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Tief ist der Brunnen der Vergangenheit. Sollte man ihn nicht unergründlich
nennen? (Deep is the well of the past. Should one not call it unfathomable?)

Thomas Mann — Joseph und seine Brüder



Preface

This book is the result of ten years on and off thinking about infinite regresses
in epistemology. It draws on several of our papers, which, partly because of
the development of our thoughts, are not always well connected.

Our overall purpose here is to show how our understanding of infinite
epistemic chains benefits from an analysis of justification in terms of prob-
ability theory. It has been often assumed that epistemic justification is prob-
abilistic in character, but we think that the consequences of this assumption
for the epistemic regress problem have been insufficiently taken into account.

The book has eight chapters, detailed calculations having been relegated
to appendices. Chapter 1 contains an introduction to the epistemological
regress problem, giving some historical background, and recalling its three
attempted solutions, foundationalism, coherentism and infinitism. Chapter 2
discusses different views on epistemic justification, since they bear on both
the framing of the problem and its proposed solution. Chapters 3 and 4 form
the core of the book. Taking as our point of departure a debate between
Clarence Irving Lewis and Hans Reichenbach, we introduce the concept of a
probabilistic regress, and we explain how it leads to a phenomenon that we
call fading foundations: the importance of a foundational proposition dwin-
dles away as the epistemic chain lengthens. In Chapters 5 and 6 we describe
how a probabilistic regress resists the traditional objections to infinite epis-
temic chains, and we reply to objections that have been raised against prob-
abilistic regresses themselves. Chapter 7 compares a probabilistic regress to
an endless hierarchy of probability statements about probability statements;
it is demonstrated that the two are formally equivalent. In the final chapter
we leave one-dimensional chains behind and turn to multi-dimensional net-
works. We show that what we have found for linear chains applies equally
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viii Preface

to networks that stretch out in many directions: the effect of foundational
propositions fades away as the network expands.

Epistemic regresses are not the only regresses about which philosophers
have wracked their brains. The ancient Greeks and the mediaeval scholastics
worried a lot about infinite causal chains, and more recently philosopers have
shown interest in the phenomenon of grounding. Although we remain silent
about the latter, and only tangentially touch upon the former, we believe
that our analysis could shed light on causal regresses — on condition that
causality is interpreted probabilistically.

We owe much to others who have concurrently been thinking about epis-
temic regresses, notably Peter D. Klein and Scott F. Aikin. Peter Klein de-
serves the credit for being the first to set the cat among the pigeons by sup-
posing that infinite regresses in epistemology are not prima facie absurd.
With Scott Aikin one of us organized a workshop on infinite regresses in
October 2013 at Vanderbilt University. This resulted in a special issue of
Metaphilosophy (2014, vol. 45 no. 3), which was soon followed by a special
issue of Synthese (2014, vol. 191 no. 4), co-edited with Sylvia Wenmackers.

The writing of this book has been made possible by financial support
from the Dutch Organization for Scientific Research (Nederlandse Organ-
isatie voor Wetenschappelijk Onderzoek, NWO), grant number 360-20-280.
Our colleagues at the Faculty of Philosophy of the University of Groningen
provided support of many different kinds. This has meant a lot to us and we
thank them very much.

Aix-en-Provence, October 2015

David Atkinson and Jeanne Peijnenburg
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Chapter 1

The Regress Problem

Abstract

The attempt to justify our beliefs leads to the regress problem. We briefly
recount the problem’s history and recall the two traditional solutions, foun-
dationalism and coherentism, before turning to infinitism. According to in-
finitists, the regress problem is not a genuine difficulty, since infinite chains
of reasons are not as troublesome as they may seem. A comparison with
causal chains suggests that a proper assessment of infinitistic ideas requires
that the concept of justification be made clear.

1.1 Reasons for Reasons: Agrippa’s Trilemma

We believe many things: that the earth is a spheroid, that Queen Victoria
reigned for more that sixty years, that Stockholm is the capital of Finland,
that the Russians were the first to land on the moon. Some of these beliefs
are true, others are false. A belief might be true by accident. Suppose I have
a phobia which makes me believe that there is a poisonous snake under my
bed. After many visits to a psychiatrist and intensive therapy I gradually
try to convince myself that this belief stems from traumatic and suppressed
childhood experiences. One fine day I finally reach the point where I, nerv-
ous and trembling, force myself to get into bed before first looking under
it. Unbeknownst to me or the psychiatrist, however, a venomous snake has
escaped from the zoo and has ensconced itself under my bed. My belief in
the proposition ‘There is a poisonous snake under my bed’ is true, but it
is accidentally true. I do not have a good reason for this belief, since I am

© The Author(s) 2017 
D. Atkinson, J. Peijnenburg, Fading Foundations, Synthese Library 383, 
DOI 10.1007/978-3-319-58295-5_1 
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2 1 The Regress Problem

ignorant of the escape and agree with the psychiatrist that reasons based on
my phobia are not good reasons.

If however a belief is based on good reasons, we say that it is epistemically
justified. Had I been aware of the fact that the snake had escaped and in fact
had made its way to my bedroom, I would have been in possession of a
good reason, and would have been epistemically justified in believing that
the animal was lying under my bed.

According to a venerable philosophical tradition, a true and justified belief
is a candidate for knowledge. One of the things that is needed in order for
me to know that there is a snake under my bed is that the good reason I have
for it (namely my belief that the reptile had slipped away and is hiding in my
room) is itself justified. Without that condition, my reason might be itself a
fabrication of my phobic mind, and thus ultimately fall short of being a good
reason.

What would count as a good reason for believing that a snake has es-
caped and installed itself in my bedroom? Here is one: an anxious neighbour
knocks on my door, agitatedly telling me about the escape. But how do I
know that what the neighbour says is true? It seems I need a good reason
for that as well. My friendly neighbour shows me a text message on his cell-
phone, just sent by the police, which contains the alarming news. That seems
to be quite a good reason — although, how do I know that the police are well
informed? I need a good reason for that as well. I call the head of police, who
confirms the news, and says that he was apprised of it by the director of the
zoo; I call the director, who tells me that the escape has been reported to her
by the curator of the reptile house, and so on. True, my actions are somewhat
curious, and they may well signal that a phobia for snakes is not the only
mental affliction that plagues me. The point however is not a practical but a
principled one. It is that a reason is only a good reason if it is backed up by
another good reason, which in turn is backed up by still another other good
reason, and so on. We thus arrive at a chain of reasons, where the proposi-
tion ‘There is a dangerous snake under my bed’ (the target proposition q) is
justified by ‘A neighbour knocks on my door and tells me that a snake has
escaped’ (reason A1), which is justified by ‘The police sent my neighbour a
text message about the escape’ (reason A2), which is justified by A3, and so
on:

q ←− A1 ←− A2 ←− A3 ←− A4 . . . (1.1)

Such a justificatory chain, as we shall call it, gives rise to the regress problem.
It places us in a position where we have to choose between two equally
unattractive options: either the chain must be continued, for otherwise we
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cannot be said to know the proposition q, or the chain must come to a stop,
but then it seems we are not justified in claiming that we really can know q,
since there is no reason for stopping. Laurence Bonjour called considerations
relating to the regress problem “perhaps the most crucial in the entire theory
of knowledge”, and Robert Audi observes that no epistemologist quite knows
how to handle the problem.1

The roots of the regress problem extend far back into epistemological
history, and scholars often refer to the Greek philosopher Agrippa. Little
is known about Agrippa, apart from the fact that he probably lived in the
first century A.D. and might have been among the group of sceptics dis-
cussed by Sextus Empiricus, a philosopher and practising physician who al-
legedly flourished a century later. Sextus’ most famous work, Outlines of
Pyrrhonism, contains an explanation and defence of what he takes to be the
philosophy of another shadowy figure, namely Pyrrho of Elis (c. 365–270
B.C.), who himself wrote nothing, but became known for his sober life style
and his aversion to academic or theoretical reasoning. So-called Pyrrhonian
scepticism advocates the attainment of ataraxia, a state of serene calmness in
which one is free from moods or other disturbances. An important technique
for reaching this state is the practicing of argument strategies known as tropoi
or modes, i.e. means to engender suspension of judgement by undermining
any claim that conclusive knowledge or justification has been attained. For
example, if it were claimed that a particular sound is known to be soft, a
Pyrrhonian would point out that to a dog it is loud, and that we cannot judge
the loudness or softness independently of the hearer. Typically, a Pyrrhonian
will try to thoroughly acquaint himself with the modes, so that reacting in
accordance with them becomes as it were a second nature. In this manner he
will be able to routinely refrain from assenting to any weighty proposition
q or ¬q, and thus avoid getting caught up in one of those rigid intellectual
positions that he loathes so much.

In Book 1 of Outlines of Pyrrhonism, Sextus discusses five modes which
he attributes to “the more recent Sceptics” (to be distinguished from what
he calls “the older Sceptics”), and which Diogenes Laertius in the third cen-
tury would identify with “Agrippa and his school”.2 Of these five modes the

1 Bonjour 1985, p.18; Audi 1998, 183–184. The thought is echoed by Michael Hue-
mer when he writes that regress arguments “concern some of the most fundamental
and important issues in all of human inquiry” (Huemer 2016, 16).
2 Sextus Empiricus, Outlines of Pyrrhonism, Book I, 164; see p. 40 in the transla-
tion Outlines of scepticism by Julia Annas and Jonathan Barnes. Diogenes Laertius,
Lives of eminent philosophers, Volume 2, Book 9, 88. We thank Tamer Nawar and
an anonymous referee for guidance in matters of ancient philosophy.



4 1 The Regress Problem

three that are of especial interest are the Mode of Infinite Regress, the Mode
of Hypothesis, and the Mode of Circularity or Reciprocation. Here is how
Sextus explains them:

In the mode deriving from infinite regress, we say that what is brought for-
ward as a source of conviction for the matter proposed itself needs another
source, which itself needs another, and so on ad infinitum, so that we have no
point from which to begin to establish anything, and suspension of judgement
follows. . . . We have the mode from hypothesis when the Dogmatists, being
thrown back ad infinitum, begin from something which they do not establish
but claim to assume simply and without proof in virtue of a concession. The
reciprocal mode occurs when what ought to be confirmatory of the object
under investigation needs to be made convincing by the object under inves-
tigation; then, being unable to take either in order to establish the other, we
suspend judgement about both.3

In other words, whenever a ‘dogmatist’ (as Sextus calls any philosopher who
is not a Pyrrhonian sceptic) claims that he knows a proposition q, the Pyrrho-
nian sceptic will ask him what his reason is for q. After the dogmatist has
given his answer, for example reason A1, the sceptic will ask further: what
is your reason for A1? In the end it will become clear that the dogmatist has
only three options open to him, jointly known as ‘Agrippa’s Trilemma’:

1. He goes on giving reasons for reasons for reasons, without end.
2. He stops at a particular reason, claiming that this reason essentially justi-

fies all the others that he has given.
3. He reasons in a circle, where his final reason is identical to his first.

In the first case the justificatory chain is infinitely long, in the second case
it comes to a halt, and in the third case it forms a loop. The sceptic is quick
to point out that none of these options can be accepted as a justification for
q. The first option is impossible from a practical point of view, since we are
ordinary human beings with a restricted lifespan. Moreover, even if we were
to live forever, continuing to give reason after reason, we would never reach
the origin of the justification, since by definition the chain does not have an
origin. The second option is also unsatisfying. For why do we stop at this
particular reason and not at another? If we can answer this question, we have
a reason for what we claimed is without a reason, so we actually did not
stop the chain. And if we cannot answer the question, then stopping at this
particular reason is arbitrary. The third option is likewise unacceptable, for

3 Sextus Empiricus, Outlines of scepticism. Book I, 166–169. Translation by Julia
Annas and Jonathan Barnes, 41.
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justifying the object under investigation by calling on that very object is not
particularly convincing.

The Pyrrhonian takes the moral of this discouraging story to be that we
are never justified in claiming that we know a proposition q. Proposition q
might be true, it might be false, we simply have no way to know for sure.
The only viable option open to us is to suspend judgement. Suspension of
judgement (epoche) does not imply that we will be paralyzed; it does not
mean that we cannot form any beliefs, are incapable of making decisions, or
cannot perform actions on the basis of these decisions. Although we should
desist from making a truth-claim, it is perfectly acceptable to abide by ap-
pearances, customs, and natural inclinations, and to act in accordance with
them. Thus, to return to our snake example, it is altogether acceptable and
even recommended to take your neighbour’s word for it and proceed corre-
spondingly — that will actually make you a better, and at any rate a more
normal person than to engage in highly abstract reasoning. The fact that we
must take recourse to suspension of judgement should therefore not sadden
of demoralize us. Quite the contrary. We should welcome this fact and em-
brace it, since that will free us from the futile and fruitless attempt to arrive
at knowledge, certainty, or justified beliefs, and bring us closer to ataraxia.

Pyrrhonian scepticism appears to have been quite a popular philosophical
outlook in the first century A.D. However interest in it slowly waned in the
second and third century, and by the fourth the movement had practically
disappeared.

About the same time that the Pyrrhonian movement petered out, appre-
ciation for the ideas of the recently rediscovered Aristotle (384–322 B.C.)
was on the rise. It turns out that Aristotle had anticipated something like the
Agrippan Trilemma in his Posterior Analytics and in his Metaphysics. Unlike
the Pyrrhonians, however, he does not use the trilemma as a means for argu-
ing that we can never know a proposition. In fact the opposite is true. Rather
than arguing that none of the three possibilities in Agrippa’s Trilemma pro-
duces justification, Aristotle gives short shrift to possibilities one and three,
and claims it to be evident that the second possibility is a proper justificatory
chain, and so does give us knowledge of some kind, be it practical, theoreti-
cal, or productive. Here is how Aristotle phrases his position in the Posterior
Analytics, where ‘understanding’ refers to what we have called ‘knowledge’,
and where ‘demonstration’ is used for ‘justification’:

Now some think that because one must understand the primitives there is no
understanding at all; others that there is, but that there are demonstrations of
everything. Neither of these views is either true or necessary.
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For the one party, supposing that one cannot understand in another way,
claim that we are led back ad infinitum on the ground that we would not un-
derstand what is posterior because of what is prior if there are no primitives;
and they argue correctly, for it is impossible to go through infinitely many
things. And if it comes to a stop and there are principles, they say that these
are unknowable since there is no demonstration of them, which alone they say
is understanding; but if one cannot know the primitives, neither can what de-
pends on them be understood simpliciter or properly, but only on the suspicion
that they are the case.

The other party agrees about understanding; for it, they say, occurs only
through demonstration. But they argue that nothing prevents there being
demonstration of everything; for it is possible for the demonstration to come
about in a circle and reciprocally.

But we say that neither is all understanding demonstrative, but in the case of
the immediates it is non-demonstrable — and that this is necessary is evident;
for if it is necessary to understand the things which are prior and on which the
demonstration depends, and it comes to a stop at some time, it is necessary for
these immediates to be demonstrable. So as to that we argue thus; and we also
say that there is not only understanding, but also some principle by which we
become familiar with the definitions.4

A similar reasoning can be found in the Metaphysics:

There are [people who demand] that a reason shall be given for everything; for
they seek a starting-point, and they wish to get this by demonstration, while it
is obvious from their actions that they have no conviction. But their mistake
is what we have stated it to be; they seek a reason for that for which no reason
can be given; for the starting-point of demonstration is not demonstration.5

This is not the place, nor do we have the competence to deal with histori-
cal details or with intricacies of translation from the Greek. Relevant for our
purpose is the observation that the above passages of Aristotle herald the
birth of what in contemporary epistemology became known as foundation-
alism. Foundationalism comes in various shapes and sizes, but its essence is
an adherence to a foundation, be it a basic belief, a basic proposition, or even
a basic experience. It thus can be described as joining Aristotle in embrac-
ing the second option of Agrippa’s trilemma. Like Aristotle, foundationalists
maintain that justified beliefs come in two kinds: the ones that do, and the
ones that do not depend for their justification on other justified beliefs. It is
not always clear what the nature of the latter kind is, but in most versions of

4 Aristotle 1984a, Posterior Analytics, Book I, Chapter 3, 72b 5-24. Translation by
Jonathan Barnes, 117.
5 Aristotle 1984c, Metaphysics, Book IV, Chapter 6, 1011a 3-13. Translation by
W.D. Ross, 1596.
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foundationalism these justified beliefs are in some sense self-evident and so
not in need of other beliefs for their justification.

During the Middle Ages foundationalism became the dominant school of
thought concerning the structure of justification. Especially Thomas Aquinas
(1225-1274), whose Aristotelian outlook so greatly influenced Western epis-
temology, contributed to the view that the Agrippan Trilemma could be re-
solved by a foundationalist response to the regress problem. In his Com-
mentary on Aristotle’s Posterior Analytics, Aquinas starts by defending the
traditional view that knowledge (scientia) of a proposition q implies that one
has a particular kind of justification for q. The justification for q is either
inferential or non-inferential. In the first case q is justified by another propo-
sition, for example A1, that is both logically and epistemically prior to q; here
we know q per demonstrationem, that is through A1. In the second case we
know q by virtue of itself (per se nota). Aquinas follows Aristotle in arguing
that inferential justification cannot exist without non-inferential justification.
We may know many propositions per demonstrationem, but in the end every
justificatory chain must culminate in a proposition that we know per se.

The end of the fifteenth century evinced renewed interest in Sextus Empir-
icus, whose texts were brought to Italy from Byzantium. A Latin translation
of Sextus’ Outlines, which appeared in 1562 in Paris under the title Pyrrho-
niarum Hypotyposes, kindled the interest of European humanists, who had
a taste for using sceptical arguments in their attack not only on astrology
and other pseudo-science, but also on mediaeval scholasticism and forms of
all too rigid Aristotelianism.6 An important rôle in the revival of Pyrrhonian
scepticism in the sixteenth century was played by the French philosopher
and essayist Michel de Montaigne (1533–1592). In the manner of Sextus
and Pyrrho, Montaigne stressed that knowledge cannot be obtained, and that
we should suspend judgement on all matters. He accordingly propagated tol-
erance in moral and religious matters, as Pyrrho had done, and espoused an
undogmatic adoption of customs and social rules.

Although Montaigne’s work was highly influential at the beginning of the
seventeenth century, his impact was soon overshadowed by the authority of
his compatriot René Descartes (1596–1650). This supersession turned out
to be definitive: when today epistemologists talk about philosophical scep-
ticism, they generally have Descartes rather than Montaigne or Pyrrho in
mind. Cartesian scepticism is however quite different from scepticism in the

6 Thanks to Lodi Nauta for helpful conversations.
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Pyrrhonian vein.7 Whereas Pyrrhonians cheerfully embrace the adage that
knowledge cannot be had because information obtained by the senses and by
reason is unreliable, Descartes aims at no less than a theory of everything, a
coherent framework that could explain the entire universe. The way in which
he tried to reach this goal has become part of the canon: in an attempt to
arrive at a proposition that can resist all doubt, so as to make it the basis on
which to erect his all encompassing framework, Descartes applies his scepti-
cal method of doubting every proposition that could possibly be false. Thus
he arrives at the allegedly indubitable truth of the cogito ergo sum. But of
course, the adherence to the cogito as the foundation for all our knowledge
eventually makes him more a foundationalist than a sceptic. In a sense, the
difference between the two kinds of scepticism could not be greater: whereas
a Pyrrhonian uses the sceptical method as a means towards ataraxia, the state
of imperturbability where one is at peace with the supposed fact that knowl-
edge cannot be had, for Descartes it is a way of acquiring knowledge of the
entire external world and of our place therein.

1.2 Coherentism and Infinitism

Already in the seventeenth century there was severe criticism of the cogito,
and of the whole Cartesian method of doubt. The foundationalist thrust of
Descartes’ philosophy, however, was generally accepted, since it harmonized
perfectly with the dominant tradition in epistemology. Most philosophers be-
fore Descartes were foundationalists concerning justification, as were many
after him. The English empiricists of the eighteenth century, John Locke,
George Berkeley, and David Hume, all had a foundationalist outlook. The
same can in a sense be said of the great German philosopher of the En-
lightenment, Immanuel Kant, although he appears to have been a bit more
cautious. In his Critique of Pure Reason he emphasizes that from the fact
that every event has a cause, it does not follow that there is a cause for ev-
erything. Similarly, from the fact that every proposition has a reason, it does
not follow that there is a reason for the entire justificatory chain.8 Yet, says

7 For a good explanation of the differences between Cartesian and Pyrrhonian scep-
ticism, see Williams 2010.
8 The difference is nowadays known as one of the scope distinctions. The statement
‘For each y there is an x to which y stands in the relation R’ (∀y ∃x yRx) differs
from ‘There is an x to which each y stands in the relation R’ (∃x ∀y yRx). Standard
example: ‘Every mammal has a mother’ differs from ‘There is something that is the
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Kant, humans have a natural inclination to posit such a foundational cause
or reason, and Kant’s text does not always make it very clear whether this
inclination should be resisted or put to practical use.

In the nineteenth century, Hegel developed an anti-foundationalist epis-
temology, as did Nietzsche, but it was not until the twentieth century that
a serious alternative to foundationalism surfaced in the form of coherentism
(although major figures in the twentieth century like Bertrand Russell, Alfred
Ayer, and Rudolf Carnap remained convinced foundationalists). The main
motivation behind the rise of coherentism was dissatisfaction with the foun-
dationalist approach, especially with the idea that basic beliefs are somehow
self-justifying and could exist autonomously. “No sentence enjoys the noli
me tangere which Carnap ordains for the protocol sentences”, writes Otto
Neurath in 1933 about Carnap’s attempt to logically re-erect the world from
a bedrock of basic elements or protocol sentences, as he calls them.9 Ac-
cording to Neurath and other coherentists, sentences are always compared to
other sentences, not to experiences or ‘the world’ or to sentences that have
some sort of sovereign standing.10

Coherentism is described in many textbooks as the attempt to put an
end to the regress problem by embracing the third alternative of Agrippa’s
Trilemma. For example, A2 can be a reason for A1, which is a reason for q,
which in turn is a reason for A2. The position is however markedly more so-
phisticated: rather than advocating reasoning in a circle, it maintains that jus-
tification is not confined to a finite or ring-shaped justificatory chain. What
is justified, according to coherentists, are first and foremost entire systems
of beliefs or propositions, not individual elements in these systems. Justifi-
cation of individual beliefs through one-dimensional justificatory loops is a
special case only, a degenerate form of the holistic process that constitutes
justification.

According to coherentism, the more coherent a system is, the more it is
justified. But what exactly does it mean to say that beliefs in a system cohere
with one another in that system? Twentieth century coherentists have worked
hard to find a satisfying definition of ‘coherence’, but Laurence Bonjour has
argued that there is no simple answer to the question, since coherence de-

mother of all mammals’. The difference was already acknowledged in the Middle
Ages and perhaps even by Aristotle, but has not always been applied consistently
across the board.
9 Neurath 1932-1933, 203. See also Carnap 1928.
10 In the telling words of Donald Davidson: “what distinguishes a coherence theory
is simply the claim that nothing can count as a reason for holding a belief except
another belief” (Davidson 1986, 310).
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pends on many different conditions being fulfilled; in fact, an entire list of
different coherence criteria can be made.11 A complicating factor in finding
a definition of coherence is that we want this definition also to incorporate
a measure, so that we can determine how coherent a particular system is.
Many ingenious suggestions for formal coherence measures have been put
forward.12 All these measures are vulnerable to a classic criticism, namely
that coherence is not truth-conducive: a system of propositions can be co-
herent to the highest degree while all of the propositions are in fact false.
The criticism was already ventilated by Bertrand Russell at the beginning
of the twentieth century and is sometimes referred to as the Bishop Stubbs
objection:

Whatever the standards of coherence may be, it seems likely that alternative
sets of propositions will meet them: as Russell 1906 pointed out, although
the highly respectable Bishop Stubbs died in his bed, the proposition “Bishop
Stubbs was hanged for murder” can readily be conjoined with a whole group
of others to form a set which passes any plausible coherence test; and indeed,
the same can be said of the propositions that make up any good work of real-
istic fiction.13

In fact the Bishop Stubbs objection to coherentism cuts even deeper than
Russell envisaged. As Luc Bovens and Stephan Hartmann showed in 2003,
a system which is more coherent than another system cannot even be said to
have a higher probability of being true than the other system.14

At the beginning of the twenty-first century a third approach to the episte-
mological regress problem entered the philosophical arena, one that is now
known as ‘infinitism’. While foundationalism and coherentism are said to
avoid the regress problem by opting for the second, respectively the third,
possibility of Agrippa’s Trilemma, infinitism chooses the first. According
to infinitists, it is not prima facie absurd that the process of giving reasons
for reasons might go on without end, so that the justificatory chain will be
infinitely long.

11 Bonjour 1985, 97-99.
12 See for example Olsson 2001, 2002, 2005a, 2005b; Shogenji 1999. For the rela-
tion between coherence and confirmation, see Fitelson 2003; Dietrich and Moretti
2005; Moretti 2007. For defences of coherentism in general, see Quine and Ullian
1970; Rescher 1973; Bonjour 1985; Davidson 1986; Lehrer 1997.
13 Walker 1997, 310. Although in this quotation Walker refers to propositions, a
similar objection, albeit one that is somewhat more complicated, could be made
with reference to beliefs. Ibid. 316. See for Russell’s argument, Russell 1906.
14 Bovens and Hartmann 2003. See also Olsson 2005b.
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To say that infinitism has consistently had a bad press would be claim-
ing too much. Infinitism had no press at all, since until very recently nobody
took it seriously. The reason for this is not difficult to discern. In an epistemo-
logical tradition dominated by Aristotelian and Cartesian foundationalism, a
position like infinitism is highly counterintuitive to say the least; for how
could anybody, in Aristotle’s words, “go through infinitely many things”? It
is therefore not surprising that infinitism is hardly, if ever, mentioned in trea-
tises or textbooks; and if it is mentioned, then it usually serves as an example
of a blatantly ridiculous way to go. Yet it cannot be denied that infinitism sits
well with some modern ideas about the nature of knowledge, such as that
knowledge is essentially fallible, and that the human search for it is, indeed,
without end. Despite many attempts to show the contrary, it is not at all clear
how these ideas, which so many of us endorse, can be smoothly combined
with foundationalism or even coherentism.15

In this book we will investigate the consequences of an infinitist response
to the regress problem. We do not propose to defend infinitism as such.
Rather our aim is twofold. On the one hand, we intend to show that some
standard objections to the position are not as strong as they might seem at
first sight. On the other hand, we explain how our analysis of these objec-
tions brings about insights that cast new light on the traditional positions,
foundationalism and coherentism; as we will see, a careful analysis of infi-
nite justificatory chains will teach us interesting novel facts about finite ones.
In the end we somehow try to get it all, sketching the contours of an infinitist
version of coherentism, which also acknowledges the foundationalist lesson
that we should somehow make contact with the world. We will return to this
in the final chapter.

All-important for the development of infinitism was the work by Peter
Klein. Around 2000 Klein wrote a number of papers in which he took the bull
by the horns and presented infinitism as a genuine competitor to coherentism
and foundationalism. Here is how Klein introduces his view in a relatively
early paper:

The purpose of this paper is to ask you to consider an account of justification
that has largely been ignored in epistemology. When it has been considered, it
has usually been dismissed as so obviously wrong that arguments against it are
not necessary. The view that I ask you to consider can be called “Infinitism”.
Its central thesis is that the structure of justificatory reasons is infinite and
nonrepeating. My primary reason for recommending infinitism is that it can

15 For a prominent attempt at reconciling foundationalism and fallibilism, see Audi
1998.
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provide an acceptable account of rational beliefs, i.e. beliefs held on the ba-
sis of adequate reasons, while the two alternative views, foundationalism and
coherentism, cannot provide such an account.”16

Klein is a convinced advocate of infinitism. As he sees it, infinitism is not
just a third way to solve the regress problem beside two other approaches
— it is the only viable solution to the regress problem.17 The reason is that
infinitism is the only account that can satisfy “two intuitively plausible con-
straints on good reasoning” which jointly entail that the justificatory chain is
infinite and non-repeating.18 The two constraints are the Principle of Avoid-
ing Circularity (PAC) and the Principle of Avoiding Arbitrariness (PAA).
Here is Klein about the first constraint:

PAC: For all q, if a person, S, has a justification for q, then for all Ai, if Ai is
in the evidential ancestry of q for S, then q is not in the evidential ancestry of
Ai for S.19

By the term ‘evidential ancestry’ Klein refers to the order of the links in the
justificatory chain for q. So in our justificatory chain (1.1), proposition A2 is
in the evidential ancestry of A1 and q, and A3 is in the evidential ancestry of
A2, A1 and q. Klein considers PAC to be “readily understandable and requires
no discussion”, and hence refrains from further defending it.20

16 Klein 1999, 297. The term ‘infinitism’ was however not coined by Klein. He gives
the credits for inventing the term to Paul Moser, who uses “epistemic infinitism” to
refer to “inferential justification via infinite justificatory regresses” (Moser 1984,
199). See Klein 1998, 919, footnote 1. Charles Sanders Peirce is often paraded as
the first infinitist (Peirce 1868), but James Van Cleve has suggested that what Peirce
actually defends is “the possibility that each cognition of an object be ‘determined’
by an earlier cognition”, not the possibility of an infinite regress of justification (Van
Cleve 1992, 357, footnote 29).
17 “I conclude that neither foundationalism nor coherentism provides an adequate
non-skeptical response to the epistemic regress problem. Only infinitism does.”
(Klein 2011a, 255); “. . . only infinitism is left as a possible solution on offer to
the regress problem” (Klein 2007, 16). In his later work, however, Klein made a
plea for a “rapprochement” between foundationalism and infinitism by arguing that
basic beliefs are contextual: whether a particular belief is basic or not depends on
the context (Klein 2014). John Turri also made an attempt to bring foundational-
ism and infinitism together by presenting an exampe of a justificatory chain which,
although infinite, can nevertheless be handled by foundationalists (Turri 2009, 161-
163). For criticism of this example, see Peijnenburg and Atkinson 2011, Section 6,
and Rescorla 2014, 181-182.
18 Klein 1999, 298.
19 Ibid., 298-299. For convenience we have adjusted Klein’s notation.
20 Klein 2005, 136.
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The Principle of Avoiding Arbitrariness is:

PAA: For all q, if a person, S, has a justification for q, then there is some
reason, A1, available to S for q; and there is some reason, A2, available to S
for A1; etc.

In contrast to the first constraint, PAA is likely to generate a lot of discussion.
For what does it mean to say that a proposition An is available to S as a
reason for An−1? The answer to this question is clearly very important, for it
involves what we mean by ‘epistemic justification’, and thus what we mean
by the arrow in our justificatory chain:

q ←− A1 ←− A2 ←− A3 ←− A4 . . .

Although Klein acknowledges the importance of the question, he believes
that the discussion about the pros and cons of infinitism can be carried out
without delving into the matter. He argues that An is available to S as a rea-
son for An−1 if and only if An is both objectively and subjectively available.
Objective availability is about the relation between two propositions: An is
objectively available as a reason for An−1 if and only if it really is a rea-
son for An−1. Klein remarks that what makes a proposition a reason “need
not be fleshed out”, since “there are many alternative accounts that could
be employed by the infinitist”; hence the “thorny issue” of what makes a
proposition a reason “can be set aside”.21 Subjective availability is about the
relation between a proposition and a person: An is subjectively available as
a reason to S if and only if An is “appropriately ‘hooked up’ to S’s beliefs
and other mental contents”.22 It need not imply that S actually believes or
endorses An; it only means that S must in some sense be able to “call on”
An.23 For example, it is not necessary for S to know or believe that 366 + 71
= 437 in the sense in which S knows or believes that 2 + 2 = 4. It is enough
for subjective availability if S is able to do the calculation when called on
to do so. In Klein’s words, “The proposition that 366 + 71 = 437 is subjec-
tively available to me because it is correctly hooked up to already formed
beliefs.”24

Unlike Klein, we do not believe that an investigation into the viability of
infinitism can evade the question as to what makes a proposition a reason for

21 Ibid., 136-137.
22 Ibid., 136.
23 Klein 1999, 300, 308-309.
24 Ibid., 308. Coos Engelsma has argued that Klein’s distinction between objectively
and subjectively available can be variously interpreted (Engelsma 2015, Engelsma
2014).
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another proposition. Thorny as the issue may be, the meaning of ‘justifica-
tion’ cannot be set aside if we want to examine whether chains of justification
must be finite or can be infinite. Klein is right that there exist many different
accounts of epistemic justification, but it is not so that all these accounts can
be used without problem. Some of the accounts will be useful to infinitists,
while others might be more advantageous to foundationalists or coheren-
tists. It is therefore important to have an account of justification, however
provisional it may be, on which everybody agrees, and then see whether this
account allows infinite justificatory chains — and if so, in what sense.

William Alston has argued that such a neutral account of justification is
impossible.25 In his view, no definition of justification can serve as an im-
partial starting point or as a tool for adjudicating epistemological debates.
Every definition will eventually take sides, and favour a particular position
in the epistemological debate about the structure of justfication. Alston’s ad-
vice to the epistemological community therefore is to abstain from attempts
at defining justification and instead turn to spelling out what he calls ‘epis-
temic desiderata’. That will be more fruitful for the theory of knowledge than
undertaking ill-fated attempts to find a definition of justification.

Alston’s point is well taken, but we think it applies primarily to material
accounts of justification, less so to formal ones. As we will argue in Chapter
2, focusing on the formal properties of epistemic justification might generate
more consensus than Alston deems possible. Moreover, as we will show in
Chapters 3 to 6, a focus on formal properties casts doubt on several objec-
tions to the idea that justificatory chains can be infinitely long. In the end, our
formal explication of justification provides us with means to preserve many,
although not all, of Peter Klein’s intuitions about the value of infinitism.

1.3 Vicious Versus Innocuous Regress

Epistemology is of course not the only place where infinite regresses occur.
They can also be found in other philosophical disciplines, as well as in areas
outside philosophy. Many of these regresses are not troublesome at all. Espe-
cially mathematics abounds with regresses that are benign: every integer has
both a successor and a predecessor, every line segment can be divided into
two, every natural number can be doubled, and so on. Outside mathematics
there are benign regresses too, such as the regress arising from the statement

25 Alston 1989, 1993, 2005a.
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that, in arriving at the Louvre, I had already reached the midpoint of the dis-
tance to the Louvre, and the midpoint of the distance to the first midpoint,
and so on.

How do we distinguish between between vicious and harmless regresses?
This is an intriguing question, but an attempt to answer it might be overly
ambitious. As Daniel Nolan has argued, it will be difficult if not impossi-
ble to find a general answer: there simply is not one criterion that applies
to all cases.26 A more feasible plan, although still not an easy one, is to ask
ourselves why exactly it is that justificatory regresses are widely perceived
as vicious. Why are infinite justificatory chains readily consigned to the bad
batch? The fact that they have been treated with hostility or neglect goes al-
most without saying. “It can hardly be pretended”, writes David Armstrong,
“that this reaction to the regress [i.e. calling it virtuous] has much plausibil-
ity. . . . it is a desperate solution, to be considered only if all others are clearly
seen to be unsatisfactory”.27 Here are a few more quotations that serve as il-
lustrations. All are taken from epistemology textbooks which were published
after Peter Klein launched his controversial view, for earlier books are often
simply silent about the possibility.

We humans, for better or worse, do not have an infinite amount of time.
. . . Evidently, then, proponents of infinitism have some difficult explaining to

26 Nolan 2001. The same point is made by Nicholas Rescher (2010): “There is noth-
ing vicious about regresses as such” (ibid., 21); “Infinite regression is not something
that is absurd as such, involving by its very nature a fault or failing that can be con-
demned across the board. Its viciousness will depend on the specifics of the case.”
(ibid., 62). Even so, Rescher offers several rules of thumb for distinguishing a be-
nign from a vicious regress. One of them involves the difference between regresses
that are time-compressible and those that are not: the former are often harmless, but
the latter may well be vicious: “any regress that requires the realization of an in-
finitude of [not time-compressible] actions is thereby vicious” (ibid., 53). A related
distinction is that between consequences or co-conditions on the one hand and pre-
conditions or pre-requisites on the other hand (ibid., 55-61). The former are time-
compressible, the latter are not, so a regress with consequences or co-conditions will
often be harmless while a regress with pre-conditions or pre-requisites will mostly
be vicious. We briefly return to time-compressibility in Chapter 5.

Michael Huemer has made the interesting suggestion that an infinite regress is
vicious (i.e. cannot exist) if it requires the instantiation of “an infinite intensive
magnitude” (Huemer 2014, 88). He considers this suggestion to be a first step to-
wards “a new theory of the vicious infinite” (ibid., 95). On evaluating infinite regress
arguments in general, see Gratton 2009, which is a study in argumentation theory;
Wieland 2014 also deals with the subject.
27 Armstrong 1973, 155.
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do. As a result, infinitism has attracted very few public supporters throughout
the history of epistemology. It is, nonetheless, a logically possible approach
to the regress problem, at least according to some philosophers.28

The least plausible . . . response to Agrippa’s trilemma involves . . . holding that
an infinite chain of justification can justify a belief. The position is known as
infinitism. On the face of it, the view is unsustainable because it is unclear
how an infinite chain of grounds could ever justify a belief any more than an
infinite series of foundations could ever support a house. Nevertheless, this
view does have some defenders . . . 29

[Infinitism] tells us that evidential chains can be infinitely long, and so need
not terminate. [It] allows that [a belief] can be supported by an evidential
chain that has an infinite number of links . . . Such an infinite chain would
have no final or terminating link. One difficulty with this option is that it
seems psychologically impossible for us to have an infinite number of beliefs.
If it is psychologically impossible to have an infinite number of beliefs, then
none of our beliefs can be supported by an infinite evidential chain.30

For one thing, justifications that never come to an end are not the sort of
justifications we typically prize from the standpoint of learning more about
the world. For another, [infinitism] seemingly would commit us to the idea
that humans have an infinite chain of beliefs. . . . Although the normal person
undoubtedly has an indefinitey large number of beliefs, that person is unlikely
to have a limitless supply of beliefs.31

Note that three of the four cited authors criticize infinitism because it sup-
posedly implies that people have an infinite number of beliefs. The complaint
dates back as far as Aristotle, and is known as the finite mind objection. We
discuss this objection in Chapter 5. For the moment we restrict ourselves to
observing that the intuition behind the finite mind objection is not so natural
and widely shared as it may seem at first sight. Even among philosophers
opposed to infinitism, there are some who do believe that people can have
an infinite number of beliefs. Richard Fumerton, for example, writes in his
paper on classical foundationalism:

28 Moser, Mulder, and Trout 1998, 82.
29 Pritchard 2006, 36.
30 Lemos 2007, 48.
31 Crumley 2009, 109-110.
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Klein is right that we do have an infinite number of beliefs, but I think he
misses the real point of the regress argument for noninferentially justified be-
liefs. The viciousness of the regress is, I believe, conceptual.32

Do we have a finite mind? This is not so clear. We have finite brains, and
minds supervene on brains, but does that mean that our mind is finite? What
exactly does it mean to have a finite mind? That we cannot have an infinite
number of beliefs? But how to count? Moreover, even if we have a finite
mind in the sense that our beliefs are finite and therefore countable, this does
not prevent us from saying many cogent things about infinities — how is that
possible?

The routine manner in which epistemologists have rejected infinite justi-
ficatory chains is reminiscent of the customary ways in which infinite causal
chains have been cast aside. Again, Aristotle appears to have played a major
rôle here. His familiar arguments against infinite causal chains in his Physics
and Metaphysics became a well-entrenched part of the philosophical canon.
Yet Aquinas and other mediaeval scholars had already pointed out that Aris-
totle’s arguments may be more restricted than they appear: not every causal
regress seems to be vicious, it all depends on what is meant by ‘causal con-
nection’. So let us take a closer look at Aristotle’s objection to causal re-
gresses and the criticism thereof by the mediaeval schoolmen. This might
help us to see why exactly it is that justificatory regresses have been rejected
without much ado, and to assess whether such a hasty rejection is appropri-
ate. In Chapter 8, in the final section, we will discuss causal chains in a more
modern setting, namely that of causal graphs.

Aristotle’s main argument against a causal regress is that it purports to
explain a phenomenon, but in fact fails to do so. Suppose an event, an object,
or a process A is explained by saying that it is caused by B, and B is causally
explained by pointing to C, and so on. If this series were to go on indefi-
nitely, it would remain unclear why A occurred in the first place. The only
way to explain the occurrence of A is to refer to a principal or first cause,
i.e. something that causes all the other elements in the series, but is itself
uncaused. Aristotle stresses that his argument is not confined to a particu-
lar kind of causation, but applies to any of the four different causes that he
distinguishes, i.e. material, efficient, final or formal:

Evidently there is a first principle, and the causes of things are neither an infi-
nite series nor infinitely various in kind. For, on the one hand, one thing cannot
proceed from another, as from matter, ad infinitum . . . nor on the other hand

32 Fumerton 2001, 7. We will say more about the conceptual objections to infinitism
in Chapter 6.
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can the efficient causes form an endless series . . . Similarly the final causes
cannot go on ad infinitum. . . . And the case of the formal cause is similar. . . . It
makes no difference whether there is one intermediate or more, nor whether
they are infinite or finite in number. But of series which are infinite in this
way, and of the infinite in general, all the parts down to that now present are
like intermediates; so that if there is no first there is no cause at all.33

Aristotle’s argument is the most intuitive when he talks about causation as
setting something in motion. Suppose object A moves because it is moved by
object B, and B moves because it is moved by C, and so on. Then, unless the
series comes to rest in an Unmoved Mover, we cannot explain why A moved
in the first place:

Now this [a thing being in motion] may come about in either of two ways,
either . . . because of something else which moves the mover, or because of the
mover itself. Further, in the latter case, either the mover immediately precedes
the last thing in the series, or there may be one or more immediate links: e.g.
the stick moves the stone and is moved by the hand, which again is moved
by the man; in the man, however, we have reached a mover that is not so in
virtue of being moved by something else. Now we say that the thing is moved
both by the last and by the first of the movers, but more strictly by the first,
since the first moves the last, whereas the last does not move the first, and the
first will move the thing without the last, but the last will not move it without
the first: e.g. the stick will not move anything unless it is itself moved by the
man. If then everything that is in motion must be moved by something, and
by something either moved by something else or not, and in the former case
there must be some first mover that is not itself moved by anything else, while
in the case of the first mover being of this kind there is no need of another
(for it is impossible that there should be an infinite series of movers, each of
which is itself moved by something else, since in an infinite series there is no
first term) — if then everything that is in motion is moved by something, and
the first mover is moved not by anything else, it must be moved by itself.34

In other words, if a man moves a stone by moving a stick, the movement of
the stone is not explained by referring merely to the movement of the stick.
We must point to the man who moves the stick, for without him the stick
would be at rest. The man’s own movement, however, cannot be explained
in this manner, since the man is not moved by anybody or anything outside
him — he moves himself.

33 Aristotle 1984c, Metaphysics, Book II, Chapter 2, 994a, 1-19. Translation by
W.D. Ross, 1570.
34 Aristotle 1984b, Physics, Book VIII, Chapter 5, 256a, 4-21. Translation by R.P.
Hardie and R.K. Gaye, 427-428.



1.3 Vicious Versus Innocuous Regress 19

Thomas Aquinas pointed out that Aristotle’s picture of a causal regress
appears to be too simple. There are at least two different causal regresses,
each of them covering Aristotle’s four causes, one being vicious and one be-
ing benign. Aquinas and other scholastics refer to the distinction as a causal
series per se versus a causal series per accidens. The difference should not
be confused with the distinction we mentioned in Section 1.1 between know-
ing a proposition per se and knowing it per demonstrationem. Nor should it
be simply put on a par with the distinction between necessary and acciden-
tal properties. Causal series per accidens and per se are about the ways in
which its members are ordered, i.e. the way in which the causes in the series
are linked. A particular cause can have necessary properties but be linked to
other causes in an accidental way. Conversely, a cause may have accidental
properties, but be part of a series of which the members are ordered in an
essential way.

In a causal series per se each intermediate member (that is each member
except the first and the last) exerts causal power on its successor by virtue of
the causal power exerted on this member by its predecessor. Aristotle’s stone-
stick-man example in the above citation involves such an essential ordering
of causes. The stick causes the stone to move by virtue of the fact that the
man causes the stick to move. This series consists of three elements, of which
only the second (the stick) exerts causal power on its successor (the stone)
by virtue of the causal power exerted on it by its predecessor (the man). Of
course there will be more intermediate members if the essential ordering is
longer. If for example the stone were to move a pebble, the stone would cause
the pebble to move by virtue of the fact that it was moved by the stick. The
salient point is that the intermediate members depend for their causing on
their being caused.

Things are different in a causal series per accidens. Here each member
(except the last) exerts power on its successor, but not by virtue of the causal
power exerted on it by its predecessor. The standard example is Jacob, who
was begotten by Isaac, who in turn was begotten by Abraham. Again we
have a series of three elements, but none of them, not even the second one,
causes by virtue of the fact that it is caused. Isaac fathers Jacob not because
of the fact that he was fathered by Abraham, but because of having had inter-
course with Rebecca. A stick needs a hand to move the stone, but Isaac does
not need Abraham to sleep with Rebecca. Of course, Isaac needs Abraham
for his existence: if Abraham had not existed, then Isaac would not have ex-
isted either. But neither Abraham nor Abraham’s intercourse with Sarah is
the cause of Isaac begetting Jacob. As Patterson Brown formulates it in his
outstanding paper on infinite causal regressions:
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Abraham’s copulation causes Isaac’s conception, Isaac’s copulation causes Ja-
cob’s conception, Jacob’s copulation causes Joseph’s conception. Each mem-
ber has one attribute qua effect (being conceived) and quite another attribute
qua cause (copulating).35

In an essential ordering of causes, on the other hand, the attributes qua effect
and qua cause coincide:

. . . it is the same function of the stick (namely, its locomotion) which both is
caused by the movement of the hand and causes the movement of the stone.
Again, a series where the fire heats the pot and the pot in turn heats the stew,
causing it to boil, is also essentially ordered; for the warmth of the pot is both
caused by the warmth of the fire and cause of the warmth of the stew, while
the warmth of the stew is both caused by the warmth of the pot and cause of
the stew’s boiling.36

The above examples suggest that the causal relation in an essentially ordered
series is transitive, whereas the causal relation in an accidentally ordered
series is intransitive.37 If the man moves the stick, and the stick moves the
stone, then the man moves the stone. But if Abraham begets Isaac, and Isaac
begets Jacob, then it is not the case that Abraham begets Jacob.

The scholastics all agree that an essential ordering of causes needs a first
member, whereas an accidental ordering does not. Consider again the case
where we explain the moving of object A by pointing to B. The idea here is
that we have not really explained the movement of A if B is moved by C; at
best we have only postponed the explanation of A’s movement, or better: we
have now dressed it up as the question of how to explain B’s movement. Un-
less we arrive at a first mover X , embodying the origin of the movement, the
cry for an explanation will not be deadened and the explanation of A’s move-
ment will be woefully incomplete.38 The situation is entirely different in an
accidental ordering of causes. If we explain Jacob’s conception by referring

35 Brown 1966, 517.
36 Ibid.
37 Ibid. R.G. Wengert tried to formalize the transitivity of essentially ordered causes
by means of Gottlob’s Frege’s ancestral relation (Wengert 1971).
38 C.J.F. Williams argued that Thomas Aquinas in his Summa Theologiae commits
a petitio principii: by assuming that the only ‘movers’ are either first or second
movers, Thomas excludes by fiat the possibility that an infinite sequence may be
doing the moving (Williams 1960). J. Owens doubts whether Williams’ critique
“come[s] to grips with the argument of Aquinas in the argument’s own medieval
setting”, but he grants the point “as it stands from any concrete background and
time” (Owens 1962, 244).
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to the fact that Isaac made love to Rebecca, we have given a full and satisfac-
tory explanation. Of course, we could go further and ask for an explanation
of Isaac’s lovemaking. But such an explanation, as Patterson Brown deftly
notes, “will center on his actions with Rebecca, rather than on his having
been sired by Abraham.”39 Therefore, according to Thomistic schoolmen,
a causal regress per se is vicious because an essential causal ordering needs
a first member; but a causal regress per accidens is harmless since an acci-
dental ordering can exist without a member that is the first. Aristotle, when
talking about causality, seems however to have had in mind solely causal
orderings and regresses per se.

Still, it is not at all easy to find out how exactly an essential causal order-
ing differs from an accidental one. Is it because the former is transitive and
the latter intransitive? That seems unlikely, for one can think of accidental
causal orderings that are transitive. For example, Abraham is an ancestor of
Isaac, and Isaac of Jacob, but Abraham is also an ancestor of Jacob. This or-
dering is transitive, but it is not essential: it is not the case that Isaac’s being
an ancestor is caused by Abraham’s being an ancestor or that it causes Ja-
cob’s being an ancestor. So while it is true that the Abraham-begetting-Isaac
example is intransitive, the intransitivity might be a feature of the example,
not of the fact that it illustrates an accidental causal ordering. Conversely, as
Brown notes, the relation ‘A is moved by B’ need not always be used in a
transitive manner.40

Another difficulty, not less serious, concerns the question why exactly the
mediaeval schoolmen thought that an essential causal regress is vicious and
an accidental causal regress is harmless. Why is it that a causal ordering per
se needs a first member and a causal ordering per accidens does not? Brown
discusses the possibility that it is simultaneity that does the trick. The idea is
that, because causes in an essential ordering occur simultaneously (the man,
the stick, and the stone all moving at the same time), it is impossible to have
an infinite number of causes. For were we to allow an infinity of causes all
happening instantaneously, we would defy Aristotle’s ban on actual infini-
ties, and no true Aristotelian would ever go that far. In an accidental causal
series, however, the causes are ordered chronologically and thus do not oc-
cur at the same time; if they were to be infinite in number, they would form
a potential, not an actual infinity. However, Brown argues that it is not the
supposed simultaneity which requires that an essentially ordered series has
a first term. His argument is strong: Aristotle and his followers themselves

39 Brown 1966, 523.
40 Ibid., 518.
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explicitly deny that the argument for a first cause is related to the question
whether an infinite number of concurrent intermediate causes is possible or
not.41

What does the above excursion concerning causal regresses teach us about
justificatory regresses? We have said that the hostility towards justificatory
regresses, early and late, parallels a hostility towards causal regresses, es-
pecially in Aristotle’s work. However, we have seen that it makes sense to
distinguish between two different causal regresses (even if the distinction is
not always crystal clear and even if it is unclear whether the dichotomy is
exhaustive). Thus the question arises whether the same goes for justficatory
regresses. Can they be divided in a similar dichotomy? Is a typical justifi-
catory regress more like a causal regress per se or is it more like a regress
per accidens? Does it resemble the vicious man-stick-stone example or is
it similar to the benign Abraham-begets-Isaac paradigm? With respect to
all these questions, the jury is still out. Some philosophers apparently have
the intuition that justificatory regresses mirror the man-stick-stone example,
transitivity and all:

Consider a train of infinite length, in which each carriage moves because the
one in front of it moves. Even supposing that that fact is an adequate expla-
nation for the motion of each carriage, one is tempted to say, in the absence
of a locomotive, that one still has no explanation for the motion of the whole.
And that metaphor might aptly be transferred to the case of justification in
general.42

Others however hold that in justificatory regresses transitivity fails:

[regressive transitivity] will often fail — for example in the much-discussed
regress of reasons. For . . . A2 can afford a good reason for A1’s acceptance,
and A1 for q’s, without A2 being a good reason to accept q.43

To complicate the matter still further, contemporary epistemologists dis-
cussing infinitism generated their own paradigm cases. One involves the
analogy with basketball players throwing around the ball:
41 Ibid., 520. Brown hypothesizes that the concept of responsibility has something
to do with it. Calling in mind the etymology of ‘cause’ (which goes back to the
Greek ‘aitia’, a term that occurs mainly in legal contexts), Brown argues that it is
precisely the connotation of ‘cause’ as something that is responsible for its effect
that is crucial here: an essentially ordered series needs a first member because it
needs a member that is responsible for the entire series.
42 Hankinson 1995, 189.
43 Rescher 2010, 83, footnote 1. We have changed the symbols so as to make them
match ours.
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Consider the analogy of basketball players ... passing the ball to another.
. . . the question is this: how did [the ball] get there in the first place? 44

Here epistemic justification which goes from one proposition to another is
compared to a ball that is passed from one player to another. Is this a helpful
picture? Not so sure: the picture suggests that justification is something that
is lost once it is handed over to the neighbouring proposition, and this is
not something that we associate with justification. We do not believe that,
if Ai justifies A j, the former thereby loses the property of being justified
— quite the opposite. In this respect justification seems more like dharma
transmission or like an infectious disease: holy man Ai can impart dharma to
person A j without losing his holiness, just as the sick person Ai can pass on
his infection to person A j without thereby being cured. 45

In logic and mathematics, a necessary condition for establishing whether
a series continues indefinitely is to know the domain and the relation in ques-
tion.46 Take the formula ∀x∃yRxy. Whether this formula is true or false de-
pends on the domain over which the variables x and y range and on the nature
of the relation R. That is, we need to know what the objects in the series are
and also what the relation between those objects is. The statement S: ‘For all
objects x there is an object y such that y is smaller (or less) than x’ is true if x
and y are integers; S then unproblematically covers an infinitude of objects.
But if x and y are natural numbers, then S is false, since there is a smallest
natural number. However, if we change S into S′: ‘For all objects x there is
an object y such that y is greater than x’, then we obtain a truth even with the
interpretation of x and y as natural numbers. This illustrates that not only the
character of the objects is important, but the nature of the relation between
the objects too.

As do the causal cases, these mathematical considerations intimate that,
also in the field of epistemic justification, we must at least make clear what
the meaning is of the An, the objects, and of ←−, the arrow which symbolizes
the relation between the objects. What are reasons in a justificatory chain?
And how are they related? Only after having settled these questions could

44 Klein 2011b, 494.
45 John Turri also noted that ‘justification’ does not imply that something gets lost
(Turri 2014, 222). However, he uses the word ‘transmission’ for the latter case. In
Turri’s terminology, if a property gets transmitted from A j to Ai, this means that A j
loses the property while Ai receives it. Our use of ‘transmission’ is different, in that
it does not imply that A j no longer has the property.
46 Cf. Beth 1959, Chapter 1, Section 4.
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we hope to assess whether a justificatory chain of infinite length is sensible
or nonsensical, and we will address these matters in the next chapter.
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Chapter 2

Epistemic Justification

Abstract

What is the nature of the justifier and of the justified, and how are they re-
lated? The answers to these questions depend on whether one embraces inter-
nalism or externalism. As far as the formal side of the justification relation
is concerned, however, the difference between internalism and externalism
seems irrelevant. Roughly, there are three proposals for the formal relation.
One of them conceives the justification relation as probabilistic support; in
fact, however, probabilistic support is only a necessary and not a sufficient
condition for justification.

2.1 Making a Concept Clear

In philosophy concepts typically resist definition. Truth, justice, beauty, free-
dom, goodness: each of these notions is as fundamental as it is enigmatic. It
has been argued that the perennial attempts to define these terms are part
and parcel of the philosophical game, setting philosophy apart from science.
Thus Kant maintained that the way in which philosophers define their con-
cepts differs essentially from the way in which definitions are given outside
of philosophy. Defining a term in mathematics or the sciences, as he writes
in his Logic, is “to make a clear concept” whereas defining a philosophical
concept is “to make a concept clear”.1 Giving a definition of the mathemati-
cal term ‘trapezium’, for example, amounts to combining previously existing
and supposedly unambiguous notions like ‘parallel’, ‘angle’, and ‘side’ into

1 Einen deutlichen Begriff machen versus einen Begriff deutlich machen — Kant,
Logik, Einleitung, VIII C, see Jäsche 1869/1800, 70.
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the newly constructed concept ‘trapezium’. In defining a philosophical term,
however, we do not construct a new term out of already existing elements, but
rather try to reconstruct and clarify what is already given to us in a confused
and ill-determined way. While in philosophy we have a vague understanding
of the definiendum and strive to come up with a definiens that agrees with
what we have in mind, in the sciences we fabricate a definiendum on the
basis of a clear and existing definiens.

Although this Kantian view of philosophy dates back to Plato and was still
upheld in the twentieth century by such major figures as Rudolf Carnap, it is
all but uncontroversial. Especially in the late twentieth century pragmatists
and naturalists blamed it for its alleged sterility, and for its failure to appreci-
ate the continuity between science and philosophy. Richard Rorty expresses
the point unreservedly:

Pragmatists think that the story of attempts . . . to define the word ‘true’ or
‘good’ supports their suspicion that there is no interesting work to be done in
this area. It might, of course, have turned out otherwise. People have, oddly
enough, found something interesting to say about the essence of Force and the
definition of ‘number’. They might have found something interesting to say
about the essence of Truth. But in fact they haven’t. . . . [P]ragmatists see the
Platonic tradition as having outlived its usefulness.2

Our aim in this chapter is to say something interesting about the concept
of epistemic justification. The subject has been in a predicament ever since
Plato in his Theaetetus set out to answer the question: ‘What is the distinc-
tion between knowledge and true belief?’ Nowadays the debate about epis-
temic justification has become a multi-faceted affair, consisting of many sub-
and sub-sub-discussions. More than once the participants in the debate have
crossed the borders of epistemology in order to continue their arguments in
the fields of ethics, metaphysics, or philosophy of mind, thus creating a com-
plicated and colourful network of various positions with myriad connections
and interdependencies.

Some are pessimistic that progress can be achieved here. Roderick Chis-
holm discouragingly comments on Plato’s undertaking in the Theaetetus: “It
is doubtful that he succeeded and it is certain that we cannot do any better.”3.
William Alston, as we have seen, is even more explicit. He firmly recom-
mends the abandonment of the project of trying to understand justification
altogether, and makes a plea for an epistemology that studies various ‘epis-

2 Rorty 1982, xiv.
3 Chisholm 1966, 5.
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temic desiderata’. Like Rorty, he is clearly annoyed with a project that has
demanded so much from so many and has delivered so little.4

Our concern with epistemic justification in this book is in fact secondary.
When we aim to say something interesting about the issue, this is not be-
cause we aspire to define epistemic justification as such. Rather, we want to
find out whether, and if so to what extent, it makes sense to speak of infinite
justificatory chains. The major proponent of infinite chains in epistemology,
Peter Klein, has argued that the latter objective can be achieved without the
former. As he sees it, we need not unduly exert ourselves to understand justi-
fication, for the meaning of epistemic justification is irrelevant to a discussion
about the possibility of infinite justificatory chains. We can merrily discuss
the pros and cons of infinitism without worrying about what exactly justifi-
cation means, since infinitism is consistent with the many different accounts
of the expression ‘A j justifies Ai’. Klein lists five of those accounts, adding
that the list is not exhaustive:

1. if A j is probable, then Ai is probable and if A j is not probable, then Ai is
not probable; or

2. in the long run, A j would be accepted as a reason for Ai by the appropriate
epistemic community; or

3. A j would be offered as a reason for Ai by an epistemically virtuous indi-
vidual; or

4. believing that Ai on the basis of A j is in accord with one’s most basic
commitments; or

5. if A j were true, Ai would be true, and if A j were not true, Ai would not be
true.5

4 Alston’s exasperation is rooted in his belief that “[t]here isn’t any unique, epistem-
ically crucial property of beliefs picked out by ‘justified’” (Alston 2005a, 22). Cf.
“. . . it is a mistake to suppose that there is a unique something-or-other called ‘epis-
temic justification’ concerning which the disputants are disputing” (Alston 1993,
534). See also Alston 1989, where similar ideas are defended. Likewise, Richard
Swinburne has denied that there exists one pre-theoretic concept ‘epistemic justi-
fication’, which can subsequently be made clear in the way that Plato and Kant
proposed (Swinburne 2001). But where Alston advises us to withdraw from justifi-
cation research and to stop talking about justification altogether, Swinburne encour-
ages us to let a thousand justificatory flowers bloom. The two positions may seem
to be poles apart, but in a sense there is much overlap. In the end, Swinburne’s plu-
ralistic view of epistemic justification and Alston’s plea for a plurality of epistemic
desiderata might perhaps differ only terminologically.
5 Klein 2007a, 12. Klein has p and q instead of A j and Ai.
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He concludes that “infinitism can opt for whatever turns out to be the best
account since each of them is compatible with what infinitism is commit-
ted to.”6 As we have indicated in the previous chapter, we think this is too
quick. Whether an infinite regress of justification makes sense may very well
depend on the meaning of justification. We have seen that under a partic-
ular interpretation of ‘x causes y’ or ‘x is smaller than y’ regresses may be
harmless, whereas under an alternative interpretation they do not make sense.
Something similar might well apply to the case of epistemic regresses, so it
is incumbent upon us to consider what may be meant by ‘A j justifies Ai’.

In doing so, we are not trying to give a definition of justification. Nor are
we making any claim about its relation to knowledge. Traditionally, justifi-
cation has been seen as a necessary ingredient of knowledge, as that which
has to be added to true belief. Recently, different views have been put for-
ward, such as that justification is a derivative of the primitive concept of
knowledge, or is possible knowledge, or potential knowledge, or appearance
of knowledge, or that it implies truth, or that justification and knowledge
simply coincide.7 We will make no such claims. Everything we say about
justification is meant as a contribution to the debate about the possibility of
epistemic regresses, not to the debate about how to define knowledge or jus-
tification. Of course, the two issues are connected, but it would be a mistake
to treat them as being on a par.8 Our aim, as said, is to find out to what extent
infinite epistemic chains are possible. It will turn out that for this purpose it
is enough to adopt a very modest and uncontroversial claim about justifica-
tion; there is no need to define justification or to say how exactly it relates to
knowledge.

6 Ibid.
7 Williamson 2000; Bird 2007; Jenkins Ichikawa 2014; Reynolds 2013; Littlejohn
2012; Sutton 2007. We will shun the term ‘warrant’ when we speak of justification,
since some reserve this term for ‘that which added to true belief yields knowledge’.
See Plantinga 1993.
8 That a theory of justification is different from a theory of knowledge has been
argued in Booth 2011 and Foley 2012. Alvin Goldman also acknowledges that an
interest in justification can have several different motivations, only one of which
is an interest in knowledge as such (Goldman 1986, 4). Martin Smith, however,
defends what he calls “the normative coincidence constraint”, according to which
aiming at justification and aiming at knowledge coincide. We will say more about
Smith’s views in 2.5.
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2.2 Two Questions

The first thing to note when considering the concept of epistemic justification
is that it is a relational notion, corresponding to a two-place predicate. When
we say that something is justified, we mean that it is justified by something
else. This ‘something else’ can be of the same ontological category as the
thing justified, as for example when a belief justifies another belief. But it
can also belong to another category, as when we say that a belief is justified
by an experience or by an event. It might also happen that something justifies
itself, and then the justifier and the thing justified coincide. My belief that I
am having a belief, for example, falls into the latter category.

Once the relational character of justification has been acknowledged, we
can appreciate that the question ‘What is justification?’ in fact consists of two
questions. If we want to know what is meant by the expression ‘A j justifies
Ai’, we will have to answer both Q1 and Q2:

Q1: What is the character of the relata, A j and Ai?

Q2: What is the character of the relation between A j and Ai?

The difference is clear.9 Q1 is about the ontology of reasons. It is a question
about the stuff that the objects Ai and A j are made of. Are they abstract enti-
ties like propositions? Psychological entities like beliefs? Or are they events,
or facts, or material objects? Question Q2 is about their connection. In the
previous chapter we symbolized this connection by a single arrow, but what
does this symbol mean? Is it the arrow of entailment, as has been argued
by for example James Cornman and John Post?10 Does it represent ‘proba-
bilification’, as William Alston and Matthias Steup have called it?11 Is the

9 Others have also stressed this difference. Andrew Cling, for example, writes that “a
theory of . . . reasons . . . must do two things. First, it must give an account of the re-
lationship that must obtain between . . . reasons and their specific targets. . . . Second,
[it] must specify the characteristics that a mental state must have if it is to be a reason
for any target.” (Cling 2014, 62). Similarly, Ram Neta distinguishes between “rea-
sons in the light of which a claim is justified” and “the relation . . . between those
reasons” (Neta 2014, 160). The very distinction is also central to Richard Fumer-
ton’s ‘Principle of Inferential Reasoning’, that we will discuss in Section 8.5.
10 Cornman 1977; Post 1980.
11 Alston 1993, 528; Steup 2005, Section 2.1. Regarding the question about the re-
lation between Ai and A j, Michael Williams takes a very different view. As he sees
it, “there is no relation to account for” and he comments further: “There may well
be relations of entailment . . . or conditional probability . . . . But no such relation
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justification relation primarily a logical relation, as is stated by Richard Feld-
man and Earl Conee?12 Or should we follow David Armstrong and Alvin
Goldman and hold that it is ultimately causal?13

Which answer one gives to Q1 and Q2 depends largely on whether
one takes an internalist or an externalistic view of epistemic justification.
Our intuitive understanding of epistemic justification, which Kant would
have called “confused and undetermined”, revolves around two aspects that
philosophers of all times have struggled to amalgamate.14 On the one hand,
justification has to do with the way the world is: it would be inappropri-
ate to call our beliefs justified without requiring that they represent, at least
remotely, how things actually are. On the other hand, justification applies
to the way the world appears to us: it would be awkward to call my be-
liefs unjustified if I have reasoned impeccably towards a conclusion which,
through some freakish turn of fate, happens to be false. The fact that exter-
nalists tend to stress the former, world-centred aspect of justification, while
internalists emphasize the latter, agent-centred aspect, is reflected in their
answers to Q1 and Q2.

What do internalists and externalists say about the ontological status of the
relata in ‘A j justifies Ai’? Concerning Ai, the thing justified, there seems to
be not much disagreement. In the case at hand, both factions assert that Ai is
a proposition, or a belief in a proposition.15 But what about the ontological
status of the justifier, A j? Here the answer depends on which of the many
different versions of internalism or externalism we are talking about. It also
depends on whether A j is regarded as something that is itself inferred or as

suffices to make a proposition a reason for another” (Williams 2014, 237). As will
become clear later in this chapter, we agree that a relation of entailment or of con-
ditional probability is not sufficient for saying that one proposition is a reason for
another. However, if Williams is implying that such a relation is not necessary ei-
ther, then we part company. In general, Williams’ approach to the epistemic regress
problem is inspired by the later Wittgenstein and by ordinary language philosophers
like Austin, and as such tends to eschew a more formal or theoretical approach, like
the one that we pursue in this book.
12 Feldman and Conee 1985; Conee and Feldman 2004.
13 Armstrong 1973; Goldman 1967.
14 Verworren und unbestimmt — see Kant’s treatise ‘Enquiry concerning the clarity
of the principles of natural theology and ethics’ (Untersuchung über die Deutlichkeit
der Grundsätze der natürlichen Theologie und der Moral) of 1764. Cf. Vahid 2011.
We recall agreeable conversations with Hans Mooij and Simone Mooij-Valk about
translating Kant and — vis-à-vis the motto of this book — Thomas Mann.
15 But only in the case at hand, for Ai can also be another cognitive state than a
belief, or even a non-cognitive state.
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something that is non-inferential. If A j is itself inferred, all internalists and
some externalists will see A j too as a belief or a proposition. If A j is not
inferred, some internalists will see it as a belief or a proposition (albeit of a
special, basic kind), whereas other internalists maintain that in this case A j

is a fact or an experience. Externalists will regard A j in this case as a fact,
an object, or an event, but they differ in their opinions about what kind of
fact, object, or event A j exactly is. Some say that it is a fact outside us; for
example, if an airplane is flying by, and my perceptual and cognitive wiring
is as it should be, then this fact is a reason for me to believe that an airplane
is flying by. Other externalists hold that it is a fact inside us, for example the
activation of my retina or my eardrum, causing neural events and brain states
culminating in my belief that an airplane is flying by.

As to Q2, internalists tend to be evidentialists: they see the relation be-
tween the relata in ‘A j justifies Ai’ as being logical or conceptual in charac-
ter. For them, A j is a good epistemic reason for Ai if A j is adequate evidence
for Ai. As Earl Conee and Richard Feldman phrase it:

The evidentialism we defend . . . holds that the epistemic justification of a be-
lief is a function of evidence.16

According to evidentialism, a person is justified in believing a proposition
when the person’s evidence better supports believing that proposition than it
supports disbelieving it or suspending judgement about it. . . . when a belief is
based on justifying evidence, then . . . the belief is well-founded.17

Externalists, on the other hand, are mostly reliabilists: in their view, A j is
a good epistemic reason for Ai if and only if Ai has been reliably formed
on the basis of A j, where a belief-forming method is reliable if it results in
acquiring true beliefs and avoiding erroneous ones. Reliabilists see the relia-
bility relation as being nomological or even causal in nature.18 They criticize
evidentialists for neglecting the difference between logic and epistemology,
stressing that, while logic deals with inferences and the validity of argument
forms, epistemology has to do with the practice of forming actual beliefs. As
one of the pioneering reliabilists has it:

. . . although epistemology is interested in inference, it is not (primarily) in-
terested in inferences construed as argument forms. Rather, it is interested in

16 Conee and Feldman 2004, 2.
17 Ibid., 3.
18 One of the first papers that stresses the difference between logical and causal
relations is Davidson 1963, although it does not contain the terms ‘evidentialism’ or
‘reliabilism’ and is about rational action rather than about justified belief.
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inferences as processes of belief formation or belief revision, as sequences of
psychological states. So psychological processes are certainly a point of con-
cern, even in the matter of inference. Furthermore, additional psychological
processes are of equal epistemic significance: processes of perception, mem-
ory, problem solving, and the like.

Why is epistemology interested in these processes? One reason is its in-
terest in epistemic justification. The notion of justification is directed, prin-
cipally, at beliefs. But evaluations of beliefs . . . derive from evaluations of
belief-forming processes. Which processes are suitable cannot be certified by
logic alone. Ultimately, justificational status depends (at least in part) on prop-
erties of our basic equipment. Hence, epistemology needs to examine this
equipment, to see whether it satisfies standards of justifiedness.19

These standards of justifiedness are given by the “right system of justifi-
cational rules” or J-rules.20 No J-rule can be generated by logic alone, the
main reason being that J-rules govern the transitions to states of belief, and
that logic is not about such states:

. . . logic formulates rules of inference, which appear in both axiomatic sys-
tems and natural deduction systems. But these rules are not belief-formation
rules. They are simply rules for writing down formulas. Furthermore, formal
logic does not really endorse any inference rules it surveys. It just tells us
semantic or proof-theoretic properties of such rules. This is undoubtedly rele-
vant to belief-forming principles . . . But it does not in itself tell us whether, or
how, such rules may be used in belief formation.21

In the end, Goldman opts for what he calls “the absolute, resource-independ-
ent criterion of justifiedness”:

A J-rule system R is right if and only if R permits certain (basic) psychological
processes, and the instantiation of these processes would result in a truth ratio
of beliefs that meets some specified high threshold (greater than .50).22

Evidentialism and reliabilism are usually described as opposing positions,
but recently arguments have been put forward for a rapprochement between
the two, including some arguments by Goldman himself.23 We similarly ad-

19 Goldman 1986, 4.
20 Ibid., 59.
21 Ibid., 82.
22 Ibid., 106. Goldman adds that the rightness of the rule system R should be in the
set of “normal worlds”, i.e. “worlds consistent with our general beliefs about the
actual world”. (Ibid., 107.)
23 Goldman 2011; Comesana 2010. Alston 2005a, Chapter 6, defends the thesis that
evidentialism and reliabilism are virtually identical.
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vocate a reconciliation, but our argument is different from the existing ones
in that it relies on the formal side of the justification relation.

Neither evidentialists nor reliabilists have been very explicit about this
formal side. Conee and Feldman, when referring to the relation, speak about
‘fittingness’: a belief in a proposition is justified for a particular person if and
only if that belief fits the person’s evidence.24 They explicitly refrain from
describing the fitting relation in formal detail, presumably because they want
to keep their analysis as general a possible. Reliabilists, of course, are not
particularly interested in the formal side of the justification relation either,
since they consider it inessential to the actual process of acquiring a justified
belief. In contrast to both groups, we deem it fruitful to investigate the formal
structure of the justification relation. As we will see, this will enable us to
reconstruct the evidentialist and the reliabilist view as two interpretations of
one and the same formal framework.

2.3 Entailment

When it comes to the formal side of the justification relation, we can perceive
in the literature three major proposals. According to the first, ‘A j justifies Ai’
should be read as

‘A j implies Ai’ or ‘A j entails Ai’.

According to the second, we should interpret it as

‘A j probabilifies Ai’ or ‘A j makes Ai probable’.

The third proposal is based on work by Fred Dretske and Robert Nozick,
and it is sometimes referred to as truth-tracking.25 Roughly, it states that a
person is justified in believing proposition Ai if this person tracks the truth
of Ai, which in this case means: bases his belief in Ai on A j. On a formal
level, the truth-tracking approach makes use of subjunctive conditionals of
the form

(a) ‘if A j were the case, then Ai would be the case’
(b) ‘if A j were not the case, then Ai would not be the case’.

24 Conee and Feldman 2004, Chapter 4.
25 Dretske 1970, 1971; Nozick 1981.
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Nozick argues that the subjunctive conditional (a) leads to the probability
P(Ai|A j) = 1, and that conditional (b) leads to P(¬Ai|¬A j) = 1, or equiva-
lently P(Ai|¬A j) = 0. This corresponds to what he calls ‘strong truth track-
ing’. As he rightly comments, “the evidence we have for hypotheses is not
usually strong evidence; too often although the evidence would hold if [the
hypothesis] were true, it might also hold if [the hypothesis] were false.”26

He is then led to a probabilistic approach that is the same as the second
proposal. However, rather than framing the subjunctive conditionals in prob-
ability statements, it may be more natural to couch them in the language of
possible world semantics, invoking David Lewis’s method of nearby possible
worlds.27

We will say something about the first proposal in the present section. The
second one will be discussed in Section 2.4, where we argue that probabilis-
tic support is a necessary but not a sufficient condition for justification. We
will say more about the third proposal in Section 2.5, where we consider an
argument by Martin Smith that can be seen as an objection to our argument
in 2.4.

The idea that justification has something to do with implication or en-
tailment appears to be widely accepted. Aristotle assumes it in his writings
on epistemic regresses, and many epistemologists in the twentieth century
who write about justification seem to have had implication in mind. ‘Seem’,
for the idea often remains implicit. This goes for the literature on epistemic
justification in general, but also for the more specific papers on the regress
problem in epistemology. For example, Tim Oakley develops an argument
according to which no beliefs can be justified since that would require an
infinite regress. Before presenting his argument, he writes:

I offer no analysis of the term ‘justified’, since this is not required for my
argument, and take the notion to be a commonsense one, regularly though
unreflectively used by us all.28

Oakley’s paper makes it however very clear that at least part of his argument
only works when justification is taken as implication or as deductive infer-
ence. Thus Scott Aikin rightly notes that in Oakley’s argument “deductive
inference rules play the role of inferential justification”.29 And Oakley is no
exception here. Among authors who defend the sceptical position that no be-
lief can be justified because that would demand an infinite epistemic chain,

26 Nozick 1981, 250.
27 Williamson 2000; Pritchard 2005, 2007, 2008; Sosa 1999a, 1999b.
28 Oakley 1976, 221.
29 Aikin 2011, 59; Oakley 1976, Sections 4.3 and 5.3.
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many tacitly make the assumption that ‘A j justifies Ai’ means ‘A j implies
Ai’.

Occasionally, however, authors are explicit about their use of the justifi-
cation relation as implication or entailment. John Post is a case in point.30

Post first takes justification to be inferential justification and then notes:

If anything counts as an inferential justification relation, logical implication
does . . .
provided it satisfies appropriate relevance and noncircularity arguments.31

More particularly, Post sees justification as “proper entailment”:

Let us say a statement A j properly entails a statement Ai iff A j semantically
entails A j, where the entailment is relevant and non-circular on any appro-
priate account. Thus if anything counts as an inferential justification relation,
proper entailment does, in the sense that where A j and Ai are statements rather
than sets of statements: ‘If A j properly entails Ai, then Ai is justified for [a
person] P if A j is — provided P knows that the proper entailment holds and
would believe Ai in the light of it if he believed A j.32

There exist many cases of proper entailment à la Post. The example that he
himself presents is based on modus ponens. If A j is

p∧ (p → q) ,

and Ai is q, then A j properly entails Ai.
To regard justification as implication or entailment has the advantage (if

it is one) that justification is transitive and truth-conducive. However, it has
been rightly criticized as a view that puts very strong requirements on the
notion of justification, and may typically lead to scepticism if rigorously
implemented. In 1978 Richard Foley had already made a plea for allowing
“non-paradigmatically justified beliefs”, i.e. beliefs of which the justifica-
tion is not subject to such strong requirements as those that follow from
straightforward implication.33 Foley leaves open what exactly he means by

30 Post 1980. In this paper Post describes a particular objection to infinite regresses
that we will discuss in Section 6.3. Post’s argument can be seen as an improved
version of objections that have been raised by John Pollock and James Cornman
(Pollock 1974; Cornman 1977).
31 Post 1980, 33.
32 Ibid. We have replaced Post’s X and Y by our A j and Ai. Post talks about “state-
ments” where we use ‘propositions’ or ‘beliefs’. In this chapter we will not distin-
guish between the latter two terms.
33 Foley 1978, 316.
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non-paradigmatic justification, refraining from giving a general account of
the phenomenon, and even doubting whether such an account can be given
at all.

The second proposal for a formal rendering of ‘A j justifies Ai’, to be dis-
cussed below, is more important and more realistic; in fact, it goes some way
towards specifying the non-paradigmatic account of justification that Foley
has been looking for.

2.4 Probabilistic Support

A distinction is often made between deontological and non-deontological
justification. In the deontological understanding, as Matthias Steup phrases
it, a person S “is justified in believing that r if and only if S believes that r
while it is not the case that S is obliged to refrain from believing that r.”34

Steup notes that the deontological concept “is common to the way philoso-
phers such as Descartes, Locke, Moore and Chisholm have thought about
justification”, but that today it is deemed “unsuitable for the purposes of
epistemology”. What is deemed suitable today is the non-deontological view,
which conceives justification as “probabilification”:

What does it mean for a belief to be justified in the non-deontological sense?
Recall that the role assigned to justification is that of ensuring that a true belief
isn’t true merely by accident. Let us say that this is accomplished when a
true belief instantiates the property of proper probabilification. We may, then,
define non-deontological justification as follows:

[Person] S is justified in believing r if and only if S believes that r on a
basis that properly probabilifies S’s belief that r. 35

Instead of ‘probabilification’, epistemologists also use the term ‘to make
probable’ for justification. Says for example Richard Fumerton:

Can we find a way of characterizing epistemic justification that is relatively
neutral with respect to opposing analyses of the concept? As a first stab we

34 Steup 2005. Steup has p for our r.
35 Ibid. The importance of probabilification has also been stressed earlier by William
Alston, albeit not as a way of understanding justification, but as one of the epistemic
desiderata that deserve thorough study: “The reason or its content must be so related
to the target belief and its content that, given the truth of the former, the latter is
thereby likely to be true. The reason must sufficiently ‘probabilify’ the target belief.”
(Alston 1993, 528).
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might suggest that whatever else epistemic justification for believing some
proposition is, it must make probable the truth of the proposition believed.
The patient with prudential reasons for believing in a recovery was more
likely to get that recovery as a result of her beliefs, but the prudential rea-
sons possessed did not increase the probability of the proposition believed —
it was the belief for which the person had prudential reasons that resulted in
the increased probability. Epistemic reasons make likely the truth of what is
supported by those reasons . . . .36

Here we shall work under the assumption that ‘probabilification’ or ‘making
probable’ is essential for the concept of justification. To say that A j makes
Ai probable at least means that A j raises the probability of Ai if A j is true, as
compared with the value it would have had if A j had been false. So

P(Ai|A j)> P(Ai|¬A j) , (2.1)

in words: Ai is more probable if A j is the case than if A j is not the case.37 We
say that A j makes Ai more probable if and only if (2.1) is fulfilled. Here we
assume that P(A j) lies strictly between zero and one, but in later chapters we
will see how to drop this assumption.

We will call (2.1) the condition of probabilistic support. It is in fact equiv-
alent to the classificatory version of what Rudolf Carnap in the preface to the
second edition of his Logical Foundations of Probability calls “increase in
firmness”.38 While Carnap’s concept of “firmness” is concerned with how
probable Ai is on the basis of A j, his notion of “increase in firmness” re-
lates to the question as to whether and by how much the probability of Ai

is increased by the evidence A j. Carnap specifies, both for firmness and
for increase in firmness, three versions: a classificatory, a comparative and a
quantitative variant. In the classificatory variant of increase in firmness, Ai is
made firmer by A j. Or in Carnap’s formulation (where we have replaced his
c by our P):

P(Ai|A j)> P(Ai|t) . (2.2)

Here t is the tautology, so (2.2) is the same as

P(Ai|A j)> P(Ai) , (2.3)

36 Fumerton 2002, 205.
37 That Fumerton has in mind ‘making more probable’ or ‘increasing the probabil-
ity’ when he writes about ‘making probable’ is indicated by his use of the expression
“the increased probability”.
38 Carnap 1962, xv-xvi.
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which is equivalent to our condition of probabilistic support, (2.1), for while
P(Ai|¬A j) and P(Ai) will in general not be equal to one another, the two
inequalities (2.1) and (2.3) imply one another.39 Three observations should
be made about this condition (2.1). First, the condition is quite weak. It only
says that Ai is made more probable by A j than by ¬A j. It does not say that
Ai is made more probable by A j than by another proposition Ak, nor does it
claim anything about propositions different from Ai that are made even more
probable by A j. Our condition is silent about the amount of probabilistic
support that Ai receives from A j as compared to the amount of probabilistic
support that Ai would have received from another proposition Ak. So the
condition does not imply that the former amount is greater than the latter,
nor does it imply that the amount of probabilistic support given to Ai should
exceed a particular threshold.40

Second, the condition of probabilistic support is not a measure. As Bran-
den Fitelson has emphasized, there are many different measures of proba-
bilistic support or confirmation, and they are often ordinally inequivalent to
one another.41 This might be problematic in many contexts, but it is not an is-
sue for us. For the various measures of probabilistic support all agree in stat-
ing that A j probabilistically supports Ai if and only if P(Ai|A j)> P(Ai|¬A j),
and this is all we need here.

Third, the condition does not need a threshold. It could reasonably be
objected that the phrase ‘making probable’ involves more than ‘making more
probable’. If A j makes Ai probable, then surely the effect of A j on Ai must be
not merely to raise the probability of Ai, but also to raise it above one half (or
perhaps above some agreed-upon threshold greater than a half). In Section
6.5 we shall say some more about thresholds, but the chief thing to realize
is that a threshold condition is not needed for our purpose: a threshold is
not required for finding out to what extent infinite justificatory chains make

39 From the definition of conditional probability it follows that

P(Ai|A j)−P(Ai) = P(¬A j)[P(Ai|A j)−P(Ai|¬A j)] .

The right-hand side of this equation is greater than zero if (2.1) is true, so the left-
hand side must be greater than zero too, and this implies (2.3). By similar reasoning,
it is clear that, if (2.3) is true, then (2.1) is true. Recall that here P(A j) is neither 0
nor 1.
40 We will assume, however, that i �= j. We are after all interested in probabilis-
tic support as a condition of epistemic justification, and in accordance with Peter
Klein’s Principle of Avoiding Circularity (PAC), Ai may not be in its own evidential
ancestry.
41 Fitelson 1999.
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sense. The only thing we need for this is that (2.1) is to be regarded as a
minimal condition implicit in the notion of ‘making probable’.

We consider condition (2.1) to be an essential ingredient of the relation
of epistemic justification, insofar as it involves probabilification or ‘making
probable’. It is important to keep in mind that the condition itself is com-
pletely formal. It does not imply anything about the ontological character of
the relata nor does it make any assumption about how the probability relation
should be interpreted. If Ai is a belief or proposition that is justified by A j,
then the justifier A j can be anything: a belief, a proposition, a fact, an event,
a perception, a memory or a neural state — this is completely irrelevant.
And P can also be anything: subjective or objective or logical probability,
that does not matter. What does matter is that (2.1) is governed by the formal
probability calculus, i.e. the axioms of Kolmogorov and the theorems that
follow from them.42

Precisely because the calculus is formal and thus uninterpreted, condition
(2.1) is neutral with respect to internalism and externalism, and also with re-
spect to evidentialism and reliabilism. The condition can be combined with
internalistic and externalistic views concerning the ontology of reasons, as
well as with evidentialist and reliabilist understandings of the justification
relation. After all, internalists, externalists, evidentialists and reliabilists do
not differ about the probablity calculus, nor is there anything in their posi-
tions that goes against formalizing ‘Ai is made probable by A j’ in terms of
(2.1). The only differences between them are about interpretations: whereas
internalists construe Ai and A j internalistically, externalists construe them ex-
ternalistically, and whereas evidentialists interpret the probability relation in
logical terms, reliabilists interpret it in nomological terms, typically in terms
of probabilistic causality. But these are just differences in interpretations, and
they do not touch the underlying formal level.

42 If P(Ai|A j)< P(Ai|¬A j), then it is ¬A j rather than A j that supports Ai probabilis-
tically. The point that the negation of one event could be the cause of another was
already made by Hans Reichenbach when he introduced his concept of the com-
mon cause. Reichenbach notices that in this case we must revise our opinion on
the working cause, or as he puts it succinctly “in this case A j and ¬A j have merely
changed places” (Reichenbach 1956, 160 — we have replaced his C by our A j).
Thus an arbitrary chain of probabilistic relations can be recast in a form in which
probabilistic support (or neutrality) holds all along the chain. This does not mean
that any proposition can be justified by any probabilistic chain, for the condition of
probabilistic support is only a necessary, not a sufficient condition of justification.
In Section 6.5 we will look at some further desiderata for an adequate description
of what justification entails.
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It might be true that more people are inclined to interpret (2.1) along the
lines of internalism and evidentialism.43 Under that interpretation, Ai and A j

are both beliefs or propositions, and P is construed as subjective or epistemic
or logical probability. The point we want to make here is that (2.1) can just as
easily be understood in accordance with externalism and relabilism. Under
this interpretation, Ai and A j can be beliefs, perceptual appearances, memo-
ries, and so on. For example, if Ai is my belief in the proposition that a cow is
grazing in front of me, and A j is my seeing a cow grazing in front of me, then
(2.1) states that it is more likely that my belief in a grazing cow is true, given
that I have this perception, than when I do not have this perception. Here P
is an objective probability, depending on the frequency of events, where the
events are ‘seeing a grazing cow’ and ‘believing that there is a grazing cow’.
Whether or not (2.1) holds here is determined by empirical research or, more
generally, by past performance. Is it the case that my seeing a cow grazing is
more often followed by a belief in a cow grazing than that my perception of
a horse jumping is followed by a belief that a cow is grazing? The answer is
presumably in the affirmative, so (2.1) is satisfied.

The thing justified need not be a belief of which the probability is deter-
mined on the basis of perceptual appearances. It can also be the other way
around. In cases of wishful thinking or of harbouring strong suspicions, my
beliefs or my desires can cause in me certain perceptual appearances. Here
the causal course runs in the opposite direction. Again, we determine empiri-
cally whether or not a causal process is in fact taking place, and thus whether
or not (2.1) is satisfied: some people are more prone to wishful thinking or
to being suspicious than others.

It might happen that a causal process gives rise to a false belief. Optical
illusions are a classic example. When I am walking in the desert, the refrac-
tion of light from the sky by heated air can cause me to believe that there is
a sheet of water in front of me. This causal process is probabilistic (at some
times I am more vulnerable to this optical illusion than at others), but it is
assumed that (2.1) is fulfilled (I mostly fall prey to the illusion when walking
in the desert). Goldman will presumably say that this is not a reliable belief-
forming process, and that my belief that there is a sheet of water in front of
me is not justified. As we will explain in the next section, however, we are
not proposing to define justification as the condition of probabilistic support

43 Thus René van Woudenberg and Ronald Meester have argued that “the tradi-
tional epistemic regress problem” is by definition cast in internalistic and doxastic
terms, and they seem to hold that it should also be considered in those terms (Van
Woudenberg and Meester 2014). For more on internalism and the regress problem,
see Simson 1986 and Jacobson 1992.
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(2.1), nor are we saying that, if the condition is satisfied, then there is justifi-
cation. Our claim is only the moderate one that the condition of probabilistic
support is a necessary ingredient of epistemic justification. This claim in no
way conflicts with a reliabilist stance à la Goldman.44

In sum, our condition of probabilistic support is neutral with respect to
many debates about justification. One may understand justification internal-
istically or externalistically, in accordance with evidentialism or with relia-
bilism — all these views can be combined with the condition of probabilistic
support as a mechanism underlying justification. And there are more views
that we can accommodate. For example, the condition of probabilistic sup-
port is consistent with either side in the debate about the difference between
diachronic and synchronic justification, to which especially Swinburne has
drawn attention; the only thing we have to do to account for this difference
is to add a time index to, or remove it from (2.1).45 Furthermore there is no
reason to restrict the causal processes modelled by (2.1) to individual people;
we might well regard them as taking place in a community. Alvin Goldman
writes:

The task of social epistemology . . . is to evaluate truth-conducive or truth-
inhibiting properties of such relationships, patterns, and structures. What
kinds of channels, and controls over channels, comprise the best means to
‘verific’ ends? To what degree should control be consensual, and to what de-
gree a function of (ascribed) expertise, or ‘authority’? To what extent should
diversity of messages be cultivated?46

44 While the application of (2.1) to internalism is straightforward, since the probabil-
ity space is homogeneous (containing only propositions or beliefs), the application
to externalism is a bit more complicated. Within externalism many things can be
reasons, so the probability space is rather diverse, containing not only beliefs and
propositions, but also perceptions, memories, facts, and so on. This difficulty can
however be handled as follows. First we define different spaces: a space of beliefs, a
space of perceptions, a space of memories, and so on. Then we define a space which
is the Cartesian product of all those spaces. And finally we decide which relation
of probabilistic causality we want to focus on. Do we want to focus on perceptions
causing beliefs? Or memories causing beliefs? Or beliefs causing desires? Desires
causing beliefs? Deciding on the answers to these questions is necessary in order
to keep a grip on the heterogenous probability space, but it is just a slight technical
complication, and it is not important for the general philosophical point that (2.1) is
neutral with respect to both internalism and externalism.
45 Swinburne 2001, Chapters 2, 7, and 8.
46 Goldman 1986, 5-6.
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Because the probability calculus is neutral with respect to the nature of the
relationships, patterns, and structures that Goldman is talking about, it can
accommodate social epistemology alongside individual epistemology.47

Some philosophers have doubted that our condition of probabilistic sup-
port is in fact neutral. Richard Fumerton first presents the following as a
neutral, preliminary characterization of epistemic justification

epistemic justification . . . must make probable the truth of the proposition be-
lieved,

and then comments:

Our preliminary characterization of justification as that which makes probable
the truth of a proposition may not in the end be all that neutral.48

Fumerton gives two reasons why the ‘making probable’ relation may after
all not be neutral. The first is that a “normative feature of epistemic justifi-
cation . . . may call into question the conceptual primacy of probability as a
key to distinguishing epistemic reasons from other sorts of reasons”.49 The
second is that “if one understands the relation of making probable in terms
of a frequency conception of probability, one will inevitably beg the ques-
tion with respect to certain internalist/externalist debates over the nature of
justification”.50 Let us briefly look at each of these two reasons.

The idea behind the first is that epistemic reasons differ from moral or
prudential or legal ones, since an epistemic goal is not the same as a goal

47 The condition of probabilistic support is also neutral with respect to several
desiderata for the justification relation. For example, Oliver Black required that the
relation be irreflexive and transitive (Black 1988; for a “more frugal” formulation of
the desiderata, see Black 1996); Romane Clark required transitivity and asymmetry
(Clark 1988, 373); and Andrew Cling has argued that having both transitivity and
irreflexivity is too strong as a desideratum, proposing an “improved version” of the
epistemic regress problem (Cling 2008; for critical replies to Cling, see Kajamies
2009 and Roche 2012; for a further discussion about the transitivity of justification
see Post and Turner 2000 versus McGrew and McGrew 2000).

Our claim that probabilistic support is necessary for justification does not pre-
clude justification’s being irreflexive or transitive or asymmetrical, even though
probabilistic support itself is reflexive, not transitive, and symmetrical. In other
words, the claim is not in conflict with the above desiderata for the justification
relation, but it does not necessitate them. We will come back to this point at the end
of Chapter 6.
48 Fumerton 2002, 205.
49 Ibid., 205-206.
50 Ibid., 206.
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that is moral, prudential, or legal. Whenever one believes a proposition for
epistemic reasons, one believes that proposition because it is probably true,
not because it is useful or moral to believe it. But suggestive as this account
of an epistemic reason may be, says Fumerton, “we are in danger of collaps-
ing the distinction between true belief and justified belief”.51 For if a belief
is justified if and only if it is probably true, then “our ‘goal’ oriented account
of epistemic justification becomes pathetically circular”.52

Fumerton’s worry can however be dispelled. In order to credit the impor-
tant role of probabilistic support for justification, we need not say that a be-
lief is probably true if and only if it is justified. It is enough to say that being
probably true is a necessary ingredient of being justified. It seems to us that
Fumerton is confusing the conceptual primacy of probability for justification
with its sufficiency. He would have been right if ‘probabilistic support’ had
been taken as sufficient for epistemic justification, but as we have said, there
is no need to do so. Probabilistic support is merely a necessary, and by no
means a sufficient condition for justification.53

What about Fumerton’s second reason? He is certainly right that the ‘mak-
ing probable’ relation will support externalistic and undermine internalistic
positions if understood in frequency terms. But our point is that we need not
understand the relation in frequency terms, nor need we understand it in non-
frequency terms. If we regard the relation at its formal level, as the condition
(2.1), then we are not committed to any interpretation. While Fumerton re-
gards the ‘making probable’ relation as something that comes with an inter-
pretation, we have construed it as a mere formal structure with uninterpreted
symbols.

Apparently Fumerton sees the poly-interpretability of the calculus as a
drawback for the idea of modelling justification by means of probability the-
ory. This is the view not only of Fumerton, the internalist, but also of Gold-
man, the externalist:

Another admissible theory would let justifiedness arise from the corpus of a
cognizer’s beliefs plus probabilistic relationships between the target beliefs

51 Ibid., 209.
52 Ibid.
53 René van Woudenberg and Ronald Meester appear to think that we deem prob-
abilistic support to be sufficient for justification (Van Woudenberg and Meester
2014). They criticize our condition (2.1) on the grounds that it allows P(Ai|A j)
and P(Ai|¬A j) both to be very small, so that P(Ai) is also very small; in that case
(2.1) is fulfilled, but it would be ridiculous to say that P(Ai) is justified. The criti-
cism of Van Woudenberg and Meester fails precisely because (2.1) is not a sufficient
condition for justification.
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and the beliefs in this corpus (or rather, the propositional contents of these
beliefs). But here a theorist must tread carefully. The term ‘probability’ is no-
toriously ambiguous, and some of its proposed explications implicitly render
it a term of epistemic evaluation (tied to what an epistemically rational person
would do). For present purposes, ‘probability’ would have to be restricted to
some other meaning, for example, a frequency, or propensity sense.54

Goldman is right that the term ‘probability’ is notoriously ambiguous, but
only if we take the term to mean ‘calculus plus interpretation’, not if it refers
to the calculus alone. We are inclined to consider the poly-interpretability
of the calculus as an advantage rather than a drawback, since it enables us
to work with a well-defined formal framework from which we can derive
consequences that hold irrespective of the interpretation. A comparison with
Donald Davidson’s work might make the point clearer. Davidson argued that
an action is only explained (or ‘rationalized’ as he calls it) if it is both logi-
cally and causally connected to the relevant beliefs and desires.55 This raises
however the question how the two connections can be combined. How to rec-
oncile the position of the so-called causalists with that of the adherents of the
Logical Connection Argument, as Frederick Stoutland has aptly called their
adversaries?56 Davidson’s own ingenious answer, motivated by his anoma-
lous monism, was that causality is essentially dual. It involves singular causal
statements of the form ‘token event E causes token event F’, which can be
true independently of how E and F are described, as well as causal expla-
nations, which centre around causal laws (‘events of type E cause events of
type F ’), and thus are valid only under certain descriptions.

Resourceful as Davidson’s answer may be, a reconciliation between log-
ical and causal connections appears easier once we have taken recourse to
probability theory. For probability can model both the logical and the causal
relation between reasons and the beliefs or actions that they explain or jus-
tify. All we have to do is to replace the logical relations by probabilistic
relations, and to substitute probabilistic causality for causality tout court. No
assumption about a dual character of causality is needed.

As we will show in the chapters to come, the probability calculus has con-
sequences which are very relevant to the possibility and impossibility of infi-
nite epistemic chains. This is not to say that the probability calculus does not
face problems, or that its interpretations are unproblematic. It is well known
that it has many difficulties that are far from being solved: the problems of

54 Goldman 1986, 24.
55 Davidson 1963, 1970. Cf. our footnote 18.
56 Stoutland 1970; Cf. Peijnenburg 1998.
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old evidence, spurious relations, irrelevant conjunctions, the prior, the ref-
erence class, randomness, and so on. Moreover, apart from those technical
quandaries, there is the mundane fact that in actual reasoning the calculus
seems to be often violated.57 These problems are grave indeed, but we do
not think they are reasons to reject the calculus as a means of shedding light
on the elusive concept of justification. We will say a bit more on this in Sec-
tion 6.6.

2.5 Smith’s Normic Support

We have been arguing that the formal condition of probabilistic support is
a necessary ingredient of epistemic justification and, more generally, that
Kolmogorovian probability can help us understand what justification is. In
this section and in the next one, we will discuss what can be seen as two
objections to these views.

The first objection is based on work by Martin Smith. It takes its inspira-
tion from what we have called the third proposal for framing the formal side
of the justification relation. According to that proposal, knowledge and jus-
tification are best understood on the basis of subjunctive conditionals, which
in turn are framed as statements about nearby possible worlds.

Smith has identified a conception of justification which he claims is “taken
for granted by a broad range of epistemologists”, and which he calls ‘the risk
minimisation conception of justification’:

. . . for any proposition A we can always ask how likely it is that A is true, given
present evidence. The more likely it is that A is true, the more justification one
has for believing it. The less likely it is that A is true, the less justification
one has for believing that it is. One has justification simpliciter for believing

57 ‘Seems’, because sometimes the violation is only apparent. For example, there
have been many attempts to explain the famous conjunction fallacy, where people
deem the probability of a conjunction (‘Linda is a bank teller and a feminist’) to be
higher than the probability of a conjunct (‘Linda is a bank teller’). According to one
of these explanations, if we reconstruct the reasoning in terms of confirmation mea-
sures rather than of bare probability values, then it is no longer fallacious (Crupi,
Fitelson, and Tentori 2007). It is true that we often do not know which mistake ex-
actly people are making, or whether they are making a mistake at all (we might
after all have insufficient information about their cognitive make-up). But from this
it does not follow that the probability calculus is not a useful instrument to investi-
gate whether mistakes are being made, and, if so, what the nature of these mistakes
is.
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A (at least at a first approximation) when the likelihood of A is sufficiently
high and the risk of ¬A is correspondingly low. Call this the risk minimisation
conception of justification.58

Describing a proposition as ‘likely’ means here that the proposition has “an
evidential probability that exceeds some threshold t that lies close to 1 and
may be variable or vague”.59 Smith notes that there is “something very natu-
ral” about the entire risk minimization view, but nevertheless concludes that
it is “not true at all”.60 According to him it reduces epistemic justification to
evidential support, and wrongly so. For it might happen that the evidential
support is high, well beyond some threshold of acceptance, while intuitively
we would not say that there is justification. Conversely, there might be jus-
tification even though the evidential support is relatively low.61 Smith has
illustrated these claims with several appealing examples. Here is one which
he borrowed from Dana Nelkin:

Suppose that I have set up my computer such that, whenever I turn it on,
the colour of the background is determined by a random generator. For one
value out of one million possible values the background will be red. For the
remaining 999 999 values, the background will be blue. One day I turn on my
computer and then go into the next room to attend to something else.

In the meantime Bruce, who knows nothing about how my computer’s
background colour is determined, wanders into the computer room and sees

58 Smith 2010, 11. Cf. Smith 2016, 2. We have substituted A for P.
59 Smith 2016, 29. Note that the concept of evidential probability as Smith uses it
here is not the same as the concept of probabilistic support that we talked about in
the previous section. Smith says that A is likely if and only if its evidential prob-
ability, or evidential support, exceeds some threshold: P(A|E) > t, where E is the
evidence. But we say that P(A|E) satisfies the condition of probabilistic support if
and only if P(A|E)> P(A|¬E).
60 Ibid., 30.
61 The difference between epistemic justification and evidential support has been
stressed by many others as well. For example, Jarrett Leplin argued that a belief
may be highly probable while not justified, and it may be justified even though its
probability is very low (Leplin 2009, 101-109). We think that the latter claim is
questionable, but even if we grant both claims, Leplin’s argument would not af-
fect our view. For Leplin is not talking about probabilistic support in our sense, but
about a probability above a certain threshold. The latter also applies to the analysis
by Tomoji Shogenji (Shogenji 2012), which we will discuss in Section 6.5. Other
defenders of the difference between justification and evidential support are Peter
Klein (1999, 312; 2003, 722), Scott Aikin (2011, Chapter 3), and in general propo-
nents of Williamson’s ‘knowledge first’ approach as well as champions of both the
safety and sensitivity condition for knowledge.
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that the computer is displaying a blue background. He comes to believe that
it is. Let’s suppose, for the time being, that my relevant evidence consists of
the proposition that (E1) it is 99.9999% likely that the computer is displaying
a blue background, while Bruce’s relevant evidence consists of the proposi-
tion that (E2) the computer visually appears to him to be displaying a blue
background.62

Let A be the proposition that the computer is displaying a blue background.
It is clear that my evidence E1 does not imply A, since E1 is compatible with
a red background. But neither does E2 imply A: “After all, Bruce could be
hallucinating, or he could be struck by colour blindness, or there could be
some coloured light shining on the screen, etc.”63 The point Smith makes is
that Bruce’s belief in A is a candidate for knowledge, whereas my belief in A
is not:

Bruce’s belief would appear to be a very promising candidate for knowledge
— indeed, it will be knowledge, provided we will fill in the remaining details
of the example in the most natural way. My belief, on the other hand, would
not constitute knowledge even if it happened to be true. If there were a power
failure before I had the chance to look at the computer screen, I might well
think to myself ‘I guess I’ll never know what colour the background really
was’. But Bruce certainly wouldn’t think this.64

This means, says Smith, that Bruce is epistemically justified in believing A
while I am not. And this is so, even if we assume that A is more likely given
my evidence E1 than given Bruce’s evidence E2:

P(A|E1)> P(A|E2).

The reason why Bruce is justified and I am not, is that the relation between
A and E2 is one of normic support, whereas the relation between A and E1
is only characterized by mere evidential support. Mere evidential support
relations only imply that events are likely or unlikely, but normic support
relations tell us when events are normal or abnormal:

Given my evidence E1, A would frequently be true. Given Bruce’s evidence
E2, A would normally be true. . . . .65

If I were to find out that the background of my computer screen is actually
red, I would conclude that this had been merely very unlikely, not that it

62 Smith 2010, 13. Cf. Nelkin 2000, 388-389.
63 Smith 2010, 14.
64 Ibid.
65 Ibid., 16.
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was abnormal. But if Bruce discovers that the background actually is red, he
would conclude that something is not right: he would require an explanation
in a way that I would not. In general, E normically supports A if the truth of
both E and ¬A is not only unexpected, but a genuine anomaly:

Say that a body of evidence E normically supports a proposition A just in case
the circumstance in which E is true and A is false requires more explanation
than the circumstance in which E and A are both true.66

At first sight, the distinction between normic support and evidential sup-
port looks much like the distinction between law-like statements and mere
statistical generalizations in philosophy of science. Smith indeed makes the
comparison:

The distinction between the E1-A relationship and the E2-A relationship might
fruitfully be compared to the distinction between statistical generalisations
and normic or ceteris paribus generalisations widely accepted in the philoso-
phy of science . . . .67

On closer inspection, however, there seems to be a difference. The problem
in philosophy of science is that we lack a criterion for determining whether
a particular sequence is law-like or merely accidental. All sequences that
we encounter are finite, and we never know for sure whether or how they
will continue — such are the lessons of Hume and Goodman. There might
come a time when the sun does not rise, or rises only on Sundays, or rises
in a completely random and unpredictable way. If, per impossibile, we knew
for sure that a particular statement is a law-like statement, then we would
be done; we could then safely use this knowledge in our predictions (which
would hardly be predictions any more). And if, on the other hand, we knew
that we are dealing with a mere statistical generalization, then we would
realize that we should proceed cautiously, since we would find ourselves on
rocky and unreliable ground.

The problem of law-like versus accidental generalizations is that we have
no way to determine whether we are in the one or in the other situation, since

66 Smith 2016, 40. The notion of normic support is further clarified in terms of
normal worlds: “E normically supports a proposition A just in case A is true in
all the most normal worlds in which E is true. Alternatively, we might say that
E normically supports A just in case there is a world in which E is true and A is
true which is more normal than any world at which E is true and A is false” (ibid.,
42). Smith works out the technical details of normal worlds using not only David
Lewis’s method of nearby possible worlds, but also Wolfgang Spohn’s ranking the-
ory (Spohn 2012). See footnote 22 for Goldman on normal worlds.
67 Smith 2010, 16. Cf. Smith 2016, 39-40, 128.
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we do not know how the sequence will behave in the long run. This problem,
however, no longer exists in the story about Bruce, for there we know whether
we are dealing with normic or with evidential support. The reason that we
have this knowledge is that we are being told how the sequence looks in the
long run:

In believing that [my] laptop is displaying a blue background, [Bruce is] ac-
tually running a higher risk of error that I would be in believing the same
thing . . . If this set-up were replicated again and again then, in the long run,
[Bruce’s] belief about [my] laptop would turn out to be false more often than
my belief about my laptop.68

If a problem remains, then it is a different one. It is that the normic support
that E2 gives to A is in fact lower than the evidential support that E1 gives
to A. In other words, the inequality P(A|E1) > P(A|E2) is not just apparent,
based on a finite sequence of observations, but it persists in the long run
— moreover we know that it does. Nonetheless, Smith advises us to base
our belief in A on E2 rather than on E1. For only the E2-A relationship is
a relationship of normic support, since only E2 can, according to Smith, be
said to justify A.

We must confess that we have difficulty understanding this. Why base our
belief on evidence which is less effective? Why rely on someone’s perceptual
information if we know that his eyesight is poor and our own information is
more reliable? Smith’s answer will be that in this case the poorer and less
effective evidence is normically stronger. But what good is normic support
that contradicts evidential support, not just now but also in the future? What
is the sense of normic support as part of epistemic justification when it fun-
damentally disagrees with evidence we know to be true in the long run?

Of course, it might happen that we do not understand why P(A|E1) is
greater than P(A|E2). But if we know that it is greater, should we not take that
fact seriously? And does ‘taking seriously’ not mean that we act on E1 rather
than E2? Note that if we do not act on E1 in this case, a merciless opponent
could use us as a money pump. And the fact that the rune of normic support is
flaunted on our fluttering banner will not prevent us from becoming paupers
in the fullness of time.

Smith himself makes no attempt to downplay these qualms:

It may be rather tempting, however, for one to simply disregard such judge-
ments [i.e., to trust E2 rather than E1] as confused or naı̈ve. Perhaps we are

68 Smith 2016, 35. our emphasis. We have adapted the example so that it fits the
example that Smith describes in Smith 2010.
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simply accustomed to relying upon perception when it comes to such matters
and suspending any scruples about its fallibility. Once we do reflect carefully
upon the fallibility of perception, so this thought goes, these troublesome in-
tuitions are exposed as a kind of groundless prejudice. I’m not entirely con-
vinced that this is the wrong thing to say — but I strongly suspect that it is.69

Note that we are not suggesting that justification is the same as evidential
support. We agree with Smith that it is not, and Smith’s many examples are
convincing illustrations of this standpoint.70 Let us be quite clear: we are
not defending the risk minimization picture of justification. We do not think
that justification can be defined as evidential support exceeding a certain
threshold, nor are we saying that A is more justified by E1 than by E2 if
the former gives more evidential support to A than the latter. Our claim is
much weaker. We only maintain that probabilistic support, understood as the
condition (2.1) and not to be confused with evidential support (see footnote
59), is a necessary condition of justification.

Probabilistic support is however not sufficient. Something has to be added
to probabilistic support in order to turn it into justification. What is this
‘something’? We do not know, but Smith thinks it is ‘normalcy’, that is the
property that the support is normic. According to what he calls “the normic
theory of justification”, normalcy is necessary and sufficient for justification,
but according to “the hybrid theory”, it is only necessary.71 It is not entirely
clear which of the two theories Smith would finally choose; but as we have

69 Smith 2016, 36.
70 Some examples are about cases in which P(A|B) > P(C|D), where all four vari-
ables are different. For instance, A = ‘I will not win the lottery’, B = ‘I have bought
one ticket in a fair lottery with a million tickets’, C = ‘The person in front of me
will not suddenly drop dead’, D = ‘The person in front of me is young and healthy’.
Then, even if P(A|B) > P(C|D), it is still true, according to Smith, that D normi-
cally supports C, while B only makes A very likely (Smith 2010, 23). We believe
that these cases do not provide much insight into the concept of justification, since
they typically involve a comparison between two totally different domains.

Here is another example by Smith (from his talk ‘When does evidence suffice
for conviction?’ on 30 April 2014 in Groningen; cf. Cohen 1977 and Nesson 1979).
Imagine a hundred people walking out from an electronics store, each carrying a
television. As it turns out, only one television has been paid for, so ninety-nine were
stolen. Since Joe was one of the hundred, the probability that he is a thief is 0.99.
Are we justified to believe that Joe is a thief? Not so, says Smith. Coos Engelsma
proposed that epistemically we are justified, but not morally (private communica-
tion). Engelsma might have a point here, although this does not help the judge, who
still has to weigh epistemic and moral justification against one another.
71 Smith 2016, 76-79.
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seen above there are cases in which normic support is inconsistent with ev-
idential support. Hence we cannot have both as necessary conditions. What
about probabilistic support? Can that be combined with normalcy? In fact it
is possible, along the lines that Smith describes, to find cases where normic
support also clashes with probabilistic support. Indeed, the example of Bruce
and the computer can be tweaked to yield such a clash in the following way.

Suppose that it is I, and not Bruce, who sometimes observes my com-
puter’s screen. An evil hypnotist has however caused me to forget about the
random generation of the background colour whenever I actually do observe
the screen, but to remember how I programmed the boot routine when I am
not looking at the screen. Now E2 (the proposition that I see the colour to
be blue) is true iff ¬E1 is true, the proposition that I do not know about
the random generator. In repeated boot sequences, P(A|E1) > P(A|E2) be-
comes P(A|¬E2) > P(A|E2). Since it is E2 that gives normic support to A,
we have thereby constructed an inconsistency between normic and proba-
bilistic support. Other less far-fetched examples are doubtless possible. And
if probabilistic support and normic support à la Smith are not consistent, one
or the other has to be rejected. The foregoing has made clear where our al-
legiance lies: we believe that it does not make sense to say that E justifies
A without assuming that P(A|E) > P(A|¬E). Thus, when in the rest of this
book we talk about ‘justification’ or ‘epistemic justification’ or ‘probabilis-
tic justification’, we will always mean ‘probabilistic support plus something
else’. The indispensable rôle of probabilistic support as the inequality (2.1)
will again become clear in Section 5.3, where we propose our view of justi-
fication as a trade-off.

2.6 Alston’s Epistemic Probability

The second objection to our view is based on arguments by William Alston.
As Alston sees it, Kolmogorov probability falls short of analyzing crucial
epistemological issues. Although he in no way wishes to make light of the
importance of probability, he believes that the Kolmogorovian rendering of
it is deficient, not of course for understanding justification (since, according
to him, there is no such thing), but as an instrument for analyzing epistemic
desiderata. Especially the desiderata that Alston deems to be “the most fun-
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damental ones”, namely the so-called truth-conducive desiderata, rely heav-
ily on concepts that have to do with probability.72

Alston lists five desiderata that are truth conducive, of which the first two
are especially interesting for us:

1. The subject has adequate evidence (reasons, grounds . . . ) for the belief
(Ai).

2. Ai is based on adequate evidence (reasons, grounds . . . ).73

The idea is that 1 is primarily about logical relations between propositions,
while 2 is about the basing of beliefs. Alston deems 2 epistemically more
desirable than 1, because he sees 2 as the actualization of the possibility pro-
vided by 1, and “the possibility of something desirable is less desirable than
its realization.”74 He further notes that one could think of the basing relation
as being causal in character, as long as one realizes that it is a special kind of
causality, namely “the kind involved in the operation of input-output mecha-
nisms that form and sustain, and so on, beliefs in a way that is characteristic
of human beings.”75

What does the term ‘adequate’ in 1 and 2 mean? Alston states that, if 1
and 2 are to be epistemic desiderata, “adequacy must be so construed that
adequate evidence . . . for Ai entails the probable truth of Ai.”76 In a further
attempt to explain the meaning of ‘adequate’ he writes:

The initial intuitive idea is that the ground is an indication that the belief is
true, not necessarily a conclusive indication for that, but at least something
that provides significant support for taking it to be true. Thus it is natural to
think of an adequate ground of a belief Ai as something such that basing Ai on
it confers a significant probability of truth on Ai.77

Alston stresses — and this is the salient point here — that his use of the word
‘probability’ deviates from the word as it occurs in a Kolmogorovian context.
Probability for Alston is, as he dubs it, ‘epistemic conditional probability’ or
for short ‘epistemic probability’. It is subject to three constraints: it applies
to beliefs, it is to be understood as ‘the probability that a belief is true’, and it

72 Alston 2005a, 81.
73 Ibid., 43, 81. Here and elsewhere we have replaced Alston’s B by Ai.
74 Ibid., 90.
75 Ibid., 84.
76 Ibid., 43. We have added the last italics.
77 Ibid., 94.
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is essentially conditional.78 As such these three constraints do not yet seem
to carve out a non-Kolmogorovian probability, but Alston highlights three
ways in which his epistemic conditional probability “fails to coincide with
conditional probability as typically treated in probability theory.”79 Below
we will discuss all three of them, arguing that none of them conflicts with
orthodox probability theory.

The first way in which Alston’s epistemic probability is supposed to devi-
ate from standard probability theory hinges on the difference between dox-
astic and nondoxastic (primarily experiential) grounds of belief:

First look at doxastic grounds. Suppose S’s belief that Susie is planning to
leave her husband (Ai) is based on S’s belief that Susie told her close friend,
Joy, that she was (A j). To decide how strong an indication the belief that A j is
of the truth of the belief that Ai, we have to look at two things. First, if we stick
for the moment as long as possible with the treatment in terms of propositions,
the relation between the propositions that are the contents of these beliefs, A j
and Ai, is one factor that influences the conditional probability of Ai on A j.
But, second, we have to look at the epistemic status of the belief that A j. For
even if the conditional probability of Ai on A j is high, that won’t put S in a
strong epistemic position in believing that of Ai if S has no good reason, or
not a good enough reason, to believe that A j. This consideration is sufficient
to show that where the ground is doxastic the adequacy of the ground is not
identical with the conditional probability of the propositional content of the
target belief on the propositional content of the grounding belief.

With nondoxastic grounds, on the other hand, we are not faced with this
second factor. Where my ground is a certain visual experience rather than, for
example, a belief that I have that experience, the ground is a fact rather than
a belief in a fact. Hence no problem can arise with respect to the epistemic
status of the ground since that ground is not the sort of thing that can have
an epistemic status. And so the adequacy of a nondoxastic ground coincides
exactly with the conditional probability of the propositional content of the
belief in that fact, construed as a true proposition. Here conditional probability
as treated in probability theory can translate directly into an epistemic status.80

Here Alston suggests that, if the ground A j is a belief, then standard proba-
bility theory will look only at the conditional probability of the target belief

78 Ibid., 95. Alston maintains that “conditional probabilities are in the center of the
picture for the epistemology of belief” (ibid.). We fully agree with him here. After
all, our condition of probabilistic support is made up of conditional probabilities,
and our view that epistemic justification is intrinsically relational (see Section 2.2)
also accommodates that point.
79 Ibid., 97.
80 Ibid.
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Ai, given the grounding belief A j:

P(Ai|A j).

In contrast, his own epistemic probability also accounts for the epistemic
status of A j itself, P(A j), so that we would obtain

P(Ai|A j)P(A j).

Alston’s suggestion is however incorrect. Standard probability accounts not
only for the epistemic status of A j, namely P(A j), but also for the epistemic
status of ¬A j, namely P(¬A j). The latter is as important as the former. For
if the probability of Ai is conditioned on the probability of A j, then one can
only calculate the former probability if one also takes into account what that
probability would be in case A j is false. In standard probability theory the
fact that the probability of Ai is conditioned by the probability of A j is ex-
pressed by the rule or law of total probability:

P(Ai) = P(Ai|A j)P(A j)+P(Ai|¬A j)P(¬A j) . (2.4)

So it seems that Alston’s mistake is twofold. First he incorrectly suggests that
standard probability theory does not consider P(A j), and second he himself
neglects the relevance of the second term in (2.4). As we will see in the
next chapter, the erroneous neglect of the second term of the rule of total
probability is a mistake that has occurred more often in philosophy; even
such notable scholars as Clarence Irving Lewis and Bertrand Russell fell
prey to it.

Formula (2.4) also enables us to understand better what Alston says about
the case in which the ground A j is not a belief. Alston correctly notes that,
if the ground is nondoxastic, it is a fact rather than a belief in a fact. This
fact, “construed as a true proposition”, has probability 1, so P(A j) = 1. This
means that P(¬A j) = 0, and thus that (2.4) reduces to the “conditional prob-
ability as treated in probability theory”, viz.

P(Ai|A j),

in accordance with what Alston states.
The second respect in which Alston’s epistemic probability allegedly fails

to conform to the standard probability calculus concerns the relevance that
the ground A j has to the target Ai. Alston illustrates his point by referring to
the case where Ai is a necessary truth or necessary falsehood:
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In the standard probability calculus the probability of every necessary truth
is 1 and the probability of every necessary falsehood is 0. This makes it im-
possible to use conditional probabilities in assessing the adequacy of grounds
for necessarily true or false beliefs. Since every necessary truth has a proba-
bility of 1, no matter what else is the case, its conditional probability on any
proposition whatever is 1. This ‘rigidity’ of the probability of necessary truths
prevents it from capturing what we are after in thinking of the adequacy of
the grounds. One who supposes that a person who believes 2 + 2 = 4 on the
basis of the belief that all crows are black, thereby believes the former on the
basis of a significantly adequate ground, is missing the epistemological boat.
In thinking of a ground as adequate to some considerable degree, we take it
to render what it grounds as more or less probable. It must make a significant
difference to the probability of the grounded belief. . . . The axioms of arith-
metic are adequate grounds for 2 + 2 = 4, unlike the proposition that all crows
are black. But this will have to be explained on the basis of some other than
the probability calculus.81

In this passage, Alston is criticizing the standard probability calculus on two
points. First, in order for the ground A j to be adequate (or relevant) for the
target Ai, A j must render Ai more or less probable. But if Ai is a necessary
truth or falsehood, then standard probability implies that A j will not render
Ai more or less probable. Thus A j will not be adequate or relevant to Ai, and
this is counterintuitive. Second, whether A j renders Ai more or less probable,
and thus whether A j is (ir)relevant to Ai, will have to be determined outside
the probability calculus, and this is troublesome.

What to make of these two points? Let’s begin with the first one. We will
follow Alston in describing an adequate or relevant ground as one that makes
the target more of less probable; this in fact sits well with our condition
of probabilistic support. Alston is right that in standard probability theory,
if the target Ai is a tautology or a contradiction, then the ground A j will
not render Ai more or less probable, and will in that sense be irrelevant to
the target. But why call this counterintuitive or otherwise problematic? It
would be stranger, and even inconsistent, if something that already had the
maximum probability value would acquire an even higher one.

Moreover, calling Ai a tautology or a contradiction (necessary truth or
falsehood) already presuposes a system in which Ai has that character. That
is, if Ai is 2 + 2 = 4, then Ai is a tautology relative to any system equivalent to
the axioms of arithmetic. So if A j is such a system, then P(Ai|A j) = 1. The
situation remains the same if we add to A j the proposition that all crows are
black: P(Ai|A j and all crows are black) = 1. What if the ground A j consists

81 Ibid., 97-98.
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only of the proposition that all crows are black and nothing more, in particu-
lar nothing that is equivalent to the axioms of arithmetic? In that case Ai and
A j are independent of each another,

P(Ai ∧A j) = P(Ai)P(A j) ,

which implies that P(Ai|A j) is equal to P(Ai). Here A j is also irrelevant to
Ai (and vice versa), since A j does not render Ai more or less probable. How-
ever, A j is now irrelevant for a completely different reason: it is irrelevant,
not because it already confers upon Ai the maximum probability value, but
because it is independent of Ai.

Alston’s second point of criticism is that we have to go outside probability
theory in order to establish whether a ground is relevant to a target: we can
only explain that Peano arithmetic is relevant to 2 + 2 = 4, and that ‘crows
are black’ is not, on some other basis than the probability calculus. We think
there is a confusion here. A comparison with standard logic might help. Ask
yourself: is A j relevant to Ai in the sense that A j makes Ai true (rather than
probable)? The answer to this question depends first and foremost on what
A j and Ai mean. Let Ai mean ‘Feike can swim’.82 If A j means ‘Feike is a
Frisian and all Frisians can swim’, then A j is clearly relevant to Ai, and ‘if A j

then Ai’ expresses a logical connection. The situation is the same in standard
probability theory. If A j means ‘Feike is a Frisian and 9 out of 10 Frisians
can swim’, then A j is obviously relevant to Ai, and P(Ai|A j) = 0.9 expresses
a logical connection. Of course, whether A j is true can only be established
outside logic or probability theory: we need empirical information in order
to determine whether all Frisians, or only 9 out of 10, can swim. The fact that
both in logic and in probability theory we often need the world to determine
whether premises are true is a fact of life, it is a deficiency neither of logic
nor of probability theory.

The third way in which, according to Alston, epistemic conditional prob-
ability fails to coincide with conditional probability, as treated in probabil-
ity theory, has to do with the basing relation. Whereas ordinary conditional
probability is typically concerned with relations between propositional con-
tents, Alston’s conditional probability focuses on relations between beliefs
and their grounds; in contrast to the former, the latter are basing relations. In
the previous pages we have argued that this difference between the two re-
lations can be seen as a difference between interpretations of the probability
calculus: logical or conceptual in the one case, and nomological or causal in

82 We borrow the example from Alston, who in turn has borrowed it from Alvin
Plantinga (ibid., 105).
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the other. This would mean that, for Alston, A j is the ground on which Ai

is (probabilistically) based. However, this appears to be too simple, and not
quite in accordance with what Alston writes. Alston does not say that the
belief Ai is based on a ground, but that:

the basing of the belief [Ai] on the ground . . . is the condition on which the
probability of the belief [Ai] is conditional.83

So rather than saying that the condition A j is the ground of Ai, Alston appears
to say that A j is the condition of being based on a ground. However, even
that reconstruction might not be what Alston has in mind, for he writes:

. . . that on which the probability of the target belief, Ai, is conditional dif-
fers in the two cases [the case of Alston’s conditional probability and that of
ordinary conditional probability]. For the latter, it is the conditioning propo-
sitions, taken as true. For the former, it is the basing of Ai on a ground of a
certain degree of adequacy.84

Thus A j is the condition of being based with a certain degree of adequacy
on a ground. Alston continues:

And that degree of adequacy is a function of more than the relation of propo-
sitional contents. As we have seen, it is also a function of the epistemic sta-
tus of any beliefs in the ground. So in addition to the difference between a
proposition-proposition(s) relationship and a belief-ground relationship, even
the factors relevant to the status of the conditioning item(s) do not exactly
match.85

Here Alston suggests that the difference between the two kinds of condi-
tional probability, the traditional and the Alstonian one, is that only the lat-
ter accounts for P(A j). However, we have seen that this is not so. When Ai

is conditioned on A j, traditional probability theory gives the probability of
Ai via the rule of total probability (2.4), and (2.4) clearly also accounts for
P(A j).

We conclude that Alston’s concept of epistemic conditional probability
actually coincides with the concept of conditional probability as it is treated
in traditional probability theory. None of the three alleged differences that
Alston describes constitutes a departure from Kolmogorovian orthodoxy.

83 Ibid., 98.
84 Ibid., 99.
85 Ibid.
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Chapter 3

The Probabilistic Regress

Abstract

During more than twenty years Clarence Irving Lewis and Hans Reichen-
bach pursued an unresolved debate that is relevant to the question of whether
infinite epistemic chains make sense. Lewis, the nay-sayer, held that any
probability statement presupposes a certainty, but Reichenbach profoundly
disagreed. We present an example of a benign probabilistic regress, thus
showing that Reichenbach was right. While in general one lacks a criterion
for distinguishing a benign from a vicious regress, in the case of probabilis-
tic regresses the watershed can be precisely delineated. The vast majority
(‘the usual class’) is benign, while its complement (‘the exceptional class’)
is vicious.

3.1 A New Twist

The previous chapter indicated how intricate the debate about epistemic just-
ification has become. A mixed bag of knotty details and drawbacks compli-
cates the subject, giving rise to a variety of different positions. But although
nobody knows what exactly epistemic justification is, the idea that it involves
probabilistic support is widespread among epistemologists of all sorts and
conditions. Internalists, externalists, foundationalists, anti-foundationalists,
evidentialists and reliabilists: most of them assume that ‘A j justifies Ai’ im-
plies that Ai somehow receives probabilistic support from A j.

In this chapter and the ones to follow we want to make clear how sig-
nificant this turn towards probability actually is, and what surprising conse-
quences it has. The debate about epistemic regresses acquires a completely
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new twist when Kolmogorovian probability is brought into the picture; for
as we will see a probabilistic regress turns out to be immune to many of the
objections that have routinely been raised against the traditional regress of
entailments. The situation is to a certain extent reminiscent of the two causal
regresses that we encountered in Chapter 1. Whereas a causal series per se
only makes sense if it has a first member, this is not so for a causal series
per accidens. Similarly, as we will argue, a traditional regress of entailments
needs a first member, but a regress of probabilistic support may not.

In the present chapter we will describe the concept of a probabilistic
regress, that is a regress in which (1.1) of Chapter 1,

q ←− A1 ←− A2 ←− A3 ←− A4 . . .

is reinterpreted as: q is probabilistically supported by A1, which is proba-
bilistically supported by A2, and so on, ad infinitum.1 It is assumed that every
link in this chain satisfies the condition of probabilistic support (2.1). As we
have seen, this condition is quite weak, falling considerably short of the title
‘justification’. But for our purposes this minimal requirement is enough.

Our exposition of a probabilistic regress takes as its starting point a his-
torical debate between Hans Reichenbach (1891-1953) and Clarence Irving
Lewis (1883-1964). Lewis and Reichenbach are both early defenders of the
view that epistemic justification is probabilistic in character, holding that A j

might justify Ai even if the former does not logically entail the latter but only
provides probabilistic support. They disagree, however, as to the implica-
tions of this claim. Lewis insists that probabilistic justification must spring
from a ground that is certain, whereas Reichenbach maintains that proba-
bilistic justification remains coherent, even if it is not rooted in firm ground.
The disagreement between Lewis and Reichenbach extended over more than
two decades, from 1930 until 1952, and it is well documented in letters and
in journal contributions.

In Sections 3.2 and 3.3 we will give an overview of the dispute. We first
describe Lewis’s main claim, viz. that any proposition of the form ‘q is prob-
able’ or ‘q is made probable by A1’ must presuppose a proposition that is
certain. Lewis’s argument for this claim is that without such a presupposi-
tion we will end up with a probabilistic regress that has the absurd conse-
quence of always yielding probability value zero for q. Next we describe
Reichenbach’s objection to this argument. We then explain that Lewis is not
convinced by it and challenges Reichenbach to produce a counterexample,

1 The term ‘probabilistic regress’ was coined by Frederik Herzberg (Herzberg
2010).
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i.e. a probabilistic regress that yields a number other than zero for the target
proposition q.

Reichenbach never took up Lewis’s challenge, but we will meet it in Sec-
tion 3.4. By presenting a probabilistic regress that converges to a non-zero
limit, we demonstrate that a target can have a definite and computable value,
even if it is probabilistically justified by a series that continues ad infinitum.
In this manner we show that Reichenbach rather than Lewis was correct, and
also that a probabilistic regress can make sense.

The counterexample to Lewis in Section 3.4 has a simple, uniform struc-
ture. In Section 3.5 we offer a nonuniform and thus more general counterex-
ample. Both counterexamples belong to what we call ‘the usual class’, i.e.
the class of probabilistic regresses that yield a well-defined probability for
the target proposition. We distinguish it from ‘the exceptional class’, which
contains the probabilistic regresses that are not well-defined. In Section 3.6
we will spell out the conditions for membership of the usual and the excep-
tional classes. As it turns out, exceptional probabilistic regresses are charac-
terized by the fact that here probabilistic support comes very close to entail-
ment. Not surprisingly, therefore, probabilistic regresses in the exceptional
class need a ground in order to bestow a value on the target, and in that sense
count as vicious.

The uniform and the nonuniform counterexamples in 3.4 and 3.5 are rather
abstract in nature; but in Section 3.7 we offer two real-life probabilistic re-
gresses, based on the development of bacteria.

3.2 The Lewis-Reichenbach Dispute

In 1929 Lewis published his first major work, Mind and the world order.
An outline of a theory of knowledge.2 Here he starts from the traditional
view that our knowledge is partly mathematical and partly empirical. The
mathematical part deals with knowledge that is a priori and analytic; the
empirical part concerns our knowledge of nature. This knowledge of nature,
says Lewis, is always only probable:

. . . all empirical knowledge is probable only . . . our knowledge of nature is a
knowledge of probabilities.3

2 The present section is based on Peijnenburg and Atkinson 2011.
3 Lewis 1929, 309-310.
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Since the crucial issue for any theory of knowledge is the character of em-
pirical knowledge, it follows that

. . . the problem of our knowledge . . . is that of the validity of our probability
judgements.4

What about the validity of probability statements? In Mind and the world
order, Lewis stresses time and time again that probability judgements only
make sense if they are based on something that is certain:

The validity of probability judgements rests upon . . . truths which must be
certain.5

. . . the immediate premises are, very likely, themselves only probable, and per-
haps in turn based upon premises only probable. Unless this backward-leading
chain comes to rest finally in certainty, no probability-judgment can be valid
at all.6

Lewis is not the only philosopher who has argued that probability judge-
ments presuppose certainties. The idea can already be found in David Hume’s
Treatise of human nature and it has also been defended by, among others,
Keith Lehrer, Richard Fumerton, and Nicholas Rescher.7 Lewis is however
one of the few who discusses the claim in more detail. His explanation can
be summarized as follows.

A statement of the form ‘q is probable’ or ‘the probability of q is x’ is in
fact elliptical for ‘q is probable, given A1’, or ‘the probability of q given A1 is
x’, where x is a number between one and zero. In symbols: the unconditional
P(q) = x is elliptical for the conditional P(q|A1) = x. In many cases, A1 is
itself only probable, so we obtain ‘A1 is probable’, which is shorthand for ‘A1
is probable, given A2’. Again, if A2 is only probable, we need A3, et cetera.
A probabilistic regress threatens. Lewis’s claim is that in the end we must
encounter a statement, p, that is certain (or has probability 1 — we will not
distinguish here between these two cases):

q ←− A1 ←− A2 ←− A3 ←− A4 ←− . . .←− p.

Denying that this is so, and claiming that such a certain p is not needed,
says Lewis, amounts to making nonsense of the original statement (‘q is

4 Ibid., 308.
5 Ibid., 311.
6 Ibid., 328-329.
7 Hume 1738/1961, 178; Lehrer 1974, 143; Fumerton 2004, 162; Fumerton and
Hasan 2010; Rescher 2010, 36-37.
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probable’) itself. Thus we can only give a probability value to a target, q, if
we suppose that there is a ground or foundation, p, that is certain.8.

Reichenbach read Mind and the world order soon after it came out. Al-
though he concurred with many of Lewis’s reasonings, he profoundly dis-
agreed with the claim that probability statements only make sense if they
are based on certainties. On July 29, 1930, he sent Lewis a letter, enclosing
some of his own manuscripts. Unfortunately this letter is now lost. We only
know of its existence from a reply that Lewis wrote to Reichenbach, dated
August 26, 1930.9 We are unable to infer from this reply what exactly Re-
ichenbach had written, since Lewis mainly writes about the manuscripts that
Reichenbach had sent him.10

Between 1930 and 1940 a correspondence developed, which was partly
about practical matters (Reichenbach had fled Berlin in 1933 and went to Is-
tanbul, from where he tried to find an academic position in the U.S.A.), and
partly about Lewis’s claim that probability judgements presuppose certain-
ties. As far as the latter is concerned, it is clear that Reichenbach’s arguments
did not convince Lewis, for sixteen years later, in his book An analysis of
knowledge and valuation, Lewis stresses the same point again:

If anything is to be probable, then something must be certain. The data which
themselves support a genuine probability, must themselves be certainties.11

The disagreement between Lewis and Reichenbach reached its height in De-
cember 1951, at the forty-eighth meeting of the Eastern Division of the
American Philosophical Association at Bryn Mawr. At that meeting there
was a symposium on ‘The Given’, where Lewis, Reichenbach and Nelson
Goodman read papers. Their contributions were published a year later in
The Philosophical Review, and there we learn that Lewis sticks to his guns:

8 As James Van Cleve has noted, Lewis’s text appears to be ambiguous between two
readings (Van Cleve 1977, 323-324). According to the first, Lewis says something
like: ‘The probability of q given p is x, and moreover p is certain’. In symbols:
P(q|p) = x and P(p) = 1. According to the second reading he says: ‘It is certain
that the probability of q given p is x’, that is P(P(q|p) = x) = 1. It can however be
proven that the two readings are equivalent, so this ambiguity is merely apparent.
We will come back to this matter in Chapter 7.
9 “Your very kind letter of July 29th has reached me, here at my summer address.”
The summer address was, by the way, Briar Hill in New Hampshire, close to Ver-
mont.
10 And apparently did not know quite what to do with them: “I find difficulty in
understanding the ground from which they arise.”
11 Lewis 1946, 186.
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The supposition that the probability of anything whatever always depends on
something else which is only probable itself, is flatly incompatible with the
assignment of any probability at all.12

But Reichenbach, too, insisted on his own views. Already in his major epis-
temological work, Experience and prediction, he had found an apt metaphor
for his anti-foundationalist position:

All we have is an elastic net of probability relations, floating in open space.13

Fifteen years later Reichenbach still had the same conviction. He calls the
claim of Lewis that probabilities must be grounded in certainties “just one
of those fallacies in which probability theory is so rich”.14 In an attempt to
understand the root of the fallacy he writes:

We argue: if events are merely probable, the statement about their probability
must be certain, because ... Because of what? I think there is tacitly a concep-
tion involved according to which knowledge is to be identified with certainty,
and probable knowledge appears tolerable only if it is embedded in a frame-
work of certainty. This is a remnant of rationalism.15

And being a rationalist would of course be a thorn in Reichenbach’s logical-
empiricist side. Lewis, in turn, rejects the accusation of being an old fash-
ioned rationalist and replies that, on the contrary, he is trying to save em-
piricism from what he calls ‘a modernized coherence theory’ like that of his
opponent. He writes:

...the probabilistic conception [of Reichenbach] strikes me as supposing that
if enough probabilities can be got to lean against one another they can all be
made to stand up. I suggest that, on the contrary, unless some of them can
stand up alone, they will all fall flat.16

Who is right in this debate? Some authors, such as James Van Cleve and
Richard Legum, have argued that it is Lewis.17 To explain why we dissent,
we will first spell out the argument that Lewis puts forward in support of
his claim that probability judgements presuppose certainties. It is true that
the negation of Lewis’s claim leads to an infinite regress, but since not all
regresses are vicious, an argument is required in order to show that this par-
ticular regress is of the unacceptable kind.
12 Lewis 1952, 173.
13 Reichenbach 1938, 192.
14 Reichenbach 1952, 152.
15 Ibid.
16 Lewis 1952, 173.
17 Van Cleve 1977; Legum 1980.
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3.3 Lewis’s Argument

As Mark Pastin correctly notes, the claim that probabilities presuppose cer-
tainties was repeated by Lewis “throughout his writings but [he] gave little
attention to defending it”.18 The most extensive defence can be found in
Mind and the world order, which contains the following argument:

Nearly all the accepted probabilities rest upon more complex evidence than
the usual formulations suggest; what are accepted as premises are themselves
not certain but highly probable. Thus our probability judgement, if made ex-
plicit, would take the form: the probability that A is B is a/b, because if C
is D, then the probability that A is B is m/n, and the probability of ‘C is D’
is c/d (where m/n× c/d = a/b). But this compound character of probable
judgement offers no theoretical difficulty for their validity, provided only that
the probability of the premises, when pushed back to what is more and more
ultimate, somewhere comes to rest in something certain.19

In other words, Lewis says that the judgement

A is B is probable, (3.1)

is elliptical for

A is B is probable, given C is D. (3.2)

Since we are dealing with empirical knowledge, C is D is itself also only
probable. The judgement ‘C is D is probable’ is in turn elliptical for ‘C is D
is probable, given E is F’. And so on.

We can formalize and quantify (3.1) and (3.2) by

P(A is B) = a/b (3.3)

which is elliptical for

P(A is B) = P(A is B|C is D)×P(C is D)

= m/n× c/d

= a/b, (3.4)

where a/b, m/n and c/d are probability values between 1 and 0. Now of
course the probability that C is D may also be elliptical. If this series were to

18 Pastin 1975, 410.
19 Lewis 1929, 327-28. Here ‘A is B’ means something like ‘all A-things are B-
things’. We have replaced Lewis’s ‘P is Q’ and ‘p/q’ by ‘C is D’ and ‘c/d’.
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go on and on, then, because all the factors in the multiplication are probabil-
ities and thus positive numbers less than one, the probability of the original
proposition A is B would always tend to zero. But this is ridiculous, so the
series of probability judgements must come to a stop in a statement that is
certain. This is Lewis’s argument for his claim that bestowing a probabil-
ity value on a target presupposes the acceptance of a ground that is certain:
without such a ground, the probability of the target will go to zero.

Lewis’s argument is however simply mistaken. For P(A is B) is not ellip-
tical for the product P(A is B|C is D)×P(C is D), but for the following sum
of products:

P(A is B) = P(A is B|C is D)×P(C is D)

+P(A is B|¬(C is D))×P(¬(C is D)). (3.5)

The first term of (3.5) coincides with (3.4), but (3.5) contains a second term,
which Lewis forgets. He ignores the fact that, if the probability of A is B
is conditioned by the probability of C is D, then you can only calculate the
former probability if you also take into account what that probability is in
case C is D is false.20 Eq.(3.5) is an instance of the rule of total probability,
which is a theorem of the calculus that Andrey Kolmogorov developed in his
Grundbegriffe der Wahrscheinlichkeitsrechnung.

Kolmogorov published his Grundbegriffe in 1933, which might explain
Lewis’s mistake. The same can however not be said of Bertrand Russell.
In 1948, nineteen years after Mind and the world-order, Russell published
Human knowledge: its scope and limits. Part 5 of this book is devoted to
the concept of probability, and there Russell criticizes several theories of
probability, including Reichenbach’s theory in his Wahrscheinlichkeitslehre
of 1935. It is interesting that, quite independently of Lewis (for he does not
mention him anywhere), Russell claims that attributing a probability value to
a proposition presupposes a certainty. Moreover, he defends this claim with
the same erroneous argument that Lewis had used. Russell writes:

At the first level, we say that the probability that an A will be a B is m1/n1; at
the second level, we assign to this statement a probability m2/n2, by making
it one of some series of similar statements; at the third level, we assign a

20 Mark Pastin seems to interpret Lewis as talking about the probability of the con-
junction of the propositions ‘A is B’ and ‘C is D’ (Pastin 1975, 413). In this read-
ing, Eq.(3.5) would be replaced by P

(
(A is B) and (C is D)

)
= P(A is B|C is D)×

P(C is D), and this expression has no second term. However in this case there would
not be a justificatory chain in which one proposition justifies the other. See footnote
31.
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probability m3/n3 to the statement that there is a probability m2/n2 in favour
of our first probability m1/n1; and so we go on forever. If this endless regress
could be carried out, the ultimate probability in favour of the rightness of our
initial estimate m1/n1 would be an infinite product

m2/n2 × m3/n3 × m4/n4 . . .

which may be expected to be zero.21

In other words, Russell argues that a series of statements like

s1 = A is B
s2 = The probability of s1 is m1/n1
s3 = The probability of s2 is m2/n2
. . .

implies that the probability of s1 will tend to zero.22 The argument is the
same as that of Lewis: the probability of s1 is the outcome of the multiplica-
tion of an infinite number of factors each of which is smaller than 1. It thus
fails for precisely the same reason as does Lewis’s argument. If a proposition

21 Russell 1948, 434; our italics. Where Russell has α and β we have used A and
B. It is assumed that 0 < mi/ni < 1 for all i. Presumably Russell, a competent
mathematician, wrote ‘may be expected to be zero’ because he knew that there exist
infinite products of factors, all less than one, that converge (i.e. that yield well-
defined, non-zero values). In this connection it is interesting that Quine, in his 1946
Lectures on David Hume’s Philosophy (Quine 2008), indeed makes the point that
such a product can be convergent: in fact he gives an explicit example. He fails,
however, to note that the point is irrelevant, for the probabilities in question should
not be multiplied together (because of the second term in (3.5)). Thanks to Sander
Verhaegh for bringing Quine’s lectures to our notice. We return to Quine’s reasoning
in Chapter 7.
22 Note that Russell here speaks about higher-order probability statements rather
than about the probability of a reference class in a conditional probability statement
(see footnote 8 for the difference). Russell says that such a series of higher-order
probability statements “leads (one is to suppose) to a limit-proposition, which alone
we have a right to assert. But I do not see how this limit-proposition is to be ex-
pressed. The trouble is that, as regards all the members of the series before it, we
have no reason . . . to regard them as more likely to be true than to be false; they
have, in fact, no probability that we can estimate.” (Russell 1948, 435; our italics).
In other words, Russell suggests that we cannot attribute a probability value to s1
because we are unable to compute the limit of the series. This seems to be at odds
with his earlier claim that the value of s1 goes to zero, but we will not dwell on
the matter here. In the next section we will rather specify the limit proposition that
Russell was vainly trying to express.
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with probability x is conditioned by a proposition with probability y, then the
probability of the first proposition is not given by xy, as Russell says, but by
xy+ x′(1− y), where x′ is the probability that the first proposition is true if
the second is false, and (1− y) is the probability that the second proposition
is indeed false. Just like Lewis, Russell forgets the second term in the rule of
total probability, namely x′(1− y).

Reichenbach notices that Russell makes the mistake, and points it out to
him in a letter of March 28, 1949.23 Russell clearly acknowledges his over-
sight, as we see from his reply three weeks later.24 Lewis, on the other hand,
seems to have persisted in his error, and Reichenbach confronts him with
this fact in 1951, at the forty-eighth meeting of the American Philosophical
Association at Bryn Mawr. Lewis appears however not to be impressed by
Reichenbach’s amendment:

. . . even if we accept the correction which Reichenbach urges here, I disbe-
lieve that it will save his point. For that, I think he must prove that, where
any regress of probability-values is involved, the progressively qualified frac-
tion measuring the probability of the quaesitum will converge to some deter-
minable value other than zero; and I question whether such a proof can be
given.25

In other words, Lewis fails to see the relevance of the second term in (3.5): he
simply does not believe that an infinite regress of probabilities can converge
to some value other than zero. Even if we do take Reichenbach’s amendment
into account, Lewis still thinks that an infinite series of probability statements
conditioned by probability statements will always converge to zero. And he
defies Reichenbach to prove the contrary. As far as we know Reichenbach
never took up the challenge. Perhaps he planned to, but never got around to
it; or maybe he had difficulties finding what Russell called “the limit proposi-
tion” (see footnote 22); or perhaps he simply got tired of the debate. We will
presumably never know, for in April 1953 Reichenbach died in California of
a heart attack.

23 The letter is printed in the volume with selected writings of Hans Reichenbach
edited by Maria Reichenbach and Robert Cohen (Reichenbach and Cohen 1978,
405-411).
24 “I perceive already that you are right as to the mathematical error that I commit-
ted on page 416” (letter from Russell to Reichenbach, April 22, 1949). Page 416
corresponds to page 434 in reprints of Russell’s book. We are grateful to Mr. L. Lu-
gar and Ms. B. Arden of the Pittsburgh Archive for sending us a copy of Russell’s
letter.
25 Lewis 1952, 172.
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In the next section we will take up Lewis’s gauntlet by presenting a coun-
terexample to his argument that a “regress of probability-values” always
tends to zero. This counterexample involves an infinite iteration of the rule
of total probability. Although this iteration produces a much more compli-
cated regress than the simple product that Russell and Lewis had envisaged,
it leads to a perfectly well-defined, and moreover nonzero probability for the
target proposition. It thus also produces the “limit-proposition” that Russell
was looking for.26

3.4 A Counterexample

Let our target proposition q be probabilistically justified by proposition A1.
We have seen that the unconditional probability of q, namely P(q), can be
calculated from the rule of total probability:

P(q) = P(q|A1)P(A1)+P(q|¬A1)P(¬A1). (3.6)

To make contact with Lewis’s argument, we can take q to be ‘A is B’ and A1
to be ‘C is D’. If A1 is probabilistically justified by A2, then P(A1) can be
calculated from another instance of the rule,

P(A1) = P(A1|A2)P(A2)+P(A1|¬A2)P(¬A2), (3.7)

and if A2 is in turn probabilistically justified by A3 we have to repeat the rule
again,

26 Dennis Dieks put forward the possibility that Lewis might have been interested
only in those probabilistic regresses in which the second term may be legitimately
ignored (Dieks 2015). Dieks’ suggestion is intriguing, but it causes difficulties. First,
why did not Lewis make this explicit? In his debate with Reichenbach there appear
to have been opportunities enough. Second, even if An+1 has been called a reason for
An, we should not overlook the fact that other propositions, contained in the negation
of An+1, can well contribute to the justification of An. As Johan van Benthem phrases
it: “[P(An|¬An+1)] measures intuitively the ‘bonus’ that An receives even if An+1
were untrue. This inclusion might perhaps sound odd if we have just introduced
An+1 as reason for An — but we may, neither here nor in argumentation generally,
ignore the fact that a postulated claim can already enjoy support without An+1” (Van
Benthem 2015, 148, our translation from the Dutch; cf. Peijnenburg 2015, 205-206).
In any case, if Dieks were correct this would considerably restrict the domain in
which the Lewisian approach could apply, and it would appear to be inconsistent
with the probability calculus.
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P(A2) = P(A2|A3)P(A3)+P(A2|¬A3)P(¬A3). (3.8)

Can we continue this repetition, thus allowing for propositions being prob-
abilistically justified by other propositions, being probabilistically justified
by still other propositions, ad infinitum? It might look as though we cannot.
How would we ever be able to calculate P(q) if it is the outcome of an infinite
regress of instances of the rule of total probability? The calculation seems at
first sight to be too lengthy and too complicated for us to complete. After all,
insertion of Eq.(3.7), together with

P(¬A1) = P(¬A1|A2)P(A2)+P(¬A1|¬A2)P(¬A2) (3.9)

into the right-hand side of Eq.(3.6) leads to an expression with four terms,
namely:

P(q) = P(q|A1)P(A1|A2)P(A2)+P(q|¬A1)P(¬A1|A2)P(A2)+ (3.10)

P(q|A1)P(A1|¬A2)P(¬A2)+P(q|¬A1)P(¬A1|¬A2)P(¬A2).

A repetition of this manoeuvre to express P(A2) and P(¬A2) in terms of
P(A3) and P(¬A3) would produce no less than eight terms. After n+1 steps,
the number of steps is 2n+1, yielding an ungainly expression that seems hard
to evaluate in a simple, closed form.

There is however a way to reduce this complication of the rapidly in-
creasing number of terms. In explaining this we first simplify the notation by
abbreviating (3.6) by setting the two conditional probabilities, P(q|A1) and
P(q|¬A1), equal to α and β :

α = P(q|A1) β = P(q|¬A1) . (3.11)

Now P(q) becomes:

P(q) = αP(A1)+βP(¬A1)

= αP(A1)+β [1−P(A1)]

= β +(α −β )P(A1) . (3.12)

Clearly, we can only compute P(q) if we know P(A1). Of course, we also
have to know the values of the conditional probabilities α and β . Their status
is however rather different from that of the unconditional probabilities, and
we will come back to this matter in detail in Chapter 4. At this juncture,
we simply assume that α and β are given, and that they are the same from
link to link (the latter assumption is dropped in the next section). But what
is the value of P(A1)? We do not know. However, we do know that A1 is
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probabilistically justified by A2, and so we can calculate P(A1) in terms of
P(A2), and so on:

P(A1) = β +(α −β )P(A2)

P(A2) = β +(α −β )P(A3)

P(A3) = β +(α −β )P(A4) .

We can now see how to get rid of the unknown unconditional probabilities,
namely by nesting the formulas. Thus we can remove P(A1) by substituting
its value into (3.12), so that we obtain:

P(q) = β +(α −β )P(A1)

= β +(α −β )
[
β +(α −β )P(A2)

]
= β +β (α −β )+(α −β )2P(A2) . (3.13)

Next, by inserting the value of P(A2) into (3.13) we attain

P(q) = β +β (α −β )+(α −β )2[β +(α −β )P(A3)
]

= β +β (α −β )+β (α −β )2 +(α −β )3P(A3) , (3.14)

by which we got rid of P(A2). And so on. After a finite number m of steps
we obtain the following formula:

P(q)= β +β (α−β )+β (α−β )2+ . . .+β (α−β )m+(α−β )m+1P(Am+1) .
(3.15)

Eq.(3.15) is the beginning of the “regress of probability-values” that Lewis
is talking about. His argument is that, if this series is continued ad infinitum,
P(q) will always tend to zero, notwithstanding the fact that Reichenbach’s
correction has been taken into account. This is presumably why Lewis com-
ments: “I disbelieve that it [the addition of the second term] will save his
point.” Let us see whether Lewis’s disbelief is justified.

There are two things that should be noted about (3.15). The first is that
it contains only one factor of which the value is unknown. This is P(Am+1),
i.e. the probability of the first proposition, Am+1, in this finite series. Since
all the probabilities in the series are ultimately computed on the basis of this
unconditional probability, it seems that we must know its value in order to be
able to calculate P(q). The second thing is that, as m gets bigger and bigger,
so that the justificatory chain becomes longer and longer, (α − β )m+1 gets
smaller and smaller without limit, finally converging to zero. But of course,
if (α − β )m+1 converges to zero, then (α − β )m+1P(An+1) dwindles away
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to nothing too, for P(Am+1) cannot be greater than 1. The right-hand side of
Eq.(3.15) is a sum, and if a term in a sum goes to zero, it does not contribute
in the limit. With an infinite number of steps, the terms that remain are

P(q) = β +β (α −β )+β (α −β )2 + . . .

= β
[
1+(α −β )+(α −β )2 + . . .

]
= β

∞

∑
n=0

(α −β )n . (3.16)

Since α −β is less than one, the sum here is a convergent geometric series
which we can evaluate:

P(q) =
β

1−α +β
. (3.17)

In general, (3.17) does not yield zero. For example, if α is 3/4 and β is 3/8,
then P(q) is 3/5.27

We conclude that Lewis is mistaken. It is not the case that a “regress of
probability values” always yields zero. We have just seen an example of such
a series, consisting in a sum with an infinite number of terms, that yields a
number other than zero. Since Lewis’s statement is invalid, it cannot support
his main claim that probability statements only make sense if they presup-
pose certainties.28

3.5 A Nonuniform Probabilistic Regress

The counterexample in the previous section is a very special case. For in
demonstrating that a probabilistic regress makes sense, we have assumed
27 Eq.(3.17) gives in fact the fixed point of a Markov process. The stochastic matrix
governing the process is regular, and the iteration is guaranteed by Markov theory to
converge to the solution of the fixed point, p∗ = β +(α −β )p∗. However, this quick
route to (3.17) only works when the conditional probabilities are the same from step
to step: in the general case that we consider in the next section Markov theory does
not help, which is why we have not used it here. We shall discuss fixed points more
fully in Sections 8.4 and Appendix D.
28 This example shows that James Van Cleve’s defence of Lewis, and thereby his
attack on Reichenbach, is mistaken (Van Cleve 1977). Van Cleve argues that an in-
finite iteration of the rule of total probability must be vicious, because “we must
complete it before we can determine any probability at all” (ibid., 328). But our
counterexample to Lewis demonstrates that an infinite iteration may well be com-
pletable, in the sense that it is convergent and can be summed explicitly, yielding a
definite value for P(q).
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that the conditional probabilities are uniform, i.e. that they remain the same
throughout the entire justificatory chain. Such an assumption is of course
rarely fulfilled. It is very uncommon that the degree to which proposition q
is probabilistically supported by A1 is the same as the degree to which A1 is
probabilistically supported by A2, and so on.

However, it is possible to construct counterexamples without making the
assumption that the conditional probabilities are uniform. The rule of total
probability relating An to An+1 is

P(An) = P(An|An+1)P(An+1)+P(An|¬An+1)P(¬An+1) ,

or, with the abbreviation of the conditional probabilities as α and β , as in the
previous section:

P(An) = αP(An+1)+βP(¬An+1) .

In the nonuniform case the conditional probabilities differ from one link to
another, so we have to add an index n to α and β :

P(An) = αnP(An+1)+βnP(¬An+1)

= βn + γn P(An+1) , (3.18)

where αn, βn and γn are defined as follows:

αn = P(An|An+1)

βn = P(An|¬An+1)

γn = αn −βn . (3.19)

Imagine a finite probabilistic chain A0,A1, . . . ,Am+1, where again A0 is prob-
abilistically supported by A1, which is probabilistically supported by A2, and
so on. For notational convenience we have temporarily used A0 for the tar-
get proposition q and Am+1 for the grounding proposition p. It is possible to
concatenate all the instances of the rule of total probability to yield, for any
m ≥ 0,

P(A0) = β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm + γ0γ1 . . .γmP(Am+1) .

(3.20)

Formula (3.20), of which a proof is given in Appendix A.1, is the nonuniform
counterpart of formula (3.15) in the uniform case.
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We have seen that, notwithstanding Lewis’s opinion, the extension of the
finite (3.15) to an infinite chain can be envisaged: in the uniform case the
infinite extension is well-defined if the extreme values 0 and 1 for the con-
ditional probabilities are excluded. Does it make sense to extend (3.20) to
an infinite number of links? Can a probabilistic regress in the nonuniform
case also be well-defined and moreover yield a nonzero value for the tar-
get? Again, one example is enough to refute Lewis’s argument in this more
general setting, and here it is:

αn = 1− 1
n+2

+
1

n+3
; βn =

1
n+3

; γn = 1− 1
n+2

. (3.21)

In (3.21) αn and βn depend nontrivially on n. The resulting infinite series is
not a geometric series, as it was in the uniform case that was introduced in
Section 3.4. Nevertheless, as is shown in Appendix A.5, when we insert the
formulae (3.21) into (3.20) we can work out the sum explicitly, obtaining

P(A0) =
3
4 − 2m+5

2(m+2)(m+3) +
1

m+2 P(Am+1) . (3.22)

In the limit that m goes to infinity, the second and the third terms on the
right-hand side of (3.22), namely 2m+5

2(m+2)(m+3) and 1
m+2 P(Am+1), both go to

zero. Thus only the term 3
4 survives in the limit, so that P(A0), that is the

probability of the target, P(q), equals 3
4 . Here then is a new and more general

case that invalidates Lewis’s argument that an infinite probabilistic regress
must yield zero.

3.6 Usual and Exceptional Classes

The above examples not only illustrate that Lewis was mistaken, but also that
a probabilistic regress can have a limit and in that sense be benign. But what
are the conditions under which this is so? When exactly does a probabilistic
regress yield a well-defined value for the target proposition?

In general there exist two conditions. Each of them is necessary, and to-
gether they are sufficient. Look again at our finite nonuniform chain, (3.20):

P(A0) = β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm + γ0γ1 . . .γmP(Am+1).

The right-hand side of this equation consists of two parts, namely the sum of
conditional probabilities,
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β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm ,

and the remainder term,

γ0γ1 . . .γmP(Am+1) .

The first condition for a benign probabilistic regress is that the series of con-
ditional probabilities converges in the limit. The second condition is that, as
m is taken to infinity, the remainder term goes to zero.

As we prove in Appendix A.3, the first condition is always satisfied,
given that we assume probabilistic support, i.e. the constraint P(An|An+1)>
P(An|¬An+1) for all n. No matter whether we are dealing with uniform or
with nonuniform conditional probabilities, the infinite series

β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 + . . . , (3.23)

always converges. However, the matter is different as far as the second con-
dition is concerned. This condition is satisfied in the uniform situation (with
the restriction that α is not equal to one and β is not equal to zero), but it
is not always satisfied in the nonuniform situation. We shall call the class of
cases where both conditions are fulfilled the usual class.29 In the usual class
the probability of the target is equal to the following convergent series of
terms, each of which is a function of the conditional probabilities only:

P(q) = β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 + . . . . (3.24)

The class of cases in which only the first requirement is fulfilled we will
call the exceptional class. Regresses in the exceptional class do not furnish
counterexamples to Lewis’s conclusion; but those in the usual class, on the
other hand, do so, on condition that at least one of the βn is nonzero.

When does a nonuniform probabilistic regress fall within the exceptional
class? For our purpose this question is of course important, since it creates
the watershed between probabilistic regresses which are benign (in the sense
that they yield an exact and well-defined value for the target) and those that
are not (in the sense that they only yield such a number if they have a first

29 In the usual class the infinite series (3.23) converges even if one relaxes the con-
dition of probabilistic support. However, since we are interested in justification, of
which probabilistic support is a necessary condition, this extension of the domain
of convergence is not required for our purposes. Moreover, the condition of proba-
bilistic support is needed for our conception of epistemic justification as a trade-off
(see Chapter 5) as well as for convergence in the probabilistic networks discussed
in Chapter 8.
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member, a ground). Clearly the answer to this question depends on whether
the remainder term vanishes in the limit. We have seen that this will be the
case if the factor γ0γ1 . . .γm vanishes as m goes to infinity. For then the re-
mainder term γ0γ1 . . .γmP(Am+1) will die out, since P(Am+1), the probability
of the grounding proposition, cannot be greater than one.

But when exactly does γ0γ1 . . .γm go to zero? That is the key question. As
we show in Appendix A.4, the answer depends entirely on the asymptotic
behaviours of αn and βn. The factor γ0γ1 . . .γm goes to zero if and only if
αn does not tend to one more quickly than 1/n tends to zero, or if βn does
not tend to zero more quickly than 1/n tends to zero. If at least one of these
disjuncts applies, then the nonuniform probabilistic regress falls within the
usual class. It then yields a unique probability value for the target proposi-
tion, A0 or q, which does not depend on an inaccessible unconditional prob-
ability at infinity. That is, it does not depend on the value of P(Am+1) —
or P(p) — in Eq.(3.20) in the limit that m goes to infinity.30 A nonuniform
probabilistic regress within this usual class constitutes a counterexample to
Lewis’s argument. A specific instance is provided by the example (3.21), for
this lies in the usual class, since the remainder term in (3.22), 1

m+2 P(Am+1),
goes to zero as m goes to infinity. In this limit the right-hand side of (3.22)
tends to 3

4 .
If, however, αn goes to one very quickly and βn goes to zero very quickly

as n tends to infinity, more quickly in fact than 1/n tends to zero, then the
nonuniform probabilistic regress belongs to the exceptional class. In this case
the regress does not result in a unique, well-defined probability value for the
target proposition, since the unknown probability of the ground still plays a
significant role. The regress is now vicious in the sense that the probability
of the target depends in part on the inaccessible ground, and it would not
form a counterexample to Lewis’s foundationalist argument.

An example of a regress in the exceptional class is as follows,

βn =
1

(n+2)(n+3)
γn = 1− 1

(n+2)2 , (3.25)

so that
αn = βn + γn = 1− 1

(n+2)2(n+3)
.

Here 1−αn and βn both tend to zero as n tends to infinity more quickly
than 1

n tends to zero, which shows that the example is indeed a member of

30 That the resulting system is consistent, in the sense that there exists at least one
assignment of probabilities for all possible conjunctions of the propositions An, has
been demonstrated by Frederik Herzberg (Herzberg 2013).
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the exceptional class. In Appendix A.6 we work out the expression for the
probability of the target proposition, obtaining

P(A0) =
3
8 − 2m+5

4(m+2)(m+3) +
1
2

m+3
m+2 P(Am+1) . (3.26)

In this case the remainder term, 1
2

m+3
m+2 P(Am+1), does not vanish in the limit. It

becomes formally one half times the limit of P(Am+1) as m tends to infinity,
which is ill-defined.

A probabilistic regress in the exceptional class is characterized by the fact
that it is actually very close to a regress of entailments, i.e. to the ‘classical’
regress, in which An+1 entails An for all n. It is therefore to be expected
that a straightforward classical regress will also fail to provide us with a
counterexample to Lewis’s claim, and this is indeed the case. Here is how a
classical regress looks in our probabilistic formalism. If An+1 entails An for
all n, then

αn = P(An|An+1) = 1;

and it is shown in Appendix A.7 that (3.20) reduces in this case to

P(¬A0) = γ0γ1 . . .γm P(¬Am+1) , (3.27)

for any m. We have to consider various possibilities for the behaviour of

βn = P(An|¬An+1)

as n tends to infinity. If βn were to tend to zero no more quickly than 1/n
does, the product γ0γ1 . . .γm in (3.27) would tend to zero as m tends to infin-
ity, so P(¬A0) = 0, irrespective of the behaviour of P(¬Am+1). Moreover it
follows also that P(¬An) = 0 for all n, which means that βn is not defined.
This is inconsistent, so we conclude that after all βn must tend to zero more
quickly than 1/n. But then the product γ0γ1 . . .γm tends to some non-zero
limit, and so P(¬A0) is not uniquely determined, since P(¬Am+1) can be as-
signed no particular limit as m goes to infinity. The regress of entailments, or
implications, is thus necessarily in the exceptional class.

A very special case is when

βn = P(An|¬An+1) = 0 (3.28)

for all n. We have then P(¬A0) = P(¬An) for all n, so all the proba-
bilities, P(An), have the same, undetermined value. Eq.(3.28) implies that
P(¬An|¬An+1) = 1, which is to say that ¬An+1 entails ¬An, which of course
means that An entails An+1 (up to measure zero). If αn = 1 and βn = 0, then
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An implies, and is implied by An+1: there is a regress of bi-implication all
the way along the chain. All the probabilities are the same, but the value is
undetermined by the regress. Such a regress of bi-implication is vicious in
our sense, for here the truth value of the target cannot be determined in the
absence of the truth value of the first member.

To summarize, the system of conditional probabilities belongs to the usual
class if and only if 1−αn or βn do not tend to zero more quickly than 1/n
tends to zero. On the other hand, if 1−αn and βn both tend to zero more
quickly than 1/n, then the system belongs to the exceptional class, and the
unconditional probabilities of the propositions are not determined. The sit-
uation in which αn is nearly one, and βn is nearly zero, is close to the case
of bi-implication. We therefore might call the exceptional class the case of
quasi-bi-implication.

3.7 Barbara Bacterium

In this chapter we have introduced the concept of a probabilistic regress, that
is an epistemic chain of the form

q ←− A1 ←− A2 ←− A3 ←− A4 . . .

where the arrow is interpreted in terms of probabilistic support. We examined
Lewis’s view that such a regress is absurd, since it allegedly implies that
the probability of q is zero. According to Lewis, the only way to avoid the
absurdity was to stop at a proposition, p, which is certain:

q ←− A1 ←− A2 ←− A3 ←− A4 . . .←− p.

We have opposed Lewis’s argument by giving counterexamples, i.e. prob-
abilistic regresses which yield a unique, nonzero probability value for the
target. Some of these regresses were based on uniform conditional probabil-
ities, others on nonuniform ones.

All our counterexamples were abstract. This is somewhat unfortunate,
since a familiar objection to infinite regresses is that they are not concrete
and lack practical relevance. The objection becomes even more pressing if
one distinguishes (as we did not do here but will do in later chapters) be-
tween propositions and beliefs. Propositions are abstract entities, but beliefs
are propositional attitudes that people really have. Whereas the idea of an
infinite propositional regress might sound not unreasonable, an infinite dox-
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astic regress seems a contradiction in terms. Where could we ever find a
doxastic series of infinite length?

In the next chapters we will come back to this objection, and then we will
also discuss the distinction between a propositional and a doxastic regress.
At this juncture we will restrict ourselves to showing that a probabilistic
regress of propositions also is relevant to a real-life situation.

Imagine that we are trying to develop a new medicine to cure a disease.
In this connection, we want to know whether a particular bacterium has a
certain trait, T . Bacteria reproduce asexually, so one parent, the ‘mother’
bacterium, alone produces offspring. After having carried out many experi-
ments, one day we take from a batch a particular bacterium, which we call
Barbara. From our experiments we know that the probability that Barbara
has T is considerably greater if her mother has T than if her mother lacks it.
So if q is ‘Barbara has T ’ and A1 is ‘Barbara’s mother has T ’, then we can
say that A1 probabilistically supports q. It is not certain that Barbara has T if
her mother has the trait, but on the other hand Barbara could have T even if
her mother does not have it. Thus 1 > P(q|A1)> P(q|¬A1)> 0.

The unconditional probability of Barbara having T is given by

P(q) = P(q|A1)P(A1)+P(q|¬A1)P(¬A1).

Whereas the conditional probabilities in this equation, P(q|A1) and P(q|¬A1),
may be assumed to have been determined from our experiments, obtaining
P(A1) is a problem. What is the probability that Barbara’s mother has T ? We
know that it is given by

P(A1) = P(A1|A2)P(A2)+P(A1|¬A2)P(¬A2),

where P(A2) is the probability that Barbara’s grandmother has T , which
in turn is conditioned by P(A3), the probability that Barbara’s great-grand-
mother has T .31

It will be clear that we can only compute P(q) if we know P(A3). And the
situation remains the same, even if we add more and more instances of the
rule of total probability, going further and further back in Barbara’s ancestry.
It seems we are only able to compute the probability that Barbara has T if
we know what is the unconditional probability that her primordial mother
had T . So at first sight it looks as though foundationalists are right: if q is
probabilistically justified by A1, which is probabilistically justified by A2,

31 In the reading of Pastin the probability intended by Lewis would be P(q∧A1),
see footnote 20. But this is neither the probability of interest nor does it fit what is
at stake in the debate between Lewis and Reichenbach.
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et cetera, then we have to know for sure the probability of the grounding
proposition in order to be able to calculate the probability of q.

This impression, intuitive as it may seem, is however incorrect, and we
have already seen why. The chain q ←− A1 ←− A2 ←− A3 leads to:

P(q) = β +β (α −β )+β (α −β )2 +(α −β )3P(A3) ,

see (3.14). Going infinitely far back into Barbara’s ancestry, we obtain (3.16):

P(q) = β +β (α −β )+β (α −β )2 + . . . .

This does not have a grounding proposition p. A primordial mother of Bar-
bara makes no contribution, yet we are able to calculate the probability that
Barbara herself has T , and this probability, notwithstanding Lewis’s opinion,
is not zero.

Let An be the proposition: ‘Barbara’s ancestor in generation n has T ’. Let
the probability that a bacterium has T if her mother has T be 0.99, and the
probability that a bacterium has T if her mother lacks it be 0.02. So α =
P(An|An+1) = 0.99, β = P(An|¬An+1) = 0.02, and hence γ = α −β = 0.97.
Now (3.16) becomes:

P(q) =
β

1− γ
=

β
1−α +β

,

in agreement with (3.17). With the numbers chosen for α and β , we can now
calculate the probability that Barbara has T : it is 2

3 .
The foregoing example made use of uniform conditional probabilities. As

an example of a nonuniform probabilistic regress, suppose that an effect of
the increasing pollution of the nutrient, as a result of the growing mass of
bacteria in it, is that the probability of a bacterium having T increases as
time goes on, quite independently of whether the mother bacterium has T .
For example, if αn = P(An|An+1) = a+bn+1 and βn = P(An|¬An+1) = bn+1,
where a and b are positive numbers such that a+b < 1, then αn and βn are
different from generation to generation, although γn = a is constant. Note
that, since b is less than one, the factor bn+1 increases as n decreases, so
in Barbara’s remote ancestry there was little pollution, but it increases from
generation to generation until Barbara herself appears on the scene. Eq.(3.20)
once more reduces to a finite geometric series that can be summed:

P(q) = b
[
1+ab+(ab)2 + . . .(ab)m]+am+1P(Am+1)

= b
1− (ab)m+1

1−ab
+am+1P(Am+1) .
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In the case of an infinite number of generations, since (ab)m+1 and am+1 both
vanish in the limit of infinite m, we find

P(q) =
b

1−ab
. (3.29)

For example, if a = 1
3 and b = 3

5 , we find from (3.29) that P(q) = 3
4 .

One might object that our argument so far is still not very realistic, to put
it mildly. For a start, the assumption that conditional probabilities are known
as precise numbers is a travesty of what is attainable in scientific practice.
In real experiments the conditional probabilities are imprecise, merely being
known to lie within some specified interval, and as a result, the unconditional
probability of the target, too, is subject to measurement error.

Fortunately, when the conditional probabilities are uniform, as for exam-
ple in the case of Barbara, then it is relatively easy to determine the interval
within which the target probability must lie. For suppose that P(An|An+1) is
in the interval [αm,αM], and P(An|¬An+1) is in the interval [βm,βM]. It can
be shown that expression (3.17) for P(q) is an increasing function of both α
and of β ;32 and this means that the uncertainty in P(q) is given by

βm

1−αm +βm
< P(q)<

βM

1−αM +βM
,

on condition that αM −βm < 1.
In the more general case where the conditional probabilities are not uni-

form, the calculation of the uncertainty in the value of P(q) is a little more
intricate. However, since the condition of probabilistic support is in force, all
the terms in Eq.(3.23) are positive, and it can be done without too much ef-
fort. One has to minimize and maximize each term, within the experimental
error bounds, in order to obtain lower and upper bounds on P(q).

Even so, one might still feel the urge to protest that we are not dealing with
real life situations. No bacterium has an infinite number of ancestor bacteria,
if only because of the fact of evolution from more primitive algal slime,

32 The partial derivatives of β
1−α+β with respect to α and β are both positive:

∂
∂α

β
1−α +β

=
β

(1−α +β )2 > 0

∂
∂β

β
1−α +β

=
1−α

(1−α +β )2 > 0 .
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which had grown out of earlier life forms, which sprang from inanimate
matter, which originated in a supernova explosion, and so on.

This is of course true, and it makes short shrift of any remaining thought
about a beginning in the form of a first bacterium.33 For our approach, how-
ever, the issue is moot. The reason is that the further away a node in the
chain is from the target, the smaller its influence on the target becomes. Ap-
plied to Barbara: long before we reach the stage where her ancestor bacteria
evolve from more primeval life forms, they have become totally irrelevant
to the question whether Barbara has T . This phenomenon we call ‘fading
foundations’, and it is explained in the next chapter.

33 Sanford 1975, 1984; Rescher 2010, 56.
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Chapter 4

Fading Foundations and the Emergence of

Justification

Abstract

A probabilistic regress, if benign, is characterized by the feature of fading
foundations: the effect of the foundational term in a finite chain diminishes
as the chain becomes longer, and completely dies away in the limit. This
feature implies that in an infinite chain the justification of the target arises
exclusively from the joint intermediate links; a foundation or ground is not
needed. The phenomenon of fading foundations sheds light on the difference
between propositional and doxastic justification, and it helps us settle the
question whether justification is transmitted from one link in the chain to
another, as foundationalists claim, or whether it emerges from a chain or
network as a whole, as is maintained by coherentists and infinitists.

4.1 Fading Foundations

In the previous chapter we have introduced the idea of a probabilistic regress,
and we have seen that such regresses are in general unproblematic: they
mostly have a calculable limit, thus providing the target proposition, q, with
a unique probability value. In all but a few exceptional cases there is no con-
ceptual problem in saying that q is probabilistically supported by an epis-
temic chain of infinite length.

An important part of our argument concerned the rôle of the foundational
or grounding proposition, p. In calculating the unconditional probability of
the target, q, we managed to eliminate all the unconditional probabilities —
except that of p. The factor P(p) remained the only term in the chain of
which the value was unknown. Consider the finite chain

D. Atkinson, J. Peijnenburg, Fading Foundations, Synthese Library 383, 
DOI 10.1007/978-3-319-58295-5_4 
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q ←− A1 ←− A2 ←− . . .←− Am−1 ←− Am ←− p,

where q is probabilistically supported by A1, which is probabilistically sup-
ported by A2, . . . , and so on, until Am, which is probabilistically supported
by the grounding proposition or belief p.

In any finite chain, we need to know the value of value of P(p) in order to
calculate P(q). However, the importance of the unknown P(p) for the prob-
ability of the target, P(q), lessens as m gets bigger. If the chain is very short,
consisting only of two propositions, q and p, then the importance of P(p) for
P(q) is at its height: all the support for q comes from p (together with the
pair of conditional probabilities that connect the one to the other). But now
imagine that the chain is a little bit longer, consisting of three propositions:

q ←− A1 ←− p.

In terms of nested rules of total probability this becomes:

P(q) = P(q|¬A1)+ [P(q|A1)−P(q|¬A1)]{P(A1|¬p)

+[P(A1|p)−P(A1|¬p)]P(p)}. (4.1)

In (4.1) the importance of P(p) has somewhat decreased. It is still the case
that it largely determines P(q), but the influence of the conditional proba-
bilities has become greater. In general it is so that, as the chain becomes
longer, the support provided by the totality of the conditional probabilities
increases, while that given by the foundation decreases. In other words, as m
in Am grows larger and larger, a law of diminishing returns come into force:
the influence of P(p) on P(q) tapers off with each link, until it finally fades
away completely. In the limit that m tends to infinity, all the probabilistic sup-
port for q comes from the conditional probabilities together, and none from
the ground or foundation. This characteristic, that is essential to a probabilis-
tic regress as we defined it, we call the feature of fading foundations. As we
add more and more links to the chain the influence of P(p) tails off, and P(q)
draws closer and closer to its final value.

The feature of fading foundations can be illustrated by our story about
Barbara bacterium in the previous chapter. Recall that q is the proposition
‘Barbara has trait T ’, An is ‘Barbara’s ancestor in the nth generation has T ’,
and p is ‘Barbara’s primordial mother has T ’. Now imagine that long and
extensive empirical research in our laboratory has taught us that the proba-
bility that a bacterium has T is 0.99 when her mother has T , and that it is
0.04 when her mother lacks T :
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P(q|A1) = P(A1|A2) = . . .= P(Am−1|Am) = P(Am|p) = 0.99

P(q|¬A1) = P(A1|¬A2) . . .= P(Am−1|¬Am) = P(Am|¬p) = 0.04

Let us further take for the unconditional probability of p the value 0.7. With
the numbers we have chosen for the conditional probabilities, 0.99 and 0.04,
the computed values for the unconditional probability of q are listed in the
following table:

Table 4.1 Probability of q when the probability of p is 0.7

Number of An 1 2 5 10 25 50 75 100 ∞

Probability of q .710 .714 .726 .743 .774 .793 .798 .799 .8

The first entry in this table refers to the chain q ←− A1 ←− p, where there is
only one A. With the values that we have chosen in our example, the probabil-
ity of the target proposition q yielded by this chain is 0.709. The second entry
corresponds to the chain q ←− A1 ←− A2 ←− p. Here there are two A’s, so
the probabilistic support for q has grown, resulting in a probability for q that
is somewhat higher, namely 0.714. The third entry refers to a chain of seven
propositions: the target proposition q, five A’s and the grounding proposi-
tion p. The support is still further augmented, and the probability of q equals
0.726. By including more and more A’s we observe that the probabilistic
support for q grows. The final entry corresponds to the situation where the
chain is infinitely long. Here the probabilistic support for q has reached its
maximum, culminating in the unconditional probability P(q) = 0.8. The lat-
ter can considered to be the ‘real’ value for the probability of q relative to the
numbers chosen for the conditional probabilities.1

But now look at the second table, 4.2, where the conditional probabilities
are the same as in Table 4.1, but where the unconditional probability of p
is 0.95. There are two things that should be noted about these two tables.
Firstly, the probability of q in Table 4.2 culminates in a limiting value that
is the same as that in Table 4.1, namely 0.8. Secondly, while the numbers in

1 In this table as well as in the following one, the values of the conditional probabil-
ities are uniform, remaining the same throughout the chain. As has been explained
in the previous chapter, and more in detail in the appendices, this is however not
essential to the phenomenon of fading foundations. The argument goes through, in
the usual class, when the values of the conditional probabilities differ from link to
link.
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Table 4.1 steadily increase as the number of links becomes larger, those in
Table 4.2 go down. How can we understand these facts?

Table 4.2 Probability of q when the probability of p is 0.95

Number of An 1 2 5 10 25 50 75 100 ∞

Probability of q .935 .929 .910 .885 .840 .811 .803 .801 .8

The answer is provided by the feature of fading foundations. As the chain
lengthens, the role of the foundation p becomes less and less important until
it dies out completely. At the end of the day, the probability of q is fully
determined by the conditional probabilities; everything comes from them
and the influence of the foundation p has completely disappeared from the
picture. The reason why the numbers in Table 4.1 go up, while those in Table
4.2 go down, is because in the first case the probability p is lower than the
final real value of P(q), relative to the chosen conditional probabulities, while
in the second case it is higher. This is exactly what is to be expected as the
foundational influence gradually peters out.

Lewis and Russell were right that, in a probabilistic regress, something
goes to zero if m goes to infinity. However, this ‘something’ is not the value
of P(q), as they thought. Rather it is the influence that the foundation p has
on the target q. This is not to say that p itself has become highly improbable,
for p may have any probability value at all. It is rather that, in the limit, the
effect of the would-be foundation p has faded away completely: the support
it gives to q is nil.2

4.2 Propositions versus Beliefs

Up to this point we have not distinguished between propositional and dox-
astic justification: q, the A’s, and p could be either propositions or beliefs.

2 The fading influence of the foundation p should not be confused with the famil-
iar washing out of the prior in Bayesian reasoning. In Bayesian updating, the prior
probability becomes less and less important under the influence of new pieces of in-
formation coming in, until it washes out completely. Although this looks rather like
the phenomenon of fading foundations, where the influence of p similarly dimin-
ishes, the two phenomena are actually quite different, as we explain in Appendix
C.
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However, it has often been pointed out that the distinction is relevant when
we talk about justification, especially if we discuss the possibility of infinite
justificatory chains. In this section we will look at a debate between Michael
Bergmann and Peter Klein in order to explain how the phenomenon of fading
foundations can shed light on the subject.3

Bergmann has critized Peter Klein’s infinitism by arguing that, although
propositional justification might go on and on, doxastic justification must al-
ways come to a stop; infinite epistemic chains and doxastic justification sim-
ply seem incompatible.4 In a reply to Bergmann, Klein has acknowledged
that, unlike propositional justification, doxastic justification is always finite.
As he wryly notes, “We get tired. We have to eat. We have satisfied the en-
quirers. We die”.5 He does not regard this as a difficulty for infinitism, how-
ever, since the stop is merely contextual or pragmatic. According to Klein,
“doxastic justification is parasitic on propositional justification”: in principle
it can go on, but in practice it ends.6

Bergmann, however, believes that Klein’s position is untenable, arguing
as follows.7 In order to reject foundationalism, Klein must endorse the fol-
lowing view:

K1: For a belief Bi to be doxastically justified, it must be based on some
other belief B j.

Bergmann then introduces

3 See Peijnenburg and Atkinson 2014b. We will say a bit more about the distinction
between propositional and doxastic justification in the next chapter, when we dis-
cuss Klein’s reply to the notorious finite mind objection. For the difference between
propositional and doxastic justification, see also Turri 2010.
4 Bergmann 2007. Jonathan Kvanvig has argued that Klein’s infinitism has difficul-
ties not only accounting for doxastic justification, but for propositional justification
too (Kvanvig 2014). We will briefy come back to Kvanvig’s criticism in the next
chapter.
5 Klein 2007a, 16. See Poston 2012, which contains a proposal for emerging justifi-
cation on the basis of Jonathan Kvanvig’s INUS conditions.
6 Ibid., 8. Michael Williams (Williams 2014, 234-235) has noted that the distinction
between doxastic and propositional justification was introduced by Roderick Firth
(Firth 1978). He recalls that Firth, too, claims that doxastic justification is parasitic
on propositional justification, but argues that Firth attaches a completely different
meaning to this claim than does Klein. As Williams sees it, Klein tries to combine
an infinitist conception of propositional justification with a contextual conception of
doxastic justification — a venture that, according to Williams, is doomed to failure
(Williams 2014, 236-238).
7 Bergmann 2007, 22-23.
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K2: A belief Bi can be doxastically justified by being based on some other
belief B j only if B j is itself doxastically justified.

and subsequently tries to catch Klein on the horns of a dilemma. Klein must
either accept or reject K2. If he rejects it, then he must maintain that a be-
lief Bi can be doxastically justified by another belief B j even if the latter is
itself unjustified. This would turn Klein into a defender of what Bergmann
calls the unjustified foundations view — an outlook that is not particularly
Kleinian, to say the least. On the other hand, if Klein accepts K2 along with
K1, then he would run the risk of becoming a sceptic. For then “he is commit-
ted to requiring for doxastic justification an infinite number of actual beliefs.
. . . But it seems completely clear that none of us has an infinite number of
actual beliefs”.8

The phenomenon of fading foundations points to an escape route out of
this dilemma, for it shows that there is another way to reject K2. If doxastic
justification indeed draws on propositional justification, as Klein claims, then
the justification that one belief gives to another also diminishes as the dis-
tance between them increases. That is to say, a belief B1 can be doxastically
justified by a chain of other beliefs, B2, B3, to Bn, such that:

1. each Bm is conditionally justified by Bm+1, where 2 ≤ m ≤ n−1;
2. Bn may be justified by another belief, or may justify itself, or may be

unjustified;
3. the effect of Bn on B1 becomes smaller as n becomes bigger and bigger.

In the limit that n goes to infinity, the justificatory support given by Bn to B1
vanishes completely. In that case it does not matter for the doxastic justifica-
tion of B1 whether Bn is justified or not: B1 can still be doxastically justified.
Klein and Bergmann are of course right that we cannot forever go on justi-
fying our beliefs. But the phenomenon of fading foundations manifests itself
already in chains of finite length. Often we need only a few links to observe
that the influence of the foundational belief on the target belief has dimin-
ished considerably. Of course, we can only be sure of what we seem to be
observing in a finite chain if there exists a convergence proof for the corre-
sponding infinite series, and a proof that the remainder term goes to zero:
there needs to be knowledge of what happens in the infinite case in order for
us to be certain that what we see in the finite case is a robust phenomenon
rather than a mere fluctuation. But as we have seen such a proof can be
provided. Klein, too, argues that “rejecting K2 does not entail endorsing an

8 Bergmann 2007, 23. See also Bergmann 2014.
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unjustified foundationalist view” (Klein 2007b, 28). His argument is differ-
ent from ours, in that it refers, among other things, to a reason’s availability.
We however believe that our reasoning about fading foundations can capture
Klein’s most important intuitions, and we will come back to availability in
the next chapter.

Let us sum up. In doxastic justification the choice is not between indefi-
nitely going on and the unjustified foundations view. There is a third possi-
bility, provided by what we know about infinite chains. Once we have rec-
ognized that any justification that Bn gives to B1 diminishes as the distance
between the two is augmented, we might decide to stop at Bn because the jus-
tificatory contribution that any further belief would bestow on B1 is deemed
to be too small to be of interest. When exactly a justificatory contribution
is considered to be negligible depends on pragmatic considerations, but our
two tables show that we are able to make these considerations as precise as
we wish.

This third possibility goes unnoticed in the debate between Bergmann
and Klein. Because the fact of fading foundations has not been taken into
account, they fail to realize that the expression ‘stopping at a belief Bn’ can
have more meanings than those that have been envisioned in the literature.
It need not mean ‘making an arbitrary move’, as some coherentists have
claimed. Nor need it imply that Bn is taken to be unjustified or self-justified.
Rather, an agent can decide to stop at a belief Bn because she realizes that,
for her purposes, Bn+1 has become irrelevant for the justification of B1. She
finds that the degree of justification conferred upon B1 by her beliefs B2 to Bn

is accurate enough, and she feels no call to make it more accurate by taking
Bn+1 into account. For her, the justificatory contribution that Bn+1 gives to
B1 has become negligible, and with our tables she can precisely identify a
point at which the role of Bn is small enough to be neglected, where we
use the word ‘justificatory’ as before as meaning probabilistic support plus
something else.

In this way we have given a more precise meaning to contextualist con-
siderations that have been often expressed. For example Klein:

The infinitist will take the belief that q to be doxastically justified for S just
in case S has engaged in providing ‘enough’ reasons along the path of end-
less reasons. . . . How far forward . . . S need go seems to me a matter of the
pragmatic features of the epistemic context.9

9 Klein 2007a, 10.
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We don’t have to traverse infinitely many steps on the endless path of reasons.
There just must be such a path and we have to traverse as many as contextually
required.10

And Nicholas Rescher:

In any given context of deliberation the regress of reasons ultimately runs
out into ‘perfectly clear’ considerations which are (contextually) so plain that
there just is no point in going further. . . . Enough is enough.11

Our method differs however from what Klein and Rescher seem to have in
mind. As we will explain in more detail in 5.3, where we argue for a view of
justification as a kind of trade-off, the level of accuracy of the target can be
decided upon in advance. Whether this level will be reached after we have
arrived at proposition number three, four, sixteen, or more, depends on the
structure of the series and on the chosen level. In no way does it depend on
the question of how obvious proposition number three, four, sixteen, etc. is.
Even if the proposition at issue is very obvious, and thus has a high probabil-
ity, its contribution to the justification of the target might be small enough to
be neglected. This is different from the contextualism of Klein and Rescher,
according to which an agent stops when the next belief in the chain is suffi-
ciently obvious and itself not in need of justification.

4.3 Emergence of Justification

It has been said that foundationalists and anti-foundationalists (that is co-
herentists and infinitists) conceive justification differently: the former grav-
itate towards an atomistic concept of justification, whereas the latter see it
as a holistic notion.12 Consequently, foundationalists regard justification as
a property that can be transmitted or transferred from one proposition to an-
other. The idea here is that justification somehow arises as a quality attached
to a particular proposition, notably to the ground p, and then via inference
is conveyed to the neighbouring proposition. The inferences themselves in
no way affect the property that they transfer. They are just conduits, as Mc-
Grew and McGrew would have it, completely neutral in character, like wifi
connecting two computers.13

10 Ibid., 13.
11 Rescher 2010, 47.
12 Sosa 1980; Bonjour 1985; Dancy 1985.
13 McGrew and McGrew 2008.
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Anti-foundationalists, on the other hand, have a different outlook. For
them justification is not a property that is transmitted from one link in the
chain to another; rather it emerges gradually from the chain as a whole. In
the words of Peter Klein:

Foundationalists think of propositional justification as a property possessed
autonomously by some propositions which, by inference, can then be trans-
mitted to another proposition — just as a real property can be transmitted
from one owner to another once its initial ownership is established. But of
course, the infinitist, like the emergent coherentist, does not paint this pic-
ture of propositonal justification. . . . [T]he infinitist conceives of propositional
justification of a proposition as emerging whenever there is an endless, non-
repeating set of propositions available as reasons.14

. . . the infinitist does not think of propositional justification as a property that
is transferred from one proposition to another by such inference rules. Rather,
the infinitist, like the coherentist, takes propositional justification to be what I
called an emergent property that arises in sets of propositions.15

However, infinitists and coherentists experience great difficulty in explaining
emergence. What exactly does it mean to say that justification emerges from
a chain of propositions? How precisely does justification gradually arise
from a chain or a web of beliefs? Champions of emergence illustrate their
views by invoking arresting images, such as Neurath’s boat or Sosa’s raft.
Although such metaphors are striking and helpful, they fail to inform us how
exactly emergence can occur. It is one thing to claim that justification can
emerge, but quite another to come up with a mechanism which explains how
this can happen. Yet the latter is what we need. When emergence is called
on to save the day for the anti-foundationalist, an account of the mechanism
behind it ought to be specified in detail. Without such an account, emergence
is in danger of being not much more than a name, and the appeal to it runs
the risk of remaining gratuitous or ad hoc.

We believe that our concept of probabilistic support can help us here.
For it carries with it the idea of fading foundations, which explains how
justification can gradually emerge.16 Look again at Table 4.1. It reveals the
justification as it emerges from an infinite chain of reasons, and as a result
we see the justification of q materializing in front of our eyes, as it were. The

14 Klein 2007a, 16.
15 Klein 2007b, 26.
16 Frederik Herzberg also argues that our notion of probabilistic support can help
explaining emergence (Herzberg 2013).
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table enables us to give a precise interpretation of what Klein writes about
justification as seen by infinitists (recall that for Klein doxastic justification
is parasitic on propositional justification):

. . . the infinitist holds that propositional justification arises in sets of proposi-
tions with an infinite and non-repeating structure such that each new member
serves as a reason for the preceding one. Consequently, an infinitist would
seek to increase the doxastic justification of an initial belief – the belief requir-
ing reasons – by calling forth more and more reasons. The more imbedded the
initial belief, the greater its doxastic justification.17

Thus for Klein justification increases by lengthening the chain. A similar
idea has been expressed by Jeremy Fantl:

The infinitist [claims] that, for any particular series of reasons, the degree of
justification can be increased by adding an adequate reason to the end of that
series. Infinitism [claims]: . . . the longer your series of adequate reasons for a
proposition, the more justified it is for you.18

Our analysis can give a more precise meaning to these claims by Klein and
Fantl. For it makes it clear that phrases like ‘the emergence of justification’
or ‘the increase of justification’ are in fact ambiguous. They can mean that,
by adding more and more reasons, the value of the unconditional probability
of q becomes larger and larger. But they can also mean that, by adding more
reasons, the value of the unconditional probability of q draws closer to its
final value (relative to the numbers chosen). It is the latter meaning that we
are talking about here. In Table 4.1 it is the case that, every time we add an
extra link to the chain, the probability of q rises until it reaches its maximum
value. A rising value is however not essential for justification to emerge. This
can be appreciated in Table 4.2, where the conditional probabilities are the
same as those in Table 4.1, but where the unconditional probability of p is
0.95.

As in Table 4.1, in Table 4.2 the justification of q emerges as the num-
ber of A’s gets bigger, for now q is, as Klein would say, more imbedded.
However, it is not so that the probability of q rises with each step. As we

17 Klein 2007b, 26.
18 Fantl 2003, 554. Fantl defends infinitism on the grounds that, of all the theories of
justification, it is best equipped to satisfy two requirements: the degree requirement
(“a theory of the structure of justification should explain why or show how justifi-
cation is a matter of degree”) and the completeness requirement (“a theory of the
structure of justification should explain why or how complete justification makes
sense”) — ibid., 538. That reasoning itself can generate justification has also been
advocated by Mylan Engel (2014) and John Turri (2014).
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add more and more reasons, the probability of q gets closer and closer to its
final value, but numerically it goes down, namely from 0.935 to 0.8. Klein’s
phrase “[t]he more imbedded the initial belief, the greater its doxastic jus-
tification” or Fantl’s phrase “the longer your series of adequate reasons for
a proposition, the more justified it is for you” should therefore be properly
interpreted. The phrases are correct under the interpretation: the longer the
chain that justifies the target q, the more reliable the justification of q is, for
the closer the unconditional probability of q is to its real value. What cannot
be meant is: the longer the chain that justifies the target q, the greater the
unconditional probability of q. The justification of q can ascend in reliabil-
ity while the probability of q descends in numerical value. So we should be
careful about what we mean when we say that justification emerges: we do
not mean that the unconditional probability of the target proposition q neces-
sarily increases numerically, rather we mean that this probability gradually
moves towards its limit.

So far we have worked under the assumption that the values of P(p) lay
strictly between 0 and 1. Indeed, both Tables 4.1 and 4.2 respect this restric-
tion. However, the assumption is neither necessary for fading foundations
nor for the emergence of justification. The two tables below illustrate this
point.

Table 4.3 Probability of q when the probability of p is 1

Number of An 1 2 5 10 25 50 75 100 ∞

Probability of q .981 .971 .947 .914 .853 .814 .804 .801 .8

Table 4.4 Probability of q when the probability of p is 0

Number of An 1 2 5 10 25 50 75 100 ∞

Probability of q .078 .114 .212 .345 .589 .742 .784 .796 .8

These tables are based on the same uniform conditional probabilities that we
used before, that is 0.99 and 0.04. However, in Table 4.3 the unconditional
probability of p is one and in Table 4.4 it is zero. They are extreme values,
and admittedly they yield strange consequences. For example, if P(p) = 0,
then p can scarcely be called a reason for q. And if P(p) = 1, then p cannot
provide probabilistic support for any proposition (this is the root of the infa-
mous problem of old evidence). Yet the tables reveal how ineffective the rôle
of p is in the long run. For even with a P(p) that is zero, the final probability
of q is still 0.8; and justification can emerge when the foundation is non-
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existent. Notwithstanding the extreme values of P(p), the final probability
of q is the same, and moreover the same as it was in Tables 4.1 and 4.2.19

In sum, we have argued that, in a probabilistic model of epistemic jus-
tification, justification is not something that one proposition or belief re-
ceives lock, stock and barrel from another. Rather it gradually emerges from
the chain as a whole. As the distance between the source p and the target
q increases, the influence of the unconditional probability of p on the un-
conditional probability of q decreases; in the limit of an infinite chain, the
probability of q reaches its final value, and the only contributions to this
value come from the infinite set of conditional probabilities. So when we
go probabilistic, a law of diminishing returns goes hand in hand with a law
of emerging justification: the more the justification of the final proposition
materializes, the less is the influence of the grounding proposition.

4.4 Where Does the Justification Come From?

In a finite probabilistic chain, part of the justification comes from the ground
and part comes from the conditional probabilities that connect the ground to
the target. If the series is infinite, then all of the justification is carried by the
conditional probabilities, and none by the ground. One might however still
be puzzled as to whence the justification comes. If justification does not have
its origin in a foundation, then where does it come from? How can we make
sense of there being justification without a ground?

Most people agree that having justification somehow involves making
contact with the world; as we said in Chapter 2, to call our beliefs justified
means acknowledging that they at least remotely indicate how things actu-
ally are. If one takes the view that contact with the world requires a ground,
and that a ground is apprehended by a basic belief, and that a basic belief
involves an unconditional probability, then it is puzzling indeed how infi-
nite chains can do the job. Such a view would however be unduly restrictive.
It assumes that notions like ‘applying to the real world’, ‘outside evidence’

19 If P(p) is zero or one, some of the conditional probabilities are not well-defined
according to Kolmogorov’s prescription. Alternative approaches to probability the-
ory exist however, in which conditional probabilities are the basic quantities, and
we will come back to this in the next section. The important point here is that if
P(p) = 1 then P(Am) =P(Am|p), and P(Am|¬p), which does not have a Kolmogoro-
vian definition, is not needed as an ingredient in the regress. Similarly, if P(p) = 0
then P(Am) = P(Am|¬p), and P(Am|p) is not needed in the regress.
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and ‘empirical results’ only makes sense within a framework of basic beliefs.
This is questionable, since conditional probabilities are just as well equipped
to carry the empirical burden.

One might object that conditional probabilities are built up from uncon-
ditional ones, and that one can only determine their values on the basis
of unconditional probabilities. Such a complaint has in fact been made by
Nicholas Rescher:

There is . . . a more direct argument against the thesis that one can never deter-
mine categorical probabilities but only conditional ones. This turns on the fact
that conditional probabilities are by definition no other than ratios of uncon-
ditioned ones P(q|p) = P(q&p)/P(p). So unless conditional probabilities are
somehow given by the Recording Angel they can be only be determined (or
estimated) via our determination (or estimation) of categorical probabilities.
And then if the latter cannot be assessed, neither can the former.20

It is true that, within standard probability theory, conditional and uncondi-
tional probabilities can be defined in terms of one another. It is also true
that Kolmogorov himself saw the unconditional probabilities as the basic el-
ements. However, three considerations should be taken into account here.
First, one is free to make another choice, and many philosophers have done
so. Rudolf Carnap, Karl Popper, Alan Hájek — they all plump for condi-
tional probabilities as the more useful basic quantities. In fact taking condi-
tional probabilities as primary has certain advantages: one can cover extreme
cases that cannot be handled if unconditional probabilities are regarded as
being fundamental.21 Second, we have not claimed that unconditional prob-
abilities can only be estimated via infinite regresses involving conditional
probabilities: rather we have shown that they can be computed in that way.
Third and most important, there is no objection whatever to questioning the
conditional probabilities in turn. Up to this point we have considered them
as being given, but that is only a pragmatic stance, motivated by expository
considerations. It is perfectly possible to unpack the conditional probabilities
and consider them as targets that are themselves justified by further proba-
bilistic chains. This possibility will be briefly touched upon in Section 6.4

20 Rescher 2010, 40, footnote 18 (we adapted Rescher’s notation to ours).
21 Carnap 1952; Popper 1959; Hájek 2011. Hájek mentions more philosophers who
made this choice: De Finetti 1974/1990; Jeffreys 1939/1961; Johnson 1921; Keynes
1921; Rényi 1970/1998. One can define P(q|p) as P(q∧ p)/P(p) only if P(p) �= 0.
If one adopts this Kolmogorovian definition, one is unable to make sense of P(q|p)
when P(p) = 0. The approach of the philosophers mentioned above is free from this
difficulty.
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and further explained in Section 8.5. But for the moment we ignore this re-
finement.

Two final worries remain. First, how do we know that the conditional
probabilities in our chain are ‘good’ ones, i.e. make contact with the world?
What is the difference between our reasonings and those occurring in fiction,
in the machinations of a liar, or in the hallucinations of a heroin addict? Or,
applied to our example about bacteria, how can we distinguish the regress
concerning Barbara and her ancestors from a fairy tale with the same struc-
ture in which, instead of the inheritable trait T , there is an inheritable magical
power, M, to turn a prince into a frog?

The distinction is not far to seek. It lies in the mundane fact that in the for-
mer, but not in the latter, the conditional probabilities arise from observation
and experiment. Research on many batches of bacteria have established the
relevant conditional probabilities, α and β . These conditional probabilities
are typically obtained by repeated experiments: they are measured by count-
ing how many ‘successes’ there are in a given number of trials, and then by
dividing one number by the other (e.g. the number of bacteria that carry a
trait, divided by the total number of bacteria in a sample). In the fairy tale,
on the other hand, the only ‘evidence’ that M is inheritable is contained in
the story itself — outside the tale there is no evidence at all. When it comes
to series of infinite length, conditional probability statements are the sole
bearers of the empirical load. Together they work to confer upon the target
proposition an unconditional probability that expresses the proposition’s de-
gree of justification. It is by virtue of the conditional probabilities that an
infinite chain is not just an arbitrary construct that displays mere coherence,
but rather can provide real justification, albeit of a probabilistic character.

We realize perfectly well that this answer will not convince the confirmed
sceptic, but our opponent after all is a particular kind of foundationalist, not
the sceptic. We do not have the temerity to aim at refuting the claim that all
our perceptions might be illusory, or at outlawing evil demon scenarios, old
and new. We simply assume that there is a real world, and that empirical facts
can justify certain propositions, or more generally can sanction the probabil-
ities that certain propositions are true. Here we merely take issue with any
foundationalist claim to the effect that only basic beliefs or unconditional
probabilities can be candidates for connecting world and thought.

That brings us to the second worry. A foundationalist might not be per-
suaded by the above considerations, arguing that the erstwhile rôle of the
basic belief is now being played by the set of conditional probabilities. In-
deed, he might claim that we are worse off, for we seem to have traded one
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basic belief, viz. the remote starting point of the epistemic chain, for an infi-
nite number of conditional probability statements.

We do not want to get involved in a verbal dispute here: we are not object-
ing to a type of foundationalism that acknowledges the empirical thrust of
conditional probabilities as well as the importance of fading foundations.
This should not blind us, however, to the difference between conditional
probabilities and the traditional basic beliefs. The former are essentially re-
lational in character: they say what is to be expected if something else is the
case. The latter are by contrast categorical: they say that something is the
case, or that something can be expected with a certain probability. There is a
great difference between averring that ‘An is true’ (or that the probability of
An is large) on the one hand, and holding that ‘if An+1 were true, the prob-
ability that An is true would be α’, or ‘if An+1 were false, the probability
that An is true would be β ’ on the other hand. Conditional probability talk is
discourse about relationals and hypotheticals. Our use of an infinite number
of conditional probabilities amounts to the introduction of an infinite num-
ber of relational statements. If all these statements satisfy the condition of
probabilistic support as defined earlier, they can give rise to something that
is no longer relational, but categorical. This categorical statement can in turn
become the starting point of a new series of relational statements. And if this
new series becomes sufficiently long, the influence of the categorical might
die out, as we have seen.

The situation is somewhat comparable to what happens in science or
in logic.22 Scientists typically construct mathematical models on the ba-
sis of empirical input, and then employ these models to draw new conclu-
sions about the world. Similarly, logicians make inferences on the basis of
premises that contain empirical information, thus producing new conclusions
as output. In both cases, the output can in turn become the input for other
models and inferences. And in neither case can the machinery work without
input: logicians need their premises and scientists need their data. Since ev-
ery assumption that serves as input can itself be questioned in turn, there is
in this sense a foundation behind every foundation. One may interpret that
as support for foundationalism (‘there is always a foundation!’) or as sup-
port for anti-foundationalism (‘every foundation is a pseudo-foundation!’).
Rather than let ourselves be drawn into such a debate, it might be more fruit-

22 Gijsbers 2015; Bewersdorf 2015.
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ful to see what actually happens. And what happens is that a foundation
becomes less important as it recedes from the target.23

4.5 Tour d’horizon

Let us take stock. The epistemological regress problem, as we have intro-
duced it in Chapter 1, led to a discussion of epistemic justification in Chapter
2. The idea that epistemic justification has something to do with ‘probabili-
fication’ is widespread among contemporary epistemologists: practically all
agree that ‘A j justifies Ai’ at least implies that Ai is made probable by A j.
Yet, as we have been arguing in Chapters 3 and 4, the far-reaching conse-
quences of this unanimity about the regress problem in epistemology have
been insufficiently understood.

A few exotic cases excluded, talk about probability is Kolmogorovian talk.
One of the theorems of Kolmogorov’s calculus is the rule of total probability,
which enables us to determine the unconditional probability of q, namely
P(q). If P(q) is made probable by an epistemic chain rather than a single
proposition, then the value of P(q) is obtained from an iterated rule of total
probability. It has often been thought that such an iteration does not make
sense if it continues indefinitely, but, as we have seen in Chapter 3, this is
simply a mistake. In all but the exceptional cases P(q) can be given a unique
and well-defined value, even if the chain that supports it is infinitely long.

The iteration in question is a complex formula that consists of two parts.
The first part is a series involving all the conditional probabilities, the second
part is what we have called the remainder term, which contains information

23 The phenomenon of fading foundations is not restricted to probabilistic chains
in epistemology; it can be proved (although we will not do that here) that it also
applies in modified form to infinite chains of propositions that are ranked in the
sense of Spohn (Spohn 2012). Moreover, fading foundations occur in non-epistemic
causal chains, as long as ‘causality’ is interpreted probabilistically. This fact may
shed light on various philosophical debates, such as the one on rigid designators,
i.e. expressions that denote the same object in every possible world. The objects
themselves, at least for Saul Kripke, are identified by following causal chains back-
wards to the moment of baptism when they received their names. Gareth Evans
noted a problem with this view: we can use proper names even if the causal chains
are broken (his Madagascar-example in Evans 1973). In Addendum (e) to Nam-
ing and Necessity Kripke comments that he leaves this problem “for further work”
(Kripke 1972/1980, 163); but with a probabilistic conception of causality Evans’
problem disappears since the rôle and character of rigid designators change.
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about the probability of the grounding proposition. What in this chapter we
have called fading foundations arises if and only if the following two require-
ments are fulfilled:

1. the series involving the conditional probabilities converges
2. the remainder term goes to zero.

The first requirement is always fulfilled if the condition of probabilistic sup-
port has been satisfied for the entire chain; that is, if P(Ai|A j) > P(Ai|¬A j)
for all the links. The second requirement is only fulfilled if we are dealing
with what we have been calling the usual class, i.e. the class of probabilistic
regresses that are benign. Informally, this means that the conditional prob-
abilities must not tend too quickly to those appertaining to an entailment.
Formally, it means that they comply with

∃c > 0 & ∃N > c : ∀n > N, 1− γn >
c
n .

Whereas conditional probabilities that obey this constraint belong to the
usual class, those that violate it make up the exceptional class. The latter we
also call the class of quasi-bi-implication. The conditional probabilities in
this class resemble bi-implications, and they fail to meet the above asymp-
totic constraint. From this it follows that whenever we are dealing with a
probabilistic regress in which the conditional probabilities are of the usual
class, fading foundations will ensue. Indeed, the necessary and sufficient
condition for fading foundations is membership of the usual class.

Despite the technicalities we needed to prove it, the result itself is actu-
ally very intuitive. If the conditional probabilities in a regress are very close
to those corresponding to entailments, then we can only determine the truth
value of the target if we know the truth value of the ground. Irrespective of
the chain’s length, and thus irrespective of whether the ground is very close
to the target or is far removed from it, the ground continues to make a con-
tribution, and then the age-old regress problem rears its ugly head. But if the
regress contains genuine conditional probabilities, i.e. conditional probabili-
ties that do not resemble implications, then the remainder term goes to zero,
and the regress is benign.

Strictly speaking, as we noted in Chapter 3, footnote 29, in the usual
class probabilistic support is not needed for convergence. But probabilistic
support is important for three reasons. First, we are interested in epistemic
justification, and this contains probabilistic support as a necessary element.
Whatever it may mean to say that ‘A j justifies Ai’, part of its meaning is
that P(Ai|A j)> P(Ai|¬A j). Second, we like to see epistemic justification as
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something that amounts to striking a balance. In justifying our beliefs, we
set up a trade-off between the number of reasons that we can handle with
our finite minds and the level of accuracy that we want to reach. As we will
explain in the next chapter, probabilistic support is needed for such a view
of justification as a trade-off. Third and finally, the condition of probabilis-
tic support is needed for the convergence of the networks that we discuss in
Chapter 8.
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Chapter 5

Finite Minds

Abstract

Can finite minds encompass an infinite number of beliefs? There is a dif-
ference between being able to complete an infinite series and being able to
compute its outcome; and justification is more than mere calculation. Yet the
number of propositions or beliefs that are needed in order to reach a desired
level of justification for the target can be determined without computing an
infinite number of terms: only a finite number of reasons are required for any
desired level of accuracy. This suggests a view of epistemic justification as a
trade-off between the accuracy of the target and the number of reasons taken
into consideration.

5.1 Ought-Implies-Can

As in the past, the idea of infinite epistemic chains is still generally regarded
as being nonsensical, and often for the same reasons. Scott Aikin has divided
the various objections to infinite chains into two main categories: the ought-
implies-can arguments, which are basically pragmatic in character, and the
conceptual arguments.1 In this chapter we deal with the first category; the
conceptual arguments we will discuss in the next chapter.

Ought-implies-can arguments in effect contain all the different versions of
the notorious finite mind objection, which was already raised by Aristotle.
They imply that justifying our beliefs only counts as an obligation in so far as
we are capable of doing so. Given our human finitude we cannot complete an

1 Aikin 2011, Chapter 2.
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infinite series of inferential justification, hence we are not obliged to perform
this task. Aikin distinguishes two kinds of ought-implies-can arguments:

On the one hand, there are arguments that the quantity of beliefs (and infer-
ences) necessary is beyond us (for various reasons). This is the argument from
quantitative incapacity. On the other hand, there are arguments that the quality
(or kind) of belief necessary to complete the regress appropriately is one we
simply cannot have. That is, because some belief in or about the series (and
necessary for the series to provide epistemic justification) will be so complex,
we cannot have it. And thereby, we cannot maintain the series in a way capable
of amounting to epistemic justification. This is the argument from qualitative
incapacity.2

The idea is straightforward enough: because we are mortal and of restricted
capacity, we are unable to handle epistemic chains that either contain an
infinite number of beliefs or contain some beliefs that are too complicated
for us to handle.

But straightforward as it may seem at first sight, the idea is not always
clear, and it has not always been expressed in the same way. Even among
the philosophers who are most pertinacious in their disapproval of infinite
epistemic chains, there is no agreement on this matter. For example, Michael
Bergmann, as we have seen, deems it obvious that we cannot have an infinite
number of beliefs:

. . . it seems completely clear that none of us has an infinite number of actual
beliefs, each of which is based on another . . . 3

Noah Lemos agrees:

One difficulty with [the option of an infinite chain] is that it seems psycholog-
ically impossible for us to have an infinite number of beliefs. If it is psycho-
logically impossible for us to have an infinite number of beliefs, then none of
our beliefs can be supported by an infinite evidential chain.4

But Richard Fumerton has a different opinion:

There is nothing absurd in the supposition that people have an infinite number
of justified beliefs.5

2 Ibid., 52. The same distinction was made by John Williams when he discriminated
between an infinite number of beliefs and an infinitely complex belief (Williams
1981).
3 Bergmann 2007, 23.
4 Lemos 2007, 48.
5 Fumerton 2006, 49.
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Klein is right that we do have an infinite number of beliefs.6

. . . there probably is no difficulty in supposing that people can have an infinite
number of beliefs.7

This difference of opinion should perhaps not surprise us. After all, as noted
earlier, it is entirely unclear how we should count our beliefs. This observa-
tion already intimates that knock-down arguments whether we can or cannot
have an infinite number of beliefs are not to be expected.

Peter Klein has defended his infinitism against the finite minds objection
by arguing that the objection is based on what he calls the ‘Completion Re-
quirement’. According to this requirement, a belief can be justified for a
person only if that person has actually completed the process of reasoning to
the belief. Such a requirement, says Klein, is against the spirit of infinitism
indeed, but it is also unrealistic in that it is too demanding:

Of course, the infinitist cannot agree to [the Completion Requirement] be-
cause to do so would be tantamount to rejecting infinitism. More importantly,
the infinitist should not agree because the Completion Argument demands
more than what is required to have a justified belief.8

Klein regards epistemic justification as being incomplete at heart: it is es-
sentially provisional and can always be further improved. He fleshes out this
view by means of two distinctions: the distinction between propositional and
doxastic justification, and that between objective and subjective availabil-
ity. Propositional justification, according to Klein, depends on the objective
availability of reasons in an endless chain, where objective availability means
that one proposition is a reason for another, so that it can be said to justify
even if we are not aware of it. Doxastic justification, on the other hand,
is parasitic on propositional justification and hinges on an availability that
is subjective: a belief q is doxastically justified for an epistemic agent S if
there is, in the endless chain of reasons, a reason for q that S can “call on”.
Although in its entirety the chain can never be subjectively available to S’s
finite mind, S can take a few steps on the endless path. How many steps S
can take, or needs to take in order to reach doxastic justification, all depends
on contextual factors:

Infinitism is committed to an account of propositional justification such that
a proposition, q, is justified for S iff there is an endless series of non-repeating

6 Fumerton 2001, 7.
7 Fumerton 1995, 140.
8 Klein 1998, 920.
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propositions available to S such that beginning with q, each succeeding mem-
ber is a reason for the immediately preceding one. It is committed to an ac-
count of doxastic justification such that a belief is doxastically justified for S
iff S has engaged in tracing the reasons in virtue of which the proposition q
is justified far forward enough to satisfy the contextually determined require-
ments.9

We sympathize with Klein’s view, but the previous chapters have made it
clear that our position differs in two ways. On the one hand it is weaker:
where Klein holds that justification requires the objective availability of an
infinite chain, we allow that there can be justification even if the chain termi-
nates. In those cases the foundation still exerts some justificatory influence
of the target; and just how much justificatory influence it exerts depends on
other characteristics of the chain, such as its length and the speed with which
the series of conditional probabilities converges. On the other hand, our po-
sition is stronger than that of Klein: where he denies that infinite chains can
be completed, we assert that they can. We only need to construe justifica-
tion probabilistically and make sure that we are in what we have called ‘the
usual class’, i.e. the domain where the probabilistic support is not too close
to entailment.10

9 Klein 2007a, 11. We have substituted q for p. Cf. Section 1.2.
10 While some have taken the view that Klein’s infinitism can account for proposi-
tional but not for doxastic justification, Jonathan Kvanvig has argued it fails on both
counts. His argument why it fails for propositional justification goes as follows. In
Klein’s view, propositional justification either is relative to the total evidence avail-
able or is not so relative (where ‘available’ is interpreted liberally: a reason need not
be present in order to be available, but may be only ready to hand). If propositional
justification is not relative to the total evidence available, then my justification for q
might depend on which book I happen to have taken from my shelves: “one source
can be the start of an infinite chain of reasons for thinking [q], and the other source
the start of an infinite chain for [¬q]” (Kvanvig 2014, 140). If, on the other hand,
propositional justification is relative to the total evidence available, then scepticism
looms. Suppose that evidence E1 confirms q, that E2 confirms ¬q, and that E1 ∧E2
does not confirm q. Let person S1 have E1 as evidence, S2 have E2, and the infini-
tist have E1 ∧E2. Then, Kvanvig argues, “if propositional justification is relative to
total information”, none of these three have justification for q or for ¬q. Kvanvig’s
argument rightly points to vagueness in the term ‘availability’, whether interpreted
liberally or strictly. However, his argument seems to presuppose an ‘absolute’ con-
cept of justification and moreover to equate justification with confirmation. With
the relational concept of justification that we proposed in Chapter 2, and with the
assumption that confirmation is necessary but not sufficient for justification, there
does not seem to be a problem.
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5.2 Completion and Computation

On the basis of the previous chapters our answer to the finite mind objection
will not come as a surprise. If justification is probabilistically construed, then
even the ‘Completion Requirement’ that Klein rebuts can be met.11 For then
infinite justificatory chains can indeed be completed in the sense that they
yield a unique and well-defined probability value for the target proposition.
And if it is possible to complete infinite chains, the finite mind objection
does not arise. Although this answer to the finite mind objection differs from
that of Klein, who after all asserts that completion and infinitism are irrec-
oncilable, it does enable us to account for at least two of Klein’s intuitions,
namely that epistemic justification gradually emerges along the chain and
that contextual factors decide at which level of emergence we will decide
that ‘enough is enough’.12

However, Jeremy Gwiazda has argued that this reply to the finite mind
objection does not work. As he sees it, we have not completed a probabilistic
regress, but we have only computed its limit.13 There is a great difference,
according to Gwiazda, between calculating the probability value of a target
proposition on the one hand and actually giving reasons for that proposition
on the other. Gwiazda does not discuss in detail what the differences are,
but he might be thinking of a difference in time: while we can calculate
the limit of an infinite series in a finite time, we are unable to come up,
in a finite time, with an infinite number of reasons. As such, the difference
resembles an important distinction that Nicholas Rescher has emphasized,
namely between regresses which are time-compressible and those which are
not. An example of the former is generated by the Zeno-like thesis ‘To reach
a destination, you must first reach the halfway point to it’; an example of the
latter is produced by ‘To make a journey to a destination, you must first make
a journey to the halfway point to it’:

The first thesis is true — and harmless: that is just how transit from point A to
point B works. But the second is false and, moreover, vicious in rendering any
sort of journey impossible. Zeno of Elea notwithstanding, a motion to reach or
to cross endlessly many points is perfectly possible. But infinite journeying,

11 This point appears to have been missed in Wright 2013.
12 This is basically the way in which Frederik Herzberg, referring to insights about
probabilistic regresses, has replied to the ‘new finite mind objection’ that was raised
by Adam Podlaskowski and Joshua Smith. See Herzberg 2013, 373-374, and Pod-
laskowski and Smith 2011.
13 Gwiazda 2010. The same point was made by Matthias Steup (Steup 1989).
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with its inherent requirement for explicitly planned and acknowledged tran-
sits, is an impossibility. And the reason for this lies not in the impossibility of
motion, but in the fact that making a journey to somewhere (as distinct from
reaching or arriving there) involves deliberation and intentional goal-setting.
And since man is a finite being, an infinitude of conscious mental acts is im-
possible for us. So while that first structural regress is harmless, the second
regression of infinitely many consciously performed acts is an impossibility.14

In the same vein, it could be admitted that we, with our finite minds, are ca-
pable of calculating the probability of a target proposition (in the previous
chapters we have after all done so), but are incapable of giving an infinite
number of reasons for this proposition, since the latter would require an in-
finity of consciously performed acts. Because epistemological justification
is about giving reasons, and not about making calculations, the finite mind
objection applies in full force.

A similar reaction to our views has been voiced by Adam Poslaskowski
and Joshua Smith.15 They argue that, although “valuable lessons” can be
drawn from our formal results, it is “entirely unclear” that these results
meet a basic requirement, namely “providing an account of infinite chains
of propositions qua reasons made available to agents”.16 Podlaskowski and
Smith call this ‘the availability problem’:

Given the distinctive emphasis that Peijnenburg, Atkinson, and Herzberg
place on calculability, we have doubts about the extent to which (on their
account) an infinite chain of propositions can serve as reasons that are avail-
able to an agent. (This is what shall be called the availability problem facing
the distinctive brand of infinitism under consideration).17

. . . it is hard to see, more generally, how the emphasis on calculability yields
a notion of available reason (or availability) that can serve the infinitist’s
purposes.18

Podlaskowski and Smith maintain that our analysis confuses two completely
different things, namely being able to compute the probability of a target

14 Rescher 2010, 25. Rescher uses several ways to express the distinction between
time-compressible and non-time-compressible regresses; one of them is by saying
that the latter need pre-conditions whereas the former only has co-conditions (ibid.,
55).
15 Podlaskowski and Smith 2014.
16 Ibid., 212.
17 Ibid., 214.
18 Ibid., 215.
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proposition on the one hand and having available reasons for this propo-
sition on the other. They blame us for assuming that, “since mathematical
means exist with which an agent can decide the probability of any propo-
sition being true (even if it belongs to an infinite series), all the members
of an infinite chain of reasons must thereby be available (as reasons) to an
epistemic agent”.19 Like Gwiazda, they stress the difference between deter-
mining the probability of a target q and showing that something is a reason
for q:

deciding the probability of any given proposition . . . even if there are infinite
chains of propositions . . . is still a far cry from showing that, as a matter of
principle, each proposition in a chain of of propositions is one that can serve
as a reason for another proposition in that chain, and do so in the right order. It
appears that two dispositions have been conflated: those to make a certain sort
of calculation, and those to accept any given proposition as reason for another
proposition. . . . [A] demonstration that finite agents can actually calculate the
probability of a proposition’s truth — even if it belongs to an infinite chain of
reasons — does not thereby show that each reason is equally available to a
finite agent.20

The observation of Gwiazda and Podlaskowski and Smith that computing
and completing reflect two different dispositions is fair enough. However,
as we will explain in the next section, in epistemic justification we draw on
both. In this sense, justification resembles logic: there, too, we draw on an
abstract, normative dimension concerning how one ought to reason, and a
concrete, descriptive dimension concerning how one reasons in fact.21 To-
gether the two dimensions suggest a view of justification as a trade-off be-
tween the accuracy of the target proposition and the capacity of our mental
housekeeping.

5.3 Probabilistic Justification as a Trade-Off

Rescher is of course right that a time-compressible regress is different from
a regress that is not time-compressible. And Gwiazda and Podlaskowski and
Smith are right that making a calculation is not the same as giving a proposi-
tion as reason for another proposition. The skill to compute the value of the

19 Ibid., 215.
20 Ibid., 216. Michael Rescorla’s complaint that our approach falls prey to ‘hyper-
intellectualism’ expresses a similar sentiment (Rescorla 2014).
21 Van Benthem 2014, 2015.
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target on the basis of a probabilistic epistemic chain indeed differs from the
capacity to have the propositions in the chain available as reasons.

However, these two faculties are not disjunct, as the above authors seem to
think.22 Especially when it comes to epistemic justification, of which proba-
bilistic support is an essential part, these faculties are closely and essentially
connected. A justificatory regress is not just any old regress; it is a regress
about reasoning, in this case reasoning that involves how a proposition or
belief is probabilistically justified by another. This means that the actual
process of ‘giving probabilistic reasons’ is to a certain extent subjected to
the rules of the probability calculus, just as the actual process of ‘giving de-
ductive reasons’ is to a certain extent subject to the rules of deductive logic.
The aversion of Gwiazda and others to using calculations in the context of
giving reasons might be exacerbated by the idea that this necessarily involves
processing an infinite number of terms. That idea, although understandable,
is however mistaken, and betrays a misconstrual of our view.

We have argued that, whenever we give a reason, Ai, for a target q, the
significance of Ai as a reason depends on how much probabilistic support it
gives to q. The latter in turn depends on how much Ai’s support for q deviates
from the ‘final’ support, i.e. the support that q would receive from the entire
justificatory chain of which Ai is a member. And how much support q re-
ceives from the entire infinite chain depends on the chain’s character, i.e. on
the values of its conditional probabilities together with the value of the un-
conditional probability of the ground, p. While the conditional probabilities
come from experiments, the unconditional probability of the ground is un-
known.23 The longer the chain, the smaller the contribution from the ground,
and when the chain is infinitely long, the contribution from the ground to the
target vanishes completely, leaving all the justificatory support to come from
the combined conditional probabilities.

The view could be easily misunderstood. It does not imply that ‘giving
reasons’ depends on ‘making calculations’ in the sense that we first have
to calculate the limit of a probabilistic regress before we can know what our
reason is worth; computing the limit is not necessary for weighing the quality
of our actual reasons. Rather, the structure of the probabilistic justificatory

22 Recall the claim of Podlaskowski and Smith that it is “entirely unclear” what
formal calculation means for “propositions qua reasons made available to agents”
(Podlaskowski and Smith 2014, 212).
23 In Chapter 8, Section 8.5, we will come back to the status of the conditional
probabilities. In particular, we consider the situation in which they are not given,
but are themselves in need of justification. As we will explain, a network is then
created with a remarkable structure that resembles a Mandelbrot fractal.
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chain is such that it enables us to say how many reasons we need to call on
in order to approach the probability of the target to a satisfactory level. To
do that, we do not need to know the length of the chain; we need not even
know whether it is finite or infinite. Nor do we have to know the probability
of the ground. The only thing we need are the values of a certain number
of conditional probabilities (sometimes more, sometimes less, depending on
the speed of the convergence) that suffice to take us to within a desired level
of accuracy with respect to the true, but unknown probability of the target.
Once we are there, we can safely ignore the rest of the chain — such is the
lesson of fading foundations.

An example might help to understand the point. Imagine I have a rea-
son A1 for my belief q, and know the two relevant conditional probabilities,
P(q|A1) and P(q|¬A1). Suppose I am unable or unwilling to back up A1 by
a further reason, and therefore want to cut off the chain here. We have seen
that knowing the conditional probabilities is in general not enough to know
the value of P(q); especially with short chains like the one at hand it is in-
dispensable that we also know the unconditional probability P(p). Even if I
have no clue what the value of the latter is, I do know that it cannot be greater
than one and cannot be smaller than zero. I now consider these two extremal
cases, i.e. where P(p) = 1 and where P(p) = 0, and I find that in the first case
P(q) = x and in the latter case P(q) = y. The condition of probabilistic sup-
port now guarantees that the real value of P(q) lies in the interval between
x and y, no matter how many further An we take into consideration. What is
more, the condition ensures that with every reason we add, the interval will
become smaller, making the value of P(q) more precise with each step. This
applies both in the uniform situation, where the conditional probabilities are
all the same, and in the nonuniform case, where they are different.

As a result, I can determine how many reasons I need to have in order to
approach the true probability of the target q within an error margin of, for
example, 1%. If this number of reasons happens to be too large to fit into
my finite mind, then I will have to relax the level, and be content with a
degree of justification that is further away from the true probability of the
target. But if the number of reasons is rather small, so that they all fit in
my finite mind (although perhaps not in that of my four-year-old daughter),
then I can always tighten up the satisfaction level, and come closer to the
target’s true probability. Epistemic justification thus boils down to striking
a balance. In acting as responsible epistemic agents, we are instigating a
trade-off between the number of reasons that we can handle and the level of
accuracy that we want to reach. If we are unable or unwilling to manage a
large number of reasons, we have to pay in terms of a lack of precision and
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hence of trustworthiness. Taking the short route thus comes at a price, but in
situations where precision is not important, we can take it easy and should
do so on pain of exerting ourselves unnecessarily.

Let us spell out this idea of a trade-off more fully and more formally.
Assume a finite chain to consist of five propositions, the target proposition
q, the intermediate propositions A1 to A3, and the ground A4:

P(q) = β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 + γ0γ1γ2γ3P(A4) . (5.1)

As we explained in Sections 3.5 and 3.6, the right-hand side consists of two
terms. The first term is the sum of the conditional probabilities,

β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 ,

and the second is the remainder term,

γ0γ1γ2γ3P(A4) .

This remainder term is a product of two factors, γ0γ1γ2γ3 and P(A4). Since
we suppose the conditional probabilities to be known, there is only one prob-
ability that we need to know in order to compute P(q). This is P(A4), i.e.
the unconditional probability of the ground. If we did know P(A4), then we
would know P(q).

However, suppose we have no clue as to the value of P(A4). What to do?
Because of the condition of probabilistic support, (2.1), all the γn are positive,
which means that every term in (5.1) is positive too. Therefore the smallest
value that P(q) could have, given the conditional probabilities, is obtained by
giving P(A4) the minimum value that it could have, which is zero, leaving
only

β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 . (5.2)

On the other hand, the largest value that P(q) could have is obtained by
giving P(A4) the maximum value that it could have, which is one, yielding

β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 + γ0γ1γ2γ3 . (5.3)

We know that the value of P(q) must lie somewhere between the two ex-
tremes (5.2) and (5.3). If we were to assume the value of P(q) to be one
extreme, for example (5.2), then we would be sure that our error could not
be larger than the difference between the maximum, (5.3), and the minimum,
(5.2), namely γ0γ1γ2γ3.

Now imagine that the error term γ0γ1γ2γ3 turns out to be, for example, only
1% of the minimum value (5.2). And suppose further that we proclaim our-
selves satisfied with a value that deviates by no more than 1% from the true



5.3 Probabilistic Justification as a Trade-Off 111

value of P(q). Then we need go no further in inquiring as to any support that
the ground, A4, might have from some other proposition. This is because any
extension of the chain, obtained by adding a proposition, A5, that supports
the erstwhile ground A4 would only increase the minimum (5.2) to

β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 + γ0γ1γ2γ3β4 ,

and decrease the error to γ0γ1γ2γ3γ4 (this is smaller, because the extra factor,
γ4, is less than one). This is precisely what fading foundations imply. So in
this case we know exactly how many reasons we need in order to approach
the true value of the target to a level that satisfies us. If we are content with
a value that deviates no more than 1% from the true value of P(q), then
we require no more than four reasons for q, namely A1 to A4. And if our
mind is big enough to store these four reasons, then we have accomplished
our task: we have justified q to a satisfactory level, staying neatly within the
limitations of our finite mind. Note that we have performed our task without
knowing the true value of P(q) or that of P(A4).

What to do when the error term γ0γ1γ2γ3 turns out to be very big, for
example 90% of the minimum value (5.2)? How should we proceed now? If
our level of required accuracy is still 1%, then there is not much that we can
do in this case. We might sadly conclude is that there is much uncertainty,
due to the fact that the justificatory influence of the unknown P(A4) on P(q)
is very great, but that is as far as we can get. For the four reasons that we can
avail ourselves of, A1 to A4, are of little help: jointly they bring us to a point
where the deviation from the true value of P(q) may be as great as 90% .

However, let us now make the finite chain considerably longer. Rather
than assuming that there are four reasons for q, let us suppose that there are
one hundred:

P(q) = β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm + γ0γ1 . . .γmP(Am+1) ,
(5.4)

where m = 99. It is unlikely that I can store all these reasons in my finite mind,
so I decide to cut off chain (5.4) at number seven, making a provisional stop
at proposition A6. So I get:

P(q) = β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1γ2γ3γ4β5 + γ0γ1γ2γ3γ4γ5P(A6) . (5.5)

In formula (5.5) I can only compute P(q) if I know P(A6). Since I have no
idea as to the value of the latter, I apply the same reasoning as above. That
is, I first recall that the value of P(q) must lie between two extremes. The
one extreme is obtained by putting the unknown P(A6) equal to zero. The
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other extreme is obtained by putting it equal to one. Suppose that I adopt the
first extreme, P(A6) = 0, so my estimation of P(q) is that it has its minimum
value. I know that my error in making this estimation cannot be larger than
the difference between this minimum value and the maximum value of P(q),
obtained by putting P(A6) = 1. The difference itself is given by our error
term, which in this case is γ0γ1γ2γ3γ4γ5.

Now suppose that the error term γ0γ1γ2γ3γ4γ5 is only 1% of the minimum
value of P(q). And suppose again that I am satisfied with an accuracy that
deviates no more than 1% from the true value of P(q). If I am capable of
storing six reasons in my head, then I am done. In particular, I do not have to
go on and find a justification for A6. A we have seen, the reason for this lies
in the fact that, as the chain lengthens, the minimum value of P(q) increases
and the maximum value decreases — which is a direct consequence of the
condition of probabilistic support. This condition implies that any extension
of the chain would only make the minimum value of P(q) greater, and thus
would make the error term itself smaller.24 Consequently, adding a propo-
sition to chain (5.5), for example proposition A7, would bring us closer to
the true value of P(q); and since we are already satisfied with our level of
approximation, there is no need to engage in this project. We have in fact
reached the point where ‘enough is enough’, and this expression now has a
very precise meaning. For any justificatory chain, I can first define the level
of accuracy within which I want to approach the true value of P(q), and I
can then determine how many reasons I need to reach this level. In order to
perform these tasks, I need not know the value of P(q), nor that of P(A6),
nor that of any other ground. More importantly, I can blissfully neglect the
rest of the chain. For not only is it so that I am within the desired 1% of the
true probability value, it is also the case that calling on any further reason
will only bring me closer to that true value. As the chain gets longer, the
remainder term gets smaller (in accordance with fading foundations) and the
sum of the conditional probabilities gets larger (in accordance with the con-
dition of probabilistic support). So as m gets bigger, the value of the sum of
the conditional probabilities increases monotonically, whereas the remain-
der term decreases monotonically. Therefore, if we are already satisfied with
1%, any extension of the chain will bring us still closer to the true value of
P(q); there is thus no need to call on more reasons than the six reasons that
we have (subjectively) available.

But now suppose that the error term γ0γ1γ2γ3γ4γ5 in formula (5.5) still
greatly differs from the minimum value of P(q); let us now say by 80%. The

24 See Appendix A.2 for the proof.
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situation is not the same as it was in the case (5.1). Since Eq.(5.5) is part of
a larger chain we have the option to go on, and to look for the justification of
A6 in terms of A7; after that, we can go further and justify A7 in terms of A8,
and so on. The more propositions we add, the more we lengthen our chain,
and the smaller will be the difference between (5.4) and the minimum value
of P(q). We are now able to reduce the error to less than 80% of the true
value of P(q). However, there is a price to pay. In getting closer and closer
to the real value of P(q), we are calling on more and more reasons, and our
finite minds have to accommodate each and every extra reason that we call
on. It could happen that our minds lack the capacity to take in all the reasons
that our level of accuracy requires. In that case the only option left open for
us is to relax the accuracy level to a degree where it corresponds to a number
of reasons that can be housed in our heads. We are committed to a trade-off:
we simply cannot have our cake and eat it too.25

What we have said above is of course not restricted to finite chains such
as (5.1), (5.4), and (5.5). The reasoning about error terms works just as well
with an infinite chain as with a finite chain. In both cases we can work out,
in a finite number of steps, how many terms we need to reach a particular,
pragmatically determined level of accuracy. If it turns out that our level of
accuracy requires more reasons than we can accommodate, then we are living

25 Whether a particular number of reasons can or cannot be housed in our heads
might depend not just on size or on capacities, but also on other factors. Linda
Zagzebski has distinguished between two kinds of epistemic reasons for believing a
proposition q: theoretical reasons, which are third personal and “connect facts about
the world with the truth of [q]”, and deliberative reasons, which are first personal and
“connect me to getting the truth of [q]” (Zagzebski 2014, 244). Even if, impossibly,
we were able to complete our search for theoretical reasons, that would still leave
us with the second problem that what we call ‘reasons’ may not indicate the truth:
“We would still need trust that there is any connection between what we think are
the theoretical reasons and the truth” (ibid., 250). Zagzebski argues that this second
problem can only be solved by calling on a deliberative reason with a special status,
viz. epistemic self-trust, which ends our urge to search for further theoretical or
deliberative reasons. It is not excluded that Zagzebski’s epistemic self-trust might
be a factor in the process of trading-off. Other possible factors might perhaps be the
localist considerations of Adam Leite, or the “plausibility considerations” that Ted
Poston mentions in support of his claim that “there is more to epistemic justification
than can be expressed in any reasoning session” (Leite 2005; Poston 2014, 182-
183). We expect that our trade-off can also be combined with Andrew Norman’s
“dialectical equilibrium” (Norman 1997, 487) and Michael Rescorla’s “dialectical
egalitarianism” (Rescorla 2009), although we are not sure if the authors themselves
would agree.
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beyond our means. We then should either work harder and try to create more
space in our finite minds, or become more modest and lower our desire for
accuracy. All this can be done without having to call on, or even to calculate,
all the terms in a (finite or an infinite) series.

The two tables below illustrate the idea. In the first, the conditional prob-
abilities, α and β , have the values 0.99 and 0.04 respectively; in the second,
they are 0.95 and 0.45. ‘Maximum P(q)’ and ‘Minimum P(q)’ refer to the
values that P(q) has when P(p) is one or zero, respectively.

Table 5.1 Extremal values of P(q) when α = 0.99 and β = 0.04.

Number of An 1 2 5 10 15 25 50 100 ∞
Minimum P(q) .078 .114 .212 .345 .448 .589 .742 .796 .8
Maximum P(q) .981 .971 .947 .914 .888 .853 .815 .801 .8

Table 5.2 Extremal values of P(q) when α = 0.95 and β = 0.45.

Number of An 1 2 3 4 5 6 8 10 ∞
Minimum P(q) .675 .788 .844 .872 .886 .893 .8982 .8996 .9
Maximum P(q) .925 .913 .906 .904 .902 .901 .9002 .9000 .9

In the first table one needs more than fifty intermediate reasons An to ensure
that the difference between the maximum and the minimum of P(q) is rel-
atively small, whereas in the second table a similar uncertainty is already
reached after a mere three reasons An. There the situation is much more
amenable. Justification as a form of trade-off sheds light on the difference
between propositional and doxastic justification that we discussed in 4.2.
Some scholars appear to be of the opinion that propositional and doxastic
justification can never be combined, since the former is abstract and infinite,
while the latter is concrete and finite by definition.

Others have however argued that doxastic justification is parasitic on
propositional justification, and that the context determines when exactly it
comes to an end. Our considerations in this section clarify the latter position,
and they make clear how this contextualism can be interpreted.
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5.4 Carl the Calculator

When commenting on our approach, Podlaskowski and Smith write that
“care must be taken when assessing the significance of these formal re-
sults”.26 Of course we agree, and it can be added that the same applies to
assessing results that are not formal: whenever we informally discuss rea-
soning, or justification, or probability, we must take care what we say. For
example, as we have seen, it is incorrect to say that an infinite probabilistic
regress yields zero for the target, or that knowing the value of the target re-
quires knowing the value of a basic belief. Intuitive as these claims might be,
they are incorrect as they stand.

The difference of opinion between Podlaskowski and Smith and us, if
there is one, concerns the relation between the ability to calculate and the
ability to give reasons. As we explained in the previous section, we believe
that epistemic justification involves both. Podlaskowski and Smith seem
however to interpret us differently, thinking that for us having the mathe-
matical ability to calculate is sufficient for having justification. This is for
instance the message from their instructive example about Carl, who is a real
pundit when it comes to calculating probabilities, but who cannot understand
the meaning of reasons:

[I]magine Carl, whose impressive talent in calculating conditional probabili-
ties is strangely at odds with his ability to grasp various concepts. Carl has no
problem solving all manner of complex equations, including those involving
conditional probabilities (such as Peijnenburg, Atkinson, and Herzberg pro-
vide). Yet, there are various concepts which he is entirely incapable of grasp-
ing, some of which might feature in reasons whose probabilities of being true
are conditional on other reasons. Suppose that Carl is given two lists, an infi-
nite list of conditional probability assignments and an infinite list of reasons.
Unbeknownst to Carl, the two lists correspond perfectly: the list of probabili-
ties is meant to capture the probability of each reason being true, conditional
on its predecessor. Moreover, some of the members of the list of reasons are
comprised of those concepts that Carl is incapable of grasping. Even if Carl
were capable of working through some infinite list of reasons, at some point
on the list at hand, Carl would fail to comprehend the concepts deployed. But
he would have no problem doing the corresponding calculations. Does merely
calculating the probability of the chain make Carl justified in holding any of
those beliefs, when Carl is incapable of understanding the concepts on which
those beliefs depend? Surely not. If an agent cannot understand some of the

26 Podlaskowski and Smith 2014, 212.



116 5 Finite Minds

reasons in the infinite chain, it is difficult to see how those reasons can do any
justificatory work for him.27

Podlaskowski and Smith suggest that, according to us, Carl has justified his
beliefs. This is however not so: for us, as for Podlaskowski and Smith, Carl
fails to justify. Our view is not that calculation implies justification, but that
justification implies a certain amount of ‘calculation’. Of course we realize
that people often put forward probabilistic reasons for their beliefs without
knowing anything about the probability calculus. As epistemologists who
want to take the concept of probabilistic reasoning seriously, however, we
believe that a minimum of adjustment to the probability calculus seems to be
required, even if it is only in a rational reconstruction.

Podlaskowski and Smith seem to have anticipated this response when they
write:

One might . . . suspect that we have crafted the Carl case too narrowly, and that
it misses some important aspect of what mathematical analyses of probabilis-
tic regresses are supposed to be doing.28

However, they then suggest that our response requires a new notion of ‘avail-
able reason’ which cannot be developed within our approach:

Perhaps there is a notion of available reason that can supplement the project
of Peijnenburg et al. that avoids the problems raised by the Carl case. The
problem with successfully developing such a response, however, is that it is
entirely unclear what sort of notion they could use, given their emphasis on
calculability. To see this, consider the spectrum of possible views. On one end,
the notion of availability drops out. This end of the spectrum has the unfor-
tunate consequence that the view collapses into maintaining that a belief is
justified for a person when there merely exists an infinite, non-repeating chain
of reasons that makes the belief probable. . . . On the other end of the spec-
trum, one might hold a very strong notion of availability, according to which
it is required that one actually believe a reason for it to be available. But this
is far too strong, as it runs face-first into the original finite minds objection to
infinitism. . . . One lesson to draw from the Carl case is that moving a brand of
infinitism beyond Klein’s middle ground on the notion of availability proves
seriously problematic . . . .29

Here Podlaskowski and Smith write as if there are only two possibilities:
either we merely calculate, and then no reason qua reason is available, or

27 Ibid., 216.
28 Ibid., 217.
29 Ibid.
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we hold on to a strong notion of availablity, but then we run into the finite
mind objection. Our remarks in the previous section provide us with a no-
tion of availability that avoids the two extremes that Podlaskowski and Smith
present. Often it is enough that only a few reasons are available in order to
draw conclusions that go far beyond what is implied by these available rea-
sons themselves. If the reasons in question bring us close enough to the true
value of the target, then the phenomenon of fading foundations tells us that
we can ignore the rest of the chain. If, on the other hand, the reasons do not
bring us within a desired level of accuracy, then we will have to achieve a
balance between the number of reasons that we can handle and the degree to
which we can approach the final value of the target. Thanks to the condition
of probabilistic support we can determine how many reasons we need in or-
der to conclude that the rest of the chain is irrelevant. In this chapter we have
explained the idea in quantitative terms, but it can quite easily be grasped in
an intuitive and qualitative way.
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Chapter 6

Conceptual Objections

Abstract

There are two conceptual objections to the idea of justification by an infinite
regress. First, there is no ground from which the justification can originate.
Second, if a regress could justify a proposition, another regress could be
found to justify its negation. We show that both objections are pertinent to a
regress of entailments, but fail for a probabilistic regress. However, the core
notion of such a regress, i.e. probabilistic support, leaves something to be
desired: it is not sufficient for justification, so something has to be added. A
threshold condition? A closure requirement? Both? Furthermore, the notion
is said to have inherent problems, involving symmetry and nontransitivity.

6.1 The No Starting Point Objection

In the previous chapter we discussed the main pragmatic argument against
justification by infinite chains, known as the finite mind objection. Perhaps
even more serious, however, are the conceptual objections. They aim to show
that even creatures with an infinite lifespan or with a mind that can handle
infinitely long or complex chains will run into problems, because the very
idea of justification is at odds with a chain of infinite length:

conceptual arguments . . . appeal . . . to the incompatibility of the concept of
epistemic justification and infinite series of support.1

Two conceptual objections in particular are often discussed. According to the
first, no proposition can ever be justified by an infinite regress, since in such

1 Aikin 2011, 51.
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a regress justification is for ever put off and never materialized. This is the
much raised no starting point objection, as Peter Klein has called it, which
is based on the fact that an infinite chain is bereft of a source or a foundation
from which the justification could spring.2 The second conceptual objection
goes beyond the first one, spelling out what would happen if the no starting
point objection did not apply. If, per impossibile, a particular proposition
q were justified by an infinite chain, then it can be demonstrated that all
propositions could be justified in that manner, including the negation of q.
This objection is known as the reductio argument, and it has been raised
in different forms, notably by John Pollock, Tim Oakley, James Cornman,
Richard Foley, and John Post.3

In the present section and in the next one we discuss the no starting point
objection. We shall argue that a starting point is not needed if the regress is
probabilistic — a conclusion which follows from the preceding chapters. In
Sections 6.3 and 6.4 we shall deal with the reductio argument, showing that
this objection, too, fails for a probabilistic regress. In the final section, 6.6,
we note that the concept which is central to a probabilistic regress, viz. prob-
abilistic support, is itself prone to problems. We elaborate on two properties
of probabilistic support that are allegedly problematic for the concept of jus-
tification, namely that probabilistic support is symmetric and that it lacks
transitivity.

The no starting point objection asserts that justification can never be cre-
ated by inferences alone. The reason is that an infinite inferential chain
blocks ab initio the possibility of justification. The only way to generate
justification is by having a starting point, i.e. a proposition or a belief that is
itself non-inferentially justified. Aikin phrases the objection as follows:

. . . if reasons go on to infinity, then as far as the series goes, there will always
be a further belief necessary for all the preceding beliefs to be justified. If
there is no end to the chain of beliefs, then there is no justification for that
chain to inherit in the first place.4

The no starting point objection exploits the fact that in an infinite regress
justification seems to be indefinitely postponed and never cashed out. It is
as if we are given a cheque with which we go to a bank teller, who gives
us a new cheque and directs us to another bank teller, who hands us a third

2 Klein 2000, 204. Cf. Laurence Bonjour: “The result . . . would be that justifica-
tion could never get started and hence that no belief would be genuinely justified”
(Bonjour 1976, 282).
3 Pollock 1974, 29; Oakley 1976; Cornman 1977; Foley 1978; Post 1980.
4 Aikin 2011, 52.
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cheque, instructing us to go to yet another bank teller, and so on and so
forth. Never do we encounter a bank teller who actually converts our current
cheque into bars of gold.

Like the finite mind objection, this objection too has a long history, going
back indeed to Aristotle. Aikin recalls some of the latest versions:

William Alston captures the argument as follows: If there is a branch [of me-
diately justified beliefs] with no terminus, that means that no matter how far
we extend the branch the last element is still a belief that is mediately justified
if at all. Thus, as far as this structure goes, whenever we stop adding elements
we have still not shown that the relevant necessary condition for mediate jus-
tification of the original belief is satisfied. Thus the structure does not exhibit
the original belief as mediately justified [Alston 1986, 82].

Henry Johnstone captures the thought: ‘X infinitely postponed is not an X’
since the series of postponements shortly becomes ‘inane stammering’ [John-
stone 1996, 96].

Romane Clark notes that such a series will produce only ‘conditional justi-
fication’ [Clarke 1988, 373], and Timo Kajamies calls such support ‘incurably
conditional’ [Kajamies 2009, 532].

The same kind of thought can be captured with an analogy. Take the one
R.J. Hankinson uses in his commentary on Sextus: ‘Consider a train of infinite
length, in which each carriage moves because the one in front of it moves.
Even supposing that fact is an adequate explanation for the movement of each
carriage, one is tempted to say, in the absence of a locomotive, that one still
has no explanation for the motion as a whole. And that metaphor might aptly
be transferred to the case of justification in general’ [Hankinson 1995, 189].5

In the same vein, Carl Ginet writes:

Inference cannot originate justification, it can only transfer it from premises
to conclusion. And so it cannot be that, if there actually occurs justification,
it is all inferential . . . [T]here can be no justification to be transferred unless
ultimately something else, something other than the inferential relation, does
create justification.6

Ginet cites Jonathan Dancy, who phrases the no starting point objection as
follows:

Justification by inference is conditional justification only; [when we justify A
by inferring it from B and C] A’s justification is conditional upon the justifica-
tion of B and C. But if all justification is conditional in this sense, then nothing
can be shown to be actually, non-conditionally justified.7

5 Ibid., 53 – misspellings corrected.
6 Ginet 2005, 148.
7 Dancy 1985, 55.
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The no starting point objection is also at the heart of Richard Fumerton’s
“conceptual regress argument” against justificatory chains. On several occa-
sions Fumerton has distinguished between two “regress arguments” in sup-
port of foundationalism: the epistemic and the conceptual regress argument.8

The first boils down to the finite mind objection against infinite chains. It
states that “having a justified belief would entail having an infinite number
of different justified beliefs” while in fact “finite minds cannot complete an
infinite chain of reasoning”.9 In the previous chapter we have explained why
we think that this objection does not succeed. The conceptual regress argu-
ment, on the other hand, appears to be a rewording of the no starting point
objection. Fumerton calls it “quite different” from the epistemic regress argu-
ment, and “more fundamental”.10 It states that an infinite justificatory chain
is vicious because we can only understand the concept of inferential justifi-
cation if we accept that of noninferential justification:

[I]f we are building the principle of inferential justification into an analysis of
the very concept of justification, we have a more fundamental vicious concep-
tual regress to end. We need the concept of a noninferentially justified belief
not only to end the epistemic regress but to provide a conceptual building
block upon which we can understand all other sorts of justification. I would
argue that the concept of noninferential justification is needed . . . in order to
understand other sorts of justification . . . .11

In other words, the very idea of inferential justification does not make sense
without assuming justification that is noninferential, or, as Fumerton formu-
lates it later, the concept of inferential justification is “parasitic” on that of
noninferential justification:

To complete our analysis of justification we will need a base clause — we will
need a condition sufficient for at least one sort of justification the understand-
ing of which does not already presuppose our understanding the concept of
justification. But that sort of justification is just what is meant by noninferen-
tial justification (justification that is not inferential). Our concept of inferen-
tial justification is parasitic upon our concept of noninferential justification. It
doesn’t follow, of course, that anything falls under the concept. But if nothing
does, then there is no inferential justification either . . . 12

8 Fumerton 1995, Chapter 3; Fumerton 2004; Fumerton and Hasan 2010; Fumerton
2014.
9 Fumerton 1995, 89; 2004, 150; 2006, 40; 2014, 76.
10 Fumerton 1995, 89; 2014, 76.
11 Fumerton 1995, 89.
12 Fumerton 2014, 76.
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Not surprisingly, Fumerton’s response to his conceptual regress argument
echos the standard reply to the no starting point objection: the only way to
inject justification into an inferential chain is to assume a source from which
the justification springs. Without such a source, the very concept of inferen-
tial justification becomes unintelligible or even absurd, ‘inane stammering’
as Henry Johnstone would have it.

A particularly interesting and generalized version of the no starting ob-
jection has been put forward by Carl Gillett.13 The problem with an infinite
chain of reasons, Gillett says, does not lie in its epistemological character as
such, but is more general: it has to do with its general metaphysical struc-
ture, which it shares with many vicious regresses outside epistemology. This
structure is such that the relevant dependent property (which in the episte-
mological case is ‘being justified’) cannot be produced, because there is a re-
lation of dependence, what Gillett calls the ‘in virtue of’ relation. If a propo-
sition q is justified in virtue of A1 being justified, which in turn is justified
in virtue of A2 being justified, then it is notoriously unclear how any of the
propositions could be justified. Making the chain longer is of course no solu-
tion, for irrespective of the number of propositions we add, each proposition
will only be justified because of another proposition. Thus, Gillett concludes,
there is no number of propositions that can be added “that will suffice for
any of its dependent properties to feed back to any members of the chain”.14

According to the ‘Structural Objection’, as Gillett has dubbed his particular
version of the argument, the very structure of the epistemic regress prevents
justification from arising.

In none of these different formulations of the no starting point objection is
it made clear what exactly is meant by epistemic justification. When for ex-
ample Dancy complains that, “if all justification is conditional . . . then noth-
ing can be shown to be actually, non-conditionally justified”, it is not clear
what he means by ‘conditional’ and ‘non-conditional’, since it remains open
whether he sees justification as for example entailment or as involving prob-
abilistic support (see Chapter 2). In the first case, his talk about conditional
and non-conditional justification would refer to the difference between if-
then statements and categorical statements; in the second case, it pertains to
the difference between conditional and unconditional probability statements.
The distinction is however vital in a discussion of the no starting point objec-
tion. For while the objection applies to justification as entailment, as applied
to justification as probabilistic support it backfires completely. This result

13 Gillett 2003.
14 Ibid., 713.
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was already intimated in the previous chapter, but we will explain it further
in the next section.

6.2 A Probabilistic Regress Needs No Starting Point

It is not difficult to see why the no starting point objection applies if justifi-
cation is interpreted as a kind of entailment. Consider the finite chain

A0 ←− A1 ←− A2 ←− A3 ←− . . .←− Am ←− Am+1 (6.1)

where the arrow represents entailment, where A0 does duty for the target,
q, and where Am+1 stands for the foundation or ground. Then of course the
only way to know for sure if A0 is true is by knowing that Am+1 is true. In
the words of Aikin: “Conceptual arguments start from the deep, and I think
right, intuition that epistemic justification should be pursuant of the truth”.15

But if we are ignorant of the truth or falsity of the ground, Am+1, we are
groping in the dark about the truth value of A0. When we make chain (6.1)
infinite, so that it looks like:

A0 ←− A1 ←− A2 ←− A3 ←− A4 ←− . . . (6.2)

then the matter is worse: since there is no initiating Am+1, there is no truth
value that is preserved in the first place. For the only way in which the tar-
get can be justified is by receiving the property from its neighbour, which
received it from its neighbour, and so on. If there is no origin from which the
property is handed down, there is nothing to receive, so the no starting point
objection applies in full force.

Things are very different when justification is interpreted probabilistically.
Applied to a probabilistic chain, the no starting point objection means that
the target can only be justified by a chain of conditional probabilities if we
know the unconditional probability of the ground. That is, in order to know
P(A0), we need to know not only all the P(A j|A j+1) and P(A j|¬A j+1), but
also the unconditional probability P(Am+1). But if the chain is infinitely long,
there is no Am+1, and thus there is no probability of Am+1 that can be known
in the first place. As a result, the no starting objection concludes, there is no
way to know the value of P(A0).

In the previous chapters we have seen why this conclusion does not fol-
low. In all but the exceptional cases, the value of P(A0) can be determined

15 Aikin 2011, 51.
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without having to know the value of some P(Am+1). In fact, as we saw in
Chapter 5, in many cases we do not even need to know the values of all the
conditional probabilities; once we have fixed a particular level of accuracy
with which we are satisfied, we can decide how many conditional proba-
bilities we need to know in order to attain that accuracy. If the number of
conditional probabilities turns out to be too big to handle, then we must ad-
just the accuracy level and make do with an approximation of the target’s
true value with an error margin that is somewhat bigger than we had initially
envisaged. So while the no starting point objection implies that in an infinite
regress the value of P(A0) either goes to zero or remains unknown, neither
of these two options actually obtains when the probabilistic regress is in the
usual class.

John Pollock has trenchantly criticized what he calls “the nebula theory”
of justification: never can an infinite chain justify a target, since the chain’s
ground is for all future time hidden in “a nebula”.16 Pollock would be right
that this is an insuperable problem so long as we are speaking about a regress
of entailments; but in a probabilistic regress the difficulty does not arise at
all. For all we care A∞ may forever lie hidden in nebulae, in a probabilistic
regress that does not matter since A∞ is completely irrelevant to the question
whether A0 is probabilistically justified or not.

Rather than talk about a nebula, we could also use the metaphor of a
borehole. Compare the justification of a target by an epistemic chain to the
pumping up of water from a deep well. If the chain is non-probabilistic, then
the relations of entailment serve as neutral conduits through which justifica-
tion passes unhindered. The justification itself comes from the bottom of the
borehole, whence it is pumped up and transferred along the chain, whither it
streams to the target proposition. If the epistemic chain is infinite, there is no
beginning, the borehole is bottomless, the pumping stations forever remain
dry, and no justification will ever gush out to the target. But now imagine that
the infinite chain is probabilistic. Then a bottom is not needed. For now jus-
tification does not surge up unchanged from source to target; rather it comes
from the conditional probabilities, which jointly work to confer upon the tar-
get proposition an acceptable probability. The conditional probabilities are,
as it were, the intermediate pumping stations which actively take a moeity
of justification from the circumambient earth, rather than passively wait for
what comes up through the borehole. In a probabilistic regress we deliver
justification, albeit piecemeal, whereas in a non-probabilistic regress we are
not able to produce anything at all. In the latter case there is nothing more

16 Pollock 1974, 26-31.
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than the pointing to a fathomless borehole, or to a bank teller beyond the end
of the universe who is supposed to administer my fortune.

Yet another metaphor was suggested to us by an anonymous reviewer; it
concerns the saga of the bucket brigade. Suppose there is a fire and Abby
gets her water from Boris, and Boris gets it from Chris, and Chris from Dan,
and so on ad infinitum. It would seem that the fire will never be put out,
since there is no first member of the brigade who actually dips his or her
bucket into the lake. However, once we assume that justification involves
probabilistic support the dousing operation looks quite different. Under this
assumption, the proposition ‘Abby gets water from Boris’ (A0) is only prob-
abilistically justified, and we can calculate the probability value of A0 by
applying the rule of total probability that we cited earlier:

P(A0) = P(A0|A1)P(A1)+P(A0|¬A1)P(¬A1) , (6.3)

where A1 reads ‘Boris gets water from Chris’. Of course, whether Boris gets
water is also merely probable, and its probability depends on whether Chris
gets water, and so on. We face here an infinite series of probability values
calculated via the rule of total probability. As we know by now, we are per-
fectly able to compute the outcome of this infinite series in a finite time: with
the numbers that we used in the uniform case of the bacterium example in
Section 3.7, the probability that Abby gets water is 2

3 .
All four probabilities on the right-hand side of (6.3), the conditional as

well as the unconditional ones, are supposed to have values strictly between
zero and one (in the interesting cases). In contrast, the regress of entailments,
in which justification is not probabilistic, can be modelled by restricting all
four ‘probabilities’ to be 0 or 1. Within this non-probabilistic approach, Abby
either gets water or she does not. According to the no starting point objec-
tion, the moral of the saga about the bucket brigade is precisely that she does
not get water — if the number of brigadiers is infinite. Because this is unac-
ceptable, it is concluded that there must be a first firefighter on the shore of
the lake who starts off the whole operation. In the probabilistic scenario the
existence of a primordial firefighter is not needed, since the problem that it is
supposed to solve does not arise in the first place. The reason is, as we have
seen, that now the relations between the propositions are not idle channels,
but actively contribute to the probability value of A0; they for example allow
for a downpour somewhere along the line that fills the bucket. So if we take
seriously that justification involves probabilistic support, then the probability
that Abby extinguishes the fire can have a precise value, despite the infinite
number of her team-mates. As in the examples that we considered above,
this unconditional value is a function of all the conditional probabilities.
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Note that the above reasoning is independent of whether we embrace an
objective interpretation of probability (assuming, for example, that the fire-
fighters have propensities for handing over the water only now and then)
or a subjective interpretation (in which we specify our degree of belief in
A0). Both the objective and the subjective interpretation are bound by the
rule of total probability, and that is all that counts here. This suggests that
our approach is not restricted to epistemological series, but might be applied
more generally to the metaphysical structures that Carl Gillet has been talk-
ing about. In fact, it might even be used to query similar reasonings in ethics.
Richard Fumerton argued that his conceptual regress argument for founda-
tionalism has a counterpart in the ethical realm. Suppose we are interested in
whether an action, X , is good, and suppose we are being offered a series of
conditional claims: if Y is good then X is good, if Z is good then Y is good,
and so on, ad infinitum. Have we answered the original question? Fumerton
believes we have not. At best we possess an infinite number of conditional
claims, but this does not tell us whether X is good. Just as inferential justifica-
tion only makes sense if there exists noninferential justification, instrumental
goodness only makes sense if we assume that some things are intrinsically
good:

. . . the view that there is only instrumental goodness is literally unintelligible.
To think that something X is good if all goodness is instrumental is that X
leads to a Y that is good by virtue of leading to a Z that is good, by virtue
of . . . , and so on ad infinitum. But this is a vicious conceptual regress. The
thought that X is good, on the view that all goodness is instrumental, is a
thought that one could not in principle complete. The thought that a belief
is justified, on the view that all justification is inferential, is similarly, the
foundationalist might argue, a thought that one could never complete.

Just as one terminates a conceptual regress involving goodness with the
concept of something being intrinsically good, so one terminates a conceptual
regress involving justification with the concept of a noninferentially justified
belief.17

The concept of intrinsic goodness stands to the concept of instrumental good-
ness as the concept of noninferential justification stands to the concept of
inferential justification. Just as there are no good things without there being
something that is intrinsically good, so also there are no inferentialy justified
beliefs unless there are noninferentially justified beliefs.18

Fumerton would be right that instrumental goodness implies intrinsic good-
ness if the conditional claims are of the form ‘if Y is good then X is good’.

17 Fumerton 1995, 90.
18 Fumerton 2014, 76.
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For then goodness is transferred lock, stock and barrel along the chain, and
the no starting point objection, or rather Gillet’s more general Structural Ob-
jection, applies in full force. However, we have been arguing that the sit-
uation changes radically if the claims take on the form ‘if Y is good then
there is a certain probability that X is good’ and ‘if Y is bad then there is a
certain (lower) probability that X is good’, and so on. For now goodness is
not transferred in its entirety along the series. Rather it slowly emerges as
we progress from the links Z to Y and Y to X . In this probabilistic scenario
the original question would be how probable it is that a certain action, X , is
good. And this question can indeed be answered; as we have seen, with the
numbers chosen, it is 2

3 .

6.3 The Reductio Argument

According to the reductio argument, if an infinite chain could justify a target
A0, then another infinite chain could be constructed that would justify the
target’s negation, ¬A0. Since it does not make sense for a proposition and its
negation both to be justified, the proponents of this argument conclude that
justification by an infinite chain is absurd.

Like the no starting point objection, the reductio argument has taken on
different formulations. Here we will concentrate on a version that was of-
fered by John Post in a tightly argued paper, which is in fact an improved
version of arguments that had been put forward by John Pollock and James
Cornman.19

Post starts his argument by defining an infinite justificational regress as a
“non-circular, justification-saturated regress”, by which he means that “every
statement in the regress is justified by an earlier statement, and none is jus-
tified by any set of later statements”.20 As we have seen in Chapter 2, Post
sees the justification relation as entailment, or better, ‘proper entailment’:
“if anything counts as an inferential justification relation, proper entailment
does . . . If An properly entails An−1, then An−1 is justified”.21 Now consider
again the infinite chain

A0 ←− A1 ←− A2 ←− A3 ←− A4 ←− . . . (6.4)

19 Post 1980; Pollock 1974, 28-29; Cornman 1977.
20 Post 1980, 3.
21 Ibid. Post has X and Y where we write An and An−1.



6.3 The Reductio Argument 129

where it is assumed that the propositions are connected by proper entailment
relations in the sense of Post, and where again A0 does duty for the tar-
get q. According to Post, chain (6.4) is a non-circular, justification-saturated
regress if and only if the following three conditions are satisfied:

a. An entails An−1 (n > 0);
b. An is not entailed by any Am<n;
c. An is not justified on the basis of any set of Am<n.

The first condition captures the idea that justification is a relation of entail-
ment. The second condition is meant to ensure non-circularity. The third
condition is added in order to block the possibility that a set of propositions
might in some way or other together conspire to justify a proposition higher
in the chain, which would make the regress circular after all. In the following
we will always assume non-circularity in the background.

The construction of (6.4) as a non-circular, justification-saturated regress
presupposes that at every step of the regress there indeed exists some propo-
sition, An, which satisfies conditions a, b and c. Are there any examples of
(6.4) that do the job? According to Post there are many, since there are many
forms of proper entailment which meet the three conditions above. One of
them is obtained by using modus ponens to interpret the links in the chain as
follows:

A0 = B0

A1 = B1 ∧ (B1 → B0)

A2 = B2 ∧ (B2 → (B1 ∧ (B1 → B0)))

A3 = B3 ∧ (B3 → (B2 ∧ (B2 → (B1 ∧ (B1 → B0))))) , (6.5)

and by adding the restriction that B1 is some proposition not entailed by
A0, that B2 is some proposition not entailed by A1, and so on. Under these
restrictions it is the case that A1 entails A0, A2 entails A1, and so on; but A0
does not entail A1, A1 does not entail A2, and so on. Moreover, there is no set
of propositions that together justify a proposition higher in the chain, so the
conditions a, b and c are fulfilled.

Since B∧(B→A) is formally equivalent to B∧A, (6.5) can also be written
as

A0 = B0

A1 = B1 ∧B0

A2 = B2 ∧B1 ∧B0

A3 = B3 ∧B2 ∧B1 ∧B0 , (6.6)



130 6 Conceptual Objections

and so on, so that the chain (6.4) amounts to

B0 ← (B1 ∧B0)← (B2 ∧B1 ∧B0)← (B3 ∧B2 ∧B1 ∧B0)← . . . (6.7)

Each link in (6.7) justifies its neighbour to the left, with the exception of B0,
which has no left-hand neighbour.22

Does it make sense to say that (6.7) justifies A0? Post rightly claims that it
does not. For in this manner a regress of propositions can be constructed for
any target proposition, in particular for the negation of A0. We only need to
construct the infinite chain:

A′
0 ← A′

1 ← A′
2 ← A′

3 ← . . . (6.8)

where the A′
n are interpreted as

A′
0 = ¬B0

A′
1 = B′

1 ∧ (B′
1 →¬B0)

A′
2 = B′

2 ∧ (B′
2 → (B′

1 ∧ (B′
1 →¬B0)))

A′
3 = B′

3 ∧ (B′
3 → (B′

2 ∧ (B′
2 → (B′

1 ∧ (B′
1 →¬B0))))) . (6.9)

Chain (6.8) reduces to

¬B0 ← (B′
1∧¬B0)← (B′

2∧B′
1∧¬B0)← (B′

3∧B′
2∧B′

1∧¬B0)← . . . (6.10)

So if an infinite regress could justify a target proposition A0, then another
could justify ¬A0, which is of course absurd. Hence the reductio argument,
which shows that an infinite regress of proper entailments cannot justify a
proposition.

Both Peter Klein and Scott Aikin made an attempt to ward off the reduc-
tio. Klein’s idea is that an infinite chain of proper entailments as set up by
Post is necessary, but not sufficient for the justification of a target: in order
to be sufficient, the propositions in the chain should also be “available” as
reasons.23 Aikin has argued that the only way to repel the reductio argument
is by taking a mixed view: infinitism and foundationalism do not exclude
one another, for a proposition can be both inferentially and noninferentially

22 Eq.(6.6) is used in Oakley’s second argument against justification by infinite
regress (Oakley 1976, 227-228). Aikin calls (6.6) “the simplification reductio”
(Aikin 2011, 58.)
23 Klein 1999, 312; Klein 2003, 722.
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justified.24 Aikin here takes up an idea by Jay Harker, namely that not all
regresses of entailment make sense as justificatory chains, but that some do.
According to Harker, a regress merely of beliefs is insufficient; a justifica-
tory chain must contain relations to facts as well, although it may still be
infinite.25

Thus Klein, Aikin and Harker all endorse the intuition that more is needed
for justification than an infinite, unanchored chain of proper entailments;
something has to be added to this chain in order to make it a justificatory
chain. We fully share this intuition, but we think that a chain of entailments
does not lend itself so easily to such an add-on — it is somehow too self-
contained for that. What helps to prevent the reductio is to abandon the idea
that the links in the chain are connected via proper entailment and to adopt
connections through probabilistic support. Holding on to the assumption of
entailment means strenghtening the reductio argument; the argument is better
combated by assuming regresses to be probabilistic, as we will explain in the
following section.

6.4 How the Probabilistic Regress Avoids the Reductio

In a standard finite chain such as (6.1), where the arrow represents entail-
ment, the ground Am+1 is all-important: the truth value of the target A0 is
a function of the truth value of Am+1 and of nothing else. The story is basi-
cally the same in the infinite case. However, there is then no ground, which is
precisely the reason why it does not make sense to say that the target is jus-
tified. The concept of entailment is the culprit here, for it forces us to accept
two things that are hard to combine, namely that the ground is all-important
and non-existent at the same time. Exactly this combination precipitates the
reductio argument. Nothing now restricts us in gratuituously constructing a
rivalling regress that ‘justifies’ the target’s negation, since the only restric-
tion that matters, to wit the truth value of the ground, is conspicuous by its
very absence.

The situation is entirely different in an infinite probabilistic regress. True,
there too a ground is lacking. But this is irrelevant, for the probability value
of the target is a function of the conditional probabilities alone. So it all de-

24 Aikin 2011, 59-60 and Chapter 3.
25 Harker 1984. Selim Berker takes a comparable route, offering the infinitist a way
to avoid a fundamentalist regression stopper without running the gauntlet of the
reductio argument — in Section 8.6 we will briefly come back to Berker.
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pends on the question: What, in a justificatory chain, determines the value of
the target? In a standard chain of entailments, the truth value of the target is
determined by that of the ground, independently of the length of the chain.
In a probabilistic chain, however, the length of the chain is relevant. If the
probabilistic chain is finite, then the target’s probability value is a function of
both the unconditional probability of the ground and the conditional proba-
bilities. As the chain gets longer, the influence of the ground decreases while
the influence of the combined conditional probabilities increases. In the limit
that the chain goes to infinity, only the conditional probabilities matter, and
the rôle of the ground has died out (in the usual class). In this regard the
difference between a non-probabilistic and a probabilistic regress could not
be greater: in the former, the only variable that counts is a function of the
ground, whereas in the latter the ground is of no significance whatsoever.26

We may conclude that the reductio argument misfires when the regress
is a probabilistic one. The argument hinges on the assumption that the only
variable which is responsible for the truth value of the target, namely the
truth value of the ground, is non-existent. This absence of a ground allows us
to concoct as many free-floating regresses as we wish, since the only variable
that would determine the truth value of the target, viz. the truth value of the
ground, is forever postponed and never actualized. In a probabilistic regress,
on the other hand, the non-existent ground is not pertinent to the probability
value of the target.

However, one could argue that this is too easy. For is it not possible to con-
struct a rivalling probabilistic regress, i.e. a regress that supports the negation
of our target? The only thing we would have to do is to come up with a set
of conditional probabilities that numerically, and thus purely formally, be-
stow upon the target a probability value that for example exceeds the chosen
threshold. If these conditional probabilities are not in any way connected to
the world, we can cook them up ad libitum. We could then well end up with
two rivalling probabilistic regresses, one probabilistically justifying A0, and
the other one probabilistically justifying ¬A0.

Although the above argument is formally valid, it is not applicable to the
issue that we are talking about. For it only works if the conditional proba-
bilities are regarded as free variables, whose values may be chosen at will.
We are however interested in epistemic justification, i.e. in the justification
of propositions about our knowledge of how the world actually is, and this
means that the conditional probabilities are not freely chosen. On the con-
trary, as we explained in Section 4.4, in a probabilistic regress the conditional

26 See also Peijnenburg and Atkinson 2014a.
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probabilities carry all the empirical thrust. Once we admit empirically deter-
mined conditional probabilities, we are not free to invent other conditional
probabilities in a competing regress for the negation of our target proposi-
tion: the conditional probabilities are determined too, and they yield a prob-
ability for the negation of the target that is one minus the probability of the
target. If the target probability clears a threshold of acceptance greater than
one half, the probability of the negation of the target will not do so.

Our opponent might not be satisfied, and complain that it remains unclear
how conditional probabilities can carry empirical information; after all, the
interface between our propositions and the world is fraught with difficulty. To
this we would reply that, of course, such difficulties exist, and they are well
documented; the problem of finding a transducer between our propositions
and the world cuts deep and might even turn out to be insoluble. But as
we made clear in Section 4.4, our aim is not to say something about that
problem: we are not trying to formulate an answer to the sceptic. Rather our
aim is to draw attention to probabilistic regresses and to phenomena such
as those of fading foundations and of the emergence of justification, and to
point out that these phenomena have consequences for the age-old objections
to infinite regresses.

Andrew Cling has argued that an infinite regress can only justify a propo-
sition if a certain condition is satisfied, notably that the regress is not “pure
fiction” but has “grounding in how things are, are likely to be, or are reason-
ably believed to be”.27 The trouble with infinitism, says Cling, is that this
condition can only be satisfied if simultaneously the very idea of justifica-
tion by an infinite regress is undermined. Our analysis indicates that Cling is
correct if the justificatory regress is a regress of entailments, not if it is prob-
abilistic. For a probabilistic regress, as we have seen, can probabilistically
justify a proposition while still having entry points for the world in the form
of the conditional probabilities.

We have provisionally argued that these conditional probabilities arise
from experiments, but of course they are not indubitable, and they can be
questioned in turn. In that case they become the targets of new probabilistic
chains. As we will explain in Section 8.5, this takes us from one-dimensional
chains to multi-dimensional networks, where the effect of fading foundations
still obtains.28

27 Cling 2004, 111; see also Moser 1985, who makes a point similar to that of Cling.
28 William Roche doubts whether a probabilistic regress can take away Cling’s
worry (Roche 2016). We think that it can indeed, for the reasons explained here
and in Sections 4.4 and 8.5.
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6.5 Threshold and Closure Constraints

It would be foolhardy to claim that probabilistic support along a chain of
propositions or beliefs is sufficient for their justification. An obvious ob-
jection to such a claim would be that, after all the contributions from the
conditional probabilities have been summed, the resulting probability of the
target might turn out to be less than a half, which means that, relative to this
particular chain, the target would be more likely false than true. Under these
circumstances one would not say that the chain justifies the target. Indeed,
as we have stressed, something must be added to probabilistic support to
achieve a sufficient condition for justification.

Although it is certainly not our ambition to answer the difficult question of
sufficiency, we shall in this section discuss two additional candidate desider-
ata for justification. The first is simply a threshold constraint on the target
probability; the second is a modified threshold requirement for a measure
of justification that has been proposed by Tomoji Shogenji. We first look
at the simple threshold constraint, using the tables in Chapter 4 as illustra-
tion. We recall the well-known fact that this constraint falls foul of the in-
tuition that justification should be closed under conjunction. But should un-
restricted closure be a desideratum for justification? We argue that it should
not: closure should be required only for independent propositions. The sim-
ple threshold constraint does not respect this modified closure requirement,
and so it should be rejected. Shogenji’s threshold condition, however, does
respect this modified closure requirement. What makes Shogenji’s condition
especially interesting for us, moreover, is that it sails between entailment
and probabilistic support: it is stronger than mere probabilistic support, but
weaker than entailment. It is therefore a refined desideratum for justification;
but we are not so incautious as to claim that it is a sufficient condition.

The simple threshold constraint amounts to the introduction of a context-
dependent threshold of acceptance, say t, that is greater than one-half, but
less than one.29 As a first attempt, we might propose that if q is justified to
degree t by a single proposition, or by a finite or infinite chain of propo-
sitions, then there must be probabilistic support along the chain, and P(q)
must be not less than t. Here is an example. Suppose that we take t = 3

4 and
refer to the tables in Chapter 4. We see from Table 4.1 that P(q) does not
clear 3

4 with a chain of ten or fewer intermediate A’s, but that it does so with
a chain of twenty-five or more intermediate A’s.

29 Carnap 1980, 43, 70, 107; Fitelson 2013.
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For a second example, look at Table 4.2, and again let t = 3
4 . Now we

see that P(q) clears the threshold in all cases, even when there is only one
intermediate A. The reason for this is simply that the ground p has a high
probability; and in connection with the chosen values of the conditional prob-
abilities α and β (0.99 and 0.04) this means that P(q) already exceeds the
threshold of 3

4 after one step. Had α and β both been small, then the situation
would have been very different; for then no number of steps would have been
enough to reach the threshold, no matter how large the probability of p was.
It can also happen that the value of P(q) is larger than the threshold after a
few steps, but sinks below the threshold if the chain gets longer. This can be
illustrated by appealing to Table 4.2 again, and adopting the more demand-
ing threshold of t = 0.85 instead of 0.75. With ten or fewer steps this more
stringent threshold is exceeded, but with twenty-five or more steps we see
that P(q) has sunk below the new threshold. In such a case q might appear
to be justified (to degree 0.85), but later, as the chain lengthens, we discover
that this is not so.

Now consider still another example. Let the conditional probabilities both
be very large, for example 0.99 and 0.96. Here again the target proposition, q,
will have a probability well in excess of the threshold of 3

4 , even when there
is only one intermediate A. And this is so irrespective of what the probability
of p might be. Here the joint conditional probabilities are already doing all
the work. On the other hand, if both conditional probabilities are very small,
then the probability of q will be very small, again irrespective of P(p). This
is because the rule of total probability shows that P(q) is an interpolation
between the two conditional probabilities, P(q|A1) and P(q|¬A1). In such a
case the target could not be justified by the regress.

What these examples show is that the conditional probabilities, together
with the unconditional probability of p, determine how long it takes before
P(q) reaches the threshold, if indeed it does so. Sometimes the uncondi-
tional probability of p has considerable influence, sometimes its influence is
smaller: it is all contingent on the particular values. In the case of an infi-
nite regress in the usual class, if the probability clears the threshold, this is
achieved by the infinite set of conditional probabilities alone, without any
contribution from p.

However, requiring that justification implies that the target probability
meet a threshold of acceptance runs into difficulties, as we have intimated.
For if target propositions q and q′ are each supported by A1, and if each meets
some threshold, t, which is strictly less than one, it does not follow that the
probability of the conjunction of q and q′ meets t. Should we require that, if
propositions q and q′ are each separately justified by the same evidence A1,
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then the proposition ‘q and q′’ is justified by the same evidence A1? That is,
should we require that justification is closed under conjunction? To see that
an unqualified ‘yes’ would be too quick an answer, let us look at a simple
example. Suppose that a fair die is tossed, but not yet inspected. Let q be the
proposition ‘the die shows 5’, and q′ be the proposition ‘the die shows 6’. Let
A1 be the proposition ‘the die shows more than 4’. Then P(q) = P(q′) = 1

6 ,
and P(q|A1) = P(q′|A1) =

1
2 , so both q and q′ are probabilistically supported

by A1. However, q and q′ are incompatible with one another, so P(q∧q′) = 0;
and of course we would not want to claim that A1 justifies the impossibil-
ity q∧ q′. The conclusion is that we should not allow unlimited closure of
justification under conjunction. This is of course the lesson that many peo-
ple have drawn from the lottery paradox and similar quandaries concerning
unrestricted closure of justification under conjunction. If one is justified in
believing that ticket ti in a fair lottery will lose, and that ticket t j will also
lose, is one justified in believing to the same extent that both ti and t j will
lose? Evidently not, for the two failures to win are not independent of one
another: if ti loses, the chance that t j will lose is reduced.

If unrestricted closure is forbidden, what would be a reasonable require-
ment concerning closure? Look at another example: suppose now that two
coloured dice are tossed, but not yet inspected. Let q be the proposition
‘the red die shows 5’, and let q′ be the proposition ‘the blue die shows
6’, and let A1 be the proposition ‘each die shows more than 4’. Once more
P(q) = P(q′) = 1

6 , and P(q|A1) = P(q′|A1) =
1
2 , so again both q and q′ are

probabilistically supported by A1 to the same degree. Now q and q′ are com-
patible, moreover they are independent of one another, both unconditionally
and conditionally:

P(q∧q′) = P(q)P(q′) = 1
36

P(q∧q′|A1) = P(q|A1)P(q′|A1) =
1
4 .

Again A1 supports q and q′ probabilistically, but it also supports the conjunc-
tion, q∧q′, for P(q∧q′|A1)≥ P(q∧q′). Note that the degree of probabilistic
support that A1 gives to the conjunction q∧ q′ is not the same as the degree
of support it gives to the conjuncts. However, if A1 justifies q∧ q′, then it is
reasonable to require that A1 justifies the conjunction to the same degree as it
justifies the conjuncts. After all, if one is justified (to some extent) in expect-
ing the red die to show 5, and also in expecting the blue die to show 6, on the
basis of knowledge that each of the dice shows either 5 or 6, then one should
be justified, to the same extent, in expecting that the red die shows 5 and the
blue die shows 6, on the same knowledge basis. That the red die shows 5
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does not influence whether the blue die shows 6. Evidently the requirement
that the probability clear a threshold of acceptance is not an adequate crite-
rion; and it must be rejected as a desideratum for justification. The problem
now is to find a measure of justification that clears a threshold and respects
the findings of the above dice scenarios, and others like it.

Tomoji Shogenji has constructed just such a measure of justification.30

Suppose that q and q′ are independent, both unconditionally and also when
conditioned by A1. Suppose further that both q and q′ have measures of justi-
fication greater than some threshold of acceptance, s. Then Shogenji requires
that their conjunction q∧ q′ also has a measure of justification greater than
s. Thus his measure J(q,A1), the justification that A1 bestows on q, respects
closure in the restricted sense.

Measure J(q,A1) is a function of the various probabilities associated with
q and A1. But which function should it be? There are three independent
candidates for the arguments of the function, for example P(q), P(A1) and
α0 = P(q|A1). Shogenji’s first step is to strike out P(A1), on the grounds that,
if one were to conjoin to A1 some independent and irrelevant proposition, I,
the justification that A1 ∧ I gives to q should be the same as that given by
A1. But P(A1 ∧ I) = P(A1)P(I), and so the degree of justification would be
changed by the conjunction if the measure were to depend on P(A1). So the
required measure of justification must be a function, f , of P(q) and P(q|A1)
alone:31

J(q,A1) = f [P(q),P(q|A1)] .

This immediately rules out the confirmation measure

S(q,A1) = P(q|A1)−P(q|¬A1) ,

as a candidate for a measure of justification, since that may be rewritten as

S(q,A1) =
P(q|A1)−P(q)

1−P(A1)
,

which is manifestly a function of P(A1), as well as P(q) and P(q|A1).32

Evidently the standard measure of confirmation, D,

D(q,A1) = P(q|A1)−P(q) ,

30 Shogenji 2012.
31 Note that P(q|A1 ∧ I)= P(q|A1), if I is independent of A1 and of q∧A1.
32 S(q,A1) is of course the same as γ0.
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does satisfy Shogenji’s first desideratum for J. As we remarked in Chapter 2,
Carnap called this an “increase in firmness”, the extent to which the probabil-
ity of q is increased by conditioning it on A1. Shogenji requires that J(q,A1)
should increase if P(q|A1) increases while P(q) is held fixed, and decrease
if P(q) increases while P(q|A1) is held fixed. It is clear that the measure D
does these things.

Could D be the required measure of justification, J? Not so, as we can see
from the example of the coloured dice, since

D(q,A1) = D(q′,A1) =
1
2 − 1

6 = 1
3

D(q∧q′,A1) =
1
4 − 1

36 = 2
9 ,

which are different, whereas the degree of justification of the conjunction of
the independent propositions q and q′ should be the same as that for q and q′

separately. But not only does D not satisfy this closure requirement, none of
the many other measures of confirmation do so either!33

Shogenji shows that the following new measure does satisfy the require-
ment of closure:

J(q,A1) = 1− logP(q|A1)

logP(q)
. (6.11)

Although this is not the only function that satisfies Shogenji’s desiderata for
a measure of justification, it has been proved that all functions that do so are
ordinally equivalent to Shogenji’s J function.34 That is to say, if A1 gives
a higher degree of justification to one proposition than it does to another,
according to the measure (6.11), then this ordering of justificatory degrees
will be the same for any other measure that satisfies Shogenji’s conditions.
We may say that the measure (6.11) is the unique solution of the problem,
up to ordinal equivalence. A proof of the above is given in Appendix B; but
here we shall simply check that the Shogenji measure works properly for our
coloured dice. From (6.11) we calculate

J(q,A1) = J(q′,A1) = 1− log 1
2

log 1
6

J(q∧q′,A1) = 1− log 1
4

log 1
36

= 1− 2log 1
2

2 log 1
6

= 1− log 1
2

log 1
6

.

33 See Atkinson, Peijnenburg and Kuipers 2009 for a list of ten measures of confir-
mation. A seminal paper on different measures of confirmation is Fitelson 1999.
34 Atkinson 2012.
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Thus J(q,A1) = J(q′,A1) = J(q∧q′,A1), so if J(q,A1)≥ s and J(q′,A1)≥ s,
for some s, it is trivially the case that J(q∧q′,A1) ≥ s. In words, if q and q′

are Shogenji-justified to the same degree, their conjunction is also Shogenji-
justified to that degree, as should be the case.

If the degree of Shogenji justification that A1 gives to q is not less than s,
i.e. J(q,A1)≥ s, then

1− logP(q|A1)

logP(q)
≥ s ,

and this can be recast in the form (see Appendix B)

P(q|A1) ≥ [P(q)]1−s . (6.12)

Note that when s = 0 — so there is effectively no threshold — this inequality
reduces to

P(q|A1) ≥ P(q)

which is equivalent to our condition of probabilistic support (or neutrality, in
the case of the equals sign). On the other hand, when the threshold is at its
maximum, so that s = 1, the relation becomes

P(q|A1)≥ 1 , which of course implies P(q|A1) = 1 ,

since no probability can be greater than one. This is the probabilistic condi-
tion that corresponds to entailment.

For non-extremal values of the degree s, the measure J interpolates be-
tween probabilistic support and entailment. Since entailment is too strong
a requirement for a viable understanding of justification, and probabilistic
support is too weak, it is very suggestive that this measure of Shogenji may
be a step in the right direction in the search for the holy grail of a sufficient
condition for justification.

6.6 Symmetry and Nontransitivity

In this chapter we have discussed the two conceptual objections to infinite
epistemic chains that occur most frequently in the literature, the no start-
ing point objection and the reductio argument, and we argued that they lose
their bite when justification is seen as something that involves probabilistic
support rather than entailment. Since probabilistic support is not enough for
justification, we looked in the previous section at two candidates for add-ons.
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One could however raise objections to the very concept of probabilistic
support itself. It is after all the child of a theory that is beset by a number of
serious pitfalls: the problem of old evidence, the problem of spurious rela-
tions, of irrelevant conjunctions, of randomness, and more.

Whenever a theory encounters problems, either we reject it because the
problems are too serious, or we continue to use it, trying in the meantime to
put things right. In the case of Kolmogorovian probability theory the choice
seems clear. Aside from exotics such as quantum probability and Robin-
sonian nonstandard analysis, Kolmogorov’s calculus is very much the only
game in probability town. When in epistemology we say that one proposition
‘probabilifies’ another, it would be wise to take Kolmogorov’s system seri-
ously, at least until we have found a better interpretation of ‘probabilifies’.

This book is not the place to dwell on all the snags and hitches of Kol-
mogorovian probability. Yet there are two properties of the concept of proba-
bilistic support that require some further consideration, since epistemologists
may find them troublesome in the context of epistemic justification. The first
is the fact that probabilistic support is not transitive and the second one is
that it is symmetric.

Many epistemologists have explicitly or implicitly expressed the view that
epistemic justification is transitive: if An is justified by An+1 and An+1 is jus-
tified by An+2, then An is justified by An+2. Such a view is of course apposite
if justification is perceived as entailment or implication, for then justification
is transmitted unchanged from one proposition to another. But if justification
is understood as involving probabilistic support, then transitivity may be vi-
olated. It all depends on what must be added to the relation of probabilistic
support to yield that of justification. For example, if justification were equiv-
alent to probabilistic support plus the Markov condition, then justification
would be transitive, since transitivity is a property of probabilistic support
when the Markov restriction is in place. If however justification were equiv-
alent to probabilistic support plus a threshold condition, then it would not be
transitive. As we have made clear, we refrain from making any claims about
what has to be added to probabilistic support in order to yield justification.
The point to make here is just that probabilistic support as a necessary con-
dition for justification entails nothing about the transitivity of justification.

A similar argument applies to the required asymmetry of justification.
When considered qualitatively, probabilistic support is symmetrical: if An+1
supports An, then An supports An+1. However, from the fact that proba-
bilistic support is (qualitatively) symmetric, it does not follow that justifi-
cation is qualitatively symmetric as well. An argument parallel to the one
just given about transitivity shows that the symmetry of probabilistic support
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entails nothing about the symmetry of justification. In fact the example of the
Markov condition fits the bill here, too. For if An+1 supports An, and An+1
screens off An from all ‘ancestor’ propositions in the chain, i.e. Am where
m > n + 1, then An will in general not screen off An+1 from all ‘descen-
dent’ propositions, i.e. Am where m < n. Thus if justification were equivalent
to probabilistic support plus the Markov condition, it would not be qualita-
tively symmetric. As we stressed above, the Markov model is not meant to
be taken as a serious candidate as to how justification should be defined: it
merely shows that justification can be asymmetric, even though probabilis-
tic support is symmetric. A formal demonstration of this fact is as follows.
Consider these three statements:

(1) if An+1 justifies An, then An+1 probabilistically supports An

(2) if An+1 probabilistically supports An, then An probabilistically sup-
ports An+1

(3) if An+1 justifies An, then An justifies An+1.

The point is that (3) does not follow from (1) and (2). What does follow
from the latter two statements is:

(3′) if An+1 justifies An, then An+1 probabilistically supports
An and An probabilistically supports An+1.

The consequent of (3′) expresses the fact that probabilistic support is sym-
metric. But this does not mean that justification is symmetric; it does not
follow from this that An justifies An+1.

It is important to note that the matter is quite different with respect to
fading foundations. The effect of fading foundations is not a property like
transitivity or symmetry. As a result, it does follow that justification implies
the existence of fading foundations (within the usual class). In detail:

(1′′) if An+1 justifies An, then An+1 probabilistically supports An

(2′′) if An+1 probabilistically supports An, and the conditional probabilities
belong to the usual class, then fading foundations ensue

(3′′) if An+1 justifies An, and the conditional probabilities belong to the
usual class, then fading foundations ensue.

In this case (3′′) does follow from (1′′) and (2′′). Irrespective of whether
we are talking about probabilistic support or about epistemic justification,
the phenomenon of fading foundations is the same, the reason being that the
latter does not have a meaning independent of probability theory, which we
take to be necessary for justification: if there is no probabilistic support, then
there is no justification. The properties of transitivity and symmetry, on the
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other hand, do not need to refer to probability theory in order to have the
meanings that they have. Thus under justification the influence of the proba-
bility of the ground on the probability of the target decreases as the number
of links in the chain increases. And in the limit that the number of links
goes to infinity, this probabilistic influence vanishes completely, leaving the
probability of the target fully independent of the probability of the ground.
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Chapter 7
Higher-Order Probabilities

Abstract
At first sight, a hierarchical regress formed by probability statements about
probability statements appears to be different from the probabilistic regress
of the previous chapters. After all, the former involves higher and higher-
order probabilities, whereas the latter is an epistemic chain in which one
proposition or belief probabilistically supports another. Closer examination,
however, teaches us that the two regresses are in fact isomorphic. A model
based on coin-making machines demonstrates that the hierarchical regress is
consistent.

7.1 Two Probabilistic Regresses

We have extensively discussed chains of propositions which probabilistically
support one another. But in Chapter 3 we did mention that Lewis, and inde-
pendently Russell, seemed sometimes to be talking about higher-order prob-
ability statements rather than about straightforward chains of propositions.1

The ambiguity is understandable enough. As we have seen, both Lewis and
Russell took the view that probability statements like ‘q is probable’ or ‘the
probability of q is x’ only make sense if one assumes that something else is

1 Section 3.2, footnote 8, and Section 3.3, footnote 22. Cf. Reichenbach 1952, 151,
where mention is also made of a probability of a probability. Roderick Chisholm has
taken issue with Reichenbach’s idea (especially as it is expressed in Reichenbach
1938), but in turn received criticism from Bruce Aune (Chisholm 1966, 22 ff; Aune
1972).

© The Author(s) 2017 
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certain. The question then arises what exactly this ‘something else’ could be,
and two answers appear to be natural.

According to the first, the ‘something else’ is the reference class on the
basis of which the unconditional probability of q is determined. Lewis, we
recall, argued that ‘the probability of q is x’ is in fact elliptical for ‘the prob-
ability of q is x, on condition that A1’. In many cases A1 will be assumed to
be certain, and thus to have probability unity. If this assumption is not made,
then one has to assume that A2 is certain in ‘the probability of A1 is x, on con-
dition that A2’. This reasoning forms the background to Lewis’s conclusion
that a regress of probability statements only makes sense if it is rooted in a
certainty. According to the second answer, however, it is the entire probabil-
ity statement that is taken to be certain. In asserting ‘the probability of q is
x’, one usually presupposes that this assertion itself has probability unity. If
one does not, then one might assume that the probability that the probability
of this assertion is y (with y smaller than one) is certain. In other words, with
the abbreviation of ‘the probability of q is x’ as A1, one way in which A1
could fail to be certain is if the assertion ‘the probability of the probability
that A1 is y’ (call this assertion A2) is one.

These two answers lead to two different readings of a probabilistic regress.
According to the first, the regress states (with vn standing for the uncondi-
tional probability values):

the probability of q, on condition that A1 is true, is v0 ;
the probability of A1, on condition that A2 is true, is v1 ;
the probability of A2, on condition that A3 is true, is v2 ;
and so on.

According to the second reading, the regress amounts to:

A1: the probability of q is v0 ;
A2: the probability of A1 is v1 ;
A3: the probability of A2 is v2 ;
and so on.

In the first kind of regress every An represents a condition on the probabil-
ity of q or on that of An−1. In the presence of such a regress, as we have
seen, we generally are able to determine the unconditional probability of q
via an infinite iteration of the rule of total probability. In fact, as we have
explained, the iteration need not even be infinite in order for us to compute
the unconditional probability of q to an acceptable approximation. However,
in the second regress every An names a statement about a probability. It thus
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involves infinitely many statements about ever and ever higher-order proba-
bilities, whereas the first regress refers to an infinite number of conditions.

Up to this point we have concentrated on the first kind of regress. In this
chapter we shall focus on probabilistic regresses of the second kind, cul-
minating in infinite series of probability statements about probability state-
ments. We start in Section 7.2 by discussing probability statements of second
and higher order. We will see that, although second-order probabilities do not
pose any particular problem, many philosophers have objected to probability
statements of a higher than second order. Especially the indefinite accumu-
lation of probabilities to infinity has been generally regarded as not making
sense.

In Section 7.3 we discuss an objection that Nicholas Rescher made to
infinite-order probabilities. Our analysis of Rescher’s argument will reveal
that the above mentioned two readings of a probabilistic regress are in fact
isomorphic, and in 7.4 this isomorphy will be demonstrated in a more for-
mal way. Since regresses under the first reading are coherent, the isomor-
phy tells us that those under the second reading are too. Thus the proper-
ties of regresses under the first reading, such as those of fading foundations
and emerging justification, are also properties of regresses under the second
reading. In Section 7.5 we make the concept of infinite-order probability
statements explicit by describing an executable model.

7.2 Second- and Higher-Order Probabilities

Suppose that the probability of the target proposition q is v0:

P(q) = v0 . (7.1)

If we know that (7.1) is true, then there is no more to be said; but what if we
lack this knowledge? In that case, we may only be in a position to assert a
further probabilistic statement like

P(P(q) = v0) = v1 , (7.2)

which is a second order probability statement, saying that the probability that
(7.1) is true is v1. Does (7.2) make sense? It can be argued that it does not. For
if one supposes that (7.1) implies that P(q) = v0 is true, then P(P(q) = v0) =
1, and so, unless v1 = 1, (7.2) would be inconsistent with (7.1). A way to
avoid such an inconsistency would be to introduce two different probability
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functions instead of one, viz. P(1) and P(2). For evidently the intention is that
(7.2) should adjust the initial bald statement (7.1). Thus we need to replace
(7.1) and (7.2) by

P(1)(q) = v0

P(2)(P(1)(q) = v0) = v1 , (7.3)

where P(2) is a second-order probability function.
However, objections have been raised against second-order functions like

P(2), based on the contention that it is unclear what they mean. David Miller
even argued that they lead to an absurdity.2 In his view the only way second-
order probability statements could make sense, if at all, would be if the
second-order probability of q, given that the first-probability of q is v0, is
itself v0:

P(2)(q|P(1)(q) = v0
)
= v0 . (7.4)

He then goes on to argue that (7.4) leads to an unacceptable conclusion. For
if we replace v0 in (7.4) by P(1)(¬q), we obtain

P(2)(q|P(1)(q) = P(1)(¬q)
)
= P(1)(¬q) ,

which is the same thing as

P(2)(q|P(1)(q) = 1
2)
)
= P(1)(¬q) .

However, if instead we put 1
2 for v0 in (7.4), we find P(2)

(
q|P(1)(q) = 1

2) =
1
2 .

Therefore P(1)(¬q) = 1
2 , and thus P(1)(q) = 1

2 . So if (7.4) were unrestrictedly
valid, we could prove that the probability of an arbitrary proposition q is
equal to one-half, which is absurd. This is known as the Miller paradox.

Brian Skyrms has argued against Miller’s reasoning. Although Skyrms
maintains that (7.4) is perfectly acceptable, playfully dubbing it ‘Miller’s
Principle’, he points out that Miller’s further reasoning is fallacious, since
it “rests on a simple de re–de dicto confusion”.3 As Skyrms explains, one
and the same expression is used both referentially and attributively, so that
a number (here v0) is wrongly put on a par with a random variable, here
P(1)(¬q), that takes on a range of possible values.4 So long as we recognize
this confusion and keep the two levels apart, the notion of a second-order
probability is harmless, and the Miller paradox disappears. We agree with

2 Miller 1966.
3 Skyrms 1980, 111.
4 See Howson and Urbach 1993, 399-400, who make a similar observation.
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Skyrms that Miller’s Principle as such is harmless, but in what follows we
will not need it: our reasoning goes through without the principle.

In addition to parrying Miller’s argument, Skyrms warded off another ob-
jection to second-order probability statements, namely one that can be dis-
cerned in de Finetti’s work. As is well known, de Finetti held that probability
judgements are expressions of attitudes that lack truth values. Skyrms how-
ever pointed out that de Finetti’s work is not particularly hostile to a theory
of second-order probabilities:

For a given person and time there must be, after all, a proposition to the effect
that that person then has the degree of belief that he might evince by uttering
a certain probability attribution.

De Finetti grants as much:

The situation is different of course, if we are concerned not with the
assertion itself but with whether ‘someone holds or expresses such an
opinion or acts according to it,’ for this is a real event or proposition.
(de Finetti 1972, 189)

With this, de Finetti grants the existence of propositions on which a theory
of higher-order personal probabilities can be built, but never follows up this
possibility. 5

De Finetti and Skyrms are not alone in having taken the view that second-
order probabilities need not pose any particular problem. Several other au-
thors recognize that, when the relevant distinctions are taken into account,
second-order probabilities can be shown to be formally consistent.6 This is
not to say that such probabilities are mandatory. As Pearl has explained,
second-order probabilities, although consistent, can be dispensed with, for
one can always express them by using a richer first-order probability space.7

Once we accept the cogency of second-order probabilities, there is no
impediment to constructing probabilities to any finite order.8 We could con-
tinue the sequence (7.3) and introduce a hierarchy of higher-order probability
statements:

P(1)(q) = v0

P(2)(P(1)(q) = v0) = v1

P(3)(P(2)(P(1)(q) = v0) = v1) = v2 , (7.5)

5 Skyrms 1980, 113-114.
6 Uchii 1973; Lewis 1980; Domotor 1981; Kyburg 1987; Gaifmann 1988.
7 Pearl 2000.
8 See Atkinson and Peijnenburg 2013.
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and so on, with P(m) being the mth-order probability. In the previous sec-
tion we introduced A1, A2 and A3 as names of probability statements. Here
we shall specify the probabilities in question more fully by stipulating their
orders:

A1 is the proposition P(1)(q) = v0

A2 is the proposition P(2)(A1) = v1

A3 is the proposition P(3)(A2) = v2 ,

and so on. With these definitions, (7.5) can be written as

P(1)(q) = v0

P(2)(A1) = v1

P(3)(A2) = v2 , (7.6)

and so on.
However, the key question is of course not whether any finite series of

higher-order probability statements is cogent, but whether the notion of
infinite-order probabilities make sense. Is it coherent to continue the above
sequence ad infinitum, in the limit defining a probability, P(∞)(q), of infi-
nite order? Leonard Savage has answered this question in the negative. For
him, the mere fact that second-order probabilities provoke the introduction
of probability statements of infinite order was enough to discard them alto-
gether:

Once second order probabilities are introduced, the introduction of an endless
hierarchy seems inescapable. Such a hierarchy seems very difficult to inter-
pret, and it seems at best to make the theory less realistic, not more.9

His conclusion is that “insurmountable difficulties” will arise if one opens
the door to second-order probabilities and starts using such phrases as “the
probability that B is more probable than C is greater than the probability that
F is more probable than G”.10

Savage was mainly talking about statistics, but in philosophy too it has
been argued that an infinite order of probabilities of probabilities leads to
problems that are insuperable. Thus David Hume argued in A Treatise of
Human Nature that an infinite hierarchy implies that the probability of the
target will always be zero:

9 Savage 1954, 58.
10 Ibid.
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Having thus found in every probability . . . a new uncertainty . . . and having
adjusted these two together, we are oblig’d . . . to add a new doubt . . . . This is
a doubt . . . of which . . . we cannot avoid giving a decision. But this decision,
. . . being founded only on probability, must weaken still further our first evi-
dence, and must itself be weaken’d by a fourth doubt of the same kind, and
so on in infinitum: till at last there remain nothing of the original probabil-
ity, however great we may suppose it to have been, and however small the
diminution by every new uncertainty.11

Nicholas Rescher, in his book Infinite Regress: The Theory and History of
Varieties of Change, also argued against an infinite hierarchy of probabilities.
As he sees it, the problem with such a hierarchy is not that the probability
of the target q will always be zero, but rather that it becomes impossible to
know what that probability is:

. . . unless some claims are going to be categorically validated and not just ad-
judged probabilistically, the radically probabilistic epistemology envisioned
here is going to be beyond the prospect of implementation. . . . If you can
indeed be certain of nothing, then how can you be sure of your probability
assessments. If all you ever have is a nonterminatingly regressive claim of the
format . . . the probability is .9 that (the probability is .9 that (the probability
of q is .9)) then in the face of such a regress, you would know effectively
nothing about the condition of q. After all, without a categorically established
factual basis of some sort, there is no way of assessing probabilities. But if
these requisites themselves are never categorical but only probabilistic, then
we are propelled into a vitiating regress of presuppositions.12

11 Hume 1738/1961, Book I, Part IV, Section I. See also Lehrer 1981, for simi-
lar reasoning. As we noted in Section 3.3, Quine states in his lectures on Hume
that this Humean argument is incorrect, since an infinite product of factors, all less
than one, can be convergent, yielding a non-zero probability for the target (Quine
2008). Quine is right to point out this possibility, but note that it corresponds to
what happens in our exceptional class, not in the usual class. Moreover, the pos-
sibility can only serve as a critique of Hume if one forgets about the second term
in the rule of total probability, i.e. if all the βn = P(An|¬An+1) are zero. As we
have seen, Hume does indeed leave out that term, as would Lewis and Russell many
years later. Hume’s argument is therefore not generally valid. Thus Quine’s analy-
sis of Hume is based on two unwarranted assumptions: first he assumes that all the
conditional probabilities αn belong to the exceptional class, i.e. the class of quasi-
bi-implication, and second he supposes that all the conditional probabilities βn are
zero. What diminishes as the chain lengthens is not the probability of the target, as
Hume and Quine thought, but rather the incremental changes that distant links bring
about.
12 Rescher 2010, 36-37. Rescher has p rather than q. Furthermore, Rescher explic-
itly conditions all his probabilities with respect to some evidence, E, and therefore
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The argument of Rescher may seem plausible and persuasive. Yet we shall
argue in the next section that an endless hierarchy of probabilities is in fact no
stumbling block to having effective knowledge about the probability that q
is true, let alone that it constitutes “an unsurmountable difficulty”, as Savage
would have it. In a sense the opposite is the case. If there is a stumbling
block, it resides in the finite, not in the infinite hierarchy. For an infinite
hierarchy of probabilities is, to a certain extent, better equipped to reveal
the probability of q than is a finite one. The reason is reminiscent of the
reason why a probabilistic regress of the sort that we have investigated in the
previous chapters is cogent: in order to compute an infinite sequence, only
the conditional probabilities need be known, whereas the computation of a
finite sequence requires also knowledge of an unconditional probability.

7.3 Rescher’s Argument

In this section we shall examine Rescher’s claim: “If all you ever have is a
nonterminatingly regressive claim of the format . . . the probability is .9 that
(the probability is .9 that (the probability of q is .9)) then in the face of such a
regress, you would know effectively nothing about the condition of q”, which
amounts to putting v0, v1 and v2 in (7.6) all equal to 0.9. We will show in this
section that Rescher’s assertion is in fact ill-founded.

Imagine, following Rescher, that we have a probability statement of the
third order:

P(3)(P(2)(P(1)(q) = 0.9) = 0.9) = 0.9 . (7.7)

Some philosophers conclude on the basis of (7.7) that the unconditional
probability of q is 0.9, since no matter how many times one iterates, the
probability value always stays the same.13 This conclusion is also incorrect,
but the question remains as to what is the correct conclusion that can be
drawn from (7.7) about the unconditional probability of q.

Consider the definitions

A1: The first-order probability P(1) of q is 0.9 ,
A2: The second-order probability P(2) of A1 is 0.9 ,
A3: The third-order probability P(3) of A2 is 0.9 ,

instead of Eqs.(7.1)–(7.2) he has Pr(p|E) = v0 and Pr(Pr(p|E) = v0|E) = v1 (ibid.,
36 — misprint corrected). In the interest of notational brevity, explicit reference to
E will be suppressed.
13 See for example DeWitt 1985, 128.
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and so on. In the rest of this section we will temporarily suppress the or-
ders of the probabilities to facilitate an intuitive grasp of the course of the
reasoning. So we have:

A1: The probability of q is 0.9 ,
A2: The probability of A1 is 0.9 ,
A3: The probability of A2 is 0.9 ,

and so on. We will now successively revise P(q); in the next section, when
we approach the matter more formally, we will reinstate the higher orders.

We call on the rule of total probability,

P(q) = P(q|A1)P(A1)+P(q|¬A1)P(¬A1) , (7.8)

in which the probability of q is conditioned on that of A1. In order to evaluate
the unconditional probability of A1, this formula must be repeated in the
familiar way, with A1 in the place of q, and A2 in the place of A1,

P(A1) = P(A1|A2)P(A2)+P(A1|¬A2)P(¬A2) , (7.9)

and so on. Is it possible to calculate P(q) if the format goes on to infinity?
Rescher thinks not. If the hierarchy is endless one cannot know anything
about the probability of q, for “we are propelled into a vitiating regress of
presuppositions”14. The situation looks like a probabilistic analogue of the
Tortoise’s interminable query to Achilles, where the latter successively sat-
isfies the former pro tem in higher and higher-order querulousness without
end.15

However, this similarity is only apparent. Between the probabilistic and
the nonprobabilistic version of the Tortoise’s challenge to Achilles there is an
essential difference: the latter might be hopeless, the former is not. It is true
that the Tortoise can always ask about an unknown P(An) after the weary
warrior has taken n steps in his argument. It is also true that the unknown
P(An) could have any value between zero and one. However, the influence
that P(An) has on the value of P(q) will be smaller as the distance between An

and q gets bigger — even if P(An) were to take on the largest allowed value
of 1, see Section 4.3. As we know now, in the limit that n tends to infinity,
the influence of P(An) on P(q) will peter out completely, leaving the value
of P(q) as a function of the conditional probabilities alone. Note again that
this is not because P(An) itself becomes smaller as n becomes larger: indeed,

14 Rescher 2010, 37.
15 Carroll 1895.
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it may not do so. Nor is it simply because the iteration of (7.8) and (7.9),
etc. leads to a series of terms that is convergent. Rather it is because P(An)
is multiplied by a factor that goes to zero as n tends to infinity. Each time
Achilles has taken one more step, and the Tortoise has asked about P(An+1),
this worrisome probability is multiplied by an even smaller factor, and after
yet another step the Tortoise’s P(An+2) is multiplied by a yet smaller factor
still, and so on, until the factor has shrunk to zero.

Referring back to (7.8), we know from Miller’s Principle that the term
P(q|A1) is equal to 0.9. In Rescher’s example, the third term, P(q|¬A1), is
not specified, but it will be clear that (7.8) cannot be evaluated without it: as
long as the value of the third term is unknown, one cannot determine P(q).
For the sake of argument, we shall set this term equal to 0.3. It should be
noted that no strings are attached to this choice of 0.3, since the argument is
robust: whatever nonzero value of P(q|¬A1) is chosen, so long as it is less
than P(q|A1), the same reasoning will work.

Now (7.8) can be worked out:

P(q) = [0.9×0.9]+ [0.3×0.1] = 0.84 . (7.10)

The number 0.84 was arrived at on the provisional assumption that the sec-
ond term, P(A1), indeed equals 0.9, which would be correct if it were the
case that

P(P(A1) = 0.9) = P(A2) = 1 .

But that is wrong, for P(A2) = 0.9. This means that P(A1) should rather be

P(A1) = [0.9×0.9]+ [0.3×0.1] = 0.84 , (7.11)

where, similarly, 0.3 is taken to be the value of P(A1|¬A2), and so on. On the
basis of this new result, the value of P(q) in (7.10) must be revised, yielding

P(q) = [0.9×0.84]+ [0.3×0.16] = 0.804 . (7.12)

However, the number 0.804 was arrived at on the fictional assumption that
the second term in (7.11), to wit P(A2), indeed equals 0.9, and thus that

P(P(A2) = 0.9) = P(A3) = 1 .

But that is also wrong, for P(A3) = 0.9. This means that P(A2) should rather
be

P(A2) = [0.9×0.9]+ [0.3×0.1] = 0.84 . (7.13)



7.3 Rescher’s Argument 153

On the basis of this, P(A1) is revised to

P(A1) = [0.9×0.9]+ [0.3×0.1] = 0.804 . (7.14)

This new value for P(A1) implies that P(q) must again be revised, generating

P(q) = [0.9×0.804]+ [0.3×0.196] = 0.7824 , (7.15)

and so on. It should be noted that these ‘revisions’ of the value of P(q) are re-
ally higher and higher-order probabilities of q. We have suppressed the spec-
ification of the orders for greater readability: in the next section the technique
will be explained with more care and with greater generality.

Here is an overview of the values that P(q) takes after an increasing num-
ber of revisions:

Table 7.1 Unconditional probability of q after n revisions
n 1 2 3 5 10 15 20 ∞
P(q) 0.84 0.804 0.7824 0.7617 0.7509 0.75007 0.750005 3

4

There are three important lessons to be drawn from these seemingly tedious
calculations.

The first is that an endless hierarchy of probabilities can indeed deter-
mine what the probability of the original proposition is — contrary to what
Rescher and many others have claimed. For it is possible to calculate the
value of P(q), even in a situation such as the one sketched by Rescher, where

P(P(P(q) = 0.9) = 0.9) = 0.9 , (7.16)

and so on. With the value that was chosen for P(An|¬An+1), namely 0.3, and
after an infinite number of revisions, P(q) is exactly equal to 3

4 .
The second lesson is that an infinite number of revisions is not needed to

come very close to the actual value of P(q). For, as can be seen in Table 7.1,
there is only a small difference between the value of P(q) after, say, twenty
revisions and after an infinite number of them. Of course, the size of the
difference will depend on the numbers that are chosen for the conditional
and unconditional probabilities in the equations: had the values of the first
two terms been, for example, 0.8 rather than 0.9, and had P(An|¬An+1) been
0.4 rather than 0.3, then not even twenty steps would have been needed to
come as close to the limit value (which would have been 2

3 in that case).
There is always some finite number of revisions, such that the result scarcely
differs from what is obtained with an infinite number of them.
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The point can be regarded as a quantitative reinforcement of a claim that
Rescher makes in qualitative terms. Partly in the wake of Kant and Peirce,
Rescher stresses several times that some infinite regresses should be ap-
proached in a pragmatic way, in which it is acknowledged that contextual
factors play an important role and that, at a certain point, “enough is enough”:

. . . in any given context of deliberation the regress of reasons ultimately runs
out into ‘perfectly clear’ considerations which are (contextually) so plain that
there just is no point in going further. It is not that the regress of validation
ends, but rather that we stop tracking it because in the circumstances there is
no worthwhile benefit to be gained by going on. We have rendered a state [or]
situation by coming to the end not of what is possible but of what is sensible
— not of what is feasible but of what is needed. Enough is enough.16

. . . in actual practice we need simply proceed ‘far enough’. After a certain
point there is simply no need — or point — to going on.17

Our explanations, interpretations, evidentiations, and substantiations can al-
ways be extended. But when we carry out these processes adequately, then
after a while ‘enough is enough’. The process is ended not because it has to
terminate as such, but simply because there is no point in going further. A
point of sufficiency has been reached. The explanation is ‘sufficiently clear’,
the interpretation is ‘adequately cogent’, the evidentiation is ‘sufficiently con-
vincing’. . . . [T]ermination is not a matter of necessity but of sufficiency — of
sensible practice rather than of inexorable principle. . . . What counts is doing
enough ‘for practical purposes’.18

. . . regressive viciousness in explanation can be averted . . . by the considera-
tion that the practical needs of the situation rather than considerations of gen-
eral principle serve to resolve our problems here. . . . [I]n the end, what matters
for rational substantiation is not theoretical completeness but pragmatic suffi-
ciency.19

Rescher’s point is a good one, and it can be buttressed by the reasoning above
— certainly in the case of an endless hierarchy of probabilities. Beside prac-
tical reasons for deciding that ‘enough is enough’, principled considerations
can be used to determine when there is a negligible difference between the
value of P(q) after, say, fifteen steps, or after an infinite number of them.

16 Rescher 2010, 47.
17 Ibid., 82.
18 Rescher 2005, 104.
19 Ibid., 105.
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Of course, it is on the basis of the context that the meaning of ‘negligible’
is to be understood. If one is happy to know what a particular probability is
to within, say, one percent, then it is easy to work out, for given conditional
probabilities, at what point the regress can be terminated, such that the error
which is thereby committed is less than the desired one percent.

The third lesson, finally, must by now sound familiar: the further away An

is from q, the smaller is the influence that the former exerts on the latter, until
in the limit it dies out completely. In the end, the unconditional probabilities
do not affect the value of P(q) at all, only the conditional probabilities matter.
Contrary to what Rescher suggests, the unconditional probability of q can be
fully determined on the basis of the conditional probabilities, and of nothing
else.

Again, this could be interpreted as a strengthening rather than a critique
of Rescher’s claims. At several places in his book Rescher explains that one
of the ways in which an infinite regress can be harmless is when it is sub-
ject to “compressive convergence”.20 As he phrases it: “compressive conver-
gence can enter in to save the day for infinite regression” (ibid.). In regresses
governed by compressibility, “a law of diminishing returns” (ibid., 74) is in
force, according to which the steps in the regress recede into “a minuteness
of size” (ibid., 52):

An infinite regress can thus become harmless when the regressive steps be-
come vanishingly small in size so that the transit of regression becomes con-
vergent. An ongoing approximation to a fixed result is then achieved, and the
regress, while indeed proceeding in infinitum, does not reach ad infinitum.21

In the same vein, a law of diminishing returns can be said to be operating in
the endless hierarchy of probabilities discussed above. Granted, it is not the
case that in such a hierarchy the successive steps become smaller, let alone
that they recede into “imperceptible minuteness”.22 Quite the contrary: in
the limit that n goes to infinity, as has been shown, it is no impediment if
P(An) tends to the highest possible value, namely 1. Nor is it the case that, in
the limit, P(An) fades into penumbral obscurity in which its nature becomes
unclear — another way in which, according to Rescher, an infinite regress
can be harmless.23 For the nature of the infinitely remote P(An) may be per-
fectly clear and well-defined. Nevertheless a law of diminishing returns can
still be said to be in force. Although the probability P(An) does not shrink in

20 Rescher 2010, 46.
21 Ibid., 48.
22 Ibid., 75.
23 Ibid., 52.
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size, nor becomes dim or otherwise unclear, the influence of P(An) on P(q),
and thus the contribution that P(An) makes to the value of P(q), diminishes
as the distance between An and q increases. This is because the hierarchical
regress is isomorphic to the probabilistic regress, as we shall now prove.

7.4 The Two Regresses Are Isomorphic

In this section we will show that the regress of higher-order probabilities is
strictly equivalent to the familiar probabilistic regress of propositions. Con-
sider again (7.6). What is the second-order probability of q? It can be ob-
tained from an instantiation of the rule of total probability at the second
level:

P(2)(q) = P(2)(q|A1)P(2)(A1)+P(2)(q|¬A1)P(2)(¬A1)

= α(2)
0 v1 +β (2)

0 (1− v1)

= β (2)
0 + γ(2)0 v1 , (7.17)

where ν1 was defined in (7.6), and

α(2)
0 = P(2)(q|A1) ; β (2)

0 = P(2)(q|¬A1) ; γ(2)0 = α(2)
0 −β (2)

0 . (7.18)

According to Miller’s Principle in the form (7.4), α(2)
0 is equal to v0; but

since we do not need to call on this principle for our purposes, we will let
α(2)

0 stand.
The third-order probability of q is given by

P(3)(q) = P(3)(q|A1)P(3)(A1)+P(3)(q|¬A1)P(3)(¬A1) ; (7.19)

but the probability of A1 at third order is no longer ν1, as it was at second
order. Instead

P(3)(A1) = P(3)(A1|A2)P(3)(A2)+P(3)(A1|¬A2)P(3)(¬A2)

= α(3)
1 v2 +β (3)

1 (1− v2)

= β (3)
1 + γ(3)1 v2 , (7.20)

where ν2 was defined in (7.6), and

α(3)
1 = P(3)(A1|A2) ; β (3)

1 = P(3)(A1|¬A2) ; γ(3)1 = α(3)
1 −β (3)

1 .
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On substituting (7.20) into Eq.(7.19) we obtain

P(3)(q) = α(3)
0 (β (3)

1 + γ(3)1 v2)+β (3)
0 (1−β (3)

1 − γ(3)1 v2)

= β (3)
0 + γ(3)0 β (3)

1 + γ(3)0 γ(3)1 v2 ,

with

α(3)
0 = P(3)(q|A1) , β (3)

0 = P(3)(q|¬A1) , γ(3)0 = α(3)
0 −β (3)

0 , (7.21)

which is like Eq.(7.18), except that the conditional probabilities are now at
third order.

The pattern should by now be obvious. The (m+ 2)nd-order probability
of q is

P(m+2)(q) = β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm + γ0γ1 . . .γmvm+1 ,
(7.22)

where we have suppressed the superscript (m+2) on the conditional proba-
bilities, for reasons of legibility, but they are to be understood.

Within the usual class we obtain, in the limit that m goes to infinity,

P(∞)(q) = β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 + . . . , (7.23)

in which, with A0 doing duty for the target proposition, q,

αn = P(∞)(An|An+1) , βn = P(∞)(An|¬An+1) , γn = αn −βn , (7.24)

for n = 0,1,2, . . ..
It will be clear that the above argumentation on the basis of the rule of

probability is formally the same as our reasoning in Chapter 3. Indeed, (7.23)
has the same shape as (3.24), so an infinite series of higher-order probability
statements makes sense. Like our regress of propositions that probabilisti-
cally justify one another, the regress of higher-order probabilities is subject
to fading foundations and to justification that gradually emerges as we go to
probability statements of higher and higher level.

Let us take stock. We have seen that higher-order probability statements
are not as unintelligible as has often been thought. From Brian Skyrms and
others we already learned that probabilities of the second order are not partic-
ularly problematic; but we have now seen that the same applies to probability
statements of any finite order, and even that infinite-order probabilities turn
out to be coherent. The two regresses, the one from the previous chapters and
the hierarchical one, are formally equivalent.
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However, formal equivalence is not yet equivalence in a very strict sense.
We have shown that both regresses have the same form, not that there is
a bijection between the two. The latter we will prove now, for the really
conscientious reader.

We start straightforwardly, with the simplest form of Lewis’s claim ‘if
something is probable, something else must be certain’, i.e. the form where
the series consists of only one step, namely from q to A1. Here the two inter-
pretations of Lewis’s claim can be symbolized as follows:24

(1) If P(q|A1) = α , and P(q|¬A1)< α , then A1 is certain,
i.e. P(A1) = 1.

(2) It is certain that the probability of q is α ,
i.e. P(2)

(
P(1)(q) = α

)
= 1.

It is not difficult to see that (1) entails (2). If P(q|A1) = α , and P(A1) = 1,
then

P(q) = P(q|A1)P(A1)+P(q|¬A1)P(¬A1)

= α ×1+P(q|¬p)×0

= α ;

and if P(q) = α , which we should write more explicitly as P(1)(q) = α , then
the probability that this is so is one, i.e. P(2)

(
P(1)(q) = α

)
= 1.

It is a little trickier to show that (2) entails (1). The first thing we have
to do is to demonstrate that P(2)

(
P(1)(q) = α

)
= 1 entails P(1)(q) = α . The

difficulty is that P(A) = 1 does not imply A in an infinite probability space.
On the other hand A does entail P(A) = 1, so if we substitute the proposition
‘P(1)(q) �= α’ for A, we obtain

P(1)(q) �= α entails P(2)
(
P(1)(q) �= α

)
= 1 .

By contraposition it follows that

¬[P(2)
(
P(1)(q) �= α

)
= 1

]
entails ¬[P(1)(q) �= α],

or in other words that

P(2)(P(1)(q) �= α
) �= 1 entails P(1)(q) = α . (7.25)

However,

P(2)
(
P(1)(q) = α

)
= 1 implies that P(2)

(
P(1)(q) �= α

)
= 0,

24 Recall that Lewis does not mention P(q|¬A1), but we specifically include the
condition of probabilistic support.
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and this trivially means that P(2)
(
P(1)(q) �= α

) �= 1. On combining this result
with (7.25), we conclude that P(2)

(
P(1)(q) = α

)
= 1 entails P(1)(q) = α .25

The rest of the demonstration employs only first-order probabilities, so we
will drop the superscript. So with P(q) = α , and the rule of total probability,

P(q) = P(q|A1)P(A1)+P(q|¬A1)P(¬A1) ,

we see that, if A1 is such that P(q|A1) = α and P(q|¬A1)< α , then

α = α ×P(A1)+P(q|¬A1)×P(¬A1) .

Therefore P(A1) = 1, and so we have shown that (2) entails (1).
The above shows that the two interpretations of Lewis’s claim are equiv-

alent when the series consists only of q and A1. However, the interesting
question is whether the generalization still holds when the series is longer,
and especially when it is of infinite length.

The generalization of (1) and (2) above to any finite series is given by:

(1′) If P(An|An+1) = αn and P(An|¬An+1) = βn, with αn > βn,
for n = 0,1, . . .m, then it must be that Am+1 is certain, i.e.
P(Am+1) = 1.

(2′) It is certain that the mth-order probability of q is vm, i.e.
P(m+1)

(
P(m)

(
. . .

(
P(2)

(
P(1)(q) = v0

)
= v1

)
. . .

)
= vm

)
= 1.

We have incorporated Reichenbach’s correction of Lewis’s position by in-
cluding βn, i.e. the second term in the rule of total probability. The condition
of probabilistic support has also been included in order to exclude multiple
solutions.

We will now show that (1′) and (2′) are equivalent. The right-hand side
of (7.22) matches that of (3.20) in Chapter 3, excepting only that vm+1 in
the former replaces P(Am+1) in the latter. But vm+1 is just the value of
P(m+2)(Am+1), so the two equations have the same form, term for term. Go-
ing from (1′) and (2′) is immediate, whereas in the opposite direction we
must first demonstrate that P(m+1)(Am) = 1 entails Am. But Am is a probabil-
ity statement, so the demonstration is just the same rigmarole as the one we
detailed above in going from (2) to (1). Thus the finite chains are isomor-
phic; and therefore, if the conditional probabilities belong to the usual class,
the infinite chains have the same form too. Infinite-order probabilities are not

25 A shorter, intuitive ‘proof’ of this result is to say that P(B) = 1 entails B almost
everywhere, and if B is a measure, namely the proposition P(1)(q) = α , then the
restriction ‘almost everywhere’ loses its bite.
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only cogent, but they also exhibit the phenomena that we have been talking
about, in particular those of fading foundations and emerging justification.

As an example of an infinite-order probability, we take as conditional
probabilities

αn = 1− 1
n+2

+
1

n+3
; βn =

1
n+3

.

These are the same as the ones we had in Eq.(3.21) of Chapter 3; but the
interpretation is now different. Here they refer to infinite-order conditional
probabilities. However, the equations have the same structure as those in
Chapter 3; and we can read off the infinite-order probability of q by letting
m go to infinity in Eq.(3.22), obtaining P(∞)(q) = 3

4 .

7.5 Making Coins

We have formally proved that an infinite series of higher-order probability
statements is strictly equivalent to an infinite justificatory chain of the prob-
abilistic kind. However, we might still have qualms: how can we understand
the matter in an intuitive way? Being able to check all the steps in an alge-
braical proof is one thing, it is quite another thing to ‘see through’ the series,
as it were, and to appreciate what is actually going on.

In this section we will try to allay these worries by offering a model that
is intended to make the above abstract considerations concrete. The model is
completely implementable; it comprises a procedure in which every step is
specified. The model gives us a probability distribution over all the proposi-
tions as well as over their conjunctions. It satisfies the Markov condition in a
very natural way, and we do not have to assume this condition as an external
condition.26

Imagine two machines which produce trick coins. Machine V0 produces
coins each of which has bias α0, by which we mean that each has probability
α0 of falling heads when tossed; machine W0, on the other hand, makes coins
each of which has bias β0. We define the propositions q and A1 as follows:

q is the proposition ‘this coin will fall heads’

A1 is the proposition ‘this coin comes from machine V0’ .

26 In Herzberg 2014 the Markov condition is imposed as an extra constraint. See
also our discussion in Appendix A.8.
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We shall use the symbol P1(q) for the probability of a head when A1 is true;
evidently it is the conditional probability of q, given A1:

P1(q)
def
= P(q|A1)

= P
(
‘this coin will land heads’|‘thiscoincomesfrommachine V0’

)
.

We know that P1(q) = α0, for if the coin comes from machine V0, the prob-
ability of a head is indeed α0, for that is the bias produced by machine V0.
Note that P1 is conceptually not the same as P(1). The former is a conditional
probability, in this case the probability of q given A1; the latter is a first-order
unconditional probability.

An assistant is instructed to take many coins from both machines, and to
mix them thoroughly in a large pile. The numbers of coins that she must add
to the pile from machines V0 and W0 are determined by the properties of two
new machines: V1, which produces trick coins with bias α1, and W1, which
produces trick coins with bias β1. A supervisor has told the assistant that the
relative number of coins that she should take from her machine V0 should
be equal to the probability, α1, that a coin from V1 would fall heads when
tossed. So if α1 is for example 1

4 , then one quarter of the total number of
coins that the assistant takes from V0 and W0 are from V0; the rest from W0.27

The assistant takes one coin at random from her pile and she tosses it.
Understanding q now to refer to this coin, we can deduce the probability of
q in the new situation. Indeed, if A2 is the proposition:

A2 = ‘the relative number of V0 coins in the assistant’s pile is determined

by the bias towards heads of the V1 coins’,

then we can ask what the probability is that the assistant’s coin falls heads,
given that A2 is true. We use the symbol P2(q) for this probability. It is equal
to the conditional probability of q, given A2, which can be calculated from
the following variation of the rule of total probability:28

27 For the sake of this story, we limit α1 to be a rational number, so it makes sense
to say that the number of coins to be taken from V0 is equal to α1 times the total
number taken from V0 and W0. Similarly, in the subsequent discussion, the biases
should all be considered to be rational numbers. Since the rationals are dense in the
reals, this is not an essential limitation.
28 The proof of Eq.(7.26) goes as follows:

P(q∧A2) = P(q∧A1 ∧A2)+P(q∧¬A1 ∧A2)

= P(q|A1 ∧A2)P(A1 ∧A2)+P(q|¬A1 ∧A2)P(¬A1 ∧A2) .

On dividing both sides of this equation by P(A2) we obtain (7.26).
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P2(q)
def
= P(q|A2) = P(q|A1 ∧A2)P(A1|A2)+P(q|¬A1 ∧A2)P(¬A1|A2) .

(7.26)
By definition, P(q|A1∧A2) is the probability that the assistant’s coin will fall
heads, on condition that this coin has come from machine V0, and that the
number of V0 coins in the pile is subject to the condition specified by A2.
Similarly P(q|¬A1 ∧A2) is the probability that the assistant’s coin will fall
heads, on condition that this same coin has not come from machine V0, and
that A2 is true.

This series of procedures gives rise to a Markov chain. For the condi-
tion that the assistant’s coin has come from machine V0 is already enough
to ensure that the probability that this coin will fall heads is α0; and that
situation is not affected by the condition that A2 is true, so P(q|A1 ∧A2) =
P(q|A1) = α0. Likewise, the condition that the assistant’s coin has not come
from machine V0 guarantees that it has come from machine W0, and therefore
ensures that the probability of a head is β0; again, that is not affected by A2,
so P(q|¬A1 ∧A2) = P(q|¬A1) = β0. In Reichenbach’s locution, A1 is said to
screen off q from A2.29 The screening-off or Markov condition will turn out
to be an essential part of our model. We shall show that the model, as well
as the abstract system of which it is an interpretation, are consistent, even if
the abstract system does not itself satisfy the Markov condition.

The Markov condition enables us to simplify (7.26) as follows:

P2(q) = P(q|A2) = P(q|A1)P(A1|A2)+P(q|¬A1)P(¬A1|A2)

= α0α1 +β0(1−α1) , (7.27)

where, as usual, we employ β0 as shorthand for P(q|¬A1). We conclude that,
if the assistant repeats the procedure of tossing a coin from her pile many
times (with replacement and randomization), the resulting relative frequency
of heads would be approximately equal to P2(q), as given by (7.27). The
approximation would get better and better as the number of tosses increases
— more carefully: the probability that the relative number of heads will differ
by less than any assigned ε > 0 from α0α1+β0(1−α1) will tend to unity as
the number of tosses tends to infinity.

It is important to understand that P2(q) is not simply a correction to P1(q).
It is rather that they refer to two different operations. In the first operation it
is certain that the assistant takes a coin from machine V0. In the second oper-
ation something else is certain, namely that the number of V0 coins in the pile
consisting of V0 coins and W0 coins is determined by the bias towards heads
of a coin from machine V1. The consequence of this difference is substantial,

29 Reichenbach 1956, 159-167.
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for in the second operation it is no longer sure that the assistant takes a coin
that comes from V0. Instead of being only a correction, P2(q) is the result of
a longer, and more sophisticated procedure than is P1(q) .

So much for the description of the model of the first iteration of the
regress, constrained by the veridicality of A2. In the next iteration, the super-
visor receives instructions from an artificial intelligence that simulates the
working of yet another duo of machines, V2 and W2, which produce simu-
lated coins with biases α2 and β2, respectively. The supervisor makes a large
pile of coins from his machines V1 and W1; and he adjusts the relative number
of coins that he takes from V1 to be equal to the probability that a simulated
coin from V2 would fall heads when tossed. So if α2 is for example 1

2 , then
equal numbers of coins will be taken from each of the machines V1 and W1.

Let A3 be the proposition:

A3 = ‘the relative number of V1 coins in the supervisor’s pile is determined

by the bias towards heads of the V2 coins’,

If A3 is true, then the probability of A2 is equal to α2, that is to say
P(A2|A3) = α2. Again, screening off is essential here: A2 screens off A1 from
A3. So we may write

P(A1|A3) = P(A1|A2 ∧A3)P(A2|A3)+P(A1|¬A2 ∧A3)P(¬A2|A3)

= P(A1|A2)P(A2|A3)+P(A1|¬A2)P(¬A2|A3)

= α1α2 +β1(1−α2) . (7.28)

This value of P(A1|A3) is handed down to the assistant, and she reruns her
procedure, but with P(A1|A3) in place of P(A1|A2). Since A1 screens off q
from A3 (and from all the higher An), we calculate

P3(q)
def
= P(q|A3) = P(q|A1 ∧A3)P(A1|A3)+P(q|¬A1 ∧A3)P(¬A1|A3)

= P(q|A1)P(A1|A3)+P(q|¬A1)P(¬A1|A3)

= α0P(A1|A3)+β0[1−P(A1|A3)] , (7.29)

in which we are to replace P(A1|A3) by α1α2 + β1(1−α2), in accordance
with Eq.(7.28). This yields

P3(q) = P(q|A3) = β0 +(α0 −β0)β1 +(α0 −β0)(α1 −β1)α2 . (7.30)

The relative frequency of heads that the assistant would observe will be ap-
proximately equal to P3(q), as given by (7.30) — with the usual probabilistic
proviso. The above constitutes a model of the second iteration of the regress,
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constrained by the condition that the simulated coin of the artificial intelli-
gence comes from the simulated machine V2, that is by the veridicality of
A3.

This procedure must be repeated ad infinitum. A subprogram encodes the
working of yet another duo of virtual machines, V3 and W3, which simulate
the production of coins with biases α3 and β3, and so on, all under the as-
sumption that An is the proposition:

An = ‘the relative number of Vn−2 coins in the relevant pile is determined

by the bias towards heads of the Vn−1 coins’.

From this it follows that at the (m+2)nd step of the iteration one finds

Pm+2(q)
def
= P(q|Am+2) = β0 + γ0β1 + γ0γ1β2 . . .+ γ0γ1 . . .γm−1βm

+γ0γ1 . . .γmαm+1 , (7.31)

where we have introduced the customary abbreviation γn = αn −βn. Under
the requirement that the conditional probabilities belong to the usual class,
the sequence P1(q), P2(q), P3(q) . . . converges to a limit, P∞(q), that is well-
defined. Moreover, under the same condition the last term in (7.31), namely
γ0γ1 . . .γmαm+1, tends to zero as m tends to infinity, so finally

P∞(q) = β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 . . . (7.32)

This has the same form as (7.23).
In this way we have designed a set of procedures that is clear-cut in the

sense that it could in principle be performed to any finite number of steps,
where the successive results for the probability that the assistant throws
a head get closer and closer to a limiting value that can be calculated.
To be precise, for any ε > 0, and for any set of conditional probabilities
that belongs to the usual class, one can calculate an integer, N, such that
|PN(q)−P∞(q)| < ε , and one could actually carry out the procedures to de-
termine PN(q). That is, one can get as close to the limit of the infinite regress
of probabilities as one likes.

The probabilities in this model are objective, but that is not the essen-
tial point. What is essential is that the structure to be described is a genuine
model, which implies that two desiderata have been met. First, the model
is well-defined and free from contradictions. Second, it maps into the infi-
nite hierarchy of probabilities. The model has the same form as the prob-
abilistic regress of Chapter 3, for which we have already given a proof of
convergence. It also matches the series for the infinite-order probability of
Eq.(7.23), thereby providing a model for the abstract system of Section 7.4.
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Chapter 8

Loops and Networks

Abstract

The analysis so far concerned only one-dimensional epistemic chains. In
this chapter two extensions are investigated. The first treats loops rather than
chains. We show that generally, i.e. in what we have called the usual class,
infinite loops yield the same value for the target as do infinite chains; it is
only in the exceptional class that the values differ. The second extension
involves multi-dimensional networks, where the chains fan out in many dif-
ferent directions. As it turns out, the uniform version of the networks yields
the fractal iteration of Mandelbrot. Surprising as it may seem, justificatory
systems that mushroom out greatly resemble fractals.

8.1 Tortoises and Serpents

In 1956 Wilfrid Sellars famously diagnosed the malaise of epistemology as
an unpalatable either/or:

One seems forced to choose between the picture of an elephant which rests
on a tortoise (What supports the tortoise?) and the picture of a great Hegelian
serpent of knowledge with its tail in its mouth (Where does it begin?). Neither
will do.1

Up to this point our focus has been on finite and infinite chains of proposi-
tions. We looked, as it were, at an elephant which rests on a tortoise, which
in turn might rest on a second tortoise, and so on, without end. Pace Sellars’
pessimism, we have seen that such structures are not particularly problematic
if one takes seriously that the relation of support is probabilistic.
1 Sellars 1956, 300.
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DOI 10.1007/978-3-319-58295-5_8 

167© The Author(s) 2017 



168 8 Loops and Networks

There are now two ways in which we could extend our investigation and
go beyond one-dimensional chains. The first is to keep the one-dimension-
ality, but to look at loops rather than chains: this would take us to the sec-
ond horn of Sellars’s dilemma, where knowledge is pictured as Kundalini
swallowing its own tail. The other way is to give up one-dimensionality al-
together and to study multi-dimensional networks. This would take us to the
coherentist caucus in epistemology, or rather to an infinitist version of it, in
which ultimately the network stretches out indefinitely in infinitely many di-
rections. It might seem that such a version will be especially vulnerable to
the standard objection to coherentism, according to which coherentist net-
works of knowledge hang in the air without making contact with the world.
Indeed, as Richard Fumerton noted, if we worry about “the possibility of
completing one infinitely long chain of reasoning, [we] should be downright
depressed about the possibility of completing an infinite number of infinitely
long chains of reasoning”.2

Remarkably enough however, the opposite is the case. Since the connec-
tions between the propositions in the network are probabilistic in character,
we are dealing with conditional probabilities. As we explained in Section
4.4, the conditional probabilities together carry the empirical thrust, and this
is even more so in a multi-dimensional system than in a structure of only
one dimension, for the simple reason that now there are more conditional
probabilities that may be linked to the world.

Extending the chains to networks thus enables us to catch it all: to develop
a form of coherentism which not only is infinitist, but also acknowledges the
foundationalist maxim that a body of knowledge worthy of the name must
somehow make contact with the world.3

We start in Section 8.2 by discussing one-dimensional loops. We will see
that, if justification is interpreted probabilistically, then it is in general un-

2 Fumerton 1995, 57.
3 Thus we do not have many quibbles with William Roche when he argues that
foundationalism, if suitably generalized, can be reconciled with infinite regresses
of probabilistic support (Roche 2016). Much depends on what is meant by foun-
dationalism: as we indicated in Section 4.4, we do not want to become embroiled
in a verbal dispute. Some commentators write as if foundationalism were the sole
guardian of empirical credibility and connection to the world. Although others might
find that position unduly imperialistic, we do not object to being called foundation-
alists in that sense. We have no issue with a form of foundationalism that takes into
account fading foundations and the related concept of trading off as it is applied
to doxastic justificatory chains. Our concern is less about the classification of our
results than about the results themselves.
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problematic to maintain that a target is justified by a loop. In Section 8.3 we
turn to multi-dimensional networks, where the tentacles stretch out in many
different directions. In Section 8.4 we explain that such a multi-dimensional
network takes on a very interesting and intriguing shape when it goes to
infinity. Surprising and somewhat strange as it may sound, if epistemic jus-
tification is interpreted probabilistically, and if we accept that it can go on
without end, then justification is tantamount to constructing a fractal of the
sort that Benoı̂t Mandelbrot introduced many years ago.

In the final section we explain what happens when the multi-dimension-
ality springs from the connections in the network rather than from the nodes,
i.e. when it originates from the conditional probabilities rather than from the
unconditional ones. We shall see that in a generalized sense the Mandelbrot
construction is preserved.4

8.2 One-Dimensional Loops

Finite loops embody the simplest coherentist system. What about infinite
ones? It seems that an infinite loop cannot really be called a loop, since there
is no end of the tail that the Hegelian serpent can swallow. A loop after all in-
volves a repeat of the same; it may be long, indeed more than cosmologically
long, but it seems that it may not be infinite, on pain of having no repetition
at all. Even Henri Poincaré, when he formulated his recurrence theorem, had
to assume that the universe is finite in spatial extent and of finite energy.

However, from the fact that a finite loop differs from an infinite ‘loop’,
it does not follow that an infinite loop is in fact an infinite chain. Our in-
vestigation in this section will explain that such a conclusion would be un-
warranted. In what we have called the usual class, the infinite loop indeed
produces the same result as does the corresponding infinite chain; but in the
exceptional class infinite loops and infinite chains yield different results, as
we shall show.

We saw in Chapter 3 that the probability of the target in a finite linear
chain can be written as in (3.20), where we have reinstated q in place of A0:

P(q) = β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm + γ0γ1 . . .γmP(Am+1) .

4 Section 8.2 in this chapter, about the loops, is based on Atkinson and Peijnenburg
2010a; Sections 8.3 and 8.4, which deal with networks, are based on Atkinson and
Peijnenburg 2012.
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The general formulation of a finite loop with m+1 propositions has a similar
form, except that the (m+1)st proposition is q itself. Mathematically, there
is no problem if we insert Am+1 = q into the above equation to yield

P(q) = β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm + γ0γ1 . . .γmP(q) ,

for this yields

P(q) =
β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γm−1βm

1− γ0γ1 . . .γm
, (8.1)

which is well-defined, on condition that γ0γ1 . . .γm is not equal to unity.5

With that proviso, the solution demonstrates the viability of the coherentist
scenario in its simplest form, that of a finite one-dimensional loop.

The fact that a self-supporting finite loop or ring makes good mathemat-
ical sense is of course not enough. Does it also make sense elsewhere? Can
a loop that closes upon itself occur in reality? A temporal example of such a
loop is difficult to come by in the real world, but it can occur in the science
fiction of time travel. Let q be a proposition stating that young Biff decides
in 1955 to use the 2015 edition of the sports almanac, A1 a proposition as-
serting that he continues his successful career as bettor until 2015, and A2
a proposition explaining how old Biff succeeds in borrowing Doc Brown’s
time machine in 2015, and returns to 1955 in order to give the almanac to
his younger self. A3 = q would then be a proposition stating that young Biff
decides in 1955 to use the 2015 edition of the sports almanac . . . and so on.

In fact, the events need not follow one another in time. Consider the fol-
lowing three propositions:

C: “Peter read parts of the Critique of Pure Reason”.
P: “Peter is a philosopher”.
S: “Peter knows that Kant defended the synthetic a priori”.

Assuming that all philosophers read at least parts of the Critique of Pure
Reason as undergraduates, if Peter is a philosopher, then he read parts of the
Critique. Of course, even if he is not a philosopher, he may still have read
Kant’s magnum opus. If Peter knows that Kant defended the synthetic a pri-
ori, he very likely is a philosopher, whereas if he does not, he is probably not
a philosopher, although of course he might be an exceptionally incompetent

5 If γ0γ1 . . .γm = 1, it follows that each γn is equal to one. But then all the αn are
equal to one also, and all the βn are equal to zero, which is the condition of bi-
implication. This already indicates that a loop does not make sense when entailment
relations are involved.
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one, not having understood anything of Kant or the Critique. Finally, if he
read the Critique, he quite likely knows that Kant defended the synthetic a
priori, whereas this is rather less likely if he never opened the book. Here
then is a simple finite loop, consisting of a fixed number of links, namely
three:

C ←− P ←− S ←− C , (8.2)

where the arrow indicates that the proposition at the right-hand side proba-
bilistically supports the one at the left.

We can make loop (8.2) nonuniform by investing the three propositions C,
P and S with for example the following dissimilar values for the conditional
probabilities:

C: α0 = P(C |P) = 1; β0 = P(C |¬P) = 1
10 ; γ0 = α0 −β0 =

9
10

P: α1 = P(P |S) = 9
10 ; β1 = P(P |¬S) = 1

5 ; γ1 = α1 −β1 =
7
10

S: α2 = P(S |C) = 4
5 ; β2 = P(S |¬C) = 2

5 ; γ2 = α2 −β2 =
2
5 .

Then the unconditional probabilities6 are

P(C) =
β0 + γ0β1 + γ0γ1β2

1− γ0γ1γ2
= 0.711

P(P) =
β1 + γ1β2 + γ1γ2β0

1− γ0γ1γ2
= 0.679

P(S) =
β2 + γ2β0 + γ2γ0β1

1− γ0γ1γ2
= 0.684 .

In the above example the number of links was fixed: there were exactly
three propositions. Here is an example in which the number of links, m,
can be whatever one likes, showing the cogency of any finite loop. Consider
again the example (3.21) in Section 3.5:

αn = 1− 1
n+2

+
1

n+3
; βn =

1
n+3

; γn = 1− 1
n+2

.

6 As they must, these numbers satisfy
P(C) = β0 + γ0P(P) P(P) = β1 + γ1P(S) P(S) = β2 + γ2P(C) .

Incidentally, there is a good reason for considering a loop of at least three propo-
sitions. For in a ‘loop’ of two links only, there are only three independent un-
conditional probabilities, for example P(q), P(A1) and P(q ∧ A1), whereas there
are four conditional probabilities around the loop, P(q|A1), P(q|¬A1), P(A1|q) and
P(A1|¬q), so there must be a relation between them. This difficulty does not arise
for a loop of three links, for in this case there are seven independent unconditional
probabilities and only six conditional probabilities around the loop. With more than
three links on the loop the difference between the numbers of unconditional and
conditional probabilities is even greater.
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This example is nonuniform (i.e. the conditional probabilities, αn and βn, are
not the same for different n), and it is in the usual class. It is shown in (A.18)
in Appendix A.5 that Eq.(8.1) reduces to

P(q) =
3
4
− 1

4(m+3)
. (8.3)

In Table 8.1 the values of P(q) for the chain are reproduced in the first line,
while the corresponding values for the loop, as specified in (8.3), are given
in the second line. The difference between the two cases is that, while for the
chain we had to specify a value for the probability of the ground, which we
put equal to a half, for the loop no such specification is required.

Table 8.1 Probability of q for chain and loop P(p) = 1
2 for chain

αn = P(An|An+1) = 1− 1
n+2 +

1
n+3 βn = P(An|¬An+1) =

1
n+3

Number of An 1 2 5 10 25 50 75 100 ∞

P(q) with chain .625 .650 .688 .712 .732 .741 .744 .745 .750
P(q) with loop .688 .700 .719 .731 .741 .745 .747 .748 .750

The probability of the target rises smoothly as the chain, or the loop, becomes
longer, eventually reaching the value of three-quarters for both the infinite
chain and the infinite loop. As can be seen, the values of P(q) for the loop
converge somewhat more quickly than do those for the chain.

The agreement between the infinite chain and the infinite loop is not lim-
ited to this special model, for it is an attribute of any example in the usual
class. This can be seen quite easily, for when the product γ0γ1 . . .γm tends to
zero as m goes to infinity, the loop (8.1) yields the infinite, convergent series

P(q) = β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 . . . , (8.4)

as for the infinite chain in the usual class.
The uniform case, in which the conditional probabilities are the same from

link to link, forms an interesting special case, for then the value of P(q)
turns out to be always the same, no matter how many links there are in the
loop. This can already be seen without doing the actual calculation. Since the
propositions are uniformly connected round and round the loop ad infinitum,
we can immediately understand why it should make no difference how many
links there are: the value of P(q) should be the same as that for an infinite,
uniform loop. The actual calculation goes as follows: (8.1) becomes
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P(q) =
β (1+ γ + γ2 + . . .γm)

1− γm+1 . (8.5)

The finite geometrical series 1+γ+γ2+ . . .γm is equal to (1−γm+1)/(1−γ),
and on substituting this we see that the factor (1− γm+1) cancels, so

P(q) =
β

1− γ
=

β
1−α +β

.

Indeed this does not depend on m at all, so the number of links may be finite,
or infinite, with no change in the value of P(q). It will be recognized that this
value is precisely the same as that for the infinite, uniform chain (see Section
3.7).

So much for the usual class. What of the exceptional class, in which the
infinite product of the γ’s is not zero? As we have seen, here the chain fails,
in the infinite limit, to produce a definite answer for the target probability.
The infinite loop on the other hand yields a unique value. To illustrate this,
consider again the example (3.25):

βn =
1

(n+2)(n+3)
γn =

(n+1)(n+3)
(n+2)2 = 1− 1

(n+2)2 .

We find now from (8.1) that

P(q) =
3
4
− 1

4(m+3)
, (8.6)

as we explain in detail in Appendix A.6, and this has the perfectly definite
limit 3

4 . Thus the infinite chain and the infinite loop only differ in the excep-
tional class. There the infinite chain fails to give a definite answer, but the
infinite loop does so.7

8.3 Multi-Dimensional Networks

Most systems of epistemic justification are of course much more compli-
cated than the one-dimensional chains and loops that we have considered so
far. Certainly modern coherentism envisages many-dimensional nets of in-
terlocking probabilistic relations. The concept of justification trees or J-trees

7 The fact that this value of P(q) is the same as that of the loop (8.3), in the usual
class, is just a coincidence.
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has been introduced as a graphic representation of the relation in such net-
works.8 Figure 8.1 is an example of a very simple justification tree. This
tree has two branches, with A1 and A′

1 as nodes on the one level, and A2 and
A′

2 as nodes on a lower level. It should be read as: proposition q is justified
by A1 and A′

1, A1 is justified by A2, and A′
1 is justified by A′

2. In this section
we shall describe what happens when we replace the finite or infinite one-
dimensional probabilistic chain by a finite or infinite probabilistic network
in two dimensions, along the lines of a justification tree.

����

����

q

A1

A2

A′
1

A′
2

Fig. 8.1 Basic justification tree

We now make the tree more complicated by allowing that A1 and A′
1 are each

supported by two, rather than by one proposition, as depicted in Fig. 8.2.

����

���� �� ��

q

A1

A2

A′
1

A′′′
2A′

2 A′′
2

Fig. 8.2 Complex justification tree

Here A1 is supported by A2 and A′
2; and A′

1 is supported by A′′
2 and A′′′

2 . In
their turn, A2, A′

2, A′′
2, and A′′′

2 may each be supported by two propositions.
A complicated tree as in 8.2 could serve as a model for the propagation

of genetic traits under sexual reproduction, in which the traits of a child

8 See for example Sosa 1979; Clark 1988, 374-375; Alston 1989, 19-38; Cortens
2002, 25-26; Aikin 2011, 74.
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are related probabilistically to those of both the mother and the father. Let
P(q) again be the unconditional probability that Barbara has trait T . This
time Barbara is not a bacterium as in Section 3.7, where the reproduction
was asexual. Rather she is now an organism with two parents, a father and a
mother. For the purpose of fixing ideas it will prove convenient to talk about
sexual reproduction and about fathers and mothers, but we should bear in
mind that the formalism is of course much more general. Also, although we
shall tell the story in terms of events, it should be kept in mind that everything
we say applies to justificatory relations between propositions as well.

Since Barbara stems from two parents, the probability that she has T is
determined by the characteristics of her mother and of her father. Rather than
two reference classes (the mother having or not having T ), we now have four:
both the mother and the father have T , neither of them has it, the father has
T but the mother does not, and the mother has T but the father does not. The
analogue of the rule of total probability is

P(q) = α0P(A1 ∧A′
1)+β0P(¬A1 ∧¬A′

1)

+γ0P(A1 ∧¬A′
1)+δ0P(¬A1 ∧A′

1) , (8.7)

where A1 represents Barbara’s mother having T and A′
1 her father having T .

Here α0 means “the probability that Barbara has T , given that her mother
and father both have T ”. The other conditional probabilities are analogously
defined: β0 corresponds to neither parent having T , and γ0 and δ0 to the two
situations in which one parent does, and the other does not have T .

In the nth generation the corresponding expression is

P(An) = αnP(An+1 ∧A′
n+1)+βnP(¬An+1 ∧¬A′

n+1)

+γnP(An+1 ∧¬A′
n+1)+δnP(¬An+1 ∧A′

n+1) , (8.8)

where An stands for one individual in the nth generation, An+1 and A′
n+1 for

that individual’s mother and father. The conditional probabilities are

αn = P(An|An+1 ∧A′
n+1)

βn = P(An|¬An+1 ∧¬A′
n+1)

γn = P(An|An+1 ∧¬A′
n+1)

δn = P(An|¬An+1 ∧A′
n+1) .

In order to iterate the two-dimensional (8.8), much as we did in the one-
dimensional case, we now need more complicated relations for the uncondi-
tional probabilities. It is no longer sufficient to consider P(A1) and replace it
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by β0 +(α0 −β0)P(A2), and so on, for now we are dealing with the proba-
bility of a conjunction of two parents, A1 and A′

1. Each of these parents has
two parents, so we encounter in fact the probabilities of conjunctions of four
individuals. This can be continued further and further, involving more and
more progenitors, confronting us with a tree of increasing complexity.

Fortunately, however, we can often make simplifying assumptions. Here
we will work under three simplifications:

1. Independence. The probabilities for the occurrence of the trait T in fe-
males and in males is independent of one another in any of the n genera-
tions:

P(An+1 ∧A′
n+1) = P(An+1)P(A′

n+1) .

This assumption seems reasonable in the genetic context; and it will also
apply in many more general epistemological settings.

2. Gender symmetry. The probability of the occurrence of the trait T is the
same for females and for males in any of the n generations:

P(An) = P(A′
n) .

Thus we only consider inheritable traits which are gender-independent,
such as having blue eyes or being red-haired, and not, for example, having
breast cancer or being taller than two metres. Similarly, in an epistemolog-
ical context this assumption will sometimes, but not always be satisfied.
With this assumption the prime can be dropped on A′

n, and in combination
with the first assumption we obtain

P(An+1 ∧A′
n+1) = P(An+1)P(An+1) = P2(An+1) .

3. Uniformity. The conditional probabilities are the same in any of the n
generations. That is, αn, βn, γn and δn are independent of n, so we may
drop the suffix.

Together these assumptions enable us to simplify (8.8) to the quadratic func-
tion

P(An) = αP2(An+1)+βP2(¬An+1)+(γ +δ )P(An+1)P(¬An+1) . (8.9)

As we will show in the next section, (8.9) leads to a surprising result, for it
generates a structure similar to the Mandelbrot fractal.
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8.4 The Mandelbrot Fractal

In 1977 Mandelbrot introduced his celebrated iteration:

qn+1 = c+q2
n, (8.10)

where c and q are complex numbers.9 Starting with q0 = 0, the iteration gives
us successively

q1 = c

q2 = c+ c2

q3 = c+(c+ c2)2

q4 = c+
(
c+(c+ c2)2)2

, (8.11)

and so on. For many values of c, the iteration will diverge, allowing qn to
grow beyond any bound as n becomes larger and larger. For example, if c= 1
we obtain q1 = 1, q2 = 2, q3 = 5 and q4 = 26, and so on.

But if for instance c = 0.1, then qn does not diverge, and in this case
actually converges to the number 0.11271 . . . . Taken together, all the values
of c for which the iteration (8.10) does not diverge form the Mandelbrot set,
which is reproduced in Figure 8.3.

Fig. 8.3 The Mandelbrot fractal is generated by the complex quadratic iter-
ation qn = c+q2

n+1, where c = x+ iy.

9 Mandelbrot 1977. The variables qn in this section should not be confused with q
in (8.7), the target proposition of the two-dimensional net.
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The black area contains the points that belong to the Mandelbrot set.
Each point corresponds to a complex number, c, being the ordered pair of
the Cartesian coordinates, (x,y). The edge of the Mandelbrot set forms the
boundary between those values of c that are members of the set and those
that are not. It is this boundary, the ‘Mandelbrot fractal’, that has the well-
known property of being infinitely structured in a remarkable way: no matter
how far you zoom in on it, you will always find a new structure that is similar
to, although not completely identical with the Mandelbrot set itself.

Our aim in this section is to demonstrate that, on condition that α +β �=
γ + δ , the quadratic relation (8.9) is equivalent to the Mandelbrot iteration
(8.10). As it turns out, c will be a function of the conditional probabilities
α , β , γ and δ alone, and will thus be a known quantity. The q’s, on the
other hand, will be directly related to the unconditional probabilities; these
are unknown and their values are to be determined through the iteration.

It will prove convenient first to define ε as the average of the conditional
probabilities γ and δ , that is

ε def
= 1

2(γ +δ ) ,

which is the mean conditional probability that the target — in our case Bar-
bara — has the trait T , given that only one of her parents has T . Eq.(8.9) now
becomes

P(An) = β +2(ε −β )P(An+1)+(α +β −2ε)P2(An+1) . (8.12)

On the one hand, this iteration may not look very much like the Mandelbrot
form (8.10). Firstly, in the latter we go as it were upwards, starting from qn

and then counting to qn+1, whereas in (8.12) we start with P(An+1) and it-
erate downwards to P(An). Secondly, (8.12) is about conditional and uncon-
ditional probabilities, and thus about real numbers between zero and one,
whereas (8.10) is an uninterpreted formula involving complex numbers. On
the other hand, however, we see that there is an important similarity between
(8.10) and (8.12). Both are quadratic expressions: the former contains q2

n and
the latter P2(An+1). In order to transform (8.12) into (8.10) we introduce a
linear mapping that serves to remove from (8.12) the term 2(ε −β )P(An+1),
and also the coefficient (α + β − 2ε). The appropriate linear mapping that
does the trick, P(An)→ qn, is defined by

qn = (α +β −2ε)P(An)−β + ε . (8.13)

On substituting (8.12) for P(An) in (8.13) we obtain a formula that can be
rewritten as
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qn = ε(1− ε)−β (1−α)+q2
n+1 . (8.14)

The details of this calculation can be found in Appendix D.2.
Now define

c = ε(1− ε)−β (1−α) . (8.15)

Note that c involves only the conditional probabilities, α , β and ε , and so
is an invariant quantity during the execution of the iteration. On the other
hand, qn also contains the unconditional probability, P(An), which we seek to
evaluate through the iteration. With the definition (8.15), Eq.(8.14) becomes

qn = c+q2
n+1 . (8.16)

Evidently (8.16) is very similar to the standard Mandelbrot iteration (8.10).
There is only the one difference which we have already mentioned: instead
of an iteration upwards from n = 0, the iteration in (8.16) proceeds from a
large n value, corresponding to the primeval parents, down to the target child
proposition at n = 0. This difference is however only cosmetic and has no
significance for the iteration as such.

We are now in a position to take advantage of some of the lore that has ac-
cumulated about the Mandelbrot iteration. Some but not all, for there is still
the second difference that we mentioned: epistemic justification as we dis-
cuss it here deals with probabilities, and those are real numbers, rather than
complex ones. Hence we must concentrate on the real subset of the complex
numbers c in (8.15), namely those for which c = (x,0), corresponding to the
x-axis in Figure 8.3. It should be noted that, when c is real, all the qn are auto-
matically real — compare the explicit expressions for the first few n-values,
just after (8.11). It is known that the real interval −2 ≤ c ≤ 1

4 lies within
the Mandelbrot set, but not all of these values correspond to an iteration that
converges to a unique limiting value.

However, let us now impose the condition of probabilistic support, with
exclusion of zero and one. Although 0 < β < α < 1 has the same form as the
condition of probabilistic support for the one-dimensional chain, it should
be realized that α and β do not have quite the same meanings in the two
contexts. In the one-dimensional chain, α > β means that the probability of
the child’s having trait T is greater if the mother has it than if the mother
does not have it. In the two-dimensional net, however, α > β means that the
probability of the child’s having trait T is greater if both of her parents have
it than if neither of them do.

The essential point is that with 0 < β < α < 1 we can show from (8.15)
that −1

4 < c < 1
4 (see again Appendix D.2). In this domain the Mandelbrot

iteration is known to converge to a unique limit. Were it not for probabilistic
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support, convergence would not be guaranteed, indeed a so-called two-cycle,
in which qn flips incessantly between two values, would have been a possibil-
ity. Hence the condition of probabilistic support is necessary for convergence
in this case.

A fixed point of the mapping (8.16) is a number, q∗, that satisfies

q∗ = c+q2
∗ . (8.17)

In Appendix D it is proved that the solution

q∗ =
c

1
2 +

√
1
4 − c

, (8.18)

is the so-called attracting fixed point of (8.16), meaning that the iteration
(8.16) converges to q∗. Independently of the value one takes as the starting
point for the iteration (i.e. qN for some large N), attraction to the same q∗
takes place (on condition that the starting point is not too far from q∗ —
technically, the condition is that it is within the basin of attraction of the fixed
point). Under these conditions the starting point or ground has no effect on
the final value of the target, q0. The phenomenon is precisely that of fading
foundations, now in the context of a two-dimensional net.

This fixed point (8.18) corresponds to the following fixed point of (8.12):

p∗ =
β

β + 1
2 − ε +

√
β (1−α)+(ε − 1

2)
2
. (8.19)

Note that, if ε = 1
2(α + β ), which is equivalent to α + β = γ + δ , p∗ re-

duces to β/(1−α +β ), and this agrees with the sum of the one-dimensional
iteration (3.17).

If β tends to zero the solution (8.19) is interesting, for it vanishes only
if ε ≤ 1

2 . If ε > 1
2 it tends to the nontrivial value (2ε − 1)/(2ε −α) — see

Appendix D.2. This behaviour is different from that of the one-dimensional
case, in which the solution always vanishes when β tends to zero.

The two-dimensional network is generated by the same recursion that pro-
duces the Mandelbrot set in the complex plane. True, we have only to do with
the real line between − 1

4 and 1
4 , and not with the complex plane (where the

remarkable fractal structure is apparent). But the point is that the algorithm
which produces our sequence of probabilities, and that which generates the
Mandelbot fractal, are the same.

We have used three simplifying assumptions in proving the above prop-
erties, viz. those of independence, probabilistic symmetry between An+1 and
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A′
n+1, and uniformity. There are however strong indications that essentially

similar results also hold when these assumptions are dropped. Imagine a
situation in which the probabilities are different for An+1 and A′

n+1. Then
there will be two coupled quadratic iterations, one for P(An) and one for
P(A′

n). Each of these is related to P(An+1) as well as P(A′
n+1). This is how-

ever merely a technical complication, for it is still possible to find a domain
in which the iterations converge. The relation is in fact a generalized Man-
delbrot iteration, and analogous results obtain.

The same applies if we drop the assumption of independence. Clearly,
if An+1 and A′

n+1 are stochastically dependent, we may have to include
more distant links in the network, which of course complicates matters
considerably. However, in general terms it means nothing more than that
the final fixed-point equations will be of higher order. Again a generalized
Mandelbrot-style iteration will hold sway, and again domains of convergence
will exist.

Furthermore, in many situations the conditional probabilities may not be
uniform: they may change from generation to generation. In those cases the
iteration will become considerably more involved. We have seen that for
the one-dimensional chain it proved possible to write down explicitly the
result of concatenating an arbitrary number of steps. It is true that for a two-
dimensional net this would be very cumbersome. However, with the use of a
fixed-point theorem it is possible to give conditions under which convergence
once more occurs.

What will happen when the network has more dimensions than two? In
that case the fixed-point equations will be of even higher order, necessitat-
ing computer programs for their calculation. The picture itself however re-
mains essentially the same. The probabilities are determined by polynomial
recurrent expressions, and there will be a domain in which they are uniquely
determined.

We conclude that probabilistic epistemic justification has a structure that
gives rise to a generalized Mandelbrot recursion. This still holds when
we abandon our three simplifying assumptions, or when we work in more
than two dimensions. In short, not only do the algorithms describing ferns,
snowflakes and many other patterns in nature generate a fractal, but the same
is true for the description of our patterns of reasoning.
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8.5 Mushrooming Out

Consider once more our justificatory chain in one dimension

q ←− A1 ←− A2 ←− A3 ←− A4 . . .

where the arrow is again interpreted as probabilistic support. Above we have
constructed multi-dimensional networks by letting new chains spring from
the nodes, that is the unconditional probabilities. However chains can also
arise from the connections, that is from the arrows. This possibility seems to
be have been anticipated by Richard Fumerton.

Fumerton has observed that many examples of sceptical reasoning rely
on a principle which he calls the Principle of Inferential Justification. The
principle consists of two clauses:

To be justified in believing one proposition q on the basis of another proposi-
tion A1, one must be (1) justified in believing A1 and (2) justified in believing
that A1 makes probable q.10

He then argues that, ironically, the same principle is used to reject scepticism
and to support classic foundationalism:

The foundationalist holds that every justified belief owes its justification ul-
timately to some belief that is noninferentially justified. . . . The principle of
inferential justification plays an integral role in the famous regress argument
for foundationalism. If all justification were inferential, the argument goes,
we would have no justification for believing anything whatsoever. If all jus-
tification were inferential, then to be justified in believing some proposition
q I would need to infer it from some other proposition A1. According to the
first clause of the principle of inferential justification, I would be justified in
believing q on the basis of A1 only if I were justified in believing A1. But
if all justification were inferential I would be justified in believing A1 only
if I believed it on the basis of something else A2, which I justifiably believe
on the basis of something else A3, which I justifiably believe on the basis of
something else A4, . . . , and so on ad infinitum. Finite minds cannot complete
an infinitely long chain of reasoning, so if all justification were inferential we
would have no justification for believing anything.11

10 Fumerton 1995, 36; 2001, 6. We have substituted q and A1 for Fumerton’s P and
E. Fumerton applies the principle in particular to scepticism of what he calls the
“strong” and “local” kind (Fumerton 1995, 29-31). Strong scepticism denies that
we can have justified or rational belief; it is opposed to weak scepticism, which
denies that we can have knowledge. Local scepticism is scepticism with respect to
a given class of propositions, whereas global scepticism denies that we can know or
rationally believe all truth.
11 Fumerton 1995, 56-57.
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We recognize here the finite mind objection to infinite justificatory chains,
which we discussed in Chapter 5. This objection, that serves as an argument
in support of foundationalism, alludes to the first clause of the Principle of
Inferential Justification, and it consitutes the first part of Fumerton’s epis-
temic regress argument for foundationalism.12 There is however a second
part to Fumerton’s epistemic regress argument. This part depends on the
second clause of the Principle of Inferential Justification, and it has to do
with multi-dimensionality arising from chains that spring from connections
rather than from nodes. Here again an infinite number of infinite regresses
mushroom out in infinitely many directions:

To be justified in believing q on the basis of A1, we must be justified in be-
lieving A1. But we must also be justified in believing that A1 makes probable
q. And if all justification is inferential, then we must justifiably infer that A1
makes probable q from some proposition B1, which we justifiably infer from
some proposition B2, and so on. We must also justifiably believe that B1 makes
probable that A1 makes probable q, so we would have to infer that from some
proposition C1, which we justifiably infer from some proposition C2, and so
on. And we would have to infer that C1 makes probable that B1 makes prob-
able that A1 makes probable q . . . The infinite regresses are mushrooming out
in an infinite number of different directions.13

The consequences of this particular mushrooming out seem to be bleak in-
deed, as Fumerton notes:

If finite minds should worry about the possibility of completing one infinitely
long chain of reasoning, they should be downright depressed about the pos-
sibility of completing an infinite number of infinitely long chains of reason-
ing.14

Fortunately, however, things are not as grim as Fumerton suggests. The sit-
uation is on the contrary very interesting. For Fumertonian mushrooming
out generates a Mandelbrot-like iteration of the sort that we described in the
previous section.

Let us explain. In the previous chapters we have thought of the conditional
probabilities as somehow being given: they were measured or estimated, for

12 For Fumerton’s distinction between the epistemic and the conceptual regress ar-
gument for foundationalism, see Section 6.1. There we argued that the conceptual
regress argument amounts to the no starting point objection to infinite epistemic
chains.
13 Fumerton 1995, 57. B1, C1 etc. come in the place of Fumerton’s F1, G1.
14 Ibid.
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instance in a laboratory, as in our example about the bacteria. With given con-
ditional probabilities, there is of course no Fumertonian mushrooming out:
we can iterate the unconditional probabilities in the usual way on the ba-
sis of the conditional probabilities as our pragmatic starting point. However,
Fumerton is right to intimate that sometimes the conditional probabilities are
unknown or at least uncertain; then their values have to be justified by some
further proposition, which has to be justified by yet another proposition, and
so on, and we are faced with mushrooming in Fumerton’s sense. How to deal
with this situation?

Again let q be probabilistically supported by A1:

P(q|A1)> P(q|¬A1) .

Now suppose that these two conditional probabilities are not given. The only
thing we know is that “q is probabilistically supported by A1” is in turn made
probable by another proposition, for example by B1. The way to express
this is by writing down the relevant rules of total probability, this time for
conditional rather than unconditional probabilities:

P(q|A1) = P(q|A1 ∧B1)P(B1|A1)+P(q|A1 ∧¬B1)P(¬B1|A1) (8.20)

P(q|¬A1) = P(q|¬A1 ∧B1)P(B1|¬A1)+P(q|¬A1 ∧¬B1)P(¬B1|¬A1) .

These rules are clearly more complicated than the simple rule for an uncon-
ditional probability, although we already encountered this complicated form
in (7.26) of Chapter 7, when we discussed our model for higher-order prob-
abilities.15

The unconditional probability P(q) can be written as

P(q) = P(q|A1)P(A1)+P(q|¬A1)P(¬A1) ,

and on using (8.20) to evaluate the two conditional probabilities, we find that

P(q) =
[
P(q|A1 ∧B1)P(B1|A1)+P(q|A1 ∧¬B1)P(¬B1|A1)

]
P(A1)

+
[
P(q|¬A1 ∧B1)P(B1|¬A1)+P(q|¬A1 ∧¬B1)P(¬B1|¬A1)

]
P(¬A1)

= α0P(A1 ∧B1)+ γ0P(A1 ∧¬B1)+δ0P(¬A1 ∧B1)+β0P(¬A1 ∧¬B1) .

The last line has precisely the structure of (8.7), reading B1 here for A′
1 there.

This shows that a single mushrooming out à la Fumerton is isomorphic to
the two-dimensional equations of the previous section.

15 An intuitive way of seeing that (8.20) is correct is to realize that, in the reduced
probability space in which A1 is the whole space, all the occurrences of A1 can be
omitted. Then (8.20) reduces to the rule of total probability for an unconditional
probability.
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We have seen that, where chains spring from the nodes, the two-dimens-
ional equations could be extended to equations in many, and even infinitely
many dimensions, yielding a Mandelbrot structure. The same reasoning can
be applied here, where chains spring from the connections. If many, or even a
denumerable infinity of conditional probabilities are in turn probabilistically
supported, then one has to do with the many-dimensional generalization.

Of course we will never deal with all these dimensions in reality. Our
result is first and foremost a formal one. Having said this we should not
underestimate the relevance of formal results for real life justification. Al-
though it is true that in justifying our beliefs we can handle only short, finite
chains, it is thanks to formal reasoning that we can recognize in these chains
the manifestation of fading foundations: solely through formal proofs do we
know that what we see in real life justification is not a fluctuation or a coin-
cidence.16

8.6 Causal Graphs

In the first chapter we briefly referred to the similarities between epistemic
and causal chains. Especially at a formal level, as we stressed in Chapter 2,
a chain of reasons and a chain of causes are very much alike. Thus the linear
chain

A0 ←− A1 ←− A2 ←− A3 ←− A4 ←− . . . (8.21)

can be interpreted as a one-dimensional causal series, where A0 is the fact
or event (rather than the proposition) that bacterium Barbara from Chapter
3 has trait T , and A1 is the fact or event that her mother had T , and so on,
backwards in time. The arrows in (8.21) stand for probabilistically causal in-
fluences: if a mother has T , it is more likely, but not certain, that her daughter
will have T . This is in line with ordinary usage, for example when one says
that smoking causes lung cancer, even though one knows that not all smokers
contract the affliction, and that some non-smokers succumb to it. To avoid
cumbersome language, we shall sometimes say that A0 stands for Barbara

16 As the size and complexity of the multi-dimensional networks increase, it will
become more and more difficult to have them correspond to empirically based con-
ditional probabilities. A rather wild speculation is that in the end such a world-
network might have only one solution. See Atkinson and Peijnenburg 2010c, where
we mull over the implications of such a speculation, taking as our starting point
Susan Haack’s crossword metaphor for ‘foundherentism’ (Haack 1993, Chapter 4).
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(rather than for the fact that Barbara has T ), that A1 stands for her mother
(rather than for the fact that her mother has T ), and so on.

In the language of Directed Acyclic Graphs (DAGs) one would say that
(8.21) is a DAG just in case the Markov condition holds.17 This means in
particular that A1 screens off A0 from A2 in the sense of Reichenbach, that A2
screens off A1 from A3, and so on.18 However, the Markov condition is much
stronger than a screening-off constraint that involves only three successive
events. The idea is that the ‘parent event’ of a ‘child event’ screens off the
child from any and all ‘ancestor events’, or combinations thereof. For the
chain of (8.21), the condition is formally as follows:

P(An|An+1 ∧Z) = P(An|An+1)

P(An|¬An+1 ∧Z) = P(An|¬An+1) ,

for all n ≥ 0. Here Z stands for any event, Am, in the chain, apart from the
descendents of An, i.e. for any m ≥ n+ 2, or for any conjunction of such
events, or their negations. This can be written succinctly as

P(An|±An+1 ∧Z) = P(An|±An+1) ,

where it is understood that +An+1 simply means An+1, and −An+1 means
¬An+1. The idea, informally, is that the Markov condition ensures that
the causal influences which probabilistically circumscribe Barbara’s genetic
condition are determined by her mother alone, and that one can forget about
all her ancestors except for her mother.

It should be stressed that our analysis of the probabilistic regress in no
way requires the imposition of the Markov condition: fading foundations and
the emergence of justification in the case of a justificatory regress work just
as well with, as without the Markov condition. The causal influence of the
primal ancestor fades away as the distance between Barbara and the ancestor
increases, and Barbara’s probabilistic tendency to have T emerges from the
causal regress, whether or not the Markov condition holds.

It is certainly possible, in a particular causal chain, that fact A2 could have
a causal influence on A0 directly, apart from its indirect influence through
A1. Hesslow has given an example.19 Birth control pills, A2, directly increase
the probability of thrombosis, A0, but indirectly reduce it in sexually active
women by reducing the probability of pregnancy, A1, which itself constitutes

17 Spirtes, Glymour and Scheines 1993; Pearl 2000; Hitchcock 2012.
18 Reichenbach 1956.
19 Hesslow 1976.
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a thrombosis risk. Then the Markov condition, as we have stated it for (8.21),
would break down, and one would have to add a direct causal link between
A0 and A2, as shown in Figure 8.4. In this case a modified Markov condition
could still be in force: now both A1 and A2 count as parent events of A0, and
they together might screen off A0 from the rest of the chain (depending on
the details of the case, of course).

←

A0 ←− A1 ←− A2 ←− A3 ←− A4 ←− . . .

Fig. 8.4 Modified causal chain

An advantage of the above considerations concerning the Markov condi-
tion is that they facilitate a demonstration of the consistency of our proba-
bilistic regress.20 This works just as well for the regress of justification as
it does for the regress of causes. The idea is that, with the Markov condi-
tion in place, one can work out the probabilities of the conjunction of any of
the An in terms of the usual conditional probabilities and the unconditional
probabilities of the An, which, as we know, can be calculated from the con-
ditional probabilities alone (on condition of course that the latter are in the
usual class). For example, as shown in Appendix A.8,

P(A1 ∧¬A3 ∧A4) = (β1 + γ1β2)(1−α3)P(A4) .

So there is a probability distribution over all the conjunctions of events (or
propositions), and thus the probabilistic regress is consistent in this sense.
If the Markov constraint is not imposed, on the other hand, so that the chain
may not be a genuine DAG, then there are in general many ways to distribute
probabilities over the various conjunctions; but we are sure that there is at
least one way, thanks to Markov, that is consistent.

Let us now progress from one to two dimensions. Consider the tree 8.2 of
Section 8.3, but now reinterpreted as a causal net:
Note that, while the direction of epistemic support in Figure 8.2 is from the
bottom of the figure to the top, the direction of causal influence in Figure 8.5
is from top to bottom. Thus event q probabilistically causes events A1 and A′

1,
and A1 in turn causes A2 and A′

2, while A′
1 causes A′′

2 and A′′′
2 . For example,

q could stand for Barbara’s grandmother — more accurately, for the event
that Barbara’s grandmother had T . Through binary fission this grandmother

20 Herzberg 2013.
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Fig. 8.5 Two-dimensional causal net with common causes

would split into two daughter cells, which would probably, but not certainly,
have T . Then A1 could stand for Barbara’s mother, and finally A2 for Barbara
herself, A′

2 for her sister bacterium. The eventualities A′
1, A′′

2 and A′′′
2 would

have analogous meanings in respect of Barbara’s aunt and her cousins.
One would expect the following Markov condition to hold, namely that

A1 screens off A2 and A′
2 from all the other events in the net. Thus

P(A2|±A1 ∧Z) = P(A2|±A1)

P(A′
2|±A1 ∧Z) = P(A′

2|±A1) ,

where Z can be any of q, A′
1, A′′

2 or A′′′
2 , or their negations, or any conjunctions

of the same. Similarly, A′
1 screens off A′′

2 and A′′′
2 from q, A1, A2 and A′

2. One
would also expect A2 and A′

2 to be positively correlated, so

P(A2 ∧A′
2)> P(A2)P(A′

2) ,

although they are conditionally independent in the sense that

P(A2 ∧A′
2|±A1) = P(A2|±A1)P(A′

2|±A1) .

This equation is in fact a consequence of the Markov condition. Following
Reichenbach, we say that A1 is the common cause of A2 and A′

2, and that
event A1 has brought it about that A2 is more likely to occur if A′

2 occurs, and
vice versa.

A different kind of causal net is shown in Figure 8.6. Here the causal ar-
rows go from bottom to top, which is the same as the direction of epistemic
support in Figure 8.2. In Figure 8.6, A2 could stand for a mother (i.e. for
the event that a mother carries a particular trait, for example having blue
eyes), A′

2 could stand for her husband, and A1 could stand for their daughter.
Assuming that mother and father were not related, A2 and A′

2 are uncondi-
tionally independent,

P(A2 ∧A′
2) = P(A2)P(A′

2) ,
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but they become correlated on conditionalization by A1,

P(A2 ∧A′
2|±A1) �= P(A2|±A1)P(A′

2|±A1) .

������

������ ��� ���

q

A1

A2

A′
1

A′′′
2A′

2 A′′
2

Fig. 8.6 Two-dimensional causal net with unshielded colliders

The subgraph involving A2, A′
2 and A1 is a so-called unshielded collider.

The behaviour of this collider, insofar as conditional and unconditional de-
pendencies are concerned, is just the opposite of the behaviour of the com-
mon cause. Clearly Figure 8.6 is more like the two-dimensional justification
tree of 8.2 than is the common cause graph of Figure 8.5. In the justification
tree, proposition A1 is probabilistically supported by A2 and A′

2: moeities of
justification accrue to A1 from A2 and A′

2, and from the conditional proba-
bilities. In the causal collider, A1 is probabilistically caused by A2 and A′

2.
Similarly, parents A′′

2 and A′′′
2 cause A′

1, the event that their son carries the
trait in question. And finally A1 and A′

1 can cause the event that a child in the
third generation has blue eyes.

Strictly speaking, Figure 8.6 is inaccurate, or at least ambiguous. The
point is that A1 would not be caused at all by A2 in the absence of A′

2. We
should replace Figure 8.6 by Figure 8.7, in which the joint nature of the
causal influences is explicitly represented.

Mathematically, such a picture is called a directed hypergraph; and its
properties have been studied by Selim Berker in the context of justificatory
trees rather than causal trees.21 Berker makes the point that such hypergraphs
offer coherentists and infinitists a way of attaching a justification tree of be-
liefs or propositions to empirical facts. This is done without thereby making
them foundational trees in which the facts constitute grounds in the sense
of the foundationalist, that is as regress stoppers. For example, suppose now
that A2 in Figure 8.7 is an agent’s experience that the sun is shining, and that

21 Berker 2015.
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Fig. 8.7 Two-dimensional hypergraph

A′2 is her belief that her eyes and visual cortex are functioning normally. Then
A1 could be the belief that the sun is indeed shining. The crux of the matter
is that the fact A2 does not by itself justify A1, but does so only together with
A′2.

Berker claims that a coherentist (or infinitist) account of justification can-
not consistently be based on probabilistic considerations. His reasoning is
that the probabilistic coherence of a set of beliefs and experiences is the
same as that of a similar set in which however all the experiences have been
replaced by corresponding beliefs. He argues that the first set, the one includ-
ing experiences, should be accorded a higher degree of justification than the
second, which lacks experiences and is nothing but a collection of beliefs.

Berker’s idea seems to hinge on a Humean view in which experiences
outweigh beliefs. More importantly in the present context, it only bears on
models in which probabilistic coherence is a sufficient determinant of justifi-
cation. For models like ours, in which probabilistic coherence is only neces-
sary, it is not apposite. And of course the phenomenon of fading foundations
is not restricted to propositions or beliefs: it manifests itself also in the do-
main of experiences.

Just as the ground’s share in the epistemic justification lessens, so the mea-
sure of the ground’s causal influence vanishes in the end. In general, whether
a regress is epistemic or causal, or whether it is in one or in many dimen-
sions, justification and causation will progressively emerge and foundations
will gradually fade away.
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Appendix A

The Rule of Total Probability

Many of the results we use involve an iteration of the rule of total probability:
in A.1 we explain how this works in detail. A finite number of iterations leads
to a finite regress of probabilities, and in A.2 it is shown how to calculate the
maximum error that one can make by limiting oneself to a finite regress. The
infinite regress is considered in A.3–A.6; here convergence is demonstrated
and the distinction between the usual and the exceptional classes is defined.
Attention shifts in A.7 to the peculiar form of a regress of entailments; and
finally the Markov condition is put under the theoretical microscope in A.8.

The basic object of interest is a regress of propositions

A0, A1, A2, . . . ,Am, Am+1 ,

in which each proposition, except the target A0, probabilistically supports its
neighbour to the left. We first obtain upper and lower bounds on P(An), as
estimated from the finite chain; and then we look at the infinite regress and
show two things:

(i) The infinite series of conditional probabilities is convergent.
(ii) On condition that a certain asymptotic condition is satisfied by the con-

ditional probabilities, the functional dependence of P(An) on the value of
P(Am+1) disappears in the limit m → ∞.

The asymptotic condition will be given explicitly in Section A.4; and the
‘usual class’ is defined to be the set of all chains of propositions for which
this asymptotic condition holds. All other chains belong to the ‘exceptional
class’. ‘Fading foundations’ is the name we have given to the phenomenon
(ii); and under these conditions P(An) is equal to the sum of an infinite series
of terms involving conditional probabilities only. In the bulk of the book the
interest is in the target proposition, A0, which is often denoted by q; but in the

D. Atkinson, J. Peijnenburg, Fading Foundations, Synthese Library 383, 
DOI 10.1007/978-3-319-58295-5 
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interests of generality we shall first give formulae for an arbitrary An before
specializing to the case of the target proposition.

Let us start by recalling some formalism. The unconditional probabilities
P(An) and P(An+1) are related by the rule of total probability,

P(An) = βn + γnP(An+1) , (A.1)

with the abbreviations

αn = P(An|An+1) βn = P(An|¬An+1) γn = αn −βn . (A.2)

The condition of probabilistic support, γn > 0, will be imposed.

A.1 Iterating the rule of total probability

On iterating (A.1) once we obtain

P(An) = βn + γn [βn+1 + γn+1P(An+2)]

= βn + γnβn+1 + γnγn+1P(An+2) . (A.3)

We shall now show that, on iterating (A.1) m−n times, we obtain

P(An) = Δn,m +Γn,m P(Am+1) , (A.4)

where Γn,m is the finite product

Γn,m = γnγn+1 . . .γm , (A.5)

with n ≤ m, and where Δn,m is the finite sum

Δn,m = βn +Γn,nβn+1 +Γn,n+1βn+2 + . . .+Γn,m−1βm , (A.6)

with n < m. Note that Δn,m and Γn,m involve conditional probabilities only.
Eq.(A.4) will be proved by the method of mathematical induction. We

need to show that, for a fixed n less than m, if (A.4) is true for some particular
m, then it is necessarily true with m replaced by m+1. Substitute m+1 for
n in Eq.(A.1):

P(Am+1) = βm+1 + γm+1P(Am+2) , (A.7)

and insert this into Eq.(A.4). The result is
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P(An) = Δn,m +Γn,m [βm+1 + γm+1P(Am+2)]

= Δn,m+1 +Γn,m+1 P(Am+2) , (A.8)

which is (A.4) with m+ 1 written in place of m. Hence, if (A.4) is true for
some particular m larger than n, it true for all m larger than n.

Since

Γn,n = γn ; Γn,n+1 = γnγn+1 ; Δn,n+1 = βn +Γn,nβn+1 = βn + γnβn+1 ,

it follows that (A.4) is true when m = n+1, for (A.4) reduces then to (A.3).
In this way the induction has been completed; and (A.4) has been proved to
be valid for all m > n.

In the special case n = 0, (A.4) can be written

P(A0) = β0 + γ0β1 + γ0γ1β2 + . . .+ γ0γ1 . . .γn−1βn + γ0γ1 . . .γnP(Am+1) ,

which is Eq.(3.20) in Chapter 3.

A.2 Extrema of the finite series

In this section we limit our attention to a finite regress and calculate the max-
imum and minimum values that the target probability could have, whatever
the unknown unconditional probability P(Am+1) might be. An approximate
value of the target probability is the average of these values; and an upper
bound on the error is one half of the difference between the maximum and
minimum values. These results are crucial to our discussion of probabilistic
justification as a trade-off in Section 5.3.

Thanks to probabilistic support, γn > 0, both Δn,m and Γn,m are non-
negative. So the minimum value that P(An) can have is obtained by setting
P(Am+1) = 0 in Eq.(A.8); and the maximum value is obtained by setting
P(Am+1) = 1. Accordingly, P(An) is not less than Pmin

m (An) and not greater
than Pmax

m (An), where

Pmin
m (An) = Δn,m (A.9)

Pmax
m (An) = Δn,m +Γn,m . (A.10)

Since

Pmin
m+1(An)−Pmin

m (An) = Δn,m+1 −Δn,m = Γn,mβm+1 ≥ 0 ,
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it follows that Pmin
m (An) is a monotonically increasing function of m. On the

other hand,

Pmax
m+1(An)−Pmax

m (An)=Δn,m+1−Δn,m+Γn,m+1−Γn,m =−Γn,m(1−αm+1)≤ 0 ,

so Pmax
m (An) is a monotonically decreasing function of m. This means that

the margin of error that one makes by truncating the regress decreases as one
adds more links.

In the particular case n= 0 we have P(A0)≥Δ0,m and P(A0)≤Δ0,m+Γ0,m,
and these inequalities lead to the following estimates for the target probabil-
ity and the maximal error committed:

P(A0) = Δ0,m + 1
2Γ0,m ± 1

2Γ0,m

= β0 + γ0β1 + . . .+ γ0γ1 . . .γn−2βn−1 +
1
2 γ0γ1 . . .γn−1αn ± 1

2 γ0γ1 . . .γn .

A.3 Convergence of the infinite series

From (A.2) we have that βn =αn−γn ≤ 1−γn , because αn, being a probabil-
ity, cannot be greater than unity. Since γn is positive, so is Γn,m = γnγn+1 . . .γm,
from which it follows that

Γn,mβm+1 ≤ γnγn+1 . . .γm(1− γm+1) = Γn,m −Γn,m+1 .

Therefore, from (A.6),

Δn,m ≤ βn +(Γn,n −Γn,n+1)+(Γn,n+1 −Γn,n+2)+ . . .+(Γn,m −Γn,m+1)

= βn +Γn,n −Γn,m+1 ≤ βn +Γn,n = βn +(αn −βn) = αn .

Now Δn,m is monotonically increasing as m increases, and since these num-
bers are bounded by an m-independent number — namely αn — it follows
from the monotone convergence theorem that Δn,m has a limit as m tends to
infinity. This means that the series

P(An) = Δn,∞ = βn +Γn,nβn+1 +Γn,n+1βn+2 + . . .

is convergent.
This proof makes use of the condition of probabilistic support, namely

γn > 0 for all n. Convergence (in the usual class) can also be demonstrated
without probabilistic support, but since we are interested in epistemic justi-
fication, which has probabilistic support as a necessary condition, there is no
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point in giving the proof without the constraint. Moreover the condition of
probabilistic support is essential for justification as a trade-off, see Section
5.3 and Appendix A.2, and for convergence in the probabilistic networks
that we discuss in Section 8.4. Incidentally, the condition is also required for
convergence in the exceptional class.

In the special case n = 0, we conclude that the series (3.24), namely

β0 + γ0β1 + γ0γ1β2 + γ0γ1γ2β3 + . . . ,

is convergent. In the usual class the series equals the probability of the target
proposition.

A.4 When does the remainder term vanish?

We now wish to discover the condition under which the influence of P(Am+1)
on the value of P(An) tends to zero in the limit m → ∞.

Consider first the uniform case, in which the conditional probabilities are
the same from link to link. If γn = γ , independently of n, then

Γn,m = γnγn+1 . . .γm = γm−n+1 . (A.11)

The only exceptional case here is when βn = 0 and αn = 1, which corre-
sponds to bi-implication. Apart from this extreme situation, it is the case that
γ < 1, so γm−n+1 tends to zero as m tends to infinity, and therefore Γn,m goes
to zero in the infinite limit. As a result the remainder term Γn,m P(Am+1) in
Eq.(A.4) vanishes too, given that P(Am+1) cannot exceed unity.

This result, that Γn,m goes to zero in the limit, generally holds even when
the conditional probabilities differ from link to link. For example, if there is a
constant, c, less than unity, such that γn ≤ c < 1 for all n, then Γn,m ≤ cm−n+1,
which also dies out in the limit. Moreover, this conclusion is usually true
even when there is no such constant, c, and γn tends to unity. Indeed, Γn,m

will be zero in the limit unless γm tends very quickly to unity as m goes to
infinity — such cases belong to the exceptional class.

To find a precise condition under which the remainder term is equal to
zero in the limit, observe that γn = exp( logγn) = exp(−| logγn|), so

Γn,∞ = γnγn+1γn+2γn+3 . . .= exp

[
−

∞

∑
i=n

| logγi|
]
. (A.12)

Thus Γn,∞ is zero if, and only if the series ∑∞
i=n | logγi| diverges. Since all the

terms in this series are positive, the series can only converge, or diverge to



196 A The Rule of Total Probability

+∞ (it cannot oscillate). If there is a real number a> 0, and an integer N > a,
such that

1− γn >
a
n

(A.13)

for all n > N, then | logγn| > a
n , and the series diverges, which means that

Γn,∞ is zero. Under condition (A.13) the remainder term disappears.
Summarizing, the remainder term generally goes to zero in the limit of

infinite m; only in the exceptional class does it fail to do so.

A.5 Example in the usual class

The model

βn =
1

n+3
γn =

n+1
n+2

= 1− 1
n+2

, (A.14)

belongs to the usual class, since βn behaves like 1/n as n tends to infinity.
We find, using the notation of A.1,

Γn,m = γnγn+1 . . .γm = n+1
n+2 × n+2

n+3 × . . .× m
m+1 × m+1

m+2 = n+1
m+2

Γn,mβm+1 = n+1
m+2 × 1

m+4 = n+1
2 ( 1

m+2 − 1
m+4) .

Hence

Δn,m = βn +Γn,nβn+1 +Γn,n+1βn+2 + . . .+Γn,m−1βm

= 1
n+3 +

n+1
2

[( 1
n+2 − 1

n+4

)
+
( 1

n+3 − 1
m+5

)
+
( 1

n+4 − 1
m+6

)
+ . . .

. . .+
( 1

m−1 − 1
m+1

)
+
( 1

m − 1
m+2

)
+
( 1

m+1 − 1
m+3

)]
= 1

n+3 +
n+1

2

( 1
n+2 +

1
n+3 − 1

m+2 − 1
m+3

)
= 1− 1

2
1

n+2 − 1
2
(n+1)(2m+5)
(m+2)(m+3) .

From Eq.(A.4) we have then

P(An) = 1− 1
2(n+2)

− (n+1)(2m+5)
2(m+2)(m+3)

+
n+1
m+2

P(Am+1) . (A.15)

In the limit of an infinite linear chain, m → ∞, we obtain

P(An) = 1− 1
2(n+2)

.

In the particular case n = 0, Eq.(A.15) becomes
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P(A0) =
3
4
− 2m+5

2(m+2)(m+3)
+

1
m+2

P(Am+1) , (A.16)

which is Eq.(3.22) in Chapter 3.
On the other hand, if the An form a finite loop instead of an infinite chain,

with Am+1 = A0, then (A.16) reads

P(A0) =
3
4
− 2m+5

2(m+2)(m+3)
+

1
m+2

P(A0) ; (A.17)

and this can be solved for P(A0) to yield

P(A0) =
3
4
− 1

4(m+3)
, (A.18)

which is Eq.(8.3). On substituting the value (A.18) into (A.15) — with P(A0)
in place of P(Am+1) — we finally obtain the probability at an arbitrary site
on the loop:

P(An) = 1− 1
2(n+2)

− n+1
4(m+3)

,

which is valid for 0 ≤ n ≤ m.

A.6 Example in the exceptional class

An example in the exceptional class is

βn =
1

(n+2)(n+3)
γn =

(n+1)(n+3)
(n+2)2 = 1− 1

(n+2)2 .

The crucial difference is that here βn and 1−αn = 1−βn − γn both tend to
zero as fast as 1/n2, as n tends to infinity. To derive P(An) we first calculate

Γn,m = γn . . .γm = [ n+1
n+2 · n+3

n+2 ]× . . .× [m+1
m+2 · m+3

m+2 ] =
n+1
n+2 · m+3

m+2

Γn,mβm+1 = n+1
n+2

m+3
m+2 × 1

(m+3)(m+4) =
1
2

n+1
n+2(

1
m+2 − 1

m+4) .

After some algebra we find

Δn,m = βn +Γn,nβn+1 +Γn,n+1βn+2 + . . .+Γn,m−1βm

= 1
2

2n+3
(n+2)2 − 1

2
n+1
n+2

2m+5
(m+2)(m+3) .

From Eq.(A.4) we deduce that1

1 An easier way to derive this equation is by putting Qn = n+2
n+1 P(An) in Eq.(A.1),

which leads to
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P(An) =
1
2

2n+3
(n+2)2 −

1
2

n+1
n+2

· 2m+5
(m+2)(m+3)

+
n+1
n+2

· m+3
m+2

P(Am+1) .

In the particular case n = 0, this becomes

P(A0) =
3
8
− 2m+5

4(m+2)(m+3)
+

1
2

m+3
m+2

P(Am+1) , (A.19)

which is Eq.(3.26). In the limit that m tends to infinity we find formally

P(A0) =
3
8
+

1
2

P(A∞) ,

where P(A∞) is an indeterminate number in the interval [0,1]. However, for
the infinite loop we can set P(Am+1) = P(A0) in (A.19) and solve the linear
equation for P(A0):

P(A0) =
[

3
8 − 2m+5

4(m+2)(m+3)

]/[
1− 1

2
m+3
m+2

]

=
3
4
− 1

4(m+3)
,

which is Eq.(8.6).

A.7 The regress of entailment

The classical regress is one of entailment, in which every proposition, An+1,
entails the proposition to its left, An, for all n = 0,1,2, . . .. In this case, αn =
P(An|An+1) = 1 for all n. From (A.2) we have that

βn = αn − γn = 1− γn .

Then Eq.(A.6) takes on the form

Δn,m = 1− γn +Γn,n(1− γn+1)+Γn,n+1(1− γn+2)+ . . .+Γn,m−1(1− γm)

= 1−Γn,m . (A.20)

Qn =
1
2

(
1

n+1
− 1

n+3

)
+Qn+1 .

It is a simple matter to concatenate this relation to obtain the relation between Qn
and Qm+1, and thence that between P(An) and P(Am+1). A similar ploy could have
been used in Section A.5 by means of the substitution Qn =

1
n+1 P(An); but in this

case not much labour would have been saved.
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From Eq.(A.4) we then obtain

P(An) = 1−Γn,m +Γn,m P(Am+1) ,

which is equivalent to

P(¬An) = Γn,m P(¬Am+1) . (A.21)

In the special case n = 0, this reads

P(¬A0) = γ0γ1 . . .γm P(¬Am+1) ,

which is Eq.(3.27).

A.8 Markov condition and conjunctions

In our discussion of causal chains in Section 8.6, we remarked that a way
of demonstrating that there indeed exists a probability distribution over all
the possible conjunctions of the propositions in a probabilistic regress was
to impose a suitable Markov condition. Here we show how to construct the
probability of a typical conjunction.

Suppose then that the following Markov condition holds:

P(An|±An+1 ∧Z) = P(An|±An+1) , (A.22)

for all n, where ±An+1 means An+1 or ¬An+1, and where Z stands for any
event, Am, such that m ≥ n+ 2, or its negation, or for any conjunction of
such events, or their negations. We shall illustrate how one can calculate the
probability of any conjunction of the An, or their negations, by working out
one representative example in detail:

P(A1 ∧¬A3 ∧A4) = P(A1 ∧A2 ∧¬A3 ∧A4)+P(A1 ∧¬A2 ∧¬A3 ∧A4)

= P(A1|A2 ∧¬A3 ∧A4)P(A2 ∧¬A3 ∧A4)

+P(A1|¬A2 ∧¬A3 ∧A4)P(¬A2 ∧¬A3 ∧A4)

= P(A1|A2)P(A2|¬A3 ∧A4)P(¬A3 ∧A4)

+P(A1|¬A2)P(¬A2|¬A3 ∧A4)P(¬A3 ∧A4)

= P(A1|A2)P(A2|¬A3)P(¬A3|A4)P(A4)

+P(A1|¬A2)P(¬A2|¬A3)P(¬A3|A4)P(A4)

=
[
α1β2 +β1(1−β2)

]
(1−α3)P(A4)

= (β1 + γ1β2)(1−α3)P(A4) .



The unconditional probability is given by the following convergent series of
terms that only involve the conditional probabilities:

P(A4) = β4 + γ4β5 + γ4γ5β6 + γ4γ5γ6β7 + . . . .

It is assumed that the set of conditional probabilities belongs to the usual
class. Any other conjunction of propositions or events An and ¬Am can be
handled in an analogous manner.

An interesting consequence of the imposition of the Markov condition
has to do with the possible transitivity of probabilistic support. To see this,
consider the following measure of the probabilistic support that Am gives to
An:

S(An,Am) = P(An|Am)−P(An|¬Am) .

According to (A.2), S(An,An+1) = γn. We shall show that, under the Markov
condition, and for any m larger than n, S(An,Am) = γnγn+1 . . .γm−1. The con-
dition of probabilistic support means that all the γn are positive, and so
S(An,Am) is also positive for all n < m. This shows that probabilistic support
is transitive under the Markov condition.2 Although the ground, Am+1, sup-
ports the target, A0, it does so to a degree that becomes smaller and smaller
as the chain gets longer and longer. In the usual class the product γ0γ1γ2 . . .
diverges to zero, so the support that Am+1 gives to A0 dwindles away to noth-
ing as m tends to infinity, whereas in the exceptional class it is positive, so
in this case the support, although it continues to dwindle, does not go all the
way to zero.3

To prove that, under the Markov condition,

S(An,Am) = γnγn+1 . . .γm−1 , (A.23)

we take recourse again to the method of mathematical induction. Consider

P(An ∧Am+1) = P(An ∧Am ∧Am+1)+P(An ∧¬Am ∧Am+1)

= P(An|Am ∧Am+1)P(Am ∧Am+1)+P(An|¬Am ∧Am+1)P(¬Am ∧Am+1)

= P(An|Am)P(Am|Am+1)P(Am+1)+P(An|¬Am)P(¬Am|Am+1)P(Am+1) ,

where the last line follows because of the Markov condition. On dividing by
P(Am+1) we find

2 The first proof of the transitivity of probabilistic support under a condition of
screening off is in Reichenbach 1956 on page 160, Eq.(12). A later proof can be
found in Shogenji 2003.
3 This dwindling of support as the chain increases in length was noted in Roche and
Shogenji 2014.
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P(An|Am+1) = P(An|Am)P(Am|Am+1)+P(An|¬Am)P(¬Am|Am+1) . (A.24)

Similarly, replacing Am+1 by ¬Am+1 in the above reasoning, we obtain

P(An|¬Am+1) = P(An|Am)P(Am|¬Am+1)+P(An|¬Am)P(¬Am|¬Am+1) .
(A.25)

Subtracting Eq.(A.25) from Eq.(A.24), we see that

P(An|Am+1)−P(An|¬Am+1) = P(An|Am)[P(Am|Am+1)−P(Am|¬Am+1)]

+P(An|¬Am)[P(¬Am|Am+1)−P(¬Am|¬Am+1)]

= [P(An|Am)−P(An|¬Am)][P(Am|Am+1)−P(Am|¬Am+1)] .

That is, under the Markov condition,

S(An,Am+1) = S(An,Am)S(Am,Am+1) .

Now S(Am,Am+1) = γm−1, so if Eq.(A.23) is true for some m > n, then

S(An,Am+1) = γnγn+1 . . .γm−1γm , (A.26)

which has the same form as (A.23), with m replaced by m+1. Since (A.23)
is true for m = n+1, the induction is complete.
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Appendix B

Closure Under Conjunction

In Section 6.5 we noted that Tomoji Shogenji has constructed a measure of
justification that takes account of intuitions regarding closure and indepen-
dence. Here we shall spell out this measure, J, by the method of one of us.1

If J(h,e) is a continuous function of x = P(h|e) and y = P(h) only, we may
write

J(h,e) = F(x,y) , (B.1)

where F(x,y) is a continuous function for x ∈ [0,1] and y ∈ (0,1). Disconti-
nuities or divergences are allowed if P(h) is extremal (0 or 1), but continuity
with respect to the conditional probability, P(h|e), is required at both end
points.

Let h1,h2 and e be propositions such that

P(h1|e) = P(h2|e) = x

P(h1) = P(h2) = y

and let h1 and h2 be independent of one another, conditionally with respect
to e, and also unconditionally:

P(h1 ∧h2|e) = P(h1|e)P(h2|e) = x2

P(h1 ∧h2) = P(h1)P(h2) = y2 .

If J(h1,e) = s and J(h2,e) = s, then it is required that also J(h1 ∧h2,e) = s.
Thus J(h1 ∧h2,e) = J(h1,e), and so, from Eq.(B.1),

F(x,y) = F(x2,y2) . (B.2)

Change the variables and the function from F(x,y) to G(x,u), where

1 Shogenji 2012; Atkinson 2012.

D. Atkinson, J. Peijnenburg, Fading Foundations, Synthese Library 383, 
DOI 10.1007/978-3-319-58295-5 
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u =
logx
logy

G(x,u) = F(x,y) .

Condition (B.2) becomes

G(x,u) = G(x2,u) .

For any x ∈ (0,1), we can iterate this equation to obtain

G(x,u) = G(x2,u) = G(x4,u) = . . .= G(x2n
,u) .

Since the function G(x,u) is required to be continuous at x = 0, we can take
the limit n → ∞ and conclude that G(x,u) = G(0,u) ≡ f (u) is an arbitrary
continuous function of u. Hence

J(h,e) = f
(

logP(h|e)
logP(h)

)
. (B.3)

J(h,e) is an increasing function of P(h|e) and a decreasing function of P(h),
so it follows that f (u) must be a decreasing function of u (since logP(h|e)
and logP(h) are both negative). The most general function of justification
that satisfies Eq.(B.2) has the form (B.3), subject to the constraint that f (u)
is a continuous, monotonically decreasing function of u.

We shall generalize this result by supposing now only that J(h1,e)≥ s and
J(h2,e)≥ s, instead of the more restrictive J(h1,e) = s and J(h2,e) = s. So

logP(h1|e)
logP(h1)

≤ f−1(s) and
logP(h2|e)
logP(h2)

≤ f−1(s) ,

where the inverse function, f−1, is guaranteed to exist, given the monotonic-
ity of f . Then

log[P(h1 ∧h2|e)] = log[P(h1|e)P(h2|e)]
= logP(h1|e)+ logP(h2|e)
≥ f−1(s)[logP(h1)+ logP(h2)]

= f−1(s) log[P(h1)P(h2)]

= f−1(s) log[P(h1 ∧h2)] .

Therefore, remembering again that the logarithms are negative, we have

logP(h1 ∧h2|e)
logP(h1 ∧h2)

≤ f−1(s) ,
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and so J(h1 ∧ h2,e) ≥ s. A similar proof works with the inequalities work-
ing in the opposite direction, i.e. if J(h1,e) ≤ s and J(h2,e) ≤ s then J(h1 ∧
h2,e)≤ s. Moreover, the method extends straightforwardly to an arbitrary fi-
nite number of independent hypotheses h1,h2, . . . ,hn, instead of two. This
concludes the demonstration that Eq.(B.3) encapsulates the most general
measure of justification.

All measures that satisfy the above conditions are ordinally equivalent to
one another. For consider two different measures:

J1(h,e) = f1

[
logP(h|e)
logP(h)

]
and J2(h,e) = f2

[
logP(h|e)
logP(h)

]
.

Because f1 is a monotonically decreasing function, a necessary and sufficient
condition that J1(h1,e1)> J1(h2,e2), is

logP(h1|e1)

logP(h1)
<

logP(h2|e2)

logP(h2)
,

and because of the monotonicity of f2, this is a necessary and sufficient con-
dition that J2(h1,e1) > J2(h2,e2). Analogous reasoning holds if the sign >
is replaced by < or by =. Thus all measures of justification are ordinally
equivalent to one another.

If h and e are such that P(h|e) = P(h), then J(h,e) = f (1), irrespective
of the value of P(h) ∈ (0,1). This is the condition of equineutrality, and we
conventionally set f (1) = 0. If, on the other hand, h and e are such that
P(h|e) = 1, then J(h,e) = f (0), irrespective of the value of P(h) ∈ (0,1).
This is the condition of equimaximality, and we set f (0) = 1.

The simplest realization of the above constraints is f (u) = 1− u, which
leads to

J(h,e) = 1− logP(h|e)
logP(h)

=
logP(h|e)− logP(h)

− logP(h)
. (B.4)

If J(h,e)≥ s, then
logP(h|e)
logP(h)

≤ 1− s ,

and, since logP(h) is negative, it follows that

logP(h|e)≥ (1− s) logP(h) = log[P(h)]1−s ,

which entails
P(h|e)≥ [P(h)]1−s .

With q in place of h and A1 in place of e, this reads

P(q|A1)≥ [P(q)]1−s ,

which is the inequality (6.12) of Chapter 6.



Appendix C

Washing Out of the Prior

There is a much-vaunted escape clause that Bayesians use when they are
confronted with an unsatisfactory feature of their method. The unsatisfactory
feature is that the final, or posterior probability of a hypothesis depends on
its prior probability, which is to a large extent arbitrary. The escape clause is
that repeated updatings of the same hypothesis by more and more evidence
lead, in favourable circumstances, to the ‘washing out’ of the prior, i.e. the
insensitivity of the final posterior probability to the precise value that the
prior probability might have. In the formally infinite limit the posterior is
independent of the prior.

A probabilistic regress, within the usual class, has a superficially similar
property that we have dubbed ‘fading foundations’. The probability of the
target depends less and less on the probability of the ground as the chain of
propositions becomes longer and longer, and in the formal limit of an infinite
regress it is independent of the ground.

In the next section Bayesian washing out is explained in intuitive terms,
and then an example is given concerning the bias of a bent coin. In section
C.3 we point out in detail why Bayesian washing out is quite different from
fading foundations.

C.1 Washing out

Suppose we have some evidence, e1, for a hypothesis, p1, and we can cal-
culate the likelihood with which e1 would obtain if hypothesis p1 were true,
namely P(e1|p1). What we want is rather the probability that p1 is correct,
given that e1 is true, and this we calculate from Bayes’ formula:

D. Atkinson, J. Peijnenburg, Fading Foundations, Synthese Library 383, 
DOI 10.1007/978-3-319-58295-5 
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P(p1|e1) =
P(e1|p1)P0(p1)

P(e1)
. (C.1)

Here P0(p1) is the prior probability that is accorded to the hypothesis p1:
some Bayesians allow this to depend wholly on whim, others require it to
be determined by some previous knowledge of the situation in question. In
any case P0(p1) is to be superseded by the posterior probability, or update,
P1(p1) = P(p1|e1). The denominator in (C.1) can be computed from the rule
of total probability:

P(e1) = P(e1|p1)P0(p1)+P(e1|¬p1)[1−P0(p1)] , (C.2)

on condition that the likelihood P(e1|¬p1) can also be calculated. More gen-
erally, if {pi}, i = 1,2, . . . ,n, is a partition of the space of hypotheses for the
situation in question, i.e. pi ∧ p j is impossible for all i �= j, and the disjunc-
tion p1 ∨ p2 ∨ . . .∨ pn is the whole space, then (C.2) is replaced by

P(e1) = P(e1|p1)P0(p1)+P(e1|p2)P0(p2)+ . . .+P(e1|pn)P0(pn) . (C.3)

Suppose now that some new evidence, e2, comes in. The old posterior
probability, P1(p1) = P(p1|e1), serves as the new prior, and the new poste-
rior probability is P2(p1) = P1(p1|e2) = P(p1|e1∧e2). After m pieces of new
evidence have come in, Pm(p1) =P(p1|e1∧e2∧ . . .∧em) is the final posterior
probability. The idea is that, if p1 is the correct hypothesis, and p2, p3, . . . , pm

are all incorrect hypotheses, the likelihood P(e1 ∧ e2 ∧ . . .∧ em|p1) will be-
come larger and larger as more and more data comes in, that is, as m in-
creases, and all the P(e1 ∧ e2 ∧ . . .∧ em|pi) with i �= 1 will become smaller
and smaller. This means that, for large m, P(e1∧e2∧ . . .∧em) will be equal to
P(e1 ∧ e2 ∧ . . .∧ em|p1)P0(p1) in good approximation, since the other terms,
depending on p2, p3, . . . , pn, will be negligible. Hence P(p1|e1∧e2∧ . . .∧em)
will be close to 1, and it thus may be expected that

Pm(p1) = P(p1|e1 ∧ e2 ∧ . . .∧ em) (C.4)

will tend to 1 in the limit. Note that the original prior probability, P0(p1), has
cancelled, that is to say, it has ‘washed out’.

This was a quick and dirty explanation of how repeated Bayesian updat-
ings can be expected to lead one to the true hypothesis as more and more
evidence is accumulated. A more sophisticated treatment can be found for
example in the Stanford Encyclopedia of Philosophy (Hawthorne 2014). We
shall now exhibit this effect explicitly in the case of a bent coin that is tossed
repeatedly, the purpose being to ascertain its bias.
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C.2 Example: a bent coin

Suppose that p is the bias of a bent coin, i.e. the probability that heads will
come up when the coin is tossed. Let e1 stand for the evidence that h1 heads
have turned up in n1 tosses. The likelihood P(e1|p), the conditional proba-
bility that e1 would result, is

P(e1|p) = n1!
h1!(n1 −h1)!

ph1(1− p)n1−h1 ,

the factor involving the factorials being the number of different ways that h1
heads can turn up in n1 tosses.

Suppose though that the bias, p, is unknown. We are interested in the
inverse conditional probability, P(p|e1), i.e. the probability that a head will
turn up given the evidence e1. Here is Bayes’s theorem again:

P(p|e1) =
P(e1|p)P0(p)

P(e1)
. (C.5)

As before, P0(p) is the Bayesian prior, a subjective guess which is to be
updated by (C.5), on the basis of the evidence, e1. Strictly speaking, P0(p)
is not a probability, but rather a probability density: the prior probability that
the bias lies between p and p+d p is the infinitesimal P0(p)d p.

The denominator in (C.5) can be written as a continuous partition of the
probability space as follows:

P(e1) =
∫ 1

0
d pP(e1|p)P0(p) =

n1!
h1!(n1 −h1)!

∫ 1

0
d p ph1(1− p)n1−h1 P0(p) .

(C.6)
This takes the place of the sum (C.3) in the discrete case that was considered
in the previous section. Following the exposition of Howson and Urbach
(2006), we will insert for the prior a so-called beta distribution:

P0(p) = B(u,v) pu−1(1− p)v−1 , (C.7)

where u and v are to be regarded as free parameters that can be varied to
give an idea of the arbitrariness that is inherent in the Bayesian approach,
and where B(u,v) is a normalization factor that need not be specified, since
it will cancel. The adoption of (C.7) as the prior has no good justification,
except the rather lame

... beta distributions take on a wide variety of shapes, depending on
the values of two parameters, u and v, enabling you to choose a beta
distribution that best approximates your actual distribution of beliefs.1

1 Howson and Urbach 2006, 242.
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On substituting (C.7) into (C.6), we find that we can evaluate the integral.
It is in fact a beta-function (and that is the main reason, but of course not a
justification, for choosing (C.7) in the first place). The result is

P(p|e1) =
(n1 +u+ v−1)!

(h1 +u−1)!(n1 −h1 + v−1)!
ph1+u−1(1− p)n1−h1+v−1 . (C.8)

This is the posterior probability density corresponding to the value p. That
is not quite what we were looking for, since it does not give one value for
the probability associated with our bent coin, but rather a whole spread of
values. But this is as it should be: one single value for the probability is not
singled out as the only possibility. We need to calculate the mean value of
p according to the distribution (C.8), which will give the most likely value
for the sought-for probability, and the standard deviation, which will indicate
how uncertain the estimate is.

Straightforward calculations yield

pB ≡ E[p] =
h1 +u

n1 +u+ v

σ2
B ≡ E[(p− pB)

2] =
pB qB

n1 +u+ v+1
,

where qB = 1 − pB, and where the subscript ‘B’ is to remind us that the
mean and standard deviation here are Bayesian estimates. The uniform prior,
P0(p) = 1, which corresponds to the choice u = 1 = v, gives the mean
pB = (h1 + 1)/(n1 + 2), which is the celebrated result of Laplace. Let us
however keep u and v general, since the Laplacean choice is merely one of
an infinite number of possibilities.

Suppose that a second run of n2 tosses is made, in which h2 heads come
up, and take the posterior density (C.8) after the first run of n1 tosses as the
prior density for the second run. With e2 denoting the evidence relating to
the latter run, it is evident that the new posterior probability density will be

P(p|e1 ∧ e2) ∝ ph1+h2+u−1(1− p)n1+n2−h1−h2+v−1 ,

where we have suppressed the normalization factor. More generally, after
many runs, with sequential updating, the posterior probability density is pro-
portional to

ph+u−1(1− p)n−h+v−1 ,

where n is the total number of tosses in all the runs, and h is the total number
of heads that have come up. The mean is (h+u)/(n+u+v), which becomes
closer and closer to the relative frequency, h/n, as n increases, the standard
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deviation becoming smaller and smaller. The prior, specified by the constants
u and v, washes out in the limit.

So the success of repeated Bayesian updating lies simply in its tending
to the relative frequency. A statistician might well be forgiven for pointing
out that one does not need a Bayesian prior and the rigmarole of Bayesian
updating to come to the conclusion that the expected value of the ratio of the
number of heads to the number of tosses is equal to the bias of the coin.

C.3 Washing out is not fading away

At first sight there might seem to be a similarity between:

1. The washing out of the prior in Bayesian updating, that is the indepen-
dence in the infinite limit of the posterior on the prior, and

2. The fading of the foundation in a probabilistic regress, that is the indepen-
dence in the infinite limit of the target probability on the probability of the
ground.

However, the two effects are very different. In Bayesian updating the Bayes
formula (C.1) involves the computation of P(p1|e1) in terms of the inverse
conditional probability, P(e1|p1), followed by P(p1|e1 ∧ e2), and so on, as
more evidence accumulates. This is quite different from our calculation of
P(q), in which there is no inversion à la Bayes, but rather a sequence of
propositions, A1, A2, . . . that follow one another in a linear chain. In a sense
the dissimilarity between the two could not have been greater. Fading foun-
dations implies that the more distant propositions in the chain have less in-
fluence on the probability of the target than do the first few propositions. In
Bayesian updating, on the contrary, the various pieces of evidence, although
they are introduced one after another, are actually all on a par, as can be seen
from (C.4).

http://creativecommons.org/licenses/by/4.0/


Appendix D

Fixed-Point Methods

In Section 3.4 we analyzed the one-dimensional uniform chain of propo-
sitions by summing a geometrical series. Below, in D.1, we show how a
fixed-point method can be used to obtain the same result. This serves as an
introduction to the fixed-point analysis in D.2 of the more complicated case
of the two-dimensional uniform network that was discussed in Section 8.4.

It is important to note that the fixed-point method, both in the one-
dimensional and the many-dimensional cases, only works if there is uni-
formity, i.e. if the conditional probabilities remain the same throughout the
chain or network. The analysis that we gave for the one-dimensional chain
in the text is therefore more general, since it also applies if the conditional
probabilities are not uniform.

D.1 Linear iteration

In Section 3.4 we considered a recursion relation for a uniform chain of
propositions that has the form

P(An) = αP(An+1)+βP(¬An+1)

= β +(α −β )P(An+1) . (D.1)

Here A0 is the target proposition, which we sometimes wrote as q. In 3.4 we
explained how to calculate P(q) by summing a geometric series.

Here is the same story in terms of fixed points. The question is: is there a
special value of P(An+1), say p∗, such that if we plug it into the right-hand
side of (D.1), the very same value, p∗, results for P(An)? Indeed there is, for
a unique solution of the equation

D. Atkinson, J. Peijnenburg, Fading Foundations, Synthese Library 383, 
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p∗ = β +(α −β ) p∗ , (D.2)

exists, namely

p∗ =
β

1−α +β
,

given that the condition of probabilistic support implies 0 < α −β < 1. This
agrees with what we found in Section 3.7 for P(q). We still have to do more
work, however, before concluding that p∗ is an attracting fixed point of the
iteration (D.1); and it will be salutary to sketch what is involved. From (D.1)
and (D.2) we see that

P(An)− p∗ = (α −β )
(
P(An+1)− p∗

)
.

Since α −β is less than one, it follows that the distance between P(An) and
p∗, if it is not zero, will be less than the distance between P(An+1) and p∗;
and the distance between P(An−1) and p∗ will be smaller still. If we start the
iteration at a very large value of n, and iterate down to n = 0, that is down to
the target proposition q, we will find that

P(q)− p∗ = (α −β )n+1(P(An+1)− p∗
)
.

Because (α−β )n+1 will be very small for large n, it is the case that, whatever
value we choose for P(An+1), the difference between P(q) and p∗ will be
tiny; and, in the limit of infinite n, that is for an infinite chain of bacterial
ancestors, P(q) = p∗.

Here p∗ is the attracting fixed point of the iteration (D.1). One can express
the essence of this as follows:

p′ = β +(α −β )p ,

where one starts with some value for p, and then puts the resulting value
of p′ back into the right-hand side as a new value for p. This procedure is
repeated ad infinitum in thought. The fixed point p∗ attracts p to itself in this
process.

D.2 Quadratic Iteration

In Section 8.3 we obtained the recursion relation (8.9), namely

P(An) = αnP2(An+1)+βnP2(¬An+1)+(γn +δn)P(An+1)P(¬An+1) .

4
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Using the fact that the conditional probabilities αn, βn, γn and δn are all non-
negative, we see from (8.9) that, if P(An+1) lies within the unit interval (so
that P(¬An+1) does so too), then P(An) ≥ 0. Moreover, since αn, βn, γn and
δn are each not greater than one,

P(An) ≤ P2(An+1)+P2(¬An+1)+2P(An+1)P(¬An+1)

= [P(An+1)+P(¬An+1)]
2 = 1 . (D.3)

Thus we have demonstrated that 0 ≤ P(An+1)≤ 1 entails 0 ≤ P(An)≤ 1, and
this means that the quadratic iteration will not run amok: the probabilities
remain within the unit interval, as they should; and the question is whether
P(A0) tends to a limit as the length of the chain tends to infinity, or whether
it wanders around indefinitely.

When the conditional probabilities do not change from link to link, we
may drop the indices; and, with the substitution of 1−P(An+1) for P(¬An+1)
in (8.9), we obtain

P(An) = αP2(An+1)+β
(
1−2P(An+1 +P2(An+1)

)
+(γ +δ )

(
P(An+1)−P2(An+1)

)
= β +2(ε −β )P(An+1)+(α +β −2ε)P2(An+1) , (D.4)

with ε = 1
2(γ +δ ). On condition that α +β �= 2ε , define

qn = (α +β −2ε)P(An)−β + ε
= (α +β −2ε) [β +2(ε −β )P(An+1)+(α +β −2ε)P2(An+1)]−β + ε
= β (α +β −2ε)−β + ε +

2(ε −β )(α +β −2ε)P(An+1)+(α +β −2ε)2P2(An+1) . (D.5)

This definition of qn also implies that

q2
n+1 = [(α +β −2ε)P(An+1)−β + ε]2 (D.6)

= (ε −β )2 +

2(ε −β )(α +β −2ε)P(An+1)+(α +β −2ε)2P2(An+1) .

Comparing (D.5) with (D.7), we see that qn = c+q2
n+1 , where

c = β (α +β −2ε)−β + ε − (ε −β )2

= ε(1− ε)−β (1−α) , (D.7)

which is Eq.(8.15).
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Since 0 < β < α < 1 and 0 ≤ ε ≤ 1, it follows that

c < ε(1− ε) = 1
4 − ( 1

2 − ε)2 ≤ 1
4

c ≥ −β (1−α)>−α(1−α) = (α − 1
2)

2 − 1
4 ≥− 1

4 .

So we have shown that
−1

4 < c < 1
4 . (D.8)

A fixed point of the iteration

qn = c+q2
n+1 , (D.9)

is
q∗ =

c
1
2 +

√
1
4 − c

,

as can be readily verified by substitution, and to find the domain in which this
fixed point is attracting, we define sn = qn −q∗; and, rewriting qn = c+q2

n+1
in terms of sn, we have

sn = sn+1

[
1−√

1−4c+ sn+1

]
. (D.10)

On condition that ∣∣∣1−√
1−4c

∣∣∣< 1 , (D.11)

and sn+1 is very small, we conclude that q∗ is attracting. Indeed, since

sn − sn+1 = (sn+1 − sn+2)
[
1−√

1−4c+ sn+1 + sn+2

]
,

the mapping (D.10) is a contraction if |sn| ≤ γ and
∣∣1−√

1−4c+2γ
∣∣ < 1.

This implies that γ <
√

1
4 − c when 0 ≤ c < 1

4 , and γ < 1−
√

1
4 − c when

− 3
4 < c < 0. Hence if |sN | ≤ γ for very large N, and γ satisfies the above

contraction constraint, the iteration backwards to s0 will be attracted to zero,
that is to say q0 will be attracted to q∗. The domain of attraction of the fixed
point is −3

4 < c < 1
4 , and this covers the interval (D.8).

Going back to the original form (D.4) of the iteration, we find that the
solution q∗ corresponds to the fixed point

p∗ =
β

β + 1
2 − ε +

√
β (1−α)+(ε − 1

2)
2

=
β + 1

2 − ε −
√

β (1−α)+(ε − 1
2)

2

α −2ε
. (D.12)
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In the limit that β tends to zero this becomes

p∗ =
|1

2 − ε|− ( 1
2 − ε)

2ε −α
,

which is zero if ε ≤ 1
2 . However, if ε > 1

2 we find the nontrivial value

p∗ =
2ε −1
2ε −α

. (D.13)
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