAD67 in post-mortem brains of patients [46]. The 

same result is obtained in animal models under low GSH conditions [85] or after 

treatment with NMDAR antagonists [103, 104, 105]. It thus appears that GSH deficit 

induces an impaired function in FSGI, particularly during brain development. This 

NMDAR hypofunction induced FSGI defect is mediated by activation of NAPDH 

oxidases [106, 107]. The latter also produces ROS, which will not be sufficiently 

reduced when GSH is low. The FSGI are critically involved in the functional cortical 

circuitry responsible for synchronization and gamma band EEG oscillations during 

cognitive tasks [59, 101, 108]. Their impairment could potentially lead to decreased 

synchronization and γ-oscillation power and to cognitive deficits both in patients and 

in animal models. This chain of events is likely to be causally involved in the genera-

tion of schizophrenia phenotype.

Deficient Myelination

In addition, oxidative stress is likely to affect the development of progenitor cells 

in the central nervous system, and the precursors of oligodendrocytes are particu-

larly sensitive to redox balance. A tendency toward the oxidative side of the balance 

favors differentiation over proliferation, leading to a deficit in oligodendrocytes and 

to anomalies of myelination [109, 110]. The development of appropriate levels of 

myelin is affected in the schizophrenic brain and the resulting errors in conduction 

speed of action potentials is likely to contribute to the deficits in connectivity and 

synchronization in diverse pathways which would underlie the cognitive and negative 

symptoms.

Developmental Animal Models with Redox Dysregulation

As noted above, schizophrenia is a multifaceted disorder, with evidence concerning 

its onset and etiology pointing to a complex interplay of genetic, environmental and 

developmental factors. Several approaches have been taken to develop animal models 

of schizophrenia [for review see 111, 112]. These include: 

– Specifi c pharmacological or genetic manipulations that aim at modeling a 

particular aspect of the pathophysiology observed in schizophrenia in order to 

assess the consequences of these defects. Th ese are applicable to post-pubertal 

and chronic stages of the disease. 

– Disruptions of normal brain development and maturation, focusing on those 

which lead to behavioral impairments related to schizophrenia that only appear 

aft er puberty. 

– Animal models with obstetrical complications and prenatal maternal infections, 

two conditions known to increase the risk of schizophrenia. 
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However, none of these models by itself addresses in a comprehensive manner the 

complexity and heterogeneity of schizophrenia and its multiple stages of development. 

Integration of results obtained from models of these different elements are needed 

to determine the conditions and defects that can produce the various symptoms of 

schizophrenia. It is becoming apparent that several different defects independently 

or in combination can converge to provoke similar behavioral dysfunctions related to 

schizophrenia. There is thus a strong need to develop new models that combine sev-

eral manipulations (e.g. combining genetic or pharmacological manipulations with a 

developmental environmental factor). A unifying pathogenesis concept was proposed 

[31]: ‘genetic susceptibility in concert with particular stressors during development, 

may lead to a critical threshold that, when crossed, produces the clinical syndrome at 

a later stage in life.’

We review here results concerning 2 animal models which explore such conver-

gence of both genetic and environmental risk factors during development, based on 

impairment of GSH synthesis, redox dysregulation and increased oxidative stress.

BSO-Induced Glutathione Deficit

We have established a pharmacological model in rats based on inducing transient 

redox dysregulation during development involving specific inhibition of GSH synthe-

sis with t-butyl sulfoximide (BSO) leading to a 50–60% decrease of brain GSH levels 

from postnatal days (PN) 5 to 16. Alone or combined with oxidative stress (induced 

by a blockade of dopamine uptake with GBR12909 leading to high levels of extracel-

lular dopamine and thus to ROS production), this treatment leads to following mor-

phological, electrophysiological and behavioral anomalies:

– In prefrontal cortex neurons, we observed a decrease in dendritic spine density 

[86, 113], as well as in parvalbumin immunoreactivity [85]. Th ese observations 

are similar to those reported in the brain of schizophrenia patients [49, 96].

– Memory and sensory integration are perturbed (later in female rats than in males 

[89–91]), reproducing some of the cognitive defi cits observed in schizophrenia.

– In rat hippocampal slices, GSH depletion impairs NMDA-dependent synaptic 

plasticity [87]. In neuronal cultures, while dopamine enhanced NMDA responses 

in control, it depressed them in GSH-depleted neurons. Antagonist of D2-

Rs prevented this depression, a mechanism contributing to the effi  cacy of 

antipsychotics [88].

All of these anomalies are quite similar to those reported in schizophrenia and 

show that an insult imposed in the developmental period of PN 5–16 has long-term 

behavioral consequences. This pharmacological model has, however, some techni-

cal limitations, in particular bound to the fact that the period at which BSO can be 

applied systemically is restricted by its transitory permeability across the blood brain 

barrier.
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GCLM–/– Knockout Mice

This preclinical animal model permits exploration of how interaction between this 

susceptibility gene and environmental insults during brain development will result 

in impaired neuronal integrity and connectivity, setting off a cascade of events that 

extend to adult life. As discussed above, the fact that the GCLM gene has allelic varia-

tions associated with schizophrenia in patients [20] indicates that the GCLM–/– mouse 

is a useful model. Its GSH level is low (20% of wild type) throughout development, 

rendering it at permanent risk for oxidative stress (note that a knockout of the gene 

coding the catalytic subunit GCLC is lethal in mice). At the other end, environmental 

stress, through hypothalamic-pituitary-adrenal axis stimulation, induces substantial 

dopamine release [92–94]. This would result in an augmentation in ROS and thus fur-

ther increase oxidative stress. We thus investigated an animal model which involves 

GCLM as a risk gene causing redox dysregulation and employ hyperdopaminergia 

as an environmental stressor which can be applied at various stages during neural 

development. GCLM–/– mice showed selective and region-specific anomalies in the 

GABAergic system. As in the BSO-treated rats, PV immunoreactive interneurons in 

GCLM–/– mice were particularly affected.

In anterior cingulate of GCLM–/– mice, concomitantly to an increase in oxida-

tive stress as revealed by 8-oxo-dG (marker of DNA oxidation), the developmental 

expression of PV was impaired at PN 10, but normalized at PN 20. Additional stress 

(GBR treatment) during postnatal development (from PN 10–20) prevents this nor-

malization at PN 20 [114]. Moreover, myelination is also impaired as revealed by a 

weaker myelin basic protein immunolabelling intensity and thinner myelin basic pro-

tein immunoreactivity profiles [114].

In ventral but not dorsal hippocampus of adult GCLM–/– mice, oxidative stress 

marker 8-hydroxy-2-deoxyguanosine was increased while PV immunoreactivity of 

GABA interneurons and kainate-induced γ-oscillations were reduced. These effects 

were severe in the dentate gyrus and CA3 region but not CA1. Furthermore, GCLM–

/– had no impairment in dorsal hippocampus-related spatial learning and memory 

(rewarded alternation and Morris water maze) while they display novelty-induced 

hyperactivity, reduced anxiety, alterations in social behavior and deficiency in object 

memory, all tasks related to ventral hippocampus [114, 115].

Altogether, these observations confirm that PV immunoreactive interneurons are 

particularly sensitive to a GSH deficit but their vulnerability depends on brain region 

and correlates with the level of oxidative stress. This also supports the notion that PV 

immunoreactive fast-spiking interneurons are highly vulnerable to oxidative stress 

[116]. As noted above, patients with schizophrenia are characterized by decreases 

in PV containing GABAergic interneurons that are crucially involved in the genera-

tion of high-frequency oscillations. Moreover the synchronization of such oscilla-

tory activity which is at the basis of neural activity coordination during perceptual 

and cognitive processes is also impaired in schizophrenia [108, for review see 117]. 
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The impairment of PV interneurons and neural synchronization in GCLM–/– mice 

suggests that GSH deficit and redox dysregulation underly cognitive and behavioral 

anomalies observed in schizophrenia, at least in high-risk GCLC genotype patients.

The myelination anomalies observed in GCLM–/– mice are consistent with the 

impairment of oligodendroglia-mediated myelination in schizophrenia as evidenced 

from gene expression profiling, neurocytochemical and neuroimaging studies [54, 

118, 119]. A deficit in myelination would influence the axonal conduction veloc-

ity and thus prevent precise synchronizations. It also would have an impact on the 

association pathways essential for intermodal sensory integration and the ‘binding’ 

process [117], underlying the cognitive and negative symptoms. As cortical myelina-

tion extends until late adolescence for the temporal and prefrontal regions, its deficit 

could be related to the delayed onset of the disease in early adulthood. As discussed 

above, intracellular redox state appears to be a necessary and sufficient modulator 

of the balance between self-renewal and differentiation in dividing oligodendrocyte-

type-2 astrocyte progenitor cells [109, 110]. More specifically, cells that are more 

oxidized tend to differentiate, whereas those that are more reduced undergo self-

renewal. Therefore the redox dysregulation observed in schizophrenia may lead to 

myelination perturbation through oligodendrocytes mitogenic signaling disruption 

[109].

Therapeutic and Preventive Perspectives

Proof-of-Concept Clinical Trial with N-Acetyl-Cysteine

N-acetyl cysteine (NAC) is a commercial drug approved as an add-on treatment for 

bronchitis and as an antidote in paracetamol intoxication. Recently, biological effects 

of NAC have been studied in order to explore potential additional clinical indica-

tions, such as graft rejection [120], cystic fibrosis [121], chronic obstructive pulmo-

nary disease [122], arthritis [120], some forms of cancer [120], neurodegenerative 

disorders [123–125] and cocaine and heroin dependency [126, for review see 127]. 

Various NAC characteristics suggest it is a very promising candidate in the context of 

a potential GSH-redox dysregulation linked to schizophrenia, through its influence 

on the GSH system as well as through a direct antioxidant effect. These characteristics 

can be defined as follows:

– Induction of in vivo biosynthesis of GSH: cysteine, an NAC metabolite, is 

essential for GSH synthesis. Availability of cysteine is therefore a crucial factor for 

constitution of adequate intracerebral reserves of GSH, considering glutathione 

itself does not cross the blood-brain barrier.

– Gene expression modulation by oxidative stress: NAC plays an important 

modulating role in expression of genes linked to oxidative stress through its eff ect 

on transcription factors such as NF-κB and AP1 [128].
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– Antioxidant eff ect of NACNAC reduces concentration of free radicals and other 

oxidants through direct inactivation of reactive oxygenated compounds through 

the molecule’s free thiol group and formation of NAC-disulfi de as the fi nal 

product.

– Protection of nerve cells: numerous studies, both in vitro and in vivo, have shown 

that administration of NAC protects nervous cells against free radicals [120, 128].

In a double-blind, placebo-controlled study, NAC has proven to be efficient at 

improving schizophrenia symptoms. Indeed, NAC, as an add-on treatment to antip-

sychotics, decreased negative symptoms and reduced side effects (akathisia) in a 

cohort of 140 chronic patients [129]. Moreover, this GSH precursor is also effective in 

improving mismatch negativity [130], an auditory related, NMDA-dependent evoked 

potential typically impaired in schizophrenia [62, 131]. This is encouraging since 

present antipsychotic treatments are rather ineffective against cognitive and nega-

tive symptoms and have no effect on certain biomarkers like mismatch negativity, a 

pre-attentional component which is proposed to gate some cognitive and functional 

modules.

It is of interest to note that the high-risk GAG trinucleotide polymorphism is also 

associated with bipolar patients [Gysin et al., unpubl. observations], but not with 

major depression, supporting the view that various genetic anomalies are common 

to several psychoses. This is consistent with the observation that NAC supplementa-

tion improves bipolar patients [132], and is consistent with the concept of a psychosis 

continuum, as proposed by Crow [133].

Early Intervention and Prevention

Early intervention in psychosis has become an important focus of interest in psychia-

try [134, 135]. Prospective studies conducted in first episode psychosis patients [136–

139] have identified long delays between onset of psychotic symptoms and initiation 

of adequate treatment and lack of specificity in treatment of the early phase of psycho-

sis (fig. 2). Two additional concepts emerged from this research: first, that full-blown 

psychosis is preceded by a ‘prodromal phase’ [140–143], and second, that the first few 

years after onset of the major symptoms constitute a ‘critical phase’ where outcome 

is more likely to be influenced [144]. However, the diagnosis of the prodromal phase 

still relies exclusively on clinical assessment [145] with limited specificity and hence 

a high rate of false positives, which raises important ethical issues when designing 

therapeutic strategies [146, 147] and underlines the need for valid biomarkers.

Our present knowledge indicates that the maximal efficacy of our treatments 

would be in the early psychosis and prodromal phase before redox dysregulation/

oxidative stress has done major damage. Considering NAC has negligible side effects, 

its efficacy in early psychosis and prodromal phase will be a first step towards iden-

tifying pharmacological agents that are much more acceptable to patients and may 
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therefore improve adherence to treatment. Moreover, NAC supplementation has very 

promising potential in children and adolescents who suffer from neurodevelopmen-

tal psychotic disorders, because neuroprotection could be crucial at the critical ages 

of adolescence when pathological processes are interfering with ongoing brain devel-

opment. Finally, the presence of a GSH-redox dysregulation or its genetic correlates 

may prove to be a useful marker in the frame of early detection of schizophrenia.

Nutrients and Antioxidants for Prevention and Treatment

Glutathione and C1 Metabolism

Disturbances in single-carbon metabolism appear to be related to a variety of neu-

ropsychiatric disorders, covering a broad spectrum that includes depression [148], 

autism [149] and psychosis [150, 151]. Indeed, the enzymes and metabolites of the 

methionine and folate cyle are associated with schizophrenia [152–155]. However, 

we do not know yet whether an observed disturbance is a primary event that is fun-

damentally related to the pathogenesis or a secondary phenomenon reflecting a non-

pathogenic mechanism.

Interestingly, methionine given per os has been shown to be the only amino acid that 

exacerbates the psychotic symptoms in schizophrenic patients [154]. Experimental 

methionine loading brings about various effects on the single-carbon cycle as it low-

ers serum folate concentration [156], induces oxidative stress [157], and lowers the 

amino acid cysteine [158], the rate-limiting precursor in the GSH synthesis. The 

exacerbation of psychosis could thus be the consequences of an aggravation of the 

impairment of the GSH deficit and redox dyregulation hub, at least in the high-risk 

GCLC genotype schizophrenia patients. Moreover, GSH is a cofactor for the func-

tion of methionine adenosyltransferase (MAT), which is a sensitive target for oxida-

tion, and MAT activity is therefore strongly dependent on cellular GSH levels [159]. 

MAT has been reported to be significantly underactive in red blood cells and brains 

of schizophrenic patients [160]. In addition, GSH deficit, through methionine and 
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the transmethylation pathway could contribute to the dysregulation of DNA methyla-

tion thus affecting epigenetic processes (fig. 3). Indeed, under oxidative stress condi-

tions, methionine synthase is inactivated, allowing homocysteine to be shunted into 

the transsulfuration pathway in order to favour GSH synthesis [161]. As GSH synthe-

sis is impaired in the high-risk genotype, both transmethylation and transsulfuration 

pathways will be depressed, leading to perturbations of the DNA methylation process 

and increase of homocysteine levels often observed in schizophrenia [28, 162, 163].
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Fig. 3. Single-carbon metabolism and glutathione in schizophrenia. GSH dysregulation might play 

a role in the framework of the single-carbon hypothesis of schizophrenia originally proposed by 

Smythies et al. [183]. In the transmethylation pathway, methionine is converted to homocysteine 

providing methyl groups to DNA, lipids and proteins. Homocysteine can be either remethylated to 

methionine through activation of methionine synthase, which depends on folate and vitamin B12, or 

metabolized to cystathionine and cysteine through the transsulfuration pathway. Cysteine can then 

be used as a precursor of GSH. Thus, homocysteine is in a central position, going either to transm-

ethylation or to transsulfuration and GSH synthesis. Deth et al. [155] proposed that methionine syn-

thase can act as a ‘redox sensor’. Under oxidative stress conditions, methionine synthase is inactivated 

(dotted arrow line 1), allowing homocysteine to be shunted into the transsulfuration pathway to 

increase GSH synthesis and thus neutralize oxidative stress. This mechanism is of particular interest 

in the perspective of schizophrenia, as hyperhomocysteinemia has been reported in subgroups of 

patients. Such a hyperhomocysteinemia could be related to a partial block of both transmethylation 

and transsulfuration pathways. A GSH deficit due to the impairment of GCL could thus interfere with 

the transsulfuration pathway, and inhibit the methionine synthase affecting the transmethylation 

pathway. In addition, hyperhomocysteinemia exercises an inhibition on GPX1 activity (dotted arrow 

line 2), further depressing the reduction effect of GSH [184], and testosterone has been shown to 

depress the β-cystationase (dotted arrow line 3), possibly contributing to gender differences in 

severity [185]. These mechanisms are likely to be exacerbated by an enhancement of oxidative stress 

during the acute phases of psychosis.
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A most encouraging feature of single-carbon metabolism is its potential modifica-

tion by natural means, such as B vitamins and antioxidants. In one case report, cobal-

amine treatment alleviated psychotic symptoms [152]. However, this clinical effect 

diminished with time, and the metabolic abnormality was thus not wholly cobalamin 

dependent. In a double-blind, placebo-controlled trial, methylfolate supplementation 

significantly improved clinical and social recovery among both depressed and schizo-

phrenic patients [164].

Polyunsaturated Fatty Acids

Another potential alternative and adjunctive to current antipsychotic treatments is the 

use of certain polyunsaturated fatty acids (PUFA), the omega-3 and omega-6, which 

play key roles in brain structure and function but which must be derived from dietary 

sources [165]. A high dietary ratio of omega-6, found in soft margarine, most veg-

etable oils and animal fats, to omega-3, found principally in oily fish and seafood, has 

been linked with vulnerability to many disorders of physical and mental health [166].

In our context, GSH deficit and redox dysregulaton in schizophrenia could lead to 

oxidative stress and ROS-mediated injury as supported by increased lipid peroxida-

tion products and reduced membrane PUFAs. Decrease in membrane phospholip-

ids in blood cells of psychotic patients [167, 168] and fibroblasts from drug-naïve 

patients [169] and in post-mortem brain [170] were indeed reported. It has been 

also suggested that peripheral membrane anomalies correlate with abnormal central 

phospholipid metabolism in first-episode and chronic schizophrenia patients [171, 

172]. Recently, a microarray and proteomic study on post-mortem brain showed 

anomalies of mitochondrial function and oxidative stress pathways in schizophre-

nia [76]. Mitochondrial dysfunction in schizophrenia has also been observed [74, 

173]. As main ROS producers, mitochondria are particularly susceptible to oxida-

tive damage. Since the brain is highly vulnerable to oxidative damage because of its 

high oxygen consumption, its high content of oxidizable PUFAs and the presence of 

redox-active metals (Cu, Fe), a deficit in GSH could be particularly damaging to the 

neuronal function.

There is increasing evidence that dietary supplementation with omega-3 fatty acids 

may be beneficial in psychiatric conditions [174]. This evidence includes random-

ized controlled trials in conditions such as schizophrenia, depression and borderline 

personality disorder [175–178]. However, recent meta-analyses of these studies show 

little evidence of a robust clinically relevant effect of omega-3 PUFA in schizophre-

nia, while the most convincing evidence for beneficial effects of omega-3 PUFA is 

to be found in depression [179]. Moreover, supplementation with omega-3 PUFA 

and vitamins C and E appear to exacerbate the positive symptoms in a subgroup of 

schizophrenia patients with low plasma PUFA [180]. These puzzling results might 

be explained by assuming an intrinsic GSH deficit of genetic origin in these patients. 

Indeed, antioxidants such as vitamins C and E might become pro-oxidants in an oxi-

dizing environment [181, 182] as they require GSH to be reduced and regenerated 
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[70]. The same argument can be applied for the short-term effect of the above-

described cobalamine treatment. Thus, nutritional approachs must take into account 

the genetic and epigenetic background of individual patients. Nutrigenetics research 

will offer a strong foundation for future clinical investigations towards alternative 

treatment and prevention of psychiatric diseases.

Conclusion

Redox dysregulation may constitute a hub where genetic and environmental vul-

nerability factors converge, and their timing in brain development is likely to play 

a decisive role in the phenotype of schizophrenia patients. In experimental models, 

such redox dysregulation induces anomalies strikingly similar to those observed 

in patients. A treatment restoring redox balance, deprived of side-effects, yields 

improvements in chronic patients. Its application in early psychosis and prodrome, 

intended to halt pathological developmental processes, is promising. The proposed 

mechanisms should provide biomarkers for early detection, paving the way for pre-

vention perspectives in which nutrigenetics would play a primordial role.
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A Perspective
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Md., USA

The United States Department of Agriculture (USDA) plays an important role in the 

nutritional well-being of the country and throughout the world as part of its leader-

ship role related to the production of food. Part of its mission is to conduct research 

that helps define an optimal and safe diet, to conduct research to enhance agricultural 

production, and to provide dietary guidance based on the latest research. These activ-

ities are carried out largely through the Agricultural Research Service, which is the 

intramural research arm of the department. In addition, the USDA plays an impor-

tant role in administering a number of food assistance programs, which in order to 

be effective must be based on the best nutritional information available. The promise 

of nutrigenomics holds exceptional opportunities for all of the areas of importance to 

the department. In this report, I will examine the promise and challenges regarding 

the use of nutritional genomics in agriculture.

Genomic Prediction in Dairy Cows

The USDA has for over 100 years been active in programs to improve dairy cattle, 

which today is manifested in the National Cooperative Dairy Herd Improvement 

Program [1]. This program is aimed at improving the breeding of dairy cows. Through 

the widespread use of artificial insemination it has been extremely successful in keep-

ing up with the demand for food, improving productivity and breeding, improving 

the quality of milk, and improving profitability for producers. This program has been 

of great importance to the dairy industry.

Milk production in dairy cows is a trait that is actually transferred through the 

male sire. Traditionally, through what is known as prodigy testing, predictions of 

the value of a bull are based on pedigree and milk production information that was 
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maintained by the Animal Improvement Laboratory at the Beltsville Agricultural 

Research Center in Beltsville, Md. With the emerging understanding of the bovine 

genome [2, 3], it has opened up the door for genetic prediction. Working as part of a 

Cooperative Research and Development Agreement with Illumina Inc., Beltsville sci-

entists and their collaborators began an ambitious examination of single nucleotide 

polymorphisms (SNPs) in cows. They have developed a commercially available SNP 

chip that can be used for screening a bull to produce a dairy cow that has the desired 

characteristics with regard to milk production. This newer method is called genome-

enhanced improvement evaluation [4].

A comparison between the 2 methods of evaluating bulls is presented in table 1. 

The prodigy testing method of prediction is accurate to about 35%, the results are not 

known until the cow is about 5 years old, and the cost is about USD 50,000. Using an 

Illumna chip of over 50,000 SNPs, the accuracy of the prediction increases to greater 

than 70% and the determination can be done at birth of the calf. Significantly, the 

cost of the analysis is only about $250. This newer approach has changed the dairy 

industry in a very short time. It will lead to greater increases in productivity and 

milk production, which as a source of food is of significance for the human popula-

tion. Beyond the dairy industry, this new approach represents a proof-of-concept 

of genetic prediction in agriculture. The use of this genomics approach can be used 

for any traits that one might be interested in. As indicated in the table, it has been 

used to predict a number of qualities important to the dairy industry. Furthermore, 

this SNP analysis approach can be used for genetic prediction in other commod-

ities. Scientists at the Beltsville Agricultural Research Center are taking a similar 

approach to soybeans, by looking at qualities that are traditionally bred into them, 

such as protein content, disease resistance, yield, drought resistance and their stor-

age characteristics.

Dietary Guidance

In the United States, the Department of Health and Human Services and the 

Department of Agriculture share the responsibility for development of the Dietary 

Guidelines for Americans. These guidelines form the basis for the government’s 

dietary advice and are revised every 5 years to include the latest nutritional research. 

In light of the role that nutrition plays in maintaining health and the importance of 

a proper diet, it is attractive to consider that nutritionally related chronic diseases 

can be prevented by an improved diet. With the escalation of health care costs, an 

approach based on prevention is particularly attractive. These guidelines, like much 

of our nutritional advice, are a population-based recommendation. That is to say, the 

advice has been ‘one size fits all’ despite the fact that we know that tremendous varia-

tion can exist within the population. Despite this, however, the guidelines do serve a 

purpose for enlightening people about sound nutritional information. The promise of 



156 Spence

nutrigenetics is to develop individualized dietary advice that more accurately repre-

sents the risk to an individual with regard to nutritionally related diseases. Today one 

can see the evolution toward this goal with the availability of information contained 

on the MyPyramid.gov website, where an individual’s lifestyle and basic background 

can produce an individually tailored dietary pyramid.

As we become more aware of the genes that are involved in health and the poly-

morphisms associated with those genes, we will be confronted with the need to be 

able to make meaningful dietary recommendations. The overall approach and pitfalls 

associated with it are depicted in figure 1. Diets are a complex interaction of a vari-

ety of foods, nutrients and non-nutritive components. Changing one or a number of 

components of the diet will no doubt affect the overall impact of one’s diet in ways 

that we do not fully understand. It is important to recognize that metabolism and 

interactions between nutrients and genes take place within the metabolic context of 

a cell or an individual. Many of the diseases that are associated with diet are known 

to be the results of multiple gene interactions [5, 6]. These interactions are poorly 

understood and a simple attempt to alter the interaction or to perturb the system 

might have no effect or even negative effects.

A significant but unknown factor in any discussion of nutrigenomics is the uncer-

tainty of the role that epigenetic influences play in altering the response to diet.  These 

epigenetic influences are likely to be significant in light of the fact that nutrition is 

the result of a lifetime of ingestion of nutrients and non-nutritive components. It is 

not clear if there is a threshold of interactions before the biological effects are fixed 

or are actually observed. Equally unknown is whether the effects of the interactions 

can be repaired or reversed.  Additional research is needed to determine if important 

nutrient gene interactions occur early in life and if there is significant imprinting of 

an effect, and what if anything can be done to prevent or reverse the biological effect 

from occurring.

Table 1. Comparison of traditional prodigy testing in dairy cows and genomic-enhanced improve-

ment evaluation

Traditional prodigy testing 

evaluation

Genome-enhanced 

improvement

Time of evaluation 5 years Immediately at birth

Cost USD 50,000 USD 250

Accuracy of predictiona 35% 70%

a Predictions determined for net merit, milk produced, fat, protein, productive life, pregnancy rate 

and calving ease.
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Discussion

The connection between nutrition and agriculture is a relationship that, because it is 

so fundamental, it is often overlooked or underappreciated. The example of genetic 

prediction in dairy cows has in a very short period of time changed the dairy industry 

and demonstrates the potential use of this technology for humans and nutrigenomic 

approaches to human nutrition. By itself, it demonstrates the value of genomics in 

making more food available for an expanding population. The ability to expand this 

approach to other commodities will offer an opportunity to increase yield, improve 

production and quality.

While genetic prediction might work well in agriculture and certainly reinforces 

the promise of nutrigenomics in the human population, there are reasons to be cau-

tious. Agriculture has an advantage in that many of the animal and plant commodities 

are rather homogeneous genetically, while the human population is not. In agricul-

ture, if a product does not meet the desired characteristics it could simply not be used 

or could be used for other purposes. Significantly, there exists a tremendous amount 

of phenotypic data for agricultural commodities and ready access to a huge collec-

tion of germplasm. Efforts are well underway to develop similar types of information 

and resources from ongoing nutritional studies and these resources must be available 

in order to understand and validate nutrigenomic approaches to delivering dietary 

guidance.

The nutritional status of an individual represents both the recent and lifetime 

intakes of substances in the diet. It is not clear to what extent the impact of these 

exposures can be reversed or mitigated. While there are well documented DNA repair 

mechanisms, their relationship to nutrition is now beginning to be understood [7]. 

The role of tissue remodeling and the ability to reverse nutritionally related biolog-

ical effects are not clear. When dealing with genetic transformations, it is possible 
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that imprinting occurs whereby effects on genetic material or gene expression may 

have long-lasting effects later in life. The role of epigenetic factors in influencing the 

response of an individual to dietary components will no doubt prove to be significant 

and need to be explored. The expanding importance and impact of nutrigenomics 

has the potential to raise some challenging ethical concerns. These and other issues 

will clearly need to be addressed as research in this important area proceeds.

As seen in the case of dairy production reported herein, the best genetic prediction 

is not 100% accurate. The guidance of individualized nutrition might be improved, 

but may never be completely accurate. No doubt the public will hear the terms 

genomics or individualized nutrition and interpret that as meaning highly accurate or 

absolute. This could open the door to unethical marketing of products and promises 

to the consumer or raise expectations that ultimately result in a loss of confidence in 

dietary guidance.

A significant issue that arises when taking a nutrigenomic approach to the devel-

opment of dietary guidance is that we may be able to predict genetic predisposition 

but not know the actual genes that are of importance. It will clearly present a chal-

lenge to make meaningful dietary recommendations under such conditions. Even if 

we can identify the genes, the important point is determining how we can alter the 

diet in a way that produces the desired beneficial effect. In the simplest case, if we 

know how a particular dietary component interacts with a gene, then people carry-

ing that gene can be advised to simply avoid that component. However, it is not likely 

we will be able to do that in many cases, particularly in light of the multiple genes 

that may be involved in many complex biological processes. Lastly, simply making 

dietary recommendations and getting people to change their dietary habits based on 

advice alone is never easy. Effective education programs for individuals, dieticians 

and health care providers will very much be needed. An important role that agricul-

ture might play would be to develop varieties of commodities that would have desired 

nutrient profiles that would make it easier to meet the dietary recommendations. A 

1998 perspective by Fink [8] highlighted the importance of Arabidopsis as a model 

organism in genetics. He discussed the shortfalls of nutrition and how this model 

organism might be helpful for studies of nutrition and how the optimal diet would 

be determined through selective breeding of plants and animals that might better 

meet our nutritional needs. Clearly we now have the tools to do these types of studies 

without the use of model systems but we need to have the nutritional rationale for 

particular studies.

Nutrigenetics/nutrigenomics will no doubt continue to provide information on 

metabolic processes and nutritional requirements. While the possibility of the devel-

opment of individualized dietary guidance is becoming a reality, there are concerns 

and challenges. As we develop the capability to identify nutritional requirements for 

individuals, it is going to be a challenge to be able to make meaningful changes in a 

person’s diet.
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Opportunities and Challenges in 
Nutrigenetics/Nutrigenomics: Building 
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aDuPont Applied BioSciences, Wilmington, De., and bThe Pennsylvania State University, University Park, Pa., USA

The Challenge before Us

Science belongs to society, a public trust that can leverage a wide range of partner-

ships to achieve shared goals and contribute to the public good. In the context of this 

article, the word ‘partnership’ is used to characterize a relationship based on shared 

ethical values, a passion for scientific excellence, and a dedication to training the next 

generation of nutrition scientists. More specifically, the word partnership is used to 

denote a relationship built on trust and mutual benefit rather than the legalities of 

research collaborations and contracts. The challenge is to build such partnerships in 

an increasingly skeptical world that is hypervigilant in terms of bias, conflict of inter-

est, and private sector funding [1–3]. While not claiming to be the optimal model, 

DuPont and Pennsylvania State University (Penn State) may rightfully claim to have 

nurtured a long-standing and productive partnership centered on the molecular 

nutrition of omega-3 fatty acids, a partnership that is described herein.

Accelerated Learning Curves

A key measure of the success of a partnership is how far each party moves up the 

learning curves essential to their organizational or institutional goals. As shown in 

Box 1, DuPont’s association with Penn State enabled them to quickly learn about 

the complexities of nutripharmacology, the cardiovascular benefits of omega-3 fatty 

acids, and the specific health benefits of EPA. More importantly, through interactions 

with the University’s Center of Excellence in Nutrigenomics, they were able to glean 

strategic insights into the differential nutripharmacology of individual omega-3 fatty 
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acids such as ALA, EPA and DHA. This learning helped DuPont build the business 

case for developing the technology to produce ‘designer oils’. Such oils can provide 

fatty acid mixtures for a spectrum of nutritional products including functional foods, 

dietary supplements, medical foods and even pharmaceutical agents. In an era of pre-

emptive nutrition [4, 5], the ability to produce specific mixtures of fatty acids is a 

key step to enabling personalized nutrition. Figure 1 presents a nutrigenetic/nutrig-

enomic model of health based on omega-3 fatty acids. While the bottom right side of 

the model is readily implemented in practice and is applicable to the general popula-

tion, the upper left side of the model is still unfolding as researchers look to establish 

Box 1. Insights gained by DuPont from their partnership with Penn State 

•  Nutrition is about complex mixtures, not single molecules, the effects of which may be 

additive and/or synergistic in outcome.

•  Omega-3 fatty acids have an extensive nutritional pharmacology; however, not all omega-3 

fatty acids are the same.

•  Serum EPA correlates with several emerging cardiovascular biomarkers such as vascular cell 

adhesion molecule, TNF and C-reactive protein.

• There is a nutrigenomic basis for the differential health benefits of individual fatty acids.

• There is an opportunity for biotechnology to provide ‘designer oils’ as novel health products.
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Fig. 1. A nutrigenetc/nutrigenomic model of health based on the emerging science of omega-3 

fatty acids. While transcriptomic profiling of nutrients has already been reduced to practice in indus-

try, the genetic testing component remains in its infancy.
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the impact of different responses of single nucleotide polymorphisms to nutrients, 

the ethical-legal status of genetic testing is resolved [6] and a business model based on 

consumer segmentation by genotype is validated. 

Box 2. Insights gained by Penn State from their partnership with DuPont

•  Drugs and nutrients share considerable commonality in their underlying mechanisms of 

action.

•  Profiling of serum fatty acids and the determination of fatty acid indexes can offer new 

insights into underlying metabolic events.

•  Transcriptional regulation of stearoyl-CoA desaturase may be important in the dietary 

management of cardiometabolic disorders.

•  Biotechnology may be important in providing the omega-3 fatty acids needed to meet 

emerging dietary recommendations.

•  The experience and perspectives of private sector scientists represent a unique mentoring 

opportunity for students.
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Fig. 2. The training of students and the subsequent development of professional networks is one of 

the high-value activities of academic-industry partnerships. When this occurs in a nutrigenetic/nutrig-

enomic paradigm, the future of nutrition science advances in both the public and private sectors.
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As shown in Box 2, Penn State’s association with DuPont allowed them to tap into 

expertise in lipid metabolism and clinical pharmacology resulting in a greater appre-

ciation of the mechanistic overlap between drugs and nutrients, to explore stearoyl-

CoA desaturase as a potential target for the dietary management of metabolic 

syndrome through a DuPont visiting scientist, and to become aware of technological 

advances in the production of novel and healthier oils. Of particular value to its edu-

cational mission, Penn State was also able to offer students and postdoctoral fellows 

experience-based counseling regarding career opportunities in the private sector.

Professional Development and Building Networks

Another measure of partnership success is the extent to which it fosters the develop-

ment of professional networks. As illustrated in figure 2, the research advisory team 

of Drs. Kris-Etherton, Vanden Heuvel and Gillies evolved over time into a multidisci-

plinary training node. Their ‘graduates’ now have positions in government, academia, 

industry, and even public-interest groups, organizations to which they bring a famil-

iarity with what is possible at the public-private interface.

Sharing Science

Publications are unquestionably the currency of science. Herein co-authorship is both 

a reflection of the strength of the professional relationship and an objective measure 

of the scientific productivity of the partnership (Box 3). To some, such co-author-

ship raises the specter of bias, conflict of interest and suspect science; however, best-

practice policies throughout the publication process from author disclosure, editorial 

oversight, and professional guidelines on public-private relationships provide power-

ful counterpoint to such concerns (Box 4) [7–10].

Anatomy of a Partnership Model in Molecular Nutrition

The DuPont-Penn State experience is illustrated in a simple partnership model in fig-

ure 3. In sector A on molecular nutrition, there are two special comments to be made. 

First, omega-3 fatty acids represent yet another example of a bioactive food that is 

both a nutrient and a drug (other examples being folate, niacin and vitamin A), and 

underscore the need to bring greater resolution to the ‘nutrient-drug’ debate [11, 12]. 

In this regard, nutrigenetics/nutrigenomics has an important role to play in providing 

a molecular foundation for this dialogue. Second, the partnership was ever mindful 

of the risks associated with involving students in product development. In sector B 

on how academia can leverage industrial partners, it should be mentioned that the 
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relationship evolved over time based on mutual interest in cardiovascular research, 

common membership in professional societies such as the American Society of 

Nutrition, the American Heart Association and the National Lipid Association, and a 

fundamental commitment to student education. Sector C offers a number of ways in 

which industry can grow the partnership from a relationship between two scientists to 

a relationship between two organizations. It should be noted that in this sector there 

is always the possibility of ‘duality of interest’ as companies move to manage their 

industry-academic networks in an open innovation model [13]. A duality of interest 

occurs when declared or undeclared ulterior motives are present even though such 

motives are not contrary to the interests of the partnership [14]. A duality of interest 

is not the same thing as conflict of interest, nor is it, a priori, a negative element in a 

partnership. To the contrary, in a world of leveraged networks, it’s quite valuable. The 

nuanced distinction between conflict of interest and duality of interest is an example 

of the need for a better vocabulary to describe the relational elements of partnerships. 

Finally, sector D presents a spectrum of increasingly complex legal arrangements that 

can exist between industry and academia. Such arrangements fall outside the scope 

Box 3. Co-authored publications from DuPont and Penn State

Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM: Dietary alpha-linolenic acid 

reduces inflammatory and cardiovascular risk factors. J Nutrition 2004;134:2991–2997.

Zhao G, Etherton TD, Martin KR, Vanden Heuvel JP, Gillies PJ, Kris-Etherton PM: Anti-inflammatory 

effects of polyunsaturated fatty acids in THP-1 Cells. Biochem Biophys Res Comm 2005;336: 

909–917.

Katcher HI, Gillies PJ, Kris-Etherton PM: Atherosclerotic cardiovascular disease; in Bowman BA, 

Russell RM (eds): Present Knowledge in Nutrition. Washington, ILSI Press, 2006, pp 649–668.
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Gebauer S, Gillies P, Vanden Heuvel J, Kris-Etherton P: Integration of molecular biology and 

nutrition: the role of nutrigenomics in optimizing guidance for dietary fatty acids. Future 

Lipidol 2007;2:165–171.
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The effectsof a whole grain enriched hypocaloric diet on cardiovascular disease risk factors in 

men and women with metabolic syndrome. Am J Clin Nutr 2008:87:79–90.

Velliquette R, Gillies P, Kris-Etherton P, Green J, Zhao G, Vanden Heuvel J: Regulation of human 

stearoyl- CoA desaturase by omega-3 and omega-6 fatty acids: implications for the dietary 

management of elevated serum triglycerides. J Clin Lipidol 2009;3:281–288.

Gebauer S, Kris-Etherton P, Gillies P: Fatty acid indexes as multifunctional biomarkers. 2009, in 
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Zhang J, Kris-Etherton P, Gillies P, Vanden Heuvel J: Decreased expression of stearoyl-CoA 

desaturase 1 by alpha linolenic acid in macrophage-derived foam cells is responsible for 

enhanced cholesterol efflux. 2009, in preparation.
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of the present discussion, other than to note that they all incur a higher liability in 

terms of conflict of interest and scientific bias, and they are easy prey for the skep-

tics of industry-academia relations. What is important in sector D is to realize how 

quickly problems, or the perception thereof, can arise even in the simplest of business 

relationships. This said, there is clearly a time and place for industry-academic rela-

tionships and they can be ethically managed to ensure scientific integrity. The value 

and importance of such relations is underscored by the existence of the NIH Clinical 

and Translational Science Awards (CTSA) consortium that has as one of its specific 

goals ‘to stimulate alliances in medical research and research training by identifying 

opportunities for collaboration among the CTSA members and private-sector organi-

zations’ [15]. It is noteworthy that in a recent survey of researchers doing translational 

science (c.f. nutrigenomics), 61.3% reported ties to industry and believed these ties 

contributed to their most important scientific work [16]. The key to navigating sector 

D is to know your relational coordinates. As illustrated in figure 4, one’s position is 

constantly changing regardless of the source of research funding. Thus, the first step 

is to be aware where you are, the second step is to know how to behave. None of this 

Box 4. ILSI provides ‘guiding principles’ for how industry and academia can interact in an 

open and transparent way. In a nutrigenomic paradigm there is a special need to expand 

these guidelines to keep pace with the molecular science and to protect consumer rights.

ILSI’s Guiding Principles

1.  Conduct or sponsor research that is factual, transparent, and designed objectively and 

according to accepted principles of scientific inquiry.

2. Require control of both study and design research itself to remain with scientific investigators.

3. Not offer or accept remuneration geared to the outcome of a research project.

4.  Ensure, before the commencement of studies, that there is a written agreement that the 

investigative team has the freedom and obligation to attempt to publish the findings within 

some specified time frame.

5.  Require, in publications and conference presentations, full signed disclosure of all financial 

interests. 

6.  Not participate in undisclosed paid authorship arrangements in industry-sponsored 

publications or presentations.

7.  Guarantee accessibility to all data and control of statistical analysis by investigators and 

appropriate auditors/reviewers.

8.  Require that academic researchers, when they work in contract research organizations or act 

as contract researchers, make clear statements of their affiliations; and require that such 

researchers publish only under the auspices of the contract research organization.

Some Next Steps

• Update the dialogue within the emerging nutrigenomic paradigm.

•  Address issues such as intellectual property in the broader context of genetic tests and 

nutrigenomic claims.

• Provide GELS training with attention to key issues of confidentiality, access and privacy.
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is new territory; on the other hand, the landscape is perhaps more challenging for 

nutrigenetic/nutrigenomic partnerships. This stems from the over-arching complex-

ity of GELS (Genomics Ethics Law and Society) and the relative lack of GELS training 

and experience of nutrition scientists and food companies. Given the pressure to seek 

a return on investment in nutrigenetic/nutrigenomic research and development, cou-

pled with the realities of low-margin food products sold in a competitive, consumer-

centric market, ethical quandaries can quickly surface. For this reason, industry 

scientists need their academic colleagues not only to build the scientific foundation 
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C illustrates the various ways industry and academia can work together in defined relationships. 
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of molecular nutrition, but also to vet the credibility and value of industry-academic 

partnerships. In this regard, industry’s investment in nutrigenetic/nutrigenomic part-

nerships is not only strategic, it is essential for the future of personalized nutrition.

Final Thoughts

There is nothing complicated about building partnerships, it’s like playing together 

in a sandbox. All kids are welcome, but everyone is expected to find their own space, 

respect the space of others, and to share their toys. Scientists in the nutrigenetic/

nutrigenomic sandbox need to:

– build partnerships on the basis of shared values;

– share limited resources;

– hold an open dialogue about scientifi c bias, confl icts of interest and duality of 

interest and be sure to engage younger scientists in the conversation;

– institutionalize the emerging guiding principles for funding food science and 

nutrition research, improve them with respect to issues of intellectual property, 

and frame them in the modern context of nutrigenetics/nutrigenomics. 
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Personalized nutrition according to genotype is based on the premise that optimized 

dietary advice for one individual may not be appropriate for others, and that optimal 

health and wellbeing can be tailored according to genotype. 

Nutrigenomics New Zealand is a collaboration between The University of 

Auckland and two Crown Research Institutes: Plant & Food Research and AgResearch 

[1]. The program involves 55 named individuals, located at 5 different sites across 

New Zealand. In order to develop the appropriate methodologies and learn how to 

apply them, we are studying dietary response according to genotype in inflamma-

tory bowel diseases (IBD), especially Crohn’s disease (CD), as proof of principle.

IBD are common gastrointestinal disorders, whose incidence appears to be ris-

ing in various countries, including New Zealand [2]. Although the diseases are not 

invariably lethal, the symptoms, which include abdominal cramps and bloody diar-

rhea, can be debilitating and may result in poor nutrient intakes and severe malab-

sorption. While there is an apparent familial component to the disease, twin studies 

have confirmed that genetic variations influence disease susceptibility, rather than 

inevitably leading to the disease per se [3]. The important observation that diet influ-

ences disease but that no single diet suits all [4], makes this an interesting candidate 

disease in which to study gene-diet interactions. An overview of the approach taken 

across the program is shown in figure 1.

Role of Genetics in CD in New Zealand

As with other genetic disorders, knowledge of key genes initially depended upon 

candidate gene studies, and it was not until 2001 that the first gene unequivocally 
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associated with CD, nucleotide oligomerization domain 2 (NOD2), was identified 

[5]. The accelerated progress afforded by genome association studies, using high-

density arrays (SNP Chips) combined with large population groups and meta-anal-

ysis, has now associated more than 30 genes with susceptibility to CD [6]. We have 

generally not attempted to find novel genes, but confirmed overseas studies in our 

Key genes in the New

Zealand population

GWAS

New Zealand diet

Gene-diet interactions

2 × 2 animal models

FF

C

Control Obesity model

In vivo: SNP Genotype/dietary questionnaries

In vitro: reporter gene assays/dietary components

Fig. 1. Outline of the approach used to develop personalized foods, tailored to genotype, by 

Nutrigenomics New Zealand. Genes associated with specific disease are identified from genetic epi-

demiology studies, particularly genome-wide association studies (GWAS), and confirmed for impor-

tance and relevance to the New Zealand population. The phenotypic effects of those genes which 

appear particularly important in this country are mimicked in a cell-based reporter gene assay, which 

is used for testing a wide range of food components and/or food extracts as a high throughput 

assay. Foods for preferential testing in that assay are identified through matching dietary tolerances 

or intolerances to specific genotypes (see fig. 2). Those foods that appear to show ability to restore 

the wild-type phenotype in the mutant reporter gene assay and/or show strong links to genotype 

from the dietary questionnaires are then tested in animal studies. A systems biology approach in 

specific animal models is then used to understand how different foods or food compounds might 

interact with a particular genotype. One output of this approach is a defined set of biomarkers for 

use in human trials. Human studies utilize subjects stratified according to genotype. Study partici-

pants are randomized to a control diet or an experimental diet that includes the food shown to 

ameliorate the phenotype associated with a particular genotype in animal models. Biomarkers pre-

viously identified in those animal studies are monitored to rapidly establish if the experimental diet 

can restore the non-risk-genotype profile, without the need to follow study participants until the 

development of disease. Positive results in these studies are considered to provide preliminary evi-

dence to validate the use of that food in subjects carrying the variant genotype.
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New Zealand population group. Examples of key genes in this country are given in 

table 1 [7–12]. Most of the genes appear to affect immune response and/or bacterial 

recognition [13]. It is noteworthy that not all genes relevant in other countries are 

necessarily key genes for susceptibility to this disease in New Zealand, as might be 

expected [14]. It is also becoming increasingly apparent that risk may associate with 

gene-gene interactions, rather than a single gene per se [15].

Modeling Genetic Variation in Human CD Populations in vitro

Once a key genotype is established as being important, high throughput screens are 

developed to test whether selected food components can overcome the phenotype of 

the functional SNP. For example, Philpott et al. [16] described a reporter gene assay 

to test effects of foods on the common NOD2 variant, while Danesi et al. [17] have 

established a screen for IL23R. Robotic systems using 384-well plates enable high 

numbers of food components to be tested in a given experiment. These then provide 

leads which may be confirmed by dietary analyses and which can be more extensively 

studied in animal models.

Table 1. Examples of genes associated with CD in a Caucasian population from New Zealand

Gene Abbreviation SNP Allelic odds 

ratio, CD vs. 

control

Ref.

Drosophila discs large 

homolog 5

DLG5 rs1248696

rs2289310

rs2289311

1.29 (0.93, 1.78)

0.90 (0.48, 1.66)

0.83 (0.67, 1.03)

[7]

Nucleotide-binding 

oligomerization domain 

containing 1

NOD1 rs2075818

rs2075822

rs2907748

0.66(0.49–0.89)

0.91(0.69–1.21)

0.84(0.64–1.10)

[8]

Nucleotide-binding 

oligomerization domain 

containing 2

NOD2 rs2066844

rs2066845

rs2066847

2.7 (1.5–5.2)

2.4 (0.94–6.1)

4.4 (1.6–12)

[9]

Toll-like receptor 4 TLR4 rs4986790

rs4986791

1.225 (0.79, 1.91)

1.046 (0.67, 1.63)

[10]

Tumour necrosis factor 

alpha

TNF-alpha rs1800629

rs1799724

1.10 (0.72–1.68)

1.09 (0.84–1.42)

[11]

Tumour necrosis factor 

receptor superfamily, 

member 1B

TNFRSF1B rs1061622

rs1061624

rs3397

1.12 (0.87–1.45)

0.98 (0.79–1.22)

0.91 (0.73–1.13)

[12]
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Estimating the Role of Diet in CD

There is not complete agreement as to what dietary assessment methods are appropri-

ate in epidemiologic studies, and the same is true of nutrigenetic studies. Inevitably 

there needs to be a compromise between the most accurate record possible and what 

is practically acceptable to the study population. In particular, many food-frequency 

questionnaires cluster similar dietary items in order to retain people’s attention and 

not make recording too large a burden. However, in our CD population, we elected to 

use a much larger list of food items, so that subtle differences in potentially bioactive 

Fig. 2. Example of a worksheet to identify gene-diet interactions in CD in the New Zealand popula-

tion. For individuals carrying each of the genetic variants (identified as per fig. 1), we considered 

self-diagnosed tolerance, neutral effects or intolerance to 269 individual dietary items. We have cal-

culated the probability that each individual food significantly improves or worsens the condition, as 

previously described [14]. A matrix is then created linking genotype to food tolerance. A section of 

such a matrix is illustrated.
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food components, rather than broad classes of nutrients could be tested [14]. An 

example of part of the dietary information becoming available for CD is given in fig-

ure 2. It can be seen that the same food that is beneficial to one individual may actu-

ally trigger symptoms of disease in others.

In the specific case of CD, it is important to realize that food preparation methods 

may be as important as food components per se. For example, many of our subjects 

reported that they could tolerate tomatoes, but only when they are peeled and seeded. 

Ginger ale was typically detrimental, but could be beneficial when allowed to go flat. 

Kiwifruit eaten as a whole fruit was often detrimental, but a commercially available 

juice in which the seeds are filtered out could be beneficial. So, knowledge of prepara-

tion details may be as important as knowledge of the food items themselves.

Animal Models of IBD

Patients with IBD are a highly sensitive population and it is essential that any poten-

tial nutritional therapies are rigorously tested in animal models for in vivo effects 

before considering human clinical trials. Nutrigenomics New Zealand has utilized 

2 different models: the multidrug resistant mouse, and the interleukin-10 knockout 

mouse [18–23]. A 2 × 2 study design considers the wild-type mouse versus the rele-

vant knockout, in the presence or absence of the dietary item to be tested. The experi-

ments are run for sufficient time for disease (or lack thereof) to be established, the 

animals euthanized and tissues culled for various endpoints. These range from patho-

logic assessment of disease presence/absence/severity, to transcriptomics (microar-

rays), proteomics and/or metabolomics techniques [18–23].

Double-Blind Placebo Controlled Human Clinical Trials

Ultimately, the proof of efficacy of a dietary component in a given genotype or popu-

lation group depends upon a randomized human clinical trial. Ethical constraints 

make time to disease an inappropriate endpoint, and biomarkers (or surrogate dis-

ease endpoints) become essential. These rely upon collection of a readily accessible 

tissue (blood, urine, buccal swab or feces) before and after a given period of a defined 

dietary intervention in a genetically stratified population [24].

There are few published studies of gene-specific approaches to clinical trials. 

However, Kornman et al. [25] tested effects of their proprietary botanical mixture on 

inflammation, using C-reactive protein as an endpoint. They showed that the level of 

C-reactive protein was reduced in the intervention arm of their study, and suggested 

their preparation would have beneficial effects on inflammation in human popula-

tions. This would be likely to relate to chronic human diseases such as cardiovascular 

disease, but may also be highly relevant to inflammatory disorders such as IBD.
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Data Management and Integration

Integral to this study approach are very large datasets. These need to be maintained 

with confidentiality, but must also have the ability to be interrogated by different 

individuals with different expertise, working in different locations. In Nutrigenomics 

New Zealand, we maintain an interdisciplinary wiki that enables cross-disciplinary 

communication, and enables the analysis of complex multidimensional interactions. 

Database management, bioinformatics and biostatistics are essential tools whose 

importance must not be underestimated in a major program of this sort. A relational 
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