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Abstract

As the form factor of microelectronic systems and chips are continuing to shrink, the 
demand for increased connectivity and functionality shows an unabated rising trend. 
This is driving the evolution of technologies that requires 3D approaches for the integra-
tion of devices and system design. The 3D technology allows higher packing densities as 
well as shorter chip-to-chip interconnects. Micro-bump technology with through-silicon 
vias (TSVs) and advances in flip chip technology enable the development and manufac-
turing of devices at bump pitch of 14 μm or less. Silicon carrier or interposer enabling 3D 
chip stacking between the chip and the carrier used in packaging may also offer probing 
solutions by providing a bonding platform or intermediate board for a substrate or a 
component probe card assembly. Standard vertical probing technologies use microfabri-
cation technologies for probes, templates and substrate-ceramic packages. Fine pitches, 
below 50 μm bump pitch, pose enormous challenges and microelectromechanical system 
(MEMS) processes are finding applications in producing springs, probes, carrier or sub-
strate structures. In this chapter, we explore the application of MEMS-based technologies 
on manufacturing of advanced probe cards for probing dies with various new pad or 
bump structures.

Keywords: wafer and package test systems, MEMS technology, interconnects, 
interposer, wafer probes

1. Introduction

Increased connectivity and functionality is driving the evolution of 2D technology toward 

3D technology for integration of silicon devices and system design. This technology is 

becoming a scaling engine for silicon technology [1] allowing higher packing densities and 

shorter chip-to-chip interconnects. Shrinking die dimensions and pitch pose challenges on 
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the probing and test side of the equation forces development of newer probes, interposers, 

interconnects and robust assembly systems [2, 3]. As 3D IC packaging is becoming mature, 

there is a strong push toward 3D IC Si integration. In a 3D IC integration, some of the 

chips, a microdisplay, microelectromechanical systems (MEMSs), memory, microproces-

sor, application-specific IC (ASIC), micro-controller unit, digital signal processor, micro-

battery and analog-to digital mixed signal are combined and stacked in three dimensions 
[4, 5]. These system and component level challenges are being addressed by silicon carri-

ers or 3D-stacking, interposers, substrates and newer probe materials by MEMS processes. 

Developing a common intermediate board for a substrate or space transformer and probe 

card assembly will help solve technical challenges and reduce cost of test in both wafer 

and package level testing. An optimal design, which includes the IC design, the automated 

test equipment (ATE) test cell and the probe card solution, of the test flow between wafer 
sort and final test can yield benefits. Standard vertical probing technologies use microfab-

rication technologies for probes, templates and substrate-ceramic packages [6]. Pitches 

below 50 μm pose enormous challenges on fabrication of probe card components and 

nanotechnology and MEMS processes are required for producing probes, carrier or sub-

strate structures for precision requirements. Probe structures must be designed with preci-

sion and their power delivery properties must be optimized. Advanced probe cards must 

be able to support high-speed testing and cold and hot temperature cycle testing with 

precision contact capability. They also need to address contact challenges for multi-row 

pads/bumps, full array Cu-pillar micro-bumps with various solder-bump metallurgies at 

temperature. Application of various technology approaches in test systems against the test 

requirements of silicon logic or memory or mixed signal devices is discussed.

2. Trends in silicon and systems for test

The cost of scaling is rapidly increasing and the expected development cost for system-

on-chip (SoC) for 10 nm is 400M USD and for 7 nm it is projected to be approaching 600M 

USD [2]. This means that it requires multibillion dollar lifetime revenue to be economically 

feasible per design. System solutions need to balance performance, power and cost. The 

industry of moving to 3D architectures adds challenges in variability in manufacturing 

next generation devices, requires more stringent variability control by data analytics and 

Industry 4.0 applications [7]. Advanced packaging also adds multiple levels and variabil-

ity can happen across multiple die, as memory chip stack with through-silicon vias (TSVs) 

placed on a logic device which is integrated to a substrate with copper pillar bumps, SnAg 

bumps or micro-bumps. At 10 nm process node, 3D TSVs are projected to be at 6 μm 

diameter with depth of 55 μm [2]. Logic-memory integration improves the bandwidth and 

provides higher performance per watt while SoC partitioning increases yield and helps 
cost optimization. In a total package stack-up, thin silicon layers become an issue due to 

low-k modulus reliability while the substrate can become subjected to a thermal mismatch 

stress and induced warpage problems, as well as routability issues.
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The cost is increasing with decreasing pitch, increasing probe count and increasing parallelism. 

The area-array type of logic test is challenging below 100 μm bump pitch and push for MEMS 

type of probe solutions are required to scale with the technology. Design for tests (DFTs) with 

wrappers are targeted to reduce number of I/O’s that need to be contacted during test. Also, the 

ability to reuse testers is also studied to lower the total cost of test. A test system architecture 

with vertical style probe card is shown is Figure 1. In the system, ST stands for space trans-

former, multilayer ceramic substrate (MLC) and device under test (DUT).

When the roadmaps for probe card requirements are reviewed, there are many critical test 

system parameters that must be considered especially for large-sized highly parallel cards. 

They are mainly:

• Controlled overdrive

• Reduced temperature drifts

• Planarity self-adjustable function

• Low voltage test operation

• Reduced pad damage and increased uniformity

• Less particle generation

• Smart repair concepts

• Expanded temperature range

• Diagnostic functions on probe cards

• Smart alignment features

• Cost efficiency

• Lower lead times

Figure 1. Probe card system architecture is shown.
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3. Probe technology and designs for fine-pitch probing

Cantilever probing technologies, both traditional and MEMS-style cantilever, have limitations 

for multi-DUT probing at 50 μm or below. Wafer test becomes challenging because of design 

complexity of devices. For instance, one limit is the number of rows of bond pads that can be 

tested at one time, dependent heavily on pad density. Another parameter of a design test limi-

tation with cantilever-style technologies is the corner keep-out in device layouts. Yet another 

requirement of this mode of technology is the need for skip DUT configurations, compromis-

ing test stepping efficiency.

Vertical style technology approaches allow more rows of peripheral pads and array patterns 
for contacts. Images of probe cards of a traditional cantilever, vertical and MEMS-memory 

types are illustrated in Figure 2. The market for devices with multiple peripheral pads is 

moving to finer pitches and the demand for higher levels of parallel testing is increasing for 
such logic configurations. These requirements are driven by higher I/O requirements, smaller 

device dies, longer test times and more challenging cost of test economics. It is required to 

probe devices at higher levels of parallelism and finer pad pitches. Pads can be arranged 
inline, dual or multi inline rows or staggered pads. This design space is typically not address-

able by standard vertical, advanced memory cards or standard cantilever cards but a new seg-

ment for advanced fine-pitch MEMS type probe technologies. Major product families in this 
space at increasingly higher parallelism requirements are high-end ASICS, SoCs/high level 

digital signal processor (DSPs) and low-end DSPs/low-end microcontrollers.

Cantilever probe cards are used in addressing 1-row peripheral multi-DUT or 1–2 row periph-

eral layouts of pads on devices, as shown in Figure 3. Probe card with 2-row cantilever probes 

Figure 2. Cantilever, standard vertical and MEMS type probe cards.
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is illustrated on the right. There are significant limitations to standard cantilever probes tech-

nologies as the number of rows or DUTs rises. For three rows of pads, a vertical style tech-

nology is needed for efficient probing, as shown in Figure 4. Traditional vertical buckling 

beam style probes of three different diameters (4-mil, 3-mil and 2-mil) which address different 
device pitch requirements in wafer test are also shown. MEMS-vertical technologies enable 

probing of full arrays, as shown in Figure 5, that are typically not feasible with conventional 

vertical probe technologies.

Probe action, scrub mark size and depth must be precisely controlled to prevent damage to 

bond pads, typically Al or Cu, and low-k dielectrics during wafer probe. Fine-pitch probing 

requires precise control of alignment at pad sizes smaller than 40 μm.

Figure 3. Cantilever design and contact pad layouts.

Figure 4. Vertical probes, 3-row peripheral layouts on a device and illustrations of three different vertical probe designs 
on a wafer.
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The contact model for vertical probe contacts is different than cantilever-style beams. Scrub 
marks generated by cantilever beams by design are typically longer than marks by vertical 

probes. Accurate guiding of probes permits finer controls and precise scrub marks for verti-
cal. The tolerances on guiding holes as well as probes are critical for positions.

Figure 6 illustrates results of deflection and stress simulations for the models of cantilever 
probe designs and MEMS-cantilever probe designs exhibiting deflection upon pad contact 
and generating scrub motion on probe tips. MEMS-cantilever type designs are well suited 

for memory device testing up to 1–4 touchdowns for 300 mm wafers with probe counts up to 

60,000 probes.

Vertical buckling beam model and MEMS-fine pitch vertical probe design contacts and simula-

tions of deflection under load are shown in Figure 7. Vertical probes are typically manufactured 

Figure 5. MEMS-vertical probes for contacting an array of bumps.

Figure 6. Cantilever probe design (conventional) and MEMS-cantilever probe designs showing deflection and scrub on 
pad during contact.
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from Paliney 7™ or BeCu materials by stamping a wire version followed by a final finishing 
process. MEMS-vertical or cantilever probes are lithographically produced and involves many 

process steps typical in MEMS technologies. Different types of nickel alloys (Ni-Co and Ni-Mn) 
are commonly used for MEMS spring or probe manufacturing. Probe tips may be coated with 

harder alloys for better lifecycle, which may involve Pd and Pt alloys such as PdCo, PtIr, PtNi, 
Rh or hard gold and other alloys. It should be noted that MEMS-based vertical technology has 

an edge over buckling beam technologies for design flexibility for highly parallel peripheral 
devices as well as the accuracy of scrub signatures required for smaller pad sizes.Flip chip 

type area-array applications such as microprocessors, graphics chips and microcontrollers, are 

addressed by traditional vertical or MEMS-style vertical probe technologies. Figure 8 shows 

MEMS probe products, advanced vertical probe technologies for testing full area-array (A) 

or testing multi-row peripheral or partial arrays (B) and advanced cantilever types for testing 

memory devices (DRAM or flash).

The electrical contact resistance measurements for MEMS-vertical probe technology as 

illustrated in Figure 5 were performed on various emerging bump types. Figure 9 pro-

vides the eutectic bump resistance measurements done by MEMS-vertical probes on a test 

system.

The contact resistance (Cres) was indicated to be stable at 25 μm overdrive (3 gf) for all tip 

sizes (9, 12, 16, 36 μm) studied. The Cres is the path resistance including connections from 

tester to the probe tip. The effective contact resistance of just the bump and the probe tip is 
estimated to be less than 0.2 Ohms.

The contact resistance on copper pillar bumps is illustrated for MEMS-vertical technology in 

Figure 10. It that shows the Cres with 12 μm probe tips is much higher than those from 9 μm 

tips. For probes with 9 μm-tips, Cres was stable at 50 μm overdrive (5–6 gf). The copper pil-

lars are much harder than eutectic or Sn-Ag type bumps, therefore it requires higher forces to 

establish good contact. However, the probe tips remain much cleaner in life testing on copper 

pillars compared to solder-based bumps.

Figure 7. Vertical buckling beam probe design and MEMS-vertical probe designs showing deflection and contacting a 
pad/bump.
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Figure 8. MEMS type advanced vertical probe technologies are used for (a) full area-array, (B) peripheral-rows or 

partial-array and (C) advanced cantilever probes for inline memory testing.

Figure 9. The results from the eutectic bump resistance measurements.
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4. Next generation interconnects and substrates for probing systems

Higher levels of system integration and new IC technologies allow placement of significant 
test resources on the probe card, such as caps or resistors to very close proximity to the DUT, 

device supplies, digital channels and analog test circuitry, to improve signal integrity and 

performance. This capability helps overcome some test limitations, and make it possible to 

add RF test structures, and circuits enabling high-speed loop-back solutions. These solu-

tions help in the cost-effectiveness of the test strategy. Advanced probe cards have to be 
designed to support high-speed testing and cold and hot temperature testing (from −55 to 
150°C). Providing robust precision contact capability enables reliable contacts on smaller die 

sizes with better signal fidelity. Probe structures can be manufactured in a cost-effective way 
by MEMS methods to enable scaling to a finer bump pitch well below 50 μm area-arrays. 
Probe repair concepts are available on a restricted basis and this capability usually strongly 

requested by wafer test houses when high number of touchdowns on wafers is required.

4.1. Space transformers

Substrates are typically perform the function of space transformers in advanced probe cards, 

routing fine pitch of a device to a larger pitch of a PCB and tester boards in wafer test sys-

tems. Although the probe count is very large, memory type probe cards can handle 200mm 

or 300mm wafers due to device geometries with 1 or 2 row peripheral layouts. Space trans-

former in this case is typically a single-layer thin film on MLC.

Space transformers need to be able feature following requirements to support next genera-

tion advanced probe cards: (1) very low pitch fanout (30 μm), (2) high frequency operation 

with a high bandwidth of 3 GHz, signal length matching, low crosstalk for analog and digital 

Figure 10. The eutectic bump resistance measurements done by MEMS-vertical probes on a test system are shown.
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signal, shielding, (3) high pin counts for dense device designs (> 5000), (4) large arrays, (5) 

path resistance <2 Ohms, (6) no skip DUT and (7) peripheral device test with ore than 3 rows 

of pad per side and array configuration. Some of these requirements may not possible with 
MLC ceramic manufacturing with extra polyimide (PI) layers. Multilayer organic substrate 

(MLOs) is lower cost versions, but also have similar geometric and process limitations along 

with some thermal test restrictions.

MLS (multilayer substrate) is proposed as a type of silicon interposer manufacturable using 

MEMS technology to reach these target requirements. Space transformer technology compari-

son is provided for fine-pitch probing applications in Figure 11. WST stands for wired space 

transformer used in standard vertical probe cards. These are quickly changing with various 

capability enhancing feature every year. WST, MLC and MLO are well established while MLS 

and other high density ST scenarios are emerging. BGA and LGA stands for ball-grid array 

or land grid array versions of MLC. CTE is the coefficient of thermal expansion of a material.

Substrate interconnect process flow is shown in Figure 12(A, B) for creation of a silicon inter-

poser with fine pitch and its bonding onto a MLC carrier. This type of a silicon interposer 
allows for fine pitch top surface routing capability for fanout on a MLC. Silicon interposer 
will have TSVs for connecting the top to bottom side. It features a probing contact pad on the 
surface and a bump connection to 200 μm-pitch MLC on the other side.

Figure 11. The space transformer technology capabilities for advanced probe cards.
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MLC process may involve ceramic manufacturing process and additional polyimide (PI) pro-

cess layers. Fine pitch on the surface is reached by stacking up three layers of PI. Vias on 

ceramic layer are routed to pad locations. As the pin count is raised, thin film layer count 
increases to match the required probing pads. In some cases as row count increases, then a 

test scheme requires skipping a DUT due to such substrate density restrictions. 3-row pad 

structure is shown in Figure 13 and the pin count versus the pad density is also shown.

4.2. Copper pillar bumps

The increasing requirement for more functionality in smaller packages forces trends 

toward 3D packaging approaches for portability [8]. Higher routing density enabled by 

finer pitch flip chip technology using copper pillars is highly desirable for lower costs and 

Figure 12. Substrate interconnect process flow is shown in (A) process steps for MLS and (B) substrate interconnect 

features.
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scalability. Copper pillar bumps typically consist of a copper base and a solder capped top 

[6]. These copper pillars, sometimes called high pillars or micro-bumps, act as an inter-

connect structure which lowers stress on low-k layers in finer silicon nodes and increase 
reliability. Use of such micro-bumps simplifies substrates for packages, thereby decreas-

ing cost, and allows natural migration toward TSV technologies of the future. On the 

other hand, as the metallurgy of the bump structure changes from eutectic to lead-free 

solders and more importantly to solder-cap on copper pillars with varying contact geom-

etries, probing very fine-pitch bumps presents new test, process and precision challenges 
[8]. There is also an increasing trend toward performing the final test in wafer level to 
reduce both cycle time and cost of test while moving to environment friendly manufac-

turing processes. It is important for IC design and packaging development and test engi-

neers to understand the material impacts of new wafer bumping system and technology. 

They need to address both reliability and manufacturability of the entire process, which 

includes test process development early in the cycle so that the overall system level cost 

is optimized [8].

Probing of traditional solder bumps at 120 μm pitch or above, whether eutectic, high-lead or 

lead-free solder balls are performed typically by buckling beam/vertical technologies. The con-

tact area formed on the top of a round bump after a probe contact is related to the metallurgy 

Figure 13. Density on substrates is illustrated for various configurations.
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and the mechanical properties of bump materials as well as the probe tip geometry and probe 

force [6]. Fine-pitch technologies for ICs below 40-nm node are accelerating the move toward 

copper pillar lead-free bumps and interconnections. Probing lead-free solder micro-bumps or 

copper pillars at 40 μm-array pitch requires MEMS-style probe technologies. There are many 

known benefits of using copper pillars reported in the literature. Figure 14 shows images of 

copper pillars and lead-free micro-bumps at 50 μm pitch. The bump profile on the right illus-

trates a minor scrub mark, 9 μm wide, on top of the Cu-pillar. In this case, the probe makes 

good and reliable electrical contact, however, the scrub signature is not easily seen on optical 

images because of the hardness of copper. Figure 15 illustrates Sn-Ag based solder micro-

bumps on top a copper pillar before and after probing at 50 μm pitch. The solder deformation 

is observed on the probed bump on the image on the left side. The solder bumps on the left 

are of eutectic type.

Figure 14. Images of copper pillars and lead-free micro-bumps at 50 μm pitch. The profile shows the pillar bump after 
probing with vertical MEMS probe technology.

Figure 15. Solder micro-bumps illustrated on the left have no copper pillar-base. Solder micro-bumps on top a copper 

pillar before and after probing (on the right) at 50 μm pitch.
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5. Final test and spring pins

The decision on how to partition test between wafer and package tests and where to focus 

efforts to increase parallel testing is always on the agenda of test practitioners in the indus-

try. A wafer test probing is a short-cut in addressing both wafer test and package test, if it can 

be a bundled solution for productivity of the test floors. This potentially reduces total cost 
of test substantially. The trend nowadays is to focus on wafer sort in high parallelism mode.

The wafer level chip scale package (WLCSP) format has been rising and in the final test, 
there is strong push for cost-effective RF testing solutions [9, 10]. The spring-pin technol-

ogy for the final test still inexpensive workhorse of the package test industry. The system 
board level functionality is moving into package-level (SiP) or chip-level (SoC) implemen-

tations. The spring pins, are not scalable at fine pitches and will not support test speeds 
necessary.

A socket-contactor design is proposed for reliable electrical contact and allows testing for 

best wafer yields. This type of approach must replace known vertical probe technology 

or membrane probe technology for testing wafer level packages. A novel contactor and 

socket were designed for high performance and low-cost for use in wafer probe or final 
test [11].

Figure 16 shows a socket test system overview showing a load-board and device under test 

(DUT) with a ball-grid-array (BGA) in contact with traditional spring pins, that is, pogo 

pins™. The DUT can be packaged as BGA with bumps or land grid array (LGA) and the 

contactor pin geometry will change depending on the pad/bump materials and contact sur-

faces [11].

The proposed design of new contactor is illustrated in Figure 17 including a plunger, spring 

wire and the socket with a retaining plate. The contactor consists of a plunger pin made of 

beryllium copper and a braided stainless steel spring wire. The spring wire is typically cop-

per over-plated. The socket materials with retaining plates were made of FR4. The overall 

Figure 16. A pogo pin socket system overview.
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diameter of the spring wire section was 0.51 mm. The contactor has a 5 mm in uncompressed 

total length including the plunger and the spring. The length of the spring wire section was 

0.27 mm.

The measurement results in Figure 18 show the contact resistance behavior of the spring 

assembly for SS304V/Cu plated with Ni/Au contacts in a 36-Pin test socket. SS304 stands 
for stainless steel spring wire and Cu, Ni and Au are overplating applied to the spring 
to improve the electrical performance characteristics. S parameter characterization has 

shown better results than those of traditional spring pins. Figure 19 shows electrical simu-

lation results for pitches of 0.8, 1.6 and 2.5 mm are shown. Insertion loss was estimated 

to be at −1 dB bandwidth as 5.025 GHz (A). Return loss of −16 dB at 4 GHz is illustrated 
at (B).

The plunger pin and stainless steel spring wire can be manufactured with MEMS processes to 

make them scalable to much finer pitches than these versions can support.

Figure 17. Prototype of new contactor design showing the plunger and the spring sections held in a retaining plate.

Figure 18. The contact resistance behavior if the plated spring contact.
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6. Conclusions

Wafer test systems and enabling requirements for effective testing of mixed signal, logic and 
memory ICs were reviewed. TSVs and 3D packaging are evolving and making silicon inter-

posers available and high performance stacked die packages without wire-bonding. Silicon 

interposers using TSV technology based on MEMS processes can be utilized in probe card 

assemblies to enable next generation fine-pitch vertical probing. MEMS technologies are 
being developed for manufacturing of novel high density substrates and fine-pitch probes 
for cantilever as well as vertical probing. MEMS technologies already dominate the memory 

test market. It is clear though the overall market is trending toward MEMS technologies and 

purely vertical, cantilever, blade technology or others will shrink in probe card market and 

advanced MEMS technologies will win.

Figure 19. Simulation results for pitches of 0.8, 1.6 and 2.5 mm are shown. (A) Insertion loss, −1 dB bandwidth is 
5.025 GHz (top). (B) Return loss of −16 dB at 4 GHz.
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