
This volume describes the Pomeron, an object of crucial importance in 
very high energy particle physics. 

The book starts with a general description of the Pomeron within the 
framework of Regge theory. The emergence of the Pomeron within scalar 
field theory is discussed next, providing a natural foundation on which 
to develop the more realistic case of QCD. The reggeization of 
the gluon is demonstrated and used to build the Pomeron of 
perturbative QCD. The dynamical nature of the Pomeron is then 
investigated. The role of the Pomeron in small-x deep inelastic 
scattering and in diffractive scattering is also examined in detail. The 
volume concludes with a study of the colour dipole approach to high 
energy scattering and the explicit role of unitarity corrections. 

This book will be of interest to theoretical and experimental particle 
physicists, and applied mathematicians. 
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Preface 

In recent years, the study of strong interaction physics within 
the framework of Quantum Chromo dynamics (QCD) has largely 
been restricted to processes which involve a single hard scale (of 
the order of the centre-of-mass energy). There is a whole wealth 
of strong interaction physics which is ignored in such a study, 
including the connection between QCD and Regge theory, which 
was successfully used to describe certain aspects of the strong 
interactions before the advent of QCD. 

The connection between QCD and Regge theory has attracted 
much attention in the theoretical community for many years now. 
Indeed the BFKL equation, which describes what we shall re­
fer to as the perturbative Pomeron, has been known for nearly 
twenty years. Only recently with the arrival of the HERA and 
Tevatron colliders has it been possible to perform experiments in 
the kinematic regime relevant to the perturbative Pomeron. Struc­
ture functions at low values of Bjorken x and the observation of 
rapidity gaps are examples of phenomena which can be used to 
test the perturbative Pomeron. 

The work of those many authors who have contributed to the 
understanding of the Pomeron in QCD is indeed very formidable. 
However, to our knowledge, no single self-contained compendium 
of such work exists. Furthermore many of the papers which have 
been published on this subject have not been written in a partic­
ularly pedagogical style and are therefore not easily understood 
by a pedestrian reader who wishes learn about the perturbative 
Pomeron. 

In view of the high profile which the Pomeron is now receiving, 
this lecture note volume is designed to explain the derivation and 
applications of the perturbative Pomeron from first principles. It 
is aimed at the level of graduate students who have completed a 

xiii 



xiv Preface 

course in quantum field theory. Certain techniques which may not 
be included in such a course are briefly reviewed, often in appen­
dices in order not to interrupt the flow of the text. It is, of course, 
also hoped that more senior physicists who wish to become famil­
iar with the perturbative Pomeron will find this volume useful. 

Almost all of the material in this volume is the work of other 
authors and only rarely have we alluded to our own modest con­
tributions to this subject. References have been given to papers 
which are specifically relevant to topics covered in the text and 
these are by no means intended to form a complete bibliography of 
the vast number of papers that have been published in this field. 

We begin with a review of the Pomeron in the old Regge theory, 
largely for the benefit of the, by now, majority of physicists who 
are too young to have met such material in graduate school (this 
includes one but not both of the authors). We then present a toy 
model example which introduces the reader to the techniques that 
are used to derive the perturbative Pomeron in QCD. One of the 
essential ingredients in the BFKL approach to the perturbative 
Pomeron is the concept of the reggeized gluon. The demonstra­
tion that the gluon does reggeize is given in Chapter 3. It is a 
necessarily involved demonstration. The reader who is prepared 
to take the result on trust may wish to skip from section 3.2 to 
the end of the chapter and proceed to Chapter 4, where the BFKL 
equation is derived. In Chapters 6 and 7 we discuss applications of 
the perturbative Pomeron to processes which are currently under 
experimental observation at the HERA and Tevatron colliders. We 
end the volume with a discussion of recent progress that has been 
made on the restoration of unitarity at very high energy. 

This book has its own page on the World Wide Web at the 
URL ''http://h2.ph.man.ac.uk;-forshaw/book.html''. The page 
includes a list of misprints and corrections and we would appreci­
ate communications reporting additional errors. 

J.R. Forshaw 
D.A. Ross 

February 1997 



Acknowledgement 

Before and during the preparation of this volume our under­
standing of both theoretical and experimental aspects of this sub­
ject has been greatly enhanced by useful and enjoyable conver­
sations with Halina Abramowicz, Mike Albrow, Kevin Anderson, 
Jochen Bartels, Jon Butterworth, Mandy Cooper-Sarkar, Stefano 
Catani, Frank Close, Jean-Rene Cudell, John Dainton, Robin De­
venish, Sandy Donnachie, John Ellis, Keith Ellis, Norman Evan­
son, Brian Foster, Lonya Frankfurt, Robert Hancock, Peter Harri­
man, Francesco Hautmann, Jan Kwiecinski, Mark Lancaster, Pe­
ter Landshoff, Genya Levin, Lev Lipatov, Hans Lotter, Norman 
McCubbin, Martin McDermott, Uri Maor, Pino Marchesini, Alan 
Martin, Andy Mehta, Al Mueller, Basrab Nicolescu, Kolya Niko­
laev, Julian Phillips, Dick Roberts, Graham Ross, Misha Ryskin, 
Gavin Salam, Graham Shaw, Dave Soper, Mike Sotiropoulos, 
John Storrow, Peter Sutton, Robert Thorne, Bryan Webber, Alan 
White and Mark Wiisthoff. 

We are particularly grateful to Peter Landshoff, Gavin Salam 
and Peter Sutton for permission to reproduce some of their figures, 
and to Sandy Donnachie and Mike Sotiropoulos for allowing us the 
use of their notes, which inspired some of the material in the first 
chapter. 

Last but by no means least we are grateful to Andrea and Jackie 
for their unending patience and support. 

xv 





1 

What is a Pomeron? 

Before the advent of the field theoretic approach (QeD), a good 
deal of progress had already been made in developing an under­
standing of the scattering of strongly interacting particles. This 
progress was founded on some very general properties of the scat­
tering matrix. Regge theory provided a natural framework in 
which to discuss the scattering of particles at high centre-of-mass 
energies. 

With the arrival of QeD much attention was diverted away 
from the 'old fashioned' approach to the strong interactions. Inter­
est was re-ignited within the particle physics community with the 
arrival of colliders capable of delivering very large centre-of-mass 
energies (e.g. the HERA collider at DESY and the Tevatron col­
lider at FNAL). For the first time physicists started to investigate 
in earnest the properties of QeD at high energies and compare 
them with the predictions of the Regge theory. 

The high energy limit provides the arena in which the Regge 
properties of QeD can be studied. It is the meeting place of the 
'old' particle physics with the 'new'. Since by 'old' we mean over 
30 years ago it is necessary to commence our study of high energy 
scattering in QeD with an introduction to (or recap of) Regge the­
ory. This chapter will contain a 'whistle-stop tour' of Regge theory 
and Pomeron phenomenology. We keep this to the minimum which 
will be required in order to follow the subsequent chapters and re­
fer the interested reader to the literature (e.g. Collins (1977)) for 
further details. 

1.1 Life before QeD 

Before the development of QeD nobody dared to apply quantum 
field theory to the strong interactions. Instead, physicists tried 

1 



2 What is a Pomeron? 

to extract as much as possible by studying the consequences of 
a (reasonable) set of postulates about the S-matrix, whose abth 
element is the overlap between the in-state (free particles state as 
t - -()(»), I a), and the out-state (free particles state as t ----+ +00), 
I b), 

Postulate 1: 
The S-matrix is Lorentz invariant. 

This means that it can be expressed as a function of the 
(Lorentz invariant) scalar products of the incoming and outgoing 
momenta. For two-particle to two-particle scattering, 

a + b --+ C + d, 

these are most effectively described in terms of the Mandelstam 
variables, s, t, and u defined by 

s (Pa + Pb)2 

t (Pa - Pe)2 

u (Pa-Pd)2, 

as well as the four masses, ma, mb, me, md. The total energy of 
the system in the centre-of-mass frame is IS and t is the square 
of the four-momentum exchanged between particles a and c and 
is related to the scattering angle. u is not an independent variable 
since by conservation of momentum we can show that t 

s + t + u = m~ + m~ + m~ + m~. 
We therefore write a two-particle to two-particle scattering am­

pli tude as A ( s, t), a function of sand t only (the amplitude also 
depends on the masses of the external particles). 

For two-particle to n particle scattering processes there are 3n-
4 independent invariants. 

Postulate 2: 
The S-matrix is unitary: 

sst = st S = 11. 

t Throughout this book we work in the system of units h = c = 1. 
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2jm~ 

~lM+~lg+ 
Fig. 1.1. The Cutkosky rules for a two-particle to two-particle am­
plitude. The shaded cut line denotes that the intermediate particles 
are on mass-shell whilst the + and - signs denote the amplitude 
and its hermitian conjugate respectively. 
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This is a statement of conservation of probability, i.e. the prob­
ability for an in-state to end up in a particular out-state, summed 
over all possible out-states, must be unity. 

The scattering amplitude, Aab, for scattering from an in-state 
I a) to an out-state I b) is related to the S -matrix element by 

Sab = 5ab + i(27r)454 (~Pa - ~Pb) Aab 

(( 27r )454 (L:a Pa - L:b Pb) Aab is often called the T -matrix element 
Tab where S = 11 + iT) and the unitarity of the S-matrix leads to 
the relation 

2'SmAab = (27r)454 (LPa - LPb) L A acA1b' (1.1) 
abc 

This gives us the Cutkosky (1960) rules, which allow us to de­
termine the imaginary part of an amplitude by considering the 
scattering amplitudes of the incoming and outgoing states into 
all possible 'intermediate' states. These rules will be used exten­
sively in later chapters. For the case of two-particle to two-particle 
scattering the Cutkosky rules are shown schematically in Fig. 1.1. 
Here the shaded 'cut' line means that the intermediate particles 
are taken to be on their mass-shell and an integral is performed 
over the phase space of the intermediate particles. The minus signs 
in the amplitudes on the right of the cuts mean that the hermi-
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tian conjugate is taken, i.e. the in- and out-states are interchanged 
and the complex conjugate is taken (in perturbation theory this 
implies that the sign of the iE for each internal propagator is re­
versed). 

An important special case of the Cutkosky rules is the optical 
theorem, which relates the imaginary part of the forward elastic 
amplitude, A aa , to the total cross-section for the scattering of the 
(two-particle) state, la), 

2'SmAaa(s, 0) = (27r)4L84 (LPi - LPa) IAa_m1 2 = FO"tot, 
n i a 

(1.2) 
where F is the flux factor (for v's much larger than the masses of 
the incoming particles F ~ 2s). 

Postulate 3: 
The S-matrix is an analytic function of Lorentz invariants (re­
garded as complex variables), with only those singularities re­
quired by unitarity. 

It can be shown that this 'analyticity' property is a consequence 
of causality, i.e. that two regions with a space-like separation do 
not influence each other. 

Analyticity has a number of important and useful consequences. 
Combined with unitarity we are able to establish the existence of 
the s-plane singularity structure of the amplitude A( s, t) shown 
in Fig. 1.2, i.e. there are s-plane cuts with branch points corre­
sponding to physical thresholds. These arise because the n-particle 
states must contribute to the imaginary part of the amplitude if s 
is greater than the n-particle threshold (see Eq.(1.1)). The imag­
inary part of the amplitude is 

~ A( ) A(s, t) - A(s, tt 
'Jm s, t = 2i 

Below threshold there are no contributions to the imaginary part 
and so there exists a region on the real s-axis (around the origin) 
where the amplitude is purely real. This means that we can use 
the Schwarz reflection principle, which states that a function (of 
s) which is real on some part of the real s-axis satisfies 

A(s,t)* = A(s*,t) 
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two-particle 
threshold 

~ 

s-plane 

three-particle 
threshold 

~ 

Fig. 1.2. The cuts on the positive real axis in the complex s-plane. 
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throughout its domain of analyticity. So, in order to have an imag­
inary part for real s above threshold, we need a cut along the real 
axis with branch point at the threshold energy.t Using the Schwarz 
reflection principle we can write 

o ( . ) A(s+iE,t)-A(s-iE,t) 
:;smA s + 'tE, t = 2i 

in the region where the amplitude is analytic, e.g. for real s and 
Eo This is non-zero for real s above threshold and allows us to 
define the imaginary part of the physical scattering amplitude 
above threshold as 

'Sm A( s, t) = ~lim [A( s + iE, t) - A( s - iE, t)]. (1.3) 
2't E--+O 

The right hand side is called the s-channel discontinuity and is 
often denoted by ~sA(s, t)'+ Analyticity also implies, as we shall 
shortly show, that there are cuts along the negative real axis. 

A further consequence of analyticity is crossing symmetry. Con­
sider the scattering process 

a + b -+ C + d, (1.4) 

and write its amplitude as Aa+b--+c+d(S, t, u) (we have reinstated 
the variable u for the sake of symmetry but understand that this 
is not an independent variable). Now in the physical kinematic 
regime for the process (1.4) we have s > 0 and t, u < O. Since the 
amplitude is an analytic function it may be analytically continued 

t This is true for ~ 2 particles in the intermediate state. For single particle 
production, i.e. a bound state of mass m, we have a pole at s = m 2 • 

This corresponds to the definition of the physical scattering amplitude as 
the limit lim.~o A( s + i~, t). 
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to the region t > 0 and s, u < O. This gives the amplitude for the 
t-channel process, 

a + c -7 h + d, (1.5) 

where h, c mean the antiparticles of particles b and c respectively. 
Thus we have 

A a+c-+b+d( s, t, u) = Aa+b-+c+d( t, s, u) (1.6) 

and similarly for the u-channel process, 

a + J -7 h + c, (1.7) 

we have 

Since the amplitude for the t-channel and u-channel processes 
also have imaginary parts and consequently physical thresholds, 
there must be cuts along the real positive t and u axes with branch 
points at these thresholds. Now u = L:i mJ - s - t, so that the 
existence of a threshold at u = Uth for positive u (at fixed t) means 
that as well as a branch point at positive s = sth corresponding 
to the physical threshold for the s-channel process, the amplitude, 
A( s, t) must have a cut along the negative real s-axis with a branch 
point at s = s;:h = L:i mJ - t - Uth. 

The next important consequence of analyticity which we shall 
make use of is that it enables us to reconstruct the real part of an 
amplitude from its imaginary part using dispersion relations. We 
refer to the standard texts on mathematical physics for those read­
ers unfamiliar with dispersion relations (e.g. Mathews & Walker 
(1970)). 

The Cauchy integral formula allows us to write 

A(s t) = _1 i A(s',t) d' 
, 2. (' )s, 7rZ c S - S 

where C is a contour that does not enclose any of the singularities 
of A. Such a contour is shown in Fig. 1.3. It goes around the cuts 
along the positive and negative real axes and around the semi­
circles at infinity. The contributions to the contour integral from 
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the parts that surround the cuts are 

1'::V d ,A(s' + iE, t) l sih d ,A(s' - iE, t) 
s / + S --';---/---,----'--sih (s - s) co (s - s) 

j S;h d ,A(s' + iE, t) I-co d ,A(s' - iE, t) + s + s . -00 (s/-s) s;h (s/-s) 

Provided A( s, t) falls to zero as I s I --'> 00, the contribution to the 
contour integration from the semi-circles at infinity may be ne­
glected and using Eq.(1.3) we end up with the dispersion relationt 

A(s,t) = ~IOO ~mA(s',t) ds' + ~ rs;h ~mA(s',t) ds'. (1.9) 
7r sih (s/-s) 7rLoo (s/-s) 

In the second of these integrals the imaginary part of the ampli­
tude for s < s;h is obtained from the Cutkosky rules applied to 
the u-channel process (1.7), i.e. 

~mA(s < s;",t) = -LluA(s,t). 

t We have assumed no contribution from bound state poles which generally 
add extra contributions. 
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If the amplitude does not vanish as lsi ---+ 00, then we have to 
make subtractions, i.e. we divide the amplitude by as many factors 
of s - Si as are necessary to produce a vanishing contribution from 
the semi-circles at infinity (the Si are arbitrary and define the 
points at which the subtractions take place). For example, making 
one subtraction at s = So we obtain the subtracted dispersion 
relation 

A(s,t) A( ) (s - so) 100 SmA(s',t) d' 
so, t + s 

7l" 8th (s'-s)(s'-so) 

(S-SO)jS;h S'mA(s',t) d' + s. 
7l" -00 (s' - s)(s' - so) 

(1.10) 

For our purposes we shall require the subtracted dispersion rela­
tion which allows us to reconstruct a function of s whose imaginary 
part is given by 

A (lnst. 

Equation (1.10) allows us to establish that, to leading order in 
In s, this function is purely real and equal to 

A ( )n+l 
( ) Ins , 
n+17l" 

where we have used Eq.(1.3) to write 

In(-s) = In(s) - i7l". 

Thus we see how, from three rather general postulates cou­
pled with the spectrum of elementary particles, we can develop at 
least a set of self-consistency conditions for amplitudes and their 
relation to each other. Unitarity relates the imaginary parts of 
amplitudes to sums of products of other amplitudes, and disper­
sion relations then allow us to determine the corresponding real 
parts. The application of this process is called a bootstrap and 
it does not make any assumption about any underlying quantum 
field theory which may describe the dynamics of the strong inter­
actions. 

A further ingredient needed for the bootstrap is the asymptotic 
behaviour of amplitudes. Once we know these and their analytic 
structure then analyticity can be used to reconstruct the ampli­
tudes. Determination of the asymptotic behaviour of amplitudes 
is the goal of Regge theory (Regge (1959, 1960)). 
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1.2 Sommerfeld-Watson transform 

Let us consider a two-particle to two-particle scattering process in 
the t-channel (Eq.(1.5)) at a centre-of-mass energy, Js, which is 
much larger than the masses of the external particles. The am­
plitude can be expanded as a series in Legendre polynomials, 
Pz( cos 0), where 0 is the (centre-of-mass frame) scattering angle 
and is related to s, t by 

2t 
cosO = 1 + -. 

8 

This expansion is called the partial wave expansion, namely, 
<Xl 

(1.11) 
z=o 

Pz (z) is a polynomial in z of degree 1, and the functions az ( s) are 
called the partial wave amplitudes. 

From the property of crossing symmetry (Eq.(1.6)) this may be 
continued into the 8-channel by interchanging 8 and t to give 

<Xl 

(1.12) 
z=o 

Sommerfeld (1949), following Watson (1918), rewrote this par­
tial wave expansion in terms of a contour integral in the complex 
angular momentum (1) plane as 

1 Ie a(l t) A(8, t) = -; dl(21 + l)-.-'-lP(l, 1 + 28ft), 
2z C Slll7r 

(1.13) 

where the contour C surrounds the positive real axis as shown in 
Fig. 1.4. The Legendre polynomials can be expressed in terms of 
hypergeometric functions and analytically continued in I, giving 
the analytic function P(l, z). The function a(l, t) is an analytic 
continuation of the partial wave amplitudes az(t). The denomi­
nator sin trl vanishes for integer I giving rise to poles which then 
reproduce Eq.(1.12). 

1.3 Signature 

It is now natural to ask if the function a(l, t) is unique. At first 
sight it appears that it is not. For example we could add to 
a(l, t) any analytic function which vanishes at integer values of 
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i-plane 
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Fig. 1.4. Sommerfeld-Watson transform. 

l without affecting the above result. However, using a theorem by 
Carlson (1914), it can be shown that a(l, t) is unique provided 
a(l, t) < exp( ?rIll) as III ---io 00. Unfortunately there are contribu­
tions to the partial wave amplitudes which alternate in sign, i.e. 
are proportional to ( _1)1 and so the required inequality is violated 
along the imaginary axis. It is therefore necessary to introduce two 
analytic functions a(+l)(l, t) and a(-l)(l, t) which are the analytic 
continuations of the even and odd partial wave amplitudes. Thus 
we have 

A(s, t) = ~ i dl(2~ + ~) L (1] + e- i7r1
) a(ry)(l, t) P(l, 1 + 2sft), 

2z c sm?r ry=±l 2 
(1.14) 

where 1], which takes the values ±1, is called the signature 
of the partial wave and a(+l)(l, t) and a(-l)(l, t) are called the 
even- and odd-signature partial wave functions. The prefactors 
~ (1] + exp( -i?rl)) are called the signature factors. 
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1.4 Regge poles 

The next step is to deform the contour G of Fig. 1.4 to the contour 
G', which runs parallel to the imaginary axis with Re l = - ~. 
In order to do this we must encircle any poles or cuts that the 
functions a(1))(l, t) may have at 1 = Qn-,/(t) and pick up 27ri X the 
residue of that pole. For the particular case of simple poles only 
we arrive at 

A(s,t) = ~!-t+iCO dl [(2!+1) L (1]+e- i7rl )a(1))(l,t) 
2z -t-ico sm 7rl 1)=±1 2 

X P(l,1 + 2S ft)] 
+ L L (1] + e-i7rC>n,,(t)) . i3n,,(t) P(Qn,,(t), 1 + 2sft). (1.15) 

1)=±1 n" 2 SIn 7rQn " (t) 

The simple poles Q n " (t) are called even- (1] = + 1) and odd­

(1] = -1) signature Regge poles and i3n" (t) are the residues of 
the poles multiplied by 7r(2Qn ,,(t) + 1). 

Throughout this book we shall be concerned with the Regge 
region, i.e. s ~ Itl. In this limit the Legendre polynomialis dom­
inated by its leading term and we have 

P(1 2sft) s~ltl r(21 + 1) (~)l 
l + f2(l + 1) 2t ' 

where r( x) is the Euler gamma function. In this limit the contri­
bution to the right hand side of Eq.(1.15) from the integral along 
the contour G' vanishes as s ----+ 00, so that it may be neglected. It 
should now be clear why we exploited the crossing symmetry to 
write Eq.(1.12) and why we deformed the contour as in Fig. 1.4 
- we wanted to exploit the asymptotic behaviour of the Legen­
dre polynomial so as to isolate the high energy behaviour of the 
scattering amplitude in the Regge region. In fact we need only 
consider the contribution from the Regge pole with the largest 
value of the real part of Qn,,(t) (the leading Regge pole). Thus we 
have 

( + -i7rc>(t)) 
A(s, t) s~c:, 1] e j3(t)sc>(t), 

2 
(1.16) 
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Fig. 1.5. A Regge exchange diagram. 

where a(t) is the position of the leading Regge pole (at some value 
of t) and." is its signature. Some factors depending on t (but not 
on s) have been absorbed into the function f3( t). 

Although we have assumed only simple poles in arriving at 
Eq.(1.16) it is possible that there are also non-simple poles and 
cuts which would lead to additional contributions to the ampli­
tudes. We shall show that whereas the simple pole model works 
well for certain hadronic processes, leading logarithm perturbation 
theory can in general give rise to cuts. 

1.5 Factorization 

We can view the amplitude given by Eq.(1.16) as the exchange in 
the t-channel of an object with 'angular momentum' equal to a(t). 
This is of course not a particle since the 'angular momentum' is 
not integer (or half-integer) and it is a function of t. It is called 
a Reggeon. We can view a Reggeon exchange amplitude as the 
superposition of amplitudes for the exchanges of all possible par­
ticles in the t-channel. The amplitude can be factorized as shown 
in Fig. 1.5 into a coupling lac( t) of the Reggeon between particles 
a and c, a similar coupling Ibd(t) between particles band d and a 
universal contribution from the Reggeon exchange. The couplings 
1 are functions of t only. Thus we obtain 

A( t) S~CXl (." + e- i1fa (t)) lac(thbd(t) aCt) 
s, . S • 

2sin7ra(t) r(a(t)) 
(1.17) 

We have explicitly extracted a factor of r (a( t)) in defining the 
couplings I. The reason for this is that if a( t) takes an inte-
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ger value for some value of t then the amplitude has a pole. For 
positive integers this can be understood as the exchange (in the 
t-channel) of a resonance particle with integer spin, but we would 
not expect such resonances with negative values of 'spin' . Such 
poles are called nonsense poles, and are cancelled by the factor 
Ijf (a(t)), which has zeroes at a(t) = 0, -1, -2···. 

One immediate consequence ofEq.(1.17) is the relation between 
the p-parameter, defined to be 

~eA 
p= 0; A' (1.18) 

:sm 

and the signature and position of the (leading) Regge pole. The 
couplings iac(t) and ibd(t) are expected to be real functions of t 
and so from Eqs.(1.17) and (1.18) we have 

TJ + cos7ra(t) 
P - - (1.19) 

- sin 7ra(t) . 

1.6 Regge trajectories 

If we consider the t-channel process, (1.5), with t positive we ex­
pect the amplitude to have poles corresponding to the exchange 
of physical particles of spin, Ji, and mass mi, where a( m;) = Ji. 

Chew & Frautschi (1961, 1962) plotted the spins of low lying 
mesons against square mass and noticed that they lie in a straight 
line as shown in Fig. 1.6. In other words a(t) is a linear function 
of t, 

a(t) = a(O) + a't 

(at least for positive t). From Fig. 1.6 we obtain the values 

a(O) 0.55 
a ' 0.86 GeV- 2 • (1.20) 

We shall see that this linearity continues for negative values of t. 
From the s-dependence of the amplitude given in Eq.(1.17) we 

can deduce that the asymptotic s-dependence of the differential 
cross-section is given (for a linear trajectory) by 

dcr rX s(20(0)-20't-2). (1.21) 
dt 
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Fig. 1.6. The Chew-Frautschi plot. 

If we consider a process in which isospin, I = 1, is exchanged in 
the t-channel, such as 

(1.22) 

then we expect the Regge trajectory which determines the asymp­
totic s-dependence to be the one containing the I = 1 even 
parity mesons (the p-trajectory). Inserting the values Eq.(1.20) 
into Eq.(1.21) gives a very good fit to data over a wide range 
(20-200 GeY) of pion energies, as can be seen in Fig. 1.7. 

The Regge trajectory has a further interesting feature. At 
t = -0.64 Gey2 the trajectory passes through zero. This is an 
example of a nonsense pole (there cannot be a resonance with 
negative square mass) and, as explained above, it must decouple 
from the amplitude. The distinct dip observed in the differential 
cross-section for the process (1.22) plotted in Fig. 1.8 could well 
be evidence for the decoupling of this nonsense pole. 
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Fig. 1.7. a(t) obtained from 1r-P ...... 1r°n data in the pion energy 
range 20.8-199.3 GeV by Barnes et al. (1976). The straight line is 
obtained by extrapolating the trajectory of Fig. 1.6 (see Eq.(1.20)). 

1. 7 The Pomeron 

15 

From the intercept of the Regge trajectory which dominates a 
particular scattering process and the optical theorem (Eq.(1.2)) 
we can obtain the asymptotic behaviour of the total cross-section 
for that process, namely, 

(J' ex S(a(O)-l) 
tot . (1.23) 

For the p-trajectory considered in the last section a(O) < 1, which 
means that the cross-section for a process with I = 1 exchange 
falls as S increases. 

Pomeranchuk (1956) and Okun & Pomeranchuk (1956) proved 
from general assumptions that in any scattering process in which 
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Fig. 1.8. Data on dO' / dt for the process 11'- p -+ 1I'°n at a beam 
energy of20.8 GeV from Barnes et al. (1976). The differential cross­
section has a dip at t ~ -0.6 GeV2 • 

there is charge exchange the cross-section vanishes asymptotically 
(the Pomeranchuk theorem). Foldy & Peierls (1963) noticed the 
converse, namely, that if for a particular scattering process the 
cross-section does not fall as s increases then that process must 
be dominated by the exchange of vacuum quantum numbers (i.e. 
isospin zero and even under the operation of charge conjugation). 

It is observed experimentally that total cross-sections do not 
vanish asymptotically. In fact they rise slowly as s increases. If 
we are to attribute this rise to the exchange of a single Regge 
pole then it follows that the exchange is that of a Reggeon whose 
intercept, ap(O), is greater than 1, and which carries the quantum 



1.8 Total cross-sections 

SO ~~,~,~, ~I ~--~~,---,-,---" -,-, -,-, ., "I I~~--'------" --.--, --;,-,-, " nl I~I--~" 

a 

(mb) 

70 pBARp: 21.70s00BOB+9S.39s-04525 

pp: 21.70so.0BOB+56.0S,,-0.4525 

60 

50 

40 

30 I I I ! II I I 

6 10 100 1000 
,Js (GeV) 

Fig. 1.9. Data for ;rp and ;rfi total cross-sections and the fit of 
Eq.(1.24). 
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numbers of the vacuum. t This trajectory is called the Pomeron 
and is named after its inventor Pomeranchuk (1958). 

Unlike the Regge trajectory of Fig. 1.6 the physical particles 
which would provide the resonances for integer values of ap( t) for 
positive t have not been conclusively identified. Particles with the 
quantum numbers of the vacuum are difficult to detect, but such 
particles can exist in QeD as bound states of gluons (glueballs). 

1.8 Total cross-sections 

Fig. 1.9 shows a compilation of data for the total cross-sections 

t The particles with I = 0 shown on the trajectory in Fig. 1.6 do not have 
the quantum numbers of the vacuum since they are odd under charge 
conjugation. 
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for proton-proton (p-p) and proton-antiproton (p-p) scattering, 
together with a fit due to Donnachie & Landshoff (1992): 

(Tpp 21.78°.08 + 56.18-0 .45 mb 

(Tpp = 21. 7 8°.08 + 98.4 8 -0.45 mb (1.24) 

(with s in GeV2). These parameters were determined before 
the measurement of the p-p cross-section at the Fermilab Teva­
tron accelerator (from fitting to a wide range of data below 
Vs =100 GeV). 

The first term on the right hand side ofEq.(1.24) is the Pomeron 
contribution and it is common to both p-p and p-p cross-sections, 
coupling with the same strength to the proton and antiproton be­
cause the Pomeron carries the quantum numbers of the vacuum 
and therefore cannot distinguish between particles and antiparti­
cles. The second term, on the other hand, is a sub-leading term 
which is due to the exchange of a Regge trajectory with intercept 
0.55 (the intercept of the Regge trajectory shown in Fig. 1.6) and 
this trajectory can (and does) have different couplings to parti­
cles and antiparticles. This accounts for the difference between the 
p-p and p-p cross-sections at low 8 (this difference vanishes as 8 
increases by the Pomeranchuk theorem). 

This fit tells us that the Pomeron has intercept o:p(O) = 1.08. 
This is slightly above 1 and will eventually lead to a violation of 
the bound derived by Froissart (1961) and Martin (1963) which is 
derived using unitarity and the partial wave expansion (we present 
a physical argument for the Froissart-Martin bound in Chapter 8). 
They showed that, as 8 tends to infinity, total hadronic cross­
sections must satisfy the inequality 

(Ttot < Aln 28, (1.25) 

where the constant A is determined by the pion mass and is ex­
pected to be rv 60 mb. However, since the intercept is only very 
slightly above 1, this violation does not occur for momenta lower 
than the Planck scale! It is not unreasonable that physics be­
yond the exchange of the single Pomeron pole enters to ensure 
the ultimate preservation of unitarity (in fact it is known that 
multiple Pomeron exchanges are able to tame the asymptotic rise 
of the cross-section). Another point of view is to argue that the 
intercept of 1.08 is only an effective intercept and that the under­
lying mechanism which gives rise to it is not the result of single 
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Fig. 1.10. Total cross-sections for 11"+ -p and 11"- -p scattering. 

Pomeron exchange but has contributions from the exchange of two 
or more Pomerons (so-called Regge cuts). 

If the high energy behaviour of the total cross-section is indeed 
a result of the superposition of the two Regge exchanges, with 
intercepts as quantified in Eq.(1.24), then since the intercepts are 
universal we expect them to be able to describe other total cross­
sections. This is indeed the case, as can be seen from Fig. 1.10 
for the case of pion-proton scattering and Fig. 1.11 for (on-shell) 
photon-proton scattering. 

1.9 Differential elastic cross-sections 

In order to determine the slope, up, ofthe Pomeron trajectory it is 
necessary to consider the differential cross-section, e.g. for elastic 
p-p or p-p scattering, over a range of s and at different 'values of 
t. A collection of data ranging from ISR at CERN to the Tevatron 
at Fermilab give a good fit to a linear Pomeron trajectory with 
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Fig. 1.11. The cross-section for ,-p scattering. 

slope 

a.~ = 0.25 GeV- 2 • 

From this slope we can determine that a.p(t) reaches the value 2 
at t = 3.7 Ge V2 and we should expect a spin two particle with 
mass J3.7 = 1.9 Ge V and the quantum numbers of the vacuum. 
The WA91 collaboration at CERN (Abatzis et al. (1994)) has 
announced evidence for a candidate glueball state with this mass. 
This could well be the first observed particle to lie on the Pomeron 
trajectory. 

The couplings, 1'(t), of the Pomeron can also be obtained from 
the t-dependence of differential elastic cross-sections (at fixed s). 
It turns out that the data are well fitted by taking the Pomeron 
coupling l' (t) to be proportional to the electromagnetic form factor 
of the hadron to which the Pomeron couples. In other words the 
Pomeron couples to hadrons in the same way as the photon. Thus 
when the Pomeron couples to hadrons it appears to behave like a 
point particle. One immediate consequence of this, as was noted 
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by Landshoff & Polkinghorne (1971), is the quark-counting rule 
which tells us that the Pomeron couples to one constituent quark 
at a time inside a hadron, so that the coupling to that hadron 
is expected to be proportional to the number of valence quarks. 
This quark-counting rule is well supported by the fact that the 
coefficients of the Pomeron term in the fits to p-p and 1i-P scat­
tering are in the ratio 1.6:1, which is just slightly higher than the 
ratio 3:2 that would be expected from the fact that the proton has 
three valence quarks whereas the pion has only two. 

The p-parameter (Eq.(1.18)) can also be obtained from the dif­
ferential elastic cross-section at zero momentum transfer and the 
total cross-section. The former is proportional to the sum of the 
squares of the real and imaginary parts of the scattering ampli­
tude, whereas the latter is related by the optical theorem to the 
imaginary part of the amplitude. Thus we have 

dO"el(s,O) _ (1 + P2)1 12 
dt - 161i O"tot· 

(1.26 ) 

Experimental values such as those of Augier et al. (1993) from 
the UA4 collaboration at CERN give a value of p of about 0.1 
at Vs ~ 100 GeV. In other words the amplitude for Pomeron 
exchange is dominated by its imaginary part. From the fact that 
the intercept of the Pomeron is close to 1 and Eq.(1.19) we can 
deduce that the Pomeron must have even signature (", = 1). 

1.10 Difi"ractive dissociation 

At sufficiently high energies elastic-scattering events are rather 
difficult to detect since the particles scatter through small angles. 
However, the Pomeron enters into several other processes. One of 
these is the process of diffractive dissociation in which one of the 
incident particles remains unchanged and just scatters through a 
small angle, but the other incident particle receives enough en­
ergy for it to break up into its constituent partons, which then 
hadronize to produce clusters of hadrons. 

It is convenient to view such a process from the point of view 
suggested by Fig. 1.12, where a Pomeron is 'emitted' from the 
'parent' hadron (with momentum P2 and which remains intact 
after the scattering) with some fraction ~ of its momentum. The 
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Fig. 1.12. A diffractive dissociation process in which the exchanged 
Pomeron carries a fraction e of the momentum P2 of one of the 
incoming hadrons. 

upper vertex can be thought of as 'hadron-Pomeron' scattering 
producing some final hadronic state, X. 

Such events have a large rapidity gap between the 'parent' 
hadron and the hadrons in the hadronic system, X. The rapidity, 
Yi, of particle i is defined as 

Yi = ~ln (Ei + PZi) , 
2 Ei - Pzi 

where the z-axis is taken along the incident beam direction. Since 
the scattering angle is small (It I is much smaller than s) the 'par­
ent' hadron emerges almost along the positive z-axis and therefore 
has large positive rapidity, whereas the particles in the hadronic 
system X are moving almost parallel to the negative z-axis (the 
momentum transfer between the target hadron and the particles 
in X is small) and they therefore have large negative rapidities. 

Events of this kind have been observed by the DA8 collabora­
tion at CERN (Schlein (1993)) and by the HI (Ahmed et al. (1994, 
1995a)) and Zeus (Derrick et al. (1993, 1995a)) collaborations at 
DESY. DA8 have measured the energy flow of the particles in the 
hadronic system X in its rest frame (Le. the centre-of-mass frame 
of the hadron-Pomeron system) and observed a substantial peak 
in the forward direction. This once again suggests that the Pom­
eron can behave like a point particle, knocking the constituents of 
the target hadron into the forward direction. 

Although the Pomeron seems to behave as though it were a 
point-like particle, we must remember that it is not a particle 
at all. It is a Regge trajectory. N~vertheless Ing"elman & Schlein 
(1985) suggested that one can define the structure function of a 
Pomeron and use diffractive dissociation events to determine the 
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quark and gluon content of the Pomeron. Furthermore, the sub­
structure of the Pomeron has been investigated by the H1 (Ahmed 
et al. (1995b)) and Zeus (Derrick et al. (1995b, 1996a)) collabo­
rations. 

We shall return to discuss the theory of diffraction dissociation 
in much more detail in Chapter 7. 

1.11 Deep inelastic scattering 

The measurement of structure functions (Fl(X, Q2) and F2( x, Q2)) 
in deep inelastic scattering can be thought of as the measurement 
of the total cross-section for the scattering of an off-shell photon, 
with square momentum, _Q2, and a proton. The square of the 
centre-of-mass energy of the photon-proton system is given by 

Q2(1- x) 
s=----'----------'--

x 

and so in the Regge limit of s ~ Q2 it follows that x ~ 1 (x 
is the Bjorken-x of the process). At sufficiently low x the off­
shellness of the photon is negligible compared with the centre­
of-mass energy and so we might expect the total cross-section to 
have a 1/x dependence (at fixed Q2) similar to the s-dependence of 
hadronic total cross-sections, i.e. governed by Pomeron exchange. 
Adding the lower lying meson trajectory, we would then have 

F2(X,Q 2):.::::1 Ax-o.o8 + B x°.45. 

This fits well for 0.01 ~ x ~ 0.1. However, the H1 (Ahmed et al. 
(1995c)) and Zeus (Derrick et al. (1995c)) collaborations at HERA 
have been able to reach values as low as x '" 10-4 • The data they 
obtain show a much steeper x-dependence, e.g. typically", x-O.3 . 

These data provide, for the first time, evidence of deviations from 
the Pomeron behaviour described previously. 

As we shall see, such deviations are expected within QCD 
perturbation theory. The large virtuality Q2 renders a perturb­
ative calculation possible. In Chapter 6 we shall show that 
perturbative QCD leads to the conclusion that, at sufficiently large 
Q2 and sufficiently low x, the structure functions ought to behave 
like 
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and as is the strong coupling. 
On the other hand, total hadronic cross-sections or low t elastic 

differential cross-sections cannot be described in terms of perturb­
ative QeD. We expect these processes to be heavily influenced by 
the non-perturbative properties of QeD, i.e. the Pomeron dis­
cussed in this chapter is of non-perturbative origin. We call this 
the 'soft' Pomeron since in later chapters we shall introduce the 
concept of the perturbative or 'hard' Pomeron. These are dis­
tinct objects. In keeping with modern parlance we use the word 
'Pomeron' (soft or hard) in the context of those processes which 
are characterized by the kinematic condition that the momentum 
transfer is much smaller than the centre-of-mass energy and in 
which the vacuum quantum numbers are exchanged. 

In future we shall end each chapter with a summary. However, 
this chapter has been a summary in itself. It has been designed to 
give the reader sufficient understanding of what we mean when we 
speak of the Pomeron and why it is an important object. This will 
be necessary in order to progress through the subsequent chapters, 
in which we will discuss in detail the question of the reconcilia­
tion of Pomeron physics with the 'modern' approach to strong 
interaction dynamics - namely QeD. 
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A simple example 

In this chapter we are going to discuss a simple case in which a 
quantum field theory simulates the effect of Pomeron exchange in 
the Regge limit of 

s ~ Itl. 
We do not mean that we can identify a Regge trajectory, with 
associated bound states for various values of positive t, but rather 
that in this limit the scattering amplitude has the form 

A(s, t) ex s",p(t). (2.1) 

The model we shall consider here is not QCD, but a much 
simpler quantum field theory, namely a scalar field theory with 
cubic interactions. We shall show that by summing perturbative 
contributions to all orders in the coupling constant, but keeping 
only leading logarithms, the behaviour expressed by Eq.(2.1) does 
indeed emerge. By 'leading logarithms' , we refer to those terms 
in the perturbative expansion which contain important (in the 
high energy limit) In s factors. Precisely which terms we keep will 
become clear as we develop the calculation. 

An example of Pomeron behaviour from a scalar theory with 
cubic interactions has been considered before, for example by Polk­
inghorne (1963a-c) which is described in The Analytic S-Matrix 
by Eden, Landshoff, Olive & Polkinghorne (1966). Their treat­
ment is something more straightforward than the method we shall 
be introducing here. Feynman diagrams are calculated using the 
usual method of Feynman parametrization and ladder diagrams 
are readily summed to all orders. The alternative method that we 
shall be using here is closer to the treatment by Chang & Yan 
(1970, 1971). It is something of a sledgehammer to crack a nut. 
However, the techniques that we shall introduce will serve well in 
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future chapters when they are applied to the more realistic case 
of QeD. 

2.1 The model 

We shall represent quarks (and antiquarks) by a complex scalar 
field <P and gluons by another scalar field x. In order to avoid 
the difficulty of infra-red divergences (which will be discussed at 
length in future chapters) we shall assign a mass m to the glu­
ons (whilst leaving the quarks massless). The gluons can interact 
with themselves as well as with the quarks. A cubic interaction 
between scalar fields has dimension of mass. In order to introduce 
a dimensionless coupling constant g, we shall factor out a mass m 
from the cubic couplings. 

A minor complication occurs when considering the analogue 
of the colour SU(N) group, which is the gauge group of QeD 
(N = 3, but in what follows we keep the number of colours general 
so as to expose the colour factors explicitly). The self-interaction 
term in the Lagrangian of the scalar gluons must be symmetric 
under interchange of two (bosonic) gluons, but we would like the 
interaction vertex to be proportional to the structure constants of 
the colour group (which are antisymmetric under interchange of 
colour indices). This leads us to introduce a colour group which is 
a product of two SU(N) groups. Thus the gluon fields carry two 
colour indices and are denoted by Xa,r with a, l' = 1 ... (N 2 - 1). 
The quark field transforms in the fundamental representation of 
both of these SU(N) groups and so also carries two indices, i.e. 
<Pi,! with i, 1 = 1 ... N. This is rather cumbersome, but in fact the 
colour factors are in general quite easy to keep track of (and at 
least there will be some feature which is simpler in QeD!). 

Thus the Lagrangian density for this model may be written 

-'Z 1 m 2 
{Y'A-.t , {} A-.,z + -{}I-1X {} Xa,r - -x Xa,r 

'I-' l-1'1-'t, 2 a,r 1-1 2 a,r 

J,i,Z(Ta)j(Tr)mA-. gm.f f a,r b,s e,t -gm'l-' i Z 'l-'j,mXa,r - 3f Jabe rstX X X , 

where the matrices Ta and Tr are the generators ofthe two SU(N) 
groups whose structure constants are fa be and frst respectively. 
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Fig. 2.1. Leading order contribution to Pomeron exchange. 

Thus 

[Ta,Tb] = iJabcTc, [Tr,Ts] = iJrstTt. (2.2) 

We do not have an analogue ofthe quartic coupling between glu­
ons. It turns out that in QeD these interactions always give con­
tributions which are sub-leading in Ins and we therefore neglect 
them. We can also assume that the quark fields carry a flavour 
index which we have suppressed. 

Within the context of this model we shall now calculate to all 
orders in perturbation theory, but keeping the leading powers of 
In s in each order, the process of quark-quark scattering via the 
exchange of a colour singlet. We assume that the two quarks have 
different flavours and they emerge from the scattering with the 
same colour with which they entered. 

2.2 The leading order contribution 

The leading order Feynman diagrams contributing to this pro­
cess are shown in Fig. 2.1. The quark lines are denoted by solid 
lines and the gluons by dashed lines. Because the quarks have dif­
ferent flavours we do not have to consider diagrams with quarks 
exchanged in the t-channel. 

The ingoing quarks have momenta PI and P2, respectively, and 
the outgoing quarks have momenta P~ and P~ respectively. Since 
we are interested in purely elastic scattering we need to consider 
graphs which do not alter the colour of the incoming quarks, i.e. 
colour singlet exchange. Therefore there is no contribution to the 
process in which only one gluon is exchanged and the minimum 
number of exchanged gluons must be two. The second diagram 



28 A simple example 

(Fig. 2.1(b)) is related to the first by interchange of the incoming 
and outgoing lower quark lines. The colour generators on the lower 
line are reversed, but since we are concerned with colour singlet 
exchange, the two diagrams have the same colour factor. Thus 
the only difference comes from the kinematics. In other words 
by crossing symmetry it is sufficient to calculate the contribution 
from Fig. 2.1(a) and obtain the other contribution from the inter­
change of the Mandelstam variables sand u (which is equivalent 
to the interchange of P2 and p~). 

We deal first with the colour factor. This is straightforward. For 
a colour singlet exchange we obtain a factor for each of the SU(N) 
groups of 

~2 Tr(TaTb)Tr(TaTb) 

giving an overall colour factor of 

(N 2 _ 1)2 

16N4 
(2.3) 

Fig. 2.1(a) is a one loop diagram, which can be calculated by the 
conventional means of Feynman parametrization, and the leading 
logarithm term In(s/t) can be extracted from the integral over 
Feynman parameters. However, it turns out in general to be much 
more convenient to use dispersive techniques, i.e. we apply the 
Cutkosky rules (Cutkosky (1960)), which tell us that the imagi­
nary part ofthis amplitude can be related to a phase-space integral 
of a product of two amplitudes at the tree level (see Eq.(1.1) and 
Fig. 1.1), i.e. 

'SmA(2.1a) = l J d (P.S. 2) A~g)(k)A~g)t(k - q), (2.4) 

where A~g) is the tree amplitude for single gluon exchange shown 
either side of the cut in Fig. 2.2, i.e. 

A(g)(k) = _g2m2 1 
o (k2 _ m 2) 

up to a colour factor. A~g)t is the hermitian conjugate of the am­
plitude, i.e. the complex conjugate of the amplitude with the signs 
of the momenta reversed. The vector qJ.1. is the momentum trans­
ferred and so t = q2. The symbol d (P. S. 2) means the integral over 
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kl I k +q 
tl 

[' P~ P2 I 

Fig. 2.2. Imaginary part of Fig. 2.1(a). We adopt the convention 
that t-channel momenta on the left of the cut are directed down­
wards, whereas t-channel momenta on the right of the cut are di­
rected upwards. 
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the phase space of the two cut lines (whose momenta are 1 and I'), 
I.e. 

! ( 2) ! d4 1 d41' 2 '2)( )4 4( , d P.S. = (271")3(271")38(1 )8(1 271" 8 Pl+P2-1-1). 

One of these integrals (say d41') can be used to absorb the energy­
momentum conserving delta function 84 (PI + P2 - 1 - I') and, for 
the other, it is convenient to integrate not over the momentum 
of the other outgoing particle, but over the momentum k of the 
exchanged gluon. Thus we have 

! d (P.S. 2) = (2~)2! d4k 8((PI - k)2) 8((p2 + k)2). 

Now we parametrize the momentum k in terms of Sudakov 
parameters p and A: 

kl-' = ppi + AP~ + ki, 

where ki is the momentum transverse to PI and P2 and we rep­
resent this two-dimensional vector by the boldface k. In other 
words in the centre-of-mass frame in which the incoming particles 
are considered to be along the z-axis we have 

--0 (VSVS ) 
2 ' 2' , 

p~ (~,-~,o), 

((P + A) ~, (p - A) V;, k) . 
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Using s = 2Pl . P2 and performing the change of variables the 
phase-space integral becomes 

J d (F.S. 2) = 8:2 J dp d>' d2k 8( -s(1-p)>.-k2) 8(s(1+>.)p-k2). 

(2.5) 
In the limit It I ~ s the momentum transferred ql-' is dominated 

by its transverse component (i.e. t = q2 ~ _q2), as can easily be 
checked from the requirement that the outgoing particles on the 
right hand side of Fig. 2.2 must be on their mass-shell. Similarly 
the magnitude of k will also be of the order of the larger of m and 
..;m (it is unlikely that the momentum transferred in the two parts 
of the diagram on either side of the cut will be much larger than 
..;m in such a way that the sum of the two transverse momentum 
vectors gives q). Thus the delta functions in Eq.(2.5) which give 
>. = - p and p ~ k 2 / s tell us that both p and I >'1 are both of order 
- t / s and very much smaller than 1. This means that k2 may be 
approximated by 

and similarly 

(k_q)2 ~-(k-qf 

Absorbing the delta functions to perform the integration over 
p and >.: 
~. (N2 - 1 )2 g4m 4 J 2 1 1 
'5mA(2.1a)= 16N4 167l'2s dk(k2+m2) ((k_q)2+ m 2)' 

(2.6) 
The integral over the transverse momentum, k, is readily per­

formed. We choose not to do it here, rather we want to write 
Eq.(2.6) as 

(2.7) 

where 
1 1 

fo(k, q) = (k2 + m2) ((k _ q)2 + m 2)' (2.8) 

The reason for this apparently perverse notation will become clear 
when we go on to consider higher order contributions. 
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The imaginary part then immediately gives us the coefficient of 
the term In(sft), simply by using the relation (noting that sft is 
negative): 

In (f) = In C:I) - i7r. 

In Eq.(2.6) we have computed the coefficient of the i7r and the 
mere existence of an imaginary part tells us that there must be 
a logarithm in the real part with equal and opposite coefficient. 
However, we note that when the contribution from Fig. 2.1(b) is 
added, the large logarithm cancels and we are left with only the 
imaginary part. This is seen by observing that the contribution to 
Fig. 2.1(a) is proportional to 

1(lnC:I) -i7r) 

and to obtain the contribution from Fig. 2.1(b) we simply replace 
s by u. Now since uft is positive this diagram does not possess 
an imaginary part in leading order. It simply has the contribution 
proportional to 

~ln (~) . 
Since u ~ -s the logarithms cancel and we are left with the purely 
imaginary part from Fig. 2.1(a). 

2.3 Next-to-Ieading order contribution 

In this section we are interested in those contributions which are of 
order g2ln s relative to the leading order contribution (calculated 
in the last section). This means that the vast majority of the higher 
order graphs can be neglected. The only diagram contributing to 
the leading logarithm in this order is shown in Fig. 2.3: the so­
called one-rung ladder diagram (this will unfortunately not be true 
in the case of QeD). We shall explain why other types of diagram 
are suppressed at the end of this section. We start as before by 
considering the colour factor. This gives us a factor of N for each 
SU(N), relative to the leading order contribution, as can be seen 
from the relation 

(2.9) 
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PI ------.1-------
1 

1 

kl 1 

jJ2 ----------'--------

-------,---- P~ 

1 

1 kl + '1 
1 

--------j 

1 

1 

1 k2 + '1 
1 

-----'----- p; 

Fig. 2.3. One-rung ladder diagram. 

We calculate the imaginary part of this diagram using the same 
dispersive technique used in the preceding section, i.e. 

'SmA(2.3) = ~ J d (P.S. 3) Aig)(k)Aig)t(k - q) (2.10) 

where 

A(g)(k) - 3 3 1 (2 11) 
1 - g m (kr __ m2)(k~ _ m2)' . 

Once again we write the momenta of the exchanged gluons (k1 
and k2 ) in terms of Sudakov variables P1,..\.1,k1 ,P2,..\.2,k2 , and 
the three-body phase-space integral becomes 

2 

s J 2 2 128~5 dp1d..\.ld kldp2d..\.2d k2 

8( -s(l - P1)..\.1 - ki) 8(s(1 + "\'2)P2 - k~) 

8(S(P1 - P2)(..\.1 - ..\.2) - (kl - k 2 )2). (2.12) 

Since pi = 0 and p~ = 0, we expect a symmetry in kl and k2, 
so, as before, we expect all the transverse momenta to have mag­
nitudes which are of the order of the larger of m and v'1tT. The 
three-body phase-space integral gives a leading logarithm term 
':x: In s with s scaled by the squared transverse momenta. To lead­
ing logarithm order it does not matter exactly what values these 
transverse momenta that scale the logarithms are. Thus when con­
sidering the kinematic limits for the variables P1,2 and ..\.1,2 we can 
set 
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where k is a generic transverse momentum whose magnitude is 
much smaller than .;s. This situation is in marked contrast to 
that of deep inelastic scattering (away from very low Bjorken-x), 
where at one end of the laddert there is a very off-shell photon 
with squared momentum _Q2 and the leading In Q2 contribution 
is dominated by the region of phase space in which the transverse 
momenta are strongly ordered up the ladder. 

The energies of the cut lines in Fig. 2.3 must be positive in any 
Lorentz frame. This means that the components in the direction 
of P1 and P2 must both be positive for all external lines. This leads 
to kinematic limits 

1 > P1 > P2 > 0 

1 > 1),21 > 1),11 > 0 

(2.13) 

(note that ),1,2 are negative). We shall argue below that for the 
leading logarithm these inequalities may be replaced by strong 
orderings, i.e. 

1:::P P1 :::p P2 

1:::P 1),21 :::p 1),11· (2.14) 
In this approximation, the three-body phase-space integral may 
be replaced by 

2 
S J 2 2 128~5 dP1 d),l d k I dp2 d),2d k2 

X 5( -S),l - k 2 ) 5(Sp2 - k 2 ) 

X 5( -S(P1),2) - k 2). (2.15) 

Now performing the integrations over ),1,2 by absorbing two of the 
delta functions we end up with 

J ( 3) 1 11 dP1 2 2 2 d P.S. = --5 -dp2d kId k 2 5(sp2 - k). (2.16) 
128~ P2 P1 

We can easily perform the integration over P2 by absorbing the 
remaining delta function and then the In s term arises from the 
integral over P1, i.e. 

t Scaling violations in deep inelastic scattering are driven by ladder diagrams 
in QCD as embodied in the DGLAP equations (see Chapter 6). 
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It is this integral which, in the leading logarithm approximation, 
is dominated by the region 1 ~ PI ~ k 2 / s. We can see this by in­
troducing two parameters, El and E2, such that 1 ~ El, E2 ~ k 2 / s 
and splitting the integral up into three parts: 

r 1 dPl [ rk2/S€! + r 1/€2 + /,1 1 dPl 

ik2 /s PI ik2 /s ik2/s€1 1/€2 PI 

-lnEl + (In (EdE2) + In(s/k2)) + lnE2. 

Since s /k2 ~ 1/ El, 1/ E2 this is dominated by the middle part of 
the integral for which 1 ~ PI ~ k 2 / s, as required. This argu­
ment may seem a little far fetched, since we are assuming that 
the Ei are sufficiently large compared with k 2 / s that we can ne­
glect their logarithms, and it might be felt that this only works 
when s is extremely large. Nevertheless this is the formal defini­
tion of the leading logarithm approximation and corrections are 
indeed suppressed by powers of In s. Thus we have justified the 
assumption of strong ordering in the P s which, together with the 
on-shell conditions for the cut lines, give a similar strong ordering 
(in the opposite direction) for the .A s, thereby justifying the strong 
inequality Eq.(2.14). 

Since we now have SPl.A2 ~ k 2, it follows that 

SPl.Al ~ ki 

SP2.A2 ~ k~ 
so that Al (Eq.(2.11)) may be rewritten 

A(g)(k) - 3 3 1 (217) 
1 - g m (ki + m2)(k~ + m2)· . 

Now we introduce h in analogy with fo (Eq.(2.7)), i.e. 

(N 2 - 1) g4m 4 J 2 
~mA(2.3) 16N4 1611"2s dk1h(s,kI,q), (2.18) 

where 

g2m2 N 2s 11 11 dp J 
2(2 )3 dP2 _1 8(Sp2 - k 2 ) d2k2 

11" 0 P2 PI 
1 1 

x (ki + m2)(k~ + m 2 ) ((kl _ q)2 + m 2)((k2 _ q)2 + m 2 )· (2.19) 

With a view to application in the more complicated case of QeD, 
rather than performing the p-integral, we introduce the technique 
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of Mellin transforms (a survival kit on Mellin transforms appears 
in the appendix to this chapter). This has the effect of unravelling 
the nested integrals in the P s. Thus we define the Mellin transform 
of l1(s,k1,q) to be F1(w,k1,q) given by 

F1(w, k1, q) = 100 d (~2) (~2) -w-l l1(s, k1, q). 

In this definition we have normalized s by the square of the typical 
transverse momentum, k, in order to be able to keep track of 
dimensions. Recall that for the leading logarithm approximation 
the exact normalization does not matter as long as it is a scale 
which is small compared with s. 

We perform the integration over s, and obtain 

g2m2 N 2 rl rl dp f 
F1(w, k 1, q) = 2(27r)3 Jo dP2 Jp2 PI1 p~-l d2k2 

1 1 
x (ki + m2)(ki + m2) ((k1 _ q)2 + m2)((k2 _ q)2 + m 2)· (2.20) 

The integrations over the P s are unravelled by the change of vari­
ables 

TI = PI 

TIT2 = P2. 

The limits of integration are now simply 

0< TI,2 < 1 

and the Jacobian for this change of integration variables is Pb so 
we obtain 

I.e. 
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/ 

/ 

A simple example 

Fig. 2.4. A vertex correction diagram. 

We shall write this in a suggestive form as 

g2m2N 2 ! 
wF1(w,kt,q) 2(271")3 d2k2 

1 1 
X (k2 2) 2 Fo(w, kl' q), (2.22) 

2+ m ((k2-q) +m2 ) 

where Fo(w, kt, q) = w-1 fo(kt, q) is the Mellin transform of 
fo(kt, q), given in Eq.(2.8). 

An example of a diagram that has been neglected is shown in 
Fig. 2.4, which is a vertex correction to the leading order contri­
bution. This certainly contains an extra g2 relative to the leading 
order graph, but no extra In 8, since the vertex correction (shown 
in the dotted box in Fig. 2.4) cannot depend upon s as the squared 
momentum of the lines coming into the vertex is either zero or k2 , 

which is of order t (i.e. the on-shell condition of the cut upper 
quark line means we cannot strongly order the Sudakov compo­
nents of the t-channel gluons). This is the case for all diagrams 
which have vertex or self-energy insertions. 

There are also other diagrams which one can draw to this order 
which do not contribute in the leading logarithm approximation. 
The first is shown in Fig. 2.5, which is a vertex correction diagram, 
but with three cut lines. The momenta kl and k2 are still ordered 
as discussed above, so 

k 2 
1.\21 ~-

8 

and the squared momentum of the upper quark line on the right 
hand side of the cut, (Pl-k2)2, is of order 1.\218 ~ k2. This highly 
virtual quark will give a large denominator (compared with the 
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Fig. 2.5, A (cut) vertex correction diagram. 

I 

[ I I 

, I I 
k-/'; I I k' 

-----,----- P~ 

------'----- p~ 

Fig. 2.6, A three gluon exchange diagram, 
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denominators from Fig. 2.3, which are all of order k 2 ) and the 
graph is therefore suppressed and does not contribute in leading 
logarithm approximation. This is a feature of the scalar theory 
and does not hold in the case of QCD, where momenta arising 
from the vertices can compensate for this hard propagator. Fur­
thermore, we neglect diagrams in which there are fermion loops 
(e.g. a diagram in which there are three quarks and an antiquark 
rather than two quarks and two gluons in the intermediate state). 
In the present case we argue that the colour factor is suppressed 
by 1/ N 2 • However, in the case of Q CD we shall argue in the next 
chapter that all such fermion loop diagrams are sub-leading in 
Ins. 

The other type of diagram that we have to consider is the three 
gluon exchange diagram, which is shown in Fig. 2.6. In the dia­
gram the cut is to the right of two of the gluons (there is also a 
contribution in which the two gluons on the left of the cut are 
crossed, and a further contribution to the imaginary part of the 
diagram where the cut is to the left of two gluons). However, for 
this type of diagram there is very little phase space when all the 
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~----- I ------
I I 

I 
I ki - 1 

I I 
r----- ------1 

~----- -----~ 
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Fig. 2.7. n-rung ladder diagram. 

denominators are small and so the amplitudes are suppressed by 
a power of m 2 / s, compared with diagrams with only two gluons 
exchanged. These diagrams may therefore be neglected. This is 
also a feature which holds in the scalar theory but not in QeD. 

2.4 The n-rung ladder diagraIn 

It is now relatively straightforward to generalize the above discus­
sion to any order in perturbation theory. The order (g2ln s t cor­
rection to the leading order approximation is given by the n-rung 
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uncrossed ladder diagram (Fig. 2.7) whose amplitude has an imag­
inary part: 

(2.23) 

where 
n+l 1 

A}[')(k) = (-gm t+2 g (kJ _ m2) (2.24) 

up to a colour factor. The group theory (see Eq.(2.9)) gives a 
factor of N 2 for each rung relative to the leading order colour 
factor (Eq.(2.3)). 

The momentum of the ith upright section of the ladder is written 

with 

kf.l = (0,0, ki) 

and the (n+2)-body phase-space integral is then 

n 

X II 8( s(pj - Pj+l)( Aj - Aj+l) - (kj - kj+1 )2) 
j=l 

X 8( -s(l - Pl)Al - ki)8(s(1 + An+l)Pn+l - k~+1)' (2.25) 

Again the symmetry between PI and P2 (the top and the bottom 
of the ladder) tells us that the phase-space integral is dominated 
by the region in which the transverse momenta of the vertical lines 
(and the horizontal cut lines) are all of order k 2 , which is of the 
order of the larger of m 2 and Itl. Furthermore the integral over 
the Sudakov variables Pi and Ai comes from the region 

Pi ~ Pi+l 

IAi+ll ~ IAil 
and in this region we have k; ::::; - kf' so that A}[') (k) may be 
written 

(2.26) 
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The phase-space integral (after integrating the .Ai by absorbing 
the delta functions which put the cut lines on mass-shell) is 

(2.27) 

The nested integrals over the Pi give the leading logarithm contri­
bution proportional to (In s)n In!. We define fn' in analogy with 
fo and iI, by 

(2.28) 

where 

( g2m2 N2) n rrn 11 dPi 10 1 nrr+l d2k 
--'-::3- -- dPn+l j 
2(27r) i=1 Pi+l Pi 0 j=2 

n+l 1 
x rr s 5(sp +1 - k 2 ). (2 29) 

m=1 (kin + m2 )((km - q)2 + m2) n . 

We now take the Mellin transform, integrate over s (absorbing 
the remaining delta function) and change variables from Pi to Ti, 
where 

Pi Ti =--
Pi-I 

(with Po = 1). The limits on the T integrals are 0 < Ti < 1 and 
the Jacobian for this change of integration variables is PIP2 ... Pn. 
Hence 

( 
2 2N2)nn+l 1 n+l 

Fn( w, kb q) g2~7r )3 g 10 T;-1 dTi!! d2k j 

n+l 1 

X El (kin + m2)((km _ q)2 + m 2 ) 

(g~~:;2) n w~+1 (I d2k(k2 + m2)((~ _ q)2 + m2)) n 

1 
x (ki + m2)((k1 _ q)2 + m 2 )' (2.30) 

Note that the factor (1 I w )n+l is the Mellin transform of (In s )n I n!. 
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Fig. 2.8. A section of a crossed ladder diagram. 

Crossed ladder diagrams do not contribute in leading logarithm 
approximation. A section of such a ladder is shown in Fig. 2.8. In 
this diagram the momentum on the right of the cut, marked 1, is 
given by 

1 = ki-I + ki+1 - ki - q. 

In the limit Pi-I ~ Pi ~ pi+! and IAi+11 ~ IAil ~ IAi-ll, this 
propagator gives rise to a denominator which is of order 

[2 ~ SAi+IPi-1 

but SAi+1 is of order k 2 / Pi (from the mass-shell condition of the 
ith cut line) and so we have 

[2 ~ Pi-I k2, 
Pi 

which is much larger than k 2 (since Pi-I ~ Pi). Thus there is a 
large denominator, which suppresses the contribution from this 
diagram so that it no longer contributes in leading logarithm ap­
proximation. Once again QCD does not possess this rather con­
venient feature. 

The series, 2:~=o Fn(w, kl' q), is a simple geometrical series (see 
Eq.(2.30)) and can be summed to give 

. 1 
F(w,k,q) = 2 , (2.31) 

(k2 + m 2)((k - q) + m2 )(w - 1 - ap(t)) 
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(2.32) 

(with t = _q2). The integral over the transverse momentum is 
readily computed. For small t (It I ~ m 2 ) we have 

g2 N 2 ( t) ap(t) ~ -1 + --2 1 + -2 . 
167r 6m 

(2.33) 

The trajectory rapidly becomes non-linear as It I becomes of order 
m 2 • Thus we see that F(w, k, q) has a simple pole in w at w = 
1 + ap(t). 

2.5 The integral equation 

Although we already have a solution for F( w, k, q), in preparation 
for the case of QeD it is useful to establish an integral equation 
which gives the same result. Such an integral equation is shown 
schematically in Fig. 2.9. It is an implicit equation with F(w, k, q) 
appearing on both sides. Basically it tells us that F is equal to the 
leading order term plus F with an extra rung added. The extra 
rung introduces a coupling constant factor of g2m2 , a colour factor 
of N 2 , two propagators for the extra internal lines, 1/(k'2 + m 2 ) 

and 1/((k' - q)2 +m2 ), and an extra phase-space integral, which in 
the Mellin transform representation gives a factor of 1/ (2( 27r )3w ) 
combined with an integral over the transverse momentum d2k'. 
Thus the integral equation is 

(2.34) 

We see that if we insert the first term on the right hand side into 
F in the second term, we obtain the one-rung ladder contribution, 
and inserting this into F in the second term gives the two-rung 
contribution, etc. By iteration we thus see that the integral equa­
tion generates all the ladder diagrams. 

The integral equation of course gives the same solution as 
Eq.(2.31). 
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k I 
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Fig. 2.9. The integral equation. 

2.6 The Porneron 

After this rather tortuous route we now come to the solution for 
the amplitude A( s, t) for the colour singlet exchange. Inverting 
the Mellin transform we have 

,~ (JV 2 _ 1)2 g4~4 
zsmA(s,t) 16JV4 167r2s 

J 1 (s ) Hap(t) 

X d2k (k2 + ~2)((k _ q)2 + ~2) ItI ' (2.35) 

with ap(t) given by Eq.(2.32) and we have substituted It I for k 2 

in the normalization of s, which we may do without affecting the 
leading logarithms. 
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Let us write this as 
C ( s ) fp(t) 

~mA(s,t)=-; Ttl ' 
where 

Ep(t) = 1 + ap(t) 
(note that Ep(t) is of order g2). Up to corrections which are of 
order g2, this is the imaginary part of 

A( s, t) ( _s ) fp(t) C ( ) [cos 7rEp( t) + i sin 7rEp( t)] 
-t S7rEp t 

~ __ Cc---:-- (~t) fp(t) 

7rEp(t)S 
Remember that we must add the contribution from the crossed 
amplitude in which s is replaced by u. Thus the entire contribution 
IS 

A(s,t) 
C (S)fP(t) 

7rEp(t)S t 

+ 
C (U)fP(t) 

7rEp(t)U t . 
In the Regge limit U ~ -s and so we see that the real parts cancel 
in leading logarithm order and we are left with an amplitude that 
is purely imaginary and given by Eq.(2.35). 

We have thus succeeded in deriving the Pomeron in this partic­
ular field theory. 

2.7 Smumary 

Let us summarize the important features of Pomeron exchange in 
the scalar model discussed in this chapter . 

• In the scalar model with cubic interactions described in Section 
2.1, the leading logarithm contributions to the imaginary part of 
the amplitude corne from uncrossed ladder diagrams, with a cut 
through the rungs. The cut lines are integrated over the relevant 
phase space. 
• We use Sudakov variables to describe the momentum ki of the 
ith vertical line on the left of the ladder by 

kf = PiPi + ).iP~ + kf!L 
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with 

kr.l = (O,O,ki)· 

For the right hand side of the ladder the transverse momentum ki 
is replaced by (ki - q) (in the Regge limit, It I < s). 
• The phase-space integral is dominated by the region in which 
the transverse momenta all have the same order of magnitude, 
which is denoted by k, such that k 2 is of the order of the larger 
of m 2 and Itl. 
• The leading logarithm part of the integral over the longitudinal 
components comes from the region 

Pi ~ Pi+l 

l.Ai+ll ~ l.Ail 
and in this region the momenta of the vertical lines are dominated 
by their transverse components so that kr ~ -kf. 
• After integrating over the .Ai and absorbing the delta functions 
which give the on-shell condition for the cut lines, the remain­
ing integration over the Pi are nested integrals which are easily 
unravelled by taking the Mellin transform. 
• An integral equation can be established for the Mellin transform 
of the imaginary part of the amplitude. The sum of all ladder 
diagrams is generated if the integral equation is solved iteratively. 
• The integral equation has a solution for which the Mellin trans­
form has a simple pole at w = 1 + ap(t), where ap(t) is given by 
Eq.(2.32). 
• The real part of the amplitude is readily reconstructed from the 
imaginary part. However when the contribution from the crossed 
process obtained by interchanging sand u is added, the leading 
order contribution of the real part cancels, leaving a purely imag­
inary amplitude. 

Definition: 

2.8 Appendix 

Mellin transforms 

The Mellin transform, F(w) of the function f(s) is given by 

F(w) = i= d (:2) (:2) -w-l f(s) (A.2.1) 
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and its inverse is given by 

f(s) = 2~i fa ~ (~2) w F(w), (A.2.2) 

where the contour C is to the right of all w-plane singularities of 
F(w). 

Useful examples: 
If f( s) is of the form 

f(s) = sag(s), 

then the Mellin transform F( w) is given by 

F(w) = (k2f 9(w - a), 

where 9(w) is the Mellin transform of g(s). 
If g( s) = (In s r then its Mellin transform is given by 

9(w) = 100 d (~2) (~2) -w-l (lnsf. 

Changing variables to y = wln (s /k2) we obtain 

1'.( ) _ 1 roo r -Yd 
~ W - wr +1 Jo y e y. 

(A.2.3) 

The integral on the right hand side is the integral definition of the 
Euler gamma function, r(1' + 1) (= 1'! for integer 1'). Therefore, 

1'.( ) = r(1' + 1) ~ w wr+1. (A.2.4) 

Combining these two results (Eqs.(A.2.3, A.2.4)) we obtain, for 
the Mellin transform of the function 

f(s) = (lnsf sa, 

F(w) = (k2)a r(1' + 1) . 
(w - a)r+l 

(A.2.5) 

Thus we see that if the function f( s) is a pure power of s, then 
the Mellin transform has a singularity which is a simple pole. If 
the function f( s) is a power multiplied by (in general non-integer) 
powers oflns, then the Mellin transform has a cut singularity. The 
factor (k2t simply adjusts the dimension. For the high energy 
behaviour, we are interested in the position and nature of the w­

plane singularities. Note that the Mellin transform of a constant, 
C,isC/w. 
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It is important to be familiar with these relations in both di­
rections, i.e. to be able to perform the inverse Mellin transforms 
and obtain the s-dependence of amplitudes from the singularity 
structure of the Mellin transforms. 

Convolutions: 
Let f( s) be given in terms of a convolution of a set of n functions, 
fi(S/k 2) (i = 1·· ·n), by 

f(s) = k 2 IT r1 d~i fi (Pi~l) 6(Pns - k 2 ) (A.2.6) 
i=1 } Pi+l P. P. 

(with Po = 1 and Pn+l = 0). The Mellin transform is given by 

F(w) = k2 1= d (:2) (:2) -w-l 

X IT r1 d~i fi (Pi~l) 6(Pns _ k 2). 
i=1 } Pi+l P. p. 

Performing the integration over s /k2 (absorbing the delta func­
tion) gives 

F(w) = IT r1 dPi fi (Pi~l) p~. 
i=1 } Pi+l P. P. 

Now change variables from Pi to Ti, where 
Pi 

Ti = --, 
Pi-l 

so that Pn = TIT2" . Tn' The Jacobian for the change of variables 
is PIP2 ... Pn-l, and we finally obtain 

n 101 (1) n F(w) = II dTiTt-1 fi ~ = II Fi(W), 
i=1 0 T. i=1 

(A.2.7) 

where Fi(W) are the Mellin transforms of the functions fi(S/k 2). 
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The reggeized gluon 

A particle of mass M and spin J is said to 'reggeize' if the ampli­
tude, A, for a process involving the exchange in the t-channel of 
the quantum numbers of that particle behaves asymptotically in 
s as 

A ex sa(t) 

where a(t) is the trajectory and a(M2) = J, so that the particle 
itself lies on the trajectory. 

The idea that particles should reggeize has a long history. It was 
first proposed by Gell-Mann et al. (1962, 1964a,b) and by Polk­
inghorne (1964). Mandelstam (1965) gave general conditions for 
reggeization to occur and this was developed by several authors 
(Abers & Teplitz (1967), Abers et al. (1970), Dicus & Teplitz 
(1971), Grisaru, Schnitzer, & Tsao (1973)). Calculations in Quan­
tum Electrodynamics (QED) were carried out by Frolov, Gribov 
& Lipatov (1970, 1971) and by Cheng & Wu (1965, 1969a-c, 
1970a,b), who showed that the photon had a fixed cut singular­
ity (as opposed to a Regge pole). On the other hand McCoy & 
Wu (1976a-f) established that the fermion does indeed reggeize in 
QED. This was extended to non-abelian gauge theories by Mason 
(1976a,b) and Sen (1983). The demonstration of reggeization of 
the gluon was first shown to two-loop order by Tyburski (1976), 
Frankfurt & Sherman (1976), and Lipatov (1976) and to three 
loops by Cheng & Lo (1976). The reggeization to all orders in 
perturbation theory has been established by several authors using 
somewhat different techniques. Mason (1977) worked in Coulomb 
gauge and used time ordered perturbation theory to establish that 
the amplitude factorized in such a way that the reggeization must 
follow. Cheng & Lo (1977) developed a recursion relation for going 
to higher orders in perturbation theory. 

The method that we shall follow in this chapter is that of Fadin, 

48 
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(a) (b) 

Fig. 3.1. Section of uncrossed and crossed gluon ladder diagrams. 

Kuraev & Lipatov (1976), who used dispersive techniques devel­
oped in the preceding chapter. We feel that this is the most trans­
parent derivation of reggeization and lends itself most easily to 
the discussion of the Pomeron in the next chapter. 

In the preceding chapter we showed that in a <jJ3 theory the 
amplitude for elastic scattering of scalar 'quarks' was dominated 
in the leading In s approximation by uncrossed ladder diagrams. 
In particular, it was shown that a crossed rung gives rise to a 
hard denominator and is suppressed by '" Pi! Pi-I. In QeD this 
does not work. A section of a ladder shown in Fig. 3.1(a) does 
not dominate over the crossed-rung section shown in Fig. 3.1(b). 
The reason for this is that the triple gluon vertices carry the mo­
menta of the gluons in the numerators and in Fig. 3.1 (b ) the scalar 
product of these momenta between the top left and bottom right 
(or vice versa) vertices produces a term which is enhanced com­
pared with the corresponding scalar product in Fig. 3.1(a). This 
enhancement compensates for the denominator suppression due 
to the hard propagator in the crossed-rung diagram. 

Nevertheless we shall show that it is possible to organize high 
energy scattering amplitudes into 'effective' ladder-type diagrams. 
The vertices will not be the usual triple gluon vertices, but, rather, 
a non-local effective vertex, which we shall discuss below. Also the 
vertical lines of the ladder are not bare gluons whose propagators 
are given (in Feynman gauge) by 

D ( 2) __ .g/-Ll/ 
/-Ll/q - Z2 

q 
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but, rather, they are 'reggeized' gluons whose propagator (in Feyn­
man gauge) is 

(3.1) 

where vrs is the centre-of-mass energy of the particles between 
which the 'reggeized' gluon is exchanged and ctG(q2) = 1 + EG(q2) 
is the Regge trajectory of the gluon. t 

In order to show that gluons reggeize in this way (and to deter­
mine the Regge trajectory) we need to calculate to all orders in the 
perturbation series but keeping only the leading In s terms at each 
order. We need to select those diagrams in which the exchanged 
quantum numbers (in the t-channel) are those of the gluon, i.e. 
spin-1 and colour octet. As discussed in Chapter 1, the ampli­
tude in which a single particle of spin J is exchanged has a large 
s behaviour proportional to sJ, so we are interested in the con­
tributions to the amplitude which at order ct~ are proportional 
to s ct~ Inn-Is and we shall drop sub-leading logarithm terms. 
We shall begin by discussing the first three orders of perturbation 
theory and then generalize to all orders. 

3.1 Leading order calculation 

The QCD process we consider is the scattering of two quarks with 
different flavours due to colour octet exchange and within the 
Regge limit (s ::p -t). We neglect the masses of the quarks and 
assume that their incoming momenta PI and P2 lie along the z-axis, 
i.e. 

PI 

P2 

The tree diagram contribution to this amplitude is shown in Fig. 
3.2.::: It is very important to realize that all the components of the 
momentum of the exchanged gluon, qll-, are much smaller than VS. 
This is true because we are interested in the region Iq21 = It I ~ s 

t As in the preceding chapter k 2 represents a typical transverse momentum. 
We use the Feynman rules for QeD given in the appendix at the end of the 
book. 
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Fig. 3.2. Tree level amplitude. 

and because the outgoing quarks are on mass-shell (i.e. (PI - q)2 = 
o and (P2 + q)2 = 0). 

3.1.1 The eikonal approximation 

The eikonal approximation is an extremely important ingredient 
in building the 'reggeized' gluon and subsequently the QeD Pom­
eron. 

The upper line of the diagram in Fig. 3.2 gives the factor 

-igU(.A~,Pl - q}'yIlU(.Al,PI h'j 
(where .Al'.A~ are the helicities of the incoming and outgoing 
quarks respectively and the T a are the generators of the colour 
group in the fundamental representation). Since all the compo­
nents of qll are small we may replace this by 

-igu(.A~, PI }'yIlU(.Al, PI )Ti'j· 

For spinors normalized such that ut(.A~,pl)U(.Al,pl) = 2Ep15A~Al 
we have 

-igu(.A~,pd,IlU(.Al'Plh'j = -2igpIj'8A~ Al Ti'j· 

This is called the eikonal approximation and it is valid when­
ever the gauge particle exchanged is 'soft' (i.e. all its components 
are small compared with the momentum of the emitting quark). 

Remarkably, the eikonal approximation works not only for spin­
~ quarks but for particles with any spin. If we had a scalar particle 
instead of a quark in Fig. 3.2 the upper vertex would be 

-ig(2pl - q)llTi'j, 
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v p 
PI 

q 

Fig. 3.3. Soft gluon emitted from a hard gluon. 

which we approximate by -2igpiTtj. More importantly it may be 
a gluon itself, in which case the triple gluon vertex (see Fig. 3.3) 
IS 

(Tb~ = -ifabc, where the fabc are the structure constants of the 
gauge group, which we shall leave as SU(N) so that the colour fac­
tor can be easily identified). Now neglecting qJ1. and noting further 
that the incoming and outgoing gluons are on shell and therefore 
transverse (so that we may drop terms proportional to Pl and 
(PI - q )P) we once again end up with 

Thus, at lowest order, the amplitude for quark-quark scattering 
due to octet exchange is given by 

A(8) 2 J1. gJ1.V v 1: 1: G(8) S 1: C G(8) 
o = g 2PI-2 2P2 u ).., )..l U )..')..2 0 = 811"a s -u).., )..l U )..')..2 0 , q 1 2 t 1 2 

(3.2) 

where as = g2 f 411" and G~8) is the colour factor for colour octet 
exchange, Tt;Tkl' which we shall subsequently write as Ta is) Ta • 

We find it convenient to work in Feynman gauge although the 
amplitude is gauge invariant (the reader who tries to check this 
should remember that it will only work up to corrections of order 
tf s, since we have assumed that we may use the eikonal approxi­
mation). 
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~=:X=a: 
(a) (b) 

Fig. 3.4. Box and crossed box graphs. 

3.2 Order as corrections 

As explained in the preceding chapter, in leading In s approxi­
mation we do not get contributions from one-loop graphs which 
contain corrections to propagators or to vertices, but only from 
the 'box' and 'crossed box' diagrams shown in Fig. 3.4 in which 
the loop integral depends on the centre-of-mass energy Vs' t 

Once again the contribution from Fig. 3.4(b) can be obtained 
from the contribution to Fig. 3.4( a) by crossing. However, in this 
case we not only have to interchange s and u (which introduces a 
minus sign since, in the Regge limit, u ~ -s) but also take into 
account a different colour factor. The colour factor for Fig. 3.4(a) 
is given by 

Ga = (rarb) Q9 (rarb), 

whereas the colour factor from Fig. 3.4(b) is 

Gb = (rarb) Q9 (rbra). 

Because crossing introduces a minus sign the total colour factor 
for octet exchange at the one-loop level is the difference between 
these two, i.e. 

Ga - Gb (rar b)Q9 [ra,rb] 

./abc [a b] p, c zT r ,r 'CJ r 

ifabcifabd r d Q9 r C __ N dB) (3.3) 
2 - 2 0' 

t This argument only works in a covar,iant gauge. In Coulomb or axial gauge 
in which an external vector is introduced, it is possible that vertex or self­
energy corrections on upper (momentum pI) lines can give rise to terms 
proportional to 8 through scalar products with the external vector which 
can have a component proportional to P2. We confine ourselves to covariant 
gauges in this book. 
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where we have used the relation fabc!abd = N6cd for SU(N), and 

G~8) is the colour factor for the tree diagram. 
As in the preceding chapter, only Fig. 3.4( a) has an imaginary 

part so the imaginary part of the octet exchange amplitude at the 
one-loop level can be obtained using the Cutkosky rules and the 
tree level amplitude calculated in the preceding section (Eq.(3.2)), 
i.e. 

':" (8) _ 647r2a~ J 2 (S) ( S ) ~m.A3.4a - 2 d(P.S.) k2 (k _ q)2 6),P\16),~),2Ga. 

In terms of the Sudakov variables p, A, k of the momentum kl-' the 
two-body phase-space integration element may be written 

d(p.S.2) = ~2dp dA d2k 6( -AS - k 2 ) 6(ps - k 2), (3.4) 
87r 

where we have already made use of the inequalities p, IAI ~ 1. In 
this approximation for which -PAS ~ k 2 we have 

k 2 ~ _k2 

and similarly 

(3.5) 

U sing In ( -s) = In s - i7r, this means that the real part is given by 

iReA~8la = -87ras~b),'),16),'),2In(s/k2)Ga a S2 Jd2k _q2 2. 
. t 1 2 27r k2(k _ q) 

(3.6) 
Similarly the amplitude from Fig. 3.4(b) is 

'\ A(8) u ( / 2) as J 2 _q2 iRe 34b = -87ras -b>.'),l b),'),2 In -u k Gb-2 d k 2 
. t 1 2 27r k2(k _ q) 

(3.7) 
(note that it is only the sum of these two which is actually octet 
exchange). Using u ~ -s when It I ~ s and Eq.(3.3) we find that 
the complete one-loop amplitude in leading In s approximation is 
given by 

(3.8) 
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where 

() Nas J d2k t 
EG t = 47r2 k2(k _ q)2 (3.9) 

The reader should notice that the integral on the right hand side 
of Eq.(3.9) is infra-red divergent. In the original work by Fadin, 
Kuraev & Lipatov (1976, 1977) and by Cheng & Lo (1976), great 
care was taken to regularize this divergence by breaking the gauge 
group spontaneously and including contributions from graphs in 
which there are Higgs bosons. For our purposes such rigour is not 
necessary. The infra-red divergence arises because the external 
quarks are on mass-shell. In the 'real world' this is not the case: 
the quarks are bound inside hadrons and off shell typically by an 
amount of the order of their average transverse momenta. Such an 
off-shellness provides a cut-off for the infra-red divergent integrals. 
Furthermore, it will turn out that the integral equation for the 
perturbative Pomeron is free from infra-red divergences. Therefore 
it is sufficient for us to leave EG in the form of Eq.(3.9), and it is 
to be understood that the infra-red divergence is to be regularized 
in some convenient way, introducing a scale which is expected to 
be of order AQCD. 

3.3 Order a; corrections 

The two-loop corrections were performed independently by Ty­
burski (1976), Frankfurt & Sherman (1976) and by Lipatov (1976). 
We follow Lipatov's calculation closely. 

As explained in the preceding chapter we do not get any con­
tributions proportional to a;ln 2 s from graphs which consist of 
vertex or self-energy insertions on the one-loop graphs considered 
in the last section. In order to obtain the imaginary part of the 
contribution in this order (in the leading In s approximation) we 
need to consider the amplitude for a quark with momentum PI 
and a quark with momentum P2 to scatter into a quark with mo­
mentum PI - kI' a quark with momentum P2 + k2 and a gluon 
with momentum kI - k2 • Using Sudakov variables to parametrize 
the momenta kI and k2 : 

kf = PiP't + )..iP~ + kf1- (i = 1,2), 
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PI 

kl 

k2 

P2 
(a) 

Pl----~~--~--+---

k2 

P2 P2 
(b) (c) 

PI PI 

kl 

P2 ____ ~~~-1--+_--
(d) 

Fig. 3.5. Diagrams for the process qq -> qq+g. 

the leading logarithm contribution again comes from the region 

1 ::?> PI ::?> P2 

1 ::?> 1),21 ::?> 1),11 

and the on-shell condition for the outgoing gluon becomes (in this 
approximation) 

so that ki ~ kL. = -ki and k~ ~ k~l. = -ki. Once again the 
transverse momenta are both of the same magnitude (ki, ki are 
both of order k 2 ). The graphs for this process are shown in Fig. 
3.5. We need these amplitudes in order to compute the 25 (two­
loop) diagrams using the s-channel cutting rules. 

The contribution from Fig. 3.5(a) (in Feynman gauge) in the 
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Pl--~~--~----~------

P2--~~--~----~------

Fig. 3.6. The effective non-local vertex. 

relevant kinematic regime is 

• 3 [ (T .A (T (k k)(T] 8 A~ A1 8 A~ A2 -I a b 
-'tg 2s PIPI + 2P2 - 1 + 2 1.. k 2k 2 JabeT ®T. 

1 2 

The contributions from Fig. 3.5(b) and (c) in this regime are 

1 [~~ ~~ 1 _g32Sk~ 2pr (PI _ kl + k2 )2 + (Pl - k2 )2 ® Tb8A;A18A~A2' 

Now (Pl-k1+k2)2 ~ s.A2 (s::?> k2)andsimilarly(pl-k2)2 ~ -S.A2' 
so this contribution becomes 

3 2p'[ [b e] b. • 
- g 2s k 2 \ T, T ® T V A' A1 V A' A2 

2"'2 S 1 2 

. 3 2p'[ -I a b. • 
-'tg 2s k2 \ JabeT ®T VA'A1VA'A2' 

2"'2 S 1 2 

Similarly the contributions from Fig. 3.5(d) and (e) are given 
by 

. 32 2P2 -I a ~ b. • 
-zg S-2 -JabeT CY TVA' A1 vA' A2' 

k1PlS 1 2 

Although the contributions from Fig. 3.5(b) and (c) do not 
contain the denominator ki and likewise the contributions from 
Fig. 3.5( d) and (e) do not contain the denominator k~, it is conve­
nient to write all these contributions as though they all contained 
both of these denominators (multiplying by ki or k~ where nec­
essary) so that they may combined into an effective (left half of 
a) ladder, shown in Fig. 3.6. 
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The complete amplitude is 
2· 32 I-' v 

A (8)a- _ 'tg P1P25 5 -I' a fV\ bra- (k k) (3 10) 
2--+3 - - k 2 k 2 >"~>"I >"~>"2JabcT 'CJ T I-'v 1, 2 , • 

1 2 
where r~v(kl' k2) is an effective (non-local) vertex given by 

r~v(kbk2) = 2P21-'Plv [(PI + 2ki) pf + ('\2 + 2k~) p~ S '\2S PIS 

- (kl + k2)'lj. (3.11) 

This vertex is said to be 'non-local' since it encodes the denomina­
tors of the propagators of Fig. 3.5(b-e). The dark blob in Fig. 3.6 
represents the effective vertex. 

We have been working in the Feynman gauge. Nevertheless the 
effective vertex r~v(kl' k2) is gauge invariant. It can easily be 
shown to obey the Ward identity t 

(kl - k2)a-r~v(kb k2) = O. 

Individual graphs in Fig. 3.5 are gauge dependent, but the sum is 
gauge invariant. 

It is fun to notice (and will be useful later when we consider 
higher order graphs) that we can exploit the gauge invariance in 
such a way that only the genuine ladder-type graph (Fig. 3.5(a)) 
contributes in leading logarithm order. If we remove the lower 
quark line from the graphs in Fig. 3.5 and write the amplitude as 
/V/~ (k 1 , k2 ) (see Fig. 3.7), then since all but the bottom gluon are 
on mass-shell we have the Ward identity 

k;M~(kb k2) = O. (3.12) 

N ow since the component of momenta proportional to P; In 

jvt~(kl' k2) is small we can neglect it and rewrite Eq.(3.12) as 

'\2p;M~(kl' k2) + k;~M~(kl' k2) = O. 

In the eikonal approximation we have (reinstating the lower quark 
line) for the contributions from Fig. 3.5(a),(b) and (c) 

A~!~a- = 2p;M~(kb k2) 

t Actually the Ward identity is only exact when the vertical gluon lines are 
on mass-shell. In fact these lines are off-shell by kl and k2. However, since 
these (squared) transverse momenta are small compared with ).2 s or PI S 

the identity is obeyed at the order to which we are working. 
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PI PI--~--~--__ ---

T 

PI ---~x:+--..-------

+ 

Fig. 3.7 

(where we have dropped the colour factor and the coupling con­
stant). This may be rewritten as 

A (8) = -2k2.L MO"(k k) 
abc A2 T b 2· (3.13) 

Since, in the eikonal approximation, MTO" has no transverse com­
ponents from Fig. 3.5(b) and (c), it follows that Fig. 3.5(a) domi­
nates. 

We can of course play the same game by removing the up­
per quark line and write the corresponding Green function as 
N::(kI' k2 ). The amplitude for the graphs of Fig. 3.5(a),(d) and 
(e) can now be written 

A(8)0" = -2kI.LNO"(k k) 
ade T b2 

PI 
(3.14) 

and once again it is only Fig. 3.5( a) that contributes at the leading 
logarithm level. 

N ow if we replace the eikonal insertion P2' on the lower line by 
- k2'.L I A2 and replace the eikonal insertion pi on the upper line by 
-k't.LI PI and consider only the dominant diagram, Fig. 3.5(a), we 
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arrive at an alternative expression for A~~~, Le. 

4 · 3 k/l. kll (8)0- 'tg LL 2.L ./ a b 
A2-+3 = - k 2 k 2 A 6 AP'l 6 A~ A2 J abc T ® T 

1 2 P1 2 

[-g/l.lI(k1 + k2r + g~(2k2 - k1)/l. + g~(2k1 - k2)1I] , (3.15) 

where we have just used the ordinary triple gluon vertex. Writing 
ki and k~ in terms of their Sudakov variables and making use of 
the inequalities P2 ~ P1 and IA11 ~ IA21, this may be written as 

A (8)0- _ 2ig3 1 a b 
2-+3 - k2k2 ~6A~A16A~A2fabcT ® T 

1 2 PV\2 

{[(k1 - k2)2 - 2ki] P1pf + [(k1 - k2)2 - 2ki] A2P2 

-(kl - k2)2(k1 + k2)1. 
+(ki - ki)((P1 - P2)pf + (A1 - A2)P2 + (k1 - k2)1.)}. (3.16) 

At first sight it does not appear that this works (Le. we do 
not appear to be consistent with Eq.(3.11)). However, we note 
that the terms in the last line of Eq.(3.16) are proportional to 
(k l - k2)0-. Since the outgoing gluon is on mass-shell it is trans­
verse, and so terms proportional to (k1 - k2t vanish when con­
tracted with its polarization vector. These terms may therefore 
be dropped. Finally, using the on-shell condition for the outgoing 
gluon (kl - k2)2 = -PlA2S, we recover precisely Eq.(3.10).t 

Returning now to the imaginary part of the octet exchange 
amplitude to order a~, this is given by 

~mA~8) = -~o-T J d(p.S.3)A~~~(kb k2)A~~r(kl - q, k2 - q) 

+ extra piece, (3.17) 

where the prefactor -go-T arises from the sum over polarizations 
of the intermediate gluon and the 'extra piece' will be explained 
later in this section. We can take the components of q/l. to be trans­
verse (more precisely the longitudinal components are negligible 
compared with Pl VS, A2VS)· 

t This is not a gauge choice (we are still working in Feynman gauge), but it 
is a trick which exploits the gauge invariance to reduce the effective ladder 
(Fig. 3.6) to the genuine ladder graph Fig. 3.5(a). It will be very useful in 
the next section. 
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We deal first with the colour factor which is 

- fabcfdec(TaT d ) ® (TbTe ). 

Anticipating that we shall be adding a contribution from the 
u-channel which will be equal and opposite to the s-channel con­
tribution, but with Tb and T e interchanged, we antisymmetrize in 
Tb and T e . In other words we are 'sharing' the octet colour fac­
tor between the s-channel and u-channel contributions. We thus 
obtain 

-tUabcfdec - faecfcdb)(TaTd) ® (TbTe ). 

Making use of the Jacobi identity 

fabcfdec + faecfbdc + fadcfebc = 0, (3.18) 

this becomes 

-tfadcfcbe(TaTd ) ® (TbTe ). 

The structure constants are antisymmetric in a, d and b, e, so we 
may replace the products of the colour matrices by commutators 
and obtain 

1.f' .f' f .f' f 9 _ N 2 a a 8 JadcJadf cbeJgbe T ® T - 8 T ® T . (3.19) 

The phase-space integrand can now be written: 

1 (8)0" . t(8) -"2 A2 --+3(kt, k2)A2--+30"(kl - q, k2 - q) 

g6 N 2 a 16p!1-pVp!1-' pVI 
_ --T T a 8 8 1 2 1 2 

16 >'P'l >'~>'2 kik~(kl _ q)2(k2 _ q)2 

X g0"7.r~v(kl' k2)r~lvl( -(kl - q), -(k2 - q)) (3.20) 
(recall that Hermitian conjugation requires the reversal of the di­
rection of momentum in the right hand effective vertex). After a 
little algebra the right hand side of Eq.(3.20) becomes 

4 N2s A(8) 2 [ q2 
-g -4- 0 q kik~(kl _ q)2(k2 _ q)2 

- 2 12 2 - 2 ; 2] (3.21) 
k1(k1 - k 2) (k2 - q) k2(kl - q) (kl - k 2) 

(the factor (k1 - k2)2 in the denominators of the last two terms 
comes from replacing PIA2S by -(kl - k 2)2). The three-body 
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(3.22) 

Some important cancellations have taken place to obtain the 
above expression. For example the terms in the product of the 
two effective vertices which give ki, k~, (kl - q)2 or (k2 - q)2 in 
the numerator have cancelled. Had this not happened there would 
be integrals over the transverse momenta of the form 

J d2kld2k2 
ki (kl _ q)2k~' (3.23) 

which is ultra-violet divergent. Of course the upper limit of the 
transverse momentum integrals is of orderjS, so such integrals 
would not really diverge but would introduce a further factor of 
In s (as well as the one we obtain from the integration over PI). 
This would give an imaginary part proportional to In 2 S and a 
real part proportional to In 3 s. Calculation of individual diagrams 
contributing to the order a~ correction to the tree amplitude do 
indeed contain terms proportional to a~(Ins)2n-I but they cancel 
between graphs. In the case of QED this cancellation has been 
verified by explicit calculation up to four loops by McCoy & Wu 
(1976a-f). 

The first term of Eq.(3.22) is encouraging since the integration 
over the transverse momenta factorizes and together with the log­
arithm from the integration over PI we obtain 

- ~1l"Eb( t )In (s /k2)A~8), 
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Fig. 3.8. Three gluon exchange graphs. 

but the other two terms are not so nice. However, we have forgot­
ten a contribution ('extra piece') coming from the diagrams shown 
in Fig. 3.8, which also contribute in leading In s. Note that in these 
graphs the cut only goes through the quark lines. The contribution 
which arises when the cut also goes through the middle gluon line 
of Fig. 3.8{ a) has been accounted for already in the interference 
between Fig. 3.5{c) and (d). There are two relevant contributions 
- one where there is one gluon exchanged on the right of the cut 
(shown in Fig. 3.8) and the other where there is one gluon ex­
changed on the left of the cut. Each of these gives a contribution 
to the imaginary part of A~8) of 

where we have made use of the result Eq.{3.8) for the amplitude 
on the left of the cut. 

The colour factor, N /4, is obtained in the same way as in 
the preceding section (projecting the colour octet exchange part). 
Now, from Eq.(3.9) 

E (k 2 ) - _ Na s Jd2k ki 
G 2 - 471'2 1 (k2 _ k1)2ki ' 

and integrating over Ab Pl using the two-body phase-space ex-
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(3.24) 

Together with the contribution from the graphs with one gluon 
to the left of the cut this exactly cancels the 'unwanted' parts of 
Eq.(3.22) and we are left with an imaginary part: 

'SmA~8) = -~E~(t)7rln(s/k2)A~8). (3.25) 
2 

The corresponding real part is 

ReA~8) = ~E~(t)ln 2(s/k2)A~8). 
4 

(3.26) 

We obtain a similar contribution from the crossed diagrams 
with s replaced by u (and a further sign from the colour factor). 
Thus up to order a; we have a colour octet amplitude given in 
leading In s approximation by 

A~8) (1 + EG(t)ln (s/k2) + ~E~(t)ln 2(s/k2) + ... ) . (3.27) 

It is tempting to speculate that these are the first three terms 
in the expansion of A~8) s€G(t). Cheng & Lo (1976) showed that 
this trend continues up to three loops. ill the following section we 
shall show that it continues to work to all orders of perturbation 
theory. It is worth emphasizing at this point that the remarkable 
cancellation between the 'extra piece' from graphs in which three 
gluons are exchanged between the quarks and the unwanted con­
tribution from the graphs in which three lines are cut depends 
crucially on the colour factors working out just right. Whereas it 
works for colour octet exchange, it fails for other channels, partic­
ularly for the colour singlet exchange channel which we shall need 
in order to study the Pomeron. 

3.4 The 2 -+ (n + 2) amplitude at the tree level 

It was explained earlier in this chapter that the eikonal approxi­
mation is independent of the spin of the high energy particle which 
emits the soft gluon. We may therefore replace the quark lines in 
Fig. 3.5 by gluons themselves. The eikonal approximation is still 
valid because of the strong ordering of the momenta. The effective 
vertex (Eq.(3.11)) is the vertex obtained by adding a gluon with 
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+ + + + 

Fig. 3.9 

momentum (kl - k2)1-' to all the gluon lines in a gluon-gluon scat­
tering amplitude with colour octet exchange, as shown in Fig. 3.9. 

One might guess that adding more gluons generates more fac­
tors of the effective vertices (together with extra propagators for 
the vertical gluons), giving rise to (the left half of) an n-rung 
ladder with effective vertices, r, at each intersection, so that the 
amplitude for two quarks to scatter into two quarks and n gluons 
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Pl---~----

an 

Fig. 3.10. Tree amplitude for two quarks to two quarks plus n 
gluons. 

with octet colour exchange is shown in Fig. 3.10. It turns out that, 
in the kinematic regime that we are interested in, namely, where 
the ith emitted gluon has momentum (ki - ki+l)J.l with Sudakov 
variables for kf and kf+l obeying the inequalities 

1 ~ Pi ~ Pi+l 

1 ~ IAi+ll ~ IAil 

this guess is correct. Thus in this limit the amplitude for two 
quarks to scatter into two quarks and n gluons with colour octet 
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PI 

P2 

Fig. 3.11 

n 

C(8)(b b ) - II -I al f:A an+l n b' .. n - Jaia'+lb. T 'CJ T . (3.29) 
i=l 

A rather elegant derivation of Eq.(3.28) is given by Gribov, Levin 
& Ryskin (1983). We reproduce their derivation here. The reader 
who is prepared to accept Eq.(3.28) on trust may skip to the next 
section. 

Consider the amplitude for two quarks to scatter into two 
quarks plus n gluons. As described in the last section if we cut 
the ith vertical gluon, whose momentum is ki' the amplitude 
separates into an upper part MIL(Pl, kb · .. ki ) and a lower part 
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N v(P2,ki," ·kn ) (see Fig. 3.11). Since all but the cut gluon line 
are on shell, these Green functions obey the Ward identities 

kf MIL(pt, kt,· .. ki) = 0 (3.30) 

(3.31) 

The largest momentum in the amplitude MIL is PI and so the 
largest part of MIL will be proportional to pi. Likewise, the largest 
part of Nv will be proportional to P2' Therefore in leading loga­
rithm approximation we may rewrite Eqs.(3.30) and (3.31) as 

kf.LMIL(Pb kb .. ·ki) = -AiP~MIL(Pb kb .. ·ki ) 

ki.LNv(P2, ki,' .. kn ) = -PiPrNv(P2, ki,' .. kn ). 

This means that we may replace the numerator of the cut gluon 
propagator by 

2kf.L ki.L 

PiAi S 
(3.32) 

We can cut any of the intermediate vertical gluon lines and per­
form the same manipulations. Therefore, we end up with an am­
plitude which can be obtained from (the left half of) a genuine 
uncrossed ladder in which the numerator of the vertical gluon 
lines is replaced by the expression (3.32). We associate a factor of 
..)(21 S )kf.LI Ai with the vertex at the top of the ith vertical gluon 
and a factor of ..)(21 S )ki.L 1 Pi with the vertex at the bottom of the 
ith vertical gluon. The amplitude thus becomes 

. 2 i (8) lIn ig 2kfl kitu 
21,sg k 2 8>'~>'18~~>'2Gn ~ A' . 

1 i=l i+l ,+IP,S 

X [gILW;( -ki - ki+I)O'; + g~;(2ki - ki+I)v; 

+ g~:(2ki+I - kdlL;] . (3.33) 

We showed in the last section that 
2kILi kV; 

AU i+U [glLiVi( -ki - ki+1ti + g~;(2ki - ki+I)v; 
i+1PiS 

lLi Vi 

+ g~~(2ki+I - kdlLi] = 2P2 PI r~~v.(ki' ki+I), (3.34) 
I s ,.-, , 

plus terms proportional to (ki - ki+I)O'i, which vanish because the 
outgoing gluon is on shell and therefore transverse. The result, 
Eq.(3.28), then follows. 
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Fig. 3.12 

We now need to show that, using this gauge technique, the di­
agrams which are not of the form of uncrossed ladders give con­
tributions which are suppressed by at least one power of Pi! Pi+l 

and therefore will only contribute to sub-leading logarithm terms 
when the (phase-space) integrals over all Pi s are performed. 

First of all let us look at the ith section of (the left half of) the 
uncrossed ladder (Fig. 3.12). The contribution from this section is 
proportional to the two effective vertices 

r O"i-l rTO"i 
J.l,T v' 

The leading contribution proportional to p~i-l p~i is 

2P2J.1,Plv \ O"i-1 O"i 
Pi-l Ai+lPl P2 s 

and the contribution proportional to k~":'l~ kfl is 

2P2J.1,Plv kO"i-l kO"i 
~ i-l~ i+l~' s 

(3.35) 

(3.36) 

Since cross-rung graphs involve sections of the ladder where the 
momenta of incoming and outgoing gluons at the ith vertex are not 
simply ki' ki+l (see Fig. 3.13) we need to generalize the formula 
(3.34) for the case where the upper line entering the vertex has 
momentum kf and the lower line has momentum ej. This leads 
to 
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Fig. 3.13. Section of a crossed ladder diagram 

which is 

I"V +k2 [piP~ + AjP~ + (ki + kj)l.l. 
PiA-jS 

Since pj-1Aj is of order k 2 / S from the on-shell condition of the 
jth outgoing gluon, we have a contribution of order 

2 Pj- 1S [piP~ + AjP~ + (ki + kj)l.l· 
Pi 

Now imagine a section of a crossed-rung ladder (shown 
in Fig. 3.13) where the middle vertical line has momentum 
(ki - 1 + ki+l - ki ), giving rise to a denominator from its propa­
gator which is approximately equal to Pi-1Ai+1S, The two vertices 
have a component proportional to p~;-l p~; which is of order 

Pi Pi 2p~pr A 0";-1 0"; 
------Pi-l i+1Pl P2' 
Pi-l Pi-l S 

(3.37) 

The factors of Pi in the numerator of Eq.(3.37) occur because 
Aj ~ Ai+1' This is true at both vertices because IAi+ll ~ IAil 
(or IAi-ll). Using the on-shell conditions we may therefore replace 
pj-l by Pi to arrive at Eq.(3.37). 

Since Pi ~ Pi-b expression (3.37) is much smaller than the un­
crossed ladder product of two effective vertices, expression (3.35). 
In addition to this suppression the denominator from the prop­
agator of the intermediate line is much larger than kf, which is 
what we obtain from the section of the ladder shown in Fig. 3.12. 
Thus there is a double suppression of the crossed ladder diagram. 
If we cross more rungs we get an even greater suppression. 
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Fig. 3.14 

Let us now consider a section of a graph in which two of the out­
going gluons meet at a point. Such a section of a graph involving 
the triple gluon vertex is shown in Fig. 3.14. Again contracting the 
left hand triple gluon vertex with kf_1l. ki+1l.' we obtain a term 

proportional to k~~l~ kfi which is of order 

2PiP2k2 , k ITi - 1 kIT; 
-- Pi-IAi+I S i-I.l il. 

S 

and again using the fact that PiAi+1 is of order k 2 / S this is of 
order 

2 J.£ v . 
PIP2 ~kC:i-l k~i 

t-Il. tl.' 
S Pi-I 

which is suppressed relative to the equivalent term from the un­
crossed ladder (expression (3.36)) by a factor of pi! Pi-I' In addi­
tion to this the internal gluon propagator has a denominator which 
is again much larger than k 2 , so we get a double suppression. 

From the four-point gluon vertex we get a section of a graph 
shown in Fig. 3.15. Once again the contribution from the vertex 
has a term proportional to k~~l~ kfl which is of order 

1 kITi-1 kITi 
, i-Il. il. 

Pi-IAi+I S 

and we are missing a propagator factor of kf present in the section 
of the graph shown in Fig. 3.12. Thus this graph also gives a 
contribution which is suppressed relative to the uncrossed ladder 
contribution by a factor of order Pi! Pi-I' 

Comparison of other components of the tensor structure (e.g. 
terms proportional to p~i-l p~i) yield similar suppression factors. 
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Fig. 3.15 

This, then, completes the proof that the amplitude for two quarks 
to scatter into two quarks and n gluons via colour octet exchange 
is given by Eq.(3.28) in the kinematic region that leads to leading 
logarithms. 

3.5 Absence of fermion loops 

We have so far only considered outgoing gluons in addition to the 
two quarks present in the initial state. In principle we must also 
consider the production of extra fermion-antifermion pairs, since 
such amplitudes must be included in the dispersion relation for the 
imaginary part of the elastic scattering amplitude. However, these 
also turn out to be suppressed and do not contribute in leading 
logarithm approximation. The essential reason for this is that a 
fermion exchanged in the t-channel gives an s-dependence which 
is lower than that of an exchanged vector particle due to the fact 
that the fermion has spin ~. 

Looking at this in more detail, in Fig. 3.16(a) we display a 
section of a ladder in which two of the gluons are replaced by 
a fermion-antifermion pair. Once again we may use the gauge 
technique to replace the factor of pi from the upper gluon by 
)(21 s )kf-ul Pi-l and the factor of P2' from the lower gluon line 

by ) (21 s )ki+ 1 J.- 1 Ai+ 1. Having done this the contribution from the 
section shown in Fig. 3.16(a) contains terms proportional to 

1 
A u(ki- 1 - kd,· ki - U '· kif· ki+uu(ki+1 - kd· 

Pi-l i+l S 
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II 

k,_1 ki - I 

ki - I 

k i 

ki+1 
k i +1 ki+1 

V 

(a) (b) (c) 

Fig. 3.16. Section of a ladder with a fermion loop. 

This is of order 

k 2 2 
A {ki·ki-I,ki·ki+bki}· 

Pi-I i+I S 

N ow all the scalar products inside the braces are of order k 2 

(Pi-IAi and PiAi+I are both of order k 2 / s), and the factor out­
side the braces is of order Pi! Pi-I. Thus we obtain a contribution 
which is suppressed by Pi! Pi-I compared with a typical term from 
the gluon ladder. 

Examination of the graphs shown in Fig. 3.16(b) and (c) also 
give a similar suppression factor, although in these cases it is due 
to the presence of a hard fermion or gluon propagator. 

Thus we see that it is sufficient to neglect fermion-antifermion 
pair production in the final state in order to obtain the imaginary 
part of the elastic amplitude to leading logarithm order. 

3.6 Ladders within ladders 

We now have an expression for the tree level amplitude for two 
quarks to scatter to two quarks and n gluons, which when multi­
plied by the conjugate amplitude and integrated over phase space 
contributes to the imaginary part of the 'reggeized gluon' ampli­
tude. We now consider loop corrections. A strong hint on how to 
handle these is given by the fact that it was necessary to consider 
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the graphs of Fig. 3.8 at the two-loop level in order to obtain 
a result that looks like the first three terms of the expansion of 
the required reggeized form. The sub graphs on the left of the cut 
in Fig. 3.8 may be viewed as the beginning of an expansion of a 
ladder itself. 

The upshot of all this is that the imaginary part of the octet 
exchange amplitude in leading In s is 

a superposition of n-rung ladders with effective vertices at 
each rung, whose vertical lines are a superposition of n-rung 
ladders with effective vertices at each rung, whose vertical lines 
are a superposition of n-rung ladders with effective vertices at each 
rung, whose vertical lines are a superposition of n-rung ladders with effective 
vertices at each rung whose vertical lines are a superposition of n-rung la.dders with 

effective vertices at each rung ... 

(n runs from 0 to (0). The effect ofthese ladders is to 'reggeize' the 
gluon, i.e. if we consider the ith section of the ladder (see Fig. 3.12) 
the square of the centre-of-mass energy coming into this section is 

Si = (ki- 1 - ki+d 2 ~ -Pi-lAi+lS = Pi-l(ki - ki+1)2 (3.38) 
Pi 

(where in the last step we have used the on-shell condition for the 
ith outgoing gluon). 

The reggeization simply means that the propagator of the ith 
vertical gluon (in Feynman gauge) is replaced by 

ig (s. )€G(kf) 
iJ J1v( Si, kJ) = .dv k~ 

1 

(3.39) 

Since all the transverse momenta are of the same order we may 
replace (ki - ki+l)2 in Eq.(3.38) by a typical squared transverse 
momentum, k 2 , and rewrite this as 

iJ ( A. k~) _ zgJ1V Pt-l . (. )€G(kf) 
J1V S" t - k 2 

i Pi 
(3.40) 

We shall establish the validity of this proposition by a 'boot­
strap' method. Encouraged by the results of the first few orders in 
perturbation theory, we shall assume that Eq.(3.40) is true. This 
will enable us to establish an integral equation for the (Mellin 
transform of) the amplitude for colour octet exchange. The inte­
gral equation has a solution in which the Mellin transform has a 
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pole at w = fG(t), (implying an s"'G(t) behaviour) and this justi­
fies the assumption of reggeization used to establish the integral 
equation in the first place. It demonstrates the self-consistency 
of the proposition and, together with the results of the first few 
orders in perturbation theory, provides an inductive derivation of 
reggeization valid to all orders in perturbation theory. 

The horizontal gluon rungs are attached to the vertical lines 
via effective vertices r~v(ki' ki +I ) and so the amplitude for two 
quarks to scatter into two quarks plus n gluons via colour octet 
exchange becomes 

A (8)0"1"'O"n n+2.. G(8)· ,; (1 )€G(kn 
= i2sg u),,), u),,), --

2--+(n+2) 1 1 2 2 n ki PI 

n 2pll-i pVi + 1 i (p' )€G(k;+l) 
x II 1 2 r~:Vi+l(ki,ki+l)~ _.t_ .(3.41) 

i=l s i+l Pt+I 

In actual fact this is the multi-Regge exchange amplitude for 
the 2 ----c. 2 + n amplitude via the exchange of n + 1 reggeized parti­
cles with Regge trajectory aG(kl). This can be established using 
techniques of Regge theory, exploiting unitarity in all possible fi­
nal state sub-channels. This long calculation was performed by 
Bartels (1975) and is outlined by Lipatov (1989) and we refer the 
reader to the literature for further details. We shall now proceed 
to demonstrate the self-consistency of the reggeization ansatz. 

3.7 The integral equation 

The imaginary part of the octet exchange amplitude is given by 
(see Fig. 3.17 in which a dash on the vertical gluon lines indicates 
that they are reggeized gluons) 

8mA(8)(s, t) t f) -It J d(p.s.(n+2)) (A~~(~'~~)(kI"" kn ) 

n=O 

X A(8)t (kI - q ···k - q)) (342) 2---t(n+2)0"1"'O"n ,n , . 

and d(p.s.(n+2)) is the (n+2)-hody phase space given in Eq.(2.27) 
in the preceding chapter. 

The colour factor is readily calculated using repetitions of the 
Jacobi identity (Eq.(3.18)) as was done to obtain the colour factor 
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Pl--~--~--~----

P2--~--~--~----

Fig. 3.17. n-rung ladder contribution to imaginary part of ampli­
tude. The dashes on the vertical gluon lines indicate that they are 
reggeized gluons. 

at the two-loop level (Eq.(3.19)). The result is 

Performing the contractions of the effective vertices we obtain 
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<SmA(8)(S, t) = f 1 d(p.s.(n+2)) 
n=O 

N (8) n g2sq2 ( 1 )€G(k~)+€G((kl-q)2) 
X 4"Ao (s, t)( -N) kHkl _ q)2 PI 

lIn [ g2 ( 2 _ kf(ki+1 - q)2 + (ki - q)2kf+l ) 
X 2 2 q 2 

i=l ki+1 (ki+1 - q) (ki - ki+1) 

X ( ~)€G(ki+l)2+€G((ki+l-q)2)] (3.43) 
Pi+I 

(for n = 0 the product in Eq.(3.43) is replaced by 1). The reader 
can check that, apart from the reggeization factors, the n = 0 
and n = 1 terms correspond to (the s-channel contributions to) 

<smA~8) (Eq.(3.5)) and <SmA~8) (Eq.(3.22)) respectively. 
We note that the integrations over the Pi are nested and the 

best way to unravel them is to take the Mellin transform and 
make use of the convolution formula, Eq.(A.2.7). To this end we 
define a quantity F(8)(w, k, q) by 

J (~:;:::; t)) (:, r-1 
d (:,) ~J k'(:~ q)' 1'(8)( w, k, q). 

(3.44) 
The Mellin transform and integration over the Pi then leaves us 
with 

co ( N)n+I 
F(8)(w,k,q) = E~ :~2 (-It 

q2 1 
X 2 d2kn+l 

(w - fG( _k2) - fG( -(k - q) )) 

IT [I d2ki 1 
X i=l kf(ki - q)2 (w - fG( -kf) - fG( -(ki _ q)2)) 

X 2 _ 1 H HI 1 82(k _ k ). (3.45) ( 
k~(k' 1 - q)2 + k~ (k. - q)2)] 

q (ki - ki+1)2 n+1 

This sum of all ladders is most easily treated by obtaining an 
integral equation for F(8)(w, k, q). This integral equation, shown 
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+ 

Fig. 3.18. Integral equation for imaginary part of the octet ex­
change amplitude. 

diagrammatically in Fig. 3.18 (where again a dash on a gluon line 
indicates that it is a reggeized gluon), is 

7r asN q2 
F(8)(W, k, q) = 

"2 47r2 (w - EG( -k2) - EG( -(k _ q)2)) 

_ asN ! d2k' F(8)(W, k', q) 
47r2 (w - EG( _k2) - EG( -(k _ q)2)) 

X 1 ( 2 _ k 2(k' - q)2 + k,2(k _ q)2) 
k,2(k' _ q)2 q (k _ k,)2 . (3.46) 

The first term represents the exchange of two reggeized gluons 
with no rungs on the ladder. The second term represents the ef­
fect of adding a rung which couples with effective vertices to the 
vertical lines, which are themselves reggeized, and serves to build 
up the sum of all ladders (as discussed in Section 2.5). 
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This rather forbidding looking equation in actual fact has a 
rather simple solution in which F(8)(w, k, q) is independent of k. 
To see this we multiply by (W-EG( _k2)-EG( -(k - q)2)) to obtain 

(w - EG( _k2) - EG( -(k - q)2))F(8)(w, k, q) 

~ usN q2 _ usN J d2k' F(8)(w k' ) 
2 47r2 47r2 ' , q 

(
q2 k 2 (k _ q)2 ) 

X k'2(k' _ q)2 - k'2(k _ k,)2 - (k' _ q)2(k _ k,)2 . (3.47) 

N ow we note that 

E (_k2) - - usN J d2k' k 2 (3.48) 
G - 47r2 k'2(k _ k,)2 

E (-(k - )2) - _ usN J d2k' (k - q)2 (3.49) 
G q - 47r2 (k' _ q)2(k _ k,)2' 

Thus if F(8)(w, k, q) is independent of k we have 

2 2 (8) 7r usN q2 
(w-EG(-k )-EG(-(k-q) ))F (w, .. ,q) = 2" 47r2 

+( EG( _q2) - EG( _k2) - EG( -(k - q)2))F(8)(w, .. , q). (3.50) 

The terms with factors of EG( _k2) and EG( -(k - q)2) cancel out 
exactly. It is worth emphasizing that this remarkable cancellation 
only works in the octet exchange channel. It depends crucially on 
the fact that the colour factor from the addition of an extra rung 
is N /2. It is the generalization of the seemingly miraculous can­
cellation of those terms corresponding to Figs. 3.5 and 3.8 which 
spoiled the exponentiation up to order u;. 

The solution to Eq.(3.50) is simply 

, (8) _ ~ usN q2 1 
F (w, .. ,q)- 2 ( (2))' (3.51) 2 47r w - EG -q 

so that the imaginary part of the amplitude (inserting 
Eq.(3.44) and recalling that t = _q2) is 

into 

7r ( S )€G(t) Sm.A(8)(s,t) = -2"EG(t) k 2 A~8). (3.52) 

The analytic function of which this is the imaginary part is 

_ ~ (_S)€G(t) (8) 
- 2 k2 Ao . 
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Since A~8) is proportional to 8 we have an 8-dependence of 

_( _8)1+EG(t). 

Adding the contribution from the u-channel graphs and using 
u ~ -8 we obtain a total expression for the octet exchange ampli­
tude from summing the leading In 8 to all orders in perturbation 
theory given by 

k 2 ( 8 ) aG(t) 1 _ ei1raG (t) 
A(8) = 87ra s TTa ® Ta8).1).~ 8).2).~ k 2 2' (3.53) 

where 

aG(t) = 1 + fG(t). 
This is a Regge trajectory of odd signature and we have justified 
the ansatz made in Eq.(3.39) for the 'reggeized' gluon propagator. 

Although aG(t) is infra-red divergent, if we regularize using 
dimensional regularization, i.e. if we perform the integration over 
transverse momenta in 2 + f dimensions, then we havet 

a _ 2 _ 1 _ Na s q2 ! d2+Ek _ 1 _ Na s 2(q2)E/2 
G( q) - (27r )2+E k2(k _ q)2 - 47r f ' 

such that aG(O) = 1 and we find that the massless, spin-l gluon 
does indeed lie on the trajectory. This has been shown by Fadin, 
Kuraev & Lipatov (1976), Frankfurt & Sherman (1976), Tyburski 
(1976), and Cheng & Lo (1976) to be true also in the case where 
the gauge group is broken spontaneously so that the 'gluon' ac­
quires a mass, M, and it turns out that aG(M2) = 1. In this 
case graphs involving Higgs bosons (which do not occur in the 
treatment described in this chapter) playa crucial role. 

We have now done most ofthe hard work. In the next chapter we 
shall be using these reggeized gluons to construct the perturbative 
Pomeron. 

3.8 Summary 

• The first few terms in the perturbative expansion for the am­
plitude involving spin-I, colour octet exchange suggest that the 
gluon reggeizes, i.e. its propagator is given by Eq.(3.1) with fG(t) 
given by Eq.(3.9). After regularization of the infra-red divergence 

t We have absorbed In 41r and the Euler constant 'YE into 1/ E. 
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we find aG(O) (= 1 + EG(O)) = 1 so that the gluon lies on this 
trajectory. 
• The two-quark to two-quark plus n-gluon amplitude at the tree 
level, in the kinematic regime which leads to leading In s in the 
octet exchange amplitude, is given by the left half of uncrossed 
ladder diagrams with effective vertices, r~v' given by Eq.(3.11) 
coupling the rungs of the ladder and the vertical gluon lines. 
• Loop corrections in leading In s approximation are introduced 
by replacing the propagators for the vertical gluon lines of the 
ladder by reggeized gluons. 
• An integral equation for the Mellin transform of the imaginary 
part of the octet exchange amplitude can be obtained using a 
dispersion relation involving these ladders. 
• The integral equation has a solution which consists of a simple 
pole at w = EG(t), thereby justifying the proposition that the 
gluon reggeizes. 



4 

The QeD Pomeron 

Following the success of the reggeization of various different ele­
mentary particles it was hoped that a particle could be identified 
with the quantum numbers of the Pomeron which would reggeize 
to give the Pomeron trajectory. 

Unfortunately this turned out not to be possible. In partic­
ular, in QCD all the elementary particles carry colour so there 
is no basic QCD constituent with the quantum numbers of the 
Pomeron. In QCD the lowest order Feynman diagram that can 
simulate the exchange of a Pomeron is a two-gluon exchange dia­
gram. This led Low (1975) to use two-gluon exchange as a model 
for the bare Pomeron. He made numerical estimates of the ampli­
tude for the exchange of two gluons between two hadrons using 
the then fashionable bag model of hadrons. This was then de­
veloped by Nussinov (1975, 1976), who considered contributions 
from more than two exchanged gluons as well as uncrossed ladder 
corrections to the two-gluon exchange amplitude. 

We have already implicitly used the Low-Nussinov model in 
Chapter 2 to construct the Pomeron in the scalar theory model 
considered in that chapter. Combining this with our experience in 
deriving the reggeized gluon we can see what the picture of the 
Pomeron is in leading logarithm perturbative QCD. 

The imaginary part of the amplitude for Pomeron exchange is 
given in terms of the multi-Regge exchange amplitude for two in­
coming particles (quarks for simplicity) to scatter into two quarks 
plus n gluons. The difference between this imaginary part and the 
imaginary part of the reggeized gluon lies solely in the colour fac­
tor. In the Pomeron case a singlet of colour is exchanged in the 
t-channel. 

At the tree level this amplitude is just the left hand side of a 
ladder graph with triple gluon vertices replaced by the effective 

82 
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vertices, r, discussed in the preceding chapter. Loop effects are 
taken into account by replacing the vertical gluon lines of the lad­
der by reggeized gluons. In summary, the QCD Pomeron consists 
of a ladder whose vertical lines are reggeized gluons, with effective 
vertices, r, which couple the reggeized gluons and the rungs of the 
ladder, and with no colour carried up the ladder. 

The Pomeron that is obtained has even charge conjugation, 
which means that it has the same coupling to quarks and to anti­
quarks. A trajectory with similar quantum numbers as the Pom­
eron but which has odd charge conjugation has been proposed by 
Bouquet et ai. (1975) and Joynson et ai. (1975) and is called the 
odderon. The lowest order diagram for odderon exchange is the 
exchange of three gluons in a colour singlet state. We shall not be 
considering the odderon in this book. 

The famous Balitsky, Fadin, Kuraev, Lipatov (BFKL) equation 
is the integral equation which determines the behaviour of the 
Pomeron described above, in perturbative QCD. Several indepen­
dent paths have led directly or indirectly to this integral equation. 
The method that we shall follow in this chapter is that of Fadin, 
Kuraev & Lipatov (1976) and Balitsky & Lipatov (1978). 

4.1 First three orders of perturbation theory 

Our task is to calculate, to leading In s, the amplitude for quark­
quark elastic scattering, i.e. incoming quarks with momentum 
P1, P2 and helicity A1, A2 scatter into a final state of quarks with 
momentum (P1 - q), (P2 + q) and helicity Al', A2 /, via the exchange 
of a colour singlet. Most of the work has already been done in the 
preceding chapter, when we considered the case of colour octet 
exchange in order to obtain the reggeized gluon. The difference 
arises in the colour factors. This chapter is therefore shorter and 
much less painful than the last! 

Since we are interested in colour singlet exchange there is no 
contribution from the tree diagram Fig. 3.2. The lowest order 
which gives a non-trivial contribution is the one loop contribu­
tion shown in Fig. 3.4. In this case the colour factor is different 
from the case of the reggeized gluon. We project out the singlet 
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contribution so the colour factor of both graphs in Fig. 3.4 is 

(1) _ 1 _ N 2 - 1 
Go - N2 Tr(TaTb)Tr(TaTb) - 4N2 . (4.1) 

Thus as can be seen from Eqs. (3.6) and (3.7) in the limit It I ~ s 
where u ~ -8, the real part of the amplitude cancels and we 
are left with a purely imaginary part which can be read off from 
Eq.(3.5): 

(1) . 2 (1)/ d2k 
Al = 4uxs 88)., ).1 8)., ).2 Go 2· 

1 2 k2(k _ q) 
(4.2) 

Since the amplitude begins in order a; (with no In 8 factor), i.e. 
order by order in perturbation theory the Pomeron exchange am­
plitude is suppressed by a power of In 8 relative to the amplitude 
for the reggeized gluon exchange, it follows that the Pomeron has 
even signature. What we mean is that the amplitude for Pomeron 
exchange contains a signature factor: 

t (1 + ei?rap(t)) , 

where the Pomeron trajectory, ap(t) = 1 + O(as ). Expanding 
the above signature factor as a power series in as we see that the 
leading non-trivial order is imaginary and O( as). 

In the next order of perturbation theory the amplitude for 
colour singlet exchange has two components (as was the case 
for the reggeized gluon). The first component is given by (see 
Eq.(3.17) ) 

A (I) - . -gOT / d(P 5 3)A(8)<r (k k )At(8)T(k k ) (4.3) 2a -z-2- .. 2--+31,2 2--+3 1-Q,2-q, 

but in this case the colour factor is given by 
1 _ (1) 
N Tr( TaTb)Tr( TcTd)facefbde - NGo . 

Thus from Eq.(3.22) we see that this gives us a contribution to 
the colour singlet amplitude: 

A (I) .2Na! (1) (/ 2)/ 2 2 
2a = -Z--2-8).., ).1 8)., ).2 Go 8 In 8 k d kId k2 

7r 1 2 

[ 
q2 1 

X ki k~ (ki - q)2 (k2 - q)2 - ki (ki _ k2)2 (k2 _ q)2 

- 1 1 (4.4) 
k~(ki - q)2(ki - k2)2 . 
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The other component comes from the diagrams of Fig. 3.8. In the 
colour singlet case the colour factor is given by 

1 _ N (1) 
N2 Tr(Ta'TbTc)Tr(Ta'TbTc) - 2Go . 

So from Eq.(3.24) and this colour factor we see that the contribu­
tion from these graphs is 

(1) . No:; (1) (/ 2) A 2b = -Z~8>'~>'18>'~>'2GO sIns k 

X J d2k d2k 1 (4 5) 
I 2 ki(kl _ k2)2(k2 _ q)2' . 

with a similar contribution coming from the graphs with one gluon 
on the left of the cut. 

We note that in this case we do not get a cancellation of the 
non-factorizing part and so we do not obtain an expression at the 
two-loop level which is proportional to the one loop amplitude. 
This is due to the different colour factors. 

The total expression to order 0:; is therefore 

(1) 2N 0:; (1) 2 J 2 2 
SmA2 = ---2-s 8>">'18>">'2GO In(s/k) d kId k2 

7r 1 2 

[ 
q2 

X 2 2 
kik~(kl - q) (k2 - q) 

1 1 1 1 1 
2 ki (kl - k2)2(k2 - q)2 2 k~(kl - k2)2(kl _ q)2 . 

( 4.6) 

It will once again prove to be convenient to work in terms of 
the Mellin transform of the amplitude and to this end we define a 
function f(w, kI, k 2 , q) by 

rev d (~) (~) -w-l A(l)( s, t) . 28 8 G(1) 
il k 2 k 2 S = 4zo:s >'~>'1 >'~>'2 0 

J d2kld2k2 
X k~(kl _ q)2f(w,kI,k2,q) (4.7) 

(note that the amplitude has been divided by s before the Mellin 
transform has been taken so that the leading order term has a 
Mellin transform proportional to 1/ w ). 
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Fig. 4.1. Four-gluon Green function. 

f(w, kb k2, q) is related to a Green function with four off-shell 
external gluons (see Fig. 4.1) by 

f(w, kl' k2' q) 
k~(kl _ q)2 

where GS~)J.L2l/1l/2 (w, kI' k2' q) is the Mellin transform of the Green 
function for four external gluons with momenta kb k2' kI - q, k2 - q 
with gluons 1 and 3 (2 and 4) being in a colour singlet state. These 
momenta can be expressed in terms of Sudakov variables PI, A2 
and their transverse components as 

J.L J.L ki J.L + kJ.L kI PIPI - -P2 Ll' 

qJ.L 

with s (= 2PI . P2) ~ 
by the region 

S 

k~ J.L + \ J.L + kJ.L -PI /\2P2 2.1' 
S 
2 2 

q J.L q J.L J.L 
-PI - -P2 + q.1' 
s S 

Iq21. The integral over PI, A2 is dominated 
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The definition of f(w,k1,k2,q) is somewhat different from the 
definition of F(8)(w, k, q) used in the case of the reggeized gluon, 
but has the advantage of being symmetric in kl and k2 and can 
be viewed as a Green function. 

Thus in leading (non-trivial) order of perturbation theory we 
have 

( 4.9) 

and in the next order 
as 1 

h(w,k1 ,k2,q) --2 2" 
'TrW 

x [ q2 _ ~ 1 (1 + k~(kl - q)2) 1 (4 10) 
ki(k2 - q)2 2 (kl - k2)2 ki(k2 _ q)2 . . 

For convenience we choose to define the commonly recurring factor 

_ N as ( ) as = -. 4.11 
'Tr 

In the next section we discuss how to calculate the leading (w­
plane) singularity of f( w, kl, k 2 , q) which determines the leading 
logarithm contribution to the amplitude .4(1)( s, t). 

4.2 The BFKL equation 

As discussed above, the leading logarithm contribution to the 
colour singlet exchange amplitude is given by the infinite sum 
of ladders in which the vertical lines are reggeized gluons, and the 
couplings to the horizontal rungs are given by the effective ver­
tices, r, ofEq. (3.11), but with a colour factor that projects colour 
singlet exchange. 

One may ask why we only allow reggeized gluons in the vertical 
lines. Is it not possible that some of the vertical lines are Pomerons 
themselves, so that we have a similar bootstrap to that which we 
found in the case of the reggeized gluon? The answer to this goes 
back to the statement that the Pomeron starts in perturbation 
theory at one order in as higher than the reggeized gluon. The 
replacement, therefore, of anyone of the reggeized gluons in the 
vertical lines by a Pomeron gives a contribution in any order of 
perturbation theory which is suppressed by a factor of In s and is 
thus neglected in the leading logarithm approximation. 
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+ k' 

Fig. 4.2. Integral equation for f. 

The quantity f(w, kb k2' q) is therefore given by an inte­
gral equation analogous to Eq.(3.46) for the octet quantity 
F(8)(w, k, q). However, the addition of an extra rung introduces a 
colour factor of 

ocdfcaefdbe = N 
Oab 

rather than N /2 as was the case for colour octet exchange. Once 
again the Born term is just the exchange of two reggeized glu­
ons and the integral equation equivalent of Eq.(3.46) is shown in 
Fig. 4.2 and reads 

(4.12) 
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In the special case of zero momentum transfer, i.e. q = 0, we can 
simplify this equation to read, 

[w - 2EG( -ki)]J(w, kl' k2' 0) = 82(k1 - k 2) 

-f d2k' f(w, k', k2' 0) 
+ as ---;- (k' - k1 )2 . (4.13) 

Equation (4.12) has a remarkable property - it is infra-red finite. 
In order to see this we use Eqs.(3.48) and (3.49) and exploit the 
shift of integration variable k' ~ (kl - k') which allows us to 
make the replacements 

1 2 
----0-----,,- ---7 ( 4 .14 ) 
k'2(kl - k,)2 (kl - k,)2[k'2 + (kl - k,)2] 

and 
1 2 

(k' - q)2(k1 - k,)2 - (kl - k,)2[(k' - q)2 + (kl - k,)2]' 
( 4.15) 

Equation (4.12) may then be rewritten: 

wf(w,k},k 2 ,q) = 82(kl-k2) 

+ as f d2k' [ _q2 f( k' k ) 
211" (k' _ q)2ki w, , 2, q 

1 (( k' k ) k if(w,k b k 2 ,q)) 
+ (k' _ kt}2 f W, , 2, q - k,2 + (kl _ k,)2 . 

1 ((k1 - q)2k'2 f( W, k', k2' q) 

+ (k' - k1)2 (k' - q)2ki 

_ (kl - q)2 f (W,k b k 2,q))] (4.16) 
(k' - q)2 + (kl _ k,)2 . 

This is the BFKL equation. 
The infra-red finiteness can now be seen by observing that the 

terms in parentheses multiplying the factor 1/(k' - kt}2 vanish 
at kl = k'. It was in order to make this explicit that the manip­
ulations Eqs.(4.14) and (4.15) were employed. This cancellation 
justifies our hitherto cavalier treatment of infra-red divergent in­
tegrals. This cancellation of infra-red divergences has also been 
demonstrated by Jaroszewicz (1980) using Ward identities and 
working in Coulomb gauge. 
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In fact, the cancellation of the infra-red divergences can be used 
to justify a postiori the use of the strong ordering of the longitu­
dinal components of momenta (i.e. the multi-Regge regime). We 
have established, in Chapter 2, that the leading logarithm con­
tribution to the integration over longitudinal momenta requires 
the multi-Regge kinematics. This provides the leading logarithm 
contribution provided there are no further logarithms generated by 
the integration over transverse momenta. The infra-red finiteness 
of the BFKL equation means that no such extra logarithms can oc­
cur. It is important to appreciate that, in order to ensure the infra­
red finiteness, we had to integrate over all intermediate states (of 
the cut amplitude). It has been pointed out by Marchesini (1995) 
that for some associated (i.e. not fully inclusive) distributions the 
infra-red finiteness is lost and consequently the multi-Regge kine­
matics no longer leads to the leading logarithm contribution. We 
shall return to this matter at the end of Chapter 6. 

4.3 The solution for zero momentum transfer 

To keep the mathematics simpler, we first consider the solution 
to Eq.( 4.16) in the case where q = 0 (i.e. we look at the intercept 
of the QCD Pomeron at t = 0). In this case, the BFKL equation 
becomes 

w f(w, kb k2' 0) = 52(k1 - k 2 ) + ICo • f(w, kb k2' 0), (4.17) 

where 

Q: J d2k ' 
'Jr" (kl - k,)2 

[ ( .1) ki 1 x f w,k,k2 ,0 - 2 2 f(w,k b k 2 ,0) . (4.18) 
[k' + (k1 - k') 1 

This is a Green function equation which is solved if we can find 
the complete set of eigenfunctions, <pi(k) (with eigenvalues Ai), of 
the integral operator (or kernel), ICo, i.e. 

ICo • <pi(k) = Ai<pi(k). 

The eigenfunctions must obey the completeness relation 

L <Pi(k1 )<pi(k2 ) = 52(k1 - k2 ), 
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where the sum over the eigenfunction label, i, may involve an 
integral over a continuous variable. The solution to the Green 
function equation is then given by 

f( k k 0) - " <Pi(kl)<Pi(k2) 
W, b 2, - L.J .\' 

i W - i 
( 4.19) 

Since k is a vector in the two-dimensional transverse space we 
can write 

and 

k (k,O) 
k' (k', 0') 

d2k' = !dk'2dO'. 
2 

By Fourier analysis <pi(k) can be expanded in powers of exp(iO) 
with coefficients <Pi ( k) 

00 inll 
<pi(k) = L <pi(k) eM.:' 

n=O V 271" 
Inserting each of these components into Ko • <Pi and performing 
the angular integral over 0' gives 

l' ,,-n(k) - inll J dk,2 { 1 
'-"0· 'l'i = ase Ik,2 _ k21 

X [(maxt~:, k'2J n <pi(k') - max(~:, k,2) <Pi(k)] 

+ '1', _ 0(k,2 _ k2)_ (420) 4"-':'(k) [k'20(k2 - k,2) k2] } 
J4k,4 + k4 k2 + J4k,4 + k4 k'2 . . 

After the integral over k,2 the last two terms cancel each other, in 
anticipation of which we rewrite the right hand side of Eq.( 4.20) 
as 

fise inll fok 2 k2d~':'2 [ (~) n <pi(k') - <Pi(k)] 

+fiseinlll~ k,~~2k2 [(:,)n <pi(k') - :,:<Pi(k)]. (4.21) 

Now since there is no infra-red divergence (Le. no need to intro­
duce a dimensionful scale to regularize the integrals in Eq.( 4.21)) 
and since the kernel is a dimensionless operator, it follows that 
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¢>'i (k) behaves like a power of k2 • In order to have a set of eigen­
functions that obey the completeness relation we need to restrict 
this power behaviour to the form 

¢v(k) ~ (k2)-1/2+iv, (4.22) 

where -00 < v < 00. Thus the complete eigenfunctions are 

¢>~(k) = 1;o(k2)-I/2+iVein8. (4.23) 
7rv 2 

These are normalized so as to satisfy 

J d2k¢~(k)¢~:*(k) = 8(v - v')8( n - n'). (4.24) 

To find the eigenvalues we insert the function ¢~(k) into Eq.( 4.21) 
and obtain 

in8 n - [11 (z(n-l)/2+iv - 1) 101 (w(n-l)/2-iv - 1)] 
e ¢v(k)as dz ( ) + dw ( ) , o 1-z 0 1-w 

where 
k'2 k2 

Z = Iii and w = k12 • 

Hence the eigenvalue, wn(v), is 

wn(v) = asXn(v), (4.25) 

where 

11 z(n-l)/2 cos(vlnz) - 1 
Xn(v) = 2 dz ( ) . 

o 1- z 
( 4.26) 

This is a standard integral which is given in terms of the digamma 
function, 1/J (the logarithmic derivative of the r function), i.e. 

Xn(v) = 2 (-,E - IRe [1/J ((n + 1)/2 + iv)]), (4.27) 
where IE :::::: 0.577 is Euler's constant. 

Thus the solution for f(w, kl' k2, 0) is 

'x' 1= (k2) iv in(81 -82) 1 
f(w,kt,k 2 ,0) = L dv k; e 2k k ( _ - ()). 

n=O -= 2 27r 1 2 W asXn v 
( 4.28) 

Our first observation is that since v is a continuous variable we do 
not obtain an isolated pole in the Mellin transform which we can 
associate with the intercept of the Pomeron. Leading logarithm 
perturbation theory gives us a cut rather than a pole. We shall 
return to this matter later. 
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We are interested in the leading 1n s behaviour which means the 
singularity with the largest real part in the w-plane. This allows 
us to make a number of simplifications. Since the function Xn{v) 
decreases with increasing n, we are at liberty to restrict the sum 
over n in Eq.{4.28) to the case where n = O. Furthermore, Xo{v) 
decreases with increasing Ivl so we can expand Xo(v) as a power 
series in v and keep only the first two terms. We obtain 

Xo{v) = 41n2 -14((3)v2 + ... , (4.29) 

with ((3) = L:r{1/r3 ) ~ 1.202. In this approximation 

1 100 dv (k 2 )ilol 1 
f(w,k1 ,k2 ,O) ~ -k k -2 k~ ( + 2 2)' 7r 1 2 -00 7r 2 W - Wo a v 

(4.30) 
with 

Wo = 4as1n2 (4.31) 

being the position of the leading singularity (the branch point of 
the cut) and 

a2 = 14as((3). ( 4.32) 
We can perform the integration over v (using contour integra­

tion) and obtain 

1 ( klk2 ) .,fw-wo/a 1 
f(w,kbk2'O)~ 27raklk2 max(k~,kn y'w-wo' 

( 4.33) 
Moreover, one can invert the Mellin transform to expose the 
s-dependence of the colour singlet amplitude. This is most eas­
ily effected by inverting Eq.( 4.30) before integrating over v. We 
find 

F(s,kl,k2,O) ~ ~ (~)Wo 1 
k2k2 k 2 y'7r1n(s/k2) 

1 2 

X -exp - 1 2 (4 34) 1 (1n 2(k2 /k2) ) 
27ra 4a2 1n (s/k2)' • 

This is the inverse transform of Eq.( 4.33), i.e. the full amplitude 
for quark-quark forward elastic scattering is simply (see Eq.( 4. 7)) 

A(l)(S,O) _ . 2 (1)jd2k 1 d2k 2 
s - 4zas8>"~>"18>"~>"2GO ~~F{s,kbk2'O). 

1 2 
(4.35) 
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Note the factor of l/Jln s. It arises from the fact that the Mellin 
transform contains an w-plane cut rather than a simple pole. 

The effect of including higher order terms in the expansion of 
XO (v) is to add terms which are suppressed by powers ofln s, and 
so we are formally justified in neglecting them. 

4.4 Impact factors 

Before we move on to the somewhat more complicated problem of 
solving the BFKL equation for non-zero momentum transfer, we 
digress a little to discuss the matter of impact factors. 

So far we have considered only quark-quark elastic scattering, 
where the external quarks are on shell. In practice, this is not what 
actually happens: the Pomeron couples to a hadron inside which 
the partons are slightly off-shell. Indeed, in the case of quark­
quark scattering, despite the fact that f(w, kl' k2' q) does not 
contain any infra-red singularities, the amplitude nevertheless di­
verges owing to the remaining integrals over kl and k2 which 
develop infra-red singularities when kl or k2 go to zero (or when 
(kl - q) or (k2 - q) go to zero). These infra-red divergences are 
regulated by the slight off-shellness of the quarks (or gluons) to 
which the QeD Pomeron couples inside the hadron. 

This leads us to introduce the quantity <P, which is called the 
impact factor and accounts for the coupling of the Pomeron to 
the hadrons. We will consider here the case of elastic hadron­
hadron scattering. 

For elastic scattering of a hadron with initial momentum PI and 
a hadron with initial momentum P2 (and final momenta PI - q 
and P2 + q respectively), the Mellin transform of the scattering 
amplitude is given by (see Fig. 4.3)t 

A(I)( t) = ~ J d2k d2k <PI (kb q)<p2(k2' q) f( k k ) 
w, (27r)4 1 2 k~(kl _ q)2 W, b 2,q, 

( 4.36) 
where <PI and <P2 are the impact factors associated with the two 
scattering hadrons. The factor, g, is the colour factor for the pro­
cess. 

t Note that A(I)(W, t) is the Mellin transform of 'SmA(l)(s, t)1 s as defined in 
Eq. (4.7). 
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<PI 

Pl- --

P2- --

Fig. 4.3. Pomeron coupling to hadrons. 

With these definitions, for the process of quark-quark elastic 
scattering the colour factor is 

9 = G~l) 
and the impact factor is 

( 4.37) 

In order to calculate the impact factors we would need to know 
a great deal of detail about the wavefunction of the partons in­
side the hadron. Since this information is generally not available, 
models have to be used to calculate these impact factors. We will 
take a very simple model, namely, we consider meson-meson scat­
tering and assume that the quarks are scalar particles and that 
the meson couples to quarks via a point-like coupling with dimen­
sionful coupling constant, h. This last simplification just means 
that we do not have to worry about taking traces of Dirac ma­
trices, and simplifies the expression that we obtain, but it does 
not qualitatively alter the result (the more physical case of spin-~ 
quarks coupling to vector photons is examined in the appendix to 
Chapter 6). In order to regulate the infra-red divergences we will 
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(a) (b) 

Fig. 4.4. Graphs for calculating impact factors. 

have to introduce a quark mass, m, but we shall assume that the 
mesons remain massless. 

The diagrams contributing to ~I are shown in Fig. 4.4. We only 
need to calculate the leading order contribution since all higher 
order corrections are included in the quantity f( w, kl' k2' q). Since 
we are using dispersive techniques to calculate the imaginary part 
of the amplitude (recall that the Pomeron amplitude is purely 
imaginary in the leading logarithm approximation) we consider 
the cut diagrams shown. 

The momenta in the diagrams of Fig. 4.4 are labelled in such a 
way that the cut lines have momenta 1 - kl and PI - 1 and so the 
two-body phase space may be written 

( 2 J d4 kI d41 2 2 2 2 
d P.S.) = (27r)3 (27r)3 8((k1 -1) - m )8((PI - 1) - m ). 

The diagram Fig. 4.4( a) leads to the amplitude, 

J.LV 2 (21- kl)J.L(21- kl - q)V 
A(a) = 47rcxs h ([2 _ m 2 )((1- q)2 _ m 2)' ( 4.38) 

whereas the diagram of Fig. 4.4(b) gives 

AJ.LV h2 (21- kl)J.L(21- 2Pl - kl + q)V 
(b) = 47rCX s ([2 _ m 2)((l- PI _ kl + q)2 _ m 2 )· 

(4.39) 

We have suppressed the colour matrices since they lead to the final 
colour factor of 9 = N2G~1) (the factor N2 arises because we no 
longer average over the incident quark colours). 

As usual, we introduce Sudakov variables for 1 and kl' i.e. 

1J.L = ppi + '\p~ + 1i 

ki = PIPi + '\lP~ + ki.l· 
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Recall that we are working in the eikonal approximation for which 
P1 <t: 1 and so we are only interested in terms which are propor­
tional to piP! in the numerator. The numerators then simplify to 
4p2piP! for Fig. 4.4(a) and -4p(l- p)piP! for Fig. 4.4(b). The 
limits on p are actually P1 < p < 1, but since P1 <t: 1 we can 
neglect P1 compared with p up to corrections of order kif s, q2 / s. 

In terms of the Sudakov variables the phase-space integral then 
becomes 

2 1 1/ 2 2 d(P.S.) = (211")6"4 dpdp1dAdA1d 1 d kl 

X 8((1 - p)A + 12/s + m 2/s)8(p(A - A1) - (1- kl)2/S + m 2/s). 
After using the delta functions to :fix: A and At, and the on-shell 

condition for the final state mesons, 2p1.Q = _q2, we find 

AtLlI _ 411"us h2 4p2(1 - p)2 piP! () 
(a) - (I2 + m2)(I2 + q2(1 - p)2 - 2q . 1(1 _ p) + m2) 4.40 

and 
AtLlI _ _ 411"us h2 4p2(1 - p)2 piP! 

(b) - (I2 + m 2)((I- kt}2 + 2pq. (1- k 1 ) + q2p2 + m 2)' 

( 4.41) 
We now turn to the integral over the phase space. The integra­

tion over the transverse momentum 1 is most easily effected by 
introducing a Feynman parameter, r, to combine the denomina­
tors, i.e. we use 

1 r1 1 
AB = 10 dr [A + r(B - AW' 

( 4.42) 

Thus we find that, 

2 / d(p.S.2)(A(~ + A(~) 

u s h2 tL 11 / 2 ( ) (211" )4 2P1P1 dp dP1 d kl dr p 1 - P 

x [(q2 p2r (1 ~ r) + m2) - [(kl _ pq)2r~l- r) + m 2j] (4.43) 

and we have multiplied by 2 to include the related graphs in which 
the gluons couple to the opposite quark lines from those shown 
in Fig. 4.4. Note that the contribution from Fig. 4.4(a) is minus 
the contribution from Fig. 4.4(b) with kl set to zero. The mi­
nus sign can be understood from the fact that in Fig. 4.4(a) the 
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gluon on the right of the cut couples to the anti quark whilst in 
Fig. 4.4(b) it couples to a quark. This guarantees the vanishing 
of the impact factor c])1 when kl = 0, thereby regularizing the re­
maining infra-red divergence arising from the integration over k l . 

The infra-red finiteness of the colour singlet exchange amplitude 
can be interpreted as the cancellation between divergences aris­
ing from soft virtual gluon corrections (which are associated with 
the reggeization of the gluons in the vertical lines of the ladder 
as explained in the preceding chapter) and gluon bremstrahlung 
(associated with adding more rungs to the ladder). The cancella­
tion occurs for colour singlet amplitudes in accordance with the 
Kinoshita (1962), Lee, Nauenberg (1964) theorem. This theorem 
was originally derived for the case of QED. For non-abelian gauge 
theories it also works when applied to processes with colour singlet 
external states but not for colour non-singlet exchange amplitudes. 
That is why the Pomeron exchange amplitude is infra-red finite 
but the reggeized gluon is not. 

There is a corresponding factor to that of Eq.( 4.43) arising from 
the lower meson-Pomeron vertex ( obtained by making the replace­
ment kl --+ k2 and integrating over ),2 rather than PI)' Each of 
these factors must then be contracted into the four-gluon Green 
function. From Eq.( 4.8), which relates f(w, kl' k2' q) to the Green 
function, and Eq.( 4.36), which defines the impact factors in terms 
of f(w, kt, k2' q), we then find 

c])1(kt,q) = Q.s h2!dP dr p(1-p)[( 22 ( 1) 2) 
qpr1-r +m 

- [(kl - pq)2r~1- r) + m2j] .(4.44) 

The expression for c])2(k2, q) is obtained mutatis mutandis. 
For zero momentum transfer the expression for the impact fac­

tors simplifies to 

Q. sh2! kir(1 - r) 
c])1(kt,O) = - dr 2( 2 ( ) 2)' 6 m kIr 1- r + m 

( 4.45) 

with a similar expression for c])2(k2, 0). 
Following Balitsky & Lipatov (1978) we have organized the 

perturbation expansion in such a way that we consider only the 
leading order contribution to the impact factors and in particu­
lar we describe the meson in terms of its lowest order Fock space 
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component (i.e. a quark and an antiquark), all higher order terms 
being in the quantity f(w, kl' k2' q). This is a matter of choice 
and we could have organized the perturbation expansion differ­
ently. Indeed Mueller (1994), Chen & Mueller (1995), Nikolaev & 
Zakharov (1994) and Nikolaev, Zakharov & Zoller (1994a, 1994b) 
have considered the Fock space expansion of a heavy quark meson, 
starting with a quark-anti quark pair and adding any number of 
soft gluons. From this procedure an expression for the soft gluon 
contribution to the meson wavefunction can be obtained and this 
in turn leads to a determination of the low-x structure function of 
the meson which is shown to obey the BFKL equation. We shall 
have more to say on this way of looking at high energy scattering 
in Chapter 8. 

A derivation of structure functions from the consideration of 
the sum of all possible soft gluon insertions has also been carried 
out by Catani, Fiorani & Marchesini (1990a,b), Catani, Fiorani, 
Marchesini & Oriani (1991) and Ciafaloni (1988). The application 
of the t = 0 BFKL equation in low-x deep inelastic scattering will 
be discussed in detail in Chapter 6. 

4.5 Solution for non-zero momentum transfer 

The solution of the BFKL equation for t (= _q2) not equal to 
zero proved rather recalcitrant. Eight years elapsed from the pub­
lication of the paper by Balitsky & Lipatov (1978), in which the 
solution for zero momentum transfer was presented, until Lipatov 
(1986) solved the equation for non-zero momentum transfer. In 
order to do so it was first necessary to perform a two-dimensional 
Fourier transform to express the amplitude f(w,· . 0) not in terms 
of transverse momenta kl, k2, q - kl, q - k2' but in terms of cor­
responding impact parameters hI, h2, h~, h~ 0 Thus we define 

j(w, hI, h~, h2, h~) J d2kId2k2d2q 

X [ei(kIObl +(q-kl)obl-k2ob2-(q-k2)ob2) f(w, kb k2' ;)] (4.46) 
k~(kl - q) 

and the BFKL equation in impact parameter space becomes 
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(for h -:j: h'). 
These eigenfunctions are best described by expressing the two-

dimensional vectors hi (bi' (}i) in terms of complex numbers, 
namely, 

b b ie· 
i = i e " 
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so that 8~. = 482/ 8bj8b'J. The eigenfunctions of !Co are then given 
1 

by 

-v I ((b - b' ) )n ( Ib - b'l )1+2iv-n 
<Pn(b, b, c) = (b _ c)(b' _ c) Ib - cllb' - cl 

( 4.49) 
for any two-dimensional (transverse) vector c. 

These eigenfunctions were originally identified by exploiting the 
two-dimensional conformal invariance of Eq.( 4.48) and the fact 
that the expression on the right hand side of Eq.( 4.49) is a rep­
resentation of the two-dimensional conformal group. We shall not 
concern ourselves with such technicalities in this book. 

If the eigenfunctions are inserted into Eq.(4.48), then, after 
some straightforward but tedious algebra, it can be shown that 
they are indeed eigenfunctions of !Co with exactly the same eigen­
values as for the q2 = 0 case. In other words, the eigenvalues are 
also given by Eq.(4.25). 

The eigenfunctions ¢~ can be shown to obey the following com­
pleteness relation (returning to two-dimensional vector notation): 

f [OJ dv J d2c(4v2 + n2)¢~(bl' b l, c)¢~*(bz, b2, c) 
n==-C<) CX) 

= l(27r)4(b l - b l )\52(b l - b z )82(bl - b2). (4.50) 

The derivation of this completeness relation is given in the paper 
by Lipatov (1986) and we refer the reader to that paper for details. 
We can also show quite easily that 

82 82 J..V(b I ) (4v 2 + 1 - n 2)2 + 16n2v 2 -V( ') 
b i bi'l"n I, b l , c = (b l _ b l )4 <Pn bb b l , c , 

( 4.51) 
which is useful since the operator 8~ 8~, appears on the left hand 

I I 
side of Eq.( 4.4 7). 

Combining Eqs.(4.50) and (4.51) we obtain the general solution 
of Eq.(4.47): 

}(w, bb bl , b z, b2) = f [OJ dv J d2c 
n=-oo 00 

(16v2 + 4n2) ¢~(bl' bl, c)¢~*(bz, b2, c) ( ) 
X ((4v2 + 1 _ n2)2 + 16n2v2) (w _ asXn(v)) . 4.52 
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Note that for the case where n = ± 1 the integral over v is inter­
preted in the sense of its principal value, namely, 

; co dv [;-" dv rco dv f(O)] 
--Xl --;;2f(v) = ~~ -co --;;2f(v) + i" v2f(v) - 2-E- • 

As in the case of zero momentum transfer we look for the leading 
singularity in w by considering only the n = 0 term in the sum over 
n and expanding Xo(v) up to quadratic order in v. The integration 
over v can then be performed. The result is rather cumbersome 
and we do not write it down here. 

There is an important complication that arises if we wish to con­
sider the coupling of the Pomeron to individual quarks inside the 
hadron. Since Eq.( 4.4 7) is not an equation for j but for a~ a~, j, 

I I 
the solution we have obtained is ambiguous up to the addition 
of any function which is independent of one of hI, hi (and by 
symmetry any function which is independent of one of h2, h2). 
In transverse momentum space, such terms give rise to ambigui­
ties proportional to 82(kI) or 82(ki - q) (and likewise ki +--+ k2). 
These ambiguities are therefore irrelevant when we make a convo­
lution of f(w, kI, k2, q) with impact factors that vanish when any 
of these transverse momenta vanish. 

On the other hand the Born diagram (exchange of two glu­
ons) in impact parameter space should give a contribution to 
!(w, hI, hi, h2' h2) of 

2 

!(w, hI, hi, h2' h2)Born = : In ((hI - h2)2) In ((hi- h2)2) , 

( 4.53) 

We note that Eqs.(4.53) and (4.54) differ by terms which are in­
dependent of at least one of hI, hi, h2' h2. 

Mueller & Tang (1992) have pointed out that the difference 
between Eqs. (4.53) and (4.54) can be accounted for by replacing 
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¢o(b, b/, c) (Eq.( 4.49)) by 

¢~(b,b/,C) ( 
(b _ b /)2 ) 1/2+iv ( 1 ) 1/2+iv 

(b-c)2(b / -c)2 (b-c)2 

_ ( 1 ) l/2+iv 
(bl - c)2 (4.55) 

This replacement has no effect on amplitudes obtained by convo­
lution with impact factors which vanish at zero transverse momen­
tum, but they do affect the coupling of the Pomeron to individual 
quarks and hence are important in discussing certain diffractive 
dissociation processes. This has been considered in detail by Bar­
tels et al. (1995) and Forshaw & Ryskin (1995). 

We defer further studies of the properties of the non-forward 
amplitude until Chapter 7. 

4.6 Deviations from 'soft' Pomeron behaviour 

We have derived the hard Pomeron in (leading logarithm) perturb­
ative QCD. It is quite distinct from the soft Pomeron of Chapter 1. 
Let us summarize the main differences: 

1. The leading singularity of the Mellin transform is a cut and 
not an isolated pole. We shall return to this matter in the next 
chapter. 
2. The position of the leading singularity gives an s-dependence 
sap(t) where , 

ap(t) = 1 + 4as ln2. 

This is typically much larger than the phenomenologically ob­
served intercept of the Pomeron at ap(O) = 1.08 (see Donnachie 
& Landshoff (1992)). Moreover, ap(t) is not independent of the 
nature of the scattering particles. This is because, in QCD, the 
magnitude of as depends upon the typical size of those particles. 

One of the consequences of this is that the unitarity bound 
of Froissart (1961) and Martin (1963) which tells us that cross­
sections cannot grow with s faster than In 2 s, will be very rapidly 
violated. We return to the question of the restoration of unitarity 
in the final chapter. 
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3. The spectrum of singularities of the Mellin transform is the 
same for q2 = 0 as for q2 f- 0, i.e. there appears to be no 
t-dependence of the Pomeron trajectory. 
4. Factorization of the amplitude into the product of couplings of 
the Pomeron to the two incoming hadrons and a Pomeron am­
plitude only occurs inside an integral over transverse momentum, 
i.e. the integrand of the kl' k2 integrals factorizes into two impact 
factors and a Pomeron amplitude as shown in Eq.( 4.36). 
5. The quark-counting rule (Landshoff & Polkinghorne (1971)), 
which tells us that the coupling of a Pomeron to hadrons is pro­
portional to the number of valence quarks inside the hadron, does 
not appear to be obeyed. This is because both diagrams of Fig. 4.4 
need to be considered in order to have an impact factor which van­
ishes when kl ---+ 0 so that the amplitude is infra-red finite. The 
graph of Fig. 4.4(b) clearly violates this quark-counting rule since 
the two sides of the ladder couple to different quarks inside the 
hadron. However, if Mueller & Tang's prescription is used then it 
turns out that in certain kinematic regions (e.g. for large t diffrac­
tive dissociation processes) the amplitude is dominated by the 
contribution to the impact factor from Fig. 4.4(a) and is therefore 
consistent with quark counting. 

Analysis of the interface between the soft and hard Pomerons 
within the context of QCD still presents a challenge. Nevertheless 
the object that we have been describing so far (the hard Pom­
eron) should be observable in processes for which the kinematics 
justifies the use of perturbation theory. We shall turn to a detailed 
study of the phenomenological implications of this hard Pomeron 
in Chapters 6 and 7. 

4.7 Higher order corrections 

So far, all our calculations have been performed in the leading 
logarithm approximation. In other words we have taken the lead­
ing term in an expansion in 1 lIn s. In particular, we have noted 
that the leading term in this expansion gives a leading behaviour 
Swo I Jln s, where Wo is the position of the leading singularity in the 
Mellin transform of the colour singlet exchange amplitude, and is 
O( as). It is perfectly possible that the sub-leading terms could 
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sum to give sWl/(lns)3/2, where WI is also O(as ). We see that, 
for each order in as, this expression is suppressed by a power of 
In s relative to the leading logarithm expansion, but if WI > Wo 

then the summation of the sub-leading logarithms will dominate 
at sufficiently large s. That this does not happen is an 'act of 
faith' based on the assumption that l/Ins is a good expansion 
parameter and that the leading term should therefore dominate 
at large s. 

Furthermore, the problem of the violation of unitarity men­
tioned in the preceding section is, as pointed out by Bartels (1980), 
closely linked with the sub-leading logarithm contributions. The 
leading In s amplitude is obtained by considering cut ladders where 
the only intermediate states considered are those consisting of glu­
ons radiated off a single reggeized gluon. However, unitarity relates 
the imaginary part of the amplitude to the sum over all possible 
intermediate states, including those that cannot be produced via 
colour octet exchange. Thus the leading logarithm approximation 
does not lead to a unitary amplitude. 

It is therefore clear that a full analysis of the sub-leading In s 
contribution is very important for a complete understanding of 
the perturbative Pomeron. 

If we look at all the places where we have made approxima­
tions valid only for leading logarithms: the multi-Regge kinematic 
regime which requires Pi ~ Pi+l, 1.Ai+11 ~ l.Ail as we go down 
the ladder; the eikonal approximation for the coupling of soft glu­
ons; the absence of fermion loops; the domination of ladders with 
reggeized gluons in their vertical lines; etc., we can immediately 
appreciate that extracting the sub-leading In s contribution to the 
colour singlet exchange amplitude is a formidable task. 

Nevertheless, considerable progress has been made both in the 
systematic calculation of the next-to-Ieading logarithmic correc­
tions to colour singlet exchange and in the construction of a theory 
which is unitary. To detail this progress would fill another text 
book and so we limit ourselves here to a brief chronology of the 
progress that has been made. Our aim is to provide the reader with 
a broad overview of the area of sub-leading corrections which will 
provide a platform for further detailed study. 

There are essentially two main lines of research which define 
the progress that has been made in understanding the corrections 
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to the BFKL equation. The first line that we shall discuss is moti­
vated by the desire to ensure that the theory be unitary, whilst the 
second is motivated by the need to compute all the next-to-Ieading 
logarithmic corrections to the BFKL equation. 

The first attempts to correct the BFKL equation to bring 
it in line with unitarity date back to Bartels (1980) and Gri­
bov, Levin & Ryskin (1983). Bartels considered the T-matrix for 
m -+ n scattering. Starting from the lowest order elements (i.e. 
t-channel exchange of a single reggeized gluon) one is able, using 
the (s-channel) unitarity relation of Eq.(1.1), to compute the ma­
trix elements at the next order. For example, feeding the lowest 
order 2 -+ n matrix element into the right hand side of Eq.(1.1) 
leads to the 2 -+ 2 matrix element also at lowest order (for octet 
exchange) or the 2 -+ 2 matrix element at the next order (for 
singlet exchange). The former is the bootstrap relation we used 
to prove the reggeization of the gluon in Chapter 3, whilst the 
latter is none other than the exchange of a BFKL Pomeron. t An 
iterative process can be built up, whereby the higher order cor­
rections are computed from the lower orders in order to fulfil the 
demands of unitarity. The higher order corrections obtained in 
this way correspond to a minimal subset of higher order correc­
tions which is determined by the requirements of unitarity. The 
graphs which constitute this minimal subset are those with the 
exchange of n reggeized gluons in the t-channel, as in Fig. 4.5, 
i.e. included are all those graphs which have the Reggeons inter­
acting pairwise via the exchange of gluon rungs (the interaction 
being described by the BFKL kernel). Clearly, there are many 
other corrections which are not included in this minimal subset. 
For example, any graph which does not conserve the number of 
Reggeons in the t-channel is beyond this approximation. The tran­
sition of two Reggeons to four Reggeons has been studied in the 
papers by Bartels (1993a,b), Bartels & Wiisthoff (1995) and Bar­
tels, Wiisthoff & Lipatov (1995). This work constitutes the devel­
opment of the original 'fan diagram' calculations (Gribov, Levin 
& Ryskin (1983) and Mueller & Qiu (1986)) so as to account for 

t Following Bartels, we have referred to this as the next order contribution 
since the even signature factor associated with the Pomeron exchange is 
suppressed by one power of Ci. relative to the odd signature exchange of 
the reggeized gluon. 
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1 J n 1 z J n 1 z J n 

+ L 

Fig. 4.5. Equation determining the evolution of the n-Reggeon 
state. 

the full Regge kinematics. 

Following Bartels (1980), Kwiecinski & Praszalowicz (1980) 
studied the specific case of the exchange of three reggeized gluons 
in an overall colour singlet state and with odd charge conjuga­
tion, i.e. the odderon. Although the integral equation describing 
the evolution of the n Reggeon state can easily be written (see 
Fig. 4.5), its solution is rather more difficult to extract. Signifi­
cant progress has been made in the papers by Lipatov (1990, 1993, 
1994), Kirschner (1994), Korchemsky (1995, 1996) and Faddeev & 
Korchemsky (1995), where a number of remarkable properties of 
these colour singlet Reggeon compound states have been estab­
lished. We shall discuss unitarization corrections further in the 
final chapter. 

The program of computing the next-to-Ieading logarithmic cor­
rections to the BFKL equation was started in the papers by Lipa­
tov & Fadin (1989a,b), where the leading logarithm tree level am­
plitudes were corrected to account for the relaxation of the Regge 
kinematics (i.e. strong ordering of Sudakov components) to the 
so-called quasi-Illulti-Regge kineIllatics. The radiative correc­
tions (i.e. quark and gluon loop contributions) to the basic vertices 
(Reggeon-Reggeon-particle and particle-particle-Reggeon) were 
computed in the papers by Fadin & Fiore (1992), Fadin & Lipa­
tov (1992, 1993), and Fadin, Fiore & Quartarolo (1994a,b). The 
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two-loop corrections to the gluon Regge trajectory were computed 
by Fadin, Fiore & Quartarolo (1996) and Fadin, Fiore & Kotsky 
(1996). The final element which is required to complete this pro­
gramme of work is to compute the amplitudes for the production 
of a pair of quarks or gluons in the quasi-multi-Regge kinematics 
(i.e. the Reggeon-Reggeon-particle-particle vertices which occur 
due to the relaxation of the strong ordering) and this was under­
taken by Fadin & Lipatov (1996). The cancellation of infra-red di­
vergences is expected to occur between the real and virtual graphs 
and has been demonstrated explicitly for the fermion contribution 
in Fadin & Lipatov (1996). The ultra-violet divergences, which oc­
cur due to the presence of the radiative corrections, do not cancel 
and are renormalized into the running of the QCD coupling. 

Considerable progress in understanding the 'scale invariant' 
part of the sub-leading corrections has been made by White et al. 
(see e.g. Coriano & White (1995, 1996) and references therein). 
Their programme makes use of the simplifications which are af­
forded when one computes amplitudes using the t-channel ana­
logue of Eq.(l.l) (i.e. one considers discontinuities in the t-channel 
rather than the s-channel). The 'Reggeon diagrams' which deter­
mine the sub-leading corrections are then straightforward to clas­
sify and, after utilizing gauge invariance (which is implemented 
in the form of a Ward identity) and the property that the am­
plitudes be infra-red finite, completely calculable. The property 
of infra-red finiteness leads to the fact that only the infra-red or 
'scale invariant' parts of the sub-leading corrections are calculated 
exactly, e.g. this approach is not able to generate the radiative cor­
rections which lead to the renormalization of the QCD coupling. 
However, in the lowest order the method reproduces the complete 
BFKL equation. 

Before leaving our resume on the progress made in computing 
the sub-leading corrections to the leading logarithm approxima­
tion, let us note that significant progress has been made in the 
construction of an effective action which can be derived directly 
from the original action of QCD but which is appropriate in the 
high energy limit. It is the hope that such an action will be useful 
in simplifying the calculation of multi-Reggeon Green functions 
due to the fact that unimportant degrees of freedom have been 
eliminated (recall that QCD at high energies is concerned essen-
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tially with dynamics only in the transverse plane). We refer the 
interested reader to the papers by Lipatov (1991, 1995), Verlinde 
& Verlinde (1993) and Kirschner, Lipatov & Szymanowski (1994). 

4.8 Summary 

• The Pomeron in leading logarithm approximation is obtained 
by considering colour singlet ladder diagrams whose vertical lines 
are reggeized gluons with couplings to the gluon rungs given by 
the effective vertices, r. 
• The integral equation for the Pomeron (the BFKL equation) is 
obtained in the same way as the integral equation for the reggeized 
gluon, but with different colour factors. 
• The Pomeron has even signature. In leading logarithm approx­
imation the amplitude is purely imaginary and is suppressed by 
one power of as relative to the reggeized gluon. 
• The integral equation is solved for the case of zero momentum 
transfer by finding the eigenfunctions of the kernel, /(0, given by 
Eq.( 4.18), and their corresponding eigenvalues. 
• The eigenvalues are continuous, depending on a discrete vari­
able, n, and a continuous variable, v. This leads to a cut rather 
than a pole in the Mellin transform of the Pomeron amplitude, 
with a branch point at Wo, given by Eq.(4.31). The leading loga­
rithm behaviour is 

s1+wo rJlns. 

• The colour singlet exchange amplitude corresponding to the 
Pomeron (2 gluons ---+ 2 gluons) is free from infra-red divergences. 
• The remaining infra-red divergence (which arises from the in­
tegration over the transverse momenta of the external gluons) is 
removed by taking a convolution of the Pomeron with impact fac­
tors. The impact factors determine the coupling of the Pomeron to 
colour singlet hadrons and necessarily vanish when the transverse 
momentum of any of the gluon legs vanishes. 
• The BFKL equation can also be solved for non-zero momen­
tum transfer but it is first necessary to perform a two-dimensional 
Fourier transform and to work in impact parameter space rather 
than with the transverse momenta of the external gluons. The 
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spectrum of eigenvalues is identical to that for zero momentum 
transfer. 
• Some considerable progress has been made in calculating higher 
order corrections to the perturbative Pomeron, but a complete 
summation of all sub-leading In s contributions has not yet been 
achieved. 

4.9 Appendix 

In this appendix we outline the derivation of Eq.( 4.4 7) which gives 
the BFKL equation in impact parameter space. Firstly let us de­
fine 

f'(w k k ) _ f(w, kb k2' q) 
, b 2, q - k~(kl _ q)2 ' 

so that j(w, bb b~, b 2, b~) defined in Eq.(4.46) is actually the 

two-dimensional Fourier transform of j(w, kb k2' q). The BFKL 
equation (Eq.(4.16)) then becomes 

ki(k1 - q)2wj(w,kl,k2,q) = 52(k1 - k 2) + as Jd2k' 
271'" 

{ _q2 j(w, k', k2' q) + ki 2 [(k' - q)2 j(w, k', k2' q) 
(kl - k') 

ki(k1 - q)2, ] 
- [k,2 + (k' _ kt}2] f(w, kb k2' q) 

+ (kl - q)2 [k,2 f'(W k' k ) 
(k1 - k,)2 " 2, q 

- ki (kl - q)2 f'( k k )]} (A 4 1) 
[(k' _ q)2 + (k' _ kt}2] w, b 2, q . .. 

N ow we note the following Fourier transforms (F. T. ): 

-8~1 j(w, bb b~, b2, b~) F.T. {k,2 j(w, k', k2, q)} 

-8~1 j(w, bb b~, b 2, b~) F.T. {(k' - q)2 j(w, k', k2, q)} 

(and identical expressions with k' replaced by kt}, and 

-( 8b1 + 8b1 )2 j(w, bb b~, b 2, b2) = F.T. {q2 j(w, k', k2' q)}, 
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so that 

- J d2k'q2j(w,k',k2 ,q) 

is the (inverse) Fourier transform of 

(27r)252(bI - b]J(ObI + Ob]) 2 i(w, hll hI, h2' h2) 
((hI - hI) is the impact parameter conjugate to k I ). 

We have shown in Section 4.3 that the integral 

J k2 d2k' {ki d2k' 

(k' - kd2[k~2 + (k' - kd2] = Jo k,2 
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(plus integrals which cancel). This is infra-red divergent and so 
we regularize it by writing it as 

lim = 7rln I . loki d2k' (k2 + ..\2) 
).--+0 0 (k,2 + ..\2) ..\2' 

this is the (inverse) Fourier transform of 

1. 1 
1m -;::-::--::-::-:-

).--+0 (h2 + ..\2) 

The Fourier transform of the product of two functions g(k), h(k) 
is given by the convolution 

J d2k'g(k')h(k')eibokf = (2~)2J d2cg(c)h(h-c). 

For example, 

J d2c 
(h_c)2 g(c) 

F T {J d2k' ki (k )} 
. . (kI - k,)2 [k,2 + ((k' _ kd2] 9 I 

and, conversely, 

J d2c (hI - hI)2 -(h h') 
2 [ 2 2] gill (hI - c) (hI - c) + (hI - c) 

= F.T. {J d2k' 2 g(k')}. 
(k' - kd 

(A.4.2) 

(A.4.3) 

(In Eq.(A.4.3) we shift the integration variable on the left hand 
side to (c - hI) and again use the fact that hI - hI is the variable 
conjugate to k l . 
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Inserting kif(w, kb k2' q) or (kl - q)2 f(w, kb k2' q) for g(kd 
in Eq.(A.4.2) where necessary, and likewise k,2 f(w, k', k2' q) or 
(k' - q)2 f (w,k',k2 ,q) for g(k') in Eq.(A.4.3) and recalling that 
an extra power of ki or (kl - q)2 can be obtained by acting on 
the left with -8~ or -8~, , respectively, the result, Eq.( 4.4 7), 

1 1 
follows. 

Note that the product terms in Eq.(A.4.1) become convolution 
terms under the Fourier transform and vice versa. 
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From cuts to poles 

As we pointed out in the preceding chapter, there are several 
important differences between the behaviour of the perturbative 
QeD Pomeron which is the solution of the BFKL equation and 
that of the 'soft' Pomeron predicted by Regge theory and identi­
fied in total hadronic cross-sections and differential cross-sections 
at small tranverse momenta. Although one might have hoped that 
a purely perturbative analysis of QeD would yield results which 
were in qualitative agreement with the behaviour ofthe 'soft' Pom­
eron, it is not surprising that the results are in fact very different. 
Perturbative QeD theory can only be applied reliably to Green 
functions in which all the momenta and their scalar products are 
sufficiently large. In the subsequent two chapters we shall be dis­
cussing experimental situations in which such criteria are obeyed. 
However, total hadronic cross-sections or differential cross-sections 
with low momentum transfer do not obey these criteria and we 
must therefore expect that non-perturbative features of QeD will 
playa crucial role in describing such phenomena. Unfortunately 
a complete analysis of the non-perturbative behaviour of QeD 
is outside our present grasp. Nevertheless, we can investigate the 
'meeting points' ofperturbative and non-perturbative QeD in or­
der to obtain some idea of how non-perturbative effects are likely 
to affect the Pomeron and to what extent we may expect to be able 
to reproduce the behaviour of hadronic cross-sections in QeD. 

One of the most striking differences between the 'soft' Pomeron 
approach to high energy scattering and the perturbative approach, 
calculated by summing the leading In s terms to all orders, is that 
the Mellin transform of the scattering amplitude has a cut rather 
than an isolated pole. Lipatov (1986) pointed out that the origin 
of the cut is largely due to the fact that, in the leading logarithm 
derivation, the strong coupling constant, as, is kept fixed, whereas 
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in QCD we know that it runs. Accounting for the running of the 
coupling, together with some information about the infra-red be­
haviour of Q CD (provided by the non-perturbative sector) leads 
to a discrete pole singularity for the Pomeron rather than a cut. 
We shall begin this chapter by discussing the effect of the running 
of the coupling. 

Before we do so a caveat is in order. The effect of the running 
of the coupling is a part of the corrections beyond the leading 
logarithm approximation which were referred to in the preceding 
chapter. It is, strictly speaking, inconsistent to take this into ac­
count without all the other sub-leading logarithm corrections. The 
hope and expectation that higher order corrections are dominated 
by the effect of the running of the coupling has been used before in 
several branches of high energy physics such as the study of infra­
red renormalons or corrections to the gap equation for dynamically 
generated spontaneous chiral symmetry breaking in Technicolour 
theories. We now add the study of the BFKL Pomeron to this list. 

5.1 Diffusion 
At first sight it may appear unnecessary to account for the run­
ning of the coupling in the BFKL equation. The argument goes 
like this. The scale of typical transverse momenta involved in the 
(Mellin transform of the) BFKL amplitude, f(w, kI, k2' q), is set 
by the impact factors at the top and bottom of the gluon lad­
der. This transverse momentum, kh (we assume it is the same for 
both the impact factors), comes from the 'primordial' transverse 
momentum of partons inside the scattering hadrons. Now since 
the BFKL equation is infra-red safe there is no need to introduce 
any other momentum scale and so the integrations over transverse 
momenta in all sections as we go down the ladder must be domi­
nated by k ~ kh' and so the correct value to take for the coupling 
constant is simply O's(k~). 

This is almost correct but not quite. The correct statement is 
that in any section of the ladder the integrand of the transverse 
momentum integral has a maximum at k ~ kh' but as we go 
further away from the top or bottom of the ladder, where the 
kh is set, then a wider and wider range of transverse momenta 
becomes significant and consequently the running of the coupling 
becomes important. 
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This broadening in the range of typical k values involved in the 
loop integrals as we move along the ladder is a diffusion effect 
which we will now discuss in some detail. It is an important prop­
erty of the BFKL amplitude to which we shall continually return 
in the following chapters. 

Consider the BFKL amplitude for zero momentum transfer, 
F(s,kI,k2'O), as a function of s (rather than its Mellin trans­
form). The asymptotic solution is given by Eq.(4.34). To simplify 
our notation, let us now define 

y 

r 

and 

W(y,r) = Jkik~F(s,kbk2'O). 
For large s we may use the asymptotic solution of Eq.( 4.34). In 

which case, W(y, r) satisfies the diffusion equation: 

OW(y, r) _ ,T,( ) 2 02W(Y, r) 
oy - Wo'l" y, r + a or2 . (5.1) 

Starting from the boundary condition, W(O,r) = 7r8(r), we can 
solve for w(y', r). The diffusion equation tells us that as y' in­
creases so the r-distribution broadens and so the important range 
of r-values increases. 

More quantitatively, we would like to know: (a) what is the 
mean In k 2 at some point along the ladder; (b) what is the RMS 
spread of the In k 2 distribution at this point. To answer these 
questions we need first to appreciate that t 

for arbitrary s' ~ s, i.e. we can view the BFKL amplitude as 
a convolution of two other BFKL amplitudes with an arbitrary 
partitioning of the total energy s. We define y' = In s' jk 2• For a 

t This can be seen by inverting the Mellin transform of Eq.(4.28) and using 
the orthonormality relations of the eigenfunctions. 
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T 

-T 

L-________________________________ ~~y' 

Y 

Fig. 5.1. Diffusion in the r'-y plane. 

given y' we can now ask for the mean of 
k,2 

T' == In Jk2k2 ' 
1 2 

This is what we mean when we ask for the typical transverse 
momentum at some point along the ladder. It is a simple matter 
of Gaussian integration to compute 

(T') = J d2k'T,F( s', kll k', O)F( s/ s', k', k 2 , 0) 
F(s, k1 , k 2 , 0) 

T ( y,) "2 1- 2-y . 
The RMS deviation, (J", is similarly computed: 

(5.3) 

(J"2 Jd2k'(T' _ (r'))2 F (S',kll k',0)F(s/s',k',k2 ,0) 
F( s, kll k 2 , 0) 

2a2Y'(1-~). (5.4) 

In Fig. 5.1 we show a plot which illustrates the diffusion in T'. 
The dotted straight line represents (T') whilst the solid curves are 
of the functions (T') ± (J", i.e. they represent the RMS deviations 
about the mean. 
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The axis of the 'cigar' is tilted since we chose T i- 0, i.e. the 
virtualities of the external gluons are not equal. In order that we 
can trust a perturbative calculation, it had better be that the 
cigar does not dip (or tip!) too far into the region of k/ 2 rv A~CD. 
Remember we need to convolute F( s, kll k2' 0) with the relevant 
impact factors to obtain physical cross-sections. The avoidance of 
diffusion into the infra-red region is equivalent to demanding that 
the impact factors <Pi(ki)/kr be peaked at large kf. 

We have just seen that even if we pick the impact factors so that 
the axis of the cigar is horizontal (i.e. T = 0), we still have to worry 
about diffusion. It is therefore more sensible to conclude that the 
value of as which should be used in the BFKL equation is a s(k/ 2 ) 

rather than a fixed value. However, we must remember that the 
BFKL equation involves an integral over transverse momenta from 
zero upwards and hence, for sufficiently small arguments, the run­
ning coupling becomes far too large for perturbation theory to be 
valid. It is therefore necessary to freeze the coupling below a cer­
tain magnitude of transverse momentum (or perform some other 
regulating procedure). Of course this is a phenomenological pro­
cedure without any fundamental basis in QeD. Nevertheless, we 
now consider how to deal with such a running coupling, at least 
within a reasonable approximation. 

5.2 Accounting for the running of the coupling 

In order to solve the BFKL equation for running coupling t we 
need to find the solutions of the eigenvalue equation: 

CYs(k 2) J (k d~~/)2 [4>i(k/) - [k/2 + ~ _ k/)2] 4>i(k) 1 = Ai4>i(k). 

(5.5) 
The running coupling, CY s (k 2 ), is given (to leading order) by 

_ 2 4N 
as(k ) = (30( (5.6) 

where ~ = In k 2 / A~CD and (30 = 11N /3 - 2nj /3 for nj light 
flavours (we shall sometimes write this as CYs(O). We could have 

t For the time being we continue to work at zero momentum transfer, defer­
ring studies of large momentum transfer to the next section. 
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taken the running coupling inside the integral and written it as 
Ci s (k/ 2 ) so that it runs with the integrated transverse momentum. 
The difference between the two choices depends on whether we 
take the coupling at a particular rung of the ladder to be con­
trolled by the momentum of the gluon above or below that rung. 
Strictly speaking, one should take the maximum of the two, i.e. 
Cis (max(k2 , k/2 )), but this is not necessary since the transverse 
momenta of two adjacent sections of the ladder are indeed of the 
same order. 

Equation (5.5) cannot be solved analytically in the same way 
as we did for the case of a fixed coupling constant. There are 
two possible approaches to finding an approximate solution. The 
first is to approximate the integral equation by a large matrix (by 
discretizing the transverse momentum) and finding the eigenvalues 
and eigenvectors numerically. This was done by Daniell & Ross 
(1989). The other is to try analytic approximations, which is the 
method used by Lipatov (1986) that we discuss here. 

The method used is similar to the WKB approximation for 
solving Schrodinger's equation, in which good approximations are 
found in different regions and these are matched at the turning 
points. Once more we restrict ourselves to the azimuthally sym­
metric solution n = o. Motivated by the fact that for fixed coupling 
constant the eigenfunctions are 

¢~ rv ~exp(ivO, (5.7) 
yk2 

with eigenvalues CisXo(v), we try a solution 

Ja exp ( ±i J~ d(V(()) (5.8) 

for the eigenfunction with eigenvalue Ai. Now, v is treated as a 
function and it is related to the inverse of the function Xo such 
that, 

(5.9 ) 

Equation (5.8) reduces to Eq.(5.7) with C(O set to a constant if we 
take Cis to be fixed. Equation (5.8) will be a good approximation 
as long as the function v does not vary too much with ~. We can 
obtain a good approximation for the prefactor C(O by inserting 
Eq.(5.8) into the eigenvalue equation (Eq.(5.5)) expressed as a 
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differential equation, i.e. 

as (k 2 )xo ( -i :~) C(O exp ( ±i Je d(V(()) 

= AiC(~)exp (±i Je d(V(n) . (5.10) 

Assuming that C(~) and v(O are slowly varying functions so that 
we may neglect second and higher order derivatives, Eq.(5.10) is 
satisfied provided 

X~(lI(O) C'(O + ~x~(v(O)lI'(OC(O = 0, (5.11) 

which is solved by 
1 

C(O ex . 
jlx~(lI(O)1 

(5.12) 

More precisely if v n ( 0 is the nth derivative of the function 1I, then 
the approximation is good so long as 

(5.13) 

(for n ~ 1). This condition may be true for some regions of the 
integration variable t, but it cannot be valid throughout. This 
is because the function v( 0 has a zero when XO = 4ln 2, which 
occurs at some critical value of ~, depending on the eigenvalue Ai, 

Cc = 16Nln 2 
<" f30Ai (5.14) 

and its derivative becomes infinite at that point. Near ~ = ~c, 1I 

may be approximated using Eqs. (4.29), (5.6), (5.9) and (5.14) as 

( Aif30 ) 1/2 

V ~ 56N((3) j(~c - O· (5.15) 

For values of ~ larger than ~c, 1I is imaginary, and from Eq.(5.8) 
we see that the eigenfunction is no longer an oscillating function 
of ~, but an exponentially decreasing function: 

q,(k) ~ q J 1 exp (-le d(llI(()I) , (5.16) 
IX~(1I(O)lk2 ec 

where TJ is a (as yet undetermined) phase. Once again Eq.(5.16) 
is only valid away from the branch point where the inequality 
(5.13) is expected to hold. There is also an exponentially increasing 



120 From cuts to poles 

solution (the function v(O has two branches for ~ > ~c), but 
like all good physicists we throw this away since an exponentially 
increasing eigenfunction is not physically acceptable. 

What about the 'forbidden' region ~ ~ ~c. Since v is small in 
this region, we may use the expansion Eq.( 4.29) to expand XO up 
to quadratic order and rewrite the integral equation as a second 
order differential equation: 

4N ( {)2 ) f3o~ 4ln2 + 14((3) {)e <pi(k) = Ai<pi(k). (5.17) 

Again using Eq.(5.14), rearranging terms and changing variables 
from ~ to z where 

( f30Ai ) 1/3 
Z = 56N((3) (~- ~c), (5.18) 

this equation becomes 

(5.19) 

which is Airy's equation. There exists a solution, Ai( z), which has 
the following asymptotic forms: 

1 . (2 13 / 2 7r) Ai(z) ----7 folzl 1/4 sm "3 lz +"4' z - -00 

1 ( 2 3/2) Ai(z) -7 2Jiz1/4 exp -3"z ,z ----7 00 

(there is also a solution which grows exponentially as Izl ----7 00 

which corresponds to the unphysical discarded solution). 
Now for sufficiently small v where the approximation Eq.(5.15) 

is valid, we have 

~lzI3/2 ~ 1 re d(v(()1 
3 lee 

and from Eqs.(4.29), (5.15) and (5.18), 

IzI1/4V28((3) = ~ [56:ai~3)] 1/6 

Therefore we can match the region where the Airy function is a 
good approximation to the regions ~ ~ ~c (oscillatory solution) 
and ~ ~ ~c (exponentially decaying solution) and, furthermore, 
this matching uniquely determines the phase of the oscillatory 
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solution. We may therefore write the approximate solution (up to 
an overall constant) for all values of t: 

We have introduced one mass scale AQCD and this has allowed 
us to fix the phase of the oscillating solution at the turning point 
te. Now we need one more ingredient in order to compute the 
eigenvalues (or equivalently v( t)). We need to assume that the 
phase is fixed to some angle {) at some value of the (logarithm of 
the) transverse momentum, to. For sufficiently large momentum 
transfer (rather than the zero momentum transfer case that we are 
considering here) this second scale is provided by the momentum 
transfer, t, as we shall discuss below. For small or zero momentum 
transfer processes the value of the phase at the infra-red scale (to) 
must be provided by the infra-red features of QeD and cannot be 
attained from perturbation theory. In other words, we are going 
beyond perturbation theory in assuming the existence ofthis infra­
red scale which characterizes the non-perturbative behaviour of 
the gluons in the ladder. Now we have two scales at which the 
phase is fixed and in analogy with the WKB approximation for 
solving the Schrodinger equation this sets conditions which can 
only be met by certain eigenvalues. In this case matching the phase 
at to gives 

i tc ~ {) = dt'v(() + - + (i - 1)~, 
to 4 

(5.21) 

with i a positive integer. A typical solution is shown in Fig. 5.2. 
The phase is fixed at the point t = to to the value {) and is also 
fixed in region II, so that the Airy function solution in region 
III matches the oscillatory solution (region II) (up to a multiple 
of~) and the exponentially decaying solution (region IV). Below 
to (region I) the solution is dominated by the (non-perturbative) 
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Fig. 5.2. An eigenfunction <pi(k) in different regions of ~ (see 
Eq.(5.20)). Region I is the infra-red region dominated by non­
perturbative behaviour. Region II is the oscillatory region (~ ~ ~c). 
Region III is the region given by the Airy function (~ ~ ~c) and 
region IV is the decay region (~:::p ~c). (We have chosen one of 
the lower eigenfunctions so that the oscillating region can be seen 
clearly. ) 

infra-red features of QeD. Now recall that ~c depends on the eigen­
value Ai. Thus only certain discrete values of Ai can be solutions 
of Eq.{S.21) and hence we find a discrete spectrum of the inte­
gral operator !Co. This means that the Mellin transform is given 
by a sum of isolated poles, the leading one being the solution of 
Eq.(5.21) with i = 1 and is identified as the Pomeron pole. For ~o 
large enough for us to assume that 1/ is always small between ~o 
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and ~c we can use Eq.(5.15) for v. It then follows that 

ftc v(()d( = ( )..i(30 ) 1/2 ~(~ _ ~ )3/2. 
ito 56N((3) 3 c 0 

We can now calculate the first correction to the location of the 
Pomeron pole in terms of the phase angle, {j, i.e. 

ap(O) ~ 1+4In2as~0) (5.22) 

{ _ ((3oas(~0))2/3 [7((3)]1/3 (3({j _ 7r/4))2/3} 
X 1 4N 2ln2 2 . 

Unfortunately, this is only the first term in a slowly convergent 
series and provides a very poor approximation over sensible values 
of ~o. For a full numerical solution of Eq.(5.21) we refer to the 
literature (Hancock & Ross (1992)). We shall shortly turn to a 
study of the running coupling in the case of large momentum 
transfer. In this case the phase is fixed by perturbation theory 
and we are able to quantify the location of the Pomeron (and 
sub-leading) poles. 

However, before leaving the t = 0 case we wish to remark that 
(despite the fact that an exact analytic solution ofthe BFKL equa­
tion with running coupling is not possible) Collins & Kwiecinski 
(1989) have established upper and lower limits for the intercept of 
the leading trajectory. They found that if the running of the cou­
pling is 'frozen' at some infra-red scale, k5 = A~CD exp ~o, then 
the intercept obeys the inequalities 

1 + 1.2as (k6) ::; ap(O) ::; 1 + 4ln 2 a s(k6). (5.23) 

5.3 Large momentum transfer 

For non-zero momentum transfer, we proceed in the same way 
except that we work in impact parameter space and the eigen­
functions are functions of b, b', c. From Eq.( 4.49) we see that the 
quantity which is raised to the power iv is 

( 
(b - b,)2 ) 

((b-c)2(b'-c)2 ' 

so we replace k 2 in the preceding section with this expression for 
the argument of the running of the coupling. The impact parame­
ter c is integrated over and to the approximation to which we are 
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working (leading order in the running) we can set c = 0 inside the 
running coupling and take the quantity ~ to be 

( (b - b /)2 ) 
~ = In b2b/2 A 2 • 

QeD 

If b ~ b' or h' ~ h then the coupling is controlled by the smaller 
of the two impact parameters, as one would expect. 

As discussed by Kirschner & Lipatov (1990) it turns out to 
be convenient to work in the 'mixed representation' where we 
keep explicit the dependence upon the momentum transfer q2. 
In other words we invert one of the two Fourier transforms that 
were performed to get from an eigenfunction which depended on 
k and q - k to h and h'. More precisely, we perform the inverse 
Fourier transform ofthe right hand side ofEq.( 4.49) in the variable 
h + b' which is conjugate to q and keep the remaining combina­
tion b == b - h'. This leads to an eigenfunction which is a function 
of q and b. In this case the running of the coupling is controlled by 
the larger of q2 and l/b2. When b becomes larger than l/q2 the 
coupling stops running and is 'frozen' at u s ( q2). t For larger values 
of b the solution continues to oscillate but with a fixed (angular) 
frequency vo, where 

(5.24) 

The Fourier transform is straightforward but tedious. The details 
are given by Lipatov & Kirschner (1990). The result is 

<Pi(q, b) ex sin (~- vln (b2q2/4) + 8(n;v) + nth) + O(bq), 

(5.25) 
where (h is the angle between b and some fixed direction, and the 
phase 8( n, v) is given by 

eit5 (n,v) = f2((n + 1)/2 + iv)f(n + 1 - 2iv)f( -2iv) 
f2((n + 1)/2 - iv)f(n + 1 + 2iv)f(2iv) . 

(5.26) 

Equation (5.25) is valid in the region bq ~ 1, and we have not 
written down the constant since it is only the phase matching that 
is important for the determination of the permitted eigenvalues. 

t We aSSUllle that q2 is sufficiently large that U.(q2) is small enough to be a 
valid expansion parameter in perturbation theory. 
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In this case we set ~ to 

( ~ 2 2 ) ~ = -In 4b AQCD 

and once again for b < 1/ q the coupling runs as 

~ 4N 
frs(b) = f30~ 

and we have to replace lim (b2) in Eq.(5.25) by 

Je lI(()d(. 

For sufficiently small values ofb (where ~ > ~c), II becomes imagi­
nary and we obtain a solution which decays exponentially with b. 
The region II ~ 0 can again be solved in terms of an Airy function 
and the matching of the phase tells us that for ~ ~ ~c we have 

~ (7r ree ) <Pi ( q, b) oc sin "4 + le lI( ()d( . (5.27) 

Now for consistency we must match the phases in Eqs.(5.25) and 
(5.27) which puts a constraint on the allowed values for ~c and 
consequently also on the allowed eigenvalues, .Ai. We will impose 
this phase matching at ~ = ~o, where 

( q2) 4N 
~o = In -2 - = 2 . 

A QCD f3o fr s( q ) 
(5.28) 

At this point b 2 = b6 = 4/q2 and the coupling freezes (i.e. for 
larger impact parameters than b o the coupling is determined by 
q2 and not ( 2). Strictly, we cannot push Eq.(5.25) as far as this 
because there are corrections of order bq. However, since the cou­
pling varies only logarithmically with b we can go to a value of 
b where bq is still small but us(b) ~ us( q). Again we confine 
ourselves to the azimuthally symmetric solution (n = 0). Setting 
b to b o in Eq.(5.25) (where In(b2q2 /4) = 0) and in Eq.(5.27) and 
matching the phases we obtain 

r ee lI(nd( = (1 + 4i)7r + 15(0, lIO). 
l~ 4 2 

(5.29) 

This fixes the allowed eigenvalues (it is directly analogous to 
Eq.(5.21) for the t = 0 case) in terms of a perturbative phase, 
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5 (0, vo) (:::::: 7r for small vo). As before, for large enough q 2 , we can 
find the approximate solution: 

Ai :::::: 4In2Cis (q2) 

X {1- (flo,,;;q'f' [:~3ir C"(i~ 3/4rl (5.30) 

So again, running the coupling has discretized the cut to a semi­
infinite series of poles (again the analytic result is a poor approx­
imation for attainable values of t). As we shall see in Figs. 5.4 
and 5.5, the leading pole is shifted significantly downwards af­
ter taking asymptotic freedom into account. However, it is still 
too large to account for the behaviour of hadronic total cross­
sections. Moreover, the trajectory is very flat in t (we will discuss 
the t-dependence further in Chapter 7), which is not consistent 
with (for example) the observed shrinkage of the forward diffrac­
tion peak. We can conclude, therefore, that although it is indeed 
possible to obtain an isolated Pomeron trajectory purely from 
perturbative considerations (for sufficiently large values of q2), 
non-perturbative effects are likely to be essential if we are to have 
any chance of reproducing the Pomeron identified in the study of 
soft hadron physics. 

5.4 The Landshoff-Nachtmann model 

We shall spend the rest of this chapter discussing various attempts 
that have been made to incorporate non-perturbative effects into 
the construction of the Pomeron in the hope of reproducing at 
least some of the phenomenological properties of the 'soft' Pom­
eron. 

There are two orthogonal approaches to this. In the first ap­
proach it is assumed that the 'hard' Pomeron that we have been 
considering so far is heavily attenuated at small transverse mo­
menta so that it becomes sub dominant and the 'soft' Pomeron, 
an entirely different object which has nothing to do with gluon 
ladders and belongs completely to the non-perturbative realm 
of QCD, takes over as the dominant contribution to diffractive 
processes. In the second approach the 'hard' Pomeron converts 
smoothly into the 'soft' Pomeron at sufficiently low transverse 
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momenta. Whereas the first approach provides an adequate ex­
planation of why we have so far failed to reproduce any of the 
phenomenological properties of the 'soft' Pomeron, it offers no ex­
planation of how this 'soft' Pomeron might arise from QeD. The 
second approach is more optimistic, although, as we shall see, it 
has so far only made very small steps towards its ultimate goal of 
providing a complete description of the 'soft' Pomeron. 

Landshoff & Nachtmann (1987) developed a model based firmly 
on the Low-Nussinov picture, namely the exchange of two gluons 
in a colour singlet state. However, they argued that since the 'soft' 
Pomeron is very much controlled by the non-perturbative (infra­
red) aspects of QeD, one should not expect the exchanged gluons 
to have a propagator which at low k2 behaves like 

1 

P' 
particularly as gluons are supposed to be confined and so the prop­
agator cannot have a pole. These non-perturbative gluons would 
have a propagator, Dnp(k2), with a much softer k2-dependence. 
This non-perturbative propagator can be related to the vacuum 
expectation value of the square of the gluon operator: 

(01: GJ.ll/(x)GJ.ll/(x): 10) = -i J (~:~46k2Dnp(k2). (5.31) 

In order for the integral on the right hand side of Eq. (5.31) to con­
verge it is necessary that Dnp( k2) falls with increasing k2 at least 
as fast as 1/ k 6 (the perturbative propagator takes over at large 
k 2 ). Therefore, from dimensional analysis the non-perturbative 
propagator must depend on some length scale, a, provided by the 
infra-red region of QeD. 

Landshoff and Nachtmann were concerned with the problem of 
quark counting in the coupling of the Pomeron to hadrons (e.g. 
the Pomeron coupling to a baryon with three valence quarks is 
depicted in Fig. 5.3). A straightforward calculation shows that 
the contribution from the graph of Fig. 5.3(a), where both gluons 
couple to the same quark, dominates over the contribution from 
the graph in Fig. 5.3(b) provided a is small compared with the 
typical hadron radius, R. If this condition can be achieved then 
the quark-counting rule follows with corrections of order a2 / R2. 

The model was confined to the consideration of an Abelian 
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(a) (b) 

Fig. 5.3. Graphs contributing to the coupling of the Pomeron to 
the three valence quarks of a baryon. Graphs of type (a) must dom­
inate those of type (b) in order to reproduce the quark-counting 
rule. 

gauge theory to describe the gluons and did not address the ques­
tion of obtaining the Pomeron trajectory through gluon ladders. 
In a non-Abelian theory one would expect the scales a and R to be 
of the same order of magnitude since they are both generated by 
the same mechanism, i.e. the infra-red properties of QCD. Never­
theless, factors of 2 and 7r would certainly arise and it is perfectly 
possible that the non-perturbative gluon propagator does behave 
(at least qualitatively) in the manner suggested by Landshoff and 
Nachtmann and that a is sufficiently small compared with R to 
account for the observed quark-counting rule. 

5.5 The effect of non-perturbative propagators 

The Landshoff-Nachtmann model described above immediately 
poses two important questions for those who wish to relate the 
'soft' Pomeron to QCD. 

1. Can non-perturbative propagators with the required low mo­
mentum properties be extracted from QCD? 
2. Do gluon ladders with non-perturbative propagators for the 
vertical gluons simulate the 'soft' Pomeron? 

There have been several attempts to extract soft gluon propa­
gators from various non-perturbative approaches to QCD, vary­
ing from lattice techniques to solutions of the Dyson-Schwinger 
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equations. Some of these investigations do indeed give propaga­
tors which are finite as k 2 ----7 0 or at least have a softer singularity 
than a pole - others give propagators which have an even steeper 
singularity as k 2 ----7 0 and such behaviour has been hailed as a 
signal for a confining gluon potential. Recently Biittner & Pen­
nington (1995) have argued that, at least in the Landau gauge, 
a propagator with a small momentum behaviour softer than 1/ k2 

is inconsistent with the Dyson-Schwinger equation. They argue 
that the Pomeron cannot be explained in terms of the Landshoff­
Nachtmann model and that its behaviour is controlled by the cou­
pling of soft gluons to off-shell quarks inside the hadron. 

Notwithstanding this, we shall investigate the effect of soft prop­
agators, D(k2 ), which do not have a pole at k2 = 0 (i.e. propaga­
tors which represent confined as opposed to confining gluons) but 
which, for large k 2 , reduce to the usual perturbative propagators. 

A complete non-perturbative treatment of the Pomeron would 
require knowledge about all the gluon Green functions, not just 
the propagator. Clearly, this is impossible and so we have to com­
promise. One possible approach is to make the assumption that 
the non-perturbative features of QCD manifest themselves mainly 
by the effect of the propagators for soft gluons, whereas for the 
vertices we may continue to use the perturbative expressions. An 
approach along these lines is that used by Hancock & Ross (1992, 
1993) in which such non-perturbative propagators are inserted di­
rectly into the BFKL equation (with running coupling). Thus, for 
example, at zero momentum transfer the kernel, /Co, of Eq.( 4.18) 
is replaced by 

x [f(W, k', k2' q) 

- D(kDD(k,2)D((k l - k,)2) W k k 1 
D(k,2) + D((k1 _ k,)2) f( , 1l 2, q) . (5.32) 

Clearly, the eigenvalues of this operator have to be found by nu­
merical techniques which involve discretizing the transverse mo­
menta kl and k' and diagonalizing the resulting matrix. The 
eigenvalues are discrete since there is an 'ultra-violet' scale, AQCD , 
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encoded in the running of the coupling, as well as an infra-red 
scale, a, contained in the non-perturbative gluon propagator.t In 
other words the infra-red scale is set to ~o = -In(a2A~cD) and 
the fact that a discrete spectrum of eigenvalues is obtained means 
that the infra-red behaviour which has been introduced by replac­
ing the propagators with non-perturbative propagators fixes the 
phase 13 (see Eq.(5.21)) at this infra-red scale, although it is diffi­
cult to understand from analytic considerations exactly how this 
phase fixing mechanism works. 

It turns out that the leading eigenvalue for zero momentum 
transfer (Le. the intercept of the Pomeron) does not depend on 
the exact nature of the non-perturbative propagator but only on 
the infra-red scale. Therefore, in Fig. 5.4 we take the simplest 
possible example in which it is assumed that the infra-red ef­
fects introduce an effective mass l/a for the gluon (i.e. we take 
D(k2) = a2/(1 + a2k 2)), and plot the intercept of the Pomeron 
against 1/ a. We observe that there is a reduction of this intercept 
as the effective mass is increased. The intercept is still a long way 
from the observed value of 1.08 for the 'soft' Pomeron, but it is 
clear that this, albeit naive, attempt to take non-perturbative ef­
fects into consideration has the effect of pushing the intercept in 
the right direction. 

One can also insert non-perturbative propagators into the 
BFKL equation for non-zero momentum transfer and solve numer­
ically. The result of such a procedure (taking 1/ a to be 0.25 Ge V) 
for the leading trajectory and first two sub-leading trajectories is 
shown in Fig. 5.5. We also show (dashed lines) the result of the 
purely perturbative trajectories discussed in the preceding sec­
tion (i.e. the solutions of Eq.(5.30)). We note that these perturb­
ative solutions have a very small slope indicating a very small 
t-dependence of the perturbative trajectories. The trajectories 
obtained using non-perturbative propagators (solid lines) devi­
ate substantially from the perturbative trajectories at sufficiently 
small values of -to 

The slope of the trajectories at the origin increases as the infra­
red scale 1/ a increases. We can see from Fig. 5.6 that a slope at 

t The running of the coupling is assumed to stop at the infra-red scale, i.e. 
a s {q2 < 1/a2) = a,{1/a2). 
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Fig. 5.4. Pomeron intercept against infra-red scale (effective gluon 
mass) l/a for the Hancock and Ross approach (HR) and the Niko­
laev, Zakharov and Zoller approach (NZZ). 

the origin of 0.25 Ge Y as suggested by experiment would require 
an infra-red scale of about 0.8 GeY. On the other hand, it is quite 
clear from Fig. 5.5 that the trajectories are very far from linear 
and that the asymptotic (perturbative) solution has been reached 
at -t = 1 Gey2. 

The above treatment tells us that the inclusion of non­
perturbative gluon propagators directly into the BFKL equation 
produces qualitatively desirable effects as far as the reproduc­
tion of the 'soft' Pomeron phenomenology is concerned. However, 
this approach is clearly far too cavalier. A somewhat more subtle 
procedure has been carried out by Nikolaev, Zakharov & Zoller 
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Fig. 5.5. The Pomeron and the two sub-leading trajectories as 
functions of momentum transfer, -to The solid lines are the so­
lutions with the inclusion of a massive gluon propagator with l/a 
set to 0.25 GeV and the dashed lines are the results obtained using 
perturbative gluon propagators. 

(1994a,b), using the Fock space expansion, which was briefly men· 
tioned in the preceding chapter. In this procedure all the (BFKL) 
radiative corrections are incorporated in the impact factors, which 
are determined by considering the Fock space expansion for the 
wavefunction of the scattering hadron (e.g. for a meson the lowest 
order Fock space state is simply a quark-anti quark pair; the next 
is a quark-antiquark-gluon state, etc.). For each of these states 
a convolution is taken between the square wavefunction and the 
cross· section (calculated at Born level only) for the scattering pro· 
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Fig. 5.6. The slopes of the Pomeron and the first sub-leading tra­
jectories as functions of the infra-red scale (effective gluon mass) 
l/a. 

cess between the Fock states. Thus, for example, the leading term 
for meson-meson forward scattering, where both mesons are con­
sidered to be quark-anti quark pairs, is given by 

A(s, 0) = J d2bld2b2dzldz2Iw(Zl, b l Wlw(Z2, b 2 Wa(bb b 2 ), 

(5.33) 
where W(Zi' bj) is the amplitude for meson i, with momentum Pi 
to consist of a quark-antiquark pair with longitudinal momenta 
ZiPi, (1 - Zi)Pi and be separated by bi in impact parameter space. 
The 'cross-section' , a-(b l , b 2 ), is the lowest order amplitude for 
a process consisting of the exchange of two gluons between two 
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quark-anti quark pairs with impact parameter separations hI and 
h2 respectively. Up to a colour factor this is 

2! 2 (1 - eik.bl )(1 - eik.b2 ) 
8as d k k4 . (5.34) 

This procedure lends itself very easily to the incorporation of non­
perturbative propagators for the long-range gluons, since the long­
range gluons only appear in the cross-section. We therefore simply 
replace the two factors of 1/k2 in Eq.(5.34) by D(k2 ). Once again 
the simplest non-perturbative propagator is obtained by introduc­
ing an effective gluon mass 1/ a. The results for the intercept of 
the Pomeron obtained by Nikolaev, Zakharov & Zoller (1994a,b) 
are also shown in Fig. 5.4. We note that this procedure leads to a 
larger reduction of the intercept than the treatment by Hancock 
& Ross (1992). In fact, the results they obtained are lower than 
the lower limits given by Collins & Kwiecinski (1989) (Eq.(5.23)). 
However, these bounds were obtained within the context of the 
perturbative theory with a running coupling. Incorporation of any 
non-perturbative effects such as an effective gluon mass can lead 
to a violation of these bounds. 

Collins & Landshoff (1992) have taken a somewhat different 
approach to the low transverse momentum behaviour of the BFKL 
kernel. They cut the transverse momentum off below some ko in 
the integral for the part of the kernel which accounts for real gluon 
emission (the first term of Eq.( 4.18)). They found that this did not 
shift the position of the leading singularity in the Mellin transform 
of the amplitude. However, they observed that there should also be 
an upper limit to the transverse momentum integration (from the 
kinematic limits) which should be of order yfS. In the derivation 
of the BFKL equation this upper cut-off was ignored since it does 
not affect the leading logarithm results. Restoring the upper cut­
off effectively takes into account some of the sub-leading logarithm 
corrections. Collins & Landshoff showed that if this upper cut-off 
is introduced (along with the infra-red cut-off) then the intercept 
of the Pomeron is reduced. McDermott, Forshaw & Ross (1995) 
showed that the shift downwards of the leading eigenvalue is less 
than 20% for s/k~ > 10\ i.e. the leading eigenvalue is shifted to 

1 
ap(0)=4ln2a . 

sl +11"2/[2+ ~ln(s/k~)J2 
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Furthermore, in the Collins & Landshoff analysis the strong cou­
pling was kept fixed. The running of the coupling (which is also 
a sub-leading logarithm effect) plays a similar role to the imposi­
tion of an upper cut-off to the transverse momentum integration. 
If the coupling is allowed to run then the effect of imposing an 
upper cut-off on the transverse momentum integral is diminished. 

5.6 The heterotic Porneron 

Levin & Tan (1992) have given some consideration to the ques­
tion of how one might interpolate between the 'hard' and 'soft' 
Pomerons. They postulate a 'heterotic Pomeron' which tends to 
the BFKL Pomeron when the virtuality of the external gluons is 
sufficiently large, and tends to the 'soft' Pomeron for near on-shell 
external gluons. 

We introduce the impact parameter b, conjugate to q, and de­
fine F( s, kI, k2, b) by 

2--J d b iq.j) - -F(w,kI,k2' q) - - e F(s,kI,k2' b). 
271' 

We have shown that even with the running of the coupling 
the dependence of the trajectories with the momentum transfer, 
t = _q2, is very small, so to a good approximation we may neglect 
the diffusion of the impact parameter b as we go down the ladder. 
Therefore F(s, kI, k2, b) also (approximately) obeys the t = 0 
BFKL equation, Eq.( 4.17), which we can write (after inverting 
the Mellin transform) as 

- - 1s ds ' 2 I ~ I - I I -F(s,kI,k2,b)= -dkKo(k,kl)F(s,k,k2,b). (5.35) 
o S' 

We have explicitly written the argument of the kernel. This can be 
generalized to include the case where there is indeed substantial 
diffusion in the impact parameter b and we can also allow for a 
more general energy (s) dependence. The generalized equation is 
then 

f" d~' d2k ' d2b' K(sjsl,k',kI, (b - b')) 10 s 

X F(SI,kI,k2,b' ). (5.36) 
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For the 'hard' Pomeron which obtains at sufficiently large kl' k' 
the kernel is 

(5.37) 

On the other hand, for small k', kl (below ko) the Pomeron has a 
significant b-dependence, but does not depend much on the gluon 
virtuality, so we expect kl to remain fixed at around ko. In this 
limit the generalized kernel has the form 

1((sls',k',k1 , (b - b')) = 52 (k' - ko) (;,) C B(b - b'), (5.38) 

where B is a function which vanishes as its argument becomes 
large, but has a non-zero width. The dynamics which determine 
this function are not yet understood. It cannot be derived from 
usual perturbation theory, but alternative techniques such as the 
liN expansion may shed some light on it. 

The kernel Eq.(5.38) should lead to the 'soft' Pomeron, which 
can be described in terms of a 'ladder' in some sense (although it 
may not be a ladder of gluons) and as we go down the ladder we 
have diffusion in b but not in virtuality k. 

Levin and Tan considered the case where the function B(b - b') 
was determined by a random walk in impact parameter space as 
one goes down the ladder. In such a case the diffusion equation 
becomes 

(5.39) 

The solution to this equation has a dependence on impact param­
eter, b, which is 

exp( - b 2 14cbln s) 
(In s )(l-C) 

and which, when Fourier transformed, gives the t-dependence 

rv SCb t . 

Comparing this with the experimental value for the slope of the 
'soft' Pomeron trajectory we must have 

C& = 0.25 Ge V- 2 • 

The heterotic Pomeron would therefore be determined by a 
kernel which interpolates between the two expressions (5.37) and 
(5.38) as the virtuality of the external gluons varies from kl ~ ko 
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to kl ~ k o. The soft QeD physics which gives rise to this ker­
nel has not so far been identified. Nevertheless, the existence of 
a kernel, which interpolates between the 'two' Pomerons, is an 
intriguing possibility. 

We have been discussing various attempts to explain the soft 
Pomeron within the context of QeD. So far none of these attempts 
has been particularly successful. 

Nevertheless, we have the hard Pomeron which is derived from 
perturbative QeD using no further assumptions about the infra­
red behaviour. Of course, this hard Pomeron is in itself a very 
interesting object and it is important to put it to experimental 
test. In the next two chapters we shall be discussing processes 
such as deep inelastic scattering and large rapidity gap events in 
which the hard Pomeron can (at least in principle) be isolated, 
studied, and compared with the predictions of the 'clean' part of 
QeD. 

5.7 Summary 

• We can view the t = 0 BFKL equation as a diffusion equation in 
the transverse momentum of the emitted gluons (Le. which make 
up the rungs of the ladder). Therefore, a wide range of transverse 
momenta contributes to the amplitude and hence it becomes nec­
essary to consider the running of the QeD coupling. 

• The BFKL equation with running coupling can be solved ap­
proximately using a technique analogous to the WKB approxima­
tion. The modified solution changes from an oscillating solution to 
an exponentially decaying solution above some critical transverse 
momentum. 

• If the phase of the oscillations is fixed at some low transverse 
momentum by the (non-perturbative) infra-red effects of QeD, 
then it can only be matched for certain values of the Mellin trans­
form variable, w. This then leads to isolated poles for the Mellin 
transform of the Pomeron amplitude, as opposed to the cut ob­
tained in the fixed coupling case. 

• The infra-red phase fixing can be obtained by inserting non­
perturbative gluon propagators into the BFKL equation. The in­
tercept of the Pomeron thus obtained is reduced compared with 
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the position of the branch point in the fixed coupling case. How­
ever, the intercept is still too large to explain, by itself, the phe­
nomena which are so well described by the soft Pomeron . 
• Non-perturbative propagators are also required to explain the 
quark-counting rule within the context of the two-gluon exchange 
model of the Pomeron. The non-perturbative propagator intro­
duces a length scale which, if small compared to the hadron ra­
dius, will suppress quark-counting-violating contributions to the 
scattering amplitude in which the two gluons land on different 
quarks within the hadron. 
• A kernel which, for large transverse gluon momenta, tends to 
the BFKL kernel (giving rise to diffusion in s and transverse gluon 
momenta but no diffusion in impact parameter) and which for 
small transverse gluon momenta gives rise to diffusion in s and 
impact parameter but not in gluon transverse momentum, could 
provide a useful interpolation between the seemingly very different 
'hard' and 'soft' Pomerons. 
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Applications In deep inelastic scattering 

The preceding chapters have established the theoretical framework 
which ought to describe the perturbative scattering of strongly 
interacting particles at high centre-of-mass energies (in the Regge 
region). In this chapter (and the next), we shall attempt to place 
this framework under the experimental spotlight. That is to say, 
we shall turn the theoretical calculations of the preceding chapters 
into physical cross-sections for processes which can be measured 
at present or future colliders. 

To construct these cross-sections, we need to specify the impact 
factors which define the coupling of the Pomeron to the external 
particles. These impact factors are then convoluted with the uni­
versal BFKL amplitude, f(w, kI, k2' q) (see Eq.( 4.33)) in order to 
obtain the relevant elastic-scattering amplitude. Remember that 
we are using perturbation theory and so can take our result seri­
ously only if we are sure that the typical transverse momenta are 
much larger than AQCD. As we showed in Section 5.1, for t = 0 
the largeness of the typical transverse momenta is assured pro­
vided we pick processes with impact factors which are peaked at 
large transverse momenta. Clearly, this is not the case for proton­
proton scattering and that is why we were not surprised to find 
that our results were incompatible with the relatively modest rise 
of the p-p total cross-section with increasing s. Another way of 
keeping our integrals away from the infra-red region is to work at 
high-t but we defer this topic until the next chapter. 

In this chapter we shall focus on the process of deep inelastic 
lepton-nucleon scattering. In the centre-of-mass frame, the incom­
ing lepton is scattered through a large angle, radiating a highly 
virtual photon (,*) which scatters inelastically off the incoming 
nucleon (let us say it is a proton, p). The total cross-section for 
,*p - X (where X labels all possible final states) is obtained by 

139 
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taking the imaginary part of the elastic ,*p ---7 ,*p cross-section 
at t = ° (recall the optical theorem of Chapter 1). For high ,*-p 
centre-of-mass energies we can try to use the BFKL amplitude to 
compute this cross-section. As we shall see, the high virtuality of 
the ,* provides the large scale in the associated impact factor. 
Unfortunately, we also need the impact factor associated with the 
proton line. In this case (as is also the case in p-p scattering) 
we have no large scale (indeed we cannot calculate this impact 
factor using perturbation theory) and as such must consider the 
fact that our transverse momentum integrals pick up significant 
contributions from the infra-red region. 

After illuminating the above remarks, we will consider a pro­
cess which should provide a much more direct test of the purely 
perturbative dynamics. By picking the impact factor associated 
with the proton such that it describes the production of a par­
ton of high PT into the final state, we can sidestep the infra-red 
problems which plague the deep inelastic total cross-section. 

In Section 6.4, we shall discuss how our approach relates to the 
more conventional ('Altarelli-Parisi') one. To finish the chapter 
we demonstrate that the assumption of multi-Regge kinematics 
(i.e. strong ordering of the Sudakov components) is not in general 
suitable as we move away from the discussion of elastic-scattering 
amplitudes (and hence total cross-sections). 

6.1 Introduction 

The basic deep inelastic amplitude for electron-proton (e-p) scat­
tering is shown in Fig. 6.1. The incoming electron and proton 
four-momenta are k and p, respectively, and the virtual (space­
like) photon has four-momentum q. The important kinematic in­
variants are 

Q2 _q2 > 0, 

s (p+k)2, 
W2 (p + q)2, 

Q2 
~ 

Q2 
X ~ 

Q2 + W2' 2p· q 
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k 

p 

Fig. 6.1. The basic deep inelastic scattering process. 

and 
p' q Q2 

y= -- ~-. 
p' k :vs 

The approximate equalities become exact in the limit of negligi­
ble lepton and proton masses. We shall subsequently assume this 
limit. As always, we also work in the high energy limit, i.e. 

W2~Q2~M;. 

Since this inequality implies that :v ~ 1 we say we are working in 
the low-:v regime. 

The total e-p cross-section can be written as a contraction of 
a lepton tensor (calculated purely within QED) and a hadronic 
tensor. t The hadronic tensor is then written in terms of two in­
dependent structure functions (utilizing gauge, Lorentz and time­
reversal invariance, parity conservation and assuming unpolarized 
beams), i.e. 

d2
(T 27ra2 {[ ( )2] ( 2) 2 2 } d:vdQ2 = :vQ4 1 + 1 - Y F2 :v, Q - y FL(:V, Q) , (6.1) 

where a is the fine structure constant. Given the assumptions, this 
is a completely general expression and tells us nothing about the 

t For those readers unfamiliar with these details, we refer to the standard 
texts, e.g. Close (1979). 



142 Applications in deep inelastic scattering 

functional form of structure functions. However, we can re-write 
them in terms of the cross-sections for scattering transverse or 
longitudinal photons off the proton, i.e. 

F2(x,Q2) 4Q: (O"r(x,Q 2) + O"L(X,Q2)) 
7ra 
Q2 2 

FL(x,Q2) 47r2aO"L(X,Q ). (6.2) 

Our goal in the next section will be to calculate these structure 
functions as far as is possible (we will struggle with the proton 
impact factor). 

6.2 The low-x structure functions 

We shall obtain the structure functions by computing the imag­
inary part of the amplitude for elastic ,*p scattering (for each 
photon polarization). In the high energy limit, for photons with 
polarization A, we have (from Eq.(4.36)) 

2 9 J d2 k 1 d2k2 
O"),(x,Q ) = (27r)4 ki ki <P),(kl)<Pp(k2)F(x, kI, k2), 

(6.3) 
where <Pp is the proton impact factor and <P), is the impact factor 
for a photon of polarization A. This equation is shown graphically 
in Fig. 6.2 for one particular contribution to the photon impact 
factor (e.g. there are also contributions where the gluons couple 
to the different quark lines). Notice that we have shifted to a 
more convenient notation (with respect to Eq.(4.36)): we have 
suppressed all dependence on the momentum transfer q since it is 
zero and we have taken the inverse Mellin transform of the BFKL 
amplitude so as to obtain it as a function of x ~ Q2 /W2. 

We have already computed the BFKL amplitude (see 
Eq.( 4.28)), i.e. 

(6.4 ) 

This is where the x-dependence of our final result resides and we 
can clearly see that the leading eigenvalue of the kernel leads to a 
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Fig. 6.2. One of the graphs contributing to the amplitude for elas­
tic "(*z; scattering. The '®' symbols represent the convolution of 
the BFKL amplitude with the impact factors. 

strong rise with decreasing z, i.e. 
-Wo 

F rv ---;:z== 
Jln1/z' 

where Wo is as in Eq.(4.31), i.e. Wo = 4iisln2.t This translates 
directly into the same rise at low z for the total deep inelastic 
scattering cross-section (i.e. the structure functions F2( z, Q2) and 
FL(Z, Q2)). We will discuss this behaviour and compare it with 
experimental data shortly. For now let us merely say that the 
data on low-z structure functions does indeed exhibit a strong 
rise with decreasing z. This is the first time a total cross-section 
has been measured which rises strongly with increasing centre-of­
mass energy. Such a rise cannot be explained by the soft Pomeron 

t Recall that 0:. = 3Ci../7r for the three colours of QeD. 
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pole which describes so well the total hadronic cross-sections and 
we are therefore encouraged in our attempt to use perturbative 
QeD. 

It only remains to compute the impact factors and perform 
the convolution. We are unable to compute the proton impact 
factor using perturbation theory and so we choose to take it as a 
phenomenological input. We expect it to describe some primordial 
gluon distribution in transverse momenta which is peaked around 
"-' Mp. The photon impact factor is calculable in perturbation 
theory. The calculation is detailed in Appendix A to this chapter. 

Using these impact factors along with Eqs.(6.3) and (6.4), we 
can deduce the proton structure functions up to the largely un­
known proton impact factor, <1>p(k2). Before discussing this pro­
cedure further we want to deviate a little in order to introduce the 
concept of the gluon distribution (or density) function. 

We define the unintegrated gluon density, F(x,k), to be 
that (dimensionless) 'cross-section' which would be observed if 
the photon impact factor (<1> >.) were replaced by the impact factor 
<1>g where 

Thus we have the definition 

(6.5) 

The gluon density is then defined to be 

where we have introduced the theta (step) function, 0(Q2 - k 2 ), 

which is defined to equal unity when Q2 > k 2 and zero when 
Q 2 < k 2 • This definition of the gluon density will be particularly 
useful when we come to make our comparisons with the Altarelli­
Parisi approach to the structure functions at low x. For now it 
merely simplifies our notation. Note that F(x, k) contains the 
BFKL dynamics (convoluted with the proton impact factor) but 
that, unlike the structure functions, it is not a physical observable. 
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The structure functions are thus given by 

2 ~J d2kF(x,k)(..T. (k) ..T. (k)) 
F2(X, Q) = 47r 2a k4 47r '£T + '£L 

Q2 nj 2 J d2k 11 
-2asLeq k2F(:z:,k) dpdT 
47r q=1 0 

X 1 - 2p(1- p) - 2T(1- T) + 12p(1- p)T(l- T) (6.7) 
Q2p(1 - p) + k 2T(1- T) 

and 

We have multiplied by the factor T(F) = t, to account for the 
colour factor associated with the upper quark loop. The impact 
factors, <PT and <P L, are for scattering off transverse and longi­
tudinal photons, respectively, and their calculation is detailed in 
Appendix A to this chapter. 

Note that our definition of G(:z:, Q2) is such that, in the limit 

k2 ~ Q2 

(which is equivalent to taking the leading log Q2 approximation 
to the BFKL equation and is usually referred to as the double 
leading log approximation), we can write 

~ 2ct s r1 2 2 L.. eq6 in dTPqg(T)G(X, Q ) 
q=1 0 

nj _ 

""' 2 as 2 L.. eqgG(x, Q ), 
q=1 

(6.9) 

where Pqg(T) = t(T2 + (1- T)2) is the usual Altarelli-Parisi split­
ting function. The key to obtaining this expression is to notice 
that, after differentiating Eq.(6.7) with respect to lnQ2, the dom­
inant contribution to the p integral is from the end-points where p 

is within T(l - T)k2/Q2 of either 0 or 1 (modulo terms which are 
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suppressed by "-' k 2/Q2). Later we shall discuss the connection 
between the Altarelli-Parisi and the BFKL approaches in more 
detail. 

Let us conclude this section by introducing a toy model for the 
proton impact factor. We can then compute the low-a: structure 
functions. We will try an impact factor of the form 

(6.10) 

where JL is a scale which is typical of the non-perturbative dynam­
ics and 0 is essentially unknown (except that we know that 0 > ~ 
in order that the k' integral is finite). The k' integral can now be 
performed since 

! d2k' ( k,2 )0 (k,2)-1/2-iv 
k,2 k,2 + JL2 

_ (2)-1/2-ivr(0 - 1/2 - iv)r(1/2 + iv) 
- 7r JL r( 0) . (6.11) 

Thus, in the n = 0 limit, which selects the leading eigenvalue of 
the kernel (the angular integrals are then trivial), we have 

;:-(a:, k) 

k 2 

The constant Ng contains the unknown normalization of the pro­
ton impact factor as well as the colour factor and factors of 7r. 

Substituting this into the expression for F2( a:, Q2), we can also 
perform the k integral, using 



6.2 The low-;e structure functions 147 

Putting all this together we obtain the result that 

(
Q2)1/2N, 1 1 00 

F2(x, Q2) = -2 gas L.>~ r dp r dr! dv 
JL 87r Jo Jo -00 

1 (Q2) iv 
X -2 exp(as xo(v)ln1/;e) 

cosh7rv JL 

x [1 - 2p(1- p) - 2r(1 - r) + 12rp(1 - r)(1 - p)] 

[
P(1- p)] -l/2+iv r(8 -1/2 - iv)r(1/2 + iv) 

x r(1 _ r) r(1 - r)r(8) . (6.14) 

We can perform the v-integral by expanding about the sad­
dle point t at v ;:::; o. This has the effect of decoupling all the 
8-dependence and renders the p- and r-integrals purely numeri­
cal. Thus we can factorize them into some new (and unknown) 
constant, N2. Our final result for F2(;e, Q2) is therefore 

_ 2 (Q 2)1/2 ewolnl/x 
F2(x, Q2) ;:::; N2as '" e -

L.. q JL2 y'asln 1/;e 

x exp (_ In 2(Q2 / JL2) ). 
56as ((3)ln 1/;e (6.15) 

In Fig. 6.3, we show a sample of the HERA data collected 
from e-p collisions at a centre-of-mass energy VS ;:::; 300 GeV. 
The curves arise from Eq.(6.15). What exactly did we do with 
Eq.(6.15) in order to produce these curves? The answer to this 
question highlights the difficulty in making firm predictions for the 
structure function F2( x, Q2). The normalization, N2, is unknown 
(it depends on non-perturbative physics through the normaliza­
tion of the proton impact factor and our ansatz for its shape, i.e. 
8 in our toy model) - so we need to fit it to the data. The scale JL2 
is again of non-perturbative origin. Additionally, we do not know 
the appropriate value of as to take nor do we know the appro­
priate scale to define the logarithms of energy (i.e. do we take 
In 1/x or In 1/2;e, etc?). These are both problems which originate 
because we only summed the leading logarithms in energy and 
can only be improved by going beyond this approximation. For 

t A brief introduction to the saddle point method is given in Appendix B to 
this chapter. 
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Fig. 6.3. Data on the deep inelastic structure function, F2(X, Q2), 
collected by the HI (open circles) (Ahmed et al. (1995)) and Zeus 
(full circles) (Derrick et al. (1995)) collaborations at the HERA 
e-p collider. 

the solid line we chose as = 0.1 and introduced a parameter, Xo, 
such that all occurrences of In 1/ x are replaced by In Xo / x. The 
parameters Xo, N2 and J.L2 were then fitted to the data. The best 
fit values were Xo = 0.6, N2 = 0.30 and J.L2 = 0.31 GeV2 • The am· 
biguity in Xo is equivalent to saying that we really cannot answer 
the question "how low in x must we be to observe the dynam· 
ics associated with the leading logarithm summation?", since this 



6.3 Associated jet production 149 

region is defined to be that for which x ~ Xo. Correspondingly, 
we fitted only to data which satisfy this criterion, i.e. we fitted to 
data with x < 10-2 • Even so, with this four parameter fit, we are 
able to obtain good agreement with the low-x data. The dashed 
line illustrates the strong sensitivity to our choice of as. It is pro­
duced with as = 0.2. The other parameters are correspondingly 
re-fitted, i.e. Xo = 0.01, JL2 = 2 GeV2 and N2 = 0.38, and the fit 
is to all those data with x < 10-3 . Since Wo ex as drives the low-x 
rise we should not be surprised to see a much steeper behaviour 
with as = 0.2. 

We took a model for the proton impact factor (Eq.(6.10)) which 
(after dividing by k 2 ) is peaked in the region of low k 2 • In light of 
the discussion in Section 5.1 of the preceding chapter, we should 
question the validity of our calculation. The diffusion 'cigar' is 
tilted (one end fixed by rv Q2 and the other by rv JL2) and as a 
result there is the danger that contributions from the infra-red re­
gion could possibly be large. At the end of this chapter, when we 
make the connection with the Altarelli-Parisi approach, we shall 
show that (neglecting terms suppressed by powers of rv JL2/Q2) 
the largely unknown infra-red physics factorizes from the known 
perturbative physics. This is good news since it means that we 
can make meaningful perturbative calculations. We defer further 
studies on the total inelastic cross-section to the end of this chap­
ter and turn to a process which avoids many of the problems 
associated with the unknown infra-red effects we have just been 
discussing. 

6.3 Associated jet production 

Although the total deep inelastic cross-section is relatively 
straightforward to measure, the work of the last section has taught 
us that the non-perturbative behaviour of the proton impact fac­
tor spoils a clean perturbative analysis. Our problem was with 
the fact that the proton impact factor introduced unknown non­
perturbative effects into our calculation. We modelled them at the 
price of introducing unknown parameters JL2 and 8. If we could re­
place this impact factor with one which is peaked at a much larger 
scale then we eliminate most of our difficulties (we always need to 
worry about the effects of diffusion if the centre-of-mass energy is 
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Fig. 6.4. One of the amplitudes relevant for associated jet produc­
tion. The lower quark line could also be a gluon line and the 'X' 
denotes a high-PT parton. 

too big). Mueller (1991) appreciated that it is possible to do this 
by insisting on the production of a high-PT parton which emerges 
at a small angle relative to the direction of the incoming proton 
(e.g. in the ,*p eM frame). In Fig. 6.4 we show the relevant am­
plitude. The cross on the lower parton line indicates that it has 
a high transverse momentum. The initial studies into associated 
jet production can be found in the papers by Kwiecinski, Martin 
& Sutton (1992), Bartels, De Roeck & Loewe (1992) and Tang 
(1992). 

We say that the high-PT parton is in the forward direction, i.e. it 
carries a not-too-small fraction, ;Cj, of the incoming proton energy 
(relative to its transverse momentum). Of course, experimental­
ists do not measure this parton. They observe the jet of hadrons 
which it produces. In this limit, we may neglect the transverse 
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momentum of the parton from the proton. Consequently, if the 
associated jet is a quark of flavour i, the proton impact factor, 
<P~, becomes 

i 2 2 <Pp(k2) = 871" O:sqi(Xj, k 2 ), (6.16) 

i.e. the quark impact factor of Eq.( 4.37) multiplied by the quark 
number density. The colour factor for this process is now 9 = 

N G~l) (since we do not average over the colour of the quark loop 
in the photon impact factor). Putting the number of colours equal 
to 3 (as we shall do subsequently in this chapter), 9 = ~. Similarly, 

<P~(k2) = 871" 20:sg(Xj, k~), (6.17) 

for a gluonjet and the colour factor is now ~fabc!abdTr(TcTd) = ~, 
i.e. it is C2(A)/C2(F) = ~ larger than the quark colour factor. 

By observing the associated jet, we fix k2 = kj (assuming the 
incoming parton to be collinear with the proton). Thus, for the 
differential structure functions we can write: 

{)2 F>.(x Q2. X· k?) Q2 3 
x .k? " J' J _-871"20: __ 71"_ 

J J {)Xj{)kl 471"20: 8 2 (271")4 

J d2k [2 4 2 ] 
X k 2 <p>.(k)F(x/Xj,k,kj) G(Xj,kj) + 9~(Xj,kj) , (6.18) 

where 

xg( x, Q2) and 
nf 

.l)xqi(X, Q2) + xiii(x, Q2)] (6.19) 
i=l 

are the momentum distribution functions. Notice that we have 
taken x/Xj in the arguments of F. Since Xj ~ x this is, strictly 
speaking, sub-leading. However our choice reflects the fact that 
the ,*-parton sub-energy is ~ Q2( Xj / x). 

By looking at forward jets, i.e. Xj rv 1 and kl rv Q2, we are 

focusing on a region where the parton densities, G(Xj, kj) and 

~(Xj, kj), are experimentally well measured. In this way we have 
avoided any need to invoke non-perturbative effects directly since 
they have been implicitly factorized into the parton density func­
tions. 

Let us focus on the scattering of transverse photons, the impact 
factor is given in Eq.(A.6.21) of Appendix A to this chapter. Again 
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we can perform the k-integral (using Eq.(6.13)). Keeping only the 
n = 0 term in the BFKL expansion it then follows that 

(6.20) 

Performing the v-integral by the saddle point method about v = 0 
and using 

(6.21) 

(6.22) 

where AT = 971"2/128. 
In the case of longitudinal photons the calculation proceeds 

along similar lines and it is straightforward to show that the 
form is just as for transverse photons, but with AT replaced by 
AL = 71"2/64. Since F2(x, Q2) = FL(X, Q2) + FT(X, Q2), we have 
A2 = 1171"2/128. 

We have suggested that kj should be chosen to be rv Q2. This 

has the clear benefit (provided Q2 ~ A~CD) of ensuring that 
there is no danger of diffusion effects forcing the loop integrals 
(which are implicit in the BFKL amplitude, F(xj/x,k 2,kj)) to 
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pick up large contributions from the infra-red region. In the lan­
guage of Section 5.1, the axis of the diffusion 'cigar' is horizontal 
and well above the dangerous small T' region. However, since the 
effect of diffusion increases with increasing Xj / x there is a limit 
to how low in x we can go before non-perturbative effects start to 
become important in the calculation of the BFKL amplitude, i.e. 
the diffusion 'cigar' becomes too fat. For a more detailed discus­
sion on the effects of diffusion we refer to the paper by Bartels & 
Lotter (1993). 

One other advantage of choosing kj '" Q2 arises once we ap­
preciate that the In 1/ x terms that we have been concentrating 
so hard on summing up are not the only logarithms that can be 
large. There are also In Q2 terms which can compete in the deep 
inelastic regime. The Altarelli-Parisi equations tell us how to sum 
the In Q2 terms which occur in the perturbative expansion. These 
terms compete with the In l/x terms and ideally we should look at 
both series in a complete treatment. However, by picking kj '" Q2 

we ensure that there are no large logarithms in Q2 in the BFKL 
amplitude (only InQ2/kl terms appear). The summation of the 

large In kjlogarithms is implicit in the parton densities, G( Xj, kj) 

and ~(xj, kl), which, as we have said, we are able to read off from 
experIment. 

Let us conclude our discussion of the associated jet process with 
a short study of the feasibility of its experimental detection. The 
main difficulty associated with insisting on seeing a forward jet 
arises precisely because the jet is forward. There is a limit to how 
forward the jet can go, since we need it to appear in the detector 
(i.e. not vanish down the beam-pipe). Also, since there are other 
particles heading down the forward beam-pipe (from the break up 
of the proton) our jet had better be sufficiently well collimated 
and isolated. If 0 is the minimum angle at which the parton can 
emerge (in the lab frame) so that the associated jet is observable, 
i.e. it appears as a discernible jet in the detectors, then it follows 
that 

JkI __ J > tan0. 
XjP 

In addition, the high energy limit demands that x/x j ~ 1. So we 
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Fig. 6.5. Cross-section for the associated jet process. The cross­
sections are in ph. 

have competing constraints which lead to important cuts on the 
allowed phase space. These problems are inherently due to the con­
figuration of the experiment (and the existence of a proton rem­
nant) and cannot be circumvented simply by increasing the proton 
beam momentum (since this makes the jet more forward) nor by 
increasing the electron beam momentum (since we need to detect 
the scattered electron). In Fig. 6.5, cross-sections for the associ­
ated jet process are shown in different x - Q2 bins. The HERA col­
lider is used to define the proton (820 Ge V) and electron (30 Ge V) 
lab frame energies and the typical acceptance cuts. The boundary 
lines are due to the cuts on the angle of the scattered electron and 
the cross-sections are computed with the following kinematical 
constraints: 0 = 5°, Xj > 0.05, Xj/x > 10, Q2/2 < kj < 2Q2. The 
numbers in parentheses are the cross-sections calculated without 
BFKL corrections, i.e. F(s,kll k 2 ,O) = 82(k1 - k 2 ). We took 
these results from the paper by Martin, Kwiecinski & Sutton 
(1992). 
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6.4 The Altarelli-Parisi approach 

In most introductory text books on QCD one will find a discussion 
of the quark-parton model of the proton. The impulse approxima­
tion allows us to consider (in the infinite momentum frame) the 
proton as a system of partons whose transverse motion is frozen 
over the time scales typical of the interaction with the off-shell 
photon. The partons are point-like and so we are led to the concept 
of Bjorken scaling, i.e. the Q2-independence of the deep inelastic 
structure function, F2(x, Q2), and the vanishing of the longitudi­
nal cross-section (the Callan-Gross relation) in the Q2 --+ 00 limit. 

The experimental data is consistent with this picture to a fair 
approximation but scaling violations are seen. These violations can 
be accounted for within the framework of QCD perturbation the­
ory using the so-called Altarelli-Parisi equations. Subsequently, 
we will refer to these equations more correctly as the DGLAP 
equations, after Dokshitzer (1977), Gribov & Lipatov (1972) and 
Altarelli & Parisi (1977). The DGLAP equations rely on the notion 
of proton quark, qi(X, Q2), and gluon, g(x, Q2), density functions 
which specify the number density of partons within the proton. 
For example, the first moment of the quark density (summed over 
all quark ft.avours) is to be interpreted as the fraction of the pro­
ton's momentum carried by the quarks, i.e. 

101 dx[~(x, Q2) + G(x, Q2)] = 1, 

where G(x, Q2) and ~(x, Q2) are defined as in Eq.(6.19). 
Let us recallt the DGLAP equations: 

These equations are easiest to solve in moment space, i.e. we take 
the Mellin transforms of the parton densities using the fact that 

t For an introduction to the DGLAP formalism, we refer to the standard 
texts, e.g. Field (1989), Halzen & Martin (1984), Greiner & Schafer (1994), 
Roberts (1990). 
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N 
lij as e dzzN Pij(Z). 

27r Jo 

(6.24) 

The moment index, N, is not to be confused with the number of 
colours! Although in preceding chapters we labelled the moment 
index w, in this chapter we adopt the notation which is most com­
mon in the literature when discussing the deep inelastic structure 
functions. The DGLAP equations now reduce to a pair of simul­
taneous equations: 

_0_ ( ~N(Q2) ) = (/~ 2nn t;,) ( ~N(Q2) ). (6.25) 
&1nQ2 GN(Q2) Igq I~ GN(Q2) 

This is easy to see after inserting a Dirac delta function to write 

11 dZPij(z)f(x/z) = 101 dz 101 dy ZPij(z)f(y)8(x - yz). 

The solution is now straightforward to obtain. The matrix, Iff, is 
called the anomalous dimension matrix (for reasons that will 
become clear) and is calculable in perturbation theory. 

In terms of the parton densities the deep inelastic structure 
functions can be written in the simple form: 

F>.,N(Q2) L e;Cgj(Q2 / J.L}, as(J.L}))Qi,N(J.L}) 

(6.26) 

where Qi,N(J.L}) is the Nth moment of xqi(X,J.L}). The coefficient 

functions, C((~)) N' are computable in perturbation theory, i.e. all 1"g , 

the long distance physics factorizes into the parton densities. The 
factorization scale, J.L}, is arbitrary and the final result does not 
depend upon it to the given order (in as) of the calculation, i.e. 
the J.L}-dependence is sub-leading in as. It is usually best to take 
J.L} = Q2, so that terms rv as(J.L} )In Q2 / J.L} do not appear in the 
coefficient functions but are absorbed into the parton densities. 
This factorization of long- and short-distance physics is a funda­
mental and very important ingredient of QeD. The parton density 
functions are universal, e.g. the cross-section for Drell-Van pro­
duction of muon pairs in hadron-hadron colliders can be written 
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as a product of two parton density functions (one for each hadron) 
and a hard sub-process cross-section (i.e. q if -7 JL+ JL-). The par­
ton densities are just those which appear in the deep inelastic 
structure functions. Factorization is proven only for the 'leading 
twist' component of the matrix elements (we refer to the review 
by Collins, Soper & Sterman (1989) and references therein for fur­
ther details). In the case of the deep inelastic structure functions 
this means that factorization applies to the cross-section after we 
have thrown away all terms which vanish as Q2 -7 00. 

By way of illustration let us consider the Nth moment of the 
structure function F2,N( Q2). In the lowest order of perturbation 
theory, the gluon coefficient function vanishes (since the gluon car­
ries no electromagnetic charge) and the quark coefficient functions 
are simply unity, i.e. 

nj 

F2(x, Q2) = L e;x[qi(X, Q2) + ifi(X, Q2)]. (6.27) 
i=l 

The quark densities are obtained by solving the DGLAP equations 
with the lowest order splitting functions, i.e. 

N 
Iqq 

N 
Iqg 

N 
Igq 

N 
Igg 

as ( 2 N+l1) 
9 (N + l)(N + 2) - 1 - 4 ~ J ' 
as N 2 + 3N + 4 

12 (N + l)(N + 2)(N + 3)' 

2as N 2 + 3N + 4 

9 N(N + l)(N + 2)' 

as ((N - l)(N + 2) (N - l)(N + 6) 
-2 N(N + 1) + 6(N + 2)(N + 3) 

N+1 2 1 ) 
+ L -;- + -nf . 

j=3 J 9 
(6.28) 

To solve Eq.(6.25), we need to fix the boundary conditions by 
specifying the parton densities at some scale, JL2. The solution 
then gives the parton densities at all other scales. The parton den­
sities which are obtained as the solution to Eq.(6.25), which is ob­
tained using the (lowest order) anomalous dimensions of Eq.( 6.28), 
include all perturbative corrections to the inputs (q( X, JL2) and 
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g(;v,JL2)) which are'" (a s (JL})lnJL}/JL2)n, Le. the corrections are 
computed to leading In Q2 accuracy. At the next order (Le. includ­
ing those terms which are '" a~ in the anomalous dimension matrix 
and '" as in the coefficient functions) the DGLAP equations sum 
the next-to-Ieading logarithms, '" as(JL})( as(JL} )InJL}/ JL2)n. 

Provided we take Q2 large enough (so that the leading twist 
terms dominate) then we expect to be able to factorize the non­
perturbative behaviour of the BFKL amplitude and to re-write it 
in a way which is consistent with the low-z limit of the DGLAP 
formalism. Let us now investigate how this comes about. 

We start with the unintegrated gluon density ofEq.(6.5). It will 
be useful to introduce the variables, and N which are the Mellin 
conjugates to k 2 and z, respectively, Le. 

F N(k) 101 d;v;vN -1 F( Z, k), 

00 (k2) (k2)-1'-1 h d JL2 JL2 FN(k). 

Equation (6.29) can be inverted using 

FN(k) = {1/2+ioo 2d,. (k:)1' FN(!). 
11/2-ioo 7n JL 

With these definitions, we thus have 

1 J d2k' j,1/2+iOO d, FN(k) = -- --~ (k') -
(271")3 7I"k,2 P 1/2-ioo 271"i 

( 
k2 ) l' 1 

X k,2 N - asX(!)" 

(6.29) 

(6.30) 

(6.31) 

As usual, we have kept only the n = 0 term. Also, we substituted 
, for 1/2 + iv and defined X(!) == Xo(v). Using Eq.(4.27) this 
means that 

x(!) = -2,E - .,p(!) - .,p(1- I). 

The k'-integral can be performed (it simply takes the Mellin trans­
form of the proton impact factor). Thus, 

. 1 {1/2+ioo d, _ (k2)1' 1 
FN(k) = (271")311/2_ioo 271"i~p(!,JL) JL2 N - asX(!)" 

(6.32) 
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(6.33) 

where 

(6.34) 

is the (double Mellin transform of the) unintegrated gluon density 
in the absence of any QCD corrections. 

So far we have merely repeated the work discussed earlier in 
this chapter, albeit in a different notation. The moments of the 
structure functions Fi,N( Q2) also take on simple forms in this 
notation. Concentrating on F2,N( Q2) we have 

F2N(Q2) = 7raS~e2J d-y FNh) r1 dpdT (Q 2)'Y (6.35) 
, 12 ~ q 27ri 10 sin7r, fL2 

[p(1- p)]'Y 1 - 2p(1 - p) - 2T(1 - T) + 12p(1- p)T(l- T) 
X T(l - T) p(1- p) . 

To obtain this result, we needed to use Eq.(6.13) to perform the 
k/2 integral. The p and T integrals can also be done (they are 
standard integrals) and yield 

F2,N(Q2) = J 2d:i h2'~2h) FNh) (~:) 'Y, (6.36) 

where 

h2 N, = 7ras ~ e2~ r(l + ,)r(1 -I) 2 + 3, - 3,2 
, () 24 ~ Qsin7r,r(3/2+,)r(3/2-,) 3-2, 

We are then left with only the integral over, to perform. 
The leading twist behaviour is specified by those contributions 

which do not vanish as Q2 / fL2 -'- 00. Since Q2 > fL2, we need 
to close the ,-plane contour in the left half plane. There are two 
poles which lead to finite contributions as Q2 / fL2 ~C)(): 
(a) the pole t > 0 which satisfies N = asx(t); 
(b) the pole at , = 0 (it is only a simple pole since xh) rv 1 h as 
, - 0). 
All other poles (which occur for negative integer values of ,) lead 
to contributions which are suppressed by powers of fL2 / Q2. The 
pole at , = 0 leads to a scaling (Le. Q2-independent) contribution 



160 Applications in deep inelastic scattering 

and can be absorbed into the input quark density. Thus to reveal 
the predicted scaling violations we focus on 8F2,N(Q2)/8lnQ2. 

2,N - 0 -8F (Q2) (Q 2 )i 
8lnQ2 = h2,N(,)RNFNb) JL2 ' (6.37) 

where 
1 

RN = -a/rx'(1)/N' 

In order to obtain the leading behaviour at low :v of F2(:v, Q2) we 
examine this moment equation near N = Wo for which 

and 

. Wo 
hm RN = - ----r=====::~~====~ 

N-+wo v'14as((3)(N - wo) 

1 
lim1=--
N~wo 2 

In this approximation Eq.(6.37) is the Mellin transform of 
Eq.(6.15). It is important to note that the leading :v-WO behaviour 
arises from the singularity in RN and is present for any value of 
Q2. A similar growth at low :v arises from the factor (Q2 / JL2) i but 
this is only important for Q2 ~ JL2. 

Furthermore we see from Eq.(6.37) that deviations from 
Bjorken scaling are present even in the limit of asymptotically 
large Q 2. The size of these 'anomalous' scaling violations is de­
termined by 1. Accordingly, we call this the BFKL anomalous 
dimension and soon we will show that it is equal to the DGLAP 
gluon anomalous dimension,,:' (in the low-:v, i.e. small-N, limit). 
From the fact that x( 1) = N / as and using (for I, I < 1) 

1 00 

xb) = - + 2 L ((2r + 1),2r, 
, r=l 

we can obtain the perturbative expansion of 1: 

1 = ~ + 2((3) (~) 4 + 2((5) (~) 6 + 0 (~) 7 (6.38) 

We are now ready to make the explicit connection with the 
DGLAP result. At low:v, we are not sensitive to the valence quarks 
so the q and if distributions in the proton are equal. Also, in the 
BFKL treatment we ignored intrinsic quark densities, so we must 
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drop all terms ex: ~N(Q2). Finally, the lnQ2 derivative of the co­
efficient functions is sub-leading. Equation (6.26) then becomes 

8F2,N( Q2) (( 2) N CN( ))G (Q2) (6.39) 8lnQ2 = eq 2nrfqg + 9 1, as N , 

where 
8GN(Q2) N 2 

8lnQ2 = 'ggGN(Q ). (6.40) 

For fixed coupling this means that 

GN(Q') ~ GN(P.') (~:)"i: (6.41) 

Thus, for consistency with Eq.(6.37), ,.:0 = 1. Note that the equiv­
alence of the first term in the expansions (in iis/N) of ,.:0 and 1 
can be seen explicitly by comparing Eq.(6.38) with the N -+ 0 
limit of Eq.(6.28). In addition, we also require that 

((e;)2nn:n + C: (1, as))GN(JL2) = h2,NRNF'iv(1, JL). (6.42) 
To summarize, we have shown that the leading twist part of 

the BFKL solution for the structure function factorizes in a man­
ner consistent with the DGLAP approach. The equivalence of the 
(leading-twist) BFKL solution and the N -+ 0 limit ofthe DGLAP 
solution allows us to identify the DGLAP gluon anomalous dimen­
sion, ,.:0, with the BFKL anomalous dimension, 1 (calculated to 
all orders in iis/N). The equivalence also allows us to identify the 
DGLAP coefficient functions with the BFKL 'coefficient function' 
as in Eq.(6.42). However, there is an ambiguity in extracting the 
coefficient function which we shall now examine. 

In the lowest order of perturbation theory, 1 = iis/N, RN = 1, 
h2,N = iis(e~)nf/9 and ,~ = iis/18. To this order, Eq.(6.39) 
reduces to 

8F2,N(Q2) = ~ 2iisG (Q2) 
8lnQ2 ~eq9 N . (6.43) 

Comparing with Eq.(6.9), we see that (at this lowest order) the 
BFKL gluon density defined by Eq.(6.6) is precisely the DGLAP 
gluon density. Also, comparison with Eq.(6.37) forces us to iden­
tify 
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However, beyond the lowest order RN starts to deviate from 
unity. Since we do not know the scale at which to evaluate as we 
have the freedom to either: absorb all or part of RN into the input 
density, GN(JL2 ), or absorb all or part of RN into the definition of 
(e~)2nn~ + Ct"(l, as). This ambiguity is a factorization scheme 
ambiguity and is a direct result of the leading logarithmic nature 
of the calculation. 

We know, from the standard renormalization group approach, 
that it is appropriate to evaluate the anomalous dimensions at the 
scale Q2 in the DGLAP evolution. This then forces us to make the 
replacement, 

(6.44) 

and we have made explicit the fact that t should be evaluated at 
as (q2) on the right hand side. Similarly, we evaluate the coeffi­
cient function at a s ( Q2), i.e. h2,N( Q2). The scheme ambiguity is 
still present in RN, so we have no guidance as to what scale to 
evaluate it at. The replacement of Eq.(6.44) arises as a result of 
the radiative corrections which cause the QCD coupling to run. As 
such it is formally beyond the leading BFKL approximation. For 
a more detailed investigation of factorization in the high energy 
regime see the paper by Catani & Hautmann (1994). 

6.5 Exclusive distributions and coherence 

The derivation of the BFKL equation presented in Chapters 3 
and 4 relies upon the validity of the Regge kinematics (i.e. strong 
ordering in the Sudakov variables). It turns out that this kinematic 
regime is generally only applicable for the calculation of elastic­
scattering cross-sections (and hence total cross-sections), which is 
where we have been using it hitherto. 

In this section we would like to generalize the multi-Regge kine­
matics so as to allow the calculation of more exclusive quantities, 
e.g. the number of gluons emitted in deep inelastic scattering. This 
generalization is made by accounting for QCD coherence effects. 
Here we present only a brief outline of the motivation for coher­
ence in QCD but refer the reader to the wealth of literature (see 
e.g. Dokshitzer, Khoze, Troyan & Mueller (1991) and references 
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(1) (1) 

Fig. 6.6. The amplitude for gluon (0) to decay into two gluons (1) 
and (2) with opening angle (h and for gluon (3) to be radiated 
off either gluon (1) or gluon (2) (as shown) with opening angle 
82 • where 82 > 81, is equivalent to the amplitude for gluon (0) to 
radiate gluon (3) with opening angle 82 and then to decay into 
gluons (1) and (2). 

therein) for a more detailed treatment. We will show that, when 
accounted for, coherence leads to terms which have additional log­
arithms (in s) compared to the naive BFKL expectations. These 
extra logarithms cancel for fully inclusive quantities but not for 
more exclusive ones (where they provide the dominant contribu­
tion). For more details regarding coherence in low-x physics we 
refer to the work of Ciafaloni (1988), Catani, Fiorani & March­
esini (1990a,b), Catani, Fiorani, Marchesini & Oriani (1991) and 
Marchesini (1995). 

If we consider a time-like (off-shell) parent gluon decaying into 
two daughter gluons with opening angle (}l, followed by a fur­
ther emission of a grand-daughter gluon from one of the daughter 
gluons with opening angle (}2, where (}2 > (}l, then at the time of 
emission the transverse component of the wavelength ofthe grand­
daughter gluon is larger than the transverse spatial separation of 
the two daughter gluons. In that case the grand-daughter gluon 
cannot resolve the colours of the individual daughter gluons, but 
only that of the parent, so that the amplitude for the process is 
equivalent to the amplitude for the· process in which the grand­
daughter gluon is emitted directly off the parent, see Fig. 6.6. This 
is the phenomenon of colour coherence and it leads to the an­
gular ordering of sequential gluon emissions in a cascade, i.e. if 
the opening angle of the ith gluon is (}i then (}i < (}i-l' 
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In the case of deep inelastic scattering it is convenient to con­
sider successive gluon emission from the target proton, which has 
zero transverse momentum, up towards the virtual photon, which 
has momentum k transverse to the electron-proton system given 
by 

k 2 = Q2(1 _ y). 

Suppose the (i - 1 )th emitted gluon (from the proton) has energy 
Ei-l and that it emits a gluon with a fraction (1 - Zi) of this 
energy and a transverse momentum of magnitude qi. The (small) 
opening angle Oi of this emitted gluon is given approximately by 

qi 
(}i ~ , 

(1- ZdEi-l 

where Zi is the fraction of the energy of the (i - 1 )th gluon carried 
off by the ith gluon, i.e. 

Ei 
Zi = --. 

Ei-l 

Colour coherence leads to angular ordering with increasing open­
ing angles towards the hard scale (the photon) so in this case we 
have 0i+l > Oi, which may be expressed as 

~+l > ~~ ( ) 
(1 - Zi+l) (1 - zd' 6.45 

In the multi-Regge limit where Zi, Zi+l ~ 1 this reduces to 

qi+1 > Ziqi· (6.46) 

For the first emission, we take qozo == JL. The kinematics of the 
virtual graphs (which reggeize the t-channel gluons) is similarly 
modified and ensures the cancellation of the collinear singularities 
in inclusive quantities. 

In Chapters 2 and 3 we assumed that the transverse momenta 
of the gluons in the ladder were all of the same order of magni­
tude so that the requirement Zi~ 1 meant that the inequality 
Eq.(6.46) was automatically satisfied. However, we know that we 
must integrate over all transverse momenta of the gluons so that 
we sample 'corners' of transverse momentum space for which the 
inequality is violated. As we shall show below, these 'corners' can 
give rise to super-leading logarithms. These super-leading loga­
rithms cancel when we consider inclusive processes for which we 
may apply dispersion techniques discussed in Chapter 3, but for 
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certain exclusive processes they do not cancel and furnish the lead­
ing behaviour as s - 00. 

Before imposing the constraints of angular ordering, it is nec­
essary first to re-write the t = 0 BFKL equation in a form which 
will be suitable for the study of the more exclusive quantities. We 
can rewrite the t = 0 BFKL equation of Eq.( 4.13) in the form 

fw(k) = fSO)(k) 

+ as J d2; r1 dz ZW ~R(Z, k)0(q - J1)fw(q + k), (6.47) 
7rq io Z 

where q = k' - k is the transverse momentum of the emitted gluon 
and the gluon Regge factor is 

/
1 dz' J d2q 

In~R(z,k)=-as -, -20(q-J1)0(k-q). 
z z 7rq 

(6.48) 

Equation (6.47) is easy to derive from Eq.(4.13) once we notice 
that 

(6.49) 

where l+EG( _k2) is the gluon Regge trajectory derived in Chapter 
3. In addition we used the fact that 

1 101 dz 
( k2) = -zW~R(z,k). 

w - 2EG - ° z 
(6.50) 

The driving term, fSO)(k), includes the virtual corrections which 
reggeize the bare gluon. This form of the BFKL equation has a 
kernel which, under iteration, generates real gluon emissions with 
all the virtual corrections summed to all orders. As such, it is 
suitable for the study of the final state. Of course fw includes the 
sum over all final states and as such the J1-dependence cancels 
between the real and virtual contributions. However, we intend 
to investigate more exclusive quantities which are no longer infra­
red finite. The scale J1 should then be regarded as the scale above 
which we can resolve real gluon emission. 

Let us now take a specific example. We will look at the con­
tributions to the structure function of an on-shell gluon which 
come from the emission of either one or two gluons which are 
constrained to have their transverse momentum less than some 
scale Q. The energy of the bare on-shell gluon is fixed, thus our 
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boundary condition is 

p(O)(x, k) = 5(x - 1) 52(k), 

f~O)(k) = 52 (k). 

I.e. 

(6.51) 

Since the gluon is on shell it does not pick up any corrections due 
to the reggeization (i.e. we used EG(O) = 0). 

The structure function ( defined by integrating over all 
qj 2 :::; Q 2) thus satisfies the equation, 

0(Q - j1) + f IT {as J dZi d2~ 
j=l i=l Z, 7rqj 

x ~R(Zi' ki)zi 0(qi - j1)0(Q - qi)}. (6.52) 

and we have isolated the contributions from i real gluon emissions 
by iterating the kernel explicitly. Again non-boldface means the 
modulus of the two-vector. 

Ignoring the coherence effects for the moment, the contribution 
to the structure function from the emission of a single gluon is 
thus 

(1) 2 2 _ - JQ2 d2ql 101 dZ1 w Pw (Q ,j1) - as -2- --Zl ~R(Zl,k1) 
/1-2 ql 0 Zl 

(6.53) 

and kl = -ql (since the initial gluon is on shell). The Regge 
factor can then be integrated and yields, 

In ~R(Zb ql) = -asln (1/ zI)lnqU j12. (6.54) 

Let us compute our result as a power series in as, i.e. we expand 
the Regge exponential. Thus 

Q2 d 2 1 d 
P (l) (Q 2 2) - - J ~ 1 ~ w w ,j1 - as 2 Zl 

/1-2 q1 0 Zl 

X [1- asln~ln q~ + ~ (asln~ln q~)2 + o(a~)l.(6.55) 
Zl j1 2 Zl j1 

The Zl -integral can be done by parts and yields 

p2)(Q2,j12) = a Sln Q2 _~ (a s ln Q2)2 +~ (as ln Q2)3 +O(a4). 
W j12 2 W j12 3 W j12 s 

(6.56) 
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Similarly, the contribution from two-gluon emission is 

F~2)( Q2, JL2) = a; rQ2 d2ql d2q2 r1 dZ1 zr dZ2 z~[l + O( as)] 
iJ..L2 7rq1 2 7rq2 2 io Zl Z2 

(;In ~:) \ 0(,,;). (6.57) 

In fact, a more detailed treatment (Marchesini (1995)) reveals 
that the inclusive structure function satisfies 

Fw(Q2) == f:F~i)(Q) = (Q:)'Y, 
i=O JL 

(6.58) 

where t is the BFKL anomalous dimension. 
As we alluded to at the start of this section - these results (with 

the exception ofEq.(6.58)) are wrong. We must modify Eqs.(6.47) 
and (6.48) to account for coherence, so that Eq.(6.52) becomes 

Fw(Q',p.') ~ 0(Q - 1') + t, il {a.f~; ~.=: 
x .6.(Zi' ki)zi 0(qi+l - ziqi)0(Q - qi)}, (6.59) 

where the coherence improved Regge factor is 

In.6.(zi, ki' qi) = - r1 dz J d2;as 0(q - ziqd0(k i - q). (6.60) iz; z 7rq 

Let us now re-compute the single gluon emission cross-section. 
The Regge factor now becomes (because kl = ql) 

In.6.(Zl' kl' ql) = -asln 2(1/ z). (6.61) 

Expanding as a power series in as we now obtain 

F~1)(Q2,JL2) = as rQ2 d~i rQ
/
k dZ1 zr [1- asln2~ + O(a;)]. 

i J..L2 ql io Zl Z 

(6.62) 
The z-integrals can again be performed using 

IoQ / k dzzw 1 - + 0(1), 
o z W 

Io Q / k dz 2 
-zwln 2z 3 + 0(1), 

o z W 
(6.63) 
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and we neglect those terms which are not singular in the limit 
w -+ 0 (which corresponds to keeping those terms which are lead­
ing in the Regge limit and beyond). Our final answer for the co­
herence improved calculation of the single gluon emission rate is 
therefore 

[ 
- Q2 -2 Q2 1 1 2 2 as as F( )(Q ,J.L ) = -In- - 2-ln- +.00 . 

w W J.L2 w3 J.L2 
(6.64) 

Inverting the Mellin transform, we therefore see that the cross­
section for single gluon emission is enhanced over the naive BFKL 
expectation by a factor of In s. This logarithm (and those that oc­
cur at higher orders in as) must be cancelled in the inclusive sum. 
We can therefore write the cross-section for two-gluon emission, 
I.e. 

F(2)(Q2,J.L2) = [~ (asln Q2)2 + 2a;ln Q2 +.0 oj. 
w 2 W J.L2 w3 J.L2 

(6.65) 

Although we expect coherence to affect the details of the final 
state dramatically, it also generates sub-leading corrections to the 
inclusive BFKL cross-section. These corrections are embodied in 
the solution to Eq.(6.59) and have been studied in the work of 
Kwiecinski, Martin & Sutton (1995). 

Before finishing this chapter, a few words are in order regarding 
other processes that allow a study of the BFKL (hard) Pomeron 
in the t = 0 limit. In Section 6.3 we considered the associated jet 
production in deep inelastic scattering. By now, it should be clear 
that a similar process can be studied in hadron collider experi­
ments (or in ,-p collisions with nearly on-shell photons), namely, 
events containing two jets which are produced so that they are 
separated by a large interval in rapidity (Le. double associated 
jet production) (Mueller & Navalet (1987), Del Duca & Schmidt 
(1994a,b), Stirling (1994)). The hadron impact factors ofEq.(6.16) 
and Eq.(6.17) are then applied to each hadron-jet vertex. Simi­
larly, rather than insisting on the production of a forward jet (or 
forward and backward jet pair) we could look for heavy quark pro­
duction in these rapidity regions. The quark mass then provides 
the large scale in the impact factor( s) (see e.g. Catani, Ciafaloni & 
Hautmann (1990,1991), Collins & Ellis (1991) and Levin, Ryskin, 
Shabelskii & Shuvaev (1991)). 
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6.6 Summary 

• The high energy limit of deep inelastic scattering corresponds 
to the limit oflow Bjorken-x. The leading log 1jx approximation 
leads to the low-x behaviour which is characterized by the leading 
eigenvalue of the BFKL kernel, i.e. F2( x, Q2) rv x-wo (Q2)1/2. 

• The diffusion properties of the BFKL equation mean that a 
large contribution to the total deep inelastic cross-section can arise 
from the non-perturbative domain where the typical transverse 
momenta are not large. 

• A process which is better suited to the application of perturb­
ative QCD is that of associated jet production. The observation 
of an additional jet, travelling close to the direction defined by 
the incoming hadron, ensures the clean factorization of the non­
perturbative dynamics into known parton distribution functions. 

• The more conventional DGLAP formalism of deep inelastic scat­
tering can be related to the BFKL approach. The leading twist 
contribution can be extracted from the BFKL calculation and can 
be shown to be equivalent to the soft gluon limit of the DGLAP 
equations (i.e. the limit in which only the singular parts of the 
all-orders DGLAP splitting functions are kept). 

• The multi-Regge kinematics (i.e. the strong ordering of the 
longitudinal momentum fractions) used to compute the elastic­
scattering amplitudes (and hence total inclusive cross-sections) 
via the BFKL equation is inappropriate for the consideration of 
more exclusive quantities. Coherence effects lead to additional log­
arithms in energy which only cancel in the inclusive sum. 

6.7 Appendix A 

In this appendix we compute the virtual photon impact factor 
required to compute the deep inelastic structure functions. In Fig. 
6.7 we show two of the four diagrams which are needed (the other 
two are trivially obtained by reversing the direction of the quark 
line). Our calculation is very much analogous to that of Section 
4.4. 



170 Applications in deep inelastic scattering 

(a) (b) 

Fig. 6.7. Two of the four graphs used to compute the photon im­
pact factor. 

For Fig. 6. 7(b), we have the amplitude 
All-A A {3A A A VA A a 

A ll-va{3 __ (4)2 2 Tr(1i (1- klh (1- kl - qh (1- qh ) 
(b) - 7r aaa eq 12(1- kl - q)2 

(A.6.1) 
We use the notation i for ill-lll- and eq is the quark charge in units 
of the proton charge. As in Section 4.4 we have factored out the 
colour factor. We express the four momenta [Il-, ki and qll- in terms 
of the light-like vectors pi and p~ (p~ == pIl- is the incoming proton 
momentum) and their transverse components, i.e. 

Ill- ppi + AP~ + li 
ki = PIPi + AIP~ + ki.L 
qll- = pi - a:p~. 

The denominator factors are also as in Section 4.4, i.e. 

1 1 p(l-p) 

where 

Dl = 12+Q2p(1_p) 

D2 = (1- k 1 )2 + Q2p(1_ p) 

(recall Q2 = _q2 > 0). 

(A.6.2) 

In the high energy limit we are only interested in those terms 
which are proportional to piPl' i.e. 

A ll-va{3 _ (4)2 2 p(l - p) (Aa{3 Il- v ) 
(b) - - 7r aaaeq DID2 (b)PIPl + .... (A.6.3) 
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and the tensor associated with the piP! factor is given by 

(A.6.4) 

We have used the fact that 2q . p ;:::: W 2 in the high energy limit. 
Also, we need to contract with the photon polarization vectors. 

For longitudinal photons we contract with 

L L* _ 4Q2 P2aP2/3 + ... 
Ea E/3 - W2 W2 ' (A.6.5) 

whilst for transverse photons we need to contract with 

'" T T* 4Q2 P2aP2/3 
L.J Ea E/3 = -ga/3 + W2 W2 + .... (A.6.6) 

The dots refer to terms which ultimately vanish since they contain 
factors rv qaq/3 and rv qaP2/3 + Q/3P2a' Such terms vanish since cur­
rent conservation implies that their contraction with the leptonic 
tensor must vanish. Thus, on contracting the relevant components 
of the trace it follows (without too much work) that 

-ga/3A('0 16[1· (1- kd + kip(1- p)] (A.6.7) 

8[DI + D2 - 2Q2p(l- p) - ki(p2 + (1- p)2)] 

and 

4Q2 P2aP2/3 Aa/3 = 32Q2 2(1 _ )2 
W2 W2 (b) P p. (A.6.8) 

Thus, in the same notation as in Eqs.(4.38) and (4.39), we have 
the following contribution to the amplitudes from Fig. 6. 7(b): 

A J1,l/ _ (4)2 2 8p(1 - p) J1, l/ 

( b)~ - - 7r QsQ eq PIPI 
DID2 

X {DI + D2 - 2Q2p(l- p) - kHp2 + (1- p)2]} (A.6.9) 

and 

A J1,l/ - (4)2 2 32p(1 - p) J1, l/ {Q2 2(1 )2} (A 6 10) 
(b)L - - 7r QsQ eq DID2 PIPI P - P . .. 

and A(~~ is defined such that the amplitude for scattering trans­
verse photons is 
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We can now follow the steps of Section 4.4 to deduce the cor­
responding contributions to the impact factors: 

nj 

p~)(kd = -8aas ~ e; / dp d21 
q=l 

X {~+ ~ _ 2Q2p(1 - p) + kHp2 + (1- p)2]} (A.6.U) 
Dl D2 DID2 

and 

p~)(kd = -32aas I:e;/dPd21{Q2P2(1- p)2}. (A.6.12) 
q=l DID2 

A factor of 2 has been included to account for the related graph 
which has the quark line circulating in the opposite direction, and 
we have summed over all nf flavours of quark. 

Fortunately, we do not need to do any more work in order to 
extract the contribution from the graph shown in Fig. 6.7(a).1t is 
related to the above impact factor via 

(A.6.13) 

(A.6.14) 

we can write the complete impact factors for deep inelastic scat­
tering as 

nj 

PE(k1 ) = 8aas ~ e; / dp d21 
q=l 

X {ki[p2;1~2- p)2] - Q2p(1_ p) (~1 -~2r} (A.6.15) 

and 

if>L(k,) d6aa. ~ ,;! dpd'. {Q'P'(l- p)' (~, - ~J}. 
(A.6.16) 

The transverse polarization impact factor, PT, is given by 

1 
<liT = 2 (<liE + <li£). (A.6.17) 
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Using Eq.(6.2), we can now deduce the impact factor for the sum 
of transverse and longitudinal cross-sections: 

<P2(k1) = <PT(k1) + <pL(kt} = <P~(kl) + 3<PL (k1). (A.6.18) 
2 

As in Section 4.4, we can go further and perform the 1 integral at 
the expense of introducing a Feynman parameter, 7. We need to 
use 

(A.6.19) 

and 

J d21 (1 7r 

D1D2 = 10 d7 p(1 - p)Q2 + 7(1 - 7)ki' 
After some simple algebra, we then obtain 

(A.6.20) 

nf 101 k 2 

<pT(kt) = 47rc¥c¥s 2: e~ dpd7 ( ) 2 1 ( ) 2 
q=l 0 P 1 - p Q + 7 1 - 7 kl 

X [72 + (1 - 7)2][p2 + (1- p)2] (A.6.21) 

and 

nf 101 k 2 

327rC¥C¥s 2: e~ dpd7 ( ) 2 1 ( ) 2 
q=l 0 P 1 - p Q + 7 1 - 7 kl 

X [p(1 - p)7(1 - 7)]. (A.6.22) 

6.8 Appendix B 

The saddle point method of integration is a powerful tool for ap­
proximating integrals which may be cast into the form i: dx g(x )e-f(:e). (B.6.1) 

The method is valid provided the function f (x) has a minimum 
at some value x = Xo and that it is 'very convex' in that region. 
This means that the nth derivative, f(n)(x), of f(x) obeys the 
inequality 

jCnl(xo) ~ (t(2)(xo)r/2, 

so that f( x) may be approximated by 

f(x) ~ f(xo) + ~f(2)(xO)(x - xO)2 
2 

(B.6.2) 
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(the first derivative vanishes at :v = :Vo since !(:v) has a minimum 
there). 

Furthermore, the function g(:v) is assumed to be a 'slowly vary­
ing' function at :v = :Vo. This means that it may be approximated 
by its value at :v = :Vo or, in cases where that value vanishes, by 
its first non-vanishing even order derivative at :v = Xo, i.e. if the 
first non-vanishing even order derivative at :v = :Vo is the (2m )th 
derivative then we write 

g(x) ~ -( 1 ),g(2m)(xo) (:v _ xo)2m . 
2m. 

(B.6.3) 

Substituting Eqs.(B.6.2) and (B.6.3) into Eq.(B.6.1) and chang­
ing variables to y = (x - :vo) we obtain the Gaussian integral 

e-f(xo) !'X' dy _1_,g(2m)( xo)y2m exp (_ ~ !(2)(xo)y2) 
-co (2m). 2 

V27r g(2m)(:vo) e - f(xo) 

2mm! (1(2)( xo) )m+l/2 
(B.6.4) 

The corrections to the above approximation are of order 

!(n)(xo) g(2m+2)(:vo) 

(j(2)(xo)r/2 or g(2m)(:vo)!(2)(xo)" 
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Diffraction 

In the preceding chapter, we focused on some interesting total 
cross-sections. That is, we were concerned with the behaviour of 
the (imaginary part of the) scattering amplitudes in the forward 
direction (i.e. t = 0). It is now time to turn our attention to pro­
cesses which involve the square of the scattering amplitude. Since 
in the Regge limit the centre-of-mass energy is much larger than 
the momentum transferred from the incoming particles to any of 
the outgoing particles such processes must produce a rapidity gap 
(see Section 1.10) in the final state. 

After a brief word regarding elastic scattering at t = 0 we con­
tinue by looking at processes at large t. Of course we will find a 
high energy behaviour which is driven by the leading eigenvalue 
of the BFKL kernel. In addition, we demonstrate that large t is a 
good way of keeping the dynamics perturbative (recall that the im­
pact factors were the only way to ensure this in the t = 0 case) and 
that the dominant contributions are characterized by the physics 
of diffusion in the transverse plane. After demonstrating these im­
portant points, we go on to discuss the specific example of vector 
meson production in two-photon collisions, i.e. " -+ V V where 
V denotes a vector meson. 

The second part of this chapter will be concerned with the 
physics of diffraction dissociation. In particular, we look in some 
detail at the particular process of photon dissociation in deep in­
elastic scattering. By working in the proton (target) rest frame we 
will be able to discuss the process in a way which is appealing to 
our physical intuition. 

7.1 Elastic scattering at t = 0 

At t = 0 we looked, in the preceding chapter, at the specific exam­
ple of the forward Compton amplitude, ,p -+ ,p. Of course this 
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amplitude also gives us the corresponding differential distribution, 
do- / dt, for the elastic processes at t = ° via 

do-I = IA(8,0)12 (7.1) 
dt t=o 1671"82 

A similar process, with a higher rate (than the Compton process), 
is that of I P ----+ V P where V is a vector meson and the photon can 
be real or virtual. For real photons, there is the possibility of us­
ing perturbation theory provided the meson is heavy enough. For 
virtual photons one can study the production of both light and 
heavy mesons. As well as acting as a possible probe of the perturb­
ative dynamics, these processes allow important information to be 
extracted about the physics that determines the I V impact fac­
tor, which cannot be computed purely within perturbation theory. 
There has been much interest in this process and here we merely 
refer to the original papers by Ryskin (1993), Brodsky et al. (1994) 
and the review by Abramowicz, Frankfurt & Strikman (1995). 

7.2 Diffusion in large t elastic scattering 

In Chapter 4, we derived an expression for the elastic-scattering 
amplitude at large t (see Eq.( 4.52)). We could now proceed to 
convolute the universal four-point function of Eq.( 4.52) with some 
appropriate impact factors in order to compute the physical cross­
sections. However, we need first to establish the circumstances 
under which perturbation theory ought to apply. Recall the dis­
cussion of Section 5.1, where (for t = 0) it was demonstrated that 
the typical transverse momenta at some point inside the Pom­
eron are governed by the scales within the impact factors, with a 
distribution characterized by the diffusion equation, Eq.(5.1). We 
would now like to make a similar study for the case of non-zero t. 

In terms of the energy variable, y = In 8 /k2, the generic scat­
tering amplitude can be written (see Eq.(4.36)) 

S'm A( 8, t) ~ J d2k d2k F(y, kI, k2' q) 
8 (271")4 1 2 k~(kl-q)2 

X <pA(kl' q)<pB(k2' q), (7.2) 

where <P A and <P B are the impact factors for the Pomeron coupling 
to the external particles and the universal four-point function is 
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given by 

F(y,kl,k2,q) = _1_jd2b d2b'd2b d2b' 
ki(kl - q)2 (211")6 1 1 2 2 

X e -i[k1·b1 +(q-kl)·bl-k2·b2-(q-k2)·b2] 

2 

X 100 dv( 2 V / )2ea,xo(II)Y¢~(bl,bl,O)¢~*(b2,b2,O).(7.3) 
-00 v + 1 4 

This equation has been obtained from Eqs.( 4.46) and (4.52) after a 
change of variables to eliminate the c-dependence and after taking 
the (leading) n = ° approximation. 

To investigate the internal dynamics of the Pomeron, it is con­
venient to introduce the functions, 

j 
d2k -ik.r 2 F(y, kl, k, q) ( ) 

'¢A(y,r,q) = (211")2e d kl k 2(kl _ q)2 CPA k1,q (7.4) 

and 

'¢B(O,r,q) = j d2k2eik2·rcpB(k2,q). (7.5) 

These two functions can be thought of as impact factors in im­
pact parameter space (r is the impact parameter conjugate to the 
internal momentum, k and can be thought of as the 'transverse 
size' of the Pomeron), i.e. 

~m A( s, t) 9 j 2 ( ) * ( ) 
S =(211")4 dr'¢Ay,r,q'¢BO,r,q. (7.6) 

Note that all the BFKL dynamics is subsumed into '¢A but that, 
as in Eq.(5.2), we are free to partition the energy dependence as 
we choose. Also note that these 'impact factors' have different di­
mensions ('¢ A has dimensions of an area whilst '¢B has dimensions 
of an inverse area). Equation (7.6) is shown graphically in Fig. 7.1. 

We now wish to focus on the r-dependence of '¢ A as Y varies. 
Physically, we are looking to see what are the typical separations 
of the two gluons which couple into the lower impact factor (since 
r = b2 - b 2 ). We shall show that the largeness of the momentum 
transfer, -t = q2, is sufficient to keep this distance small (and 
hence support the use of perturbation theory) regardless of the 
size of the external particles. 
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1/iA 

)::=}B 

Fig. 7.1. Graphical representation of Eq.{7.6). The convolution 
represents the integral over the Pomeron transverse size, r. 

Using Eq.( 4.49) for ¢o we can combine Eqs.(7.3) and (7.4) to 
write 

.f, ( ) _1_ ! d2R! dv v2 e"'xo(v)y 
'f'A Y,r,q = (27r)6 (v2 + 1/4)2 

X V"( q, Q) [(R _ r/2)~;R + r /2)' ]"'-'" e,q·(R-,/,l, 

(7.7) 

where the impact factor dependent term is 

(7.8) 

Note that we have changed variables from b2 and b2 to 
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R = (b2 + b~)/2 and the k-integralin Eq.(7.4) gives a delta func­
tion which fixes r = b~ - b 2 . Also, we have written explicitly the 
dependence of Vv upon the scale Q, which characterizes the size 
of the particle A. 

The fact that the eigenfunctions of the kernel are no longer 
simple powers of the momentum mean that we must face up to 
the rather unwieldy nature of these expressions. However, it is 
possible to perform the two-dimensional R-integral by introducing 
a Feynman parameter, x, and using standard integrals (see e.g. 
Gradshteyn & Ryzhik (1994)). This gives 

./. ( ) l' Joo d v 2 asxo(v)yv, ( Q) 
'f/A Y,r,q = (211")5 -00 V (v2 + 1/4)2e v q, 

1 r1dxe-iq.r", (q2)-iV .f 
X r 2(1/2 _ iv) 10 }x(1- x) 4 K 2iv(qryx(1- x)),(7.9) 

where K2iv(q1'}x(1- x)) is a modified Bessel function (see, e.g. 
Abramowitz & Stegun (1972)) and, as usual, non-boldface is used 
to denote the modulus of the two-vectors. 

Subsequent development clearly necessitates that we say some­
thing about the impact factor. However, the presence of the 
(q2)-iv factor allows us to recognize that a similar factor must be 
present in Vv ' In particular, we consider the simplest case where 
the impact factor is pointlike (i.e. has no scale, Q). Thus we take 

We can now write 

_1_1 dv v2 easxo(v)y 21' / q 
(211")5 (v 2 + 1/4)2 r 2 (1/2 - iv) 

X 101 dx -iq·r;" (F0--)) ( ) . / ( ) e K 2iv q1' x 1 - x. 7.10 
yx1-x 

In general, the r angular integral is non-trivial when perform­
ing the convolution with the 7/JB impact factor. However, we are 
presently interested in the typical values ofthe modulus ofr within 
7/J A· As such we consider the angular integrated quantity 
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{;A(Y, r, q) = _1_ J dv v2 easxo(v)y 2r / q 
(211")4 (v2 + 1/4)2 r 2(1/2 - iv) 

X J dx Jo(qrx)K2iv(qrvx(1 - x)), (7.11) 
Jx(l- x) 

where Jo( qrx) is a Bessel function. 
For qr .:s 1 we can use the small argument expansion of the 

Bessel functions. In which case, 

- ( ) ~ 1 J v2 a.xo(v)y J dx 
1/JAy,r,q ~ ~ dV(v2+1/4)2e Jx(1-x) 

[ 
[qr /2Jx(1 - x )]2iv _ [qr /2Jx(1 - x )t2iV] 

X r(l + 2iv) r(l - 2iv) 

2r/q 1,11" 
X r 2(1/2 _ iv) 2sinh211"v· (7.12) 

The x-integral can now be performed and after taking the limit of 
small v (which, as usual, will give the dominant contribution for 
large enough y) it can be shown that 

- ( ) ~ 1 J d woy-a2 yv2 • (l 16) r 1/JAy,r,q~4 vve sm vn 22 -, 
11" q r q 

(7.13) 

where a2 = 140:s((3). Performing the v-integral then yields our 
final result, i.e. 

- 1j1l"r eWoY (e) 
1/JA(y,r,q):::::: 211"4-q-(a2y)3/2 ~exp - 4a2y , (7.14) 

where ~ == In(16/q2r 2). Notice that {;A/r is also a solution to the 
diffusion equation of Section 5.1, i.e. Eq.(5.1). 

For qr ~ 1, the x-integral is dominated by the end-point regions 
(close to 0 and 1). We can then approximate Eq.(7.11) by 

- ( ) _1_ J dv v2 easxo(v)y 2r / q 
1/JA y, r, q :::::: (211")4 (v2 + 1/4)2 r 2 (1/2 - iv) 

tCO dx 
X io y'x K 2iv(qry'x) [1 + Jo(qr)]. (7.15) 

Note that we can concentrate on the x ----+ 0 end-point (since 
the x ----+ 1 contribution is identical) and the upper limit on the 
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In( 4/qr) 

Fig. 7.2. The function l]! as a function of In (4/qr) (= e/2) at 
different y values. 

x-integral can be approximated by infinity within our approxima­
tions. Equation (7.15) can be integrated about the saddle point 
at v = 0 to yield 

1 16V7rr e WoY 1 
(27r)4 q (a2y)3/2 qr[l + Jo(q1')]. (7.16) 

Note that there is no diffusion into (or from) this region. 
In Fig. 7.2 we plot the ~-dependence of 

_ 7rq [ eWOY ]-1 
W == 1/J A 21' ( a2y )3/2 ' 

i.e. we have divided out the typical energy dependent factors to 
allow a clear demonstration of the diffusion properties. It clearly 
illustrates the dominance of the region ~ ~ O. Notice that for ~ > 0 
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v 

v 

Fig. 7.3. The quasi-elastic scattering process II -+ VV. 

there is diffusion, i.e. the width in ~ increases with increasing 
y, indicating that as the energy increases a larger range of the 
Pomeron transverse size is important. On the other hand for ~ < 0 
there is no change in shape as y varies. Indeed, the contribution for 
~ < 0 is very small. We see that the momentum transfer acts as a 
dividing scale between the region of diffusion (which is dominant) 
and the scaling region (where the contribution is small). So, for 
large enough -t we can be sure that the dominant contribution 
arises from small values of the Pomeron transverse size for which 
the QeD coupling is small. In this region we expect perturbation 
theory to be valid. 

To make these features more explicit, let us look at a specific 
example. Namely, we consider the process shown in Fig. 7.3, i.e. 
II --->. V V, where V is a vector meson. The incoming photons are 
assumed to be on shell. A suitable model for the impact factor is 
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to take 

~A(kl,q) = C (m2 + (k1_ q/2)2 - m2 +lq2/4)' (7.17) 

where C is a dimensionful constant and depends upon the mass 
( m) and decay width of the vector meson state. This is something 
of a toy impact factor, in that it assumes that the quark and an­
tiquark which form the meson carry equal fractions of the photon 
energy. It can be calculated along the same lines as the impact 
factor of Eq.( 4.44). Nevertheless, it will suffice for the discussion 
of the general properties that follow. 

With this impact factor, the function V,...(q,m) of Eq.(7.8) can 
be computed (this is not a straightforward calculation and here 
we quote only the result and refer to Bartels, Forshaw, Lotter 
& Wiisthoff (1996) for the details). One finds, in the limit of 
q2 ~ m 2 , that 

C 2 ( 2) -l/2+i,... 
v,... ( q, m) r-v q2In ~2 ~ (7.18) 

and we do not write explicitly the constant prefactor. Note that, 
modulo the logarithm, we could have anticipated this form on 
purely dimensional grounds. 

To compute the scattering amplitude, we need to convolute tP A 
with tPB, where 

tPB(O, r, q) = C! d2k ik·r (1 1) 
e m 2 +(k-q/2)2 - m2 +q2/4 

C 2 -iq·r/2 (K ( ) _ 271"62(r)) (7.19) 
7I"e 0 mr q2 /4 + m 2 • 

The delta function term gives zero upon convolution with tPA. 
The factor tPB does not spoil the dominance of the contribution 
from the region ~ > O. As such, the angular part of the r integral 
can be approximated by 271" and we can use Eqs.(7.6), (7.14), (7.18) 
and (7.19) to write (again modulo an overall constant prefactor 
which is of no interest to us) 

'SmA(s,t) C 2 q2 eWOY 
-In - ----,----:--

S q3 m 2 (a2y )3/2 

("'l/q 2/( 2) 
X Jo d1'r2Ko(m1')~e-e 4a Y • (7.20) 
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The r-integral can now be done since it is safe to take the small 
argument expansion of the Bessel function because m 2 ~ q2, i.e. 
Ko(mr) ~ In(l/mr). We integrate over the dominant region of 
~ > 0, i.e. contributions from r ~ 1/ q are heavily suppressed, and 
find 

(7.21) 

and hence, 

dlY C4 4 ( q2) e2wOY 
di rv "t6ln m 2 (a2y)3· 

(7.22) 

A large-t elastic-scattering process that is typically more ac­
cessible to experiment is that of parton-parton elastic scattering. 
This has been investigated in hadron-hadron collisions (Abe et 
al. (1995), Abachi et al. (1994)) and in photon-hadron collisions 
(Derrick et al. (1996b)). In such processes a pair of partons (one 
from each 'hadron' ) scatter elastically off each other via the ex­
change of a Pomeron to produce a pair of jets which are separated 
by a large gap in rapidity. To lowest order, the transverse momen­
tum of the jets produced by the scattered partons is equal to (the 
modulus of) the momentum transfer, Itl. We have chosen not to 
focus on these processes owing to the complications discussed at 
the end of Section 4.5 which arise whenever the Pomeron couples 
to a single parton. 

So we have demonstrated that elastic scattering at large enough 
-t can be calculated in perturbative QeD, t at least in those cases 
where the dominant contribution arises due to the exchange of a 
pair of (interacting) reggeized gluons. In particular, one can envis­
age elastic scattering processes where the dominant contribution is 
not due to Pomeron exchange. For example proton-proton elastic 
scattering at high-t is dominated by (at the Born level) three-gluon 
exchange. This is because if one views the scattering as occurring 
between the three constituent quarks in each proton then it is 
preferential to deflect each quark through the same angle. At low­
est order, this then requires three gluons to be exchanged (each 

t Of course the impact factors (q; A,B) are generally not calculable in perturb­
ation theory. What we have shown is that this physics essentially factorizes 
and the exchange dynamics is dominated by the perturbative contribution. 
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coupling to three constituent quarks per proton). So although one 
pays the price of an additional power of as this is more than com­
pensated by the need to share the kick delivered by the momentum 
transfer equally between the constituents (Landshoff (1974)). 

7.3 Diffraction dissociation and Pomeron substructure 

Our focus in this section will be on the dissociation of a high Q2 
photon in ,*p -+ Xp (where X denotes the diffracted system). 
This process is of particular interest since one can think of per­
forming deep inelastic scattering off a Pomeron target. The possi­
bility of unravelling the partonic substructure of the Pomeron thus 
presents itself. We shall have more to say on this interpretation a 
little later. 

However, in order to prepare the ground for our discussion of the 
photon dissociation process we wish first to return to the inclusive 
deep inelastic process and its interpretation in the proton rest 
frame. This way of looking at the inclusive process will better 
equip us for our study of that subset of events containing a fast­
forward proton (Le. photon dissociation). 

7.3.1 The proton rest frame picture 

Recall the impact factors for deep inelastic scattering, Eq.(A.6.15) 
and Eq.(A.6.16). Using the identities 

J d21 J 2 ik·r 2 

(F+E2 )((I-k)2+E2)= dre Ko(Er) (7.23) 

and 

(7.24) 

we can re-write the longitudinalimpact factor as follows (replacing 
pin Eq.(A.6.15) by z), 

nf 1 

<I>L(k) = 32aas L e~ 10 dz J d2r(1 - eik.r ) 
q=l 0 

X Q2 z2(1- z)2 K5(Er), 

where E2 = z(l - z)Q2. 

(7.25) 
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Thus, the cross-section for the scattering of longitudinal pho­
tons is (see Eqs.(6.3) and (6.5)) 

O"L(:e,Q2) = J dzd2r IWL(z,rWO"(:e,r), (7.26) 

where 

(7.27) 

and 

471" fr s J d2k ( )( ik.r) 0"(:e,r)=-3- k4:Fx,k 1-e . (7.28) 

Similarly the cross-section for the scattering of transverse photons 
is given by 

(7.29) 

where 
3 nj 

IWT(z,rW = -2fr Le~ [z2 + (1- z)2]E2Kf(Er). 
271" q=l 

(7.30) 

By writing the cross-sections in such a way we have made ex­
plicit a result which has a very clear physical interpretation. In 
the proton rest-frame, and for low enough values of x, the photon 
produces the q-ij pair a long distance 'down stream' of the proton 
(as indicated in Fig. 7.4). Some (long) time later, this pair then 
scatters coherently off the proton. The typical time-scale of the in­
teraction (of the q-ij pair) with the proton is very short (relative 
to the formation time of the pair) and as such we can consider the 
transverse size of the pair to be fixed over the time of the inter­
action. Consequently, we can interpret O"(:e, 1') as the cross-section 
for the scattering of a q-ij pair of transverse size l' off the target 
proton and W (z, 1') as the wavefunction describing the formation 
of a q-ij pair where z and 1 - z are the fractions of the photon en­
ergy carried by the quark and anti quark. We shall shortly justify 
the precise normalizations of the wavefunctions. Let us first make 
this physical picture a little more explicit. 

We work in terms of light-cone variables, i.e. the photon mo­
mentum is written, q = (q+, q- ,0) where 

q+ = qo + q3 ~ q- = qo - q3 = _Q2/ q+ 
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l-z 

~::::::::::::::: :-__ -6;!iE--~.-__ -
z 

Fig. 7.4. The formation of a q-q pair from a virtual photon, fol­
lowed a long time (on the scale of hadronic interactions) later by 
the scattering of the pair off a proton via the exchange of a Pom­
eron (which, for small enough r, is the ladder of reggeized gluons 
shown). 

(qJ-L are the components of the photon four-momentum vector). 
The quark carries momentum, 

lq = (Zq+, z~+,l), 
and the antiquark momentum is obtained by replacing z --+ 1 - z 
and I --+ -I. Putting the quarks on shell, we see that the energy 
imbalance, llE, between the photon and the q-ij pair, is given by 

llE (It + l:; + It + li - q+ - q-)/2 

2~+ (Q2 + z(/~ Z)) . 

Now since 2p . q = Q2/ x and p = (Mp, Mp, 0) (Mp is the proton 
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mass) it follows that 

and hence 

( 
2 12) Mpx 

flE ~ Q + z(1 _ z) 2Q2· 

Provided 12 j(z(1 - z)) ~ Q2 (which will always be the case in 
our subsequent considerations), it then follows, from the uncer­
tainty principle, that the q-ij pair propagate typical longitudinal 
distances '" 1 j (Mpx) before interacting with the proton. Since we 
are in the low-x regime, these distances can be huge on the scale of 
the proton radius. Put another way, the lifetime of the q-ij fluctu­
ations of the virtual photon is huge in comparison with the typical 
time over which the pair interact with the target; as such we can 
consider the transverse size of the pair to be frozen over the time 
of interaction. 

It is now time to make the identification of the wavefunction 
and cross-section more precise (in particular to determine their 
normalizations). Our strategy is first to establish the normaliza­
tion of the transversely polarized photon wavefunction. We will 
then be able to infer the normalization of the cross-section IT( x, T) 
and (since this cross-section does not depend upon the photon 
polarization) this will be sufficient to fix the normalization of the 
longitudinal photon wavefunction. 

To lowest order, the virtual photon can either interact as a 
photon or via its fluctuation into a fermion-antifermion pair, Le. 
denoting the physical state by I/phys) we have 

I!phys) = ffsl,B) + elf /). (7.31) 
Z3 is the photon wavefunction renormalization constant, l,B) de­
notes the bare photon state and e is some coefficient (to be de­
termined) which determines the probability that the photon is to 
be found in the f-l state (f labels the fermion type). Note that 
since we are including the possibility that the photon fluctuates 
into the f-l pair (i.e. e2 = O( a)) we must work to the same order 
in the bare photon renormalization (Le. Z5 = 1 + O( a)). 

Since we are interested in the (dominant) strong interactions of 
the photon with the target it follows that we are only interested 
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in the q-ij fluctuations of the virtual photon. We need to compute 
the coefficient, c, in this case. Working with properly normalized 
states, i.e. bl!) = (--YEI,B) = (qijlqij) = 1 it follows that 

(7.32) 

For transversely polarized photons, Z3 is ultra-violet divergent. 
Imposing an ultra-violet cut-off A on the transverse momentum 
of the q-ij pair we can write (keeping only the leading logarithm 
in the ultra-violet cut-off) 

2 a ~ 2 A2 
C ~:; L...J eqln Q2 . 

q=l 

(7.33) 

(and we have summed over the three colours of quark). Since 

J dzd2rl~T(z,1'W = c2, (7.34) 

we have therefore fixed the normalization of the wavefunction for 
transverse photons. It is easy to check that this is consistent with 
the definitions given in Eqs.(7.26)-(7.30). 

It is important to realize that Eqs.(7.26) and (7.29) are perfectly 
general (i.e. they are valid beyond perturbation theory). This is 
because they are determined purely by the space-time structure 
of the process. For small size q-ij pairs, we can compute the wave­
function, ~L,T' and the radiative corrections to cr(x, r) which de­
termine the QeD scaling violations. For larger sizes, perturbation 
theory is useless. For example, in pion-proton scattering Eq.(7.26) 
can be used to determine the scattering of the lowest Fock state 
(q-ij) component of the pion off the proton. In this case the pion 
wavefunction, ~1r(z,r), is normalized to unity. 

It is correct to say that by working in this representation we 
have succeeded in diagonalizing the scattering matrix. To see this 
consider the elastic-scattering amplitude, A( s, 0). In terms of the 
T -matrix elements 

8'mA(s, 0) = bITI,). (7.35) 

We can expand the photon state as a sum over the interaction 
eigenstates, l'ljJk) i.e. 

(7.36) 
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where ~k ICkl2 = 1. That the l'ljIk) are eigenstates ofthe interaction 
means that 

(7.37) 

where Pk is the probability that eigenstate k scatters off the target. 
So the imaginary part of the elastic scattering amplitude can be 
written 

~mA(s, 0) = L !ckI 2pk. (7.38) 
k 

Comparing with Eqs.(7.26) and (7.29) we identify the interaction 
eigenstates with the set of parton states at fixed impact parame­
ters and energy fractions (Le. k labels the (r, z) ofthe interaction). 
Pk/ s is then to be identified with the cross-section for scattering 
the interaction eigenstate off the target, i.e. u( r ). Note that here 
we have considered the special case of elastic scattering, but it 
is clear that there is also the possibility of producing new states 
(which carry the quantum numbers of the photon). This is the 
process of diffraction dissociation and it is clear that the interac­
tion eigenstates we have just been discussing are more generally 
the eigenstates of diffraction (of which elastic scattering is a spe­
cial case). The identification of the diffraction eigenstates with 
the frozen partonic configurations was first made by Miettenen & 
Pumplin (1978). 

Let us now investigate the physics of the elastic scattering 
amplitude. For small enough r, u(:I:, r) '" r2, modulo scaling 
violations (this can be seen after expanding the exponential in 
Eq.(7.28) and performing the angular integral). Thus, small size 
pairs scatter with a cross-section which vanishes as the square of 
their separation. For large enough r, confinement dictates that 
the cross-section should saturate at a constant value of the order 
of a typical hadronic size. Both of these properties are necessary 
in order to understand the scaling of the deep inelastic structure 
functions (modulo the scaling violations induced by QCD correc­
tions). Let us see why this is so. 

We need to examine the Q2-behaviour of the longitudinal and 
transverse cross-sections (Eqs.(7.26) and (7.29)) arising from the 
contributions from large size and small size q-ij pairs. We expect 
the contributions from small size pairs to be calculable in perturb­
ation theory whereas those from large size pairs are expected to 
be dominated by non-perturbative effects. 
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The modified Bessel functions Ki( Er) in Eqs.(7.27) and (7.30) 
are exponentially suppressed for E'T' ~ 1. In order to extract the 
Q2-behaviour it suffices to replace Ko( Er) by co0(1 - Er), i.e. a 
constant value, Co, for Er < 1 and zero otherwise t and K 1 (Er) by 
c1 0(1 - Er)/ Er. 

Consider first the contribution to the cross-section which arises 
from large size pairs, i.e. r ~ R ~ l/Q (R rv 1 fm). The require­
ment Er < 1 means that the z-integration is restricted to regions 
near the end-points, i.e z ;S 1/Q2 R2 or (1 - z) ;S 1/Q2 R2. Thus 
the z-integrations give for the squared wavefunctions, l\h(z,rW 
and I'l1 T (z, r w, 

1 Q2z2(1 - z)2dz rv ~, 
€<l/R Q R 

for the longitudinal cross-section and 

1 ( 2 2) dz 1 
z + (1 - z) R2 rv Q2R4' 

€<l/R 

for the transverse cross-section. The integration over r gives (from 
dimensional analysis) 

koo d2rO"(;c,r)rvR2. 

Thus the tranverse cross-section has a large size pair contribution 
which scales, i.e. it is proportional to 1/Q2, whereas the longi­
tudinal cross-section has a large size pair contribution which is 
suppressed by a further factor of 1/ Q2. 

Now consider the contribution from small size pairs, i.e. 
r ;S 1/ Q. In this case the z integration is not restricted to the 
end-points; z rv ~ and the quark-antiquark pair share the photon 
energy roughly equally. The contributions from the z-integrations 
for the longitudinal and transverse cross-sections are both propor­
tional to Q 2. If the scattering cross-section, O"(;c, r), is calculated 
in leading order in perturbation theory (i.e. two-gluon exchange 
rather than the complete Pomeron ladder shown in Fig. 7.4) then 
on dimensional grounds we have for the integration over r 

r1 / Q 1 
Jo d2rO"(;c,'T') rv Q4' 

t As T -> 0 the function Ko (ET) behaves like log T. However, this is an inte­
grable singularity and does not affect the validity of this approximation. 



192 Diffraction 

so that both the longitudinal and transverse cross-sections scale. 
Inclusion of the complete ladder (QCD Pomeron) in the calcu­
lation of 0"( x, r) leads to the scaling violations discussed in the 
preceding chapter. 

An alternative way of seeing these same results is to use the 
fact that, from purely dimensional grounds, we can write 

J d2rO"(r)Kf(Er) <X ~. (7.39) 

This is kept finite since E2 '" m~ as z ---7 0, 1. Here the quark mass, 
m q , acts as the confining scale. So, 

J z2+(1-z)2 
O"T '" dz 2 

E 

and 

J d Q2[z(1 - z)J2 
O"L '" z 

E4 

It is clear that the end-point contribution to the z-integralleads to 
the 1/Q2 behaviour of O"T and the m~/Q4 behaviour of O"L. Also, 

the z '" ~ contributions clearly yield the 1/ Q2 behaviour for both 
longitudinal and transverse cross-sections. 

Thus, we have regained the property of Bjorken scaling (ne­
glecting the Q CD corrections contained in u( x, r )). However, we 
have gained a little more insight into the final state morphology 
of low-x deep inelastic events. There are large contributions to 
the cross-section for scattering of transverse photons from the so­
called aligned jet configurations (where one parton carries all 
the photon energy). The small-size configurations also generate 
a scaling contribution and are associated with the more demo­
cratic final state in which the quark and antiquark share the pho­
ton energy. The scaling violations to the structure function are 
also calculable in perturbation theory; only the small size fluc­
tuations evolve in Q2. Furthermore, since the longitudinal cross­
section is determined by small size fluctuations (the large size 
fluctuations being suppressed by an extra power of 1/Q2) we are 
able to write FL( x, Q2) directly in terms of the parton densities 
evaluated at the scale, Q2. For the transverse cross-section the 
scaling non-perturbative part arising from large size fluctuations 
must be obtained from experiment at some fixed Q2, whereas the 
Q2-evolution can be calculated perturbatively. 
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7.3.2 Introduction to photon dissociation 

We have spent most of this book talking about elastic scatter­
ing and, through the optical theorem, total cross-sections. In the 
preceding subsection we highlighted the fact that the existence of 
elastic scattering naturally suggests the possibility of diffraction 
dissociation. A beam of hadrons scattered off some target will typ­
ically be either absorbed (perhaps leading to the excitation of the 
target or emission of some final state particles), scattered elasti­
cally or diffracted. What is the physical picture which underpins 
the connection between the total cross-section, elastic scattering 
and diffraction scattering? The answer, not surprisingly, lies in an 
analogy with the physics of diffraction in wave optics. Before dis­
cussing the special case of photon dissociation, we wish to spend 
some time making clear the connection between these apparently 
such different processes. 

Consider a broad beam of plane polarized light, incident on 
some small piece of polaroid (the target). If the light is polarized 
at some non-zero angle (relative to the axis of the polaroid) then 
the component that is polarized parallel to the axis of the polaroid 
will pass through without scattering, i.e. for this component it is as 
though the polaroid were absent. The other component, which has 
its axis of polarization perpendicular to the axis of the polaroid, 
has a small section of its wavefront which is totally absorbed on 
passing the polaroid, so that the wavefront is partitioned into two 
wavefronts which pass either side of the polaroid and interfere 
with each other producing a diffraction pattern. This diffraction 
pattern is detected (over and above the constant background from 
the unscattered component) some distance behind the polaroid. 
Since the diffracted wave is polarized normal to the axis of the 
polaroid it necessarily contains a component which is polarized 
parallel to the (polarization of the) incoming wave and also a 
component which is polarized perpendicular to the incoming wave. 

What has this to do with, for example, scattering a beam of 
hadrons off some target (e.g. another hadron or a nucleus)? The 
absorption of the light beam in the polaroid is analogous to the 
inelastic scattering of the hadron on the target (e.g. producing 
an excited nuclear state or some multi-particle final state). The 
diffraction of the incoming wave into the component which car-
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ries the same polarization is analogous to the elastic scattering 
of the beam particle. Finally, we saw that diffraction can lead to 
the production of a new state (carrying polarization distinct from 
the incoming beam); this, too, should have an analogy in particle 
physics: this is what we call diffraction dissociation. New states 
can be 'diffracted into existence' by the interaction with the tar­
get. We say that the diffractive processes are the shadow of the 
inelastic processes. 

More discussion of the physical picture can be found in the 
paper by Good & Walker (1960), where beam diffraction was 
first considered. Let us merely note that in order to open up the 
diffractive channel, it is important to have energy degeneracies (up 
to some approximation). In the optical case discussed above the 
two polarization states were degenerate in energy. In the particle 
physics case the effective degeneracy is achieved by working at 
high centre-of-mass energies (so that all masses are small relative 
to the centre-of-mass energy and the proton does not dissociate). 
This is why diffraction is characterized by processes which involve 
large gaps in rapidity. 

We are now able to commence our study of the rapidity gap 
events in deep inelastic scattering. We will start by looking at the 
simplest diffracted system, namely, the one in which the photon 
dissociates into a single q-ij pair, which is separated from the fast 
moving final-state proton by a large gap in rapidity. A typical 
contribution to the amplitude is shown in Fig. 7.5. We will work 
in the so-called Born approximation, i.e. the exchange is modelled 
by the exchange of two gluons (the BFKL corrections will not 
alter our essential conclusions). In this case, the cross-section for 
scattering the q-ij colour dipole off the proton is only a function 
of the dipole size, r. Notice that the momentum transfer t is no 
longer zero; in fact simple kinematics allows us to show that, for 
M; ~ Q2,Mi- ~ W 2, 

(7.40) 

where Mx is the invariant mass of the diffractive system (in this 
case the q-ij pair) and W is the ,-p centre-of-mass energy. Clearly, 
for large enough W, tmin is very small (on the scale of the hadron 
mass). Since we insist that the proton remain intact, it follows 
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Fig. 7.5. One of the contributions to the amplitude for the process 
1'P -+ qijp. 

that -t '" -trnin since larger values of -t are suppressed by some 
hadronic form factor (i.e. it is unlikely that the proton will remain 
intact after undergoing a large t interaction). Consequently, we 
will assume that t = 0 is a good approximation. 

Due to the space-time picture which was discussed in the pre­
ceding subsection, we are able to think of the q-ij pair in terms 
of eigenstates of the diffraction scattering matrix. Consequently, 
we can write the amplitude as a convolution of the squared am­
plitude for the I -+ q ij formation with the square of the dipole 
cross-section, i.e. 

(7.41) 

Let us start by proving this result. In the notation of the pre­
ceding subsection, we can write 

daD I 
dt t=o 

2:k IbITI'Ih)i2 _ daell 
167rs2 dt 

t=o 
(7.42) 

and we have subtracted off the elastic cross-section in order to 
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define the diffractive rate. Substituting for the elastic rate gives 

d:a~o ~ 16~S' (~lbITI.;,.)I' -lbITI1)I') . (7.43) 

Decomposing the photon into the sum over scattering eigenstates 
gives 

(7.44) 

Identifying the label k with the pair size and longitudinal momen­
tum fraction we thus arrive at our final result: 

duD I 
dt t=o 1611" 

(7.45) 

where we have written the cross-section averaged over the photon 
wavefunction in a compact form, i.e. 

(7.46) 

Neglecting the second term (since it is suppressed by a power of a 
for photon scattering) we thus establish the validity of Eq.( 7.41). 

The essential difference in comparison with the inclusive case 
is the presence of the extra factor of u( r). By arguments along 
the lines of those of the preceding subsection, we now see that 
diffractive q-ij production from transverse photons is dominated 
by large sizes of the q-ij pair, i.e. the aligned jet configurations 
(Bjorken (1994)). Note also that the leading behaviour is rv I/Q2 
(Le. the same order in Q2 as the inclusive cross-section). Contrast 
this with the inclusive cross-section, where the leading (scaling) 
contribution samples both large and small size pairs. In the diffrac­
ti ve case, the extra factor of u( r) leads to the suppression of the 
short- distance contribution by a power of 1/ Q 2. For the produc­
tion from longitudinal photons, we have the result that the short 
and long distance contributions mix. However, both contributions 
are suppressed by a power of Q2 relative to the rate for production 
from transverse photons. 

Note that, in those cases where the large size configurations 
dominate, it is no longer a good approximation to neglect the 
quark mass contributions (this is because £2 rv m~). Moreover, 
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for the large size configurations we have no right to use perturb­
ation theory and must (in the absence of any fundamental theory 
of the non-perturbative regime) rely on a more phenomenological 
approach. Despite the fact that the photon has a large virtuality, 
we have shown that the dominant contribution to the photon dis­
sociation process is of non-perturbative origin. 

Even so, we can go a little further. We can derive an approx­
imate expression for the dependence of the cross-section on the 
diffracted mass, Mx. If the quark has four-momentum, l~, where 

l~ = (Eq, zP'Y' 1), 

then 12 = m 2 fixes q q 

12 + m 2 
Eq ~ ZP'Y + q 

2zP'Y 
in terms of the photon momentum, P'Y' The antiquark four­
momentum is once again obtained by replacing z ---+ 1 - z and 
1 ---+ -1. The diffracted mass is defined to be the invariant mass of 
the diffracted system, i.e. 

2 2 12 + m~ 
Mx == (lq + lq) ~ ( r zl-z 

(7.4 7) 

For the non-perturbative (large size) configurations (which dom­
inate the diffractive rate), the z-integral is dominated by the re­
gions of z close to 0 or 1. From the z near zero region we have, 

m 2 
M 2 ~ q 
x~­

z 
(since the large size pairs have 12 r-v 0). Hence we can undo the 
z-integral and write 

d D 2 
(iT mq J 2 2 2 

dtdM} r-v Mi- d rIWT(z,r)1 (i(r) . 

As in Eq.(7.39) we see that (from dimensional analysis) 

J d2r(i(r)2E2Kl(Er) ex E~ 
and, since 

(7.48) 

(7.49) 
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we have 
du!j 1 1 

dtdM} I"V m~ (Q2 + M})2' 
(7.50) 

The contribution from the region z I"V 1 of course yields the same 
form. This expression will be a good approximation provided 
M} ~ Q2 ~ m~ since for small M} we can no longer assume 
that the dominant contribution arises from the end points of the 
z-integral. 

The rate for production of large diffracted masses falls away 
as I"V 1 I Mi at large M}. The origin of this strong decrease can 
be traced back to the fact that the q-ij pair scatters directly off 
the target. It is also possible to radiate additional gluons off the 
original q-ij pair and then scatter the resulting multi-parton con­
figuration (frozen in impact parameter) off the target. Of course 
the radiation of more partons occurs at the price of additional 
powers in the strong coupling. However, the spin-1 nature of the 
gluon ensures a weaker decay at large M}. In fact one expects a 
I"V 11M} behaviour. We do not pursue these details at this stage. 
In the next chapter we will consider the higher Fock components 
of the photon wavefunction. 

7.3.3 The Pomeron structure function 

In a frame in which the proton is fast-moving, it is tempting to 
think of the photon as probing the structure of a Pomeron which 
has been offered up as an effective target by the proton. The pic­
ture (shown in Fig. 7.6) suggests the following form for the diffrac­
tive cross-section: 

du!j 411"2 a P 2 
dtdxp = (j2f(x p )FT U3,Q ), (7.51) 

where x p is the fraction of the incoming proton energy which 
is carried away by the Pomeron and (3 is the fraction of 
the Pomeron momentum carried by the struck quark. The 
Bjorken-x (= Q2/2p. q) is therefore the product (3xp. 

Ff((3, Q2) is the structure function of the Pomeron for scat­
tering off transverse photons (it scales in the absence of QeD 
corrections) and f( x p) is a factor which determines the Pomeron 
flux. For simplicity we ignore any t-dependence on the right hand 
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p 

Fig. 7.6. Diffractive photon dissociation process in which a Pom­
eron is 'emitted' by the proton with fraction, Xp, of the proton 
momentum, p. The Pomeron is probed by a virtual photon of mo­
mentum q, which strikes a quark inside the Pomeron that carries 
a fraction j3 of the Pomeron momentum. Mx is the invariant mass 
of the Pomeron-photon system. 

side (i.e. we are interested only in the behaviour near t = 0). 
Since (xp p + q)2 = Ml and W 2 = (p + q)2 (p is the proton 
four-momentum) we have 

(7.52) 

and 
X Q2 Q2 

(3 = - = (7.53) 
xp 2xpp·q Q2+Ml· 

In terms of these variables, we can re-write the diffractive cross-
section for q-ij production (see Eq.(7.50)) as 

doI] (3 1 
- '" -- (7.54) 
dxp Xp Q2 

and hence 
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1 
f(xp) rv -. 

Xp 
(7.55) 

So the concept of the Pomeron structure function makes sense, at 
least in the approximation that the diffracted system is a pure q-ij 

pair of not too small invariant mass. 
Note that for Mi s: 4m~ the cross-section must vanish (Mx 

must be larger than the mass of the quark plus antiquark). For 
m~ ~ Q2 this means that {3 ~ 1. We can crudely account for this 
effect by taking a Pomeron structure function of 

(7.56) 

This modification is consistent with Eq.(7.55) since it corresponds 
to multiplication by the factor Mi / ( Q 2 + Mi ) which is rv 1 in the 
region we are considering. Note that in reality the suppression as 
Mi ----+ 4m~ is faster than any power of 1 - {3. To see this, notice 

that Mi ----+ 4m~ corresponds to z ----+ ~ and 12 ----+ 0 (i.e. r ::;> I/Q). 
This is the region where the argument of the Bessel function is 
large and leads to an exponential suppression. 

Processes which probe the structure of the Pomeron (at t = 0) 
are termed hard-diffractive. The two main types of process we 
have in mind are deep inelastic diffraction (discussed above) and 
those processes where hadronic jets are produced in the diffracted 
system, as in Fig. 7.7. Of course these are the analogous processes 
to their non-diffractive counterparts, which are used to constrain 
hadronic parton densities. 

If the concept of a Pomeron structure function is to be useful 
it should be universal. That is to say there should exist hard­
diffractive processes which are driven by a common set of Pom­
eron parton distribution functions. This property of universality 
is certainly not an obvious consequence of QeD. In those hard­
diffractive processes where soft physics dominates and the soft 
Pomeron (which is, so far, well described as a simple Regge pole) 
is exchanged we expect the universality of Pomeron parton distri­
bution functions to apply. However, if the soft Pomeron pole is not 
the dominant exchange then we, a priori, have no good reason to 
expect the factorization of the Xp- and {3-dependence (and even 
if factorization does hold there is no reason to expect universality 
of the extracted parton densities). Let us briefly explain how the 
Regge model leads to factorizable and universal Pomeron parton 
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Fig. 7.7. Hard-diffractive production of jets in hadron-hadron 
diffractive scattering. The zig-zag line denotes the Pomeron ex­
change and D..TJ denotes the final state rapidity gap. 

distribution functions. 
For the general diffractive process, A + B -+ A + X, and as­

suming the Pomeron to be a simple Regge pole, we can write the 
diffractive cross-section as 

M} dt:~} ~ 1~~ III A (t) I' (~} )'"'«)-' "BP( M}, t), (7.57) 

where {3A(t) reflects the coupling of the Pomeron to the target, A, 
and (TBP is the total cross-section for scattering particle B off the 
Pomeron. 

In the case where the beam particle is a virtual photon, we 
probe the quark densities of the Pomeron, i.e. for scattering of 
transverse and longitudinal photons 

_ 47r 2a P 2 
(T,P = (j2FT,L({3, Q ). (7.58) 

The Pomeron quark densities are defined by 

Fi({3, Q2) = Ff({3, Q2) + Ff({3, Q2) = L er x fq/p({3, Q2). 
2 
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These parton densities can also be probed in, for example, the 
hard-diffractive jet production process of Fig. 7.7 in which case 
we can write, 

du(A + B -+ A + jjX) 
dtdM2 d'l12 X ~T 

l!".ltJ A( 1)1' (~i ),"P(')-' 

where 
du(BP -+ jjX) 

dp} 

X du(BP -+ jjX) (7.59) 
dp} 

~ J dzdi/B(ZbP}) J dz2!j/P(Z2,P}) 
t,] 

du(ij) 
x-d2 . 

PT 
(7.60) 

The sum is over all parton types, :1:1 is the fraction of particle 
B's momentum carried by parton i and :1:2 is the fraction of the 
Pomeron momentum carried by parton j. The differential cross­
section, du / dp}, is that of the hard sub-process, i.e. the scattering 
of partons i and j into the final state (producing a pair of partons 
with transverse momentum PT relative to the collision axis) and 
is straightforward to compute in perturbative QeD. 

Thus we see that Pomeron parton densities can be extracted 
from data on hard-diffractive processes just as proton parton den­
sities can be extracted from hard non-diffractive scattering. In the 
case of the proton parton densities, one has the advantage of a mo­
mentum sum rule, which allows a constraint to be placed upon the 
size of the gluon density from a measurement of the quarks. It is 
far from clear that a similar sum rule holds for the Pomeron. 

Of course the Pomeron is much more elusive than a hadron. 
Indeed, there is some ambiguity in using a single word to describe 
a wide range of phenomena. It remains to be seen whether the 
object which drives hard-diffractive jet production is the same 
as that which drives the rapidity gap processes in deep inelastic 
scattering and even whether the Regge inspired picture of the 
Pomeron as an effective target 'particle' is valid. 

7.4 Summary 

• Keeping the four-momentum transfer to the BFKL Pomeron 
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large is an excellent way to ensure the dominance of perturbative 
dynamics. The momentum transfer, -t = q2, acts as an effective 
infra-red cut-off. Contributions from Pomeron sizes larger than 
rv 1/ q are heavily suppressed whilst the dominant contributions 
(from sizes ~ 1/ q) are characterized as a solution to the diffusion 
equation. 
• In the target rest frame, the high energy scattering matrix is di­
agonalized by eigenstates of partonic configurations whose impact 
parameters are frozen over the time of the interaction. This facil­
itates an elegant physical picture of elastic scattering and diffrac­
tion dissociation processes. 
• Despite the large virtuality, dissociation of virtual photons at 
high energies is dominated by non-perturbative physics. This is 
because the dominant configurations are of an aligned-jet nature. 
• It may be useful to think of the photon dissociation process 
as one which performs deep inelastic scattering off a Pomeron 
target. For not too large diffracted masses, the Pomeron structure 
function for scattering off transverse photons can be approximated 
by '" ,8(1 - ,8), where ,8 is the Bjorken-:r: of the Pomeron-photon 
system. 
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Taming the growth 

So far, this book has been concerned with the behaviour of QCD 
in the leading logarithmic approximation, which should be ap­
propriate for large enough centre-of-mass energies and for those 
processes which satisfy the criteria relevant for the use of perturb­
ative QCD. In Chapters 2-4, we derived and solved the BFKL 
equation. We were led to think of the Pomeron as the t-channel 
exchange of a pair of (interacting) reggeized gluons. In this chap­
ter, we start off by reformulating the results already obtained for 
the elastic-scattering amplitude of two colourless states t in a way 
which suggests that we view the scattering as the incoherent scat­
tering of individual colour dipoles whose locations in configuration 
space are frozen over the time of interaction. This approach will 
lead us to a very tangible physical picture of high energy scattering 
in configuration space. 

In Section 8.2 we turn our attention to the undesirable feature 
which afflicts the scattering amplitudes calculated in the lead­
ing logarithm approximation. This is the violation of unitarity 
which results from the strong growth of the total cross-section 
with increasing energy. The dipole formalism discussed in Sec­
tion 8.1 provides a very elegant framework in which to investigate 
the dominant corrections to the leading logarithm approximation 
which ensure that the theory remains unitary. We begin Section 
8.2 by setting up an operator formalism (due to Mueller (1995)) 
to describe the dipole evolution and interaction. This formalism 
is subsequently used to incorporate the corrections which arise 
due to multiple dipole scattering effects (or, equivalently, the ex­
change of more than one Pomeron between the colliding hadrons) 
and ensure the unitarity of the scattering amplitude. 

t We actually consider scattering of states whose leading Fock component 
is a heavy quark-antiquark pair, although our investigation is in principle 
much more general. 

204 
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8.1 Dipole scattering 

Let us start by defining, analogously to Eq.( 4.46), the universal 
BFKL amplitude in impact parameter space, i.e. 

, , , ) 1 2 {}2 J 2 2 2 f(y,bl,b 1 ,b2,b2 = (27r)4{}b1 b I d kId k2d q 

i(kl.bll/-k2.b22/+Q.(bI-b2)) P( s, kll k2' q) 
X e k~(kl _ q)2 

1 J 2 2 2 = (271")4 d kId k 2d q 

i(kl·bll/-k2·b22/+Q.(bI-b2))kip( k k ) xe k 2 s, 1, 2,q, 
2 

(8.1) 

where P( s, kl' k2' q) is the usual BFKL amplitude which deter­
mines the scattering of two gluons, of transverse momenta kl and 
k2 respectively, at energy s and with momentum transfer q. It 
is obtained from f( w, kl' k2' q) after inverting the w-plane Mellin 
transform to reveal explicitly the energy, s, dependence. We use 
the notation where y == In(s/k2) and blll == b 1 - b I (and simi­
larly for b22/). 

Using Eq.( 4.52) and keeping only the n = 0 term in the sum 
over n we can write 

Equation (4.51) then allows us to write 

j(y, bI, b I, b 2, b2) = ~ f= dv J d2c ~ea.xo(v)y 
71" J-= blll 

X ¢~(bll bI, c)¢~*(b2' b2, c). (8.3) 

N ow let us consider the convolution 

J d2bxd2b~ j(y - y', bll bI, b x, b~)j(y', b x, b~, b 2 , b2)· 

U sing the results (which we quote without proof and for details 
we refer to Lipatov (1986)) 
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and 

one can derive the important result 

J d2bxd2b~ j(y - y', b l , b~, b x, b~)j(y', b x, b~, b 2, b2) 

= j(y, bI, b~, b2, b2)· 

(8.5) 

(8.6) 

This is analogous to the t = 0 convolution of Eq.(5.2) and, as in 
that case, is true for arbitrary y'. 

We can use Eq.(8.6) to factorize the BFKL amplitude in such 
a way that it can be absorbed into the definitions of the external 
impact factors. In particular, we can show (the details are included 
in Appendix A to this chapter) that 

F( s, kl' k2' q) 1 J d2b d2b d2b xx' d2byy ' 
k~(kl - q)2 (271")6 11' 22' bxx,2 b yy,2 

1 J d21 (' , ) 
X 4 F(I-q)2N bll"ba:a:"y,q) N(b 22"byy"y-y ,q 

xe-i(kl -q/2).b11, e-(k2 -q/2).b22, 

X k(q-l).bxx, /2 _ e-i(q-l).bxx' /2] [ei(q-l).byy , /2 _ e -i(q-l).byy' /2] 

(8.7) 

Again, non-boldface is used to denote the modulus of a two-vector. 
The dipole number density is defined by 

(ex; dv _ () ro 
N(ro,r,y,q) == Lex; 271" V;*(ro)V;(r)easxo l/ y--;:, (8.8) 

where 

Vl/ - 2w d2R iq.R r • [ 2 ]l/2+il/ 
q (r) = ---;;: J e (R + r/2)2(R - r/2)2 (8.9) 
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It will soon become clear why we referred to N(ro, r, y, q) as the 
dipole number density, for now we take Eq.(8.8) as a definition of 
N. 

To compute physical scattering amplitudes we need to perform 
the convolution with the appropriate impact factors, e.g. as in 
Eq.( 4.36). For simplicity let us suppose that the external particles 
each contain only a single quark-anti quark pair, e.g. as would be 
the case for elastic photon-photon scattering. 

In Chapter 7, we showed that the photon impact factor for 
t = 0 can be written in terms of the (light-cone) wavefunction of 
the photon, e.g. see Eqs.(7.25) and (7.27). In particular we derived 
the relation 

<p(k) = 16~2o:s 101 dz J d2rlw(z,rW(1- eikor ). (8.10) 

The wavefunction, w( z, r), specifies the probability that the pho­
ton has fluctuated into the q-ij pair of transverse size r and with 
their momentum partitioned in the ratio z : (1 - z). 

Equation (8.10) is quite general. By this we mean that for any 
impact factor, which describes the interaction of a q-ij pair with 
the two gluons of the Pomeron, we can always write down the cor­
responding wavefunction and factorize off the factor (1- eikor ). We 
shall subsequently refer to the generic q-ij system as an onium 
state. Let us recall the origin of the (1 - eik-r) factor in Eq.(8.10). 
From Eqs.(7.23), (7.24) and (7.25) we see that the factor of unity 
arises from those two graphs where the gluons couple to the same 
quark (or ant i quark ) in the onium. The second, exponential, factor 
derives from the coupling to both the quark and antiquark of the 
onium. The cancellation between these two types of graph, which 
occurs whenever one of the two gluons goes on shell (and hence 
ensures the finiteness of the scattering amplitude), has been ex­
plicitly displayed in this factor. The above discussion was specific 
to the case of zero momentum transfer (Le. q = 0). For non-zero 
momentum transfer we have the following general relation between 
the impact factor and the onium wavefunction: 

<p(k) = 87r:O:s 101 dz J d2rlw(z,rW 

X (eikor/2 _ e-ik-r/2)(ei(q-k)or/2 _ e-i(q-k)or/2). (8.11) 

To re-iterate, by working in the co-ordinate space representation 
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the formation of the onium state is determined by the wavefunc­
tion factor 1 w ( z, r) 12 and this can be cleanly factorized from the 
coupling of the q-ij pair to the Pomeron (contained in the ex­
ponential factors). This is consistent with the space-time picture 
presented in the preceding chapter (see Section 7.3). We say that 
the dependence on the onium wavefunction factorizes from the 
coupling of the dipole (q-ij pair of fixed size r) to the two gluons 
of the Pomeron. 

The elastic-scattering amplitude of two onium states, with 
wavefunctions wl(zl,rl) and w2(z2,rl), respectively, can now be 
written: 
'-SmA( s, t) 

s 

x N(rI, bxx" y', q) N(r2, byy l , y - y', q) 
X [ei (q-l)obxxl/2 _ e- i (q-l)obxxl/2] [ei (Q-l)obYY I/2 _ e- i (Q-l)obYY I/2] 

X [eilobxxl/2 _ e-ilobxxl/2] [eilobYYI/2 _ e-ilobYYI/2] . (8.12) 

This is obtained from Eqs.( 4.36) and (8.7) by substituting the 
defining relation Eq.(8.11) for each impact factor and integrating 
over kl and k2 (these integrals just yield delta functions which 
fix the size of the parent dipole plus terms which vanish since 
N(O, r, y, q) = 0). The colour factor 9 = N2G~1) = 2. 

Equation (8.12) has a very appealing physical interpretation. To 
see this let us first consider the amplitude in the approximation 
that the onia interact through the exchange of two gluons. In this 
case we have 
JmA(s,t) 2 J d21 

(271")4 F(l- q)2 <PI (I, q)<p2(1, q) s 

~a; J dz1dZ2 J d2rld2r2Iwl(ZI,7'lWlw2(Z2,7'2W 

J d21 [eil-r1 /2 _ e-ilorl/2] [e i ( Q-l)orl /2 _ e- i ( q-l)orl /2] 
F(I- q)2 

[eilor2/2 _ e-ilor2/2] [ei(q-l)or2 /2 _ e-i(Q-l)or2 /2] . (8.13) 

This equation is shown graphically in Fig. 8.1, where the factoriza-



8.1 Dipole scattering 209 

Zl 

==(Er 
1 - Zl 

1 
r 1! ~ ~ ~ ~ 

~ ~ ~ ~ ~ ~ ~ ~ 

[ ~ ~ ~ ~ ~ ~ ~ ~ 
1 r 2! ~ @ @ @ 

Z2 

==(Er 
1 - Z2 

Fig. S.1. Diagrammatic illustration of the dipole factorization ex­
plicit in Eq.(S.13). 

tion of the onia wavefunctions from the dipole-dipole interaction 
cross-section is illustrated. 

Comparing Eq.(8.13) with Eq.(8.12) we see some striking sim­
ilarities. The only new factors are those associated with what we 
have termed the dipole number densities, N. In particular, the 
exponential factors are equivalent. This similarity means that we 
can interpret the elastic scattering of the two onia in terms of the 
scattering of individual dipoles in each onium state off those in the 
other state (since the dipole-dipole interaction cross-section is ex­
plicit in Eq.(8.12)). The number density of dipoles is then indeed 
given by the function N(b, r, y, q). It specifies the number density 
of dipoles of size r inside an onium whose primary dipole (i.e. the 
q-ij pair) has size b and which lie within y units of rapidity of 
the parent onium. The q-dependence is present since the number 
density depends upon the angle through which the onia scatter. 
Equivalently, we could take the Fourier transform with respect to 
q and obtain the number densities as a function of their displace-
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ment from the parent onia (indeed, we shall do this at the end of 
this section). The normalization has been chosen such that 

J d2r 
--2N(b, r, y, q) 
27rr 

is the total number of dipoles inside the parent dipole. 
Note that the dipole number density at q = ° and large enough 

y is the familiar looking expression (e.g. see Eq.( 4.34)): 

b eWoY ( In 2(b2/r2)) 
N(b,r,y,O) ~ ~ (7ra2y)1/2exp - 4a2y . (8.14) 

In addition, we note that it is not meaningful to associate in a 
unique way the dipoles with the colliding onia. By picking y' = 0, 
N (rl' bxx" 0, q) = rl /j (rl - bxx') and all the dipoles are identified 
as being radiated from the parent dipole of size r2 (i.e. from the 
onium which has wavefunction "iJi 2 ). By picking y' = y/2 we have 
the democratic scenario where the dipoles are 'shared' between 
the colliding onia. 

So, we have been forced into the interpretation of onium-onium 
scattering in terms of the interaction between 'child' dipoles (the 
parents being the q-ij pairs of the onia); the interaction being none 
other than the two-gluon exchange between the two child dipoles. 
It is natural to ask how these dipoles originate. We know from the 
above that we have succeeded in factorizing the BFKL physics as­
sociated with the ladder ofreggeized gluons into the dipole density 
functions. What has happened? Let us think in a frame where the 
two onia are colliding in their centre of mass. We can then iden­
tify a left-moving onium and a right-moving onium. Now consider 
the left-moving onium. The parent dipole is created a long time 
before the interaction with a dipole in the other onium. This par­
ent dipole can then radiate a soft gluon. In terms of its colour 
structure the emitted gluon can be viewed as a 3 :3 state (i.e. 
like a quark-antiquark pair). This view of the gluon is appropri­
ate in the formal limit where the number of colours, N, is large. 
This means that the leading logarithm approximation is also the 
leading N approximation - indeed we can see this by noting that 
the relevant coupling for soft gluon emission is as (i.e. the strong 
coupling is always accompanied by a factor of N). The quark line 
from this gluon and the antiquark line of the parent dipole then 
form a secondary dipole, and similarly for the quark line of the 
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gluon and the antiquark line of the parent. So the emission of a 
gluon corresponds to the annihilation of the parent dipole and the 
creation of two new secondary dipoles. This branching continues 
until there is no more rapidity for further emission and so the 
parent left-moving onium can be viewed as a collection of colour 
dipoles. The same can be said about the right-moving onium: it, 
too, is an assembly of dipoles. The onia then interact with each 
other through the scattering of their constituent dipoles which, 
in the one Pomeron exchange approximation (which is the BFKL 
approximation), scatter via exchange of two gluons. The left and 
right-moving dipoles then re-assemble to generate the final state 
onia. In this way we are able to understand the origin of the dipole 
factorization which is explicit in Eq.(8.12). 

Before leaving this section, let us first re-cast Eq.(8.12) so that 
it explicitly exhibits the dependence of the scattering amplitude 
on the impact parameter of the collision (i.e. we take a Fourier 
transform to eliminate the q-dependence). 

Defining the scattering amplitude for collisions between two 
onia at impact parameter b via 

A(b )=/ d2q _iq.bA(S,t) 
, y (271" )2 e 2s (8.15) 

allows us to write 

A(b, y) = -i~ / dz1dz2 / d2qd2r2 1"iJ.i 1 (Zl' rlWI"iJ.i 2(Z2, r2W 

X F(Tl' r2, b, y), (8.16) 

where F(rb r2, b, y) is the amplitude for the elastic scattering of a 
pair of dipoles of respective sizes rl and T2 at an impact parameter 
b. Explicitly it is given by 



212 Taming the growth 

where 

( ) a; J d2q -iq·R J d21 
f R, b, c 2 (27r)2e P(l- q)2 

X [ei(q-l).b/2 _ e-i (q-l).b/2] [ei(q-l)'C/2 _ e- i(Q-l)'C/2] 

X [ei1 .b / 2 _ e-i1.b / 2] [ei1,c/ 2 _ e-i1.c/ 2] . (8.18) 

The number density of dipoles, of size x within a parent dipole 
of size Xo within the rapidity y and at a distance r of the parent 
is n(xo,x,y,r), where 

( ) -J d2q -iq.rN( ) n Xo,x,y,r - (27r)2e Xo,X,y,q. (8.19) 

Representing the amplitude exclusively in terms of the positions 
and sizes of the dipoles will be convenient when we come to discuss 
the multiple scattering corrections in the next section. For now, 
let us express the optical theorem in terms of A(b, y); it is simply 

O'tot(Y) = 27r J db 2 ~mA(b, y). (8.20) 

Our normalization of the amplitude is such that:smA(b, y) = 
B( bo - b) in the black disc limit (i.e. totally absorbtive scattering). 

To close this section, we note that by taking Eqs.(8.8) and (8.9), 
expanding Xo(v) up to quadratic order in v and integrating over 
v using the saddle point approximation we arrive at the approxi­
mation 

n(xo,x,y,r) ~ 

(8.21 ) 

provided r ~ x, Xo and a2y ~ In (r2 /xxo). Compare this with the 
result of the preceding chapter, Eq. (7.14). The diffusion properties 
of the BFKL equation are manifest as diffusion in the dipole sizes 
with increasing rapidity. The displacement of the child dipole from 
the parent acts as an effective cut-off on the size of the largest 
dipoles that can be created. 
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8.2 Unitarity 

One of the main results which is obtained in the leading logarith­
mic approximation used to derive the BFKL equation is that the 
elastic scattering amplitudes rise with increasing centre-of-mass 
energy, s, as some power of s. Through the optical theorem this 
then translates into a corresponding growth of the total cross­
section, i.e. 

(8.22) 

where Wo = 4a s ln 2. We should ask whether this is sensible be­
haviour in the limit s ----+ 00. Intuitively, if the strong interactions 
are of finite range then we expect the asymptotic behaviour of 
total cross-sections to be limited in some way. This physics is 
missing in the leading logarithmic approximation. Moreover, in 
Chapter 1 we quoted the Froissart-Martin bound, which states 
that total cross-sections cannot rise (in the limit s ----+ (0) faster 
than In 2s (see Eq.(1.25)). Although this bound may well become 
significant only at energies well beyond those which are feasibly ac­
cessible it is important to understand how the leading logarithmic 
approximation is corrected to account for the unitarization correc­
tions which eventually bring the theory into agreement with the 
Froissart-Martin bound. The study ofunitarity corrections within 
perturbative QCD is the subject of the remainder of this chapter. 

We start by providing a physical argument (originally due to 
Feynman) which makes the Froissart-Martin bound plausible. Let 
us suppose that the target particle has some density distribution 
which reflects the short range nature of the strong force, e.g. 

p(r) = Po exp( -r / R), (8.23) 

where r is the distance from the centre of the target and R charac­
terizes the size of the target. It is important that this distribution 
falls off faster than any power at large distances (which we take as 
a fundamental property of the strong interactions). If the proba­
bility of an interaction between the beam particle with the target 
is bounded (as s ~ (0) by some finite power of s then the inter­
action probability satisfies 

P(s,r) < Po (:I N 
exp(-r/R). (8.24) 
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Hence, the interaction will be negligible for collisions at impact 
parameters 

r > N R In ( s / so) 

and so the total cross-section satisfies 

(Ttot < 7r R2 N 2ln 2( s / so). (8.25) 

It is possible to derive the Froissart-Martin bound in a more rigor­
ous fashion starting from the partial wave expansion and assuming 
the amplitude to satisfy (subtracted) dispersion relations (this is 
the assumption that the amplitude is bounded by a finite power 
in s). It arises as a direct consequence of the unitarity of the indi­
vidual partial wave amplitudes and the existence of some lowest 
mass bound state whose mass is different from zero (i.e. the pion) 
(see e.g. Collins (1977), Martin, Morgan & Shaw (1976)). This 
latter property, which is equivalent to demanding that the strong 
force be short range, is one which we do not expect to be able to 
accommodate in our perturbative calculations, as such we might 
well be able to successfully unitarize the scattering amplitude but 
fail to satisfy the Froissart-Martin bound. 

Clearly, therefore, all our previous calculations based on QCD 
in the leading logarithm approximation must break down as the 
centre-of-mass energy tends to infinity. In the centre-of-mass frame 
of the colliding particles the increase of the total cross-section with 
energy is due to the proliferation of soft gluon emissions. The 
power-like increase in the number of soft gluons means a corre­
sponding rise in the total cross-section. In the dipole language it 
is the proliferation of dipoles which drives the rise. It is not hard 
to imagine the physics which must eventually enter as the spa­
tial density of gluons (dipoles) continues to increase. Ultimately, 
the density will be large enough such that more than one pair of 
dipoles will undergo a scattering for each parent particle collision. 
There is also the possibility that a dipole in the parent can scatter 
off other dipoles also within the parent. As we shall see the dis­
tinction between these two forms of correction is frame dependent. 
Not surprisingly both forms of correction lead to a taming of the 
growth of the elastic scattering amplitude (and hence total cross­
section) in line with the demands of unitarity. It is the purpose of 
the remainder of this chapter to describe the multiple scattering 
mechanism in more detail. 
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Fig. 8.2. (a) Fundamental dipole vertex used to generate the dipole 
evolution. A gluon is emitted at position 2. (b) The vectors which 
specify the size and position of the parent and child dipoles. 

8.2.1 The operator formalism 

We start by introducing an operator formalism (Mueller (1995)) 
which can be used to re-derive the BFKL equation but which will 
also be suitable for a quantitative study of the leading multiple 
scattering corrections. We have shown that high energy scattering 
between two onia can be viewed as a two-step process. Firstly, a 
cloud of dipoles is evolved around each of the primary dipoles. 
This dipole evolution can be described as a classical branching 
process in impact parameter space. Secondly, the dipole clouds 
interact with each other so that the total cross-section is an inco­
herent sum over the individual dipole-dipole cross-sections. The 
nature of the dipole branching process suggests that we should be 
able to describe it using an operator formalism where the basic 
operators are dipole creation and annihilation operators. There is 
a fundamental vertex which describes the branching of an initial 
dipole into two secondary dipoles and it is the successive iteration 
of this basic vertex that determines the evolution of the dipole 
cloud. 

We begin by deriving an expression for the fundamental dipole 
vertex illustrated in Fig. 8.2( a). The parent dipole (specified by the 
points denoted 0 and 1) radiates a gluon at point 2 which generates 
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the child dipoles (of sizes y and z, see Fig. 8.2(b)). Firstly, we 
introduce dipole creation and annihilation operators at(b, x) and 
a(b, x) respectively (b is the location of the dipole centre and x 
is its size). Since the dipoles satisfy bosonic statistics we impose 
the commutation relation 

(8.26) 

The differential probability for the emission of a gluon off a dipole 
of size r into the rapidity interval y --+ y + dy and with transverse 
momentum k --+ k + d2k is 

d2k . 
d3p = a s7rk2 dy(1- e,k.r). (8.27) 

For the derivation of this expression we refer to Appendix B of 
this chapter. The colour factor is appropriate for purely gluonic 
branching, i.e. we need an adjustment which accounts for the dif­
ferent coupling to the primary dipole, which is a q-ij pair. This is 
the origin of the colour factor of ~ which sits outside the ampli­
tude, e.g. Eq.(8.16).t This very simple form is, however, unsuitable 
for the dipole evolution. We need to obtain an expression in terms 
of the relevant dipole sizes. Starting from 

J d2k ik·r = J d2k k . k ik-r 
k 2 e k4 e (8.28) 

and using 

ki __ 1_ J d2x . ik·x 
k 2 - 2' 2 x,e 

7r~ x 
(8.29) 

yields 

J d2k ik-r - J 2 2 Xl' X2 (2) 
k 2 e - - d xld X2 2 28 (Xl + x2 + r). 

Xl X2 
(8.30) 

Thus we can write 

d3 p as d2xld2x28(2)(XI + X2 + r) ((Xl + X2)2) 
dy 27r Xl 2X2 2 

as d2Xld2X28(2)(XI + x2 + r) ( ~2 2) . (8.31) 
27r ~1~2 

t This factor is equal to 1 - 1/ N 2 and as such is equal to unity in the leading 
N approxllnation where there is no difference between the colour structure 
of the gluon and that of a q-q pair. 
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This form is now suitable for use in the dipole evolution since it 
describes the branching of the parent dipole of size r into two new 
dipoles of sizes Z1 and Z2. Each of these secondary dipoles can 
then act as a source for further gluon emission, the probability of 
which can be computed using Eq.(8.31), and so on. 

In the operator language, the basic vertex for dipole creation is 
thus 

V1[at,a] = as jd2bd2Xd2yd2Z8(2)(X+Y+Z) 
271" 

2 

X ~ 2at (b+y/2,z)at (b-z/2,y)a(b,x). (8.32) 
y z 

The square brackets indicate that it is a functional of the creation 
and annihilation operators. The dipole evolution is driven by this 
vertex. The arguments of the dipole operators can be seen from 
Fig. 8.2(b). However, things are not quite so simple. Recall that 
the BFKL equation contains essential virtual corrections. These 
corrections are so far absent. However, we can construct the correc­
tion, V2 , to the basic vertex, V1 , which accounts for all the virtual 
graphs. The vertex V1 possesses ultra-violet divergences whenever 
the emitted dipoles have vanishing size (Le. y ---+ 0 or z ---+ 0). 
In order to regularize these divergences we introduce a lower cut­
off p on the size of the emitted dipoles. The virtual graphs are 
accounted for through the vertex 

V2[at , a] = - as j d2bd2xd2yd2z8(2)(x + y + z) 
271" 

z2 
X 2"2"at (b, x)a(b, x) 

y z 

~ -as j d2bd2x In ;: at(b, x)a(b, x). (8.33) 

This form is determined by requiring the conservation of probabil­
ity, Le. the total probability to create a pair of secondary dipoles 
integrated over all the sizes of these dipoles, plus the probability 
not to create a secondary pair must be unity. We demonstrate this 
to order as below. The approximate equality on the second line 
of Eq.(8.33) is valid in the limit of small p. The complete vertex 
for dipole evolution is then 
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V[at,a] = Vl[at,a] + V2[at,a] 

and is independent of p (as p ---+ 0). 
We are now in a position to construct the S-matrix for the 

scattering of primary dipoles of sizes Tl and T2 (it will give us 
F( Tl, T2, b, y) of Eq.( 8.17)). Consider the centre-of-mass scattering 
of the two primary dipoles (we refer to them as left-moving and 
right-moving). The left-moving dipole (at position bo and of size 
rl) is the state 

(8.34) 

where (010) = 1. Similarly, the right-moving dipole (which is at 
impact parameter b relative to the left mover) is the state 

Ib + bo, r2) = dt(b + bo, r2)10), (8.35) 

where d and dt are the annihilation and creation operators for the 
right movers (we need independent operators since the two dipole 
clouds evolve independently, i.e. the left mover operators commute 
with the right mover operators). The probability of finding the 
primary left mover dipole in a configuration of n dipoles with 
positions and sizes {bb CI; b 2 , C2; .. '; b n, cn} is thus 

d4nPn 
d2b l d2q .. ·d2bnd2cn 

= (Ola(bb q) ... a(bn , cn)eyvLat(bo, q)IO). (8.36) 

We have used the subscript L to denote that the vertex operator 
acts on left movers. The basic vertex appears in the exponential 
due to the combinatorial factorial factor which is needed on iter­
ating the basic vertex (recall that the vertex integrates over all 
dipole configurations). A similar expression exists for the evolu­
tion of the right movers. It is convenient to define the n-dipole 
state (integrated over all dipole locations and sizes): 

In) " ~! ! (t! d'cjd'bja t (bj, Cj)) 10). (8.37) 

The integrated probability for the n-dipole configuration is then 

Pn ~Jd4nPn 
n. 
(nleYVLat(bo, rl)IO), (8.38) 
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and satisfies 

(8.39) 
n=l 

which is consistent with our interpretation of Pn as a probability. 
Working to first order in as allows us to see the conservation of 
probability and the role of the virtual corrections (V2 ) explicitly. 
At this order, only PI and P2 are non-zero and it is easy to show 
that 

(8.40 ) 

The dependence upon the ultra-violet cut-off (p) cancels, as re­
quired. Moreover, the virtual corrections generated by V2 are solely 
responsible for the logarithmic term in PI which ensures the con­
servation of probability. 

The scattering matrix for the elastic scattering of the left- and 
right-moving primary dipoles is given by 

S(q, r2, b, y) = 

(Oleal +dl e- f ey'vL+(Y-Y')VRdt(b + bo, r2)a t (bo, q) 10), (8.41) 

where 

(8.42) 

(and similarly for dl ). The dipole-dipole scattering operator, f, is 
given by 

f = J d2 Rd2 R' d2cd2c' f(R - R', c, c') 

x dt(R, c)d(R, c)at(R', c')a(R', c') (8.43) 

and f(R - R',c,c') is given in Eq.(8.18). A few words are in or­
der regarding Eq.(8.41). Starting from the 'vacuum state' on the 
right, we first create the primary dipoles (of size rl and r2 with 
relative separation b). The action of the dipole evolution opera­
tors then generates the respective dipole clouds. These clouds are 
then made to interact. The amplitude for any single dipole-dipole 
interaction is given by - f (the operator structure of Eq.(8.43) 
is such that it projects out the dipoles that interact from the 
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evolved dipole clouds). If we assume that there are very many 
dipoles and that these dipoles scatter independently of each other 
then we are able to account for an arbitrary number of individual 
dipole-dipole interactions by including the factor ( - f)n / n! for n 
dipole-dipole interactions. This explains the origin of the factor 
e- i in Eq.(S.41). The final factor simply ensures that the dipole 
systems have unit overlap with the final state. The factorial fac­
tors associated with the various exponential terms are necessary 
in order to divide out the equivalent configurations (recall that all 
secondary dipole configurations are integrated over to determine 
the elastic amplitUde). Thus we have a formalism which allows 
us to include the multiple scattering of individual dipoles. As 
we shall soon see, the BFKL (leading logarithmic approximation) 
is equivalent to including only the interaction of a single pair of 
dipoles (which eventually violates unitarity) whilst the complete 
multiple scattering series ensures that unitarity is preserved. 

We can re-write the S-matrixin an alternative form by inserting 
the unit operator, 

L In,m)(n,ml, (S.44) 
m,n 

w here the state In, m) = In) 1m) represents n dipoles in the left­
moving onium and m dipoles in the right-moving onium. We find 

S(rI, r2, b, y) = L PnPm exp( -(n, mlfln, m)). (S.45) 
m,n 

Note that this expression explicitly satisfies the constraints of uni­
tarity. To see this we note that 11 - SI 2 is the probability of an 
elastic scattering occurring at a fixed impact parameter and as 
such should satisfy 11 - S 12 S; 1. This bound is indeed satisfied 
since the Pn and Pm are probabilities and because (n, mlfln, m) 
is positive definite (see Eq.(S.43)). This is not the case for single 
Pomeron exchange, where the e- i factor is replaced by 1 - f. 

In the one-Pomeron exchange approximation, the formalism we 
have just described must be completely equivalent to the BFKL 
(leading lns) one, i.e. replacing the e- i factor by 1 - f should 
lead to 

Sl(rI, r2, b, y) = 1 + F(rl, r2, b, y), (S.46) 

where F(rl' r2, b, y) is defined in Eq.(S.17). It is enlightening to 
spend a little time outlining the proof of this equivalence. 
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We start by quoting the result (it is not hard to show): 

ea1 f[at]e- a1 = flat + 1], (8.47) 

where f[at] is some functional of the creation operator. Using 
Eq.(8.47), we can re-write Eq.(8.41) in the one-Pomeron exchange 
approximation as 

SI (1'1,1'2, b, y) = 1 - J d2Rd2R' d2cd2c' f(R - R', c, c') 

X (Ola(R', c')eylVdat +1,a1at(bo, q)IO) 

X (Old(R, c)e(y-yl)VR[dt+l,d)dt (b - bo, r2)10). (8.48) 

which, on comparison with Eq.(8.17), reveals that 

n(1'1'2c', ;;, R') = (Ola(R', c')eyIVdat+l,alat(bo, rl)IO). (8.49) 
7rC 

We need to evaluate explicitly the right hand side of this expres-
sion and demonstrate its equivalence to the number density cal­
culated using Eqs.(8.8) and (8.19). 

Since the only terms in the exponent which generate a non-zero 
contribution to the number density are those which contain equal 
numbers of creation and annihilation operators we can make the 
replacement 

V[I+at ,a]---7atKa. (8.50) 
Selecting terms in Vdl+at , a]+ V2[at , a] (see Eqs.(8.32) and (8.33)) 
that contain one creation and one annihilation operator we find 

atKa == J d2bd2xd2x'd2b'at(b + b', x)K(b', x, x')a(b, x') 

(8.51) 
and the evolution kernel is (using Eqs.(8.32) and (8.33)) 

2 
K(b', X, x') = -asln ~5(2)(b')5(2)(x - x') 

p2 
- ,2 

+ as _x_ [5(2)(b' + (x + x')/2) + 5(2)(b' - (x + x')/2)]. (8.52) 
87r b,2 X 2 

The eigenfunctions of this operator are none other than the con­
formal eigenfunctions, i.e. 

J 2 d2x', , -", , , 
d b-4 K(b - b, x, x )<Pn(b + x /2, b - x /2, w) 

x' 
_ ()~~(b' + x/2, b' - x/2, w) 
asXn v 4 

x 
(8.53) 
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and the eigenvalues are the eigenvalues of the BFKL kernel. To 
derive this important result, it is best to move to complex co­
ordinates (Le. 2d2x = dzdz) whereupon the integrand separates 
into a product of one-dimensional integrals over z and z. After 
a change of variables the integrals can be rewritten in two-vector 
form, where they are seen to generate the eigenfunctions using the 
result that t 

(8.54) 

where n is an arbitrary unit vector. This result suggests that we 
should expand the dipole creation and annihilation operators in 
terms of these eigenfunctions, Le. 

~ ! dv . d2w 
a(b, x) = nf::= (271")24(w+n/2)anv(w) x4 

X ¢~(b + x/2, b - x/2, w), (8.55) 

and 

~ ! dv. t 2 
nf::= (271")24( -w + n/2)anv(w)d w 

X ¢~*(b + x/2, b - x/2, w). (8.56) 

Using Eq.(4.50) the 'conformal' operators can be shown to satisfy 
the commutation relation 

[anv(w), a~'v,(w')l = 6nn l 6(v - v')6(2)(w - w') (8.57) 

and, using the known properties of the eigenfunctions (Eqs.(8.4) 
and (8.5)), we can recast the evolution operator in the diagonal 
form 

atKa = as t ! dvd2wXn(v)a~Aw)anv(w). 
n==-(X) 

(8.58) 

Using Eqs.(8.55), (8.56), (8.57) and (8.58) in Eq.(8.49) allows us 
to show that (in the n = 0 case) 

! dv d2w _ () 
n(rl c Y R) = 16 --__ v 2 e""xo v y , , , (271")3 c2 

¢~(R + c/2, R - c/2, w)¢~*(bo + rl/2, bo - rl/2, w). (8.59) 

t This is appropriate for n = 0 but it is not much more difficult to prove the 
result for general n. 
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This is equivalent to the result that is obtained in a straightfor­
ward way after substituting Eq.(S.S) into Eq.(S.19). 

Thus we have demonstrated the equivalence of the operator for­
malism to that of BFKL. Indeed, the dipole formalism does offer 
an alternative derivation of the BFKL equation (Mueller (1994, 
1995), Mueller & Patel (1994), Chen & Mueller (1995), Nikolaev, 
Zakharov & Zoller (1994a,b), Nikolaev & Zakharov (1994)). How­
ever, more than merely reproducing the results obtained in Chap­
ter 4 we have now established a framework in which we can in­
vestigate the multiple scattering corrections which motivated this 
alternative approach, i.e. we can go beyond the one-Pomeron ex­
change approximation. 

8.2.2 Multiple scattering 

Consider the total cross-section for the scattering of two primary 
dipoles of fixed (and equal) sizes R (this avoids us having to in­
voke specific onium wavefunctions and should demonstrate all the 
important features). It is natural to ask when the one Pomeron 
exchange approximation (BFKL) starts to break down. Formally 
the S-matrix for the elastic scattering can be written as a mul­
tiple scattering series; keeping only the first term corresponds to 
the BFKL calculation and has the S-matrix ofEq.(S.46). This will 
only be a good approximation provided IFI ~ 1. When IFI rv 1 
it becomes necessary to consider the remaining terms in the mul­
tiple scattering series. We shall discuss these terms shortly, but 
for now we have a simple condition for the validity of the BFKL 
calculation. We can evaluate F(R, R, b, y) in the limit of b2 ~ R2 
and for a2y ~ In (b2 / R2) (by the usual saddle point method). 
Our condition for the legitimate neglect of the multiple scattering 
corrections then becomes the explicit condition 

~ 2R2In(b2/R2) WoY (In2(b2/R2)) 
-F(R,R,b,y) S"a S -b2 ( 2 )3/2 e exp - 2 

7ra yay 

~ 1. (S.60) 

The total cross-section is formed using Eq.(S.20), i.e. 

I a2ewoy 
O"tot = - 27r db 2 F( R, R, b, y) = S7r R2 (7r;2 y )1/2. (S.61) 
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Fig. 8.3. Plot to delineate the region where the one-Pomeron ex­
change (BFKL) calculation (ofthe total cross-section) is valid from 
the region where multiple scattering is important. 

The dominant contribution to this cross-section comes from the 
region of large b, in particular 

b2 rv R2eM (8.62) 

and we have a self-consistent calculation (i.e. Eq.(8.60) is valid 
in the region which gives rise to the dominant contribution to 
the total cross-section). Note that the total cross-section is driven 
by the contribution from peripheral collisions (i.e. b ~ R). The 
inequality of Eq.(8.60) can be re-written as a bound on y at a 
given impact parameter, i.e. defining y(b) to be the solution to 
-F(R, R, b, y) = 1 we find 

(
( 7ra2y(b) )3/2 b2 j R2 ) 

woy(b)~ln 87ra~ In(b2jR2) (8.63) 

and the condition for the validity of the one Pomeron exchange 
calculation of the amplitude at some impact parameter b is then 
that y ~ y(b). 

In Fig. 8.3, the solid line corresponds to the curve y = y(b), 
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whilst the dashed line corresponds to y = (1/a2)Jn 2(b2/R2) 
(which, from Eq.(8.62), specifies the region which provides the 
dominant contribution to the total cross-section). We define Yl to 
correspond to the minimum of the curve y = y(b) and Y2 to be 
the rapidity where the two curves intersect. For y < Yl the one 
Pomeron exchange approximation is appropriate over the whole 
range of impact parameter which contributes to the total cross­
section and so we can trust the BFKL calculation in this region. 
For Yl < Y < Y2 multiple scattering corrections are significant for 
a wide range of impact parameter. However, the dominant contri­
bution to the total cross-section still arises from the region of large 
impact parameter where the BFKL calculation is again valid. For 
Y > Y2 multiple scattering corrections are now significant even 
in the region which contributes most to the total cross-section. 
Thus only for Y > Y2 do we need to worry about the role of multi­
ple scattering (unitarization) corrections to the total cross-section. 
Fig. 8.3 was produced with as = 0.25, in which case Yl ~ 15, which 
is quite large and indicates that unitarity corrections to the total 
cross-section are important only at very high energies. The slow 
onset of the unitarity corrections is due essentially to the periph­
eral nature of the dominant contributions to the total rate, i.e. 
multiple scattering effects are most important for the more cen­
tral collisions (where there is a large overlap between the left and 
right-moving dipole clusters). 

A process which is more sensitive to the multiple scattering cor­
rections will therefore be one which is dominated by more central 
collisions. The elastic-scattering cross-section is such a process. 
The integrated cross-section for elastic scattering is 

(8.64) 

and, since IFI rv 1/ b2 , it follows that the elastic cross-section is 
dominated by more central collisions than the total cross-section. 

Having established when we expect the BFKL calculation to 
break down we turn now to a discussion of the specific nature 
of the multiple scattering corrections. Firstly we should establish 
the approximations that are inherent in deriving the particular 
form of the elastic scattering matrix of the preceding subsection, 
i.e. Eqs.(8.41) and (8.45). We know that the leading logarithmic 
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approximation ofBFKL corresponds to the single scattering of one 
dipole in one onium with another dipole in the other onium, i.e. 
the S -matrix for elastic onium-onium scattering can be written 

00 

S = 1 + a~ L cn(asyt· (8.65) 
n=l 

We have distinguished between factors of as and factors of as. The 
latter factors are always accompanied by a logarithm of the energy 
since the leading logarithm approximation is also the leading liN 
approximation (N being the number of colours). The additional 
factor of a~ arises due to the colour neutrality of the external onia. 
In the dipole picture, each onium evolves a dipole cloud by iter­
ating the evolution operator, which is '" asY. The interaction of 
the two dipoles is determined by f '" a~. Clearly therefore, the n 
Pomeron exchange contribution is suppressed by the overall factor 
'" a;n - so it is sub-leading in both the liN and leading logarithm 
approximations. Why, therefore, do we keep these multiple scat­
tering contributions whilst ignoring all the other possible higher 
order corrections? 

The answer is simply stated: it is because of the very high num­
bers of dipoles which are generated in the evolution of the onia. 
Typical configurations contain very large numbers of dipoles, i.e. 
'" e wOyl and '" ewo(y-yl), so although the probability of an indi­
vidual scattering is small ('" a;) the number of 'trials' is very 
large (it is the product of the number of dipoles in each onium), 
i.e. '" eWOY • Thus we expect the multiple scattering corrections to 
be significant when a;eWOY '" 1. The incoherent multiple scatter­
ing of the dipoles within the onia, i.e. the exponentiation of the 
basic dipole-dipole scattering amplitude (e- f), amounts to the 
assumption that the dominant sub-leading effects are due solely 
to the large number of dipoles and that collective effects between 
the individual dipoles (which would spoil the exponentiation) are 
negligible. To make this plausible consider another sub-leading 
effect which should become important as the energy increases. 
This is the effect which we call dipole saturation. As the dipole 
evolution proceeds with the corresponding increase of the dipole 
number we might expect that dipoles within a single onium start 
to interact with other dipoles in the same onium. These effects are 
implemented via a modification of the onium wavefunction and are 
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rv a;eWOyl (Le. the amplitude of any given dipole to interact with 
all the others is proportional to the number of dipoles). Clearly, 
if we choose to divide the rapidity interval equally between the 
two onia, Le. y' = y /2, then the saturation effects enter at ener­
gies which are roughly the square of the energies where multiple 
scattering effects first become important. If we choose a highly 
asymmetric partitioning of the energy (e.g. y' = 0 or y' = y) then 
there is no justification for focusing only on the multiple scat­
tering corrections, Le. there will be large wavefunction saturation 
effects which alter the evolved onium state in such a way that 
the total amplitude is the same as that which would be obtained 
by including only multiple scattering effects but with y' = y /2. 
So, although the physics is clearly independent of y' the sensible 
choice is y' = y /2 since this maximally suppresses the saturation 
effects which we are unable to calculate. We expect all other sub­
leading corrections to be truly sub-leading, i.e. not enhanced by 
large dipole multiplicity factors. 

A word of caution ought to be issued at this stage. The above 
arguments rely heavily on the fact that the dominant features of 
the sub-leading corrections can be determined from knowledge of 
the average features of the dipole evolution. However, one can en­
visage scenarios where this is a dangerous line of reasoning. For 
example, consider a collision in the centre of mass (Le. y' = y/2) 
at very large impact parameters, i.e. in the region where multiple 
scattering effects are small. One might also infer that saturation 
effects are therefore even smaller. However, this need not be the 
case. The dipole evolution could undergo a period of evolution 
where only small dipoles are produced. These large numbers of 
localized dipoles may then be subject to significant saturation 
corrections. In order to contribute to the scattering at large im­
pact parameters at least one large dipole needs to be created (in 
at least one of the onia) and this may be done at the end of the 
dipole evolution. Thus the distribution of large dipoles can be af­
fected by what happened earlier in the dipole evolution and hence 
be subject to large saturation corrections. However, for the typ­
ical configurations which provide the dominant contributions to, 
for example, the total cross-section we expect the more general 
arguments to hold (Mueller & Salam (1996)). 

It is now time to investigate the actual size of the multiple scat-
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Fig. 8.4. The contributions to the total cross-section for the scat­
tering of two primary dipoles of size R from successive terms in 
the multiple scattering series (see Salam (1996a)). 

tering corrections. The natural course of action is to compute first 
the corrections to one Pomeron exchange which arise from the 
p j2! term in the exponential series. Progress can be made with 
an analytic calculation. However, it is not necessary to go into the 
details here and so we refer to the work of Mueller (1995). The 
important feature is that the two Pomeron exchange contribu­
tion to the onium-onium total cross-section exceeds that for one 
Pomeron exchange for large enough y. This effect can be seen in 
Fig. 8.4, where the total cross-section for scattering two primary 
dipoles each of size R is shown (normalized by R2). Moreover, 
and as Fig. 8.4 reveals, the contributions from even more Pom­
eron exchanges exceed the one Pomeron exchange contribution at 
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Fig. 8.5. The ratio of the elastic scattering amplitudes for k to k-1 
Pomeron exchange. The amplitudes are computed at zero impact 
parameter (see Salam (1996a)). 

successively lower energies. The curves are reproduced from the 
paper by Salam (1996a) using a Monte Carlo program (Salam 
(1996b)) and with as = 0.18. Note that the nature of the dipole 
evolution is ideally suited to the construction of a Monte Carlo 
program which allows studies far more detailed than are possible 
analytically. 

Some analytic progress has been made in establishing the essen­
tial features of the multiple scattering series. In particular, Mueller 
(1995) has introduced a toy model in which there are no trans­
verse dimensions (i.e. the creation and annihilation operators have 
no arguments and satisfy [a, at] = 1). This simplification allows 
complete analytic calculations to be performed. For large enough 
energies, the toy model suggests that the terms in the multiple 
scattering series are ex n! where n is the number of Pomeron ex­
changes. This behaviour also seems to hold to a good accuracy 
in the more realistic QCD case, as Fig. 8.5 shows. The graph 
shows the ratio of successive terms in the multiple scattering se-
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Fig. 8.6. The total cross-section for scattering primary dipoles of 
size R calculated with and without unitarization corrections (see 
Salam (1996a)). 

ries (for elastic scattering of two primary dipoles at zero impact 
parameter and fixed energy) and the linearity confirms the facto­
rial behaviour of the terms in the series. This explains the origin 
of the apparent divergence of the multiple scattering series which 
is seen in Fig. 8.4. Thus it seems necessary to sum up the whole 
series before making any predictions. The (summed) large order 
behaviour of this series cancels out for small enough rapidities 
even though the individual terms each yield very large contribu­
tions. This means that the one Pomeron exchange contribution is 
good provided the S -matrix is close to unity (as discussed earlier) 
but as soon as the double Pomeron exchange contribution starts 
to become important so, too, do all other Pomeron exchanges. 
The well behaved nature of the fully summed multiple scattering 
series and the relative smallness of the multiple scattering effects 
for y ;S 10 (which is roughly in line with our expectations from the 
start of this subsection) can be seen in Fig. 8.6, where the total 
cross-section is shown as a function of rapidity. 
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To conclude, we have shown how to unitarize the scattering 
amplitude. Unitarization, via multiple interactions, occurs in the 
perturbative domain (for small enough primary dipoles). However, 
non-perturbative physics is ultimately required in order to ensure 
that the total cross-section satisfies the Froissart-Martin bound 
(any calculation which assumes massless exchanges, as we do, need 
not obey that bound). We argued that multiple scattering is the 
largest unitarization effect. Also, for large enough energies, we 
argued that the effects of wave function saturation can no longer be 
ignored. Ultimately, the total cross-section becomes dominated by 
non-perturbative effects. We should also like to remind the reader 
that we have been working with primary dipoles which are small in 
size (e.g. dipoles arising from heavy onia). IT the colliding particles 
are light hadrons then the small size configurations are relatively 
rare fluctuations and lead to small corrections compared with the 
predominant contribution from non-perturbative physics. 

8.3 Summary 

• High energy scattering in QCD can be viewed as the scattering 
of dipole clusters which are generated by the incoherent branching 
of one dipole into two dipoles. We demonstrated the equivalence 
of this approach to the one of BFKL developed earlier. The dipole 
picture provides a very convenient description of high energy scat­
tering in terms of the locations of the dipoles in impact parameter 
space. 

• In QCD the leading logarithm approximation to high energy 
scattering leads to a power-like growth of total cross-sections, i.e. 
rv sWo. This growth leads to the violation of unitarity at high 
enough energies. We quantify when this violation is expected to 
occur. 

• The dipole language of high energy scattering was derived 
within an operator formalism. This formalism is also suitable 
for the calculation of the important corrections (to the leading 
logarithm calculation) which ensure the preservation of unitarity. 
These corrections arise due to the large number of dipoles within 
the colliding particles leading to a significant probability that more 
than one pair of dipoles will interact per onium-onium collision. 
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8.4 Appendix A 

In this appendix we outline the derivation ofEq.(8.7). Our starting 
point is the relation, 

F( s, kb k2' q) 
k~(ki - q)2 

x e -i(kIobll,-k2ob22,+Qo(bi-b2)) 

X (8~ 8~, )-lj(y,bbb~,b2,b;), 
1 1 

which is just the inverse transform of Eq.( 4.46). 

(A.8.1) 

We now make use of the convolution formula, Eq.(8.6), to re­
place j by a convolution of two j factors; after a simple manipu­
lation we find (again using Eq.(4.51) with n = 0) 

F(s,kb k 2,q) 1 J 2 2 2( / /) 
(2",")2 d bll,d b 22,d b i - b 2 

k~(ki - q)2 II 

~ J d2bxd2b~ d2 d2 / -i(ooo) 
X 8 4 C ce 

7r b xx' 

X ~ J dv v 2 J dpp2e<>s(xo(v)y'+xo(J1.)(Y-Y')) 
16 (v 2 + 1/4)2 

X ¢~(bb b~, c)¢~*(bx, b~, c)¢~(bx, b~, c/)¢~*(b2' b;, c/), (A.8.2) 

where b xx' = b x - b x" 
N ow we insert the delta function operator: 

82(bx - by )82(b~ - b~) + 82(bx - b~ )82(b~ - by) 

_ 1 82 82, J d211 d212 
- 2(27r)4 by by 112 122 

X [eildbx-by) _ eildbx-by) _ eildb~-by) + eildb~-by)] 
X kI2o(bx-by) _ ei12o(bx-by) _ eiI2o(b~-by) + ei12o(b~-by)] . 

(A.8.3) 

Since the eigenfunctions, ¢~(bI' b 2, c), are symmetric under the 
interchange of the first two arguments (i.e. b i +-+ b 2 ) we can insert 
the delta functions of Eq.(A.8.3). Note that the Ii integrals are 
finite before the action of the Laplacian operators - we utilized 
the symmetry property of the eigenfunctions under interchange 
of the arguments to ensure just this property. As a result, we 
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can perform an integration by parts to reverse the action of the 
Laplacian operators such that they act upon the eigenfunctions 
rather than the I integrand. Hence, 

F(s,kI,k2,q) _1_Jd2b ,d2b ,d2(b' -b')e- i ( ... ) 
k~(kl-q)2 4(27r)6 11 22 1 2 

X J d2bxd24b~ d2byd24b~ d2cd2c,d2I21 d2I22 [ ... J [ ... J 

bx~ b yy' 11 ~ 

x :8 J dv v 2 J df.1 f.12ea .(xo(v)y'+xo(J.l)(Y-Y')) 

X J~(bI, b~, c)J~*(by, b~, c)J~(bx, b~, c')J~*(b2' b2, c').(A.8.4) 

Making the standard change of variables 

1 ( ')' Rx = '2 b x + b x - c , 

and similarly for the other co-ordinates, allows the volume ele­
ments to be re-written, i.e. 

d2(b~ - b 2)d2cd2c' -+ d2 ( C - c')d2Rld2 R2 

d2bxd2b~ -+ d2Rxd2bxx" etc. (A.8.5) 

The independent variables are now b ll" b 22" RI, R 2, b xx" b yy" 
R x , Ry and c - c'. The only dependence upon c - c' is in 
the exponential terms. Hence we can collect them together 
and integrate over c - c' which gives the delta function factor 
(27r)252 (q -11 -12). 

The remaining integrals, combined with the definitions speci­
fied by Eqs.(8.8) and (8.9), lead directly to the desired result, i.e. 
Eq.(8.7). 

8.5 Appendix B 

In this appendix we derive Eq.(8.27) for the probability of emis­
sion of a gluon from a dipole. 

Consider a colour singlet dipole with momentum PI moving 
along the positive z-axis. It is convenient to define a momentum 
P2 with the same energy component moving along the negative 
z-axis, such that 2PI . P2 = s. 

Let ¢(Po, r) be the amplitude for this dipole to consist of a 
quark-antiquark pair in which the the quark carries a fraction Po 
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Fig. 8.7. Graphs for the emission of a gluon from a dipole. 

of the longitudinal momentum of the dipole and is separated from 
the antiquark, in impact parameter space, by r. We may write this 
in terms of an amplitude in transverse momentum space as 

¢(Po, r) = (2~ )2 J d21 ei1.r ~(po, I), (B.8.1) 

where ~(Po, 1) is the amplitude for the quark to have transverse 
momentum 1 and the antiquark to have transverse momentum-I. 

N ow consider a gluon with transverse momentum k and fraction 
of longitudinal momentum P emitted from this dipole, as shown in 
Fig. 8.7. We assume that P ~ Po, (1- Po). This is the strong order­
ing required for the leading logarithm approximation. This gluon 
will later couple to a further gluon so it is really off-shell. However, 
since any gluon to which it couples has a fraction of longitudinal 
momentum which is small compared with that of the parent gluon 
and transverse momentum which is small compared with the lon­
gitudinal momentum of the parent, it is a valid approximation to 
consider the emitted gluon to be on shell (and hence transversely 
polarized). The rapidity of the emitted gluon is given by 

(B.8.2) 

We may write the momenta of the quark and antiquark as 

[ 1-' _ 1-' + 12 1-' + [1-' 
1 - POPl -P2 -L' spo 

(B.8.3) 
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l/J. - (1 ) /J. + f /J. l/J. 
2 - - Po PI ( 1 ) P2 - .L , 

S - Po 

and the momentum of the emitted gluon as 

k 2 

k/J. = ppi + -P~ + ki· 
sp 

235 

(B.8.4) 

(B.8.5) 

Furthermore we can exploit gauge invariance to demand that the 
polarization vector, e/J., of the emitted gluon has no component 
proportional to pi and, using the fact that the gluon is transverse 
(e· k = 0), we have 

2e ·k 
e/J. = --p~ + ei. (B.8.6) 

sp 

Now the amplitude for emission from the quark (Fig. 8.7(a)) is 

2h . e -
- igTa - 1 k'¢(po, 1- kj2), (B.8.7) 

2 1 , 

where the factor -¢;(po, 1- kj2) indicates that the quark-anti quark 
pair produced by the dipole are separated by 21 - k in transverse 
momentum space. T a is the colour generator in the fundamental 
representation. We have used the eikonal approximation as the 
emitted gluon is soft relative to the parent quark. 

For P ~ Po, we may use Eqs.(B.8.3), (B.8.5) and (B.8.6) to 
write 

I 2poe· k 
2 1 ·e=-'---

P 

211 . k = PO k 2 

P 

(we have kept only the terms proportional to 1 j P ), so that the 
contribution from this graph becomes 

(B.8.8) 

Likewise the contribution from emission off the antiquark 
(Fig. 8. 7(b)) is 

(B.8.9) 
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Returning to impact parameter space the total amplitude for 
the emission of the gluon off a dipole with transverse size r is 

e·k 1 J 2"1 (- k - k) -2igra--- dIe,·r 1/J(po 1- -) -1/J(po 1 + -) 
k 2 (211")2 '2' 2 

2 · a e . k -i1k·r 1 J d21 il·r .7.( 1) (1 ik.r) 
- zgr k2e 2 (211")2 e 'I-' Po, - e 

(B.8.10) 

Taking the square modulus of this and summing over emitted 
gluon polarizations and colours gives us 

4 2 N 2 - 1 11/J(po, r W (1 _ ik.r) 
g N k2 e (B.8.11) 

(where we understand that we must take the real part of the expo­
nential). The factor of (N 2 -1)/2N comes from the square of the 
colour generator summed over all possible colours for the emitted 
gluon. In the large N limit we may replace this by N /2 (this al­
lows us to generalize our result without modification, so that it 
describes gluon emission off any colour dipole, i.e. not just a q-q 
pair). It is worth noting here that this expression is proportional to 
the impact factor for the coupling of a (zero momentum transfer) 
Pomeron to the parent dipole. The formalism is easily extended 
to non-zero momentum transfer. t 

The element of phase space is given by 

_1_d2k dp 
2(211")3 P . 

We may use Eq.(B.8.2) to express this in terms of rapidity and 
obtain 

1 2 
2(211")3d kdy. 

Thus the probability of emitting a gluon into a rapidity interval 
dy and transverse momentum interval d2k is 

t For non-zero momentum transfer, we need to multiply Eq.(B.8.10) by the 
conjugate of the amplitude which is obtained by replacing k ---> k - q in 
Eq.(B.8.10). This adds extra exponential factors in the final result as well 
a factor of (e· k)(e· (k - q)). The latter factor poses no problem, on using 
Eq.(8.29), whilst the former (on transforming to impact parameter space) 
leads to delta functions which fix the locations of the dipoles (i.e. the ar­
guments of the creation and annihilation operators of Eq.(8.32)). 
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(B.8.12) 

The factor I'I/J(po, r W is just the probability of finding the dipole 
in the first place. Therefore the probability for emission of a gluon 
from a dipole is given by Eq.(8.27). 



Appendix: Feynman rules for QeD 

Propagators: 

Gluon propagator (Feynman gauge): 

I!:. k v 
~ -i6abgll-v/(k2 + iE) 

(Massless) fermion propagator: 

f3 k 

j 

(Massless) scalar propagator: 

k 
- - - - +- - - - - i6ij / (k 2 + iE) 
i j 

Vertices: (momenta are always outgoing) 

Scalar-gluon interactions: 

" . 
" 1 

/ " 
ig2gJ-LV (TaTb + TbTa ) ij 
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Fermion-gluon interaction: 

a i 

Gluon self-interactions: 

P 

ig (Ta)bc [gVP(q - p)1-' + 
gPI-'(2p + q)V - gl-'V(p + 2q)P] 

ig2 (Te)ab (Te)cd (gI-'PgVU _ gI-'<T gVP) 
b ..... c b ..... d 

+v ...... p+v ...... u 

The gauge coupling constant is 9 (as = g2 / 47r ). 
The matrices (ra )ij are the matrices of the colour group in the 

representation of the quarks or colour scalar particles. 
The matrices (Ta)bc = -ifabc are the colour matrices in the 

adjoint representation and fabc are the structure constants of the 
colour group. 

In addition there is a further factor of -i accompanying each 
amplitude so that it is an element of the T-matrix rather than the 
S-matrix (S = U + iT). 
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