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Introduction
 
I.1 PROCESSING OF BIOMEDICAL DATA 

Processing of biological and medical information has long been a dynamic field of 

life science. Before the widespread use of digital computers, however, almost all  

processing was performed by human experts directly. For instance, in processing 

and analysis of the vital signs (such as blood pressure), physicians had to rely entirely 

on their hearing and visual and heuristic experience. The accuracy and reliability 

of such “manual” diagnostic processes are limited by a number of factors, includ­

ing limitations of humans in extracting and detecting certain features from signals. 

Moreover, such manual analysis of medical data suffers from other factors such as 

human errors due to fatigue and subjectiveness of the decision-making processes. 

In the last few decades, advancements of the emerging biomedical sensing and 

imaging technologies such as magnetic resonance imaging (MRI), x-ray computed 

tomography (CT) imaging, and ultrasound imaging have provided us with very large 

amounts of biomedical data that can never be processed by medical practitioners 

within a finite time span. 

Biomedical information processing comprises the techniques that apply math­

ematical tools to extract important diagnostic information from biomedical and bio­

logical data. Due to the size and complexity of such data, computers are put to the task 

of processing, visualizing, and even classifying samples. The main steps of a typical 

biomedical measurement and processing system are shown in Figure I.1. As can be 

seen, the first step is to identify the relevant physical properties of the biomedical 

system that can be measured using suitable sensors. For example, electrocardiogram 

(ECG) is a signal that records the electrical activities of the heart muscles and is used 

to evaluate many functional characteristics of the heart. 

Once a biomedical signal is recorded by a sensor, it has to be preprocessed and 

filtered. This is necessary because the measured signal often contains some undesir­

able noise that is combined with the relevant biomedical signal. The usual sources of 

noise include the activities of other biological systems that interfere with the desir­

able signal and the variations due to sensor imperfections. In the ECG example, the 

electrical signals caused by the respiratory system are the main sources of noise and 

interference. 

The next step is to process the filtered signal and extract features that repre­

sent or describe the status and conditions of the biomedical system under study. 

Such biomedical features (measures) are expected to distinguish between healthy 

and deviating cases. A group of extracted features are defined based on the medi­

cal characteristics of the biomedical system (such as the heart rate calculated from 

ECG). These features are often defined by physicians and biologists, and the task 

of biomedical engineers is to create algorithms to extract these features from bio­

medical signals. Another group of extracted features is the ones defined using signal 

and image processing procedures. Even though the direct biological interpretation 
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FIGURE I.1  Block diagram of a typical biomedical signal/image processing system. 

of such features may not be well understood, these features are instrumental in the 

classification and diagnosis of biomedical systems. In the ECG example, the physi­

ological interpretation of measures such as the fractal dimension of a filtered ver­

sion of the signal or the energy of the wavelet coefficients in a certain band may not 

necessarily be known or understood. However, these measures are known to contain 

informative signal processing–based features that significantly facilitate the classifi­

cation of biomedical signals. 

The last step is classification and diagnostics. In this step, all the extracted fea­

tures are submitted to a classifier that distinguishes among different classes of sam­

ples, e.g., normal and abnormal. These classes are defined based on the biomedical 

knowledge specific to the signal that is being processed. In the ECG example, these 

classes might include normal, myocardial infarction, flutter, different types of tachy­

cardia, and so on. The way a classifier is designed is very application specific. In 

some systems, the features needed to classify samples to each respective class are 

well known. Therefore, the classifier can be easily designed using the direct imple­

mentation of the available knowledge base and features. In other cases, where no 

clear rules are available (or the existing rules are not sufficient), the classifier must 

be built and trained using the known examples of each class. 

In some applications, other steps and features are added to the block diagram 

outlines in Figure I.1. For instance, in almost all biomedical imaging systems, there 

is an essential part of the system that helps visualize the results. This is because 

human users (e.g., physicians) often rely on the visualization of the two-dimensional 

(or three-dimensional) structure of the biomedical objects that are being scanned. 

In other words, visualization is an essential step and the main objective of many 

imaging systems. This need calls for the use of a variety of visualization and image 

processing techniques to modify images and to make them more understandable and 

more useful for human users. 

A useful feature of many biomedical information processing systems is a user 

interface that allows interaction between the user and the processing elements. This 

interaction allows modification of the processing techniques based on the user’s 

feedback. In the ECG example, the user may decide to change the filters to focus on 

certain frequency components of the ECG signal and extract the frequencies that are 

more important for a certain disease. In many image processing systems, the user 

may decide to focus on certain areas of an image and perform particular operations 

(such as image enhancement) on the selected regions of interest. 

I.2 ABOUT THE BOOK 

This book is designed to be used as either a senior level undergraduate course or as 

a first-year graduate level course. The main background needed to understand and 

use the book is college level calculus and some familiarity with complex variables. 
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Knowledge of linear algebra would also be helpful in understanding the concepts. 

The book describes the mathematical concepts in signal and image processing tech­

niques in great detail and, as a result, no prior knowledge of fundamental processing 

techniques (such as Fourier transform) is required. At the same time, for readers 

who are already familiar with the main signal processing concepts, the chapters 

dedicated to signal and image processing techniques can serve as a detailed review 

of this field. 

Part I provides a detailed description of the main signal processing, image pro­

cessing, and pattern recognition techniques. The chapters in this part also cover the 

main computational methods in other fields of study such as information theory and 

stochastic processes. The combination of all these mathematical techniques provides 

the computational skills needed to analyze biomedical signal and images. Readers 

who have previously taken courses in all related areas, such as digital signal, image 

processing, information theory, and pattern recognition, are also recommended to 

read through Part II to familiarize themselves with the notation and practice apply­

ing their computational skills to biomedical data. 

Even though the authors emphasize the importance of mathematical concepts cov­

ered in the book, they strongly believe that the best method of learning the math 

concepts is through doing real examples. As a result, each chapter contains several 

programming examples written in MATLAB® that process real biomedical signals/ 

images using the respective mathematical methods. These examples are designed 

to help the reader better understand the math concepts. Even though the book is not 

intended to teach MATLAB, the increasing level of difficulty in the MATLAB exam­

ples allows the reader to gradually improve his or her MATLAB programming skills. 

Each chapter also contains a number of exercises in the Problems section that 

give students the chance to practice the introduced techniques. Some of the prob­

lems are designed to help students improve their knowledge of the mathematical 

concepts, while the rest are practical problems defined using real data from biomedi­

cal systems (appearing on the companion website to the book). Specifically, while 

some of the problems are mainly mathematical problems to be done manually, the 

vast majority of the problems in all chapters are programming problems designed 

to help the readers obtain hands-on experience in dealing with real-world problems. 

Virtually all these problems apply the methods introduced in the previous chapters 

to real problems in biomedical signal and image processing applications. 

Part II introduces the major one-dimensional biomedical signals. In each chapter, 

at first the biological origin and importance of the signal are explained, followed by 

a description of the main computational methods commonly used for processing the 

signal. Assuming that readers have acquired the signal/image processing skills in 

Part I, the main focus of Part II is on the physiology and diagnostic applications of 

the biomedical signals. Almost all examples and exercises in these chapters use real 

biomedical data for real biomedical signal processing applications. 

The last part, Part III, deals with the main biomedical image modalities. It first 

covers the physical and philological principles of imaging modalities and subse­

quently describes the main applications of the introduced imaging modalities in 

biomedical diagnostics. In each chapter, the main computational methods used to 

process these images are also reviewed. 
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I.3 BRIEF DESCRIPTION OF CHAPTERS 

As mentioned previously, the book is divided into three parts. Part I gives an intro­

duction to digital signal and image processing techniques. Chapter 1 explains the 

main fundamental concepts of signal processing in simple conceptual language. This 

chapter introduces the main signal processing concepts and tools in nonmathemati­

cal terms to prepare the readers for a more rigorous description of these concepts in 

the following chapters. Chapter 2 describes the definition and applications of con­

tinuous and digital Fourier transform. All concepts and definitions in this chapter are 

explained using a number of examples to ensure that the reader is not overwhelmed 

by the mathematical formulae. More specifically, as demonstrated in Chapter 2 as 

well as in subsequent chapters, the authors feel strongly that the description of the 

mathematical formulation of various signal and image processing methods must be 

accompanied by elaborate conceptual explanations. 

Chapter 3 discusses different techniques for filtering, enhancement, and restora­

tion of images. Even though the techniques are described mainly for images, the 

applications of some of these techniques in the processing of one-dimensional signals 

are also described. In Chapter 4, different techniques for edge detection and segmen­

tation of digital images are discussed. Chapter 5 is devoted to wavelet transforms 

and their main signal and image processing applications. Other advanced signal and 

image processing techniques, including the basic concepts of stochastic processes and 

information theory, are discussed in Chapter 6. Chapter 7, the last chapter in Part I, 

provides an introduction to pattern recognition methods, including classification and 

clustering techniques. 

Part II describes the main one-dimensional biomedical signals and the processing 

techniques applied to analyze these signals. Chapter 8 provides a concise review of 

the electrical activities of the cell. Since all electrical signals of the human body are 

somehow created by action potential, this chapter acts as an introduction to the rest 

of the chapters in Part II. 

Chapters 9 through 11 are devoted to analysis and processing of the main biomedi­

cal signals, i.e., electrocardiogram (ECG), electroencephalogram (EEG), and electro­

myogram (EMG). In each case, the biological origins of the signal, together with its 

main applications in biomedical diagnostics, are described. Then, different techniques 

to process each signal and extract important features from it are discussed. In addi­

tion, the main diseases that are often detected and diagnosed using each of the signals 

are briefly introduced, and the computational techniques applied to detect such dis­

eases from the signals are described. In Chapter 12, other biomedical signals (includ­

ing blood pressure, electrooculogram, and magnetoencephalogram) are discussed. All 

the chapters in this part have practical examples and exercises (with biomedical data) 

to help students gain hands-on experience in analyzing biomedical signals. 

In Part III, the physical and physiological principles, formation, and importance of 

the main biomedical imaging modalities are discussed. The various processing tech­

niques applied to analyze different types of biomedical images are also covered in this 

part. In Chapter 13, the principal ideas and formulations of computed tomography 

(CT) are presented. These techniques are essential in understanding many biomedi­

cal imaging systems and technologies such as x-ray CT, MRI, PET, and ultrasound. 
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Chapter 14 is devoted to the regular x-ray imaging, x-ray computed tomography, and the 

computational techniques used to create and process these images. Chapter 15 intro­

duces magnetic resonance imaging (MRI). It covers the  physical principles of magnetic 

resonance and describes the processing techniques pertinent to MRI. Functional MRI 

( fMRI) and its applications are also addressed in this chapter. Chapter 16 describes dif­

ferent types of ultrasound imaging technologies and the processing techniques applied 

to produce and analyze these images. Such techniques include the tomographic meth­

ods used in time-of-flight tomography, attenuation tomography, and reflection tomog­

raphy. Positron emission tomography (PET) is discussed in Chapter 17. Chapter 18 is 

devoted to other types of biomedical images, including optical microscopy, confocal 

microscopy, electric impedance imaging, and infrared imaging. 

The book is accompanied by a website maintained by CRC Press that contains 

the data used for examples and exercises given in the book. The site also includes the 

images used in the chapters. This allows forming lecture notes slides that can be used 

both as a teaching aid material for classroom instruction or as a brief review/overview 

of the contents for students and other readers. 

The contents of this book are specialized for processing of biomedical signals 

and images. However, in order to make the book usable for readers interested in 

other applications of signal and image processing, the description of the introduced 

methods is kept general and applicable to other fields of science and technology. 

Moreover, throughout the book, the authors have used some nonbiomedical exam­

ples to exhibit the applicability of the introduced methods to other fields of study 

such as astronomy. 
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1 Signals and Biomedical 
Signal Processing 

1.1 INTRODUCTION AND OVERVIEW 

The most fundamental concept that is frequently used in this book is a “signal.” 

It is imperative to clearly define this concept and to illustrate different types of 

signals encountered in signal and image processing. In this chapter, different types 

of signals are defined, and the fundamental concepts of signal transformation and 

processing are presented while avoiding detailed mathematical formulations. 

1.2 WHAT IS A “SIGNAL”? 

The definition of a signal plays an important role in understanding the capabilities 

of signal processing. We start this chapter with the definition of one-dimensional 

(1-D) signals. A 1-D signal is an ordered sequence of numbers that describes the 

trends and variations of a quantity. The consecutive measurements of a physical 

quantity taken at different times create a typical signal encountered in science and 

engineering. The order of the numbers in a signal is often determined by the order 

of measurements (or events) in “time.” A sequence of body temperature recordings 

collected in consecutive days forms an example of a 1-D signal in time. The char­

acteristics of a signal lie in the order of the numbers as well as the amplitude of the 

recorded numbers, and the main task of all signal processing tools is to analyze 

the signal in order to extract important knowledge that may not be clearly visible 

to the human eyes. 

We have to emphasize the point that not all 1-D signals are necessarily ordered 

in time. As an example, consider the signal formed by the recordings of the tem­

perature simultaneously measured at different points along a metal rod where the 

distance from one end of the rod defines the order of the sequence. In such a 

signal, the points that are closer to the origin (one end of the metal rod) appear 

earlier in the sequence, and, as a result, the concept that orders the sequence is 

“distance in space” as opposed to time. However, due to abundance of time signals 

in many areas of science, in the literature of signal processing, the word “time” 

is often used to describe the axis that identifies order. In this book, without losing 

the generality of the results or concepts, we use the concept of time as the order­

ing axis, knowing that, in some signals, time should be replaced by other concepts 

such as space. 

Many examples of biological 1-D signals are heavily used in medicine 

and biology. Recording of the electrical activities of the heart muscles, called 
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4 Biomedical Signal and Image Processing 

electrocardiogram (ECG), is widely considered as the main diagnostic signal in  

assessment of the cardiovascular system. Electroencephalogram (EEG) is a signal 

that records the electrical activities of the brain and is heavily used in diagnostics 

of the central nervous system (CNS). 

Multidimensional signals are simply extensions of the 1-D signals mentioned 

earlier, i.e., a multidimensional signal is a multidimensional sequence of numbers 

ordered in all dimensions. For example, an image is a two-dimensional (2-D) 

sequence of data where numbers are ordered in both dimensions. In almost all 

images, the numbers are ordered in space (for both dimensions). In a gray-scale 

image, the value of the signal for a given set of coordinates (x, y), i.e., g(x, y), iden­

tifies the image brightness level at those coordinates. There are several important 

types of image modalities that are heavily used for clinical diagnostics among 

which magnetic resonance imaging (MRI), computed tomography (CT), ultra­

sonic images, and positron emission tomography (PET) are the most commonly 

used ones. These imaging systems will be introduced in separate chapters dedi­

cated to each image modality. 

1.3 ANALOG, DISCRETE, AND DIGITAL SIGNALS 

Based on the continuity of a signal in time and amplitude axes, the following three 

types of signals can be recognized: 

1.3.1 ANALOG SIGNALS 

These signals are continuous both in time and amplitude. This means that both time 

and amplitude axes are continuous axes and can take any real number. In other words, 

at any given real values of time “t” the amplitude value “g(t)” can take any number 

belonging to a continuous interval of real numbers. An example of such a signal is 

the body temperature readings acquired using an analog mercury thermometer over 

a certain period of time. In such a thermometer, the temperature is measured at all 

times and the temperature value (i.e., the height of the mercury column) belongs to a 

continuous interval of numbers. An example of such a signal is shown in Figure 1.1. 

The signal illustrates the readings of the body temperature measured continuously 

for 6000s (or equivalently 100 min). 

1.3.2 DISCRETE SIGNALS 

In discrete signals, the amplitude axis is continuous but the time axis is discrete. 

This means that, unlike in analog signals, the measurements of the quantity are 

available only at certain specific times. In order to see why discrete signals are often 

preferred over analog signals in many practical applications, consider the example 

given earlier for analog signals. It is very unlikely that the body temperature may 

change every second, or even every few minutes, and, therefore, in order to monitor 

the temperature over a period of time, one can easily measure and sample the tem­

perature only at certain times (as opposed to continuously monitoring the tempera­

ture as in the analog signal described earlier). The times at which the temperature 
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5 Signals and Biomedical Signal Processing 

FIGURE 1.1 Analog signal that describes the body temperature measured by an analog 

mercury thermometer. 

is sampled are often multiples of a certain sampling period “TS.” It is important to 

note that as long as TS is small enough, all information in the analog signal is also 

contained in the discrete signal. Later in this book, an important theorem called 

Nyquist theorem is described that gives a limit on the size of the sampling period TS. 

This size limit guarantees that the sampled signal (i.e., discrete signal) contains all 

information of the original analog signal. 

Figure 1.2 illustrates a discrete temperature signal that is the sampled version of 

the analog signal in Figure 1.1. More specifically, the discrete signal (i.e., g(nTS)) has 

sampled the analog signal every TS = 300 s. As can be seen from Figure 1.2, even 

though the discrete signal g(nTS) is defined only at times t = nTS, where n = 0, 1, 

2,…, the main characteristic and variations of the analog signal are detectable in the 

discrete signal too. 

Another preference of digital signals over analog signals is the space required 

to store a signal. In the aforementioned example, the discrete signal has only 20 

points and therefore can be easily stored while the analog signal needs a large 

amount of storage space. It is also evident that signals with smaller size are easier 

to process. This suggests that by sampling an analog signal with the largest pos­

sible TS (while ensuring that all the information in the analog signal is entirely 

reflected in the resulting discrete signal), one can create a discrete representation 

of the original analog signal that has fewer points and is therefore much easier to 

store and process. 

The shorter notation g(n) is often used to represent g(nTS) in the literature and is 

adopted in this book. 
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6 Biomedical Signal and Image Processing 

FIGURE 1.2 Discrete signal that describes the body temperature measured at every 

300 s (5 min). 

1.3.3 DIGITAL SIGNALS 

In digital signals, both time and amplitude axes are discrete, i.e., a digital signal 

is defined only at certain times and the amplitude of the signal at each sample can 

only be one of a fixed finite set of values. In order to better understand this concept, 

consider measuring the body temperature using a digital thermometer. Such ther­

mometers present values with certain accuracy rather than on a continuous range 

of amplitudes. For example, if the true temperature is 98.634562 and there are no 

decimal representations on the digital thermometer, the reading will be 97 (which is 

the closest allowed level), and the decimal digits are simply ignored. This of course 

causes some quantization error, but, in reality, the remaining decimals are not very 

important for physicians and this error can be easily disregarded. What is gained by 

creating a digital signal is the ease of using digital computers to store and process the 

data. Figure 1.3 shows the digital signal taken from the discrete signal depicted in 

Figure 1.2 that is rounded up to the closest integer. It is important to note that almost 

all techniques discussed in this book and used in digital signal processing are truly 

dealing with “discrete signals” and not “digital signals” as the name might suggest. 

The reason why these techniques are called digital signal processing is that when the 

algebraic operations are performed inside a digital computer, all the variables are 

automatically quantized and converted into digital numbers. These digital numbers 

have a finite but very large number of decimals, and, as a result, even though digital 

in nature, they are often treated as discrete numbers. 

The majority of signals measured and processed in biomedical engineering 

are discrete signals. Consequently, even though the processing techniques for 
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7 Signals and Biomedical Signal Processing 

FIGURE 1.3 Digital signal that describes the body temperature quantized to the closet 

integer. 

analog signals are briefly described in this book, the emphasis is given to pro­

cessing techniques for digital signals. 

1.4 PROCESSING AND TRANSFORMATION OF SIGNALS 

A signal can be analyzed or processed in many different ways depending on the 

objectives of the signal analysis. Each of these processing technique attempts to 

extract, highlight, and emphasize certain properties of a signal. For example, in order 

to see the number of cold days during a given year, one can easily count the number 

of days when the temperature signal falls below a threshold value that identifies cold 

weather. Thresholding is only one example of many different processing techniques 

and transformations that can manipulate a signal to highlight some of its properties. 

Some transformations express and evaluate the signal in time domain, while other 

transformations focus on other “domains” among which frequency domain is an 

important one. In this section, we describe the importance and usefulness of some 

signal processing transformations without getting into their mathematical details. 

This would encourage the readers to pay a closer attention to the conceptual mean­

ings of these transformations whose mathematical descriptions will be given in the 

next few chapters. 

In order to see the performance of the frequency domain in highlighting certain 

useful information in signals, consider a signal that records the occurrence of a 

failure in a certain machine. For such a signal, some of the most informative mea­

sures to evaluate the performance of the machine are the answers to the following 
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questions: “On average, how often can a failure occur?” and “Is there any visible 

periodicity in the failure pattern?” If we identify a specific frequency at which 

machine failures often occur, we can simply schedule regular periodic checkups 

before the expected time for possible machine failures. This can also help us iden­

tify potential reasons and causes for periodic failures and therefore associate fail­

ures to some physical events such as the regular weariness of a belt in the machine. 

Fourier transform (FT) is a transformation designed to describe a signal in fre­

quency domain and highlight the important knowledge in the frequency variations 

of the signal. The usefulness of the knowledge contained in frequency domain 

explains the importance of FT. Other transformations commonly used in signal 

and image processing literature (such as wavelet transform) describe a signal in 

other domains that are often a combination of time and frequency. 

It has to be emphasized that the information contained in a signal is exactly the 

same in all domains, regardless of the specific domain definition. This means that 

different transformations do not add/delete any information to/from a signal, and the 

same exact information can be discovered from a signal in each of these domains. 

The key point to realize the popularity of different types of transformations in signal 

processing is the fact that each transform can highlight a certain type of information 

(which is different from adding new knowledge to it). For example, the frequency 

information is much more visible in Fourier domain than in time domain, while the 

exact same information is also contained in the time signal. In other words, while 

the frequency information is entirely contained in the time signal, such informa­

tion might be more difficult to notice or more computationally intensive to extract 

in time domain. The reason for this clarification is the answers often students give 

to the following tricky question: “Assume a signal is given in both time and Fourier 

domains. Which domain does give more information about the signal?” The authors 

have asked this question to their students, and almost always half of the students 

identify the time domain as the more informative domain while the remaining half 

go with the Fourier domain, and almost never does anyone realize that the answer 

to this tricky question is simply “neither!” The choice of the domain only affects 

the visibility, representation, and highlighting of certain characteristics, while the 

information contained in the signal remains the same in all domains. It is important 

for the readers to keep this fact in mind when we discuss different transformations 

in the following chapters. 

1.5 SIGNAL PROCESSING FOR FEATURE EXTRACTION 

Once certain characteristics of a signal are identified using appropriate transforma­

tions, these characteristics or features are used to evaluate the signal and the system 

producing the signal. As an example, once using image processing techniques, a 

region of a CT image is highlighted and identified as a tumor, then one can eas­

ily perform some measurements over the region (such as measuring the size of the 

tumor) and identify the malignancy of the tumor. As mentioned in the Preface, one 

of the main functions of biomedical signal and image processing is to define and 

extract measures that are vital for diagnostics of biomedical systems. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

   
 
 
 

Signals and Biomedical Signal Processing 9 

1.6 SOME CHARACTERISTICS OF DIGITAL IMAGES 

Digital images (i.e., 2-D digital signals) are important types of data used in many 

fields of science and technology. The importance of imaging systems (such as MRI) 

in medical sciences cannot be overestimated. In this section, some general charac­

teristics of images together with some simple operations for elementary analysis of 

digital images are discussed. 

1.6.1 IMAGE CAPTURING 

Unlike photographic images in which cameras are used to capture the light intensity 

and/or color of objects, each medical technology uses a different set of physical proper­

ties of living tissues to generate an image. For example, while MRI is based on the mag­

netic prosperities of a tissue, CT scan relies on the interaction between the x-ray beams 

and the biological tissues to form an image. In other words, in medical imaging sen­

sors of different physical properties of materials (including light intensity and color) are 

employed to record anatomical and functional information about the tissue under study. 

1.6.2 IMAGE REPRESENTATION 

Even though different sensor technologies are used to generate biomedical images, 

when it comes to the representation image, they are all visually represented as digital 

images. These images are either gray-level images or color images. In a gray-level 

image, the light intensity or brightness of an object shown at coordinates (x, y) of the 

image is represented by a number called “gray level.” The higher the gray-level num­

ber, the brighter the image will be at the coordinate point (x, y). The maximum value 

on the range of gray level represents a completely bright point, while a point with the 

gray level of zero is a completely dark point. The gray points that are partially bright 

and partially dark get a gray-level value that is between 0 and the maximum value of 

brightness. The most popular ranges of gray level used in typical images are 0–255, 

0–511, 0–1023, and so on. The gray levels are almost always set to be nonnegative 

integer numbers (as opposed to real numbers). This saves a lot of digital storage space 

(e.g., disk space) and expedites the processing of images significantly. 

One can see that the wider the range of the gray level becomes, the better resolu­

tion is achieved. In order to see this more clearly, we present an example. 

Example 1.1 

Consider the image shown in Figure 1.4. Image (a) has the gray-level range of 0–255. 
In order to see how the image resolution is affected by the gray-level range, we 
reduce the range to smaller ranges. In order to generate the image with gray level 
0–255, we divide every gray level of every point by two and round up the number 
to the closest integer. As can be seen in image (b), which has only 64 levels in it, 
the resolution of the image is not significantly affected by the gray-level reduction. 
However, if we continue this process, the degradation in resolution and quality 
becomes more visible (as shown in (c) which has only two levels of gray and dark 
in it). Image (c) that allows only two gray levels (0 and 1) is called a binary image. 
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FIGURE 1.4 Effect of gray-level range on image resolution. (a) Range 0–255, (b) range 0–63. 
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FIGURE 1.4 (continued) (c) range 0–1. 

Color images are also used in medical imaging. While there are many standards 
for color images, here we discuss only “red green blue” or “RGB” standard. RGB is 
formed based on the philosophy that each color is a combination of the three primary 
colors: red, green, and blue. This means that if we combine the right intensity of these 
three colors, we can create the sense of any desired color for the human eyes. As an 
example, for a purple object we would have a high density of red and blue but a low 
intensity of green. As a result, in RGB representation of a color image, the screen (such 
as a monitor) provides three dots for every pixel (point): one red dot, one green dot, 
and one blue dot. The intensity of each of these dots is identified by the share of the 
corresponding primary color in forming the color of the pixel. This means that in color 
images for every coordinate (x, y), three numbers are provided. This in turn means that 
the image itself is represented by three 2-D signals, gR(x, y), gG(x, y), and gB(x, y), each 
representing the intensity of one primary color. As a result, every one of the 2-D sig­
nals (for one color) can be treated as one separate image and processed by the same 
image processing methods designed for gray-level images. 

1.6.3 IMAGE HISTOGRAM 

An important statistical characteristic of an image is the histogram. Here, we 

define this concept and illustrate it using a simple example. Assume that the gray 

level of all pixels in an image belong to the interval [0, G − 1], where G is an inte­

ger. Consequently, if “r” represents the gray level of a pixel of the image, then 

0 ≤ r ≤ G − 1, where r is an integer. Now, for all values of r, calculate the normal­

ized frequencies, p(r). In order to do so, for a given gray-level value r, we count the 



  

  

 

 

  

 
 

12 Biomedical Signal and Image Processing 

number of pixels in the image whose gray level equals r and name it as n(r). Then, 

we divide that number by the total number of points in the image n, i.e., 

n r( )
p r( )  = (1.1) 

n 

The reason for using p(r) to represent these normalized frequencies is due to the fact 

that in limit these frequencies approach the true probabilities of gray levels. Then, 

histogram is defined as the graph of p(r) versus r. The definition of this concept is 

illustrated in the following examples. 

Example 1.2 

Consider a test image shown in Figure 1.5. As can be seen, this image has three 
gray levels r = 0, 1, and 2, which means G = 3. The darkest gray level corresponds 
to level 0, and the brightest level is represented by level 2. 

Next, we calculate the p(r) for different values of r. One can see that 

3 
p( )  =0 

9 

5 
p( )1 = 

9 

1 
p( )  =2 

9 

The histogram for this image is shown in Figure 1.6. 
The concept of image histogram will be further defined and illustrated in the 

following chapters. 
Now that we understand the main concepts such as 1-D and 2-D signals, 

we can progress to the next chapter that introduces the most important image 
transformation, i.e., FT. 

FIGURE 1.5 Test gray-level image with three levels. 
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FIGURE 1.6 Histogram of image shown in Figure 1.5. 

1.7 SUMMARY 

A signal is a sequence of ordered numbers (often in time). Even though many signals 

are analog signal in nature, in order to analyze such signals in digital computers, they 

are often sampled and then processed using digital signal processing techniques. 

Such techniques and transformations often highlight certain characteristics of a 

signal, for example, FT emphasizes the frequency information contained in a signal. 

When all informative characteristics of a signal are extracted, the resulting features 

are presented to a classifier that evaluates the performance of the system generating 

the signal. In this chapter, we also defined some fundamental characteristics of digi­

tal images such as histogram. 

PROBLEMS 

1.1  Assume that an analog signal  x(t) for t ≥ 0 is defined as 

x t( )  = e−2t	 (1.2)
  

 a.	  Using  MATLAB®, plot x(t) for 0 ≤  t ≤ 10.

 b.  Sample  x(t) with  TS = 0.1 s to form  xd1(t) and plot the resulting discrete signal. 

 c.	  I ncrease the sampling period to  TS = 1 s to form  xd2(t) and plot the resulting 

discrete signal. 

 d.	   Increase the sampling period to  TS = 4 s to form  xd3(t) and plot the resulting 

discrete signal. 

 e.	  Co mpare the three discrete signals in the previous parts and intuitively decide 

which sampling period creates the best discrete version of the original analog  

signal, i.e., identify the sampling period that is small enough to preserve the 

waveform of the original signal  x(t) and at the same time reduces the number 

of the sampled points. 

1.2  From the CD 

 a.	  Using MATLAB, load the file “p_1_2.mat,” i.e., type 

load p_1_2.mat; 



 b.	  Using MATLAB, get a list of variables in the file, i.e., 

whos 

 c.	  Using MATLAB, plot x1(t). i.e., 

plot(x1); 

 d.  Disregarding the noise-like variations, the signal has clear periodicity  

in it. Manually measure the time of one complete period of oscillation  

(i.e.,  period  T). Knowing that frequency is defined as the reciprocal of the  

period, i.e.,  f = 1/T, calculate the dominant frequency of the variations.  

In practical applications, manual frequency analysis becomes impossible.  

Signal processing techniques to extract the dominant frequencies of a signal  

(mainly using Fourier analysis) are heavily used in signal processing and  

will be covered in Chapter 2.

 e.	   Using MATLAB, plot x2(t) and x3(t). Then, manually calculate the average 

slope of each of the signals. For each signal, identify if the slope exceeds 5.  

Calculation of slopes is a fundamental operation commonly used in signal  

and image processing, for example, a sharp slope of pixel intensity in any 

direction often identifies the border between two parts of an image represent­

ing two separate regions or objects. Efficient techniques for slope and gradi­

ent analysis are discussed in the following chapters. 
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2 Fourier Transform
 

2.1 INTRODUCTION AND OVERVIEW 

Among all transforms used in signal and image processing, Fourier transform (FT) 

is probably the most commonly used transform. In this chapter, we first describe the 

definition as well as the concepts of FT and then discuss some of the properties of FT 

that are commonly used in signal processing. The emphasis of this chapter is on the 

conceptual interpretations as well as the applications of one-dimensional (1-D) and two-

dimensional (2-D) continuous and discrete FT as opposed to mathematical formulation. 

2.2 ONE-DIMENSIONAL CONTINUOUS FOURIER TRANSFORM 

As mentioned in Chapter 1, a signal can be expressed in many different domains 

among which time is probably the most intuitive domain. Time signals can answer 

questions regarding “when” events happen, whereas FT domain addresses questions 

starting with “how often” (this is why FT domain is also called frequency domain). 

As an example, assume that you are to study the shopping habits of members in 

a community by preparing a questionnaire. You will obtain some useful informa­

tion when you ask questions such as “What days do you normally go shopping?” or 

“What time of the day you never go shopping?” This information helps you under­

stand and visualize the “time” elements of people’s shopping habits. Also, if you 

prepare a time signal that shows the number of people shopping at every instance of 

time (i.e., a graph of number of people shopping vs. time), you can acquire answers to 

all the aforementioned questions. Now, consider a different set of questions such as 

“How often do you go shopping?” or “What percentages of people go shopping twice 

a week?” Answers to these questions form the frequency domain, which in signal 

processing is formed by FT. Let us remind ourselves that the information in time 

and frequency are exactly the same, i.e., neither of the domains are more informative 

than the other and one can acquire all information on one domain from the other.  

However, considering the computation size and the visibility of certain information 

to humans, one domain can be preferred over the other, as discussed in Chapter 1. 

Now, we give a formal definition for 1-D continuous FT. Consider g(t) as a con­

tinuous signal in time. The FT of this signal, shown as  G( f), is defined as follows: 

+∞ 

 G( )  f  = FT  {g t  ( )}  = 
−∞ 
∫ g t( )  e  − j f2p tdt  (2.1)

where 

f is the frequency variable (which is often expressed in units such as Hz, kHz,  

MHz, and so on) 

j is the imaginary number (i.e.,  j2 = −1) 
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Note that in Equation 2.1 (which is also known as the analysis equation), the integra­

tion is taking place over time and therefore the resulting function, i.e., G( f), is no 

longer a function of time. Also, note that G( f) is a complex function of f. This means 

that one can describe G( f) as follows: 

∠ ( )e j G f  (2.2)G f  =( )  G f( )  

where 

�G( f )� is the magnitude of G( f ) 

∠G( f ) represents the phase of G( f ) 

A closer look at the value of �G( f )� at a given frequency reveals the main advan­

tages of expressing a signal in the Fourier domain. Continuing our example on peo­

ple’s shopping habits, let us assume that g(t) is the number of people shopping at time t, 
where time is measured in seconds. Then, in order to see how many people would go 

shopping once a day (i.e., once every 86,400 s), all we need to do is to calculate �G( f)� 
for  f = 1/86,400 Hz. Note that one could have obtained the same information from  

the time signal, but the FT provides a much easier approach to frequency-related 

questions such as the one we explored earlier. 

If one can calculate the FT for a time signal, he or she should also be able to calcu­

late the time signal from a frequency signal in the FT domain. Such a transformation  

is called the inverse FT (or the synthesis transform) that accepts G( f) as input and  

calculates g(t) as follows: 

+∞ 

g t( ) = IFT { G( )f } = ∫ G( )  f e j f2p tdf (2.3)
  −∞ 

Next, we practice calculating the FT using some useful functions that are heavily 

used in signal processing. 

Example 2.1 

Consider an exponentially decaying signal  g(t) = e−t, t ≥ 0. Then, 

+∞ 

G f( )  = ∫ g t( )e − j2 pftdt 
−∞ 

+∞ 

= ∫ e e  −t − j2p ftdt  
0 

⎡ 
t =+∞

1 − + ⎤
= −  ⎢ e ( 1 2j fp ))t

⎥
⎣ 1 + j u2p ⎦t =0 

⎛ 1 ⎞ 
= ( )  0 − −⎜ ⎝ 1 + j f2p ⎟ ⎠

1 = (2.4)
1 + j f2p   
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Also, we can calculate the magnitude and phase of G(f) as follows: 

1
G f( )  = 

1+ j f2p 

1 = (2.5) 
1 2+ ( pf ) 2  

and 

∠G f( )  = −∠  (1 +  j2pf )

= − tan −1( 2pf ) (2.6)   

Example 2.2 

Impulse function δ(t) (also known as Dirac function) plays an important role in  
many areas of science and engineering such as physics, differential equations, and 
signal processing. Before describing the mathematical definition of the impulse 
function and calculating the FT of this function, we focus on the concept of the 
impulse function and the need for such a mathematical entity. 

Impulse function is a mathematical function that describes very fast bursts  
of energy that are observed in some physical phenomena. As an example of   
such burst pulses, consider the effect of smashing the ball in a volleyball game. 
Volleyball players are not allowed to hold the ball in their hands; rather, they 
are supposed to hit the ball. When smashing the ball, players apply a significant  
amount of energy in a very short time. Such an impulse force applied to the ball  
creates the most effective move in a volleyball game. The effects of such an action 
can be modeled using an impulse function. 

Impulse function plays an important role in the identification of unknown systems.  
This role can be described through a simple example. Suppose you are given a black  
box and you are asked to discover what is in the box. One quick way of guessing the  
contents of the box is tapping on it and listening to the echoes. In a more scientific  
world, you would apply some fast pressure impulses on the surface of the box and  
observe the response of the contents in the box with respect to the impulse functions  
you applied. If the box contains coins, you will hear a jingling sound, and if the box is  
full of water, an entirely different sound and echo will be sensed. This type of identify­
ing unknown systems is a fundamental technique in a field of science called “system  
identification,” which focuses on modeling and describing unknown systems. 

Now, we slowly approach a mathematical formulation of the impulse func­
tion. The burst-like concept of the impulse function implies that the mathematical  
model must be zero for all points in time except for an infinitely small time interval  
(as discussed earlier). In a more mathematical manner, assuming that the impulse 
is applied at time t = 0, the mathematical representation of the impulse function 
must be zero everywhere except for a small neighborhood around the origin. If 
the impulse is assumed to be nonzeros for a very short period of time, then the 
amplitude of impulse during this very short interval of time must be infinitely 
large; otherwise, the total energy of the signal would become zero. In order to  
see this more clearly, we focus on a mathematical model of the impulse function. 
Consider function δΔ(t) shown in Figure 2.1. Note that the energy of this signal  
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t 

δΔ(t) 

Δ/2 

1/Δ 

–Δ/2 

FIGURE 2.1 δΔ(t) function. 

(i.e., the area under the curve) is the duration (i.e., Δ) multiplied by the height of 
the pulse (i.e., 1/Δ). This shows that the energy of the signal is always one regard­
less of the value of Δ, i.e., the area (energy) independent of Δ. 

Now we can define the impulse function as follows: 

d ( )t = lim  dΔ ( )t (2.7) 
Δ→0 

The previous definition implies that even though the impulse function is nonzero 
only between 0− and 0+, the energy of the signal is still one, i.e., 

++∞ 0 

d ( )t dt  = d ( )t dt = 1 (2.8) ∫ ∫ 
−−∞ 0 

In order to have a meaningful visual representation for the impulse function 
emphasizing the fact that the amplitude of the impulse function is 0 everywhere 
except at the origin in which the amplitude approaches infinity, an arrow pointed 
toward infinity is used to show the impulse function (Figure 2.2). 

t 

δ(t) 

FIGURE 2.2 Visual representation of an impulse function. 
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Other useful properties of the impulse function include the sampling capability of  

the impulse function, i.e., for any signal  g(t), 

+∞ +

∫
0 

d ( )  t g( )  t dt = ∫ d ( )  t g( )  t dt = g(0 )  (2.9) 
 −∞ −  

0

Equation 2.9 describes how integration with impulse function can sample the signal  

at the origin. One can also imagine a shifted version of an impulse function centered  

at t0 as opposed to the origin (i.e.,  δ(t − t0) shown in Figure 2.3). For this function, 

+∞ +

∫
t 

d ( t t− 0 ) dt = ∫ d ( t t− 0 ) dt = 1 (2.10) 

 −∞ −t  

Using a shifted impulse function, one can sample a function at any time t0, i.e., 

+∞ +

∫
t 

d (t − t  0 )  g t( )  dt = ∫d (t − t  0 )g t( )  dt = g t( 0) (2.11) 

 −∞ −t  

Knowing the good properties of the impulse function, next we use Equation 2.11 to 

calculate the FT of the impulse function: 

+∞ 

FT {d ( )t } = ∫ d ( )t e − j f2 p tdt 
−∞ 

= e − j f2p ×0

= 1 (2.12) 
  

This unique property of the impulse function indicates that the frequency spectrum of  

an impulse is completely flat. We will discuss the interpretation of this result later on. 

FIGURE 2.3 Shifted impulse function. 
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Example 2.3 

Another useful function in signal processing is the unit pulse pΠ(t) as shown in Figure 2.4. 
Calculating the FT of the unit pulse function, we have 

+∞ 

P f( )  = ∫ p (t)e − j f2 p t
Π Π dt

−∞ 

∫ 
T 

= Ae − j f2 p tdt 
0 

⎡ 
t T

A ⎤
= 

= −⎢ e− j f2 p t
⎥⎥

⎣ j f2p ⎦t =0 

A = −  ⎡e − j f2p T −1⎤
j f ⎣ ⎦2p 

A = −  ⎡e− j fp T  − e j fp T ⎤ e− jp fT

j f ⎣ ⎦2p 

AA ⎡ e j fp T  − e− jp fT ⎤
= ⎢ ⎥ e

− j fp T

p f ⎣ 2 j ⎦ 

A  = sin(p fT)e − j fp T  (2.13)
p f 

which means 

sin(pft)
P fΠ( )  = AT 

pfT 

= ATsinc(pfT) (2.14)   

tT 

PΠ(t) 

A 

FIGURE 2.4 Unit pulse function. 
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TABLE 2.1 
Some Properties of FT 

Function 

δ(x) 

cos(2πu0x) 

sin(2πu0x) 

u x−∫2p 0 e 

u(x): unit step 

−pX2 

e

PΠ(t): rectangular pulse 

FT 

1 

1 
[ (u ud − 0 ) + d ( + 0 )]  u u  

2 

− j 
[ (u u0 d − + 0 )]  ) − d (u u  

2 

δ(u − u0) 

1 ⎡ j ⎤d ( ) −u ⎢ ⎥2 ⎣ pu ⎦
−pu2 

e 

A 
) − pj fT  sin(p fT e 

p 

Table 2.1 gives the FT of some other important functions in time. The derivation 
of the FT for some of these functions has been left as exercises for the reader, and 
here we discuss the practical interpretation of some of the entries in the table. The 
unit step function (i.e., u(t)) is a function defined as u(t) = 1 for all t > 0 and 
u(t) = 0 for t ≤ 0. 

−pt2 

The first interesting observation is the FT of a Gaussian time signal (i.e., e ). As 

can be seen from the table, the FT of this function also has a Gaussian form. This obser­

vation plays a vital role in applications such creating nondiffracting ultrasonic waves. 

Another observation from Table 2.1 deals with the FT of sinusoidal functions. 

According to the table, the magnitude of the FT of a cosine function with frequency 

f0 is a couple of frequency impulses centered at f0 and −f0. In analyzing many phe­

nomena in science and engineering, it is desirable to discover any periodicity and 

sinusoidal variations in signals. Even though one can observe periodicity in a signal 

from its time domain representation, the aforementioned property of the FT makes 

it a perfect tool for quantitative analysis of any periodicity by naming the exact sinu­

soidal components forming the signal. In order to see this more clearly, here are a 

few simple examples. 

Example 2.4 

Consider the time signal given in Figure 2.5. From the time signal, it is rather easy 
to say that the signal is indeed periodic. However, it may be rather difficult to  
develop a mathematical expression for the signal to be represented as a summa­
tion of some sinusoidal components. 

Now consider the magnitude of the FT shown in Figure 2.6. As you may have 
noticed, the graph is symmetric around the vertical axis, and when focusing on 
the positive f-axis, there are two impulses at frequencies 0.25 and 0.5 Hz. This tells 
us that the signal is composed of two sinusoidal components at these frequencies. 
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3 

2 
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–1 

–2 

–3 

x(
t) 
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Time t 

FIGURE 2.5 A given time signal. 

1 

0.5 

|X( f )| 

f–0.5 –0.25 0.50.25 

FIGURE 2.6 FT of the time signal in Figure 2.5. 

Therefore, if we write the time equation of the signal, there will be two sinusoidal 
terms: sin(2πt × 0.5) and sin(2πt × 0.25). We can even identify the amplitude of 
the sinusoids and develop an exact mathematical formula for the signal from the 
FT graph given in Figure 2.6. The sinusoidal at 0.25 Hz has the height of 1 in 
the FT graph, which means that the amplitude of this component in time should 
be 2. Similarly, one can observe that the amplitude of the other sinusoidal term 
with frequency 0.5Hz is 1. This means that the mathematical expression of the 
time signal can be written as follows: 

g t( ) = sin( t) + 2sin( . pt)  (2.15) p 0 5

The previous example shows us that sometimes it is much easier to express and 
analyze periodic signals in the FT domain than in time domain. The FT can even 
help us find mathematical expressions of signals in time (as in the previous example). 

2.2.1 PROPERTIES  OF ONE-DIMENSIONAL FOURIER TRANSFORM 

FT has some very interesting general properties that are helpful not only in calculating 

the FT of a wide range of time signals but also in understanding the main concepts of 

this transform. Here, we will review some of the properties listed in Table 2.2. 

The main properties shown in the table are discussed in the following sections. 
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TABLE 2.2 
Properties of 1-D FT 

Time Function 

dg t ( )  

dt 

g(t − t0) 

j f  t  2p 0 e  g t 
  ( )  

g1(t) × g2(t) 

g1(t) × g2(t) 

tg(t) 

+∞ 
2 

g t( )  dt  ∫ 
−∞ 

ag1(t) + bg2(t) 

FT 

( j2πf )G( f ) 

p 0 e ( )2 ft G  f 
  

G( f − f0) 

G1( f ) × G2( f ) 

G1( f ) × G2( f ) 

j dG f  ( )

2p df 
+∞ 

2
G f( )  df  ∫ 

−∞ 

aG1( f ) + bG2( f ) 

2.2.1.1 Signal Shift 
According to this property, if a signal is shifted in time, the magnitude of the FT remains 

the same (for all frequencies). Specifically, for a signal g(t) and an arbitrary time shift t0, 

j ft  G f FT g t { (  − t0 )}  = e 2p 0 (  )   (2.16) 

Since the magnitude of the complex exponential in Equation 2.16 evaluates to 1, it is 

evident that the magnitude of the FT is independent of the time shift t0 shift in g(t). 
This observation matches our intuition. For example, you can listen to a piece of 

music once today and once tomorrow, and then if you were to listen to the same music a 

few days or some time later, would the music sound different to your ears? No! Though 

the time or day might be different (time shift) the music will always correlate with 

the first day! To understand this concept better, let us consider another analogy with 

respect to the 2-D world. Assume you are analyzing a slide under your microscope. If 

you were to move the slide a little to the left or right, does the original image under the 

microscope ever change? The response should lead you to the following conclusion: 

time shift of a signal in the time domain does not change the magnitudes of the FT. 

As can be seen in the table of FT properties, a time shift simply introduces a 

“phase shift” in the FT of the time signal. A change in phase simply states that the 

signal has started at a different time (which is evident from the time signal). 

2.2.1.2 Convolution 
Convolution is a fundamental operation in the world of linear analysis and plays a central 

role in signal and image processing. As can be seen from Table 2.2, convolution opera­

tion between two signals, g1(t) and g2(t) (shown as g1(t)*g2(t)), is defined as follows: 

+∞ +∞ 

g t  ∗ g ( )  = g t g  (t − )d = g (t − t )g  t d  t1( )  2 t 1( )  2 t t  1 2( )  (2.17) ∫ ∫
 
−∞ −∞ 
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Direct calculation of convolution operations involves many complicated and time-

consuming mathematical computations. However, it is comforting to know that the 

FT creates an alternative method of calculating the convolution that is much less 

computationally intensive. The property described in Table 2.2 says that, in order 

to calculate g1(t) * g2(t) (convolution of g1(t) and g2(t)), one must identify the involved 

signals and calculate the FT of the respected signals (i.e., find G1(  f ) and G2( f )), then 

multiply the two (i.e., find G1(  f ) . G2(  f )), and then find the inverse Fourier transform 

(IFT) of the result. This would compute g1(t)* g2(t) without the long and tedious integra­

tion or math involved in the true definition of convolution. Understanding the concept of 

traversing from time domain to frequency domain and vice versa can save a signifi­

cant amount of calculation time. The property of convolution is extremely important 

for analyzing linear systems, as discussed in the following. The proof for this property 

is left as an exercise and will be discussed further in Problems section. 

2.2.1.3 Linear Systems Analysis 
Before discussing the main usage of the FT in linear systems, we briefly discuss the 

concept of linear systems that play an important role in signal and image processing. 

Consider a system where an “input” stimulation of the system causes an “output” 

response from the system. For example, consider a cart on an open area such a park­

ing lot. If you push the cart with a certain input power, the cart will travel an output 

distance. Linear systems are the systems in which the output linearly depends on the 

input, i.e., the amplitude of the output is linearly proportional to the amplitude of the 

input. Using the example mentioned earlier, if one pushes a cart with twice the original 

force or power, the cart will travel twice the original distance. In a more mathemati­

cal context, if a push with power p(t) causes the cart to travel for q(t) meters, then a 

push for α . p(t) will cause the cart to travel for α . q(t) (where α is a constant). 

Linear systems have another property that deals with the response of a system to 

two or more inputs that are applied to the system simultaneously. This property (which 

is also referred to as “superposition”) states that the response of a linear system to  

simultaneous inputs is the summation of the responses of the system to every indi­

vidual input. Continuing our previous example, assume that if one person pushes the 

cart with power p1(t), the cart will move for q1(t), and if another person pushes the cart 

with p2(t), the cart will move for q2(t). Now, if both these people push the cart at the 

same time, i.e., with power p1(t) + p2(t), the cart will travel for q1(t) + q2(t) meters, i.e., a 

distance that is the summation of the distances the cart travels for each push. 

In order to better understand the concept of linear systems, let us focus on the 

contrast between linear and nonlinear systems. Nonlinear systems (as the name 

suggests) are systems in which the relation between input and output is either not pro­

portional or not superpositional. For example, in our previous example of pushing carts 

in a parking lot, let us assume that there are some obstacles (such as cars and other 

carts) parked in the lot. In that case, a small push can make a cart to travel for a cer­

tain distance, but a proportionally larger push may cause the cart to collide with other 

objects and therefore fail to produce a proportionally large distance. This is a typical 

example of a nonlinear system in which the complexity of the system prevents simple 

and well-behaved characteristics such as proportionality and superposition. Nonlinear 

systems are therefore much more difficult to model and analyze. 
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Now, let us ask ourselves a couple of good questions: “Where can we find linear 

systems?” and “Why linear systems are so important for us?” The answer to the 

first question is that in nature we almost never encounter a truly linear system! In 

other words, almost everything in nature and everything in man-made systems are 

nonlinear. In addition, we now know that the nonlinear nature of these systems 

makes them so flexible, dynamic, and interesting. Having such an answer for the 

first question, the second question becomes more relevant. If there are not many 

linear systems in nature, why should we spend a lot of time studying linear sys­

tems? The answer is twofold. First, many nonlinear systems, under certain condi­

tions, can be approximated with linear models. This means that if we make sure 

that certain conditions are satisfied, instead of dealing with complex and difficult 

nonlinear mathematics, we can still use our straightforward linear math. Second, 

even in cases where linear models may not be the best approximates of a truly 

nonlinear system, considering our lack of knowledge on the type and nature of the 

involved nonlinearities, linear models might still be all we can do. For example, 

in our model of pushing a cart in crowded parking lot, even though the system is 

a nonlinear one, we can still model the system as a linear system if we restrict the 

power of the applied push. 

Now we get back to the facilities FT provides for analysis of linear systems. In 

order to see the impact of the FT on linear systems, it suffices to describe the rela­

tionship between the input p(t), output q(t), and the internal characteristics of a linear 

system h(t). The output is nothing but the convolution between the input and the 

internal characteristics of the model, i.e., 

q t( )  = p t  ( )× h( )t (2.18) 

As discussed previously, convolution is a rather complicated process, but FT can be 

used to easily calculate the output of linear systems, i.e., in linear systems, we have 

( )  × H f  Q f  = P f  ( )  ( )   (2.19) 

Before concluding our discussion on linear systems, it is insightful to relate the con­

cept of h(t) (or equivalently H( f)) to the impulse function. Let us rewrite Equation 

2.19 as follows: 

Q f( )
H f( )  = (2.20) 

P f( )  

Now, assume that the input is an impulse, i.e., p(t) = δ(t). Then from Equation 2.19, 

we acquire 

Q f( )
( )  ( )  (2.21) H f  = = Q f

1 

or equivalently, h(t) = q(t). This means that in order to find the internal characteristics of a 

linear system, one can simply apply an impulse input to the system and record the output. 
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This property of the impulse function is used in system identification and signal process­

ing. Due to this observation, h(t) is often called “the impulse response function.” 

2.2.1.4 Differentiation 
Another interesting property of the FT is the conversion of derivative in time domain 

into a simple multiplication process in the frequency domain. This property is used 

to convert differential equations in time into a set of simple linear equations in fre­

quency domain and solve multidimensional differential equations using simple lin­

ear algebra. 

2.2.1.5 Scaling Property 
An extremely useful property of the FT is the way time and frequency domains are 

inversely scaled. Specifically, assume that the FT of a signal g(t) is given as G( f). The 

scaling property states that, for a signal defined as g1(t) = g(αt) with α > 1, we can 

easily calculate the FT using G( f) as follows: 

1 ⎛ f ⎞ 
1 (2.22) FT g { ( )}  t = G1(  )  f = G 

⎝⎜ ⎠⎟a a 

The previous equation asserts that once a function is compressed in time, the func­

tion in frequency domain expands with the same rate. This means that once the 

width of a signal in time domain approaches zero, its width in frequency domain 

approaches infinity. This observation further explains why the FT of an impulse 

function must be infinitely flat. 

2.3 SAMPLING AND NYQUIST RATE 

The technological advancements of the Internet and other digital media, digital 

computers, digital communication systems, and other digital machines and systems 

makes the processing of digital signals and images a valued technique. In addition, 

the existence of very fast digital signal processors that are tailored to process digital 

signals with amazing high speeds, supports the processing of signals in a digital 

form. However, knowing that almost all signals collected from nature (including 

biomedical signals) are continuous in nature, we would need to “digitize” continu­

ous signals to form digital (or discrete) signals to be processed with digital signal 

processors. 

Next, let us discuss two important questions that require answers before any 

attempts to sample the continuous signals can be made: “Is it possible to form a 

digital signal from a continuous signal while maintaining all information in the con­

tinuous signal?” And if the answer to the first question is yes, then “How fast are we 

supposed to sample a continuous signal such that all information of the continuous 

signal is preserved in the resulting sampled (discrete) signal?” The answer to the first 

question is “Yes!” This answer may be to some degree counterintuitive. The reason 

why it may be counterintuitive is because once the continuous signal is sampled, 

apparently there is no guarantee that one can recover the exact values of the signal 

between the samples. In other words, if we can reconstruct the continuous signal 
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from the discrete signal, then we could claim that no information has been lost from  

the continuous signal. However, it seems impossible to reconstruct the exact values 

between the sampled values since there might be several possible options for each  

intermediate point. The key issue to address lies on “How fast can a continuous 

signal be sampled?” 

A theorem called Nyquist or Shannon theorem addresses our problem. The math­

ematical details and proof of the theorem will not be given here. However, the prac­

tical procedure introduced by the theorem for sampling a continuous signal while 

maintaining all information in the resulting discrete signal is described in the fol­

lowing steps: 

Step 1: Calculate FT of the continuous signal. 

Step 2: Find maximum frequency of the signal, i.e., maximum frequency at 

which the FT of the signal is nonzero. Call this frequency fM. 

Step 3: Sample the continuous signal with a sampling frequency fS, which is 

at least twice of  fM, i.e., fS  ≥ 2fM. In other words, take samples of the con­

tinuous signal every  TS  ≤ 1/2fM s, i.e., sample the continuous signal with a 

period that is slower than 1/2fM s. 

The rate 2fM that landmarks the slowest sampling rate allowed is called “Nyquist  

rate.” The aforementioned theorem states that, if the sampling rate is faster than  

Nyquist rate (as indicated in the previous procedure), then the exact continuous sig­

nal can be reconstructed from the discrete signal, and, therefore, the resulting dis­

crete signal will contain all details of the continuous signal. 

2.4 ONE-DIMENSIONAL DISCRETE FOURIER TRANSFORM 

Now that we know how to intelligently sample a continuous signal to preserve all 

the information in it, it is time to describe the discrete equivalent of the continuous 

FT, called discrete Fourier transform (DFT). Consider a discrete signal  g(n), where  

n = 0, 1,…, N. The DFT of such a signal is defined as follows: 

N −1 2pknT 

G k  = ∑ − j
( )  g(n)  e  N , k = 0 ,…, N −1 (2.23) 

 n=0  

The preceeding equation is also called analysis equation (since it decomposes the signal  

into its discrete frequencies). As can be seen, the number of samples in the frequency  

domain is the same as the number of points in time domain, i.e., N. The inverse of this  

transform, i.e., inverse discrete Fourier transform (IDFT), is calculated using the  

following equation (called synthesis or IDFT equation): 

1 
N −1 2pknT 

j 
g n  ( ) = 

 
∑G k e( )  N , n = 0 ,…, N −1 (2.24) 

N 
k=0  
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Just like in continuous signals, there is a significant amount of similarity among the 

DFT and IDFT equations. This similarity causes the dual characteristics among 

the signal in the discrete time and frequency domains. Other properties of the DFT 

are very similar to the continuous FT except that in all cases integrals are replaced 

by summations. Most of the properties of DFT are very similar to those of continu­

ous FT and are explored in Problems section. Some other properties of DFT that are 

unique to DFT are explored here. 

2.4.1 PROPERTIES  OF DFT 

Some unique properties of DFT revolve around shift, repeat, and stretch of the 

signal and the way these operations relate to convolution operation. These proper­

ties are explored in this section. First, we specify circular shift, repeat, and stretch 

operations. 

As shown in Figure 2.7, the circular shift transforms a discrete signal in 

such a way that the time points in the far right-hand side are shifted to the 

beginning of the signal in the left-hand side, and the rest of the time points are 

simply shifted toward the right-hand side. The number of shift points is often 

shown as the index of the operation, for example, a shift for two time points is 

shown as SHIFT2. 

The stretch operation, shown in Figure 2.8, allows stretching a signal by insert­

ing zeros between consecutive time points in the signal. As in shift operation, the 

number of stretch points is often shown as the index of the operation, for example, 

a stretch for two time points is shown as STRETCH2. This operation is sometimes 

referred to as zero-insertion operation. 

Figure 2.9 represents another useful operation called repeat operation and repre­

sents repeating of a signal over an entire period. As in other operations, the number 

of repeats is often shown as the index of the operation, for example, one complete 

repeat is shown as REPEAT2. 

g(n) 

g(n – 1)  

g(n – 2)  

SHIFT1 g(n) 

SHIFT2 g(n) 

FIGURE 2.7 Circular shift of a signal g(n). 

g(n) 
STRETCH2 g(n) 

FIGURE 2.8 Stretch of a signal. 
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g(n) 
REPEAT2 g(n) 

FIGURE 2.9 Repeat of a signal. 

Next, we define “circular convolution” for discrete signals x1(n) and x2(n) as  

follows: 

∑
N −1 N −1 

g1( )n  × g n2( )  = g1 (m) g n  2( − m) = ∑
 g1 ( n  − m)g m  2( ) (2.25) 

 m=0 m=0  

In the preceding equation, x1(n− m) and x2(n− m) represent the m-point circularly  

shifted versions of  x1(n) and x2(n) (as defined earlier). When it comes to Fourier 

theory, the circular convolution is loosely equivalent to linear convolution for con­

tinuous signals. In order to see this more clearly, we describe an important property 

of DFT as follows: 

 DFT{ g n  1( ) × g2 ( n  )} = DFT { g n  1( )} × DFT {g2(n  )} = G1(k  ) ×G2 (k  )  (2.26)

As can be seen, in the continuous case, DFT can reduce the complex operation of  

circular convolution by computing the product of the DFTs of the present signals.  

However, one of the most important properties of the circular convolution can be  

identified through the next property of DFT: 

 DFT {STRETCH l{ g n  ( )}} = REPEATl { DFT { g n  ( )}} = REPEATl { G( k  )}  (2.27)

or equivalently, 

DFT 

 STRETCH l { g n  ( )} ↔ REPEATl{ G( k  )}  (2.28)

The aforementioned property corresponds to the scaling property of continuous FT, 

except that in DFT things are more interesting and rather simpler. In other words, 

this property states that stretching a signal in time would result in the repetition of  

the signal in frequency domain. This property is used in biomedical signal process­

ing as we will see later. 

Before describing the 2-D DFT, let us briefly explore DFT using MATLAB®. 

Example 2.5 

Consider a time signal shown in Figure 2.10. We will use MATLAB to calculate the 
DFT of the signal. 

The command for DFT calculation in MATLAB is “fft”. In order to get the 
magnitude of DFT of a signal, one can use the command “abs” to calculate the 
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FIGURE 2.10 Signal x defined in the time domain. 
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FIGURE 2.11  Magnitude of DFT of signal  x. 

magnitude of complex variables. The following code generates the graph shown in 
Figure 2.11, which represents the magnitude of the DFT of the signal x: 

y = fft(x);
 
y_magnitude = abs(y);
 
n = length(y_magnitude);
 
plot(y_magnitude(1:n/2−1));
 
xlabel(‘Frequency’);
 
ylabel(‘Magnitude of DFT’);
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Since the DFT of a real signal is symmetric across the middle time point 
(see Problem 2.8), it is often more desirable to see only half of the signal as the 
remaining half is repetitious. The last two lines are used to label the axes. 

2.5 TWO-DIMENSIONAL DISCRETE FOURIER TRANSFORM 

Just like in continuous signals, 2-D FT is a rather straightforward extension of the 

1-D transform. Mathematically, the 2-D DFT is defined as follows: 

N −1 N −1 p ux vy)2 ( + 

G u v  = ∑∑g x y e  , ) 
− j

N (2.29) ( , )  (  

x=0 y=0 

where u and v are frequency axes in which G(u, v) is described. The inverse transfor­

mation, i.e., 2-D IDFT is then defined as follows: 

1 N −1 + )N − 2p (ux vy 

g x y( , )  = G u v e N(  ,  )  (2.30) ∑∑ j 

x=0 y=0 

Some of the major conceptual properties of 2-D DFT are essentially the extension 

of the same conceptual properties in the 1-D DFT. For instance, the high-frequency 

components of the 2-D DFT represent fast variations in the gray level of the neigh­

boring points in the signal. Such fast variations (i.e., high frequencies) occur at the 

edges (borders) of the objects or in the texture of an object. Edges by definition are 

places where the intensity of pixels changes rapidly across a boundary. This rapid 

change is what we refer to as high frequency. Similarly, texture is defined as the 

rapid and semirandom changes of intensity in a region. This also identifies high 

frequencies, i.e., frequencies far from the origin in the 2-D frequency space. Edge 

detection and texture analysis play important roles in the analysis of biomedical 

images. For example, the intensity of the points (pixels) in a tumor is often differ­

ent from their surrounding normal tissues. This difference in intensity identifies an 

edge between the tumor and its surrounding normal tissues. Tumor detection and 

segmentation is often performed based on Fourier and similar types of analysis as 

will be discussed later. 

As in 1-D DFT, we will apply MATLAB to calculate 2-D DFT. The following 

example explores using MATLAB for 2-D DFT images. 

Example 2.6 

Consider the image g(x, y) shown in Figure 2.12. This is a tomographic image of 
pulmonary veins in atrial fibrillation. As shown in the following code, the main 
command in MATLAB for calculating the 2-D DFT of images is “fft2”. The mag­
nitude of the 2-D DFT of the image g is shown in Figure 2.13. The command 
“image” in MATLAB is used to display an image and is often accompanied by 
the command “colormap”, which defines the type and range of gray level or 
colors to be used for presenting images. Another command, “imshow”, can also 
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FIGURE 2.12 Image g(x, y). (Courtesy of Andre D’Avila, MD, Heart Institute (InCor), 

University of Sao Paulo, Medical School, Sao Paulo, Brazil.) 
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FIGURE 2.13 Magnitude of 2-D DFT of image g(x, y). 

be used to display the image. Unlike “image”, the command “imshow” presents 
the image without numbering the coordinates. 

colormap(gray(256));
 
image(g):
 
y = fft2(g);
 
xlabel(‘x’);ylabel(‘y’);
 
figure;
 
y_magnitude = abs(y);
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image(y_magnitude);
 
colormap(gray(256) );
 
xlabel(‘u’);
 
ylabel(‘v’);
 

The center in the DFT image shows the zero frequency, and, as a result, low-
frequency components of the signals are the dots close to the origin, while the 
points far away from the center (origin) represent the high-frequency components 
of the image. 

The properties of 2-D DFT are very similar to continuous signals and 1-D DFT. 
Some of these properties that play important roles in image processing and are 
further explored in Problems section. 

2.6 FILTER  DESIGN 

In this section, we discuss using frequency domain or DFT to design practical filters. 

In preprocessing a signal, it is often the case that some details of the signals must 

be altered. For example, high frequencies in a signal are often considered to have 

been corrupted by high-frequency noise (which is the case for many applications). In 

such cases, one needs to somehow be able to filter the high frequency in the signal. 

The schematic diagram of Figure 2.14 shows how a filter H( f) can be used to filter a 

signal (or image) P( f) to generate a processed signal (or image) Q( f). 
Often the users of a system have a reasonably reliable idea on the range of 

frequency for noise. For instance, for high-frequency noise, we may know that 

majority of the noise energy is at a given frequency and above. In such cases, the 

ideal scenario is to design a low-pass filter to eliminate the noise. The shape of 

the ideal low-pass filter is shown in Figure 2.15. 

Knowing that Q( f) = H( f), any frequency higher than the cutoff frequency D0 in 

the original signal P( f) is eliminated in the filtered signal Q( f). This is ideal filter­

ing of high frequencies using an ideal low-pass filter. Similarly, one can imagine an 

ideal high-pass filter (Figure 2.16) as well as an ideal band-pass filter (Figure 2.17). 

In each case, the desired frequencies are preserved and the unwanted frequencies 

are eliminated. 

P( f ) Q( f )
H( f ) 

FIGURE 2.14 Filtering signals and images using filter H( f). 

1 

|H| 

D0 f 

FIGURE 2.15 Ideal low-pass filter. 
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|H| 

1 

D0 f 

FIGURE 2.16  Ideal high-pass filter. 

|H| 

1 

D0 D1 f 

FIGURE 2.17  Ideal band-pass filter. 

In practical applications, due to some practical limitations in constructing the  

ideal filters as well as unwanted effects of abrupt rises or falls in ideal filters,   

some approximations of these ideal filters are used. These approximations, while  

similar to the ideal filters in general shape, are smooth and have no sharp jumps  

in them. 

One example of such filter realizations is the family of Butterworth filters. The 

low-pass Butterworth filter, as shown in Figure 2.18a, has a smooth transition from  

the amplitude 1 at frequency 0 to amplitude 0 at high frequencies. The high-pass 

Butterworth filter is shown in Figure 2.18b. As seen, one can roughly approximate  

the ideal filter with these smooth curves. In these approximations, there is no clear  

choice for the cutoff frequency; it is often customary to consider the frequency at 

which the magnitude of the filter falls to 1 2  of the peak value (i.e., 1) as the 

approximate cutoff frequency. 

|H| |H| 
1 1 
1 1—— –– —— –– √2 √2 

(a) D    0 f (b) D0 f

FIGURE 2.18  (a) Low-pass Butterworth filter and (b) high-pass Butterworth filter. 
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Due to their completely smooth curve, Butterworth filters are also referred to as  

m aximally flat. The mathematical formulation of a Butterworth filter can be written 

as follows: 

B f  ( )  b j( )f n + b ( )jf n−1 +.+ b
H f  ( )  = = 1 2 n+1

A f  ( )  a j( )f n n (2
1 + a ( )  jf 1

.31)− +.+ aa 2 n+1  

where  j is the imaginary number and the parameters  ai and  bi are the parameters  

of the filter. The order n identifies both the shape and the complexity of the filter,  

i.e., the larger n gets, the sharper filter is achieved; however, the sharper filter will  

be more complex. The field of filter design by itself requires a separate textbook. 

But describing the details of the filter design process may not provide a meaningful 

insight to the reader who cares mainly about filter design applications. Here, instead 

of describing the details of the long and tedious process of filter design, we will  

simply investigate the filtering process using MATLAB. 

In MATLAB, in order to design a Butterworth filter with the order of  n, one can 

use the following command: 

[b,a] = butter (n,Wn,‘s’) 

In this command,  n is the order of the low-pass Butterworth filter,  Wn is the cutoff  

frequency of the filter, and s determines whether the filter is high pass or low pass.  

The option “high” corresponds to high-pass filter and “low” gives a low-pass filter. 

Example 2.7 

In this example, we use MATLAB to design a low-pass Butterworth filter. We are 
to design a low-pass Butterworth filter of order 10 with the cutoff frequency of 
300Hz. For these specifications, we code the following line in MATLAB and it will  
provide us the resulting polynomials: a and b. 

[b,a] = butter (10,300/500,‘low’); 

Next, in order to better visualize the designed filter, we use the command 
“freqz” to draw the frequency response of the aforementioned low-pass 
Butterworth filter, i.e., 

freqz(b,a,128,1000); 

where 128 is the number of points in which the frequency response is evaluated 
and 1000 is the sampling frequency. Figure 2.19 shows the frequency response of 
this low-pass Butterworth filter. 

Every concept on filtering of the 1-D signals can be extended to the 2-D case. Just  

like 1-D signals, images often contain frequencies that need to be filtered out. Two-

dimensional low-pass filters, high-pass filters, and band-pass filters are designed to 

process the images and extract the desired frequency information. Just as in 1-D 

case, the ideal filters are not very practical, and, as a result, approximations such as  

Butterworth filters are used for practical applications. 
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FIGURE 2.19 Frequency response of Butterworth filter designed in Example 2.3. 

2.7 SUMMARY 

FT is among the most commonly used transformations in signal processing. In this 

chapter, we have identified the definition, properties, and applications of the FT 

(both continuous and discrete). We also discussed the 1-D and 2-D formulations of 

the FT. In addition, we also introduced the ideal and practical filters designed in the 

frequency domain to process signals and images. 

PROBLEMS 

2.1	 Prove the linearity of FT, i.e., show that for any two signals g1(t) and g2(t) and 

any two scalars α and β, 

FT{ag t1( )  + bg t  2( )} = aFT g t1( )} + cFT{g t  ( )} = aG f  1(  )  + bG f  (  )  (2.32) { 2	 2 

2.2	 Prove the scaling property of the FT, i.e., show that for any signal g(t) and any 

scalar α ≠ 0, 

1	 f
⎟⎟FT g t( )} = G f  

⎛ ⎞
{ 1 1( )  = G ⎜⎜ (2.33) 

a a⎝ ⎠ 

2.3	 Prove the time-shift property of the FT, i.e., show that for any signal g(t) and 

any scalars t0, 

2p t0FT{g t  t  ( − 0 )} = e j f G f 	  (2.34) ( )  
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2.4	  Prove the convolution property for FT, i.e., show that 

FT { g t  1( )∗ g2 ( )  t  } = G1(u). G2 ( ) 	  u  (2.35) 
  

2.5	  For 2-D DFT, prove that 

DFT 

STRETCH l	 { g n  ( )} ↔ REPEATl{ G( k  )} (2.36) 
  

2.6	  Prove that the DFT of a real signal  g(n) is symmetric, i.e., F(u) = F(−u). 

2.7	  P rove the scaling property of the 2-D DFT, i.e., show that for any 2-D signal  g(x, y) 

and any scalars α > 0,  β > 0, 

{ } 1 ⎛ u v ⎞
FT g x1( , y  )  = G1 (u,  v) = G ⎜ , ⎟ (2.37) 

ab 
 ⎝ a b ⎠  

2.8	  Fro m the CD, load the file “p_2_9.mat.” This gives you a synthetic 1-D signal  

x(n). 

 a.	  Use the command “fft” to calculate the DFT of the signal  x. 

 b.	  Plot the magnitude of the DFT. 

 c.	  What are the dominant frequencies in the signal? 

2.9	   Use command “imread” in MATLAB to read the image stores in “p_2_10.jpg,”  

i.e., type  “imread(‘p _ 2 _ 8’,‘jpg’)”. This gives you an image  x, which  

shows an intersection of the heart.* 

 a.	  Use the command “fft2” to calculate the DFT of the image x. 

 b.	  U se the command “image” to show the magnitude of the DFT of the image.  

You may need to adjust the color map of the display using the command  

“colormap”. 
2.10	  U sing MATLAB, design a high-pass Butterworth filter of order 9 with cutoff  

frequency 200 Hz. Plot the frequency response of the filter. 

* Courtesy of Andre D’Avila, MD, Heart Institute (InCor), University of Sao Paulo, Medical School, 

Sao Paulo, Brazil. 
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3 Image Filtering, 
Enhancement, 
and Restoration 

3.1 INTRODUCTION AND OVERVIEW 

The equipments with which we capture images are often influenced by measurement 

noise; therefore, the resulting images may not provide the quality needed for desired 

analysis. In addition, even for images with acceptable quality, it is often the case that 

certain regions, features, or components of the image need to be emphasized and 

highlighted. As an example, when processing medical images, it is often the case that 

highlighting certain parts of the image such as tumor-like regions would help physi­

cians make a better diagnosis. In this chapter, the main computational techniques com­

monly used in image processing to restore and enhance images are discussed. 

Image restoration and enhancement techniques can be regarded as computational 

algorithms that receive an image as their input and generate an enhanced or restored 

version of this image as their output. This is shown in Figure 3.1. 

Image restoration techniques are often described either in space domain or in fre­

quency (Fourier) domain. While almost any space-domain technique has an equivalent 

frequency-domain method and vice versa, some techniques are easier to understand 

and/or implement in one domain than another. Some frequency-domain filtering tech­

niques were described in the previous chapter, and in this chapter the focus is given to 

space-domain techniques. It is not surprising to see that some of the space-domain tech­

niques described in this chapter carry the same name as the ones described in the previous 

chapter (such as low-pass filtering and high-pass filtering). As we will discuss later, these 

filters are the space-domain equivalents of the filters described in the previous chapter. 

Space-domain image enhancement techniques can be further classified into two 

general categories: point processing and mask processing techniques. The point pro­

cessing techniques are the ones in which each pixel of the original (input) image at 

coordinates (x, y) is processed to create the corresponding pixel at coordinates (x, y) 

in the enhanced image. This means that the only pixel in the original image that has 

a role in determining the value of the corresponding pixel in the enhanced image is 

the pixel located at the exact same coordinate in the original image. In contrast, in 

mark processing techniques, not only the pixel at (x, y) coordinates of the original 

image but also some neighboring pixels of this point are involved in generating the 

pixel at (x, y) coordinates in the enhanced image. The schematic diagrams of the 

point processing and mask processing techniques are compared with each other in 

Figure 3.2. These two categories of space-domain image enhancement techniques 

are further described in this chapter. 
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FIGURE 3.1 Schematic diagram of image restoration techniques as computational machines. 

FIGURE 3.2 Schematic diagram of (a) mask processing and (b) point processing techniques. 

3.2 POINT PROCESSING 

Point processing involves a mathematical transformation that modifies the values of  

the pixels in the original image to create the values of the corresponding pixels in  

the enhanced image. The mathematical expression for such a transformation can be  

described as follows: 

g x y( , )  = T  [ f (x, y  )
 

] (3.1) 
 

where 

f(x, y) is the original (input) image 

g(x, y) is the enhanced (output) image 

T describes the transformation between the two images 

The exact choice of the transformation is identified by the exact objectives of the 

point processing task. Point processing is often performed on an image to improve  

the quality of an image using the manipulation of the gray-level range of the image.  

Different methods of point processing and their specific objectives are described in  

the following. 
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FIGURE 3.3 Contrast enhancement using point processing. 

3.2.1 CONTRAST ENHANCEMENT 

If the object of interest (to be analyzed) occupies only a specific range of the gray 

scale, then one may want to manipulate the image such that the object occupies a 

larger range of the gray level and therefore increase the visibility of the object. In 

medical images, for example, often one needs to analyze a tumor surrounded by 

organs that are darker or brighter than the tumor is. If other organs and objects are 

not the main focus of the analysis, then in order to visualize the tumor better, one can 

perform contrast enhancement to “stretch” the gray level of the tumor. 

Contrast enhancement is a method to create better visibility of a particular range 

of gray level that corresponds to the object to be studied. This stretch of gray-level 

range is illustrated in Figure 3.3. 

As can be seen in Figure 3.3, the exact shape of the transformation applied for 

contrast stretching is controlled by values of (r1, s1) and (r2, s2). It is apparent that the 

choice of r1 = s1 and r2 = s2 would reduce the transformation to a linear operation that 

has no effect on the gray level of the original image. In practice, we often select these 

values such that the interval [s1, s2] covers the gray-level range of the object of interest 

and the interval [r1, r2] provides the desired range of gray level for a better visibility of 

the object in the target image. This implies that for a better object visibility “r2 − r1” 

must be much larger than “s2 − s1”; in other words, with this condition, the differ­

ences among the gray levels in the region of interest are amplified and enhanced in 

the target image. 

Next, we show how to implement point processing in MATLAB®. 

Example 3.1 

In this example, we enhance and stretch the gray level of the original image in 
the interval of [150, 200] to the desired interval of [105, 200]. MATLAB code of 
this example is shown in the following text. First, we read the original image with 
“imread” command. This image shows that ultrasonic image of the heart and its 
compartments. We have intentionally chosen a noisy ultrasonic image to better 
represent the quality of images to be processed in many medical applications. 
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FIGURE 3.4 (a) Original image and (b) image after point processing. (Courtesy of Andre 

D’Avila, MD, Heart Institute (InCor), University of Sao Paulo, Medical School, Sao Paulo, Brazil.) 

As can be seen from the code, in order to do numerical operations on an image, it  
is often easier to convert the image from unsigned integer format to double format  
using “double” command. The rest of the code is composed of “for” loops for 
stretching the interval of [150, 200]. Figure 3.4 shows an ultrasound image of the 
heart and the image after point processing.

 I=imread(‘heart.tif’);
 
 S = size(I);
 
 I = double(I);
 
 J = zeros(S(1),S(2) );

 for i=1:S(1)

 for j=1:S(2) 
 if I(i,j) <= 150 
 J(i,j) = I(i,j); 
 elseif (150 < I(i,j) ) & (I(i,j) < 200)
 J(i,j)=1.9*(I(i,j)−150)+ 105;
 elseif (I(i,j) >= 200) 
 J(i,j) = .8*(I(i,j)−200) + 200;
 end
 end

 end

 imshow (I,[0,255]);

 imshow (J,[0,255]);
 

Other types of transformation can be used to enhance the quality of an image  
for particular applications. Figure 3.5a shows a transformation function that  
creates a binary image from the original image. This transformation is useful  
for applications where we need to set a threshold value to separate an object  
from the background. Such applications include the typical scenarios in which  
a tumor must be separated from the background tissues. However, often we  
not only need to emphasize and highlight the tumor but also prefer to see the  
tissues around the tumor to get a better picture of the spatial relation among  
the tumor and the surrounding tissues or organs. To address this need, a similar  
transformation shown in Figure 3.5b can be used. This transformation increases  
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FIGURE 3.5 (a) Transform function that highlights the interested range and sets the other 

gray levels to a constant low value. (b) Transform function that highlights the interested range 

and preserves the value of other gray levels. 

and highlights the gray level of the region of interest (e.g., tumor), and, to a 
certain degree, it simultaneously preserves the other gray levels containing the 
surrounding tissues and organs. 

3.2.2 BIT-LEVEL SLICING 

In digital computers, the gray level of each pixel in an image is saved as one or more 

bytes. A byte is a vector of 1 or 0 bits. In digital images, according to the arrange­

ments of these 1’s and 0’s, a gray level is coded as binary number. For example, in 

order to encode 256 gray levels, i.e., gray levels of 0, 1, 2,…, 255, one would need 

1 B with 8 bit. In such a system, the byte [00000000] would encode for the gray 

level of 0 and [11111111] represent 255. Similarly, any number between 0 and 255 

is encoded by its binary code as 1 B. The bit in the far left side is referred to as 

“most significant bit,” or MSB, because a change in that bit would change the value 

encoded by the byte significantly. For instance, for an 8-bit byte as described earlier, 

a change in MSB would alter the value of the encoded gray level by 126 levels, which 

is a large change. Similarly, the bit in the far right side is referred to as “least signifi­

cant bit,” or LSB, simply because a change in this bit does not change the encoded 

gray value much. In the 8-bit byte previously discussed, a change in LSB would 

change the value of the gray level only by 1 level. 

Bit-level slicing is a method of representing an image with one or more bit(s) of 

the byte used for each pixel. For instance, one can choose to only use MSB to repre­

sent a pixel, which reduces the original gray level to a binary image. In other applica­

tions, one can choose a high value and a low value for the gray levels in the range of 

interest, maintain the bits in that range to present the image, and discard the rest of 

the bits. This obviously results to the loss of resolution but at the same time reduces 

the size of the storage needed to save the image as each pixel is now represented by 

smaller number of bits. 

Generally speaking, bit-level slicing is used to achieve the following three main 

goals: (1) represent the image with fewer bits and compress the image to an image 

with lower size while still satisfying a minimum level of quality, (2) convert the gray-

level image to a binary image, and (3) enhance the image by focusing on those gray 

levels that are more important for the task in hand. 
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Example 3.2 

In this example, we explore the implementation of bit-level slicing in MATLAB.  
In this example, we show that by preserving the four MSBs and discarding the  
remaining bits of the original image (shown in Figure 3.6a), while maintaining  
the quality of the original image, one can reduce the size of space needed to  
store the image. The MATLAB code of this implementation has been shown as  
follows:

 I=imread(‘2.jpg’);

 I=rgb2gray(I);

 imshow(I,[0 255]);

 S=size(I);

 I=double(I);

 I=dec2base(I,2);

 newS=size(I);

 J= zeros(S(1),S(2) );
 
 for I = 1:newS(1)

 k=char(I(i,:) );

 k(5)=‘0’;

 k(6)=‘0’;

 k(7)=‘0’;

 k(8)=‘0’;

 k=base2dec(k,2);

 a=fix(i/S(1) )+1;

 b=mod(i,S(1) );

 if b==0
 b=S(1);
 a=a−1;
 end

 J(b,a)=k;

 end
 figure,
 imshow(J,[0 255]); 

As can be seen in the code, first, we read each pixel of the original gray-level  
image in 8 bit. Then, we use a “for” loop in which for each pixel, only the four  
MSBs are preserved and the rest of the bits are set to 0. Figure 3.6 shows both the 
original image (a) and the image after bit-level slicing (b). Evidently, the image after 
bit-level slicing has a quality very similar to that of the original image. However, 
if we discard one or some of the MSBs, for example, the second MSB, the quality 
of the image will decrease very much. Figure 3.6c shows the image after discard­
ing bits 2, 5, 6, 7, and 8. The low quality of the resulting image indicates how the 
image quality degrades when some of the MSBs are discarded. 

3.2.3 HISTOGRAM EQUALIZATION 

Histogram equalization is among the most popular techniques for image enhancement 

that is based on the manipulation of images using their histograms. Before describ­

ing the technique, the need for such a transformation is explained. Consider cell 
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(a) (b) 

(c) 

FIGURE 3.6 (a) Original image, (b) resulting image after discarding four of the LSBs, and 

(c) resulting image setting bits 2, 5, 6, 7, and 8 to zero. (Courtesy of Andre D’Avila, MD, Heart 

Institute (InCor), University of Sao Paulo, Medical School, Sao Paulo, Brazil.) 

images captured from the same cell and its background but at different illumination 

levels, for example, two cell images captured by the same microscope, one in regular 

room illumination and one in the presence of extra light sources. Obviously, one of 

the images will be darker than the other; i.e., the average gray levels as well as the 

distribution of gray levels would be different in the images. Such differences can 

cause serious problems if the images are to be analyzed and compared with each 

other. For instance, the cell in one image can occupy a different gray-level range that 

in another image; hence, a technique designed to detect the cell in one of the images 

may not work on another image. 

In cell image processing, since the room illumination as well as the lighting set­

tings of microscopes can be very different from one setup to another, designing an 

image processing method for applications such as nuclei segmentation would not 

work on all images simply because of the differences in gray-level distribution of the 

objects caused by different illumination settings. This problem calls for a prepro­

cessing method to “equalize” the gray-level distributions of the image before other 

processing steps. 
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Next, we briefly review the concept of image histogram as discussed in Chapter 1.  

Considering the gray-level values of  r, we can define pr(r) as the probability density 

function of  r. Since we are dealing with digital images, we assume only discrete  

values for  r. The probability density function of  r can be estimated according to the 

pixel values of the image as follows: 

n 
p rr k  ( )  = k 

, k = 0  1, ,  2  ,…, L −1 (3.2) 
 n  

where 

n represents the total number of pixels in image 

nk is the total number of pixels having the gray level rk 

A graph of  pr(rk), often referred to as histogram, says a lot about the nature of the image.  

For dark images, the gray levels close to 0 are very strong, i.e., a considerable portion of the  

histogram energy is centered on the left-hand side of the histogram. Similarly, for bright  

images, the balance is visibly shifted toward higher gray levels (i.e., bright gray levels).  

Then, the task of histogram equalization is both to create a balance between all gray levels  

and hopefully create an image whose histogram is close to the uniform distribution. 

Now, assume that r has been normalized and to the interval of [0, 1]. Then, histogram  

equalization is a transformation as follows: 

s T= ( )r ,  0 ≤ r ≤ 1 (3.3) 
  

where  T(r) is the transformation function that creates the value s in the enhanced  

image from a gray value r in the original image. Further assume that T(r) is monotoni­

cally increasing and has values between 0 and 1 for all values of  r. The first condition, 

i.e., monotonically increasing, preserves the order of gray levels in output image, and 

the second condition ensures that the resulting gray-level values for the output image 

are also between 0 and 1. Figure 3.7 shows a typical transform function that satisfies 

these properties. The transformation T is often designed to create images with a more 

uniform histogram from images whose histograms are not balanced. 

s 

r 

FIGURE 3.7 Typical gray-level transform function. 
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While in discrete images, theoretically speaking, one can never get a pure uniform 

probability density function for the transformed image, there are a number of functions 

(satisfying the conditions described earlier) that provide histograms for the transformed 

image that are much more uniformly spread compared to the original image. Here, 

instead of describing the details of these transformations, we focus on using MATLAB 

for histogram equalization. 

Example 3.3 

In this example, we explore using MATLAB for histogram equalization. In MATLAB, 
the command “histeq” performs histogram equalization. Command “imhist” 
displays histogram of the image. We use command “imhist” to show the 
histograms of the image before and after equalization. The MATLAB code for this 
process is as follows:

 I=imread(‘7.jpg’);

 I=rgb2gray(I);

 J=histeq(I)

 Imshow(I),

 figure

 Imshow(J)

 figure,

 Imhist(I,64)

 figure,

 Imhist(J,64)
 

Figure 3.8 shows the image and its histogram before and after histogram equalization. 
As can be seen, the quality of the image has improved in the processed image. 

3.3 MASK PROCESSING: LINEAR FILTERING IN SPACE DOMAIN 

It is often the case that instead of linear processing of images using filters described 

in frequency domain, space-domain linear filters are used in typical image process­

ing applications. This is mainly to the fact that frequency-domain description of 

two-dimensional (2-D) filters is often more complex than the one-dimensional (1-D) 

filters. In principle, space-domain linear filters approximate the impulse response of 

various kinds of typical frequency-domain filters with a 2-D mask. In spatial filter­

ing, as described before, a weight mask is used to express the effect of the filter on 

each pixel of the image in an insightful fashion. A typical mask has been shown in 

Figure 3.9. In this section, we introduce some of the most popular mask filters that 

are applied in space domain. 

The pixel value for the pixel (x, y) in the processed image, g(x, y), is computed as 

a sum of products of the filter coefficients and the original image f, i.e., 

a b 

g x y  = w s t f  x  + s y  t  , +( , )  ( , ) (  )  (3.4) ∑∑
s=−a t=−b 
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FIGURE 3.8 (a) Original image. (b) Transformed image after histogram equalization. (c) Gray-

level histogram of the original image. (d) Histogram of the image after histogram equalization. 

(Courtesy of Andre D’Avila, MD, Heart Institute (InCor), University of Sao Paulo, Medical 

School, Sao Paulo, Brazil.) 

FIGURE 3.9 Typical 3 × 3 mask. 

Masks can be thought of as the truncated space-domain response of the typical linear 

filters to the impulse function. For instance, we will introduce masks for low-pass 

filters that are simply approximation of the space-domain representation of the ideal 

low-pass filters typically designed in the frequency domain. As one can expect, there 

are four popular types of space-domain linear filters commonly used in image processing: 

low-pass filters, high-pass filters, high-boost filters, and band-pass filters. 

3.3.1 LOW-PASS FILTERS 

Low-pass filters attenuate or eliminate high-frequency components of an image 

such as edges, texture, and other sharp details. Low-pass filters that are often used 

for applications such as smoothing, blurring, and noise reduction provide a smooth 
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FIGURE 3.10  (a and b) Two typical masks used for low-pass filtering. 

version of the original image. A low-pass filter is sometimes used as a preprocessing 

step to remove unimportant details from an image before object extraction. Such  

filters are also used to bridge small gaps in lines and curves as an interpolating tech­

nique. Low-pass filters, however, suffer from certain disadvantages. For instance, 

low-pass filters attenuate edges and some sharp details that are often important in 

many applications. 

Two typical masks used for low-pass filtering have been shown in Figure 3.10. 

Focusing on the mask shown in Figure 3.10a, it is evident that the filter using this 

mask will calculate the average of pixel values around a pixel to generate the corre­

sponding pixel in the filtered image. In other words, the task of this filter is averaging 

of pixel points to form a smoother image. This filter has nine equal coefficients and 

is called a box filter. The mask shown in Figure 3.10a is a 3 × 3 mask, but one can 

define a larger mask for averaging. The larger the mask becomes, the more attenuation 

in high-frequency components is achieved. 

In the filter shown in Figure 3.10b, the coefficients are not equal. In this filter, we 

assign a higher value to the central coefficient of the mask to emphasize and accentu­

ate the importance of the central pixel. The values assigned to other coefficients are 

often inversely proportional to their distance from the central coefficient. Therefore, 

the coefficients in diagonal squares will have the least values. Such a mask will partially 

avoid the unwanted blurring effect. 

Example 3.4 

In this example, we explore the implementation of a low-pass filter H in MATLAB. 
In the following code, choosing H as defined in the code will set the mask as the 
low-pass filter defined in Figure 3.10a. Then, the command “imfilter” is used to 
apply the filter H on image I. Figure 3.11a shows the original image, and Figure 3.11b 
shows the image after applying the low-pass filter.

 I=imread(‘image.jpg’);

 I=rgb2gray(I);
 

H=(1/9)*[1 1 1; 1 1 1; 1 1 1];
 
smooth_image = imfilter(I,H);


 imshow(I);

 figure,

 imshow(smooth_image);
 

As can be seen, Figure 3.11b is more blurred than the original image. 
Increasing the dimension of the mask to higher values will result in more  
blurring effect. 
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(a) (b) 

FIGURE 3.11 (a) Original image and (b) image after applying low-pass filter. 

3.3.2 MEDIAN FILTERS 

Median filters are statistical nonlinear filters that are often described in the space 

domain. Median filters are known to reduce the noise without eliminating the edges and 

other high-frequency contents. Median filters (also referred to as order statistics filters) 

perform the following operations to find each pixel value in the processed image: 

Step 1: All pixels in the neighborhood of the pixel in the original image (identified 

by the mask) are inserted in a list. 

Step 2: This list is sorted in ascending (or descending) order. 

Step 3: The median of the sorted list (i.e., the pixel in the middle of the list) is 

chosen as the pixel value for the processed image. 

As defined earlier, median filter create pixel values of the filtered image based on the sort­

ing of the gray level of pixels in the mask around the central pixels in the original image. 

Example 3.5 

The performance of a 3 × 3 median filter on a subimage is illustrated in Figure 3.12. 
As can be seen from Figure 3.12, the median filter selects the median of the gray-

level values in the 3 × 3 neighborhood of the central pixel and assigns this value as 
the output. In this example, the median filter is to select the median of following set: 
{8 10 10 12 12 23 45 64}. According to the sorted list, the response of the filter is 12. 

FIGURE 3.12 Mask of median filter. 
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Intuitively, when median filters are applied to an image, pixels whose values  
are very different from their neighboring pixels will be eliminated. By eliminat­
ing the effect of such odd pixels, values are assigned to the pixels that are more 
representative of the values of the typical neighboring pixels in the original image. 

The main advantage of median filter is reducing the random noise without 
eliminating the useful high-frequency components such as edges. This means that  
while median filter provides smoothing effects similar to linear low-pass filter, it  
avoids blurring effects that are associated with linear smoothing filters. 

Example 3.6 

In this example, we discuss the simulation of median filter in MATLAB. In order 
to explore the performance of median filters, we select a non-noisy image and 
intentionally add some noise to it. Then, we apply median filter to remove the 
added noise. In order to do so, we use “imnoise” command to add some noise to 
the image. The command “medfilt2”, which is the 2-D median filter, is then used 
to filter the noise. Finally, both the noisy image and the filtered image are graphed.

 I=imread(‘no_noisy_image.jpg’);

 I=rgb2gray(I);

 J=imnoise(I,‘salt&pepper’,.2);

 k=medfilt2(J);

 imshow(J);

 figure,

 imshow(k);
 

Figure 3.13 shows the two images. Figure 3.13a shows an image, which was contami­
nated by salt and pepper noise, while Figure 3.13b shows the median-filtered image. 

As can be seen in Figure 3.13, median filter has reduced the noise in the image 

without destroying the edges. This is the main advantage of the median filters over the 

linear low-pass filters. This difference is further illustrated in the following example. 

(a) (b) 

FIGURE 3.13 (a) Noisy image and (b) median-filtered image. (Courtesy of Andre D’Avila, 

MD, Heart Institute (InCor), University of Sao Paulo, Medical School, Sao Paulo, Brazil.) 
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Example 3.7 

In this example, we focus on the original image shown in Figure 3.14a, and its noisy ver­
sion shown in Figure 3.14b. Figure 3.14c shows the effect of median filter on the noisy 
image, while Figure 3.14d illustrates the results of low-pass filtering of the noisy image. 

Evidently, the low-pass filter has reduced the noise level in the image; how­
ever, at the same time, the filter has blurred the image. On the other hand, while 
median filter has also reduced the noise, it has preserved the edges of the image 
almost entirely. Again, this difference is due to the fact that the median filter forces 
the pixels with distinct intensities to be more like their neighbors and therefore 
eliminates isolated intensity spikes. Such a smoothing criterion will not result in 
significant amount of filtering across edges. 

Median filters, however, have certain disadvantages. When the number of 
noisy pixels is greater than half of the total pixels, median filters give a poor 
performance. This is because, in such cases, median value will be much more 
influenced by dominating noisy values than the non-noisy pixels. In addition, 
when the additive noise is Gaussian in nature, median filters may fail to provide 
a desirable filtering performance. 

(a) (b) 

(c) (d) 

FIGURE 3.14 (a) Original image, (b) noisy image, (c) image after low-pass filter, and 

(d) image after median filter. (Courtesy of Andre D’Avila, MD, Heart Institute (InCor), 

University of Sao Paulo, Medical School, Sao Paulo, Brazil.) 
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3.3.3 SHARPENING SPATIAL FILTERS 

Sharpening filters are used to extract and highlight fine details from an image and 

also to enhance some blurred details. A typical usage of such filters is deblurring 

of an image to provide sharper and more visible edge information. There are many 

applications for sharpening filters including medical imaging, electronic printing, 

industrial inspection, and autonomous guidance in military systems. 

There are three important types of sharpening filters: high-pass filters, high-boost 

filters, and derivative filters. 

3.3.3.1 High-Pass Filters 
As in linear low-pass filters, the masks used for high-pass filtering are noth­

ing but the truncated approximations of the space-domain representation of the 

typical ideal high-pass filters. As such, in high-pass filters the shape of impulse 

response should have (+) coefficients near its center and (−) coefficients in the outer 

periphery. 

Example 3.8 

Figure 3.15 shows an example of a high-pass filter. As can be seen, the central 
value of the box is positive and the peripheral values are negative. 

As in linear low-pass filters, while this set of numbers might form the most 
popular high-pass mask, there is nothing special about these specific numbers, 
and similar high-pass masks with different set of numbers can be defined as 
long as the general rule of “positive in center and negative in peripherals” is 
observed. 

Next, we discuss the implementation of this filter mask in MATLAB. 

Example 3.9 

As shown in the following code, we first define matrix H as the mask defined in 
Figure 3.15:

 I=imread(‘med_image.jpg’);

 I=rgb2gray(I);
 

H=(1/9)*[1 1 1; 1 −8 1; 1 1 1];
 
sharpened = imfilter(I,H);


 imshow(I);

 figure,

 imshow(sharpened);
 

–1 –1 –1 

(1/9)* –1 8 –1 

–1 –1 –1 

FIGURE 3.15 Typical mask of linear high-pass spatial filter. 
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(a) (b) 

FIGURE 3.16 (a) Original image and (b) image after sharpening spatial filter. 

Then, we apply the mask to the medical image I shown in Figure 3.16a. Figure 3.16b 
shows the effect of the high-pass filter on the image. 

Figure 3.16b shows how high-pass filters remove all the information of the image 
except for the edges and other high-frequency components such as texture. If the 
purpose of using high-pass filter is to improve the overall quality of an image through 
sharpening, high-pass filters by themselves may not be the solution. Specifically, if 
we are using high-pass filters only to extract edges, they might be the right tools, 
but they are not the best filters to simply improve the quality of a blurred image. 
This is again due to the fact that high-pass filters eliminate all important low-pass 
components that are necessary for an improved image. Another problem with high-
pass filters is the possibility of generating negative numbers as the pixel values of the 
filtered image. This is due to the negative numbers used in the applied mask. 

The solution to the previously mentioned problems with high-pass filters is a 
similar filter called “high boost.” 

3.3.3.2 High-Boost Filters 
Some extensions of high-pass filters, while highlighting the high frequencies, preserve 

some low-frequency components and avoid negative pixel values. The most commonly 

used extensions of high-pass filters are high-boost filters that are also referred to as 

high-frequency emphasis filters. 

Before creating a mask for high-boost filters, note that a k × k mask with only one 

nonzero value in the center and zero everywhere else does not change the frequency 

contents of the image. More specifically, if the nonzero value is 1, then the mask 

would not change any pixel in the original image. Such a mask is often referred to as 

“all-pass filter” or “all-pass mask.” 

A high-boost filter can be simply defined as a weighted combination of the 

original image and the high-pass-filtered version of the image. In this combination, 

the high-pass components are highlighted more than the low-pass ones, i.e., 

High-boost filtered image = (A −1) original image + high-pass fi lltered image 

(3.5) 
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FIGURE 3.17 High-boost mask. 

Or simply, in terms of filters 

High-boost filter = (A −1)  all-pass filter + high-pass filter (3.6) 

As can be seen, setting A = 1 would result in the standard high-pass filter. But in a 

typical high-boost filter by setting A > 1, a weighted version of the original image 

is added back to the high-pass components. Such choices of A maintain the low-

frequency components lost in the pure high-pass filtering and therefore produce 

improved images that not only emphasize the high frequencies (i.e., sharpen the 

image) but also show almost all low-frequency components that are often lost in the 

standard high-pass filters. 

Figure 3.17 shows a high-boost filter. This mask is simply the weighted summa­

tion of the all-pass mask and the high-pass mask. The coefficient A determines the 

share or weight of the original image on the filtered image. As it can be seen, the 

second mask is nothing but a simple high-pass filter mask. 

From the diagram of Figure 3.17, it should be apparent that W = 9A − 1 and any 

choice of A will create a different high-boost filter with a different influence of the 

original image on the final image. 

The following example shows how MATLAB can be used to form a high-boost 

filter. It also shows the impact of the parameter A on the filter performance. 

Example 3.10 

In this example, we explore the implementation of a high-boost filter in MATLAB. 
In this implementation, we add a weighted version of the identity matrix K to the 
matrix H. Figure 3.18 shows the effect of the high-boost filters on the original 
image for different values of A.

 I=imread(‘test.jpg’);

 I=rgb2gray(I);

 A=1.2;
 

H=(1/9)*[1 1 1;1 −8 1; 1 1 1];
 
K=[0 0 0;0 1 0;0 0 0];


 HB=( (A−1).*K) + H;
 
sharpened = imfilter(I,HB);


 imshow(I);

 figure,

 imshow(sharpened);
 

The best value of A for a particular image is often found by trial and error, but, in 
many images, values around A = 1.15 provide desirable performances. 
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(a) (b) 

(c) (d) 

FIGURE 3.18  (a) Original image, (b) filtered image with  A = 1.1, (c) filtered image with  

A = 1.15, and (d) filtered image with  A = 1.2. 

3.3.3.3 Derivative Filters 
As we saw in the previous sections, image blurring can be caused by averaging. 

Since averaging is simply the discrete version of spatial integration, one can expect 

that spatial differentiation would result in image sharpening. This observation about 

spatial differentiation is the main idea behind a family of sharpening filters called 

“derivative filters.” In order to find suitable masks for spatial differentiation, we need 

to study the concept of differentiation in digital 2-D spaces more closely. 

Since an image is a 2-D signal, instead of simple 1-D differentiation, the direc­

tional differentiations must be calculated in both horizontal and vertical directions. 

This leads to spatial gradient defined as follows: 

⎡ ∂f ⎤ 
⎢ ⎥∂x 

∇ = ⎢ ⎥ (3.7) f ⎢ ⎥∂f
⎢ ⎥ 
⎣ ∂y ⎦ 
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The partial differentiations such as ∂f/∂x can be approximated in discrete image 

simply by calculating the difference in the gray level of two neighboring pixels, i.e., 

∂f x( , y)  f x( , y) − f ( x −1, y)≅
∂x x − (x −1) 

f x( , y)  − f ( x −1 , y)= 
1 

= f x( , y)  − f ((x −1, y) (3.8) 
  

Note that since the smallest value to approximate ∂x is one pixel, we ended up  

replacing this value with 1. Also note that the final value in Equation 3.7 is an  

integer (positive or negative). This is due to the fact that subtraction of two integers  

(i.e.,  f(x, y) − f(x − 1,  y)) would always give an integer value. Back to the continuous  

gradient, the magnitude of the gradient vector is given by 

⎡
1 2/

⎛ ∂ ⎞
2 ⎛ ∂

2 

f f ⎞ ⎤
∇ =f ⎢ ⎜ ⎟ + ⎥ ⎜ ⎟ (3.9)

⎢⎝ ∂x ⎠ ⎝ ∂y⎠ ⎥
 ⎣ ⎦  

Now, note that storing integers in digital computers is significantly more efficient  

than storing real numbers that require floating points. In addition, performing calcu­

lations with integers are faster and more efficient than doing calculations with real  

numbers. These two observations strongly encourage the use of integers for image 

processing in which large images must be stored and processed. Since the result of  

Equation 3.8 is almost always a real number, we need to approximate this operation 

such that the resulting number stays an integer. 

The approximation of Equation 3.8 typically used in image processing is as  

follows: 

∂f ∂f ∇ ≅f + (3.10)
∂x ∂y 

  

This approximation does not only give us a positive integer, but it also reduces the 

time complexity of calculating the magnitude of the gradient vector. 

In digital image processing, we often work with digital images and therefore need  

to define approximation of Equation 3.9 in digital case. Specifically, in calculating  

Equation 3.9, the values ∂f/∂x and ∂f/∂y are substituted with their discrete approxima­

tions, as introduced earlier. Implementing these approximations will define the masks  

for spatial differentiation. In order to form these masks, we start with analyzing a 

small subimage as shown in Figure 3.19. In this figure,  zis are the gray levels of the 

corresponding pixels. 
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FIGURE 3.19 3 × 3 part of original image. 

–1 0 

0 1 

–1 0 

0 1 

FIGURE 3.20 Robert Cross gradient operators. 

Figure 3.19 shows a 3 × 3 region of an image. As mentioned earlier, the first  

directional derivatives of this image can be approximated as follows: 

∂f = G
∂ x = z9 − z

x 
5 (3.11) 

  

and 

∂f = Gy = z
∂y 

8 − z6 (3.12) 

  

Therefore, the magnitude of the gradient vector ∇f can be approximated as follows: 

∇ ≅f z9 − z (3
 5 + z8 − z5 .13) 

 

Figure 3.20 shows masks that can be used as the implementation of Equation 3.13. 

These masks are often called Robert Cross gradient operators. 

Masks such as the one introduced earlier are applied for image sharpening through  

spatial differentiation. However, just like the scenario we discussed for high-pass  

filters, simple derivative filters are too unforgiving to the low-pass components of  

images, and, therefore, often these filters are combined with some low-pass com­

ponents of the original image to provide a better performance. 

3.4 FREQUENCY-DOMAIN FILTERING 

Two-dimensional discrete Fourier transform (2-D DFT) of a digital image, as 

discussed in the previous chapters, expresses the spatial relationship among the 

pixel gray levels in the frequency domain and describes the frequency variations 

in images. Specifically, low-frequency components correspond to slow variations 

in gray levels of the image, while high frequencies quantify fast variations in gray 

levels such as edges and texture. 

The linear filters previously discussed in spatial domain (e.g., low-pass, high-pass, and 

high-boost filters) can also be defined in frequency domain using 2-D DFT. To apply the 
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frequency-domain filters on a digital image, first the DFT of the original image, P(u, v), 
is computed and then DFT of the original image is multiplied by the impulse response 

function of the frequency-domain filter, H(u, v). This gives the DFT of the filtered image, 

Q(u, v). In other words, 

Q u v 	  = H u v  ⋅ P u v  ( ,  )  (3.14) ( , )  ( ,  )  

The calculation of the IDFT of Q(u, v) gives the filtered image in the space domain. 

As in the space-domain linear filtering, there are two major types of frequency-

domain filters: smoothing (low-pass) filters and sharpening (high-pass) filters. Other 

filters such as band-pass filters and high-boost filters can be formed using a linear 

combination of low-pass and high-pass filters. 

As mentioned earlier, unlike the 1-D signals where frequency filtering is more 

insightful and computationally efficient, in filtering of images, spatial filtering 

using masks is often more straightforward and institutively insightful. However, we 

describe these frequency filters in the following using a simple description of their 

mathematical details. 

3.4.1 SMOOTHING FILTERS  IN FREQUENCY DOMAIN 

The main objective in smoothing an image is to decrease the noisy fast variations in 

the gray levels of the image. Since the fast variations in gray level of digital images 

correspond to high frequencies in DFT of the image, a filter that attenuates the high-

frequency values of the DFT of the original image is simply a low-pass filter. 

Next, we discuss the ideal 2-D low-pass filter in the frequency domain and its 

approximation using 2-D Butterworth filters. 

3.4.1.1 Ideal Low-Pass Filter 
In an ideal low-pass filter, all frequencies inside a circle in the frequency domain 

with radius D0 (centered at the origin) are allowed to pass through, and all the fre­

quencies outside this circle are eliminated. An ideal low-pass filter H(u, v) can be 

defined as follows: 

D u v 	  ≤ D0⎧1	 ( , )  ⎪
H u v 	  = (3.15) ( , ) 	  ⎨

⎩ D u v  > D0⎪0 ( , )  

where 

2  2  1/2  D u v 	  = (u (3.16) ( , )  + v ) 

Figure 3.21 shows the three-dimensional (3-D) representation of this filter. As mentioned 

before, due to some undesirable effects of abrupt jumps in the ideal filters together with 

some limitations in implementation of the ideal filters, it is desirable to approximate the 

ideal low-pass filters using filters such as Butterworth filters. 
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u 

v 
D0 

|H| 

FIGURE 3.21 Three-dimensional representation of low-pass filter. 

3.4.1.2 Butterworth Low-Pass Filters 
Butterworth filters were introduced for 1-D signals in the previous chapters. The 

definition of the 2-D low-pass Butterworth filter is the straightforward extension of 

the 1-D case, i.e., 

1
H u v  ( , )  = 

2 
(3.17) 

1+ [D u v  D  ( , )  / 0 ] 

where D(u, v) is the distance from the origin in the frequency domain, as previously 

defined. 

3.4.2 SHARPENING FILTERS  IN FREQUENCY DOMAIN 

The most fundamental sharpening filters defined in frequency domain are high-pass 

filters and high-boost filter. As defined earlier, high-boost filters can be easily formed 

as a linear combination of the high-pass filters and the all-pass filters; consequently, 

we only focus on the mathematical definition of high-pass filter. The all-pass filters 

in frequency domain are simply defined as filters in which H(u, v) = 1. 

As a result, in order to implement sharpening filters in the frequency domain, it is 

sufficient to know how to implement high-pass filters, i.e., high-boost filters can be 

easily formed based on high-pass filters. 

3.4.2.1 Ideal High-Pass Filters 
High-pass filters in the frequency domain are also defined using D(u, v), the distance 

from the origin in the frequency domain, as follows: 

D u v  ≤ D0⎧0 ( , )  ⎪
H u v  ( , )  = ⎨ (3.18) 

⎩ D u v  > D0⎪1 ( , )  

This definition simply states that the high-pass filter only allows the high frequency of the 

image to pass through the filter and that all of the other frequencies are blocked by the filter. 

As in the low-pass filters, it is often preferred to use a smooth approximation of 

the high-pass filter such as high-pass Butterworth filter. 
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3.4.2.2 Butterworth High-Pass Filters 
High-pass Butterworth filters are the straightforward extensions of the 1-D case, i.e., 

1
H u v  =	 (3.19) ( , )  

2
1+ [D D u v  / ( , )  ]0 

where D(u, v) is the distance from the origin in the frequency domain. 

3.5 SUMMARY 

In this chapter, we discussed different methods of image filtering, restoration, and 

enhancement. We started with the discussion that image enhancement and filtering 

can be performed in either space or frequency domains. Space-domain techniques 

are divided into two categories. The first category includes point processing and his­

togram equalization, and the methods in the second group are implemented as mask 

filtering techniques. In the description of the frequency-domain processing methods, 

we explained different types of filters such as low-pass and high-pass filters. We also 

discussed the approximations of these filters using Butterworth functions. 

PROBLEMS 

3.1	   We are to improve the quality of an image using a point processing transformation.  

The transformation function will have the general form: 

s a be 	  cr (3.20)  = +   

where 

a, b, and c are constants 

r and  s are normalized gray levels in the original and processed images, 

respectively 

The desired transformation will map r = 0 to s = 0,  r = 1 to s = 1, and r = 0.85  

to s = 0.5. 

 a.	  Calculate the values of  a, b, and c that provide all desired specifications. 

 b.	  A pply the resulting transformation to the mouse vertebra image given in  

“p_3_1.jpg”.* Note that the gray level of the original image is not normal­

ized and that the gray levels in the image need to be normalized first. Show  

both images, and interpret the effects of the designed transformation on the 

image. 

3.2	  R ead the MR image in “p_3_2.jpg”.† This image shows the MRI of the brain.  

In almost all of the hospitals across the world, the MRI technology is used  

*  Courtesy of Dr. Helen Gruber, Carolina Medical Center, Charlotte, NC. 
† From Goldberger, A.L. et al. (2000). 
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to capture a large number of brain images that need to be saved in physical  

medium such as a hard disk or a CD. Therefore, it is essential to compress  

these images to avoid the excessive cost of digital storage. Even though the  

image in this problem is already compressed (using JPEG technology), we   

would like to explore compressing this image using bit slicing. 

 a.	   Eliminate the three LSBs of the image and compare the quality of the resulting  

image with the original one. 

 b.	   Eliminate the four LSBs of the image and compare the quality of the resulting  

image  with the original one. 

 c.	   Continue eliminating the bits as long as the quality of the resulting image is  

visually satisfactory. How many bits can be eliminated before the quality  

is unsatisfactory? What compression percentage is achieved? 

3.3	   Read the mouse vertebra image “p_3_3.jpg”.* Using MATLAB, perform  

histogram equalization and compare the quality of the resulting equalized 

image with the original one. 

3.4	   Load the MRI image in “p_3_4.mat.” This image is essentially the MRI image of  

Problem 3.2 that is corrupted by additive noise. As can be seen, the quality of the  

image is rather poor due to the noise. Conduct the following processing steps using  

MATLAB to improve the image quality: 

 a.	  Use the low-pass masks shown in Figure 3.10 to filter the image. 

 b.	  Compare the visual performance of the two masks. 

 c.	   Design a similar mask (by changing the numbers in the aforementioned  

masks) to outperform the masks used in part “a.” 

 d. 	 U se a 3 × 3 median filter to filter the image and compare the resulting image 

with those of the previous parts. 

3.5	  L oad the image in “p_3_5.mat.” In this image, we would like to improve the 

quality of the image by sharpening of the edges. Conduct the following process­

ing steps using MATLAB: 

 a.	   Apply a high-boost filter on the image using A = 1, 1.05, 1.10, 1.15, and 1.20. 

 b.	  Co mpare the results of the part “b” and identify the value of A that gives the 

best performance. 

 c.	  U se a derivative filter to emphasize the edges and compare the results with  

those of part “a.” 

 d. 	 How would you modify the derivative filters for image improvement  

applications? 
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4 Edge Detection and 
Segmentation of Images 

4.1 INTRODUCTION AND OVERVIEW 

In medical image processing, as well as many other applications of image process­

ing, it is necessary to identify the boundary between the objects in the image and 

separate the objects from each other. For example, when analyzing a cell image 

(captured by a microscope), it is vital to design image processing algorithms to seg­

ment the image and distinguish the objects in the cell from each other, for example, 

identify the contour of a nucleus. In many practical applications, segmentation and 

edge detection techniques allow separation of objects residing in an image and iden­

tify the boundary among them. 

In principle, there are two approaches for edge detection and segmentation. In the 

first approach, differences and dissimilarities of pixels in two neighboring regions 

(objects) are exploited to segment the two regions, while, in the second approach, the 

similarities of the pixels within each region are used to separate the region from the 

neighboring regions. As can be seen, while the two approaches are based on rather 

related ideas, they apply different criteria. We discuss several examples of each of 

these two approaches in this chapter. 

4.2 EDGE  DETECTION 

In this section, some of the main edge detection techniques, commonly used in bio­

medical image processing, are reviewed and compared with each other. 

4.2.1 SOBEL EDGE DETECTION 

The Sobel technique is one of the most popular edge detection techniques that is also 

computationally simple. In this technique, a 3 × 3 simple mask is used to magnify 

the differences among the points on the opposite sides of a boundary and eliminate 

the smooth gray-level changes in the pixels located on the same side of the boundary. 

The Sobel mask to magnify horizontal edges is as follows: 

⎡
−
 −2 1 

0 0 0 

−
1
 ⎤ 
⎥ 
⎥ 
⎥⎦


⎢ 
⎢ 
⎢⎣


SH =
 (4.1)
 

1 2 1
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Before describing the Sobel mask for detecting vertical lines, an example of the 

application of the horizontal Sobel mask mentioned earlier is provided that further 

illustrates the concept of the Sobel edge detection. 

Example 4.1 

In order to better understand how Sobel masks highlight edges, let us consider 
the image block shown in Figure 4.1a. The image has three gray levels: 0, 1, and 2,  
where level 0 represents a completely dark pixel, level 2 encodes a completely  
bright pixel, and level 1 illustrates points with medium gray-level intensity. 

As it can be seen in Figure 4.1, there are two regions in the image and a  
border (edge) in between. Now, let us consider three pixels: pixel (4, 4) located  
on the edge and pixels (2, 4) and (6, 4) that are not located on the edge. For the  
pixels at coordinates (4, 4), (2, 4), and (6, 4), the gray level of the correspond-
ing points in the edge-detected image using the Sobel mask will be 2, 0, and 0,  
respectively. Note that while the calculated value for the first point is 6, this  
value must be then floored to 2 since we have only three allowed gray levels. As  
the aforementioned numbers indicate, the resulting edge-enhanced image has a  
very small value for the points away from the edge (i.e., it sets the nonedge pixels  
to 0), while it has large gray levels for the pixels on the edge. In other words, the  
resulting edge-detected image shown in Figure 4.1b clearly highlights the edge  
between the two regions and replaces the points inside the regions on either  
side of the edge with 0. 

As previously mentioned, the Sobel mask introduced in Equation 4.1 is capable 
of detecting horizontal edges. The Sobel mask that best extracts the vertical edges 
is as follows: 

⎡−1 0 1⎤ 
⎢ ⎥ SV = −2 0 2 ⎢ ⎥ (4.2) 
⎢⎣− 1 0 1 ⎥

 ⎦  

In practical images such as medical images, very few edges are either verti­
cal or horizontal. This implies that in real applications, a combination of the  

(a) (b) 

FIGURE 4.1 (a) Original image and (b) edge-enhanced image. 
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horizontal edge-detecting and vertical edge-detecting masks must be used to  
capture the edges. However, in small scale, any edge can be approximated by a  
number of short horizontal and vertical edge components that can be detected  
by the masks described earlier. As a result, in Sobel edge detection, the image  
is often divided into smaller blocks, and then, in each block, a combination of  
vertical and horizontal Sobel edge detection is performed. Then, the detected  
edges in smaller blocks are combined with each other to form the edges in the  
complete image. 

In MATLAB®, Sobel edge detection is provided as one of the options in the 

command “edge”. The application of this command is described in the following 

example: 

Example 4.2 

The following code reads an image called “image.jpg” and performs edge detec­
tion on the image using “edge” command. In “edge” command, one needs to  
determine which edge detection method is to be used. For example, here we use 
the option “sobel” to implement the Sobel method. 

I = imread(‘image.jpg’);
 
I = rgb2gray(I);
 
Imshow(I);
 
J = edge(I,‘sobel’);
 
Figure,
 
Imshow(J);
 

The image processed in this example is a photographic image of an intersection of 
the heart. As it can be seen in Figure 4.2, the edge-detected image (Figure 4.2b) 
extracts some of the edges in the original image. 

While Sobel masks are used in some practical applications, they are known 
to be outperformed by two other edge detection methods such as Laplacian of 
Gaussian and Canny edge detection methods. 

(a) (b) 

FIGURE 4.2 (a) Original image and (b) edge-detected image. (Courtesy of Andre D’Avila, 

MD, Heart Institute (InCor), University of Sao Paulo, Medical School, Sao Paulo, Brazil.) 
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f (x, y) h(x, y) Δ g(x, y)2 

FIGURE 4.3 Schematic diagram of edge detection using Laplacian of Gaussian. 

4.2.2 LAPLACIAN  OF GAUSSIAN EDGE DETECTION 

This edge detection technique, as the name may suggest, is a straightforward com­

bination of a Laplacian operator and a Gaussian smoothing filter. The method is 

described in the block diagram of Figure 4.3. 

In Figure 4.3, the Laplacian operator ∇2(.) is defined as follows: 

2 ⎛ ∂f ⎞ 
2 ⎛ ∂f ⎞ 

2 

∇ f = + (4.3) 
⎝⎜ ∂x ⎠⎟ ⎝⎜ ∂y ⎠⎟ 

In addition, the Gaussian low-pass filter, h(x, y), is defined as follows: 

⎛ x2 + y2 ⎞ 
h( , )  x y  = exp  − 

2 
(4.4) 

⎝⎜ 2s ⎠⎟ 

The use of a Laplacian operator for edge detection is inspired by the fact that for 

weak edges, the first derivatives (estimated in masks such as Sobel) may not be large 

enough to distinguish the edge points, and, therefore, a weak edge can go undetected 

by such methods. Taking the second derivate of the points or Laplacian amplifies 

the changes in the first derivative and therefore increases the chances of detecting a 

weak edge. However, the second derivative or Laplacian if used alone also magnifies 

the noise in the image, which increases the chances of detecting false edges. This is 

why a Gaussian smoothing filter, h(x, y), is used to filter out the high-frequency noise 

before applying Laplacian operator. 

Example 4.3 

The following code reads “image.jpg” and performs edge detection on the 
image using “edge” command based on both Sobel and Laplacian of Gaussian 
methods. The option keyword in “edge” command that identifies Laplacian of 
Gaussian method is “log”. 

I = imread(‘image.jpg’);
 
I = rgb2gray(I);
 
Imshow(I);
 
J = edge(I,‘sobel’);
 
Figure,
 
Imshow(J);
 
JL = edge(I,‘log’);
 
Figure,
 
Imshow(JL);
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(a) (b) 

(c) 

FIGURE 4.4  (a) Original image, (b) edge-detected image using Sobel, and (c) edge-detected 

image  using  Laplacian  of Gaussian. (Courtesy  of Andre  D’Avila,  MD,  Heart  Institute  (InCor),  

University of Sao Paulo, Medical School, Sao Paulo, Brazil.) 

In Figure 4.4, the effect of Laplacian of Gaussian edge detection technique on the 
heart image is shown and compared with Sobel technique. 

As can be seen, the Sobel method is clearly outperformed by the Laplacian of 
Gaussian method, as the edges discovered by Laplacian of Gaussian method are 
closer to the complete set of true edges in the image. 

4.2.3 CANNY EDGE DETECTION 

Canny edge detection is among the most popular edge detection techniques and has 

a number of specialized versions. All Canny edge detection systems, however, have 

the following four fundamental steps: 

Step 1: The image is smoothed using a Gaussian filter (as defined earlier). 

Step 2: The gradient magnitude and orientation are computed using finite-

difference approximations for the partial derivatives (as discussed in the 

following). 

Step 3: Non-maxima suppression is applied to the gradient magnitude to search 

for pixels that can identify the existence of an edge. 

Step 4: A double thresholding algorithm is used to detect significant edges and 

link these edges. 

The details of the aforementioned steps are given as follows. Assume that I(i, j) 
denotes the image and G(i, j, σ) is a Gaussian smoothing filter where σ is the spread 
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of the Gaussian controlling the degree of smoothing. The output of the smoothing 

filter,  S(i, j), is related to the original image and the smoothing filter as follows: 

S i  ( ,  j  )  = G( ,  i  j  )  ∗ I( ,i  j  )  (4.5) 
  

In the next step, in order to calculate the magnitude and orientation (direction) of the 

gradient vector, the gradient of the smoothed image is used to produce the horizontal  

and vertical partial (directional) derivatives P(i, j) and Q(i, j), respectively. These 

directional derivatives are calculated as follows: 

S i  ( ,  j  + −1) S i( ,  j  )  +  S i( +1, j + −  1 ) S i  ( +  1, j)
P i  ( ,  j  )  ≈ (4.6) 

 2  

and 

S i  ( ,  j  )  − +  S i  ( 1, j) + S i  ( ,  j  +1) − +S i  ( 1, j +  1)
Q i  ( ,  j  )  ≈ (4.7) 

 2  

As it can be seen, P(i, j) is calculated as the average of the horizontal derivate at 

pixels (i, j) and (i + 1,  j). The value of  Q(i, j) is calculated similarly using the aver­

age of the vertical derivative at pixels (i, j) and (i, j + 1). The magnitude M(i, j) and 

orientation θ(i, j) of the gradient vector are then given as follows: 

M i( , j  )  = P( ,  i  j  )  2 + Q( ,i  j  )  2 (4.8) 
  

and 

−1 ⎡Q i  ( ,  j  )  ⎤ 
q( ,  i j  )  = tan  ⎢ ⎥ (4.9) 

⎣ P i  ( ,  j  )  
 ⎦  

In the third step, a thresholding operation is applied to identify the ridges of the edge  

pixels. In Canny method, an edge point is defined as a point whose gradient’s mag­

nitude identifies a local maximum in the direction of the gradient. The process of  

searching for such pixels, which is often called “non-maxima suppression,” thresh­

olds the gradient magnitude to find potential edge pixels. This step will result to an  

image  N(i, j), which is 0 except at the local maxima points. 

After applying non-maxima suppression, there are often many false edge frag­

ments in the image often caused by either noisy pixels or by edge-like fragments in  

the image that do not represent a true edge. To discard these false edge fragments, 

one can apply thresholds to N(i, j) and set all of the values below the threshold value 

to 0. After thresholding, an array including the edges of the image,  I(i, j), is obtained.  

As the description of the thresholding step implies, the selection of the right thresh­

old values is a sensitive choice. While small threshold values can allow many false 
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(a) (b) 

FIGURE 4.5 (a) Original image and (b) Canny edge-detected image. (Courtesy of Andre 

D’Avila, MD, Heart Institute (InCor), University of Sao Paulo, Medical School, Sao Paulo, 

Brazil.) 

edges, excessively large thresholds can miss the true edges. At this step, the surviv­

ing edge pixels are connected to each other to form complete edges. 

As mentioned earlier, there are many varieties of Canny edge detection methods. 

In this chapter, we focus on using MATLAB for Canny edge detection. 

Example 4.4 

In this example, the heart image used in the previous example is edge detected 
using Canny edge detection method. The option “canny” in “edge” command 
identifies Canny method. The MATLAB codes are as follows: 

I = imread(‘image.jpg’);
 
I = rgb2gray(I);
 
Imshow(I);
 
J = edge(I,‘canny’);
 
Figure,
 
Imshow(J);
 

The results shown in Figure 4.5 indicate the strength and capabilities of Canny 
edge detectors. As can be seen, the performance of this edge detection method is 
almost comparable with that of Laplacian of Gaussian. This is the reason that in the 
majority of medical image processing applications either Laplacian of Gaussian or 
Canny method is used for the standard edge detection step. 

4.3 IMAGE SEGMENTATION 

In almost all biomedical image processing applications, it is necessary to separate 

different regions and objects in an image. In fact, image segmentation is consid­

ered as the most sensitive step in many medial image processing applications. For 

instance, in processing of cytological samples, we need to segment an image into 

regions corresponding to nuclei, cytoplasm, and background pixels. The main tech­

niques for image segmentation are introduced in the following sections. 
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As described earlier, the image segmentation techniques can be classified into 

two general categories. In the first category of techniques, segmentation is con­

ducted based on the discontinuity of the points across two regions, while, in the 

second group of segmentation methods, the algorithms exploit the similarities 

among the points in the same region for segmentation. We first focus on the first 

category. 

The main methods in the first category include detecting gray-level discontinui­

ties such as points, lines, and edges. Another popular method in the first category 

is thresholding. In thresholding, a part of the image is selected based on its gray-

level difference from the other parts of the image. Here, we first introduce some 

methods for detection of points and lines in an image. Then, we will describe 

image segmentation methods that detect regions and objects in an image using 

thresholding ideas. 

4.3.1 POINT DETECTION 

In point detection methods, the intention is to detect the isolated points in an 

image. The main factor that can help us detect these isolated points or pixels is the 

difference between their gray levels and gray levels of their neighboring pixels. 

This observation suggests using masks that magnify these differences to distin­

guish these points from the surrounding pixels. The mask shown in Figure 4.6 is 

simply designed to amplify the gray-level differences of the center pixel from its 

neighbors. 

If the value obtained by applying this mask to a pixel is shown as F, then based 

on this value one can decide whether the pixel is an isolated one or not. In practi­

cal applications, it is often the case that the value F is compared with a prespeci­

fied threshold T. Formally speaking, for any point in the image, the point detection 

method checks the following condition: 

F T (4.10) ≥ 

If the condition holds, then the point is marked as an isolated point that stands out 

and needs to be investigated. While in biomedical image processing applications 

many singular points in images are caused by “salt and pepper” type of noise, some 

isolated pixels (or small cluster of pixels) can represent small abnormalities (e.g., 

small tumors in early stages of growth). This emphasizes the importance of point 

detection methods. 

FIGURE 4.6 Mask for point detection. (Courtesy of David Malin Images, Anglo-Australian 

Observatory [AAO], Epping, New South Wales, Australia. http://www.davidmalin.com). 

http://www.davidmalin.com
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(a) (b) 

FIGURE 4.7 (a) Original image and (b) image after point detection. 

Example 4.5 

In this example, we show how to use MATLAB to detect singular points in a typi­
cal image in astronomy. We first apply the mask shown in Figure 4.6 and then 
compare the response of the pixels in the image with a threshold value. In this 
example, the threshold value is set to 90% of the maximum observed gray-level 
value in the image. Figure 4.7 shows the original image and the image after point 
detection. 

I = imread(‘synthetic.jpg’);
 
I = rgb2gray(I);
 
Maxpix = max(max(I));
 
H = [−1 −1 −1;−1 8 −1;−1 −1 −1];
 
Sharpened = imfilter(I,H);
 
Maxpix = double(Maxpix);
 
Sharpened = (sharpened > .9*Maxpix);
 
Imshow(I);
 
Figure,
 
Imshow(sharpened);
 

The main singular points in the original image are highlighted and shown in the 
processed image. 

4.3.2 LINE DETECTION 

Line detection methods are designed using a variety of line detection masks that are 

useful in magnifying and detecting horizontal lines, vertical line, or lines with any 

prespecified angles (e.g., 45°). 

Figure 4.8 shows four masks that can be used for detecting horizontal lines, verti­

cal lines, rising lines with the angle of 45°, and falling lines with the angle of −45°. 

For example, the first mask in Figure 4.8 that detects horizontal lines sweeps through 

the image enhancing and magnifies the horizontal lines. 
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FIGURE 4.8  Line detection masks. From left to right: horizontal lines, vertical lines, rising  

lines with 45° angle, and falling lines with −45° angle. 

In practical application, for each single point in the image, the masks for all four 

directions are applied. Then, through a thresholding on the response for each point, 

the algorithm decides whether the point belongs to a line in a specific direction or 

not. Often, only the line with maximum mask response will be chosen as the line the 

point belongs to. 

Example 4.6 

In this example, we illustrate the effects of the line detection masks introduced in 
Figure 4.8 on a satellite image. In MATLAB, code for this example is shown as fol­
lows. In the first few lines of the code, we define the first three masks of Figure 4.8 
and then we apply these masks to the original image. 

I = imread(‘18.jpg’);
 
I = rgb2gray(I);
 
Hh = [−1 −1 −1;2 2 2;−1 −1 −1];
 
Hv = [−1 2 −1;−1 2 −1;−1 2 −1];
 
H45 = [−1 −1 2;−1 2 −1;2 −1 −1];
 
Hlinedetected = imfilter(I,Hh);
 
Vlinedetected = imfilter(I,Hv);
 
Line45detected = imfilter(I,H45);
 
Imshow(I);
 
Figure,
 
Imshow(Hlinedetected);
 
Figure,
 
Imshow(Vlinedetected);
 
Figure,
 
Imshow(Line45detected);
 

Figure 4.9 shows an image of the vascular system and images after line detection. 
It can be seen that in the image of Figure 4.9b, most of the horizontal lines repre­
senting the horizontally oriented blood vessels have been detected. Similarly, most 
of the vertical lines have been detected in the image of Figure 4.9c. The image in 
Figure 4.9d extracts the diagonal lines from the original image. There is nothing 
special about the 3 × 3 size of the defined masks, and the masks can be extended 
to larger masks such as 5 × 5 and 7 × 7 line detection masks. 

4.3.3 REGION  AND OBJECT SEGMENTATION 

Previously, we discussed the detection of points and lines in an image. Next, we 

focus on processing techniques to distinguish and detect regions representing dif­

ferent objects. These methods are particularly important for biomedical image 
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(a) 

(c) 

(b) 

(d) 

FIGURE 4.9 (a) Original image, (b) image after horizontal line detection, (c) image after 

vertical line detection, and (d) image after 45° line detection. (Courtesy of Andre D’Avila, 

MD, Heart Institute (InCor), University of Sao Paulo, Medical School, Sao Paulo, Brazil.) 

processing because in a typical medical image analysis, one needs to detect regions 

representing objects, such as tumors, from the background. Next, we describe two 

general methods for region and object detection. 

4.3.3.1 Region Segmentation Using Luminance Thresholding 
In many biomedical images, the pixels in the objects of interest have gray levels that 

are either greater or smaller than the gray levels of the background pixels. In these 

images, one can simply extract the objects of interest from the background using the 

differences in the gray level. When the object is bright and the background is dark 

(or vice versa), separating the interested object from the image can be performed 

with a simple thresholding of histogram as described in the following. 

Figure 4.10 shows a synthetic cell image that contains cells that are much 

darker than the bright background. Also, Figure 4.10 shows the histogram of this, 

which shows two almost entirely separate peaks and intervals in the histogram. 
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FIGURE 4.10  (a) Original image and (b) image histogram. 

Specifically, the histogram contains a very strong bright region in the far right-hand 

side of the graph that represents the background, moderately bright region represent­

ing the cytoplasm, and a small dark interval close to the origin that represents the 

nuclei. This separation indicates that the three parts of the histogram can be rather 

easily separated from each other by thresholding. 

While in the synthetic images, such as the one shown in Figure 4.10, the separa­

tion process is rather easy; in real biomedical images, the gray-level separation pro­

cess is often much more complicated. This fuzziness occurs because in such images 

both the background and the interested object often occupy gray-level ranges that 

overlap with each other. In such cases, a simple thresholding may not work at all.  

In addition, in images with poor illumination, it might be difficult to segment histo­

gram of the image into two parts, and again, a simple thresholding process may not 

provide desirable results. 
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A typical solution for these problems is dividing the original image into some 

subimages in such a way that the histogram of each subimage can be easily separated 

into two parts with a simple thresholding process. This means that for each subim­

age one must select a suitable threshold to segment the histogram of that subimage 

into two parts. Then, the segmented subimages are put together to form the overall 

segmented image. The bottleneck of this method is designing a reasonable process to 

divide the original image into subimages. Selecting threshold values for the resulting 

subimages is another issue to be dealt with. 

4.3.3.2 Region Growing 
The methods introduced so far belonged to the first category of segmentation algo­

rithms. These methods are based on finding differences and boundaries between 

parts of an image. In other words, the methods discussed earlier use discontinuities 

among gray levels of entities in an image (e.g., point, line, edge, and region) to seg­

ment different parts of the image. In this section, we focus on the second category of 

segmentation techniques that attempt to find segmented regions of the image using 

the similarities of the points inside image regions. 

In region growing methods, segmentation often starts by selecting a seed pixel 

for each region in the image. Seed pixels are often chosen close to the center of the 

region or object. For example, if we are to segment a tumor from the background, it 

is always advisable to select the seed point for the tumor in the middle of the tumor 

and the seed point for the background somewhere deep in the background region. 

Then, the region growing algorithm expands each region based on a criterion, which 

is defined to determine similarity between pixels of each region. This means that 

starting from the seed points and using the criterion, algorithm decides whether the 

neighboring pixels are similar enough to the other points in the region, and if so, 

these neighboring pixels are assigned to the same region that the seed point belongs 

to. This process is performed on every pixel in each region until all the points in the 

image are covered. 

The most important factors in region growing are selecting a suitable similarity 

criterion and starting from a suitable set of seed points. Selecting similarity criteria 

mainly depends on the type of the application in hand. For example, for the mono­

chrome (gray level) images, similarity criterion is often based on the gray-level fea­

tures and spatial properties such as moments or textures. 

Example 4.7 

In this example, a subimage shown in Figure 4.11a is segmented through growing 
of the seed points for the two regions shown in Figure 4.11a. The range of gray 
level in this image is from 0 to 8. As can be seen, the gray level of each pixel is 
also shown in Figure 4.3a, and the seed points are marked by red-underlined gray 
levels. In this example, the similarity criterion is defined as follows: two neighbor­
ing pixels (i.e., horizontal, vertically, or diagonally neighboring pixels) belong to 
the same region if the absolute difference of their gray levels is less than T = 3. 
With this criterion and starting the identified seeds in Figure 4.11a, the segmented 
image of Figure 4.11b is obtained. 
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FIGURE 4.11 (a) Subimage with only the seed points and (b) segmented subimage using 

region growing method. 

In Figure 4.11b, one region is represented by a completely dark gray level 
(i.e., 0) and another by a completely bright gray level (i.e., 8). As it can be seen, 
the resulting segmented image is truly representing two regions in the subimage. 

For region growing segmentation of color images, color features are often used 
as the similarity criteria. Another choice in region growing is how to stop the grow­
ing of regions. As mentioned earlier, the region growing algorithm is often stopped 
when there are no other pixels satisfying the similarity criteria of segmentation. 

4.3.3.3 Quad-Trees 
A more sophisticated region segmentation algorithm that does not rely on a set of 

seed pixels for segmentation is called a quad-tree. In a typical quad-tree algorithm, 

unlike the region growing, the algorithm does not start segmentation from the initial 

seeds; rather, this method divides the image into a set of disjointed regions and then 

uses splitting and merging of pixels or regions to obtain the segmented regions that 

satisfy a prespecified criterion. This criterion is essentially the same as the similar­

ity criterion that identifies the range of gray-level variations for a region, as shown 

in the previous example. In quad-tree methods, if the gray levels of the pixels in two 

regions are not in the same range, they are assumed to belong to different objects, 

and, therefore, the region is split into a number of subregions. 

To see this more clearly, let us presume that the entire image is initially marked 

as one region only, R. First, the algorithm divides the entire region R into some 

subregions Ri. Since in quad-trees a region is often split into four quadrants, the 

method is named as quad-trees. Then, the algorithm makes it sure that each quad­

rant region Ri is truly different from the other subregions (based on the defined 

criterion). If the pixel values in some of these subregions are not different enough 

from each other, these corresponding subregions are merged with each other again; 

otherwise, they are left as different regions. The algorithm continues dividing the 

image into smaller parts until, based on the defined condition, no more splitting of 

regions is possible. If the algorithm only splits regions, in the end it will produce 

some adjacent regions that are almost identical and must be merged with each 

other. Therefore, it is often the case that after splitting is complete, the algorithm 

merges the adjacent regions that have identical or similar properties to obtain more 

continuous regions. 
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Quad-tree algorithms are often too computationally time consuming and less 

accurate than the previously discussed method such as seed growing algorithm. This 

is primarily due to the fact that they do not require seed points. However, in biomedi­

cal image processing, it is often the case that physicians have reliable estimates of 

the seed points that can be used for simple seed growing methods. This fact rather 

eliminates the need for quad-trees in many biomedical applications. In addition, 

since in medical diagnostics physicians prefer to supervise and control the segmenta­

tion and classification steps (as opposed to completely relying on machine decision), 

supervised region growing with seeds has proved to be more applicable than fully 

automated quad-trees for medical applications. 

4.4 SUMMARY 

In this chapter, we discussed the computational techniques used for edge detection 

and segmentation of images. While many edge detection and segmentation methods 

are based on differences among pixels and regions, there are a number of methods 

that utilize the similarities for segmentations. In this chapter, we covered the main 

segmentation methods in each of the two groups. We also gave MATLAB examples 

and simulations for the introduced methods. 

PROBLEMS 

4.1	  L oad the image in the file “p_4_1.mat” and show the image. This image is a 

fluoroscopic image of the heart and a catheter that is inserted in the blood ves­

sels. In such images, it is desirable to extract the edges and lines representing 

important objects such as blood vessels and catheter. 

 a.  A pply horizontal Sobel mask to extract horizontal edges in the image. Show  

the resulting image. 

 b.  A pply vertical Sobel mask to extract vertical edges in the image. Show the 

resulting image. 

 c.  A pply Laplacian of Gaussian method to extract all edges in the image. Show  

the resulting image. 

 d. A pply Canny edge detection method to extract all edges in the image. Show  

the resulting image. 

 e.   Compare the results of the previous sections and comments on the differ­

ences. Which method can highlight the catheter more effectively? 

4.2	  L oad the image in the file “p_4_2.mat” and show the image. This image is also 

a fluoroscopic image of the heart and a catheter inserted in the blood vessels. As 

mentioned earlier, in fluoroscopic images, the objective is to highlight the lines 

formed by important objects such as blood vessels and catheter. 

 a.	  A pply horizontal line detection mask to highlight the horizontal linear  

objects and show the resulting image. 

 b.	   Apply vertical line detection mask to highlight the vertical linear objects 

and show the resulting image. 

 c.	   Apply the mask for detection of rising lines with the angle of 45° line to 

highlight these linear objects and show the resulting image. 



 d. 	  Apply the mask for detection of falling lines with the angle of −45° line to 

highlight these linear objects and show the resulting image. 

 e.	   Explain what object(s) in the image each of the masks was able to extract or 

highlight the best. Which mask was the most useful mask for this image? 

4.3	   In description of the Laplacian of Gaussian edge detection method, we use two 

subsystems, i.e., Laplacian and Gaussian smoothing in series. Combine the two 

subsystems to describe the entire edge detection method with one mathemati­

cal expression. (Hint: Apply the Laplacian operator on the Gaussian smoothing 

function.) 

4.4	   Load the image in the file “p_4_4.mat” and show the image. This image repre­

sents the 2-D representation of the 3-D reconstruction of multislice tomographic 

image of a large part of the cardiovascular system. Repeat all steps of Problem 

4.2 for this image. 

4.5	  L oad the image in the file “p_4_5.mat” and show the image. This is a photo­

graphic image of the heart in which different objects such as arteries and veins 

of the heart are shown. Note the areas marked as SVC, AAO, PV, RB, RBA,  

LB, PA, DAO, and LPA. For each of these regions, find the coordinates of a seed  

point inside the region that well represents the region. Then, design a suitable  

similarity criterion based on the gray-level ranges of the regions mentioned. 

Using the seeds and the similarity criterion, perform seed growing to segment 

the image. Discuss the results. 

78 Biomedical Signal and Image Processing 



 

 

 

 

 

 

 

 

5 Wavelet Transform
 

5.1 INTRODUCTION AND OVERVIEW 

This chapter is dedicated to the concepts and applications of the wavelet transform 

(WT). The WT has become an essential tool for all types of signal and image pro­

cessing applications as this transformation provides capabilities that may not be 

achieved by other transformations. We start this chapter with justifying the need 

for such a transform and then take an intuitive approach toward the definition of 

the WT. 

5.2 FROM FT TO STFT 

Despite the numerous capabilities of the Fourier transform (FT), there exists a seri­

ous concert over the use of the FT for certain applications. This concern can be bet­

ter described using the following examples. 

Example 5.1 

Consider the two time signals shown in Figure 5.1. Each of the signals is formed of 
three sinusoidal components with the same duration. The only difference between 
the two signals is the order at which these sinusoidal components appear in the 
signal. It is evident that order or relative location of these three components is 
indeed an important characteristic that allows differentiating the two signals from 
each other. 

Next, we calculate the magnitude of the discrete Fourier transform (DFT) for 
these two signals, as in Figure 5.2. As can be seen in Figure 5.2, the magnitude 
of the DFT for the two signals is exactly the same. In other words, if we limit 
ourselves only to the magnitude of the DFT, all the information regarding the order 
of the three sinusoidal components is lost. 

Before leaving this example, we have to emphasize that the order information 
is not truly lost; rather, the order information is contained in the phase of the DFT 
of the signals. In other words, if someone observes and interprets the phase of the 
two signals, he or she must be able to discover the order of the three sinusoidal 
components, even though this may not be an easy task at all. However, as men­
tioned in the previous chapters, interpreting and dealing with the phase of the DFT 
of a signal is often considered as a relatively difficult task and one would rather 
focus on the magnitude of DFT only. 

In the next example, the shortcomings of relying only on the magnitude of the 
FT are further emphasized. 
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FIGURE 5.1  Two signals in time. 
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FIGURE 5.2  Magnitude of the DFT of the three signals shown in Figure 5.1. 
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Example 5.2 

Consider the signals shown in Figure 5.3a and b. As can be seen, the signal in 
Figure 5.3a is a rectangular pulse that starts very close to the origin while the second 
pulse shown in Figure 5.3b begins at a much later time. 

While these two pulses are very different from each other (i.e., they start and 
end at different times), as can be seen in Figure 5.3c and d, the magnitude of their 
DFT is exactly the same. Even though one could distinguish these two signals 
from the phase of their DFT, as we discussed before, in typical signal and image 
processing applications, we often like to work with the magnitude of the DFT, and 
if we do so, we lose the pulse localization information. 

The problem observed in the earlier examples can be restated as follows: 
Focusing only on the magnitude of FT, the localization of the information is lost. 
In other words, from the magnitude of FT, one cannot identify when and in what  
order “events” are occurring. In Example 5.1, if we define our events as the exact  
times a particular sinusoidal variation starts and ends, then the event localization 
information is lost in the magnitude of FT. 

Next, we attempt to define a new version of the FT in which the time localization  
is preserved. This attempt leads us to the definition of a particular form of the FT called  
the short-time Fourier transform or STFT. For a signal  x(t), the STFT is defined as 

+∞ 

X  STFT( ,  a f  )  = ∫ x(t  )  g  ∗(t − a) e  −j 2pft  dt  (5.1) 
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FIGURE 5.3  (a and b) Two pulses in time. 
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FIGURE 5.3 (continued)  (c and d) The magnitude of the FT of the two pulses in time  

shown in (a) and (b). 

In the previous definition,  g(t − a) is a shifted version of a time window (gate)  g(t) 
that extracts a portion of the signal  x(t). In other words, the gate g(t − a), having a  
limited time span, selects and extracts only a portion of the signal  x(t) to be ana­
lyzed by the FT. This time window is often a real-time function, and, therefore, 

g t  ∗( − a  ) = g(t − a  ) (5.2)   

Simply put, in STFT, a time window selects a portion of x(t) and then the regular 
FT is calculated for this selected part of the signal. By changing the amount of 
shift parameter a, one obtains not only the FT of every part of the signal, but also 
the time localization of each part as these portions are extracted at known time 
intervals identified by the shift factor a. In other words, the STFT analyzes both  
time and frequency information of every selected portion of the signal. However,  
as evident from the earlier definition, the STFT has two parameters, f and  a. This  
means that there is more computation (compared to FT) involved in the process.  
The following examples explain how the STFT partially addresses the issues we  
had with the FT. 

Example 5.3 

Consider the signal shown in Figure 5.4. The signal contains two time-limited  
events, namely, a triangular pulse centered around t = 1 and a sinusoidal variation 
starting at  t = 8. 
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FIGURE 5.4 A given time signal with two time events. 
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FIGURE 5.5  FT of the signal in Figure 5.4. 

As one can expect, the FT of the signal would “mask” the order and localization 
of the two time events, as shown in Figure 5.5. 

Now, we calculate the STFT for this signal for some values of a. The time gate 
used for this analysis, i.e., g(t), is shown in Figure 5.6. This rectangular window is 
among the most popular windows used for the STFT. 

The magnitude of the STFT of the signal for a = 1 is shown in Figure 5.7a. As can be 
seen, the shifted gate captures the first time event, the triangular pulse, and calculates 
the frequency contents of this event. 
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FIGURE 5.6 Rectangular time window used for STFT. 

For the shift values 3 ≤ a ≤ 7, the STFT will be zero as the shifted window cap­
tures a zero part of the signal that contains no time events. For a = 8 (Figure 5.7b), 
the STFT captures the second event in the signal, i.e., the sinusoidal variations. 

Again, for 10 ≤ a ≤ +∞, no event is captured by the STFT, and, therefore, no 
particular information is in this part of the signal. 

As can be seen in the previous example, the STFT seems to address the dis­

advantage of the FT being blind to the time localization. In reality, several dif­

ferent types of time windows are used for the STFT. These popular windows 

include triangular windows as well as trapezoidal windows. Such windows, even 

though distort the amplitude of the extracted portion of the signal, assign more 

FIGURE 5.7 (a) Magnitude of STFT for a = 1. 
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FIGURE 5.7 (continued)  (b) The magnitude of STFT for a = 8. 

weight to the central part of the captured events and therefore reduce the nega­

tive effect of the overlap between the neighboring events. Such windows are 

becoming more popular in analysis of the biomedical signals in which events  

often overlap and one may need to attempt to separate the events from each other 

using triangular windows. 

Despite the favorable properties of the STFT, this transform is not the best solu­

tion to address the time and frequency localization of the signal events. The first sim­

ple factor that identifies the shortcomings of the STFT is the choice of the window 

length. A too short window may not capture the entire duration of an event, while 

a too long window may capture two or more events in the same shift. For instance, 

consider the signal in Example 5.3 and a window with duration 0.1. Such a time 

window would never capture any of the events mentioned earlier even in its entirety. 

At the same time, a time window with duration 10 could never capture only one of 

the events without including at least a part of another event. In practice, we would 

like to capture all events with any duration without supervising the transformation 

(i.e., without manually adjusting the length of the window). This disadvantage of the 

STFT calls for another transform in which all window sizes are tested. 

Another disadvantage of the STFT deals with the nature of the basis functions 

used in the FT, i.e., complex exponentials. The term e−j2 πft describes sinusoidal varia­

tions in real and complex spaces. Such sinusoidal functions exist in all times and are 

not limited in time span or duration. However, by definition, events are variations 

that are typically limited in time, i.e., they start at a certain point in time and end 

at another. The fact that the sinusoidal basis functions that are time unlimited are 

used to analyze the time-limited variations (i.e., events) explains why the STFT may 

not be the best solution for even detection. At this point in our search for an ideal 

transformation for even detection, it makes perfect sense to use time-limited basis 

functions to decompose and analyze the time-limited events. 

These two disadvantages of the STFT lead us to the definition of the WT that is 

extremely useful for biomedical applications. 
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5.3 ONE-DIMENSIONAL CONTINUOUS WAVELET TRANSFORM 

Before introducing WT, we need to take a closer look at the basic definition of “fre­

quency” as the fundamental concept of the FT. We need to focus on the definition of 

frequency at this point because we are to use time-limited basis functions for the new 

transform as opposed to the periodic time-unlimited functions used in the FT. This 

means that since we will not be using periodic sinusoidal basis functions for the new 

transform, we need to think of a concept that replaces frequency. Time-limited basis 

functions are obviously not periodic, and therefore, we need to invent a new concept 

that can represent a concept similar to frequency. 

In order to find a replacement for frequency, we need to see what interesting 

features are captured by frequency. Consider a sinusoidal basis function with fre­

quency 0.1 Hz. Having a basis function with this frequency, another basis func­

tion in the Fourier decomposition of the signal would be the second harmonic of 

this basis function, i.e., a sinusoidal basis function with frequency 0.2 Hz. The 

harmonic relation among the basis signals is the fundamental concept of signal 

transformation and decomposition. Therefore, the relation among harmonics is 

something that we need to somehow represent by our new concept that will replace 

frequency. 

In order to find this new concept, we make the following important observation 

about harmonics: warping the time axis “t” allows us to obtain the harmonics from 

the original signal, for example, replacing the time axis “t” in the original signal with 

“2t” time axis results in the second harmonic. This is essentially “scaling” the signal 

in time to generate other basis functions. We claim here that the main characteristic of 

harmonic frequencies can be drawn from a more general concept that we call “scale.” 

Scale, as a replacement of frequency, can reflect the same interesting properties in  

terms of the harmonic relation among the basis functions. The interesting part is that  

unlike frequency that is defined only for periodic signals, scale is equally applicable  

to nonperiodic signals. This proves that we have found a new concept, i.e., scale, to  

replace frequency. Using scale as a variable, the new transform, which will be based  

on time-limited basis function, can be meaningfully applied to both time-unlimited  

and time-limited signals. 

With the introduction provided earlier, we are ready to define the continuous 

wavelet transform (CWT) of a time signal  x(t) as follows: 

+∞ 
1 ⎛ t b− ⎞

WΨ, X ( ,a b  )  ∗ = ∫ x t( )  Ψ ⎜ a ⎟ dt, a ≠ 0 (5.3) 
a ⎝ ⎠

 −∞  

In this equation, which is also referred to as the CWT analysis equation,  Ψ(t) is a  

function with limited duration in time,  b is the shifting parameter, and  a is the scal­

ing parameter (replacing frequency parameter f ). As can be seen, the basis func­

tions  of  the  CWT  are  the  shifted  and  scaled  version  of  the  Ψ(t),  i.e.,  Ψ∗(( t a− )/ b).  

Due to the central role of the function Ψ(t) in generating the basis functions of the  
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CWT, this function is often referred to as the mother wavelet. In addition, now it  

becomes clearer why this transformation is called “wavelet transform.” A closer  

look at the definition of the mother wavelet tells that this function must be limited  

in duration and therefore looks like a decaying small wave. All other basis func­

tions are the shifted and scaled version of the mother wavelet. In contrast with  

the STFT, instead of using sinusoidal functions in order to generate the basis  

functions, a mother wavelet is continuously shifted and scaled to create all basis  

functions in CWT. 

Now that we have discussed the analysis equation or the CWT, it is the best time 

to describe the synthesis equation that allows forming the time signal based on its 

WT. The inverse continuous wavelet transform or ICWT is defined as 

+∞ +∞ 
C−1 ⎛ t b− ⎞ 

x t( )  = Ψ

−∞ 
∫ WΨ ⎜ ⎟ da

a2 ,X (a b  , )Ψ db , a ≠ 0 (5.4) 
⎝ a ⎠

 −∞ 
∫ 

 

In this equation,  C−1
Ψ  is a constant whose value depends on the exact choice of the 

mother wavelet Ψ(t). As can be seen, while the CWT equation is a single integral, 

the ICWT is a double integral based on two dummy variables a and b. 

Every choice of the mother wavelet gives a particular CWT, and as a result, we  

are dealing with infinite number of transformations under the same name CWT  

(as opposed to only one transform for the continuous Fourier transform [CFT]).  

Any choice of the mother wavelet gives certain unique properties that make the  

resulting transformation a suitable choice for a particular task. A mother wave­

let called Mexican hat is shown in Figure 5.8. The reason this mother wavelet  

is called Mexican hat (or sombrero) is evident from its waveform. The wave­

form represented by this signal is the general shape of the most popular mother  

wavelets. 

Daubechies (dbX) wavelets are among the most popular mother wavelets that are 

commonly used in signal and image processing. The index “X” in dbX identifies the 

exact formulation of the function. These mother wavelets are simply the functions 

FIGURE 5.8 Mexican hat mother wavelet. 
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belonging to parameterized family of functions that have different levels of complex­

ity. For example, while all dbX functions look more or less similar, db2 is a simpler 

mother wavelet than db3 or db4. As a rule of thumb, more complex mother wavelet 

may be needed to analyze more complex signals. For instance, in order to process 

medical signals such as ECG, one would limit X to 10 or 15, while, in processing of  

complex signals such as speech signals, much more complex mother wavelets such  

as db30 or even higher provide better performances. 

Other popular mother wavelets are Mexican hat or sombrero (as shown previ­

ously), Coiflets, Symlets, Morlet, and Meyer. The details about the exact mathemati­

cal definition of these functions are outside the scope of this book, and the interested  

readers are referred to the introduced references for further studies. In this book, we  

will focus on the applications of the wavelets for biomedical signal processing. 

The most logical question at this point is how to choose a mother wavelet for a  

particular application. This question, to the most part, is an open problem, and it does  

not appear to have a definite answer. However, two intuitive rules of thumb are widely  

followed when choosing a mother wavelet: (1) complex mother wavelets are needed for  

complex signals (as discussed earlier) and (2) the mother wavelet that resembles the  

general shape of the signal to be analyzed would be a more suitable choice. 

As in the CFT, there are some major issues with the CWT that encourages the inven­

tion and use of a discrete version of the CWT. While some of the concerns are the same  

as the concerns applicable to the CFT (such as the dominance of the digital processing  

and storage systems), the CWT suffers from a more computationally serious problem.  

A  closer look at the CWT reveals that this transformation requires the calculations based  

on all continuous shifts and all continuous scales. This obviously makes the computa­

tional complexity of the CWT and the ICWT unsuitable for many practically important  

applications. This leads us to the discrete version of this transform. 

5.4 ONE-DIMENSIONAL DISCRETE WAVELET TRANSFORM 

Discrete wavelet transform (DWT) accepts continuous signals and applies only dis­

crete shifts and scales to form the transform. This means that if the original signal  

is sampled with a suitable set of scaling and shifting, the entire continuous signal  

can be reconstructed from the DWT. In order to see how this is done, we start with  

providing the equations for the DWT. Define 

a a j , b jk = k j 
jk = 0 a  0 T  (5.5) 

  

where 

T is the sampling time  

a0 is a positive nonzero constant 

Also define 

1 ⎛ t b− 
Ψ t jk ⎞

jk ( ) = Ψ = 
j 

⎜ ⎟ a− 
2 

0 Ψ a− j
0 t − kT  (5.6) 

a
 

jk ⎝ ajk ⎠
( ) 
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where Ψ(t) is the continuous mother wavelet, 0 ≤ j ≤ N − 1, and 0 ≤ k ≤ M − 1. Then, 

the coefficients of the DWT are calculated as 

+∞ 

Wjk = ∫ x t( )Ψ* 
jk ( )t  dt  (5.7) 

−∞ 

The aforementioned analysis equation calculates a finite set of discrete coefficients 

directly from a continuous signal. This makes the DWT somewhat different from the 

DFT that accepts only discrete signals as its input. The beauty of the DWT becomes 

clearer from the synthesis equation in the following: 

N −1 M −1 

x t( )  = c WjkΨjk ( )t (5.8) ∑∑
 
j=0 k =0 

In this equation, c is a constant that depends on the exact choice of the mother wavelet. 

The interesting thing about this equation is the fact that we can reconstruct the continuous 

signal directly from a set of discrete coefficients. This capability makes the DWT and the 

IDWT particularly interesting and useful for the applications where a continuous signal 

must be decomposed to and reconstructed from a finite set of discrete values. A closer 

look identifies the DWT as the equivalent of the Fourier series as opposed to the DFT. 

A relevant question at this point is how to choose the number of basis functions 

for a given signal. Specifically, how many shifted and scaled versions of the mother 

wavelet are needed to decompose a signal. We start this discussion by describing the 

difference between a frame and a basis. A frame is a set of basis functions that can be 

used to decompose a signal. This set can be minimal or nonminimal, i.e., if the number 

of basis functions in the frame is minimal and any other frame would need the same 

number or more basis functions, the frame is called a basis. From the definitions given 

earlier, in order to minimize the number of basis functions and therefore the required 

computations in calculating the DWT and the IDWT, one would like to use a basis for 

the operation as opposed to a nonminimal frame. To see the differences between a 

frame and a basis more clearly, consider the energy of a signal x(t): 

+∞ 

Ex = x t  ( )  
2 

dt  (5.9) ∫
 
−∞ 

Now consider a frame formed based on the functions Ψjk(t) defined earlier. For 

such a frame, it can be proved that there exist some bounded positive values A and 

B such that 

N −1 M −1 

A Ex. ≤ B Ex (5.10) 
2 ≤ .Wjk  ∑∑ 

j=0 k =0 
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This relation intuitively means that the energy of the wavelet coefficients for a frame 

is bounded on both upper and lower sides by the true energy of the signal. In the case 

of a basis (i.e., a minimal frame), the values A and  B in the aforementioned inequality  

become the same, i.e., A = B. This means that for a basis we have 

N −1 M −1 
2

Ex = ∑ 1

j=0 

∑Wjk (5.1 ) 

 k=0  

This indicates the energy of the coefficients is exactly the same as the energy of the 

signal. This is something we saw in DFT before and reminds us that the complex 

exponential basis used in the DFT indeed forms a basis. The next important question 

to ask here is: “What are the properties of the functions that allow the function sets to 

form a basis?” The most popular basis sets are the orthogonal ones, i.e., the function 

sets whose members are orthogonal to each other. There is an extensive literature on 

how orthogonal basis function sets for DWT are formed. 

Despite the usefulness of DWT computed from continuous signals, this transfor­

mation is not very popular. This is due to the fact that the original time signals are 

often discrete and not continuous. As a result, the next definition of the WT that is 

computed over discrete signals is more popular. 

5.4.1 DISCRETE WAVELET TRANSFORM  ON DISCRETE SIGNALS 

As indicated in our discussion of DFT, in almost all practical applications, signals are  

formed of discrete measurements, and therefore in practice we normally deal with   

sampled signals. This means that we need to focus on calculating DWT from discrete  

signals. At this point, we assume that the discrete signal, if sampled from a continuous  

signal, has been sampled according to the Nyquist rate (or faster). This guarantees that  

all information of the continuous signal is preserved in the discrete signal. For such a  

discrete signal, DWT can be calculated in different ways based on the exact type of  

mother wavelets used for transformation. As mentioned in the previous section, the  

best types of mother wavelets are the ones that form an orthogonal set. 

The question here is how to form such basis sets systematically. The method  

described next, called Mallat pyramidal algorithm or quadrature mirror filter (QMF),  

allows systematic creation of an unlimited number of orthogonal basis sets for DWT.  

The interesting feature of this method is the fact that the method relies only on the 

choice of a digital low-pass filter h(n), and once this filter is chosen, the entire algo­

rithm is rather mechanical and straightforward. In reality, the restrictions on h(n) are 

so relaxed that many such filters can be easily found, and, therefore, many mother 

wavelets  can  be  formed  based  on  different  choices  of  the  low-pass  filter  h(n).  This  

method can be best described using the schematic diagram of Figure 5.9. 

Based on the QMF algorithm, the DWT for a one-dimensional (1-D) signal is 

systematically calculated as follows. Assuming a digital filter h(n), we form another  

filter  g(n) as follows: 

g n  ( )  = h(   2N −1− n) (5.12) 
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d1c 
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d2c 

a2c 

Down sample
by factor 2 

Down sample
by factor 2 

Down sample
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Input
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g(n) 

h(n) 

g(n) 

h(n) 

FIGURE 5.9 Schematic diagram of QMF algorithm for DWT. 

As can be seen, once h(n) is chosen, g(n) is automatically defined. This means that 

even though in the block diagram of Figure 5.9 there are two filters, only one of them 

is selected and the other one is calculated from another. From Equation 5.12, we can 

observe that when h(n) is a low-pass filter, g(n) would turn out to be a high-pass filter 

automatically. 

As can be seen in the schematic diagram of Figure 5.9, the first step in transfor­

mation is filtering the signal once with the low-pass filter h(n) and once with the 

high-pass filter g(n). Then the filtered versions of the signal are downsampled by a 

factor of 2. This means that every other samples of the signal are preserved and the 

remaining samples are discarded. At the first glance, one might feel that the downs­

ampling operation would result in the loss of information, but, in reality, since now 

we are dealing with two copies of the signal (one high-pass and one low-pass ver­

sion), no information is truly lost. We can also ask another relevant question about 

downsampling: “How would downsampling fit into the general ideas of the DWT?” 

Without getting into the mathematical details of the process, one can see that downs­

ampling somehow creates the description of the signal at a different scale and resolu­

tion. This matches the basic idea of the DWT in expressing and decomposing a signal 

into different levels. 

As evident from Figure 5.9, the signal transformation and decomposition can be 

repeated for as many levels as desired. If one wishes to terminate the operation at the 

first level, two coefficients are found, d1c (the high-pass coefficient on the first level) 

and a1c (the low-pass coefficient on the first level). However, in reality, we often 

prefer to decompose the high-pass version of the signal even further, and, as a result, 

another level of decomposition is performed using the same subsystem used for the 

first level of decomposition. This would result in two new coefficients: d2c (the low-

pass coefficient on the second level) and a2c (the high-pass coefficient on the second 

level). This decomposition process can be repeated for several levels, and, in each 

level of decomposition, more scales of the signal are separated and quantitatively 

expressed using the wavelet coefficients. 

Before describing the IDWT, let us answer a simple but fundamental question: 

“What is the mother wavelet of the QMF algorithm?” It seems that we were so 

emerged in the description of the algorithm using the low-pass filter h(n) that we 

did not notice the apparent absence of the mother wavelet involved in the process. 

The QMF is indeed based on a mother wavelet that is represented by the low-pass 
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filter  h(n). In reality, each choice of this filter results to one specific discrete mother  

wavelet  Ψ(n) according to the following iterative relations: 

∑ 
N −1 

Ψ ( )  n = g(i  )  Φ(2  n − i) (5.13) 

 i= 0  

where 

( )  n = ∑ 
N −1 

Φ h(i )  Φ(2n − i) (5.14) 

 i= 0  

The function Φ(n) is often referred to as the “scaling function” and, in the previous  

equation, helps the calculation of the mother wavelet. From the preceding equa­

tions, one can see that the mother wavelet of the operation is uniquely identified  

and represented by the filter h(n) or, in other words, the role of the mother wavelet  

is somehow replaced by  h(n). The complexity of the iterative process of Equations  

5.13 and 5.14, on the one hand, and the simple structure of the schematic diagram  

of Figure 5.9, on the other hand, clearly state why in QMF algorithm one would  

prefer to focus on the concept of  h(n) as opposed to the direct use of the mother  

wavelet. It can be shown that all popular discrete wavelets such as dbX can be  

formed using QMF algorithm. 

Another question, which is to the most part an open problem, is as follows: “How  

many decomposition levels are needed for a suitable transform?” An intuitive  

criterion to choose the level of the decomposition would be continuing decomposi­

tion until the highest known frequencies in the signal of interest are extracted and 

identified. Loosely speaking, if one needs to have more detailed decomposition  

of the signal in higher frequencies, he or she would need to calculate higher levels  of  

decomposition. This simply would allow more specific description of high-frequency  

components of a signal. 

As expected, the IDWT is formed in a similar multilevel process shown in   

Figure 5.10. 

Up sample
by factor 2 

d2c 

a2c 

... 

Up sample
by factor 2 

Up sample
by factor 2 

g1(n) 
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FIGURE 5.10 Schematic diagram of IDWT using QMF algorithm. 



 

  

  

 

 

 

 

 

 

 

 
 

 
 

 
 
 

93 Wavelet Transform 

In the diagram of IDWT, the filters h1(n) and g1(n) are defined based on h(n) and 

g(n) as follows: 

h1( )n = −( 1)1−nh(1− n) (5.15) 

and 

g n( )  = h (2N 1 n) (5.16) 1 1 − −  

As can be seen, the structure and operations in IDWT are very similar to those of DWT, 

and therefore, with some minor changes, the same codes written to calculate DWT can 

be used to calculate IDWT. 

An interesting feature of the DWT and IDWT is the possibility of reconstructing 

the signal only based on a few of the levels (scales) of decomposition. For example, 

if we want to extract only the main trend of the signal and ignore the medium and 

fast variations, we can easily decompose the signal to several levels using DWT, 

but use only the first (or first few) low-pass components to reconstruct the signal 

using IDWT. This allows bypassing the medium- and high-frequency components. 

Similarly, if the objective is to extract only the fast variations of signal, in the recon­

struction phase, we can easily set the coefficients of the low frequency (high scales) 

to zero while calculating the IDWT. This would eliminate the low-frequency trends 

of the signal. Such approaches are very similar to low-pass and high-pass filtering 

using DFT except that due to the advantages of the DWT mentioned at the beginning 

of the chapter, DWT is often preferred over DFT. 

The following example exhibits some of the DWT capabilities discussed earlier 

when it is applied for biomedical signal processing. 

Example 5.4 

In this example, an EEG signal (described in Part II of this book) is decomposed 
using the QMF method. First we use the “wavemenu” command in MATLAB® to 
activate the interactive wavelet toolbox in MATLAB. Then, on Wavelet Toolbox 
Main Menu, under One-Dimensional, we select Wavelet 1-D. Now, on the 
Wavelet 1-D, we load and read the EEG signal. In order to analyze the signal, several 
options for the mother wavelet as well as decomposition levels are provided by 
MATLAB. We select db3 wavelet and decompose the signal to the seventh levels. 
Figure 5.11 shows the original signal, S (top graph), and reconstructed versions of 
the signal at different levels for all seven levels. 

As can be seen, the first reconstruction of the signal (i.e., the second signal 
from the top) has only the low-frequency trend of the signal, while the last signal 
captures only noise-like fast variations of the signal. If the signal is believed to be 
corrupted by high-frequency noise, we can simply reconstruct the signal using 
only the first few components to eliminate the high-frequency noise. For denoising 
and filtering of the signal using DWT, more efficient techniques are often applied 
that will be discussed later in this chapter. 
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FIGURE 5.11  Decomposition and reconstruction of an EEG signal at different resolutions. 

The strength (power) of the reconstructed signals at different levels has important 
physiological meanings and applications. For instance, in an EEG signal, a very strong 
low-frequency component (second graph from the top) identifies that the patient 
might be asleep or about to fall asleep. This will be further discussed in a chapter 
dedicated to EEG. 

5.5 TWO-DIMENSIONAL WAVELET TRANSFORM 

The basic idea of the WT can be extended to two-dimensional (2-D) space. This 

extension can be made both in continuous and discrete environments. However, as 

the FT, the main 2-D application of the WT in biomedical sciences is processing of 

biomedical images, and since all 2-D entities processed in biomedical sciences are 

digital images, the CWT is not a particularly useful transform for biomedical image 

processing. As a result, in this section, the focus is given only to the 2-D DWT that 

operates on the digital images. 

The approach we take in this section to describe the 2-D DWT is based on the 

main concepts described for the 1-D DWT, which allows a better understanding and 

implementation of the 2-D DWT. 

5.5.1 TWO-DIMENSIONAL DISCRETE WAVELET TRANSFORM 

The 2-D DWT can be easily described and implemented using the block diagram of 

Figure 5.12 that applies the principles and operations of the 1-D DWT. 
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FIGURE 5.12  Schematic diagram of 2-D DWT. 

As can be seen from the diagram of Figure 5.12, an N × N image f(x, y) is regarded 

once as a series of 1-D row signals and once as a series of 1-D column signals. When 

assuming the image as N rows of 1-D signals, each with N points, the 1-D DWT of each 

row is calculated. These N rows of numbers are put together to form a matrix Xh. The 

same process is repeated on the columns of the image to form Xv. At this point, Xh con­

tains primarily the information regarding the horizontal variations at different levels, 

and Xv comprises the decomposition and analysis of the vertical variations in the image. 

Next, the same operation is reappeared for Xh and Xv. More specifically, in the 

case of Xh, the DWT of the row is computed and named as Xhh, and the DWT of 

the columns is calculated and named as Xhv. The same process is repeated for Xv, 

generating Xvv and Xvh. The components Xvv and Xhh will then have the second-level 

vertical and horizontal decompositions, respectively, while Xhv and Xvh will represent 

the diagonal information of the image. 

The 2-D DFT will be further described in the following example. 

Example 5.5 

In this example, we decompose an image using the 2-D DWT and observe 
the image reconstructed in every scale. The image to be analyzed is a digital 
image of coronary arteries captured during an imaging process called angiog­
raphy. Analyzing the image using the 2-D DWT gives a set of images shown in 
Figure 5.13. This figure shows the low-frequency component of the original image 
(top left), the horizontal component (top right), the vertical component (bottom 
left),and diagonal information (bottom right). 

The first observation is that the low-pass component (top left) is almost enough 
to perceive the entire image. This is a witness to the compression capabilities of 
DWT. In other words, while the size of the DWT coefficients needed to recon­
struct the low-pass components of the image is 25% of the original image, almost 
all information of the original image is preserved in the low-pass component. In 
addition, as can be seen in Figure 15.3, the horizontal component captures the 
horizontal information of the image (e.g., horizontal lines identify the arteries that 
are mainly in the horizontal direction), the vertical component represents the ver­
tical information (e.g., vertical arteries), and diagonal information (e.g., diagonal 
lines and texture) is captured by the diagonal component. In other words, the 



 

 

 

 

 

 

 

  

96 Biomedical Signal and Image Processing 

Image selection 

Decomposition at level 1 

FIGURE 5.13 Decomposition of an image to the first level using DWT. (Courtesy of Andre 

D’Avila, MD, Heart Institute (InCor), University of Sao Paulo, Medical School, Sao Paulo, Brazil.) 

arteries that are mainly horizontal are more visible in the horizontal components 
and the vertical arteries are more highlighted in the vertical components. 

Nothing tells us to stop at the first level of decomposition, and we can easily 
continue decomposing the signal to another level. Figure 5.14 shows the decom­
position of the image into the second level. The second-level components provide 
a higher resolution in expressing the contents of the image in each direction and 
therefore can capture more detailed information regarding the image. 

5.6 MAIN APPLICATIONS OF DWT 

The main applications of DWT in biomedical signal and image processing are filter­

ing, denoising, compression, and extraction of scale-based features. Filtering and 

denoising are very similar in the sense that they both deal with eliminating some 

scales (frequencies) from the signal and extracting some targeted components. We 

start the discussion with denoising and filtering. 

5.6.1 FILTERING  AND DENOISING 

As mentioned earlier, it is often the case that noise exists in high frequencies (i.e., 

low scales) of signals and images. For instance, electromagnetic drifts that appear 

in the wires and electrodes are high-frequency noise. Such a noise appears in 

almost all biomedical signals such as electroencephalogram and electrocardiogram 
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Image selection 

Decomposition at level 2 

FIGURE 5.14 Decomposing the image into the second level. 

(as will be discussed later in this book). It is desirable to filter out such noise and  

extract the informative part of the recorded signals. In DWT domain the denoising  

often translates into reducing or eliminating the high-frequency variations in the  

low scales. 

Two main types of DWT-based denoising are used in signal processing: hard thresh­

olding and soft thresholding. In hard thresholding, all coefficients of some particular  

levels of decomposition that are less than a threshold are set to zero, and the remain­

ing coefficients are used for reconstruction of the signal. In other words, denoting the  

threshold value as  ξ and the original coefficients j at level k as  djk, the coefficients after  

hard thresholding are calculated according to the following criterion: 

hard 
⎧⎪ d jk if djk > x

djk = ⎨ (5.17) 
⎪0 Otherwise 

 ⎩  

In soft thresholding, just as in hard thresholding, all coefficients below the threshold 

value  ξ are eliminated; however, unlike hard thresholding, all other coefficients are 

also adjusted by the threshold amount, i.e., 

⎧djk − x if djk > x 
hard ⎪

djk = ⎨0 if djk ≤ x (5.18) 

⎪⎩d jk + x if d jk < −  x 
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As can be seen, soft thresholding can be thought of as an extension of hard thresholding 

that avoids creating discontinuities. Soft computing is often considered as a relatively 

more successful algorithm for automated denoising. The main factor that affects the per­

formance of both algorithms is the selection of a suitable threshold value ξ. As discussed 

later, MATLAB toolbox for WT provides several techniques for this selection; how­

ever, often the manual selection of the threshold value seems to be the most appropriate 

method for a given image or signal. As a result, we leave exploring this selection process 

to the readers as an exercise in the Problems section. 

5.6.2 COMPRESSION 

In many biomedical applications, long signals and large images are created. The stor­

age of all these signals and images creates a serious issue. The main objective here is 

to design techniques to reduce the size of a signal or image without compromising the 

information contained in the signal or image. 

The process of compression using the DWT is very similar to denoising: first, 

the signal or image is decomposed to its DWT coefficients, and then the coefficients 

that are less than a threshold value are eliminated. Since there are often many coef­

ficients that are too small to make a sensible difference in the signal, when a signal 

is reconstructed using only the surviving coefficients, a good approximation of the 

signal is obtained. 

The second rule for compression states that since noise often corrupts the high-

frequency components, by eliminating too-high-frequency components, the useful 

information in a signal would not change considerably. 

The third rule for compression states that too-low-frequency components may not 

contain vital information, and their corresponding coefficients can be eliminated or 

reduced in the compression process. This rule can be better understood if we think of 

some undesirable trends in signals such as electrocardiogram that contain no relevant 

information, and, therefore, it makes sense to eliminate them before saving the signal. 

In a typical electrocardiogram, the low-frequency variations caused by the patient’s 

respiration constitute the trend that is often eliminated by discarding the high-scale 

(low-frequency) coefficients in the DWT domain. 

The compression performance of the DWT will be further illustrated in the 

following example. 

Example 5.6 

As previously mentioned, in decomposing of the image given in Figure 5.13, 
the low-pass component requires only 25% of the storage space to provide an 
almost identical version of the original image. The second-level decomposition 
of the image is shown in Figure 5.14. As shown, the low-pass component, while 
having only 6.25% of the original image, still provides an acceptable approxi­
mation of the original image. These observations demonstrate the capabilities 
of the DWT in compression applications. This is why the newer versions of 
image compression technologies such as some JPEG standards apply the DWT 
for compression. 
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5.7 DISCRETE WAVELET TRANSFORM IN MATLAB® 

In MATLAB, a complete toolbox is dedicated to the WT and its applications in sig­

nal and image processing. Even though we are not to cover the detailed description 

of this toolbox, we encourage the reader to explore these capabilities using the visual 

user interface provided for most of these capabilities. The command “wavedemo” 
provides a demonstration of these capabilities, and “wavemenu” activates the user 

interface of the wavelet toolbox. While wavedemo helps the reader understand the 

different DWT commands and options provided by MATLAB, wavemenu provides 

the means to visually conduct almost all aforementioned applications of the DWT. 

These applications include denoising, compression, and filtering. MATLAB also 

provides a set of commands for direct calculation of the DWT coefficients as well 

as the IDWT. These commands include dwt, idwt, dwt2, and idwt2. In using 

each of these commands, one needs to identify the type of the mother wavelet and 

the level of decomposition (or reconstruction). 

The readers are further guided to systematically explore these capabilities in the 

Problems section. 

5.8 SUMMARY 

In this chapter, the concept of continuous and discrete WTs was presented. We 

started with the need for such a transformation and then described the mathemati­

cal formulation as well as the applications of WT such as denoising, filtering, and 

compression. 

PROBLEMS 

5.1	   A biomedical image that was corrupted by additive noise is given in the file 

“p_5_1.mat.” This image shows a fluoroscopic image of arteries.* 

 a.	  Read the image using “load” command. 

 b.	   Calculate the 2-D DWT of the image using “dwt2” command (assume 

only one level of decomposition). Use Daubechies 2 (“db2” in MATLAB)  

as the mother wavelet. 

 c.	   Apply hard and soft thresholding for denoising of the image assuming  ξ = 0.01,  

ξ = 0.05, and ξ = 0.1.

 d. 	 Use “idwt2” command to reconstruct the filtered image for all three  

values of  ξ for both hard and soft thresholding, compare the results, and  

identify the setting with the best results. 

5.2	   An EEG signal is to be denoised using DWT.† The signal is given in  

“p_5_2.mat.” 

 a.  Read the EEG signal using “load” command and plot the signal. 

*  Courtesy of Andre D’Avila, MD, Heart Institute (InCor), University of Sao Paulo, Medical School, Sao 

Paulo, Brazil. 
† 	 Courtesy of Dr. Henri Begleiter, Neurodynamics Laboratory, State University of New York Health  

Center at Brooklyn, Brooklyn, NY. 



 b.	  Ca lculate the DWT of the signal using “dwt” command (use as many  

levels of decomposition as you need for better results). Use Harr mother  

wavelet, which is the same as Daubechies 1 (“db1” in MATLAB). 

 c.	   Apply soft thresholding for denoising of the signal assuming  ξ = 0.01,  ξ = 0.05,  

and  ξ = 0.1.

 d. 	 Use “idwt” command to reconstruct the filtered signal for all three values 

of  ξ, compare the results, and identify the setting with the best results. 

5.3	   We are to compress an image given in “p_5_3.mat.” This image shows a mul­

tislice tomographic image of the pulmonary vein in a patient with fibrillation. In  

this problem, we will explore the effects of using different mother wavelets for  

compression of the given image.* 

 a.	  Read the image using “load” command and show it using “image”. 
 b.	   Calculate the 2-D DWT of the image using “dwt2” command (assume  

two levels of decomposition). Use the following three mother wave­

lets for this purpose: Daubechies 2, Harr, and Coiflets 1 (“coif1” in  

MATLAB). 

 c.	  A pply hard thresholding for denoising of the image assuming  ξ = 0.01,  ξ = 0.05,  

and  ξ = 0.1.

 d. 	 Use “idwt2” command to reconstruct the compressed image for all three 

values of  ξ for all mother wavelets, compare the results, and identify the 

setting with the best results. 

5.4	   In this problem, we explore forming QMF algorithm for a given filter h(n). This  

problem also allows us to generate a new mother wavelet. Assume that this 

filter is given as 

⎧⎪e
 −2n ,
 n
≥
0

h( )n =
⎨
 (5.19)
 

⎪0 otherwise
 
 ⎩
  

 a.	   In order to form the decomposition process, first find the corresponding 

g(n). 

 b.	   For this set of  h(n) and g(n), find the mother wavelet as well as the scaling 

function.

 c.  	For reconstruction  process, we will  need  to know  two  functions:  h1(n) and 

g1(n). Use h(n) and g(n) to calculate these functions. 
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* Courtesy of Andre D’Avila, MD, Heart Institute (InCor), University of Sao Paulo, Medical School, 

Sao Paulo, Brazil. 



 

 

 

 

 

 

 

 

  

6 Other Signal and Image 

Processing Methods
 

6.1 INTRODUCTION AND OVERVIEW 

In this section, some other techniques used in biomedical signal and image pro­

cessing are discussed. In order to avoid an excessively long chapter, the introduced 

techniques are described in a brief and concise manner. The first part of this chapter 

deals with the complexity measures computed mainly for one-dimensional (1-D) sig­

nals and their roles in biomedical signal processing. The second part of the chapter 

focuses on an important transformation in signal and image processing called cosine 

transform. In addition, a part of this chapter is dedicated to a brief review of coding 

and information theory, which is heavily used in both signal and image processing. 

Finally, a brief review of the methods for coregistration of images is presented. 

6.2 COMPLEXITY  ANALYSIS 

A main characteristic of the biomedical and biological systems is their high com­

plexity. For instance, complexity is often considered as the key feature that allows 

biomedical and biological systems to adapt to the dramatic environmental changes. 

In processing of a biomedical system, it is often the case that the complexity of the 

signals created by the system needs to be identified and evaluated using signal pro­

cessing method. Evaluation of the biomedical complexity has become an important 

factor in diagnostics of the biomedical systems. A rule of thumb in biomedical sci­

ences states that the normal and healthy biomedical systems are often very complex, 

and once a disease or abnormality occurs, the complexity of the system drops. An 

example of this rule is the significant decrease in all complexity measures of electro­

encephalogram (EEG) in diseased cases such as epilepsy (compared to the normal 

EEG). The same rule is applicable in other physiological units such as cardiovascular 

system, where a sharp drop in electrocardiogram (ECG) is associated with diseases 

such as flutter. These observations will be further described in Part II of the book. 

Knowing the importance of the complexity measures in biomedical signals and 

systems, we start the description of some popular complexity measures with two 

local measures of complexity: “signal complexity” and “signal mobility.” 

6.2.1 SIGNAL COMPLEXITY  AND SIGNAL MOBILITY 

These two features can quantitatively measure the level of variations along a sig­

nal. They are often used in the analysis of biomedical signals quantifying the first- 

and second-order variations in signals. Signal mobility addresses the normalized 
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first-order variations of the signal, while signal complexity deals with the second-

order variations. Consider a biomedical signal  xi, i = 1,…,  N. Also, let signal  dj, 
j = 1,…, N − 1, represent the vector of the first-order variations in  x, i.e., 

d
 j = x j+1 − x j (6.1) 

 

Moreover, define the signal  gk, k = 1,…,  N − 2, as the vector of the second-order 

variations in  x, i.e., 

g = d − d (
 k k +1 k 6.2) 

 

Then, using the concepts  x, d, and g, we define the following fundamental first- and 

second-order factors: 

xi 
S = ∑N 

2

i=1
0 , (6.3) 

N   

∑ N −1 

d2
j

S1 = j=2
, (6.4) 

N 1  −  

∑N −2 

g2
k 

S2 = k=3 , (6.5) 
N  − 2  

Now, we can define signal complexity and signal mobility as follows: 

S2 

l complexity = 2 S2 

Signa 1 (6.6) 
S2 

− 
S2 

 1 0  

and 

S
Signal mobility = 1 (6.7) 

S 0  

These two measures are heavily used in biomedical signal processing specially in  

processing of EEG, ECG, and electromyogram (EMG) signals as described in Part  II 

of this book. 

6.2.2 FRACTAL DIMENSION 

Fractal dimension, which is frequently used in analysis of biomedical signals such  

as  EEG  and  ECG,  is  a  nonlocal  measure  that  describes  the  complexity  of  the  fun­

damental  patterns  hidden  in  a  signal.  Fractal  dimension  can  also  be  considered  as  a  
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measure of self-similarity of a signal. Informally speaking, assume we have printed 

a signal on a piece of paper and have a number of magnifiers with different zoom  

power. First, we look at the entire signal without a magnifier and observe the sig­

nal pattern. Then, we focus only on a portion of the signal and use a magnifier. In  

biological and biomedical signal, we often notice that the observed pattern with the 

magnifier has a high degree of similarity to the entire signal. If we continue focus­

ing on smaller and smaller portions of the signal using magnifiers with higher and 

higher zoom powers, we observe more or less similar patterns. This proves the “self­

similarity” of the biomedical signals. Fractal dimension is a measure that quantita­

tively assesses the self-similarity of a signal. Knowing that almost all biomedical  

signals are to some degree self-similar, evaluating the fractal dimension allows us to 

distinguish between the healthy and diseased signals. 

In the signal processing literature, several methods are introduced to estimate the 

fractal dimension. Among all the fractal-based complexity measures, the Higuchi 

algorithm is known to be one of the most accurate and efficient methods to estimate  

self-similarity. Here, we briefly describe the estimation of fractal dimension using 

Higuchi’s algorithm. 

From a time series X with  N points, first a set of  k subseries with different resolu­

tions are formed, i.e., a set of  k new time series Xk are defined as follows: 

m ⎛ ⎢ N m− ⎥ ⎞
X xk : ( m  ), x( m + k ), x( m + 2k),…, x + ⎜ m ⎢ ⎥ k (6

k ⎟ .8)
⎝

 ⎣ ⎦ ⎠
 

where  m indicates the initial time indices (m = 1, 2, 3,…,  k). The length of the curve 

X m 
k ,  l(k), is then calculated as follows: 

⎛ ∑ ⎣⎢N m− / k⎦ ⎥ ⎞ 
⎜ x m( + ik) − x m( + ( i −1 )k) (N −1)
⎝ i=1 

⎟ ⎠
l k( )  = (⎢(N m) / k⎥ ⎦⎦) (6.9)

−⎣ k 
  

Then, the average length is calculated as the mean of the k lengths  lk for  m = 1,…,  k. 

This is repeated for each  k ranging from 1 to kmax. The slope of the plot ln(l(k)) versus 

ln(1/k) is the estimation of the fractal dimension. We use the Higuchi dimension to 

express the complexity of biomedical signals in the following chapters. 

6.2.3 WAVELET MEASURES 

Another group of nonlocal complexity measures used in signal processing includes 

the wavelet-based measures. Wavelet transform, as introduced in Chapter 5, uses 

a function called a mother wavelet and fits the scaled and shifted versions of this 

function to decompose a sequence. This transform can also measure self-similarity  

at different scales of the sequence. In biomedical signal processing applications, 

the coefficients of the wavelet transform in each subband as well as the normal­

ized  power  of  coefficients  in  each  subband  are  used  as  complexity  features.  The  use  
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for the wavelet-based measures is encouraged by the fact that in detecting specific 

changes in a diseased signal (compared to normal signals), we need to know not only  

the exact shape of these changes but also the length of the separation between the 

changes (i.e., the scale of the change). 

The wavelet measures commonly used in the biomedical studies are the wavelet 

coefficients in high frequencies, which reflect the detailed high-frequency changes 

across the signal. In order to better understand the use of high-frequency coefficients, 

assume we are comparing two signals that are apparently similar to each other, for 

example, a healthy and a diseased signal with high degree of similarities. The over­

all similarity of the two signals indicates that the wavelet coefficients describing  

the overall approximation of the two signals are very similar (or the same). This 

means that the wavelet coefficients in the low frequencies (i.e., large scales) are very  

similar. But assuming that the two signals are indeed different, the wavelet theory  

also asserts that the coefficients describing the details of the two signals must be dif­

ferent. This means that a comparison of the high-frequency (low-scale) coefficients 

should reveal the differences of the two signals. 

6.2.4 ENTROPY 

Entropy is another measure of complexity, defined in information theory that is com­

monly used in biomedical signal and image processing. This measure is defined later 

in this chapter when describing the fundamentals of coding and information theory. 

6.3 COSINE TRANSFORM 

In the previous chapters, we emphasized the importance of the techniques to com­

press a signal or an image. A popular technique for compression that is frequently  

used in biomedical signal and image processing is cosine transform. Even though in  

many compression applications, the cosine transform is being replaced by the wavelet  

transform, we will briefly review this very useful technique. Since only discrete cosine  

transform (DCT) is commonly used in real applications, we focus on the DCT. For  

a discrete 1-D signal  g(n), where n = 0,1,…,  N − 1, 1-D DCT is described as follows: 

∑ 
N −1 

⎡ (2n +1)pu ⎤
C u( )  = a( )  u  g n  ( )cos  , u = 0 1  , ,  …,  N −⎢ 1 (6.10) 

2N ⎥ 
 n=0 

⎣ ⎦
 

In the preceding equation, “u” represents the variable of the cosine domain and a(u) 

is defined as follows: 

⎧ 1 
⎪ for u = 0 
⎪ N

a u  ( )  = ⎨ (6.11) 

⎪ 2 
⎪ for u = 1 2  , ,…, N −1

 ⎩ N 
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The inverse discrete cosine transform (IDCT) is defined using the same function 

a(u): 

∑ 
N −1 

⎡ (2n +1)pu ⎤ 
g n( ) = a( )  u C u  ( )cos  = 0 1  …, N −⎢ 2N ⎥ , n , , 1 (6.12)

 u=0 
⎣ ⎦

 

As can be seen, the preceding equations have similarities to both DFT and DWT.  

Before showing some applications of the DCT, we define the two-dimensional (2-D) 

DCT. The 2-D DCT of an image g(x, y), where  x = 0,1,…,  N − 1 and y = 0,1,…,  N − 1,  

is defined as follows: 

∑
N −1 

∑ 
N −1 

⎡ (2x +1)pu ⎤ ⎡ (2y + 1)pv ⎤
C u( ,v  )  = a(u)a(v) g(x, y )cos ⎢ cos ,

2N ⎥ ⎢ 2N ⎥⎥
x=0 y=0 

⎣ ⎦ ⎣ ⎦ 

u 0 1  , , ,  N 1 , v 0, ,  1 , N 1 (6.13)
 = … − = … −  

In the preceding equation, a(u) is exactly what we defined earlier for the 1-D DCT  

and  a(v) is the same function with variable  v. The 2-D IDCT is defined as follows: 

∑
N −1 

∑ 
N −1 

⎡ (2x + 1)pu ⎤ ⎡ (2x + 1)pv ⎤ 
g x y  ( , )  = a(u) (a v)C(u,  v )cos ⎢ cos ,

⎣ 2N ⎥ ⎢ ⎦ N ⎥ ⎥
u=0 v=0 

⎣ 2 ⎦

x = 0 1  , ,  …, N −1 ,  y = 0, ,  1 …, N −1 (6.14) 
  

The formulations of DCT and IDCT are evidently very similar to each other, and 

this similarity is utilized in implementation of the two formulae. In order to better 

understand  the  application  of  the  DCT  in  image  compression,  we  present  the  follow­

ing example: 

Example 6.1 

In this example, the MR image shown in Figure 6.1a is transformed to the DCT 
domain. The resulting DCT coefficients are shown in Figure 6.1b. The code for this  
example is given as follows: 

X=imread(‘image1.jpg’);
 
X=double(X);
 
figure;
 
colormap(gray(256));
 
image(X);
 
Y=dct2(X);
 
figure;
 
colormap(gray(256));
 
image(Y);
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Yc=zeros(256,256);
 
Yc(1:128, 1:128)=Y(1:128, 1:128);
 
Xc=idct2(Yc);
 
figure;
 
colormap(gray(256));
 
image(Xc);
 

As can be seen, only a small number of DCT coefficients located in the top left 
corner of the DCT domain (i.e., the low frequency coefficients with small u and 
v indices) are significant and the rest of the coefficients are very close to 0. This 
means that if we keep only the significant coefficients (e.g., the coefficients whose 
absolute values is larger than a threshold value), the only coefficients that will sur­
vive are the ones in the top left corner. As shown in Figure 6.1c, reconstruction of 
the image using only the coefficients in the top left quadrant of the DCT domain 
results to a high-quality approximation of the image. In other words, using only a 
quarter of the original DCT coefficients will allow producing a high-quality recon­
struction of the original image. This compression process is the principal idea of 
some practical systems such as the older versions of the JPEG technology. 

FIGURE 6.1  (a) Original image, (b) DCT of the image, and (c) reconstructed image using 

only the coefficients in the top left quadrant of the DCT domain. (From Goldberger, A.L.  

et al., Circulation, 101(23), e215, 2000, Circulation Electronic Pages; http://circ.ahajournals. 

org/cgi/content/full/101/23/e215). 

http://www.circ.ahajournals.org
http://www.circ.ahajournals.org
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As in DWT, there are several techniques for choosing a suitable threshold value 
for compression, and this issue is still an open problem. As shown in the afore­
mentioned code, in MATLAB®, the commands “dct” and “dct2” are used for 1-D 
DCT and 2-D DCT, respectively. The inverse commands “idct” and “idct2” are 
used for decompression of the signals and images, respectively. 

In more practical image processing applications, instead of compressing the 
entire image in one shot, the image is split into a number of subimages (often using 
a rectangular grid) and then each subimage is compressed using DCT separately. 
In reconstruction, first, each small subimage is decompressed and then the subim­
ages are put together to form the final reconstructed image. This will be further 
explored in one of the problems in the Problems section. 

6.4  INTRODUCTION TO STOCHASTIC PROCESSES 

Most of the techniques described so far are applicable to “deterministic” signals and 

systems. If every time a signal is recorded or registered the exact same values are 

obtained, the signal is called to be deterministic. As evident from the definition, there 

are very few quantities in nature that give the exact same signals in all measurements. 

In other words, most of the signals, including biomedical signals, are “stochastic.” 

A stochastic signal, even though statically similar in all recordings, contains some 

stochastic variations in each of the recordings. A stochastic process, x(w, t), is rep­

resented by two variables where t is time and the variable w identifies a particular 

outcome of the stochastic process. The variable w emphasizes the fact that each mea­

surement of the variable x at a specific time can result in a different value. 

An interesting stochastic process is the “white noise.” White noise defines a sto­

chastic process in which the value of the signal has absolutely no relation or depen­

dency on the value of the signal at any other times. An example of such a process is a 

sequence of numbers obtained in consecutive tosses of a fair coin. In such a process, 

the outcome of each toss does not depend on the past or future outcomes. As biomed­

ical example, consider a faulty recording of an ECG machine where the electrodes 

are not properly attached to the patient’s chest. Observing absolutely no pattern in 

the recording signal, i.e., getting only white noise, often tells the technicians that the 

electrodes are disconnected. What is really measured during such situations is the 

background noise, often caused by the thermal and radiation sources of noise. It is 

interesting to know that often, even when electrodes are properly connected, we still 

capture some of this white noise that has to be filtered. The study of the white noise 

and the techniques to detect or remove it from a signal is a dynamic field of research. 

6.4.1 STATISTICAL MEASURES  FOR STOCHASTIC PROCESSES 

When dealing with a stochastic process and in order to make the notation shorter and 

simpler, often the variable w is dropped from the notation and x(t) is used to represent 

x(w, t). Hereafter, when dealing with a stochastic process, while keeping in mind the 

random nature of the processes, the shorter notation is used. 

The difference between a deterministic signal and a stochastic process is the 

fact that once we have one recording of a deterministic signal, we know everything 

about it; however, every measurement of a stochastic signal is merely one outcome 



108 Biomedical Signal and Image Processing 

of a random sequence and therefore may not be used to represent all aspects of  

the stochastic process. The question then becomes how a stochastic process can be  

described. The answer is simply using a probability function to express the likeli­

hood of having a value for a signal at any time t. The probability density function 

(PDF) of a process x(w, t) is represented as  pX(w, t) or simply  pX(t). As in probability  

theory, once the PDF is available, it is always desirable to know the average of  

a  stochastic process at a particular time t. In practical applications where we have  

many  recording of a stochastic signal, we can average all the available record­

ings at time t and consider this value as the estimation of  m(t), i.e., mean of the signal  

at time t. Mathematically, the actual value of the mean function at all times can be  

computed as follows: 

+∞ 

m t  ( )  = E(  x( )t  )  = ∫
 x( )  t p  X ( )  t dx( )t  (6.15) 

 −∞  

The function E(.) is called the expectation function, or ensemble averaging function. 

For a discrete stochastic process x(wi, n) that is defined at time points  n, the mean  

function is defined as follows: 

+∞ 

m( )  n  = E( (  x w n  i ,  ))  = ∑ x( w ni , ) p  X ( w n  i , ) (6.16) 

 i=−∞  

where  pX(wi, n) is the probability of having outcome wi at time n. 

Often only one function, i.e., mean, is not sufficient to represent an entire stochas­

tic process. Variance is another popular function that is very effective in expressing  

the average variations and scattering of the data around the mean. This function is 

defined as follows: 

+∞ 

s ( )t = E  ( (  x t  ( )  − x)2 ) = ∫
 (  x t  ( )  − m(  t  ))  2 p  X ( )  t dx t( )  (6.17) 

 −∞  

As can be seen, the variance function is the statistical average of the second-order 

deviation of the signal from its mean at each time. Similarly, the discrete variance  

function is defined as follows: 

, n  ) = ∑
 
+∞ 

s ( )  n  = E  ( ( (  x w n  )  − m( ))  2 ( (  x w  2 
i ,n  ) − m(  n  ))  p  X ( wi ,n  ) (6.18) 

 i=−∞  

A closer look at the equations presented earlier emphasizes the fact that while mean
  

is the statistical (or ensemble) average of “x(t),” variance is nothing but statistical 
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average of “(x(t) − m(t))2.” This statistical averaging can be extended to any general 

function “g(x(t)),” namely, 

+∞ 

g t( )  = E g x t  = (  ( ))  X ( )  x t  (6.19) (  (  ( )))  g x t p  t d ( )∫
 
−∞ 

Similarly, for the discrete processes, we have 

+∞ 

g n = E g x w n  ( ( (  , )))  = ( (  i ,  ))  X ( i , ) (6.20) ( )  ∑ g x w n  p  w n
i=−∞ 

Some other popular functions whose expectations are useful in practical appli­

cations are “moment functions.” The moment of degree k is defined as E(g(x(t))), 
where g(x(t)) = x(t)k. As can be seen, the mean function is nothing but the moment 

of degree 1, and variance is closely related to the moment of degree 2. The moment of 

degree 2 is often considered as the statistical power of a signal. 

6.4.2 STATIONARY  AND ERGODIC STOCHASTIC PROCESSES 

A subset of stochastic processes provides some practically useful characteristics. This 

family that is referred to as “stationary processes in wide sense” in which the mean 

and variance functions remain constant for all time, i.e., m(t) = m0, and σ(t) = σ0. In 

other words, even though the probability function pX(t) of such processes can change 

through time, the mean and variance of the process stay the same at all times. Such a 

simplifying assumption helps processing a number of practically useful signals. For 

instance, it is often the case that the mean and variance of signals such as ECG and 

EMG does not change at least during a rather large window of time. Such an obser­

vation allows calculation of mean and variance for only one time point because the 

assumption of stationarity in wide sense states that the mean and variance functions 

for all times will be the same. 

A subset of wide sense stationary processes are “stationary in the strict sense” 

processes in which the probability function pX(t) is assumed to be independent of 

time. This means that if one finds the PDF for one time step, the same exact PDF 

can be used to describe all statistical characteristics of the process in all times. From 

the definition, one can see that while all strict sense stationary processes are also 

wide sense stationary, the opposite is not true. This means that the strict sense sta­

tionary assumption is a stronger assumption and therefore applicable to fewer real 

applications. 

An interesting and very popular family of wide sense stationary processes is the 

set of wide sense stationary Gaussian processes. In such processes, since the PDF 

has only two parameters, mean and variance, once these two parameters are fixed 

in time, the PDF becomes the same for all time. This means that for Gaussian pro­

cesses, strict sense and wide sense stationary concepts are the same. Since many 
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processes can be approximated by some Gaussian process, such stationary Gaussian 

processes are extremely important in signal processing applications, especially bio­

medical signal and image processing. For instance, in almost all processing tech­

niques used for analysis of EEG, ECG, and EMG, the processes are assumed to be 

stationary Gaussian. Hereafter, since strict and wide sense stationary Gaussian pro­

cesses are the same; in referring to such processes, we only use the word stationary 

without mentioning the details. 

So far we have made several simplifying assumptions to create stochastic formu­

lations that are more applicable to practical image and signal processing applica­

tions. However, even with the assumption of stationarity, it is practically impossible 

to apply such formulations to some very important applications. At this point, we 

need to make another assumption to narrow down our focus further to obtain a more 

practically useful model of stochastic processes. The need and motivation for mak­

ing more simplifying assumptions is as follows. Note that in real applications, the 

PDF is not known and must be estimated from the observed data. In order to obtain 

an estimate of the PDF or any statistical averages, we need to have access to sev­

eral recordings of the process and then perform an ensemble averaging over these 

recordings to estimate the desired averages. However, in almost all applications, 

especially biomedical applications, very often only one signal reading is available. 

For instance, clinics and hospitals capture only one ECG recording from a patient. 

It is unreasonable to expect the clinics to collect a few hundred EEG recordings for 

each patient so that we conduct our ensemble averaging to calculate PDF! 

From the earlier discussion, it is clear that in many practical applications, one 

recording is all we have, and, therefore, we need to calculate the averages such as 

mean and variance from only one recording. Statistically speaking, this is not fea­

sible unless further assumptions are made. The assumption that helps us with such 

situations allows us to perform the averaging across time for only one recording and 

to treat these averages as our ensemble averages. The stationary processes in which 

the averages of any recording of the signal across time equal the ensemble averages 

are called “ergodic processes.” Formally speaking, considering any outcome signal 

x(wi, t) recorded for an ergodic process, we have 

+∞ 

g t ( )  = E g x t  = ( (  i ,  ))  t(  (  ( )))  g x w t  d (6.21) ∫ 
−∞ 

Similarly, in discrete ergodic processes using only one recording of the stochastic 

process, x(wi, n), we can use the following relation to calculate all ensemble averages 

through averaging in time: 

+∞ 

g n  = E g x w n  ( ( (  , )))  = ∑ ( (  i , (6.22) ( )  g x w  n))  

n=−∞ 

For ergodic processes, all averages such as mean and variance can be calcu­

lated using the aforementioned time averaging. Ergodicity is a practically useful
 



 

 

   

 

  

  

   

 

 

 

  

 

 

  

 

 

111 Other Signal and Image Processing Methods 

assumption made in many biomedical signal and image processing applications, 

and unless indicated otherwise, all stochastic processes discussed in the book are 

assumed to be ergodic. 

6.4.3 CORRELATION FUNCTIONS  AND POWER SPECTRA 

In order to express the time patterns within a stochastic signal as well as the inter­

relations across two or more stochastic signals, we need to have some practically use­

ful measures and functions. For instance, since almost all biomedical signals have 

some type of periodicity, it is extremely useful to explore such periodicities using 

techniques such as Fourier transform (FT). However, since these signals are stochas­

tic, we cannot simply apply FT to one only recording of the signal. The approach 

we take in this section to address the aforementioned issue is rather simple; we con­

struct meaningful determinist signals from a stochastic process and then process 

these representative determinist signals using the FT and other techniques. As we 

will see later in this chapter, these deterministic signals and measures are conceptu­

ally interesting and practically very meaningful. Even though the definition of these 

signals and measures can be described for nonstationary processes too, due to the 

fact that almost all biomedical applications processes and signals are assumed to 

be stationary, we focus only on stationary processes and specialize all definitions 

toward stationary processes. 

The first function we discuss here is autocorrelation function. This function calcu­

lates the similarity of a signal to its shifted versions, i.e., it discovers the correlation 

and similarity between x(t) and x(t − τ), where τ is the amount of shift. Specifically, 

the autocorrelation function, rXX(τ), is defined as follows: 

+∞ 

r ( )  = x t  x t  − t )p  x t  x t  − t ))  dt  (6.23) XX t ( )  (  XX ( ( ),  (∫ 
−∞ 

In the preceding equation, pXX(x(t), x(t − τ)) is the joint probability density function of 

x(t) and x(t − τ). An interesting property of this function is its capability to detect 

periodicity in stochastically periodic signals. For such signals, whenever τ is a mul­

tiple of the period of the signal, the similarity between the signal and its shifted 

version exhibits a peak. This peak in the autocorrelation signal can be quantitatively 

captured and measured. In other words, a periodic autocorrelation signal not only 

reveals the periodicity of the stochastic process but also measures the main features 

of this periodicity such as the period of oscillation. 

Another feature of the autocorrelation function deals with the value of τ at which 

the autocorrelation function reaches its maximum. A simple heuristic observation 

states that maximum similarly is gained when a signal is compared to itself (i.e., when 

there is zero shift). This argument explains why the maximum of the autocorrela­

tion function always occurs at τ = 0. The typical shapes of autocorrelation functions for 

periodic and nonperiodic processes are shown in Figure 6.2a and b. 

Yet another interesting observation about the autocorrelation function deals with 

calculating this function for the white noise. From the definition of the white noise, 
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Autocorrelation 

Time 

Autocorrelation 
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(a) (b) 

FIGURE 6.2 Typical shapes of autocorrelation function for (a) periodic and (b) nonperiodic 

signals. 

we know that there is no dependence or correlation among random variables in con­

secutive times. This means that for any value τ ≠ 0, the autocorrelation function is 0. 

We also know that the similarity of a signal to itself is maximal. This means that the 

autocorrelation function for the white noise is indeed a spike (impulse) function that 

has a large value at the origin and 0 elsewhere. 

The definition of the autocorrelation function for a discrete signal x(n) is simply 

the same as the continuous case except for the substitution of the integral with a 

summation: 

+∞ 

rXX (m) = x n x n  ( ) (  − m p  XX x n  x n)  ( ( ),  (  − m))  (6.24) ∑ 
n=−∞ 

In the preceding equation, m identifies the amount of the shift in the discrete domain 

and pXX(x(n), x(n − m)) is the joint probability density function of the random vari­

ables x(n) and x(n − m). 

A natural and logical extension of the preceding functions is cross-correlation 

function. This function identifies any relation between a stochastic process x(t) and 

the shifted version of another stochastic process y(t), i.e., y(t − τ), as follows: 

+∞ 

rXY ( )  = x t  y t  − t )pXY x t  y t  − t ))  dt  t ( ) (  ( ( ),  (  (6.25) ∫ 
−∞ 

In the preceding equation, pXY(x(t), y(t − τ)) is the joint probability density function of 

random variables x(t) and y(t − τ), and rXY(τ) is the autocorrelation function between 

the two random variables x(t) and y(t − τ). 
The main application of this function is identifying potential cause-and-effect 

relationship between the random processes. As a trivial example, assume that we 

are to discover if there is a relationship between the blood pressure signal y(t) and 

the ECG recordings of a patient, x(t), measured an hour after the blood pressure was 

measured, i.e., τ = 1 min. If the autocorrelation function showed a peak at τ = 1 min, 

then one can claim that there might be some time-delayed relation between the blood 

pressure and the electrical activities of the heart muscles, i.e., ECG. Even though this 



  

 

  

  

  

  

 

 

 

 

113 Other Signal and Image Processing Methods 

trivial example may seem too simple and obvious, there are so many other factors, 

such as exercise and nutrition patterns whose potential effects on the function and 

activities of the heart are constantly investigated using the cross-correlation function. 

The cross-correlation function for the discrete processes is defined as follows: 

+∞ 

rXY (m) = x n y n  ( ) (  − m p  XY x n  y n  ))  (6.26) )  ( ( ),  (  − m∑ 
n=−∞ 

It is important to note that all autocorrelation and cross-correlation functions defined 

earlier, even though calculated from random variables, are indeed deterministic sig­

nals. This means that we can apply the FT on these signals and investigate the fre­

quency contents of the underlying stochastic processes. The FT of the correlation 

signal is called power spectrum. For continuous stochastic processes, power spec­

trum is defined as follows: 

R f = FT  {rXX (  )  (6.27) XX ( )  t } 

and 

RXY f = {rXY ( )  ( )  FT  t } (6.28) 

Similarly, for the discrete stochastic processes, the power spectral functions are 

defined as follows: 

RXX ( )k = FT  {rXX (m)} (6.29) 

and 

RXY ( )k = FT  {rXY (m)} (6.30) 

For typical periodic signals, the overall shape of a power spectrum has two impulses 

located at positive and negative frequency of oscillation. The peak on the positive 

side is at the frequency of oscillation (one over the period of the signal), and the nega­

tive one is located simply at minus the frequency of oscillation. 

An interesting power spectrum to study is that of the white noise. As discussed 

earlier, the autocorrelation function of the white noise is an impulse. We also know 

from the previous chapters that the FT of an impulse is a constant function that is 

flat in all frequencies. This flat shape is the reason the white noise is called “white.” 

This analogy is originated in optics where the perception of each color is caused by 

an electromagnetic wave with a specific frequency, while white color, being a com­

bination of all colors has all frequencies in it. Since the white noise’s flat frequency 

spectrum has all frequencies in it, this noise is often referred to as the white noise. 



 

 

 

 

 

 

 

 

 

  

 

 

114 Biomedical Signal and Image Processing 

The 2-D definitions for all concepts described previously are straightforward. 

In general, there are two approaches in biomedical signal and image processing. 

In the first approach, every signal is assumed to be deterministic and as a result, 

every measurement is directly used in Fourier, wavelet, and other types of analysis. 

Obviously, while the assumption made in this approach is not very realistic, the 

computational steps are simpler and straightforward. In the second approach, all 

signals are assumed to be stochastic processes, and, therefore, instead of applying 

the FT and other techniques directly on the measured signals, the secondary signals 

formed by concepts such as mean, variance, autocorrelation, and cross-correlation 

functions are used for Fourier and wavelet analysis. In this book, in order to cover 

the basic ideas of both approaches, we cover the concepts and applications from both 

approaches. 

6.5  INTRODUCTION TO INFORMATION THEORY 

Information theory is a field of study that investigates the mathematical formulation 

of “information.” This theory is heavily used in signal and image processing, and as 

result, some fundamental concepts of this theory are covered next. 

6.5.1 ENTROPY 

The basic definition in information theory, i.e., entropy, is designed to measure the 

amount of information in a statement or variable. In order to reach to a suitable 

definition for information, let us start with an intuitive comparison of the informa­

tion contained in the following three statements: (1) Earth is spherical, (2) humans 

have six legs, and (3) it is going to rain 40 days from today. The first statement, even 

though very true, has no surprise in it, and we gain no information from it. Obviously, 

no information is gained from the second statement, as we all know beforehand that 

this statement is false. The third statement, on the other hand, makes a prediction 

that may or may not be true. 

From the preceding example, one can see that the basic measure of information is 

the degree of “surprise”; if the statement has obviously true or obviously false claims 

in it (e.g., 1 + 1 = 2 or 1 + 4 = 10), then there is no surprise or information in it. This 

suggests that the concept of probability can be used to form a potential measure of 

information. Assume that the probabilities of a random variable X with the outcomes 

xi’s are given as pi’s, where i = 0, 1, 2,…, N − 1. Then one can suggest that the mea­

sure 1/pi could be a measure of information. For this measure, when the probability 

of an incident gets smaller (and therefore we are more surprised), more information 

is gained. This measure has two problems associated with it. First, for zero probabil­

ity, the information is calculated to be infinity. This is not what we expected as the 

information in an obviously wrong statement must be zero. The other problem deals 

with the outcome whose probability is one. For such a case, the calculated informa­

tion is also one while we expect zero information from an obviously true statement. 

In order to address at least one of the aforementioned issues, we can modify our 

information measure to “log(1/pi).” This modification ensures that for pi = 1, the cal­

culated information is indeed mapped to zero. However, the information calculated 



 

 

 
 

 

  

  

 

 

  

 

 

 

 

 

 

 

 

 

   

 

  

  

 

115 Other Signal and Image Processing Methods 

for an outcome with pi = 0 is still infinity. In order to address this issue, we can 

further modify our measure to “pi log(1/pi).” This measure gives zero information for 

outcomes with zero probability. 

While the measure defined as “pi log(1/pi)” correctly identifies the information 

of “each outcome,” it fails to give an average amount of information for the random 

variable X as a whole. A logical approach to define such a measure is to add up the 

information measures of all N outcomes. This leads to the following measure, com­

monly referred to as entropy: 

N 1 

i 

−

∑ ⎛
 ⎞
1

H X( ) =
 pi log 
  (6.31)
 ⎜

⎝
 
⎟
⎠
pi0= 

The base in the preceding log function can be any number, but the most popular 

bases are “2,” “e,” and “10.” Let us consider a random variable that is reduced to 

a deterministic signal, i.e., when for some i = k: pi = 0 and for all other i’s: pi = 0. 

For such a case, from the earlier definition, we have H(X) = 0. This simply means 

that if one knows the outcome of a process beforehand (i.e., the k’s outcome always 

happens), there is no surprise and therefore no information in the process. This is 

expected from a suitable measure of information, as discussed before. 

The second observation deals with the other extreme case, i.e., when every out­

come has the same probability. In such a case, we have pi = 1/N, and, therefore, 

entropy is H(X) = log(N). One can easily prove that this is maximum possible 

entropy. In such random processes, we have no bias or guess before the outcome of 

the variable is identified. For instance, tossing a fair dice gives in general maximum 

information because no one can guess what number is going to show up on the dice 

beforehand, and, therefore, any outcome is very informative. 

There are many other secondary definitions based on the basic idea of entropy. 

One of these measures is conditional entropy. Consider two random variables X and Y. 

Assume that we know the outcome of X statistically, i.e., based on the probabilities 

of the outcomes in X, we can expect what outcomes are happening more and what 

outcomes are less likely to happen. Knowing such information about X, now we want 

to discover how much information is gained when Y is revealed to us. For instance, 

if we already know that a patient has had a myocardial infarction (heart attack), how 

surprised we will be to know that there is a significant change in patient’s blood 

pressure. Obviously, since we know that a heart attack has happened we are less 

surprised to hear that there have been some fluctuations in the blood pressure. The 

conditional entropy of Y given X identifies in average how much surprise is left in 

knowing Y, given that X has already happened. This measure is defined as follows: 

−− 

∑
1 

∑ 
1 ⎛
 ⎞
N M 

1
 

pj i  

⎜⎜⎝

⎟⎟⎠


H Y  X  )( | =
 pi j, log 
  2 (6.32)
 

i=0 i=0 

In the preceding equation, pi,j is the joint probability of the variables X and Y, and pj|i 
is the conditional probability of the variable Y given X. 



 

 

 

 

 

 
  

 
   

  

 

 
 

116 Biomedical Signal and Image Processing 

Entropy plays an enormously important role in signal and image processing. As 

mentioned in the beginning of this chapter, in signal processing, entropy is consid­

ered as one of the complexity measures that distinguish simple signals from more 

sophisticated ones. The entropy of signals such as EEG and ECG has been used to 

detect or predict the occurrence of certain diseases. In most cases, a reduction in 

entropy is associated with a disease, and, therefore, most complex signals and sys­

tems are often considered normal in function. 

6.5.2 DATA REPRESENTATION  AND CODING 

A major application of coding and information theory is coding of information for 

compression purposes. In order to see this need more clearly, assume that you have 

used a transformation, such as wavelet or cosine transform, to reduce the redundancy 

on the transform level. The next step in compression is to decide how to represent 

and encode the surviving coefficients. In other words, the coefficients or values that 

can be real or integer numbers must be somehow coded using binary numbers. These 

binary numbers are then saved on electronic media, such as hard disk or CD. The 

question here is how to represent these coefficients (symbols) using binary numbers 

so that we minimize the storage space as much as possible. The data encoding is a 

major issue even if we attempt to save the images using the gray levels without using 

any transformations. The following example clarifies the issue: 

Example 6.2 

Assume that we have an image in which there are only five gray levels: 0, 1, 2, 
3, and 4. The size of the image is 256 × 256. The frequencies of occurrence for 
these gray levels (i.e., probabilities of gray levels) are given as p0 = 0.05, p1 = 0.03, 
p2 = 0.05, p3 = 0.07, and p4 = 0.80. A simple fixed-length binary code assignment 
would be assigning fixed-length binary codes to each gray level (symbol). For 
instance, with a fixed length of 3 bit, we can assign the following binary codes: 
0 → 000, 1 → 001, 2 → 010, 3 → 011, and 4 → 111. As can be seen, 3 bit is used 
to store every gray level. For such an assignment and considering the frequency 
of occurrence of each gray level, the overall size of the space needed to save the 
image can be estimated as follows: 

× ×  . 3 . + × . 3 0 07 + × 0 80 Size of image = 256 × 256 (3 0 05 + × 0 03 3 0 05 + × . 3 . ) 

= 196 608bit  9 , 

Knowing that the number of bits allocated to each symbol is always three, one 
could have made the preceding calculation much easier. Now, let us explore if 
we can encode the gray levels as binary codes differently and reduce the total 
storage space needed. The problem with the fixed-length codes given earlier is 
ignoring the probability of each sample when assigning codes. We address this 
issue in our second encoding technique by giving longer codes to less probable 
symbols and shorter codes to more probable ones. For instance, consider the 



      

  

 

  

 

 

 
 

  

 

 

 

             

              

117 Other Signal and Image Processing Methods 

following codes: 0 → 110, 1 → 1110, 2 → 1010, 3 → 11110, and 4 → 00. For this 
code, the space needed to save the image is calculated as follows: 

× ×  . 4 . + × . 5 0 07 + ×  0 80 Size of image = 256 × 256 (3 0 05 + × 0 03 4 0 05 + ×  . 2 . ) 

= 12 ,  bit  23 965

As can be seen, there is a significant decrease on the amount of space needed to 
save this image. Knowing that in biomedical applications, we need to store and 
transmit very many large medical images, the importance of using some optimal 
technique for binary representation of the biomedical data cannot be overesti­
mated. Before describing the optimal technique for such an encoding and repre­
sentation process, we have to add that in the literature of coding and information 
theory, in order to have a general criterion for the goodness of a code, a concept −
called the average length of the code, L, is defined as follows: 

M −1 

L = ∑ p li i  (6.33) 
i=0 

In the preceding equation, li and pi are the length and probability of the ith code-
word, respectively. This definition, unlike the total size used earlier, is indepen­
dent of the size of the image or file before encoding. In addition, it is known that 
entropy in base 2 gives the theoretical limit on the average length of the best pos­
sible code. Therefore, it is desirable to compare the average code length of every 
code with the entropy and explore the quality of the obtained code compared to 
an optimal code. Such a measure is called “code rate” or “code efficiency” and is 
defined as follows: 

H
R = (6.34) 

L 

In comparison of two sets of codes using the code rate, the code with larger core 
rate (i.e., the core rate closer to one) provides a better code set. 

6.5.3 HOFFMAN CODING 

Hoffman coding is probably the best practical method of encoding the symbols with 

known probabilities. The basic idea of this method is very straightforward: Give 

longer codes to less probable symbols and shorter codes to more probable symbols. 

This way, in average, Hoffman code reduces the storage space for the lossless encod­

ing of information. The practical steps in forming Hoffman codes can be described 

as follows: 

Step 1: Take the two last probable gray levels. 

Step 2: These two gray levels will be given the longest code word that differ 

only in one last bit. 

Step 3: Combine these two gray levels into a single symbol and repeat Steps 

1 to 3. 
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FIGURE 6.3 Tree diagram for Hoffman coding. 

The procedure for Hoffman coding can be more easily performed using a tree dia­

gram. In the tree formation, first, the codes are listed in a column in a descending 

order according to their probabilities. Then, in a second column, the two least prob­

able codes are combined with each other. The rest of the probabilities are copied to 

the second column. The same process is repeated on the new column until we reach a 

column with only one row (which has probability one). Then, 0’s and 1’s are assigned 

to each combination of probabilities in each transition from one column to another. 

As the last step, to form the code for a specific symbol or gray level, we start accu­

mulating 0’s and 1’s encountered in a path from the last column of the tree toward the 

given code. This tree procedure is illustrated in the following example: 

Example 6.3 

An image has four gray levels {1, 2, 3, 4} with probabilities p1 = 0.5, p2 = 0.3, 
p3 = 0.15,  p4 = 0.05. We design a Hoffman code for the image using a tree as 
shown in Figure 6.3. 

Using the diagram, the resulting codes are C(1) = 0, C(2) = 10, C(3) = 110, and 
C(4) = 111. Remember that when assigning the codes using the tree diagram, we 
are moving backward, i.e., we start from the right-hand side and move toward 
the gray level in the left-hand side. Calculating the entropy and the average code 

−length, we have H = 1.6477 and L (C) = 1.7. This gives the code rate of R = 96.92%. 
The reader can verify that the code rate for a fixed-length code with 2 bit is 
82.38%. This shows the significant improvement gained by using Hoffman code. 

The importance of Hoffman code in signal and image processing cannot be 
exaggerated. Compression technologies such as JPEG are all based on Hoffman 
coding. Without this compression method, the storage and communication of bio­
medical signals would have been practically impossible. 

6.6 REGISTRATION OF IMAGES 

In practical medical imaging applications, sometimes the images of the same tis­

sue (e.g., the brain) are taken using different modalities such as MRI, CT, and PET. 

Knowing that each of these modalities provides certain types of information about 

the imaged tissues, it is important to coregister these images with each other. This 

allows the user to register the same objects in all images. For instance, image reg­

istration between MRI and CT of the head allows knowing the exact location of the 

objects such as the basal ganglia in both MRI and CT images. 

Registration is important even when the images of the same tissue are taken at 

different times by the same modality or even by the same machine. It is often the 
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case that the patient’s exact position during the imaging acquisition changes from one 

set of measurement to another set of images captured at a different time. Moreover,  

the calibration of the imaging machines might be slightly different from one day to 

another. Therefore, such captured images need to be registered with each other using 

image processing methods. 

There is another reason why image registration is a much needed process in imag­

ing systems. It is often the case that when an image is generated by an imaging 

modality such as PET, the geometry of the produced image is a distorted version of  

the true geometry of the imaged tissue. For instance, it is often the case that some 

objects in the center are enlarged and some objects located toward the corners of the 

image are made smaller in size. In addition, it is rather usual to see that some or all of  

the imaged objects are tilted. In such cases, we need to use the available knowledge 

about the tissue to compensate for these distortions in the produced image and to 

form an image with the desired geometrical characteristics. 

Returning to the typical use of image registration between two captured images, 

it is rather straightforward to note that image registration is simply creating a math­

ematical mapping between the pixel coordinates across a pair of images. This means 

that registration is nothing but forming a mapping T that maps the coordinates (x, y) 

in image  I to the coordinates (x′, y′) in image I′. When coregistering the images taken 

by the same modality, since the physics governing the formation of both images is 

the same, the type of mapping T used for registration is often assumed to be linear. 

However, when registering the images captured by different modalities (e.g., regis­

tering MRI with PET images), the successful mapping functions are almost always  

nonlinear. 

In the following, we discuss a general family of nonlinear mappings among 

images. Even though these mappings are nonlinear in their general formulation, they  

can be easily reduced to simple linear mappings. This mapping is very popular in  

biomedical image processing and is known to present reliable registration of modali­

ties such as PET and MRI. 

Consider a mapping T that maps the coordinates (x, y) in image I to the coordi­

nates (x′, y′) in image I′. We define a nonlinear mapping using the following set of  

quadratic equations: 

x′ = c 2 
13 xy + c14 x + c 2 

11x + c12 y + c 15 y
(6.35) 

y′ = c c xy + c24 x
2 

23 +  21x + c22 y + c25yy2 

 

In the preceding equation, any choice of the coefficients cij’s identifies a unique 

mapping  T between the coordinates of the two images I and  I′. It can be seen that if  

c13 = c14 = c15 = c23 = c24 = c25 = 0, the preceding mapping becomes a simple linear  

mapping between the two images. 

In order to identify the mapping, all we need to do is to find the values of  cij’s.  

This is often done using the coordinates of a set of “tie points” or “markers” in both  

images. In other words, we use the coordinates of a set of objects whose locations in  

both images are known to find the optimal mapping. The exact location of these tie 

points in both images are often visually identified by an expert. In registration of CT  
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with other images, sometimes, certain markers (e.g., metal pins) are attached to the 

head that can be traced in all imaging systems. The coordinates of these points are  

then used to find cij’s, as described later. 

As can be seen in Equation 6.35, the number of coefficients to be identified is 10. 

This means that 10 equations are needed to solve for all coefficients. Since each tie 

point provides two equations, altogether five tie points are required to uniquely iden­

tify the mapping. It is important to note that even though Equation 3.35 is nonlinear 

with respect to x and  y, the equations are indeed linear with respect to cij’s. More 

specifically, after substituting for x, y, x′, and y′ with the coordinates of the tie points, 

the resulting set of equations is linear with respect to cij’s. This allows using simple  

matrix methods of solving for linear equations to find the coefficients. 

If the number of the tie points is less than 5, it is a common practice to assume that 

some of the preceding coefficients are 0. This results in a simpler mapping between 

the two images. An example of this scenario is provided in the following. 

Example 6.4 

We are to coregister two images using three tie points. Having only three tie points  
means we can solve for only six coefficients. Hence, we apply a mapping as  
follows: 

x′ = c11x + c12y + c14x2 

(6.36) 
y′ = c +  21x c22y + c25y2 

 

Assume that the following tie points are given: 

I ↔ I′ 
( ,  5 1  ) ( 4 , 3 )

( ,  10 3 ) ( 7 , 2 )

( ,  3 2  ) ( 5 , 2 )  

This creates the following set of linear equations: 

4 5= c 11 + c12 + 25c14 

3 5= c21 + c 22 + c25 

7 = 10c11 + 3c12 + 100c14 

(6.37)
2 1= 0  c21 + 3 cc 22 + 9 c25 

5 3= c11 + 2c12 + 9c14 

2 3= c 21 + 2c22 + 4c25  
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As can be seen, the resulting set of equations is linear. One can rewrite these 
equations in the matrix form as follows: 

⎡ 5 1 25 0 0 0 ⎤ ⎡c11 ⎤ ⎡4⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 0 0 0 5 1 1 c 3 ⎢ ⎥ ⎢ 12 ⎥ ⎢ ⎥ 
⎢ 10 3 100 0 0 0 ⎥ ⎢ c ⎥ ⎢7 ⎥ 
⎢ ⎥ ⎢ 

14 
⎥ = ⎢ ⎥ (6.38)

⎢ 0 0 0 10 3 9 ⎥ ⎢ c21 ⎥ ⎢2 ⎥ 
⎢ 3 2 9 0 0 0 ⎥ ⎥ ⎢ c ⎥ ⎢
⎢ ⎥ ⎢ 22 5⎥ 

⎥ ⎢ ⎥ 
⎢⎣ 0 0 0 3 2 4 ⎦⎥ ⎣⎢c25 ⎦⎥ ⎢⎢⎣2 ⎥⎦  

The preceding equation can be solved using simpler matrix calculations, i.e., by  
multiplying both sides of the equation by the inverse of the square matrix on the 
left side of the equation, as follows: 

⎡ ⎤ ⎡
−

c11 5 1 25 0 0 0 ⎤
1

⎡4⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ c12 0 0 0 5 1 1 3⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 
⎢ c14 ⎥ ⎢ 10 3 100 0 0 0 0 ⎥ ⎢7 ⎥ 
⎢ ⎥ = ⎢ ⎥ . ⎢ ⎥ 
⎢ c21 ⎥ ⎢ 0 0 0 10 3 9 ⎥ ⎢ ⎢2 ⎥ 
⎢ c22 

⎥ ⎢ 3 2 9 0 0 0 ⎥ ⎢ 5 ⎥ 
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 
⎣⎢c25 ⎦⎥ ⎢⎣ 0 0 0 3 2 4 ⎥⎦ ⎣⎢2 ⎥⎦

⎡ 0 . 7368⎤ 
⎢ ⎥ 1 . 6316⎢ ⎥ 
⎢⎢ −0 . 0526⎥ 

= ⎢ ⎥ 
⎢ 0 . 3125⎥ 
⎢ 2 . 3438⎥ 
⎢ ⎥ 
⎢− . ⎦⎥ ⎣ 0 9063

It is important to note that in mapping of the pixels from one image to another,  
we are using equations that give real numbers as the coordinates, while, in  
digital images, the coordinates need to be positive integers. This implies that  
the mapped coordinates have to be rounded up to the closest integer after  
mapping. 

6.7 SUMMARY 

In this chapter, a number of signal and image processing techniques were reviewed. 

These techniques  included a  number  of methods  for complexity  analysis of signals 

and images,  including  fractal  dimension  and mobility  measure.  We also reviewed  

the cosine transform  and its  applications in signal and image  processing.  The theory 

of stochastic processes was  briefly  discussed  in this  chapter. The basic  principles  

and applications of the coding and information theory were also reviewed. Finally, a 

brief description of the image registration methods was provided. 
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PROBLEMS 

6.1	   Read the image in the file “p_6_1.jpg” and save it as  f(x, y). This is the same 

MRI image used in Example 6.1. In this problem, we attempt to improve the 

compression quality by splitting the image into smaller subimages. 

 a.	  S plit the image into subimages of 8 × 8, i.e., from the original images, form  

64 subimages each capturing an 8 × 8 block of the image. 

 b.	  Calculate the discrete cosine transform of the subimages. 

 c.	  F or each subimage, preserve the 16 DCT coefficients in the 4 × 4 matrix  

located on the top left corner of the DCT domain and set the rest of the coef­

ficients to 0. 

 d. 	 Ca lculate the IDCT of the resulting coefficients in Part “c” to reconstruct 

the subimages. Then, put the reconstructed subimage together to reform the 

entire image. Call this image f̂ (x, y).

 e.	  A ssuming  N = 256 as the dimension of the image in each coordinate, calcu­

late the peak signal-to-noise ratio (PSNR) between the original image f(x, y) 

and the reconstructed image f̂ (x, y) as follows: 

2562 

ˆPSNR( ,f f  ) =	 
∑ N −1 ∑ N −1 

(6.39) 

( ˆ f x( , y  )  − f (x, y  ))2

 i=0 j=0  

 f.	   Compare the PSNR value calculated in part “e” value with the PSNR result­

ing from the compression the entire image as one large block while reducing  

the size to one quarter of the original image. Has splitting the image into 

smaller blocks before compression improved the compression results? 

6.2	  L oad the 1-D signal  x(t) given in the file “p_6_2.mat.” This file contains 10 heart­

beat signals. Five of these heartbeat time-series signals (denoted as Y1, Y2, etc.) 

are from five young subjects and the remaining signals (denoted as O1, O2, etc.) 

are from five elderly subjects (Courtesy of PhysioNet*). 

 a.	  W rite MATLAB codes to calculate the Higuchi fractal dimension for all 

subjects. Average this measure across the young subjects and compare the 

resulting value with the average across the elderly subjects. Comment on the 

results. 

 b.	  R epeat the procedure in Part “a” for the complexity and mobility measures. 

Compare the measures in young and elderly subjects. 

6.3	   An image has five gray levels: 0, 1, 2, 3, and 4. From the frequency of occur­

rences calculated for each gray level over the entire image, the following prob­

abilities have been obtained: p0 = 0.15, p1 = 0.2,  p2 = 0.25, p3 = 0.30, and p4 = 0.2. 

 a.	  Using the given probabilities, find the entropy of this image. 

 b.	  W hat distribution of probabilities for the given gray levels would provide 

maximum entropy? Find the value of this maximal entropy and compare it  

with the value obtained in part “a.” 

*  Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.Ch., Mark, R.G., Mietus, J.E., 

Moody, G.B., Peng, C.K., and Stanley, H.E. (2000, June 13). PhysioBank, PhysioToolkit, and 

PhysioNet: Components of a new research resource for complex physiologic signals. Circulation  
101(23):e215–e220. 
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6.4	  For the symbols of Problem 6.3, 

 a.	  Design a Hoffman code. 

 b.	  Calculate the code rate for this code. 

 c.	   Using code rate as the criterion, compare this code with a fixed-length code 

for these symbols. 

6.5	  T he EEG signal captured under a fixed condition, i.e., having no stimulation at 

all or the same type of stimulation during the entire period of measurement, is 

often considered as an ergodic signal. A typical recording of EEG over a rela­

tively long period of time is given in the file “p_6_5.mat”.* 

 a.	  Calculate the mean of the stochastic process. 

 b.	  Calculate the variance of the stochastic process. 

 c.	  Assuming Gaussian distribution, find the PDF of the stochastic process. 

 d. 	  Using the MATLAB command “xcorr”, calculate an estimation of the 

autocorrelation function. 

 e.	   Using the correlation function estimated in part “c,” estimate the power 

spectrum of the process. 

 f.	  Do y ou see any visible frequency(ies) in the power spectrum? Interpret your  

observations. 

6.6	   Load images in “p_6_6.mat.” This file contains two images of the head that 

have been captured using different MRI machines. The first image is the same 

image used in Example 6.1. Another image has undergone a significant amount  

of distortion due to poor machine calibration. We are to register these images 

using a set of given tie points. 

 a.	  Show the images I and I′. 
 b.	  Use the following tie points to register the two images: 

I ↔ I ′ 

( ,  5 1  )  ( 4  , 3  )

( ,  10 3 )  (  7 ,  2 )

( ,  3 2  )  (  5 2  ,  )  

 c.  Show the resulting mapped image.
 

* Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.Ch., Mark, R.G., Mietus, J.E., 

Moody, G.B., Peng, C.K., and Stanley, H.E. (2000, June 13). PhysioBank, PhysioToolkit, and 

PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 
101(23):e215–e220. 
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7 Clustering and 
Classification 

7.1 INTRODUCTION AND OVERVIEW 

This section is dedicated to clustering and classification techniques. The first issue to 

address is the exact definitions of “clustering” and “classification” and the compari­

son of the two processes. We start this section with the description of these concepts 

and their importance in biomedical signal and image processing. Then, we discuss 

several popular clustering and classification techniques including Bayesian methods, 

K-means, and neural networks. 

7.2 CLUSTERING VERSUS CLASSIFICATION 

In classification, one is provided with some examples from two or more groups of 

objects. For example, assume that in a study of cardiovascular diseases, features such 

as heart rate and cardiac output for a number of healthy persons as well as patients 

with some known diseases are available. This means that each example (i.e., a set of 

features taken from a person) is labeled either as healthy or as a particular disease. 

A classifier is then trained with the “labeled examples” to create a set of rules or 

mathematical model that can then look at the features captured from a new person 

and label the case as healthy or a particular disease. Since the set of examples pro­

vided to the classifier is used to tune and train the classifier, this set is also referred 

to as the “training set.” Any other case (i.e., set of features captured from the patient) 

that has not been seen by the classifier (i.e., was not included in the training set) will 

then be used to “test” the quality of the classifier. In testing the classifier, the fea­

tures from a person are provided to the trained classifier and the classifier is asked to 

predict a label for the case (i.e., predict if the case is healthy or a particular type of 

disease). Then, this prediction is compared with the true label of the case and if the 

two labels match, the classifier is said to have learned the concept. Often, in order 

to have a more reliable testing, a number of testing examples are used. The set of 

examples used to test the trained classifier is often referred to as testing set. 

Since the labels for the examples in the training set are known, the training pro­

cess followed to train a classifier is often called “supervised learning.” This means 

that a “supervisor” has discovered the labels beforehand and provides these labels 

during the training process. The supervisor can also provide some labeled examples 

to be treated as the testing set. 

Supervised training and classification are heavily used in biomedical sci­

ences. In many applications, physicians can provide biomedical engineers with 
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126 Biomedical Signal and Image Processing 

the previously diagnosed cases to be used for training and testing of a classifier. 

For example, many automated diagnostic systems for processing of MR images 

are available in which the system discovers the existence of different types of 

malignant and benign images. These systems are trained and tested with a number 

of previously diagnosed cases that radiologists have been provided by the design­

ers of the automated system. Such automated systems, once reliably trained and 

tested, are capable of assisting physicians in processing and diagnostics of many 

cases in a very short period of time and, unlike physicians, are not susceptible to 

issues such as fatigue. 

Clustering is a similar process but is often more difficult than classification. In 

clustering, the examples provided to the clustering method as the training set are 

not labeled; however, the clustering technique is asked not only to cluster (group) 

the data but also to provide a set of rules or mathematical equations to distinguish the 

groups from each other. At first glance, this task might seem unreasonable or even 

impossible, but as we show later in this chapter, clustering is even more natural and 

more useful in medical research. Next, a simple example is given that intuitively 

indicates the possibility and the need for clustering. The example is intentionally 

chosen to be nonbiomedical such that the importance and feasibility of clustering 

in all areas of signal processing is better portrayed. 

Example 7.1 

Assume that two features about a person are given: height and weight. Using these 
two features, every person can be represented as a point in a two-dimensional 
(2-D) space, as shown in Figure 7.1. 
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FIGURE 7.1 Two-dimensional feature space representing the weight and height of 

each person. 
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As can be seen, without any calculation and merely from observing the distri­
bution of the points, one can see that we are dealing with four clusters (types) of 
persons, which can be defined as follows: 

Cluster 1 (Red): People with small height (<170 cm) and small weight (<70 kg) 
Cluster 2 (Yellow): People with small height (<170 cm) and high weight (>70 kg) 
Cluster 3 (Green): People with high height (>170 m) and average weight  

(>70 and <90 kg) 
Cluster 4 (Blue): People with high height (>170 m) and high weight (>90 kg) 

Looking at health conditions of each cluster, one can see that people belonging 
to clusters 1 and 4 are more healthy than people in clusters 2 and 3. This means 
that while people in clusters 2 and 3 need to make some changes in their diet to  
become healthier, no particular recommendations might be made to the people  
in clusters 2 and 3. The clustering results as well as the dietary recommendations 
resulting from these clustering processes are rather intuitive but useful. This means 
that now the model can be used to analyze the examples that have not been seen 
by the clustering method. In other words, now that the clusters are formed, one 
can use the resulting rules to define clusters for assigning new examples to one of 
the groups. For example, in a classification process based on the resulting groups, 
a person whose height and weight are 180 cm and 82 kg, respectively, is mapped  
to cluster 4. Based on our intuitive analysis of cluster 4, people assigned to this  
cluster are rather healthy and no particular dietary recommendations are needed. 
It is important to note that this model was created without using any labeled 
examples, i.e., the training samples used to develop the model were not labeled 
by a supervisor. 

As another biomedical example, consider the discovery of the genes that are 
involved in the biological pathways involved in a biological process. Essentially,  
this problem is often simplified to the identification and grouping of the genes 
that are activated and suppressed at the same time throughout the course of a 
biological process. In such studies, having no previous example, one simply finds 
the genes having similar patterns and groups them together as a cluster. When 
the clusters are formed, the clustering technique can extract some rules or math­
ematical methods to separate the clusters from each other. This type of learning  
in which no labeled examples are given and the method is designed to find the 
clusters without any supervision is called “unsupervised learning.” 

This chapter first introduces different methods of extracting useful features from  

signals and images and then presents some popular techniques for classification and 

clustering. 

7.3 FEATURE EXTRACTION 

The first step in both clustering and classification is finding the best features to rep­

resent an example (sample). For instance, in order to distinguish healthy people from 

the ones suffering from flu, one needs to collect relevant features such as tempera­

ture and blood pressure. The choice of the right features can dramatically affect the 

outcome of diagnosis. In general, there are two types of features that are often used 

in biomedical sciences that are discussed in the following text. 
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7.3.1 BIOMEDICAL  AND BIOLOGICAL FEATURES 

Biomedical and biological features, as defined in this book, are the features defined 

by the knowledge of biology or medicine available about the biological system under 

study. As the continuation of the previous example, when detecting flu, the most 

relevant feature proposed by physicians is the body temperature. In many medical 

applications, a number of features are proposed by the experts (e.g., physicians and 

biologists) that must be included in the classification of clustering process. In the fol­

lowing chapters, when discussing a number of physiological and biological systems, 

some important biomedical and biological features pertinent to those systems will 

be introduced. 

Even though the importance of the features identified by the domain knowledge 

cannot be overestimated, there are a number of other important features that may 

not be defined in the medical knowledge base or even interpreted by the experts. We 

group these features as a second category. 

7.3.2 SIGNAL  AND IMAGE PROCESSING FEATURES 

In any field of study, there are many features of a quantity that may have not been iden­

tified or named by the experts but have the potential of improving the classification or 

clustering significantly. In biomedical signal and image analysis, some of these features 

are purely mathematical concepts that may not have a direct physiological or biomedical 

meaning for the users. As an example, consider the wavelet coefficients of a certain level 

of decomposition of a biomedical signal. While it may be difficult to find a direct and 

specific biomedical concept for such coefficients, they are known to be extremely useful 

features for clustering and classification of many important biomedical signals such as 

electroencephalogram (EEG) and electrocardiogram (ECG). 

It has to be mentioned that some of the apparently pure signal and image process­

ing features can be related to the biologically meaningful features. For example, in 

the detection of some diseases of the central nervous system (such as epilepsy) from 

EEG, physicians often count the number of signal peaks or spikes in a given period 

of time (e.g., a minute) and treat this number as an informative feature in the detec­

tion of the disease. It is clear that such a biomedical feature is very closely related 

to mathematical concepts such as the power of the signal in high frequency of the 

Fourier transform (FT). This example describes why one needs to study the biology 

and physiology of the system under study in order to devise mathematical features 

that best represent the qualitatively defined concepts quantitatively. 

In this section, some of the most commonly used signal processing features often 

used in biomedical signal and image processing are briefly reviewed. Many trans­

forms and computational concepts described in the previous chapters play important 

roles in extracting useful measures described in the following. 

7.3.2.1 Signal Power in Frequency Bands 
The high-frequency contents of a signal are often interpreted as a measure of 

rapid variation in the signal. Similarly, the contents of a signal at different fre­

quency bands quantitatively express the features that are often vital for diagnosis of 
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biomedical signals. For instance, in EEG (as will be described later), there are four 

important “waves” called alpha, beta, gamma, and delta that play central roles in the 

analysis of an EEG. These waves are nothing but variations at different frequencies 

and therefore can be easily extracted and measured using a filter designed in the 

frequency domain. Once a signal is filtered at a prespecified frequency range (using 

a band-pass filter), the power of the components passing through the filter describes 

how strong those particular frequencies are in the signal, for example, whether or not the 

prespecified waves exist in the recorded EEG. 

7.3.2.2 Wavelet Measures 
Wavelet transform (WT) provides a number of coefficients that decompose a signal 

at different scales (as discussed in Chapter 5). These features that are commonly used 

for classification and clustering of biomedical signals and images were discussed in 

Chapter 6. 

7.3.2.3 Complexity Measures 
As discussed in Chapter 6, complexity measures describe the sophisticated structure 

of biological systems quantitatively. For example, fractal dimension, as described in 

Chapter 6, is one of the most important complexity measures that expresses the com­

plexity of a signal and is heavily used in biomedical signal processing techniques. 

Many biological systems are known to become less complex as they get older. For 

example, the study of the fractal dimension of EEGs taken from people belonging 

to different age groups indicates that as people get older, their fractal dimension 

decreases. This feature together with other complexity measures such as mobility, 

complexity, and entropy was described in Chapter 6. 

7.3.2.4 Geometric Measures 
Geometric features play an important role in image classification. Some of the main 

geometric features are described in the following. 

Area: In almost all medical image classification applications, one needs to measure 

the size of the objects in an image. The main feature typically used for this is the 

area of the object. In image processing, the area of an object is often measured as 

the number of pixels inside the object. This means that after segmentation of the 

objects, the number of the pixels inside each closed region (object) indicates the size 

or area of the region. In processing of tumors, the area of the tumor in a 2-D image 

is considered as one of the most informative measures. 

Perimeter: The evaluation of the perimeter of an object is often an essential part of 

any algorithm designed for biomedical image processing. Contour features such as 

perimeter allow distinguishing among the objects having the same area but different 

perimeter. For instance, two cell nuclei with the same area can have a very different 

contour shape; one can have a circular counter while the other might be a very long 

and narrow oval. Since the perimeter of the second cell is much more than that of 

the first one (while having the same area), the value of perimeter can be used as an 

informative image processing feature. 
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Compactness: While both area and perimeter are important features in image pro­

cessing, it is often desirable to combine these two measures to create a rather unified 

size measure. This measure is called compactness and is defined as follows: 

Perimeter 2 

Compactness = (7.1) 
Area 

By dividing these two measures, compactness provides a feature that identifies the 

size of the perimeter for a given unit of area. The reason why perimeter appears in the 

equation as a squared order term is rather straightforward; the resulting measure is not 

supposed to have a unit. Compactness can easily distinguish between long and narrow 

oval-shaped objects that have large compactness values and circular objects that have 

small compactness values. Since many objects in biomedical images have oval and 

circular shapes (e.g., cells, nuclei, and tumors), features such as compactness are often 

considered as the main geometric measures during the classification process. 

Major and minor axes: In order to express the dimension of the objects, it is a common 

practice to calculate the major axis of the object. The major axis is defined as the line 

connecting a pair of points located on the contour of the object whose distance from 

each other is maximal. In other words, in order to find the major axis, a pair of points 

on the contour is found whose distance from each other is more than any other pair 

of points on the contour. The line connecting these two points is the major axis. It is 

straightforward to see that the major axis of an oval is the line passing through both 

focal points. The length of the major axis is the largest dimension of the object that 

has physical and biological significance. The axis perpendicular to the major axis is 

called the minor axis. The minor axis of an oval is the smallest line connecting a pair 

of points on the contour. In a circle, any line passing though the center is both a major 

and a minor axis. The major and minor axes are important diagnostics features in cell 

image classification. 

Eccentricity: An important feature called eccentricity is defined to evaluate the 

deviation of the object’s shape from a symmetric circular shape. Eccentricity is 

defined as follows: 

Length of Major Axis
Eccentricity = (7.2) 

Length of Minor Axis 

As can be seen, while the eccentricity of a circle is one, the eccentricity of an oval is 

always more than one. In addition, the larger this measure is, the less circular shape 

(and more linear) the object must be. 

Fourier descriptors: An important feature of tumors and cells is the smoothness of 

the contour. This feature can be captured using measures called Fourier descriptors 

(FDs). The FDs are essentially the discrete Fourier transform (DFT) of the points on 

the contour of the object. Assume that the points (x0, y0), (x1, y1),…, (xK−1, yK−1) are 

consecutive points forming the contour of the object. In order to form FDs, first, a 

sequence of complex numbers is formed as zi = xi + yi, i = 0, 1,…, K − 1. Then, the 
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FD is simply defined as the DFT of the sequence zi, i = 0, 1,…, K − 1. Plotting the 

magnitude of the FD would identify the existence of the high- and low-frequency 

variations on the contour. The small energy of the high-frequency coefficients shows 

that the contour is a smooth one. On the other hand, if the absolute value or energy 

of the high-frequency coefficients is large, the contour has many jumps and discon­

tinuities. The energy of the FD coefficients is sometimes used directly as a feature 

in the classification process. This feature simply identifies the smoothness of the 

contour quantitatively. 

FDs are also used for compression of the contour data. Specifically, if the high-

frequency jitters are not of any significance, one can express the contour using only 

the low- and medium-frequency coefficients. This is an important technique that 

helps the storage of the contour information in applications such as cell image pro­

cessing, where the large number of cells often prevents the storage of all detailed 

contour information. 

Now that we know some of the practically important features in signal and image 

processing, we can start describing some of the fundamental techniques in clustering 

and classification. 

7.4 K-MEANS: A SIMPLE CLUSTERING METHOD 

K-means is one of the most popular techniques heavily used in biomedical signal  

and image analysis. In K-means, it is assumed that there are “K” groups of pat­

terns in the data and the algorithm attempts to find the optimal clusters based  

on this assumption. Assume that n samples (patterns or examples) x0, x1,…,  xn−1  

are given and K-means is to be used to create  K clusters from the data. Each of  

the clusters will have a cluster center, and each pattern will be assigned to one  

of the clusters. The way K-means works is rather simple: iteratively find the best  

centers of each cluster and then assign each pattern to the cluster whose center is  

the closet to the pattern. 

The training of K-means method can be described in the following steps: 

Step 0: Randomly initialize the centers m0, m1,…,  mK−1. 

Step 1: Find the distance of all samples x0, x1,…,  xn−1 from all centers m0, 

m1,…,  mK−1, i.e., for all i = 0,…,  n− 1 and j = 0,…,  K − 1 find 

1 

d xij ( ,i m  j ) = xi − m 2
j = ((xi1 − mj1) +.+ (xip − mjp ) 

2 )2 (7.3) 
  

Step 2: Form clusters  j = 1, 2,…,  K − 1 by assigning each sample to the closet 

center, i.e., put together all examples whose distance to center j is minimal 

to form class j. 
Step 3: Find the new centers by finding the sample that is the closet sample  

to the average of all samples in the class, i.e., new mj is the average of all 

examples in class  j. 
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Step 4: If during the last iteration, no example has changed its class, go to Step 5; 

otherwise, go to Step 2. 

Step 5: Terminate process. The final clusters are the outputs of the algorithm. 

The concept of K-means clustering is better described in the following simple visual 

example. 

Example 7.2 

In this example, without using any mathematics or calculations, we explore the 
mechanism of K-means clustering through a symbolic visual example. Consider 
the patterns given in Figure 7.2a. Each of the coordinates in Figure 7.2a is a feature, 
and each example is shown as a point. As can be visually perceived, there are 
three clusters of patterns. 

Assuming K = 3, the centers of the three clusters must be randomly initialized in 
Step 0. In Figure 7.2b such a random initialization of the centers is shown. As can 
be seen, the initial centers randomly selected for two clusters on the right-hand side 
belong to the same cluster (the cluster on the far right). Such a choice, even though 
not the best initialization choice, will better exhibit the capabilities of K-means. 

FIGURE 7.2  (a) The given patterns that naturally cluster as three linearly separable clus­

ters. (b) Initialization of the cluster centers. (c) Assignment of examples to the initial clusters. 

(d) Calculation of the new cluster centers. (e) Assignment of examples to the clusters using the 

new cluster center. (f) Calculation of the new cluster centers. 
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In the next step, for each example in the feature space, we need to determine 
the cluster to which the example belongs to. This choice is simply made based 
on the proximity of the examples to the cluster centers. The results of this cluster 
assignment step are shown in Figure 7.2c. 

Next, we need to average the members in each of the resulting cluster to find the 
new cluster centers and then reassign the samples to the clusters, this time using 
the new cluster centers. The new cluster centers are shown in Figure 7.2d. As can 
be seen, the centers of the clusters are now closer to the expected centers of the 
actual clusters. At the next iteration, we use the new cluster centers to assign every 
example to one of the three clusters. The results of this assignment are shown in  
Figure 7.2e. Finally, we calculate the new centers based on the clusters obtained  
in Figure 7.2e, which gives the cluster centers depicted in Figure 7.2f. At t  his point,  
the cluster centers are indeed in the center of actual clusters and repeating the 
process for extra iteration will not change the clusters. At this point, the algorithm 
has converged to the actual clusters, and, therefore, the iterations are terminated. 
This example shows how K-means can effectively cluster unlabeled data. 

In MATLAB®, the command “k-means” is used to perform K-means clustering. 

We explore using MATLAB for K-means clustering in the following example. 

Example 7.3 

In this example, we first generate 40 random samples. Twenty samples in this pool  
are generated using a 2-D normal distribution centered at (1, 1), and the remain­
ing 20 samples are from another normal distribution centered at (−1, −1). Then, 
a K-means algorithm is applied to cluster these samples into two clusters. The 
MATLAB codes for this example are as follows: 

X=[randn(20,2) + 2.8 * ones(20,2);
 
randn(20,2)−2.8*ones(20,2)]
 
[cidx, ctrs] = kmeans(X, 2, ‘dist’,‘city’, ‘rep’,5, ‘disp’, 


‘final’) 
plot(X(cidx==1,1),X(cidx==1,2),‘r.’, … 
X(cidx==2,1),X(cidx==2,2), ‘b.’, ctrs(:,1),ctrs(:,2), ‘kx’); 

In the preceding code, first, we use the command “randn” to generate 40 normally 
distributed random samples out of which 20 samples are around (1, 1) and the rest 
are centered at (−1, −1). Then, we use K-means algorithm to perform clustering of 
these samples and divide them into two clusters. Number “2” in k-means com­
mand reflects our desire to form two clusters for the data. The options “dist” and 
“sqEuclidean” specify the Euclidean distance as the distance measure for cluster­
ing. The rest of the code deals with the labeling of the samples in each cluster. 

Figure 7.3 shows the result of clustering. Samples of one cluster are shown with 
red, and the samples belonging to the other class are graphed in blue color. We 
have also marked the center of each cluster by X’s. In this example, many points 
generated by the first random generator, centered at (1, 1), are correctly assigned 
to the “blue” cluster. However, some points closer to the origin, while generated 
by the random generator at (1, 1), may be assigned to the red group, which is 
mainly formed by the sample of the other normal distribution. This shows that 
even though K-means is a simple and rather fast algorithm, it has some limitations. 
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FIGURE 7.3 Clustering results for two classes of Gaussian distributed data. Samples of 

cluster 1 are shown in dark grey and samples of cluster 2 in light grey. The cluster centers are 

shown by ×’s. 

7.5 BAYESIAN  CLASSIFIER 

One of the most popular methods in classification methods is the Bayesian classifier. 

Bayesian decision theory extracts some decision rules from the data and then evaluates 

the cost of these decisions. In Bayesian theory, it is assumed that we know the prob­

ability distribution of the involved classes. This is obviously a drawback for this tech­

nique because in many applications, these probabilities are not known. However, if a 

rather large sample of data is available, the probabilities can be estimated from data. 

We describe the concepts and procedures of Bayesian theory with a simple example 

that deals with detecting tumor pixels in a digital image such as MRI. In such an appli­

cation, we have two classes: a class of tumor pixels and a class of nontumor pixels. This 

means that in an image, each pixel belongs to one of the possible classes (states), tumor 

or nontumor. We denote by ω the state of the nature or simply the class of the sample. 

For tumor pixels, ω = ω1, and for nontumor pixels, we set ω = ω2. 

An important concept, which is important in Bayesian theory, is “a priori prob­

ability.” The concept of a priori probability in our simple example quantifies the 

probability of a pixel belonging to tumor or nontumor class. It is apparent that this 

probability for tumor pixels depends on the number of tumor pixels as well as the 

total number of all pixels (tumor and nontumor pixels). We denote a priori probability 

of the classes ω1 and ω2 as P(ω1) and P(ω2), respectively. 

If we do not have any information other than a priori probability of each class and 

we are asked to make a decision about the class of a given pixel, we would simply 

choose the class whose a priori probability is larger, i.e., when P(ωi) > P(ωj), we vote 

for ωi. Note that such a decision, as long as a priori probabilities are known, does not 

depend on any observed data, and regardless of any observation in the features space, 
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the decision is always made based on the previously known values of P(ω1) and P(ω2). 

Loosely speaking, such decisions are like predicting that a summer day is sunny based 

on the yearly statistics that identifies a fixed probability for summer days being sunny. 

Such a decision ignores any observation for some particular year. Even though this 

type of decision making based only on a priori probability can have a relatively high 

success rate in certain applications, it is blind to observations made from the system. 

In many practical applications, however, the information contained in P(ωi) prob­

ability measure is too limited to make a good decision. This is why we often use another 

variable to improve our decision about the class of the new samples. In the aforemen­

tioned example, assuming that the image to be processed is in color, the color of each 

pixel can be a suitable variable in helping us make a better classification decision. For 

each pixel, we have three color elements, r (the intensity of the red component), g (the 

intensity of the green component), and b (the intensity of the green component). Based on 

the class of the pixel (tumor or nontumor), the color elements will be in a specific range. 

The color information then leads us to define a new probability called “class con­

ditional probability.” P(r, g, b|ω1) is the class conditional probability of class 1, and 

P(r, g, b|ω2) is the class conditional probability of class 2. For simplicity, we name the 

vector (r, g, b) as X. This reduces the notation for the class conditional probability to 

P(X|ωi). The probability measure P(X|ωi) quantifies the probability that the color of a 

pixel belonging to class ωi be in the range of X. However, what we normally need to do 

for classification is rather the opposite of what we get from the class conditional prob­

ability, i.e., we are to determine the class of a selected pixel based on its color vector X. 

For instance, we know the color elements of a pixel and we intend to decide whether the 

pixel is a tumor or a nontumor pixel. This means that we need to determine the prob­

abilities P(ωi|X) as opposed to the conditional probabilities P(X|ωi). The probability 

P(ωi|X) quantifies the likelihood that a given pixel belongs to class ωi, knowing that the 

color vector of the selected pixel is X. We call this probability “a posteriori probability.” 

While it is often difficult to compute a posteriori probability directly, one can compute 

a posteriori probability using a priori and class conditional probabilities as follows: 

P(w |X P X  ) = ( wi Pi ) (  P X| ) (  wi ) (7.4) 

Therefore, 

P X|w P wi )( i ) (  
P(wi |X) = (7.5) 

P X( )  

Practically, for any given pixel, we need to compute P(ωi|X) for each of the classes i 
and then vote for the class whose a posteriori probability is the largest. Since P(X) 

is the same for all classes, we can disregard this probability in the decision-making 

process and compare P(X|ωi)P(ωi) terms with each other. For example, for the simple 

tumor example, the decision-making process becomes choosing ω1 if 

( 1) (  1 P X  2 w2P X|w P w ) > ( |w ) (  P ) (7.6) 

and ω2 otherwise. 
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The simple Bayesian classification method, although straightforward and 

intuitive, may not be sophisticated enough to deal with real-world problems. In  

practice, simple Bayesian methods are often combined with some heuristic and 

domain-based knowledge to improve the classification results. One extension of the 

Bayesian classification method is achieved through the use of the concept of “loss 

function.” 

7.5.1 LOSS FUNCTION 

In many practical applications including medical diagnostics, it is often the case 

that some misclassifications are more costly than others. For instance, the cost of 

misclassifying a cancer sample as normal (healthy) is far more than misclassifying 

a normal sample as cancer. As a result, one would like to somehow incorporate the 

importance and impact of each decision directly in the classification algorithm. 

Loss functions are used to give different weights to different classification mis­

takes. Assuming the two-category classification, such as in the simple example 

discussed earlier, there will be two types of acts: α1 and α2. Now, let us define 

λ(αi|ωj) as the loss when action αi is taken, while the true state of the nature is ωj. 

Using the loss functions λ(αi|ωj), i = 1, 2, j = 1, 2 (i ≠ j), a new risk function for each 

action can be defined to improve the decision criteria and incorporate the relative 

importance of each misclassification in the decision process. This risk function 

can be defined as follows: 

a  l a w  P w  l a w  PR( i |X) = ( i | 1) (  1|X) + ( i | 2 ) (  w 2|X) (7.7) 

The best decision is then made based on these risk functions. For instance, if 

R(α1|X) < R(α2|X), α1 will be the action. 

Example 7.4 

Figure 7.4 shows two categories forming a 2-D dataset. The data for each category 
are Gaussian distributed. We intend to use Bayesian decision rule to find a decision 
boundary between the two categories. 

To do this, we need to estimate probability function for each category. Since 
we know that probability functions of these two categories are Gaussian, all we 
need to do is to compute the sample mean and sample variance of each category 
to obtain the probability density functions (PDFs). Calculating the sample means 
and sample variances of these two categories, we have 

4⎤ 1⎤ 1 2  0  ⎤ / 0 ⎤⎡ ⎡− ⎡ / ⎡1 2  
m1 = m2 = Σ1 = Σ2 =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥4 4 0 1 2  0 1 2  //⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Using Equation 7.4, the optimal decision boundary can be obtained as follows: 

1) (  1 P X  w2 w2) (7.8) P X( |w P w ) = ( | ) (  P 
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FIGURE 7.4 Two categories of 2-D Gaussian distributed data. 

Assuming that we have equal a priori probabilities, i.e., P(ω1) = P(ω2), Equation 7.6 
will be simplified to 

P X( |w1 ) = P X( |w ) 2 (7.9)  

Now, for Gaussian distributions, 

1 ⎡ 1 ⎤ p X( )  = 1 2/ exp  − (X − m ) t Σ −1(X − m ) (7.10) 
( )  2 p d / 2 ⎢ ⎥Σ ⎣ 2 ⎦

  

By substitution of Equation 7.8 in Equation 7.7 and using “ln” function for both  
sides of Equation 7.7, we have 

(X − m ) t −1 1 1
1 Σ1 (X − m t −1

1) − ln  Σ1 = (X − m2) Σ2 (X − m2) − ln  Σ2 (7.11) 
 2 2  

The reason for applying the logarithm function on is to reduce exponential equations  
to a simpler form. Since in this example, variances are assumed to be equal, i.e.,  
∑1 = ∑2, these terms can be eliminated from two sides of Equation 7.9. Using  
the values of μ1, μ2, ∑1, and ∑2 of the samples shown in Figure 7.5 and solving  
Equation 7.9 for the point where the two distributions intersect,  X1, we obtain  
this value as  X1 = 8/3. This means that when a new sample is measured, the  
comparison of the features of the new sample with  X1 will identify the class  
the  sample belongs to. 
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FIGURE 7.5 Structure of a perceptron. 

7.6 MAXIMUM LIKELIHOOD METHOD 

One of the main problems in pattern recognition is parameter estimation of the 

probability functions. Maximum likelihood estimation (MLE) is one of the most 

popular methods to address this problem. Methods based on MLEs often provide 

better convergence properties as the number of training samples increases. 

As mentioned previously, in order to form the Bayesian decision equations, 

the class conditional probabilities are needed. Since in practice, the knowledge 

of these probabilities is not available, efficient techniques are employed to esti­

mate these probabilities. Assume that the type or family of the PDF p(X|ωi), for 

example, Gaussian, is known, one can determine the parameters of this probability 

function. 

Suppose that there are c classes in a given pattern classification problem. Also, 

assume that the n sample x1,…, xn created by one of the classes (according to the PDF 

of that class) are collected in a set D. Note that we do not know which class this set 

of observed data belongs to and we are to use the MLE to predict which one of these 

classes c is more likely to have generated the data. We assume that the samples in 

D are independent and identically distributed (i.i.d.). As mentioned before, we are 

assuming that the PDFs, i.e., p(X|θi)’s for i = 1, 2,…, c, have a known parametric 

form, and, therefore, we only need to determine the parameter vector θ that uniquely 

identifies the PDF of one of the classes. Then, knowing that the samples are indepen­

dent, we can describe the probability of obtaining the sample set D assuming that the 

parameters are θ as follows: 

n 

p D| )( q ∏
=

=
k 1 

p X  |q )( (7.12) k 

We call p(D|θ) the likelihood of θ because this probability identifies the likelihood 

of obtaining the samples in D given that the estimated parameter set θ is a suitable 

one. The MLE is simply an estimation method that finds the set of parameters that 

maximizes the likelihood function p(D|θ). In other words, the maximum likelihood 

function results in a probability function that is more likely to produce the observed 

data. Note that since we do not know the true set of parameters, all we can obtain 

is an estimation of these values through methods such as maximum likelihood. 

As such, we denote by θ̂ the MLE of θ, which maximizes p(D|θ). 
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Once again and due to the multiplicative nature Equation 7.10 that defines the 

likelihood function, instead of optimizing the likelihood function p(D|θ) directly, 

we often use the log of this function. Using Equation 7.10, we obtain a new function 

l(θ) defined as follows: 

∑ 
n 

l( )  = ln  p  Xk |qq ( ) (7.13) 

k=1 

This function is often referred to as the log likelihood function. Next, in order to 

obtain the best estimation, θ̂, we need to see how the log likelihood function can be 

maximized. A simple approach is to utilize the gradient of this log likelihood func­

tion to find θ̂ that maximizes l(θ). Calculating the gradient of the likelihood function 

in terms of θ, we have 

∇ =l ∇ ln p  Xk |qq q ( ) (7.14) ∑ 
n 

k =1 

Next, all we have to do is to set ∇θ l equal to zero to find θ̂, i.e., our best estimation of 

parameters would be the value θ that satisfies the equation ∇θl = 0. The exact form 

of this equation evidently depends on the exact form of the probability functions 

p(Xk|θ)’s. For many practical choices of p(Xk|θ), the equation ∇θl = 0 becomes too 

complicated to be solved manually, and, therefore, computational software such as 

MATLAB would be needed to find the maximum likelihood estimation θ̂. 

Example 7.5 

In this example, we show how to perform MLE in MATLAB. In MATLAB, one 
can utilize the command “mle” to estimate the parameters assuming a certain 
probability distribution. As can be seen in the following code, we first produce a 
vector of 400 normally distributed random samples. In the command “mle”, we 
need to determine the form of the distribution under which the data are produced 
and what “mle” estimates are the set of parameters for the chosen distribution 
form. There are some other commands in MATLAB that apply “mle” estimator 
to estimate parameters of some popular distributions such as binomial, exponen­
tial, gamma, etc. The following code shows the command “binofit” that uses 
“mle” estimator to estimate parameters of binomial distribution and “expfit” 
that estimates parameters of the exponential distribution. 

x1=randn(1,400);
 
mle(normal,x1);
 
r=binornd(100,.9);
 
[phat,pci]=binofit(r,100);
 
lifetimes= exprnd(700,100,1);
 
[muhat,muci]= expfit(lifetimes);
 

It is important to note that, in practice, the type of distribution function producing 
the data is unknown. In the previous example, even though we have produced 
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that data using a Gaussian distribution, we attempt to find the best parameters 
for some other distributions, because in order to emulate real problems, we must 
assume that no knowledge of the true distribution is available. 

With MLE giving us the most likely PDFs for classes, one can then use methods 
such as Bayesian classifiers to perform classification. However, as previously men­
tioned, for most sophisticated problems, one may need to use more sophisticated 
classifiers such neural networks, as discussed in the following. 

7.7 NEURAL NETWORKS 

Even though maximum likelihood and other statistical methods prove to be effective 

techniques in rather simple problems, they may not provide the best solutions for 

more complex problems. In addition, the need to make an assumption on the type of 

the distribution function producing data, as explained earlier, is another disadvantage 

of such methods. 

In practice, methods such as neural networks are preferred in more sophisticated 

problems. Neural networks are computational methods directly inspired by the for­

mation and function of biological neural structures. Just like the biological neural 

structures, artificial neural networks are simply a formation of artificial neurons that 

learn patterns directly from examples. These methods are distribution free, which 

means no assumptions are made on the type of the data distribution. In addition, 

due to the nonlinear nature of the method, neural networks are capable of solv­

ing complex nonlinear classification problems that cannot be addressed by simple 

statistical methods. Neural networks are composed of a number of neurons that are 

connected through some “weights.” Since the structure and the function of each 

neuron is known, in order to train a neural network, one needs to use the given train­

ing examples to find the best values of the weights. Once the weights are found, the 

neural network is uniquely defined and can be used for classification and modeling. 

Despite all capabilities listed for neural networks, the reader needs to be warned 

not to use neural networks for certain types of applications. For example, neural net­

works require many training examples to learn a pattern, and if, for the problem to 

be addressed, sufficient number of examples are not available, neural networks may 

not be the best solutions. This is due to the fact that neural networks can easily fit 

any training data and if the training dataset is too small to be a good representative 

of the problem, neural networks are simply overfitting the training examples without 

learning the true patterns. 

There are many families of neural networks, but, here, we focus on the most 

popular one, which is the family of multilayer sigmoid neural networks. These struc­

tures are supervised classification methods that can theoretically model any complex 

system to any desired accuracy. We start describing these structures with a simple 

single-neuron structure known as a perceptron. 

7.7.1 PERCEPTRON 

Perceptrons are nothing but simple emulation of the biological neurons. These 

classifiers, as the simplest forms of neural networks, have a simple but effective 

learning procedure. More specifically, given that the classes can be separated by 
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straight lines, perceptrons can always provide the correct classifiers. Figure 7.5  

shows the structure of a simple perceptron. Just as in a biological neuron that  

receives some inputs from the neighboring neurons and produces an output, a per­

ceptron has a number of inputs and one output. As can be seen, an extra input,  

called bias, is added to the regular inputs. As discussed in more detail later in this  

chapter, even though the value of this input is constant, the insertion of the bias  

input helps improve the classification performance. 

As can be seen in Figure 7.5, there is a weight associated with the connection 

between any of the inputs  xi’s and the output of the neuron. The strength of each con­

nection is described by a weight  wi, and the weight of the bias input is denoted by  b. 

The total effect of the inputs on the perceptron is given as the weighted summation 

of the inputs: 

y0 = +b ∑ xi iw (7.15) 

 i  

Then, the output of the perceptron is calculated based on y0 as follows: 

⎧1 if y0 > T
⎪⎪ 

y = ⎨0 if − <  T y 0 <  T (7.16)

⎪ 
⎪⎩ −1 if y0 < −T

  

where  T is a threshold value that is often set by the user. 

The thresholding process shown in Equation 7.14 is exactly what is happen­

ing in biological neurons, i.e., if the total excitation of the neighboring neurons is  

more than a threshold value, the neuron fires. The choice of the threshold value  

T is rather arbitrary, but when this value is chosen, it is fixed throughout training  

and testing processes. It has to be mentioned that perceptrons can be designed to  

accept or produce binary (0 or 1), bipolar (1 and −1), or even real values. The earlier  

formulation, i.e., bipolar, can be easily modified to create binary and real-valued  

models too. 

As briefly mentioned earlier, besides the regular inputs to a perceptron, which 

are the features of the samples, it is often necessary to add another input, which 

is always set to a constant such as 1. This input, which is called bias, is needed to  

produce better separation among the classes of patterns. Knowing that bias is always  

set to 1, it is evident that no new information is added to the network by adding the 

bias, but a new term is added to the summation terms in  y0. In addition, the weight  

connecting this constant input to the perceptron needs to be updated as any other 

weights in the system. 

Next, we discuss the training of a perceptron. Note that the main goal of training  

a perceptron is to teach the perceptron how to classify each input pattern and deter­

mine the particular class the pattern belongs to. In other words, training is nothing 

but to adjust the weights of the perceptron to make it produce 1 if the sample belongs 
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to a particular class and −1 if the sample does not belong to this class. A perceptron 

first initializes the weights of the network by random numbers and then uses an  

iterative technique for updating of the weights, i.e., when encountering an example,  

the values of the weights are iteratively adjusted to produce the correct or better clas­

sification. Specifically, assume that for a sample  xj = (xj1, xj2,…,  xjn) the true target 

output is t. We use this knowledge to update the weights. Assume that with the old 

(current) values of the weights, the estimated output for xj is y. Then, if  y = t, then the 

old values of weights are fine and no real update is needed. Otherwise, the old values 

of the weights are updated as follows: 

wi (new ) = wi (old ) + tx
 ji   

(7.17) 

b n( ew  ) b  ( old  ) t  = +  

where 

xji is the ith element of the sample vector xj 
wi(new) is the new value of the weight  wi 

The training process is continued until the exposure of the network can correctly 

classify all examples in the training set. In order to train a neural network of any 

type, it is often the case that the network must be exposed to all training quite a 

few times. Each cycle of exposing the network to all training examples is called  

an epoch. 

The learning process described in the following can result to rather oscillatory 

results in consecutive epochs. In other words, each time an example is used for train­

ing, the weights are significantly changed to accommodate that particular example,  

but as soon as the next example is used for training, the weights are very much  

changed in favor of the new example. The same scenario is repeated in the con­

secutive epochs, and, therefore, the values of weights oscillate among some sets  

that accommodate particular examples. In order to address this issue, instead of the 

learning equations of Equation 7.15, the following learning criteria are used: 

w
 i (new ) = wi (old ) + atxji   

(7.18) 

b n( ew  ) = b  ( old  ) t  +a  

In the preceding equations, 0 < α < 1 is called the learning rate. The fact that the 

learning rate is less than one, each time a new example is used for training, instead 

of adjusting the weights completely to accommodate that training example as we did 

in the previous training scheme, the weights are adjusted only to some degree that 

depends on the exact value of  α. Choosing  α to be a number close to 0.1 or so would 

effectively eliminate the unwanted oscillations in the weight values. 

Before providing an example for perceptron, we focus on the perceptron’s result­

ing classifier. A closer look at the formulation of perceptron reveals that a perceptron 
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splits the feature space into three subspaces. For instance, assuming 2-D inputs, a 

trained perceptron produces two separating lines. These two lines split the space 

into three regions: a positive region (in which all examples belongs to the class under 

study), a negative region (in which none of the examples belongs to the class 

under  study), and a dead zone. One of these separating lines that separates the 

positive region from the dead formulates the positive region as follows: 

w x  + w x  + b > T (7.19) 1 1  2 2  

The other one separates the negative region from the dead zone and forms the 

negative region as follows: 

w x  + w x  + b < −  T1 1  2  2  (7.20) 

Next, we make two observations in the preceding formulations. First, note that the 

earlier description of the positive and negative regions further describes the need for 

bias. If T = 0, i.e., no bias, all border lines pass through the origin. This significantly 

limits the capability of the method to find an optimal separation between classes. 

In other words, adding bias to a network effectively increases the capabilities of the 

network in separating the classes. The second observation justifies the statement 

made earlier about the perceptron. As mentioned previously, a perceptron can create 

correct classification only when the classes are linearly separable. From the preced­

ing formulation, it can be seen that in a perceptron the boundary between the classes 

is a line (2-D space), plane (three-dimensional [3-D] space), or hyperplane (four­

dimensional [4-D] space or higher dimensions). All these boundaries are linear and 

therefore cannot separate classes that are only nonlinearly separable. For nonlinearly 

separable spaces, as we will see later, networks more sophisticated than a perceptron 

are required. 

As mentioned earlier, the perceptron algorithm can be simply modified for bipolar, 

binary, and real-valued input and output vectors. The following example describes a 

problem with binary inputs and binary outputs. 

Example 7.6 

A typical demonstration example for perceptron is using perceptron to model the 
logical “OR” function. Assuming two inputs for the OR function, the output is 1 if 
any of the inputs is 1; otherwise, when both inputs are 0, the output of the function 
is 0. Augmenting the input space by adding the bias input, the perceptron will have 
three inputs. Then, the training set for the perceptron will be as follows. For inputs 
(x1, x2, b) = (1, 1, 1), (x1, x2, b) = (1, 0, 1), and (x1, x2, b) = (0, 1, 1), the target value will 
be t = 1, and for the input (x1, x2, b) = (0, 0, 1), the output will be t = 0. 

In training the perceptron, we assume α = 1 and θ = 0.2. Table 7.1 shows the train­
ing steps for this perceptron. In each step, we change the weights of network based on 
the learning rate and the output of the network. Training continues until for a complete 
epoch, no weight is changing its value. In last training step, where there is no change 
in weights, the final weights are w1 = 2, w2 = 2, and w3 = −1. Therefore, the positive 
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TABLE 7.1 
Training of Perceptron 

Input 
Target Weight 

Weights 

x1 x2 b y0 Output Value Changes w1 w2 w3 

1  1  1  0  0  1  1  1  1  1  1  1  

1  0  1  1  1  1  0  0  0  1  1  1  

0  1  1  1  1  1  0  0  0  1  1  1  

0  0  1  0  0  −1  0  0  −1  1  1  −1  

1  1  1  1  1  1  0  0  0  1  1  −1  

1  0  1  0  0  1  1  0  1  2  1  2  

0  1  1  3  1  1  0  0  0  2  1  2  

0  0  1  2  1  −1  0  0  −1  2  1  1  

1  1  1  4  1  1  0  0  0  2  1  1  

1  0  1  3  1  1  0  0  0  2  1  1  

0  1  1  2  1  1  0  0  0  2  1  1  

0  0  1  1  1  −1  0  0  −1  2  1  0  

1  1  1  3  1  1  0  0  0  2  1  0  

1  0  1  2  1  1  0  0  0  2  1  0  

0  1  1  1  1  1  0  0  0  2  1  0  

0  0  1  0  0  −1  0  0  −1  2  1  −1  

1  1  1  2  1  1  0  0  0  2  1  −1  

1  0  1  1  1  1  0  0  0  2  1  −1  

0  1  1  0  0  1  0  1  1  2  2  1  

0  0  1  1  1  −1  0  0  −1  2  2  0  

1  1  1  4  1  1  0  0  0  2  2  0  

1  0  1  2  1  1  0  0  0  2  2  0  

0  1  1  2  1  1  0  0  0  2  2  0  

0  0  1  0  0  −1  0  0  −1  2  2  −1  

1  1  1  3  1  1  0  0  0  2  2  −1  

1  0  1  1  1  1  0  0  0  2  2  −1  

0  1  1  1  1  1  0  0  0  2  2  −1  

0  0  1  −1  −1  −1  0  0  0  2  2  −1  

response line will be 2x1 + 2x2 − 1 > 0.2, or simply x1 + x2 > 0.6, and the negative 
response line becomes 2x1 + 2x2 − 1 < −0.2 or x1 + x2 < 0.4. 

In MATLAB, the command “newp” is used to create a perceptron network. 
This command is as follows: 

net = newp(PR,S) 

where 
PR is a vector identifying the range of the input elements (i.e., min and max of 

each input) 
S is the number of perceptrons (neurons) 

Next, we solve the problem discussed in Example 7.6 using MATLAB. 
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Example 7.7 

In this example, we solve the OR gate problem using MATLAB. First, we define 
a perceptron net as net = newp([0 1; −2 2],1). Next, we define the input 
values P = [0 0 1 1; 0 1 0 1] and target values T = [0 1 1 1] and then 
apply the “train” command to train the network with the specified input and target 
(output) values. And finally, using “sim” command, we simulate the network and 
compare the predicted output values generated by the trained network against the 
true target values. The complete code has been shown as follows: 

net= newp([0 1; −2 2],1);
 
P = [0 0 1 1; 0 1 0 1];
 
T = [0 1 1 1];
 
net = train(net, P,T);
 
Y = sim(net, P)
 

7.7.2 SIGMOID NEURAL NETWORKS 

For a few decades, it was experimentally believed that single-layer neural networks 

such as perceptron have certain limitations that prevent the use of these methods for 

real-world problems. One such limitation was the observation made about the per­

ceptron that such structures cannot separate patterns that are not linearly separable. 

But after a few decades, multilayer sigmoid neural networks were proposed to solve 

the problems of single-layer neural networks. Simply put, it turned out that with mul­

tiple layers of perceptrons and other types of neurons, any complex pattern, linear or 

nonlinear, can be effectively classified. Figure 7.6 shows a multilayer backpropagation 

neural network. 
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FIGURE 7.6 Typical multilayer sigmoid neural network with one hidden layer. 
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A multilayer sigmoid neural network always has one input layer (X units) that 

has as many neurons as there are inputs to the network. Similarly, there is always an 

output layer (Y or T units) that has as many outputs as the number of outputs of the 

networks. Such structures can have an arbitrary number of hidden layers (Z units) 

between the input and output layers. Each of these hidden layers can have an arbi­

trary number of neurons. The number of hidden layers and the number of neurons in 

each layer are to the most part chosen experimentally through a process of trial and 

error. Even though paradigms such as computational learning theory have attempted 

to create rules for setting the optimal number of hidden layers and the number of 

neurons in each hidden layer, these numbers are often set in such a way to avoid the 

overcomplexity of the network and, at the same time, provide a powerful function to 

estimate complex problems. 

Backpropagation neural networks, another name given to multilayer sigmoid neu­

ral networks, are among the most popular types of the neural networks used in real 

applications. In reality, backpropagation as defined later is merely one method of 

training sigmoid neural networks, but since this algorithm is almost always used for 

training these structures, in many books, multilayer sigmoid neural networks are 

also called backpropagation neural networks. Another common name that is often 

mistakenly used to describe multilayer sigmoid neural networks is multilayer per­

ceptrons. As we will see later on, the type of neurons used in multilayer sigmoid 

neural networks are continuous-output neurons and not perceptrons that are discrete 

neurons. 

7.7.2.1 Activation Function 
In perceptron, the activation function was a simple thresholding process, i.e., if the 

weighted sum of input is less than a certain threshold value, the output is set to some 

value, and if the weighted sum is less than the threshold, a different value is intro­

duced as the output of the neuron. This threshold effect simply makes the perceptron 

a discrete neuron, i.e., the output value is not continuous and belongs to a discrete set. 

As briefly mentioned before, the activation functions and neurons used in multilayer 

sigmoid neural networks are continuous, differentiable, and monotonically increas­

ing. These characteristics for the activation functions are needed to guarantee that 

the network and its elements (e.g., neurons outputs) are all differentiable. As we will  

see in this section, almost all training methods used for multilayer sigmoid neural  

networks apply partial derivatives of the neurons, layers, and final output. In  addi­

tion, it is often preferred to have the activation functions whose derivates can be  

computed easily. 

One of the most popular activation functions is binary sigmoid function (also 

referred to as “logsig”): 

1 
f x  1( )  = (7.21) 

1 + exp( − x )   

which gives the derivate  f x1 ′( ) as follows: 

f  x  
 1 ′ ( ) = f x  1 ( )[1  − f x1( )]  (7.22) 

 



  

  

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

 

  

  

147 Clustering and Classification 

Two other popular sigmoid activation functions that are often used for bipolar and 

real-valued outputs are “atan” and “tansig” activation functions defined as follows: 

2 −1f x = tan ( x( )  s ) (7.23) 
p 

and 

f x( ) = tanh(sx) (7.24) 

As can be seen, these two functions create numbers between −1 and 1 as their output, 

and that is why they are called bipolar activation functions. 

7.7.2.2 Backpropagation Algorithm 
In this section, we explain backpropagation algorithm. As in the perceptron,  

first, the weights of the network are initialized by randomly generated numbers. 

Backpropagation algorithm then updates the weights of the neural network through the 

propagation of error from the output backward to the neurons in the hidden and input lay­

ers. Backpropagation algorithm has four main stages as follows: (1) calculation of the 

output based on the current weights of network and the input patterns, (2) calculation of 

the error between the true target output and the predicted output, (3) backpropagation 

of the associated error to the previous layers, and finally, (4) adjustment of the weights 

according the backpropagated error. As can be seen, in steps 2 and 3 of backpropaga­

tion, each input units receives an input signal and transmits this input signal to hidden 

layer units. Then, each hidden layer unit computes its activation and sends it to the 

output units. For simplicity, from this point on, we assume that the network has only 

one hidden layer but the same algorithm can be easily extended to the networks for 

more than one hidden layer. 

First, the output of the network must be computed. For output unit k, the weighted 

sum of the inputs (from hidden layers) can be calculated as follows: 

y = w + ∑ z w (7.25) 0 k  ok  j jk  

j 

Then, the output of this output node, yk, is calculated as follows: 

yk = f y  0k( ) (7.26) 

Next, the output of each output node yk and the corresponding target value tk are used 

to compute the associated error for that pattern (example). This error, δk, is calculated 

as follows: 

dk = −tk yk (7.27) 
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These errors in output units are then distributed back to the units of hidden layer 

and are also used to update the weights between hidden layer units and output 

layer units. In order to see how this is done, note that for the neurons in the hidden 

layers we have 

z 0 j = voj + xi iv j (7.28) ∑ 
i 

and 

z j = f z  0 j( ) (7.29) 

where 

v js are the weights ending at the hidden unit ji

v j is the bias weight of the hidden unit jo

z0j is the weighted sum of the inputs entering the hidden node j 
zj is the output of the hidden node j 

The updating of the weights v js and v j is then performed as follows: i o

v t( 1) v tij + ad x (7.30) ij + = ( )  j i 

v t( + =1) v t( )  + ad (7.31) 0 j 0 j j 

In the preceding equations, α is the learning rate as defined for the perceptron. Note 

the role δj plays in the updating of v js and v j. This role described why the algorithm i o

is named as backpropagation; the error of the output layer is for updating of the 

weights of the hidden layer. The same process is used to update the weights between 

input units and any other hidden layer units. The training process continues until 

either the total error at the output is not improving or a prespecified maximum number 

of iterations have been passed. 

7.7.2.3 Momentum 
While training a neural network, the training algorithm often encounters a noisy 

sample. Algorithms such as backpropagation are often misled by the noisy data and 

change the weights according to the noisy or even wrong data. The noisy data also 

cause the training process to take much longer to reach the desired set of parameters. 

This problem encourages us to, instead of updating weights only based on new sample, 

consider the momentum of the previous values of weight in updating the weights. If the 

previous examples (that are less noisy) are pushing weights in the right direction, 

the momentum of the previous samples can somehow avoid the undesirable effects 

of the noisy data on the weights. 

In order to use momentum in backpropagation algorithm, we must consider 

weights from one or more previous training patterns. For example, in the simplest 
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manner, the weights of steps t and t − 1 are considered in updating of the weights in 

step t + 1, i.e., 

w t( + =) w t  + ad z + m w ( )  − w (t −1)⎤ (7.32) jk 1 jk ( )  k j ⎡⎣ jk t jk ⎦ 

v t( 1) v + ad j x + m v tij ( )  − v t  − )ij + = ij t ( )  i ⎡⎣ ij ( 1 ⎤⎦ (7.33) 

where μ is the momentum parameter and is in the range from 0 to 1. The larger μ is 

used, the more robust the training algorithm becomes. By adjusting the value of the 

momentum parameter, μ, large weight adjustment can be achieved, and, at the same 

time, the convergence of weights to desired values can be expedited. 

7.7.3 MATLAB®  FOR NEURAL NETWORKS 

Since not meaningful, backpropagation example is short enough to be handled 

manually; at this point, we start describing the use of MATLAB for training of 

multilayer sigmoid feedforward neural networks. 

Example 7.8 

In this example, we show how to use neural network toolbox of MATLAB to create 
and train a backpropagation network. The simplest method of using MATLAB capa­
bilities in forming neural networks is using the command “nntool”. This command 
opens a dialog box for neural network toolbox. Figure 7.7 shows this dialog box. 

As it can be seen in Figure 7.7, by clicking on “New Network,” one can open a 
new window in which we can create and train a new network. Figure 7.8 shows this 
window. In this window, we can determine the type of the network. For example, 
addressed here, we select our network as a feedforward backpropagation network 

FIGURE 7.7 Neural network dialog box. 
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FIGURE 7.8 Neural network window for designing network parameters. 

and select that input range as the interval between 0 and 10. In addition, we can 
select how many layers are desired for our network. In this example, we select one 
hidden layer and the number of neurons in this hidden layer is chosen as five. 

After setting features of the network, we return to the main window (Figure 7.7) 
and use “Import” option to select the input and target files. At this point, the network 
is ready to be trained. 

7.8 SUMMARY 

In this section, different methods of classification and clustering were discussed. The 

main clustering method covered, K-means, was described using visual, numeric, and 

MATLAB examples. Statistical classification methods, including Bayesian decision 

method and MLE were explained using both numerical and MATLAB examples. 

Different types of neural networks were also explained. Perceptron and multilayer 

sigmoid neural networks were described in detail. 

PROBLEMS 

7.1	   Load the file named “p_7_1.mat.” This synthetic dataset contains 400 2-D samples  

from four classes. At this point, assume that the data are not labeled, i.e., we do not  

know the class of the data points. 

 a.	  P erform clustering with K-means initializing the clusters to (0, 0), (0, 1), (1, 0),  

and (1, 1). Stop the iterations after 50 iterations. Plot the position of center of  

each cluster in 2-D space for all iterations. 

 b.	  R epeat part “a,” but, this time, initialize the clusters to (0.5, 0.5), (0.5, 0), 

(0, 0.5), and (0, 0). Stop the iterations after 50 iterations. Plot the position of  

center of each cluster in 2-D space for all iterations. 

 c.	  R epeat part “a,” but, this time, initialize the clusters to some random number. 

Stop the iterations after 50 iterations. Plot the position of center of each  

cluster in 2-D space for all iterations. 



 d.  Now, assume we know that data points are created by Gaussian random gen­

erators as follows: the first 100 data points centered at (1, 1), the second 100 

data points centered at (1, 0), the third 100 data points at (0, 1), and the last  

100 points at (0, 0). With that in mind, compare the results of the last three 

parts and comment on the sensitivity of the K-means clustering technique to 

the initialization and the convergence rate to the final cluster centers. 

7.2	  W e are to use a perceptron to model logical “AND” function (gate) with two inputs.  

The output of an AND gate is 1 only if both inputs are 1. Form the training set and 

manually train the perceptron. Assume the learning rate of 0.5 and initialize the  

weights as follows:  w1 = 1,  w1 = −1, and w1 = 1. Use binary inputs and binary outputs. 

7.3	   Repeat Problem 7.2 to model the logical “NOR” function. The output of a NOR 

gate is 1 only if both inputs are 0. Form the training set and manually train the 

perceptron. Assume the learning rate of 0.5 and initialize the weights as follows:  

w1 = 1,  w1 = −1, and w1 = 1. Use binary inputs and binary output. 

7.4	  P rove that perceptron cannot be trained to model “XOR” gate. The output of a 

XOR gate is 1 only if both inputs have different values, i.e., if one input is 0, the 

other one must be 1 to have 1 as the output. Inability of perceptron is a historical  

observation that changed the direction of the field of neural networks. 

7.5	  Two conditional probability functions P(x|ω1) and P(x|ω2) are given as follows: 

1 ⎡ (x −1) 
2 ⎤ 

p x1( )  = exp  ⎢− ⎥	 (7.34) 
2p 2

 ⎣ ⎦  

and 

p x2( )  = Aexp  (− x )	 (7.35) 
  

 a.	  Find the value of  A.

 b.	   Assuming  that P(ω1) = P(ω2), find the border (in terms of  x) for the Bayesian  

decision. 

 c.	  I f the observation  x = 0.5 is made, according the Bayesian classifier designed  

in part “b,” which class does this sample belong to? 

7.6	   A set of observation, generated by an unknown probability function, is given as  

follows: 

8.5, 7.2, 12.6, 11.1, 8.4, 9.4, 10.3, 6.5. 

Consider the following probability functions: 

1 ⎡ (x −1)
2 ⎤ 

p x1( )  = exp  ⎢− ⎥ (7.36) 
2p 2

 ⎣ ⎦  
and 

1 ⎡ (x −10)
2 ⎤ 

p x1( )  = exp  ⎢− ⎥ (7.37) 
2p 2

 ⎣ ⎦  
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If we are to choose between the preceding PDFs, use MLE to identify the functions  

that best approximate the unknown distribution. 

7.7	   Load the file “p_7_7.mat.” This synthetic dataset contains a set of samples generated  

by an unknown distribution. 

 a.	   Assume that the data are generated by a Gaussian distribution and use 

MATLAB to find its parameters. 

 b.	   Assume that the data are generated by a binomial distribution and use 

MATLAB to find its parameters. 

 c.	   Assume that the data are generated by an exponential distribution and use 

MATLAB to find its parameters. 

 d.  Comparing the results of the preceding three parts, which distribution is 

more likely to have produced that data? 

7.8	   Load the file “p_7_8.mat.” This synthetic dataset contains the input and output of  

a system to be modeled using neural networks. There are two classes identified as  

1 and −1. The data have been split into two sets: training and testing. 

 a.	   Use MATLAB and the training data to create a three-layer sigmoid neural  

network as a classifier of the data. Assume there are two hidden neurons and 

choose a suitable learning rate. 

 b.	  S imulate the trained neural network against both the training and testing data  

and compare the accuracy on the neural model on these two sets. 

 c.	   Repeat parts “a” and “b” assuming ten hidden neurons in the hidden layer 

and compare the results with those of part “b.” 

7.9	   In this problem, we are to develop a simple classifier to extract some measures 

from the heartbeat signals and predict whether the person whose heartbeat is 

recorded is young or elderly. Read the file p_7_9.mat. This is the same set of  

data used in Problem 6.2.* This file contains 10 heartbeat signals. Ten heartbeat 

time-series signals (denoted as Y1, Y2, etc.) are from five young subjects and 

five elderly subjects (denoted as O1, O2, etc.). 

 a.	   Calculate the following measures for each signal: complexity, mobility, and 

Higuchi fractal dimension. 

 b.	   Assuming that the distribution of all measures within the same group (old or 

young) is Gaussian, use MLE to estimate these distributions. 

 c.	   Using the resulting probabilities, design a Bayesian classifier and evaluate the 

performance of the resulting classifier. 
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8 Electric Activities 
of the Cell 

8.1 INTRODUCTION AND OVERVIEW 

The electric activities of the cell constitute a major physical property of the cell that 

allows a wide spectrum of functionalities such as messaging, cellular communica­

tions, timing of cellular activities, and even regulation of practically all biological 

systems. The same electric properties of the cell are exploited for a number of bio­

medical signal measurements and imaging. Due to the importance of the cell’s 

electric activities, we briefly explore these properties in this chapter. 

It was not until the second half of the twentieth century that the theoretical expla­

nation for electric potentials of the biological cells, in particular cellular membrane 

potential, was described by Alan Lloyd Hodgkin and Andrew Fielding Huxley. 

We start this chapter with the description of the chemical activities of the ions and 

biological fluids and then formulate the mathematical formulation of the mechanism 

under which these ions create a potential difference across the cell membrane. 

8.2 ION TRANSPORT IN BIOLOGICAL CELLS 

All animal tissues, such as muscles, nerves, and bones, are made up of individual 

cells. These cells have liquids both outside the cell, which are called extracellular 

fluid, and inside the cell, which are called intracellular fluid. The intracellular fluid 

is also called the cell plasma. All biological liquids are mostly water with various 

molecules, atoms, and ions suspended. The intracellular volume is separated from 

the extracellular fluid by a cell membrane. 

The cell membrane is constructed of a bimolecular lipid layer in between mono-

molecular protein layers on either side. A diagram of the cell membrane construction 

is outlined in Figure 8.1. The cell membrane is semipermeable to small molecules 

and ions. This means that only certain atoms, molecules, and ions are capable of 

passing through the membrane. 

Both the intracellular liquid and the extracellular fluid contain organic and inor­

ganic molecules. All salts and acidic and alkaline chemical compositions when dis­

solved in water form electrically charged elements called ions. All the dissolved 

charged atoms or molecular structures are distributed in the bodily liquids with dif­

ferent concentrations for the intracellular liquid and the extracellular liquid. These 

concentrations are not constant, nor are they the same for all cells. The concentra­

tions mentioned later in this chapter are averages for one particular species. Other 

molecular chains are also dissolved, but not all molecules separate out into ions, 
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FIGURE 8.1 Molecular model of the cell membrane. 

e.g., proteins and sugars. This is due to the fact that since water is a dipole, it will 

dissolve other dipoles as well as ions. 

The cell membrane has permanent openings that will allow small ions to move in 

and out of the cell freely. This type of ion migration across the membrane constitutes 

passive ion control. In passive control, the charge gradient across the membrane 

pushes or pulls some ions inside or outside. In other words, the passive controls 

include the narrowing and widening of certain channels in the cell membrane 

through electric and chemical stimuli. 

The membrane also has channels that can control the volume of ions it allows to 

pass through. The active control of ion migration across the cell membrane includes 

linking ions to molecular carriers that will pull the ions through the membrane. 

An example of this mechanism is the sodium–potassium pump that trades sodium 

against potassium by a chemically mediated process of active transportation. 

The cellular metabolism also creates ions through the oxidation of carbohydrates. 

This oxidation results in bicarbonate in addition to energy that the cell uses to steer 

and fuel the cellular processes. 

In order to describe the electric communication between cells, all the electric 

phenomena surrounding the cell membrane will be discussed next. 

8.2.1 TRANSMEMBRANE POTENTIAL 

We start this section with a brief discussion on the formation of a static electric 

potential due to the presence of various ions with different concentrations on both 

sides of the cell membrane. 

In general, if a solution is released next to pure water in the same reservoir, the 

diffusion of atoms, molecules, and ions will eventually result in a homogeneous con­

centration throughout the reservoir. If the solution is released in the same reservoir 

separated by a semipermeable membrane that has a different permeability for posi­

tive ions than for negative ions or different permeability based on size of molecules 

and ions, a concentration gradient will occur. An example of this process in biological 

cells is schematically illustrated in Figure 8.2 for a typical cell. 

As shown in Figure 8.2, both intra- and extracellular fluids contain the fol­

lowing ions: sodium (Na+), potassium (K+), chlorine (Cl−), and various small 

amounts of other positive ions, called cations, and negative ions, called anions. 

Some examples of the anions are amino acids, certain peptides, and hydrochloric 
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FIGURE 8.2 Na, K, and Cl ions together with other residual ions control the cell potentials. 

The value ɛs represents the steady-state membrane potential (ɛm). The ion flows are in pico­

moles per cm2 per second [pM/cm2s]. 

acid (which includes bicarbonate, HCO3 
− ). The bicarbonate is a crucial part of 

the pH balance in the cells. 

The ions will be separated by the semipermeable cell membrane that, as men­

tioned earlier, maintains a relatively stable concentration gradient for each of the 

respective ions. Since there are different concentrations of positive and negative ions 

on both sides of the membrane, the membrane acts as a capacitor with a resulting 

electric potential. The capacitive membrane potential is described as follows: 

dQ
dV = (8.1) 

C 

where 

the constant C is the capacitance 

dV is the electric potential gradient of the cell membrane (the capacitor) 

dQ is the differential element of the charge residing in the membrane 

The resulting charge can be related to the equivalent sum of ions, n, and the valence, Z, 

of the respective ions on either side of the membrane as follows: 

Q nZe (8.2) = 
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In the preceding equation, the electron charge, e, is equal to −1.6022 × 10−19 C. In the 

equation, the only charges under consideration are within a cell-layer thickness dis­

tance from the cell membrane, approximately 1 μm thickness. The existence of these 

charges will produce a diffuse current across the membrane that causes a secondary 

electric potential across the membrane. In equilibrium, the electric potential, V, gener­

ated by the surplus of either the positive or negative ions on one side of the membrane 

will produce an electric potential that will counteract the free diffusion, and a steady 

state is formed with a constant voltage. In steady state, the ion potential resulting 

from both the sodium and the chlorine gradients are equal to each other due to the 

fact that there is no ion current under complete steady-state conditions, and there is a 

full electrochemical balance in ion concentrations dictated by the individual electric 

potential gradients, i.e., 

[Na]e Cl[ ]i= (8.3) 
[Na]i Cl[ ]e 

The square brackets indicate concentrations, while the subscripts “i” and “e” represent 

intra- and extracellular conditions, respectively. 

This steady state is called the Donnan equilibrium of the ion concentrations for 

the cell at rest. The total absence of ion movement makes the time frame for the 

Donnan equilibrium to reach steady state over a period of greater than a quarter of 

an hour. For every ion, the Donnan equilibrium results to the following equilibrium 

potential for that ion: 

KT [ION]eem ION  = ln (8.4) , 
q [ION]i 

where 

K is the Boltzmann’s constant 

T is temperature in Kelvin 

q is the charge 

At the room temperature, we have KT/q = 26 mV. In the previous equation, [ION]e 

represents the concentration of the ion and [ION]i denotes the external concentra­

tion of the same ion. As shown in the previous equation, the membrane potential is 

always assumed to be the potential difference from the intracellular side to the extra-

cellular side. The transmembrane voltage created by each ion is called the Nernst 

voltage for that ion. 

As previously mentioned, the physical basis of these electric potential differences 

is the presence of ion channels and pumps within the cellular membrane. The static 

potential is not solely determined by one single ion but by a variety of ions. Each ion 

will make a contribution that is a function of the respective concentration gradients. 

In general, the actual membrane potential is not merely the sum of the Nernst potentials 

of all individual ions involved. 



 

Intracellular Ion Extracellular Ion  Relative Nernst Potential 
Ion Concentration [mM] Concentration [nM] Permeability [−] [mV] 

K+ 155 4 1 −97.5 

Na+ 12 145 0.04 66.4 

Cl− 4 120 0.45 −90.7 

A− represents assorted cations and A+ stands for assorted anions. 
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TABLE 8.1 
Some Sample Ion Concentrations, Their Relative Permeability with 
Respect to That of Potassium, and Their Respective Nernst Potentials 
for Each Ion 

The potassium ion is the smallest of the intra- and extracellular ions, and the  

membrane is fully permeable to potassium. The chlorine ion is larger than the potas­

sium ion and has a slightly lower permeability. The sodium ion is the largest of them 

all, and the membrane has the highest resistance to passage by the sodium ion. This 

is shown in Table 8.1. 

A closer look at the transmembrane potentials for individual ions reveals that the 

permeability of potassium is large and the membrane potential is a small negative  

number (−7.5 mV), while the permeability of the sodium is small and the membrane 

potential is a large positive number (+156.4 mV). 

As can be seen from the definition of the Nernst potentials, the main factor in  

maintaining the Nernst potentials the same of each ion is ensuring that the con­

centration of the intercellular and extracellular fluids for each ion are constant. As  

mentioned earlier, the sodium–potassium pump has a central role in maintaining 

the concentration of the ions therefore maintaining the transmembrane voltage. This 

pump essentially exchanges potassium for sodium from extra- to intracellular fluid  

in a 2:3 ratio, respectively. 

The sodium and potassium concentrations resulting from the active Na–P pumps 

determine the membrane potential. The chlorine effect, although secondary to potas­

sium and sodium, is often incorporated in the determination of the overall potential.  

The following equation, called the Goldman equation, is often used to calculate  

the  overall equilibrium membrane potential incorporating sodium, potassium, and 

chlorine ions: 

KT ⎛ P [ + 
+K
K + 

 ] e + P 
Na

[Na + ] −

V e + P −Cl
[Cl ] ⎞ 

m = ln 
i 

⎜ ⎟ (8.5) 
q ⎝ P + + − 

 i i l ] 
 

+ [K ] + P + [Na ] + PP − [C e K Na Cl ⎠
 

where  Vm is the overall steady-state equilibrium potential across the membrane  

calculated as the extracellular potential minus the intracellular potential. 

The Goldman equilibrium describes the steady-state equilibrium for a cell under  

the conditions that the sodium and chlorine current are equal to each other and are 

not 0. The overall rest potential is different for different specialized cells, but it  
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is always negative. For instance, the muscle has a rest transmembrane potential of 

approximately −90 mV, and the nerve axon has on average a transmembrane potential 

of −70 mV. 

8.3 ELECTRIC CHARACTERISTICS OF CELL MEMBRANE 

Considering the fact that the cell membrane has charges on either side and that there 

is an ion current flowing through the membrane, the cell membrane can be regarded 

as an electric circuit. As with any electric conductor, there will be electric resistance 

and capacitance to identify. One can also consider the Nernst potential as a battery in 

the cell membrane circuit. These electric characteristics allow modeling the cellular 

activities using its equivalent electronic circuits. 

We start this section by defining the membrane resistance. 

8.3.1 MEMBRANE RESISTANCE 

The membrane forms a resistance for each of the ions passing through it. The mem­

brane resistance is defined as the inverse of the conductance, which, in this case, rep­

resents the ease with which the ions can pass through the channels in the membrane. 

The conductance is in fact a function of the ion concentration and the ion flow. If the 

conductance for one individual ion channel is Gi, the total resistance of the membrane 

of one single cell involves all the N individual channels summarized as follows: 

G = ∑Gi (8.6) 

N 

The conductance is related to the permeability but is not interchangeable. Since the 

resistance, R, is defined as the reciprocal of the conductance, the value can now be 

recalculated as 

1 1
R = = (8.7) 

G ∑ 
N 

Gi 

i=1 

Equation 8.7 equates to a set of parallel channel resistors in a cell circuit. The unit 

for resistance is Ohm (Ω). 

8.3.2 MEMBRANE CAPACITANCE 

As mentioned earlier, the fact that there are ions dissolved in the intra- and extracel­

lular liquid lined up on either side of the membrane makes the membrane a capacitor. 

The charges are separated by the thickness of the membrane, which is only a few 

molecular chains thick and is in the order of 7.5 nm. 

The capacitance is defined in Equation 8.1. Generally speaking, the capacitance 

of a typical cell membrane is relatively high. This is due to the fact that the thickness 
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of the cell membrane is very small while the area of the membrane is relatively large. 

For muscle cells and neurons, the capacitance is in the order of 1 μF/cm2, which is 

indeed a large number per unit area. 

With an electric potential of −90 mV, the field intensities are also relatively high. 

The charges responsible for this potential are only the ions within 0.8 nm distance 

from the membrane. Any ions removed farther than 0.8 nm from the membrane are 

typically assumed to have no immediate impact on the potential. 

8.3.3 CELL MEMBRANE’S EQUIVALENT ELECTRIC CIRCUIT 

Combining all the electric properties of the cell membrane, i.e., resistance, capacitance, 

and electromotive force, one can achieve the electric equivalent circuit for the cell 

membrane as shown in Figure 8.3. 

All circuit theory rules, such as the Kirchhoff laws, can be applied to this circuit. 

For instance, at any time, the sum of all currents to one junction needs to be 0 since 

there cannot be accumulation of charges. In addition, when adding all electric poten­

tials in a loop, the summation must be 0. 

The resulting circuit can be used to calculate the flow of each of the ion pumps 

knowing the Nernst potentials as well as the channel resistances for all neurons. 

This circuit, besides being used to calculate the currents, will help us develop a more 

important model of the membrane called Hodgkin–Huxley model, as discussed later 

in this chapter. 

8.3.4 ACTION POTENTIAL 

As discussed earlier, the cell will try to maintain a gradient of ions across its 

membrane, which in turn maintains a certain electric potential across the mem­

brane. However, this condition describes the steady-state situation when the cell 

FIGURE 8.3 Combining all the electric properties of resistance, capacitance, and electro­

motive force presents the electric equivalent circuit for the cell membrane. 
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is at rest. Certain cells such as muscle and nerve cells are excitable cells in which  

the permeability of the membrane can be altered under the influence of external  

conditions. The permeability of the cell for chlorine ions has a relatively insignifi­

cant role in adjusting the cell potential due to the small size of these ions. On the  

other hand, the pores in the membrane that let sodium and potassium ions through  

can widen and/or change their polarity to allow a greater or smaller flow of these  

ions through. 

The external change in conditions that change the permeability of the membrane 

is often referred to as a stimulus. In general, the stimulus can be an electric excitation 

from another source, either a neighboring cell or an extremity of the cell itself that is 

sensitive to a particular change in environment, for example, temperature, pressure, 

or light. 

The process of the formation of an action potential can be described in simple  

words without any mathematical formulation. As the cell is stimulated by an external  

factor, the rising potential difference across the cell membrane (due to the stimuli)  

initially activates and opens a large number of sodium ion channels. The opening 

of the sodium channels, or equivalently the sharp increase in the permeability or 

conductance of the membrane for the sodium ions, causes an avalanche that sharply 

increases the sodium influx. This process that makes the inside of the cell more posi­

tive is called depolarization. The changes in permeability of the sodium channels 

are shown in Figure 8.4. The reason this stage is called depolarization is the fact that 

in the rest condition preceding depolarization, the cell potential is negative and the 

depolarization changes the polarity of the voltage across the membrane. The depo­

larization potential has specific values for specific cell types. However, this potential 

is always positive and ranges from +30 to +60 mV. 

The depolarization stage continues until the maximum positive potential is reached  

after which the cell starts a stage called “repolarization.” Specifically, at the end of  

depolarization stage, the positive potential opens a number of potassium channels that  

allow the potassium ions residing inside the cell leave the cell. This process reduces the  

potential difference continuously. At a certain point in time, so many potassium ions  
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FIGURE 8.4 Sodium conduction is the first ion conduction that is increased, followed by 

the potassium ion flow with a slight delay. 
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FIGURE 8.5  Typical action potential. (Courtesy of Steve Knisley, PhD, Departments 

of Biomedical Engineering and Medicine, Adjunct Professor of Applied and Materials 

Sciences, University of North Carolina at Chapel Hill and North Carolina State University, 

Chapel Hill, NC.) 

have left the cell that the potential difference becomes negative, i.e., the cell repolarizes. 

The changes in permeability of the sodium channels are also shown in Figure 8.4. 

A cycle of depolarization and repolarization processes causes the cell potential to 

undergo a pulse-form variation, which is called an action potential. A typical action 

potential is shown in Figure 8.5. Action potentials are means neurons and other cell 

types use to communicate with each other. There are several types of cells, and the 

action potential in each cell type has its own specifications and details. 

After the repolarization process, the cell undergoes a short phase called the abso­

lute refractory period in which no other stimuli can stimulate the cell. This absolute 

refractory period lasts for approximately 1 ms. During this period, the cell mem­

brane does not respond to any stimulus no matter how strong these stimuli might be. 

After this absolute refractory period follows a relative refractory period, which will 

allow a stimulus to initiate a depolarization, however, at a higher threshold. 

Both depolarization and repolarization processes first happen locally. This means 

that, at first, the stimulus initiates a change in the membrane potential locally, but 

then, the local changes stimulate the neighboring sections of the membrane, thus 

causing the membrane potential change to spread. 

As mentioned before, an action potential starts with the occurrence of some exter­

nal stimuli. The only condition for a stimulus to excite the cell is that it needs to 

exceed a certain threshold to instigate the cell to open its pores (i.e., sodium ion 

channels). In other words, a minimum positive potential is needed to depolarize the 

membrane. 

The characteristic action potentials that are often used to study this phenomenon 

are observed in nerve cells (neurons). The action potentials observed in neurons are 
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the means of communication and messaging among the neighboring neurons form­

ing a network. In other words, nerve cells are specialized to receive and transmit 

these types of impulses (action potentials) to communicate information from one 

location to the next by stimulating the train of neighboring cells. Transmission of 

action potentials among the neurons provides complex functions such as the control 

and cognitive capabilities of the human brain. 

Now that we reviewed the process of action potential formation on the qualitative 

level, next we use an electric model of the cell to describe action potentials using a 

set of differential equations. 

8.4 HODGKIN–HUXLEY  MODEL 

In 1952, A.L. Hodgkin and A.F. Huxley published their findings on the ion flow 

through the giant squid axon membrane and described the theoretical principle of the 

action potential. The Hodgkin–Huxley model is essentially a detailed version of the 

circuit shown in Figure 8.3. We start describing this model from the steady-state con­

dition. Under steady state, sodium ions (Na+) act as the primary cation in the extra-

cellular fluid, while the potassium ions (K+) play the role of the primary cation in the 

intracellular fluid, and chlorine can be considered as the primary extracellular anion. 

This combination with the fixed concentration of the ions makes the cell maintain an 

equilibrium potential. Additional anions and cations play rather insignificant roles 

and are not included in the model. Table 8.1 shows the ion concentrations and the rest 

potentials that are associated with the various equilibrium concentrations. 

When, due to an external stimuli, a change occurs in the electric potential of the 

membrane, Vm, there will be a current associated with that change. Since the membrane 

can be considered as a capacitor, I, in addition to the ion flow, Ii, 

dVm=I Cm + Ii (8.8) 
dt 

The ion current itself is the result of sodium and potassium ion flow, I  and I
K +

,
Na+

respectively. The effect of other ions such as chlorine is also included in the model 

as a leakage current, Il. With these assumptions, we can calculate the total ion flow, 

Ii, as follows: 

Ii = I
Na+ + I

K +
+ Il (8.9) 

Now, notice that the sodium current is the result of the sodium conductance times the 

difference between the membrane potential and the sodium potential itself: 

I + = G + (Vm − e +) (8.10) Na Na Na 

Similarly, the ion current of potassium can be summarized as follows: 

I + = G + (Vm − e + ) (8.11) 
K K K 
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Since the leak current is the overall effect of various ions, no definite claims can 

be made about the conductance. It is often more desirable to use the average leak 

resistance instead: 

(Vm − el ) 
l l m lI = G V  ( − e ) = (8.12) 

Rl 

Combining all the aforementioned conditions for the depolarization and ion currents 

gives 

dVmI G  + Vm − e + ) + G + Vm − e +) + l ( m − el ) + Cm (8.13) = ( ( G V  
Na Na K K dt 

The timing of the ion conductance changes is vital in creating an action potential. 

The sodium conduction is the first ion conduction that is initiated, followed by the 

potassium ion flow at a slight delay. This was illustrated in Figure 8.4. The conduc­

tance for the sodium and the potassium ions requires further clarification since as 

can be estimated from Figure 8.4, these parameters are both time dependent and 

voltage dependent. The time and voltage dependency of these two factors provides 

the delayed peaks in ion concentrations shown in Figure 8.4. 

Hodgkin and Huxley derived the following empirical relationships for the sodium 

conductance: 

Max 3G + ( )t = G + m t  ( )  h( )t (8.14) 
Na Na 

In the preceding relation, GMax 
+  is the maximum (peak) conductance, and time func-Na 

tions m(t) and h(t) are defined by the following experimentally designed differential 

equations: 

−Vmdm t ( )  −V + 25 = 0 1. 
m 

(1− m t(  ))  − 4e 18 m t  (  )  (8.15) 
dt ⎛ −Vm +25 ⎞ 

⎜ e 10 −1⎟⎝ ⎠

and 

dh( )t V 
1 = . e20 (1 − h t0 07  ( ))  − h( )  t (8.16) −Vm +30dt 

e 10 −1 

Similarly, the potassium conductance is described in the Hodgkin–Huxley model as 

follows: 

Max G t+ ( )  = G + n t  ( )4 (8.17) 
K K 
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In the preceding relation, GMax
+K  is the maximum (peak) conductance, and the time 

function n(t) is calculated by the following experimentally designed differential  

equation: 

dn ( )  t −V +10	 
−Vm

= 0 0. 1
m 

(1 − n t( )) − 0 125. e 80 n( t)) (8.18)
dt	 ⎛ −V +10 ⎞
 

⎜ 
m 

⎝	e 10 −1⎟
⎠
  

The Hodgkin–Huxley model, described earlier, is known to provide one of the most  

reliable estimations of the electric activities of the cell. The exact set of parameters  

and constants depend on the exact cell to be modeled. This model is heavily used in  

modeling of the electric activities of single neurons as well as the communications 

among biological neural networks. 

Knowing the mechanism of action potentials both on qualitative and quantitative  

levels, now we are ready to discuss how these electric activities are captured using 

electrodes. 

8.5 ELECTRIC DATA ACQUISITION 

Action potentials can be measured with the help of conductors called electrodes. 

Such electrodes can be placed in contact with the cell membrane, inside the cell, or 

even at the surface of the organ that envelops the sources of action potentials. All 

biological media have an ample supply of ions throughout the entire tissue to con­

duct the currents resulting from electric potentials anywhere in the tissue. Electrodes 

measure the potential of every point in the tissue against a ground electrode or even 

a conveniently chosen reference point on the body itself. 

In experimental as well as research setups, the cellular potential is often measured  

by a microelectrode such as popular needle electrodes. In such cases, the relative  

electric potential of the inside of the cell with respect to the outside can be measured 

as negative values at first (during the rest period) but then flip to a positive values 

during depolarization. In a clinical setting, due to the cost as well as the intensive 

nature of such electrode, this type of measurements is rarely used. A typical needle 

electrode is shown in Figure 8.6. 

FIGURE 8.6 Needle electrode. 
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(a) (b) 

FIGURE 8.7 Two representative types of surface electrodes: (a) metal electrode with con­

ductive gel, commonly used to record heart depolarization potentials on the skin and (b) strip 

electrode with eight bipolar electrodes (16 electrodes). 

In the clinical setting, one usually needs to measure the depolarization in close 

proximity to the source but still from the outer surface only. Two different kinds of 

typical surface electrodes are shown in Figure 8.7. The electric activity of individual 

cells can manifest itself on the skin surface as surface potentials. These surface 

potentials are in fact the culmination of all cellular depolarizations that occur at the 

exact same time everywhere in the body. In our description of high-level signals such 

as EEG and EMG, we will discuss how these signals are measured and analyzed. 

As can be guessed, the interpretation of these surface potentials presents a serious 

challenge for various reasons. One of the challenges is the fact that the signals mea­

sured at the skin surface are created by many cells and therefore do not say much 

about the individual cells that might be the target of the study. Furthermore, the 

conductivity of the various tissues involved in the formation of the measured signals 

is not uniform and ranges from perfect conductors such as blood to almost perfect 

insulators such as the air in the lungs. In other words, because of the mathematically 

unknown shape of the conduction distribution inside the body, the reverse problem of 

finding the source that belongs to a measured signal distribution can be a complicated 

challenge. 

8.5.1 PROPAGATION  OF ELECTRIC POTENTIAL  AS  A WAVE 

The initial depolarization of a section of membrane induces a depolarization in the 

directly adjacent membrane due to the fact that the depolarization in this case by 

definition exceeds the threshold potential. The depolarization propagates along the 

length of the membrane, which suggests that the spread of action potential in a cell 

can be considered as a wave propagation phenomenon. In order to see this clearly, 

consider the schematic structure of a typical neuron shown in Figure 8.8. As can be 

seen, a neuron is composed of a cell body (soma), the dendrites, and the axon. When 

the dendrites sense the external stimuli influence, the soma is depolarized, and this 

depolarization effect propagates through the axon. Once the depolarization reached 

the other end of the axon, the connectors at the end of the axon stimulate the dendrites 

of the other neurons. 

Now assume that, as shown in Figure 8.9, an electrode is placed at point outside 

the neuron observing the propagation of the depolarization wave through the axon. 
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FIGURE 8.8 Schematic diagram of a nerve cell (neuron). 
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FIGURE 8.9 Propagation of action potential in an axon. 

The electric activities of the neuron, i.e., the depolarization waves, move from part 

of the axon to another. As can be seen, every compartment of the axon depolarizes 

and repolarizes consequently. This causes the electrode to record the wave patterns 

shown in Figure 8.9. 

The distance separating the depolarization front and the repolarization front are 

determined by the duration of the action potential and the speed of propagation of 

the signal along the axon membrane. For instance, if the depolarization takes 1 ms 

and the propagation velocity is 2 m/s, the distance traveled by the wave along the 

axon will equal 2 mm. 

8.6  	SOME PRACTICAL CONSIDERATIONS 
ON BIOMEDICAL ELECTRODES 

In recording of the cell electric signals, two issues will determine the accuracy of the 

recorded signal and the usefulness of drawing conclusions based on this information: 

the contact surface and the electrode compatibility. 

When electrodes are placed on the skin surface, the following practical issues 

have to be taken into consideration. The skin’s outer surface, the epidermis, is a 
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mixture of live and dead cells. Dead cells do not properly conduct electricity since 

the dead cells have no cytoplasm and no charge carriers as such. In addition, the 

skin may excrete fat, which is also a poor conductor. Sweating, on the other hand, 

improves conduction because of the salt content, i.e., the ions Na+, K+, and Cl−. These 

issues can be handled by typical skin preparation and treatments such as degreasing 

of the skin and exfoliating the skin. 

Degreasing the skin can lower the skin–electrode impedance by a factor of 30, 

and applying a conducting impedance matching layer between the electrode and the 

skin can lower the impedance by approximately a factor of 60. Exfoliation will result 

in impedance lowering by a factor of 250. All measures combined can bring the 

transfer impedance down by a factor of approximately 2000. 

In addition to the epidermis, the dermis can form a capacitive element. This capaci­

tance is formed by the poor conduction conditions of the epidermis, the abundant sup­

ply of ions in the dermis, and the ample supply of free electrons in the electrode. This 

means that the transfer impedance is not just resistive but also capacitive. There can be 

a small contribution of inductive impedance based on the underlying tissue structure. 

An ideal electrode needs to be easy to apply and maintain electric stability to 

ensure reproducible measurement. In addition, an electrode needs to be able to con­

duct an alternating signal; this does not imply that it needs to be able to measure a 

steady-state potential. 

Additional considerations are that electrodes need to be made of metals that will 

not dissolve, e.g., gold, silver, or platinum. The electrodes will require a large surface 

area to limit current density in addition to a connection to a high-impedance amplifier 

input to curb total current. 

8.7 SUMMARY 

In this chapter, we described the electrochemical phenomena causing action poten­

tials as well as cell membrane potential. We also presented a mathematical model of 

the cell membrane’s electric activities called Hodgkin–Huxley model. This model 

is often used to relate the intercellular and extracellular ion concentrations to the 

overall cell membrane as well as action potentials. Finally, we briefly reviewed the 

structure and applications of some commonly used biomedical electrodes. 

PROBLEMS 

8.1	  I mport the data in the file “p_8_1.xls” in MATLAB® and plot the signal. In order to  

do so, use File/Import Data … on the main MATLAB menu and follow the steps in  

loading and naming of the data. The file contains the data from a surface electrode  

measuring a nerve impulse. Sample frequency 1000 Hz.* 

 a.	   Use discrete Fourier transform (DFT) to describe the signals in the frequency 

domain. Determine the dominant frequency. 

 b.	  Measure the duration of an entire pulse and comment on the results. 

*  N.M. Maurits, PhD, Department of Clinical Neurophysiology, Groningen University Medical Center  

(GUMC), Groningen, the Netherlands. 
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8.2	   Import the data in the file “p_8_2.xls” in MATLAB and plot the signals. These 

are several signals recorded from a single cell in different places along the cell. 

Sample frequency 1000  Hz.* 

 a.	   Repeat the calculations in parts “a” and “b” of Problem 8.1 on the recordings  

I and II. 

 b.	   Repeat the calculations in parts “a” and “b” of Problem 8.1 on the recordings  

II and III and compare the data from different locations. 

* N.M. Maurits, PhD, Department of Clinical Neurophysiology, Groningen University Medical Center 

(GUMC), Groningen, the Netherlands. 



 

 

 

 

 

 

 

 

9 Electrocardiogram
 

9.1 INTRODUCTION AND OVERVIEW 

Electrocardiogram (ECG) is the most commonly used biomedical signal in clinical 

diagnostics of the heart. The word “electrocardiogram” is a combination of three 

words: electro, pertaining to electric signal; cardio, which translates into heart; and 

gram, which stands for recording. The recording of the electric activity of the heart 

is called ECG. 

A cardiac muscle contraction is a direct result of the cellular electric excitation 

described by the ECG. The depolarization initiates the shortening of each individual 

muscle cell. The electric activation of each cell is an indication of the functioning 

of that cell. Therefore, the ECG is the result of depolarization of the heart muscle 

in a controlled repetitive fashion. By tracking the process of electric depolarization 

of the cardiac muscle cells, an impression of the heart’s functionality can be formed 

and used to recognize regions in the heart structure that are not functioning to speci­

fications and may require medical attention. Any deviation from the typical ECG 

observed in the recorded electric depolarization signal is analyzed and classified as 

a certain cardiac disorder. 

The principal concepts of the biological cell and the electric potential across the 

cell membrane were discussed in Chapter 8. In this chapter, first, the function of the 

heart as a pump will be discussed. Then, in order to fully understand the electric 

signals generated by the heart with respect to each contraction, some basic phenom­

ena involved in the contraction process will be described. Finally, the formation, 

measurement, and processing of ECG will be discussed. 

9.2 FUNCTION AND STRUCTURE OF THE HEART 

The heart is the structure comprised of cardiac muscles that are responsible for cir­

culating blood through the body. The anatomy and conduction system of the heart is 

outlined in Figure 9.1. The heart has four major functions: collecting the blood that 

needs to be refined from all parts of the body (through veins), pumping this collected 

blood to the lungs, collecting the refined blood from the lungs, and pumping the 

refined blood back to all parts of the body. 

As can be seen in Figure 9.1, the heart has four chambers: two atria and two ven­

tricles. The atria work in unison and so do the ventricles. The atrium is separated 

from the venous system by a valve so that flow is only possible in one direction. The 

superior vena cava and the inferior vena cava lead into the right atrium in combi­

nation with the coronary sinus, while the pulmonary veins supply the left atrium. 

When the atrium contracts, it pumps the retained blood into the ventricle that is 

separated by a valve as well. The valve only allows flow from the atrium to the ven­

tricle and not in the opposite direction. This valve is called the atrioventricular valve. 
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Pulmonary
vein Aorta 

LA 

RV 

RA 

LV 

FIGURE 9.1 Function and structure of the heart. 

The atrioventricular valve between the right atrium and the right ventricle is also 

called the tricuspid valve because of the three-leaf structure. The left atrium and left 

ventricle have the bicuspid valve, or mitral valve, that separates the two chambers. 

The ventricle expands when it is filled with the pressure generated by the blood 

flow from the atrium. The ventricle contracts out of sync with the atrium as the result 

of an electric delay line between the excitation of the atrium and the ventricle. The 

ventricle pumps the blood into an artery, which again is separated from the ventricle 

by a one-way valve. The left ventricle pumps blood into the aorta, which is separated 

from the ventricle by the aortic valve to prevent backflow. The aorta supplies the 

refined blood to the body. The right ventricle squeezes the blood that needs refining 

into the arteria pulmonalis, separated by the pulmonary valve. The arteria pulmona­

lis feeds into the lung circulation. 

A schematic representation of the blood circulation provided by the heart is illus­

trated in Figure 9.2. 

The wall of the atrium and the ventricle consists of three main layers. Moving 

from the inside outward, the inner lining of the heart wall is called the endocardium; 

it consists of a single cell layer of flat, thin endothelial cells. The second layer is the 

myocardium; it is the main muscle of the ventricle. The epicardium is the outside 

lining of the ventricular wall; it consists of a single cell layer made up of flat cells. 

The left and right ventricles are separated by the septum, which is also a three-layer 

structure with endocardium, myocardium, and epicardium. The entire heart is sus­

pended in the pericardial sack, which provides free movement in the area of the chest 

in between the lungs on the left side of the body. 

The main functionalities of the heart are provided by the structure and character­

istics of the cardiac muscle to be described next. 
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FIGURE 9.2 Relative locations of the elementary components in the circulation mechanism 

of the heart. 

9.2.1 CARDIAC MUSCLE 

The main function of the cardiac muscle can be summarized as follows. An action poten­

tial that causes the heart muscle cells to contract reduces the atrial and ventricular vol­

ume, respectively. This results in an increase in pressure, leading to an outflow through 

the valve when the pressure before the valve exceeds the pressure behind the valve. This 

process provides the pressure changes to open and close the valves and therefore perform 

the pumping role of the heart. The contraction part of the heart is called the systole. Each 

systolic period is followed by a rest period, which is called the diastole. 

In order to see how these contractions are provided by the cardiac muscle, we need to 

study the characteristics of cardiac muscles more closely. As a smooth muscle type tissue, 

the cardiac muscle is a hollow muscle that is designed to force blood into a tube to fill the 

body. The cardiac muscle has many of the typical properties of other muscle cells, except 

for the fact that cardiac muscle fibers are not excited all at once by one motoneuron. One 

major difference between skeletal muscle and heart muscle is with regard to the duration 

of the action potential. The cardiac muscle has a considerably longer depolarization and 

repolarization period. The longer depolarization period (several hundred milliseconds 

versus only a few milliseconds for skeletal muscle) ensures the maximum contraction 

from one single impulse. The longer repolarization period in the cardiac muscle ensures 

that there will be no immediate overlap in contractions. 

An important fact about the function of the cardiac muscle is that the depolariza­

tion period is a function of the frequency in which the cardiac muscle receives the 

initiation pulses. During this time and the subsequent repolarization period, theo­

retically, no new depolarization can be initiated. However, both the depolarization 

and the repolarization period are subject to shortening if the demand is there. The 

higher the repetition rate becomes, a shorter depolarization period is achieved. This 

is another fact differentiating the cardiac muscle from skeletal muscle. This char­

acteristic of cardiac muscle allows the heart to adapt the state of physical exercise. 
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The remarkable difference with skeletal muscle in organizational structure is the 

presence of a wire mesh of excitable cells: nodal tissue, running through the cardiac 

muscle tissue. This network of excitable cells is in charge of control and adjustment 

of the heartbeat and is further described in the next section. 

9.2.2 CARDIAC EXCITATION PROCESS 

The nodal cells are located in the heart. They initiate, synchronize, and regulate the 

heart contractions by generating periodic action potentials. The network of these 

cells is shown in Figure 9.3. 

The nodal cells in the heart do not possess a rest potential but have a constant ion 

leak. The persistent ion leak eventually causes these nodal cells to depolarize spon­

taneously at regular intervals when the cell membrane potential exceeds a certain 

threshold. The nodal cells will also produce a repolarization after each depolariza­

tion. All the nodal cells are linked together electrically, such that any nodal cell can 

start the depolarization process. There is however an order of depolarization, i.e., 

some cells depolarize faster than others, giving the fastest cell always the upper 

hand. If, however, the faster cells are damaged, the slower cells will take the lead. 

These nodal cells are organized in two general groups: the sinoatrial node (S-A node) 

and atrioventricular node (A-V node). These two nodes are called natural pacemak­

ers. The S-A node, which is the main pacemaker of the heart, stimulates the atria and 

the A-V node in turn and, after a delay, stimulates the ventricles. The electric delay 

between the activation of the S-A and A-V nodes is created by the propagation of electric 

impulses via the bundle of tissues between the two nodes. This delay gives the atrium 

time to empty out into the ventricle, and the contraction of the atrium is followed in due 

time by the contraction of the ventricle to obtain maximum pumping efficiency. The 

functions as well as the location of each of these nodes are further described as follows. 

The S-A node is located in the wall of the hollow vein, on the upper side on 

the border with the right atrium. This is the primary nodal tissue, i.e., pacemaker, 

FIGURE 9.3 Location of natural pacemakers and conduction system of the heart. 
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producing impulses in a regular fashion to excite the atrium first, before trickling 

down to the ventricle through the A-V node. The S-A node is tunable by hormonal 

and parasympathetic nerve impulses. 

The A-V node is positioned in the part of the septum close to the base of the 

heart, i.e., the border between the atria and the ventricles, just above a section called 

the annulus fibrosus. The annulus fibrosus is a connective tissue that separates the 

atria from the ventricles and is an electric insulator. The A-V node is also under 

the endocardium of the right atrium. This node not only generates impulses under 

stimulus from the atrial depolarization but also has a depolarization sequence of 

its own since it is constructed of nodal tissue as well. The depolarization rate of the 

A-V node is generally slower than that of the S-A node. The impulse generated by 

the A-V node is conducted through a bundle of nodal cells called the His bundle 

that branch into multiple branches of conducting fibers that carry the depolariza­

tion impulse to the apex of the heart, the bottom of the heart, farthest away from 

the outlet valves of the ventricle, which are at the base of the atrium again. The 

branches of fibers spreading out from the His bundle are called Purkinje fibers. 

The A-V node has a range of cells with different depolarization speeds. The cells 

of the A-V node farthest from the His bundle are the fastest depolarizing, and the 

lower ones are closer to the contact with the His bundle. The His bundle acts solely 

as conductor of electric pulses. There are many terminal points of the Purkinje  

fibers at the apex of the heart, ensuring a massive contractile motion at the tip. The polar­

ization propagation speed is approximately 0.5 m/s for the cardiac muscle tissue, while 

the propagation speed for the His bundle is approximately 2 m/s. 

As mentioned earlier, the cardiac muscle is different from most other cells; in the 

fact, that the cells themselves pass the depolarization signal on to only certain neighbor­

ing cells. All cardiac muscle cells in turn are connected to each other by a conducting 

cell wall section, the intercalated disk. The intercalated disk conduction is illustrated in 

Figure 9.4. The intercalated disk transmits the depolarization wave to the adjacent cell, 

and this cell will respond as long as it is not in the repolarization phase. The fact that the 

cells themselves pass the depolarization signal on to only certain neighboring cell is of 

crucial importance for the understanding of how an ECG is formed at the electrodes. 

FIGURE 9.4 Intercalated disks in the electric excitation mechanism of the heart. 
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If all cells are successfully excited at the apex of the heart, the migration 

of electric excitation wave front through the intercalated disks will provide a 

smooth depolarization. This depolarization front moves homogeneously upward 

toward the base of the heart, and as a result, the blood is effectively forced out 

off the ventricle with maximum efficiency. This description of the heart activ­

ity assumes a healthy normal working heart. Detectable deviations in the depo­

larization wave front will elicit any abnormalities in the ejection sequence and 

are therefore an integral part of diagnosing the proper functioning of the pump 

action of the heart. 

Now that we have familiarized ourselves with the structure as well as the mechan­

ical and electric activities of the heart, we are ready to describe ECG. 

9.3  	ELECTROCARDIOGRAM: SIGNAL  
OF CARDIOVASCULAR SYSTEM 

The depolarization and repolarization process during each heart cycle generates 

local electric potential differences, which can be measured on the skin using elec­

tronic recording equipment. This group of signals, called ECG, constitutes the 

most informative clinical signal commonly used in the diagnosis of the cardiovas­

cular system. 

9.3.1 ORIGIN  OF ECG 

The ECG represents the repetitive electric depolarization and repolarization pattern 

of the heart muscle. The schematic form of one period of the ECG is illustrated in 

Figure 9.5a, and a typical healthy ECG signal is shown in Figure 9.5b.* The ECG is 

characterized by five peaks, represented by the letters P, Q, R, S, T, and sometimes 

followed by a sixth peak, the U wave. The P wave is the result of the depolarization 

of the atrium, while the remaining waves are caused by the ventricle. 

(a) 

R R 

P 

Q S S 

T T 
P 

Q 

U 

(b) 

FIGURE 9.5 (a) Characteristic wave in one cycle of a normal ECG and (b) a healthy ECG. 

* All ECG recordings in the main body of this chapter were provided by Dr. Laszlo Littmann of the 

Carolinas Medical Center, Charlotte, NC. 
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The electrocardiography made its introduction through the pioneering efforts of 

the Dutch scientist Willem Einthoven in 1903. He used a galvanometer to design a 

way to record the action potentials. He also introduced the markers P, Q, R, S, and 

T on the standard ECG. The initial ECGs were recorded directly on paper and, in 

fact, still are in many clinical cardiac electrophysiology laboratories. The galvanom­

eter was directly coupled to an ink pen. This way, a voltage leading to a deflection 

of the galvanometer would move or direct the pen over the paper. Each individual 

electrode had its own galvanometer and separate ink pen. This method still stands as 

the gold standard for analog recordings. However, nowadays, as described later, the 

electrodes are connected to amplifiers and filters. 

As mentioned earlier and shown in Figure 9.6, the P wave is caused by the depo­

larization of the atrium. The initial recording of the P wave lasts for approximately 

90 ms and is usually not much greater than 2.5 × 10−4 V. The depolarization of the 

atrium during the P wave causes the atrium to contract and fill the ventricle. The 

transition of the atrial depolarization to the A-V node is usually not detected, and 

the A-V node itself is too small and too far from the electrodes on the outside of the 

body that it will not register either. The quiet time between the P wave and the QRS 

complex is often used as a reference line. 

The QRS complex lasts for approximately 80 ms and has amplitude of about 1 mV. 

The QRS complex shows the depolarization of the septum (the wall separating the 

left and right ventricle) and the conduction through the Purkinje fibers. The final 

piece of information in the QRS complex is the depolarization of the ventricular 

wall from the inside to the outside and from the bottom to the top. The repolariza­

tion takes place from the outside to the inside and has the opposite polarity of the 

depolarization. The repolarization effects show up in the ECG electrode as a pulse 

called T wave. 

The repolarization wave of the atrium will not be recorded under normal record­

ing conditions. It is extremely weak and it will fall in the middle of the depolariza­

tion account that represents the ventricular contraction excitation, the QRS complex. 

During repolarization, the atrium relaxes and fills back up. The repolarization can 

be distinguished from the depolarization in the cardiac action potential from the 

P 

0.
5 

m
V 

100 ms 

FIGURE 9.6 Timing of all important waves of ECG, in particular P wave, are shown that 

further identifies when and why these waves are formed. 
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fact that the repolarization wave front is significantly longer in time duration than 

the depolarization wave front. The repolarization also has a much smoother action 

potential gradient, which incorporates a smaller gradient in the time derivative of the 

cell membrane potential. 

The ventricular repolarization is represented in the T wave of the ECG signal. The 

T wave has a smaller amplitude than the QRS complex. If present, the U peak also 

represents a portion of the ventricular repolarization. 

Because of the electric nature of the heart muscle, the depolarization and the 

repolarization are separated by a relatively long time period. As a result, in the elec­

tric recording of the heart activity, the expected triphasic action potential phenom­

enon will never be seen. 

9.3.2 ECG ELECTRODE PLACEMENT 

The ECG is not measured directly on the heart itself but on the exterior of the body. 

Various internationally accepted electrode placements are in existence, which are 

described next. 

The oldest standard of ECG measurement is a three-point extremities recording 

on the arms and one leg, which is essentially the same as the original Einthoven 

electrode placement. The recording uses three bipolar measurements that are as fol­

lows: recording I is between left (L) and right (R) arm, i.e., VL − VR; recording II is 

between left leg (F, for foot) and right arm, i.e., VF − VR; and recording III is between 

left leg and left arm, i.e., VF − VL. This standard ECG configuration for the electrode 

placement is illustrated in Figure 9.7. 

Another popular electrode placement arrangement is outlined in Figure 9.8. 

A scrolling curve on the chest outlines the electrode placement starting from the 

right, with one electrode on either side of the sternum and three more electrodes 

FIGURE 9.7 Traditional electrode configuration as proposed by Einthoven. 
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V1 V2 

V3 

V4 V5 

V6 

FIGURE 9.8 Chest electrode configuration in the Wilson placement. 

trailing along the left side of the sternum at the fifth rib with the sixth electrode 

underneath the armpit on the sixth rib. This electrode placement using six electrodes 

is called V1–V6. These six electrodes are added to the ones at the three extremities. 

This ECG standard is called the Wilson placement. As can be seen, in this standard, 

the electrode placements follow the outline of the heart from top to bottom. 

In the Wilson placement, due to the symmetry of the left and right heart as well 

as the synchronicity between the left and the right sides, some of the depolarization 

effects will cancel each other out. Specifically, since one event (electric pulse wave) 

can be moving away from the electrode while another event is moving toward the 

electrode, the electric field vectors would nullify each other, which is a source of 

information on its own. Even in an event where the two waves do not cancel each 

other, the resulting recordings will be an indication of a problem in the depolariza­

tion pattern providing invaluable diagnostic information. 

It was later found by Goldberger that the sensitivity of the measurements can be 

improved by uncoupling the extremity at which the signal is desired and making 

the differential measurement with other electrodes. The uncoupling of each of the 

individual recordings gives the following augmented recordings: 

VL + VF 2VR − VL − VFaVR = VR − = (9.1) 
2 2 

VR + VF 2VL − VR − VFaVL = VL − = (9.2) 
3 2 

VR + VL 2VF − VR − VLaVF = V F − = (9.3) 
2 2 

Combining all the previous measurements gives a total of three electrodes on the 

extremities (Einthoven), six on the chest (Wilson placement), and the three uncou­

pled recordings introduced by Goldberger, creating a total of 12 recordings that are 

typically obtained during a routine cardiac examination. 
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In general, all electric recordings are made in differential amplifier mode. In 

differential amplification, the electric potential difference signal measured between 

two points is amplified, and, therefore, the common signal components that will 

be recorded on both electrodes simultaneously will be filtered out. This process  

is called common-mode rejection. Since various noise sources will have an identi­

cal impact on the recorded electric activity on electrodes, by measuring the dif­

ference between the electrodes, i.e., common-mode rejection, the noise is simply 

eliminated. 

In general, the 12 recording protocol is the standard mode of operation. However, 

other minimally invasive electrode placement techniques involve the use of a spring-

loaded catheter placed inside the left ventricle with multiple strands of electrode 

wires. Each strand can have 16 electrodes, and there can be 16 strands deployed. 

These strands will press against the endocardial wall and record an array of simul­

taneous measurements in close proximity to the depolarizing cells. This type of 

measurement is usually reserved for research purposes and for cases that are difficult 

to diagnose by standard procedures. 

More accurate measurements can be made with the help of coronary electrode 

placement and ventricular electrode placement through insertion of a catheter 

equipped with electrodes. Most catheters have two or three electrodes on a single 

catheter, and several catheters can be inserted simultaneously. 

9.3.3 MODELING  AND REPRESENTATION  OF ECG 

Einthoven introduced the concept that electric activity of the heart can be described 

by a single current dipole with a resulting three-dimensional (3-D) rotating field 

vector, called the heart vector. The concept of the heart vector is illustrated in 

Figure 9.7, where all the recordings at a 120° angle difference with each other are 

combined to give the geometrical projection in one resultant direction. The heart 

vector represents the magnitude and the direction of the dipole moment caused by 

the current dipole, which is the cumulative polarization and repolarization ion flow 

across the cardiac cells. 

The main postulate in the forming and analysis of the heart vectors is that the 

electric activity of the heart at any time can be described by the heart vector. In 

order to provide a geometry that simplifies the calculations of the heart vector, the 

human body is considered as a sphere with the source of the heart vector located at 

the center. In this geometry, even though the two arms and the left leg all protrude 

from the sphere, they are assumed to be in one plane and at equal distances from the 

center. In forming the heart vectors, it is also assumed that the electric conduction is 

homogeneous and isotropic over the sphere. 

At first glance, it seems that each of the arm and leg recordings I, II, and II 

described for the Einthoven placement contributes some additional information on 

the magnitude and direction of the heart vector. However, the three recordings are 

not truly independent, since applying Kirchhoff rule gives 

VII = VI + VIII (9.4) 
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This indicates a direct dependence between the three recordings, stating that these 

three measurements are only in a single two-dimensional (2-D) plane and therefore 

fail to reveal the whole depolarization story. As can be seen, in order to address 

this issue, one can include more electrode recordings in forming the heart vector. 

For instance, including both the Winston and Goldman electrode placements will 

provide a 3-D heart vector. 

9.3.4 PERIODICITY  OF ECG: HEART RATE 

The leading ECG feature deciphering the hemodynamic phenomena is the frequency 

of relaxation and contraction of the heart muscle, i.e., the pulse or heart rate. As men­

tioned before, a complete heart cycle is started by the atrial contraction, associated 

with the pulse represented by the P wave. After the atrial contraction, the ventricular 

contraction occurs, which is preceded by the QRS complex marking the systole. The 

cycle ends with rest in which both atria and ventricles are in relaxed state or diastole. 

This rest state then leads to atrial contraction and repeat of the cycle. The repetition 

of this entire cycle makes ECG and all other heart signals periodic. As mentioned in 

Part I of the book, the most informative measure in periodic signal is the frequency 

of the variations. This is why the heart rate is the most indicative measure of the 

cardiovascular system. 

In an average person, the heart rate is approximately 75 beats per minute, which 

yields a period of 0.8 s on the ECG. The various stages of the contraction are spread 

out over this period in the following sequence. The atrial contraction in this case 

lasts approximately 0.1 s, followed by a ventricular contraction that lasts 0.3 s, with 

an end pause of 0.4 s. This means the atrial diastole lasts 0.7 s in this example, and 

the ventricular diastole lasts 0.5 s. 

The heart rate is sensitive to internal and external stimuli that can increase or 

decrease the heart rate. Two different types of mechanisms that can affect the heart 

rate can be distinguished: intrinsic and extrinsic. The intrinsic mechanisms are 

due to the changes (e.g., stretching) in the S-A node, which directly alters the heart 

rate. Another intrinsic effect is temperature, which can affect the heart rate both in 

an upward and downward direction depending on raised or lowered temperature, 

respectively. The extrinsic regulatory mechanism includes both parasympathetic 

and sympathetic nervous systems. These autonomic nerve systems affect the release 

of acetylcholine or noradrenaline–adrenaline that changes the heart rate. The para­

sympathetic and orthosympathetic nervous system affects the heart rate through the 

nervi vagi. The final and most well-known mechanism in heart rate control is the 

hormone adrenaline released by the adrenal glands, which increases the heart rate 

for the fight-or-flight reaction. 

Various deviations in the typical heart rhythm are often caused by either impulse 

generation malfunctioning or conduction distortion. The activation in the atria may 

be fully irregular and chaotic, producing irregular fluctuations in the baseline. As 

a consequence, the ventricular rate becomes rapid and irregular, even though the 

QRS contour may still look normal. This electric phenomenon is referred to as atrial 

fibrillation (AF). When the electric disturbance is confined to the ventricles, the 

resulting disease is referred to as ventricular arrhythmias. 
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9.4 CARDIOVASCULAR DISEASES AND ECG 

These deviations from the normal functionality of the cardiovascular system are 

associated with certain pathological conditions, which can be either genetic or due 

to malfunctions such as infections, lack of oxygen, and obstruction of blood vessels 

that supply blood to the heart itself. In this section, some of the main cardiovascular 

diseases are briefly introduced and the changes in ECG and related diseases are 

discussed. This brief discussion of cardiovascular diseases will allow us to devise 

computational methods for the processing of ECG that can detect abnormalities in 

their early stages. 

9.4.1 ATRIAL FIBRILLATION 

AF is one of the most common arrhythmias that occur as a result of rheumatic dis­

ease, infections (such as pericarditis), atherosclerotic disease, or hyperthyroidism. 

These conditions caused by AF are not as life threatening as some of the ventricular 

arrhythmias but provide an increased risk for stroke. Physical symptoms include 

palpitations, dizziness, and shortness of breath. Some people having AF never notice 

any sign of discomfort. 

AF has a very rapid and chaotic ECG. AF results in rhythms of 150–220 beats per 

minute. The most prominent feature of the ECG of AF is an abnormal RR interval, 

while the ventricular rates are generally faster than of a healthy heart. 

AF is also characterized by the lack of P wave in the ECG, or the P wave is very 

small and does not precede the relatively regular-looking QRS complex. Figure 9.9 

shows an example of a typical AF ECG that was captured using the Wilson 

I aVR V1 V4 

II aVL V2 V5 

III aVF V3 V6 

FIGURE 9.9 Atrial fibrillation ECG using the Wilson placement combined with augmented 

Einthoven electrode recording, giving a total of nine recordings. The calibration block at the 

beginning of each recording is 200 ms wide. 
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placement combined with augmented Einthoven electrode recording, giving a total 

of nine recordings. One of the standard chart recordings are given by the augments 

Einthoven recordings aVR, aVL, and aVF, combined with the Wilson recording V1 

through V6. 

9.4.2 VENTRICULAR ARRHYTHMIAS 

In ventricular arrhythmias, ventricular activation does not originate in the A-V node. 

Moreover, the arrhythmia does not proceed in the ventricles in a normal way. In a 

normal heart in which the activation proceeds to the ventricles along the conduction 

system, the inner walls of the ventricles are activated almost simultaneously, and 

the activation front proceeds mainly radially toward the outer walls. As a result, 

the QRS complex of a healthy heart is of relatively short duration. In ventricular 

arrhythmias, however, since either the ventricular conduction system is broken or 

the ventricular activation starts far from the A-V node, it takes a longer time for the 

activation front to proceed throughout the ventricular muscle. This results to lon­

ger QRS complex. The criterion for normal ventricular activation requires the QRS 

interval to be shorter than 0.1 s. A QRS interval lasting longer than 0.1 s indicates 

abnormal ventricular activation. One example of ventricular arrhythmia is illustrated 

in Figure 9.10. 

Another characteristic of ventricular disturbance is the premature ventricular 

contraction. A premature ventricular contraction is one that occurs abnormally early. 

If the origin of the disturbance is in the ventricular muscle, the QRS complex has a 

very abnormal form and lasts longer than 0.1 s. Usually the P wave is not associated 

with it. The arrhythmogenic complex produced by this supraventricular arrhythmia 

lasts less than 0.1 s. 

I V4aVR V1 

II V2 V5aVL 

V3 V6aVFIII 

FIGURE 9.10 ECG of a characteristic VT using the Wilson placement combined with 

augmented Einthoven electrode recording, giving a total of nine recordings. The calibration 

block at the beginning of each recording is 200 ms wide. 
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9.4.3 VENTRICULAR TACHYCARDIA 

A rhythm of ventricular origin may be a consequence of a slower conduction in isch­

emic ventricular muscle that leads to circular activation (reentry). This results in the 

activation of ventricular muscles at a high rate (over 120 beats per minute), causing rapid 

and wide QRS complexes. Such an arrhythmia is called ventricular tachycardia (VT). 

VT is often a consequence of ischemia and myocardial infarction. The main 

change in ECG that indicates the occurrence of VT is the very fast heart rate that can 

be easily detected in the Fourier domain using discrete Fourier transform, or DFT. 

9.4.4 VENTRICULAR FIBRILLATION 

When ventricular depolarization occurs chaotically, the situation is called ventricular 

fibrillation. This is reflected in the ECG, which demonstrates coarse irregular undu­

lations without QRS complex. The cause of fibrillation is the establishment of multi­

ple reentry loops usually involving diseased heart muscle. In this type of arrhythmia, 

the contraction of the ventricular muscle is also irregular, and, therefore, the timing 

is ineffective at pumping blood. The lack of blood circulation leads to almost imme­

diate loss of consciousness and even death within minutes. The ventricular fibrilla­

tion may be stopped with an external defibrillator pulse and appropriate medication. 

9.4.5 MYOCARDIAL INFARCTION 

If a coronary artery is occluded, the transport of oxygen to the cardiac muscle is 

decreased, causing an oxygen debt in the muscle, which is called ischemia. Ischemia 

causes changes in the resting potential and in the repolarization of the muscle cells. 

This abnormality is observed in ECG as changes in the shape of the T wave. If the 

oxygen transport is terminated in a certain area, the heart muscle dies in that region. 

This is called a myocardial infarction or heart attack. After a blockage in the blood 

vessels supplying the heart muscle with oxygen and nutrients, the muscle cells in the 

region are severely compromised. Some cells may die while others will suffer severe 

damage, all resulting in a decreased ability to conduct impulses by generating its 

own depolarization. The dead cells will eventually be replaced by collagen since the 

heart does not have the ability to regenerate. 

An infarct area is electrically silent since it has lost its excitability. According 

to the solid angle theorem described in Chapter 8, the loss of this outward dipole is 

equivalent to an electric force pointing inward. With this principle, it is possible to 

locate the infarction. The compromised cells will generate an action potential in a 

much slower fashion, causing a localized delay in the depolarization wave front. If 

this delay is enough to emerge at the time that healthy cells have already been repo­

larized, a subsequent delayed depolarization wave front may pass through the region 

of the heart that had just contracted. This generates a chaotic electric pattern and a 

disorganized contraction agreement. 

Figure 9.11 shows nine sections of a recording in combined Einthoven and Wilson 

electrode placement of an inferior myocardial infarction. A heart attack can result in 

various deviating ECG patterns. In many heart attack cases, due to the existence of 
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I aVR V1 V4 

II aVL V2 V5 

III aVF V3 V6 

FIGURE 9.11 ECG recording of an inferior myocardial infarction using the Wilson place­

ment combined with augmented Einthoven electrode recording, giving a total of nine record­

ings. The calibration block at the beginning of each recording is 200 ms wide. 

R RT T 

P P 

S S Q Q

FIGURE 9.12  Schematic illustration of ST elevation during myocardial infarction. 

the dying cells in the heart muscle, there will be no significant dip between the QRS 

complex  and the T  wave.  The period between the S  part  and the T  wave  will  also 

seem  continuous. This  is referred  to as ST elevation. Figure  9.12  illustrates the effect  

of dying  cells  on the ST potential. The ST elevation  is one of the most recognizable  

indicators of myocardial infarction. 

9.4.6 ATRIAL FLUTTER 

When the heart rate is sufficiently elevated so that the isoelectric interval between 

the end of T and beginning of P disappears, the arrhythmia is called atrial flutter. 

The origin is also believed to involve a reentrant atrial pathway. The frequency of  

these fluctuations is between 220 and 300 beats per minute. The A-V node and there­

after the ventricles are generally activated every second or every third atrial impulse 

(2:1 or 3:1 heart block). 

9.4.7 CARDIAC REENTRY 

Under certain conditions, the electric depolarization can conduct back into the atrium  

from where it immediately conducts over the His bundle back into the ventricles. 
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Another frequent form of reentry is a short circuit in the Purkinje fibers at the end 

of His bundle. The signal traveling through the His bundle does not conduct through 

one of the branches in one direction but will allow conduction in the opposite direc­

tion, providing a secondary activation of the ventricles through the healthy His 

branch. Cardiac reentry is one of the main causes of ventricular arrhythmias. 

9.4.8 ATRIOVENTRICULAR BLOCK 

As mentioned earlier, the A-V node is slower than the S-A node, and, as a result of 

various illnesses, the conduction from S-A node to A-V node can be interrupted. 

This is called AV block. Under these circumstances, the atria will contract faster 

than the ventricles and the pump function will be severely compromised. As dis­

cussed earlier, if the P wave precedes the QRS complex with a PR interval of 0.12s, 

the AV conduction is normal. If the PR interval is fixed but shorter than normal, 

either the origin of the impulse is closer to the ventricles or the AV conduction is 

utilizing an (abnormal) bypass tract leading to preexcitation of the ventricles. The 

latter is called the Wolff–Parkinson–White (WPW) syndrome and is discussed later. 

The PR interval may also be variable, such as in a wandering atrial pacemaker and 

multifocal atrial tachycardia. An example of the ECG recorded during a third-degree 

AV block is shown in Figure 9.13. 

Based on the specific condition of the block, different types of AV blocks are 

defined. The conduction system defects producing a third-degree AV block may 

arise at different locations. 

9.4.8.1 Main Types of AV Block 
The A-V node can suffer several types of damages that are also referred to the heart 

block. The main five gradations of heart block that can be distinguished are as 

I aVR V1 V4 

II aVL V2 V5 

III aVF V3 V6 

FIGURE 9.13 Third-degree AV block recorded by augmented recording of standard 

Einthoven electrode placement combined with six-electrode Wilson chest electrode placement. 
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follows: first- and second-degree block, bundle-branch block, right-bundle-branch 

block (RBBB), and left-bundle-branch block (LBBB). 

In first-degree block, the conduction in the A-V node is still present but has depre­

ciated severely, resulting in a significant delay. In such cases, the QRS complex is 

consistently preceded by the P wave but the PR interval is prolonged by over 0.2 s. 

This phenomenon is recognized by an elongated PR interval, which defines the time 

between the atrial depolarization and the onset of QRS complex. 

When the internal conduction has degenerated to the point that only one out of 

every two or three action potentials passes through, this is defined as second-degree 

block. Second-degree block is shown in the ECG as an excessive number of P nodes 

but frequently lacking QRS complexes. If the PR interval progressively lengthens, 

leading finally to the total disfiguring of a QRS complex, the second-degree block is 

called a Wenkebach phenomenon. 

Third-degree (or total) AV block is shown as a complete lack of synchronicity between 

the P wave and the QRS complex, i.e., the most severe grade of heart block is the result 

of a nonconducting A-V node in which the atrium and the ventricle depolarize and con­

tract independent of each other. Bundle-branch block denotes a conduction defect in 

either of the bundle branches or in either of the left bundle branches. If both bundle 

branches demonstrate a block simultaneously, the progress of activation from the atria to 

the ventricles is completely inhibited, and this is regarded as third-degree AV block. The 

consequence of left or right-bundle-branch block is such that, activation of the ventricle 

must await initiation by the opposite ventricle. After this, activation proceeds entirely on 

a cell-to-cell basis. The absence of involvement of the conduction system, which initiates 

early activity of many sites, results in a much slower activation process along normal 

pathways. The consequence is a bizarre-shaped QRS complex with abnormally long 

duration. The ECG changes in connection with bundle-branch block associated with an 

acute myocardial infarction are illustrated in Figure 9.14. 

Another related block is the RBBB. If the right bundle branch is defective to the 

point that electric impulse cannot travel through it to the right ventricle, activation 

will reach the right ventricle by excitation from the left ventricle. The depolarization 

now travels first through the septal and right ventricular muscle. This progress is, 

aVR V1 V4 

aVL V2 V5 

aVF V3 V6 

FIGURE 9.14 ECG of acute myocardial infarction and associated bundle-branch block. 
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I V1 V4aVR 

II V2 V5aVL 

III aVF V3 V6 

FIGURE 9.15  ECG of RBBB. 

of course, slower through the conduction system and leads to a QRS complex wider 

than 0.1 s. Often, the criterion for the duration of QRS complex in RBBB and LBBB 

is that the duration of QRS needs to exceed 0.12 s. In RBBB, activation of the right 

ventricle is delayed to the point that it can be seen following the activation of the 

left ventricle. At this point, activation of the left ventricle still takes place as normal. 

RBBB causes an abnormal QRS heart vector and points toward the right ventricle. 

This is seen in the lead I recording of the ECG as a broadened S wave. Another 

typical manifestation of RBBB is frequently observed in lead V1 as a double R wave, 

called an RSR’ complex. Figure 9.15 shows a representative ECG of an RBBB. 

The situation in LBBB is similar, but activation proceeds in a direction opposite 

to that found in RBBB. Again, the duration criterion of the QRS complex for com­

plete block is in excess of 0.12 s. The abnormal sites of pulse initiation in the left ven­

tricle make the heart vector progress at a slower rate and larger loop radius, resulting 

to a broad and tall R wave. This effect is usually observed in leads I, aVL, V5, or even V6. 

Figure 9.16 shows a representative ECG of an LBBB. 

As discussed earlier, when the break in conduction only manifests itself in either 

one of the ventricles, this indicates the conduction lost is in the His bundle. In this 

case, the ventricle that has been disconnected is excited through the intercalated 

disks connecting the left and right ventricles. The disconnected ventricle will depo­

larize later than the one that is still connected. As a result, the QRS complex widens. 

Sometimes the left and right depolarizations are far enough apart for the ECG to 

show two separate QRS complexes in direct sequence. 

A related type of block, called WPW Syndrome, will be discussed next. 

9.4.9 WOLF–PARKINSON–WHITE SYNDROME 

Technically, the ventricles and atria are supposed to be electrically isolated from 

each other. However, sometimes there may be a small amount of conduction passing 
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I aVR V1 V4 

II aVL V2 V5 

III aVF V3 V6 

FIGURE 9.16 ECG of LBBB. 

directly from the atrium to the ventricle. In this situation, the A-V node is effectively 

circumvented, and the delay introduced by the A-V node and His bundle combination 

is no longer able to hold the ventricular contraction off until the ventricle is filled by 

the atria. The QRS will follow directly on the down slope of the P wave. Meanwhile, 

the A-V-node stimulus will still proceed and depolarize in sequence with the “short­

ened” atrium–ventricle passage. This will lengthen the QRS complex, making it ter­

minate at the originally expected time period as during a normal ECG recording. 

One cause for a broad QRS complex that exceeds the 0.12s duration may be the 

WPW syndrome. The cause of the WPW syndrome is the passage of activation from the 

atrium directly to the ventricular muscle via an abnormal route. This bypass is called 

the bundle of Kent, which bypasses the AV junctions. This results in an activation of the 

ventricular muscle before normal activation reaches the ventricular muscle via the con­

duction system. This process is called preexcitation, and the specific ECG depends on 

the respective location of the accessory pathway. In WPW syndrome, the time interval 

from the P wave to the R wave is normal. The QRS complex in this case has an earlier­

than-normal sharp onset called the delta wave. The premature ventricular excitation 

manifesting the delta wave results in a shortening of the PQ time. An illustration of the 

impact on the conduction pattern during WPW syndrome given in Figure 9.17. 

9.4.10 EXTRASYSTOLE 

Both chemical and mechanical stimuli can trigger spontaneous depolarization of a 

single cardiac cell, which translates to the conduction of activation to the neighbor­

ing cells. The only difference between this type of disease and normal heart is the 

resulting excitation that can be caused by any cell located at any location in the heart 

muscle. This random pulse generation is called an ectopic stimulus. In this situation, 

the P wave is often missing in its entirety for the QRS complex. 
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I aVR 
V1 V4 

II aVL V2 V5 

III aVF V3 V6 

FIGURE 9.17 ECG of WPW syndrome. 

9.5 PROCESSING AND FEATURE EXTRACTION OF ECG 

The interpretation of the recorded ECG is often based on a physician’s experience. 

The physician’s decision is typically based on the previously mentioned “time-based 

criteria” described for the ECG of the diseased cases. Such criteria are often rooted 

in the physiology of the cardiovascular system and are very well understood by the 

physicians. 

While the computer-aided diagnostic systems commonly used in many clinical 

electrocardiography clinics utilize all the time-based criteria mentioned earlier, they 

also use the typical signal processing and pattern recognition measures and tech­

niques for diagnostics. 

It has been reported that the computer-aided interpretation of characteris­

tic patterns found in ECG provides better than 90% accuracy of recognizing the 

underlying electric and hemodynamic causes and factors for appropriate treatment. 

For majority of the diagnostic interpretations, it is either the measurement of time 

intervals (i.e., time-based criteria) that provides an insight in the underlying causes, 

or the altered shapes of the actual waveform that reveal the underlying causes of the 

hemodynamic complications. The purely signal processing measures and methods 

capture small changes in ECG that may go unnoticed by the human eyes. It is also 

important to note that even for measuring time-based criteria, the computer-aided 

systems can provide a more reliable and accurate measurement and description of 

the time-based measures such as the duration of the heart cycle. More specifically, 

the signal processing techniques can more accurately calculate the time intervals 

and analyze the resulting numbers. 

Some of the main feature extraction and signal processing methods, including the 

extraction of the time-based features mentioned earlier for some specific diseases 

will be discussed next. 
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9.5.1 TIME-DOMAIN ANALYSIS 

As discussed earlier, the most significant time-domain feature in the ECG is the 

duration of the heart cycle. The heart cycle duration is frequently derived by mea­

suring the time span from one R wave to the next. Other features are essentially the 

duration of each wave (i.e., the duration of QRS complex) and the time separation 

among the waves (e.g., the time interval between T and P waves, i.e., TP interval). 

Two specific time features are further described in the following. 

An important time domain feature is the duration of QRS complex as described 

earlier. Generally, the QRS complex is identified by the characteristic shape and rela­

tive stable time constant in the pattern. Another feature of interest is the time interval 

between the T wave and the subsequent P wave. The importance of this measure 

shows the separation between two important events, i.e., the pulse rate of the sinus 

node, which is expressed in the P wave, and the repolarization phenomenon that is 

the origin of the T wave. 

9.5.2 FREQUENCY-DOMAIN ANALYSIS 

In any ECG waveform, the QRS complex is well localized as the high-frequency 

region. The P and T waves are mainly the low-frequency components. The ST seg­

ment in the ECG is time restricted with mostly low-frequency content. 

The normal ECG and the deviating ECG often have significantly different fre­

quency contents. Since the normal heart rate is in the range of 60–100 beats per 

minute, the fibrillation can exceed 200 beats per minute. In addition to the frequency 

differences, the depolarization and repolarization ramps also change under diseased 

conditions, requiring a much wider frequency bandwidth to describe each different 

phenomenon. 

The standard ECG can be described by the first eight harmonics of the heart 

rate in the Fourier domain. This provides a basic representation as shown in Figure 

9.18. Figure 9.18a shows the nine-electrode recording for a normal ECG as shown 

in Figure 9.5, and Figure 9.14b illustrates the superposition of the first eight har­

monics reconstructing the ECG from Figure 9.3. Any minor high-frequency devia­

tion from the normal ECG often creates variations in the ECG that requires a much 

larger number of harmonics to describe the frequency-domain features of the ECG. 

As a rule of thumb, a frequency analysis should span no less than the frequency 

range of 0–100 Hz for an apparently normal ECG. Arrhythmias may require a 

frequency analysis up to 200 Hz. However, entering even higher-frequency spec­

tra, the spectrum will be dominated by noise and will not contribute additional 

information. 

An important disease that is often detected in the frequency domain is sinus 

tachycardia. A sinus rhythm of higher than 100 beats per minute is called sinus 

tachycardia. Similar conditions often occur as a physiological response to physical 

exercise or physical stress, but, in diseased cases, the condition results from conges­

tive heart failure. More specifically, if the sinus rhythm is irregular such that the 

longest PP or RR intervals exceed the shortest interval by 0.16 s, the situation is 

diagnosed as sinus arrhythmia. This condition is very common in all age groups but 
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I aVR V1 V4 

II aVL V2 V5 

III 

(a) 

aVF V3 V6 

(b) 

FIGURE 9.18 (a) Normal ECG with a rate of 60 beats per minute or a frequency of 1 Hz, 

and (b) ECG dissected in the first eight harmonics, added up to give a close match with the 

original. 

more common in teenagers and preteens who may have never considered having a 

heart disease. One potential origin for the sinus arrhythmia may be the vagus nerve, 

which regulates respiration as well as heart rhythm. The nerve is active during respi­

ration and through its effect on the sinus node, causes an increase in heart rate during 

inspiration and a decrease during expiration. 

Accurate detection of fetal heart signals during pregnancy is another area where 

the frequency and wavelet analysis is vital to provide important information on 

potential fetal cardiac diseases. A different type of standard ECG recordings from 

the leads placed on the abdomen of the mother is used to monitor the fetal ECG. The 

observed maternal ECG waveforms are not necessarily noisy but are in fact super­

imposed on the fetal ECG. The maternal ECG will overpower the fetal signals due 

to the relatively low-power fetal ECG. Additionally, there will be multiple interfer­

ence sources. The P and T waves from the maternal ECG can easily be identified 

in most cases. The fetal heart rate is generally significantly faster than the maternal 

heart rate, which allows separation of the mother’s and the baby’s ECG using filters 

designed in the frequency domain. 
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Since ECG has a large statistical basis and rarely perfectly reproducible, the 

direct analytical schemes based merely on sine and cosine transformations are not 

adequate. As a result, it is often the case that raw ECG recordings, assuming ergo­

dicity, and the correlation function are first estimated and then the power spectrum 

of the signal is used for the frequency analysis. The details of this process were 

discussed in Part I of the book. 

Several frequency effects measured by the electrodes are not necessarily asso­

ciated with the true frequency spectrum of the cellular activity. Many have been 

caused by different sources of noise such as the breathing signals and the electro­

myography (EMG) of other skeletal muscles. Such noises are often filtered in the 

frequency domain. For instance, a notch filter at the main power frequency is always 

applied to filter out equipment and capacitive noise. 

As mentioned earlier, one of the obvious skeletal motion artifacts are the breath 

signals, which have both the chest and diaphragm muscles involved. Both groups of 

muscles are large muscles, and the EMG resulting from the muscular excitation pro­

duces large signal amplitudes. Since the breathing motion is often a regular process 

and has much slower rate than the heart rate, it may be easily distinguished. However, 

the electrode motion resulting from the breathing action has a modulation effect on 

the spectrum content of the measured signal. An effective method of filtering these 

types of electric interference signals out is by triggering the measurement on the 

motion that is causing the electric noise. In addition, the inhale and exhale process 

can be monitored by flow probes and subtracted from the detected ECG signal. 

9.5.3 WAVELET-DOMAIN ANALYSIS 

Since action potentials are mainly stochastic in nature, wavelet analysis of a single 

action potential may not provide the reliable data required for accurate diagnosis. 

However, when observing a repetitive signal (such as ECG) as a resultant of the 

summation of many action potentials, the wavelet-domain features can identify the 

relative contributions of the higher frequencies (lower scales). 

The wavelet features used in the analysis of ECG often detect the existence of a 

scaled or shifted version of a typical pattern or wave. Wavelet decomposition using 

mother wavelet resembles the general shape of the QRS complex, which reveals the 

location, the amplitude, and the scaling of the QRS pattern quantitatively. Wavelet 

analysis is also performed using Daubeches and Coiflet wavelets. 

A typical application of the wavelet analysis is the separation of the mother’s and the 

baby’s ECG. As mentioned earlier, the waveform of the fetal ECG is similar to that of 

the adult ECG in the wavelet transform (WT) domain, except for the scale of the signal. 

The wavelet decomposition of the observed signal can effectively separate the mother’s 

ECG from the baby’s, simply because the two ECG signals reside on different scales. 

9.6 SUMMARY 

In this chapter, the function and structure of the heart as well as the origin of the 

ECG signal are briefly described. This chapter also introduces a number of cardio­

vascular diseases that can be diagnosed using ECG. The processing methods com­

monly used for processing of ECG are also covered in this chapter. 
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PROBLEMS 

9.1	   Import the data in the file “p_9_1.xls” in MATLAB® and plot the signal.* In  

order to do so, use File/Import Data… on the main MATLAB menu and fol­

low the steps in loading and naming of the data. The file contains the signals  

of  a two-electrode recording of a normal ECG over a period of 1 min. 

 a.	  Determine the PP interval and the RR interval for both signals. 

 b.	   Use DFT to describe the signals in the frequency. Determine the heart rate. 

 c.	  Iso late one typical period of the signal, i.e., one cycle containing P-QRS-T.  

Calculate the duration of P, T, and QRS waves. 

 d. Co mment on the differences between the values captured in parts a, b, and c 

across the two signals. 

9.2	   Import the data in the file “p_9_2.xls” and plot the signals. The file contains 

the signals of an eight-electrode recording of an abnormal ECG describing AF. 

Choose the signal of recording II for your analysis. 

 a.	   Repeat the calculations in parts a, b, and c of Problem 9.1 on the record­

ing II. 

 b.	   Compare a single period with one period of the signal in Problem 9.1 and 

comment on the differences. 

9.3	   Import the data in the file “p_9_3.xls” and plot the signals. This signal is one 

recording out of 12 recordings of an ECG with bundle-branch block. For this 

ECG signal, we focus on the signals in the recordings I and II. 

 a.	   Repeat the calculations in parts a, b, and c of Problem 9.1 on the recordings  

I and II. 

 b.	   Using “wavemenu” and Daubeches 1 mother wavelet, decompose the signal  

into five levels. Comment on the contents of each decomposition level. Apply 

denoising option to filter out the noise. 

 c.	  Repeat part b using Daubeches 2 mother wavelet. 

 d.  Compare a single period with one period of the signal in Problem 9.1 and 

comment on the differences. 

9.4	   Import the data in the file “p_9_4.xls” and plot the signal. This is a fifteen-chan­

nel recording of a myocardial infarction ECG. Use signal II for the following 

analyses: 

 a.	   Repeat the calculations in parts a, b, and c of Problem 9.1 on the record­

ing II. 

 b.	   Using “wavemenu” and Daubeches 1 mother wavelet, decompose the signal  

into five levels. Comment on the contents of each decomposition level. Apply 

denoising option to filter out the noise. 

 c.	   Repeat part b using Daubeches 2 mother wavelet. 

 d.  Compare a single period with one period of the signal in Problem 9.1 and 

comment on the differences. 

* All ECG recordings in the problem section of this chapter were taken from PhysioNet, 

http://www.physionet.org/. The research resource for complex physiologic signals: MIT, Cambridge, MA. 

http://www.physionet.org
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9.5	   Import the data in the file “p_9_5.xls” and plot the signal. This file contains the 

ECG signal of VT with clear AV dissociation. 

 a.	  Repeat the calculations in parts a, b, and c of Problem 9.1 on the recording. 

 b.	  U sing “wavemenu” and Daubeches 1 mother wavelet, decompose the signal into  

five levels. Comment on the contents of each decomposition level. Apply denois­

ing option to filter out the noise. 

 c.	   Compare a single period with one period of the signal in Problem 9.1 and 

comment on the differences. 

9.6	   Import the data in the file “p_9_6.xls” and plot the signals. This file contains 

fifteen-electrode recording of the ECG for a case of myocardial infarction with  

apparent ST elevation. Use signal II or II for your analysis. 

 a.	  Repeat the calculations in parts a, b, and c of Problem 9.1 on the recording. 

 b.	   Compare a single period with one period of the signal in Problem 9.1 and 

comment on the differences. 

 c.	  Is t he amplitude the only discriminating factor in the diagnosis of this 

patient’s ECG? 



http://taylorandfrancis.com


 

 

 

 

 

 

 

 

 

10 Electroencephalogram
 

10.1  INTRODUCTION AND OVERVIEW 

The brain acts as the central control and data processing unit for the biologi­

cal medium. The neural activity of the brain uses action potentials by which the 

brain activity can be recorded by means of electrodes, as in electroencephalogram 

(EEG), or by magnetic inductors, which form a signal called magnetoencephalogram 

(MEG). In this chapter, we focus on the EEG. 

Electroencephalogram is the combination of the three words electro, encephalo, 

and gram. The first term, electro, pertains to electric and the second term, encephalo, 

which stems from the Greek words en-kephale, means “in-head” and stands for the 

brain. The third term, gram, represents the act of recording. Putting the three words 

together, electroencephalogram means the recording of the electric activities of the 

brain. 

In 1929, a German psychiatrist named Hans Berger experimented by placing elec­

trodes on the head of his daughter and verified his hypothesis that the brain exhibits 

electric activity. He measured the brain waves of his daughter when she was doing 

mental arithmetic. He also discovered that the activity increased when she was try­

ing to perform difficult multiplications. From this evidence, he deduced that the wave 

patterns observed in the brain recordings reflected the depth of the brain activity. 

In this chapter, we focus on the biological roots of EEG as well as the diseases 

often diagnosed by analysis of EEG. We also discuss the computational techniques 

typically used to process EEG signal. 

10.2  BRAIN AND ITS FUNCTIONS 

The brain is an organ that is part of the central nervous system (CNS). The brain 

monitors and regulates unconscious bodily processes, such as digestion and breath­

ing. The brain also coordinates most voluntary movements of your body. It is also the 

site of conscious thinking, allowing you to learn and create. A frontal cross section 

of the brain and brain stem is illustrated in Figure 10.1. As can be seen in Figure 10.1, 

the gray matter and the white matter form the major part of the brain. The gray mat­

ter is the outside shell of the brain and is made up of a body of nerve cells. The nerve 

cells (also called neurons) perform the actual signal processing inside the brain. The 

white matter in the core of the brain comprises the nerve axons, linking to the gray 

matter (cortex), the brain stem, and the peripheral motor and sensory units. Both the 

gray and the white matter have connective tissue intertwined for support. 

As shown in Figure 10.1, the cortex forms the outside layer of the wavy upper 

structure of the brain, which is called the cerebrum. This is where the nerve cells are 

located. Below the brain is the cerebellum, which is split into two halves. The cere­

bral cortex also has two hemispheres. It has been determined that for right-handed 
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Cortex Cerebrum 
(gray matter) (white matter) 

Ventricle Diencephalon

(thalamus)
 

Diencephalon

(hypothalamus)
 

Brain stem Cerebellum 

Pons 

Medulla oblongata Cerebrum 

Spinal cord Speduncles
(nerve connections) 

FIGURE 10.1 Schematic anatomy of the brain with the major functional components iden­

tified. The main source for EEG signals is from the cortex of the cerebrum. 

people the left hemisphere manages speech, reading, writing, logical thinking, and 

predominantly controls the right side of the body. The right hemisphere, on the other 

hand, manages artistic and creative ability and movements on the left side of the 

body and is primarily involved in artistic creativity. 

Each part of the brain has been specialized to provide certain functionality. The 

front section of the cerebrum manages speech, thought, emotion, problem solving, 

and skilled movements. This part is referred to as the frontal lobe. Moving toward 

the rear of the head, behind the frontal lobe is the parietal lobe, which identifies and 

interprets sensations such as touch, temperature, and pain. At the very back of the 

brain is the occipital lobe, which collects and interprets visual images. On either 

side of the occipital lobe are the temporal lobes, which process hearing and store 

memory. The cerebellum coordinates muscle action and is involved with posture 

and balance maintenance. The cerebellum helps to control and coordinate familiar 

movements. Initially, when an individual is in the process of learning a new activity, 

such as riding a bike, the cerebrum directs the muscles to move. At the point where 

the motion becomes common nature, the cerebellum takes over the muscle controls. 

The diencephalon is positioned in the center, directly underneath the cerebrum 

and on top of the brain stem. It contains the thalamus and the hypothalamus. The 

thalamus acts as a relay station for incoming sensory nerve impulses. The hypo­

thalamus plays a vital role in regulating body temperature, among other things. The 

hypothalamus controls the release of hormones from the nearby pituitary gland. 

The brain stem is responsible for continually regulating the various life support 

mechanisms, such as your heart rate, blood pressure, digestion, and breathing, as 

well as involuntary activities such as swallowing and sneezing. 

Other parts of the brain are the diencephalons, the brain stem in the center, and 

the spinal cord below the brain stem. Nerve impulses carrying different kinds of 

information travel to and from the brain to and from the spinal cord. The spinal cord 

will branch the signal to the target areas of the extremities or the designated organs 
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to accomplish the desired result. The spinal cord also conveys the sensed signals 

from the peripheral nervous system (PNS) to the brain. 

Due to the importance of the brain and its delicate nature, the brain is protected 

by three membranes called the meninges. The space between the meninges is filled 

with a liquid called the cerebrospinal fluid. Despite these layers of protection, dif­

ferent types of damages to the brain can cause physiological and mental problems 

for the patients. Specifically, damage to a specific region of the cerebrum results in 

impaired functions associated with that part. For example, a stroke in the motor area 

of the right hemisphere will cause paralysis of all or part of the body’s left side. Such 

damages may also affect speech. It was observed that with training and determina­

tion, surviving neurons in the neighboring regions can be taught to take over at least 

a portion of the original functionalities. 

Now that we have familiarized ourselves with the physiology and the functions of 

the brain, next we explore how EEG is created and measured. 

10.3  ELECTROENCEPHALOGRAM: SIGNAL OF THE BRAIN 

It has been estimated that the number of nerve cells in the brain is in the order of 1011 

nerve cells. Especially, the neurons in the cortex are strongly interconnected. A corti­

cal axon may be covered with between 1,000 and 100,000 synapses. The steady-state 

nerve potential is negative and is typically around −70 mV. The peak of the action 

potential is positive 30mV and lasts approximately 1ms. The peak-to-peak amplitude 

of the nerve impulse is thus approximately 100 mV. Every neuron in the gray matter 

displays a release of action potentials throughout the course of receiving and process­

ing sensory inputs coming from other neurons or external stimuli. ECG is the spatially 

weighted summation of all these action potentials measured at the surface of the skull. 

Since the initial discovery of the electric activity of the brain, the ability to 

measure this activity using EEG has been perfected. The EEG technology is very 

inexpensive and accurately measures brainwave activity in the outer layer of the 

brain. Sensitive electrodes are attached to the skull, and signals are recorded in 

either unipolar or bipolar fashion. The depolarization signals from the brain cells 

are attenuated while passing through the connective tissue, the brain fluid, and the 

skull and skin, which have complex impedances. In order to collect the relatively 

small signals from the brain activity, the skull needs to be prepared for quality 

contact to at least overcome the impedance mismatch created by the hair and dead 

skin on the skull, which prove to be poor conductors. 

The collected signals on the surface of the skull are amplified to give a graph of 

electric potential versus time. Usually, the electric activity of the brain needs to be 

compared at different spots on the head simultaneously. The most common record­

ing technique applies 21 electrodes and an equal number of channels for EEG mea­

surement. Other measuring techniques are in use that may record from 64 electrodes 

to as many as 256 electrodes. The frequency range of the amplifiers used to record 

the brain waves needs to be from 0.1 to 100 Hz to ensure proper registration of all 

periodic details. 

The most common EEG measurements are made with the electrodes placed in 

an internationally recognized configuration illustrated in Figure 10.2. This standard 
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FIGURE 10.2 Positioning of EEG electrodes according to the international 10/20 system. 

The letters F, T, C, P, and O represent the anatomical sections referred to as frontal, central, 

parietal, and occipital, respectively. (a) Top view of the head with 21 electrodes, plus one on 

each ear, and the nose acts as reference point. (b) Left side view of the head with electrodes 

placed in relation to parts of the brain that have been identified as the main location of par­

ticular mental and motor functions. 

allows reproducibility and comparison of recorded EEG with the reported EEGs of 

the recognized cases of physical and/or mental disorders. This standard technique 

has the electrodes at 20° angles with each other across the middle of the skull in a 

hemispherical matrix and at approximately 10° above the eyes. 

EEG is often used to diagnose seizure disorders, tumors, head injuries, degenera­

tive diseases, and brain death. EEG is also heavily used in research on brain function 

and activity. The most frequent application of EEG is in the recording and analysis 

of evoked potentials (EPs) and event-related potentials (ERPs) of the brain. In such 

applications, the EEG signals respond to specific stimuli such as auditory and visual 

inputs and are recorded. EPs and ERPs are instrumental in investigating how long 

it takes for the brain to process different kinds of information in response to the 

designed stimulation. EPs are also used to monitor the level of attention as well as 

stress during various experiments. EPs and ERPs will be described later in this chap­

ter when the clinical applications of EEG are explained. 

The major drawback of EEG is that it cannot reveal from which structure inside 

the skull a specific part of the signal has originated. This is due to the fact that, 

as mentioned earlier, the EEG is a spatial summation of all action potentials com­

ing from billions of neurons at different depths below the cerebral cortex. Hence, 

in sensitive applications where the functional information from the structures 

deep within the brain has to be extracted, functional magnetic resonance imag­

ing ( fMRI) is used. The principles and applications of fMRI will be discussed in 

detail in Chapter 15. The structural as well as functional information provided by 

the fMRI allows brain activity to be determined in relation to specific locations in 

the brain. 

Knowing the general characteristics of EEG, next we start the analysis of typical 

EEG signals in the frequency domain. 
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10.3.1 EEG FREQUENCY SPECTRUM 

The EEG signal is often interpreted based on the presence and absence of particular 

waves with known frequencies. The presence or absence of these waves indicates 

certain physiological conditions that are extremely useful in diagnostics. The typi­

cal waves classified in the EEG signal are alpha (α), beta (β), delta (δ), and theta (Θ) 

waves. The presence and strength of each of these waves can be easily detected 

using discrete Fourier transform (DFT) of the EEG signal (in deterministic analysis 

of the signal) or using the power spectra of the EEG signal (in stochastic processing 

of EEG). The definition of each wave identifies the formation of band-pass filters 

needed to extract these waves. 

The normal adult, in a physically relaxed state while having the eyes closed, pro­

duces a rhythmical brain wave with a frequency of 8–14 Hz, which is called alpha 

wave. Generally, the alpha wave disappears when the eyes are opened; however, they 

may still be present if the person is in a state of extreme relaxation. Since these waves 

were discovered first, they were labeled as alpha waves. From the definition of the 

alpha wave, it is clear that in order to extract this wave component, one needs to pass 

the EEG through a band-pass filter with the pass band set to 8–14Hz. 

The frequency band of the beta waves is 14–50 Hz. The beta waves are prevalent 

in the regions of parietal and frontal lobes. Beta waves are often associated with 

problem solving and logical thinking. As will be discussed later, beta wave is the 

major component observed in an important stage of healthy sleep. In order to extract 

the beta wave, a band-pass filter with the pass band set to 14–50 Hz must be used. 

The delta waves have a frequency range of 0.5–4 Hz and are detected in infants 

and sleeping adults. The band-pass filter needed to extract delta wave has a pass band 

of 0.5–4 Hz. 

The theta waves fall in the frequency range of 4–8 Hz and are measured in resting 

and sleeping adults and in children while awake. This wave can be separated using 

a 4–8 Hz band-pass filter. 

Representative signals from the four frequency bands of the brain activity are 

illustrated in Figure 10.3. Additionally, specific spikes associated with epileptic 

α 

β 

δ 

θ 

1 s 

FIGURE 10.3 Representative frequency patterns from the four spectral groups in the EEG. 

Alpha waves (α) generally cover the spectral range of 8–14Hz, beta waves (β) span the spec­

trum between 14 and 50 Hz, while delta waves (δ) range from 4 to 8 Hz and theta waves (θ) 

are in the frequencies covered by the spectrum from 0.5 to 4 Hz. 
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episodes with no particular frequency spectrum are also observed in EEG. A new­

born’s EEG generally has a frequency range between 0.5 and 2 Hz. The frequency 

spectrum of a baby’s EEG increases rapidly by the second year when short episodes 

of alpha waves can be distinguished. At the age of 14, the EEG is identical to that of 

a grown adult. 

Before discussing the significance of EEG, it is very insightful to explore the 

physical rules governing the formation of major frequencies in the EEG spectrum. 

The coherence and formation of the higher frequencies in EEG can be explained as 

a wave interference phenomenon on purely physical grounds. When a depolarization 

potential is generated in a cell, it travels over the surface of the cortex in the conduct­

ing media. Consider the distance traveled by a neural signal in time t as d. Then, 

assuming the speed of neural signal propagation as V, we have 

d V= ⋅ t (10.1) 

On average, the distance from the frontal to the posterior area of the brain spans 

approximately 0.2 m. In addition, we know the speed of propagation for current 

in biological media is approximately 5 m/s. This means, according to Equation 

10.1, the duration to traverse the distance from front to back of the cortex comes 

to 0.04 s. In reality, this wave travels back and forth between the front and back 

of the brain. Modeling this phenomenon as a standing wave (a pattern formed  

by a forward and a backward moving wave), would generate a primary one-half 

wavelength standing wave. This means that the entire length of the wave, or the 

period T of the standing wave, will be 0.08 s. Calculating the frequency of this 

wave, we have 

1 1
f = =  = 12 5 (10.2) . Hz 

T 0 08  . 

This would be a frequency in the alpha spectrum. Higher frequencies can easily be 

portrayed as higher harmonics this frequency. Lower frequencies, however, will not 

fit the standing wave theory. This phenomenon could be one of the possible explana­

tions that higher frequency brain activity often produces synchronized recordings of 

multiple electrodes; even though the sections of the brain that are sending signals are 

in unison, they are anatomically and physiologically not connected to the phenom­

enon producing the EP. 

Next, we briefly discuss the significance of EEG in medical diagnostics. 

10.3.2 SIGNIFICANCE OF EEG 

EEG is the most commonly used clinical measure in diagnostics of almost all 

types of neurological disorders. Some of the main applications of EEG are briefly 

described in the following, and more detailed applications of EEG will be discussed 

later in this chapter. 

During an important stage of sleep called rapid eye movement (REM) sleep, a 

strong beta wave pattern of 40 Hz was observed in the sleep EEG. During sleep,  
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short burst of frequencies between 12 and 14 Hz also appear in the EEG. These 

bursts are called spindles. The presence of beta (and to some degree, alpha) dur­

ing sleep describes why a major application of EEG is the diagnostics of different 

types of sleep disorders. For instance, a healthy night sleep must contain a rather 

long REM period that is typically detected by the occurrence of beta waves. The 

absence or the short duration of beta (and other similar waves) often indicates an 

abnormal sleep. 

Due to the age dependency of the EEG signal, this signal has significant applica­

tions in the diagnostics of age-related disorders. It is known that during childhood 

the dominant EEG frequencies increase with age. A newborn baby has frequencies 

ranging from 0.5 to 2 Hz. At the end of the second year, the EEG already displays 

short stretches of alpha waves. At the age of 14, however, the brain wave pattern is 

virtually undistinguishable from an adult. The presence or absence of certain fre­

quencies in a person belonging to a particular age group is an indication of abnor­

mality of the brain activities. 

In general, the measure of conciseness can be derived from the frequency compo­

nents of the EEG signal, i.e., as higher frequencies are detected, the patient is more 

alert and mentally occupied. In addition to the increase in frequency with increased 

activity, the neural activity will show less coherence (i.e., more chaotic behavior) 

with an increase in the alertness. This is due to the fact that in an alert brain, each 

neuron acts more and more independent from its neighbors and desynchronization 

becomes more prevalent. The measurement of general electric activity of the brain 

is called spontaneous activity, which represents the apparent chaotic brain activity. 

There are two internationally accepted methods of testing the brain activity that 

are commonly applied in clinical measurements. These two methods are EP record­

ings and ERP recordings. These two methods will be explained next. 

10.4 EVOKED  POTENTIALS 

EPs are the EEG signals generated under external stimuli such as auditory input 

or visual input. EPs are typically used to diagnose the sensory properties and also 

the motor pathways within the specialized sections of the CNS. The different types 

of EP measurements form three classes of measurements: auditory evoked poten­

tials (AEPs), somatosensory evoked potentials (SEPs), and visual evoked potentials 

(VEPs). These methods of stimuli to perform diagnostic utilities are discussed next. 

10.4.1 AUDITORY-EVOKED POTENTIALS 

AEPs are used to check for hearing damage and the source of the damage, either 

mechanical or neurological. During the course of AEP measurement, tones with 

different frequencies are played on a headphone attached to the patient’s ears. While 

the tones are played, the EEG signals are recorded and marked according to the 

frequency of the tone. In the processing step, the correlation between the tone sig­

nal and the recorded EEG will determine the sensitivity of the CNS to the played 

tone. More specifically, when the brain is not responding to a tone with a particular 

frequency, the case can be diagnosed as pathological. The real problem observed in 
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AEP can be due to damages either in the ear or in the CNS. Further tests will verify 

the exact source of the abnormality observed in the AEP. 

Certain pathological neurological sensory conditions as well as mechanical path­

ological auditory conditions can be treated by surgical methods. The importance of 

the AEPs can be further realized knowing that the AEPs serve as the main diagnos­

tic tool to detect these conditions. 

10.4.2 SOMATOSENSORY-EVOKED POTENTIALS 

SEPs are accomplished by the application of electric impulses administered to the 

skin of the arms or legs. The response of the CNS to these stimuli is then measured 

and analyzed to identify the sensitivity and functionality of the neuromuscular sys­

tem under study. It is often the case that the stimuli are applied to the arm or leg that 

is closest to the muscular system under study. 

Under normal conditions, these electric impulses delivered through electrodes 

pass through the skin and result in motor neuron actions. These neuron actions are 

typically followed by muscle contractions. The muscle contractions are stimulated 

by delivery of currents in the range of 25–50 mA. The electric impulses are usually 

delivered in pulse mode to avoid saturation and muscle fatigue. The pulse durations 

are varied between 100 μs and 1 ms. It is standard procedure to apply the stimulus at 

various distances from the location where the EPs are recorded. 

The measured time delay between the stimulus and EP is often treated as the 

main indication of pathological characteristics. A long observed delay indicates that 

the neural pathways involved in the transmission of the stimuli to the brain are some­

how damaged. The SEPs are typically used as the main diagnostic tools to identify 

neuromuscular disorders. They are also utilized to measure the depth of anesthesia 

in some specialized surgeries. 

10.4.3 VISUAL-EVOKED POTENTIALS 

VEPs are EEG signals measured when the patient is subjected to the visual stimuli. 

The applied visual stimuli often contain high-contrast patterns stretching the entire 

field of view. Such stimuli typically generate sensory potentials that are transmitted 

to the brain and are reflected in the measured EEG. The main part of the brain that 

registers VEPs is the primary visual cortex, located on the rear of the head in the 

occipital lobes of the brain. However, other areas of the brain have been found to 

show EPs as well. 

During the course of measuring VEPs, there cannot be any distractions, espe­

cially other visual disturbances, because the brain stimulus needs to be responding 

only to the applied visual stimulus. A standard visual stimulus is the use of a check­

erboard that changes the location of the black and white squares. Other stimuli are 

flashes of light that turn on and off with a certain frequency and other light-intensity 

patterns. One aspect of designing useful visual stimuli is calibration and standard­

ization of the stimuli. The aspects of the stimuli that need to follow certain standards 

include the light color(s), the light intensity, the pupil diameter, and the degree of eye 

fixation on the stimulus. 
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FIGURE 10.4 Representative bipolar EEG of a visual evoked response using the electrode 

placement from Figure 10.2. 

As in other types of EPs, the existence and amplitude of the response to a certain 

stimulus as well as the latency in the response are often the most informative fea­

tures of the recorded signals. In the experiments using flashing lights with different 

frequencies, the frequency spectrum of the response of the visual system is identi­

fied and analyzed. As discussed in Chapter 2, the phase of the frequency response 

indicates the delay (latency) of the response. 

The EEG from a VEP is illustrated in Figure 10.4. As can be seen in these bipo­

lar recordings, the signal is strongest near the section of the brain that processes 

visual input. The visual input is processed in the rear of the head, with the left brain 

processing the information of the right eye. The signals that are recorded at greater 

distance from the active brain are displaying lower amplitude potentials and also 

have a delay with respect to the main evoked response potential. 

10.4.4 EVENT-RELATED POTENTIALS 

ERPs that are closely related to EPs investigate the response of the CNS to psycho-

physiological events. ERPs detect the EEGs resulting from a combination of various 

stimuli. The stimuli are designed to emulate the environment of the event to be stud­

ied, for example, sensory stimuli such as smell, electric currents, and muscle stimuli 

in response to the challenge reflecting the event to be studied. 

While the most common stimuli for ERPs are light and visual patterns, there is 

a difference between typical stimuli used in EPs and ERPs. In ERPs, by arranging 

the stimuli according to specific archetypes, the brain is tested for its response to 

complicated tasks, and, simultaneously, we study the sensory perception as well as 

the cognitive processes of the brain. This means that in ERPs, the stimuli are often a 

combination of the basic stimuli in EPs to better emulate the environment in which 

the brain needs to be tested. 
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Since the stimuli are not very specific, the ERPs are extremely small in amplitude. 

The standard mode of operation in such situations is to perform repetitive measure­

ments and to average the signals. Ideally, all the signals in these repeated experiments 

must have a similar response (in the strict theoretical sense); often in practical applica­

tions, the measured signals are stochastic signals that are in the best condition 

stationary processes. As discussed in the analysis of stochastic processes, averaging 

the actual responses would increase the signal-to-noise ratio; however, the unique 

response of a single stimulus may be lost. In typical analysis of EPs and ERPs, stochastic 

analysis is often preferred over the deterministic signal processing. 

The investigation of EPs and ERPs usually focuses on establishing characteristic 

changes in typical signal components. These characteristic features usually receive 

a designation based on the polarity of the initial signal deflection, either positive 

or negative, in combination with the time lag in milliseconds. For instance, P300 

stands for a positive peak after 300 ms. As another example, an auditory stimulus 

will have a typical response signal with approximately 100 ms latency compared to 

the applied stimulus. Such a response is typically a negative deflection and is referred 

to as N100, due to the 100 ms delay and the negative nature. 

ERP EEG measurements are often used to investigate neurophysiologic corre­

lation between factual knowledge, awareness, and attention. ERP measurements 

can also be used to identify specific components or patterns in the electromyogram 

(EMG) signal, which is the electric activation of muscle tissue. The EMG will be 

discussed later in a separate chapter. 

10.5  DISEASES OF CENTRAL NERVOUS SYSTEM AND EEG 

In clinical applications, EEG is commonly used to diagnose diseases in the CNS. 

While the cerebellum, thalamus, and spinal cord do not offer large enough signal 

amplitudes to make clinical observations, signals originated at the cortex are heavily 

used for biomedical diagnostics. A typical use of EEG, as discussed later, is the diag­

nosis of epilepsy. This is the application that made EEG a routine clinical test of the 

CNS. Some of the important diagnostic applications of the EEG are described next. 

10.5.1 EPILEPSY 

Epilepsy is a chronic illness identified by irregular occasions of unconsciousness, 

sometimes associated with violent convulsions. It is a pathological condition of a 

group of nerve cells firing harmoniously with a certain frequency. With the default 

location of the nerve cells in the cortex, this will manifest in a measurable EEG 

signal. It is estimated that approximately 1 out of 2000 people per year will develop 

some type of epilepsy. In addition, it is speculated that 1 out of every 20 people will 

have at least one spontaneous epileptic occurrence in their lifetime. 

From the standpoint of diagnostics, it is a definite inconvenience that epileptic 

attacks are relatively unpredictable. However, sometimes epilepsy can be induced 

under laboratory conditions. In general, epilepsy may be induced by periodic events 

such as flickering lights in a discotheque or while traveling down a road lined with 

trees, providing an alternating sun-shade sequence. In the clinical environment, 
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a minor event may sometimes be induced by mechanical stimulus such as tapping 

on the arm. The frequency of epileptic EEG signals usually displays depolarization 

spikes at 3 Hz intervals. 

Epileptic events are characterized in various forms. One method of identifying 

different stages of epilepsy is the discrimination between the duration of the epilep­

tic events and the intervals between the events. The nomenclature for this designa­

tion uses the terms “petit mal” and “grand mal” from French, meaning “small bad” 

and “severe bad” episodes, respectively. The petit mal frequently occurs in children 

and is fairly brief in duration, but it may occur very frequently. During the several 

seconds or minutes of the petit mal attack, the patient will endure minor spasms, 

mostly in the face, jaw, and hands. There are not too many consequences involved 

with a petit mal attack. The other classification is grand mall, which results in violent 

convulsions and the patient will lose consciousness. 

Another classification method for the types of epilepsy distinguishes general and 

partial seizures, nonepileptic seizures, and the most severe: status epilepticus. The 

general seizures are subdivided in severity as absence, atonic, tonic–clonic, and myo­

clonic. The absence corresponds mostly to the petit mal of the previous system of 

classifications and the tonic–clonic is equivalent to the grand mal seizure. Partial sei­

zures are subdivided in simple and complex. The nonepileptic seizures will change 

the patient’s behavior for a brief period of time and resemble the symptoms of the 

standard minor stages of general epileptic seizures. One main characteristic of non-

epileptic seizures is that they are not generated by electric disturbances in the cortex. 

The status epilepticus involves sustained epileptic attacks associated with nonstop 

seizures and convulsions. The status epilepticus can result in death when no immedi­

ate medical attention is provided. Patients may have only one type of epilepsy or a 

combination of several classified stages at different times. 

The characteristic feature of an epileptic assault is an abrupt onset with perfectly 

synchronized action potentials across all 20 electrodes. Therefore, the amplitude 

of high-frequency epileptic EEG is much higher than the normal delta wave. The 

mechanism driving an epileptic assault is still not completely understood. The EEG 

of an epileptic attack called a “petit mal” is illustrated in Figure 10.5. The recording 

uses only four bipolar measurements from the electrode placements in Figure 10.2. 

As is evident from the recordings of different locations in Figure 10.5, there appears 

to be an overall chaotic disturbance in the EEG of the entire cortex. 
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FIGURE 10.5 Epileptic recording of four bipolar measurements of a petit mal epoch from 


Alpo Vaerri and a research team at the Tampere University of Technology, Tampere, Finland.
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The focal location of the origin of the epileptic signal is usually determined by 

finding the inverse solution to a so-called equivalent dipole source from the EEG 

recordings. The equivalent dipole source feature was described in Chapter 8. 

Combining the spatial distribution with the temporal information of the representa­

tive features in the EEG signal from many electrodes can usually resolve the source 

location with relatively high degree of accuracy. 

10.5.2 SLEEP DISORDERS 

Due to the distinguished differences in frequency content of the awake and sleep 

EEG, the EEG recordings are heavily used in diagnosing sleep disorders. As men­

tioned earlier in this chapter, the EEG of a person at rest is in the low-frequency 

ranges, especially with the eyes closed. However, there are different stages in sleep 

that can be identified using EEG. The various sleep stages with the associated EEG 

signals are illustrated in Figure 10.6 in comparison with the EEG of a person that is 

solving a complex problem and thus exhibits beta waves. 

Several criteria have been adopted to identify the different sleep stages. As men­

tioned previously, the most important stage of sleep, at least in terms of clinical use, 

is characterized by REM. The eye movement is controlled by muscles and the acti­

vation of the muscles in turn gives an electric depolarization signal that is stronger 

than the EEG. While the muscle activation signals in the EEG recordings due to the 

eye movement may not be perfectly filtered out, these signals will need to be iden­

tified and categorized. The electric activity associated with the muscle movement 

is monitored under an algorithm called the EMG. EMG is covered in Chapter 11. 

The combined EMG and EEG recordings can be used to score sleep stages. This is 

typically done by analyzing the data to obtain representative features describing the 

muscular and neural activities. Since the frequency range and the signal patterns of 

the expected eye movements are typically known beforehand, EMG and EEG can be 

separated on the signal processing level using typical signal processing procedures 

such as DFT and wavelet transform (WT). 

Relaxed 

Resting with

eyes closed
 

Light sleep 

REM sleep 

Performing
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FIGURE 10.6 Various sleep stages as represented in the EEG in comparison with the EEG 

of a person solving an assignment as an event-related high-frequency potential. 
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In a typical use of the EEG for diagnostics of sleep disorder, the features captured 

from several hours of sleep EEG are compared to the features of standardized cases 

of normal and abnormal cases. The standardized data file is often called a score file. 

The comparison of patient feature matrices to the standard score file provides a plat­

form for automated sleep pattern recognition. Ideally, the score system provides the 

tool needed for automated identification of sleep disorders. 

10.5.3 BRAIN TUMOR 

The EEG can also indicate the presence of brain tumors. Both malignant and benign 

masses in the brain can be the cause of epileptic episodes. In most cases, the pres­

ence of a tumor will reveal a focal source in the spatial EEG recordings. The tumor 

can be regarded as an intermittent dipole, which can be located by reverse solution to 

the spatial EEG recordings. The tumor will cause the greatest disturbances closest 

to the tumor and will thus be identified by the electrode placement. Due to the rela­

tively inexpensive nature of EEG recording, they are used as the initial examination 

of patients suspected of having a brain tumor. The next step in the detection of the 

brain tumor will be an MRI or a positron emission tomography (PET) session; both 

techniques will be covered in Chapters 15 and 17, respectively. 

10.5.4 OTHER DISEASES 

Another common use of EEG is the diagnosis of meningitis. Meningitis is an infection 

of the membranes that surround the brain, which may sometime cause inflammation 

of the brain itself. Meningitis will typically result in capricious bursts of electric poten­

tials at high frequency from randomized locations in the cortex that are reflected in the 

EEG. With an infection of the meninges, which surrounds the cortex, a disturbance 

of the depolarization of the gray matter neurons can be expected. The result is usually 

wave trains of 1–1.5 Hz. The meningitis provokes the cortex, but not in one place only. 

The infection-excited wave trains may also randomly shift in the spatial recordings. 

Parkinson’s disease is the process of diminishing neural activity due to the fact 

that nerve cells are consistently dying. This is an irreversible process in most cases, 

but when diagnosed in an early stage, there is medication that can slow the process 

down. The EEG of a Parkinson’s disease patient resembles that of a toddler or a 

young child. 

10.6  EEG FOR ASSESSMENT OF ANESTHESIA 

During anesthesia, drugs are administered that are specifically aimed to depress 

nerve cell activity. The effects of anesthetic and analgesic drugs result in specific 

unusual patterns that can be observed in the EEG. Another cause for the slowing of 

EEG is a lowered oxygen content of the blood (hypoxia) or a lowered carbon diox­

ide concentration (hypocapnia). A severe increase in carbon dioxide concentration 

(hypercapnia) will cause a decrease in the EEG spectrum as well, while a small 

increase in the carbon dioxide content can result in an increase in the spectral con­

tent of the EEG. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

210 Biomedical Signal and Image Processing 

When the normal brain pattern with standard frequency content is alternated by 

periods of EEG signal that have an extremely low frequency content (flat EEG), this 

is identified as burst suppression. Burst suppression has been linked to a diminished 

metabolic function of the cortical neurons. This is usually an indication of deprived 

oxygen supply to the brain. Additionally, in anesthesia monitoring, this burst sup­

pression is often seen in relation to the dosage changes of various anesthetic drugs. 

EEG monitoring to determine the consciousness of a patient predominantly focuses 

on the spectral content of the EEG. This monitoring can take place either in the operat­

ing room (OR) during or after surgery, or in the intensive care unit (ICU) for a patient 

that may appear to be in a coma. The existence of more significant higher frequency 

contents in an EEG signal generally indicates a more alert state of consciousness. 

10.7  PROCESSING AND FEATURE EXTRACTION OF EEG 

In order to maximize the information extracted from the EEG signal, the signals 

need to be analyzed and characteristic features must be revealed. Some typical meth­

ods used for processing and featuring extractions of an EEG are described next. We 

start this section with the description of typical noise sources for EEG signal. 

10.7.1 SOURCES  OF NOISE  ON EEG 

Several features will provide signals that are much more powerful than the EEG 

signals, such as muscle contractions and eye movement. The eye is a large dipole and 

as such produces a large signal under ordinary conditions. The eyes move left to right 

at approximately 10 times per second to prevent saturation of the rods and cones in 

the retina. Both eyes move, by definition, in unison and will provide both left and 

right eye signals in both left and right brain. This phenomenon can be eliminated 

by placing the reference electrode on the nose, thus providing a signal cancellation 

through electronic processing. Using differential amplification, the eye movement 

will be expressed in all electrodes and will be rejected by the common mode rejec­

tion factor of the amplifier. 

Another potential source of noise is electrode motion. Each electrode forms an elec­

trochemical equilibrium with the skin of the head, and when the electrode is moved, 

the equilibrium will need to be reestablished. This type of noise is easily identified 

because of the magnitude of the motion artifacts but, at the same time, will require 

considerable time to reestablish equilibrium. This motion artifact caused by the elec­

trodes can also be compensated for using signal processing if the range of frequency 

for the motion artifact is different from the measured EEG signal. For instance, since 

this motion often has a frequency less than a few Hz, a low-pass filter can eliminate 

most of the noise without affecting the high-frequency waves in the EEG. 

Another frequency artifact observed in the EEG is due to the temperature-

dependent nature of this signal. Generally, a slowing of the EEG activity is observed 

during hypothermia, when the body temperature drops below 35°C. This does not 

necessarily mean the patient has suffered any brain damage. This is why it is often 

recommended that EEG signals are taken in a room with a fixed temperature and 

illumination settings. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

211 Electroencephalogram 

Other sources of error can be introduced by the leads acting as antennas picking 

up ambient alternating signals through induction. Sources include the socket power, 

switching of equipment, and motion by the technicians in the earth’s magnetic field. 

An often overlooked but significant source of error is the saline drip from the intra­

venous line. The salt solution may cause spikes in the recordings when dripping. 

The muscle contractions of the face caused by blinking, the chest motion due to 

respiration, and the ECG are all significant sources of fluctuating electric potential 

that cannot be simply ruled out and need to be filtered during the measurement of 

the EEG. The muscle signal artifacts are generally characterized as relatively high 

frequency variations. 

Filtering specific frequency bands from the EEG can be used to reduce the influ­

ence of muscle activities as well as other sources of noise listed earlier. This is 

explained in more detail next. 

10.7.2 FREQUENCY-DOMAIN ANALYSIS 

The use of a low-pass filter with a cutoff frequency around 12.5Hz is necessary to 

ensure that the residual muscle activities do not interfere with EEGs beta activity. 

However, this is not desirable in most recordings, since the true beta activity and 

spike-type activity will also be attenuated or even obscured. In case the interference 

from the external source noise is persistent, some form of filtering will have to be 

incorporated. An adaptive digital notch filter, which allows all frequencies to pass 

through except for the frequencies in the narrow band of the interfering noise, is 

often preferred over a simple low-pass filter. 

Conversely, when only a specific frequency range of the EEG requires particular 

interest, a band-pass filter can be applied to filter out low-frequency muscle activ­

ity and high-frequency interference from instrumentation to extract the pure EEG 

signal. The high-frequency components to be filter out include the power supply’s 

frequency (50 or 60 Hz) and the high-frequency muscle activity. 

A main method of EEG feature extraction in the Fourier domain is evaluation 

of the power of specific frequencies in the power spectra of the signal. A full fre­

quency spectrum recorded from all over the head with 64 electrode placements 

during a 1 s segment is shown in Figure 10.7. As mentioned before, due to the noisy 

nature of the EEG, it is often preferred to treat EEG as a stochastic process, and as 

a result, the frequency analysis of the signal is performed using the power spectra 

of EEG. The frequency spectrum of the EEG signal can be easily computed by 

taking the DFT of the EEG correlation function. While an equipment artifact that 

operates in a specific frequency range may not reveal itself clearly in unprocessed 

EEG traces, a spectral analysis will quickly reveal any irregular pattern of higher 

harmonics in the frequency spectrum. 

The EEG spectrum is often analyzed only over consecutive short-time segment. 

The short-time interval of frequency analysis is called an “epoch.” The longer the 

selected epochs targeted for frequency transformation, the better the frequency reso­

lution. However, there is a trade-off in taking longer time segments since they will 

result in a lower time resolution. The time resolution can be improved by shifting 

epochs forward over the chosen time segment. The best accuracy in time resolution 
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FIGURE 10.7 Two-dimensional display of a normal frequency spectrum recorded 

with a 64-electrode placement for an awake resting person in a 1 s interval. (Courtesy of 

Dr. Henri Begleiter, Neurodynamics Laboratory, State University of New York Health Center, 

Brooklyn, NY.) 

can be obtained by using short-time shifts, in the order of 10ms. Most benefits will 

be in the recognition of fast-changing signals such as epileptic seizure analysis. 

The main frequency components of a typical EEG, alpha, beta, delta, and theta 

waves, are informative frequency components that are easily extracted from the 

power spectra and are heavily used in the diagnostics of EEG. 

Another useful frequency measure applied in the analysis of EEG is called spec­

tral edge frequency (SEF). This measure is of particular importance in the analysis 

of the depth of anesthesia. The SEF quantifies the influence of the highest frequency 

range in the power spectrum of EEG. The SEF identifies the relative strength of the 

high-frequency components in the signal and is therefore an indication of the power 

distribution over the frequency spectrum. The depth of anesthesia is often identified 

as a reduced influence of the high frequencies in EEG. This means that a reduction 

in SEF corresponds with a deeper level of anesthesia. 

Similarly, another frequency measure is defined as the median peak frequency 

(MPF), which is the frequency located at 50% of the energy level. This MPF indi­

cates the general shift in frequencies, in contrast to the SEF, which gives the overall 

high-frequency share. The MPF is also used in the analysis and quantification of 

anesthesia depth. 

10.7.3 TIME-DOMAIN ANALYSIS 

Artifact detection in time domain is usually based on the empirically determined 

amplitude thresholds. An artifact is usually defined as the instantaneous EEG 



 

 

 

 

 

 

 

 

 

 

213 Electroencephalogram 

amplitude exceeding a threshold that is at least six times the average amplitude of the 

recording over the preceding 10 s. This criterion needs to be combined with bound­

ary conditions of the algorithm that ensure the capture of the entire artifact. 

Electric signals originating from muscles usually have a steeper slope than the 

average EEG signal. The use of slope threshold or steepness threshold can be used 

to minimize the influence of these types of muscle artifacts. The slope of a curve 

is found by estimating the first derivative of the signal. The first- and second-order 

derivatives of the slope are also used to form a complexity measure from the EEG 

signal. These measures are highly similar to signal complexity and signal mobility 

measures introduced in Part I of the book. 

Other complexity measures such as fractal dimension and entropy are also heav­

ily used as features of the EEG signal. A very important rule regarding the fractal 

dimension of the EEG signal indicates that the fractal dimension of EEG falls by 

age. This means that older people often have much smaller fractal dimensions com­

pared to younger people. An intuitive justification of this phenomenon is based on 

the internal complexity of the brain. From the definition of fractal dimension, it is 

evident that systems with complex modular structure will provide a higher fractal 

dimension. More specifically, a system, where many active subsystems generate sig­

nals, will produce an overall signal that reflects the intrinsic hierarchical or modular 

structure in the form of a highly fractal signal. In a young brain where all parts of 

the brain are active, the hierarchical and modular structure is more significant. But, 

as the person grows older, some parts of the brain become considerably less active, 

which in turn reduces the complexity of the EEG signal. The same decreases in other 

complexity measures are recorded in EEGs of older people. 

It is also reported that all complexity measures of the EEG signal and, in par­

ticular, the fractal dimension decrease in diseases such as epilepsy and Alzheimer’s. 

This is again due to complexity reduction of the brain due to the reduction in modu­

larity of brain activities. The reduction of almost 30% fractal dimension of EEG in 

epilepsy is used as a diagnostic criterion to detect epilepsy. 

An efficient method of EEG analysis is designed based on the coherence of the 

recorded signals, as described in the following. 

10.7.3.1 Coherence Analysis 
Another type of EEG characterization is based on the synchronicity of any pairs of 

signals in the 20 channels. The measure of coherence between channels can reveal 

details on the efficiency of the brain functions. One common method of EEG syn­

chronicity analysis is achieved by comparing the recordings of the electrodes in the 

left brain to the corresponding electrodes in the right brain. A powerful tool for this 

type of comparison is averaging, gated by specific stimuli such as the ERP methods, 

which will be covered in the following subsections. 

Coherence analysis is also performed between the specific waves (frequency 

bands) of the EEG signals. In the description of the alpha wave spectrum, it was indi­

cated this spectrum represents a significant level of consciousness. Since the patient 

is alert during both alpha and beta rhythms, especially during the beta rhythm, these 

wave patterns will display a certain level of coherence. In contrast, since the theta 

waves are generated under relaxation with little or no sensory input. These waves do 
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not display any significant amount of coherence, as there is no common denominator 

driving this activity. One possible explanation of the fact that the coherence analysis 

of neither delta nor theta spectra reveal any useful task-related information is the fact 

that the wavelength of these waves is too long to be recognized with a high enough 

accuracy to produce the benefits of coincidental detection. 

10.7.4 WAVELET-DOMAIN ANALYSIS 

As shown in Chapter 5, wavelet techniques are typically used for the detection of 

known waveform patterns against a noisy background signal. 

A major application of wavelet analysis is processing of EEG by detecting spike-

like epileptic patterns. The detection of epileptic pattern is of particular concern 

because, in most suspected epileptic cases, these patterns appear at random and only 

for brief periods of time. Due to infrequent occurrence of these patterns, Fourier 

analysis can miss these patterns. In addition, since the patterns of these spikes are 

often known beforehand, one can design a wavelet method to not only detect the 

existence of such pattern but also identify the exact time of the occurrence of these 

abnormal patterns. 

An important issue in wavelet analysis of EEG is the choice of epoch length. 

When analyzing a single epoch, the total number of sequences available is of direct 

influence on the standardized time period testing. This influence is due to the unreli­

able intercorrelation between adjacent sequences. Epoch lengths of 1–2 s duration are 

recommended for EEG processing. This duration guarantees a widespread stability 

in the data features. This is even more important when using low sample frequencies. 

The wavelet analysis is particularly important in analysis of EPs. Wavelet analy­

sis of EP finds the typical shape of the EP pattern by finding the largest coefficients 

identifying the highest correlation of decomposed signals with the pattern of applied 

stimuli. In other words, when a decomposed version of the signal at a certain level 

shows a high correlation with the stimuli pattern, the resulting waves in the decom­

posed signal identify a good estimation of the EP pattern. 

Wavelet is also helpful in the determination of synchrony at the scalp. Specifically, 

the determination of the exact delay between two patterns can quantitatively identify 

the level of synchrony of the two waves. This decomposition is used in a number of 

measures of harmonization, where the measures are based on both amplitude and 

phase information. 

Wavelet analysis can also be used for denoising and filtering of the EEG signal. 

Often the very low scales, i.e., high frequencies, identify the additive noise, and, by 

removing the low-scale components, the signal can be filtered. This was demon­

strated in the chapter dedicated to wavelet analysis. 

10.8 SUMMARY 

In this chapter, we described the recording of nerve cell electric activity in the brain 

by means of a signal called EEG. EEG can be characterized by four specific fre­

quency ranges that roughly differentiate different mental activities. Alpha waves are 

associated with sensory input and data processing. Higher frequencies in the beta 
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spectrum are characteristic of problem solving and complex tasks. Lower frequen­

cies such as delta and theta waves are prevalent in children and during rest. There are 

several standard ways of providing calibrated tests on the functioning of the brain. 

Many tests involve sensory stimuli and specific restrictive assignments to generate  

EPs. Typical diagnostic applications of EEG analysis are as follows: diagnosis of  

epilepsy, monitoring of brain activity of patients under anesthesia, analyzing sleep 

disorders, and initial tests for identifying suspected brain tumor. 

PROBLEMS 

10.1	   Import the EEG signal in the file “p_10_1.xls” and plot the 10 channels.* The 

sampling rate was 256 samples per second with 3.9  ms period. 

 a.	  D etermine the dominant frequency of channel 0 and compare this to the 

dominant frequency of channel 8. 

 b.	   In channel 0, using the power spectra of the signal, locate the motion arti­

facts that are characterized by a gradual change in the trend (DC offset) 

of the signal. This artifact is resulting from either electrode movement or 

muscle action. 

10.2	  U se the MATLAB® to read the file “p_10_2.xls” and plot the four graphs.  

The sampling rate of this data file is 100 Hz, and the file spans 10  s worth  

of data. The data are of a suspected petit mal assault in a 13-year-old  

patient.† 

 a.	  D etect the spike-and-sharp-wave complexes with wavelet analysis and 

determine the duration of these events. 

 b.	   Using the duration of these events, and by considering the typical fre­

quency or duration of petit mal patterns, verify that these assaults fall in  

the petit mal category. 

10.3	   Import the data in file “p_10_3.xls” and plot the EEGs. The sampling rate of  

the data was 173.61 Hz. The EEG pattern of “p_10_3.xls” represents a grand 

mal assault.‡ 

 a.	  Determine the normal EEG frequency spectrum. 

 b.	  Determine the onset of the epileptic EEG pattern. 

 c.	  Plot the power spectrum of the signal. 

 d. 	Ca lculate the fractal dimension, signal complexity, and signal mobil­

ity of this signal and compare it with the same values for the signal in  

Problem 10.4. 

10.4	   Import the data in file “p_10_4.xls” and plot the single EEG. This file shows 

tonic–clonic or grand mal assault seizures. The data were recorded with a C4 

electrode on the right central portion of the scalp with the earlobe as reference.  

*  The data file “p_10_1.xls” is a portion of 64 recordings of a study by Dr. Henri Begleiter at the 

Neurodynamics Laboratory at the State University of New York Health Center at Brooklyn in the 

effects of alcoholism on the brain activity and on the EEG. 
† 	 The data file is from Alpo Vaerri and a research team at the Tampere University of Technology, 

Tampere, Finland. 
‡ 	 Courtesy of Ralph G. Andrzejak, Department while at the Department of Epileptology of the 

University of Bonn, Bonn, Germany. 
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The file contains a 1 min episode-free segment followed by the epileptic 

attack.* The total file duration spans 3 min with post-seizure activity. The sam­

pling rate is 102.4 Hz. 

 a.	   Detect the spike-and-sharp-wave complexes with wavelet analysis and 

determine the duration of these events. 

 b.	  V erify that these assaults fall in the grand mal category since the duration 

is longer than a few seconds. 

 c.	   Locate the post-seizure activity, and determine the dominant frequency(ies)  

in the spectrum of the epileptic attack and the post-seizure epochs. 

10.5	   Import the data in file “p_10_5.xls.” Each event spans 512 data points (256  

prestimulation and 256 poststimulation) stored with a sampling frequency of  

250 Hz. This file represents 16 trials of VEP.† All 16 trials are stored consecu­

tively in a single column. 

 a.	  Plot the EEGs of 16 visual stimuli in 16 different graphs. 

 b.	  Identify the start of the VEP. 

 c.	  Determine the duration of each of the 16 events. 

* These data were supplied by Rodri Quian Quiroga of The University of Leicester, Great Britain while 

at California Institute of Technology in Pasadena California. 
† The data were acquired by Martin Schuermann at California Institute of Technology. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 Electromyogram 

11.1  INTRODUCTION AND OVERVIEW 

Electromyogram stems from three terms: electro, which means pertaining to elec­

tric activity; myo, which has a Greek root meaning muscle; and gram, which stands 

for recording. Electromyography, or EMG, refers to recording of muscle’s electric 

activities. 

As mentioned in the previous chapters, every cell creates some electric activity as 

part of its normal functioning. This rule is also applicable to the muscle cells. Having 

this rule in mind, EMG can be defined as a signal that records the electric activities 

generated by the depolarization of muscle cells during muscle contraction, and the 

nerve impulses that initiate the depolarization of the muscle. 

The first action potentials generated by human muscle contraction were recorded 

by Hans Piper in 1907, and ever since EMG has emerged as vital signal in medi­

cine. Specifically, in today’s medicine, a number of neuromuscular disorders are 

diagnosed using EMG. In this section, the nature of this signal, as well as the 

computational methods to process this signal for different medical applications, 

is discussed. We start this section with a brief review of muscle, its structure, and 

electric activities. The anatomy and physiology of the muscle provides a better 

insight to the origin of the EMG signal itself. 

11.2 MUSCLE 

Muscles provide motion in response to nerve impulses. From the system theory 

standpoint, the roles of muscles can be better understood when focusing on a typical 

neuromuscular activity such as a “reflex.” The reflex loop is described as follows. 

An assortment of external stimuli, for example, the touch of a hot object, is received 

by the receptors in the body. The nervous system processes this information, either 

consciously or involuntarily, and issues a response to respond and react to the situ­

ation perceived. This response is transmitted to the muscles through the network 

of nerves. As the muscles execute the command, a mechanical motion is created to 

react to the stimuli. For instance, in the previous example of touching a hot object, 

as a result of the muscle activations, the head retracted. As can be seen from the 

earlier example, muscles are at the end of a reflex loop and often respond by forming 

a muscle contraction. 

There are two main categories of muscle that can be distinguished based on their 

anatomy and on the particular functions they perform. The largest group of muscles is 

the group of skeletal muscles, which control posture, generate heat, and provide motion 

control. The skeletal muscles are mostly influenced by the brain in a conscious act. 

The second group of muscles is the group of smooth muscles. Smooth muscles 

provide rhythmic motion outside the control of the brain (involuntary). The heart is 
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218 Biomedical Signal and Image Processing 

entirely made of smooth muscles of different size and function. As mentioned in the 

previous chapter, the smooth muscle of the heart is called cardiac muscle and plays 

a central role in synchronization of cardiovascular activities. Smooth muscle tissue 

is generally found in the abdomen and in arteries. Even though smooth muscles are 

not controlled voluntarily, they are controlled by the autonomic nervous system. 

Unlike in the skeletal muscles, the depolarization wave front is not delivered to the 

entire smooth muscle system at once. Rather, the smooth muscle cells transmit the 

depolarization signal from cell to cell, to produce a wavelike contraction mecha­

nism. The transmission between the individual cells takes place through interca­

lated disks, which are incorporated in the smooth muscle cell itself. This process 

was previously described in Chapter 10 with more details for the smooth muscles 

of the heart. 

Regardless of the exact type of the muscle, every muscle has the following 

four characteristics: excitability, contractility, extensibility, and elasticity. The 

excitability represents the phenomenon of the effect of an external stimulus to 

contract. The contractility means that the muscles have the ability to contract 

or shorten themselves. The extensibility represents the ability of the muscles to 

stretch by external force and to extend their length. Finally, the elasticity signifies 

the fact that muscles have the ability to return to the original shape after contrac­

tion or extension. 

In principle, a nerve cell provides a train of impulses delivered to a muscle or a 

group of muscles. These impulses depolarize muscle cell(s) and cause the muscles 

to contract. The frequency of the nerve impulses determines the process of muscle 

depolarization and muscle contraction. Due to the central role of this nervous excita­

tion process and in order to better describe the nature of the EMG, next we will focus 

on the concept of a “motor unit” as part of the driving mechanism in the operation 

of the muscle contraction. 

11.2.1 MOTOR UNIT 

Several muscle fibers are innervated by only one single motor neuron or motoneuron. 

The structure containing the motor neuron and its connected muscle fibers is known 

as the motor unit. In other words, a motor unit is composed of a single nerve fiber 

(neuron) and all of the muscle fibers it innervates. All the motor neurons innervated 

by the same nerve cell fire in concert whenever an action potential is conducted 

along the neuron. Each muscle is composed of a number of motor units, and each 

motor unit, as mentioned earlier, is driven by a neuron. Depending on the collective 

effects of the information coded in the nerves deriving a muscle, a particular action 

(e.g., contraction or relaxation) is performed by the muscle. Absence of any electric 

impulses will make the muscle relax. 

The chemical process under which the neuron stimulates the fibers in a motor 

unit, illustrated in Figure 11.1, can be briefly described as follows. As can be seen 

in Figure 11.1, under the influence of an external action potential transmitted by 

a nerve cell, the axon of the nerve cell ending in a synapse releases a chemical 

substance called a neurotransmitter (acetylcholine: ACh) that travels the distance 

between the nerve cell and the muscle cell. The ACh attaches to ACh receptors 
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FIGURE 11.1 Motor units are composed of a nerve fiber, and the muscle fibers are inner­

vated by this nerve fiber at the motor plate. The motor plate is a synapse junction that releases 

ACh in between the muscle fibers. 

located on the postsynaptic membrane of the muscle cell. The area on the muscle 

cell that receives the neurotransmitter is called the motor end plate, a specialized 

section of the muscle sensitive to this ACh. The binding of the ACh to the motor end 

plate of the sarcolemma (the cell membrane of the muscle cell) initiates a release of 

sodium anions across the sarcolemma, causing the muscle cell to depolarize. The 

contraction mechanism will be further described later under a section dedicated to 

muscle contraction. 

During neural activation of the muscle, each complete motor unit is either on or 

off, as the entire unit is driven by only one nerve cell. In this way, all muscle cells 

grouped together in one muscle contract together to perform work. The motor units 

of one muscle group may originate from different nerve cells. Motor units are inter­

woven with the muscle, so that various motor units will control one entire muscle 

made up of many muscle cells. This principle is known as redundant circuits. When 

one circuit fails, there is always a backup circuit to complete the task. Because the 

alpha neurons that innervate the motor units have their origin in the spinal cord, 

spinal cord injury may result in loss of motor function. 

Depending on the size and level of control of the muscle, only a single motor 

unit may affect the area where the muscle is placed. The number of muscle fibers in 

a motor unit ranges from only a few to many thousands of muscle fibers. For more 

intricate muscle groups, such as those operating the fingers, several motor units will 

control one muscle group, and less information about that particular muscle function 

can be derived. As a rule of thumb, if a muscle is expected to perform very delicate 

and versatile activities, then each motor unit of the muscle is expected to initiate only 

a fine motion. For such muscles, the number of motor units consists of only a few 

muscle fibers. As example of such a muscle, we can name extraocular muscles where 

each motor unit consists of only five or six muscle fibers. On the other extreme, 
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there are rather larger muscles in charge of relatively coarse motions. In these large 

muscles, which include the large muscle of the lower limb such as gluteus maximus, 

each motor unit engages approximately 2000 muscle fibers. 

In order to see how contraction is performed by a muscle, we need to focus on the 

internal structure of a typical muscle and describe the interaction among the mol­

ecules involved in the process of contraction. 

11.2.2 MUSCLE CONTRACTION 

A muscle is made up of several muscle cells, and every muscle cell has a larger num­

ber of muscle fibers. Each muscle fiber is made of strands of tissues, called fibrils 

composed of smaller strands, called filaments. As shown in Figure 11.2, the muscle 

structure has two types of filaments: actin and myosin. Both actin and myosin are 

large proteins that can be polarized. The actin and the myosin are arranged in inter-

spaced configuration in which each actin and myosin has generally three neighbors 

of the opposite kind, as shown in Figure 11.2. The disk formed by an actin and its 

neighboring myosin is called a Z-disk. 

In contrast to the nerve cells (neurons), the muscle cells depolarize by the 

release of calcium ions into the muscle fiber. The neural impulse transferred 

across the synaptic junction between the nerve and the muscle by ACh initiates 

a chemical mechanism that depolarizes the muscle cell. The muscle cell releases 

calcium ions stored in cisternae throughout the muscle cell under the influence 

of the depolarization. As a result, the calcium ions flow in between the fibrils. 

The myosin and actin filaments have macromolecular chains that are attached to 

the filaments on one side. These large molecules normally lay along the length 

of the filament, but when the filament is depolarized by the calcium ions, these 

molecules are repelled. When repelled, these molecules form an angle with the 

filaments. The heads of the actin and the myosin are of opposite polarity and 

attract each other, thus pulling the actin into the myosin structure. 

FIGURE 11.2 Actin–myosin unit used for muscle contraction. 
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The result of this repulsion is that the filaments come in closer proximity to each 

other, i.e., the chains on the actin filament attract the chains on the myosin filament, 

pulling the actin filaments closer to the myosin filaments, resulting in a shortening 

of the myofibril and therefore the entire muscle cell. After this stage, the muscle cell 

subsequently goes through a repolarization phase, releasing the calcium ions. The 

calcium release process takes only several milliseconds, after which the process can 

start over. This depolarization and calcium release process repeats itself many times 

over all sections of myofibrils within one single muscle cell, resulting in a significant 

shortening of the muscle cell. 

The frequency of the muscle depolarization is a function of the frequency of the 

impulse trains in the stimulating nerve. The neuromuscular depolarization process 

can be described as a binary mechanism, and the higher the frequency of pulses, 

the stronger the contraction will be. A single muscle depolarization effect will last 

between 5 and 8 ms. 

There are two methods of muscle contraction: isometric and isotonic. Under 

isometric contraction, the muscle is not allowed to shorten, while under isotonic 

contraction, a constant force is applied by the muscle. 

In general, not all muscle cells contract simultaneously; some remain idle and 

take over when the contracting muscle cells relax. This operation is controlled by 

distribution of the firing sequence of various motor units to provide a desirable 

action by the muscle. 

11.2.3 MUSCLE FORCE 

The tension exerted by the muscle fibers is a function of the length of the over­

lap between the actin and myosin. The collection of two neighboring Z-disks, as 

shown in Figure 11.3a, is called a sarcomere. The length of the sarcomere deter­

mines the maximum force that can be applied. The force diagram illustrated in 

Figure 11.3b illustrates the fact that there is a maximum force that can be applied 

before the force start decaying with increased contraction. In point A of this dia­

gram, the actin and myosin are virtually separated, and the muscle is completely 

extended. The force increases linearly with contraction to point B. At this point, 

the actin filaments are in close proximity to each other. In point C, the actin fila­

ments are touching and will start repelling each other. When point D is reached, 

the actin filaments will overlap, and the repulsion will reduce the muscle force 

dramatically. Beyond point A, the molecular chains will start forming permanent 

chemical links. 

The total force that a muscle can apply is a direct function of the number of mus­

cle fibers. The force is approximately 30–40 N per cross-sectional area in square 

centimeter of muscle tissue. The amount of force is a function of the frequency of 

the pulse trains as well as the total duration in which the pulses appear in the stimu­

lating neuron. This phenomenon is shown in Figure 11.4. As can be seen, after a 

certain period of pulse activation, the force plateaus and exhibits a saturation effect. 

Knowing how muscle contracts, extends, and produces force, we are ready to 

discuss the formation and measurement of EMG. 
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FIGURE 11.3 Muscle force as a function of contraction length. (a) State of each action; and 

(b) position in force-length curve. 
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FIGURE 11.4 Diagram of contraction EMG under continuous stimulus by action potentials. 
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11.3  EMG: SIGNAL OF MUSCLES 

There are two general methods of recording the electric activities of muscle tissue. 

One method applies electrodes on the skin and records a surface EMG. The second 

method actually inserts needles with electrodes into the muscle itself. 

In most applications, what we measure as EMG is the spatially weighted sum of 

the electric activities of a number of motor units that are collected on the surface 

of the skin. In other words, a typical EMG signal is the resultant of the electric 

activities of many motor units that are weighted according to the amount of the 

fat and skin between each motor unit and the electrode as well as the distance of 

each motor unit from the location of the electrode. Electrodes placed on the skin 

surface can be used to monitor the coordination of entire muscle groups; however, 

not much will be known about the individual muscle cells from this. In general, 

this technique is used to identify which muscle groups are involved in a particular 

motion or action. A representative unfiltered surface EMG of the gluteus maximus 

is shown in Figure 11.5. 

If the electric activities of a specific motor unit (or only a few motor units) are to be 

measured, subcutaneous concentric EMG needle electrodes are used for measurement. 

FIGURE 11.5 Raw EMG signal of the gluteus maximus. (Courtesy of Motion Lab Systems, 

Inc., Baton Rouge, LA; Courtesy of Edmund Cramp.) 
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In such EMG recordings, electrodes incorporated in very fine needles can be inserted 

in the muscle itself. These electrodes record the electric potential generated by the 

depolarization of the muscle cells directly surrounding the needle electrode. More 

specifically, in such neuromuscular measurements, the electric activity of a single 

motor unit is directly measured. When a needle has more than one electrode, bipo­

lar measurements can be made to derive potential gradients within the muscle. 

Figure  11.6 illustrates the different phases of electrode placement. During needle 

insertion, illustrated in Figure 11.6a, there is a short burst of activity. When an axon 

of a nerve is touched, there may be several repetitions of bursts of activity. The transi­

tion from rest to various stages of activity shown in Figure 11.6b is characterized by 

the frequency of the measured potentials. 

Regardless of the type of electrode used for measurement of EMG, it is impor­

tant to note that the muscle potential spikes observed during muscle contraction 

are not true action potentials of individual cells. As described earlier, the potential 

of muscle excitation is mostly due to calcium ions instead of the regular sodium, 

potassium, and chlorine ions in a neural action potential. The measured poten­

tial on the skin or inside a muscle using needle electrodes is a triphasic potential 

phenomenon. 

The measured amplitude of the excitation potential will be an indication of the 

distance between the muscle fibril and the electrode. Amplitude will diminish with 

the square of the distance to the source since the equipotential surface forms a 

Needle inserted 

0.1 s(a) 

0.1 s(b) 

Contraction 

0.1 s(c) 

Weak 
Strong 

Rest 

FIGURE 11.6 Illustration of the different phases of electrode placement: (a) During inser­

tion, there is a short burst of activity; (b) when an axon of a nerve is touched, there may 

be several repetitions of bursts of activity; and (c) transition from rest to active in different 

magnitudes. 
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spherical geometry as it moves away from the source. Muscle potentials usually 

range from 2 to 6 mV and last for 5 to 8 ms. 

The raw EMG (before filtering) is often considered as the most noise-like sig­

nal among almost all biomedical signals. This noise-like form makes the process­

ing of EMG relatively different from ECG and EEG, which are described in other 

chapters. The specific processing methods suitable for analysis of EMG will be 

described later in this chapter. 

11.3.1 SIGNIFICANCE  OF EMG 

In this section, we focus on the characteristics of muscle that can be determined by 

EMG. In general, two major characteristics of muscle are evaluated using EMG. 

These characteristics are conductivity and excitability. 

In the first type of EMG analysis, the conductivity of the muscle is assessed by 

spatially mapping the pattern and speed of muscle conductivity. In this type of analy­

sis, specific stimuli (e.g., weak electric or nonelectric shocks) are applied to a par­

ticular position on the muscle while the EMG at several points along the muscle is 

measured and analyzed. The spatial spread and timing of the spikes observed on the 

EMG is expected to reveal any damage to the muscle fibers. 

Another typical experiment based on EMG measures the excitability of a muscle. 

In such experiments, typically, electric or nonelectric (e.g., mechanical) stimuli with 

different amplitudes are applied to a point on the muscle, and the EMG of neighbor­

ing positions is measured. The relative response of different points to different levels 

of stimulation is then used to analyze the excitability of the muscle at different points. 

Other types of EMG experiments include identification of the muscle strength. 

The total force of a muscular contraction and the number of motor units activated in 

a muscle activity are directly reflected in the amplitude of EMG. As a result, EMG 

is sometimes used to measure the force exerted by a muscle. In doing so, one would 

need to consider factors such as the size of the muscle, the position of the muscle (i.e., 

distance between muscle and electrode), and the thickness of the subcutaneous fat 

(i.e., electric insulation between muscle and electrode). 

In every one of the aforementioned EMG-based experiments, certain techni­

cal and practical issues must be considered. These issues that can affect the EMG 

readings include skin preparation, orientation of the electrodes with respect to the 

muscle fiber direction, and the exact type of electrodes used for measurements. 

One particularly significant application of the EMG signal is the opportunity to oper­

ate artificial prostheses with the electric signal of other muscles still functional. This 

means that when a person loses an extremity and starts using an artificial prosthesis, 

there is a need to allow the person to initiate the commands for certain types of motion 

in the artificial limb. In such cases, often the EMG of some other still functional mus­

cles is used to create the command. This is done by measuring the EMG of the healthy 

muscles, and based on the type of motion of the healthy muscle and therefore the shape 

of the EMG signal, the desirable command is detected and sent to the prosthetic limb. 

Most often in prosthesis, the EMG-based command drives servomotors that are 

battery operated. These servomotors, for instance, control the motion of prosthetic limbs. 
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Using other muscles to drive prosthetic systems needs a significant period of training 

for the person using the system. 

Knowing the overall needs to EMG signals, next we focus on the diagnostic appli­

cations of EMG. 

11.4  NEUROMUSCULAR DISEASES AND EMG 

The majority of muscular diseases have a neurological basis. Several neuromuscular 

diseases are diagnosed by processing of the EMG signal and detecting particular 

deviations from the normal EMG. In diagnostics using EMG, the exact deviations 

identify the source of the disorder. Many examples of EMG abnormalities root in 

factors such as disorder in the cell body of the nerve cell, disturbance in the axon of 

the nerve delivering the excitation, failing of the neuromuscular transmission within 

the motor unit, defects in the muscle cell membrane, and finally general imperfec­

tions in the entire muscle. 

The partial or complete loss of EMG signal is often due to the loss of nervous 

excitation. The nerve cell attached to the motor unit may degrade at various locations 

between the spinal cord and the motor unit, thus depriving the muscle of the action 

potential. This in turn results in significant reduction in EMG strength or even the 

complete loss of this signal. 

Muscular disorders will require different types of clinical attention than nervous 

disorders. The EMG will most likely not reveal the neurological cause of the visually 

observed abnormalities in the muscle function. This importance of this statement 

can be further realized knowing that the neurological degeneration can be as far 

away as the spinal cord. 

Several examples of diseases related to either the neural mediation or the 

muscular dysfunctions are Parkinson’s disease, radiculopathy, plexopathy, polyneu­

ropathy, myopathy, and anterior horn cell disease or amyotrophic lateral sclerosis 

(ALS). A brief description of some of these diseases will be given when we focus on 

the use of EMG in diagnostics of motor neurons and motor unit–related diseases. In all 

aforementioned diseases, the EMG signal is frequently used to discover the different 

types of nerve damage and other physiological disorders involved. Next, we explore the 

EMG changes in such abnormalities. 

11.4.1 ABNORMAL ENERVATION 

When the nerve cell has effectively been destroyed, there will be no more action 

potentials delivered to the motor unit that enervates the muscle fibrils. Damage 

to the motor neuron can result from several illnesses, among which polio is an 

example. 

When the continuity of the axon of an enervating neuron has been compromised 

by mechanical or physiological means, the motor unit will be denervated. The mus­

cle is thus partially paralyzed, and, with increasing damage, more severe paraly­

sis will occur. A denervated muscle fibril shows a particular pattern in the EMG 

when it starts producing spontaneous depolarizations several days after the onset 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

227 Electromyogram 

of denervations. These spontaneous random depolarizations are called fibrillations, 

which are short fluctuations with small amplitude. Mechanically these muscle fibrils 

will show contraction twitches with minimal contractibility; however, the entire 

muscle may not be noticeably affected. 

In case of muscle denervation, generally the composition of the EMG recording 

gets even more complicated. In the normal cases, one axon of a single neuron inner­

vates only a single motor unit. However, when neurons leading to a motor unit die, 

the affected muscle fibers can be innervated by branches from adjacent stimulating 

neurons. The adjacent neurons form extensions on the abnormal motor unit that can 

typically control several dozen muscle fibers. This process is referred to as collateral 

enervation. 

In collateral enervation, the measured EMG might be composed of the signals 

from several neighboring motor units. Specifically, collateral enervation affects the 

EMG recording in such as way that an increase in amplitude and duration of the 

waveform is observed. In addition the configuration of the EMG becomes more com­

plex because one neuron is innervating more muscle fibers and the motor unit is 

spread out over a larger area. 

11.4.2 PATHOLOGICAL MOTOR UNITS 

Knowledge of the functions of individual motor units makes it possible to develop 

an understanding of some of the major pathological conditions that affect predomi­

nantly the skeletal movement. 

The relatively well-known condition of muscular dystrophy includes muscle fiber 

degeneration and a direct interference with the contractile ability of the muscle 

fibers. The EMG characteristics of muscular dystrophy are recurring sequences of 

myotonic episodes. 

One of the main disorders in peripheral motor neurons is anterior horn cell dis­

ease, or ALS. This is a disease in which the motor units are affected as a result 

of nerve degeneration. This affliction is also known as Lou Gehrig’s disease. The 

ALS is known to affect about 1 in every 100,000 people. The symptoms are severe 

muscular atrophy associated with extreme weakness. The disease can result in death 

often as a result of failure in the respiratory muscles. In this case, the EMG shows 

spontaneous activity, aberrant discharges, abnormal recruitment, reduced interfer­

ence pattern. 

In a disease called radiculopathy, the nerve cells leading to the motor units 

are ischemic and are subjected to an inflammatory process. In this disease, the 

EMG reveals the signs of focal demyelination of the nerve cell (i.e., the damage 

or lack of myelin cover around the axon). Radiculopathy is also characterized by 

the excitation frequency that suddenly drops followed by an immediate increase 

in the depolarization frequency. Under acute severe compression of the axon of 

the nerve cell, the EMG shows fibrillations with 10–21 days following the injury 

to the nerve cell. 

Plexopathy, another disease associated with the damage on the stimulating 

nerve, involves either the brachial or lumbosacral plexus. The visible results are 
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decreased movement capabilities and a diminished sensation. This type of neural 

disease can be caused by inflammation or compression of the nerve. The EMG 

signals are similar to those observed in radiculopathy, combined with a different 

pattern in the central nervous system observed in EEG signals. This is the major 

difference between radiculopathy in which central nervous system is unaffected 

and plexopathy in which the brain waves too show some irregular patterns. 

Polyneuropathy is a disorder of the peripheral nerves. The distal nerve axons are 

more likely to be affected than the proximal fibers. The EMG of the patients suf­

fering from polyneuropathy shows signs of denervation of the muscle. Myopathy is 

a purely muscular disorder. The pathological symptoms are related to ion channel 

dysfunction in the motor units. One chronic disorder that may be associated with 

neuromuscular causes is cerebral palsy. Cerebral palsy is actually a brain disorder in 

the motor areas of the cerebrum. 

11.4.3 ABNORMAL NEUROMUSCULAR TRANSMISSION  IN MOTOR UNITS 

Certain diseases are known to cause abnormal transmission within motor units. The 

most known case of such abnormality is myasthenia gravis. 

The pathological condition of myasthenia gravis involves a blockage of the nic­

otinic ACh receptors on muscle fibers, leading to paralysis. This is a chronic ill­

ness classified by abnormal rapidly occurring fatigue in the skeletal muscles. The 

first contraction will proceed normally, while the subsequent contractions become 

increasingly weaker. The EMG in this situation is characterized by omission of depo­

larization spikes and decreasing amplitude over time, as shown in Figure 11.7. 

In Alzheimer’s disease, the neurotransmitter ACh is selectively destroyed, and, 

thus, muscle function is impaired. Another well-known muscle-related disease is 

anterior poliomyelitis, which affected hundreds of thousands of children before a 

vaccine was developed, specifically attacking and killing motoneurons in the ante­

rior (ventral) spinal cord. Multiple sclerosis is another relatively common disease that 

involves demyelination of the motor axons in the ventral roots and somatic nerves. 
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FIGURE 11.7 EMG of myasthenic muscle. 
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FIGURE 11.8 Rapid decay of a single depolarization excitation seen in the EMG of myotony. 

Parkinson’s disease may be the most well-known type of neuromuscular disease. 

Parkinson’s disease is a disease of the motor unit in which the regulation of an impor­

tant neurotransmitter, called dopamine, is severely disturbed. Parkinson’s disease 

is often identified by the muscle tremors, especially visible continuous shaking of 

the hands. Other symptoms include the loss of the ability to move fast, the rigidity of 

muscles, and the loss of muscular reflexes that maintain posture. 

11.4.4 DEFECTS  IN MUSCLE CELL MEMBRANE 

Defects in the muscle cell membrane are the result of genetic influences. This type 

of muscle damage is called myotony. The contraindications are that the muscle can­

not relax and the contraction lasts substantially longer than for a healthy muscle. An 

example of an EMG of a myotone muscle is presented in Figure 11.8. The deeper 

laying cause of the malfunction may be related to a malfunctioning ACh metabolism 

in the cell membrane. 

General imperfections of the muscle tissue are classified as muscular dystrophy. 

In such diseases, the muscle fibers themselves degenerate over time, resulting in a 

total lack of EMG signal. These diseases often show gradual decrease of the EMG 

strengths through a few weeks or even a few months. 

11.5  OTHER APPLICATIONS OF EMG 

We discussed some of the main applications of EMG in medical diagnostics. This 

signal is used in several other applications. Some of other applications of EMG are 

discussed later. 

Muscles undergoing fatigue portray visible changes in their EMG. These changes 

include reduction in EMG amplitude, reduction in EMG power, and reduction in 

the power of high-frequency contents of EMG derived. Generally muscle fatigue is 

expressed as a reduction in the higher-frequency content with a shift in power to the 

lower frequencies. Trials on muscle fatigue are usually performed under isometric 

muscle action for reproducibility purposes. All these changes can be accurately 

measured with signal processing techniques. For instance, a high-pass filter cap­

tures the fast variations, and the power of these components is used to evaluate 

muscle fatigue. 
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The timing of the depolarization spikes in EMG signal in reference to the neural 

impulses is used to identify the conduction and time response of muscles, as dis­

cussed earlier. Signal processing can be used to detect these peaks and measure the 

time distance among these peaks. The information obtained from event timing stud­

ies will identify muscle conduction and general muscle health issues. 

The force generated by a muscle directly affects the amplitude and frequency of 

the EMG signal. Just like in measuring fatigue, different signal processing measures, 

especially the root-mean-square (RMS) value, can be used to quantitatively measure 

the muscle activity for such studies. 

The ratio between muscle force and muscle contraction is an important measure 

in evaluating the muscle condition and is often referred to as muscle’s mechanical 

resistance. In calculating resistance, while muscle contraction is often measured by 

direct measurement of the length of the muscle, muscle force is sometimes replaced 

by the power of EMG as a more quantitative measure of force. 

In surgery, where local anesthesia has to be performed, the anesthesiologist needs 

to have a measure of how deep the local anesthesia is. The muscular response to 

electric stimuli can help determine the level and depth of anesthesia and identify the 

need to administer additional anesthetic drugs. In many cases, anesthesiologists use 

the power of EEG (windowed over a period of at least several minutes) as the indica­

tor of anesthetic efficacy. 

Under certain conditions, the EMG of the contractions during childbirth is used 

as a feedback mechanism to help the mother concentrate on the contractions. In this 

case, the EMG is converted into an audible signal to make the onset of the contrac­

tion more noticeable. 

11.6  PROCESSING AND FEATURE EXTRACTION OF EMG 

After discussing the origin of the EMG signal and its applications in biomedical 

diagnostics, next we focus on the typical processing methods applied for filtering 

and analysis of EMG. 

11.6.1 SOURCES  OF NOISE  ON EMG 

In order to achieve two-way motion, for example, extending and flexing an arm, a 

minimum of two muscle groups will be needed. Every skeletal muscle has an antago­

nist to stretch the contracted muscle after relaxation. Since each muscle can only 

perform a one-way motion, it receives and generates only a binary signal, which can 

be either on (i.e., contraction) or off (i.e., no contraction). 

This agonist–antagonist principle is essentially the main source of cross talk and 

noise in EMG, as it is almost always difficult to record the surface EMG of the ago­

nist muscle without recording some of the electric activities of the antagonist muscle. 

More specifically, due to the low resistance of the body around muscle cells, the 

surface electrodes will detect action potentials of several muscle groups including 

the antagonist muscles simultaneously. 

This cross-talk effect can be avoided, at least to some extent, by filtering the 

recorded signals and applying threshold detection to eliminate the signals from 
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distant muscle groups. Other sources of noise on the surface EMG are ECG and 

breathing signals. These noise sources can be rather successfully filtered using 

band-pass filters centered around the main frequency spectrum of the EMG signal. 

A major source of noise in EMG is the motion artifact. This noise is caused by 

unwanted motion of electrodes, wires, and muscles. However, since the frequency 

range of the motion artifact is between 0 and 20 Hz, this source of noise can be eas­

ily filtered using a low-pass filter, as discussed next. Before explaining the filtering 

methods, however, it is insightful to note a significant difference between EMG and 

other signals that affects the acquisition and therefore the noise susceptibility of 

EMG. A major difference between EMG and other biomedical signals such as the 

EEG and ECG is the fact that EMG does not use a single reference electrode while 

the other two do. The single reference electrode is not a feasible option since each 

muscle that is investigated can be in any part of the body of the subject under inves­

tigation. For the heart and the brain, this is not a serious concern since the ECG and 

EEG are recorded in the same anatomical location every single time. The differential 

nature of EMG acquisition helps reducing the noise during the acquisition step and 

therefore simplifying the filtering step in the signal processing level, discussed next. 

11.6.2 TIME-DOMAIN ANALYSIS 

For the signal processing, as with other signals mentioned in the previous chapters,  

there is a standard set of features that can be used to investigate and compare the 

clinical significance of the image. The features of interest in 1-D muscle signal  

image processing are the power distribution of signal in specified frequency ranges, 

wavelet coefficients at different scales, complexity, and mobility, and additionally  

fractal dimensions are always informative features for any kind of biomedical signal. 

However, some specific features are more frequently used for the analysis of EMG 

signals than for other signals. These tools are RMS analysis and average rectified  

(AVR), as introduced next. 

Since EMG is the signal for several muscle cells combined, averaging can reveal  

commonalities that will get lost in the collective signals. The energy of the EMG 

signal, as a common denominator, can provide the clinical relevance of the muscle  

group as a whole. Assuming that the EMG signal is expressed as the discrete signal  x, 

the RMS measure is defined as 

∑ N −1 

x i2( )  
RMS = i=0

(11.1) 
N   

The RMS value, which describes the average level of second-order variations in the 

signal, is often used to express the power of the EMG signal. The power of the signal  

can define muscle fatigue, evaluate the strength the force generated by the muscle  

contraction, and assess the ability of a muscle to handle mechanical resistance. 

While the second-order power, which constitutes the core idea of RMS, is a useful  

measure in energy evaluation, first-order deviations of EMG are also used to assess 
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this signal. Representing the EMG signal as  x, another important feature called the 

AVR value measure is defined as 

∑N −1 

x i( )  
AVR = i=0 (11.2) 

 N  

AVR describes the average of absolute variations in the signal and is often used to 

express the smoothness, or respectively the nonsmoothness, of the signal. 

11.6.3 FREQUENCY- AND WAVELET-DOMAIN ANALYSIS 

A typical frequency spectrum of EMG is shown in Figure 11.9. As can be seen, the  

typical frequency range of the EMG signal is between 50 and 500 Hz. Analyzing  

the frequency spectrum shows that the maximum energy of the EMG is between  

70 and 300  Hz. 

The frequency range shown in Figure 11.9 also tells us that the best type of filter  

to separate typical EMG from the noise is a band-pass filter with the passband of  

20–500 Hz. Even though the frequency range of most EMG signals is limited on  

the upper side by 500 Hz, some EMG tests with muscles under loads connected  

to them can register frequencies much higher than the range seen in the typical  

EMG signal. 

One fundamental concept of EMG analysis is the acquisition of the frequency fea­

tures from the power spectrum. During the initial contraction, the frequency spectrum  

FIGURE 11.9 Typical frequency spectrum of EMG of muscle applying stress. (Courtesy of 

Motion Lab Systems, Inc., Baton Rouge, LA; Courtesy of Edmund Cramp.) 
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is mostly in the higher frequencies, while, after fatigue, the power spectrum shifts 

toward lower frequencies. The shift in the dominant frequencies in each of the states, 

rest and contraction, is an indication of the muscle status. 

The use of wavelet analysis of EMG signals shows advantages in the detection of 

changes in the wave patterns during stimulated recordings. For instance, isometric 

contraction is controlled by the patient and can be performed in various modes. 

Rapid contraction will have a different EMG pattern than slow initiation of the 

contraction. 

Wavelet analysis is also applied to detect the presence or absence of some expected 

patterns in healthy and abnormal cases. Wavelet analysis is also used to decompose 

the signal and detect the delays in response to the stimulations. Specifically, detec­

tion of the delays in the response times of motor units using wavelet and STFT can 

help identify the state, size, and of the density of the motor units involved in the neu­

romuscular task. Large motor units are generally faster in response compared to the 

smaller motor units. Daubechies wavelets have been shown useful; however, other 

wavelets can reveal details in different aspects of the signal structure and elaborate 

on the muscle recruitment process. 

11.7 SUMMARY 

In this chapter, we first described the origin of electromyogram (EMG) and the way 

this signal is formed and measured. Then we briefly reviewed the applications of 

EMG in diagnostics of several neuromuscular diseases. Finally, we reviewed the 

main time-, frequency-, and wavelet-domain methods for filtering, feature extraction, 

and analysis of EMG. 
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PROBLEMS* 

11.1	   Import the data in the file “p_11_1.txt” in MATLAB® and plot the signal.  

In order to do so, use File/Import Data … on the main MATLAB menu and  

follow the steps in loading and naming of the data. The file contains one  

single muscle signal from a 40 month old patient; the first column is the time, 

and the second column is the data. 

 a.	   Determine the frequency spectrum or power spectrum. 

 b.	   Using “wavemenu” and Daubechies 1 mother wavelet, denoise the signal  

and locate significant features of the EMG signal. 

 c.	  Calculate the AVR value of the EMG signal. 

*  Problems 11.1 through 11.5 use data obtained from http://www.physionet.org/physiobank/database/ 

gait-maturation-db/ 

http://www.physionet.org
http://www.physionet.org
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11.2	   Import the data in the file “p_11_2.mat” in MATLAB and plot the signal.  

In order to do so, use File/Import Data … on the main MATLAB menu  

and  follow the steps in loading and naming of the data. The file contains one  

single muscle signal from a 61 month old patient; the first column is the  

time, and the second column is the data. 

 a.	  Repeat the calculations in parts a, b, and c of Problem 11.1. 

 b.	   Compare a single period with one period of the signal in Problem 11.1 and 

comment on the differences. 

 c.	  A nalyze the shift in the frequency spectrum to lower frequencies compared  

to Problem 11.1. 

11.3	   Import the data in the file “p_11_3.txt” in MATLAB and plot the signal. 

In order to do so  , use File/Import Data … on the main MATLAB menu and 

follow the steps in loading and naming of the data. The file contains one single  

muscle signal from an 80 month old patient; the first column is the time, and 

the second column is the data.* 

 a.	  R epeat the calculations in parts a, b, and c of Problem 11.1 on the EMG 

recordings. 

 b.	   Using “wavemenu” and Daubechies 1 mother wavelet, decompose the signal  

into five levels. Comment on the contents of each decomposition level. 

 c.	   Repeat part b using Daubechies 2 mother wavelet. 

 d. 	 Compare a single period from the EMG data file from this problem 

with one period of the EMG signal in Problem 11.1 and comment on the 

differences. 

11.4	   Import the data in the file “p_11_4.mat” in MATLAB and plot the signal.  

In order to do so, use File/Import Data … on the main MATLAB menu and  

follow the steps in loading and naming of the data. The file contains one  

single muscle signal from a 130 month old patient; the first column is the  

time, and the second column is the data. 

 a.	   Repeat the calculations in parts a, b, and c of Problem 11.1 on the EMG 

recordings. 

 b.	   Using “wavemenu” and Daubechies 1 mother wavelet, decompose the signal  

into five levels. Comment on the contents of each decomposition level. 

 c.	   Compare a single period with one period of the signal in Problem 11.3 and 

comment on the differences. 

11.5	   Import the data in the file “p_11_5.txt” in MATLAB and plot the signal. In  

order to do so, use File/Import Data … on the main MATLAB menu and  

follow the steps in loading and naming of the data. The file contains one  

single muscle signal from a 163 month old patient; the first column is the  

time,  and the second column is the data. 

 a.	  Repeat the calculations in parts a, b, and c of Problem 11.1. 

 b.	   Using “wavemenu” and Daubechies 1 mother wavelet, decompose the signal  

into five levels. Comment on the contents of each decomposition level. 

 c.	  Repeat part b using Daubechies 2 mother wavelet. 

d. 	 Identify the onset of contraction in EMG. 

* Courtesy of http://www.physionet.org/physiobank/database/gait-maturation-db/ 

http://www.physionet.org


 e.  Compare the frequency content of before and during contraction. 

11.6	   Import the data in the file “p_11_6.csv” and plot the signal.* In order to do so,  

use File/Import Data … on the main MATLAB menu and follow the steps in  

loading and naming of the data. The file contains the signals of a two-electrode  

EMG recording of 10 different muscle groups of a person standing erect and at  

rest. The scanning rate was 60,000 Hz. 

 a.	  R epeat the calculations in parts a, b, and c of Problem 11.1 on the recording  

EMG1, the adductor: EMG6, and the tibia anterior: EMG7. 

 b.	  U sing “wavemenu” and Daubechies 1 mother wavelet, decompose the signal  

into five levels. Comment on the contents of each decomposition level. 

 c.	  Repeat part b using Daubechies 2 mother wavelet. 

 d. 	 Identify the onset of contraction in EMG6 and EMG7. 

 e. 	   C ompare the frequency content of both EMG6 and EMG7 before and   

during contraction. 

11.7	  I mport the data in the file “p_11_6.csv” and plot the signal.* In order to do so, 

use File/Import Data … on the main MATLAB menu and follow the steps in  

loading and naming of the data. The file contains the signals of a two-electrode 

EMG recording of the gluteus maximus. The scanning rate was 60,000 Hz. 

 a.	  R epeat the calculations in parts a, b, and c of Problem 11.1 on the recording  

EMG2, EMG3, and EMG4. 

 b.	  U sing “wavemenu” and Daubechies 1 mother wavelet, decompose the signal  

into five levels. Comment on the contents of each decomposition level. 

 c.	  Repeat part b using Daubechies 2 mother wavelet. 

 d. 	 Identify the onset of contraction in EMG3 and EMG4. 

 e.	  Co mpare the frequency content of both EMG3 and EMG4 before and during  

contraction. 
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* Courtesy of Edmund Cramp, Motion Lab Systems, Inc., Baton Rouge, LA. http://www.motion-labs.com 

http://www.motion-labs.com
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12 Other Biomedical Signals
 

12.1  INTRODUCTION AND OVERVIEW 

Besides the main biomedical signals introduced in the previous chapter, there are 

some other signals captured from other biomedical system that are used for medical 

diagnostics. In this chapter, we briefly introduce some of these signals and discuss 

their applications in medicine. 

12.2  BLOOD PRESSURE AND BLOOD FLOW 

In our description of an electrocardiogram (ECG), we reviewed the functions 

of the cardiovascular system. Blood pressure is one of the vital signals used to 

detect a wide range of abnormalities. In typical measurements of the blood pres­

sure, many clinical processes are limited to measurement of only systolic and  

diastolic pressures (as opposed to the entire signal). However, when the entire 

blood pressure signal is collected, much more information can be extracted from 

the data. 

Typical measurements of blood pressure signal can be categorized as extravas­

cular and intravascular measurements. The typical measurement of blood pressure, 

which is often limited to measurement of systolic and diastolic pressure, is the popu­

lar sphygmomanometer and stethoscope system, which is considered as the gold 

standard of extravascular blood pressure measurement systems. On the other hand, 

the intravascular measurement of blood pressure signal is often conducted using 

arterial catheter placement. The catheter placement is often used to measure the 

entire blood pressure signal as opposed to recording only the high and low peaks in 

the sphygmomanometer and stethoscope system. 

A typical blood pressure signal over two pulses is shown in Figure 12.1. As can 

be seen in the figure, this stochastic but periodic signal can be readily analyzed using 

Fourier techniques. In practical applications, after decomposition using Fourier 

transform or FT (or more precisely discrete Fourier transform or DFT), the ampli­

tude of the FT (or the poser spectrum in stochastic analysis of the signal) in six 

frequencies are calculated and analyzed. These six frequencies are the pulse rate, f0; 

its second harmonic, 2f0; the third harmonic, 3f0; the forth harmonic, 4f0; the fifth 

harmonic, 5f0; and finally the sixth harmonic, 6f0. The reason for the popularity of 

these frequencies is the fact that most of the energy of the blood pressure signal is 

contained in these harmonics. Moreover, the relative strength or weakness of these 

harmonics is often associated with certain abnormalities. The preceding discussion 

explains why Fourier analysis is often used for processing and analysis of blood 

pressure signal. 
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FIGURE 12.1 Typical blood pressure signal. 

Blood pressure is so commonly used in clinical diagnostics that it is difficult to 

point out to the main applications. However, it is widely believed that almost all 

cardiovascular diseases somehow alter the blood pressure signals, and, therefore, 

the blood pressure signal can be used for detection of such abnormalities. In addi­

tion, most of the other diseases not directly related to the heart are also detected 

or diagnosed at least partially using the blood pressure. For instance, a number of 

chronic headaches are often associated with high blood pressure. Moreover, blood 

pressure signal is one of the best signals to detect some less severe types of internal 

bleedings. 

Blood flow signal is greatly related to blood pressure. In the measurement of the 

blood flow, one needs to know the speed of the blood at a certain point. There are 

many techniques to detect this quantity. Indicator dilution method is one of these 

methods in which an agent is injected into the blood, and then the concentration of 

the agent is measured in time. The faster the dilution of the agent occurs, the more 

the blood flow is. In other words, the dilution of the agent is measured, and based 

on that the blood flow is estimated. The recording of dilution constitutes a signal 

that can be processed using signal processing techniques. Another similar method 

for the measurement of the blood flow is based on the measurement of thermal 

dilution. In this method, the temperature of an added agent (often saline) through 

time is monitored to estimate the blood flow. There are other methods of measur­

ing the blood flow including the ultrasonic method, electromagnetic flow, and the 

Fick technique. The changes in the blood flow in a tissue through time have been 

used to analyze the condition of the tissue. 

12.3 ELECTROOCULOGRAM 

Electrooculogram, or EOG, is a signal that is measured on the skin around the eyes. 

EOG is often used to measure the gaze angle and assess the dynamics of the eye 

motion. The electrodes are placed on the sides of the eyes for measuring the horizon­

tal motions of the eyes (Figure 12.2) and above and below the eyes when the vertical 

elements of the motion and gazing are studied and assessed (Figure 12.3). In each 

case, differential amplifiers are used to detect any potential difference between each 

pair of electrodes caused by the motion of the eye. More specifically, this potential 

difference is the result of a dipole (i.e., eye ball) changing the potential balance 
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239 Other Biomedical Signals 

FIGURE 12.2  Detecting horizontal motion of the eyes using EOG. 

– ++ – 
Differential Differential 

amplifier amplifier 

FIGURE 12.3  Detecting vertical motion of the eyes using EOG. 

between the two points where measurements are taken. This potential is primarily 

generated between cornea and retina (i.e., corneoretinal potential) and is often between 

0.4 and 1.0 mV. EOG is, as previously mentioned, a weaker version of this potential 

measured on the surface of skin and often has the amplitude of a few microvolts up 

to tens of microvolts. 

There are more complete measurements of EOG that simply use more electrodes 

and capture both horizontal and vertical motion and gazing for both eyes. 

The EOG signal, being the result of the eye motion, is often in the frequency 

interval 0–100 Hz. The frequency range of EOG is identified by the mechanical limi­

tations of the eye motion. It is often required that the 60Hz noise (due to power supply) 

be removed to have a more reliable EOG reading. 

The main clinical application of EOG is detection and assessment of degenerative 

muscular disorders. Laziness of the eyes in tracking moving objects, detected by  

analysis of EOG, is an efficient way of assessing such disorders. In a typical experi­

ment, the moving object on a monitor is shown to the patient and as the patient tracks 
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the object with his or her eyes, the EOG is captured and analyzed. The lag between 

the moves of the cursor and the electric activities captured by EOG provides the 

metric needed for diagnostics. 

Another major application of EOG is helping severely paralyzed patients. It is 

estimated that number of patients in the United States whose spinal injuries have 

paralyzed them from neck down is about 150,000. EOG provides these patients the 

means to communicate with their caretakers and computers. In order to do so, a large 

board is placed in front of the patient that is divided to an array of command. 

For instance, a place on the board is marked as “copy” and another part as “paste.” 

By analyzing the EOG, a computer identifies the gaze angle and based on that 

identifies the command the patient is trying to execute. Similar systems have been 

successfully used for navigation of aircrafts and boats. 
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FIGURE 12.4  (a) Right and (b) left EOGs sampled at 50 Hz. (From Goldberger, A.L. et al.,  

Circulation, 101, 23, e215, June 13, 2000, Circulation Electronic Pages; http://circ.ahajournals. 

org/cgi/content/full/101/23/e215). 

http://www.circ.ahajournals.org
http://www.circ.ahajournals.org


 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other Biomedical Signals 241 

The main processing techniques applicable to EOG are FT and wavelet transform 

(WT). Certain domain-related features are also calculated from EOG. For example, 

the difference between the timing of the cursor move and the eye response can be 

calculated simply based on the direct measurement of the time difference between 

the rising edges of the two signals. 

The long recordings of EOG are also used for the study of sleep. Figure 12.4 

shows the recordings of the right and left EOGs, sampled at 50 Hz during a sleep 

study in which a number of physiological signals during sleep are recorded and 

correlated. 

A very closely related signal called “electroretinogram” or ERG has been used 

for very similar applications. This signal that is the potential difference among the 

retina and the surface of the eyeball is known to be highly correlated with EOG, and, 

as a result, EOG is often used in many applications to represent ERG. 

12.4 MAGNETOENCEPHALOGRAM 

The signal known as “magnetoencephalogram,” or MEG, is essentially the magnetic 

equivalent of EEG. In other words, while EEG captures the activities of the brain 

neurons through detection of the changes in the electric activities on the surface of 

the head, MEG measures the changes in the magnetic field caused by the activities of 

the brain neurons. From electromagnetics, we know that any changing electric field 

causes a magnetic field that is proportionally related to the electric field. As a result, 

the changes in the electric charges of the neurons create a magnetic field that can be 

measured to detect the activities of the brain. MEG measures the extracranial mag­

netic fields produced by intraneuronal ionic current flow within appropriately oriented 

cortical pyramidal cells. 

At this point, we need to address the following question: “If MEG captures almost 

the same information as EOG, why do we need MEG at all?” The question becomes 

more relevant if we consider the fact that the instrumentation needed to measure MEG 

is significantly more complex and expensive than that of EEG. It seems that since we can 

capture the same information using much less expensive EEG machines, there would be 

no need for MEG. The answer to this question is twofold. First, EEG is captures on the 

surface of the skull and therefore is suitable to many sources of noise such as the electric 

activities of the muscles close to electrodes. The lack of skin contact facilitates using 

MEG to record DC and very-high-frequency (>600 Hz) brain activity. 

In addition, the MEG is capable of detecting the electric activities of the neurons 

deeper in the brain, as opposed to the EEG signals that are often due to the neurons 

closer to the surface of the brain. More specifically, MEG has selective sensitivity to 

tangential currents (from fissural cortex) and less distorted signals compared with 

EEG. This allows MEG to provide much better spatial and temporal accuracy. A  

major advantage of MEG is determining the location and timing of cortical genera­

tors for event-related responses and spontaneous brain oscillations. MEG provides a 

spatial accuracy of a few millimeters under optimal conditions, combined with an 

accurate submillisecond temporal resolution, which together enable spatiotemporal 

tracking of distributed neural activities, for example, during cognitive tasks or epi­

leptic discharges. 



 

 

 

 

 

 

 

 

 

 

242 Biomedical Signal and Image Processing 

FIGURE 12.5  MEG machine with large SQUID. (Image courtesy of Elekta.) 

A typical MEG machine is shown in Figure 12.5. As can be seen, the machine uti­

lizes large superconducting quantum interference devices (SQUIDs) as a sensor of weak 

magnetic fields. MEG signals have a typical strength of a few pT (picotesla) and SQUID 

sensors can capture both natural and evoked physiological responses observed in MEG. 

The main source of interference in MEG measurements is the magnetic field of 

the Earth. This source of noise is systematically filtered in the MEG machines. Due 

to the resemblance of MEG and EEG, the same processing techniques used for EEG 

are also applied for analysis of MEG. 

MEG studies in psychiatric disorders have contributed materially to improved 

understanding of anomalous brain lateralization in the psychoses, have suggested 

that P50 abnormalities may reflect altered gamma band activity, and have pro­

vided evidence of hemisphere-specific abnormalities of short-term auditory mem­

ory function. The clinical utility of MEG includes presurgical mapping of sensory 

cortical areas, localization of epileptiform abnormalities, and localization of 

areas of brain hypoperfusion in stroke patients. In pediatric applications, MEG is 

used for planning of epilepsy surgery and also provides unlimited possibilities to 

study the brain functions of healthy and developmentally deviant children. 

12.5 RESPIRATORY SIGNALS 

A group of respiratory signals are commonly applied for clinical assessment of the 

respirator systems. A group of such signals capture both the timing and breadth of 

the respiration. For instance, motion sensors placed on the chest can capture the res­

piration timing and volume. It is also common to measure thoracic and abdominal 

excursions for the diagnostics of respiratory system. A sample of typical recordings 

of thoracic and abdominal excursions measured by inductive plethysmography bands 

is shown in Figure 12.6. 
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FIGURE 12.6  (a) Thoracic and (b) abdominal excursion signals sampled at 50 Hz. (From 

Goldberger,  A.L. et al., Circulation, 101,  23,  e215,  June  13,  2000,  Circulation Electronic  

Pages; http://circ.ahajournals.org/cgi/content/full/101/23/e215). 

There are also other signals that detect the gas flow and strength of the exhaled 

gas to detect the depth of breathing. A popular signal measured during many clinical 

monitoring is the airflow signal detected by a nasal–oral thermocouple. This signal 

is an indication of the mechanical strength of the respiratory system. The signal is 

sometimes used to monitor the patient’s respiration during sleep. A typical airflow 

signal measured during sleep is shown in Figure 12.7. 

Another category of respiratory signals expresses the chemical contents of the 

exhaled gas. The most important signal in this category is the partial pressure of CO2 

in the exhaled gas. This signal is measured using a specialized light emitting diode 

whose illumination depends on the CO2 contents of a volume of gas. This signal is 

applied to assess the quality of gas exchange in alveoli. 

http://www.circ.ahajournals.org
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244 Biomedical Signal and Image Processing 

FIGURE 12.7 Airflow signal sampled at 50 Hz. (From Goldberger, A.L. et al., Circulation, 

101, 23, e215, June 13, 2000, Circulation Electronic Pages; http://circ.ahajournals.org/cgi/ 

content/full/101/23/e215). 

12.6  MORE BIOMEDICAL SIGNALS 

There are many more biomedical signals that are used for so many clinical and 

research applications. In this section, we describe some of these signals very briefly. 

A signal used for diagnostics of the heart is the heart sound. The heart sounds 

are the sounds made by the flow of the blood in and out of the heart compartments. 

In order to measure the heart sounds, often mechanical stethoscopes are used to 

amplify the sounds. However, since these devices are known to have an uneven fre­

quency response, they somehow distort the sounds. From the signal processing point 

of view, these changes in the heart sounds made by the mechanical stethoscopes are 

direct filtering of the actual sounds (i.e., inputs) based on the internal structure of 

the stethoscope (i.e., mechanical filter), which provides an altered perceived sound 

(output). While electronic stethoscopes overcome these problems and provide much 

less distorted version of the actual sounds, physicians have not generally accepted 

these electronic devices. 

The typical changes in the frequency of the heart sounds result in murmurs that 

are often associated with the imperfections in the heart valves or the heart walls. In 

infants, the existence of the heart murmurs is often caused by the flow of blood from 

one side of the heart to another, through the hole between the two sides. This hole is 

often filled a few weeks after the birth, which in turn stops the heart murmur. 

Audiometric measurements and assessments are perfect examples of using 

FT to evaluate linear systems. In audiometric studies, tones (sinusoidal beeps) 

of different frequencies are played for the patient through a headphone and the 

auditory system’s response to these tones are measured (often via electrodes 

measuring the electric activities of the brain). The strength or weakness of the 

http://www.circ.ahajournals.org
http://www.circ.ahajournals.org
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response to each frequency is used to evaluate the performance of the auditory 

system in those frequencies. This is simply forming the system function H( f ) 
using impulses of different frequencies. The bell shape for the response, i.e., 

H( f ), is often considered a healthy shape, and any irregularity in the response 

function is measured as the deviation of the curve from a healthy normal bell-

shape curve. 

12.7 SUMMARY 

In this chapter, we reviewed a number of biomedical signals that are used in clinical 

and research applications. These signals include respiratory signals, cardiovascular 

signals such as blood pressure and heart sounds, and MEG. Similarities of these 

signals to other signals discussed in more detail in the previous chapters allow us 

to process these less widely used signals using the same methods discussed in the 

previous chapters. 

PROBLEMS 

12.1	  An  airflow signal,  g(t), is given in file “p_12_1.mat.” Load this file from the CD  

and write MATLAB® codes to perform the following: 

 a.  Plot the signal in time. Also, plot the magnitude of the DFT of the signal. 

 b.  W hat is the dominant frequency of this signal? What does this frequency  

(or equivalently, its corresponding period) represent? 

12.2	  An  airflow signal,  g1(t); an abdominal excursion signal, g2(t); and a thoracic  

excursion signal,  g3(t), are given in file “p_12_2.mat”.* These signals are  

captured from the same person during sleep. Load this file from the CD and 

write MATLAB codes to perform the following: 

 a.  Pl ot the signals in time and frequency and comment on the dominant  

frequencies of the signals. 

 b.  F ind the correlation function among the three signals and comment on the 

identified correlations. 
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13 Principles of Computed 
Tomography 

13.1  INTRODUCTION AND OVERVIEW 

Before applying any image processing technique described in the previous chapters 

to analyze a biomedical image, one needs to create an image. This is often done 

using computational techniques specialized to exploit the physical laws governing 

the imaging system as well as the tissue to be imaged. Despite the differences in the 

physical laws and principles of imaging modalities such as MRI, x-ray CT, ultra­

sound, and PET, surprisingly, the core computational techniques used to create an 

image in all these modalities are more or less the same. These computational tech­

niques are often referred to as “computed tomography” or CT. We start this section 

with the description of the main concepts of CT and its importance in biomedical 

image processing. 

While mathematical representation of CT (as will be discussed in detail) is rather 

complex, the concept of CT is very much simple and intuitional. Simply put, CT is 

a process in which the contents of a black box are estimated and visualized based 

on the reading and measurements made on the surface or around the box. In other 

words, in CT, one needs to know the contents of a box without opening it. This 

simple definition explains the importance of CT in biomedical sciences. In medical 

diagnosis, physicians need to “see” the inside of a body as a two-dimensional (2-D) 

or three-dimensional (3-D) image noninvasively, i.e., without having to cut the skin, 

organ, or tissue. The popularity and widespread use of all the existing imaging 

systems in the recent decades witness to the importance of CT. 

From the simple definition of CT given earlier, one might think that this is not 

a feasible task and no math can handle it. In order to see if this task might be pos­

sible even without any math, let us make a quick journey to our younger age. Piggy 

banks are not only popular play objects among children but also the best examples 

to witness to the feasibility of CT. Children are often curious to know how full or 

empty their piggy banks are, i.e., they try to estimate the contents of their black 

box (piggy bank) at least roughly. In order to do so, they shake (i.e., “stimulate”) 

their piggy bank and get two types of feedback: tactile and audio information. 

Based on the way the shacked piggy bank “touch” and “sound,” children decide 

not only whether it is full or not but also whether the contents are mainly notes or 

coins. This CT process happens in the brain apparently without any math as most 

of these children do not even know how to add numbers! 

The reader might think that the examples of CT are limited to early medical imaging, 

but CT problems are encountered in many areas of science such as nondestructive tests 
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250 Biomedical Signal and Image Processing 

(e.g., estimating the internal structure of a crystal without breaking it), remote sensing 

(e.g., using satellite image to estimate the shape and distribution of weather fronts), and 

mining (e.g., discovering the existence of a particular mineral inside a mountain or deep 

under the ground). 

Returning to our discussion of CT for biomedical imaging, from the standpoint 

of how the system is stimulated and how the measurements are made, CT systems 

can be categorized into three most commonly used types: attenuation tomography, 

reflection tomography, and refraction tomography. A brief and high-level description 

of these three approaches that avoids any mathematical formulations is given in the 

following. 

13.1.1 ATTENUATION TOMOGRAPHY 

In this technique, as shown in Figure 13.1, the system is stimulated by an energy 

source on one side of the tissue, and the power (or amplitude) of the energy reach­

ing to the other side of the tissue is detected on the other side and is measured. 

The energy beams such as x-ray are known to travel mainly through straight lines 

through biological tissues with little or no reflection or refraction (i.e., bending the 

path and deviation from a straight line). As a result, for such energy beams, assuming 

a straight pass between the source (transmitter of the beam) and the receiver (detector 

of the energy beam) is reasonable. 

While we are not planning to cover electromagnetic laws to determine when 

significant reflections or refractions are produced, a simple rule of thumb based 

on the relative size of the smallest objects in the tissue (e.g., blood vessels, tumors, 

and so on) to the wavelength of the energy beam can be given here. This rule 

of thumb states that no significant reflected echoes or refraction is produced if 

the wavelength of the energy beam is much smaller than the size of the smallest 

objects in the tissue to be irradiated. In simple words, if the wavelength is small, 

then the beam can be assumed to pass through the tissue without much reflections 

or refractions. Knowing that x-ray has a very small wavelength (less than 10 nm), 

when the objects to be identified are bones or medium- to large-size blood ves­

sels (even to some degree small blood vessels), one can safely assume that x-ray 

attenuation tomography can be performed without concerns regarding significant 
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FIGURE 13.1 Attenuation tomography (a) parallel measurements along the same direction 

and (b) along several directions. 



 

 

 

 

 

 

                  

 

 

 

 

 

 

 

 

 

 

 

 

251 Principles of Computed Tomography 

amount of reflection or refraction. On the other hand, for medical ultrasonic waves, 

the typical wavelength is in the order of a few millimeters and therefore will produce 

significant echoes and diffraction. 

Returning to the mechanism of attenuation tomography, often, the process of 

irradiation on one side and measurement on the other side is repeated on several 

points along the same direction (i.e., parallel lines in Figure 13.1a) and along many 

directions (Figure 13.1b), and the resulting attenuation values are used to create an 

image of the internal structure of the tissue. 

13.1.2 TIME-OF-FLIGHT TOMOGRAPHY 

In the description of attenuation tomography, we did not use the concept of the time 

needed for beams to pass through different tissues as a means of tomography. This is 

due to the fact that in some image modalities such as x-ray, due to very high speed of 

the beam (speed of light for x-ray), it is extremely difficult to measure the very short 

time periods often encountered. In many such cases, designing hardware to measure 

such short time intervals is practically impossible. However, in some image modali­

ties, such as ultrasonic imaging, the speed of the propagation of the energy is rather 

low, and we have the means (e.g., hardware) to measure the resulting time intervals. 

For such technologies, a different type of tomography is often used that creates an 

image of the tissue based on the differences in the speed of the energy beam in 

different objects inside the tissue or, equivalently, the time it takes for the beam to 

“fly” through different objects. Time-of-flight or TOF tomography is a popular technology 

that is described here. 

In order to better describe the physical concepts involved in this type of  

tomography, we postpone describing this technique until the chapter on ultra­

sonic imaging. However, the principle techniques are applicable to all types of 

image modality. 

13.1.3 REFLECTION TOMOGRAPHY 

In some types of imaging modalities, the transmitted beam is reflected on the surface 

of the objects inside the tissue. In reflection tomography, as shown in Figure 13.2, the 

tissue is stimulated (i.e., irradiated) by an energy source on one side of the tissue and 

the power of the reflected beams is measured on the same side of the tissue (often 

using the same measurement device as both transmitter and detector). In other words, 

Detector 
(receiver) 

Tissue 

Source 
(transmitter) 

FIGURE 13.2 Schematic diagram of reflection tomography. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

252 Biomedical Signal and Image Processing 

the reflected signals are received by the detectors (located on the same side as the 

transmitters) as the “echoes” of the transmitted signals. The energy beams such as 

ultrasonic waves create more significant reflection echoes when traveling within 

biological tissues that can be detected with rather simple piezoelectric probes. As a 

result, for such energy beams, assuming a straight pass between the source (trans­

mitter of the beam) and the receiver (detector of the energy beam) is reasonable. 

Just like in attenuation tomography, the measurement process is repeated on sev­

eral points, and the resulting reflections are used to create an image of the internal 

structure of the tissue. 

For more clarity of the physical description of the system, we again focus on 

ultrasonic reflection tomography and again have to delay describing the technical 

and mathematical description of the reflection tomography until the basic concepts 

of ultrasonic imaging are explained. 

13.1.4 DIFFRACTION TOMOGRAPHY 

For many energy sources, the irradiate beam bends as it hits the objects in the tissue. 

This is the basis for diffraction tomography. In such topographic measurements, as 

shown in Figure 13.3, the tissue is stimulated by an energy source one side of the 

tissue and the power of the diffracted beams is measured on theoretically all around 

the tissue. This type of tomography constitutes the most difficult and challenging 

task in terms of creating mathematical techniques to produce an image of the irradi­

ated tissue. Just like in other types of tomographic systems, the measurement process 

is repeated on several points along the same direction and along many directions, 

and the resulting reflections are used to create an image of the internal structure of 

the tissue. 

In terms of the computational techniques used to conduct this type of tomography, 

one needs to include all wave equations and apply computational techniques that are 

beyond the focus of the this book and are not discussed here. 

As mentioned earlier, the formulation and structure of most of the computational 

methods used for CT are the same or similar for all modalities. As a result, we 

formulate the major part of the problem based on the most intuitive one, i.e., x-ray 

attenuation tomography, and then when dealing with other types of tomographic 

tasks, the differences and extensions are further described. 

Detector 

(transmitter) 

(receiver) 
Tissue 

Source 

FIGURE 13.3 Schematic diagram of diffraction tomography. 
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13.2	   FORMULATION OF ATTENUATION  
COMPUTED TOMOGRAPHY 

In this section, a mathematical formulation of tomography is presented. In any tomo­

graphic system, a particular physical property of the tissue is used to generate an 

image. For example, in attenuation tomography, the characteristics used to distin­

guish the points from each other, and therefore create an image based on these dif­

ferences, is absorption index. In other words, if the absorption index of a point 

(x, y) is shown by a 2-D function f(x, y), the tomographic image created will represent 

the tissue based on the differences among the absorption index of each point inside 

the tissue. 

The main difficulty of almost all imaging systems is the fact that the value of the 

function f(x, y) cannot be measured directly; rather, what is often measured is an inte­

gral in which f(x, y) acts as an integrand. In order to see this more clearly, let us examine 

attenuation tomography more carefully. As can be seen in Figure 13.4, the beam “i,” 

generated by the transmitter, undergoes attenuation at every point (x, y) proportional to 

f(x, y). Showing the length of a small path around the point (x, y) as “ds,” the amount 

of dPi, attenuation from one side of the path ds to the other side of it, can be written as 

follows: 

dPi = f x y ds ( ,  ) 	  (13.1) 

Since the detector is located on the other side of the tissue, the attenuation sensed at 

the detector reflects the total amount of attenuation all through the path as opposed 

to a particular point. In other words, the total attenuation on the other side of the 

tissue is 

P = f  x y ds 	  (13.2) i ( , )  ∫ 
Path i“ ”  

The integrals of Equation 13.2 are called line integrals. As can be seen, our mea­

surement gives the result of the line integrals, i.e., the integration of f(x, y) over the 

entire linear path as opposed to the value of f(x, y) at every point. Now, the task of 

CT is to use these integral equations and solve for f(x, y). In mathematics literature, 

such a task is normally referred to as the inverse problem. Intuitively, one can see 

Pi 

ds 

f (x, y) 

FIGURE 13.4 Attenuation across a differential element of path ds. 
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that it is theoretically impossible to solve for f(x, y) from only one integral equation 

such as Equation 13.2. A simple justification of such a claim is as follows: Someone 

has two numbers in mind and wants you to guess these numbers. As a hint, he or 

she provides you with the summation of these numbers. Is this hint sufficient to 

guess every one of those two numbers? Obviously, the answer is no. Getting back 

to our problem and knowing that integration is nothing but the summation over 

the differential elements, one cannot find a function f(x, y) from the result of its 

integral. Then, the question is “how can we solve this problem?” The beauty of CT 

lies within the simple idea that one can estimate f(x, y) if she or he repeats measure­

ments at different positions and different angles. This is loosely similar to asking 

the person who has the two numbers in mind to provide you with some other alge­

braic fact about his or her numbers, for example, to tell you what is two times one 

number plus the other one. With having another set of algebraic equation, you can 

solve a system of two equations with two variables to come up with the numbers. In 

tomography, many measurements at many positions and many directions (as shown 

in Figure 13.5) are used to create a set of equations that can be solved for f(x, y). 

In medical tomography, two types of beam system are used. In the first type, 

called “parallel beam,” all beams for a given angle are in parallel (Figure 13.5), 

while in the second type, often referred to as “fan beam,” the beams for a particular 

angle fan out from the source (Figure 13.6). In this book, we focus on parallel beam 

formulation, but the extension of the formulation to the fan-beam system is rather 

more complicated and is not covered in this book. 

Despite the differences in physical properties, solving inverse problems in path 

integrals based on several measurements constitutes the principle of tomography. 

As a result, in the following section, a detailed description of the techniques to solve 

the integral equation in attenuation tomography is given. 

FIGURE 13.5 Measurements at different positions and directions for tomography. 

FIGURE 13.6 Fan-beam system. 
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13.2.1 ATTENUATION TOMOGRAPHY 

In this section, while focusing on attenuation tomography, the main principles of 

tomography are described. The first step is to device a suitable formulation of “line 

equation” that matches the ideas of tomography more intuitively. In Figure 13.7, consider 

the line that forms angle θ with the x-axis and distance t from a parallel line passing 

through the origin. Such a line can be represented with the following insightful equation: 

x cos( ) q + y sin( ) = t (13.3) q 

The popularity of this formulation of a line lies in the fact that just by looking at the 

equation, one can know the direction (through θ) and the rectangular distance from 

the origin (through t). 
In addition, such a formulation has more attractive features for tomography. For 

example, in tomography, often we need to model a number of parallel lines (as in 

Figure 13.8). In the aforementioned formulation, since the angle θ is the same for all 

parallel lines, the only thing that changes from one line to another is t. 

FIGURE 13.7 Line formulation using θ and t. 

FIGURE 13.8 Forming projection function using parallel beams with angle θ. 
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Now, assume that at angle θ, we send a number of parallel beams with different t’s  
(as in Figure 13.8) and detect the amount of attenuation (hereafter “projection”) at the 

other side of the tissue. Since for each  t we obtain a projection, the resulting projec­

tion values can be thought of as a function of  t, i.e., the projection function obtained  

at angle θ can be represented as  P (t). One might argue that since the amount of shift θ
t is often discrete, the function P (t) should also be a discrete function. While this θ
argument is true and, in reality, both  t and  P (t) are discrete, at this point, we restrict θ
ourselves to continuous variables and functions and get back to this issue later on. 

A typical P (t) is shown in Figure 13.8, where more attenuation is obtained in the θ
middle. This is due to the fact that the beam has to travel more through the tissue in  

middle points and therefore gets attenuated more. 

Next, we try to see if we can estimate the tissue structure from the projection 

function, i.e., estimate  f(x, y) using P (t). Let us first explore the integral relation θ
between these two functions again: 

P t  q ( )  = f (x  , y) ds  (13.4) 

 ( ,q t 
∫
 
)  line  

As can be seen in Equation 13.4, in order to estimate  f(x, y) from  P (t), one needs to θ
solve an integral equation. Before doing so, we first explore special cases of Equation 

13.4 that give us more insight to the nature of this equation. These special cases are 

when  θ = 0 (beams parallel with  x-axis) and θ = π/2 (beams parallel with  y-axis). 

For θ = 0, we have  ds = dy, and, therefore, 

∫ 
+∞

Pq =0( )  t = f  (x, y) ds  = ∫ f (x  , y) dy  = P q = 0(  x )  (13.5) 

 (q =0 j ) lines −∞  

Equation 13.5 is a single variable integral over  y, and the resulting projection function 

has only one variable  x. For θ = π/2, ds = dx, and, as a result, 

+∞

Pq p= /2 ( )  t = ∫ f  (x, y) ds  = ∫ f (x  , y) dx  = Pq p= /2 (  y)  (13.6) 

 
(q =p j ) lines −∞

2  

Equation 13.6 is also a single variable integral but this time over x and the resulting 

projection function has only one variable  y. These two special cases will help in our 

attempt to solve the equations for f(x, y). 

The main method to solve the preceding inverse problems applies the Fourier 

transform (FT). This rather simple strategy has two steps: (1) Use P (t) to find or estimate  θ
F(u, v), i.e., FT of  f(x, y) in (u, v) domain and (2) calculate inverse Fourier transform 

(IFT) of  F(u, v) (or its estimation) to obtain  f(x, y). As can be seen, the second  step is a  

simple standard routine, and, as a result, conducting the first step, i.e., finding  F(u, v) 

using measurement of  P (t), is the main part of tomography. θ
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In order to see how FT is used for this purpose, first consider FT of the projection 

function along a particular line for a fixed θ, i.e., 

+∞ 

S w( )  = P  t e  ( )  − j w2p t t (13.7) q q d∫ 
−∞ 

Also, consider the 2-D FT of the object function f(x, y): 

+∞ +∞ 
− j2p (ux  v+ y)F u v  = f  x y e  , ) dxdy (13.8) ( , )  (∫ ∫ 

−∞ −∞ 

Now, for v = 0, FT along the horizontal frequency coordinate becomes 

+∞ +∞ ++∞ +∞ 
j ux  − 2p x− 2p j uF u 0 = f x y e ) dxdy = f x y d, ) y e dx (13.9) ( , )  ( ,  ⎜ ( ⎟∫ ∫ ∫

⎛

⎜ ∫ 
⎞

⎟ 
−∞ −∞ −∞ ⎝ −∞ ⎠ 

+∞ 
But from Equation 13.5, remember that P 0( )  f  x y d, ) yq = x ( , which means = ∫−∞Equation 13.9 can be rewritten as follows: 

+∞ 
− j u2p xF u 0 = P =0(  )  dx (13.10) ( ,  )  ∫ q x e  

−∞ 

+∞ 
j up xNow, from Equation 13.7, we know that Sq =0 u = ∫ Pq =0(  )  x e  − 2 dx( )  , which means 

−∞ 

F u 0 = S ( )  = FT  P  ( ,  )  q =0 u { q =0(  )  x } (13.11) 

Equation 13.11 finally looks like what we wanted for the first step of our tomography 

technique, i.e., calculating at least some part of F(u, v) from some part of Pθ(t). To 

see what we have obtained more intuitively, consider the visual representation of 

Equation 13.11 shown in Figure 13.9. 

f (x, y) 

FT 

F(u, 0) 

v 

u 
x 

Pθ=0(x) 

Θ = 0  

y 

FIGURE 13.9 Visual interpretation of Equation 13.11. 
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As can be seen in Figure 13.9, one-dimensional (1-D) FT of the projection function 

for beams θ = 0 (with x-axis in space domain) gives the 2-D FT of f(x, y) on v = 0 axis. 

In other words, one can simply conduct one set of parallel scans along the x-axis and 

calculate the values of the FT of the resulting projection function to obtain the values 

of F(u, v) along the u-axis. This is a big step toward our goal of estimating F(u, v), but 

having F(u, v) only along one axis is not sufficient to form f(x, y), i.e., we need F(u, v) 

all over the 2-D frequency domain to create a better estimation of F(u, v). Repeating 

measurement at different angles will produce the values of F(u, v) on different lines in 

the (u, v) plane. This phenomenon is often referred to as Fourier slice theorem. 

13.3  FOURIER SLICE THEOREM 

As can be seen in Figure 13.10, Fourier slice theorem simply says that every set 

of parallel scans at angle θ will produce the values of F(u, v) along one line in the 

frequency plane (u, v). 

Using Figure 13.10, the Fourier slice theorem can be described in the following 

two steps: 

Step 1: Create a set of parallel scans at angle θ and produce the projection 

function Pθ(t). 
Step 2: Calculate the 1-D FT of the projection function Pθ(t) to produce the 

magnitude of F(u, v) along a line passing through the origin with angle θ 
with u-axis. 

It can be seen that if one repeats these measurements on many different angles, the 

values of the magnitude of F(u, v) can be known along so many lines and that in 

limit these lines will theoretically cover the entire (u, v) plane (Figure 13.11). After 

performing scans in many angles, and therefore having many lines in the (u, v) plane, 

one can calculate the IFT of F(u, v) and produce an estimation of f(x, y). 

Θ = Θ0 

f (x, y) 
x 

y FT v 
F(u, v)Pθ = θ0(x) 

Θ = Θ0over line 

Θ = Θ0 u 

FIGURE 13.10 Visual description of the Fourier slice theorem. 

F(u, v) v 

u 

FIGURE 13.11 Covering the (u, v) plane with a number of parallel scans at different angles. 
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While the principle idea of tomography is as simple and straightforward as what 

we covered earlier, there are a number of practical considerations that need to be 

addressed separately. The first issue is the fact that in practical systems, the projection 

function is a discrete function. In order to see why this is true, let us explore a sim­

plified version of the procedure under which a set of parallel scans are conducted. 

In practical systems, a number of transmitters with certain physical dimensions are 

arranged beside each other, along a straight or curved line. The same type of arrange­

ment of receivers (detectors) is made for detectors on the other side of the tissue or 

object. During scanning, each transmitter sends one scan that is received by the cor­

responding receiver (detector) on the other side of the object. This describes why 

you have only a discrete number of scans; the projection function is calculated for a 

number of points equal to the number of detectors. Obviously, one can make the trans­

mitters and receivers smaller and smaller and, therefore, for the same scanning area, 

increase the number of points at which the projection function is calculated but can 

never reduce the size of the transducers ultimately small and form a continuous scan. 

Now, knowing that the projection function is a discrete function, instead 

of performing FT, one needs to perform DFT or fast Fourier transform (FFT). This 

means that, in reality, instead of knowing the magnitude of F(u, v) on every point along 

a line, we know this function only on some discrete set of points along the line. In other 

words, after performing a number of scans, instead of getting Figure 13.11, we will end 

up with Figure 13.12. 

Based on the previous discussion, in order to calculate f(x, y) from F(u, v) known 

along the discrete lines covering the (u, v) plane, one needs to use 2-D IDFT or IFFT 

as opposed to the continuous IFT. 

Another issue to be addressed about the Fourier slice theorem method is the perfor­

mance of image reconstruction in the high frequencies. As can be seen in Figure 13.12, 

the function F(u, v) is known on many points in the vicinity of the origin. This means 

that since the points on the lines are very close to each other around the origin, we have 

a lot of information about the low-frequency contents of the image. However, since the 

lines converge from each other as we move away from the origin, the distance between 

the points on the lines becomes larger and larger. This means that we know less about 

higher frequencies of the signal, because the points in which F(u, v) is known are far 

apart from each other. Let us try to use our knowledge of image processing to visual­

ize how this issue affects the quality of the resulting image. Remember that high 

frequencies correspond to the edges and textures of the image. This means that if these 

frequencies are not well known, the edges and texture become vague and fuzzy. 

F(u, v) v 

u 

FIGURE 13.12 Covering the (u, v) plane with a number of discrete parallel scans at different 

angles. 
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A simple solution for this problem is to make more scans, i.e., make more lines 

that are closer to each other and therefore create a better representation of the high 

frequencies. Even though simple in idea, this approach is often limited by the  

restrictions imposed by the instrumentation and technical issues. Another solu­

tion (which is heavily used by the industry) is to design mathematical techniques 

to interpolate the known points in high frequencies to find more points in high 

frequency and calculate IFFT of F(u, v) on many more points to create a better  

representation of f(x, y). There are very many techniques to perform this interpolation, 

but, in principle, they all share the idea of using the known points to estimate the 

values of the points in between them. We do not discuss these techniques here, and 

interested readers can use the list of books and papers provided in this book for 

further study of these methods. 

13.4 SUMMARY 

In this chapter, the principle ideas of CT were presented. Knowing that the basic 

mathematical methods behind all tomographic modalities such as CT, MRI, PET, 

and some ultrasound imaging systems are the same, covering these techniques in 

this chapter covers almost all mathematical foundations of medical imaging. In the 

chapters dedicated to each particular modality, we will describe how the physical 

principles of each imaging modality provide tomographic equations to be solved 

by the methods described in this chapter. As described in this chapter, the major 

mathematical methods for solving the tomographic equations are based on a theorem 

called Fourier slice theorem that translated the tomographic measurement into a 

computationally simpler problem in the frequency domain. 

PROBLEMS 

13.1	 During an attenuation tomographic measurement, assume that the two projections 

at θ = 0 and θ = π/2 have resulted in the following projection functions: 

t < a⎧0⎪ 
(13.12) Pq =0 = ⎨

1 t ≥ a⎪⎩

and
 

⎧0
 t < b⎪ 
(13.13) Pq p /2 = =	 ⎨

1 t ≥ b⎪⎩

Without using any mathematical calculations and only using heuristics, try to 

visualize the object being imaged. 

13.2	 Study the formulation of the 2-D FT in the polar coordinates and explain how 

this formulation helps with the implementation and usage of the Fourier 

slice theorem for CT. 



 

 

 

   

 

 

 

 

 

 

 

 

 

14 X-Ray Imaging and 
Computed Tomography 

14.1  INTRODUCTION AND OVERVIEW 

Medical x-ray imaging is an imaging modality operating in the x-ray electromagnetic 

spectrum. The difference with other parts of the electromagnetic spectrum lies in the fact 

that x-ray operates in very short wavelengths, much shorter than the ultraviolet light of the 

visible spectrum. The x-ray photon energies range from 10keV (1.6 × 10−15 J) to 100keV 

(1.6 × 10−14 J) or, equivalently, the x-ray wavelengths ranging from 0.124 to 0.0124 nm. 

The x-ray energy electromagnetic radiation was discovered by the German scientist 

Wilhelm Conrad Röntgen (1845–1923) in 1895 while testing a gas discharge tube. 

The name x-ray was chosen at the time because it was an unknown type of radiation, 

i.e., at the time it was not known that the x-ray was indeed some type of electromagnetic 

radiation such as light, only with much shorter wavelengths. 

Röntgen’s discovery was made when accelerated electrons traveling through vac­

uum in a glass tube were hitting both the anode and the glass wall. The interaction of 

the accelerated electrons with the anode or the glass wall apparently produced some 

form of radiation that made certain materials light up. In the case of Röntgen’s exper­

iment, the material that started glowing was barium platinocyanide. The principle 

of x-ray radiation relies on the deceleration of the electrons during the interaction 

with the atomic nuclei of the heavy metal anode and the heavy metals in the glass 

wall where the electron energy is converted into another form of energy, electric and 

magnetic fields. 

The potential for imaging the inside of the human body was almost immediately rec­

ognized as the main usage of the piercing new form of radiation and is still one of the most 

used means of medical imaging with continuously increasing capabilities. In this chapter, 

we first describe the physics of x-ray and then discuss some of the major imaging methods 

based on x-ray, including regular x-ray imaging and x-ray computed tomography (CT). 

14.2  PHYSICS OF X-RAY 

We start this section by introducing some of the main concepts that are heavily 

used in x-ray imaging. Two of the concepts in x-ray radiography are radiopaque and 

radiolucent. Radiopaque refers to characteristics of an object that is impenetrable to 

x-ray. Irradiating such an object with x-ray results in low radiation exposure of the 

detector on the opposite side of the medium. On the other hand, radiolucent means 

transparent to x-ray radiation, i.e., high exposure of the detector on the opposite side. 

The reference material used in x-ray imaging is water that is used as a point of refer­

ence or comparison to assess the transparency of other materials. Roughly speaking, 

water’s transparency to x-ray falls in the middle of the range of x-ray absorption. 
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262 Biomedical Signal and Image Processing 

FIGURE 14.1  Characteristic beam delivery design. (Courtesy of Dr. Bob Jones, Lancaster 

University, Lancaster, United Kingdom. http://www.lancs.ac.uk/depts/physics/physics.htm) 

Currently, the method of x-ray generation has not deviated from the original 

accidental discovery. Figure 14.1 illustrates the generation of x-ray sources used 

in typical medical imaging applications. A tube with a glow cathode releases elec­

trons, which are accelerated toward a metal anode. The anode is usually made of 

tungsten. The energy of the x-ray radiation is in direct correlation with the initial 

acceleration of the electrons measured in the voltage applied between the cathode 

and the anode. The work, W, performed on the electron during the acceleration is 

the charge, q, times the electric potential, U. This means that 

W = qU (14.1) 

Work and Energy are related by the fact that work equals the change in potential 

energy PE plus kinetic energy KE: 

E PE  + KE (14.2) = = W 

In quantum theory, the energy of the photon is all kinetic energy, which is defined 

as follows: 

hC
E = KE = = hf (14.3) 

l 

where 

h equals the Planck’s constant 

C is the speed of light in vacuum 

E is the energy of the photon 

λ is the wavelength of the electromagnetic radiation 

f denotes the frequency 

http://www.lancs.ac.uk


  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

263 X-Ray Imaging and Computed Tomography 

As can be seen from Equation 14.3, frequency of an electromagnetic wave is related 

to its wavelength as follows: 

C (14.4) f = 
l 

Since all the energy of the photon is only kinetic energy, work equals the kinetic 

energy, i.e., 

hC
E = W = qU = hf = (14.5) 

l 

Equation 14.5 states that the x-ray’s wavelength is primarily identified by the voltage 

(potential difference) used to create accelerate electrons. However, Equation 14.5 

paints the ideal picture of 100% conversion efficiency from the kinetic energy of 

the electron to the photon, which is highly improbable. In most cases, not all energy 

from the accelerated electron is released during deceleration when the electron hits 

the anode. A large portion of energy is converted into heat. In practical systems, 

even with the highest efficiency, only approximately 1% of the electron energy is 

converted into electromagnetic radiation; the remaining energy needs to be disposed 

off as heat. This makes cooling an important concern in x-ray imaging. 

As shown in Figure 14.1, the produced x-ray beams are then formed using a col­

limator. The biological tissues are irradiated with the collimated beams, and the 

attenuated beams after passing through the biological tissues are then detected by 

an array of detectors or simply by a sensitive film. This typical setup of biomedical 

x-ray imaging systems will be discussed later in this chapter. 

Based on the choice of the anode material, certain electrons carrying a particu­

lar quota of energy are preferably absorbed more than others. This results in an 

x-ray photon spectrum that is characteristic for the anode material, and it is hence 

called characteristic radiation. Peaks in the spectrum relate to significantly higher 

deceleration probability and resonance energy levels of the anode material based 

on atomic configuration and lattice structure. A representative x-ray spectrum is 

illustrated in Figure 14.2. 

The spectrum emitted by the anode material will range from short wavelengths 

at the higher energy levels to long wavelengths at the lower energy levels as is clear 

from Figure 14.2. The shorter wavelengths are most desirable for their ability to 

make a high level of discrimination capability, which translates to a better image 

resolution. Conversely, the longer wavelengths are undesirable because of the low 

resolution and shallow penetration. Therefore, longer wavelengths will need to be 

eliminated as much as possible since they provide no additional image detail but do 

add to the damage created by x-ray radiation on biological tissues. Tissue damage 

takes place at the genetic level, since the wavelengths of x-ray radiation are of the 

order of the size of the molecular bounds in DNA. 

Filtering of electromagnetic radiation at these energy levels can be accomplished 

by metal plates of various thicknesses in the path of the photon beam. For instance, 
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264 Biomedical Signal and Image Processing 

FIGURE 14.2 Example of relative characteristic radiation spectrum resulting from an 

acceleration energy ranging from 50 to 200 kV. (Courtesy of Dr. Bob Jones, Lancaster 

University, Lancaster, United Kingdom. http://www.lancs.ac.uk/depts/physics/physics.htm) 

aluminum will absorb the majority of the low-energy photons, while the short wave­

lengths experience minimal adverse effects. 

Next, we apply our knowledge of the physics of x-ray to discuss the use of x-ray for 

imaging and in particular the practical considerations in using x-ray for medical imaging. 

14.2.1 IMAGING  WITH X-RAY 

X-ray radiation produced with <60 kV of acceleration potential is classified as soft 

x-ray and has electrons with 60 keV (9.6 × 10−15 J) kinetic energy hitting the metal 

target. This type of radiation is predominantly used for soft tissue imaging, for exam­

ple, imaging of breast tumors called mammography. When an electric potential of 

more than 100kV is used for acceleration, the radiation is categorized as hard x-ray. 

This type of short-wavelength radiation serves best to image hard tissues like bone 

or artificial contrast agents. The electromagnetic radiation will pass through either 

soft or hard tissue based on the photon energy, but the relative amount of absorbed 

radiation will be proportional to the type and size of tissue. 

For imaging purposes, the x-ray energy needs to be converted in a display medium 

that places the radiation transmitted through the biological medium in the range of 

human perception. In order to obtain the best quality of an x-ray image, the exposure, 

the anatomical penetration, and the contrast and resolution on the film or detector 

array need to be optimized to get the best resolution and contrast for the anatomy of 

interest while minimizing the radiation hazard to the patient. As will be discussed 

in detail, the exposure depends on tube operating settings, geometry of the imaging 

arrangement, and the exposure time. The penetration through the anatomy depends 

on the characteristics of the respective tissues the beam passes through as well as the 

anatomical structure of the tissues. The contrast on the x-ray film between anatomi­

cal features of interest is of crucial importance in the determination of details. The 

resulting contract largely depends on the characteristics of the film or other detectors 

http://www.lancs.ac.uk


 

 

 

  

  

 

265 X-Ray Imaging and Computed Tomography 
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FIGURE 14.3 Illustration of typical uniform x-ray exposure and beam detection geometry 

to enhance contrast by removing scattered x-ray photons from the detection beam by means 

of the Bucky roster. (Courtesy of Dr. Bob Jones, Lancaster University, Lancaster, United 

Kingdom. http://www.lancs.ac.uk/depts/physics/physics.htm) 

used for sensing the x-ray. The resolution is determined to a great extent by the 

geometry of the imaging setup (relative distance between source, patient, and film, 

and so on). Figure 14.3 illustrates a simplified geometric representation of a typical 

medical radiography setup. In this diagram, the effects of diffracted photons, which 

can cause distortion in the resulting images, have been graphically presented. 

The next sections will focus on the main practical factors and considerations in 

using x-ray for medical imaging. 

14.2.2 RADIATION DOSE 

The amount of radiation needed to result in accurate images is referred to as the 

radiation dose. The x-ray radiation exposure is determined by several measures. The 

exposure is often measured in absorbed radiation dose. The concept of radiation dose 

plays an important role in all medical x-ray imaging systems and is further described 

in the following text. 

The x-ray exposure, X, is the time exposure to intensity and is the culmination of 

the intensity exposure over an extended period of time defined as follows: 

X ∝ ZiU  t2 (14.6) 

where 

Z is the atomic number of the target material 

i (mA) is the cathode ray current 

U (kV) is the potential difference between the cathode 

t (s) is the exposure duration 

The exposure X is expressed as an energy density (J/m2). 

http://www.lancs.ac.uk


 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

  

 

 

266 Biomedical Signal and Image Processing 

One can argue that since not all tissues absorb the same percentage of the incident 

radiation, the exposure X does not give an optimal measure of the radiation absorbed 

by the tissue. In other words, in order to obtain an accurate reading of the dose, 

the respective tissues irradiated need to be taken into account. This is why another 

quantity, the radiation absorbed dose (RAD), is sometimes used an actual indication 

of the energy absorbed by the medium (biological tissue) per unit mass. However, in 

dosage assessment procedures, it is often observed that the absorption of the x-ray 

source is relatively uniform across the entire field of exposure, giving all tissues 

relatively the same dosage. This observation means that RAD can be often well 

represented by X. 

14.3  ATTENUATION-BASED X-RAY IMAGING 

With the knowledge of the operating mechanism of x-ray imaging, we can proceed 

with the description of the actual image formation. Since almost all commercial 

x-ray imaging systems, i.e., conventional x-ray machines as well as CT or computed 

axial tomography (CAT) scan systems, are using attenuation as the major physical 

quantity to form images, next we focus on the concept using attenuation for image 

formation. 

As mentioned in Chapter 13, in x-ray attenuation tomography, the difference in 

the attenuation between various tissues forms the basis of the formation of an attenuation 

contrast image. 

The attenuation coefficient, also known as the absorption coefficient, α, plays the 

central role in x-ray attenuation imaging. This quantity is defined as the proportion­

ality factor for the change in x-ray radiation intensity. In order to formally define this 

quantity, consider the change in intensity, dI, across a differential element of thick­

ness, dx. This intensity change is proportional to the incident intensity, I0, and the 

distance traversed, i.e., 

dI = −aIdx (14.7) 

Integration of Equation 14.14 gives the following expression of exponential decay as 

a function of distance migrated through the biological medium: 

−axI I e  0 (14.8) = 

or 

⎛ I0 ⎞ln ⎜ ⎟ = −ax (14.9) 
⎝ I ⎠

where I is the transmitted intensity used for image formation. 

As can be seen from the aforementioned formulation, the attenuation coefficient, α, 

is the reciprocal distance where the intensity decays to e−1 or 36% of the initial value. 
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FIGURE 14.4  Energy dependence of the mass attenuation coefficient for three main  

 tissues. (Courtesy of Dr. Bob Jones, Lancaster University, Lancaster, United Kingdom.  

http://www.lancs.ac.uk/depts/physics/physics.htm) 

Accelerated electrons hit anode, producing photons with different levels of energy. 

Different types of biological tissues have different values of attenuation coefficient. 

This dependency of the attenuation on the photon energy is illustrated in Figure 14.4. 

These differences describe why attenuation coefficient can be used to produce an 

image of the biological systems. 

In general, for optimal image formation, the x-ray energy is chosen for maximum 

contrast, depending on the tissues of interest. As may be concluded from Figure 14.4, 

the largest gradient in mass attenuation coefficient is in the energy range between 

10 and 100 keV. Higher tissue density and associated higher atomic number of the 

components give greater contrast opportunities; however, soft tissues require greater 

attention to reveal any contrast. 

In order to calculate the amount of attenuation, one needs to detect and expose 

the amount of the received x-ray energy on the other side of the irradiated tissue. 

The difference between the transmitted and received energy constitutes a measure 

of attenuation. Due to the importance of x-ray detection, next, we briefly review the 

commercially used methods of x-ray detection. 

14.4 X-RAY  DETECTION 

The main methods to obtain an anatomically representative image of a biological 

medium are discussed in the following. 

The most primitive method of measuring x-ray energy is film imaging. In conven­

tional x-ray image formation, the x-ray photons are used to oxidize a sensitive layer 

made of a silver/bromide/iodine mixture. The amount of radiation exposure deter­

mines the degree of oxidation, similar to photographic film imaging. After exposure, 

the film is developed and a high contrast grayscale image is produced. In general, 

http://www.lancs.ac.uk
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FIGURE 14.5  Illustration of a typical response curve of photographic film plate. (Courtesy 

of Dr. Bob Jones, Lancaster University, Lancaster, United Kingdom. http://www.lancs.ac.uk/ 

depts/physics/physics.htm) 

the film is nonlinear in its response with only a relatively narrow range of energy 

exposure that is in fact linear. This linear region of sensitivity will need to be utilized 

to optimally reveal image details. The film sensitivity is expressed in optical density 

(OD), which is the darkening observed under x-ray exposure. Conventional x-ray is 

accepted to provide the best discrimination for distinguishing between bone, soft tis­

sue, and lung. In such systems, it is often desired to keep the x-ray exposure amount 

to the range where the relation between the OD and the exposure is linear, as shown 

in Figure 14.5. This range allows better control of the exposure while maintaining a 

proportionally acceptable optical quality of the resulting image. Figure 14.6 shows 

a typical conventional x-ray machine that applies sensitive films to detect the x-ray 

attenuation across the irradiated tissues. 

Another popular means of image formation is the use of fluorescence induced 

by x-ray. Fluorescent material emits visible light when receiving the x-ray radia­

tion. This fluorescence can be seen by a charged coupled device (CCD) camera for 

continuous viewing or still-picture generation. In fluoroscopy, a constant stream of 

x-ray is delivered and collected in real time. The x-ray radiation is detected by a CCD 

camera that images fluorescence produced by x-ray photon excitation. Fluoroscopy 

enables the radiologist to view a changing image continuously, as in an interven­

tional procedure. This technology normally delivers a lower dose of radiation than 

the previous analog system whilst providing high-definition, high-resolution images. 

The fluorescence can also be imaged using on regular photographic film. In this 

case, a fluorescent screen is usually placed on both the front and the backside of the 

photographic plate to increase efficiency. Each CCD element forms a pixel of the image, 

or each photosensitive crystal forms a pixel. 

Fluoroscopy is very popular in interventional radiology. Interventional radiology 

encompasses any procedure that is invasive. A representative illustration of an x-ray 

fluoroscopy imaging device is shown in Figure 14.7. Some examples of invasive pro­

cedures involve the insertion of a needle, a cannula (tube), or a catheter, or wire 

into the patient for diagnosis and/or treatment. Procedures that frequently rely on 

http://www.lancs.ac.uk
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FIGURE 14.6 Illustration of a typical conventional plate photography x-ray machine. 

FIGURE 14.7  Illustration of a typical fluoroscopy x-ray imaging device. 
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FIGURE 14.8  Fluoroscopic image of electrode placement during heart catheterization.  

One catheter with four electrodes is placed in a coronary vessel while a second catheter is  

positioned on the opposite side inside the left ventricle. 

fluoroscopy include angioplasty, which is the insertion of a balloon into a vein or 

artery to widen it and improve circulation. Another application, also in cardiology, is 

called stenting, which involves the insertion of a tube or wire mash that is expanded 

by inflating a balloon to keep an artery or a vein open. Other procedures are the 

monitoring of specific biopsies, for example, lung, breast, renal, liver, and bone. 

Figure 14.8 illustrates the positioning of electrophysiology catheters in the heart to 

examine deviations in the ECG locally in relation to suspected conduction problems 

in the heart under fluoroscopy. 

A less popular but substantially higher resolution than the fluorescent plate imag­

ing technique uses a capacitive plate read by a laser beam. A capacitive insulator 

plate locally loses its charge under irradiation by x-ray radiation. A laser beam 

sweeps the plate in a line-scan fashion from left to right and from up to down, and the 

laser reflection changes with the amount of the charge. When using a semiconductor 

material, this detection scenario becomes a reusable process. This type of image for­

mation can provide very high resolution (approximately 5 μm) due to the small laser 

spot size. The pixel size here is determined by the data-acquisition rate and the line 

width of the sweeping laser beam. 

The method for x-ray detection used in CT is often based on using scintillation 

counters. These photomultiplier-type detectors register a current under irradiance 

by x-ray radiation; the current is directly proportional to the amount of x-ray quanta 

hitting the scintillator. The image is formed by mapping out the current as a function 

of location. The current is often converted into a voltage by a high input impedance 

amplifier in order to reduce the current drain on the device, which negatively influ­

ences the detection sensitivity. This method is fast and instantaneously renewable. 

Regardless of the specific method used for detection, it is sometimes desirable 

to increase or enhance detection capabilities using contract agents. One method of 

detection enhancement is the use of contrast agents that are injected or ingested prior 
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to or during the imaging procedure. The use of contrast agents is fairly common in x-ray 

imaging. Contrast agents are often radiopaque or radiolucent media introduced to 

enhance contrast. Several examples of contrast agents are as follows: Barium sulfate 

for use in the gastrointestinal tract. Not all of the methods to introduce artificial 

contrast are without hazard. A barium meal is used to explore the digestive sys­

tem. Iodine compounds are used in blood vessels, which is a nontoxic radiopaque 

substance. The iodine is injected to visualize blood vessels in angiography, which 

attempts to visualize the constriction of coronary vessels in particular. Carbon 

dioxide is used in CT of the colon or in angiography if the patient is allergic to other 

contrasting agents. Carbon dioxide is radiolucent and will appear as dark spots 

in images. 

Knowing the technologies to create and detect x-ray, next, we focus on the physical 

factors affecting the quality and resolution of x-ray imaging. 

14.5 IMAGE  QUALITY 

While resolution of the resulting x-ray images can be improved with the image 

processing methods introduced in the previous chapters, all existing technologies 

attempt to improve the quality of the image in the acquisition stage to have a much 

higher quality image. 

The four issues that affect the resolution of the details in x-ray imaging are the 

size of x-ray beam and source, the motion artifacts, and the quantum noise. These 

factors influence the resolution and quality of all x-ray imaging technologies regard­

less of the specific technology used for detection and image processing. 

The x-ray focus is the momentarily active section of the rotating anode that is emit­

ting x-ray radiation. In the mathematical analysis (in particular, in CT), the x-ray focus 

should be a point source, providing a single source–image relationship. In other words, 

almost all mathematical formulations of x-ray imaging assume that the source creates 

infinitely narrow x-ray beams. In reality, the x-ray source, having finite dimensions, 

produces a cylindrical beam that irradiates all points from one edge of the irradiated 

object to the opposite edge in a single illumination, thus smearing the shadow image 

out over a finite width or breadth. This smearing effect of wide x-ray sources is illus­

trated in Figure 14.9 that describes a more realistic diagram of x-ray image formation 

using practical nonpoint x-ray sources. As can be seen in Figure 14.9, geometric distor­

tions and shadowing artifacts are primarily caused by the fact that the source is not a 

point source. 

The finite width source can be considered as an array of an infinite number of 

point sources strung together. The beam overlap between these point sources can 

be minimized by reducing the distance from source to object as much as possible 

without significant loss in intensity. In addition, placing the detector as close to 

the object as possible reduces diffraction and divergence. An additional measure 

is to place the source at an angle to the line connecting the source to the object, 

thus reducing the source dimensions by multiplication with the sine of the angle of 

the normal of the source surface with the connecting line. By rotating the anode 

disk, the exposure of the target area of the anode can be reduced without risk of 

overheating. 
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272 Biomedical Signal and Image Processing 

FIGURE 14.9 Diagram illustrating one of the artifacts that affect the sharpness of the 

image recorded on the photographic plate in conventional x-ray radiography. (Courtesy of 

Dr. Bob Jones, Lancaster University, Lancaster, United Kingdom. http://www.lancs.ac.uk/ 

depts/physics/physics.htm) 

Motion artifacts, caused by the motion of the object during the x-ray exposure time, are 

other sources of noise in images that are often unavoidable. Two main sources of motion 

artifact are the heart motion and breathing. The heartbeat is too fast to be eliminated dur­

ing the imaging process. In addition, the patients cannot be told to stop their heart motion 

for the sake of imaging! On the other hand, the breathing motion can, in most cases, be 

avoided by requesting the test subject to refrain from breathing for a few seconds. Other 

sources of motion artifacts may be introduced by the intestinal motions that are again 

involuntary. A direct approaching for minimizing motion artifacts is shortening the expo­

sure time; however, this will require an increased dosage, which is obviously not advisable. 

Quantum noise is a typical problem for x-ray images (especially in image intensifiers). 

Quantum noise is a characteristic that is inherited from the quantum nature of the 

x-ray photon generation principle. Quantum noise is proportional to the square root 

of the signal amplitude. One way of improving signal-to-noise ratio is by increasing 

the signal strength; however, this increases the risks to the patient due to radiation 

damage of the DNA. A second means of increasing signal-to-noise ratio is in the 

detection side, simply by improving the detection efficiency. 

14.6 COMPUTED  TOMOGRAPHY 

CT, also referred to as CAT, uses scintillation counter arrays or CCD-fluorescent plate 

array to collect the data to reproduce 3-D representations of the biological medium. CAT 

has significantly better resolution in imaging and discrimination of soft tissues. In addition, 

unlike the conventional x-ray imaging that produces the shadow of the objects, CT con­

structs images showing the slices of the irradiated tissues or objects in the imaging plane. 

http://www.lancs.ac.uk
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273 X-Ray Imaging and Computed Tomography 

In addition, unlike the conventional x-ray where in order to form an image, only a single 

x-ray scan from only a single angle is conducted, in CT, several scans from many angles 

are taken to form a single image. This process was described in Chapter 13. 

CT scanning exposes the patient to moderate to high levels of radiation, mostly 

due to the extended exposure time. In CT, a repetitive procedure is followed that 

scans the biological tissues from many directions by revolving both the source and 

the scintillation counter detectors around the body in a circular motion. 

Figure 14.10 describes a very simplified diagram of CT imaging. As can be seen 

in Figure 14.10, in CT, a scanner takes a series of x-ray scans at various angles 

positioned in cylindrical symmetry with the body. Information on the attenuation 

of x-rays is recorded for the projection of a plane of interest in the patient along a 

line, and this is repeated for a series of small rotations. Then, a computer algorithm 

processes all these scans together to form a 2-D image using the principles of CT. 

The attenuation values at the points of interest reveal the local density distribution of 

the cross-sectional plane in two dimensions. The computer algorithm also stacks the 

slice images on top of each other to reconstruct 3-D images of the body. 

The mathematical description of the image formation protocol applied in CT 

imaging was presented in Chapter 13. The tomographic methods are used to estimate 

the integrand of a series of line integrals that are calculated in several directions. 

More specifically, the objective of x-ray attenuation tomography is to the attenuation 

coefficients α(x, y) from the ray integral of the following format: 

∫ a( , )  = pli q i
x y dl i , (14.10)
 

l ,qi i  

where projections are created for all rays li and all angles θi. As discussed in Chapter 13, 

the scans for different rays are achieved by translation of the transmitters and detec­

tors. Similarly, the scans at different angles are obtained by rotation of the transmitters 

and detectors. 

Linear 
tomography 

B A 
Source 

Patient 

Imaging
(fulcrum)

plane 

Film 
A B 

FIGURE 14.10 X-ray scanning to form a cross-sectional slice. (Courtesy of Dr. Bob Jones, 

Lancaster University, Lancaster, United Kingdom. http://www.lancs.ac.uk/depts/physics/ 

physics.htm) 
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274 Biomedical Signal and Image Processing 

The computational techniques in x-ray attenuation tomography, such as the ones 

based on Fourier slice theorem, estimate α(x, y) and then use the discriminative 

power of the attenuation coefficient to create an image of the body. 

Next, we review some specific CT technologies used in biomedical imaging and 

diagnostics. 

14.7  BIOMEDICAL CT SCANNERS 

Two general types of medical CT scanner technologies can be distinguished: 

fan-beam and parallel scanning. These commercial technologies are often a 

combination of the parallel and fan-beam scanning technologies described in 

Chapter 13. 

The first type of fan-beam technology exploits the naturally occurring divergence 

of the x-ray sources for delivery and detection. First, the beam divergence is col­

lected by an array of detectors. Then, the detector undergoes a linear translation in 

the radial direction. After completion of the entire width of the medium, the entire 

transmitter/detector system is slightly rotated and the scans are repeated. An illustra­

tion of the scanning principle is shown in Figure 14.11. A typical array of detectors 

contains 30 detectors. 

Another fan-beam scanning system makes the divergence of the source beam fan 

out across the width of the patient, covering a large number of detectors simultane­

ously. This way, the overlap that is unavoidable in the first type of scanning system 

can be eliminated. Total exposure is also concurrently reduced. The entire set of 

source and detectors still require rotation to complete the data acquisition for a sub­

stantial image reconstruction algorithm. Figure 14.12 provides an illustration of the 

functional schematics of this type of scanners. 

In the more current generation of scanners, a very large number of stationary detec­

tors are arranged in a ring surrounding the patient. The total number of detectors now 

surpasses 1000. Only the source with diverging beams rotates in this configuration. 

X-ray source Rotation 

Translation 

Detector 

Biological
medium 

FIGURE 14.11 Diagram of first-generation of tomography scanners; linear motion 

of both source and detector scan a slice of the body, followed by rotation over several 

degrees. (Courtesy of Dr. Bob Jones, Lancaster University, Lancaster, United Kingdom. 

http://www.lancs.ac.uk/depts/physics/physics.htm) 
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Translation 

X-ray source 
Rotation 

Biological
medium 

Detectors 

FIGURE 14.12 Diagram of second-generation tomography scanner utilizing the fan-beam 

scanning principle, initially repeating the same linear scanning motion followed by rotation 

as the first-generation tomograph. The fan beam however allows for a smaller dose due to 

the collection of all transmitted radiation. (Courtesy of Dr. Bob Jones, Lancaster University, 

Lancaster, United Kingdom. http://www.lancs.ac.uk/depts/physics/physics.htm) 

A single slice of patient now takes <1s. The method of operation is illustrated in 

Figure 14.13. This typical operation in the medical literature is often illustrated 

in more concise diagram as in shown in Figure 14.14. A modern spiral CT machine 

rotates the x-ray source along a spiral path, thus enabling the imaging of several cross 

sections in a much shorter period of time. 

Points from adjacent layers and adjacent points within a single layer can be 

correlated to each other by interpolation to increase the display accuracy artificially 

by pattern recognition. Combining many adjacent layer 2-D scans allows the com­

puter to calculate a high-resolution 3-D density distribution volumetric display of the 

internal organization of tissues. 

FIGURE 14.13 Diagram of ray deployment in third generation of tomographic scanners. 

Wide fan beam and elimination of the linear scan reduce the exposure even further and 

yield more detail. Both the source and an array of multiple detectors move jointly over a 

small angle each scan. (Courtesy of Dr. Bob Jones, Lancaster University, Lancaster, United 

Kingdom. http://www.lancs.ac.uk/depts/physics/physics.htm) 

http://www.lancs.ac.uk
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FIGURE 14.14  Diagram of fourth-generation tomography scanners, representing the present-

day most commonly used outline. A large array of detectors form a closed circle around the  

patient, only the source moves in a circular motion. (Courtesy of Dr. Bob Jones, Lancaster  

University, Lancaster, United Kingdom. http://www.lancs.ac.uk/depts/physics/physics.htm) 

14.8 DIAGNOSTIC APPLICATIONS OF X-RAY IMAGING 

X-ray imaging is used for various diagnostic applications. For instance, a high-

density tumor in an air-filled lung will look like a gray mass on black background. 

Low-density cyst in radiopaque bone will look like a gray mass on white background 

on film. Currently, undetectable by x-ray imaging are most soft tissues: liver  

metastasis, colon cancer, and infections. 

Some of the main applications of x-ray imaging in coronary obstruction visualization 

and the classic x-ray image of the broken bone are briefly described in the following. 

A typical usage of the x-ray imaging is the detection of coronary obstruction. During 

or as a precursor to a heart attack, coronary blood vessels will become occluded. Only 

with the aid of contrast fluid injected in the coronary arteries can these arteries be 

visualized under fluoroscopy while a catheter is positioned in a feeder artery to the 

suspected area of the heart. Blood flow can be seen to either completely avoid a certain 

perfusion area of the heart, or it will expose a narrowing of a vessel by contrast. 

When a bone is broken, it produces a distinctive look under x-ray imaging. 

Conventional x-ray imaging of the extremity or whole body will reveal discontinui­

ties in the standard anatomic geometry of bone structures at places where the bone 

is broken or even dislocated. Based on the known geometry of the bone structure, 

discontinuities will show up irrespective of prior anatomical knowledge. Anatomical 

knowledge will however confirm any other bone structures that may be in a different 

plane of the body, and thus may appear as discontinuity in a compressed 3-D display 

and only show a 2-D outline of all information in between the camera or photographic 

plate and the x-ray source. 

A major application of CT is detection of brain and other types of tumors. Due 

to high resolution of the CT, these images are significantly more informative than 

the conventional x-ray and provide the physicians with accurate geometric informa­

tion such as the volumetric measurements of the tumor. During the last couple of 

decades, MRI technology has replaced CT for such applications, primarily due to 

its higher resolution as well as the fact that MRI is not harmful to biological tissues. 

http://www.lancs.ac.uk
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One of the most exciting applications of x-ray is in whole-body CT. This system 

creates a complete 3-D visualization of the human body in a very high resolution. 

The 3-D image can be easily rendered and investigated for tumors or any kind of 

abnormalities such as enlargement of otherwise healthy tissues. The capabilities of the 

whole-body 3-D x-ray tomography had made it a candidate for a major checkup 

system. The main drawback of such systems is the x-ray dosage of a relatively long 

exposure to x-ray that can cause damage in biological tissues. 

14.9  CT IMAGES FOR STEREOTACTIC SURGERIES 

The stereotactic surgeries eliminate the need for major neurosurgical procedures. 

The typical procedures such as biopsy can be performed through a hole in the skull 

of only 5 mm diameter. This calls for accurate positioning of the probe and other 

smaller surgical tools. The combination of a reference system and CT provides an 

invaluable image registration system that allows stereotactic neurosurgery. 

The stereotactic devices provide a reference system (typically a frame) that is fixed 

to the skull. Figure 14.15 shows the Cosman–Roberts–Wells System (CRW-System) 

made by Radionics. The stereotactic localization device is mounted on the head of a 

patient by means of a base ring on which various surgical tools and reference mark­

ers can be positioned. The patient can be imaged with the device in place to provide a 

frame of reference. 

FIGURE 14.15  CRW stereotactic device by Radionics, as used in registration and  

image-guided surgery. (CRW™ is a trademark of Radionics. Copyright © Radionics.  

All rights reserved. Reprinted with the permission of Radionics, a division of Tyco  

Healthcare Group LP.) 
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FIGURE 14.16  CRW stereotactic device by Radionics mounted on a patient’s head during  

image-guided surgery. (CRW™ is a trademark of Radionics. Copyright © Radionics. All 

rights reserved. Reprinted with the permission of Radionics, a division of Tyco Healthcare 

Group LP.) 

The stereotactic device, as shown in Figure 14.16, illustrates the surgical acces­

sories in place while the patient is undergoing a procedure. The device is used under 

imaging to provide registration of a brain tumor or other pathological conditions 

against the reference frame of the CRW system prior to the start of a minimally 

invasive surgical procedure. Surgical interventions can then be guided accurately 

and unequivocally for various delicate neurosurgical procedures or biopsies. 

14.10  	CT REGISTRATION FOR OTHER IMAGE- GUIDED 
INTERVENTIONS 

While stereotactic surgeries are among the most commonly used applications of 

CT-based registration and image-guided interventions, there are a number of other 

procedures exploiting CT images. 

As in stereotactic surgeries, in other image-guided interventions, correspondence 

is established between image and the physical space of the patient during the inter­

vention. Establishing this correspondence allows the image to guide, direct, and 

monitor therapy, akin to providing a 3-D map for navigation. The main objective 

is to make the intervention more accurate and hopefully safer while becoming less 

invasive for the patient. In the last few years, image registration techniques have 

been introduced routinely in clinical procedures for image-guided neurosurgery sys­

tems and in computer-assisted orthopedic surgery. In CT registration, it is important 
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what the topic is for the registration exercise. When monitoring changes, the changes 

can be either in intensity or in volume. Changes in intensity can be minimized by 

normalization. Volume changes will rely on the location of boundary outlines as 

described in Chapter 4 and to some degree in Chapter 3. 

Most registration applications rely on correspondence for comparison, such as 

the position, shape, and size of the eye, nose, and particular bones. When analyzing 

correspondence in image changes over time, such as tumor growth over a period of 

several months, the algorithm may require scaling based on anatomical and geomet­

ric landmarks. 

An entirely different class of registration is recognition of correspondence 

between different individuals. On a coarse scale, the images may correspond after 

appropriate nonrigid transformations have been made to the images. However, under 

higher-resolution observation, they may not give the conclusive evidence needed for 

pathological evaluation. 

14.11 COMPLICATIONS OF X-RAY IMAGING 

Some of the biological effects of x-rays resulting from the high energy interaction with 

molecules and atoms in the biological medium, respectively, may cause ejection of one 

or more orbital electrons by a photon that creates an ion pair; ions are unstable and give 

rise to free radicals. These free radicals are chemically aggressive and may have unde­

sirable consequences since they are mutagenic (cause changes in the DNA structure), 

teratogenic (x-ray radiation may be life shortening), and even lethal. The most prominent 

complication is the fact that x-ray radiation has carcinogenic consequences. 

14.12 SUMMARY 

The advantage of radiography is the fact that it is relatively cheap, in addition to the 

fact that it reveals ample contrast between bone, soft tissue, and lung. Some of the dis­

advantages are poor soft tissue contrast in addition to the fact that it has not much use 

for distinguishing adjacent healthy and diseased soft tissues. One major disadvantage 

is the radiation hazards and epidemiological effects of x-ray radiation. 

PROBLEMS 

14.1	 Read image file “p_14_1.jpg.” This is an x-ray film image of the left and right 

breast combined.* The right breast shows asymmetric changes. Compare the 

left breast (LMLO) with the right breast (RMLO) and locate the region of 

change. Pick a convenient location in the region of asymmetric change and use 

seed growing to find the outline of the suspected area. 

14.2	 Read image file “p_14_2.jpg.” This image shows a fracture of the fibula and 

medial malleolus.* 

* Courtesy of MedPix. http://rad.usuhs.mil/medpix/ 

http://www.rad.usuhs.mil


 a.  U se edge detection methods (in particular, region growing technique) and 

display the discontinuity of the broken bone. 

 b.  C hoose some seed values in the middle of each region to start the region 

growing process. 

 c.  Find the maximum length of the gap. 

14.3	  O steoporosis is often indicated by loss of bone density. Several methods are 

available to measure bone density, but, currently, the most widely used tech­

nique is DEXA (dual energy x-ray absorptiometry). The bone mass density 

(BMD) is often the accepted indication of osteoporosis (Table 14.1). Read  

image file “p_14_3.jpg.” Image “p_14_3.jpg” is an image of the lumbar spine 

of a patient with severe osteoporosis with multiple fractures.* The BMD is 

approximately 10 mg/cm3, with a T-score of −6. 

 a.	   The file contains two images attached to each other. Use MATLAB® to  

separate the two images and display the images separately. 

 b.	   Design a thresholding method to determine the most obvious locations of  

osteoporosis outlined by the red ellipse. Osteoporosis is determined based 

on the increased x-ray transmission and the scale of apparent bone thick­

ness illustrated in the insert (darker image tone due to increased oxidation 

of the photographic plate). Hint: You can start with creating the histogram 

and identifying the range of gray levels corresponding to oxidation. 

 c.	  T he angle between vertebrae is an important indicator for spine problems.  

Use edge detection to find the outline of the vertebrae. Determine the 

angle between the three lower vertebrae of the lumbar spine in the image. 

 d. 	  Fractures in the bone resulting from osteoporosis are also visible. Use 

thresholding techniques to locate the fracture sites. 

14.4	   Read image file “p_14_4.jpg” and display the image. Image “p_14_4.jpg” shows  

the axial, sagittal, and coronal views of the lumbar spine region (L1 and L2) of a  

patient with relatively normal bone mass density.* However, the trabecular bone  

is inhomogeneous and there is significant mineralization between L1 and L2  

(indicated by the blue arrows). Other abnormalities in the bone structure are the  
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TABLE 14.1 
T-Score Criteria for Osteoporosis in Women 

Normal	 BMD > −1.0 below the young adult reference range 

Low bone mass (osteopenia) −1.0 > BMD > −2.5 standard deviations (SD) below the young adult 

reference range 

Osteoporosis BMD < −2.5 SD below the young adult reference range 

Severe osteoporosis BMD < −2.5 SD below the young adult reference range, often 

associated with one or more fractures 

Source: Courtesy of David Holdsworth, Robarts Research Institute, London, Ontario, Canada. 

* Courtesy of Mindways Software, Inc., San Francisco, CA; Courtesy of Keenan Brown. 
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somewhat irregular bone density distribution and, more prominently, the worn  

edges of the vertebrae. 

 a.   Using MATLAB, split the image into three separate images, each showing 

the vertebrae from one specific angle. 

 b.  D esign a thresholding method to determine the most obvious locations of  

osteoporosis outlined by the red ellipse. Osteoporosis is determined based 

on the increased x-ray transmission and the scale of apparent bone thick­

ness illustrated in the insert (darker image tone due to increased oxidation 

of the photographic plate). 

 c.   In each image, find the major and minor axis of each vertebra. The length  

of  these axes identifies a potential deformation of the vertebrae. Find eccen­

tricity of each vertebra. 

 d.  The angle between vertebrae is an important indicator for spine problems.  

Use edge detection to find the outline of the vertebrae. Determine the 

angle between the three lower vertebrae of the lumbar spine in the image. 

14.5	  R ead image file “p_14_5.jpg.” Image “p_14_5.jpg” shows the axial and sagittal  

views of the lumbar spine region (L1 and L2) of a patient with relatively normal  

bone mass density.* This region of the spine is predominantly of interest in the  

determination of bone QCT of DXA in the assessment of bone mass measure­

ment. DXA measures total bone (cortical and trabecular) as well as extraosseous  

mineral, which is visible in the image. This patient exhibits aortic calcifica­

tions that would also be misclassified as bone in DXA; however, the locations  

would indicate the lack of structural benefit in spinal bone formation and can be  

excluded. 

 a.	   The file contains four images. Use MATLAB to separate the four images 

and display the images separately. 

 b.	   In each image, find the major and minor axis of each vertebra. The length of  

these axes identifies a potential deformation of the vertebrae. Find eccentric­

ity of each vertebra. 

 c.	   The angle between vertebrae is an important indicator for spine problems.  

Use edge detection to find the outline of the vertebrae. Determine the 

angle between the vertebrae. 

 d. 	  Design a thresholding method to determine the most obvious locations of  

osteoporosis outlined by the red ellipse. Osteoporosis is determined based 

on the increased x-ray transmission and the scale of apparent bone thick­

ness illustrated in the insert (darker image tone due to increased oxidation 

of the photographic plate). 

14.6	   Read image files “p_14_6_a.jpg” and “p_14_6_b.jpg.” Image “p_14_6_a.jpg” is  

an x-ray film image of a 62 year old male pelvic bone, and “p_14_6_b.jpg” is the  

x-ray film image of a 21 year old female pelvic bone.† Use edge detection meth­

ods to outline the pelvic bone structure, scaling, and nonlinear deformation to  

register the male pelvis with the female pelvis. 

* Courtesy of Mindways Software, Inc., San Francisco, CA; Courtesy of Keenan Brown. 
† Courtesy of MedPix. http://rad.usuhs.mil/medpix/ 

http://www.rad.usuhs.mil
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14.7	   Can the relative body-fat-to-muscle ratio of an arm of a grown man be determined  

from x-ray imaging and under what conditions? 

14.8	   Read image file “p_14_8.jpg” and display the image. Image “p_14_8.jpg” is 

an x-ray fluoroscopy image of a heart with a catheter in the coronary vessel  

indicated by the blue arrow. The apex (bottom tip) of the heart is indicated by  

the red arrow, and one of the ribs is marked with a yellow arrow. 

 a.   Use thresholding and edge detection techniques to find the outlines of the 

heart. 

 b.   Choose some seed values in the middle of the heart to start the region grow­

ing process to outline the heart. 

 c.  Apply Canny edge detection technique to find the outlines of the catheter. 

 d. Apply Canny edge detection techniques to find the outlines of the ribs. 



 

 

 

 

 

 

 

 

 

 

  

 

 

15 Magnetic Resonance 
Imaging 

15.1  INTRODUCTION AND OVERVIEW 

Magnetic resonance imaging (MRI) is an imaging technique that makes use of the 

phenomenon of nuclear spin resonance. The principle idea of MRI is based on the 

fact that when a magnet is exposed to an external magnetic field, it tries to orient 

itself to align with the external magnetic field. This idea explains that the spin axis 

of the protons in the atoms of the biological tissues exposed to the MRI’s large 

magnetic field will orient itself in a direction parallel to the magnetic field lines. In 

the majority of cases, the magnetic resonance is tuned to imaging of the magnetic 

spin of the hydrogen nuclei in water molecules. Measuring the spin information for 

a group of molecules provides the means of creating an MR image of the biological 

tissue under study. 

The possibility of using the nuclear magnetic resonance (NMR) was discovered 

in the 1940s when the discovery was made that certain substances absorb and emit 

radiofrequency electromagnetic radiation when placed in an alternating magnetic 

field. The initial applications were in the molecular analysis of the chemical and 

physical properties of single-element liquids or solids. In the early 1970s, the biologi­

cal applications of NMR imaging were first proposed by Raymond V. Damadian. He 

recognized a difference in nuclear magnetic relaxation times of healthy and cancer­

ous tissues. This was the first indication that MRI could be applied to collect infor­

mation about the tissue physiology. 

Further improvements were incorporated by the chemist Paul Lauterbur. His 

technique was still able to generate only two-dimensional (2-D) images. Later 

on, Peter Mansfield extended MRI capabilities by introducing the techniques to 

produce a full three-dimensional (3-D) rendering of biological tissues. The lat­

est major discovery in MRI was functional magnetic resonance imaging ( fMRI). 

Unlike MRI that focuses on the anatomical details of the tissue, fMRI is designed 

to create images showing the functional activities of the tissue. For instance, fMRI 

techniques measure the blood oxygenation levels in the brain to monitor the brain 

functions. 

Since the discovery of MRI, this technology has been used for very many medi­

cal applications. Due to the resolution of MRI and the fact that as far as we know 

this technology is essentially harmless, MRI has emerged as the most accurate and 

desirable imaging technology. It is anticipated that as the price of MRI technology 

reduces, many currently used technologies such as x-ray CT scans will be replaced 
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(a) 

(b) 

FIGURE 15.1 Pictures of two different types of Siemens MRI machines. (a) Conventional 

MRI from the Symphony series, MAGNETOM Symphony 1.5 T and (b) open MRI 

MAGNETOM Concerto 0.2 T. (Courtesy of Siemens AG, Medical Solutions, Magnetic reso­

nance; brochure: Magnets, flows and artifacts and Siemens CD.) 

by MRI. A picture of a representative configuration of a conventional MRI machine 

and an open MRI machine are shown in Figure 15.1. 

This chapter first focuses on the principle physics of MRI and then discusses 

the MRI technology. We also discuss the principle ideas as well as the applica­

tions of f MRI. The use of MRI for medical diagnostics will also be given in this 

chapter. 
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15.2  PHYSICAL AND PHYSIOLOGICAL PRINCIPLES OF MRI 

While for the purpose of imaging, only the net result of a group of protons will be 

sensed for NMR imaging, the principal mechanism of NMR imaging is based on 

the spinning of a single neutron in the presence of an external magnetic field. The 

protons in the nucleus of atoms have an intrinsic rotation around a central axis. 

This rotation resembles the spinning of an off-balance spinning top as illustrated in 

Figure 15.2. The angle and the annular velocity of the rotation, ω, are both intrinsic 

properties of each particle. The magnetic field m is also specific to each particle or 

element. This means that a moving charge, such a proton, produces its own magnetic 

field, which is a function of the charge and speed of the motion. 

The interaction between the magnetic fields of the moving charges inside a tis­

sue and an external magnetic field provides the means of NMR imaging. Next, we 

focus more closely on the magnetic field generated by the macroscopic objects and 

the interactions between the magnetic field of the particles and the external magnetic 

field. A nucleus that has these qualities can be seen as a rotating, electrically charged 

object causing a magnetic moment and, as a result, a magnetic dipole. These atoms 

are nanoscale magnets that behave just like large magnets. At the macroscopic level, 

magnetic dipoles generated by atoms can group together to form an ensemble. These 

types of ensembles are composed of atoms that have an odd atomic number or an odd 

atomic weight that can produce a nuclear spin. 

The sum of the magnetic moments of these dipole groups, i.e., the sum of all 

individual m’s, is called the nuclear magnetization M. The nuclear magnetization 

is typically zero, provided that there is no exterior magnetic field. In human tissues, 

there are a large number of such dipoles that essentially cancel the magnetic effects 

ω 

z 

x 

y 

Proton 

mxy 

mz m 

FIGURE 15.2 Proton spin. (Courtesy of Siemens AG, Medical Solutions, Magnetic reso­

nance; brochure: Magnets, flows and artifacts.) 
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of each other. However, if the human body is exposed to an external magnetic field, 

these ensembles start showing measurable magnetic effects. 

In NMR imaging, all nuclei with an odd number of protons are immersed in a 

static magnetic field, H0, in the z-direction. In MRI technology, a very strong con­

stant magnetic field with a typical magnitude between 0.2 and about 3 T is used 

as H0. Knowing that the earth’s magnetic field is approximately 5 × 10−5 T, it can 

be seen that the applied magnetic field is very strong. The presence of this strong 

external magnetic field creates a net magnetic field in the microscopic elements. The 

resultant nuclear magnetization, M, is the total magnetic moment of all the micro­

scopic units, e.g., elements with an odd number of charged particles in the nuclei. 

The alignment of the individual magnetic dipoles in the external magnetic field is 

illustrated in Figure 15.3. This nuclear magnetization is oriented in the direction of 

the external field, either parallel to the external field or in the exact opposite direction 

(antiparallel). 

Due to energy considerations, the microscopic spins cannot orient themselves 

instantaneously from their random direction to align with the external field lines. 

Rather, these small magnetic spinning tops need to spiral down to the energy con­

tent of the forced direction. The process of spiraling down from one direction to 

another direction is called precession. The precession process plays an important 

role in magnetic imaging. The proton spin in the process of precession is illustrated 

in Figure 15.4. This precession motion is analog to the motion and orientation of a 

gyrocompass adjusting to the earth’s magnetic field, which also takes some time to 

happen. The alignment of proton magnetization vector due to an external magnetic 

pulse is illustrated in Figure 15.5. As can be seen in the figure, a radio frequency 

(RF) pulse causes a series of fluctuations on the magnitude of the proton’s magneti­

zation vector. 

FIGURE 15.3 Schematic representation of the distribution of the spin magnetization orien­

tation in a whole-body scan with respect to external magnetic field. (Courtesy of Siemens AG, 

Medical Solutions, Magnetic resonance; brochure: Magnets, flows and artifacts.) 



 

 

 

 

  

 

 

 

 
 

ω 

z 
m 

y 

x 

mz 

Proton 

mxy 

 

287 Magnetic Resonance Imaging 

m 
m 

mm 
m 

m 

FIGURE 15.4 Precession of proton in attempt to align with external magnetic field. 

(Courtesy of Siemens AG, Medical Solutions, Magnetic resonance; brochure: Magnets, flows 

and artifacts.) 

FIGURE 15.5 Principle of field application and alignment. (Courtesy of Siemens AG, 

Medical Solutions, Magnetic resonance; brochure: Magnets, flows and artifacts.) 

The resulting magnetization vector of the proton M will swirl around the exter­

nal magnetic field vector H in a spiraling motion moving closer to the direction 

of the external field vector with every rotation until it is aligned. This precession 

takes place with a particular frequency called the Larmor frequency, fLarmor. The 

Larmor frequency is directly correlated to the magnitude of the external magnetic 

field expressed in units Tesla. For instance, the Lamar frequency of the aligning of 

hydrogen nucleus can be approximated as follows: 

fLarmor = 42 85. H (15.1) 

The Larmor frequency is specific to each element. Since hydrogen is abundant in tis­

sue, water, and other biological molecules, hydrogen is the main element studied in 

NMR imaging, and the Larmor frequency of hydrogen plays a central role in NMR 

imaging. 

During the decaying swirl, the energy difference between the natural spin ori­

entation and the forced orientation is emitted as energy in the form of electromag­

netic waves with the Larmor frequency. This electromagnetic radiation is a critically 

damped oscillation, as shown in Figure 15.5, giving an exponentially decaying 
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sinusoidal wave train. The electromagnetic radiation pulse results in a magnetization 

alignment that emits a RF pulse of its own, which is referred to as the free induction 

decay (FID). This pulse can be used to identify the magnetic characteristics of the 

tissue under investigation. 

Before discussing the image formation in MRI, we briefly describe the chemical 

elements that can be used as the basis for MRI. Every element with an odd number 

of protons produces a small magnetic field around itself. The MRI technology uses 

the nuclear spin of atoms with hydrogen (1H) as the most common element. Other 

odd number elements that can be used in NMR imaging are sodium (23Na), fluorine 

(19F), carbon (13C), phosphorus (31P), potassium (K), and lithium (Li). Each atom has 

a nuclear spin, which is proportional to the mass and therefore the angular momen­

tum of the nucleus. Even though the charges in larger atoms still respond to the 

external magnetic field, their relatively large mass can restrict their agility needed for 

the imaging applications. The proportionality between the charge and mass is often 

measured by a quantity called the gyromagnetic ratio, γ. The gyromagnetic ratio is 

defined as follows: 

qg = (15.2) 
2m 

where q and m stand for the charge and the mass of the particle, respectively. 

Equation 15.2 is used to describe the gyromagnetic properties for hydrogen in which 

m is replaced by the mass of a single proton. The γ in hydrogen is relatively large, 

which is another reason supporting the use of hydrogen for MRI. 

Due to the small magnitude and short duration of the FID signals generated by the 

static source, the previously described process cannot produce a practically useful 

image of the biological tissues. In order to create a meaningful image, another source 

of magnetic field that exploits the resonance phenomenon is deployed. This second­

ary magnetic field, which is an alternating field, creates a resonance state that allows 

a tomographic imaging of the body based on the physical principles of resonance, as 

discussed next. 

15.2.1 RESONANCE 

The static magnetic field discussed in the previous section is typically used as a 

“bias” field to activate the molecular units and prepare them to be stimulated by an 

alternating external field. When an external alternating electromagnetic field that 

alternates with the Larmor frequency is applied, the precession motion of the proton 

spin will come into resonance, and the microscopic magnetization vector will lose 

the equilibrium that it would have reached if the units were exposed only to the static 

external magnetic field. 

When the alternating external electromagnetic field is lifted, the protons will 

realign themselves again, as the static external magnetic field is still active. The 

subsequent realignment will result in emission of a powerful FID signal that can be 

easily recorded. The amplitude of the FID signal burst is an indication of the quan­

tity of the protons that are present in every point inside the tissue. 
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Since each element has its own Larmar frequency, the element that responds to 

the alternating field is the one whose Larmar frequency corresponds to the frequency 

of the field. This means that the resulting magnetic resonance happens only in the 

element with the Larmar frequency corresponding to the frequency of the alterna­

tive field. In many MRI systems, the frequency of the alternating field is tuned to 

detect the Larmar frequency of hydrogen. By scanning a range of frequencies and 

examining (detecting) the frequency spectrum of the emitted NMR signal or FID, 

one theoretically can perform a comprehensive chemical identification of the tissue. 

Spectral imaging will be discussed in detail later in this chapter. 

To summarize the resonance process described earlier, the imaging process can 

be described as the following steps: 

Step 1: The tissue is exposed to a homogeneous static magnetic field. 

Step 2: After all protons are aligned, the imaging system exposed the sample to 

a train of RF pulses at the respective Larmor frequency through the tissue. 

This causes the molecules having protons excited by the RF pulses generate 

and emit FID signals. 

Step 3: The emitted FID signals are collected by the magnetic detectors. 

The FID signal collected in Step 3 is used to determine the total number of free 

protons. While the exact number of free protons in a biological medium is not very 

informative by itself, the relative volumetric distribution of free protons in the tissue 

identified by the previously described process is a very informative characteristic. 

Specifically, since the presence and density of protons in hydrogen and other ele­

ments can identify the distribution of molecules in the tissue. This relative volumet­

ric distribution is therefore used to form an image of the tissue. The detection of 

proton density is performed using the measurement of some time intervals that are 

described next. 

As shown in Figure 15.6, due to the external RF signal, the magnetization M 
changes the alignment and will no longer be parallel to the external field. As can 

be seen in Figure 15.6, the magnetization vector, instead of aligning with the static 

magnetic field (in blue), rotate around the z-axis with a frequency corresponding 

to the frequency of the external alternating field. The magnetization is split into a 

90° radio frequency pulse 

mxy 

T2 Time 
FID 

FIGURE 15.6 Disorienting RF pulse that strikes all protons out of alignment from the 

external magnetic field and the resulting FID RF pulse. (Courtesy of Siemens AG, Medical 

Solutions, Magnetic resonance; brochure: Magnets, flows and artifacts.) 
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FIGURE 15.7 FID pulse with time constant T2
* and the decay of the transverse magnetiza­

tion with time constant T2. (Courtesy of Siemens AG, Medical Solutions, Magnetic resonance; 

brochure: Magnets, flows and artifacts.) 

transverse component, Mxy, and a longitudinal component, Mz, for signal analysis. 

The resulting angle between the magnetization vector and the z-axis is called the RF 

flip angle, or the flip angle for short. 

As the RF pulse excitation is applied, the transverse component Mxy starts rotat­

ing around z-axis at a flip angle and an angular frequency corresponding to the 

Larmor frequency. As the excitation pulse dies, the deviation angle of the traverse 

component from the z-axis decreases exponentially with in time. The relaxation time 

of Mxy vector, i.e., the time it takes for this component to die away, is defined as the 

transverse relaxation time T2, or spin–spin relaxation time. This relaxation time is 

shown in Figure 15.7. The decaying of the traverse magnetic vector induces an oscil­

lating but decaying voltage that is detected by a receiver coil located around the 

tissue. By registering this voltage, the relaxation time T2 is registered (Table 15.1). 

The longitudinal component Mz also changes as the RF pulse reaches to the 

zero state. This component, as illustrated in Figure 15.8, becomes larger and 

larger until it reaches its maximum when the complete realignment with the 

static field is achieved. The realignment rate of the longitudinal component Mz 

is described by a longitudinal relaxation time T1, which is called the spin-lattice 

relaxation time. The voltages detected by the detector coils can also identify the 

relaxation time T1. 

TABLE 15.1 
Longitudinal and Transverse Spin 
Relaxation Times for Various Tissues 

Tissue T1 (s) T2 (s) 

Brain 0.5–1 0.06–0.1 

Fat 0.2–0.7 0.05–0.09 

Muscle 1–1.8 0.02–0.07 

Note: T1 and T2 values for tissues at 1.5 T Magnetic 

Field Strength. 
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Mxy 

Mz 

T1T2 

FIGURE 15.8  Schematic representation of the decaying transverse magnetization and 

increasing axial magnetization. 

All time constants and frequencies, as described before, are nucleus specific. Note 

that there is no direct correlation between the decreasing transverse and the increasing 

longitudinal magnetization; however, T2 ≤ T1 always holds true. 

In many clinical MRI procedures, additional information is retrieved by intro­

ducing deliberate inhomogeneities to the tissue to be imaged. It is also customary, 

especially in research studies, to collect more information about the tissue simply 

by devising specialized electromagnetic radiation protocols and therefore creating 

custom-designed external magnetic fields. 

15.3 MR  IMAGING 

In order to create a useful MR image of the tissue, one needs to identify the type of the 

elements at each location of the tissue by discovering the Larmor frequency of the material 

at each location. In practical systems, this is achieved by exposing the tissue to an inho­

mogeneous magnetic field. Since the magnetic field strength in different locations within 

the tissue volume will be different, the detected characteristic Larmor frequency at each 

location will identify the type of the tissue at that point. The magnetic field inhomogeneity 

will need to be identifiable to correlate the particular field strength with a location in the 

tissue volume. The traceability is accomplished by giving the magnetic field a uniform 

gradient across one orientation of the radius of the magnetic coil that surrounds the patient. 

Assuming the gradient of the magnetic field to be in the radial direction, the 

magnetic field lines are pointing in the long axis of the cylindrical symmetry or the 

length of the patient’s body. The gradient magnetic field for a typical MR imaging 

of the human body is illustrated in Figure 15.9. The magnetic field points in the 

z-direction, and the magnetic field intensity vector is described in magnitude by 

H = H0 + Gx (15.3) 

where 

Gx = k1
.x (15.4) 

In the preceding equations, Gx is the magnetic field gradient in the x-direction, k1 is a 

constant, and H0 is the homogeneous external magnetic field. The term k1
.x describes the 

gradient in the magnetic field superimposed on the constant field H0 in the x-direction. 
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H 
H0 
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Y 

FIGURE 15.9 Magnetic field gradient diagram. (Courtesy of Siemens AG, Medical 

Solutions, Magnetic resonance; brochure: Magnets, flows and artifacts.) 

The Larmor frequency will now be a function of position as expressed by combining  

Equations 15.5 and 15.6: 

f = f + k .x (15.5) 
 Larmor 0 2  

where  k2 is a constant. 

When an RF pulse with frequency fR is sent through the patient, only the protons 

in the locations that obey the following restriction will come into resonance at any 

given time: 

fR − f0 f 
x = = (15.6) 

k2 k 2  

where  f = fR − f0. 

It has to be emphasized that only the hydrogen nuclei that obey the condition stated  

in Equation 15.9 will emit the FID signal after the external RF pulse is removed. 

This will select a slice of the patient’s body for imaging based on the frequency fR, 

as illustrated in Figure 15.10. 

Immediately after the FID signal has been collected, the gradient of the magnetic  

field is rotated over a 90° angle. A common way of applying the magnetic field is by  

rotation of the field gradient over 90° and, after a delay time TD, rotating the field  

gradient back to the original direction and acquiring the FID signal. This process 

produces an external magnetic field with the gradient in the direction of the y-axis 

formulated by Equation 15.11: 

H = H
 0 + Gy (15.7) 
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FIGURE 15.10 Slice selection algorithm. (Courtesy of Siemens AG, Medical Solutions, 

Magnetic resonance; brochure: Magnets, flows and artifacts.) 

where the magnetic field gradient in the y-direction is given as 

.Gy = k3 y (15.8) 

This y-direction gradient is also detected using the shift in the Larmor frequency 

as described for the x-direction gradient. The same procedure is also repeated for 

a gradient field in z-direction and the FID signal is measured. This procedure is 

shown in Figure 15.11. Note that the constant homogenous magnetic field, H0, does 

not change direction during this procedure, and only the field strength gradient is 

allowed to change. 

In order to utilize the small differences between T1 and T2 time intervals to form 

images with emphasized characteristics, parameters such as repetition time and flip 

FIGURE 15.11 Phase coding of various magnetic field gradients to produce a FID signal 

that can be traced to a particular location. (Courtesy of Siemens AG, Medical Solutions, 

Magnetic resonance; brochure: Magnets, flows and artifacts.) 
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FIGURE 15.12 Pulse resonance imaging algorithm. (Courtesy of Siemens AG, Medical 

Solutions, Magnetic resonance; brochure: Magnets, flows and artifacts.) 

angle (α) can be applied to create images referred to as T1-weighted imaging and 

T2-weighted imaging. T1-weighted imaging can be used to obtain images of a rela­

tively high anatomical definition, while T2-weighted imaging is a sensitive method 

for pathology and disease detection based on the metabolic feedback through the 

decay of the perpendicular magnetic component. Many disease states are character­

ized by a representative change of the tissue’s transverse relaxation time value. 

By repeating the same procedure after rotating the magnetic field gradient over 

a few degrees each time, the details at the intersections of the various gradient vec­

tors can be retrieved. A schematic representation of this principle is outlined in 

Figure 15.12. The acquired RF FID signal will need to undergo spectral analysis 

to correlate all the different frequencies emitted from the different locations to the 

coordinates within a slice of the body. The image derived from the spectral signal 

distribution represents the localized proton distribution in a 2-D cross section. In the 

resulting image, the hydrogen proton distribution will outline the water concentra­

tion dissemination within the biological organism. Bone will generally not show up 

in NMR imaging. 

The magnetic gradient, e.g., the gradient in the y-direction, is always applied in 

pulsed format. The pulse is amplitude or duration modulated in 256 discreet stages 

to acquire a representative FID. The discretization of the magnetic gradient in fact 

labels the spins by phase information. Due to this labeling, the position informa­

tion can be extracted in a unique fashion. As the nuclear spins revert to the same 

frequency along the y-direction after the short gradient pulse, the phase difference 

at each discrete point is recorded and compared. As a result, there will be 256 

FIDs each with 256 sampling points, which provide 2562 pixels. Subsequently, this 

process is repeated a specific number of times to filter out physiological artifacts 

and noise. 

If the RF field is applied for a finite time (pulse) the magnetization vector can be 

tipped through any desired angle. The angle the magnetization vector M makes with 
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the magnetic field vector H depends on the product of the magnetic field intensity 

and the time frame of interaction (the pulse duration). Most commonly, the angles are 

perpendicular or antagonistic: α = 90° or α = 180°, which are appropriately referred 

to as 90° pulse and 180° pulse, respectively. Note that the radiofrequency coils in 

the NMR devices are designed to produce magnetization only in the x–y plane and 

only detect magnetization in the x–y plane as well. The key to MR imaging is the 

design of pulse sequences, which are applied in order to obtain images with desired 

contrast. 

If a 90° pulse followed by an 180° pulse produces an entirely different spectral 

profile. The detected spectrum will be observed at a characteristic echo time delay, 

TE, which is twice the time interval between the two respective pulses. The sequence 

of RF pulse delivery and FID acquisition is illustrated in Figure 15.12. 

While MRI is often used to create images identifying the anatomical features 

of the biological tissues, it has the potential to image metabolic activities. Such a 

specialized MR imaging is called functional MRI ( fMRI). fMRI is typically used to 

generate maps of brain function and localize regions with increase metabolic activ­

ity such as tumors. We will discuss fMRI and its applications after reviewing the 

reconstruction methods used to form MR images. 

15.4  FORMULATION OF MRI RECONSTRUCTION 

An MR image is generally reconstructed using the Fourier slice theorem 

described in the previous chapters. During the tomography process, the signals 

produced by the inhomogeneity of the tissues are processed using signal process­

ing methods. This process creates an image of the tissue as function of space. As 

described in the previous chapters, the computational processes involved in the 

Fourier slice theorem are primary performed using the discrete Fourier trans­

form or DFT. 

Following the 90° shift in magnetic field gradient, the characteristic FID pulse 

can be acquired. At time t = 0, the nuclear spins will be aligned with the magnetiza­

tion M along the z-direction. This condition is referred to as thermal equilibrium. 

During the pulse, the magnetization vector will be tipped into the x–y plane by an 

oscillating field: H = H0 cos(ωt). When the RF pulse is switched off, the magneti­

zation will precess and the measured value in the x–y plane will exhibit a damped 

oscillation type signal. The x–y projection of the magnetization as a function of 

time is the FID signal. The FID signal is the result of many nuclear spins decaying 

simultaneously while observing their projection in the x–y plane, which converges 

to zero. This net x–y projection is inherent to the fact that all nuclei will experience 

a slightly different magnetic field and will thus experience a different precession 

frequency. Additionally, the magnetization will attempt to return to its prior equilib­

rium that was at zero net magnetization. Using the rotating frame of reference, where 

the reference frame rotates with the RF frequency, the magnetization spins will have 

a frequency that is slightly off from this RF frequency. By measuring the difference 

in frequency, the detection process is simplified dramatically. The magnetization 

can now be written for both the x–y and z-projections using the time constant of the 
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transverse component of the magnetic field, T2 
*.  In the x–y plane, the magnetization 


is expressed in Equation 15.9: 

M = M0e
− * t T/ 2

xy (15.9)
 
  

The declining axial magnetic moment is expressed similarly, except with the time con­

stant of the relaxation of the longitudinal field, T1. The difference between the steady-

state magnetic field and the changing axial component is provided in Equation 15.10: 

M0 − Mz = M 0e
−t T/ 1 (15.10) 

 

In general, the following holds true: T1 > T*
2 .  This means that the x–y projection of
  

the magnetization decays faster than the difference. 

Based on this information, it is clear that the FID contains all the information of  

the NMR signal. 

The RF pulse is repeated many times, which provides a platform for averaging. The  

averaging process will increase the signal-to-noise ratio and will give a representation 

that is relatively true to the process of what the signal should look like, since physi­

ological effects are canceled out this way as well. The frequency spectrum of the MRI  

signal will have two characteristics of importance: line width and chemical shift. 

One particularly interesting spectrum arises from water molecules in the neigh­

borhood of proteins or other large molecules, commonly found in biological media.  

The water with large molecules gives a very broad frequency spectrum. In addition, 

the precession of the magnetization vector in the y-direction can be written as the 

result of two influences acting on it: 

M = M e− * t T/ 2 .
 y 0 (15 11)
 

 

and 

1 1 gΔH= +
 0

(15.12)
 
T*


 2 T2 2 
 

The term 1/T2 represents the dephasing of spins as a result of the local magnetic  

fields  produced  by  neighboring  spin  systems,  and  the  term  γΔH0/2 represents the 

dephasing due to the localized inhomogeneous magnetic field across the biological  

sample. 

An exponentially decaying magnetization vector in the time domain will display 

a single broad frequency band in the frequency domain. A damped harmonic oscil­

lation in the time domain will have a spectrum of two broad peaks in the frequency 

domain. This can be seen from the complex FT: 

f t( )  = ∫ F(w)e−i tw dw (15.13) 
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Here, we briefly present a simplified version of the reconstruction method, special­

ized toward the MR images. To have a simpler notation, we restrict ourselves to the 

one-dimensional (1-D) case where we would like to find the proton density along 

a line. Note that the time frequency of the precision in the FID signal is directly 

proportional to the magnetic field strength, where the angular frequency and the 

standard frequency are linked as described in Equation 15.15: 

w = 2pf (15.14) 

specifically, 

w x = gxGx (15.15) 

Now, if the density of the proton at each point is shown as ρ(x), the measured signal 

f(t) is related to this intensity according to the following simplified line integral: 

−i xG t  g xf t( )  = ∫ r( )  x e  dx  (15.16) 

x 

This is a typical tomographic equation. In the previous chapter, we described how 

the Fourier slice theorem can be used to solve such equations. The preceding equa­

tion can be interpreted as a Fourier relationship between FID in the time domain f(t) 
and a spin density profile along the x-direction. 

Typical MR images files are often limited to 256 × 256 pixel matrices. In these 

cases, the pixel size is in the order of 1 mm. The third dimension introduced by the 

slice thickness can range from 1 to 10 mm. Larger matrix arrays are becoming avail­

able in the order of 512 × 512 pixels that provide better resolution. Image resolution 

is steadily falling below 1 mm. Under MRI, the gray matter appears in the medium 

range of gray values on T1-weighted images. Under MRI, the white matter then has 

higher amplitudes than the gray matter. 

Knowing the physical concepts of MRI and the general reconstructions methods 

applied to form the images, we will next focus on fMRI and its applications. 

Examples of various imaging techniques and 3-D rendering of the inner ear are 

illustrated in Figure 15.13. 

15.5 FUNCTIONAL  MRI 

A major field of study in medicine is the study of the function(s) of each part of the 

brain. The “brain mapping” has been the main ultimate goal of neuroscience as well 

as cognitive science. While sometimes researcher would like to know the functions 

of a specific part of the brain, the reverse question has been more intriguing: If we 

focus on one specific function, such as visual recognition, how can we identify the 

parts of the brain that are directly involved in the process? 

The fMRI is in principle the best tool available to perform brain mapping. This 

technology allows observing the brain while a certain task is performed. The parts 
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FIGURE 15.13  Examples of sections of brain and head and neck scans including 3-D ren­

dering applied to the inner ear. (Courtesy of Philips Medical Systems.) 

of the brain that are activated in the collected MR images are then associated to the 

performed task. Since any function in all cells including neurons is associated with the 

consumption of the oxygen contained in blood, the monitoring of the functional activi­

ties of the neurons is in principle equivalent to the detection of oxygen consumption. In 

the early 1990s, it was discovered that the oxygenation level of blood will act as a con­

trast agent in MRI. This discovery forms the basis of fMRI as it is used in present day. 

The MRI contrast around blood vessels can be attributed to the state of oxygen­

ation. Specifically, deoxyhemoglobin is more paramagnetic than oxyhemoglobin, 

which has almost the same magnetic susceptibility as most tissues. This observation 

led to the use of deoxyhemoglobin as a contrast agent for most fMRI methods. 
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The reason functional imaging can be achieved by detecting the oxygenated blood 

roots in the physiology of the biological tissues. For instance, neuronal function has 

a metabolic activity that is directly related to changes of the oxygenation state of the 

neurons as follows. The oxyhemoglobin carries the oxygen to the neurons, and, dur­

ing the metabolic activity of the nerve cells, the oxygen uptake by the neurons causes 

oxyhemoglobin to change into deoxyhemoglobin. In addition, neurons require glyco­

gen, obtained from the red blood cells, for their metabolic processes during electric 

activity. The glucose uptake can be measured with the chemical fluorodeoxyglucose 

(FDG) that has an intrinsic magnetic moment and is incorporated in the cellular 

metabolism as regular glucose. The oxygen and glucose requirement by the neu­

rons during cellular depolarization activity has as a direct consequence an increased 

blood perfusion in the capillaries surrounding the nerve cells. 

The exact fMRI procedure is designed based on the functional characteristics to 

be evaluated to ensure that there is a reasonable correlation between these charac­

teristics and certain traceable metabolic aspects. For instance, if the motor-control 

activities of the brain need to be evaluated, the patient will be asked to move a toe or 

a finger while the system collects data. 

One issue in the task design is the concern that the sequence of the tasks assigned 

to the patient must be in a specific order to derive a correlation between the brain 

activities and a particular cognitive or motor task. An additional requirement is that 

any inappropriate and unrelated actions must be filtered out by this methodology. 

Other typical examples of specific tasks involve audio or visual input stimuli to 

evoke a cognitive response in the brain. 

Two commonly used methods apply a fast data acquisition protocol to reduce 

the errors from lapses in attention or motion artifacts. The first method is called 

fast low angle shot (FLASH). During FLASH imaging, there is a short interval 

between the fMRI RF pulses. This short interval reduces the flip angle and con­

sequently reduces the realignment rate, T1. As a result, the acquisition sequence 

can be accelerated. The second method is echo planar imaging (EPI). EPI applies 

small amplitude RF pulses combined with a high gradient in the magnetic field. 

The steep gradient provides better contrast and faster acquisition with typical 

acquisition times under 100 ms. The low intensity and high gradient have the dis­

advantage of introducing distortions and a low signal amplitude. In particular, 

in the brain, the magnetic inhomogeneities start playing a significant role in the 

image formation. However, due to EPI’s speed, it is one of the most commonly 

used techniques in fMRI. 

15.5.1 BOLD MRI 

The oxygen consumption increases only slightly during the metabolic activity of 

neurons. This means that in such cellular activities the oxyhemoglobin-to-deoxyhe­

moglobin ratio changes only marginally. This has led to more specialized versions of 

fMRI procedures for functional brain imaging. This type of imaging falls in a class 

of its own that is named after the principles of the technique. Blood oxygenation 

level dependent (BOLD) contrast imaging uses the disparity in magnetic properties 

of oxygenated (diamagnetic) and deoxygenated (paramagnetic) blood. 
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The BOLD technique relies on the fact that a localized change in blood flow is 

observed when the brain neurons are activated and, consequently, the local oxygen­

ation levels change. This increase in oxygenation and hence a decrease of deoxy­

hemoglobin level results in a change in the MR decay parameter, T2
*, that can be 

measured. These blood flow and oxygenation changes on both vascular and intracel­

lular level have a temporary delay with respect to the neural depolarization sequence 

of the cell. This time lag between the physical change in oxygenation level and actual 

neural activity is identified as hemodynamic lag. 

A BOLD MRI representation of vascular imaging is shown in Figure 15.14. 

FIGURE 15.14  Spectroscopic MRI whole-body vascular image obtained under 3 T mag­

netic field strength imaging conditions. (Courtesy of Philips Medical Systems.) 
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15.6  APPLICATIONS OF MRI AND  fMRI 

Pathological conditions and injuries can be revealed with great detail based on T1 and 

T2 weighing. Some examples of the diagnostic use are the localization of tumors and 

identification of internal hemorrhaging. Knowing that MRI is rather harmless, this 

technology can be used for practically all applications described for x-ray CT and 

many applications in which ultrasound imaging is used for. However, the cost of per­

forming MRI and the fact that during the acquisition of MRI, the patient is expected 

to stay still are limiting the actual usage of this technology. 

Another factor that limits the use of MRI for certain applications such as intra­

operational imaging is the fact that ferromagnetic tools cannot be used in the MRI 

room. In other words, while it is desirable to conduct MRI while the surgery is per­

formed, the typical tools used in surgery cannot be used in the same room MRI is 

taken. Surgery tools made of titanium can be used in the MRI room, but due to the 

high cost of such tools, they are not used in typical surgeries. 

Due to the substantial similarities between the applications of x-ray CT and 

MRI, the specific applications of MRI in acquiring anatomical information are not 

described in detail, and, rather, we focus on the main applications of fMRI. 

Typical examples of the clinical applications of fMRI predominantly revolve 

around the detection of focal neuron depolarization in the brain. Specific condi­

tions involved with focal neuronal activity are in visual, auditory, sensory motor, and 

language activities. For most of these functions, the typical locations of the cortical 

activity are known. fMRI is used to aid the diagnosis of certain diseases such as 

epilepsy, schizophrenia, Alzheimer’s, Parkinson’s, intracranial lesions, depression, 

and hearing impairment. Location and identification of brain tumors is also a clini­

cal issue that can be resolved with fMRI. Some of the activities are further described 

in the following. 

A representative NMR image of the neurovascular activity is presented in 

Figure 15.15. 

15.6.1  fMRI FOR MONITORING AUDIO ACTIVITIES  OF BRAIN 

Specific auditory tasks are presented while a subject is inside the MRI machine, and 

the changes in blood supply to the areas of the brain that apparently are active in data 

processing will become evident. 

Auditory stimuli can be voice or language recognition or purely sound percep­

tion. Examples of auditory tasks are the delivery of sound burst with a particular 

frequency pattern (tonotopic), sound burst with amplitude variations (amplitopic), 

evoked response type of stimuli using short sentences with or without rhyme, and 

additional audio–speech combination assignments. Images will need to be obtained 

in a relatively fast algorithm in the order of five images per second to be able to rec­

ognize significant differences in the cortical activity. A period of rest with no input 

is required between each assignment for calibration purposes, while the data acquisi­

tion is maintained at the same rate. 

The auditory region of the cortex is predominantly located in the frontal section 

of the brain and in the temporal section in a lesser degree. The studies of the auditory 
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FIGURE 15.15  Spectroscopic neurovascular MRI scan under 3T magnetic field strength  

imaging conditions. (Courtesy of Philips Medical Systems.) 

cortex will not only help identify hearing impaired–related problems but also aid in 

the diagnosis of certain types of dyslexia. 

In dyslexia studies, the regions of the cortex under investigation are focused on 

the frontal and temporal cortex. The temporal cortex is more involved in the data 

processing part of the auditory input, and this is where the fMRI changes will show 

significant differences when compared to the fMRI scans of control subjects. 

15.6.2  fMRI FOR MONITORING MOTONEURON ACTIVITIES  OF BRAIN 

As in other cortical monitoring, fMRI is the most appropriate way to obtain any 

significant information on the motor cortex activity of the brain. 

The motor neuron activity can be determined by means of evoked potential 

recordings resulting from specific motor tasks. These tasks are designed based on 

the clinical concerns about the patient. Assignments would involve, for instance, 

hand, foot, finger, or two motions in a predetermined grid pattern with one or two 
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FIGURE 15.16  Nuclear isotope MRI brain slice selection, showing temporal lobe activity  

related to the jaw, mouth, and throat. (Courtesy of Philips Medical Systems.) 

degrees of freedom. The recorded fMRI scans will indicate the cortical activation 

and identify the root of the problem. 

Figure 15.16 illustrates the cortical activity following an evoked response resulting 

from swallowing; no other regions of the brain appear to be active, which excludes 

speech. 

15.6.3  fMRI FOR MONITORING VISUAL CORTEX ACTIVITIES 

In fMRI of the visual cortex, it is customary to provide the patient with a checker­

board of black and white squares that can change pattern configuration to examine 

the changes in the activities of the voxels in the posterior side of the brain. The corti­

cal region on the occipital lobe of the brain that is involved in visual perception is 

often referred to as the visual cortex. 

Depending on the clinical status of the patient, other types of stimuli are used to 

evaluate the response of the visual cortex. Different levels of visual impairments and 

their neuronal roots are identified using such test. The fMRI of the visual cortex is 

the typical next clinical diagnostic stage after applying the evoked potential EEG 

studies described in Chapter 10. 

15.7  PROCESSING AND FEATURE EXTRACTION OF MRI 

All image processing features described in Part I of the book are applied for analysis 

of the regions identified in typical MR images. The majority of these methods are 

the same methods used in the analysis of x-ray CT images. The only difference is 

that MR images have much higher resolution and are much less noisy compared to 

typical x-ray CT images. 

As mentioned earlier, the resolution of MR images in the z-direction is much less 

than the planar resolution. This is due to the fact that after taking each slice image, 

the patient bed is moved slightly and a new slice image is captured. Due to physi­

cal size of the sensors as well as the dimensions of the bed, the fineness of the bed 

movement is limited. This in turn limits the z-direction resolution. In MR image 

processing, it is common practice to use interpolation methods to use the informa­

tion contained in two neighboring slice to estimate a slice between the two slices. 
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Even though the estimated slice is not truly measured during the data acquisition 

process, if the estimation is a reliable one, this process doubles the resolution in the 

z-direction. A common estimation method use for MR image interpolation is the 

simple averaging of the pixels in the two slices around the estimated slice. 

Another commonly used group of MR image processing methods are the algo­

rithms used to register MR images with the images captured by other modalities 

such as positron emission tomography (PET). The registration process between MRI 

and other image modalities is described in more detail later in this chapter. 

Processing of fMR images are often not based on the image regions. Rather, 

when the voxels responding to a particular stimulus are identified, the time signals of 

these voxels collected throughout the experiment are treated as 1-D signals and are 

analyzed using methods such as DFT and discrete wavelet transform (DWT). The 

feature extraction methods applied for the analysis of these time signals are exactly 

the same as those applied for processing of the evoked potential EEG recordings. 

15.7.1 SOURCES  OF NOISE  AND FILTERING METHODS  IN MRI 

Even though the overall resolution and signal-to-noise ratio of the MR images are 

very high, there are several distinct sources of noise that can be identified in MRI 

technology. These sources are thermal noise, subject motion, physiological activity, 

low frequency drift, spontaneous neural and vascular fluctuations, shear and strain 

noise, and artifacts arising from rapid imaging methods. 

Thermal noise results from the fact that temperature is a form of kinetic energy 

of atoms and molecules. The nuclear spin orientation of certain individual molecules 

and atoms may, as a result, be affected by the heat produced by the MRI machine 

and the fact that the patient is enveloped by the MRI machine, retaining some heat 

produced by the patient’s body. 

The scanning process relies on the assumption that detected spins stem from one 

particular location that does not change in time. Any motion by the patient will 

disturb the location registration algorithm and will produce a motion artifact. The 

main noise and artifacts that need compensation are often motion artifacts. When 

MRI is taken, patients are supposed to stay still, but, in reality, it is often the case 

that during the long duration of the data acquisition process, patients do move. This 

is more significant in children or claustrophobic patients who are not comfortable 

inside the MRI machine. This makes motion artifacts the main sources of noise in 

MRI. Motion artifact is often removed using deblurring filters described in Part I of 

the book as well as more specialized filters designed for this purpose. 

The main share of the physiological noise originates from breathing, additionally 

heartbeat, and peristaltic motions. A rather more fundamental source of noise deals 

with the way the actual readings are collected. As a general rule, when scanning 

thinner slices of the tissue, higher levels of noise are registered by the detectors. As 

a result, if thin slices of images are needed, often the dose of the enhancer agents 

needs to be adjusted. In many applications, image improvements must be obtained 

by using an experimentally optimized dose that balances contrast and saturation. 

Nerve tone changes and nervous twitches can result from adaptation and irri­

tation and may not be avoided. This type of noise will need to be recognized as  
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spontaneous neural fluctuations during diagnostic measurements. Fat tissue can be 

a source of shear and stress, which momentarily result in a change in magnetic spin 

orientation. This phenomenon is referred to as shear and strain noise. Rapid imaging 

will put a strain on the Nyquist theorem resulting in image distortions resulting from 

slow magnetic orientation response and slow sampling rate. 

The main methods used for denoising of the MR images are soft and hard thresh­

olding of the wavelet coefficients as introduced in Part I of the book. Another popu­

lar filtering method of the wavelet coefficients applies statistical methods. Filtering 

of the wavelet coefficients using statistical analysis is frequently performed in two 

stages. The first stage detects the presence of the signal by applying a χ2-test. The 

second stage entails thresholding of the individual coefficients of the remaining 

subbands by applying a two-tailed Z-test. Wavelet transform (WT) of fMRI sig­

nals in the time domain can selectively remove unwanted introduction of temporal 

autocorrelations. 

15.7.2 FEATURE EXTRACTION 

Geometrical features of an object in MR images can be easily captured using mea­

sures such as area, eccentricity, compactness, and so on. Since MR images have 

texture details of objects such as tumors, several texture measures as the variance 

of the gray levels of the pixels within the object can be used to represent texture. 

Geometrical features together with texture measures are often sufficient to identify 

the majority of malignant and benign tumors from MR images. 

All DFT, DCT, and DWT decomposition methods discussed in the previous chap­

ters are used for feature extraction from MR images. DFT coefficients in high fre­

quencies are used to capture the texture of the objects under study. Wavelet methods 

are heavily used for both MRI filtering and feature extraction. The wavelet features 

are often the wavelet coefficients (or the second power of the coefficients) at different 

scales. These coefficients, however, need to be selected to represent the true informa­

tion in the image and not the additive noise. 

15.8 COMPARISON OF MRI WITH OTHER IMAGING MODALITIES 

As mentioned earlier, the resolution of MRI is relatively higher than other image 

modalities. In addition, MR technology allows both anatomical imaging (regular 

MRI) and functional imaging ( fMRI) of the biological tissues. Other technologies 

often are used either for anatomical imaging or for functional imaging. Moreover, 

unlike some other technologies, including x-ray CT, MRI is known to pose to harm 

on the biological tissues. 

Another difference between MRI and CT imaging is the fact that MRI can be per­

formed in any arbitrary slice orientations, while CT imaging is performed in axial 

direction only. This difference has an impact on image registration. For registration 

purposes, the CT and MRI scan will need to be in the same field of view to assure 

the best possible matches. Frequently, this can only be accomplished if the decision 

to perform both CT and MRI is made in advance. MRI does not image bone, while 

x-ray CT will image predominantly bone tissues. 
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15.9  REGISTRATION WITH MR IMAGES 

The registration with MR images can be done for two purposes. Frequently, patients 

are imaged with various image modalities for one single diagnostic application. The 

first reason for registration roots in the fact while MRI provides some functional 

information, there are as significant amount of functional information captured 

by other modalities such as PET that need to be superimposed on the anatomical 

images. As a typical example, it is known that the anatomical details as well as the 

resolution of PET images are very limited, and, often, it is necessary to superimpose 

the functional information of PET on MRI or CT. 

The second reason to perform registration is the need to register different MR 

images captured with different MR machines or even with the same machine at dif­

ferent times. More specifically, sometimes multiple imaging sessions on the same 

or different MRI machines are scheduled to track progress and document changes 

following a treatment. In fMRI, it is also customary to acquire a series of images in 

one session under different conditions (e.g., investigating evoked responses or meta­

bolic parameters). Knowing that each time the exact position of the patient as well as 

the exact calibration of the machine might be different, one needs to register these 

multiple images with each other. In order to do so, often the polynomial registration 

methods, as explained in Part I of the book, are used. These methods often require 

tie points to calculate the mapping between the two images. 

One popular method in providing the tie points is through the use of external 

markers. However, external markers may sometimes interfere with the coils in 

the MRI device. An additional factor of concern is the external markers’ position 

with respect to the biological medium that is being imaged. Specifically, the MRI 

machine has a limited field of view, and the markers may fall outside this view. Other 

issues are distortion of the markers due to the location with respect to the sensors 

and shadow imaging of the markers, which may hide biological points of reference. 

In the cases where the use of external markers may not be a feasible option, com­

putational registration methods are applied that apply the counter of solid objects 

such as the skull for registration. In such a procedure, the corresponding locations 

on the skull bone in both imaging modalities are identified and registered. Then, the 

rest of the pixels in the two images are registered using the same mapping that maps 

the contour of the skull in the two images. 

When registering MRI with PET, the image sizes play an important role. The typical 

MRI machines usually generate 256 × 256 image matrices, and the more advanced MRI 

systems even produce 512 × 512 matrices. PET, on the other hand, typically has image 

of 128 × 128 pixels. Each pixel in PET slices often represents a region with the areas of 

2–8 mm2. The PET slice thickness depends mostly on the hardware used. The gray-level 

range of PET is also significantly less than that of MRI. These differences call for reg­

istration methods to superimpose PET on MRI that address the differences of the two 

technologies both in the special and gray-level resolutions. Such registration methods 

are often specialized to accurately map certain objects in the brain in the two modali­

ties. One biological object of interest in registration is the gray matter of the brain. 

Another image registration technique used for comparing PET and MRI relies 

on physiological matches, since both MRI and PET have the capability to extract 
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certain physiological data. Especially in tumor location, the MRI and PET can iden­

tify malignant tumors from healthy tissue, although PET is known to have a slightly 

better confidence rating in malignancy determination. 

15.10 SUMMARY 

MRI relies on the free movement of odd protons in a nucleus. MRI provides the high­

est resolution among all imaging modalities used for biomedical applications. The 

use of deoxyhemoglobin as a marker is used in an imaging technique called BOLD 

contrast imaging. This method is very useful in mapping brain activity and consti­

tutes the fundamental idea of fMRI. MR images are often registered with images 

captured with other modalities such as PET to provide the anatomical resolution 

to the functional information of other modalities. 

PROBLEMS 

15.1	   Read the image in file “p_15_1.jpg” and display the image. This is a dorsal  

look of a frontal plane view of a chest MRI showing a section of the heart. The 

heart is indicated by an arrow. 

 a.	  Improve the quality of the image using a high-boost filter. 

 b.	   Choose a convenient location in the region the heart and use seed growing 

to find the outline of the heart.* Start with a seed in the center of the sup­

posed structure of the heart. 

15.2	   Read the image in file “p_15_2.jpg” and show the image. This is a dorsal  

look of a frontal plane view of the heart.* This image is taken from the same 

patient during the same imaging session as “p_15_1.jpg,” approximately 7 mm  

posterior. 

 a.	  U se seed growing to outline the bone structures in both images. Start with  

a seed in the center of the supposed bone structure. 

 b.	   Select some tie points in the two images and register image “p_15_2.jpg” 

with respect to image “p_15_1.jpg.” 

15.3	   Read the image in file “p_15_3.gif” and display it. The file contains MR  

images of the spine from various angles and cross sections.† 

 a.	  Split the six images. 

 b.	  Use a high-boot filter to improve the quality of the images. 

 c.	  I n the two images where the spine and the vertebrae are most visible,  

choose a seed point in the middle of the vertebrae for each disk to start the 

region growing process. 

 d. 	 Calculate the size of the gaps between the vertebrae in the same manner. 

 e.	  F ind the angle between the disks in the lower section of the image. The 

vertebrae interdisk angle has important clinical applications for diagnosing  

certain back problems and herniated disks. 

* Courtesy of Dr. Godtfred Holmvang, posted on PhysioBank. http://www.physionet.org/physiobank/ 
† Courtesy of Philips Medical Systems. 

http://www.physionet.org
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15.4	   Read the image in file “p_15_4.jpg” and display it. The file on the left contains 

MR images of the feet, and the right side shows the ankle.* 

 a.	  Split the two images. 

 b.	   Use both Canny and the Laplacian of Gaussian edge detection method to 

find the boundaries of the femur. Compare the edge detection results. 

 c.	  C hoose a seed point in the middle of the bones in the foot each region to 

start the region growing process. 

 d. 	 Find the spaces between the bones in the same manner. 

15.5	   Read images “p_15_5.jpg” and display it. Image “p_15_5.jpg” is an MR image 

of the brain with activity in the visual cortex of the brain.* The left side is a 

posterior view, and the image on the right is an axial view in the caudal direc­

tion with the eyes on top. 

 a.	  Split the two images. 

 b.	   Use the Laplacian of Gaussian edge detection method to find the boundar­

ies of the active region indicated by the blue arrows (the BOLD section). 

 c.	  C hoose a seed point in the middle of the visual activity section to start the 

region growing process. 

15.6	   Read the image in file “p_15_6.jpg” and display it. The file contains MR  

images of the knee, with a detail of the meniscus on the left.* Both images are 

axial views. 

 a.	  Split the two images. 

 b.	   Use the Laplacian of Gaussian edge detection method to find the boundaries  

of the meniscus. 

 c.	   Choose a seed point in the middle of the bones in the knee each region to 

start the region growing process. 

 d. 	 Find the spaces between the bones in the same manner. 

* Courtesy of Philips Medical Systems. 



 

 

 

 

 

 

 

 

 

 

 

16 Ultrasound Imaging 

16.1  INTRODUCTION AND OVERVIEW 

Ultrasound is a method that uses sound waves to interact with tissues and act as the 

energy source for image formation. The ultrasound interaction in this manner deter­

mines specific characteristics of the tissue response to sound waves. Sound waves 

are mechanical, longitudinal waves that travel through matter. In longitudinal waves, 

the motion of the mechanism that forms the wave (e.g., particles and molecules) is 

parallel to the direction of wave propagation. 

The motion of sound waves is in sharp contrast to electromagnetic waves (e.g., 

light, x-ray, and radio waves). In electromagnetic waves, the electric field and the 

magnetic field that provide the wave mechanism are perpendicular to each other 

and perpendicular to the direction of propagation. These kinds of waves are called 

transverse waves. Unlike electromagnetic waves, sound cannot travel in a vacuum; 

its energy is propagated by the motion of the particles in the medium that it is travel­

ing through. Ultrasound waves are represented by pressure waves; compression and 

expansion form the crests and valleys, respectively, in the wave description. 

One way to classify sound waves is based on the frequency of the waves. Because 

sound waves less than 20 Hz cannot be heard by humans, they are referred to as 

infrasound waves. Audible sound waves are between 20 and 20,000Hz, whereas any 

sound waves above the limit of human hearing are called ultrasound. For diagnostic 

ultrasound, frequencies ranging from 1 up to 100 MHz are routinely used. 

In this chapter, we first describe the physics of ultrasound and the interaction of 

ultrasonic waves with biological tissues and then introduce some of the main medi­

cal ultrasound technologies. We also discuss in detail the signal processing method­

ologies used to create and analyze medical ultrasound imaging technologies. 

16.2  WHY ULTRASOUND IMAGING? 

We can ask ourselves why ultrasound is such a popular and invaluable diagnos­

tic tool in medical disciplines such as cardiology, obstetrics, gynecology, surgery, 

pediatrics, radiology, and neurology. One of the main advantages of ultrasound is 

that this technology is relatively inexpensive, mainly due to the relatively “low-tech” 

equipment needed in this modality. Ultrasound imaging produces relatively high-

resolution images that rival other relatively common imaging modalities such as 

x-ray imaging, plus it provides soft tissue information. The axial resolution is in the 

order of millimeters, while the radial resolution depends on the beam diameter. 

Moreover, unlike technologies such as x-ray where the applied energy is ionizing 

and therefore harmful to biological tissues, the sound waves used in ultrasound are 

harmless. Almost all ultrasound systems can produce images in real time, which is a 
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310 Biomedical Signal and Image Processing 

major advantage for medical imaging. Furthermore, due to the portability of most of 

ultrasound units, they can easily be used for various purposes in different locations. 

Additionally, ultrasound imaging can provide important physiological data such 

as flow magnitude and direction by applying the Doppler principle, as discussed 

later in this chapter. A quantitative description of blood flow derived from ultrasound 

measurements provides vital information to physicians about the local flow char­

acteristics. The flow characteristics will provide indirect information on the tissue 

metabolism and functionality. This unique capability of ultrasound imaging makes 

it very suitable for cardiovascular measurements. 

Some other unique properties of ultrasound can be better understood when it 

is compared with x-ray. Ultrasound imaging has reasonable similarities to x-ray 

imaging as far as the methodology is concerned. Both techniques rely on the 

assumption of rectilinear propagation for the image formation purposes. Even 

though ultrasonic waves undergo considerably more diffraction than x-ray, for 

imaging purposes, the sound waves are often assumed to travel along a straight 

line in the first-order approximation. On the other hand, ultrasound imaging has 

considerable differences with x-ray imaging. Ultrasound, as mentioned earlier, has 

no reported epidemiological side effects on biological tissues under the conditions 

currently used for imaging. X-ray, on the other hand has been shown to have ioniz­

ing effects on biological tissues and can be mutagenic. In many medical diagnostic 

procedures, such as monitoring of a fetus in the womb, the use of x-ray is strictly 

prohibited due to the potential mutagenic effects that can permanently alter the 

genetic makeup of the fetus. 

Moreover, while electromagnetic waves only show a relatively negligible different 

speed of propagation across most biological tissues, the speed of an ultrasound wave 

is considerably different in different tissues. Informally speaking, wave spends more 

time passing though one type of tissue than another. These rather small but detect­

able variations in the speed of sound provide the means to create detailed structural 

information about the tissue. In addition, the speed of ultrasonic waves in soft tissue 

is much less than the speed of electromagnetic waves (including x-ray and light), 

i.e., the typical speed of sound in biological tissues is V = 1540 m/s, while the speed 

of electromagnetic waves is C = 2.9979 × 108 m/s. The fact that the speed of sound is 

relatively small is heavily used in the determination of the depth of an echo caused 

by specific tissue inside the body, as explained later in this chapter. 

16.3  GENERATION AND DETECTION OF ULTRASOUND WAVES 

Ultrasound waves can be produced in two distinctly different modes of operation. 

One of the mechanisms that can be used for ultrasound generation is magnetorestric­

tive based. A magnetic material can be made to change its shape under the influence 

of an external magnetic field. When this magnetic field is a periodically changing 

field with a constant period, the medium oscillates with the same identical frequency 

as the driving magnetic field. 

The second and most often used mechanism to generate ultrasound is using 

piezoelectric materials. In piezoelectric ultrasound generation, a class of mole­

cules with an unequal distribution of electric charges can be driven to oscillation 
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by applying an external alternating electric field. As a result, the medium made up 

of these molecules changes shape in unison at the rhythm of the alternating current 

through the medium. 

Certain commonly used materials for transducers are ceramic, barium titanate, 

lead-zirconate-titanate, quartz, polyvinylidene difluoride (PVDF). The most com­

monly used ceramic material is lead-zirconate-titanate. These crystals are sandwiched 

between two electrodes that are able to apply a voltage across the crystal. The crystals 

will expand and contract in a sinusoidal fashion under an applied alternating current 

and will produce sound waves at levels appropriate for diagnostic use with only milliwatts 

of power. The mechanical wave generation devices are called transducers. 

Acoustic waves will partially reflect of interfaces separating two media with 

different acoustical properties, while the remaining fraction will proceed in the ini­

tial direction. Both the reflected and the transmitted signal can be used for imaging 

purposes. In detecting ultrasound wave, when an acoustic pressure wave reaches a 

piezoelectric crystal (potentially the same crystal that generated the acoustic wave), 

the mechanically induced pressure changes the shape of the crystal, which in turn 

produces a voltage across that crystal. This voltage is detected by the electrodes 

attached to the crystal. At this point, the pressure signal is converted into a voltage 

spike whose amplitude is proportional to the mechanical pressure. This analog sig­

nal is then converted to a digital signal by an analog to digital converter. The result­

ing digital signal is then analyzed by the algorithms that extract information such as 

signal intensity and time interval to form an image of the tissue under study. 

In order to better understand both modalities, we need to review some principles 

of ultrasound physics. 

16.4	   PHYSICAL AND PHYSIOLOGICAL PRINCIPLES 
OF ULTRASOUND 

In order to better understand the sound wave propagation formation, first, we review 

some fundamental physics concepts of the ultrasound phenomenon. The concepts 

reviewed here include the mechanics of sound waves, the frequency of the sound, 

the frequency content of the emitted and detected ultrasound signal, and the acoustic 

impedance. We also review the mathematical formulation of acoustic wave propa­

gation and penetration. Knowing these concepts and mathematical formulations of 

these concepts is essential for understanding and implementation of the tomographic 

signal and image processing methods. 

16.4.1 FUNDAMENTAL ULTRASOUND CONCEPTS 

In wave theory, the period of a wave, T, describes the time between two consecutive 

repetitions of an identical pattern in the time domain. The wavelength of the sound 

wave describes the spatial repetition of pattern sequence. The wavelength λ is coupled 

to the period of the wave as follows: 

l = VT	 (16.1) 
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where  V is the local speed of sound. The frequency,  f, describes how many times 

per second a pattern repeats itself. This concept is essentially the reciprocal of the 

period, i.e., 

1
f = (16.2) 

 T  

The concepts of both wavelength and time periodicity are illustrated in Figure 16.1. 

Figure 16.1a shows the concept of period in time domain, and Figure 16.1b illustrates 

the wavelength in the space domain. 

Generally, ultrasound is delivered in short bursts to allow discrimination between 

source and effect and to provide a mechanism to derive additional features from the 

detected signal. In this method, the piezoelectric crystal will emit an ultrasound 

beam resulting from an electric impulse from a power source, called a pulser. The 

pulser will then wait until all of the echoes from that burst of ultrasound are col­

lected before firing another beam. This way, the device has a greater chance of sort­

ing out the chain of echoes while reducing the buildup of echoes on top of each other.  

An illustration of the pulse train delivery protocol is illustrated in Figure 16.2. 

The speed of sound propagation, V, is linked to the elastic modulus of the mate­

rial,  K, and the respective local density of the medium, ρ, i.e., 

K
V = (16.3) 

r 
  

The limited speed of sound allows the measurement of the time delay between the 

transmitter and the receiver of the ultrasound waves, located for instance on two 

FIGURE 16.1 Concepts of (a) period and (b) wavelength. 

FIGURE 16.2 Ultrasound pulse train delivery protocol. 



  

 

   

 

 

  

  

  

 

  

 

 

313 Ultrasound Imaging 

sides of the tissue. In reflection tomography, the detected signal is collected in the wake 

of the input pulse and is collected by the same transducer as the one that emitted 

the ultrasound pulse. The delay between emitted and detected pulsed train is often 

referred to as “time of flight.” As discussed later, one can measure end-to-end delays and 

use tomographic techniques to calculate the delays in each point of the tissue struc­

ture. In other words, once the delay for each tissue is computed, a very informative 

tomographic imaging technique can be applied, which can reveal invaluable details 

about the physical properties of the tissues under study. 

Another useful concept in ultrasound is the acoustic impedance. In acoustic wave 

propagation, the factor that limits the speed of the sound is often expressed using 

a variable called acoustic impedance of a medium, ZA. The characteristic acoustic 

impedance depends on the density of the medium and the ease with which motion 

can be transferred from a point to a neighboring point. This quantity can be related 

to the speed of the wave as follows: 

ZA = rV (16.4) 

The characteristic impedance is often used to describe the mathematical formulation 

of the wave propagation, as discussed later in this chapter. 

16.4.2 WAVE EQUATION 

The ultrasound transducer produces a pressure wave that is both a function of loca­

tion and time, P(x, y, z, t). Acoustic wave propagation in a medium such as a biologi­

cal tissue is governed by the following wave equation: 

2 2 2 2 
2 ∂ P ∂ P ∂ P 1 ∂ P∇ P = + + = (16.5) 

2 2 2 2 2∂x ∂y ∂z v ∂t 

Often the initial assumption in forming the previous equation is that the wave propa­

gates in the direction of one of the coordinates such as x-direction, while the beam 

is not confined to one dimension only. The solution to Equation 16.5 can have many 

different forms, but one typical solution of this equation can be described as follows: 

⎛ 2pt ⎞ 
0 k x  k y  k z  z = − y ) (16.6) P z t  ( , ) = P sin − x − y − P0 sin(wt − k x  k y  k z  x − z⎝⎜ l ⎠⎟ 

where 

ω = 2πf is the angular frequency 
w

k =  is the wave number 
V 

Theoretically, the wave number k in the three Cartesian directions can have differ­

ent values. This is due to the fact that the speed of the sound wave can be different
 

in different directions due to the type of tissues encountered in these directions.
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This can potentially cause the wave front to distort during propagation through the 

tissue; however, the wave number is often assumed to be the same for all directions 

to simplify the solution. 

At this point, it is important to note that even though in the strict theoretical sense, 

one can attempt to find the wave equation in all points of an inhomogeneous medium 

such as biological tissue. If such a wave equation was available, one could have used 

the equation to form very informative images of the biological system under study. 

However, the trick is in the fact that, in order to generate the wave equation, one 

needs to know the exact characteristics of all the points in the tissues under study. 

In reality, if we knew the characteristic information about the structure of the tissue, 

there was no need for imaging! All tomographic attempts described in this chapter 

are indeed directed toward finding the acoustic features of the tissue. This means 

that while knowing the general form of the wave equation might help in understand­

ing the problem, the actual equation is never available, and therefore we need to 

resort to tomographic methods to analyze the tissue. 

Next, the physics of the main ultrasound characteristics that are used for medical 

imaging applications, i.e., attenuation and reflection, is further described. 

16.4.3 ATTENUATION 

Once the sound waves leave the ultrasound probe, they travel through the adjoining 

tissue in which the waves will be attenuated. Since the ultrasound transducer can 

only detect sound waves that ultimately reach the crystal, the absorption of sound in 

the body tissue decreases the intensity of sound waves that can be detected. Hence, 

the deeper the region of interest is located, the more difficult the detection process 

becomes. Absorption of sound waves is due to the conversion of the ultrasound 

energy into motion, which translates into heat energy. This is due to the friction of 

cells and structures sliding over each other, and the friction of this movement trans­

forms the mechanical energy also into heat energy. 

Attenuation in the pressure signal, dP, is directly proportional to the incident 

pressure, P, the distance over which the absorption takes place, dz, and the tissue-

specific attenuation factor, α. In other words, 

dP = aPdz (16.7) 

Solving this equation for P in the case of a plane wave, we have 

( ) − zP z  = P0 exp[ a ] (16.8) 

Equation 16.8 is known as the Beer–Lambert–Bouguer law of attenuation. In this 

equation, the attenuation coefficient α (which is often expressed in neper/m or 

neper/cm) varies from one tissue to another, and P0 is the pressure at z = 0. 

Table 16.1 lists a variety of acoustic properties for some selected tissues. These 

properties include the speed of propagation, the acoustic impedance, and the attenu­

ation coefficient. 
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TABLE 16.1 
Selected Acoustic Tissue Parameters 

Speed of Acoustic Attenuation Propagation 
Propagation Impedance ZA Coefficient α at Density Velocity V 

Tissue V (m/s) (kg/m2 × 10−6) 1 MHz (dB/cm) ρ (kg/m3) (m/s) 

Water 1540 1.48–1.53 0.002 1000 1480 

Blood 1570 1.58–1.61 0.2 1030 1570 

Fat 1460 1.37 0.6 900 1450 

Muscle 1575 1.68 3.3 1080 1580 

Bone 4000 6.0–8.0 12 1850 3500–4300 

Acoustic attenuation is notoriously frequency dependent. In fact, the attenua­

tion is almost linearly proportional to the frequency. More specifically, ultrasound 

attenuation in biological tissues is almost proportional to the wave frequency over 

the interval of 1–6 MHz, which is the typical range of interest in ultrasound imag­

ing. In other words, the 
a 

 ratio is roughly constant for the typical range of medical 
f

ultrasound imaging. 

Knowing the frequency-dependent nature of attenuation in ultrasound waves, it 

can be seen why the higher frequencies resulting from deep reflections will hardly 

make it back to the piezoelectric sensor/detector. This in effect translates into a 

low-pass filtering mechanism in acoustic imaging that becomes more visible as the 

acoustic system needs to penetrate deeper to produce a meaningful image. 

Usually one is interested in the ratio of a measured signal, P1, with respect to 

the source signal, P0, and since practical signal ratios often cover a wide range, it is 

convenient to express ratios in logarithmic form. The intensity ratio of the detected 

signal, P1, measured with respect to the input signal, P0, in logarithmic format yields 

the decibel expression as formulated in decibels (dB) as follows: 

⎛ P1 ⎞
dB = 10 log10 

(16.9) 
⎝⎜ P0 ⎠⎟ 

Note the very high attenuation for bone listed in Table 16.1. This observation shows 

why one cannot effectively use ultrasound to image the tissues located behind bones. 

Water, on the other hand, has a very low attenuation coefficient (0.002dB/cm at 1MHz), 

which indicates a relatively low attenuation. Note that air has a high attenuation coef­

ficient (12 dB/cm at 1 MHz). This high attenuation has two practical implications. 

First, in order to have a meaningful image from biological tissues, one cannot allow 

any air gap between the transducers and the skin. This is why in ultrasound imag­

ing systems, such sonography, a special gel, which has attenuation levels similar to 

that of water, is used as the interface of the transducers and the skin to eliminate the 

possibility of air gaps between the transducer and the human skin. The second obser­

vation deals with the inability of ultrasound systems to image the tissues located 

behind lungs that have air in them. More specifically, almost 99% of the energy 
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incident upon the interface between the lung, which consists of air and soft tissue, 

is reflected. Practically speaking, in order to create an image of a biological organ 

using ultrasound, one needs to have a line of sight from the transducer to the tissue 

without any bones or lungs in the path. 

16.4.4 REFLECTION 

The next concept to be discussed is reflection. During propagation, a sound wave often 

moves through different media. At the interface between two acoustically different 

media, the path of the sound wave can be significantly affected. Many secondary 

waves will be generated, one of which is the reflected wave. The angle of reflection 

is always by definition equal to the angle of incidence (Figure 16.3). The portion of 

the sound wave that will go through the interface is called the refracted wave, and the 

part of the wave that gets reflected off the interface is called reflected wave. 

In reflection tomography, the creation of echoes in the body by reflection of the 

ultrasound beam is the basis for all reflected waves. As one can imagine, when the 

angle of incidence, θi, is larger, the deflections from greater depths will have an 

increasingly higher probability of missing the transducer partially or entirely. In 

practical applications, the angle of incidence must be kept below 3° (θi < 3°) in order 

for the transducer to receive the information needed to form an image. 

Reflection results from a combination of changes in acoustic impedance, usually 

in the order of the size of the wavelength. Often the reflection on microscopic scale 

will fall under the principle of scattering in ultrasound imaging. The ratio of reflected 

to refracted sound waves is dependent on the acoustic properties of both media at 

either side of the interface. The acoustic impedance of the tissues often characterizes 

these properties. In order to quantitatively analyze this phenomenon, assume that an  

incident acoustic wave front hits the interface of the two media with an angle θi (with  

respect to the normal to the interface). In addition, assume the two media to have dif­

ferent acoustic impedances ZA1 and  ZA2. Further, show the incident pressure as  Pi, the 

reflected pressure as  Pr, and the transmitted pressure as  Pt. Then, the pressure reflec­

tion coefficient,  r, and the pressure transmission coefficient, t, are defined as follows: 

Pr ZA2 cos q1 − ZA1 cos q
r = = 2

(16.10) 
Pi ZA2 cos q 1 + ZA1 cos q2  

Medium  2 
θt 

Medium  1 
θi θr 

FIGURE 16.3  Definitions at the interface of two media with an incident (i), reflected (r),  
and transmitted (t) pressure wave front. 



            

 

 

 

 

 

 

 

 

 

 

             

             

 

 

 

317 Ultrasound Imaging 

and 

P 2 q
t = t Z= A2 cos 1

(16.11) 
Pi ZA2 cos q1 + Z A1 cos q2  

Equation 16.10 determines how much of the incident pressure wave reflects to the sur­

face, and Equation 16.11 shows the ratio of the transmitted to reflected wave pressures.  

The previous equations demonstrate that even a fairly small difference in acoustic  

impedances between both media will still generate enough change in the intensity of  

the reflected and transmitted signals to be detected during the imaging process. 

Since most biological tissues have comparable acoustic impedances, only a small 

amount  of  the  ultrasound  is  reflected,  and  most  of  the  sound  is  transmitted.  Therefore,  

structures that are relatively deeper can also serve as a reflector and produce echoes. 

This is why ultrasound can penetrate deep into the body and provide information 

on interfaces beyond the first reflective surfaces. In fact, ultrasound can “bounce”  

between interfaces, and the reflections from one surface can reach the transducer 

multiple times. Obviously, these multiple echoes can complicate the production of an 

image and act as a source of noise in ultrasound images. 

Another source of noise related to reflection phenomenon is caused by the small 

size of the cells. If the dimensions of reflectors, for example, cells, are smaller than 

the wavelength of the sound wave, the reflector acts as a scatterer, or as a second­

ary source. This secondary source is now a point source, radiating spherical waves, 

in contrast with the incident plane wave front. Specifically, while diffraction is the 

gradual spreading of a beam of sound, scattering is a form of attenuation in which 

the sound is sent in all directions. Scattering occurs when the incident sound beam 

encounters small particles within the tissues. The sound waves interact with these par­

ticles, and the waves are reemitted in every possible direction with a certain probabil­

ity distribution for the scattering angle. The ultrasonic scattering process in biological 

tissues is very complicated. Tissues have been treated both as dense distributions of 

discrete scatterers and as continua with variations in density and compressibility. As 

mentioned earlier, in typical reflection and attenuation tomography using ultrasound 

waves, scattering acts as a source of noise and causes some complications in the image. 

The interface of the transducer and the biological medium (e.g., skin) can also 

cause interfering reflection. In order to minimize this, as mentioned before, a gel 

layer with closely matching acoustic impedance is usually placed on the face of the 

probe between the crystal and the body. This matching layer reduces the difference 

in acoustic impedance between the probe and the skin. In addition, a copious amount 

of a coupling agent such as gel or oil must be used on the skin, not only to allow the 

probe to glide smoothly over the skin, but also to exclude any air (which has signifi­

cantly higher acoustic impedance) from the probe–skin interface. Several coupling 

agents are currently available for impedance matching: agar gel, water immersion, 

and a so-called bladder method, where a water-filled balloon is placed between the 

ultrasound probe and the surface of the biological medium. This balloon is pliable 

and conforms to the surface contour. 

Next, we study some acoustic properties of biological tissues through an example. 
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Example 16.1 

Note the very large differences between the soft tissues and bone and air. 
Assuming that the incident wave is perpendicular to the surface of the interface, 
we use the reflection equation to compare the reflection between two types of 
soft tissue, i.e., fat and muscle, with the reflection between a soft tissue and a hard 
tissue, i.e., brain to skull. 

The reflection from fat to muscle comes to the following value: 
1 3⎞ 

2
⎛ 1 7. − .

R = = 0 018 . ≡ −  17 5 dB, or 1.8%, while the reflection from bone to .
⎝⎜ ⎠⎟1 7. + 1 3. 

brain gives a much lower attenuation due to the much greater difference in acous­
1 6⎞ 

2
⎛ 7 8. − . 

.tic impedance between bone and brain: R = = 0 435 . ≡ −  3 6 dB, or⎝⎜ 7 8. + 1 6⎠⎟ . 
43.5%. This confirms the fact that the reflection coefficients between soft tissues 
and bone or air are large. This is in contrast to the signal reflection coefficients at 
boundaries between soft tissues, which turn out to be relatively small. 

Now we are familiar with the main physical properties of ultrasound and 
before describing the details of the methods used for specific ultrasound tomo­
graphic systems, we briefly discuss the practical issues that determine the 
resolution of such imaging systems. 

16.5  RESOLUTION OF ULTRASOUND IMAGING SYSTEMS 

Two distinct types of resolution can be distinguished depending on the direction of 

the scan. The axial resolution is the level of distinction between subsequent layers in 

the direction of propagation of the sound wave. Lateral resolution is the discrimina­

tion between two points resulting from the motion of the transducer signal, perpen­

dicular to the wave propagation. 

The axial resolution is a direct function of the wavelength of the sound wave. 

A wave has a crest and a valley. The crest is maximum pressure (positive peak), and 

the valley represents minimal pressure (negative peak). Since the measurable reflections 

are often detectable only when the wave is at the maximal or minimal points, the 

axial resolution can thus never exceed the distance spanned by half a wavelength. 

The axial resolution can be maximized by mechanical filtering, thus reducing 

reverberations from the excitation by the incoming sound wave. 

The lateral resolution is often determined by the width of the sound beam travel­

ing through the biological medium. A major factor that influences the beam width 

and therefore affects the lateral resolution of the system is the physical dimension 

of the transducer. In general, the transducer sends out a plane wave whose profile is 

determined by the dimensions of the transducer itself. Since the recorded reflection 

is also acquired by a transducer with the same cross-sectional area, it is virtually 

impossible to make any distinction between reflections at the exact locations across 

the beam profile. In other words, even when the reflections across the beam profile 

return with different intensities, since the reflections are collected by only a single 

transducer, the different returned intensities are averaged by the transducer. 

One would think that reducing the probe diameter to infinitesimally small dimen­

sions will give the ultimate lateral resolution. However, the smaller transducer 
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dimension will result in a higher divergence of the beam. The divergence of the 

beam causes greater problems than the initial size of the beam as the returning beam 

will continue to expand due to diffraction and scattering. Such a broad beam will 

excite a very large number of transducers upon returning to the ultrasound probe. 

The lateral resolution will then be lost entirely. In some practical systems, in order 

to improve the resolution, instead of a single large transducer, an array of medium 

size transducers is used. 

Now we are ready to discuss the main tomographic ultrasound imaging methods 

used in medical applications. 

16.6  ULTRASOUND IMAGING MODALITIES 

Three main types of ultrasound imaging can be distinguished: attenuation tomography, 

reflection tomography, and time-of-flight (TOF) tomography. 

One major medical ultrasound imaging system, reflection tomography, relies on 

the fact that sound waves will be reflected from the border of two different tissues. 

In reflection tomography, detecting and analyzing the echoes that are reflected or 

scattered from the different tissues in the biological medium creates an image of the 

tissue. The intensity of each echo is related to the difference in the acoustic imped­

ances of the respective tissues at that specific interface. 

In early ultrasound systems, the transducer would determine whether or not there 

was an echo, but was not accurate in measuring the intensity of the echoes. These 

early brightness mode (B-mode) devices could tell that there were interfaces and would 

display a bright spot on the image that would correspond with that interface. New 

ultrasound systems can accurately determine the intensity of each echo and therefore 

determine the characteristics of the interface that has reflected that ultrasound wave. 

The imaging systems then translate these tissue characteristic specifications into gray 

scales that can be used in rendering the image. Informally speaking, an intense echo is 

going to be received by the transducer if there is a large difference in acoustic imped­

ance; therefore, the image for this interface will be brighter than the image of an 

interface with a lesser difference in acoustic impedance. This technique allows for 

not only the location of structures but also the characterization of certain material 

properties of these structures. Since the acoustic impedance is proportional to both 

the density and the elastic modulus of the medium, these parameters can be derived 

through inverse solution of the acquired signals. 

Attenuation tomography, as another ultrasound imaging modality, uses the fact 

that the transmitted sound waves will be attenuated to different degrees as they pass 

through tissues with different properties. This is essentially the same principle used 

in x-ray attenuation tomography. In attenuation tomography, the attenuation of the 

sound waves passing through the tissues is utilized to form an image. 

The formulation of the TOF tomography is very much similar to those of atten­

uation and reflection tomography and will be discussed coupled with attenuation 

tomography. The principle idea of the TOF tomography is based on the observation 

that the time it takes the sound wave to travel through different tissues varies from 

one tissue to another. 
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FIGURE 16.4  Modeling of translation distance. 

Before formulating these tomographic systems, and in order to see how attenuation  

and TOF are modeled for ultrasound waves, next we investigate expressing the trans­

mission of an ultrasound pressure pulse x(t) in the Fourier domain. As shown in  

Figure 16.4, consider a transmitted signal  x(t) that is received at a distance  d from  

the point of origination. Based on what was previously mentioned about the physics 

of  ultrasound, the received signal will be  e−αdx(t − td ), which is simply the delayed  

version of the original signal attenuated by an attenuation factor of  α. This means 

that the measured signal in the Fourier domain will be as follows: 

X f( )  = FT{e  −ad
d x( t − t  d )}  

= e e−ad − j  2pf td X( )  f (16.12) 
  

Assuming  V as the speed of sound, the distance  d can be written as  d = Vtd. 

As a result, 

d − j f2p 
X f = e−ade  V

d ( )  X( )  f

= e e  − ad − jb ( )f d X( )  f (16.13) 
  

where the time-delay function, β( f ), is defined as follows: 

2pfb( )f = (16.14) 
 V  

Propagation time-delay measurement constitutes the fundamental idea of refraction-

index tomography and reflection tomography, as discussed later. On the other hand, 

in inhomogeneous tissues, the attenuation factor changes from one point to another,  

which makes ideal to form the ultrasonic images using tomographic techniques. In 

other words, the variations in the attenuation factor provide the basis for attenuation 

tomography, which is described in the next section. 

16.6.1 ATTENUATION TOMOGRAPHY 

A typical setup for ultrasound attenuation tomography is illustrated in Figure 16.5. 

Before formulating the mathematical equations, we briefly describe the setup and 

the general function of the elements in the system. As can be seen in Figure 16.5, 
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FIGURE 16.5 Diagram of methodology for ultrasound attenuation tomography. 

the system is composed of signal generator that produces electric pulses. The 

electric stimulus signal, x(t), is applied to the transducer that produced the trans­

mitted pressure impulse, xa(t). The transducer pressure signal then enters the gel 

or water medium that is used to provide coupling between the transducer and the 

biological tissue or skin. The acoustic pulse traverses the tissues and at each 

point within the tissue undergoes attenuation that is proportional to the attenuation 

characteristics of that point. The attenuated signal then reaches the other side of 

the tissue and enters the gel on the receiver side. This signal is then converted to an 

electric signal by the transducer at the receiver side. The comparison of the origi­

nal electric signal with the electric signal measured on the receiver side quantifies 

the attenuation characteristics of the tissue. 

Knowing the overall function of the system, next we mathematically model the 

entire process to show how such a system allows tomographic imaging of the tissue. 

Tracking the signal modifications from the electric generator to electric detector 

gives the following steps in the image formation that can be identified. 

The first step is in the process is the conversion of the original electric signal x(t) 
to mechanical pressure xa(t). Modeling this mechanical conversion as a linear pro­

cess with the impulse response h1(t), we have 

x t = h ( )∗ ta( )  1 t x( )  (16.15) 

After applying the Fourier transform on both sides, we can continue our formulation 

in the frequency domain, i.e., 

X fa( )  = H f X f  ( )  (16.16) 1( )  

Xa( f ) describes the signal on far left hand side of the water (gel). In order to find the 

signal on the far right side of the water layer, Z1( f ), we need to consider both delay 

and attenuation along the water interface with the thickness lW1
, i.e., 

Z f1( )  = e − jb ( )f l  1e −a ( )f l  1X f  ( )  W W W W 
a (16.17) 
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In the interface of the water layer and the tissue, only a portion of the signal energy 

gets to enter the tissue. This portion of the signal, Z2( f), can be calculated using the 

transmittance factor between water and tissue, AWT, as follows: 

Z f( )  = A Z f2 WT 1( )  (16.18) 

Now the pulse that has entered the tissue gets attenuated and delayed throughout the tis­

sue. Since we are not assuming that the tissue is a homogeneous environment, the values 

of attenuation and delay must be calculated for each point and then integrated over the 

entire linear path to provide the total attenuation and delay across the tissue. This means 

that the signal at the far right side of the tissue, Z3(f), can be calculated as follows: 

l l 

− j b x y f dx , ) − a ( , ,  )  x( ,  x y f d∫ ∫
 
Z f( )  = e 0 e 0 Z f 
  3 2( )  (16.19) 

As can be seen in Equation 16.19, α(x, y, f) and β(x, y, f) are assumed to depend on 

the exact location of the point as well as the exact frequency. The next step is the 

transmittance of the signal from the far right side of the tissue to the water on the 

receiver side of the system, which can be represented by the following: 

Z f( )  = A  Z  fW ( )4 T 3 (16.20) 

where ATW is the transmittance factor from the tissue to water. As in the transmitter 

side, the signal is both attenuated and delayed while passing through the water inter­

face with thickness lW2
, i.e., the pressure signal on the far right hand side of the water 

interface, Ya( f), will be as follows: 

− jbW ( )f l  W 2 −aW ( )  W 2Y f( )  = e e f l  Z f  a 4( )  (16.21) 

Finally, the conversion of the mechanical pressure Ya( f) to electric signal Y( f), as 

shown in Figure 16.5, can be formulated as another linear system with an impulse 

function H2( f) as follows: 

Y f  = H  f Y f( )  (16.22) ( )  2( )  a 

The overall relationship between the input X( f) and the output Y( f) of the tissue 

reduces to the following: 

Y f  = H f  ( )  1( )  

− jb W ( )f l  W1 −aW ( )f l  W1× e e 

l l 

− j b ( ,x y f dx ) − a ( ,y, )  x, x y f d∫ ∫ 
× A e 0 e 0 

WT 

− jb W ( )f l  W −aW f l  W( )× A e  2e 2 
TW 

× H f X f  ( )2( )  (16.23) 
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Next we define the following simplifying notations: 

lW = lW1 
+ lW2 

(16.24) 
  

and 

A A  = 
 TW 

.AWT (16.25) 
 

Using the previous notation, Equation 16.23 can be rewritten as follows: 

l l 

− j∫ b ( ,  x y, f ) dx − ∫a ( ,x y  f d) x

Y f  ( )  = AH ( )f H  ( )  f e  − jbW ( )f l  W e −aW ( )  f l  W 
1 2 e 0 e 0 X f  ( )  (16.26) 

  

Next we separate the elements in Equation 16.26 that are not tissue dependent and 

therefore stay the same in all measurements from the parts of the equation that are 

tissue dependent. In order to do so, we define the variable  YW( f) as follows: 

Y fW ( )  = AH ( )  f H  ( )  f e  −aW ( )f lW ( )  
 1 2 X f  (16.27) 

 

Note that YW( f) is known for a given frequency, a given drive signal  X( f), and a given 

device with fixed physical properties. Using this definition, Equation 16.26 can be  

rewritten as follows: 

⎡ l ⎤ l 

− j ⎢ bW ( )f l  W + ∫ b (x,y, f ) dx⎥ − ∫ a ( ,x y, f )dx⎢ ⎥
Y f  ( )  = Y  ( )  f e  ⎣ 0 ⎦ 0

 W e (16.28) 
 

Rearranging Equation 16.28 will give 

l
 

− ∫ a ( ,x y, f ) dx

0 

Y f( )
e = 16.29) ⎡ l 

(⎤ − j b⎢ W ( )  f l  W + ∫ b (x,y, f ) dx

( )  
0 ⎥ 

Y f ⎦
 W e  ⎣

 

Taking the absolute value of both sides results in the following: 

l 

−∫a ( ,x y, f ) dx Y f( )  
e 0 = (16.30) 

Y f
 

W ( )  
 

Now, all we need to do to obtain a tomographic equation is taking the logarithm of  

both sides of Equation 16.30, i.e., 

∫ 
l ⎛ Y f  ( ) ⎞ ⎛ Y f  ( )  ⎞
a( ,x y,  f )  dx = − ln  = W (16.31) ⎜ ⎟ ln ⎜ ⎟ ⎝ Y f  W ( ) ⎠ ⎝ Y f( ) ⎠

 0  

,, 
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As discussed in Chapter 13, Equation 16.31 constitutes a tomographic equation. If 

several scans are taken in several directions, the process described earlier will reduce 

to a standard nondiffracting tomography problem that was discussed in Chapter 13. 

This shows how different ultrasound attenuation characteristics of tissues can be 

used to form an image of the biological systems. 

Next, we discuss a similar ultrasound tomographic system called TOF tomog­

raphy whose setup is essentially the same as that of the attenuation tomography. 

However, TOF tomography is based on a set of completely different characteristics 

of the tissues, which make the resulting images very different from those of attenu­

ation tomography. 

16.6.2 ULTRASOUND TIME-OF-FLIGHT TOMOGRAPHY 

Additional information is retrieved from the TOF of each transmission to obtain  

details on the speed  of sound in the region  the sound traverses through.  The speed  

of sound gives details on either the density of the medium or the elastic modulus of  

the medium, thus providing additional secondary anatomical details. Based on the 

measurement of the TOF, the time “td” is defined as the total time it takes the signal  

to travel from the transmitter to the receiver and is measured to perform TOF tomog­

raphy as describe later. 

In order to describe TOF tomography, we start by reconsidering Equation 16.26: 

l l 

− j b ( ,  x y, f ) dx − a ( ,x y  f d) x

Y f  ( )  = AH ( )f H  ( )  f e  − jbW ( )f l  W −aW ( )  f l  
∫ ∫

W e 0 e 0
1 X f  (16.3

 2 e ( )  2) 
 

From this relationship, the terms describing the delay from the output to the input 
l 

−−a j  ∫ b ( ,x y, f ) dx
are  e  W ( )f l  W (cause by water on both sides) and  e 0  (caused by the biological  

tissues).  This  means  that the total  delay  measured  from the source to the receiver  can 

be related to these terms as follows: 

⎡ l ⎤ 
− j ⎢bW  ( )f l  W + ∫ b (x, ,  y f )dx⎥

⎢ ⎥
e ⎣ 0 ⎦ = e − j f2 p t

 
d (16.33)  

Taking the logarithm of both sides of Equation 16.32, 

( )  ∫ 
l 

bW f lW + b(x, y, f ) dx = 2 pf td (16.34) 
 

 0 

or 

∫

l 

b( ,x y,  f )  dx = 2 pftd − bW ( f )  l  W (16.35)
 
 

 0 
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Equation 16.35 is the tomographic equation that allows forming images of the bio­

logical systems based on different speeds of sound waves in different biological tis­

sues. Note that td and lw are measured, and βw( f) is known for all frequencies. Taking 

several such measurements in several directions provides the measurements for solv­

ing the previous tomographic equation. 

As mentioned earlier, in some cases, the line of sight access to the biological 

organs to be imaged may not be possible. In such cases, neither attenuation tomogra­

phy nor the TOF tomography that requires the transmitter and receiver on different 

sides of the object may be a suitable solution. For such very important imaging sce­

nario, ultrasound reflection tomography, as introduced later, is used. 

16.6.3 REFLECTION TOMOGRAPHY 

Almost all commercial ultrasound imaging systems rely on the principle of sound-

echo detection for ultrasound image formation. This process of reflection tomog­

raphy is illustrated in Figure 16.6. Figure 16.6a shows the physical setup, and 

Figure 16.6b shows the mathematical model of the system. Short pulse trains, p(t), 
having a single frequency are transmitted into the biological medium under study. 

The returning sound waves, ψ(t), are collected in the interval between the emitted 

bursts of sound. The echo will require a specific amount of time to travel to the 

point where the direction is reversed, and return back to the probe for detection. 

In reflection tomography, the reflection index n(x, y) is a function of the biological 

medium and is utilized to form an image. In the modeling of reflection tomography, 

we ignore the reflections formed by the interface of water (gel) and the skin. In our 

first formulation of the system, we also ignore attenuation of the ultrasound wave; 

however, later on, we will include attenuation in our final formulation of reflection 

tomography. 

As shown in Figure 16.6a, the surface causing the reflection at coordinates (x, y) 

receives the pulse, p1(t), which is the delayed version of the emitted pulse, p(t). The 

transmitted pulse that passes through the separation surface, z1(t), can then be cal­

culated as follows: 

z t = p t  1 − n(x y  ))  1( )  1( )(  ,  (16.36) 

FIGURE 16.6 Diagram of setup (a) and mathematical methodology (b) for ultrasound 

reflection tomography. 
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Similarly, we can calculate the reflected wave front at the separation surface as  

follows: 

y1( )t = p  1( )  t n x y  (  ,  )  (16.37) 
  

Assuming the delay in  p1(t) relative to p(t),  ψ1(t) can be rewritten as follows: 

⎛ x ⎞ y1( )  t = p ⎜ t  − ⎟ n x( , y  ) (16.38) 
⎝ V ⎠

  

Now, knowing that ψ(t) is indeed the delayed version of  ψ1(t), we can express the 

mathematical formulation of the returned pulse as follows: 

⎛ x ⎞ y ( )  t = p ⎜ t  − 2 ⎟ n x( , y  ) (16.39) 
⎝ V ⎠

  

In the preceding formulation, we assumed no attenuation throughout the process. 

Now, in order to have a more accurate formulation of the system, we modify the pre­

ceding equations to incorporate attenuation. In formulation reflection tomography, 

the attenuation effect is often modeled using an experimental rule. This rule states 

that ultrasound waves traveling a given distance  x are attenuated proportional to 
1 

. This reciprocal of square root law simplifies the formulation and is known to 
x 

be accurate assumption in almost all biological tissues. Using this rule and assuming  

that the wave is traveling in  x direction, Equations 16.38 and 16.39 can be rewritten 

as follows: 

⎛ x ⎞ n x( , y  )  y1( )t = p ⎜ t  − ⎟ . (16.40) 
⎝ V ⎠ x   

⎛ x ⎞ n x( , y  )  y ( )t = p ⎜ t  − 2 ⎟ . (16.41) ⎝ V ⎠ x   

In the preceding formulation, we assumed only one reflecting surface, while, in real­

ity, biological tissues at any location inside the body create an echo. This means that 

what receiver collects is an integral of all these echoes. In other words, the true ψ(t) 
can be modeled as follows: 

⎛ x ⎞ n x( , y  )  y ( )t = ∫ p ⎜ t  − ⎟ dx (16.42) 
⎝ 2c ⎠ x 

 ray  

The preceding equation is again a tomographic equation that can be solved for 

its integrand using the tomographic techniques discussed in Chapter 3. Since the 

value of  p(t) is known, once the integrand is estimated, one can easily find n(x, y).  

As mentioned before, in all tomographic systems, one needs to create several scans 

in different directions to solve for the integrand. Figure 16.7 shows the ultrasound 
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RV 

RV 

LV 

LV 

C 

FIGURE 16.7  Sonogram showing the heart created by reflection tomography in combina­

tion with 3-D rendering. The abbreviations in the image are LV for left ventricle and RV for 

right ventricle. (Courtesy of Olaf T. von Ramm, PhD, Thomas Lord Professor of Engineering,  

Duke University, Durham, NC.) 

tomographic images of the heart created by a commercial reflection tomographic 

system. This is a typical sonogram commonly used for an accurate diagnosis of the 

heart and its valves. 

One specific type of reflection tomography deals with the reflection tomography 

of moving particles in the plane of view. This specific tomographic system is called 

Doppler ultrasound imaging as discussed next. 

16.6.3.1 Doppler Ultrasound Imaging 
The Doppler effect is a phenomenon in which an observer perceives a change in the 

frequency of the sound emitted by a source when the source or the observer is mov­

ing or both are moving. More specifically, the Doppler effect states that changes in 

the distance beam receptor will affect the frequency of the wave perceived by the 

receptor. Assuming the frequency of the pressure wave at source as f0, the frequency 

perceived by the receptor as f, the velocity of sound emitted by the source as V ,source

and the velocity of the moving beam or object as V, the perceived frequency is related 

to the source frequency as follows: 

V
f = f (16.43) 0 −V Vsource 
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FIGURE 16.8  State-of-the-art portable ultrasound imaging device manufactured by Ardent  

Sound, Inc., Guided Therapy Systems, Inc., Mesa, AZ. 

This effect, i.e., the shift in frequency, is used to register the motion of the moving 

acoustic scatters within the human body. For scattering material velocities in the 

0–1 m/s range, at ultrasound frequencies of 1 and 6 MHz, the Doppler shift frequen­

cies are in the 0–1.3 and 0–8 kHz ranges. 

Doppler imaging measures blood velocity and detects blood flow direction. In 

commercial Doppler systems, the increase in frequency, i.e., flow toward the detec­

tor, is colored blue while the decrease in frequency, i.e., movement away from the 

detector, is illustrated by red. 

1 (277)
 
–7980 (7980) ms
 

+15.5 

cm/s 

–15.5 

FIGURE 16.9 Pulsatile blood flow captured in a time sequence by Doppler ultrasound 

imaging. The blood vessel is shown in the upper section of the image, while the bottom half 

displays the Doppler signal as a function of time. (Courtesy of Ardent Sound, Inc., Guided 

Therapy Systems, Inc., Mesa, AZ.) 



 

     

     

 

 

 

Ultrasound Imaging 329 

In Figure 16.8, a state-of-the-art portable ultrasound imaging device manufactured 

by Ardent Sound Therapy, Inc., Mesa, AZ, operating in reflection mode is shown. 

Figure 16.9 shows the pulsating characteristics of flow, and the direction of flow is 

exhibited by the deflection of the Doppler signal (positive or negative). 

16.7  MODES OF ULTRASOUND IMAGE REPRESENTATION 

Some of the main commercial modes of ultrasound imaging that are used in medical 

imaging applications are B-mode, M-mode, and TM-modes. These imaging modes 

are essentially the methods of showing the measures data in the form of images. In 

B-mode imaging, the amplitude of the collected electronic signal is represented by a 

relative brightness of the tracking dot on the screen. Figure 16.10 gives a representa­

tive B-mode image of a heart in the chest. B-mode is the commonly used way of 2-D 

image representation. 

In M-mode, which is often used for imaging of motion in biological systems, the 

display keeps track of each B-mode scan by the transducer, while adding subsequent 

scans as a function of time and position to the same display. While an artifact that 

provides a reflection remains in one place, the brightness spot does not move in 

each subsequent scan line; when there is movement, the data created by the mov­

ing reflection will change position on the screen as well. Similarly, if the transducer 

probe is moved and the interface at a given depth increases or decreases in depth 

with respect to the location of the probe on the outer surface, the inner topography 

can be performed. The imaging system will record the position or direction of the 

probe and store this together with the brightness data in a memory bank. With this 

technique, the adjacent brightness points can be seen as if they are connected, and 

FIGURE 16.10  Sonogram showing a cross section of the heart created by reflection tomog­

raphy in B-mode. (Courtesy of Brett Fowler, Heineman Research Laboratory, Carolinas 

Medical Center, Charlotte, NC.) 
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contour images can be revealed from various depths. M-mode is also frequently used 

to image movement such as a fetus in the womb, but it is also used to reconstruct 

an image by moving the transducer itself to compile the image in summation. Heart 

valve diagnosis applies M-mode imaging, and, in other cardiovascular applications, 

M-mode is used to analyze deformations in pumping motion of the heart. 

16.8	  ULTRASOUND IMAGE ARTIFACTS 

As with any diagnostic tool, there are limitations to the accuracy of images that are 

produced. Many of the artifacts seen in ultrasound images are due to the reflective 

properties of the tissues being analyzed. One artifact arises when two reflective sur­

faces are close to each other and the sound wave bounces between them. In this case, 

each time the sound reverberates, some of the sound will transmit through the proxi­

mal interface, and an echo will reach the transducer. Consequently, apparent structures 

are seen in the image at regular intervals descending down into the tissue although 

there may be no structures there at all. This causes a “comet tail” effect in the image. 

Another artifact can be seen behind any highly reflective interface that only 

transmits a small amount of ultrasound. In such cases, there is not enough sound 

energy to reach deeper tissues to produce echoes that are received by the trans­

ducer. Consequently, there is tissue beyond the highly reflective surface that the 

device cannot register. The resulting areas appear dark on the image and are called 

reflective shadows. Echoes reaching the transducer that do not come from the 

opposite direction of the incident ultrasound beam cause another artifact, called 

displacement. This can occur when a beam of ultrasound is reflected off two or 

more reflective surfaces at angles that cause the echo to return to the transducer. 

In this case, an apparent structure will appear to be in a place where, perhaps, no 

structure exists. 

16.9	   THREE-DIMENSIONAL ULTRASOUND  
IMAGE RECONSTRUCTION 

When considering the 2-D ultrasound imaging as a diagnostic tool, some of the 

limitations of the 2-D systems can be noticed. In 2-D imaging, only one thin slice 

of the patient can be viewed at any time, and the location of this image plane is 

controlled by physically manipulating the transducer orientation. Consequently, the 

technician or the therapist/surgeon must mentally integrate many 2-D images to 

form an impression of the 3-D anatomy and pathology. This process is time consum­

ing and inefficient, but more importantly rather subjective. In addition, due to the 

patient’s anatomy or position, it is sometimes impossible to orient the 2-D ultrasound 

transducer to obtain the optimal image plane. Three-dimensional imaging will allow 

arbitrary orientation of the image viewing plane within the data volume. 

Three-dimensional reconstruction of volumes of tissue using ultrasound imaging 

is one of the most recent advances in ultrasound technology. In order to form 3-D 

images, one must take consecutive scans of the tissue using normal 2-D techniques 

and store them in a computer. Then the computer system stacks those images and 



 

 

 

 

 

331 Ultrasound Imaging 

interpolates the space between the stacked images to create a virtual 3-D model of 

the tissue. In order to perform this, one must know exactly how far the ultrasound 

sensor or beam has moved between sequential scans. Unlike computed tomogra­

phy (CT) and magnetic resonance (MR) imaging, in which 2-D images are usually 

acquired at a slow rate as a stack of parallel slices, in a fixed orientation, ultrasound 

provides topographic images at a high rate, and in arbitrary orientations. The high 

acquisition rate and arbitrary orientation of the images provide unique problems to 

overcome and opportunities to exploit in extending 2-D ultrasound imaging to 3-D 

visualization. 

There are four typical techniques to view the 3-D image: surface rendering (SR), 

multiplanar reformatting (MPR), volume rendering (VR), and maximum intensity 

projection (MIP). SR is based on visualization of surfaces of structures or organs 

and has been used successfully in rendering of echocardiographic images obtained 

in obstetrics (Figure 16.11). 

The MPR approach is a technique in which computer user interface allows selec­

tion of single or multiple planes, including oblique viewing of the 3-D image. The 

3-D image is usually presented as a polyhedron representing the boundaries of the 

reconstructed volumes; the faces of the polyhedron can be moved in or out, parallel 

to the original or obliquely. 

VR displays the entire 3-D image after it has been projected onto a 2-D plane and 

is used particularly in displaying fetal and vascular anatomy. Figure 16.12 shows an 

MIP of a 3-D power Doppler image of a finger. The image has been sliced to demon­

strate that excellent 3-D images of vascular structures can be obtained. 

FIGURE 16.11  SR and VR of an exceptional view of a fetus at 24 weeks with enhancement 

of surfaces of the face of a fetus. (Courtesy of Philips Medical Systems.) 

4 (203) 

FIGURE 16.12  MIP of a 3-D power Doppler image of a finger. The image has been “sliced” 

to demonstrate that excellent  3-D images  of vascular  structures  can  be obtained. (Courtesy  of 

Ardent Sound, Inc., Guided Therapy Systems, Inc., Mesa, AZ.) 
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16.10 	 APPLICATIONS OF ULTRASOUND IMAGING 

Ultrasound imaging is often used to provide the bearings for invasive and nonin­

vasive surgery. One of the most well-known applications of ultrasound imaging is 

monitoring the development of a baby (fetus) in the womb. The same system is some­

times used to determine the sex of the fetus. 

A major application of Doppler ultrasound is the study of the heart and human 

carotid artery disease wherein imaging and frequency shift are combined to produce 

images of artery and ventricle lumens. As explained earlier, the frequency shift data 

are used to color code the image, showing direction of flow. Analogous to optical 

Doppler imaging, flow toward the ultrasound probe is represented in blue due to the 

shift toward a higher frequency, and flow away from the probe is represented in red 

(e.g., carotid arteries in red and veins in blue). Obstructions to blood flow are readily 

evaluated by this method using handheld scanning devices. 

Some ultrasound imaging devices provide a virtual reality images on a visor dis­

play for image-guided surgeries such as laparoscopic surgery. The virtual reality 

image can be linked to the position and direction of the surgeon’s head to correlate 

the previously recorded ultrasound images to the corresponding position the operator 

is looking. 

Three-dimensional ultrasound images are sometimes used in vascular surgery. 

By placing a miniature ultrasound probe in a catheter, the probe can be inserted into 

the lumen of blood vessels, in particular, the coronary arteries. When a 3-D image 

of the lumen of the artery can be attained, surgeons obtain more preintervention 

information on the extent of stenosis, or blockage, and these data could affect the 

type of intervention chosen. The process also allows pre- and postintervention char­

acterization of vessels to show the effectiveness of the chosen intervention. 

Techniques that allow real-time guidance of the needle/fiber into the tissue using 

ultrasound imaging are currently used for some medical diagnostics applications. 

In addition to imaging heart valves and blood vessels, ultrasound is the most con­

venient and inexpensive method for medical evaluations such as gallbladder stones. 

Ultrasound imaging is also being used for monitoring therapy methods, such as 

hyperthermia, cryosurgery, drug injections, and as a guide during biopsies and cath­

eter placements. 

16.11	   PROCESSING AND FEATURE EXTRACTION  
OF ULTRASONIC IMAGES 

Almost all image analysis techniques described in Chapters 4 and 5 are used to 

trace the outline of organs and other anatomical features and extract features such 

as volume of the objects. Further image signal and processing can yield tissue dis­

crimination based on the measured frequency spectrum and the localization of these 

frequency characteristics in the imaging field. 

Since there are no definite regularities in the acoustic signals collected from the 

various impedance discontinuities at the interface of different organ media, there 

is no clear spatial frequency information on the noise. However, there is a certain 

degree of omnipresent noise with undetermined frequency content. This noise will 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

333 Ultrasound Imaging 

need to be eliminated to increase the contrast and resolution obtained from true 

discrete discontinuities. Because of this noise, it is almost impossible to detect any 

activation or image feature without resorting to statistical analysis. This analysis 

requires a model of noise usually assuming a Gaussian distribution. 

The noise often comes from discontinuities at angles with the sonic beam, from 

gradient differences, and from thermal and other motion artifacts. All these sug­

gest that in the analysis of ultrasound images in the frequency domain, the high-

frequency contents could be often attributed to noise, and, therefore, the filters can 

be designed to filter these high-frequency noises out. 

Wavelet-based filters are essentially based on an approach that aims at obtaining 

an optimal trade-off between good signal averaging over homogeneous regions and 

minimal resolution degradation of image details. Similar to the use of wavelets in 

other imaging techniques, the wavelet transform has a compression effect since, as 

mentioned before, it has the tendency to bundle the signal of interest into a signifi­

cantly fewer number of identifiers with respectively large coefficients. On the other 

hand, noise can be reduced evenly in the wavelet domain. This in turn results in an 

enhanced signal-to-noise ratio for those coefficients where the signal is concentrated 

and hence improves the detection rate. This allows the use of a conservative decision 

strategy to keep the false-detection rate to a minimum. 

A crucial point in the selection of wavelet transforms is the appropriate choice of 

the wavelet base form, the order of the transform and the iteration depth. Different 

basis functions offer different compromises. The iteration depth controls the accuracy 

and the sensitivity. The order, depending on the basis functions, has a great influence 

on the number of detected coefficients and consequently on the sensitivity and speci­

ficity. According to the literature, the Daubechies wavelet analysis seems to be the 

best fit for most ultrasound image processing applications since the reflection is a more 

or less binary event, which matches the Daubechie mother wavelet. However, other 

wavelet analysis may fit the gradient response of inhomogeneous reflection conditions. 

The wavelet coefficients, area, volume or size of the object, intensity, eccentricity, 

elongation, and Fourier coefficients are among the most popular features used in the 

analysis of ultrasound images. 

16.12 IMAGE REGISTRATION 

Image registration in ultrasound is used to combine images from an array of trans­

ducers to present a single image slice. In most cases, the direction of the beam is used 

as a reference with respect to the adjacent ray. In other cases, specific landmarks 

need to be identified to correlate the separately acquired images to form a continu­

ous image. In general, the feedback mechanism of the ultrasound device gives the 

location and direction of each ray of ultrasound, and the Cartesian representation of 

the rays serves as the map to reconstruct the image with. 

If an ultrasound pulse strikes a tissue interface at an oblique angle, the direction of 

travel will be changed if the speed of sound is different on either side of the interface. 

For most soft-tissue interfaces, the effect is small. However, if the propagation path 

includes fluid (such as in pelvic scans by the transabdominal route), the effect can 

be significant. The effect of refraction is to diverge the path of the ultrasound beam. 
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Since the ultrasound image is built up by assuming that sound travels in straight 

lines, regions of tissue that are affected by refraction will be displayed incorrectly. 

A different class of registration problems is concerned with registration of image 

sequences that follow a process that changes with time. Acquisition of images over 

time and subsequent registration can be used to study dynamic processes such as tis­

sue perfusion, blood flow, and metabolic or physiological processes. One example of 

such a process is imaging of the heart where images are acquired in synchrony with 

the heartbeat, synchronized to the ECG or blood pressure waveform. Synchronized 

or “gated” acquisitions allow averaging of images over multiple cardiac cycles to 

reduce image noise in nuclear medicine and MR imaging. In a similar way, temporal 

registration of x-ray images of the heart before and after injection of contrast mate­

rial allows synchronous subtraction of mask images. These types of image registra­

tion methods assume that the imaging cycle does not change between periods, or for 

the heart, from beat to beat. A similar principle applies to images acquired at differ­

ent stages of the breathing cycle, although the breathing cycle is less reproducible, 

and therefore registration errors will be greater. 

One serious consideration in image registration is the use of nonguided freehand 

imaging. The interpretation of the acquired image relies solely on the anatomical 

knowledge of the operator, and the mental interpretation of the angle and position 

of the transducer by the clinician. Most other ultrasound imaging modalities have a 

built-in feedback mechanism that relates each scan with respect to the previous scan 

by mechanical and/or electronic feedback. 

16.13 COMPARISON OF CT, MRI, AND ULTRASONIC IMAGES 

Ultrasonic imaging has many overlaps with x-ray CT imaging as far as the one-to­

one image formation is concerned; both mechanisms assume rectilinear propagation 

of the image carrier. However, ultrasound does not have the same penetration capa­

bilities as the x-ray used in CT scanning, and ultrasound is less harmful than x-ray. 

On the other hand, MRI, due to its very high resolution and image quality, pro­

vides detailed physiological information, while ultrasound only gives flow feedback. 

Compared to MRI, the main advantage of ultrasound is the low cost and portability 

of ultrasound machines. In addition, as will be discussed later, the presence of iron-

based or other ferromagnetic materials is prohibited in the MRI room, which calls 

for the use of often costly tools such as titanium-based surgical tools in the MRI 

room. No such restriction is applied to ultrasound. Moreover, to ease of conducting 

ultrasound imaging allows using the machine for imaging of almost all types of 

patients without the use of sedatives. However, in order to perform MRI on some 

children and even adults with claustrophobia, the patients need to be sedated or even 

put to sleep to allow image acquisition. 

16.14 BIOEFFECTS OF ULTRASOUND 

The following bioeffects of ultrasonic imaging deserve attention: thermal effects, 

mechanical and cavitational effects, cellular and subcellular effects, biochemical 

effects, and finally the effects of ultrasound on organs and systems. 
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Ultrasound waves contain mechanical energy that can be transformed into heat; 

in which case, an increase in the temperature of the exposed tissues and cells will 

result. The temperature increase depends on the energy exposure (power and time 

frame) and the tissue characteristics. In specific therapeutic cases, this temperature 

effect is desired for destruction of kidney and gallstones; however, for imaging pur­

poses, no harmful temperature increase is recorded at the customary relatively low 

power density levels. 

Two different types of mechanical and cavitational effects can be distinguished. The 

first-order effect is accomplished by strain and shear stress induced by out-of-phase accel­

eration of components of the same biological structure. In certain cases, the local par­

ticle acceleration can exceed 25,000 times the gravitational acceleration. In such cases, 

when the focal point is relatively small compared to the structure size, the ultrasound 

causes tear-and-twist effects. Examples are cellular membrane fatigue, mostly observed 

in red blood cells, resulting in autolysis of the erythrocytes. Additionally ultrasound may 

liquefy thixotropic structures, including mitotic and meiotic spindles. Cavitation is the 

oscillatory activity of highly compressible bodies such as gas bubbles or cavities. This 

feature depends largely on the pulse duration and can disrupt white and red blood cells 

and epithelial cells, and may additionally cause blood coagulation dysfunction. 

On the cellular and subcellular level, cells may get disrupted by the cavitation pro­

cess, which produces shear stresses. Some of the reported cellular consequences are 

swelling of the mitochondria and enlargement of the endoplasmic reticulum. However, 

no direct effects on the functionality of the mitochondria have been observed, although 

increased membrane permeability to water has been detected. Due to the relatively 

long wavelength, no atomic or molecular (DNA) influence has been found. 

On the biochemical level, the influence of ultrasound energy has been known to 

decrease glutathione levels and increases in alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST) levels in the blood. Additionally an increase in 

collagen synthesis has also been observed. 

In terms of the influence of ultrasound on the developmental stages or organs and 

systems, there is no conclusive evidence on any effects on fetal growth; however, 

wound healing seems to be accelerated. Ultrasound has been shown to produce reti­

nal damage and affect the cornea, but, at the same time, ultrasound can also be used 

to treat mild cases of myopia. One significant risk is damage to the inner ear. 

Despite all the evidence cited earlier, no epidemiological data can support any 

seriously harmful side effect due to ultrasound exposure. This makes ultrasound the 

most used diagnostic technique in hospitals. 

16.15 SUMMARY 

Ultrasound imaging uses a rather simple mechanism of acoustic generation by elec­

tric transducers that can produce and acquire mechanical displacement. The principle 

of image formation is based on the detection of attenuation, reflection, and TOF for 

reflected and transmitted pressure. There are three distinct methods of imaging in use, 

attenuation tomography, reflection tomography, and TOF tomography. Each of these 

methods targets a specific anatomical contrast feature. Ultrasound is used in many diag­

nostics and therapeutic applications due to its harmless effects on the biological tissues. 
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PROBLEMS 

16.1	  I ntensity of ultrasound is defined as the pressure per unit of area. An ultra­

sound wave with a frequency of 5 MHz and an intensity of 20 mW/cm2 tra­

verses a medium with an acoustic discontinuity at 5 mm depth. Assume there 

is no attenuation in either medium. The power collected by the transducer is 

0.2 mW over an aperture of 0.15 cm2. 

 a.	  Calculate the transmitted intensity.

 b.	  Assuming  Z  = 1.65 × 106 kg/m2 
1 s, calculate Z2. 

 c.	   Calculate the reflected pressure and show that the reflected and transmitted  

pressure combined would yield the incident pressure. 

16.2	   The standard deviation of the collected signal for aortic wall divided by the 

mean signal comes close to 1.91 in all four cases. The ratio for muscle tissue  

will be less than 1.91. By changing the angle of incidence of the ultrasound  

beam and recording two new images at that angle and average them out will  

give a new value for each of the tissues that can be used to discriminate  

between the lipid, the muscle, the aorta, and aortic wall with plaque. Explain	  

how adipose tissue (lipids) adjacent to muscle tissue can be distinguished  

from aortic wall and from aortic wall with plaque, respectively (Hint: the  

solution lies in the scattering properties of the tissues). 

16.3	   A train of ultrasound pulses is bombarding a slab of medium and is described 

by an intensity profile function of time, x(t). The Fourier transform of this peri­

odic phenomenon is X( f). The transmitted ultrasound wave front is y(t) with  

Fourier transform,  Y( f). The transmitted Fourier transformed wave front is the 

characteristic transfer function of the medium, H( f), applied to the incident  

Fourier wave front described by the following equation: Y( f) = H( f)X( f). The 

transfer function is the Fourier transform of the impulse response function in  

the time domain for the tissue slab, h(t). The transmitted ultrasound signal is  

collected on the opposite side of the slab after attenuation over the thickness of  

the slab. 

 a.	  D erive the transfer function when the attenuation coefficient of the  

tissue is proportional to the frequency for the frequency range used  

in this experiment, αt = α0 f, where α0 is the attenuation coefficient at  

1 MHz. 

 b.	  S how that the attenuation coefficient can be estimated from the root­

mean-square duration of the impulse response. The duration of the  

impulse response, D(t), is defined as follows: 
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where  tc = l/c, with  c the speed of sound in the tissue and l the thickness 

of the slab. 
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16.4	  S ince the attenuation coefficient of ultrasound waves generally increases 

with increasing frequency (see Problem 16.3), explain how second harmonic  

imaging, i.e., using f  = 2 . 1  f as the detected frequency, increases the image 

information. 

16.5	  L oad file “p_16_5.jpg” and display. A blood vessel is imaged by intravascular 

ultrasound showing the inside wall and the outside wall surrounded by mostly  

fat. Using MATLAB® and file p_16_5.jpg representing the clinical data,  

perform the following.* 

 a.	  Ca lculate the relative thickness of the vessel wall with respect to the vessel  

diameter. 

 b.	  U sing the fact that the vessel will be pressed against the catheter and that 

the catheter has a diameter of 5 mm, calculate the thickness of the vessel  

wall. 

16.6	  I n laser photocoagulation of ventricular tachycardia, diseased heart mus­

cle is denatured with the energy of laser light to destroy the electric activ­

ity of a section of the heart wall that is no longer conducting properly  

because  of cell death resulting from a heart attack. Load file “p_16_6.jpg” 

and display. Figure “p_16_6” shows an ultrasound image of a laser photo-

coagulated section of the left ventricular wall of a heart seen through the  

tissue  in the fifth intracostal space of the chest. The heated and coagulated  

tissue is significantly denser than the healthy heart muscle. The transducer 

operated at 10  MHz. Use the seed growing algorithm to find the outline  

of  the  coagulation lesion. Visually choose suitable seed points to start the 

segmentation process. 

16.7	  I n Doppler flow measurement using ultrasound, the blood flowing toward the 

transducer will result in a higher frequency than was originally sent in, while 

blood flowing away from the transducer will give a decrease in ultrasound 

frequency. Load file “p_16_7.jpg” and display. The blood flow in “p_16_7.jpg” 

toward the transducer has the increase in frequency colored as blue, while 

the flow away from the ultrasound transducer decreases the frequency and is 

illustrated by red. Use the seed growing algorithm to find the perimeter of the 

left ventricle, and the fraction of turbulent flow using seed and region growing 

techniques described in Section 4.3. Visually choose some suitable seed points  

to start the process.† 

16.8	  R ead image “p_16_8.jpg” and show the image. One of the critical assess­

ments to identify the healthy growth of the baby is measuring the diameter 

of the baby’s head. In this problem, we write MATLAB codes to perform this 

automatically. 

 a.	  A pply Laplacian of Gaussian method to detect the edge of the skull of the 

baby. 

 b.	  O nce, the baby’s head is detected, write the codes to find the diameter of  

the head. Here, we define the diameter as the largest distance between two 

points located on the head’s contour. 

*  Courtesy of Brett Fowler, Heineman Research Laboratory, Carolinas Medical Center, Charlotte, NC. 
† Courtesy of Ardent Sound, Inc., Guided Therapy Systems, Inc., Mesa, AZ. 
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16.9	 Load file “p_16_9.jpg” and display. Figure “p_16_9” shows a combined 

M-mode and Doppler image of venous blood flow. The blood flow in “p_16_7. 

jpg” is shown in blue in the upper half of the image, while the bottom section 

displays the flow velocity characteristics as a function of time.* 

a.	 Use the seed growing algorithm to find the perimeter of the vein using 

seed and region growing techniques described in Section 4.3. Visually 

choose some suitable seed points to start the process. 

* Courtesy of Ardent Sound, Inc., Guided Therapy Systems, Inc., Mesa, AZ. 



 

 

 

 

 

 

 

 

 

 

 

 

17 Positron Emission
 
Tomography
 

17.1  INTRODUCTION AND OVERVIEW 

Positron emission tomography (PET) is a noninvasive nuclear imaging technique that 

produces images of the metabolic activity of living organisms on the biochemical 

level. These physiological images are detected by introducing a short-lived positron-

emitting radioactive tracer, or radiopharmaceutical, by either intravenous injection 

or inhalation. Images are created using a process called radioactive labeling in which 

one atom in a molecule is replaced by a radioactive radionucleotide. 

The PET images produced help physicians identify normal and abnormal activity 

in living tissue. Unlike computed tomography (CT) that primarily provides anatomi­

cal images, PET measures functional chemical changes in the tissue. Some of these 

chemical changes that are typically metabolic activities occur before the resulting 

abnormalities are visible on other functional imaging modalities such a regular func­

tional magnetic resonance imaging ( fMRI). The resolution of PET is far less than 

that of CT and MRI, and, as a result, PET images are often registered with CT or 

MRI images to superimpose the anatomical details of CT and MRI on the functional 

information of PET. 

Informally speaking, PET recognizes these metabolic changes by measuring the 

amount of radioactive tracers distributed throughout the body. This information is 

subsequently used to create a three-dimensional (3-D) image of tissue function from 

the acquired decay matrix. Due to the availability of various types of radioactive 

isotopes, the specific metabolic changes resulting from assorted diseases make PET 

imaging particularly useful in the detection of malignancy in tumors. 

In this chapter, we first describe the physical and physiological principles of PET 

and then describe applications of PET in medical imaging and diagnostics. A closely 

related imaging technology called single photon emission computed tomography 

(SPECT) will be discussed briefly as well toward the end of the chapter. Even though 

SPECT is briefly described in this chapter, this technology will be separately discussed 

in Chapter 18, which is dedicated to more specialized imaging technologies. 

17.2  PHYSICAL AND PHYSIOLOGICAL PRINCIPLES OF PET 

The radionucleotide that is administered in the body during PET imaging contains 

a specified quantity of short-lived radioactively labeled chemical substances that 

are identical or closely analogous to naturally occurring substances in the body. 

The radioactive substances used in PET are nucleotides in which some atoms are 

replaced by their radioisotopes. 
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After entering the body, the radioactive substance circulates through the blood­

stream to reach the organ or tumor of interest. The radionucleotide then emits positrons 

as part of the natural disintegration process of the unstable isotopes. A positron is the 

atomic equivalent of a positive electron, both in mass and in charge, except the charge 

is opposite to that of the electron’s charge. 

Once the radioactively labeled substance has been absorbed, it keeps emitting 

positrons. The imaging is made possible by the positron annihilation with an elec­

tron, emitting two gamma rays that are sensed by the detectors outside the body. 

The measured gamma rays are then processed using tomographic methods to iden­

tify the location and quantity of the radioactive uptake at each location inside the 

body. The resulting image provides functional analysis of the organ in question 

since, as discussed later, the amount of uptake is related to the metabolic functions 

of the tissues. 

In order to better understand the full use of the radioactive isotopes in PET and 

the incorporation of each radioactive substance in the cellular metabolism, next the 

production of the isotopes will be further described. 

17.2.1 PRODUCTION  OF RADIONUCLEOTIDES 

The first stage in the development of a radioactive pharmacologic entity is the 

production of the radionuclide. As mentioned earlier, the radionucleotides adminis­

tered in the body are in principle very similar to the material abundantly available in 

biological tissues, except that in the radionucleotides certain atoms are substi­

tuted by their short-lived radioactive isotopes. Such radioactively labeled chemi­

cal substances are unstable and emit positrons when in the body. The atoms that 

are replaced by their isotopes are the main elements abundantly found in biologi­

cal tissues, i.e., 11C, 18F, 13N, and 15O. The radionucleotide can be produced in 

many different ways; the most prominent method is the use of an on-site cyclotron. 

Particle bombardment will produce the needed radionuclides. 

Fluorodeoxyglucose (FDG) is the most commonly used radioisotope. The pro­

duction and chemical interactions of the fluoride isotope with other elements will 

be described briefly. Other radioactive isotopes follow a similar process. FDG is 

produced by proton bombardment of 18O enriched water, as shown in Figure 17.1, 
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FIGURE 17.1 FDG is produced by proton bombardment of 18O-enriched water and is bound 

to 1,3,4,6-tetra-O-acetyl-2-O-trifluoromethanesulfonyl-β together with mannose triflate. 
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causing the 18O(p, n)18F reaction. FDG can consequently be recovered as an aqueous 

solution of 18fluoride and can then be extracted by ion-exchange chromatography. 

One hour of cyclotron irradiation can produce approximately 800 mCi of 18F. The 

nomenclatures of related chemicals involved in the production of 18F are H18F, F18F, 

and 18F−. 

It is important to note that 18F can also be produced as a radioactive gas through 

the deuteron bombardment of neon (20Ne) to produce 18F and an alpha particle. The 

gaseous state is currently not a popular mechanism and is overall considered a less 

preferred method. 

Now that we have briefly discussed the production of the radioisotopes, next we 

discuss the degeneration of these substances. 

17.2.2 DEGENERATION PROCESS 

The engineered radiopharmaceuticals used in PET have unstable nuclei that degen­

erate to lower energy states. The decay process is demarcated by a time constant of 

the decay called the radioactive half-life. The end product of the decay process is 

generally a stable element that emits no radiation. 

The half-life of a radioactive isotope is based on the fact that not all radioactive 

nuclei decay simultaneously. The decay process is more a probability-determined 

process, in which the exact isotope that decays cannot be identified with complete 

certainty. However, the probability of any number of isotopes decaying within a 

certain interval of time is well known and can be established by empirical meth­

ods. The fact that the decay process is irreversible means that the quantity of radio­

active isotopes will continuously decline over time. Certain radionucleotides are 

more stable than others and therefore will take a longer time to produce one single 

decay event. 

The radioactive half-life is formally defined as the time interval in which the 

atomic count of the isotope has dropped to half the initial quantity as a result of 

radioactive decay. The half-lives of the main radioisotopes used in PET imaging 

span a range of almost 100 s to almost 100 min. Specifically, for 18F, as found in an 

FDG, the half-life is 109.7 min. A shorter half-life is that of the carbon isotope, 11C, 

which is only 20 min. The other two main isotopes are the nitrogen isotope, 13N, with 

a half-life of 10 min and the oxygen isotope, 15O, with the half-life of only 124 s. 

Out of the four main radioisotopes used in PET scans, the nucleotide fluoride, 
18F, is the most commonly used. The fluoride isotope is almost always incorporated 

into FDG, which is essentially a radioactive equivalent of glucose. Because of its 

similarity to glucose, FDG is used to measure the glucose metabolic rate in a number 

of body organ systems. Monitoring the consumption of glucose is therefore measur­

ing the metabolism of the cells. This is why PET is a functional imaging. As shown 

earlier, the fluoride isotope has a relatively slow decay, which means that it can be 

shipped after production in the cyclotron and still have ample useable molecular 

weight left at the time it reaches the hospital that can be as far away as 100km. This 

is the main reason for the popularity of FDG. 

The next issue that needs to be addressed is the detection of the radionucleotides. 
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17.3  PET SIGNAL ACQUISITION 

All short-lived radioisotopes used in PET imaging decay by positron emission. 

Positrons (β+) are emitted from the nucleus of radioisotopes that are unstable because 

they have an excessive number of protons and a positive charge. The positron emis­

sion is different from the free proton or odd proton count utilized in NMR imaging 

as described in Chapter 15. 

Positron emission stabilizes the nucleus by removing a positive charge through 

the conversion of a proton and a neutron, as shown in the following chemical reaction 

describing the fluoride decay: 

18 0 18 
9 F → +1e + 8O (17.1) 

As can be seen in the chemical reaction shown earlier, during the decay process, the 

radionucleotide is converted into an element whose atomic number is one less than 

the isotope’s atomic number. For radioisotopes used in PET scans, the element formed 

from positron decay is stable and will not have any remaining decay mechanisms. 

The distance an emitted positron travels depends on the rest energy of the posi­

tron. Typically, the positron travel distance is limited to approximately 1 mm. The 

positron combines with an ordinary electron of a nearby atom in an annihilation 

reaction, forming positronium as an intermediate reaction product. The positron will 

virtually immediately annihilate after the collision with free electrons abundantly 

available in the biological tissues. When a positron comes in contact with an elec­

tron, the annihilation process releases energy greater than 1 MeV. This reaction is 

governed by conservation of energy. This energy, which is in the form of gamma 

rays, is then measured by the detectors in the PET system. 

The mass of the positron and the electron combined has enough energy to produce 

a pair of gamma photons. The merging energy is released as two gamma quanta with 

511 keV are emitted at 180° to each other. The positron-electron annihilation process 

is outlined in Figure 17.2. These photons easily escape from the living tissues and 
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FIGURE 17.2 Positron emission, annihilation as a result of interaction with electron, and 

gamma pair emission. 
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FIGURE 17.3  Philips Medical Systems Gemini CT_PET combo scanner. The rear section 

of the Gemini is the CT scanner while the front section has the PET scanner. This system 

allows registration of CT anatomical images with PET physiological information. (Courtesy 

of Philips Medical Systems, Amsterdam, the Netherlands.) 

can be recorded by external detectors. The perpendicular emission of the gamma 

photons falls on a line of coincidence. The coincidence lines provide a unique detection 

scheme for forming tomographic images with PET. 

Informally speaking, the time-resolved detection of two simultaneous gamma 

photons on the connecting line of coincidence establishes 1-D indicator of the 

location of the concentration of the radioisotopes. Additional emissions from 

the same location will not follow the exact same path, and lines of intersect can 

be established to yield the second dimension of the isotopes. Detections along 

the lines of coincidence for all emitted gamma rays are then used in a standard 

tomographic procedure to produce an image of the tissue based on the nucleotide 

concentrations. 

The layout of a PET imaging device has multiple rings with detectors specifically 

designed to capture simultaneous occurrences of gamma photon emissions. A diagram 

of the configuration of a PET imager is shown in Figure 17.3. These detectors are 

further described in the following. 

17.3.1 RADIOACTIVE DETECTION  IN PET 

When the 511 keV gamma rays interact with scintillation such as crystals composed 

of bismuth germanate (BGO), they are converted into light photons in the crystals. 

The visible light photons are collected by photosensor arrays, such as charged cou­

pled detection (CCD) elements, and are subsequently converted to electric signals. 

This conversion and recording process happens almost instantly, and as a result, the 

scintillation events can be compared among all opposing detectors (along numerous 

coincidence lines). The distribution of the positron emitting radioisotope depends 

on the biochemical composition as well as the physiological activities of the tissue 

being scanned. 
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PET scanning is invasive, in that radioactive material is injected into the patient. 

However, the total dose of radiation is small, usually around 7 mSv. This can be com­

pared to 2.2 mSv average annual background radiation, 0.02 mSv for a chest x-ray, up 

to 8 mSv for a CT scan of the chest, and 2–6 mSv per year for a person that travels 

frequently on planes (especially the crew of an airplane). 

A PET detector ring has several sections called gantry buckets. The buckets are 

divided even further into blocks. Generally, each block has a detector array with an 

8 × 8 configuration of detectors. The detectors are also called bins. In this configura­

tion, each block has 64 detectors. Each gantry bucket has four blocks, providing a 

subtotal of 256 detectors. Completing the total circumference requires 16 buckets, 

adding up to 4096 detectors. Most commercial PET systems have two rings, yielding 

a total of 8192 detectors that all need to be operational at all times during a single 

scan. Considering that the detector arrays are 8 × 8, and there are two rings, the axial 

plane is divided into 16 sections for simultaneous scans. 

The detectors are closely spaced and have a relatively wide acceptance angle. 

Based on this fact, the gamma rays from a single positron can be detected by more 

than one perfectly opposite pair of detectors. The crossover detection between 

neighboring detectors introduces a slight inaccuracy and distortion in the detection 

accuracy. 

When one detector is matched with a range of detectors at various angles (i.e., not 

just the one directly across the ring), the system provides a platform for multiple angle 

of coincidence sampling. This configuration is outlined in Figure 17.4. In this method, 

the emissions at oblique angles can be detected in multiple pairs for greater accuracy. 
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FIGURE 17.4  Coincidence sampling; schematic diagram of fan-beam detection. 
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Each detector will operate in multiple coincidence sampling mode, interacting with 

multiple detectors at a range of angles. As discussed in Chapter 11, this method of 

detector configuration is called fan-beam response. 

Another mode of operation collects at perpendicular incidence only and is 

called coincidence sampling in linear mode. In this configuration, the detectors 

collect parallel to each other. The parallel mode of detection is illustrated in  

Figure 17.5. Each mode of operation has its own advantages and disadvantages. 

For example, the maximum error in location detection often occurs under fan-

beam detection, while the crossover differences are relatively limited under parallel 

ray detection. 

Before discussing the significance of the PET modality in medical diagnostics, 

we briefly review an alternative method of radioactive detection in PET called scin­

tigraphy. In scintigraphy, instead of converting the gamma photons to visible light 

detection, the high-energy gamma radiation is used to directly detect the gamma 

photon. The gamma radiation excites a medium in a container with a window that is 

transparent to gamma radiation. The excited medium (solid, liquid, or gas) degener­

ates back to its ground state and emits a photon in the visible spectrum in the pro­

cess. The induced fluorescence is then used to induce a photoelectric effect in the 

metal wall of the detector to produce a corresponding electric current. This method 

constitutes an alternative to the CCD mentioned earlier. 

β+ 
β+ 

β+ 

β+ 

β+ 
β+ 

e – 

e – 
e – 

e – 

e – 

e – 

θ1 

θ2 

r 

FIGURE 17.5  Coincidence detection; schematic diagram of parallel beam detection. 
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17.4	  PET IMAGE FORMATION 

The PET’s tomographic reconstruction algorithm uses the coinciding events mea­

sured at all angular and linear positions and reconstructs an image that depicts the 

localization and concentration of the positron-emitting radioisotope within a plane 

of the organ that was scanned. These sampling features all have an effect on the final 

image quality. 

For a given pair of gamma rays at angles with a conveniently chosen coordinate 

system (θ1, θ2) the detector counts n(θ1, θ2) coincidence events (see Figure 17.5). The 

detector ring has a radius r, which places the location of each annihilation event at 

the respective locations with regard to the detectors as rθ1 and rθ2, which are joined 

by a line segment lq q, .
1 2

The detected number of annihilations is proportional to the integrated intensity of 

the source of radioisotopes in the body, In, ignoring attenuation for now. The intensity 

of the source along the line segment lq q  is represented as follows: ,1 2

l 

In ∝ r g [sr  q1 + (1  − s r  q2 ]ds  ∫ r )	 (17.2) 

0 

where ργ is the distribution function of the radioisotopes in the biological volume. 

The boundary conditions are given by the fact that the number of decays in a volume 

element Vxy has a Poison distribution with an intensity proportional to 

I j g x  y  dxdy 	  (17.3) n ( , )  ∝ ∫∫ r
Vj 

Nonetheless, the gamma radiation pairs will be attenuated as a result of scattering 

and absorption before reaching the detectors. 

The two gamma rays released from the annihilation will be attenuated independently 

and will be detected independently. 

Assuming a universal attenuation coefficient αγ , the detected decay events 

will be described by the convolution of the respective gamma pair rays, provid­

ing an expression for the gamma rays that make it to the detectors in the follow­

ing form: 

−ag sI = I r  r [sr  q + (1  − s r  ) q ]e  ds  n 0	 ∫∫ g 1 2 (17.4) 

Vj 

The concentration of isotopes will result in a cumulative recording in various direc­

tions of gamma pairs from different locations within the organ over the half-life of 

the radionucleotide. A concurrent limitation in the time domain is the half-life of the 

radioisotope itself. The repetition rate of the detections is directly linked to the half-

life of the remaining isotopes. The more isotopes are active in an organ, the greater 
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the likelihood that any one of them will decay to a lower energy state, thus providing 

a higher frequency of detections. 

The preceding equations form a topographic problem in which the set of equations 

must be solved for the integrand. The details on how these tomographic equations are 

solved using methods such as Fourier slice theorem have been provided in the previous 

chapters. 

17.5  SIGNIFICANCE OF PET 

Despite its relatively low resolution, PET imaging has many advantages in 

imaging and detection of physiological characteristics that are still being explored 

and expanded. The main significance of PET in biomedical diagnostics lies in 

the fact that direct metabolic activity can be imaged often on a significantly finer 

levels than what can be detected using other technologies such as fMRI described 

in Chapter 15. 

The applications of PET imaging are significantly more limited than other 

scintigraphy-based imaging methods due to the extremely short half-lives of the 

radioisotopes used in PET imaging. A more detailed comparison of the PET with 

more aggressive nucleotide used in other scintigraphy-based imaging systems will 

be discussed in Chapter 18. 

The medical significance of the PET modality will become more evident in our 

discussion of the applications of the PET imaging given in the following. 

17.6  APPLICATIONS OF PET 

PET is an invaluable technique for diagnosing specific diseases and disorders, 

because it is possible to target the radiochemicals used for particular bodily 

functions. 

17.6.1 CANCER TUMOR DETECTION 

The functional imaging features of PET are most prominent in the diagnosis of 

cancer. Healthy tissue replenishes its cells by continuous regeneration, while old 

cells gradually die off. Both malignant and benign cancer cells divide more rap­

idly than normal healthy cells. This process by itself will be identified under PET 

imaging due to the increased cellular metabolic rate. In cancer detection using 

PET, the tracer FDG is used because it mimics glucose in its metabolic stage and 

is avidly taken up and retained by most tumors. As a result, this technique can be 

used for the diagnosis and monitoring of the treatment of various cancer tumors. 

Due to its specific sensitivity, PET is mostly used to diagnose brain tumors. Other 

PET applications in cancer diagnosis are in detection of the breast tumors, lung 

tumors, and colorectal tumors. 

The difference between malignant and benign tumor growth is the fact that in 

malignant cancer cells the surrounding tissue is destroyed as well. The amount of 
18F that accumulates in a tissue over a specific period of time makes it possible to 

calculate the rate of glucose uptake in that tissue. An accelerated glucose metabolism 
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FIGURE 17.6 Selected whole-body PET images of a person with suspected colorectal cancer. 

(Courtesy of Philips Medical Systems, Amsterdam, the Netherlands.) 

and a decreased ability to make energy through aerobic processes are established 

features of malignant tumor cells. The combination of these features results in a high 

glucose uptake to maintain the cell metabolism. 

In malignant tumors, the cancer also migrates away from the organ in which 

the tumor is initially formed and starts infiltrating surrounding tissues and organs. 

This process is called metastasis. Some of these features can be registered in PET 

imaging. PET imaging is particularly useful in providing whole-body survey to  

identify widespread tumor infiltration. An additional feature of malignant cells is 

an increase in glucose (or FDG) transporter molecules at the membrane surface of 

tumor cells. This is in contrast to benign tumor cells. Since PET scans are typically 

more expensive than some of the more widely used imaging modalities such as CT, 

the clinical use of PET for tumor diagnosis is very limited. Figure 17.6 shows a 

whole-body PET scan of a person with a suspected rectal cancer. 

17.6.2 FUNCTIONAL BRAIN MAPPING 

Another application of PET imaging is in imaging and diagnosis of the brain. This 

usage is based on an assumption that areas of high radioactivity are associated with 

brain activity. What is actually measured indirectly is the flow of blood to different 

parts of the brain, which is correlated to the level of activity of the neurons. In PET 

of the brain, the tracer oxygen (15O) is usually used as the radioisotope. In the brain 

images created using this technology, the areas of the brain that are active, i.e., using 

a significant level of oxygen, are illuminated. This is why the brain tumors are represented 

as very bright regions in PET images. 

PET has been used in many clinical diagnostic applications such as detection 

of brain disorders. Specifically, the determination of Alzheimer’s disease and other 
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dementia forms the justification for the use of PET imaging. PET imaging shows the 

metabolic degeneration of the neurotransmitters in the brain of an Alzheimer patient. 

PET can track the different stages of reduced brain function. While in the early 

stages of Alzheimer’s disease, only limited areas of the brain will be detected to have 

a lower level of function, in the later stages of Alzheimer’s disease, the metabolic 

activity of larger areas of the brain will progressively appear affected. Particularly, 

in Alzheimer’s disease, the disease follows a certain pattern in affecting the brain 

under PET imaging. The disease pattern can often be recognized several years in 

advance of the manifestation of episodes of confusion and recognizable category of 

dementia or depression. 

Other brain disorders that can be located by PET scans are Parkinson’s disease 

and schizophrenia. Other neurological diagnoses that can be performed using PET 

include the diagnostics and study of the brain activities in epilepsy and stroke. For 

instance, PET can be used to determine the location of epileptic seizures prior to 

surgery to develop a road map for the procedure. 

Considering the imaging of the neural structures, the pivotal advantage of PET 

over many of the other available imaging modalities is the ability to reveal activity of 

neuroreceptors such as the ones that use the neurotransmitters serotonin, dopamine, 

and noradrenaline. Typical MRI imaging systems are unable to identify neurochemi­

cal sites due to the low neurotransmitter concentrations involved (in the order of 

micromolar concentrations). 

17.6.3 FUNCTIONAL HEART IMAGING 

For diagnostic applications in cardiology, PET with FDG is used to functionally image 

the heart tissue after a heart attack and determine if there is any latent damage in the 

heart muscle. In the diagnosis of heart disease, the dead tissue can be separated from 

the living tissue in a PET scan based on the oxygen isotope interaction. PET imaging is 

also useful in predicting the success of angioplasty or even bypass surgery. In another 

cardiovascular application, PET scanning is used to determine blockage of coronary 

arteries. A PET image of the heart and attached vasculature is illustrated in Figure 17.7. 

FIGURE 17.7  PET image of the heart and attached vasculature. (Courtesy of Philips 

Medical Systems, Amsterdam, the Netherlands.) 
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Despite the numerous benefits of PET for cardiovascular imaging, often the rela­

tively inexpensive SPECT is used for this purpose. SPECT, like PET, acquires the con­

centration distribution of radionucleotides in a patient’s body. The major differences 

between PET and SPECT are in the choice of radioisotopes and hence the energy of 

the emission. In PET, two gamma photons are created from the emitted positron parti­

cle, while, in SPECT, only one single photon is emitted without a go-between with con­

siderably less energy, approximately 140 keV compared to 511 keV. Due to the nature 

and configuration of the single photon emitted from the radionucleotides in SPECT, 

special collimators are required to acquire an image from multiple angles. The use 

of collimators dramatically reduces the detection efficiency in comparison with PET. 

This is in sharp contrast with PET imaging, which relies on the perpendicular nature 

of the emitted gamma photons of annihilation of the positron emitted from the isotope. 

Generally, PET has two orders of magnitude greater number of detectors than 

SPECT, giving PET imaging a much higher resolution. The advantage of SPECT is 

the wide variety of radionucleotides that are available and the resulting bigger range 

of detection of diseases. The cost of SPECT imaging is approximately one-third that 

of PET, which gives it an advantage over PET in certain cases. However, the lower 

resolution remains an obstacle. SPECT will be described in more detail in Chapter 18. 

17.6.4 ANATOMICAL IMAGING 

As previously discussed, PET provides no significant anatomical information pri­

marily due to the fact that the uptake of radioisotopes in some tissues such as bone 

is too slow to be recorded. For instance, due to the half-life of the isotopes and the 

assembly time for bone tissue, the radioactivity has dropped below the detection 

level at the time of incorporation in the skeletal system. 

The anatomical features that can be recognized in PET are mainly due to the a 

priori metabolic activities that are well known for certain organs such as in the brain 

and the heart. Other anatomical features will need to be resolved by registering 

FIGURE 17.8 A 3-D rendering of PET whole-body scan image. (Courtesy of Philips 

Medical Systems, Amsterdam, the Netherlands.) 
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the PET images with other scanning techniques that will provide better anatomi­

cal details of the biological tissues. In this case, external markers are often needed. 

These makers are used as tie points to register the two images with each other. 

In Figure 17.8, a whole-body PET scan in 3-D rendering shows the anatomical 

details that can be revealed by PET imaging; note, however, the unevenness in the 

body surface as acquired by PET imaging. 

17.7  PROCESSING AND FEATURE EXTRACTION OF PET IMAGES 

Now that we are familiar with the physics of PET and its applications in biomedical 

diagnostics, we briefly review the computational methods specialized for processing 

of PET images. 

17.7.1 SOURCES  OF NOISE  AND BLURRING  IN PET 

The fact that two gamma quanta need to be detected simultaneously and the gamma 

quanta have distinct energy content makes the detection method very precise. There is 

no significant noise in this energy spectrum, nor is there any background radiation that 

fits the criteria for detection. Emission from outside the slice of interest is also negligible 

since such an emission is never registered by both detectors in the plane of observation. 

The uptake of FDG, and thus 18F, is enhanced during any type of inflammatory process, 

which can result in false-positive recordings. This reduces the overall accuracy of PET in 

certain types of diagnostic applications. 

While external sources of noise are practically nonexistent in PET, three main sources 

of blurring contribute in the visible blurring of the PET image. The main source of mis­

reading the location of the source of the positron emission is attributed to the fact that the 

positron will travel some distance before it interacts with an electron and is annihilated. 

The two photons that are emitted will be recorded as being displaced from the true 

location of the isotope by less than 1 mm. 

A second source of blurring roots in a 0.5° spread in both the positive and the nega­

tive arc from the 180° dual gamma quanta emission. This is another systematic cause of 

blurring that typically cannot be overcome with the current state of the PET technology. 

The third cause of blurring and loss of details is a machine artifact that is a direct 

result of the spacing of the detectors in the tomographic ring. This last issue also 

introduces an axial point-spread resulting from the width of the detector, or the 

thickness of the ring of detectors. The pixel size is the total area of the detector. 

While none of these blurring effects can be practically avoided, image processing 

filters can be used to somehow sharpen the images before processing. All filtering 

techniques described in Chapter 4, especially the high-boost filter, can be used to 

address the blurring nature of the PET images. 

17.7.2 IMAGE REGISTRATION  WITH PET 

Since the resolution of PET is very low, it is often required that before any specific image 

classification decision can be made, the PET image must be registered and superimposed 

by CT or MR images of the same entity. Combining x-ray tomography with PET is 
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FIGURE 17.9 Registered CT and PET image of a person with details of the head and neck, 

bottom section PET only. (Courtesy of Philips Medical Systems, Amsterdam, the Netherlands.) 

gaining popularity since it can provide both anatomical and physiological images in one 

session without the need for extensive registration algorithms. The PET/CT combination 

provides a high-quality diagnostic scanning modality. Figure 17.9 shows a registered 

CT–PET whole-body scan made by the Philips Gemini imaging device, with specific 

details on the head and neck area. 

As a result, the majority of the image processing methods specialized belong 

to one of the following two categories. The first group of PET processing tech­

niques includes the registration methods devised to superimpose PET on MR and 

CT images. The methods in the second category are the segmentation methods that 

separate and identify the tumor regions from the normal tissues. All the registration 

methods as well as the segmentation algorithms discussed in Part I of the book are 

heavily popular in processing of PET images. 

In general, in all PET image processing methods, especially in PET wavelet 

analysis, the performance of the analysis can be significantly enhanced when time 

dependency and causality of the train of PET images is incorporated in the algo­

rithm. This is particularly significant because the PET images are not static ana­

tomical images, rather physiological information that is continuously changing. In 

addition, many of the observations made from single PET images can be caused by 

more than one single phenomenon. For instance, both a tumor and an infection will 

have similar effects on cellular processes that PET targets for imaging. The only 

approach that can make a reliable distinction among different possible causes is the 

time nature of the PET images. 

17.8 COMPARISON OF CT, MRI, ULTRASONIC, AND PET IMAGES 

Alternative methods of scanning are SPECT, CT, MRI, and fMRI. The spatial and 

temporal resolution of images developed using PET may not be as good as with some 

of the other techniques. Figure 17.10 illustrates the combination of NMR and PET 

imaging to reveal baffling details of a tumor scan of the neck after registering the 

two modalities. 



 

 

 

 

 

 

 

 

 

 

  

  

 

 

353 

L	 A 

Positron Emission Tomography 

FIGURE 17.10 Registered MRI and PET image of the head and neck. (Courtesy of Philips 

Medical Systems, Amsterdam, the Netherlands.) 

PET scan can detect abnormalities in cellular activity, generally before there is 

any anatomical change, while other imaging scans, such as CT and MRI, isolate 

organic anatomical changes in the body. 

17.9 SUMMARY 

PET scanners are capable of detecting areas of molecular biology detail via the 

use of radioisotopes that have different rates of uptake depending on the type of 

tissue involved. In many cases, the PET features will allow to identify diseases 

earlier and more specifically than ultrasound, x-rays, CT, or MRI. Some of the 

useful applications of PET scanning over scintillation imaging are examination 

of brain blood flow and local metabolism of specific organs. PET can also help 

physicians monitor the treatment of disease. For example, chemotherapy leads to 

changes in cellular activity, and that is observable by PET long before structural 

changes can be measured by ultrasound, x-ray CT, and MRI. A typical PET scan 

gives physicians another tool to evaluate treatments, perhaps even leading to a 

modification in treatment, before an evaluation could be made using other imaging 

technologies. 

PROBLEMS 

17.1	 Read the image in file “p_17_1.jpg” and display the image. This is an axial 

view of a PET scan of the chest showing a section of the heart. The heart is 

indicated by an arrow. Choose a convenient pixel in the heart region and use 

seed growing to find the outline of the heart.* 

17.2	 Read the image in file “p_17_2.jpg” and display the image. This is an axial 

view of a PET scan of the chest showing a section of the heart. The heart is 

indicated by an arrow.* 

* Courtesy of General Electric Healthcare; GEhealthcare.com 



 a.	   Register figure “p_17_2.jpg” with respect to image “p_17_1.jpg.” Choose 

as many tie points as you need. 

 b.	   Use seed growing to outline the bone structures in both images. Start with  

a seed in the center of the supposed bone structure. 

17.3	   Read the image in file “p_17_3.jpg” and display it. This is a combination image 

of the brain with a suspected brain tumor imaged by CT, PET, and MRI. Each  

row represents one of the respective imaging modalities.* 

 a.	  U se seed growing to identify the location of a suspected tumor in all three 

imaging techniques. 

 b.	  U se Laplacian of Gaussian edge detection methods to find the boundaries 

of the tumor in the brain. Compare the results with those of Part “a.” 

17.4	   Read the image in file “p_17_4.jpg” and display it. This is a PET image of the 

kidneys.† 

 a.	  Apply seed growing to identify the kidneys. 

 b.	  U se Laplacian of Gaussian edge detection methods to find the boundaries 

of both kidneys. Compare the results with those of Part “a.” 

17.5	   Read images “p_17_5a.jpg” and “p_17_5b.jpg” and display them. Image 

“p_17_5a.jpg” is an axial view of a whole-body PET image of a person, and 

image “p_17_5b.jpg” is a CT image of the same section of the body.* 

 a.	  U se image registration techniques to find the outline of the lung in both  

pictures. The right lung is indicated by red arrows. 

 b.	   Use image registration techniques to find the outline of the heart in both  

pictures. The heart is indicated by blue arrows. 

 c.	   Use thresholding and registration techniques to determine the outlines of  

the chest. 

 d. 	 P erform seed growing methods to identify the outline of the heart in both  

images. 

 

354	 Biomedical Signal and Image Processing 

* Courtesy of Philips Medical Systems. http://www.medical.philips.com/main/products/pet/ 
† Courtesy of General Electric Healthcare. GEhealthcare.com 

http://www.medical.philips.com


 

 

 

 

 

 

 

 

 

18 Other Biomedical 
Imaging Techniques 

18.1  INTRODUCTION AND OVERVIEW 

From our discussion in previous chapters, it will have become evident that the disci­

pline of biomedical imaging has two main fields of application: anatomical imaging 

and functional imaging. Even though the distinction between anatomical and func­

tional imaging is sometimes somewhat arbitrary, these two categories discriminate 

the overall capabilities of the imaging modalities. 

Another group of biomedical imaging system, which is not particularly relevant 

in diagnostics and treatment planning, has become widely used. This group of imag­

ing, commonly referred to as biometrics, falls in the category of methods for per­

sonal identification. 

Several imaging techniques that can provide near-real-time and three-dimensional 

(3-D) imaging of biological samples have been described in the previous chapters. 

Examples are magnetic resonance imaging, x-ray computed tomography, and ultra­

sound. Each methodology has certain applicability for specific imaging problems. 

However, while diagnosis of many diseases in their early stages requires a cellular level 

of resolution, none of these techniques is capable of achieving a reasonable resolution on 

the cellular level. Cellular imaging requires spatial resolution of less than 10 microns. 

In this chapter, we first briefly describe anatomical imaging methods, not cov­

ered in previous chapters. The majority of these methods have cellular resolution. 

Under anatomical imaging category, the imaging techniques on regular optical 

microscopy, fluorescent microscopy, confocal microscopy, near-field scanning opti­

cal microscopy (NSOM), electrical impedance imaging, and electron microscopy 

are described briefly. Out of these methods, the first four imaging modalities can 

provide cellular resolution and are mainly used in vitro. Electrical impedance imag­

ing, although not providing cellular resolution, is applied in vivo. Imaging methods 

such as optical microscopy depend on having access to a sample of the biological 

tissue under study. A biopsy is often performed to provide the sample. 

The functional imaging method covered in this chapter is medical infrared imag­

ing. Under biometrics, the use of fingerprint, retina, and iris recognition for identifi­

cation purposes is outlined. 

18.2 OPTICAL MICROSCOPY 

The common microscope is probably the most well-known biomedical imaging 

device. Apart from some technical limitations, microscopes show the detail on small 

biological structures up to the smallest building block of life, the cell. 
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FIGURE 18.1  Basic geometry of the optical microscope. 

Basic optical magnification is readily obtained by microscopic imaging. An 

objective is placed at a distance slightly farther than the focal length of a converging 

lens to form an image on the opposite side of this lens. The design of the microscope 

is such that the resulting real image is closer to the next converging lens than its 

focal lens. As a result of the position of the objective’s image, the ocular produces a 

virtual image that is in fact behind the biological sample. The eye will be positioned 

in front of a lens, the ocular, and the eye will observe an objective that is apparently 

in the near point of vision. A real image is formed on the retina of the eye. The basic 

geometry of the optical microscope is shown in Figure 18.1. 

In the projection of the virtual image by the ocular, the image is magnified in the 

new proportion. This new proportion forms the ration of the second objective distance, 

do, over the virtual image distance, di. Through basic geometry, it is evident without 

derivation that the magnification of the ocular is also equal to the image height, hi, over 

the object height, ho. The standard definition of magnification is given in Equation 18.1: 

Mocular = hi = di 
(18.1) 

ho do 

The objective magnifies the sample in a similar fashion; however, it is often more 

convenient to express the objective’s magnification as an angular magnification. The 

objective magnification is the ratio of the angle that the image is projected with, θ′, 
over the angle with which the object in the slide is viewed, θ. The angular magnifica­

tion is then defined as in Equation 18.2: 

q ′ 
Mobjective = (18.2) 

q 

The combined magnification is defined as the ocular magnification times the mag­

nification of the objective. 

There is a limit to the magnification level that can be achieved by an optical micro­

scope. The size of the lenses and apertures in the construction of the microscope 
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produces diffraction patterns that result in blurring of each demarcated item in the 

field of view. When the diffraction patterns of two adjacent items overlap, the items 

cannot be distinguished with any reasonable accuracy. This limitation is called the 

Rayleigh criterion (also referred to as the Abbe criterion). The Rayleigh criterion 

gives the boundary conditions for the smallest angle that separates two objects that 

can be observed clearly for a round aperture/lens as a function of wavelength, λ, and 

aperture diameter, D, as shown in Equation 18.3: 

l qmin = 1 22  . (18.3) 
D 

This equation states that the resolution of the optical microscopes is restricted by the 

wavelength of the light. In addition, since the images created by microscopes need 

to be perceived and interpreted by the human eyes, the resolution of this technology 

is also limited by the limitations of the human eyes. Specifically, due to the spacing 

of the rods and cones in the retina of the eye, the maximum useful magnification of 

the optical microscope is only 600 times. Despite these limitations, the compound 

microscope has allowed biologists to examine specimens and objects whose sizes 

are within micrometer range. Such objects include cells and some of their organelles. 

One of the main disadvantages of optical microscopy is the fact that a tissue 

slice is needed. This requires biopsy, i.e., removal of a sample from the biological 

medium, which is an invasive process. 

Nowadays, virtually every professional microscope has an accessory that will 

provide a mounting alternative for a camera to record the histology image for filing 

and image processing. All image processing techniques discussed in the previous 

chapters are used to improve the quality of the captured images. A representative 

image of an optical microscope with camera attached is shown in Figure 18.2. A his­

tology image of an aneurysm in heart muscle captured by an optical microscope is 

shown in Figure 18.3. 

The demand for increased detail and resolution has led to the development of 

several other imaging techniques, mainly initially based on the principle of opti­

cal microscopy. Next, we discuss one of these technologies called fluorescent 

microscopy. 

18.3 FLUORESCENT MICROSCOPY 

The phenomenon of fluorescence was discovered by the end of nineteenth century 

by the British scientist George G. Stokes (1819–1903). Stokes observed that several 

chromophores emit light after illumination. Specifically, he noted that the emitted 

light from some biological samples after illumination has a longer wavelength than 

the irradiation source. This observation led to a new generation of microscopes that 

allow imaging of biological tissues based on the fluoresce emission of the objects in 

the sample. 

Several biological molecules and objects, such as pigments, resins, and vita­

mins, exhibit a phenomenon known as autofluorescence. Other tissues may not be 
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FIGURE 18.2  Representative image of an optical microscope with camera attached on top. 

FIGURE 18.3  Histology slide of an aneurysm in a heart obtained by optical microscopy. 

fluorescent, and as a result, artificial fluorophores were developed to stain particular 

tissues for specific recognition and registration purposes. This fluorescence tagging 

is the main method used in fluorescent microscopy. 

The application of fluorescence microscopy is mostly in the detection of specific 

proteins or other molecules in cells and tissues. The mechanism of fluorescent imag­

ing often relies on attaching specific fluorescent dyes to the molecules that serve as 

highly specific staining reagents. These tag molecules selectively bind to specific 

macromolecules in cells or nestle themselves in the extracellular matrix. Figure 18.4 

shows a fluorescent microscope with three laser wavelengths. 

Two commonly used fluorescent dyes used in biological research are fluorescence 

and rhodamine. Fluorescence glows with intense green under blue light excitation 
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FIGURE 18.4  Picture of a fluorescent microscope with red, green, and blue lasers attached. 

and rhodamine when excited by green–yellow light emits deep red. The distribution 

of different molecules within one single cell can be visualized by coupling one tag 

molecule to fluorescence and another to rhodamine. The two tags can be identi­

fied by switching the optical filters that are transparent at the respective fluorescent 

wavelengths. Figure 18.5 shows the histology of a mouse uterus stained by the stain 

phycoerythrin (PE) that emits red light under green illumination. 

FIGURE 18.5 Representative fluorescent microscopy image of TUNEL assay of normal 

cycling mouse ovary with AKR strain. Two stains were used in this image, PI for the nuclear 

staining and FITC for the TUNEL-positive cell staining. The PI fluoresces red and the 

TRITC fluoresces green; the combined effect produces yellow color in the image. (Courtesy 

of Elizabeth Jablonski, Department of Biology, University of North Carolina at Charlotte, 

Charlotte, NC.) 
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Indirect functional imaging of the cell is possible using fluorescent microscopy. 

This is done by monitoring the oxygen level in different parts of a sample. In order 

to do so, an oxygen-quenching fluorescent dye, tris (1,10-phenanthroline) ruthenium 

(II) chloral hydrate, incorporated in a silicone rubber membrane is attached to an 

excised portion of the circulation system. The contact between the membrane and 

the vasculature then indicates the oxygen concentration and therefore the distri­

bution of the blood flowing through the respective blood vessels. The membrane 

fluoresces proportional to the oxygen concentration of the blood in contact with the 

membrane. 

The image acquisition for the fluorescent microscopy will be identical to that for 

the standard optical microscope. The only difference will be the lack of specific 

anatomical details due to the optical filtering. It is therefore customary to combine 

standard optical microscopy with fluorescent microscopy. 

Images created by regular optical as well as fluorescent microscopy are two-

dimensional (2-D) and therefore miss the details on the third dimension. The need 

for examining the third dimension of the samples led to the development of yet 

another imaging technique based on the principles of the fluorescent microscope. 

The next section describes this technology that is called confocal microscopy. 

18.4 CONFOCAL  MICROSCOPY 

Confocal microscopy is a “stereo” version of fluoroscopic microscopy with the 

important advantages of performing 3-D imaging. Confocal microscopy uses a scan­

ning laser beam that is focused to a point inside the tissue sample. An illustration of 

the focusing mechanism is illustrated in Figure 18.6. The backscattered light that is 

collected by a lens and a pinhole only allows the light coming from the exact focal 

point of the lens to pass the pinhole. This light comes from the same location that the 

laser beam was initially focused. 

The laser beam passes through a set of scanning mirrors that provide three 

degrees of freedom for motion. The laser wavelength matches the excitation wave­

length of the particular fluorochrome that is most appropriate for the imaging needs. 

Most frequently, multiple laser wavelengths are available to excite several fluorescent 

dyes for added contrast and information. 

Imaging lens Focusing lens 

Sample 
Aperture 

FIGURE 18.6 Illustration of the focusing mechanism of the confocal microscope. 
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FIGURE 18.7  Representative image of a confocal microscope. 

The specimen needs to be labeled with a fluorescent probe. Both the reflected 

light and emitted fluorescent light from the specimen is captured by the objective 

lens. A beam splitter separates the fluorescent light from the laser light. A photomul­

tiplier positioned behind the analyzing pinhole produces a video signal during the 

scanning process. A series of confocal images at successive planes into the specimen 

are acquired and used in a 3-D image reconstruction algorithm. Figure 18.7 gives a 

representative image of a confocal microscope. 

Laser scanning confocal microscopy offers the following four major advantages 

over standard microscopy. The generation of 3-D images is the primary significant 

improvement. Another advantage is the fact that a greater image resolution can be 

achieved. Additionally, higher magnification is possible by avoiding some of the dif­

fraction limited imaging restrictions. Finally, stray light aberrations are limited due 

to the small dimension of the illuminating light spot in the focal plane. 

Although confocal microscopy provides higher resolution than standard optical 

microscopy, it still has inherent limitations in resolution due to the properties of the 

light such as the wavelength. Specifically, any optical microscopy, including con­

focal imaging, has a fundamental drawback as the maximum attainable resolution 

is limited by the wavelength of the illuminating source. This limitation, imposed 

by the Rayleigh criterion, significantly restricts the potentials of these technologies 

for subcellular imaging. An attempt to have both high-resolution and 3-D imaging 

capabilities has resulted in the near-field scanning optical microscope, which will be 

discussed next. 
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18.5  NEAR-FIELD SCANNING OPTICAL MICROSCOPY 

NSOM circumvents the diffraction-limited imaging of the entire sample caused by 

the lens. This is achieved by the scanning of the sample using a subwavelength aper­

ture. The subwavelength aperture is usually a fiber optic that has been stretched and 

etched to form a tip whose diameter is in the nanometer range. This fiber optic func­

tions as the point source for scanning with the transmitted or reflected light captured 

with a highly sensitive light radiance detector. 

The sample is moved with respect to the probe on the x–y plane while maintain­

ing a constant distance with the surface of the sample. The NSOM measures the 

attenuation or reflection of each data point to perform either a density measurement 

or a reflectivity measurement. The transmission density measurement is similar to 

basic x-ray imaging in many ways, while the reflection NSOM resembles ultrasound 

density imaging. The NSOM, as described earlier, gives an intensity profile that is 

representative of the local tissue density combined with a topographic profile. 

In addition to collecting the intensity of the detected light, the scanning stage 

also has a feedback mechanism that measures the force between the fiber-optic 

probe and the sample. This principle is known as atomic force microscopy, which is 

not very useful in biological imaging on its own generally. In the case of the NSOM, 

the fiber-optic probe is within nanometers from the surface of the sample, hence the 

name near field. Due to the close proximity of the probe to the sample, great care 

needs to be taken not to disturb the sample itself. The sample will have a topography 

of its own that has greater variations than the separation between the sample and the 

probe. The feedback mechanism applies a voltage to a motor to maintain the exact 

same distance between the sample and the probe during the entire planar scan by 

adjusting the position of the probe until the force has returned to the default value. 

The distance is logged for the entire scan by means of the feedback voltage for 

height adjustment, and the sample height distribution can be plotted from these data. 

The most common imaging mode of NSOM is the transmission mode. In this 

mode, the light launched through the probe is transmitted through the sample and 

detected by a detector. The detector records the intensity variations over the sample as 

it is raster scanned. These are converted into voltage values and a 2-D intensity image 

is built up in addition to the topography image from the “atomic force” microscope. 

A third and rather novel measurement mode of NSOM has been inspired by a 

more general imaging technique called phase-contrast microscopy. In the phase 

mode of NSOM, by measuring the phase delay in transmission at each (x, y) coordi­

nates, the optical density can be analyzed with greater detail than based on attenu­

ation only. The optical phase is an indication of the local index of refraction and 

can thus reveal details about the chemical composition of the sample. The phase 

information is obtained with the use of interferometry. 

As any other microscopic imaging discussed so far, the resolution of the NSOM 

is restricted by the wavelength used for imaging. Specifically, the resolution of an 

NSOM is identified by the size of the point light source used, which is typically in 

the order of 50–100 nm. Figure 18.8 shows the NSOM image of a red blood cell. 

Standard microscopy has the disadvantage of giving only a view of the con­

tents of a slide averaged over the thickness of the slide. Furthermore, almost all the 
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FIGURE 18.8 Imaging modalities of NSOM applied to a red blood cell. (a) Intensity pro­

file of red blood cell, (b) topography of red blood cell, and (c) phase image of red blood cell. 

(Courtesy of Kert Edward, Department of Physics and Optical Science, University of North 

Carolina at Charlotte, Charlotte, NC.) 
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FIGURE 18.8 (continued) 

previously described optical microscopy techniques are limited to in vitro imaging. 

Another optical imaging technique with 3-D capabilities, which will not be dis­

cussed in this chapter, is optical coherence tomography (OCT). This technology is 

an attempt to overcome the limitations of other optical microscopy by incorporating 

the coherence nature of light in an imaging technique. OCT used interferometry to 

collect light from a specific depth inside a tissue section only. 

18.6  ELECTRICAL IMPEDANCE IMAGING 

Electrical impedance imaging is related to EEG, ECG, and EMG measurement through 

the fact that, in almost all cases, the electrical parameters of an organ are measured by 

means of electrodes placed on the surface. The major difference of electrical imped­

ance imaging with the aforementioned methods is that instead of action potential mea­

surements, this technology measures the electrical impedance between electrodes. 

The real impedance of biological tissues ranges from 0.65 Ω for cerebrospinal 

fluid to a resistance of 150 Ω for bone tissue. These values compare to a whole body 

resistance of approximately 500 Ω. Selected dielectric properties are presented in 

Table 18.1. 

Electrical impedance imaging utilizes the differences of electrical impedances 

across the biological tissues to create an image of the body. In this technology, a 

weak electrical current in the range of milliamps with DC to several kHz frequencies 

is applied to the surface of the skin, and using the electrodes positioned in different 

parts of the body, the drop in electrical potentials at several positions is measured. 

Based on the injected current and the measured voltages, the electrical impedances 

in many locations on the skin are measured and used to form an image. 
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TABLE 18.1 
Dielectric Properties of Some 
Biological Tissues 

Tissue Resistance (Ω) 
Speed of Light 

(m/s) × 108 

Air High 2.998 

Lung 53 0.4206 

Fat 113 0.8958 

Muscle 50 0.3978 

Heart 49.2 0.3912 

Cartilage 58 0.4628 

Some electrical impedance imaging systems apply tomographic methods to 

retrieve depth information from the combined data input from various locations. In 

certain cases, the electrodes can be placed in hemispherical or cylindrical symmet­

ric configuration to derive the cross-sectional impedance of an organ or body part; 

however, in nonresearch setups, only 2-D surface imaging is performed. Electrical 

impedance imaging is an in vivo diagnostic utility. A representative cylindrical elec­

trical impedance imaging method is shown in Figure 18.9; the recordings of this 

method are illustrated in Figure 18.10. 

Electrical impedance imaging can provide a relatively inexpensive methodology 

for diagnosing specific problems. The electrical impedance imaging can monitor the 

effects of esophageal reflux and pelvic blood volume. In thoracic medicine, it can 

be used to quantify the amount of lung water, certain conditions of sleep apnea, and 

different aspects of ventilation. In neurology, the influence of electrical impedance 

changes will be most pronounced in epilepsy and cerebral hemorrhage and ischemia. 

FIGURE 18.9  Representative cylindrical electrical impedance imaging method by means 

of a  strap-on belt.  (Courtesy  of Dr.  Alexander  V. Korjenevsky, Institute  of Radio-Engineering  

and Electronics, Russian Academy of Sciences, Moscow, Russia.) 
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3 

FIGURE 18.10  Representative recordings by the belt method shown in Figure 18.9. 

(Courtesy of Dr. Alexander V. Korjenevsky, Institute of Radio-Engineering and Electronics, 

Russian Academy of Sciences, Moscow, Russia.) 

The electrical impedance of tissues under hyperthermic and hypothermic conditions 

is a highly sensitive indicator that is used to locate latent damage regions. 

Several tissues have an inherent anisotropy in the impedance tomography, such 

as muscle tissue. As a result, the tomographic image interpretation depends on the 

direction in which the measurements are made in combination with the actual mea­

sured values. In addition, due to the fact that the measured impedances depend on 

the frequency of the applied current, additional details can be obtained when mul­

tiple frequency measurements are made. 

18.7 ELECTRON  MICROSCOPY 

As mentioned so far, the primary imaging resolution limitation is related to the wave­

length of the imaging source. A shorter wavelength will provide better resolution. 

After the French physicist Louis de Broglie (1892–1987) defined the wave nature 

of electrons, a new vehicle for imaging was introduced. The De Broglie postu­

late links the momentum p of an object to an associated wavelength as outlined in 

Equation 18.4: 

KE hf h 
p = = = (18.4) 

C C l 

where 

KE is the kinetic energy of the particle 

h is Planck’s constant 

C is the speed of light 

f and λ are the respective frequency and wavelength of the moving electron 

Using this theoretical description, electron acceleration over a potential difference 

of 54 V will result in a wavelength of 0.165 nm. This electron wavelength is actually 

in the same range as x-ray photons. Electrons are detected either by semiconductor 

material or a panel doped with fluorescent material. 



 

 

    

 

 

             

          

 
      

      

367 

6.6 1 K H. 5.0.3. 

Other Biomedical Imaging Techniques 

Two types of electron microscopes can be distinguished: the transmission electron 

microscope and the scanning electron microscope. Both types of electron micro­

scopes require a vacuum to minimize the ionization effects of electrons interacting 

with air before probing the sample. In addition, the sample preparation will most 

certainly result in complete cell death. These requirements rule out in vivo imaging. 

18.7.1 TRANSMISSION ELECTRON MICROSCOPY 

The transmission electron microscopy (TEM) produces a 2-D attenuation image. 

The attenuation images from TEM provide data on the structure of the internal com­

ponents of the specimen. With special specimen preparation procedures, the TEM 

can also be used for the localization of elements, enzymes, and proteins. 

The transmission electron microscope operates in a magnification range from 

10,000 to 100,000 times with a resolution of approximately 2.5nm. 

Figure 18.11 shows a TEM image of a motor neuron, and Figure 18.12 shows a cell 

in the intermediate stage of mitosis. Figure 18.13 is a TEM image of a nerve axon 

with Schwan cell. 

18.7.2 SCANNING ELECTRON MICROSCOPY 

The scanning electron microscopy (SEM) uses a 2–3 nm spot of electrons that scans 

the surface of the specimen. In addition to elastic backscatter, secondary electrons 

FIGURE 18.11 TEM image of a motor plate. The z-bands of the muscle are clearly vis­

ible as well as the impulse transmission by means of pockets of chemicals drifting from the 

nerve synapse to the muscle. (Courtesy of Winston Wiggins, Daisy Ridings, and Alicia Roh, 

Carolinas Medical Center, Charlotte, NC.) 
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FIGURE 18.12 TEM image of a cell in the intermediate stage of mitosis. (Courtesy of
 

Winston Wiggins, Daisy Ridings, and Alicia Roh, Carolinas Medical Center, Charlotte, NC.)
 

FIGURE 18.13 TEM image of a nerve axon with Schwan cell. (Courtesy of Winston 

Wiggins, Daisy Ridings and Alicia Roh, Carolinas Medical Center, Charlotte, NC.) 
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FIGURE 18.14 SEM image of an endothelial cell. (Courtesy of Dr. Mark Clemens, 

University of North Carolina at Charlotte, Charlotte, NC.) 

are the result of inelastic collisions and will thus hold information about the elements 

the incident electron interacted with. The SEM produces a topographic image of the 

sample in addition to material characterization resulting from the inelastic scatter. 

The SEM provides a 3-D perspective with significant depth of the field and high 

resolution. The magnification of the SEM ranges from 1,000 to 10,000 times pro­

viding a resolution of approximately 20 nm. Figure 18.14 shows an endothelial cell 

obtained in SEM mode imaging. 

18.8 INFRARED  IMAGING 

Temperature can be defined as the average kinetic energy of all molecules and atoms 

in motion in an object. It is known that every vibrating object emits an electromag­

netic radiation whose frequency is directly proportional to the temperature of the 

object. The peak emission wavelength emitted by an object can be identified by 

Wien’s displacement law as follows: 

2 898 . ×10−3 

l = (18.5) 
T 

This equation indicates that by measuring the peak emission wavelength, the tem­

perature of an object can be determined. Lower energetic electromagnetic radiation 

will be in the infrared spectrum, while higher energy electromagnetic radiation is in 

the visible and ultraviolet spectrum. At the room temperature or at the body tempera­

ture, objects emit in the near infrared. Only at temperatures exceeding the boiling 

point of water the emissions will be in the visible spectrum. A thermographic CCD 

camera that records the infrared emission can then collect detailed temperature mea­

surements of the objects. An example is of a thermographic image obtained during 

laser irradiation of a heart while eliminating the focal source of an arrhythmia by 

laser photocoagulation. 

The thermographic imaging method uses various size CCD arrays, mostly limited 

to 8 bit image depth. The temperature display is either in gray scale or pseudocolor. 
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FIGURE 18.15 Example of a thermographic image in false color coding, obtained dur­

ing laser irradiation of a heart while eliminating the focal source of an arrhythmia by laser 

photocoagulation. 

In gray-scale display, white is the hottest and black is the coldest with the preset 

range. In false-color mode, the display will have a legend explaining the color coding 

as shown in Figure 18.15. 

Infrared imaging is a functional imaging module. Biological processes such as 

the cellular metabolism produce heat, and thermographic imaging can thus provide 

information on local metabolic activities. Infrared thermography offers a significant 

contribution in imaging postoperative infections. Infrared imaging is also used to 

detect areas of breast with increased metabolic activity, which can be breast can­

cer tumors in the early stages of tumor formation. However, this technology is not 

capable of discriminating between malignant or benign tumors. The typical false 

alarms in classification of tumors using infrared imaging are often due to other types 

of tissues with increased metabolic activity such as cysts and tissues under inflam­

matory reactions. 

18.9 BIOMETRICS 

Biometrics is the science that uses the unique identifiers each human has for personal 

identification. Fingerprints, retinal maps, and iris color patterns are significantly 

unique for each person and are therefore heavily used for personal identification. 

DNA analysis is another personal identification method that is rather more costly, 

harder to access, more time consuming, and more complicated than the three meth­

ods mentioned earlier. Fingerprint analysis and iris recognition are used in security 

screenings and criminal identifications on a daily basis. 

Voice recognition is also considered to be one of the personal identifiers that 

is even easier to obtain compared to the three methods discussed in this chapter. 
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However; voice recognition is subject to change and requires adaptive algorithms 

that are much more complex than the image recognition algorithms used in finger­

print recognition, iris identification, and retinal scans. 

18.9.1 BIOMETRICS METHODOLOGY 

Regardless of the specific biological images used for biometrics, the process of 

image registration and classification is a sensitive procedure that is rather different 

from other biomedical image processing methods. Unlike tracking of the develop­

ment of one single patient or comparing patients against each other for confirmation 

or rejection of a diagnosis, the image processing procedure of biometrics recognition 

is to process a given image and identify one of the individual whose biometric image 

is previously stored in the dataset. In other words, in biometrics image processing, 

the method is supposed to match the given image with all those stored in a database 

and identify the best match. 

Biometrics image processing often involves extracting a number of features 

and characteristics from each image and matching these features with those of the 

images in the database. The image processing steps involved in all of the three bio­

metrics methods discussed involve noise reduction, image enhancement, and feature 

extraction. The primary concern with both verification and authentication will be 

the alignment of the respective scans, i.e., registration. The orientation will rely on 

certain anatomical features in retinal scans and more on characteristics within the 

image for the fingerprint analysis and the iris scan. The number of these extracted 

features that are unique to each particular person range from 400 characteristics in 

retinal scanning to 90 characteristics in fingerprint analysis. After these characteris­

tics have been extracted, they are matched to the cases in the database. 

The methods used for extracting the features are application specific. For instance, 

in fingerprinting, a typical feature extraction method is based on the estimation of 

patterns using B-splines. In other words, B-splines that are polynomial approxima­

tions are applied to describe the curvy patterns in fingerprint and then the coefficients 

of these polynomials are used as the features/characteristics. The used feature can 

also be based on specific subgroups of patterns observed in the fingerprint. These 

features are described later in this section. As another example of feature extraction 

for biometrics, consider the processing of iris images. In one particular image pro­

cessing method specialized for iris matching, first the iris images are decomposed 

using discrete wavelet transform (DWT) and then the DWT coefficients in particular 

levels are used as the features. 

The algorithms used for matching include Bayesian classification and different 

families of neural networks. These algorithms are fed with the extracted image pro­

cessing characteristics and are trained to identify the best match in a very large 

database. Multilayer sigmoid neural networks are by far the most commonly used 

algorithms for matching of biometrics. 

Due to the sensitive and costly risk of misclassification in biometrics match­

ing, a special attention is given to the error analysis. In the statistical analysis of 

errors in biometrics matching, the following error concepts are widely used. A type 

I error represents a false negative, which is a failure to identify the correct person. 
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A type II error represents a false positive, implying that an impostor or innocent 

bystander is identified as the correct subject. The false acceptance rate (FAR) 

stands for the rate at which the algorithm accepts an incorrect subject as true. 

Another classification error is the false rejection rate (FRR), which stands for the 

rate at which the algorithm incorrectly discards or rejects a matching subject. The 

crossover error rate (CER) compares the FAR to the FRR and provides the statis­

tical point where the false rejection rate equals the FAR. Each one of these error 

types can be measured based on different statistical modeling, which is beyond the 

scope of this chapter. 

Having discussed the general biometrics methodologies, next we discuss the spe­

cific types of bioinformatics identification. 

18.9.2 BIOMETRICS USING FINGERPRINTS 

The use of fingerprints for recognition purposes dates back to the late eighteen hun­

dreds. It is widely assumed that fingerprint of a person does not change over time 

and therefore is a unique identifier of its owner. The hypothesis that fingerprints are 

unique has so far not been discarded; however, fingerprints do change as a result of 

factors such as scars or surgical alterations. 

Several reference points used in fingerprint identification are shown in 

Figure 18.16. The various features that are identified in the fingerprint classification 

are divided in major and minor features. The main reference points that identify the 

subpatterns in the fingerprint are outlined in Figure 18.16. These are some additional 

minor reference features, also shown in Figure 18.16, that are used in the complete 

fingerprint analysis and recognition. 

The major features are the presence of either or any of the following three 

characteristics in the ridge pattern: an arch, a loop, or a whorl as illustrated in 

Figure  18.16. Some of the minor features are certain ridge features such as ridge 

branches  (bifurcations) or ridge endings. The minor features are grouped in a category 

Main features 

Minutiae 

Core 
Crossover 
Pore 

Delta 
Bifurcation 

Ridge ending
Island 

LoopArch Whorl 

FIGURE 18.16 Characteristic reference points used in fingerprint identification. 
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called minutiae. The characteristics are organized based on type of formation, 

orientation, spatial frequency, curvature, and position of arches. Some of the finger­

print minutiae are crossovers in the ridges, the shape of the core of an arch, islands, 

delta-shaped ridge formations, and seemingly bidirectional deadened ridges. 

When these features are captures for a given person, they are matched against the 

same features captured for all cases in the dataset. Fingerprinting is the most com­

monly used biometrics method and is heavily used in security applications. 

18.9.3 BIOMETRICS USING RETINA SCANS 

Retina scans are invaluable tools for personal identification purposes. A retinal scan 

analyzes the topographical distribution of blood vessels in the retina, using the fovea 

and the optic nerve as locations for registration. A diagram outlining the general 

appearance of the retina is illustrated in Figure 18.17. Even though each person’s 

retina is known to be unique, several diseases can result in retinal damages that alter 

the retinal pattern and need to be identified and tracked regularly. 

Retinal imaging also has several medical and diagnostics applications. The clini­

cal diagnostic value of retinal recognition is evident in the identification of retinal 

arterial and venous blockage, epiretinal membrane formation, diagnosis of macular 

degeneration, occurrence of macular edema, macular hole formation, retinal tear­

ing, retinal detachment (often experienced in diabetic patients), and degeneration of 

the photoreceptor rods in the retina (which is often a hereditary disease). Several of 

the pathological conditions best identified by retinal scans will eventually result in 

blindness if not caught in time. 

Retinal scan is rather invasive because for an accurate recording a laser or other 

light source must be used to illuminate the retina, passing through the cornea and 

Blood vessels 

Fovea 

Macula 

Retina 
Optic 
nerve 

FIGURE 18.17 Diagram outlining the general appearance of the retina. The fovea has the 

highest concentration of optical receptor and, in particular, the cone needed for color vision. 

The macula is the region directly surrounding the fovea used for reading and other daily 

activities. The macula has both cones and rods. The rods are used for black-and-white vision. 

The entrance of the optic nerve through the retina forms the so-called blind spot, since there 

is a local absence of optical sensors. The network of blood vessels delivers nutrients and 

oxygen to the optical sensors. 
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FIGURE 18.18 Diagram of the iris and the position of the iris with respect to the eyelid 

used for authentication and identification. Since the iris identification uses a binary data for­

mat, a bar code is often sufficient to represent the characteristics of the iris as illustrated in 

the top left corner. 

pupil of the eye. The scan is usually performed by infrared illumination to high­

light the blood vessels in the background. Infrared light provides a natural contrast 

medium. 

18.9.4 BIOMETRICS USING IRIS SCANS 

The iris is the part of the eye that forms an aperture in response to different levels 

of illumination. The iris is fully formed before birth and does not change unless 

affected by trauma or disease throughout the life of the individual. 

The iris can be captured with a camera and stored in a database for comparison 

and recognition purposes. Iris scans read between 266 and 400 different charac­

teristics and will require the matches of approximately 200–300 characteristics to 

produce a significant match for authentication. The iris has chromophores imbed­

ded that provide a distinctive coloration in combination with additional anatomical 

features such as color patterns and topographical configurations (such as rifts, rings, 

coronas, and furrows) that can be traced. A general diagram of the points of interest 

in iris recognition is illustrated in Figure 18.18. 

The main complication with iris scanning for personal identification is the patho­

logical conditions that can alter the appearance of the iris, as mentioned earlier. 

Additional complications are the formation of pigment on the inside of the iris 

(nevus) and neovascularization of the iris (rubeosis), which dramatically changes the 

reference points used in iris recognition although it is not directly a clinical concern. 

18.10 SUMMARY 

In this chapter, we have seen that there are several other imaging modalities that are 

currently being used in medicine or are in the developmental stages of eventually 

becoming diagnostic tools. The anatomical imaging methods we discussed in this 

chapter include several optical microscopy techniques, fluorescent microscope, con­

focal microscope, NSOM, electrical impedance imaging, and electron microscopy. 

In the category of functional imaging, the methodology of infrared thermographic 

imaging was discussed. We also described the three main practical identification 

techniques used in biometrics. 
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PROBLEMS 

18.1	   Read the image in file “p_18_1.jpg” and display the image. The image contains 

a SEM image of an endothelial cell.* 

 a.	   Choose a convenient seed point in the region of the endothelial cell and use 

seed growing to find the outline of the cell. 

 b.	  Find the counter of the cell and mark it in the image. 

 c.	  Calculate the length of the major and minor axes. 

 d. 	 Use Fourier descriptors to compress the size of the counter information. 

18.2	  Co llect the fingerprints of the index finger and thumb of three friends and\or 

family members. 

 a.	  Orient each of the fingerprints to have greater orientation accuracy. 

 b.	  Collect as many features and minutiae on each of the fingerprints. 

 c.	   Compare the fingerprints of the individuals comparing one of the main  

features and three of the minutiae. 

18.3	   Read file “p_18_3.jpg” and display the image. Image “p_18_3.jpg” is an elec­

trical impedance image of a human chest.† In this image, the gray scale signi­

fies the relative magnitude of the electrical impedance. Use histogram-based 

thresholding to outline the regions of equivalent impedance. Choose a mid­

range gray-scale level to find the regions that correspond to each other in the 

four sections of the chest. 

18.4	   Read file “p_18_4.jpg” and display. Image “p_18_4.jpg” is a histology slide  

of a disease call ragged red fiber, which is a genetic mitochondrial defect  

related to the disease called MERRF syndrome (myoclonus epilepsy associ­

ated with ragged red fibers).‡ MERRF syndrome is a muscular disorder that  

falls in the category called mitochondrial encephalomyopathies. (Courtesy  

of Winston Wiggins, Daisy Ridings and Alicia Roh, Carolinas Medical  

Center, Charlotte, NC.) 

 a.	  Use a high-boost filter to improve the quality of the image. 

 b.	  U se segmentation methods to identify the z-band in the muscle fibers (one 

z-band is indicated by a blue arrow). 

 c.	   Isolate the muscle cells that have clear normal muscle structure 

(well-defined z-bands, etc.) from muscle cell that are deviating in struc­

ture. For this, calculate suitable image processing features for each cell  

and perform a K-means clustering. Then, identify the cluster that best  

represent normal cells. 

* Courtesy of Mark G. Clemens, University of North Carolina at Charlotte, Charlotte, NC. 
† 	 Courtesy of Dr. Alexander V. Korjenevsky, Institute of Radio-Engineering and Electronics, Russian 

Academy of Sciences, Moscow, Russia. 
‡ 	 Courtesy of Winston Wiggins, Daisy Ridings and Alicia Roh of Carolinas Medical Center, Charlotte, 

NC. 
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Canny edge detection, 67–69
 

Cardiac muscle, 218
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Cardiovascular diseases
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atrial flutter, 185
 

atrioventricular block, 186–188
 

cardiac reentry, 185–186
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myocardial infarction, 184–185
 

ventricular arrhythmias, 183
 

ventricular fibrillation, 184
 

ventricular tachycardia (VT), 184
 

Wolf–Parkinson–White syndrome, 
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equivalent electric circuit, 161
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class conditional probability, 135
 

loss function, 136–138
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signal and image processing 
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attenuation tomography
 

description, 250
 

mathematical formulation, 253–258
 

mechanism, 250–251
 

definition, 249
 

diffraction tomography, 252
 

feasibility, 249
 

Fourier slice theorem, 258–260
 

reflection tomography, 251–252
 

time-of-flight tomography, 251
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Doppler effect, 327 

Doppler ultrasound imaging, 327–329 

E 

Echo planar imaging (EPI), 299 

Ectopic stimulus, 189 

Edge detection 

Canny edge detection, 67–69 

Laplacian of Gaussian edge detection, 66–67 

Sobel technique, 63–66 

Electric activities of biological cell 
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167–168 
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155–156 

transmembrane potential, 156–160 
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description, 364 

dielectric property, biological tissues, 

364–365 

in vivo diagnostic utility, 365 

Electric data acquisition 

needle electrode, 166 

propagation of electric potential 

as a wave, 167–168 
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cardiovascular diseases
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atrial flutter, 185
 

atrioventricular block, 186–188
 

cardiac reentry, 185–186
 

extrasystole, 189–190
 

myocardial infarction, 184–185
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ventricular fibrillation, 184
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origin, 176–178 

periodicity, 181 
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for assessment of anesthesia, 209–210 

brain and its functions, 197–199 
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diseases of central nervous system 
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Parkinson’s disease, 209 

sleep disorders, 208–209 
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auditory evoked potentials (AEP), 

203–204 
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205–206 

somatosensory evoked potentials 

(SEP), 204 
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frequency spectrum, 200–202
 

processing and feature extraction
 

frequency-domain analysis, 211–212 

sources of noise, 210–211 

time-domain analysis, 212–214 

wavelet-domain analysis, 214 

significance, 202–203 

Electromyogram (EMG) 

applications, 229–230 

different phases of electrode 

placement, 224 

muscles
 

categories, 217–218
 

contraction, 220–221
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neuromuscular diseases 
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defects in muscle cell membrane, 229 

pathological motor units, 227–228 



 

 

 

 

 

 

  

 

 

380 Index 

processing and feature extraction 

frequency-domain analysis, 232–233 

sources of noise, 230–231 

time-domain analysis, 231–232 

wavelet-domain analysis, 232–233 

significance, 225–226
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Electron microscopy 

De Broglie postulate, 366 

scanning electron microscopy (SEM), 

367, 369
 

transmission electron microscopy
 

(TEM), 367–368 

Electrooculogram (EOG), 238–241 
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Entropy, 114–116 

EPI, see Echo planar imaging (EPI) 

Epilepsy, 206–208 
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Event-related potentials (ERP), 205–206 
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203–204 

event-related potentials (ERP), 205–206 

somatosensory evoked potentials 

(SEP), 204 

visual evoked potentials (VEP), 204–205 

Extrasystole, 189–190 

F 

Fast low angle shot (FLASH) imaging, 299 

Feature extraction 

biomedical and biological features, 128 

signal and image processing features 

complexity measures, 129 
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signal power in frequency bands, 

128–129 

wavelet transform (WT), 129 

Fibrillations, 227 

Fibrils and filaments, 220 

Filter design, 33–35 

Filtering and denoising, 96–98 

FLASH imaging, see Fast low angle shot 

(FLASH) imaging 

Fluorescent microscopy 

anatomical imaging category 

application, 358 

autofluorescence, 357 

fluorescence tagging, 358 

image acquisition, 360 

indirect functional imaging, 360 

representative image, TUNEL 

assay, 359 

fMRI, see Functional magnetic resonance 

imaging ( fMRI) 

Fourier slice theorem, CT 

description, 258 

effects, 259–260 

interpolation technique, 260 

visual description, 258 

Fourier transform (FT) 

filter design, 33–35 

low-pass Butterworth filter, 35–36 

one-dimensional continuous Fourier 

transform 

convolution, 23–24 

differentiation, 26 

frequency domain, 15–16 

impulse function, 17–19 

linear systems analysis, 24–26 

properties, 23 

scaling property, 26 

signal shift, 23 

time signal, 21–22 

unit pulse function, 20–21 

one-dimensional discrete Fourier transform 

(1-D DFT) 

inverse discrete Fourier transform 

(IDFT), 27–28
 

magnitude, 30
 

properties, 28–31
 

time domain, 30
 

sampling and Nyquist rate, 26–27 

two-dimensional discrete Fourier transform 

(2-D DFT), 31–33 

Frequency-domain analysis 

ECG, 191–193 

EEG, 211–212 

EMG, 232–233 

Frequency-domain filtering 

sharpening filters in frequency domain 

Butterworth high-pass filters, 61 

ideal high-pass filters, 60 

smoothing filters in frequency domain 

Butterworth low-pass filters, 60 

ideal low-pass filter, 59–60 

Functional imaging module, see Infrared imaging 

Functional magnetic resonance imaging ( fMRI) 

BOLD, 299–300 

brain 

audio activity, 301–302 

motoneuron activity, 302–303 

visual cortex activity, 303 

brain mapping, 297–298
 

design, 299
 

EPI, 299
 

FLASH, 299
 

oxy and deoxyhemoglobin, 298–299
 

G 

Goldman equilibrium, 159–160 
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H 

Heart attack, see Myocardial infarction 

Heart function and structure 

blood circulation, 172–173 

cardiac excitation process, 174–176 

cardiac muscle, 173–174 

Heart sounds, 244 

Heart vector, 180 

High-boost filters, 54–56 

High-pass filters, 53–54 

His bundle, 175 

Histogram equalization, 44–47 

Hodgkin–Huxley model, 164–166 

Hoffman coding, 117–118 

Hormone adrenaline, 181 

I 

Ideal high-pass filters, 60 

Ideal low-pass filters, 59–60 

Image capturing, 9 

Image enhancement,  see Image filtering 

Image filtering 

frequency-domain filtering
 

sharpening filters in frequency 


domain, 60–61
 

smoothing filters in frequency 


domain, 59–60
 

mask processing
 

low-pass filter, 48–50
 

3 × 3 mask, 47–48
 

median filter, 50–52
 

sharpening spatial filters, 53–58
 

point processing
 

bit-level slicing, 43–44
 

contrast enhancement, 41–43
 

definition, 40
 

histogram equalization, 44–47
 

Image histogram, 11–13 

Image processing methods,  see Signal and image 

processing methods 

Image registration, 118–121 

Image representation, 9–11 

Image restoration,  see Image filtering 

Image segmentation 

line detection methods, 71–73
 

point detection methods, 70–71
 

region and object segmentation
 

using luminance thresholding, 73–75 

quad-tree algorithm, 76–77 

region growing, 75–76 

Impulse function, 17–19 

Information theory 

data representation and coding, 116–117 

entropy, 114–116 

Hoffman coding, 117–118 

Infrared imaging, 369–370 

Inverse continuous wavelet transform (ICWT), 87 

Inverse discrete Fourier transform (IDFT), 27–28 

Ion transport 

molecular model, cell membrane, 155–156 

transmembrane potential, 156–160 

Ischemia, 184 

K 

K-means clustering method, 131–134 

L 

Laplacian of Gaussian edge detection, 66–67 

Left-bundle-branch block (LBBB), 187–189 

Linear filtering in space domain, see Mask 

processing 

Linear systems analysis, 24–26 

Line detection methods, 71–73 

Low-pass Butterworth filter, frequency response, 

35–36 

Low-pass filter, 48–50 
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Magnetic resonance imaging (MRI) 
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vs. CT, 305 

description, 283 

discovery, 283 

feature extraction, 305 

filtering method, wavelet coefficients, 305 
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BOLD, 299–300 

brain mapping, 297–298 

design, 299 

EPI, 299 

FLASH, 299 

oxy and deoxyhemoglobin, 298–299 

interpolation methods, 303–304 

magnetic field gradient diagram, 291–292 

phase coding, 293 

physical and physiological principles 
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gyromagnetic ratio, 288 

magnetic dipoles, 285 

nuclear magnetization, 285–286 

precession process, 286–287 

proton spin, 285 

resonance process, 288–291 

physiological noise, 304 

principle idea, 283 

pulse resonance imaging algorithm, 294 

pulse sequence design, 295 

reconstruction 
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detection process, 295
 

one-dimensional case, 297
 

thermal equilibrium, 295
 

registration, 306–307
 

shear and strain noise, 305
 

Siemens machines, 284
 

slice selection algorithm, 292–293
 

spontaneous neural fluctuations, 304–305
 

subject motion, 304
 

T1-and T2-weighted imaging, 294
 

thermal noise, 304
 

Magnetoencephalogram (MEG), 241–242 

Mask processing 

low-pass filter, 48–50 

3 × 3 mask, 47–48 

median filter, 50–52 

sharpening spatial filters, 53–58 

derivative filters, 56–58
 

high-boost filters, 54–56
 

high-pass filter, 53–54
 

MATLAB®, 99, 149–150
 

Maximum likelihood estimation (MLE), 138–140
 

Median filter, 50–52
 

Meninges, 199
 

Meningitis, 209
 

Mexican hat mother wavelet, 87
 

Motor end plate, 218
 

MRI, see Magnetic resonance imaging (MRI)
 

Multidimensional signals, 4
 

Multilayer sigmoid neural network, see Sigmoid 


neural networks 

Muscles 

categories, 217–218 

contraction, 220–221 

force, 221–222 

motor unit, 218–220 

Myocardial infarction, 184–185
 

Myotony, 229
 

N 

Natural pacemakers and conduction system, 174
 

Near-field scanning optical microscopy (NSOM), 


362–364
 

Neural networks 

MATLAB®, 149–150 

perceptrons, 140–144 

sigmoid neural networks, 145–149 

Neuromuscular diseases 

abnormal enervation, 226–227 

abnormal neuromuscular transmission, 

228–229
 

defects in muscle cell membrane, 229
 

pathological motor units, 227–228
 

Neurotransmitter, 218
 

NSOM, see Near-field scanning optical
 

microscopy (NSOM)
 

O 

Object segmentation 

using luminance thresholding, 73–75 

quad-tree algorithm, 76–77 

region growing, 75–76 

One-dimensional continuous Fourier transform
 

convolution, 23–24
 

differentiation, 26
 

frequency domain, 15–16
 

impulse function, 17–19
 

linear systems analysis, 24–26
 

properties, 23
 

scaling property, 26
 

signal shift, 23
 

time signal, 21–22
 

unit pulse function, 20–21
 

One-dimensional continuous wavelet transform 

(CWT)
 

of a time signal, 86
 

Daubechies (dbX) wavelets, 87–88
 

inverse continuous wavelet transform 


(ICWT), 87
 

Mexican hat mother wavelet, 87
 

other mother wavelets, 88
 

One-dimensional discrete Fourier transform 

(1-D DFT), see Discrete Fourier 

transform (DFT) 

One-dimensional discrete wavelet transform 

(1-D DWT)
 

definition, 88–89
 

on discrete signals, 90–94
 

synthesis equation, 89
 

One-dimensional (1-D) signal, 3
 

Optical microscopy
 

design, 356
 

disadvantages, 357
 

geometry, 356
 

limitation, 356–357
 

Rayleigh criterion, 357
 

representative image, 357–358
 

resolution, 357
 

P 

Parkinson’s disease, 209
 

Perceptrons, 140–144
 

PET, see Positron emission tomography (PET)
 

Petit mal, 207
 

Point detection methods, 70–71
 

Point processing
 

bit-level slicing, 43–44
 

contrast enhancement, 41–43
 

definition, 40
 

histogram equalization, 44–47
 

Positron emission tomography (PET) 

applications 
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anatomical imaging, 350–351 

cancer tumor detection, 347–348 

functional brain mapping, 348–349 

functional heart imaging, 349–350 

blurring effects, 351
 

vs. CT, 352–353
 

description, 339
 

detectors, 344–345
 

fan-beam detection, 344
 

feature extraction, 351–352
 

features, 353
 

functional imaging, 341
 

image formation, 346–347
 

imager configuration, 343
 

image registration, 351–352
 

vs. MRI, 352–353
 

noise sources, 351
 

parallel beam detection, 345
 

PET/CT combination, 352
 

physical and physiological principles
 

degeneration process, 341
 

positron annihilation, 340
 

radioactive substances, 339
 

radionucleotide production, 340–341
 

positron emission, 342
 

radioactive detection, 343–345
 

radioactive labeling, 339
 

radioisotopes
 

fluorodeoxyglucose (FDG), 340–341 

half-lives, 341
 

scanning, 344
 

scintigraphy, 345
 

signal acquisition, 342–345
 

significance, 347
 

vs. ultrasonic images, 352–353
 

wavelet analysis, 352
 

Preexcitation, 189
 

Purkinje fibers, 175
 

Q 

Quad-tree algorithm, 76–77 

R 

Radiculopathy, 227
 

Radiolucent, X-ray imaging, 261
 

Radiopaque, X-ray imaging, 261
 

Rapid eye movement (REM), 202
 

Reflection tomography
 

CT, 251–252 

ultrasound imaging
 

Doppler ultrasound imaging, 327–329
 

mathematical methodology, 325–326
 

physical setup, 325
 

sonogram, heart, 326–327
 

Region growing, 75–76 

Region segmentation 

using luminance thresholding, 73–75 

quad-tree algorithm, 76–77 

region growing, 75–76 

Respiratory signals, 242–244
 

Right-bundle-branch block (RBBB), 187–188
 

RSR’ complex, 188
 

S 

Sampling and Nyquist rate, 26–27
 

Sarcomere, 221
 

Scaling property, 26
 

Sharpening filters
 

Butterworth high-pass filters, 61
 

derivative filters, 56–58
 

high-boost filters, 54–56
 

high-pass filter, 53–54
 

ideal high-pass filters, 60
 

Short-time Fourier transform (STFT)
 

disadvantages, 85
 

magnitude of DFT of three signals, 79–80
 

shortcomings of relying only on magnitude, 


81–82
 

two signals in time, 79–80
 

Sigmoid neural networks 

activation function, 146–147 

backpropagation algorithm, 147–148 

momentum, 148–149 

Signal
 

analog, 4
 

1-D, 3
 

definition, 3
 

digital, 6–7
 

digital images
 

image capturing, 9
 

image histogram, 11–13
 

image representation, 9–11
 

discrete, 4–5
 

feature extraction, 8
 

multidimensional, 4
 

processing and transformation, 7–8
 

Signal and image processing methods 

complexity analysis
 

entropy, 104
 

fractal dimension, 102–103
 

signal complexity and signal mobility, 


101–102 

wavelet measures, 103–104
 

cosine transform, 104–107
 

information theory
 

data representation and coding, 

116–117 

entropy, 114–116 

Hoffman coding, 117–118 

registration of images, 118–121 
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stochastic processes 

correlation functions and power spectra, 

111–114 

stationary and ergodic stochastic 

processes, 109–111 

statistical measures, 107–109 

Signal processing and feature extraction 

ECG
 

frequency-domain analysis, 191–193
 

time-domain analysis, 191
 

wavelet-domain analysis, 193
 

EEG
 

frequency-domain analysis, 211–212
 

sources of noise, 210–211
 

time-domain analysis, 212–214
 

wavelet-domain analysis, 214
 

EMG 

frequency-domain analysis, 232–233 

sources of noise, 230–231 

time-domain analysis, 231–232 

wavelet-domain analysis, 232–233 

Signal shift, 23
 

Single photon emission computed tomography
 

(SPECT)
 

advantage, 350
 

cost of, 350
 

vs. PET, 350
 

Sinus tachycardia, 191
 

Sleep disorders, 208–209
 

Smoothing filters in frequency domain
 

Butterworth low-pass filters, 60
 

ideal low-pass filter, 59–60
 

Sobel edge detection, 63–66
 

Somatosensory evoked potentials (SEP), 204
 

Space-domain image enhancement 


techniques, 39
 

SPECT, see Single photon emission computed
 

tomography (SPECT)
 

Spectral edge frequency (SEF), 212
 

Spindles, 203
 

Spontaneous activity, 203
 

Stochastic processes
 

correlation functions and power spectra, 

111–114 

stationary and ergodic stochastic processes, 

109–111 

statistical measures, 107–109
 

Supervised learning, 125
 

Systole, 173
 

T 

3 × 3 mask, 47–48 

Time-domain analysis
 

ECG, 191
 

EEG, 212–214
 

EMG, 231–232
 

Time-of-flight (TOF) tomography
 

CT, 251
 

ultrasound imaging
 

description, 324–325 

principle, 319
 

Tricuspid valve, see Atrioventricular valve
 

T wave, 177
 

Two-dimensional discrete Fourier transform 


(2-D DFT), see Discrete Fourier 

transform (DFT) 

Two-dimensional discrete wavelet transform 

(2-D DWT), 94–96 

U 

Ultrasound imaging
 

advantages, 309–310
 

applications, 332
 

artifacts, 330
 

attenuation tomography
 

mathematical model, tissue imaging, 

321–324
 

principle, 319
 

setup description, 320–321
 

translation distance modeling, 320
 

axial resolution, 318
 

bioeffects, 334–335
 

brightness mode (B-mode), 329
 

vs. CT, 334
 

description, 309
 

2-D imaging limitations, 330
 

3-D reconstruction, 330–331
 

flow characteristics, 310
 

fundamental ultrasound concepts
 

acoustic impedance, 313
 

attenuation, 314–316
 

pulser, 312
 

pulse train delivery protocol, 312
 

reflection, 316–318
 

time periodicity, 312
 

wave equation, 313–314
 

wavelength, 312
 

wave theory, 311–312
 

image registration, 333–334
 

lateral resolution, 318–319
 

limitations, 330
 

magnetorestrictive based ultrasound 


generation, 310
 

maximum intensity projection (MIP) 


technique, 331
 

M-mode, 329–330
 

vs. MRI, 334
 

multiplanar reformatting (MPR) 


approach, 331
 

piezoelectric ultrasound generation, 


310–311
 

processing and feature extraction, 332–333
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reflection tomography
 

Doppler ultrasound imaging, 327–329
 

mathematical methodology, 325–326
 

physical setup, 325
 

sonogram, heart, 326–327
 

surface rendering technique, 331
 

TOF tomography
 

description, 324–325
 

principle, 319
 

transducers, 311
 

ultrasound wave detection, 311
 

volume rendering technique, 331
 

vs. X-ray imaging, 310
 

V 

Ventricular arrhythmias, 183
 

Ventricular fibrillation, 184
 

Ventricular tachycardia (VT), 184
 

Visual evoked potentials (VEP), 204–205
 

W 

Wavelet-domain analysis
 

ECG, 193
 

EEG, 214
 

EMG, 232–233
 

Wavelet transform (WT), 129
 

application
 

compression, 98
 

filtering and denoising, 96–98
 

definition, 86
 

MATLAB, 99
 

one-dimensional continuous wavelet 


transform (CWT)
 

of a time signal, 86
 

Daubechies (dbX) wavelets, 87–88
 

inverse continuous wavelet transform 


(ICWT), 87
 

Mexican hat mother wavelet, 87
 

other mother wavelets, 88
 

one-dimensional discrete wavelet transform 

(1-D DWT)
 

definition, 88–89
 

on discrete signals, 90–94
 

synthesis equation, 89
 

short-time Fourier transform (STFT)
 

disadvantages, 85
 

magnitude of DFT of three signals, 79–80
 

shortcomings of relying only on 

magnitude, 81–82 

two signals in time, 79–80 

two-dimensional discrete wavelet transform 

(2-D DWT), 94–96
 

Wenkebach phenomenon, 187
 

Wilson placement, 179
 

Wolf–Parkinson–White (WPW) syndrome, 186,
 

188–189 

X
 

X-ray imaging
 

attenuation based, 266–267
 

characteristic beam delivery design, 262–263
 

complications, 279
 

contrast agents usage, 271
 

and CT imaging
 

bomedical scanners, 274–276
 

computer algorithm, 273
 

description, 273
 

image-guided interventions, 278–279
 

registration, 278–279
 

schematic representation, 273
 

stereotactic surgeries, 277–278
 

description, 264–265
 

diagnostic applications, 276–277
 

image quality, 271–272
 

medical radiography setup, 265
 

quantum noise, 272
 

radiation dose, 265–266
 

radiation hazards and epidemiological 


effects, 279
 

radiolucent, 261
 

radiopaque, 261
 

relative characteristic radiation spectrum, 


263–264
 

Röntgen experiment, 261
 

X-ray detection
 

film imaging, 267–268
 

fluorescence, 268
 

fluorescent plate imaging technique, 270
 

interventional radiology, 268–270
 

scintillation counters, 270
 

stenting, 270
 

Z 

Z-disk, 220
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