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Preface

Optical and laser scanning is the controlled deflection of light, visible or invisible. The aim
of Handbook of Optical and Laser Scanning, Second Edition, is to provide engineers, scientists,
managerial technologists, and students with a resource to be used as a reference for under-
standing the fundamentals of optical scanning technology. This text has evolved from
three previous books, Laser Beam Scanning (1985), Optical Scanning (1991), and Handbook of
Optical and Laser Scanning (2004). Since their publication, many advances have occurred in
optical scanning, requiring updating of previous material and introduction of additional
scanning technologies. This new edition also adds a few chapters on scanning applica-
tions illustrating the practical use of scanning technology.

Optical and laser scanning is a topic that is extremely broad in scope. It encompasses the
mechanisms that control the deflection of light, optical systems that work with these mech-
anisms to perform scanning functions, and factors that affect the fidelity of the images
generated or obtained from the scanning systems. Each of these subtopics is addressed in
this book from a variety of perspectives.

A scanning system can be an input or output system or a combination of both. Input
systems acquire images in either two or three dimensions. These systems can operate at a
fixed wavelength or over a broad spectrum. They can reacquire the original light source by
gathering either the specular or diffuse reflection or by fluorescing the image and acquir-
ing the fluoresced light. Output systems direct light to produce images for applications
such as marking, visual projection, and hard copy output. Ladar and many inspection sys-
tems use the same optical path to both illuminate the scene and acquire the image. A scan
system requires not only optics but disciplines such as mechanics, electronics, magnetics,
fluid dynamics, material science, acoustics, image analysis, firmware, software, and a host
of others. This book brings together the knowledge and experience of 26 authors from
England, Japan, and the United States.

The continuous and rapid changes in technological developments preclude the publi-
cation of a definitive book on optical and laser scanning. The contributors have accom-
plished their tasks painstakingly well, and each could have written a volume on his own
particular subject. This book can be used as an introduction to the field and as a reference
for persons involved in any aspect of optical and laser beam scanning.

Chapters 1 through 3 cover three basic scanning systems topics: Gaussian laser beam
characterization, optical systems for laser scanners, and scanned image quality. Chapters
4 through 7 cover aspects of monogonal (single mirror facet) and polygonal scanning sys-
tem design, including bearings. Chapters 8 and 9 discuss aspects of galvanometric and
resonant scanning systems, including flexure pivots. Chapters 10 through 12 cover holo-
graphic, acousto-optical and electro-optical scanning systems. Chapters 13 and 14 cover
piezoelectric scanners and scanning of optical disks. Chapters 15 and 16 cover two appli-
cations of optical scanning technology namely computer to plate (CTP), and underwater
scanning. These chapters have been inserted to illustrate the significance of scanning in
society today.

Gerald F. Marshall
Glenn E. Stutz
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Preface to Laser Beam Scanning (1985)

To the memory of my parents Albert and Ethelena.

The aim of this volume is to provide engineers, scientists, and students with a guideline
to the fundamentals of laser beam scanning. It brings together the knowledge and experi-
ence of seven specialists in the field, from England, Germany, Scotland, and the United
States.

The book covers the recently developed holographic scanners, the well-established polyg-
onal scanners, and the galvanometric and resonant scanners. It includes complementary
chapters on gas bearings for rotating scanning devices, the aerodynamic considerations of
polygonal scanners, Gaussian laser beam diameters, and the optical design of components
and systems relating to data storage on optical disks.

Gerald F. Marshall
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Preface to Optical Scanning (1991)

To Irene, my wife; children, Clare Margaret and Mark Peter; Guy Nicholas and Maria
Elizabeth, with love.

The aim of this volume is to provide application-oriented engineers and technologists,
scientists, and students, with a guideline and a reference to the fundamentals of input and
output optical scanning technology and engineering. It brings together the knowledge and
experience of 16 international specialists from England, Japan, Scotland, and the United
States. Brief biographies of the contributors are included. The Foreword and Afterword by
Leo Beiser unify the selected topics of the 13 chapters, and give an overview evaluation of
the technologies within the field of optical scanning engineering. Optical scanning tech-
nology is a comprehensive subject that encompasses not only the mechanics of controlling
the deflection of a light beam but also all aspects that affect the imaging fidelity of the
output data that may be displayed on a screen or recorded on paper.

A scanning system may be an input scanner, an output scanner, or a scanner that com-
bines both of these functional attributes. A system’s imaging fidelity depends on, and
begins with, the reading of the input information and ends with the writing of the out-
put data. Optical scanning intimately involves a number of disciplines: optics, material
science, magnetics, acoustics, mechanics, electronics, and image analysis, with a host of
considerations.

The book covers Gaussian laser beam diameters and divergence, optical and lens design
for scanning systems, and scanned image quality. It deals with rotary scanning devices
and systems, namely, holographic scanners for bar code readers and graphic arts, polyg-
onal scanners, windage (i.e, the aerodynamic aspects), bearings, motors, and control
systems associated with high-performance polygonal scanners. Optical Scanning treats
oscillatory devices and systems; specifically, galvanometric and resonant low-inertia scan-
ners, acousto-optical, and electro-optical scanners, and modulators. It closes with optical
disk scanning technology.

The dream is to produce a definitive book on optical scanning, but this is an impossi-
ble task to accomplish in this ever more rapidly changing era of technological develop-
ments. All the authors have done his best; each of them could have written a volume on
his own special subject. The book is complete as an introduction to the field. With the
common thread of the subject title, the disparate chapters are brought into perspective in
the Afterword.

To assist the reader, measured quantities are expressed in dual units wherever possible
and appropriate; the secondary units are in parentheses. The metric system takes prece-
dence over other systems of units, except where it just does not make good sense.

A strong effort has been made for a measure of uniformity in the book with respect
to terminology, nomenclature, and symbology. However, with the variety of individual
styles of the 16 contributing authors who are scattered across the Northern Hemisphere,
I have placed greater importance on the unique contributions of the authors rather than
on form.

Iextend my thanks to the following persons: Brian J]. Thompson, Provost of the University
of Rochester, for his patient confidence in inviting me to produce this additional volume

xiii
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on the subject of scanning in this series; my 16 contributing co-authors for their splendid
material; and the reviewers of the manuscripts and typescripts, namely,

Robert Basanese

Leo Beiser

John H. Carosella
Duane Grant

Michael J. Hayford
Ron Hooper

Charles S. Th

David B. Kay
Kathryn A. McCarthy
Robert J. Schiesser
David Strand
William Taylor
Stanley W. Thomas
Daniel Vukobratavich
David L. Wright
Francis Yu

Ross Zelesnick

Rofin-Sinar, Inc.

Leo Beiser, Inc.

Speedring Systems, Inc.

IBM Corporation

Optical Research Associates
Hooper Engineering Company
University of Delaware
Eastman Kodak Company

Tufts University

Charles Stark Draper Lab, Inc.
Energy Conversion Devices, Inc.
Kollmorgan Corporation
Lawrence Livermore Laboratory
University of Arizona
Spectra-Physics Lasers, Inc.

The Pennsylvania State University
RCA, Inc.

Each gave his or her time to critique a script, made helpful comments, and provided excel-
lent suggestions. I thank John H. Carosella of Speedring Systems, Inc., for his indirect
support, which I much appreciate. I am also grateful for the generous help and time given,
especially in proofreading and organizing the index, by my wife, Irene.

I am pleased to be the coordinator of these works and value the privilege of being the
one to share this treatise with my colleagues in the field.

Read, scan, study, and enjoy.

Gerald F. Marshall



Preface to Handbook of Optical
and Laser Scanning (2004)

With gratitude to my wife, Irene, colleagues, and friends.

To the memory of my parents, Ethelena and Albert, brothers, Donald and Edward and sisters,
Andrée and Kathleen.

Optical and laser beam scanning is the controlled deflection of a light beam, visible or
invisible. The aim of Handbook of Optical and Laser Scanning is to provide application-
oriented engineers, managerial technologists, scientists, and students with a guideline
and a reference to the fundamentals of input and output optical scanning technology and
engineering. This text has its origin in two previous books, Laser Beam Scanning (1985) and
Optical Scanning (1991). Since their publication, many advances have occurred, which has
made it necessary to update and include the changes of the past decade. This book brings
together the knowledge and experience of 27 international specialists from England, Japan,
and the United States.

Optical and laser scanning technology is a comprehensive subject that encompasses not
only the mechanics of controlling the deflection of a light beam, but also all aspects that
affect the imaging fidelity of the output data that may be recorded on paper or film, dis-
played on a monitor, or projected onto a screen. A scanning system may be an input scan-
ner, an output scanner, or one that combines both of these functional attributes. A system’s
imaging fidelity begins with, and depends on, the accurate reading and storage of the
input information—the processing of the stored information—and ends with the presen-
tation of the output data. Optical scanning intimately involves a number of disciplines:
optics, material science, magnetics, acoustics, mechanics, electronics, and image analysis,
with a host of considerations.

The continuous and rapid changes in technological developments preclude the publica-
tion of a definite book on optical and laser scanning. The contributors have accomplished
their tasks painstakingly well, and each could have written a volume on his own particu-
lar subject. This book can be used as an introduction to the field and as an invaluable ref-
erence for persons involved in any aspect of optical and laser beam scanning.

To assist the international scientific and engineering readership, measured quantities
are expressed in dual units wherever possible and appropriate; the secondary units are
in parentheses. The metric system takes precedence over other systems of units, except
where it does not make good sense. A serious effort has been made for a measure of uni-
formity throughout the book with respect to terminology, nomenclature, and symbology.
However, with the variety of individual styles from 27 contributing authors who are scat-
tered across the Northern Hemisphere, I have placed greater importance on the unique
contributions of the authors than on form.

The chapters are arranged in a logical order beginning with the laser light source and
ending with a glossary. Chapters 1 through 3 cover three basic scanning systems top-
ics: Gaussian laser beam characterization, optical systems for laser scanners, and scanned
image quality. Chapters 4 through 7 cover aspects of monogonal (single mirror-facet) and
polygonal scanning system design, including bearings. Chapters 8 and 9 discuss aspects

X0
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of galvanometric and resonant scanning systems, including flexure pivots. Chapters 10
through 14 cover holographic, optical disk, acousto-optical, electro-optical scanning sys-
tems, and thermal printhead technology. A useful glossary of scanner terminology fol-
lows Chapter 14.

Gerald F. Marshall
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1.1 INTRODUCTION

The M? model is currently the preferred way of quantitatively describing a laser beam,
including its propagation through free space and lenses; specifically, as ratios of its param-
eters with respect to the simplest theoretical gaussian laser beam. The present chapter
describes the model and measuring techniques for reliably determining—in each of the
two orthogonal propagation planes—the key spatial parameters of a laser beam; namely,
the beam waist diameter 2W,, the Rayleigh range z;, the beam divergence ©, and waist
location z,,.
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1.2 HISTORICAL DEVELOPMENT OF LASER-
BEAM CHARACTERIZATION

In 1966, six years after the first laser was demonstrated, a classic review paper! by Kogelnik
and Li of Bell Telephone Laboratories was published, which served as the standard reference
on the description of laser beams for many years. Here the 1/e? diameter definition!'? for the
width of the fundamental-mode gaussian beam was used. The more complex transverse
irradiance patterns, or transverse modes, of laser beams were identified with sets of eigen-
function solutions to the wave equation, including diffraction, describing the electric fields
of the beam modes. These solutions came in two forms: those with rectangular symmetry
were described mathematically by Hermite-Gaussian functions, those with cylindrical sym-
metry by Laguerre—Gaussian functions. So with the appropriate basis set, any beam could
be decomposed into a weighted sum of the electric fields of these modes, at least in principle.
Mathematically, for this expansion to be unique the phases of the electric fields must be
known. This is difficult at optical frequencies. Irradiance measurements alone, where the
phase information is lost in squaring the E-fields, does not allow determination of the expan-
sion coefficients. This “in principle but not in practice” description of light beams was all that
was available and seemed to be all that was needed for several succeeding years.

Workers often measured beam diameters by scanning an aperture across the beam to
detect the transmitted power profile. Apertures used were pinholes, slits, or knife-edges,
and the beam diameters were (and still are) defined based on the measurement effect that
would be produced on a fundamental-mode beam. Commercial laser beams were speci-
fied as being pure fundamental mode, the lowest order or zero—zero transverse electro-
magnetic wave eigenfunction, “TEM,,.”

In 1971, Marshall® published a short note introducing the M? factor, indicating M (=yM?)
as the multiplying factor by which the diameter of a beam is larger than that of the funda-
mental mode of the same laser resonator. Marshall’s interest lay with the effects produced
by industrial lasers and since they depend on focused spot size, he pointed out that they
depend on M2 No discussion was given of how to measure M? and the concept languished
thereafter for several years.

From the late 1970s and into the 1980s, Bastiaans,* Siegman,>® and others developed the-
ories of bundles of light rays at narrow angles to an axis based on the Fourier transform
relationship between the irradiance and the spatial frequency (or ray-angle) distributions
to account for the propagation of the bundle. Such a bundle of rays is a beam. The beam
diameter was defined as the standard deviation of the irradiance distribution (now called
the second-moment diameter, when multiplied by four), and the square of this diameter
was shown to increase as the square of the propagation distance—an expansion law for
the diameter of hyperbolic form. These theories could be tested by measuring just the
beam’s irradiance profile along the propagation path.

In about 1987, one of us designed a telescope to locate a beam waist for an industrial CO,
laser at a particular place in the external optical system. The design was based on measure-
ments showing where the input beam waist was located and on blind faith that the laser
datasheet claim for a “TEM,,” beam was correct. This telescope provided nothing like the
expected result. Out of despair and disorientation came the energy to make more beam
measurements and from these measurements came the realization that the factor that lim-
ited the maximum distance between the telescope and the beam waist it produced was
exactly the same factor by which actual focus-spot diameter at the work surface exceeded
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the calculated TEM,, spot diameter. That factor was M? and when used in modified Kogelnik
and Li equations, design of optical systems for multimode beams became possible.” This
ignited some interest in knowing more about laser beams than had previously been consid-
ered sufficient. Laser datasheets that claimed “TEM,,” were no longer adequate.

In the 1980s, commercial profilers® reporting a beam’s 1/¢? diameter became ubiquitous.
By the end of the 1980s, experience with commercial profilers and these theories con-
verged with the development® of the theoretical M? model and a commercial instrument?
to measure the beam quality based on it, which first became available in 1990. The time to
determine a beam’s M? value dropped from half a day to half a minute.

With high accuracy M2 measurements more readily available in the early 1990s, the report-
ing of a beam’s M? value became commonplace, and commercial lasers with good beams
were now specified"” as having M? < 1.1. The International Organization for Standards
began committee meetings to define standards for the spatial characterization of laser
beams, ultimately deciding on the beam quality M? value based on the second-moment
diameter as the standard.!! This diameter definition has the best theoretical support, in
the form of the Fourier transform theories of the 1980s, but suffers from being sensitive to
noise on the profile signal, which often makes the measured diameters unreliable.!?!3 That
led to the development in 1993 of rules!* to convert diameters measured with the more for-
giving methods into second-moment diameters for a large class of beams.

The M? model as commercially implemented does not cover beams that twist as they
propagate in space, those with general astigmatism.!>!¢ The earlier Fourier transform the-
ories and their more recent extensions do, however, and allow for ten constants” needed
to fully characterize a beam (adding to the six used in the M? model). Recently, in 2001, the
first natural beam’® (as opposed to a test beam artificially constructed) was measured by
Nemes et al. that required all ten constants for its complete description.

Several recommendations can be made for characterizing a beam. Model the beam only
to the level of complexity appropriate to your needs: three constants suffice if the beam
spot is round at all propagation distances; six constants cover beams with simple astig-
matism, divergence asymmetry, or waist asymmetry; ten constants are needed for beams
with elliptical spots whose orientation twist in space (general astigmatism). Measure your
beams with a reliable method, and when required, convert those values at the end into ISO
standard units. Lastly, stay appraised of developments in instrumentation that may meet
your need with more convenience, speed, and accuracy.

1.3 ORGANIZATION OF THIS CHAPTER

Section 1.2 provides an historical introduction to the field, outlining how the field devel-
oped to its present state.

The technical discussion begins in Section 1.4 by explaining the M? model. This mathe-
matical model built around the quantity M? (variously called the beam quality, times-
diffraction-limit number, or the beam propagation factor) describes the real, multimode beams
that lasers produce and how their properties change when propagating in free space.

This discussion is continued in Section 1.5 covering the transformation of a beam through
a lens. Section 1.6 explains the different methods used to define and measure beam diam-
eters, and how measurements made with one method can be converted into the values
measured with one of the other methods. This includes the standard diameter definition
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adopted by the International Organization for Standardization (ISO), the second-moment
diameter, and the experimental difficulties encountered with this method.

The technical development continues in Section 1.7 where the logic and precautions
needed in measuring the beam quality M? are presented. Thoroughly discussed is the
“four-cuts” method (a cut is a measurement of a beam diameter), the simplest way to obtain
an accurate M?value.

Section 1.8 discusses the common and possible types of beam asymmetry that may be
encountered in three dimensions when the propagation constants for the two orthogonal
(and usually independent) propagation planes are combined. The concept of the “equivalent
cylindrical beam” is introduced to complete the technical development of the M? model.
Propagation plots for beams with combinations of asymmetries are illustrated. A short dis-
cussion follows of “twisted beams,” those with general astigmatism, which are not covered
in the M? model, and require a beam matrix of ten moments of second order for their com-
plete description. This second-order beam matrix theory is a part of the underpinnings of
the ISO’s choice of the noise-sensitive second-moment diameter as the “standard.”

Section 1.9 applies the M2 model to an analysis of a stereolithography laser-scanning sys-
tem. Using results of earlier sections, by working backward from assumed perturbations
or defects in the scanned beam at the work surface, the deviations in beam constants at the
laser head that would produce them are found. An overview of the M? model, in Section
1.10, concludes the text.

A glossary follows explaining the technical terms used in the field, with the references
ending the chapter.

1.4 THE M? MODEL FOR MIXED-MODE BEAMS

In laser beam-scanning applications, the main concern is having knowledge of the beam
spot-size—the transverse dimensions of the beam—at any point along the beam path. The
mixed-mode (M? >1) propagation equations are derived as extensions of those for the funda-
mental mode, so pure modes and particularly the fundamental mode are the starting point.

1.4.1 Pure Transverse Modes: The Hermite—Gaussian
and Laguerre—Gaussian Functions

Lasers emit beams in a variety of characteristic patterns or transverse modes that can occur
as a pure single mode or more often, as a mixture of several superposed pure modes. The
transverse irradiance distribution of a pure mode is the square of the electric field ampli-
tude versus the transverse distance from the beam axis, which when measured is termed a
transverse profile. This amplitude is described mathematically by Hermite—Gaussian func-
tions if it has rectangular symmetry, or by a Laguerre—Gaussian function if it has circular
symmetry.>>° These functions when plotted reproduce the familiar spot patterns—the
appearance of a beam on an inserted card—first photographed in Reference 20 and shown
in References 1 and 19. Computed spot patterns are displayed here in Figure 1.1. The com-
putations were done in Mathematica for the first six cylindrically symmetric modes, in
order of increasing diffraction loss for a circular limiting aperture. These modes are the
solutions to the wave equation for a bundle of rays propagating at small angles (paraxial
rays) to the z-axis, under the influence of diffraction and are of the general forms!27

umn (x’ y"z) = Hm (x/w)Hn (y/ZU)M(x, ]// Z) (113)
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(a) Lowest Diffraction Loss Modes (b) Lowest Diffraction Loss Modes
First three Next three
Cylindrical symmetry Cylindrical symmetry
Laguerre-Gauss modes Laguerre-Gauss modes
TEM,, TEM,,;
Synthesis of Synthesis of
starred modes starred modes
01 Rotate 01 by 90° 01* Rotate 03 by 90° 03*

03
' + . :
Rotate 02 by 90° 02* 11 Rotate 11 by 90° 11*
2w

+ - :
T
FIGURE 1.1

Computed spot patterns for cylindrically symmetric modes in order of increasing diffraction loss for a circular lim-
iting aperture. The subscript numbers pl above each image indicate the mode order. Starred modes are constructed
as shown, as the sum of a pattern with a copy of itself rotated by 90°: (a) First three modes. (b) Next three modes.

ow 2w 2w

or
U,(r,3,2)=L,(r/w, 3)u(r,z). (11b)

In Equation 1.1a, H,,(x/w)H,,(yy/w) represents a pair of Hermite polynomials, one a function
of x/w, the other of y/w, where x, iy are orthogonal transverse coordinates and w is the radial
scale parameter. In Equation 1.1b, L,,(r/w, ¢) represents a generalized Laguerre polynomial,
a function of the 7, ¢ transverse radial and angular coordinates. These polynomials have
no dependence on the propagation distance z other than through the dependence w(z) in
x/w, y/w, or r/w. The w(z) dependence describes the beam convergence or divergence. The
other function u is the gaussian

()

1/2 2

=(E) exp -’ } 1.2

2

w P w?

Because the radial gaussian function splits into a product of two gaussians, one a function
of x, the other of y, the Hermite—Gaussian function splits into the product of two functions,
one in x/w only and the other in y/w only, each of which is independently a solution to the
wave equation. This has the consequence that beams can have independent propagation
parameters in the two orthogonal planes (x, z) and (y, 2).

These functions of the transverse space coordinates consist of a damping gaussian fac-
tor, limiting the beam diameter, times a modulating polynomial that pushes light energy
out radially as polynomial orders increase. The order numbers m, n of the Hermite poly-
nomials, or p, [ of the Laguerre polynomial of the pure mode also determine the number
of nodes in the spot pattern, for which the modes are named. They are designated as
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transverse electromagnetic modes, or TEM,, , for a mode with m nodes in the horizontal
direction and 7 nodes in the vertical direction, or TEM,,, for a mode with p nodes in a
radial direction—not counting the null at the center if there is one—and / nodes in going
angularly around half of a circumference. Figure 1.2a through £, show the theoretical beam
irradiance profiles for the six pure modes from Figure 1.1. Because these are the six low-
est loss modes,??? they are commonly found in real laser beams. The modes as shown all
originate in the same resonator—they all have the same radial scale parameter w(z). The
addition of an asterisk to the mode designation—a “starred mode”—signifies a compos-
ite of two degenerate (same frequency) Hermite—Gaussian modes or as here, Laguerre—
Gaussian modes in space and phase quadrature to form a mode of radial symmetry. This
is explained in Reference 20, discussed in Reference 5, p. 689, and shown in Figure 1.1 for
a mode pattern with an azimuthal variation (! # 0) as the addition of the mode with a copy
of itself after a 90° rotation, to produce a smooth ring-shaped pattern.

The simplest mode is the TEM,, mode, also called the lowest order mode or fundamental
mode of Figures 1.1 and 1.2a, and consists of a single spot with a gaussian profile (here L,

(a) Pure modes 2 Mixed mode
M4o z
TEM,, 1  9.6%
Theoretical
A — M2, =254

. (g 0.2
. TEM, 2 28.8%

(© TEMy, 3 359% riw ==

t 0.6 e— Dy; —»

[

g TEM,, 3 23.6%

g

<

E L

VAV RVAVES / N
© R Experimental
e | 0

TEMy 4 21% (M2g) g = 2.63

(f) I TEM,, 4 0%
/\/\/\/\ ,

100%

FIGURE 1.2

Synthesis of a mixed-mode as the weighted sum of pure modes. The theoretical pinhole profiles (a) to (f) for
the six pure radial modes from Figure 1.1, shown in the first column, are summed with weighting fraction 3. of
the third column to produce the mixed-mode profile (g). The beam qualities M3, for each mode, in the second
column, are similarly summed with weight ¥ to produce the mixed-mode beam quality also shown in (g). The
matching experimental pinhole profile is shown in (h).
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is unity). The next higher-order mode has a single node (Figures 1.1 and 1.2b) and is appro-
priately called the “donut” mode, symbol TEMg,. The next two “starred” mode spots look
like a donut with larger holes, the spot pattern of the TEM,, mode looks like a target with a
bright center, and the TEM}, mode spot looks like a target with a dark center (Figures 1.1
and 1.2). All higher-order modes have a larger beam diameter than the fundamental mode.
The six pure modes of Figure 1.2 are shown with the vertical scale normalized such that
when integrated over the transverse plane, each contains unit power.

The physical reason that Hermite—Gaussian and Laguerre—Gaussian functions describe
the transverse modes of laser beams is straightforward. Laser beams are generated in reso-
nators by the constructive interference of waves multiply reflected back and forth along the
beam axis. For this interference to be a maximum, permitting a large stored energy to satu-
rate the available gain, the returned wave after a round trip of the resonator should match
the transverse profile of the initial wave. The functions that do this are the eigenfunctions
of the Fresnel-Kirchhoff integral equation used to calculate the propagation of a paraxial
rays with diffraction included.>" In other words, these are precisely the beam irradiance
profiles that in propagating and diffracting maintain a self-similar profile, allowing after a
round trip, maximum constructive interference and gain dominance.

1.4.2 Mixed Modes: The Incoherent Superposition of Pure Modes

While a laser may operate in a close approximation to a pure higher-order mode, for example,
by a scratch or dust mote on a mirror forcing a node and suppressing a lower-order mode
with an irradiance maximum at that location, actual lasers tend to operate with a mixture
of several high-order modes oscillating simultaneously. The one major exception is lasing
in the pure fundamental mode in a resonator with a circular limiting aperture, where the
aperture diameter is critically adjusted to exclude the next higher-order (donut) mode. Each
pure transverse mode has a unique frequency different from that for adjacent modes by tens
or hundreds of MHz. This is usually beyond the response bandwidth of profile measuring
instruments so any mode interference effects are invisible in such measurements.

Figure 1.2g shows a higher-order mode synthesized by mixing the five lowest order
modes of Figure 1.2a through e in a sum with the weightings shown in the column labeled
Y. These weights—also called mode fractions—were chosen by a fitting program to match
the result to the experimental pinhole profile (see Section 1.6.4.2) of Figure 1.2h. In the
experiment" the number of transverse modes oscillating and their orders were known (by
detecting the radio-frequency transverse mode beat notes in a fast photodiode). This infor-
mation was used in the fitting procedure. The laser was a typical 1-m-long argon ion laser
operating at a wavelength of 514 nm, except that a larger than normal intracavity limiting
aperture diameter was used to produce this mode mixture.

Because the polynomials of Equation 1.1 have no explicit dependence on z, the profiles
and widths of the modes in a mixture remain in the same ratio to each other and specifi-
cally to the fundamental mode as the beam propagates. This means that however the diam-
eter 2W of a mixed-mode beam is defined (several alternatives are discussed in Section 1.6),
if this diameter is M times larger than the fundamental-mode diameter at one propagation
distance, it will remain so at any distance:

W(z) = Mw(z). (1.3
This equation introduces the convention that upper case letters are used for the attributes

of high-order and mixed modes and lower case letters used for the underlying fundamen-
tal mode.
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1.4.3 Properties of the Fundamental Mode Related to the Beam Diameter

The attributes of the simplest beam, a fundamental mode with a round spot (a cylindrically
symmetric or stigmatic beam) are reviewed in Figures 1.3 and 1.4. The beam profile varies as the
transverse irradiance distribution and is given by the function of gaussian form!? (Figure 1.3a):

I(é) -1, exp[—Z(éY}. (14)

The symbol I denotes a detector signal proportional to irradiance (and by using I instead
of E, the recommended symbol for irradiance, avoids confusion with the electric field
of the beam). The peak irradiance is I, and the radial scale parameter w introduced in
Equation 1.1 can now be identified as the distance transverse to the beam axis at which the
irradiance value falls to 1/e? (13.5%) of the peak irradiance. This 1/e? diameter definition,
introduced!? in the early 1960s, has been universally used since with one exception. (The
one exception is in the field of biology where the fundamental-mode diameter is defined
as the radial distance to drop to 1/e (36.8%) of the central peak value, making beams in
biological references a diameter 2w’ = \2w instead of 2w.) Many different beam diameter
definitions have been used subsequently for higher-order modes (these are discussed in
Section 1.6) but they all share one common property: when applied to the fundamental-
mode, they reduce to the traditional 1/e? diameter.

Tables of the gaussian function are usually listed under the heading of the normal dis-
tribution, normal curve of error, or Gauss distribution and are of the form (see p. 763 of
Reference 23)

I(x)= 1 lex - 1
S(zp)l/Z p 252 ( 5)
4
(@) (b) © —3w
7% I"2/'1 7
1 Jies7
N I/1y= 2
exlg 2(r/w)? iy /&7
2 o 77
1/e? =
Y 0135 T(a/w) = 1 — exp—2(a/w)?
-2 -1 2 —2 —1 1 2 1 Y,
F-—ZW—-I riw |‘—2W—"| rlw 822{,—
=40 L
Let P = total power 05 F | |
w2 = beam area r
then Iy = 2P/aw?  or r I |
1

“Average irradiance is 0 ol' 5
half the peak irradiance” alw

FIGURE 1.3

Properties of the fundamental mode related to the beam diameter, explained in the text; (a) definition of the 1/e*
diameter as the distance between the 13.5% levels on the pinhole profile; (b) relation between the peak irradi-
ance and average irradiance; (c) transmission fraction through a circular aperture.
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Wavefront radius of curvature

R(z) = —2z3 o +2zp —=Z - 2
|
Waist diameter
2w,

I=I; exp—2(r/w)?

w(z) Diameter

i —

—

Spherical Minimum radius of
wavefronts...  Curvature at z = z5 + zp
“Near-field™

Rayleigh range = z = 77:w02//1

Z

...Converging Zo— 2R Zg  Zo+ 2R ..Diverging

FIGURE 1.4
Propagation properties of the pure gaussian, fundamental-mode beam. The wavefront curvatures are exagger-
ated to show their variation with propagation distance.

where ¢ is the standard deviation of the gaussian distribution. Comparing Equation 1.4
and Equation 1.5 shows that the 1/e* diameter is related to the standard deviation o of the
irradiance profile, as defined in Equation 1.5, as

2w =4s. (1.6)
For a beam of total power P, the value of the peak irradiance I is found® by integrating
Equation 1.4 over the transverse plane (yielding I, times an area of #w?/2) and equating
this to P. The result

I,=—5

2

(17)

is easily remembered by noting that “the average irradiance is half the peak irradiance.”
This is a handy, often-used simplification allowing the actual beam profile to be replaced
by a round flat-topped profile of diameter 2w for back-of-the-envelope conceptualizations
(see Figure 1.3b).

If the gaussian beam is centered on a circular aperture of diameter 2a the transmitted
fraction T(a/w) of the total beam power is given by a similar integration® over the cross-
sectional area as (see Figure 1.3¢):

2

a a
T(—) =1-ex —2(—) . 1.8
. p[ - L8)
This gives a transmission fraction of 86.5% for an aperture of diameter 2w, and 98.9% for
one of diameter 3w. In practice, a minimum diameter for an optic or other aperture to pass
the beam and leave it unaffected is 4.6w to 5w to reduce the sharp edge diffraction ripples
overlaid on the beam profile to an amplitude of <1%.5 It is interesting to note that for a low

power, visible, fundamental-mode beam, the spot appears to be a diameter of about 4w to
the human eye viewing the spot on a card.
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The transmission of a fundamental-mode beam past a vertical knife-edge is also read-
ily computed. The knife-edge transmission function is T(x/w) = 0 for x’ <x, T = 1 for x" >
x, where x is the horizontal distance of the knife-edge from the beam axis and x” is the
horizontal integration variable. In Equation 1.4, the substitution 72 = x2 + 2 is made, the
integration over y yields multiplication by a constant, and the final integration over x’ is
expressed in terms of the error function as:
T(f)=(1) teert{ 25 Lifvco, —ifxso, (19)

w 2 \ w J

The error function of probability theory in Equation 1.9 is defined (see p. 745 of Reference 23) as
2 2
erf(t)= (ffo exp(-u )du) (1.10)

and is tabulated in many mathematical tables. The 1/e? diameter of a fundamental-mode
beam is measured with a translating knife-edge by noting the difference in translation dis-
tances of the edge (x; — x,) that yield transmissions of 84.1% and 15.9%. By Equation 1.9 this
separation equals w, and the beam diameter is twice this difference.’

1.4.4 Propagation Properties of the Fundamental-Mode Beam

The general properties expected for the propagation of a gaussian beam can be outlined
from simple physical principles. As predicted by solving the wave equation with dif-
fraction, a bundle of focused paraxial rays converges to a finite minimum diameter 2w,
called the waist diameter. The full angular spread 6 of the converging and, on the other
side, diverging beam is proportional to the beam’s wavelength A divided by the mini-
mum diameter,!® 8o 1/2w,. A scale length z; for spread of the beam, is the propagation
distance for the beam diameter to grow an amount comparable to the waist diameter, or
ZRd ~ wy, giving zy o wy*/A. Because the rays of the bundle propagate perpendicularly to
the wavefronts (surfaces of constant phase), at the minimum’s location the rays are parallel
by symmetry and the wavefront there is planar. At large distances z — z, from the waist
diameter location at z;—the propagation axis is z—the wavefronts become Huygen's wave-
lets diverging from z, with wavefront radii of curvature R(z), and eventually become plane
waves. Since the wavefronts are plane at the minimum diameter at the waist and at large
distances on either side, but converge and diverge through the waist, there must be points
of maximum wavefront curvature (minimum radius of curvature) to either side of z,.

The actual beam propagation equations describing the change in beam radius w(z) and
radius of curvature R(z) with z, are derived!*® as solutions to the wave equation in the com-
plex plane and show all of these features. They are (see Figure 1.4):

w(z) = 10, 14 E22) (111)
ZR
R(z) =(z-2z,) [1 + ZIZ{ 5 } (L12)
(Z - Zo)
Zy = P_ZZ"O (1.13)
g- pzafo - 22% (114)

* The knife-edge transmission function is illustrated later in Figure 1.8c and 1.8f of Section 1.6.
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and

y(2) = —tan” (Zi) . (1.15)

In these equations, the minimum beam diameter 2w, (the waist diameter) is located at z,
along the propagation axis z. A plot of w(z) versus z, beam radius versus propagation dis-
tance [Equation 1.11] is termed the axial profile or propagation plot and is a hyperbola. The
scale length for beam expansion, zy, is termed the Rayleigh range [Equation 1.13] and has
the expected dependence on 4 and w,. The radius of curvature R(z) of the beam wavefront,
as given by Equation 1.12, has the expected behavior. At large distances from the waist—
the region termed the “far-field”—and where |z — z,| >> z; the radius of curvature first
becomes R — (z — z,) and then becomes plane when |R| — o as |z — z,| — e, and also is
plane at (z — z;) = 0. By differentiating Equation 1.12 and equating the result to zero the
points of minimum absolute value of the radius of curvature are found to occur at z - z, =
+z and have the values R ;,, = #2z;. The full divergence angle 6 develops in the far-field,
the beam envelope is asymptotic to two straight lines crossing the axis at the waist location
(Figure 14). Finally, y(z) is the phase shift>?* of the laser beam relative to that of an ideal
plane wave. It is a consequence of the beam going through a focus (the waist), the gaussian
beam version of the Gouy phase shift.2

By Equation 1.11, the diameter 2w(z) of the beam increases by the factor y2 (and for a round
beam the cross-sectional area doubles) for a propagation distance +zz away from the waist
(Figure 1.4). This condition is often used to define the Rayleigh range zy,>?® but another
significant condition is that at these two propagation distances the wavefront radius of
curvature goes through its extreme values (|R| = R,;,). The Rayleigh range can be defined
as half the distance between these curvature extremes. The region within a Rayleigh range
of the waist is defined as the “near-field” region. Within this region wavefronts flatten as
the waist is approached and outside they flatten as they recede from the waist. A positive
lens placed in a diverging beam and moved back towards the source waist will encounter
ever-steeper wavefront curvatures so long as the lens remains out of the near-field. On
the lens output side, the transformed waist moves away from the lens, moving qualita-
tively as a geometrical optics image would. When the lens enters the near-field region still
approaching the source waist, ever-flatter wavefronts are encountered and then the trans-
formed waist also approaches the lens. The laser system designer who misunderstands
this unusual property of beams will have unpleasant surprises. Many laser systems have
undergone emergency redesign when prototype testing revealed this counter-intuitive
focusing behavior! In many ways, Rayleigh range is the single most important quantity in
characterizing a beam (notice that this is a factor in all of Equations 1.11 through 1.15). It
will be shown in the next section that measurement of a beam’s Rayleigh range is the basis
for measuring the beam quality M? of a mixed-mode beam.

As the lowest order solution to the wave equation, the fundamental-mode with a gauss-
ian irradiance profile of a given waist diameter 2w is the beam of lowest divergence, at the
limit set by diffraction,!® of any paraxial bundle with that minimum diameter. Confining
a bundle to a smaller diameter proportionally increases—by diffraction—the divergence
angle of the bundle, and the product 2w is an invariant for any mode. The smallest pos-
sible value, 44/x, is achieved only by the fundamental mode. This is just the Uncertainty
Principle for photons—laterally confining a photon in the bundle increases the spread of its
transverse momentum and correspondingly the divergence angle of the bundle. This limit
cannot be achieved by real-world lasers but sometimes it is closely approached. Helium—
neon lasers, especially the low-cost versions with internal mirrors (no Brewster windows),
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are wonderful sources of beams within 1% or 2% of this limit. Aside from the wavelength,
which must be known to specify any beam, the ideal, round, (stigmatic) fundamental-mode
beam is specified by only two constants: the waist diameter 2w,and its location z, (or equiv-
alents such as zy and z;). This will no longer be true when mixed modes are considered.
As noted at the beginning of this section the propagation constants for the (x, z) and (y, 2)
planes are independent and can be different. In each plane, the rays obey equations exactly
of the same form® as Equations 1.11 through 1.15 with subscripts added indicating the x
or y plane. For beams with pure (but different) gaussian profiles in each plane, two more
constants are introduced for a total of four required to specify the beam. If z,, # z,, (dif-
ferent waist locations in the two principal propagation planes) the beam exhibits simple
astigmatism; if 2w, * 2w, (different waist diameters) the beam has asymmetric waists.’

1.4.5 Propagation Properties of the Mixed-Mode Beam:
The Embedded Gaussian and the M? Model

In Section 14.2 a mixed mode was defined as the power-weighted superposition of sev-
eral higher-order modes originating in the same resonator, each with the same underlying
gaussian waist radius w, determining the radial scale length w(z) in their mode functions
[Equations 1.1 and 1.2]. This underlying fundamental mode, with w, fixed® by the radii of
curvature and spacing of the resonator mirrors, is called the embedded gaussian for that
resonator regardless of whether or not the mixed mode actually contains some fundamental-
mode power. To treat the mixed-mode case, use is made” of the fact that its diameter is every-
where (for all z) proportional to the embedded gaussian diameter. From Equation 1.3 the
substitution w(z) = W(z)/M in Equations 1.11 through 1.15 yields the mixed-mode propaga-

tion equations:
2
W) -w, 1+ 220) (1.16a)
2R

2
R(z)=(z-2z,) |1+ Z—Rz (1.17a)
(Z - Zo)
24
Zg = —M;fl =24 (1.18)
and
2

o 2MI1_2Wo e (1.19)

pW, ZR

The mixed mode, a sum of transverse modes with different optical frequencies, no longer
has a simple expression for the Gouy phase shift analogous to Equation 1.15. The conven-
tion followed here is that upper case quantities refer to the mixed mode and lower case
quantities refer to the embedded gaussian.

Also useful are the inverse forms of Equation 1.16a and Equation 1.17a expressing the
waist radius W,and waist location z,in terms of the beam radius W(z) and wavefront cur-
vature R(z) at propagation distance z:

W WE)
C 1+ [pW )P /M2 IR@)P

(1.16b)

* These beam asymmetries are illustrated later in Figure 1.15 of Section 1.8.
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and
.- R(z)
* T 1+[M?IR(z)/pW(z)’

(1.17b)

These forms are obtained from Reference 1, with the substitution w = W/M in their
Equations 24 and 25.

Many of the properties of the fundamental-mode beam carry over to the mixed-mode one
(Figure 1.5). Since W, = Mw,, substitution of this in the middle part of Equation 1.19 yields the
last part, the mixed-mode divergence is M times that of the embedded gaussian. Similarly,
the beam propagation profile W(z) also has the form of a hyperbola (one M times larger) with
asymptotes crossing at the waist location. The Rayleigh ranges are the same for both mixed
and embedded gaussian modes as substituting W, = Mw, in the middle of Equation 1.18
shows, so the radii of curvature and the limits of the near-field region are the same for both.
The mixed-mode beam diameter still expands by a factor of 12 in a propagation distance of
zg away from the waist location z,, the starting diameter W, is just M times larger.

In considering propagation in the independent (x, z) and (y, z) planes, there are now two
new constants needed to specify the beam, M,?> and My2, for a total of six required con-
stants. In making up the mixed mode, the Hermite—Gaussian functions summed in the
two planes need not be the same or have the same distribution of weights, making M,>#
M,? a possibility. In this case the beam is said to have divergence asymmetry since © o« M?
by the first part of Equation 1.19.

It might be asked, why are these Equations 1.16 through 1.19 termed the “M? model”
(and not the “M model”)? There are two reasons. The first is that the embedded gauss-
ian is buried in the mixed-mode profile, and cannot be measured independently, mak-
ing it difficult to directly determine M. The mixed-mode diameter still grows by y2 in a

Wavefront radius of curvature
R(z) = -2z oo +22zR —=Z -2,
|
Waist Diameter
Embedded Gaussian 2Wo = 2Mw,

Diameter
22w,

Minimum radius o
Spherical curvature at z = zy * zp
wavefronts...

Mixed mode

=—"“Near-field” —s

—

...Converging Zo— 2R Zy Zgtzp ..Diverging

L Rayleigh range = zp = ﬂWOZ/MZ;L

FIGURE 1.5

Propagation properties of the mixed-mode beam drawn for M? = 2.63. The embedded gaussian is the funda-
mental-mode beam originating in the same resonator. The wavefront curvatures are exaggerated to show their
variation with propagation distance.
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propagation distance z; from the waist location, so zz can be found from several diameter
measurements fitted to a hyperbolic form. The waist diameter 2W, can also be measured,
thus giving directly, by Equation 1.18,

2
M2 PN (1.20)
1z,

This is how M? is in fact measured, the practical aspects of which will be discussed in
Section 1.7. (As an aside, notice that Equation 1.20 shows that M? scales as the square of
the beam diameter; this is used later in the discussion of conversions between different
diameter definitions in Section 1.6.4.)

The second reason is the more important one: M? is an invariant of the beam, and is con-
served? as the beam propagates through ordinary nonaberrating optical elements. Like
the fundamental-mode beam whose waist diameter-divergence product was conserved,
the same product for the mixed-mode beam is

WML _, 241

(2W,)0 = (1.21)
’ W, p
This is larger by the factor M? than the invariant product for a fundamental mode.
Equation 1.21 can be rearranged to read
:___© © (1.22)

Q21/pN) g,

Here 0, =24/7W,is recognized as the divergence of a fundamental-mode beam with a waist
diameter 2V, the same as the mixed-mode beam. This is called the normalizing gaussian;
ithas an M times larger scale constant W, = Mw, in its exponential term than the embedded
gaussian and it would not be generated in the resonator of the mixed-mode beam. It does
represent the diffraction-limited minimum divergence for a ray bundle constricted to the
diameter 2W,. Thus by Equation 1.22 the invariant factor M? can be seen to be the “times-
diffraction-limit” number referred to in the literature.’ This also identifies M? as the inverse
beam quality number, the highest quality beam being an idealized diffraction-limited one
with M2 =1, while all real beams are at least slightly imperfect and have M?>1.

The value of the M? model is twofold. Once the six constants of the beam are accurately
determined (by fitting propagation plot data for each of the two independent propagation
planes) they can be applied by the system designer to accurately predict the behavior of the
beam throughout the optical system before it is built. The spot diameters, aperture trans-
missions, focus locations, depths of field, and so forth can all be found for the vast majority
of existing commercial lasers. The second value is that there are commercial instruments
available that efficiently measure and document a beam’s constants in the M? model. This
permits quality control inspection of the lasers at final test, or whenever there is a system
problem and the laser is the suspected cause. Defective optics can introduce aberrations
in the beam wavefronts. If inside the laser, they increase M?by forcing larger amounts of
high-divergence, high-order modes in the mixed-mode sum. If outside the resonator, they
also adversely affect M2. Measurement of the beam quality during system assembly, after
each optic is added to detect a downstream increase in M?, can aid in quality control of the
overall optical system.

Beams excluded from the model as described are those whose orthogonal axes rotate
or twist about the propagation axis (called beams with general astigmatism!>¢?”) such
as might come from lasers with nonplanar ring or out-of-plane folded resonators. The
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symmetry of the beam is determined by the symmetry of the resonator. Fortunately, few
commercial lasers produce beams having these characteristics. An overview of the full
range of symmetry possibilities for laser beams is discussed in Section 1.8.3.

The fact that M? is not unique, that is, that a given value of M? can be arrived at by a
variety of different higher-order modes or mode weights in the mixed mode is sometimes
stated to be a deficiency of the M? model. This is also its strength. It is a simple predictive
model that does not require measurement and analysis to determine the mode content in a
beam. In the evolution of beam models, the original discussion!? pointed out that as eigen-
functions of the wave equation, the full (infinite) set of Hermite-Gaussian or Laguerre—
Gaussian functions (Equation 1.1) describing the electric field of the beam modes form
an orthonormal set. As such they could model an arbitrary paraxial light bundle with a
weighted sum. This is true only if the phases of the E-fields are kept in the sum, and mea-
suring the phase of an optical wave generally is a difficult matter. Summing the irradiances
(the square of the E-fields) breaks the orthonormality condition and for years it was not
obvious that a simple model relying only on irradiance measurements was possible. Then
in the 1980s, methods based on Fourier transforms of irradiance and ray angular distribu-
tions of light bundles were introduced,*® which showed that as far as predictions of beam
diameters in an optical system were concerned, irradiance profile measurements would
(usually) suffice. The M? model was born, and commercial instruments' for its application
soon followed. Later we realized that modes “turn on” in a characteristic sequence as dif-
fraction losses are reduced in the generating resonator. This makes a given M2 correspond
to a unique mode mix in many common cases after all (see Section 1.6.4).

1.5 TRANSFORMATION BY A LENS OF FUNDAMENTAL
AND MIXED-MODE BEAMS

Knowledge of how a beam is transformed by a lens is not only useful in general, but in
particular, a lens is used to gain an accessible region around the waist for the measure-
ments of diameters that are analyzed to produce M? (see Section 1.7). This transformation
is discussed next.

In geometrical optics a point source at a distance s; from a thin lens produces a spheri-
cal wave whose radius of curvature is R, at the lens (and whose curvature is 1/R;), where
R, =s,. In traversing the lens, this curvature is reduced by the power 1/f of the lens (fis the
effective focal length of the lens) to produce an exiting spherical wave of curvature 1/R,
according to the thin lens formula:

e (1.23)

An image of the source point forms at the distance R, from the lens from convergence of
this spherical wave. Note that the conventions used in Equation 1.23 are the same as in
Equation 1.17, namely, the beam always travels from left to right, converging wavefronts
with center of curvature to the right have negative radii, and diverging wavefronts with
centers to the left have positive radii. [The usual convention in geometrical optics® is that
converging wavefronts leaving the lens are assigned positive radii, which would put a
minus sign on the term 1/R, of Equation 1.23]
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The quantities used in the beam-lens transform are defined in Figure 1.6. Following
Kogelnik! the beam parameters on the input side of the lens are designated with a subscript
1 (for “1-space”) and on the output side with a subscript 2 (for “2-space”). The principal plane
description? of a real (thick) lens is used, in which the thick lens is replaced by a thin one
acting at the lens principal planes H1, H2. Rays between H1 and H2 are drawn parallel to the
axis by convention, and waist locations zy and zy, are measured from H1 and H2 respectively
(with distances to the right as positive for z,, and distances to the left as positive for z,).

A lens inserted in a beam makes the same change in wavefront curvature as it did in
geometrical optics [Equation 1.23], but the wavefront R, converges to a waist of finite diam-
eter 2W,, at a distance z(, given by Equation 1.17b. For each of the two independent propa-
gation planes, there are three constants required to specify the transformed beam, and
three constraints needed to determine them. The lens should be aberration-free (typically,
used at f/20 or smaller aperture) and, if so, the beam quality is not changed in passing
through it, giving the first condition M> = M; . The second constraint is that the wavefront
curvatures match, between the input curvature modified by the lens [Equation 1.23], and
the transformed beam at the same location as specified by the transformed beam constants
through Equation 1.17a. A beam actually has two points with the same magnitude and
sign of the curvature, one inside the near-field region of that sign and one outside, which
differ in beam diameters. The ambiguity as to which point is matched is removed by the
third constraint, that the beam diameter is unchanged in traversing the (thin) lens.

These three constraints define three equations that next are solved for the transformed
waist diameter and location. This is facilitated by Equations 1.16b and 1.17b for W, and z, as
functions of W(z) and R(z). The solution'*-%! is written in terms of the transformation constant
I' (using the modern symbols from a commercial M? measuring instrument®) as follows:

N - ;f =y 2
M2 = M2 = M? (1.25)
W, = NTW,, (1.26)
Zg, = Tz (1.27)

Zp = f+T(zg = f) (1.28)

A set of these equations apply to each of the two principal propagation planes (x, z)
and (y, 2).

“1 - space” Lens “2 - space”
X X
v r

_2Wo

2y —w

Zo1

H1 H2

FIGURE 1.6
Definitions of quantities used in the beam-lens transform.
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FIGURE 1.7
Parametric plots of the transformed waist location as a function of the input waist location for the beam-lens
transform, with f as the lens focal length and the Rayleigh range zy, of the input beam as parameters.

The transform equations [Equations 1.24 through 1.28] are not as simple as in geometri-
cal optics because of the complexity of the way the beam wavefront curvatures change
with propagation distance, Equation 1.17a. Like the image and object distances in geomet-
rical optics, the transformed beam waist location depends on the input waist location—
but also depends, as does the wavefront curvature, on the Rayleigh range of the input
beam. The most peculiar behavior as the waist-to-lens distance varies is when the input
focal plane of the lens moves within the near-field of the incident beam, |z — f| < zg;.
Then the slope of the zg, versus zy, curve turns from negative to positive (in geometrical
optics the slope of the object to image distance curve is always negative). This sign change
can be demonstrated by substituting Equation 1.24 into Equation 1.28 and differentiating
the result with respect to z;;. As the lens continues to move closer to the input waist, the
transformed waist location also moves closer to the lens, exactly opposite to what hap-
pens in geometrical optics. In the beam-lens transform, the input and transformed waists
are not images of each other (in the geometrical optics sense). Despite the intransigence
of beam waists, the object-image relationship of beam diameters at conjugate planes on
each side of the lens does apply just as in geometrical optics. A good modern discus-
sion of the beam-lens transform is presented in O’Shea’s textbook®? (where his parameter
a? =T here).

A pictorial description of the beam-lens transform is given by a figure in Reference 30,
redrawn here as Figure 1.7. Variables normalized to the lens focal length f are used to show
how the transformed waist location zy,/f varies with the input waist location zy,/f. The
input Rayleigh range z, /f (also normalized) is used as a parameter and several curves are
plotted for different values. The anomalous slope regions of the plot are evident. The geo-
metrical optics thin lens result, Equation 1.23, is recovered when the input Rayleigh range
becomes negligible, zy, /f = 0 (the condition for a point source), and the slopes of both wings
of the curve are then always negative.

1.5.1 Application of the Beam-Lens Transform to the Measurement of Divergence

An initial application of the beam-lens transform equations is to show that the diver-
gence of the input beam O, in 1-space of Figure 1.6 can be determined by measuring the
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beam diameter 2W; at precisely one focal length behind the lens exit plane H2 in 2-space
from the equation:
2W,
0, = 5o (1.29)
This result is independent of where the lens is placed in the input beam. This follows
by finding in 2-space the diameter 2W; at z, = f [from Equation 1.16a] and substituting
Equations 1.19, 1.24, and 1.28:

LU= zoz)z}”z ZWOZ(L\( 1 )

ZRZ

2W, —2w02[
()

which is Equation 1.29. In Figure 3b of Reference 25 there is an illustration showing
how the transform equations operate to keep the output beam diameter one focal length
from the lens fixed at the value O, f despite variations in the input waist location, z,. The
measurement method implied by Equation 1.29 is the simplest way to get a good value
for the beam divergence ©,. Care should be taken to pick a long enough focal length lens
that the beam diameter is large enough for the precision of the diameter-measurement
method in use.

1.5.2 Applications of the Beam-Lens Transform: The Limit of Tight Focusing

When the aperture of a short focal length lens is filled on the input side, the smallest possi-
ble diameter output waist is reached and this is called the limit of tight focusing. This limit
is characterized by (1) the beam diameter at the lens being given by 2W,_, . = ©,f; (2) the out-
put waist being near the focal plane z, = f; and (3) there being a short depth of field at the
focus, zp,/f < 1. Applying Equation 1.29 in the reverse direction gives the 2-space diver-
gence as the ratio of the beam diameter 2W,; at f to the left of the lens, to the focal length,
0, f = 2W,;. By condition (1) this means 2W,;= 2W,,,; or that there is little change in the input
beam diameter over a propagation distance . That makes the first condition characterizing
the tight focusing case equivalent to z;/f > 1. Then from Equation 1.19,

2 IM?
21/\/18115 = f
Py,

or
)

o f 2
2W,, = 21IM?* | ——— = 21IM>(f/# .
=T (f/#) (1.30)

for the tight focusing limit. Here Siegman’s definition® is used that a lens of diameter D,
is filled for a fundamental-mode beam of diameter zW,,,, (this degree of aperture filling
produces <1% clipping of the beam). Thus f/zW,,,,; = //Diens = (f/#). The depth of field of the
focus is zz, = 7Wy,2/M?A = zM2A(f/#)2. This generalizes a familiar result® for a fundamen-
tal-mode beam to the M? # 1 case.
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Marshall’s point?® (from 1971) is made by Equation 1.30, that a higher-order mode beam
focuses to a larger spot by a factor of M? with less depth of field, and therefore cuts and
welds less well than a fundamental-mode beam.

1.5.3 The Inverse Transform Constant

The transform equations work equally well going from 2-space to 1-space, with one trans-
formation constant the inverse of the other,

L= (1.31)

1
I‘12

This obviously is true by symmetry but the algebraic proof is left to the reader.

1.6 BEAM DIAMETER DEFINITIONS FOR
FUNDAMENTAL AND MIXED-MODE BEAMS

It has been said that the problem of measuring the cross-sectional diameter of a laser beam
is like trying to measure the diameter of a cotton ball with a pair of calipers. The difficulty
is not in the precision of the measuring instrument, but in deciding what is an acceptable
definition of the edges.

Unlike the fundamental-mode beam where the 1/e? diameter definition is universally
understood and applied, for mixed modes a number of different diameter definitions’
have been employed. The different definitions have in common that they all reduce to the
1/e? diameter when applied to an M? = 1 fundamental-mode beam, but when applied to
a mixed mode with higher-order-mode content they in general give different numerical
values. As M? always depends on a product of two measured diameters, its numerical
value changes also as the square of that for diameters. It is all the same beam, but different
methods provide results in different currencies; one has to specify what currency is in use
and know the exchange rate.

Since the adoption!! by the ISO committee on beam widths of the second-moment diam-
eter as the standard definition for beam diameters, there has been increasing effort among
laser users to put this into practice. This definition, discussed in Section 1.6.3.5, has the
best analytical and theoretical support but is difficult experimentally to measure repro-
ducibly because of sensitivity to small amounts of noise in the data. The older methods
therefore persist and the best strategy? at present is to use the more forgiving methods for
the multiple diameter measurements needed to determine M2 Then at one propagation
distance, do a careful diameter measurement by the second-moment definition to provide
a conversion factor. This conversion factor can then be applied to obtain standardized
diameters at any distance z in the beam. This strategy will likely evolve in the future if and
when instrument makers respond to the ISO Committee’s choice and devise algorithms
and direct methods for ready and accurate computations of second-moment diameters.

1.6.1 Determining Beam Diameters from Irradiance Profiles

Beam diameters are determined from irradiance profiles, the record of the power trans-
mitted through a mask as a function of the mask’s translation coordinate transverse to
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the beam. A sufficiently large linear power detector is inserted in the beam, with a uni-
formly sensitive area to capture the total power of the beam. Detection sensitivity should
be adequate to measure ~1% of the total power, and response speed should allow faithful
reproduction of the time-varying transmitted power. The mask is mounted on a transla-
tion stage, placed in front of the detector, and moved or scanned perpendicularly to the
beam axis to record a profile. An instrument that performs these functions is called a
beam profiler. In a useful version based on a charge-coupled-device (CCD) camera, the
masking is done on electronic pixel data under software control.

The beam propagation direction defines the z-axis. The scan direction is usually along
one of the principal diameters of the beam spot and commercial profilers are mounted to
provide rotation about the beam axis to facilitate alignment of the scan in these directions.
The principal diameters for an elliptical spot are the major and minor axes of the ellipse
(or the rectangular axes for a Hermite—Gaussian mode). The principal propagation planes
(x, z) and (y, z) are defined as those containing the principal spot diameters. The beam
orientation is arbitrary and in general may require rotation of coordinates to tie it to the
laboratory reference frame. It is assumed this rotation is known, and without loss of gen-
erality to give simple descriptive terminology in this discussion, here the z-axis is taken
to be horizontal, the principal propagation planes as the horizontal and vertical planes
in the laboratory, with the scan along the x-axis. If the mask requires centering in the
beam (e.g., a pinhole) to find the principal diameter, it is mounted on a y-axis stage as well
and x-scans at different y-heights taken to determine the widest one at the beam center.
Alternatively, a mirror directs the beam onto the profiler and the spot is put at different
heights to find the beam center by tipping the mirror about a horizontal rotation axis. If
the beam is repetitively pulsed and detected with an energy meter, the stage is moved in
increments between pulses. If a CCD camera is the detector, a scan line is the readout of
sequential pixels and no external mask is required in front of the camera. A CCD camera
generally requires a variable attenuator® inserted before the camera to set the peak irra-
diance level just below the saturation level of the camera for optimum resolution of the
irradiance value on the ordinate axis of the profile.

The results of this process are irradiance profiles such as shown in Figure 1.8 for two
pure modes, the fundamental mode in the first row and the donut mode in the second,
where three scans are calculated for each, one for a pinhole (first column), a slit (second col-
umn), and a knife-edge (third column) as masks. The traditional definitions used to extract
diameters from these profiles are the same for the pinhole and slit. This is to normalize the
scan to the highest peak as 100%, then to come down on the scan to an ordinate level at 1/¢?
(13.5%) and measure the diameter—or clip width—as the scan width between these cross-
ing points (called clip levels or clip points and shown as dots in Figure 1.8). The symbols
D, and Dy are used for these two diameters. For the knife-edge diameter (symbol D,,)
the definition is to take the scan width between the 15.9% and 84.1% clip points and double
it, as this rule produces the 1/e? diameter when applied to the fundamental mode.

As shown in Figure 1.8 the diameter results for the donut mode (TEM§,) are all larger
than the 2w diameter of the fundamental mode, as expected. However, the answers for the
three different methods for the donut mode—and in general, for all higher-order modes—
are all different! The ratio of the donut mode to fundamental-mode diameter is 1.51, 1.42,
and 1.53 by the pinhole, slit, and knife-edge methods, respectively. The reason, obviously, is
that traces of different shapes are produced by the different methods. The pinhole cuts the
donut right across the hole and records a null at the center; the slit extends vertically across
the whole spot and records a transmission dip in crossing the hole but never reaches zero
due to the contribution of the light above and below the hole. Even higher transmission
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FIGURE 1.8

Theoretical beam profiles (irradiance vs. translation distance) from a scanning pinhole (a) and (d), slit (b) and
(), and knife-edge (c) and (f) cutting the fundamental and donut modes, illustrating that different methods give
different diameters for higher-order mode beams. The knife-edge diameter is defined as twice the translation
distance between the 15.9% and 84.1% cut points.

results with the knife-edge and here the donut profile differs from the fundamental one
only in being less steeply sloped (the spot is wider) and having slight inflections of the
slope around the hole at the 50% clip point, the beam center.

There are two other two common definitions. The first is the diameter of a circular
aperture giving 86.5% transmission when centered on the beam. It is variously called the
variable-aperture diameter, the encircled power diameter, or the “power-in-the-bucket”
method, and designated by the symbol Dg,. The last is the second-moment diameter,
defined as four times the standard deviation of the radial irradiance distribution recorded
by a pinhole scan, and designated by the symbol D,,. For the ratio of donut mode to fun-
damental-mode diameters, these definitions give 1.32 and 1.41 respectively, also different
from the three other values above.

After the discussion of some common considerations (Section 1.6.2), these five diameter
definitions are evaluated in Section 1.6.3 leading to the summary given in Table 1.1.

1.6.2 General Considerations in Obtaining Useable Beam Profiles

Five questions are important in evaluating what beam diameter method is best for a given
application:

1. How important is it to resolve the full range of irradiance variations? Only a pinhole scan
(or its near equivalent, a CCD camera snapshot read out pixel by pixel) shows
the full range, but this is not of significance in some applications, for example,
where the total dose of light delivered is integrated in an absorber.

2. How important is it to use a method that is insensitive to the alignment of the beam
into the profiler? If the test technician cannot be relied on to carefully center the
beam on the profiler, the slit or knife-edge methods still give reliable results,
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but not the other methods. With a CCD camera there is a trade-off between
alignment sensitivity and accuracy. For best accuracy, a magnifying lens—of
known magnification—can be placed in front of the camera to fill the max-
imum number of pixels, but then the camera becomes somewhat alignment
sensitive.

3. With what accuracy and repeatability is the diameter determined? The amount of light
transmitted by the mask determines the signal-to-noise ratio of the profile and
ultimately answers the question. The methods based on a pinhole scan (D, D,,,
and CCD cameras) suffer from low light levels in this regard. On the other hand, a
laser beam is generated in a resonator subject to microphonic perturbations, mak-
ing the beam jitter in position and the profile distort typically by about 1% of the
beam diameter, so that a greater instrument measurement accuracy is usually not
significant.

4. Is the convolution error associated with the method significant? The convolution error
is the contribution to the measured diameter due to the finite dimensions of
the scan aperture, either the diameter H of a pinhole or width S of a slit. A
10-micron focused spot cannot be accurately measured with a pinhole of 50-mi-
cron diameter. The distortion of a pinhole profile of a fundamental mode is shown
in Figure 1.9a as a function of the ratio of hole diameter to the mode width H/2w.
The peak amplitude drops and a slight broadening occurs as H/2w increases. The
central 100% peak amplitude point is “washed out” or averaged to a lower value
in the profile by the sampling of lower amplitude regions nearby as the finite
diameter pinhole scans across the center as Figure 1.9b indicates. The reduction
in peak amplitude of the convoluted profile is like lowering the clip level below
13.5% on the original profile: the measured diameter becomes larger. Very simi-
lar profile distortions occur with a slit scan as a function of 5/2w; here S is the silt
width. The ratio of the measured width including this convolution error to the
correct width is plotted in Figure 1.9¢ for the pinhole (H) and slit (S). This gives
the rule of thumb for pinhole scans: to keep the error in the measured diameter to
1% or less, keep the pinhole diameter H to one-sixth or less of 2w, that is, H < w/3.
The corresponding rule* for slits is the measured diameter is in error by <1% if
the width S is 1/8 or less of 2w. For modes like TEM,, of Figure 1.2d with a fea-
ture (the central peak) narrower than that of the fundamental mode, the aperture
widths H or S should be no bigger than these same fractions of the narrow fea-
ture’s width. (Note, McCally3* uses the biologist’s definition of 1/e clip points for
the fundamental-mode diameter, a factor 1/y2 smaller than our 1/¢2 diameter; his
results require conversion.)

Distortion of the profile can be a more subtle effect and can give misleading results. When
measuring a predominantly TEM§, focused beam through the waist region, for exam-
ple, a pinhole profiler will at first show the expected trace, with a dip in the middle like
Figure 1.8d or e. This will change to one with a central peak as in Figure 1.8a at the propa-
gation distance along the beam where the pinhole is no longer small compared to the beam
diameter. The donut hole can fall through the pinhole!

Convolution errors are a concern normally only when working with focused beams, as
when measuring divergence by the method of Section 1.5.1. Generally, however, it is desirable
to go to the far-field, reached by working in 2-space at the focal plane behind an inserted lens,
to obtain a true (undistorted) profile. The beam coming out of the laser often has “diffractive



Characterization of Laser Beams: The M? Model 25

1.0
*
I(x/w)
0.5 ©
1.15 [ {
0 1.10f /

3
bt
=)
=]
=
)
g
g slit, S
(b) x/w—a- 8 i AN
5 i
£ 1.05 4
P
H 5 I Pinhole, H
2 1.00
b -~ —~
g T Iﬂ 1 \ L I 1 1
g o0 [ 0.10 0.20) 0.30 040 0.50
0.12 0.17
H/2w or S/2w ==

FIGURE 1.9

Convolution of the theoretical fundamental-mode profile in a scan with a pinhole or slit of finite dimensions (H,
diameter of the pinhole; S, width of the slit; 2w, the 1/¢? diameter of the mode). (a) Distortion of the shape and
width of the pinhole profile as H/2w increases. (b) Plan view of the pinhole scan showing “washout” of the 100%
amplitude point. For the pinhole shown, H/2w = 0.24, corresponding to the third curve down from the top in
(@). (c) Convolution error, or ratio of the measured diameter 2w, to the true diameter 2w, as a function of H/2w
for the pinhole and S/2w for the slit.

meas

overlay,” low-amplitude high-divergence light diffracted from the mode-limiting internal
aperture, overlaid on the main beam. The resulting interference can significantly distort the
profile, even at <1% amplitude of the diffracted light. It is the E-fields that interfere; for an
irradiance I = E? overlaid by a 0.01 E? distorting component, the E-fields add and subtract
as E = 0.1 E at the interference peaks and valleys. The resulting fringe contrast ratio, [,/
Lianey = [(1.D/(09)) = 1.49 is a significant distortion to the profile even though the power in the
diffractive overlay is insignificant. Moving the profiler some distance away from the output
end of the laser spreads the diffractive overlay rapidly compared to the beam expansion, but
often several meters additional distance is required. This leaves the use of a lens to reach the
far-field as the answer, and convolution distortion then must be dealt with.

Aligning a small-diameter (e.g., 10 micron) pinhole to a small (e.g., 100 micron)-focused
spot is another problem. The search time to achieve overlap and some transmitted signal
for peaking alignment can be very long if done manually, so having a fast update rate—
10 scans a second is good—provided by commercial instruments can be a major aide.
Some instruments’ have electronic alignment systems to facilitate finding the overlap of
small pinhole and small beam.

Knife-edges have no convolution error to the extent that they are straight (razor blades
are straight® to <2 microns deviation over 1000 microns length). The circular aperture of
the encircled power method is usually a precision drilled hole and has no convolution
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error so long as it is accurately round and made in a material much thinner than the hole
diameter (to avoid occultation error).

5. Are the diameter measurements along the propagation path free of discontinuities and
abrupt changes? Consider making many diameter measurements along the propa-
gation axis, and fitting the data to a hyperbola to find the beam’s Rayleigh range
and beam quality. Discontinuities in the data will make a poor fit and final result.
Such discontinuities can arise®® with the 1/e2 clip-level diameter definitions with
mixed modes with low peaks on the edges, as in Figure 1.2g, only lower. As the
mode mixture changes to bring the outer peaks near the clip level, the measured
diameter can jump from the separation of the outer peaks of the profile to the width
of the central peak as amplitude noise perturbs the profile. Similarly, for a mixed
mode with rectangular symmetry, as azimuth is continuously changed from the
major principal plane direction towards the minor one, the relative amplitude of
the outermost peaks of the profile can drop.* The clip point then can jump discon-
tinuously with perturbing noise when the height is near the clip level. Only D,
and Dy, are subject to this difficulty.

This last question can be rephrased to ask, is the diameter definition readable by a machine?
A human observer will notice an outer peak of height near the clip level causing the pro-
filer readout to fluctuate, and correct the situation by adjusting the mode mixture, the
azimuth, or the clip level. A machine will take the bad data in, and produce unreliable
results. When a lot of diameter data needs to be gathered, as in measuring a propagation
plot to determine M2, automated machine data acquisition is desirable. In this regard, the
knife-edge diameter is best, as it always produces an unambiguous monotonic trace for all
higher-order and mixed modes.

1.6.2.1 How Commercial Scanning Aperture Profilers Work

Commercial profilers® typically use the 1/e2 diameter definition with pinhole and slit
masks, and occasionally will report an incorrect diameter due to the “not entirely machine
readable” defect of these definitions. These profilers use a rotating drum to carry a slit
or pinhole mask smoothly and rapidly (typically at a 10 Hz repetition rate) in front of a
large area detector inserted into the drum. On the first pass through the laser spot, the
electronics remembers the 100% signal level, and on the second pass when the 13.5% clip
level is crossed as the signal rises, a counter is started. This counts the angular increments
of drum motion from an angular encoder, which when multiplied by the known drum
radius, provides the mask translation in spatial increments of 0.2 microns. (In newer, high
precision designs discussed in the next paragraph this increment has been reduced to 0.01
microns.) When the clip level is passed as the signal falls, the counter is stopped and the
value of the beam diameter—total counts times spatial increment—is reported. Actually,
what is reported on the digital readout is an average selected by the user of the last two to
20 measurements, to slow the report rate down to what can be read visually. If a pure donut
mode is scanned with the pinhole version of this instrument [the profile of Figure 1.8d], the
counter starts at the clip-level dot on the left (x/w = —1.51) but stops as the falling clip level
is met at the left edge of the donut hole (x/w = —0.16). The scan continues and the counter
turns on again as the clip level is passed with the rising signal at the right edge of the donut
hole (x/w = +0.16), because the drum has not completed a revolution to reset the counter
for a new measurement. Finally, the counter turns off again at the rightmost clip-level dot
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(x/w = +1.51), and the diameter reported is the actual diameter minus the width of the hole
at the clip-level height, an error of about —11%. This possible error usually goes unnoticed
because the dips in mixed-mode profiles do not often go as low as 13.5%.

In recent years scanning aperture profilers have been mechanically upgraded to pro-
vide more precision (0.01 micron spatial resolution) and interfaced with PC controllers
to provide more features in addition to beam diameter: full 12-bit digitized profiles and
the D,, diameters calculated from them (not just clip widths and analog traces), profile
peak position, centroid position, spot ellipticity (with slit or knife-edge profilers carrying
two orthogonal apertures), and even absolute power (when so calibrated). With micron-
sized apertures and submicron sampling, beam diameters of 5 microns can be measured
to 2% accuracy. As before, different detector types (silicon, germanium, or pyroelectric)
cover wavelengths from UV to Far IR. Beams pulsed at repetition frequencies down to
1 kHz can be measured with profilers having user-controlled variable scan speed (drum
speeds are slowed to intercept enough pulses to build up the profile). In addition they can
measure beams without attenuation, as compared to camera-based systems that typically
require six to nine orders of magnitude attenuation. Infrared beams at power levels of
3 kW focused to diameters of 175 um have been directly measured with cooled profilers
fitted with copper apertures.

Commercial profilers, because of their speed and accuracy, are a major improvement for
frequent beam diameter measurements over the traditional practice of a manually driven
translation stage carrying a razor blade (or slit) across the beam. Focused beams in par-
ticular need high instrument accuracy to resolve the small spot and provide the real time
update rate to acquire a signal by overlapping the aperture with the beam. With a signal lin-
earity range of 10* and a spatial resolution (if convolution error is neglected) of 0.01 microns
over a 9-mm scan range (10° spatial resolution elements) one of these small, new profilers
brings an impressive potential of 10° information bits to the problem of measuring a beam
diameter. Compare this to a modern CCD camera of 9-mm sensor width, 5-micron pixel
spacing (2 x 10° spatial resolution elements), and 12-bit (4 x 10°) linearity range, for a total of
107 information bits. It is understandable why in measuring beam quality M?, profiler-based
instruments surpass camera-based ones in speed and accuracy. The camera, of course, has
its own advantages of giving a two-dimensional map of all the irradiance peaks in the laser
spot and its ability to measure beams from low repetition rate pulsed lasers.

1.6.3 Comparing the Five Common Methods for Defining
and Measuring Beam Diameters

The discussion that follows and Table 1.1 summarize the properties of the five diameter
definitions.

1.6.3.1 D,;, Separation of 1/e* Clip Points of a Pinhole Profile

The pinhole scan reveals the structure of the irradiance variations across the beam spot
with the greatest accuracy and detail, but does so working with a low light signal level
and it is subject to convolution error with focused spots. To minimize convolution error,
several pinholes of diameters H (10-micron and 50-micron pinholes are common) are used
to keep H < w/3 where w here is the fundamental-mode radius or smallest feature size for
a higher-order mode beam. The pinhole method requires accurate centering of the beam
on the scan line of the pinhole and this makes it less adaptable to a machine measurement.
This diameter definition also can give ambiguous results if the profile contains secondary
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peaks of a height close to the clip level. The pinhole profile provides the basic data from
which the second-moment diameter is calculated. Be sure the rule for the profile to be free
of convolution error is met first!

1.6.3.2 D, Separation of 1/e* Clip Points of a Slit Profile

The slit scan does not require centering of the beam spot and works at a medium light
signal level, but does not reveal as much detail of the irradiance variations [compare
Figure 1.8d and e]. This method is subject to convolution error with focused spots; the
slit width S should satisfy S/2w < 1/8 with 2w as the smallest feature size of the profile. It
too can give ambiguous results on profiles with secondary peaks near the clip level. This
diameter definition produces a direct result (that is, without applying the conversion rules
explained in Section 1.6.4.3) closest to the ISO standard second-moment diameter of the
three other methods.

1.6.3.3 D,,, Twice the Separation of the 15.9%
and 84.1% Clip Points of a Knife-Edge Scan

The knife-edge does not require centering of the beam spot and works at a high light signal
level, but reveals almost no detail of the irradiance variations [compare Figure 1.8d and f],
only the slight inflection points in the slope of the knife-edge profile show that there are any
irradiance peaks at all. All modes give a simple slanted S-shaped profile. There generally is no
convolution error with this method, and there are no diameter ambiguities when secondary
peaks are present. Experimentally, it is the most robust diameter measurement and is least
affected by beam-pointing jitter and power fluctuations, making this method fully machine
readable. This diameter is the basic one measured in the most common commercial instru-
ment’® designed to automatically measure propagation plots and all six beam parameters.

1.6.3.4 Dy, Diameter of a Centered Circular Aperture
Passing 86.5% of the Total Beam Power

Unlike the other diameter measurements, the variable-aperture diameter passes light in
both the x- and y-transverse planes simultaneously and cannot be used to separately mea-
sure the two principal diameters; it works best with round beams. It must also be centered
in the beam for accurate results. While an iris or variable aperture can be used, more fre-
quently sets of precision fixed apertures are used instead. A metal plate drill gauge, with
some of the plate milled away on the back side of the gauge to reduce its thickness to less
than the smallest aperture size to eliminate occultation error, is a convenient tool. The
two diameters bracketing the 86.5% transmission point are first found, and the final result
computed by interpolation. Alternatively, if there is a long propagation length available,
an aperture with a transmission near 86.5% may be moved along the beam to locate the
distance where that diameter produces precisely this transmission. This diameter defini-
tion is used mainly for two reasons. For high power lasers—for instance CO, lasers in the
kilowatt range—little diagnostic analytical instrumentation is available that can absorb
this power. A water-cooled copper aperture, however, can still be safely inserted in front of
a power meter to give some quantification of the beam diameter. The second reason is that
this diameter is readily computed from the output of a CCD camera and is available on
camera instrumentation, with the computation locating the beam centroid, making physi-
cal centering of the camera unnecessary.
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1.6.3.5 D, , Four Times the Standard Deviation of the Pinhole Irradiance Profile

This diameter is computed from a pinhole irradiance profile, which for accuracy should
be free of convolution error and diffractive overlay. For a beam with a rectangular cross-
sectional symmetry described by a weighted sum of Hermite-Gaussian modes the calcu-
lation proceeds by finding the rectangular moments of the profile treated as a distribution
function. The zeroth moment gives the total power P of the beam, the first moment the
centroid, and the second moment leads to the variance o2 of the distribution:

Zeroth moment or total power P= fjc fjo I(x,y)dxdy (1.32)
First moment or centroid (x) = (%) f_ i f_ " xI(x, y)dxdy (1.33)
2\ _ l T2
Second moment <x >— (P)f_wf_wx I(x,y)dxdy (1.34)
Variance of the distribution s} = (x*) - (x)* (1.35)

Linear second-moment diameter D, = 4s, (1.36)
This last equation comes from the requirement that the second-moment diameter reduce
to the 1/e? diameter when applied to a fundamental-mode beam, as explained in arriving
at Equation 1.6. A precisely similar set of equations holds for the moments in the verti-
cal plane (y, z) to define a vertical principal plane centroid and diameter [Equations 1.33
through 1.36 with x and y interchanged]:

Linear second moment diameter D, , =4s,. (1.37)

A similar set of moment equations defines a radial second-moment diameter, applicable
to beams with cylindrical symmetry described by a weighted sum of Laguerre-Gaussian
functions. Here the pinhole x-scan profile is split in half at the centroid point (x), and the
half profile is taken as the radial variation of the cylindrically symmetric beam. In the
transverse radial coordinate plane (7, 6), the origin is the center of the beam spot defined by
the centroid ((x), {v)) given by the rectangular first moments, Equation 1.33.

Zeroth - moment or total power P = fo ® fo I (r,@rdrdg (1.38)
: 2 1\ 2p > 5
Radial second moment <r >= (E) ﬁ) ﬁ T I(r,qdrdg (1.39)
Variance of the distribution s’ = <r2> (1.40)
Radial second-moment diameter D, ; = 2\2s, (1.41)

This last equation derives from the requirement that the linear and radial variances are
related® by:

si+sl=s’. (142)
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Then for a cylindrically symmetric mode o, = o,, yielding 26,2 = 6,2 or o, = (1/\2)s,. Since
for a fundamental-mode beam 2w = 40,, from the radial mode description of that beam,
there results® 2w = 4(1/\2)o, = 2\2 6,, which is Equation 1.41. By mixing modes, combina-
tions of Hermite-Gaussian modes can be made to have the same irradiance profiles as
Laguerre—Gaussian modes, and vice versa. Therefore, for compactness the symbols D,,
or M;, will be used for either linear or radial second-moment quantities unless there is a
need to specifically distinguish a quantity as a radial moment.

1.6.3.6 Sensitivity of D, to the Signal-to-Noise Ratio of the Profile

The experimental difficulties in evaluating these integrals with noise on the profile
signal come from the weighting by a high power of the transverse coordinate in the
second-moment calculation, by the square in the linear case [Equation 1.34], and by
the cube in the radial case [Equation 1.39]. Take as an example a measurement of a
fundamental-mode spot with a CCD camera, using 256 counts to digitize the irradiance
values, and 128 counts used to digitize half the integration range of the transverse coor-
dinate. In the linear case, one noise count (0.4% noise) at the edge of the range—at the
128th transverse count—is weighted by the factor 1 x (128)? = 16,384 in the integration,
versus 256 x 1 counts for the central peak. The contribution of this single noise count
is 64 times that of the pixel at the central peak in the integration. In the radial case, the
one noise count at the limiting transverse pixel makes a contribution (128)3/256 = 8192
times that of the pixel at the central peak. A discussion of the high sensitivity of the
second-moment diameter to noise on the wings of the profile is given in Reference 12.
There the second-moment and knife-edge methods are compared for five simulated
modes, and the knife-edge found to be considerably more forgiving and in agreement
with common expectations.

To manage this sensitivity to noise, it is essential that both some measure of the detector’s
background illumination and noise be subtracted from the signal, and that the integration
from the beam centroid outward be truncated at the edges of the illuminated region. Both
means reduce the effect of noise on the wings of the profile.

A distinction is made between subtraction of background, the detector’s readout with
the beam blocked, and subtraction of the baseline, the noise floor of the dark detector.
Because of the high directionality of laser beams, typically the background can (and
should) be reduced to insignificance by inserting an aperture near the laser (blocking
concomitant light) and adding a light-shielding tube to the detector (blocking ambient
light).

There are differences of opinion as to the best method for subtracting the noise floor
with CCD cameras, but recommended here is what is termed “thresholding.” From either
a dark camera frame or preferably, from the nonilluminated corners of the signal frame,
a standard deviation is computed for this measured noise, and three times this value sub-
tracted uniformly from the signal frame before data analysis. This avoids taking the dif-
ference between one random noise frame (the background frame) from another (the noise
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