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Foreword

The spin is a fundamental feature of elementary particles, together with their mass
and gauge charges. Spin reflects the quantum mechanical behaviour of particles un-
der space-time symmetry transformations, with profound implications ranging from
their statistical properties to their potential role in presence of higher symmetries,
such as supersymmetry. That the measurement of a new particle’s spin is a top prior-
ity following a discovery, is therefore totally obvious. Spin being a discrete variable,
its measurement, contrary to that of masses and couplings, does not require unlim-
ited precision, but just enough to guarantee its accurate determination. Neverthe-
less, measurements sensitive to a particle’s spin and to its polarization state provide
unique probes for a large variety of independent studies, where precision is the key
expected outcome. For example, the polarizations of W and Z bosons produced at
the LHC are crucial to extract precision measurements of the W mass, of the weak
mixing angle, and even of the partonic structure of the proton.

Polarization measurements, furthermore, highlight dynamical features that might
hide behind inclusive measurements. For example, while the study of charmonium
inclusive production at large transverse momentum led, in the mid 90’s, to the de-
velopment of a highly satisfactory theoretical framework based on non-relativistic
QCD (NRQCD), the subsequent measurements of charmonium polarization un-
veiled discrepancies suggestive of a more complex and richer dynamics, which is
still being explored today.

It was precisely the challenge of interpreting puzzling charmonium polarization
data that prompted the authors to undertake their voyage into the subtleties of these
effects in high-energy experiments, becoming world authorities. The result is this
book, an indispensable and unique field guide for experimentalists and theorists in-
terested in measurements sensitive to polarization phenomena. The book fulfils a
double role. First, it underscores, with a multitude of real-life examples, the inter-
play between polarization and the detector properties in sculpting production distri-
butions, distorting them from their theoretical shape, and potentially compromising
a correct interpretation. In parallel, it provides all tools to disentangle this interplay,
and extract maximal information from the available data. Along the way, we are
informed about the state of the art in a large number of LHC physics studies, with a
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behind-the-scenes perspective on their complexity and on the traps that they might
conceal.

Whether the reader is interested in studies of QCD dynamics, in precision elec-
troweak measurements, or in new tools to increase the efficiency of searches for be-
yond the Standard Model particles, the book will provide invaluable guidance and
technical support to undertake the experimental analyses, and to properly interpret
the results.

CERN, March 2022 Michelangelo Mangano
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Preface

The subject of this book can be briefly summarised: it addresses studies of angular
distributions of the decay products of a particle, discussing methodological aspects
that should be taken into account to ensure accurate measurements, as well as reli-
able and unambiguous physical interpretations.

The angular decay distribution is directly determined by the physical properties
of the decaying particle and by how it interacts with the other particles involved in
the process. Above all, it reflects the particle’s polarization, i.e., the angular mo-
mentum state in which it was created, as defined by the production mechanism in
the specific physical conditions of the experiment (the colliding particles, the colli-
sion energy, the covered phase space window, etc.). By directly probing the nature
of the studied particles, polarization measurements offer detailed insights into the
mechanisms behind particle production, providing a window into the underlying
fundamental interactions.

On the other hand, it is more challenging to measure polarizations than, for
example, cross sections. To start with, we need larger event samples because the
analyses are performed as a function of additional variables: the decay angles. Pre-
cise measurements of the kinematics of the decay particles are also needed, as they
have a direct impact on the quality of the polarization results. These are not major
limiting factors in the case of the LHC experiments, which operate with record-
breaking integrated luminosities and relatively large cross sections (given the high-
energy of the collisions), associated with very efficient triggers, state-of-the-art data-
acquisition systems, high-performance offline computing infrastructures, and more
powerful detector technologies and reconstruction techniques than those used in
any previously-operating high-energy physics experiment. We are left with the most
delicate step of the polarization measurements: the definition of the data-analysis
method. There are many potential hurdles in the path between the high-precision
data and the high-accuracy physics results, and care must be taken to avoid the
use of approximate or biased analysis methods, which can lead to ambiguous and
puzzling results. Indeed, precision does not mean accuracy: a precise result (small
uncertainties) can be wrong, if it is obtained through the use of biased analysis tech-
niques.

ix



The purpose of this book is to help ensuring that graduate students, post-docs, and
other young researchers turn high-quality data (collected at the LHC or elsewhere)
into crystal-clear physical results, interpretable without ambiguities. The text should
also be understandable by interested readers familiar with some basic concepts of
quantum mechanics and particle physics. After briefly introducing the topic, we
present the ideas and tools necessary to achieve accurate measurements of decay
angular distributions and corresponding interpretations in terms of the polarization
of the decaying particle. In particular, we discuss in detail several aspects of polar-
ization measurements that are often underestimated or ignored in the data analyses,
such as the importance of the choice (and reproducible definition) of all axes of the
reference frame and the usefulness of frame-independent representations of the an-
gular distribution. We address concrete problems that a researcher might face when
starting an experimental analysis, or when trying to interpret existing measurements.
The explored topics include the exceptionality of an “unpolarized” observation, the
unavoidable residual dependence of measurements of the polarizations of indirectly
produced particles on the experimental selections, and the pitfalls introduced when
the intrinsic multidimensionality of the problem is neglected in exchange for a sim-
plified approach. The concepts are presented gradually and, in general, it is assumed
that later chapters are read once the subjects covered in the previous ones are under-
stood. For pedagogical reasons, each chapter starts with a list of the main questions
that will be addressed and ends with a wrap-up section that recapitulates the main
messages.

The decays of vector states (Drell–Yan, Z and W bosons, J/ψ mesons and other
quarkonia, etc.) into lepton-antilepton pairs, which are among the most frequently
analysed processes in LHC experiments, play the central role in the progressive ex-
position of the concepts and methods. We start by deriving, from basic principles,
the general expression for the dilepton decay distribution of a vector particle, in
the parity-conserving and parity-violating cases (in Chapter 1). We also discuss the
meaning of the observable anisotropy parameters, as well as the crucial and chal-
lenging effects of event selection criteria commonly applied in the data analyses,
and we show that vector particles are never produced unpolarized. We then describe
(in Chapter 2) the most commonly adopted definitions for the system of reference
axes, highlighting the physical relevance of each of them for different kinds of pro-
cesses. We also show how the parametrization of the angular distribution strongly
depends on the reference frame, so that its choice, while in principle arbitrary, can
actually affect the simplicity of the interpretation of the results. We follow up (in
Chapters 3 and 4) with a detailed description of the parameter space and of how
the angular distribution can be characterized and studied with numerically frame-
independent observables, also presenting their advantages (and limitations) in mea-
surements and theoretical calculations. The Lam–Tung relation for Drell–Yan and
vector boson production is also discussed in detail. Chapters 5 and 6 are mostly
devoted to effects that irrecoverably smear the magnitude of the observable polar-
ization, occurring when it is not possible to approximate the natural polarization
with experimentally-definable reference directions. In particular, we consider cases
of “non-planar” production processes, like those where the particle under study is
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accompanied by more than one recoil particle or where the intrinsic longitudinal
momentum of the colliding partons is not negligible, and we address the consequent
violations of the Lam–Tung relation, precisely observed at the LHC, and how the
relation can be generalized. We then focus on a detailed description of cascade de-
cays, where the vector particle is a daughter of another particle. The case in which
the mother has zero angular momentum provides examples of maximal smearing
effects, possibly leading to the observation of a seemingly unpolarized vector par-
ticle, of which the LHC quarkonium polarization measurements might be a natural
(albeit exceptional) example. Finally, we describe (in Chapter 7) a general method
for calculating angular distributions, before offering a survey of typical angular dis-
tributions of particles of any integer or half-integer spin into various final states.

Many of the topics are presented and discussed through pedagogical examples
based on real measurements, gedankenexperiments, or realistic simulations. Math-
ematical tools are presented in a pragmatic way, suitable for down-to-earth appli-
cations in hands-on analyses of real data. For example, the Wigner matrices are
defined as depending only on two rotation angles, a reduced form that is perfectly
sufficient for the calculations of two-body decay distributions. More importantly,
the concepts are explained, as much as possible, with the help of graphical illustra-
tions. By reporting the spatial shapes of most angular distributions and by illustrat-
ing geometrically the effects of frame rotations and those of mixing and smearing
phenomena, for example, we provide a much more direct and intuitive view of the
physical and experimental effects than usually found in scientific articles. Given our
hands-on contributions to several polarization measurements, in HERA-B or CMS,
as well as to a few phenomenological studies, we know that the use of such visual
representations is also helpful to find solutions to problems that can be encountered
in experimental or theoretical analyses.

The preparation of this book was seeded by two pedagogical seminars that one
of us (P.F.) gave in April 2013, at CERN, Geneva, and at HEPHY, Vienna, on the
topic “Angular momentum and decay distributions in high energy physics: an in-
troduction and use cases for the LHC”. We were encouraged by friendly interac-
tions with several colleagues, including Roberto Spighi, Chris Fabjan, Gigi Rolandi,
João Seixas, Ian Shipsey, Claudia Wulz, Wolfgang Adam, Hermine Wöhri, Valentin
Knünz, Ilse Krätschmer, Thomas Madlener, Helena Santos, and Mariana Araújo.
The text and figures evolved with time and reflect work that we presented and dis-
cussed in numerous articles and/or in scientific workshops, university seminars,
and courses on “Physics at the LHC” for graduate students. We would also like
to acknowledge fruitful interactions with physicists from the E866, HERA-B, CDF,
ALICE, ATLAS, CMS, and LHCb Collaborations, as well as interesting discussions
with Sergey Baranov, Geoff Bodwin, Eric Braaten, Fabio Maltoni, Michelangelo
Mangano, Helmut Satz, and Ramona Vogt, among many other people. Finally, we
thank the Scientific Information Service at CERN, especially Jens Vigen, for pro-
viding the budget needed to have this book published in open access.

Lisbon and Meyrin, Pietro Faccioli
March 2022 Carlos Lourenço
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Chapter 1
Dilepton decays of vector particles

This chapter introduces the basic notions used in the measurement of the polariza-
tion of a particle and in its interpretation. We use as a prototype the case of a vector
particle (the J/ψ meson, a virtual photon, the Z boson, etc.) decaying into a lepton-
antilepton pair, frequently studied in high-energy physics because of the high quality
of the experimental signals and the simplicity of the involved physics principles.

We will address the following questions.

• How is the polarization of a particle defined and how can it be measured by
observing its decay distribution? What principles are used in the determination of
this distribution? What are the relevant angular variables and shape parameters?
Are there different kinds of polarizations and, if so, what are their meanings?

• How is the sample of decay events concretely translated into a polarization
measurement? What important aspects and systematic effects should be consid-
ered in the analysis with particular care? Can the (differential) production cross
sections of the observed particles be reliably measured if the polarization dimen-
sion is not carefully considered in the analysis?

• How do particles produced by different mechanisms combine their different
polarizations into the average value that can be measured in the collected data
sample? Can a particle be produced “unpolarized” and, if so, what would that
indicate?

• What additional observables can be defined to study parity-violating effects in
production and decay?

1© The Author(s) 2023
P. Faccioli and C. Lourenço, Particle Polarization in High Energy Physics,
Lecture Notes in Physics 1002,
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2 1 Dilepton decays of vector particles

1.1 Why vector particles?

Polarization measurements provide deep insights into the mechanisms of particle
production and interaction in high-energy physics. In fact, no measurement comes
closer to “seeing” the shape of the wave function of a particle produced in an exper-
iment than the determination of the angular distribution of its decay and, therefore,
of its polarization. The intimate connection between angular momentum proper-
ties and decay angular distribution can also provide tools for the characterization of
newly discovered particles, as will be exemplified in Section 7.6.

Vector particles are the lead characters on the stage of experimental polarization
studies. The “spin alignments” of elementary vector particles (Z, W, photon), pro-
duced ether directly in the hard scattering process, or from the decays of heavier
particles, directly reflect the mechanisms of their couplings to leptons, light quarks,
top quark, Higgs boson, etc., in the Standard Model and beyond.

Polarizations are also an important probe to test the predictions of quantum chro-
modynamics (QCD) for hadron production in elementary collisions. For example,
the production of lepton-antilepton pairs produced from a virtual photon (Drell–
Yan [1]) is theoretically the simplest and cleanest hadron-hadron scattering process
and, therefore, the ideal case study for proving and testing the QCD factorization
theorem [2–4], as well as a crucial source of information for the determination of
the parton distribution functions of hadrons. Studies of the polarizations of heavy
quarkonium vector mesons (J/ψ, ψ(2S), Υ) play a major role in the understanding
of the still mysterious mechanisms of hadron bound-state formation, as will be ex-
plained in Section 6.4.

Most importantly, vector particles can be reconstructed in their decays to lepton-
antilepton pairs, a particularly convenient channel for the accuracy of its experi-
mental detection and the directness of its theoretical interpretation. Even when the
particle under study is not a vector particle and does not decay into leptons, it is
often seen through its decay chain to vector particles, with the latter further decay-
ing into dileptons. Also the study of its angular momentum properties benefits from
the analysis of the dilepton decay distribution of its vector daughters. For instance,
the first direct evidences that the recently discovered Higgs boson candidate was
indeed a spin-parity JP = 0+ particle were provided by studies using data on the
decay H → Z Z∗ → `+`− `+`−, besides H → W W∗ → `ν `ν and H → γγ, as main
ingredients [5, 6]. Another example, described in Section 6.6, is the polarization
measurement of the J = 1 and J = 2 χc mesons, which can be performed by simply
observing the dilepton decay of the J/ψ produced by their radiative decays.

Many experiments are optimized for the detection of muons and/or electrons, so
that particularly accurate and precise measurements can be performed by observ-
ing vector particles in their dilepton decays. Figure 1.1 offers a glimpse of the wide
range of studies that can be performed by the LHC experiments thanks to their im-
pressive capabilities in the reconstruction of particles in the dimuon decay channel.
Besides the extensive coverage in invariant mass, from a few 100 MeV to a few
100 GeV, we see that the measurement resolution is sufficiently good to separate the
three close-by Υ states.
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Fig. 1.1 Dimuon mass distributions measured by CMS in pp collisions at 7 TeV (top) in 2011 [7]
and at 13 TeV (bottom) in 2015 [8]. The significantly larger instantaneous luminosity of the LHC
in 2015 resulted in a collision rate that was too high for the data acquisition bandwidth, so that the
inclusive double muon trigger used in 2011 had to be replaced by a set of more exclusive triggers,
to retain as many interesting events as possible. In particular, a trigger path was dedicated to the
collection of events used to search for the rare Bs → µ+µ− decay (in cyan).

A vector particle, V , is eigenstate of the angular momentum operator, J2 |V〉 =

J(J + 1) |V〉, with the corresponding quantum number J being 1 (natural units, with
c = } = 1, are used throughout this book). A “polar” vector particle, such as the
“vector mesons” ρ, φ and J/ψ, has negative parity, that is, its wave function changes
sign with inversion of the coordinates, just like a polar vector flips within the ge-
ometrical space (whereas a pseudo- or axial-vector maintains its sign/orientation).
This latter property allows the particle to be produced through the annihilation of a
quark and its antiquark, and/or decay into a lepton-antilepton pair. V can be any of
three eigenstates of the angular momentum component Jz along a chosen quantiza-
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tion axis z, Jz |V〉 = M |V〉, with M = −1, 0 or +1, as well as a superposition of those
three states.

The word “polarization” refers to how these three base eigenstates are combined
to form the observed state of V . The combination is determined by the mechanism
that produces V in the considered experimental conditions. To measure the polar-
ization of a particle effectively means to measure the average Jz composition of
the particles in the collected event sample. The measurement exploits the fact that
the particle tends to emit its decay products in different characteristic directions,
strongly correlated to its actual Jz projection. The experiment collects and identifies
many such decays and builds the statistical distribution of the emission angles, as
seen in the particle’s rest frame. A shape analysis of this distribution reveals the
particle’s polarization.

As mentioned above, the analysis of the dilepton decay represents the cleanest
way, from both the experimental and theoretical perspectives, of measuring and in-
terpreting the production yield and polarization of the parent particle. In this chapter
we discuss how to determine experimentally the polarization of a vector particle by
measuring its decay angular distribution in this channel. To provide a concrete ex-
ample, we take the J/ψ meson as the decaying particle, but all the considerations and
results are equally valid for any other vector particle.

The shape of the observable decay angular distribution is determined by a few
basic principles, examined in the next sections: 1) the conservation of “helicity”,
satisfied by fermions in electroweak and strong forces under certain limit condi-
tions; 2) the rotational covariance of angular momentum eigenstates, i.e. how the
Jz composition changes when the definition of the quantization axis changes; 3) the
conservation of parity (in cases where only the electromagnetic or strong forces de-
termine the decay) or its violation (when the weak force is also involved). While the
first principle represents a constraint specific to the dilepton decay of vector parti-
cles, the other two are completely general considerations, applying to the angular
distribution of any particle decay.

1.2 Helicity conservation in dilepton decays

The electroweak and strong forces preserve the chirality of fermions. The dynamics
of the coupling of electrons to photons, for example, is described by terms of the
form uγµu = uLγ

µuL + uRγ
µuR, where γµ are the Dirac matrices, u is the electron

spinor, and L (R) indicates its left-handed (right-handed) chiral component. Terms
containing both opposite chiral components are absent, meaning that the fermion
chirality is preserved in the interaction with the photon. When the fermions are as-
sumed to have zero mass, so that the direction of their momenta cannot be reversed
by any Lorentz transformation, left-handed and right-handed chiral components be-
come eigenstates of the helicity operator h = S · p/|p|, corresponding to the pro-
jection of the spin on the momentum direction. In this case, chirality conservation
becomes helicity conservation.
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Fig. 1.2 Illustration of helicity conservation in the decay of a gauge boson (γ∗, Z, g, . . . ) into a
fermion-antifermion pair ( f f ). The red arrows indicate the spin orientations of the outgoing f and
f , while the black arrows represent the direction of the fermion flux.
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Fig. 1.3 Helicity conservation in the decay J/ψ → `+`− (left) and its effect on the total angular
momentum of the dilepton system as seen in the J/ψ rest frame (right).

As illustrated in Fig. 1.2, this rule implies that the fermion and antifermion re-
sulting from the decay of a virtual photon (or a gluon, or another gauge boson)
must have opposite helicities, because the boson has zero (fermion) helicity. In other
words, if in the Feynman diagram we follow the fermion flux (along the orientation
of the fermion momentum and opposite to the antifermion momentum), the fermion
spin never flips in the coupling to the photon.

Figure 1.3 shows the consequence of helicity conservation using the example of
the dilepton decay of the J/ψ meson, where the pair of c and c̄ quarks composing the
J/ψ annihilates into a virtual photon, transforming in turn into the observed lepton-
antilepton pair. In the J/ψ rest frame, the leptons have anti-parallel momenta; to have
opposite helicities, as required by the conservation law, they must have the same spin
orientation. The total angular momentum component of the dilepton system along
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the direction z′ is, therefore, L′ = +1 or −1, while the case L′ = 0 is forbidden (in
the limit of massless leptons).

To evaluate the precision of this prediction of quantum electrodynamics (QED),
we can consider that the observable contribution of the helicity-changing process,
where L′ = 0, is, in relative terms, of order (m f /E f )2 = 4(m f /mJ/ψ)2, being m f and
E f the fermion mass and energy (in the J/ψ rest frame) and mJ/ψ the J/ψ mass. In the
case of the decay into a pair of muons this component is ' 5 × 10−3, being even
smaller for decays of Υ mesons or into electron-positron pairs.

In summary, helicity conservation “polarizes” the dilepton system, giving it max-
imal angular momentum projection along the emission axis in the J/ψ rest frame. We
are not yet referring to any specific polarization state of the J/ψ, for which we con-
sidered a generic angular momentum component M along the chosen polarization
axis z.

While this chapter is devoted to the dilepton decay, different causes and mecha-
nisms will, in general, “polarize” different final states in different ways, as will be
discussed in Section 7.4. But we can already anticipate in here that a final state of
the kind S + γ, where S is a J = 0 particle, is polarized with L′ = ±1 along the
emission axis z′, just as what happens in the dilepton system. This is, for example,
the case of the decay J/ψ→ ηc γ, which has exactly the same angular distribution as
our prototype decay J/ψ→ `+`−. It can be kept in mind, therefore, that all consider-
ations concerning the geometrical properties of the “dilepton” angular distribution,
in this and the following chapters, will be equally valid for radiative decays to J = 0
particles.

1.3 Rotation of angular momentum eigenstates

We will discuss in the next chapter how the polarization frame is concretely defined
in the experiments with respect to known reference directions (for example, the
directions of the colliding beams). Here, to start with, we use a completely generic
and arbitrary Cartesian system of axes (x, y, z), defined in the decaying particle’s
rest frame.

The angular distribution is naturally expressed in spherical coordinates, with the
polar angle ϑ determined by the direction of one of the two decay products (the
positive lepton in this case, according to the most common convention) with respect
to the chosen polar axis z, and the azimuthal angle ϕ measured with respect to the
zx plane, as illustrated in Fig. 1.4.

In Fig. 1.3-right the decay process is sketched as the transition from the initial
J/ψ state, with angular momentum defined along z, to the final dilepton state, with
angular momentum defined (and constrained by helicity conservation) along the
quantization axis z′. To calculate the decay angular distribution we must impose an-
gular momentum conservation between the initial and final states. This cannot be
trivially achieved by equating L′ with M in Fig. 1.3, because these are projections
referred to two intrinsically different quantization axes. While it is not forbidden to
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Fig. 1.4 The coordinate system for the measurement of a two-body decay angular distribution,
with axes and angles defined in the rest frame of the decaying particle. In the decay into a lepton-
antilepton pair, ϑ and ϕ conventionally indicate the direction of the positive lepton. Common defi-
nitions of the axes, relative to physical directions, are discussed in the next chapter.

choose the J/ψ quantization axis z (in principle arbitrary) as coincident with the z′

axis, this choice is not appropriate for the description of the decay angular distri-
bution, which is just determined by how the relative orientation of z′ (direction of
emission of the positive lepton) changes event by event with respect to the arbitrary
(but conveniently fixed) reference direction z.

Instead, we rather need to re-express the angular momentum of the final state
by rotating its quantization axis until it coincides with the one of the initial state.
In other words, the question to be answered is: if an object has angular momentum
projection L′ along z′, what is its angular momentum projection along z? The answer
is not as definite in quantum mechanics as in the classical case, where it reduces to
finding the geometrical projection of a vector over an axis. In general, all projection
components are possible, with probability amplitudes expressed by elements of the
Wigner rotation matrix [9],DJ

LL′ (ϑ, ϕ).
As illustrated in Fig. 1.5-left, an eigenstate |J, L′〉 of Jz′ can be expressed as a

superposition of the eigenstates |J, L〉 of Jz through the rotation transformation [10]

|J, L′〉 =

+J∑
L=−J

DJ
LL′ (ϑ, ϕ) |J, L〉 . (1.1)

The angles ϑ and ϕ, defined in Fig. 1.4, represent here the rotation that brings the
quantization axis z into coincidence with z′, as well as x with x′, and y with y′.
The transformed system of axes (x′, y′, z′), like the original one (x, y, z), is naturally
orthogonal and right-handed.

The (complex) rotation matrix elementsDJ
LL′ are defined as

DJ
LL′ (ϑ, ϕ) = e−iLϕ dJ

LL′ (ϑ) eiL′ϕ (1.2)
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Fig. 1.5 Transformation of an angular momentum eigenstate by change of the quantization axis,
for a generic rotation (left) and for a rotation by ϑ = 90◦ (right, for ϕ = 0).

in terms of the (real) “reduced” matrix elements

dJ
LL′ (ϑ) =

min(J+L,J−L′)∑
t=max(0,L−L′)

(−1)t

×

√
(J + L)! (J − L)! (J + L′)! (J − L′)!

(J + L − t)! (J − L′ − t)! t! (t − L + L′)!
(1.3)

×

(
cos

ϑ

2

)2J−(L′−L+2t) (
sin

ϑ

2

)L′−L+2t

.

Swapping L with L′ or flipping the signs of both, the reduced matrix element
changes sign if L − L′ is odd and remains unchanged otherwise:

dJ
L′,L(ϑ) = (−1)L−L′ dJ

L,L′ (ϑ) = (−1)L−L′ dJ
−L′,−L(ϑ) . (1.4)

A more detailed discussion of rotation transformations, including explicit ex-
pressions of dJ

L,L′ (ϑ) for several values of J, are provided in Chapter 7. A coherent
convention must be maintained for the definition of the angles and the consequent
direction of the rotation throughout the calculations. At the risk of being repetitive,
we emphasize that the above definitions are valid when the pure angular momentum
eigenstate (the object to be “projected”) is defined with respect to the final quantiza-
tion axes, while its resulting decomposition into the full basis of states (components
of the “projection”) refers to the initial system. This is the convention defining the
positive direction of the rotation in Eq. 1.1. The convention is chosen in analogy
with the classical concept of projection of a vector, where the angle is measured
with respect to the projection axis, as in a rotation from that axis to the vector.

The analogy only serves as guidance, the reality of quantum mechanics being
very different. One example illustrating the difference with the classical case is
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shown in Fig. 1.5-right: the eigenstate |1,+1〉 of Jz′ becomes a superposition of
all three Jz eigenstates with respect to a quantization axis perpendicular to the orig-
inal one, while the classical expectation would simply be |1, 0〉, as the geometrical
projection of the vector J along z is zero if it is maximal along z′.

We have now all the necessary ingredients to calculate a first example of a decay
angular distribution in a specific case. We assume that the decaying particle, a J/ψ,
was produced in the angular momentum state |J,M〉z = |1, 0〉z with respect to a given
quantization axis z. We want to calculate the shape of the angular distribution of its
decay into leptons. We know from Section 1.2 that the system of the two leptons
can be in one of only two possible angular momentum states with respect to their
common direction in the J/ψ rest frame: |J, L′〉z′ = |1,+1〉z′ or |1,−1〉z′ .

Let us start by considering the individual subprocess represented in Fig. 1.6-left,
where |J, L′〉z′ = |1,+1〉z′ . We use Eq. 1.1 to “project” the dilepton angular momen-
tum state onto the J/ψ quantization axis z, i.e. to express it as a combination of terms
of eigenstates of Jz:

|`+`−; 1,+1〉z′ = D1
−1,+1(ϑ, ϕ) |`+`−; 1,−1〉z

+ D1
0,+1(ϑ, ϕ) |`+`−; 1, 0 〉z (1.5)

+ D1
+1,+1(ϑ, ϕ) |`+`−; 1,+1〉z .

The dilepton configuration contains, therefore, the Jz eigenstate |1, 0〉z with compo-
nent amplitude D1

0,+1(ϑ, ϕ). This is the same as the eigenstate of the initial J/ψ and
is therefore the component contributing to the transition probability: it is the one
satisfying angular momentum conservation. The other two components are, instead,
orthogonal to the J/ψ configuration, so that they cannot be reached from the initial
state without violating angular momentum conservation.

The probability amplitude of the process is, therefore,

z〈`
+`−; 1, 0 | B | J/ψ; 1, 0〉z ∝ D1∗

0,+1(ϑ, ϕ) ,
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where B is a transition operator. The probability is obtained as its square modulus,
where the ϕ-dependent factors cancel out (Eq. 1.2), a usual feature when the initial
state is a pure eigenstate — as in the simple case here considered — rather than a
superposition of different eigenstates.

Using d1
0,+1 = sinϑ/

√
2 (from Eq. 1.3 or Table 7.3), we find that the angular

distribution is proportional to 1
2 (1−cos2 ϑ). It can be easily verified that an identical

result is obtained, in this specific case, also with the complementary choice of the
dilepton polarization, |J, L′〉z′ = |1,−1〉z′ . The distribution is, therefore, characteris-
tic of the dilepton decay of a Jz = 0 eigenstate. Its shape, resembling a “donut”, is
represented in Fig. 1.6-right, where the distance of the surface from the origin of the
system of axes is proportional to the probability of the direction of emission. Most
of the leptons tend to be emitted close to the plane perpendicular to the quantization
axis z, while the emission along z is forbidden: in the one-dimensional representa-
tion as a function of cosϑ, the distribution tends to zero as cosϑ → ±1. As already
mentioned, this is an azimuthally isotropic distribution; it does not have ϕ-dependent
modulations, which are present in the general case considered in Section 1.7.

1.4 Parity properties

To illustrate the next concept, we repeat the calculation of the dilepton decay angular
distribution, assuming now that the decaying particle is produced in the angular
momentum state |J,M〉z = |1,+1〉z. We consider at the same time both cases of
dilepton polarization, |J, L′〉z′ = |1,−1〉z′ and |1,+1〉z′ , illustrated in Fig. 1.7-a on the
left and right, respectively.

Using Eq. 1.5, together with the similarly obtainable expression for |`+`−; 1,−1〉z′ ,
the transition probabilities of the two configurations can be written as

|z〈`
+`−; 1,+1 | B | J/ψ; 1,+1〉z|2 ∝ |D1∗

+1,±1(ϑ, ϕ)|2 ,

where only the dilepton Jz component L = M = +1 contributes and the index
±1 corresponds to the two dilepton polarizations. Since d1

+1,±1 = (1 ± cosϑ)/2,
the corresponding angular distributions are proportional to 1 + cos2 ϑ ± 2 cosϑ. As
represented in Fig. 1.7-b, the dilepton polarizations |J, L′〉z′ = |1,+1〉z′ and |1,−1〉z′
lead in this case to two different decay distributions that are mirror reflections of
each other. Reversing the angular momentum projection of the mother particle, from
|J,M〉z = |1,+1〉z to |1,−1〉z, further exchanges the two shapes. The orientation of
the distribution depends, therefore, on the sign of the product M · L′.

While at first sight the distributions may look approximately spherical, it should
be noted that they exhibit a strong asymmetry in the z direction. In addition to the
small valleys that they have around their extremes located at the origin along the z
axis, making them rather resemble an orange, for M·L′ > 0 the decay emission in the
“forward” direction (z > 0) is much more favoured than the one in the “backward”
direction (z < 0), and the opposite happens in the M · L′ < 0 case.
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the effect of changing “forward” into “backward” emission, and vice-versa. (c) Observable distri-
butions for different relative contributions of the two configurations, in two parity-violating cases
(left and right) and in the parity-conserving case (middle).

The two orientations are reciprocally related by the transformation of parity, in-
volving the sign change z → −z, that is cosϑ → − cosϑ, in addition to the trans-
formations x → −x and y → −y, which imply ϕ → π + ϕ and are thus irrelevant
in the current, azimuthally isotropic case. Therefore, we can see that, while the
Jz = 0 configuration produces a decay distribution that is always parity-invariant
(Fig. 1.6-right), the Jz = ±1 case is sensitive to the parity properties of the system:
in the presence of parity-violating effects, leading to different probabilities for the
forward and backward emissions, the angular distribution is represented by pear-
shaped distributions of the kind shown in the left and right panels of Fig. 1.7-c,
globally described by the function 1 + cos2 ϑ ± 2A cosϑ, where A is proportional
to the “forward-backward asymmetry” (see Section 1.11). The parity conserving
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case, where A = 0 and the two specular configurations have identical weights, has
a typical peanut-like shape (Fig. 1.7-c, middle panel).

Addressing the basic polarization cases of vector particles using food metaphors
(donuts, peanuts, oranges, pears) may not seem very appropriate. As a matter of fact,
a commonly recognized terminology exists and we will adopt it also in here. In order
to minimize confusion, however, we should emphasize how possibly misleading are
those “standard” definitions.

“Polar” vector particles share the quantum numbers of the photon and are there-
fore said, by analogy with the photon, to be “transversely” polarized when they have
spin projection Jz = ±1. The denomination is motivated by the fact that the electro-
magnetic field carried by the photon oscillates in the transverse plane with respect to
the photon momentum; however, the photon spin is aligned along the momentum,
making such terminology counterintuitive when the focus of the discussion is on
angular momentum.

In the case of the decay of vector particles, when we refer to a “transverse” polar-
ization not only is the particle angular momentum vector aligned in the longitudinal
direction with respect to z but also, at least in the parity conserving case, the two lep-
tons are emitted in a preferred longitudinal alignment with the z axis, resulting in the
characteristic peanut-shape of the distribution. In the same terminology, “longitudi-
nal” polarization indicates the angular momentum configuration Jz = 0, classically
representing a transverse alignment of the vector J with respect to z and leading to
a preferred lepton emission in the transverse plane (donut-shaped distribution). By
further extension, the same terms are also used to describe vector-particle polariza-
tions not only with respect to their own momenta, but also with respect to any other
reference direction z (such as the beam directions in a collider experiment), where
the analogy with the photon is completely lost.

1.5 Introductory remarks on polarization measurements

Before considering more complex (and realistic) cases, we will use the examples of
angular distributions derived in the previous sections to address the following ques-
tion: what is, in practical terms, a polarization measurement? For simplicity, we
will only consider two extreme polarization scenarios: we want to establish whether
a sample of J/ψ mesons is “transversely” or “longitudinally” polarized with respect
to the quantization axis z represented by its own direction in the laboratory, com-
monly referred to as the “helicity axis”. In general, these are not the only possible
options (as will become clearer in the following chapters of this book), but it is
more convenient to start with a simple illustration and two different scenarios are
sufficient to present the main messages of this section.

The core of the measurement consists in building the distribution of the dilepton
events as a function of the variable cosϑ, where ϑ is the angle between the positive
lepton in the J/ψ rest frame and the direction of the J/ψ itself in the laboratory, and
verify whether it has a shape consistent with 1 + cos2 ϑ (i.e. Jz = ±1, transverse
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case, considering only the parity-conserving term) or with 1 − cos2 ϑ (i.e. Jz = 0,
longitudinal case). In reality, these functional shapes are not expected to straightfor-
wardly describe the cosϑ distributions of the dileptons in the collected experimental
samples, which are affected by inevitable limitations of the detectors. Leaving aside
the (also quite important) problem of background subtractions, a crucial difficulty
in the measurement of the cosϑ distribution is that the detection acceptance of the
experiments depends very significantly on the momentum of the leptons. In the case
of the CMS LHC experiment, for example, muons that are produced in the so-called
“barrel region” of the detector, roughly corresponding to the angular region defined
by |η| . 1, where η is the particle’s pseudorapidity, must have transverse momentum,
pT, larger than ∼ 3.3 GeV to be identified as muons. Lower pT muons fail to reach
the (innermost) muon stations, because the curl induced by the 3.8 T solenoidal
field is too strong in that case; they are, therefore, indistinguishable from pions and
other charged particles that are only reconstructed in the (inner) tracker system. This
means, for example, that J/ψ mesons produced in the barrel (with rapidity |y| . 1)
will only trigger the detector’s readout and acquisition system if both decay daugh-
ters are identified as muons, which means that almost all the J/ψ dimuons written to
permanent storage will have J/ψ pT larger than ∼ 6.5 GeV. The low trigger and re-
construction efficiency of low momentum muons induces “acceptance and efficiency
effects” that distort the measured kinematical distributions.

Naturally, the cause and the magnitude of these effects depend on the experiment
and, more specifically, on the region of the detector under consideration. In the
“endcap regions” of CMS, for instance, the magnetic field effect loses relevance
and the acceptance becomes determined by energy loss in the material budget of the
detector that the muons need to traverse, which imposes a minimum threshold on the
total momentum of the muons. Analogous effects are also present in the detection
of electrons. In summary, only events where both leptons pass certain thresholds
in momentum (longitudinal or transverse) are collected by the experiments. For the
purpose of our discussion, the most important aspect is that these conditions affect
the cosϑ distributions: the dilepton detection acceptance depends on cosϑ.

In collider experiments, for example, when cosϑ → +1 or −1 the two leptons
are emitted along the J/ψ direction and the one emitted backwards in the J/ψ rest
frame often has a small laboratory momentum (especially when the J/ψ momentum
itself is not large), resulting in a low detection efficiency. The configurations maxi-
mizing the chances that the event is detected are, hence, those with cosϑ ∼ 0, where
the two muons are emitted transversely to the J/ψ momentum and have comparable
laboratory momenta, none of them being below the detection threshold, if the J/ψ is
not too soft. Different and/or additional effects may be present in fixed-target exper-
iments with forward detectors, where the non-uniform angular coverage and even
possible discontinuities (for example in the region of the beam pipe) can influence
the detection efficiency as a function of the momenta and relative angle of the two
leptons, sculpting the decay angular distribution.

For illustration purposes we will consider J/ψ mesons produced in the 9 < pT <
12 GeV and |y| < 1 phase space window, in a collider “gedankenexperiment” with
a muon trigger and reconstruction efficiency that depends on the muon pT accord-
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Fig. 1.8 Examples of typical single-muon detection efficiencies, εµ, as a function of pT. The black
curve represents the true efficiency of our “gedankenexperiment”, reflecting limitations in the trig-
ger, track reconstruction, muon identification, etc., while the red and green dashed curves represent
two alternative evaluations, mimicking what one would get through simulation studies, using stan-
dard Monte Carlo techniques.

ing to the function shown as a black solid curve in Fig. 1.8. This curve shows the
typical “turn-on” behaviour of detection efficiencies as pT increases, represented by
a smoothly increasing function followed by a saturation plateau. The slope of the
“turn-on” part can be more or less steep but it never happens that a detection effi-
ciency is represented by a step function, which would reflect a sharp cut at some
well-defined pT value. In our hypothetical example, the efficiency crosses the 50%
value at pT ' 3 GeV.

The left panel of Fig. 1.9 shows how this function translates into a data histogram
of the cosϑ dimuon distribution, in a sample of events where the J/ψ is assumed to
be transversely polarized: no events are recorded above a certain value of | cosϑ |.
The distribution drops drastically, strongly departing from the parabolic shape ex-
pected for a physical distribution. An acceptance correction must be applied to the
data and only the corrected distribution can be compared to the physical templates
corresponding to transverse and longitudinal polarization scenarios.

The result of an ideal measurement outcome is shown in the right panel of
Fig. 1.9, where the data distribution was corrected by the ratio between the recon-
structed and the generated cosϑ distributions obtained with a sample of simulated
events, analogous to the Monte Carlo simulations frequently used in analyses of ex-
perimental data. It might be worth emphasising that, in this section, whenever we
use the words “data” and “simulated events” we are referring to samples of pseudo-
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Fig. 1.9 Illustration of an ideal polarization measurement. Left: The dimuon cosϑ distribution
seen if the experiment had 100% detection efficiency for all muons (grey dashed histogram) and
in the data collected by our hypothetical detector (black solid histogram), affected by the muon-
pair detection efficiency εµ+ × εµ− . Right: The data distribution after efficiency correction, using
a perfectly simulated Monte Carlo sample, exactly reproducing the true efficiency shape (black
curve in Fig. 1.8). While not extending to the full angular domain (most events in the | cosϑ | > 0.6
range are not detected), the shape of the corrected distribution, in this ideal illustration, is perfectly
compatible with the 1 + cos2 ϑ function, in agreement with the simulated transverse polarization
hypothesis.

events generated by a very simple software code and not to data collected by real
experiments or to events simulated with complex Monte Carlo event generators. The
correction is perfect because, for this “ideal illustration”, which one could call a cal-
ibration or debugging step, we made the event simulation with exactly the correct
efficiency curve (the black curve in Fig. 1.8), therefore precisely accounting for the
detection efficiency effects.

We should note here that, in this section, we assume, for simplicity, that this
“reconstructed over generated ratio” is independent of the polarization scenario in-
cluded in the generation of the Monte Carlo event sample: the generation was made
with a flat cosϑ distribution, reflecting the fact that, in principle, we ignore the po-
larization that we are going to measure. In reality, as will be discussed in Chapter 2
(e.g. in Section 2.13), this assumption is not valid in all polarization scenarios, and
higher-dimensional corrections, considering also the azimuthal angular component,
are needed for a reliable result in more general cases.

We conclude that, with a perfectly faithful simulation of the detection efficiency,
the corrected distribution (represented by the black markers) reproduces well the
1 + cos2 ϑ shape (solid blue curve) denoting transverse polarization (the hypothesis
injected in the generation of the data-like sample) and strongly disfavours the longi-
tudinal scenario (dashed magenta curve). As a consequence of the muon acceptance
limitations, the corrected distribution is restricted to the more central region, the ex-
ternal bins showing large statistical fluctuations (that do not represent a problem in
these fully ideal conditions).



16 1 Dilepton decays of vector particles

0

0.4

0.8

1.2

1.6

ϑcos
-0.8 -0.4 0 0.4 0.8

 (a
.u

.)
ϑ

dN
/d

 co
s

ϑ1 + cos2

ϑ1 − cos2

Corrected
data (a

.u
.)

ϑ
dN

/d
 co

s

0

4

8

12

16

ϑcos
-0.8 -0.4 0 0.4 0.8

Real
distribution
(data)

Expected
distribution
(simulation)

Fig. 1.10 Illustration of a realistic polarization analysis using an imperfect evaluation of the lepton
detection efficiency. Left: The event distribution in the “collected data” (black solid histogram),
reflecting the true detection efficiency shape (black curve in Fig. 1.8), compared to the distribu-
tion obtained in (transversely polarized) simulated events (red dashed histogram) filtered using a
slightly mis-evaluated efficiency shape (red dashed curve in Fig. 1.8). Right: The data distribution
after correction for the estimated efficiency, seemingly contradicting the transverse polarization
hypothesis used in this exercise.

In reality, the efficiency correction is never an exact procedure, at the very least
because its dependence on the muon pT (and on pL, rapidity, etc) is never known
as a perfectly faithful analytical function, but rather as a binned histogram affected
by fluctuations caused by the limited size of the simulated event sample. More im-
portantly, the detector description in the simulation software is necessarily affected
by approximations needed to speed up the computations, replacing the measured
magnetic field maps by analytical parametrizations, neglecting some material in the
detector description, etc. Furthermore, the real data are collected over a period of
several months, with alignment and calibration parameters that vary with time (e.g.
because of accumulated radiation damage), while, in general, one single event sam-
ple is simulated, corresponding to a suitable average of parameters.

Even in the best cases, there will always be some residual differences between the
collected events and the simulated ones. Perfection is out of reach and the important
question to ask is if the accuracy of the physics measurement is significantly affected
by the efficiency corrections. It is a question that needs to be quantitatively answered
through the evaluation of the sensitivity of the result of the measurement to the
precision with which the detection efficiency is known.

Figure 1.10 illustrates a realistic experimental situation. The analysis is made
correcting the “collected data” with an estimated detection efficiency, represented
by the red dashed curve in Fig. 1.8, which is slightly shifted towards lower pT values
with respect to the true efficiency. This means that the simulated sample will include
(low pT) events that are not present in the collected data.

The overestimation of the low-pT muon efficiency leads to an underestimation
of the corrected dimuon yield (i.e. of the production cross section). The bias rep-
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Fig. 1.11 A measurement scenario analogous to the one shown in the previous figure, but using a
simulated muon efficiency (shown in Fig. 1.8 by the green dashed curve) departing more signifi-
cantly from the real one. The expected cosϑ distribution (green dashed histogram) is considerably
broader than it should, leading to an acceptance-corrected distribution with a shape that clearly
favours the longitudinal polarization hypothesis.

resented in Fig. 1.10 is not very strong, so that the measured cross section is only
2.3% smaller than the true value.

The effect is much more significant on the shape of the cosϑ distribution. The
events that survive the efficiency filter used in the simulation while being rejected in
the “real experiment” are located at high | cosϑ | values, as illustrated by the broader
simulated distribution shown by the red dashed histogram in Fig. 1.10-left. This
means that, after the efficiency correction is applied, the “acceptance-corrected”
physical physical distribution, shown by the black markers in the right panel, has
a shape remarkably different from the real one, indicated by the blue curve.

If a physical conclusion had to be derived from such a measurement, with its
intermediate shape between those of the transverse and longitudinal cases, it would
be that the J/ψ event sample is not fully transversely polarized, having a compo-
nent of longitudinally polarized events. A critical look at the wavy-shaped corrected
distribution shown in Fig. 1.10-right, which does not resemble any physical shape,
should alert to the presence of a problem in the analysis. However, a measurement
based on a smaller number of events would lead to a less precise pattern, not so ob-
viously unphysical and likely to resemble the typical flat distribution of an isotropic
decay: the result would suggest the wrong conclusion that the analysed sample of
J/ψ mesons provides evidence of “unpolarized” production (a case further discussed
in Section 1.10).

Figure 1.11 shows how a sufficiently biased efficiency curve (in this case, repre-
sented in Fig. 1.8 by the green dashed curve) can even lead to a conclusion opposite
to the correct one: the acceptance-corrected cosϑ distribution tends to vanish for
cosϑ → ±1, resembling the shape expected for a fully longitudinally polarized
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Fig. 1.12 The same hypothetical measurement as shown in the previous figure but now performed
with a fiducial selection of events, imposing that the muons must have pT > 4 GeV. By exclud-
ing the delicate turn-on region of the detection efficiency, the compatibility with the transverse
polarization hypothesis is restored, at the expense of a decrease in the statistical precision of the
measurement.

particle (magenta dashed curve). If taken at face value, such a measurement would
clearly exclude the true interpretation of transverse polarization.

Even in unfortunate cases like these, where the detector effects cannot be sim-
ulated with sufficient accuracy, safer measurements can be made by avoiding the
steep turn-on region of the muon efficiency curve. Figure 1.12 shows the result of
the same analysis (still using the biased muon efficiency represented by the green
dashed curve in Fig. 1.8) but now only selecting events where both muons have
pT > 4 GeV. Applying this sharp selection of events makes the analysis insensi-
tive to the exact shape of the efficiency function, as all the selected muons are on
“the plateau” and the magnitude of the efficiency in that region is not relevant for
polarization measurements, as it only affects the normalization of the distribution.

The vastly improved agreement between the acceptance-corrected (green dashed
histogram) and the real (black histogram) cosϑ distributions, with respect to the
case shown in Fig. 1.11, comes with a price: the precision and discriminatory power
of the measurement is considerably reduced, not so much because the number of
selected events is reduced to half, but because the covered | cosϑ | domain becomes
narrower, and the central data points are the least effective in distinguishing between
different physical scenarios (in the | cosϑ | . 0.3 window, the transverse and longi-
tudinal polarization curves are barely distinguishable).

In summary, polarization measurements are delicate procedures because of their
strong sensitivity to the shapes of the functional dependences of the detection ef-
ficiencies on the relevant kinematic variables. The data analyses must find a good
balance between using the largest possible data sample, leading to maximal statis-
tical precision, and selecting a restricted phase space domain, where the efficiency
correction can be safely applied within controllable systematic uncertainties.
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1.6 Correlation between cross sections and polarizations

The discussion of the previous section can also be used to illustrate another im-
portant concept: to measure the production cross section of a particle, one needs
to know its polarization. As we can see in Figs. 1.9–1.12, selecting events where
both leptons have momenta above a certain threshold reduces the visible angular
domain of the decay distribution. Obviously, the acceptance correction cannot in-
fluence the distribution in the cosϑ domain where zero events were accepted, since
the correction is nothing more than a multiplication. Therefore, the measurement of
the total corrected yield of the particle, in a given pT and rapidity range, implies an
extrapolation beyond the cosϑ domain covered by the experiment, effectively intro-
ducing a dependence on the (assumed) polarization. In fact, what the analysis can
effectively determine by applying the acceptance/efficiency correction is the yield
of particles decaying with a polar angle satisfying the relation | cosϑ | < C, with
[−C,+C] being the region where the event distribution is not zero (its support). Of
course, the physical cross section for the production of a particle does not depend
on how the particle decays, nor on experiment-dependent cuts applied to the decay
angles. A physically meaningful cross section measurement implies, therefore, an
extrapolation to the full angular range −1 < cosϑ < +1. This procedure requires
knowing how the variable cosϑ is distributed outside of the experimentally limited
support of the cosϑ distribution; in other words, it requires knowing the particle’s
polarization.

Denoting byσC the corrected cross section obtained in the visible range [−C,+C]
and by w(cosϑ) the “true” distribution, then the full (extrapolated) cross section is
computed as

σ =

∫ +1
−1 w(cosϑ) d cosϑ∫ +C
−C w(cosϑ) d cosϑ

σC . (1.6)

In the specific case where the particle is always produced with either transverse
or longitudinal polarizations, w(cosϑ) ∝ 1 ± cos2 ϑ, we get

σ =
3 ± 1

C (3 ±C2)
σC , (1.7)

where the alternative + or − signs correspond, respectively, to the transverse and
longitudinal polarization cases.

For example, if the lepton detection imposes | cosϑ | < 0.6 as the visible cosϑ
window, the extrapolation to full phase space is represented by a scaling factor of 2.0
or 1.3, depending on which of the two extreme polarization scenarios we are con-
sidering. These are not small effects: using one or the other polarization hypothesis
leads to cross section measurements that differ by around 50%.

In reality, the angular acceptance window strongly depends on the particle’s pT
and on how large the lepton momentum cut values are, with respect to the particle’s
mass. The examples considered above addressed J/ψ mesons of pT around 10 GeV,
decaying to muons that needed to have pT larger than a threshold value similar
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Fig. 1.13 The χc2/χc1 cross section ratio measured in pp collisions at 7 TeV by ATLAS [11],
CMS [12], and LHCb [13, 14], as a function of the J/ψ pT, with acceptance corrections calcu-
lated under two extreme polarization hypotheses, one assuming the angular momentum projections
Jz(χc1) = ±1 and Jz(χc2) = ±2 (left panel), and the other Jz(χc1) = Jz(χc2) = 0 (right panel).

to the particle’s mass. In these conditions, the acceptance/efficiency effects are very
important, as we have just seen. Their relevance decreases as one studies J/ψmesons
of larger and larger pT. Much smaller effects, of the order of a few percent, are
expected in measurements of the cross section of Z bosons, if the lepton momentum
thresholds are at the level of 10–20% of the mass, as is the case in typical analyses
reported by the LHC experiments.

It is clear from these examples that the polarization dimension, that is, the decay’s
angular degrees of freedom, cannot be ignored in the measurement of the cross
section, a quantity by definition independent of the decay channel. Measurements
of differential cross sections as a function of pT and rapidity, ignoring the angular
coordinates of the decay (including the azimuthal variable ϕ, which also plays a
role in the realistic cases of more complex polarization scenarios), implicitly (and
sometimes blindly) assume a certain polarization of the particle: the one coded in
the Monte Carlo simulation program used for the determination of the acceptance
correction. This is not a minor oversight, if the particle’s polarization is not known
a priori (or not implemented in the simulation), as is often the case in studies of
production properties.

The best way to illustrate the sizeable magnitude that this effect can have is
through the use of existing measurements. Figure 1.13 shows the ratio between
the χc2 and the χc1 production cross sections measured in pp collisions at 7 TeV
by ATLAS [11], CMS [12], and LHCb [13, 14], as a function of the J/ψ pT. Both
particles were reconstructed in the decay channel χcJ → J/ψ γ.

The cross-section ratios presented in the figure were corrected for detection ac-
ceptances according to two different scenarios for the χc1 and χc2 polarizations,
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which were completely unknown when the experimental analyses were made (and
still today remain only weakly constrained). The comparison is possible thanks to
the availability, in the experimental publications, of tables from which the values
corresponding to any assumed polarizations can be obtained.

For the “pseudovector” and “tensor” quarkonia χc1 and χc2, the relations between
the angular momentum projections Jz along a given axis and the shapes of the angu-
lar distributions of their decays to J/ψ γ are different with respect to the J/ψ→ `+`−

case considered until now, besides being different among the two χcJ states. This
is a topic that will be discussed in detail in Section 6.6. Nevertheless, it is easy to
understand, by analogy with the previous discussion, that the acceptance limitations
imposed by the minimum pT requirements on the muons of the J/ψ decay, as well
as, in this case, on the radiated photon, sculpt the angular acceptance of the decay
products and lead to a dependence of the phase-space-corrected χc1 and χc2 yields
on the polarization states assumed for the two particles. There are two possible pure
polarization states for the χc1, Jz = 0 or ±1, and three for the χc2, which can also
have Jz = ±2. The assumed quantization axis is, in this case, the particle momentum
direction in the laboratory (helicity axis).

As can be seen in Fig. 1.13, selecting one or the other of these two scenarios leads
to results that differ from each other by around a factor of two (or even more than a
factor of 2.5, in the case of the ATLAS points). This is a much larger variation than
that corresponding to the combined statistical and systematic uncertainties reported
for the measurements. The remaining combinations of χc1 and χc2 pure polarizations
lead to intermediate results.

It is particularly remarkable to realize that even the level of consistency between
independent measurements changes significantly, because the experimental selec-
tion criteria defining the acceptances, and therefore the polarization dependences,
are different from one measurement to another. If the hypothesis Jz(χc1) = ±1,
Jz(χc2) = ±2 were the correct one, it should be concluded that the ATLAS and
CMS measurements, obtained in very similar rapidity ranges (|y| < 0.75 and |y| < 1,
respectively), are inconsistent with each other.

Even more surprisingly, two measurements reported by one single experiment,
LHCb, mostly differing by the method used to detect the photon, are also signifi-
cantly different. In the first measurement [13], the photons are reconstructed from
energy deposits in the electromagnetic calorimeter (“LHCb ECAL”, green stars in
Fig. 1.13). In the second [14], the photon converts to a e+e− pair that is then recon-
structed from the hits left in the tracker layers (“LHCb conversions”, pink squares
in the figure). The first result is around a factor of 1.4 higher than the second. These
differences reflect the fact that the detection acceptance corrections (i.e. the factors
needed to extrapolate the fiducial measurements, made in regions defined by the
photon kinematics, to the reported χc phase space window) depend on the minimum
energy that the photons must have in order to be accepted by the analyses and on the
coverage of the detectors used in the measurement. In particular, converted photons
emitted at relatively large angles often lead to e+e− pairs where one of the electrons
is outside of the detection area. The polarization hypothesis Jz(χc1) = Jz(χc2) = 0,
on the other hand, provides a much more consistent account of the experimental
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picture, also being better in this respect than any of the remaining Jz(χc1), Jz(χc2)
combinations (not shown in the figure).

Therefore, perhaps surprisingly, the strong correlation between acceptance cor-
rection and polarization effectively turns this set of cross section measurements into
an experimental constraint on the χc1 and χc2 polarizations: the requirement of mu-
tual compatibility between measurements strongly favours one scenario over the
others, in a way that can be quantitatively evaluated through an analysis that si-
multaneously considers all the experimental measurements, properly accounting for
(correlated and uncorrelated) systematic and statistical uncertainties, as well as other
relevant details. Interestingly, this indirect indication was confirmed and strength-
ened by the first (and as yet unique) direct experimental constraints on the χc1 and
χc2 polarizations, recently obtained by CMS in an analysis devoted to the study of
the decay angular distributions of these two mesons [15].

1.7 The two-dimensional angular distribution

In the previous sections we presented simple “base” cases, where the decaying state
is a pure angular momentum eigenstate and the resulting decay distributions depend
on cosϑ but not on ϕ. We will now move to a more general case, leading also to
a possible azimuthal anisotropy, using the same notations and definitions as before
and limiting the discussion to the parity conserving case, here illustrated with the
dilepton decay of a J/ψ meson.

We consider the case of a J/ψ formed as a generic superposition of the three J = 1
eigenstates, Jz = +1, −1, 0, with respect to the polarization axis z,

|J/ψ〉 =
∑

M=0,±1

aM |J/ψ; 1, M〉z . (1.8)

The dilepton system, eigenstate of Jz′ with eigenvalue L′ = +1 or −1 for helic-
ity conservation, is a superposition of eigenstates of Jz, according to the relation
(Eq. 1.5 in compact form)

|`+`−; 1, L′〉z′ =
∑

L=0,±1

D1
L L′ (ϑ, ϕ) |`+`−; 1, L〉z . (1.9)

The amplitude AL′ = z′〈`
+`−; 1, L′ | B | J/ψ〉z of the process J/ψ → `+`−(L′) is,

therefore,

AL′ =
∑

M=0,±1

aM

∑
L=0,±1

D1∗
LL′ (ϑ, ϕ) z〈`

+`−; 1, L | B | J/ψ; 1,M〉z

∝
∑

M=0,±1

aMD
1∗
ML′ (ϑ, ϕ) ,

(1.10)
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where the transition operator B has the main effect of imposing angular momentum
conservation,

z〈`
+`−; 1, L | B | J/ψ; 1,M〉z = B δM L ,

with B independent of M because of rotational invariance.
The transition probability is obtained by squaring Eq. 1.10 and summing over the

(unobserved) spin alignments (L′ = ±1) of the dilepton system, with equal weights
attributed to the two configurations, to respect parity conservation. Using Eq. 1.2,
with

d1
0,±1 = ± sinϑ/

√
2 ,

d1
±1,±1 = (1 + cosϑ)/2 , and

d1
±1,∓1 = (1 − cosϑ)/2

(1.11)

(from Eq. 1.3 or Table 7.3), we obtain the angular distribution

W(cosϑ, ϕ) ∝
∑

L′=±1

|AL′ |
2 ∝

N

(3 + λϑ)
×

(
1 + λϑ cos2 ϑ + λϕ sin2 ϑ cos 2ϕ + λϑϕ sin 2ϑ cosϕ (1.12)

+ λ⊥ϕ sin2 ϑ sin 2ϕ + λ⊥ϑϕ sin 2ϑ sinϕ
)
,

with N = |a0|
2 + |a+1|

2 + |a−1|
2 and

λϑ =
N − 3|a0|

2

N + |a0|
2 ,

λϕ =
2 Re[a∗

+1a−1]
N + |a0|

2 ,

λϑϕ =

√
2 Re[a∗

+1a0 − a∗0a−1]
N + |a0|

2 , (1.13)

λ⊥ϕ =
2 Im[a∗

+1a−1]
N + |a0|

2 ,

λ⊥ϑϕ =

√
2 Im[a∗

+1a0 − a∗0a−1]
N + |a0|

2 .

The resulting angular distribution has, therefore, five λ shape parameters, a num-
ber consistent with the three complex amplitudes defining the decay state of Eq. 1.8:
three moduli and two of the three complex phases, which can be arbitrarily re-
defined by applying any common offset. Only two relative phases are physically
relevant (for instance, those of a+1 and a−1 with respect to that of a0).
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The parameters λϕ, λϑϕ, λ⊥ϕ , and λ⊥ϑϕ describe the azimuthal anisotropy of the
distribution. In particular, the two parameters carrying the superscript ⊥ represent
asymmetries with respect to the yz plane (see Fig. 1.4), which is perpendicular to
the plane (zx) providing the reference to measure ϕ. As will be further emphasized
in Section 1.11 and Chapter 2, in most experiments, where no possibility exists to
detect physical asymmetries with respect to the yz plane, these parameters are com-
pletely suppressed because of event-by-event smearing and become unobservable.
The parameters λϑ, λϕ, and λϑϕ are always observable (with suitable experimental
definitions of the reference axes) and are the only ones considered in the majority
of the measurements.

1.8 Addition rules for the polarization parameters

The expression of the angular distribution derived in the previous section is valid
when the decaying particle is always produced, in each event of the observed sam-
ple, in the same angular momentum state, defined by Eq. 1.8.

More generally, however, the particles composing the sample can result from
the superposition of different production processes, corresponding to more or less
different physics mechanisms, each one yielding J/ψ mesons in a specific angular
momentum state.

In the presence of n contributing production processes, with corresponding
weights f (i), the observable distribution is the weighted sum of the normalized “el-
ementary” decay distributions, W (i)(cosϑ, ϕ), corresponding to single subprocesses
producing definite angular momentum states

∑
M=0,±1 a(i)

M |1, M〉z,

W(cosϑ, ϕ) =

n∑
i=1

f (i) W (i)(cosϑ, ϕ) , (1.14)

where

W (i)(cosϑ, ϕ) ∝
N (i)

3 + λ(i)
ϑ

(
1 + λ(i)

ϑ
cos2 ϑ

+ λ(i)
ϕ sin2 ϑ cos 2ϕ + λ(i)

ϑϕ
sin 2ϑ cosϕ (1.15)

+ λ⊥(i)
ϕ sin2 ϑ sin 2ϕ + λ⊥(i)

ϑϕ
sin 2ϑ sinϕ

)
and the expressions of the anisotropy parameters, λ(i)

ϑ
, λ(i)

ϕ , λ(i)
ϑϕ

, etc., are the same
as in Eq. 1.13 with the index (i) added to decay parameters and component am-
plitudes a(i)

M . Expanding Eq. 1.14 and collecting the terms with the same angular
dependence, we see that the resulting angular distribution, describing the decay of
the considered mixture of particles, formally maintains the same shape as for one
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individual process,

W(cosϑ, ϕ) ∝
1

3 + λϑ

(
1 + λϑ cos2 ϑ

+ λϕ sin2 ϑ cos 2ϕ + λϑϕ sin 2ϑ cosϕ (1.16)

+ λ⊥ϕ sin2 ϑ sin 2ϕ + λ⊥ϑϕ sin 2ϑ sinϕ
)
,

but the meaning of the observable parameters is obviously different. Now, each of
the five parameters, X = λϑ, λϕ, λϑϕ, λ⊥ϕ , and λ⊥ϑϕ, is a weighted average of the
corresponding parameters characterizing the single subprocesses, X(i):

X =

n∑
i=1

f (i)N (i)

3 + λ(i)
ϑ

X(i)
/ n∑

i=1

f (i)N (i)

3 + λ(i)
ϑ

. (1.17)

It should be noted that, in this general “addition rule” for the five anisotropy param-
eters, the weight always contains the factor 1/(3 + λ(i)

ϑ
), which depends on the polar

anisotropy.

1.9 Alternative determinations of the anisotropy parameters

There are situations where, for several possible reasons, it is not convenient to
determine the anisotropy parameters of the angular distribution through a multi-
parameter fit of the measured data to Eq. 1.12. In such cases, it might be better to
use one of the formulas presented in this section.

To start with, the integration over either ϕ or cosϑ leads to the one-dimensional
angular distributions

w(cosϑ) ∝ 1 + λϑ cos2 ϑ (1.18)

and

w(ϕ) ∝ 1 +
2λϕ

3 + λϑ
cos 2ϕ +

2λ⊥ϕ
3 + λϑ

sin 2ϕ , (1.19)

from which λϑ, λϕ and λ⊥ϕ can be determined in two independent steps, possibly
improving the stability of the fits in analyses of small event samples. The “diagonal”
terms, λϑϕ and λ⊥ϑϕ, vanish in both these integrations. They can be extracted, for
example, through the angular variable ϕ̃, defined as

ϕ̃ =

ϕ −
3
4π for cosϑ < 0

ϕ − π
4 for cosϑ > 0

(1.20)
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(adding 2π if ϕ̃ < −π, when ϕ̃ is defined in the range [−π, π]), by measuring the
distribution

w(ϕ̃) ∝ 1 +

√
2 λϑϕ

3 + λϑ
cos ϕ̃ +

√
2 λ⊥ϑϕ

3 + λϑ
sin ϕ̃ . (1.21)

The five anisotropy parameters can also be determined from the asymmetries
between the event populations of two complementary angular topologies (which are
equiprobable in the unpolarized case):

P(| cosϑ| > 1/2) − P(| cosϑ| < 1/2)
P(| cosϑ| > 1/2) + P(| cosϑ| < 1/2)

=
3
4

λϑ
3 + λϑ

,

P(cos 2ϕ > 0) − P(cos 2ϕ < 0)
P(cos 2ϕ > 0) + P(cos 2ϕ < 0)

=
2
π

2λϕ
3 + λϑ

,

P(sin 2ϕ > 0) − P(sin 2ϕ < 0)
P(sin 2ϕ > 0) + P(sin 2ϕ < 0)

=
2
π

2λ⊥ϕ
3 + λϑ

, (1.22)

P(sin 2ϑ cosϕ > 0) − P(sin 2ϑ cosϕ < 0)
P(sin 2ϑ cosϕ > 0) + P(sin 2ϑ cosϕ < 0)

=
2
π

2λϑϕ
3 + λϑ

,

P(sin 2ϑ sinϕ > 0) − P(sin 2ϑ sinϕ < 0)
P(sin 2ϑ sinϕ > 0) + P(sin 2ϑ sinϕ < 0)

=
2
π

2λ⊥ϑϕ
3 + λϑ

.

In analyses applying efficiency corrections to the reconstructed angular spectra,
the use of these formulas may require an iterative re-weighing of the Monte Carlo
data, in order to compensate for the effect of the non-uniformity of those experimen-
tal corrections. In “perfect” experiments, with uniform acceptance and efficiencies
over cosϑ and ϕ (such as in Monte Carlo studies at the generation level), the param-
eters can be obtained from the average values of the one-dimensional distributions
of suitable angular combinations, by inverting the following relations:

〈 cos2 ϑ 〉 =
1 + 3

5λϑ

3 + λϑ
,

〈 cos 2ϕ 〉 =
λϕ

3 + λϑ
,

〈 sin 2ϕ 〉 =
λ⊥ϕ

3 + λϑ
,

〈 sin 2ϑ cosϕ 〉 =
4
5

λϑϕ

3 + λϑ
,

〈 sin 2ϑ sinϕ 〉 =
4
5

λ⊥ϑϕ

3 + λϑ
.

(1.23)
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1.10 The “unpolarized” case

An interesting feature of the expressions shown in Eq. 1.13 is that it is impossible
to choose the component amplitudes aM such that all λ parameters in Eq. 1.12 van-
ish simultaneously. For the following discussion we will adopt the convenient (and
always possible) definition where the M = 0 component a0 is real. We can see from
Eq. 1.13 that the condition λϑϕ = λ⊥ϑϕ = 0 (that is, a0(a∗

+1 − a−1) = 0) implies that
either a0 = 0 or a∗

+1 = a−1. The first case leads to λϑ = +1. In the second case,
to obtain also λϕ = λ⊥ϕ = 0 (a∗

+1a−1 = 0) we need that both a+1 and a−1 vanish, in
which case λϑ = −1.

This means that the angular distribution of the dilepton decay of a J = 1 state pro-
duced always in a single angular momentum state, defined by the three component
amplitudes aM , is never isotropic (that is, spherical). This fact can be formalized
with the following theorem [16, 17]:

Theorem 1.1. For any production mechanism where a J = 1 particle is pro-
duced as a single, completely generic angular momentum state

|V〉 = a−1 |1, −1〉 + a0 |1, 0〉 + a+1 |1, +1〉 , (1.24)

there always exists a quantization axis, z?, along which the Jz = 0 component
a0 vanishes.

For its mathematical verification we continue to use the convention of a real a0.
It can then be checked directly, using the formalism of the Wigner matrices, how
the state of Eq. 1.24 changes by the rotation defined by the angles ϕ? and ϑ?, with

cosϑ? =
R+R− + I+I−√

2a2
0(R2

+ + I2
−) + (R+R− + I+I−)2

,

cosϕ? =
R+√

R2
+ + I2

−

, sinϕ? = −
I−√

R2
+ + I2

−

,

(1.25)

where R± = Re(a+1 ± a−1) and I± = Im(a+1 ± a−1). The a0 component indeed van-
ishes after this new choice of polarization axis. This means, in particular, according
to Eq. 1.13, that with this rotation we obtain λϑ = +1, because the state will have
only Jz = ±1 components. In other words, there is always a quantization axis along
which the polarization of a vector state is transverse. This result is, in fact, a nat-
ural consequence of the “vectorial” nature of the particle, and a nice illustration of
the correspondence to the classical case: a unit-modulus vector will always have
projection ±1 along some reference axis.

The theorem does not imply that it is physically impossible to observe isotropic
decay distributions of a vector particle. An ensemble of different states suitably
mixed together can produce a globally isotropic decay distribution. To illustrate
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a) b)
z
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Fig. 1.14 Examples of isotropic angular distributions produced by the dilepton decay of a vector
state. Left: Sum of transverse and longitudinal cases, in 2-to-1 proportions. Right: Sum of the
distributions, proportional to 1 ± 1

2 sin 2ϑ cosϕ, produced by the states |J/ψ〉 =
√

2/3 |1, +1〉z +
√

1/3 |1, 0〉z and |J/ψ〉 =
√

2/3 |1, −1〉z +
√

1/3 |1, 0〉z. In both mixtures, the Jz = +1, −1 and 0
projections are equally probable.

this observation, we will now consider a few examples of angular distributions re-
sulting from the superposition of different production processes, each one yielding
J/ψ mesons in a specific angular momentum state.

Using the addition rules introduced in the previous section, we can realize that a
simple way to obtain an isotropic decay distribution is to consider a mixture of pure
“longitudinal” and “transverse” eigenstates, |J/ψ〉 = |1, 0〉z, |1, +1〉z, and |1, −1〉z,
the first one giving W(cosϑ, ϕ) ∝ 1 − cos2 ϑ, i.e. λϑ = −1, and the other two giving
W(cosϑ, ϕ) ∝ 1 + cos2 ϑ, i.e. λϑ = +1, with all other parameters being zero.

The “democratic” choice of taking an equal mixture of these three states gives
the desired result. This corresponds to having two λϑ parameters, λ(1)

ϑ
= −1 with

weight f (1) = 1/3 and λ(2)
ϑ

= +1 with weight f (2) = 2/3, to be summed using the
rule of Eq. 1.17, here rewritten in the n = 2 case:

λϑ =

 f (1)λ(1)
ϑ

3 + λ(1)
ϑ

+
f (2)λ(2)

ϑ

3 + λ(2)
ϑ

 /  f (1)

3 + λ(1)
ϑ

+
f (2)

3 + λ(2)
ϑ

 . (1.26)

The result is that λϑ vanishes, as do all the other parameters. This condition is
referred to as “unpolarized” production: the particle is a superposition of the three
pure polarization states with equal probabilities and, consequently, the decay distri-
bution is isotropic, as illustrated in Fig. 1.14-left.

However, this is not the only possible choice that gives an isotropic decay dis-
tribution. For example, the two states |J/ψ〉 =

√
2/3 |1, +1〉z +

√
1/3 |1, 0〉z and

|J/ψ〉 =
√

2/3 |1, −1〉z +
√

1/3 |1, 0〉z yield, respectively, angular distributions pro-
portional to 1 + 1/2 sin 2ϑ cosϕ and 1 − 1/2 sin 2ϑ cosϕ (that is, λϑϕ = +1 and
−1, all other parameters being zero), and the superposition of two such distribu-
tions is isotropic, as shown in Fig. 1.14-right. Note that, in the ensemble of the two



1.10 The “unpolarized” case 29

z

yx

Fig. 1.15 Anisotropic shape of the decay distribution proportional to 1 + 1/2 sin2 ϑ cos 2ϕ, pro-
duced by the state |J/ψ〉 =

√
1/3 |1, +1〉z +

√
1/3 |1, −1〉z +

√
1/3 |1, 0〉z.

states, the components Jz = +1, −1, and 0 have identical total probabilities. Exper-
imentally, it is generally not possible to distinguish between these two examples of
resulting isotropic distribution, and both are equally considered to represent “unpo-
larized” production.

It is interesting to see that a state definition as “democratic” as the one of the
first example above, but this time concerning the components of a single angular
momentum state, does not produce an isotropic distribution. Indeed, according to
Eq. 1.13, the state |J/ψ〉 =

√
1/3 |1, +1〉z +

√
1/3 |1, −1〉z +

√
1/3 |1, 0〉z, with identi-

cal probabilities (squared amplitudes) for the three Jz components, produces a very
anisotropic distribution, shown in Fig. 1.15, with all parameters vanishing except
for λϕ = 1/2. We certainly need the superposition of at least two different angular
momentum configurations, produced together, in order to obtain an “unpolarized
particle”. The example just considered shows that the very definition of the concept
of “unpolarized particle” is not straightforward, if we try to give it in terms of the
angular momentum configuration of the decaying particle. In practice, the most rea-
sonable and intuitive definition is the one based on the condition that the resulting
angular distribution is isotropic.

We can conclude that the dilepton decay distribution produced by a vector parti-
cle is intrinsically anisotropic. Even if it is possible that a superposition of different
production processes leads to a cancellation of all decay parameters, as in the ex-
amples shown above, this is, in general, a non-trivial physical scenario. Unpolarized
production is, therefore, a very peculiar physics case.

On the other hand, it can also happen that an intrinsically polarized production
process is observed as exactly unpolarized, because of a peculiar choice of the po-
larization frame. When the latter is defined in a way that is completely decorrelated
from the “natural” polarization direction (or from the direction of the z? axis of
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the above theorem), a randomization effect is created, making all observable shape
parameters vanish.

We will see in Chapter 6 that the measurement of (seemingly) unpolarized pro-
duction becomes possible in certain kinds of experimental analyses, where some
degrees of freedom of the decay process are integrated over (for example, in cas-
cade decays with unobserved intermediate states).

It is also important to remark that, strictly speaking, the statement “the decay
distribution of an individual J = 1 particle configuration is alway anisotriopic”
should be considered in the context of the dilepton decay case. More generally, a
necessary condition for the observability of the polarization state of the decaying
particle it that the final state, system of the two decay products, is “polarized”. That
is the case of the dilepton decays, where helicity conservation effectively means that
the dilepton system has Jz′ = ±1.

As will be discussed in detail in Chapter 7, most cases of physical interest are
indeed represented by decays to “polarized” final states (i.e. non-democratic super-
positions of spin orientations) and it is thanks to this condition that the polarization
of the mother particle is fully reflected in an anisotropy of the decay angular distribu-
tion. Indeed, we will see that the specific relation between the anisotropy parameters
and the polarization of the mother particle is completely different for different decay
channels.

1.11 Parity-violating decay distribution

In the most general case, the decay of a vector particle into a fermion-antifermion
pair contains parity-violating terms. Its derivation is very similar to the one of the
parity-conserving case, seen in Section 1.7. The only modification consists in keep-
ing track of the sign of L′ (which can be either +1 or −1) in Eq. 1.10: the amplitudes
aM are now replaced with L′-dependent ones, aM,L′ , describing the angular momen-
tum configuration of the decaying state (having Jz eigenvalue equal to M) and of
the two-fermion system (with Jz′ eigenvalue L′).

Beginning with the case of a single production “subprocess”, denoted by the
index (i), the decay angular distribution is, then,

W (i)(cosϑ, ϕ) ∝
N (i)

(3 + λ(i)
ϑ

)
(1 + λ(i)

ϑ
cos2 ϑ +

+ λ(i)
ϕ sin2 ϑ cos 2ϕ + λ(i)

ϑϕ
sin 2ϑ cosϕ

+ λ⊥(i)
ϕ sin2 ϑ sin 2ϕ + λ⊥(i)

ϑϕ
sin 2ϑ sinϕ

+ 2A(i)
ϑ

cosϑ + 2A(i)
ϕ sinϑ cosϕ + 2A⊥(i)

ϕ sinϑ sinϕ) ,

(1.27)

with
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λ(i)
ϑ

= 1/D(i) × [N (i) − 3(|a(i)
0,+1|

2 + |a(i)
0,−1|

2)] ,

λ(i)
ϕ = 2/D(i) ×Re[a(i)∗

+1,+1a(i)
−1,+1 + a(i)∗

+1,−1a(i)
−1,−1] , (1.28)

λ⊥(i)
ϕ = 2/D(i) × Im[a(i)∗

+1,+1a(i)
−1,+1 + a(i)∗

+1,−1a(i)
−1,−1] ,

λ(i)
ϑϕ

=
√

2/D(i) ×Re[a(i)∗
+1,+1a(i)

0,+1 + a(i)∗
+1,−1a(i)

0,−1 − a(i)∗
0,+1a(i)

−1,+1 − a(i)∗
0,−1a(i)

−1,−1] ,

λ⊥(i)
ϑϕ

=
√

2/D(i) × Im[a(i)∗
+1,+1a(i)

0,+1 + a(i)∗
+1,−1a(i)

0,−1 − a(i)∗
0,+1a(i)

−1,+1 − a(i)∗
0,−1a(i)

−1,−1] ,

A(i)
ϑ

= 1/D(i) × [|a(i)
+1,+1|

2 + |a(i)
−1,−1|

2 − |a(i)
+1,−1|

2 − |a(i)
−1,+1|

2] ,

A(i)
ϕ =

√
2/D(i) ×Re[a(i)∗

+1,+1a(i)
0,+1 − a(i)∗

+1,−1a(i)
0,−1 + a(i)∗

0,+1a(i)
−1,+1 − a(i)∗

0,−1a(i)
−1,−1] ,

A⊥(i)
ϕ =

√
2/D(i) × Im[a(i)∗

+1,+1a(i)
0,+1 − a(i)∗

+1,−1a(i)
0,−1 + a(i)∗

0,+1a(i)
−1,+1 − a(i)∗

0,−1a(i)
−1,−1] ,

where N (i) =
∑

M,L′ |a
(i)
M,L′ |

2 and D(i) = N (i) + |a(i)
0,+1|

2 + |a(i)
0,−1|

2.
Parity-violating effects are parametrized by the coefficients A(i)

ϑ
, A(i)

ϕ , and A⊥(i)
ϕ

now appearing in the expression when a(i)
M,+1 , a(i)

M,−1. These parameters vanish when
the produced state has a pure Jz = 0 angular momentum projection along the chosen
axis (that is, all coefficients a(i)

±1,L′ are zero), as expected from the description made
in Section 1.3, where we saw that the shape of the decay distribution is in that case
a perfectly symmetric “donut”, invariant by reflection about any of the principal
planes (Fig. 1.6). This symmetry is lost (Fig. 1.7-c) only when at least one of the
Jz = +1 or Jz = −1 components is nonzero and they are different from one another.

In the presence of n contributing production processes with weights f (i), the
resulting observable distribution has a general expression formally analogous to
Eq. 1.27:

W(cosϑ, ϕ) ∝
1

(3 + λϑ)
(1 + λϑ cos2 ϑ

+ λϕ sin2 ϑ cos 2ϕ + λϑϕ sin 2ϑ cosϕ (1.29)

+ λ⊥ϕ sin2 ϑ sin 2ϕ + λ⊥ϑϕ sin 2ϑ sinϕ

+ 2Aϑ cosϑ + 2Aϕ sinϑ cosϕ + 2A⊥ϕ sinϑ sinϕ) .

The observable coefficients, X = λϑ, λϕ, λϑϕ, λ⊥ϕ , λ⊥ϑϕ, Aϑ, Aϕ, and A⊥ϕ are weighted
averages of the corresponding single-subprocess parameters, X(i), calculated accord-
ing to the rule of Eq. 1.17.

In inclusive production studies, where the decaying particle is the only observed
object (together with its decay products), the zx (production) plane, containing the
directions of the colliding hadrons as seen in the particle’s rest frame, represents
a symmetry plane for the angular distribution if parity-violating effects are absent:
the observed event distribution must be symmetric by reflection with respect to it.
Therefore, not only the coefficients Aϑ, Aϕ, and A⊥ϕ , but also λ⊥ϕ and λ⊥ϑϕ, multi-
plying terms that are asymmetric by the reflection transformation ϕ → ϕ + π, are
unobservable, because they vanish on average.
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In these considerations we are, actually, excluding an entire category of experi-
mental studies, performed using collisions involving polarized beams and/or targets.
When, for example, the target contains polarized nucleons, their preferred spin di-
rection effectively defines an additional plane, besides the production plane, provid-
ing a reference for physically meaningful azimuthal anisotropies. With two distinct
physical reference planes, angular distribution terms proportional to sin2 ϑ sin 2ϕ
and sin 2ϑ sinϕ become observable and possibly significant, even in fully parity-
conserving processes.

These anisotropies, corresponding to those here parametrized by λ⊥ϕ and λ⊥ϑϕ,
are the main focus of vector boson and Drell–Yan measurements in polarized col-
lisions [18, 19], which address several aspects of perturbative and nonperturba-
tive QCD, including the measurement of pT dependent parton distribution func-
tions [20, 21]. In most of the examples and discussions presented in this book
we will, however, neglect the possible existence of such effects and assume that
λ⊥ϕ = λ⊥ϑϕ = 0, implicitly referring to cases where the decaying particle is produced
in unpolarized collisions.

In the more general case when parity is not conserved, as in the Z/γ∗ → `` and
W → `ν decays, event-by-event topological asymmetries with respect to the ex-
perimental production plane can result in nonzero values of the observed λ⊥ϕ and
λ⊥ϑϕ, even if these coefficients, as well as A⊥ϕ , are expected to remain negligible be-
cause of the kinematic averaging. This should be true at least at midrapidity, where
the measurement is completely insensitive to the direction of the valence quark in
quark-antiquark and quark-gluon scattering, the only direction that may provide a
possible reference for an asymmetry with respect to the production plane.

In summary, in inclusive measurements the observable di-fermion distribution
is described, in first approximation, by five coefficients: the three “spin-alignment”
parameters λϑ, λϕ and λϑϕ, containing information about the average angular mo-
mentum composition of the decaying particle, and the two “parity-asymmetry” pa-
rameters Aϑ and Aϕ, expressing the parity properties of the decay. The remaining
three parameters represent second-order corrections.

It can be experimentally convenient, when the detector itself does not induce
“parity-violating” acceptance effects on the distributions of the decay fermions, to
measure the following simple asymmetries between integrated event yields, related
to Aϑ, Aϕ, and A⊥ϕ :

Acosϑ =
N(cosϑ > 0) − N(cosϑ < 0)
N(cosϑ > 0) + N(cosϑ < 0)

=
3 Aϑ

3 + λϑ
,

Acosϕ =
N(cosϕ > 0) − N(cosϕ < 0)
N(cosϕ > 0) + N(cosϕ < 0)

=
3 Aϕ

3 + λϑ
,

Asinϕ =
N(sinϕ > 0) − N(sinϕ < 0)
N(sinϕ > 0) + N(sinϕ < 0)

=
3 A⊥ϕ

3 + λϑ
.

(1.30)
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These quantities are physically constrained between −3/4 and 3/4. They cannot
reach the extreme values −1 or +1 because the distribution of, for example, cosϑ
can never be fully restricted to one of the two hemispheres, cosϑ < 0 or cosϑ > 0.
In fact, the function 1+cos2 ϑ±2 cosϑ, polar projection of W when parity violation
is maximum, remains nonzero for all cosϑ values between −1 and +1; even if it is
peaked at ±1, its “tail” reaches ∓1.

The observableAcosϑ is the so-called forward-backward asymmetry,AFB, stud-
ied, for example, in experimental analyses of direct Z/γ∗ and W production. It is
worth emphasizing that the parameters λϑ, Aϑ, etc., need to be determined from the
analysis of the angular distributions, measured with a sufficiently large number of
bins (the minimum number of bins being four in the case of the cosϑ distribution
and two if we resort to the | cosϑ | distribution). Ideally, also the forward-backward
asymmetry, AFB, should be extracted from a differential cosϑ pattern, just as it is
done for Aϑ (Eq. 1.30):AFB = 3Aϑ / (3 + λϑ).

Instead, evaluating AFB as the asymmetry in the event yields among only two
cosϑ bins (cosϑ > 0 and cosϑ < 0) is equivalent to fitting the cosϑ distribution
between −1 and +1 using only two bins, each of them of width unity: the polar
anisotropy λϑ remains undetermined. This simplification can lead to biased results,
depending on necessary hypotheses regarding the distributions of the variables that
have been integrated out. This potentially risky procedure should be complemented
by a series of careful systematic studies, as in all cases where a detailed differential
measurement is replaced by the simpler determination of integrated distributions or
quantities. Possible pitfalls of simplified analysis approaches integrating out relevant
degrees of freedom are discussed in Section 2.13.

1.12 Recapitulation

By measuring the shape of the dilepton decay distribution of a vector particle we can
determine the angular momentum state (Jz projection) in which it was produced, that
is, its polarization.

The measurement is performed by collecting many dilepton events and building
the statistical distribution of the spherical coordinates cosϑ and ϕ of the lepton di-
rection in the particle’s rest frame. The several possible choices of reference defining
the coordinate system will be discussed in detail in the next chapter.

The relation between angular distribution and state of polarization simply de-
scends from angular momentum conservation and, in the case of the dilepton decay,
helicity conservation, according to which the dilepton system has Jz′ = ±1 (never
0) along the common lepton-antilepton direction in the rest frame of the decaying
particle (Fig. 1.3).

The two simplest cases of polarization are the so called “transverse” (Jz = ±1)
and “longitudinal” ones, characterized by distributions of the kind 1 + cos2 ϑ and
1−cos2 ϑ with respect to the chosen quantization axis, when parity-violating effects
are absent (Figs. 1.6 and 1.7).
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More generally, when the decaying particle is a superposition of different Jz

eigenstates (or, as will be seen in the next chapter, when the polarization is natu-
rally transverse or longitudinal along an axis different from the one adopted for the
measurement), the angular distribution can assume a continuous variety of shapes
(Eq. 1.16), with one term describing the polar-angle dependence, 1+λϑ cos2 ϑ (with
−1 < λϑ < +1), and additional terms representing azimuthal anisotropies (that van-
ish by integration over the azimuthal angle ϕ).

The number of observable azimuthal parameters depends on the geometrical
symmetry of the experiment: they are two, λϕ and λϑϕ, when there is no other sym-
metry plane than the production plane, and can become four, including also λ⊥ϕ and
λ⊥ϑϕ, when further external physical references exist, as in collisions between polar-
ized hadrons or in indirect production via cascade decays.

In the presence of parity-violating effects, the maximum number of shape param-
eters becomes eight, adding to the count the asymmetries Aϑ, Aϕ, and A⊥ϕ (Eq. 1.29).

Different production mechanisms can coexist, each leading to a different angular
momentum configuration of the observed decaying particle. A non-linear sum rule
(Eq. 1.17) gives the resulting overall anisotropy parameters as a function of those of
the individual processes.

The superposition of at least two different angular momentum configurations
(Fig. 1.14) is necessary to explain the hypothetical case of a completely isotropic
decay distribution, where all eight parameters vanish (“unpolarized case”). Vector
states are, in fact, always intrinsically polarized (Theorem 1.1), as also suggested
by the analogy with the classical case of the angular momentum vector, which has
always nonzero projection along some axis (provided that its modulus is not zero).
With respect to the hypothesis of a superposition of processes conspiring to exactly
cancel the anisotropy effects, a more natural way of explaining the observation of a
fully isotropic distribution is through smearing or randomization phenomena, due to
limitations or peculiarities of the observation process rather than to intrinsic proper-
ties of the production mechanism, as will be discussed in Chapter 6.

In the data analyses it is necessary to take into account the sculpting effects
created by the minimum-momentum requirements imposed by experimental con-
straints (Figs. 1.8 and 1.9), including the detection acceptance and efficiency limita-
tions (caused by the magnetic field, material budget, angular coverage, trigger and
data-acquisition bandwidth, etc.), as well as by the “offline” analysis selection crite-
ria applied to the decay leptons, aimed, for instance, at improving the signal purity
by rejecting background events.

These spurious modulations must be reproduced with accurate simulations and
corrected for. The shape of the resulting angular distribution is extremely sensitive
to even small biases in the description of the detection efficiency, especially if the
applied lepton momentum thresholds are of the same order or larger than the mass
of the decaying particle. Seemingly small inaccuracies, which would produce an
almost unnoticeable change in the measurement of an integrated particle yield (pro-
duction cross section) can have a large effect on the measured angular distribution, to
the point that wrong physical conclusions might be derived from the measurement,
regarding the particle’s polarization: a transversely polarized particle could be seen
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as longitudinal, or vice versa, and unphysical results could be obtained (Figs. 1.10–
1.12).

Lepton acceptance limitations are also responsible for a strong dependence of
the cross section measurements on the polarization assumed in the generation of the
simulated event samples used to evaluate their correction (Eq. 1.7). If the polariza-
tion is not known or well measured, the arbitrary assumption of a given polarization
scenario (for example, the unpolarized one that is often chosen to report results)
does not lead, in general, to a correct physical result and may even create apparent
experimental inconsistencies between measurements adopting the same (wrong) hy-
pothesis (Fig. 1.13).

Difficulties often faced by the experimental analyses, and non-trivial pitfalls to
be avoided, will continue to be mentioned throughout the remainder of the book.
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Chapter 2
Reference frames and transformations

In the previous chapter, the particle’s polarization state and the resulting shape of the
decay distribution were referred to an abstract set of axes, without specifying their
relations to physical directions. We will now discuss the possible physical choices
of reference frames in a real experiment. In particular, we review different options
for defining the polarization axis z, reflecting the topologies of different kinds of
production mechanisms. We also call attention to the convention on the orientation
of the y axis and its often neglected consequences on the observable value of λϑϕ.
We then explain how the observed anisotropy parameters of the decay distribution
of a vector particle depend on the choice of the polarization frame, as well as, in
general, on the particle’s laboratory momentum.

With several examples, including simulated experiments reproducing the condi-
tions of real measurements, we will address the following questions.

• What are the disadvantages of a simple measurement only determining the polar
anisotropy and integrating out the azimuthal dimension? In what ways can the
possibility of physically interpreting the results be limited by this shortcut? Are
there also consequences on the very reliability of the analysis results?

• If it is true that the choice of the reference frame is arbitrary, does this mean that
it can be done blindly, because, irrespectively of it, the result will provide the
same immediate physical indications?

• Moreover, are all reference frames completely equivalent from the point of view
of the acceptance and efficiency sculpting effects mentioned in the previous chap-
ter, or can there be a frame offering advantages for the analysis?

The chapter ends reporting frame transformation relations that are more general
than the ones between experimentally relevant polarization frames, to be used in
later chapters.
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2.1 The choice of the reference frame

In the two-body decay of a vector particle, the shape of the angular distribution of
the back-to-back decay products directly reflects the particle polarization, as seen in
the previous chapter. The measurement of the shape parameters λϑ, λϕ, λϑϕ, etc., of
the distribution (Eq. 1.16) requires the choice of a coordinate system in the particle
rest frame, with respect to which the momentum of one of the two decay products
is expressed in spherical coordinates (Fig. 1.4). While the choice is arbitrary, it can
have a strong influence on the numerical results of the measurement and, therefore,
on their interpretation.

The observation frame is built using physical reference directions, as seen in the
particle rest frame. The variety of the usable directions depends on the experiment
and on the process under consideration. In this chapter we will consider the case
of an experiment measuring the “inclusive” production of a vector particle V , that
is, processes of the kind h1h2 → V + X, where h1h2 is the collision system and
X represents whatever ensemble of particles is produced together with V . The par-
ticles X are ignored in the analysis and no distinction is made between processes
producing V directly in the collision and those where V is actually coming from
the decay of another particle. This is, for example, the case of most measurements
of quarkonium, Drell–Yan and Z boson production in proton-(anti)proton, proton-
nucleus, pion-nucleus, and nucleus-nucleus collisions, based on data collected in
fixed-target or collider experiments conducted at, for example, Fermilab and CERN.
Specific frame definitions are needed for more detailed process descriptions, such
as, for instance, when explicitly considering cascade decay sequences, a topic we
will address in Chapter 6.

In inclusive production measurements using events from unpolarized hadron col-
lisions (i.e. not involving polarized beams nor polarized targets), the only reasonable
physical reference directions are those provided by the momenta of the two colliding
beams (or of beam and target) as seen from the V rest frame. These are two distinct
directions (if V is produced with a non-negligible transverse momentum) and form
the “production plane”, which imposes itself as the reference plane of Fig. 1.4. The
y axis is then fixed in the direction perpendicular to this plane, with a certain con-
vention for its orientation (more details in Section 2.6). The polarization axis z can
be any axis belonging to the production plane, its unit vector being a linear combi-
nation of the unit vectors of the h1 and h2 momenta. Finally, the x axis completes
the Cartesian system in a right-handed way.

Before discussing possible definitions of z, we note that in the observation of in-
clusive parity-conserving processes in symmetric (and unpolarized) collisions (such
as J/ψ production in pp collisions at the LHC), choosing a reference frame based on
observed physical directions effectively changes the shape of the most general decay
distribution, simplifying its mathematical expression with respect to the one derived
in the previous chapter. The last two terms in Eq. 1.16, containing the factors sinϕ
and sin 2ϕ, change sign by reflection across the production plane (ϕ → −ϕ, with ϑ
unchanged) and therefore introduce an observable asymmetry. While not violating
parity invariance (both terms remain unchanged in the transformation ϕ→ π+ϕ and
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cosϑ → − cosϑ) and being a possible property of individual categories of events
and subprocesses, this asymmetry with respect to the production plane cannot sur-
vive the sum over all events.

In (unpolarized) proton-proton collisions, the symmetry by reflection across the
production plane must be a property of the observed global event distribution. In
fact, an excess of events on one side of the production plane with respect to the other
would have no physical justification, because it would not be possible to reverse the
effect by reversing the point of view, i.e. by exchanging the two beams, given that
they are identical. In summary, the terms in sin2 ϑ sin 2ϕ and sin 2ϑ sinϕ are on
average unobservable and the most general distribution is simply of the form

W(cosϑ, ϕ) =
1

4 π
3

3 + λϑ
×

(
1 + λϑ cos2 ϑ + λϕ sin2 ϑ cos 2ϕ + λϑϕ sin 2ϑ cosϕ

)
,

(2.1)

where, to define an absolute scale of W for later use in graphical representations, we
have now included the normalization factor, defined by∫ +π

−π

∫ +1

−1
W(cosϑ, ϕ) d cosϑ dϕ = 1 . (2.2)

As we mentioned in Section 1.11, measurements involving polarized beams or
targets can lead to nonzero values of the shape parameters λ⊥ϕ and λ⊥ϑϕ (Eq. 1.16).
But even in unpolarized collisions there are specific kinematic conditions, in the
presence of parity-violating processes, where such azimuthal anisotropies can also
be observed.

For example, when the observed particle flies away from the collision point with
a high longitudinal momentum (pL) in the laboratory, the partons coming from the
two beams have on average rather different longitudinal momenta. If the two col-
liding partons are different, a quark and an antiquark, say, it becomes possible to
distinguish them, on a statistical basis, given the different longitudinal momentum
distributions characterizing, for example, valence and sea quarks. In a proton, quarks
tend to have larger longitudinal momentum than antiquarks and, therefore, a parti-
cle coming from a quark-antiquark interaction in a proton-proton collision flies more
often into the same hemisphere as the quark. In this situation, the invariance by ex-
change of the two beams is effectively broken, because we are “observing” the col-
lision between two distinguishable objects and we can give a physically meaningful
(conventional, but reproducible) definition of the “orientation” of the collision direc-
tion. If, moreover, the elementary production process violates parity conservation,
leading to different average kinematic distributions when the quark and antiquark
are exchanged, we can observe an asymmetry of the decay distribution with respect
to the production plane, that is, between the “left” and “right” half-spaces cut by
this plane.

We will devote the next sections to the presentation of several conventions that
have been used in past polarization measurements for the definition of the polariza-
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Fig. 2.1 Illustration of several definitions of the polarization axis z with respect to the directions
of motion of the colliding hadrons (h1 and h2) in the particle rest frame: Gottfried–Jackson (GJ),
Collins–Soper (CS), centre-of-mass helicity (HX), and perpendicular helicity (PX).

tion axis, shown in Fig. 2.1: Gottfried–Jackson (GJ), Collins–Soper (CS), centre-of-
mass helicity (HX), and perpendicular helicity (PX). These frame definitions differ
in the way the momenta of the colliding hadrons, h1 and h2, are used as reference
directions. We denote by ̂1 = p1/|p1| and ̂2 = p2/|p2| the unit vectors representing
those directions, where p1 and p2 are the momenta of h1 and h2 in the rest frame of
the particle under study, V .

2.2 The Gottfried–Jackson frame

In the Gottfried–Jackson (GJ) frame [1], the z axis is “simply” the direction of the
momentum of one of the two colliding hadrons. The corresponding unit vector is

ẑGJ = ̂1 or ̂2 . (2.3)

hadron collision
centre of mass frame

production
plane

particle rest frame
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While the choice is simple, the adoption of this frame requires care. There are,
in fact, two possible choices, which we call GJ1 and GJ2, associated respectively to
the colliding hadrons h1 and h2, where the labels “1” and “2” identify each of the
two beams in a given experiment. In Fig. 2.1, the polarization axes in the GJ1 and
GJ2 frames are represented by the green and pink arrows, respectively.

As we will show later in this chapter, analyses using the GJ1 and GJ2 frames
do not lead, in general, to the same measured angular distribution parameters, for
a given laboratory momentum of the decaying particle V (and, in particular, for
a given sign of pL), even when the physics processes being studied are perfectly
invariant by exchange of the two colliding particles, as in the proton-proton case.
In fact, ̂1 and ̂2, indicating the beam directions in the boosted frame of V , are
neither parallel nor anti-parallel (except in very specific kinematic conditions, when
the particle transverse momentum approaches either zero or much larger values than
the mass).

A reflection of the z axis simply swaps the Jz = +1 and −1 projections with-
out affecting the Jz = 0 component. As can be seen from the expressions of the
anisotropy parameters in Eq. 1.13, when a+1 and a−1 are swapped, λϑ and λϕ remain
unchanged (the λϑϕ case is discussed in Section 2.10). Instead, going from GJ1 to
GJ2 implies a rotation of the quantization axis that is almost never a reflection, and
changes, hence, the Jz composition of the V angular momentum state in a significant
way. All three parameters of Eq. 2.1 can change in a non-trivial way by such a rota-
tion. Therefore, the choice between GJ1 and GJ2, seemingly innocuous in collisions
between identical proton beams, can lead to misleading results in comparisons be-
tween experiments, or between data and theoretical predictions, if the two analyses
do not use the same beam naming convention. To ensure a correct comparison, the
beam “labels” and the definition of the positive sign for the longitudinal momentum
pL (that is, the laboratory z axis) must be consistent in the two analyses.

Apart from the risk of ambiguity, it is, a priori, not the most natural choice to
use the “asymmetric” frames GJ1 or GJ2 when the collision system is symmet-
ric. For example, it could happen that the anisotropy parameters, in certain physics
scenarios, would be significantly different for pL > 0 and pL < 0, a very unusual ob-
servation in proton-proton production measurements, where the two hemispheres of
the particle momentum space should rightfully be considered as equivalent. Before
continuing, it is worth saying that all considerations made in this chapter regarding
the sign of pL are equally valid in terms of the more frequently used variables rapid-
ity, y = 1/2 ln[(E + pL) / (E − pL)], where E is the particle energy, and Feynman-x,
xF = 2pL /

√
s, where

√
s is the centre-of-mass collision energy.

Choosing one of the two GJ frames may be appropriate when the colliding parti-
cles are different and the experiment focuses on the effects of such differences. For
example, in fixed-target experiments, the projectile (e.g. a proton) is different from
the target (typically an atomic nucleus) and part of the interest of the measurement
is to study the influence of the nuclear structure of the target on the elementary
parton-parton hard-scattering process, by comparing the results with those of sym-
metric proton-proton collisions. In this case, where the asymmetry of the collision
is physically meaningful, the choice of the “asymmetric” GJ frame is justified.
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Actually, also in proton-proton collisions, being the parton process itself often
asymmetric, there are situations in which the GJ frame, in either of the two variants,
can be considered as the one most closely reflecting the topology of the produc-
tion process. We will illustrate the usefulness of the GJ frame, and of other frame
definitions, in the following sections, using the example of Drell–Yan production,
where the virtual photon emitted by a quark, in quark-antiquark annihilation (qq̄)
or quark-gluon scattering (qg) processes, leads to a lepton-antilepton pair detected
experimentally.

Figure 2.2 shows the basic processes that contribute to the production of Drell–
Yan dileptons at the lowest perturbative orders. We will indifferently indicate with
V the dilepton system or the virtual photon; analogous considerations also apply if
V represents a Z or W boson. We start by considering the qq̄ annihilation diagrams
(a) and the qg scattering ones (b), shown in each case in the t-channel (left) as well
as in the u-channel (right) variants.

The polarization of V can be deduced by applying helicity conservation along the
line of the quark that emits the virtual photon, as illustrated in Fig. 2.3: the quark
helicity never flips when we move along that line, which in the V rest frame is the
common direction of the incoming quark and the virtual quark. With respect to this
direction, V is always transversely polarized. In the case of the diagrams (a) and (b),
therefore, the “natural polarization axis” is defined by the direction of the incoming
quark, as seen in the V rest frame. These diagrams are complemented by analogous
versions, where all quarks are exchanged with antiquarks; in those cases, the natural
polarization axis is the direction of the incoming antiquark.

The GJ frame, with polarization axis defined by the beam carrying the incoming
quark (or antiquark) coupling to the photon, can, therefore, be seen as a natural
frame choice for the experiment, under the assumption that the parton and proton
have approximately the same direction (that is, neglecting the intrinsic transverse
momentum of the parton, kT).

While we cannot match the incoming quark (or antiquark) with its beam of origin
on an event-by-event basis, this is possible on average, for events where V has suf-
ficiently high |pL|. Indeed, as already mentioned, in a proton the quarks have higher
average longitudinal momenta than the antiquarks and the gluons, so that the beam
going into the same hemisphere as V has a higher probability of contributing a quark
than an antiquark or a gluon.

When V is produced by qq̄ annihilation, diagrams (a) of Fig. 2.2, we will always
have the superposition of processes where V is transverse with respect to the in-
coming quark direction (as in the diagrams shown) with the equally probable ones
where V is transverse with respect to the incoming antiquark (diagrams with the q
and q̄ exchanged), so that in this case there is an automatic symmetrization of the re-
sults of the polarization measurement, independently of the proton beam selected as
reference. The qg scattering case (b) is different because the photon always couples
to the quark or antiquark (with qg dominating over q̄g), never to the gluon, thereby
leading to a predominant transverse polarization along the beam going in the same
direction as V . In this latter case and, therefore, in general, it is more appropriate
to slightly change the definition of the GJ frames, as explained in the next lines, to
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a)

b)

c) d)
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Fig. 2.2 Feynman diagrams for Drell–Yan production, always leading to transverse polarizations
but along different specific quantization axes: qq̄ (a) and qg (b) scattering with natural polariza-
tions along the incoming quark direction, approximated by the Gottfried–Jackson frame; qq̄ anni-
hilation with natural polarization along the relative motion direction of the quark and antiquark,
approximated by the Collins–Soper frame (c); and qg scattering with natural polarization along the
outgoing quark, approximated by the centre-of-mass helicity frame (d).

V

J  = +1/2z

z
J  = −1/2z

J  = +1/2z
J  = −1/2z

J  =   1z −+q q or q*−

Fig. 2.3 Illustration of helicity conservation along the quark lines in the V rest frame, leading to
transverse polarization.

avoid a seemingly unphysical change of results between the pL > 0 and pL < 0
phase space domains.

The GJ1 and GJ2 axis definitions permanently introduce an orientation towards
one of the two hemispheres, defined by the colliding hadron directions, opposite
to each other. In the case of the collision of two identical proton beams, the two
hemispheres are a priori indistinguishable and such an orientation is arbitrary and
unphysical. If there is no explicit intention of introducing possible consequences of
an asymmetric definition in the results of the measurement, the choice of one or the
other direction for the z axis should rather be done taking into account the laboratory
direction of the decaying particle V , which effectively breaks the symmetry. In this
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way, the experiment becomes the ensemble of two identical sub-experiments ori-
ented in opposite directions, each one collecting only the events where the particle
has either “positive” or “negative” pL in the centre-of-mass system of the collision.

In the proton-proton case, both sub-experiments, in the lack of a specific motiva-
tion to force the contrary, must give compatible results. The proper symmetry can be
ensured automatically by labelling, in each event, h1 as the colliding hadron travel-
ling into the same hemisphere as the decaying particle and h2 as the other hadron, in-
dependently of the experiment-specific naming conventions. In this “symmetrized”
version of the GJ frame, the direction of the z axis is defined on an event-by-event
basis, depending on the particle momentum, and measurements in symmetric colli-
sions should provide identical results for pL > 0 and pL < 0. But even in this case
it remains necessary to specify, to avoid ambiguities in comparisons between differ-
ent analyses, how the association between one beam and the corresponding sign of
pL is made, that is, whether the polarization axis is chosen as the same-hemisphere
beam (as described in the lines above) or as the opposite-hemisphere beam, another
equally appropriate choice, potentially leading to different results.

2.3 The Collins–Soper frame

The Collins–Soper (CS) frame [2] represents an intrinsically “symmetric” frame
definition, suitable for the analysis of data collected in collisions of identical beams,
obtained by geometrically averaging the two beam directions. One often reads in
the literature that the z axis of the CS frame has the direction of “the” bisector of
the angle formed by the h1 and h2 momentum directions in the particle rest frame.
However, it is possible to define two different bisectors between two non-oriented
directions. Considering the two momenta with their orientations, the CS frame is
the one defining z in the direction of the bisector between one beam momentum and
the opposite of the other,

ẑCS =
̂1 − ̂2
| ̂1 − ̂2|

. (2.4)

In Fig. 2.1 the CS polarization axis is represented by the red arrow, which is the
bisector between the h1 momentum and the opposite of the h2 momentum. This def-
inition uses the fact that the bisector of two unit vectors has the direction of the sum
of the two. Again, as in the GJ case, two alternative definitions are possible, depend-
ing on how the labels “1” and “2” are assigned, and it is appropriate to adopt, at least
in proton-proton collisions, the pL-dependent definition described above, exchang-
ing ̂1 and ̂2 when going from one hemisphere to the other (and explicitly declaring
the adopted convention). However, while in the GJ case all measured parameters
can, in certain scenarios, depend on this kind of precise definition, in the case of
the CS frame the change only affects parity-violating asymmetries, which are not
considered in this chapter.

Indeed, inverting the orientation of the polarization axis is equivalent to defining
the angles using the negative decay lepton, instead of the positive one, having no ef-
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fect in parity-conserving decays. The ordering of the two colliding hadrons remains
important for the definition of the y axis and has consequences on the sign of λϑϕ,
as discussed in Sections 2.6 and 2.10.

The CS z axis coincides with the direction of the relative motion of the collid-
ing partons, when their transverse momenta are neglected (the validity and limits of
this approximation will be discussed in Chapter 5). This choice reflects the natural
polarization axis of a particle P in the kinematic limit where it is produced without
any recoiling particle, that is, in so-called “2→ 1” processes of the kind h1h2 → P,
and is relevant when the pT of P is not large with respect to its mass. One example
is Drell–Yan production by quark-antiquark annihilation at the leading order in the
perturbative description of the process, corresponding to the diagram Fig. 2.2-c. He-
licity conservation translates, again, into a transverse polarization, this time along
the relative direction of the colliding quark and antiquark, which are back-to-back
in the V rest frame, therefore having opposite helicities, i.e. identical signs of their
Jz = ±1/2 projections. Another example is the category of partonic processes of the
kind gg → P. In the assumption that gluons are mostly transversely polarized, i.e.
each of them has projection Jz = ±1 along its own direction, the total projection
along z can only be Jz = 0 or ±2. Since P is the only produced particle, it inherits
this property and, by lacking the Jz = ±1 component, is polarized. In particular, a
J = 1 particle must always be produced in the Jz = 0 state.

2.4 The centre-of-mass helicity frame

In the centre-of-mass helicity (HX) frame the quantization axis is taken along the
flight direction of V itself. The name “helicity” refers, in fact, to the projection of
the spin of a particle along its own momentum. The momentum of V , and therefore
its flight direction, depends, in both modulus and orientation, on the chosen external
reference for the motion of V . In inclusive production studies the only reasonable
choice for such external reference is the “centre of mass” of the system of the collid-
ing hadrons, coinciding with the laboratory in symmetric proton-proton collisions,
as illustrated in Fig. 2.1, where the HX polarization axis is represented by the blue
arrow.

The polarization axis direction can be defined in terms of either the V momen-
tum (p) in the hadron rest frame or the hadron momenta p1 and p2 in the V rest
frame, remembering, in this latter case, that V recognizes its own flight direction by
“seeing” the system of the colliding hadrons receding with momentum −(p1 + p2):

ẑHX =
p
|p|

= −
p1 + p2

|p1 + p2|
. (2.5)

The choice of the HX axis tends to reflect the natural polarization direction in
processes like Drell–Yan production in s-channel qg scattering, represented by the
diagram (d) of Fig. 2.2, where V is emitted from a quark line having the same
direction as V itself, given that V and the outgoing q are emitted back-to-back in the
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rest frame of the partonic collision. Again, V will be transversely polarized, but this
time along its own momentum.

It is important to realize that the experimentally-definable HX axis is only an
approximation of the true (“natural”) polarization direction. Experiments measuring
inclusive V production, without detecting the recoil system X, coming, for example,
from the hadronization of the outgoing quark or gluon shown in Fig. 2.2, have no
access to the motion of the interacting partons. It is the centre-of-mass of that parton-
parton system, rather than of the system of colliding hadrons, that should ideally be
taken as reference for the V momentum direction used in the HX definition. The
parton-parton and proton-proton centre-of-mass frames do not coincide event by
event; the effect of their relative motion can only be simulated statistically (using
existing sets of parton distribution functions), not on a per-event basis.

We have already mentioned that the intrinsic transverse motion of the parton
system, kT, affects how well the GJ and CS frames approximate the most natural
polarization frames, whose axes are defined by the colliding parton directions. We
have now seen that also the longitudinal motion of the parton-parton system, with
respect to the proton-proton system, smears the correspondence between the HX
frame used in analyses of experimental data and the true natural axis, relevant for
the physics processes under study.

2.5 The perpendicular helicity frame

When defining the CS frame we took one of the two bisectors of the hadron mo-
mentum directions as reference z axis. If we take the other bisector, we obtain the
perpendicular helicity (PX) frame [3]. This is the case where the z axis is properly
defined along the bisector between the two beam momenta, taking the sum (rather
than the difference) of their unit vectors,

ẑPX = ±
̂1 + ̂2
| ̂1 + ̂2|

. (2.6)

In Fig. 2.1, the PX polarization axis is shown by the yellow arrow.
The adjective in the denomination comes from the fact that the z axis is, by defi-

nition, always exactly perpendicular to the CS z axis, while the noun reflects the fact
that the PX axis approaches asymptotically the HX axis, in the limit of high trans-
verse momentum and small longitudinal momentum of V in the laboratory frame
(pT/|pL| � 1). In this limit, in fact, the CS and HX axes become perpendicular to
each other, differing by a rotation of 90◦ around the y axis. With the choice of the
minus sign in Eq. 2.6, the PX axis has the same orientation as the HX axis when
they assume the same direction. Towards the opposite limit, pT/pL → 0, the GJ,
CS, and HX frames become progressively coincident. This is a physical necessity,
as in this limit the scattering process becomes “one-dimensional”: the outgoing V
and X are emitted along the scattering direction (apart for the parton momentum
smearing) and no other direction provides a uniquely identifiable reference. At the
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same time, it is clear that there is no physical reference plane in this condition: for
symmetry reasons, any azimuthal dependence of the decay distribution is physically
forbidden.

The PX axis, instead, continues to remain (exactly) perpendicular to the CS axis
and, therefore, (approximately) to all other frames, when we gradually approach the
low-pT limit. For pT → 0 it is no longer univocally defined, as there are infinite
directions perpendicular to a line without the constraint of a reference plane where
the axis should belong.

A purely conventional perpendicular direction can be chosen if one wants to
use the PX frame in experiments reaching very low pT/pL regions, with the con-
sequence that an equally conventional reference plane is induced by this definition
and azimuthal anisotropies become mathematically allowed. We will show in Sec-
tion 4.2 how the PX frame can be used, together with the CS frame, to maximise
the observed polar anisotropy in Drell–Yan production when it is dominated by the
t- and u-channel diagrams (b) of Fig. 2.2.

2.6 The definition of the y axis

We have seen that the use of the GJ and CS frames requires some care in order to
avoid ambiguities implied by the beam naming convention, given that the direction
(GJ frame) or the orientation (CS frame) of the z axis depend on the ordering of
the two beams (Eqs. 2.3 and 2.4). This problem does not seem to affect the HX and
PX cases, for which the z axis definition is invariant by exchange of the two hadrons
(Eqs. 2.5 and 2.6). However, the definition of the y axis, always taken in the direction
perpendicular to the production plane for any of the frames discussed so far, implies
an arbitrary choice of orientation. Looking at the mathematical definition of the axis,

ŷ = ̂1 × ̂2 , (2.7)

we immediately see that the vector product implies a dependence on the ordering of
the two hadrons.

We will further discuss in Section 2.10 how the chosen convention, which does
not affect λϑ or λϕ, determines the sign of λϑϕ and whether or not this parameter
changes sign at positive and negative pL. A flip of the sign of λϑϕ is produced,
when going from pL to −pL, as an artefact of the frame definitions if one fixed
ordering, disregarding the sign of pL, is assumed in Eq. 2.7. Such a definition is
anyhow inappropriate in symmetric collisions, since it introduces an arbitrary space
orientation in a physically fully rotation-symmetric system.

Moreover, when λϑϕ changes sign with the sign of pL and, at the same time,
the measurement does not distinguish between positive and negative pL, as often
happens in measurements using proton-proton data from symmetric collider exper-
iments, the effectively measured value of λϑϕ is actually always zero, irrespectively
of the true angular momentum composition determined by the underlying processes.
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Indeed, when this happens the corresponding relation in Eq. 1.13 is forcefully vio-
lated, for all participating processes where the amplitude combination a∗

+1a0−a∗0a−1
is actually not zero, and physical information is lost. This is one more reason for
using a pL-dependent ordering of the two beam labels in all the definitions of the
y and z axes mentioned above. Even in this case, it remains necessary to explicitly
report which specific convention is used, because the sign of λϑϕ, resulting from a
measurement or a calculation, will depend on that choice.

2.7 Dependence of the measurement on the polarization frame

As discussed above, all possible experimentally definable polarization axes in inclu-
sive measurements belong to the production plane. We can, therefore, parametrize
the transformation from an observation frame to another by a single angle, describ-
ing a rotation around the y axis. A possible method consists in determining how
a generic angular momentum state vector changes by such a rotation, using the
Wigner matrix, and calculate the corresponding “rotated” decay angular distribu-
tion, as we have done in Chapter 1. Here, instead, we apply a geometrical transfor-
mation directly to the momentum vector of the (positive) decay lepton.

The rotation matrix

Ry(δ) =


cos δ 0 − sin δ

0 1 0

sin δ 0 cos δ

 (2.8)

transforms the components of a vector, reproducing the effect of a rotation of the
z and x axes in the production plane. The direction of the rotation is anticlockwise
when δ is positive and the (fixed) y axis points towards the observer. We will discuss
in Section 2.9 how the sign of δ depends, in an observable way, on the conventions
chosen for the orientation of the z and y axes, and how its value depends, in gen-
eral, on the momentum of V in the laboratory. The coordinates of the unit vector
indicating the positive lepton direction in the old frame,

r̂ = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) , (2.9)

can be expressed as a function of the coordinates in the new frame by inverting the
rotation,

r̂ = R−1
y (δ) r̂′ = RT

y (δ) r̂′ , (2.10)

that is,

sinϑ cosϕ = cos δ sinϑ′ cosϕ′ + sin δ cosϑ′ ,
sinϑ sinϕ = sinϑ′ sinϕ′ ,

cosϑ = − sin δ sinϑ′ cosϕ′ + cos δ cosϑ′ .
(2.11)
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Substituting Eq. 2.11 into Eq. 2.1, we obtain the angular distribution in the rotated
frame,

W ′(cosϑ′, ϕ′) ∝
1

(3 + λ′
ϑ
)
× (2.12)(

1 + λ′ϑ cos2 ϑ′ + λ′ϕ sin2 ϑ′ cos 2ϕ′ + λ′ϑϕ sin 2ϑ′ cosϕ′
)
,

where

λ′ϑ =
λϑ − 3Λ
1 + Λ

, λ′ϕ =
λϕ + Λ

1 + Λ
,

and λ′ϑϕ =
λϑϕ cos 2δ − 1

2 (λϑ − λϕ) sin 2δ
1 + Λ

,

with Λ =
1
2

(λϑ − λϕ) sin2 δ −
1
2
λϑϕ sin 2δ .

(2.13)

2.8 Two interesting limit cases

To illustrate the importance of the choice of the observation frame, we will now
consider two specific examples assuming, for simplicity, that the chosen polarization
axis is perpendicular to the natural axis (δ = ±90◦). These cases are physically
relevant: when the decaying particle is produced with high transverse momentum
(pT � |pL|), a frequent kinematic configuration in midrapidity collider experiments
like ATLAS and CMS, the CS and HX axes become perpendicular to one another;
and the CS and PX axes are always perpendicular to each other, by definition.

When δ = 90◦, a natural “transverse” polarization (λϑ = +1 and λϕ = λϑϕ = 0)
transforms (see Eq. 2.13) into an observed polarization of opposite sign, λ′ϑ = −1/3.
At the same time, a significant azimuthal anisotropy appears, quantified by the pa-
rameter λ′ϕ = 1/3. As shown in Fig. 2.4, in the rotated frame the geometrical shape
of the distribution loses its original cylindrical symmetry around the z axis. Fig-
ure 2.5 represents the same effect in a way closer to what experiments observe,
showing the measured angular distribution as a two-dimensional function (Eq. 2.1)
and in its one-dimensional projections, obtained by averaging over ϕ or cosϑ:

1
2 π

∫ +π

−π

W(cosϑ, ϕ) dϕ =
1

4 π
3

3 + λϑ

(
1 + λϑ cos2 ϑ

)
, (2.14)

1
2

∫ +1

−1
W(cosϑ, ϕ) d cosϑ =

1
4 π

(
1 +

2 λϕ
3 + λϑ

cos 2ϕ
)
. (2.15)

In terms of angular momentum wave functions, a state that is fully “transverse”
with respect to one quantization axis becomes, when observed in a frame rotated by
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Fig. 2.4 Illustration of how the rotation of the polarization frame by an angle δ = 90◦ changes the
shape parameters of the decay distribution of a transversely polarized vector particle.
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Fig. 2.5 The angular decay distribution W(cosϑ, ϕ) of a transversely polarized vector particle in
its “natural” frame and its transformation to a polarization frame rotated by an angle δ = 90◦. The
red and blue curves on the faces of the cube are the polar and azimuthal projections.

90◦, a coherent superposition of equally-probable “transverse” and “longitudinal”
components,

|1,±1〉
90◦
−−→

1
2
|1,+1〉 +

1
2
|1,−1〉 ∓

1
√

2
|1, 0〉 , (2.16)

a result obtained from Eqs. 1.1, 1.4 and 1.11, keeping in mind the convention that the
positive rotation is the one towards the state to be “projected” into its components
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(in this case, the inverse of the considered frame rotation). The amplitude of the
transition of this mixed state to the “rotated” dilepton state in Eq. 1.9 contains three
terms with relative phases (due to the ϕ dependence of the rotation matrix) giving
rise to the observable azimuthal dependence.

An identical polar anisotropy parameter, λ′ϑ = −1/3, would also be measured in
the presence of an equal mixture of naturally “transverse” processes and naturally
“longitudinal” ones, but in this case we would not see any azimuthal anisotropy,
given that λϕ = 0 in both categories of processes. This observation shows how the
study of the azimuthal dimension can help in the discrimination between two very
different physical scenarios, such as a scenario reflecting a certain superposition of
processes and one where there is only a single process, naturally polarized in a frame
different from the one used in the analysis.

As a second example, illustrated in Figs. 2.6 and 2.7, we note that a fully “lon-
gitudinal” natural polarization (λϑ = −1) translates, in a frame rotated by 90◦ with
respect to the natural one, into a fully “transverse” polarization (λ′ϑ = +1), accom-
panied by a maximal azimuthal anisotropy (λ′ϕ = −1).

In terms of angular momentum, the measurement in the rotated frame is per-
formed on a coherent admixture of states,

|1, 0〉
90◦
−−−→

1
√

2
|1,+1〉 −

1
√

2
|1,−1〉 , (2.17)

while a natural “transverse” polarization would originate from the statistical super-
position of uncorrelated |1,+1〉 and |1,−1〉 states.

It is important to appreciate the relevance of this observation: the two physically
very different cases of a natural transverse polarization observed in its natural frame
(Fig. 2.4-left) and a natural longitudinal polarization observed in a rotated frame
(Fig. 2.6-right) are experimentally indistinguishable when the azimuthal anisotropy
is ignored. Measurements are sometimes limited by the lack of a sufficiently large
number of events properly populating the two-dimensional (cosϑ, ϕ) variable space.
In order to circumvent this problem, it might be tempting to focus on the determi-
nation of the polar anisotropy parameter λϑ, which characterizes “natural” polar-
izations (if measured in the natural frame), by integrating out the ϕ dependence
(Eq. 2.14) to reduce the problem to a one-dimensional analysis, removing λϕ and
λϑϕ from the equation.

As one can easily see by browsing through the literature, this solution has been
applied in several analyses of experimental data, which only report the values of
λϑ, probably because the simultaneous measurement of the three anisotropy pa-
rameters was not a viable option. However, the examples presented above show
that a measurement (or theoretical calculation) consisting only in the determination
of the polar parameter λϑ in a single frame contains an ambiguity that prevents a
fundamental (model-independent) interpretation of the results. The polarization is
only fully determined when both the polar and azimuthal components of the decay
distribution are known, or when the distribution is analysed in at least two geo-
metrically complementary frames. Section 2.11 further develops this discussion and
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Fig. 2.6 Illustration of how the rotation of the polarization frame by an angle δ = 90◦ changes the
shape parameters of the decay distribution of a longitudinally polarized vector particle.
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Fig. 2.7 The angular decay distribution W(cosϑ, ϕ) of a longitudinally polarized vector particle in
its “natural” frame and its transformation to a polarization frame rotated by an angle δ = 90◦. The
red and blue curves on the front faces of the cube are the polar and azimuthal projections.

illustrates some conceptual pitfalls triggered by neglecting the full dimensionality of
the physics problem, while Section 2.13 shows how the measurement itself can be
significantly biased by an artificial reduction of the dimensionality of the problem.

The reader must have noticed in Figs. 2.4 and 2.6 that, while the transformation
of polarization frame changes considerably the numerical values of the measurable
parameters, the shapes of the decay distributions remain obviously unchanged, as
they are unaffected by geometrical rotations. While this consideration might seem
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rather elementary, it was only very recently that it triggered the realization that it is
possible to define parameters characterizing the shape of the decay distribution in a
frame-independent way. This topic will be developed in Chapters 3 and 4.

2.9 Effect of production kinematics on the angular distribution

While the above example, where δ = ±90◦, shows that the adoption of one or the
other polarization frame has a large effect on the measured parameters, it does not
properly reflect the full complexity of the patterns that can be observed in real mea-
surements. In fact, the angle δ between the polarization axis chosen for the analysis
of the data and the “natural axis” depends, in general, on the laboratory momen-
tum of the decaying particle. Therefore, the polarization parameters λϑ, λϕ, and λϑϕ
can show a strong kinematic dependence, not because of a physical change of the
angular momentum configuration in which the particle is produced but simply as a
consequence of the purely geometrical effect induced by the frame choice.

To calculate the directions of the polarization axes as functions of the particle
kinematics, we need the expressions of the momenta of the colliding particles, h1
and h2, as seen in the V rest frame. Since we are interested in relative angles between
the directions of different axis definitions, we are free to choose a convenient basis
of unit vectors for the calculation. In view of the boost from the “laboratory” frame
(centre-of-mass of the collision) to the V rest frame, a good choice is to express all
considered vectors in longitudinal and transverse components with respect to the
direction of V in the laboratory, knowing that only the longitudinal component will
be modified by the boost.

The h1 and h2 momenta in the laboratory, P1 and P2, with |P1| = |P2| = P, are

P1 = −P2 = P cosΘ ı̂‖ + P sinΘ ı̂⊥ , (2.18)

where Θ is the angle between the V momentum, p, with |p| = p, and the beam axis,

pL = p cosΘ , pT = p sinΘ . (2.19)

When boosted to the V rest frame, they become (neglecting the h1 and h2 masses)

p1 = (γ P cosΘ − β γ P) ı̂‖ + P sinΘ ı̂⊥ ,

p2 = (−γ P cosΘ − β γ P) ı̂‖ − P sinΘ ı̂⊥ ,
(2.20)

where γ = E/m (Lorentz factor of V) and β = p/E =
√

1 − 1/γ2, E being the
energy of V . The corresponding unit vectors, ̂1 = p1/|p1| and ̂2 = p2/|p2|, define
the directions of the different polarization frames, according to Eqs. 2.3–2.6. The
direction of the unit vector ı̂‖, parallel to the V momentum, is nothing else than the
direction of the HX axis. Given that the momenta of V , h1, and h2 belong to the
same plane (the production plane zx, unchanged by the boost), we can adopt the x
axis of the HX frame, with its orientation, to define the “transverse” dimension:
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ı̂‖ = ẑHX , ı̂⊥ = x̂HX . (2.21)

We can now express the directions of the other polarization axes (Eqs. 2.3, 2.4,
and 2.6) using Eqs. 2.20 and 2.21:

ẑGJ1 =
(cosΘ − β) ẑHX +

√
1 − β2 sinΘ x̂HX

1 − β cosΘ
, (2.22)

ẑGJ2 =
(− cosΘ − β) ẑHX −

√
1 − β2 sinΘ x̂HX

1 + β cosΘ
, (2.23)

ẑCS =

√
1 − β2 cosΘ ẑHX + sinΘ x̂HX√

1 − β2 cos2 Θ
, (2.24)

ẑPX =
sinΘ ẑHX −

√
1 − β2 cosΘ x̂HX√

1 − β2 cos2 Θ
. (2.25)

For the PX axis, we have taken the negative sign in Eq. 2.6, corresponding to
the condition that the PX and HX frames have identical axis orientations in the
pL/pT → 0 limit (that is, cosΘ → 0, being sinΘ always positive by definition).
The y axis, the same for all frames, is defined in Eq. 2.5. To explicitly illustrate the
previously discussed pL-asymmetric behaviours possibly induced by this definition,
we will derive all relations for the case pL > 0 (cosΘ > 0) and extend them to
pL < 0 without applying the symmetrizing convention mentioned in Sections 2.2
and 2.6. In Section 2.10 we will then discuss the resulting asymmetries. The x axis
for frame A is defined as

x̂A = ŷ × ẑA . (2.26)

The equations above fully determine the angle δA→B for a given transformation from
frame A to frame B, the rotation being positive (sin δ > 0) if the product ẑA × ẑB is
oriented towards the positive direction of ŷ (and vice-versa):

cos δA→B = ẑA · ẑB , (2.27)
sin δA→B = (ẑA × ẑB) · ŷ . (2.28)

The signs of the rotations between the frames here considered are illustrated in
Fig. 2.8, where the circular arrows indicate the positive rotations to or from the CS
frame.

Table 2.1 lists, for all possible transformations, the resulting expressions of cos δ
and sin δ in terms of the kinematic variables of the decaying particle, for three dif-
ferent sets of such variables: 1) cosΘ and β; 2) E, p, pT, pL, m, and mT, where m
denotes the mass and m2

T = m2 + p2
T; 3) y and ξ, where ξ = pT/m. After substituting

the expressions of sin δ and sin 2δ = 2 sin δ cos δ for the relevant case in Eq. 2.13,
the frame transformation contains explicit functions of the energy and momentum
of the decaying particle.
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Fig. 2.8 Reference frame transformations. All considered z axes belong to the production plane
and the transformations are rotations around the y axis. In the represented kinematic configuration
and given the assumed convention, the y axis enters the plane (see inset), establishing clockwise
rotations as the positive ones. For example, rotations from the PX and HX frames to the CS frame
are positive, while those from the GJ1 and GJ2 frames to the CS frame are negative.

The observed polarization parameters, λϑ, λϕ, and λϑϕ, become, therefore, de-
pendent on the particle kinematics when the measurement is not performed in the
“natural” frame. Examples are shown in Figs. 2.9, 2.10, and 2.11, adopting four dif-
ferent illustrative scenarios of natural transverse or longitudinal polarizations in the
HX or CS frame.

For simplicity (i.e. to keep the discussion exclusively devoted to geometric con-
siderations) these illustrations neglect differences between the parton-parton and
proton-proton rest frames, which, as mentioned in Sections 2.2–2.4, can affect the
definition of natural reference frame. This approximation will be revisited and dis-
cussed in more detail in Sections 4.3 and 5.4.

The kinematic ranges are inspired by the phase space regions covered in Drell–
Yan measurements made by the ATLAS and CMS experiments at the LHC, for
dilepton mass lower than the Z boson mass. The considered kinematic variables are
the dilepton mass, pT, and rapidity. Each observable is varied independently, the
other two being fixed to representative values.

Even with polarizations that are intrinsically well defined and constant, as in the
considered examples, the choice of the observation frame induces strong variations
with the mass and momentum of the state. This is a serious difficulty in polarization
measurements, because a simple change of “point of view” can mask and/or mimic
more fundamental and interesting kinematic dependences, reflecting a varying mix-
ture of different production mechanisms. It should be even more clear from these
examples that a polarization analysis should always consider alternative choices of
the polarization frame.

Finding the existence of one frame where the measured polarization parame-
ters show a reduced kinematic dependence, more closely resembling what would
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Table 2.1 The angle δ of the polarization frame transformation (Eq. 2.13) for different combina-
tions of initial and final frames, as a function of the kinematic variables of the particle under study.
Expressions for three sets of variables are shown, in distinct columns. The plus and minus signs in
each sin δ expression correspond, in their order, to the two directions of the transformation.

CS →← HX
cos δ

√
1− β2 cosΘ
√

1− β2 cos2 Θ

m pL
p mT

sinh y
√

sinh2 y + ξ2 cosh2 y

sin δ (∓) sinΘ√
1− β2 cos2 Θ

(∓) E pT
p mT

(∓) ξ cosh y
√

sinh2 y + ξ2 cosh2 y

CS →← PX
cos δ 0 0 0

sin δ (∓) 1 (∓) 1 (∓) 1

CS →← GJ1
cos δ

√
1− β2

√
1− β2 cos2 Θ

m
mT

1√
1+ ξ2

sin δ (±) β sinΘ
√

1− β2 cos2 Θ
(±) pT

mT
(±) ξ
√

1+ ξ2

CS →← GJ2
cos δ −

√
1− β2

√
1− β2 cos2 Θ

− m
mT

− 1√
1+ ξ2

sin δ (±) β sinΘ
√

1− β2 cos2 Θ
(±) pT

mT
(±) ξ
√

1+ ξ2

HX →← PX
cos δ sinΘ√

1− β2 cos2 Θ

E pT
p mT

ξ cosh y
√

sinh2 y + ξ2 cosh2 y

sin δ (∓)
√

1− β2 cosΘ
√

1− β2 cos2 Θ
(∓) m pL

p mT
(∓) sinh y
√

sinh2 y + ξ2 cosh2 y

HX →← GJ1
cos δ cosΘ− β

1− β cosΘ
E pL − p2

E p− p pL

1√
1+ ξ2

sinh y− ξ2 cosh y
√

sinh2 y + ξ2 cosh2 y

sin δ (±)
√

1− β2 sinΘ
1− β cosΘ (±) m pT

E p− p pL
(±) ξ
√

1+ ξ2

cosh y + sinh y
√

sinh2 y + ξ2 cosh2 y

HX →← GJ2
cos δ − cosΘ− β

1+ β cosΘ
−E pL − p2

E p + p pL

1√
1+ ξ2

− sinh y− ξ2 cosh y
√

sinh2 y + ξ2 cosh2 y

sin δ (∓)
√

1− β2 sinΘ
1+ β cosΘ (∓) m pT

E p + p pL
(∓) ξ
√

1+ ξ2

cosh y− sinh y
√

sinh2 y + ξ2 cosh2 y

PX →← GJ1
cos δ −β sinΘ

√
1− β2 cos2 Θ

−
pT
mT

−
ξ
√

1+ ξ2

sin δ (±)
√

1− β2
√

1− β2 cos2 Θ
(±) m

mT
(±) 1√

1+ ξ2

PX →← GJ2
cos δ −β sinΘ

√
1− β2 cos2 Θ

−
pT
mT

−
ξ
√

1+ ξ2

sin δ (∓)
√

1− β2
√

1− β2 cos2 Θ
(∓) m

mT
(∓) 1√

1+ ξ2

GJ1 →← GJ2
cos δ −(1− β2) + β2 sin2 Θ

1− β2 cos2 Θ

p2
T −m2

p2
T + m2

−1+ ξ2

1+ ξ2

sin δ (±) 2 β
√

1− β2 sinΘ
1− β2 cos2 Θ

(±) 2 m pT

p2
T + m2 (±) 2 ξ

1+ ξ2
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Fig. 2.9 Values of λϑ observed in the five frames indicated in the legends, as a function of three
kinematical observables (m, pT, and y), when the particle is produced with a pure transverse or
longitudinal polarization in the HX or CS frame. For each kinematical dependence, the other two
variables are fixed to suitable values: m = 25 GeV, pT = 20 GeV, and y = +0.5.

be observed in a “natural” frame, is as important as measuring the values of the
parameters themselves, in view of ensuring unambiguous progress in the physics
understanding. Furthermore, if different experimental or theoretical analyses adopt
different “points of view”, the resulting variations in the results can make a rigorous
comparison very difficult or even impossible, as will be discussed in Section 2.14.
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Fig. 2.10 Values of λϕ observed in five reference frames, for the same scenarios and conditions of
Fig. 2.9.

2.10 The meaning of λϑϕ

It is easy to recognize in Figs. 2.9, 2.10, and 2.11 examples of the previously-
mentioned artificial pL-asymmetries, arising from the convention that the “first”
beam is always the one positively oriented in the laboratory, at both positive and
negative pL. All shape parameters measured in the GJ1 and GJ2 frames change sig-
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Fig. 2.11 Values of λϑϕ observed in five reference frames, for the same scenarios and conditions
of Fig. 2.9.

nificantly from positive to negative rapidity when the natural frame is the HX frame,
because the angle δ with respect to the HX axis is not only different for the GJ1 and
GJ2 axes, but also (not only for a sign) for y and −y, according to the formulas of
Table 2.1. If, instead, the polarization is natural in the CS or PX frames, the GJ1 and
GJ2 frames are completely equivalent, given that the CS and PX axes are (the two
orthogonal) bisectors of the GJ1 and GJ2 polarization axes.
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One feature common to all frames is the potential change of sign of λϑϕ from
positive to negative rapidity. All these pL-asymmetries can be eliminated with the
symmetrization procedure described in Section 2.2, consisting in the exchange of
roles of the two colliding hadrons when going from positive to negative rapidity.
The result, illustrated in Fig. 2.12, is that the negative-rapidity part of each function
becomes the mirror reflection of the positive-rapidity part.

As mentioned in Section 2.6, this symmetrization does not eliminate the depen-
dence of the sign of λϑϕ on the y axis convention, so that it remains necessary to
report the convention used in the measurement or computation. Besides ensuring
that we are not missing a minus sign when comparing several results, in certain
situations the symmetrization procedure is a mandatory step.

Indeed, analyses of particle polarizations made by experiments at high-energy
colliders, such as ATLAS and CMS, are frequently made in kinematic intervals de-
fined in terms of absolute rapidity, |y|, merging events from the symmetric ranges
−y2 < y < −y1 and y1 < y < y2. In these cases, the pL-asymmetry leads to an
exact cancellation of λϑϕ, preventing the experiment from providing relevant infor-
mation on this polarization parameter. This artificial elimination of λϑϕ from the data
analysis represents a significant loss of information and a distortion of the physical
content of the measurement.

To illustrate this fact, we will study a simple case of frame rotation leading to a
nonzero λϑϕ value. This was not the case in the examples of Figs. 2.4–2.7, where
the 90◦ rotation maintained the initial λϑϕ = 0 (Eq. 2.13). Any other rotation angle
produces the desired effect. Choosing for example δ = −45◦ and a natural transverse
polarization, we obtain in the new frame the “tilted” shape represented in Fig. 2.13-
left.

In fact, as will be discussed in Chapter 3, λϑϕ can be seen to parametrize a tilt of
the distribution with respect to a configuration where the reference axes xyz are prin-
cipal axes of symmetry of its shape. This explains why an originally “symmetric”
distribution, like the one corresponding to a natural polarization, does not acquire a
λϑϕ , 0 value with a 90◦ rotation.

The angular momentum composition of the state changes in the following way in
the transformation (remembering that, for a frame rotation of −45◦, the “projection”
operation defined in Eq. 1.1 requires considering an angle ϑ = +45◦ with respect to
the projection axis):

|1,±1〉
−45◦
−−−→

1
2

1 ± √2
2

 |1,+1〉 ±
1
2
|1, 0〉 +

1
2

1 ∓ √2
2

 |1,−1〉 . (2.29)

The comparison with Eqs. 2.16 and 2.17 illustrates how the existence of a “tilt” is
related to the conditions a0 , 0 and a+1 , a−1, which lead, as seen in Eq. 1.13,
to λϑϕ , 0. Using either Eq. 1.13, with the component amplitudes just shown, or
Eq. 2.13, one finds λ′ϑ = λ′ϕ = 1/5 and λ′ϑϕ = 2/5.

Figure 2.13-right shows the effect of the exact cancellation of λ′ϑϕ that occurs
artificially when the measurement is made integrating over pL-symmetric intervals,
without a corresponding re-definition of the orientation of the y′ axis when going
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Fig. 2.12 Rapidity dependences of λϑ, λϕ, and λϑϕ in the five polarization frames, re-defined by
exchanging the names of h1 and h2 when going from positive to negative rapidity. The curves are
the same as in the previous figures for y > 0, while for y < 0 they become a mirror reflection of the
positive-rapidity part.

from pL > 0 to pL < 0. With vanishing λ′ϑϕ, no “tilt” is visible. Above all, the shape
of the distribution changes dramatically.

The corresponding change in the W(cosϑ′, ϕ′) distribution, as can be measured
by an experiment, is shown in Fig. 2.14. The original distribution, correctly reflect-
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Fig. 2.13 The decay distribution of a transversely polarized vector particle as seen in the frame
x′y′z′, rotated by δ = −45◦ with respect to the natural polarization frame xyz. We show the full
three-parameter physical distribution on the left and, on the right, the distribution with λ′ϑϕ artifi-
cially set to zero, characterized by a rotational invariance with respect to the y′ axis.
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Fig. 2.14 The angular decay distributions W(cosϑ′, ϕ′) (with their one-dimensional projections)
corresponding to the two cases shown in the previous figure.

ing the underlying angular momentum configuration of the decaying state, shows a
strong correlation between the cosϑ′ and ϕ′ functional dependences. For example,
when sliced at fixed values of ϕ′, the distribution changes very significantly its cosϑ′

pattern, varying from ∝ 1 + 1/3 sin 2ϑ′ at ϕ = 0 to ∝ 1 − 1/3 sin 2ϑ′ at ϕ = ±π. In
fact, λϑϕ can also be interpreted as the parameter that describes the intercorrelated
changes of modulations of the polar and azimuthal angle dependences, which is
what motivates its notation. The “artificial” distribution in Fig. 2.14-right no longer
reflects those correlations: for any fixed value of ϕ′, the polar dependence remains
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Fig. 2.16 Same as Fig. 2.14, for the case of a natural longitudinal polarization.

of the kind ∝ 1 + α cos2 ϑ′, with a ϕ′-dependent coefficient α. The projected po-
lar and azimuthal distributions remain identical before and after the |pL|-integration
“mistake”, as they do not depend on λϑϕ (Eqs. 2.14 and 2.15).

Figures 2.15 and 2.16 show the effects of the λ′ϑϕ cancellation in the case of a
longitudinally polarized state, which transforms as

|1, 0〉
−45◦
−−−→ −

1
2
|1,+1〉 +

√
2

2
|1, 0〉 +

1
2
|1,−1〉 , (2.30)

leading to a decay distribution with λ′ϑ = λ′ϕ = −1/3 and λ′ϑϕ = −2/3.
We mentioned how the peculiar cosϑ′ vs. ϕ′ correlation is lost when λϑϕ is

cancelled, but it is also interesting to note that the maximum variation of the
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W(cosϑ′, ϕ′) function is significantly reduced. For example, the function presented
in Fig. 2.16-left retains the same maximum, 3/(8 π), and minimum, zero, of the dis-
tribution before rotation (Fig. 2.7-left), while the distribution in Fig. 2.16-right has
a much higher minimum, 3/(16 π); the physical modulations were smeared because
of the loss of λϑϕ. This means that, contrary to what one could naively expect, an
analysis of experimental data that reduces the number of free parameters from three
to two by allowing for the cancellation of λϑϕ will not achieve a more significant
measurement. On the contrary, the result will be, in general, a less significant exper-
imental characterization of the decay distribution.

The artificial cancellation of λϑϕ is above all a conceptual problem, for both ex-
perimental and theoretical analyses. In fact, it can even be seen as a violation of the
basic principle of rotational invariance. The number of events where the lepton is
emitted within a given solid angle cannot change by spatial rotation and, therefore,
the maximum and minimum of the distribution are rotation invariants. The artificial
redistribution of events in the λϑϕ-suppressed distribution violates such invariance,
leading to a serious loss of physical information and preventing meaningful inter-
pretations of the results.

In both examples considered, the rotation leads to λ′ϑ = λ′ϕ. If, moreover, we now
impose λ′ϑϕ = 0, a further rotation of the axes by any angle δ will lead to unchanged
anisotropy parameters, because Λ′ = 0: the distribution becomes artificially frame-
independent. We conclude that, without the knowledge of the value of λϑϕ, it is
not possible to transform the angular distribution measured in one frame into what
would be measured in another frame, and attempts to do so will lead to paradoxical
results.

It should be clear from these examples that when the parameter λϑϕ is ignored,
in analyses opting for one-dimensional determinations of λϑ and λϕ (Eqs. 2.14
and 2.15) or considering |pL| intervals without suitably adjusting the y-axis orienta-
tion, the result of the measurement will only represent a smeared picture of reality
and its physical interpretation will be limited or ambiguous.

2.11 The role of the azimuthal anisotropy

We will now consider a concrete experimental example to illustrate the practical
relevance of some of the concepts presented in the previous sections. Our aim is to
show how measurements that ignore the intrinsic multidimensionality of the decay
angular distribution, in particular by only reporting the polar angle distribution, and
only in one single reference frame, might lead to ambiguous physical interpretations
regarding the polarization of the particle.

The measurement of the polarization of J/ψ mesons promptly produced in pp
collisions at 1.96 TeV, reported by the CDF Collaboration [4], provides a good ex-
ample to illustrate the importance of measuring both the polar and the azimuthal
anisotropies. The CDF analysis only considered the polar angle dimension, cosϑ,
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Fig. 2.17 Top: the polar anisotropy parameter in the helicity frame, λHX
ϑ , of promptly produced

J/ψ mesons, as a function of pT and in the |y| < 0.6 range, as reported by CDF [4] (circles) and as
determined in the three fundamentally different production scenarios described in the text (curves).
Bottom: the azimuthal anisotropy parameter computed in the same three production scenarios.

integrating over the azimuthal component of the decay; furthermore, the results were
exclusively presented in the helicity frame.

The top panel of Fig. 2.17 presents the pT dependence of the parameter λϑ in the
helicity frame, λHX

ϑ , as reported by CDF, in the rapidity range |y| < 0.6. Overlaid in
the same figure we show three curves, representing three rather different physical
scenarios. The first scenario, represented by the blue curve, assumes that the J/ψ po-
larization is natural in the HX frame, so that the decay angular distribution has no
azimuthal anisotropy, λHX

ϕ = 0. In the second scenario, represented by the red curve,
the polarization is assumed to be natural in the CS frame, λCS

ϕ = 0, with λCS
ϑ

varying
from zero to +0.5 as pT increases from zero to 30 GeV. Without an accompanying
measurement of the azimuthal anisotropy, these two scenarios, leading to identical
λϑ trends vs. pT, are indistinguishable. The third scenario assumes that a certain
fraction of the J/ψ mesons is produced fully transversely polarized with respect to
the HX frame, the remaining fraction also being fully transversely polarized, but
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with respect to the CS frame. The green curve represents this third scenario, in the
case where the fraction of transversely polarized mesons in the HX frame decreases
with pT, from 30% to 15% in the pT range from 5 to 20 GeV. All three options are
perfectly compatible with the published data points. The bottom panel of Fig. 2.17
shows the parameter λϕ in the helicity frame, calculated for each of the three sce-
narios. The significantly different trends vs. pT illustrates how a measurement of
λϕ would resolve these three scenarios and allow us to know the true nature of the
polarization.

Given that no azimuthal anisotropy measurement was reported and that only one
frame was considered in the analysis, the experimental result is equally well com-
patible with physical interpretations representing very different fundamental sce-
narios of quarkonium production. In particular, the weak longitudinal polarization
measured in the HX frame may actually be the reflection of a natural transverse
polarization (as in the scenarios 2 and 3, represented by the red and green curves).

When the event sample is small, it may be tempting to opt for a simplified analy-
sis using only the one-dimensional polar projection of the decay distribution. How-
ever, it is important to keep in mind that this choice implicitly imposes some hy-
pothesis regarding the distribution of the integrated azimuthal variable and might
lead to an ambiguous measurement, preventing model-independent interpretations.

2.12 Frame-dependence of the experimental acceptance

As anticipated in Section 1.5, one of the difficulties of an experimental analysis
is that the low detection efficiency of low-momentum leptons strongly reduces the
population of accepted events in certain regions of the angular phase space and an
accurate efficiency correction is needed.

With respect to the simplified, one-dimensional example seen in the previous
chapter, the reality of a polarization measurement is even more challenging, because
the correction must reflect correlations, induced by the experimental selections, be-
tween the two angular coordinates cosϑ and ϕ; moreover, the acceptance sculpting
of the event distribution depends, like the physical polarization, on the reference
frame and on the kinematic domain (pT and rapidity).

Figure 2.18 illustrates these features by showing, in three different frames, the
two-dimensional efficiency maps corresponding to the same experimental filter al-
ready considered in the example of Section 1.5, where we only addressed the polar
anisotropy in the HX frame. As in that case, both leptons from the J/ψ decay are
required to have pT larger than approximately 3 GeV, following the efficiency de-
scribed by the “ideal” curve of Fig. 1.8. The J/ψmesons are generated in the pT range
9 < pT < 12 GeV and in two different rapidity windows, |y| < 1 and 3 < |y| < 4.

The acceptance maps in the three frames are very different, regarding the shapes
and the kinematic dependences. In the midrapidity bin, the HX and PX maps (very
similar to one another, as expected in this limit) depend on the two angular coor-
dinates in an almost uncorrelated way: in these frames the main effect of the ex-
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Fig. 2.18 Two-dimensional acceptance and efficiency maps in the HX (top), PX (middle), and CS
(bottom) frames, for J/ψ mesons produced with 9 < pT < 12 GeV and |y| < 1 (left) or 3 < |y| < 4
(right). The decay leptons must have pT & 3 GeV to be detected. The darker is the shade of a cell,
the higher is its population.

perimental selections is a strong modulation in the variable cosϑ, whose domain
becomes restricted to the central range, while almost no dependence on ϕ is in-
duced.

In remarkable contrast, in the CS frame the regions of zero acceptance are “inter-
nal” to the angular domain and centred at specific combinations of the two variables,
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(cosϑ = 0, ϕ = 0) and (cosϑ = 0, ϕ = ±180◦, so that an integration over either cosϑ
or ϕ seemingly removes such “holes”: when the two projected one-dimensional dis-
tributions are observed, one gets the false impression that a better coverage is ob-
tained in the CS frame than in the HX frame. On the contrary, this characteristic
actually makes the CS frame a more difficult case for the measurement, because, as
will be discussed in the next section, neglecting such strongly correlated acceptance
limitations can produce much more important biases than in the HX frame, reducing
the sensitivity to the true underlying polarization. At more forward rapidity, also the
map in the HX frame shows a definite correlation between the modulations of the
two variables.

Interestingly, the PX frame remains immune to such correlations and, moreover,
the map is practically rapidity-independent (like the one in the CS frame). These
features make the PX frame a particularly useful choice from the point of view of
the experimental analysis. Applying the corrections to the observed event distri-
bution using the PX efficiency maps, as per-event lookup tables (independently of
what frame is used for the determination of the physical angular distribution) has
the advantage that the rapidity dimension does not need to be scanned as finely as
in the HX frame, while the almost total independence of the cosϑ coverage on ϕ
attenuates residual correlation effects: in the CS frame, the minimization of such
effects requires the use of maps with a fine binning in the two variables (especially
in ϕ).

It remains true that the dependence on pT is significant and not removable with a
simple choice: the lower the J/ψ pT (for a given requirement on the lepton pT), the
larger become the zero-acceptance regions. Figure 2.19 illustrates this fact, showing
how the efficiency map in the PX frame for |y| < 1 changes inside the pT interval
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Fig. 2.19 Two-dimensional acceptance and efficiency maps in the PX frame, for J/ψ mesons pro-
duced in the kinematic domain |y| < 1, with 9 < pT < 10 GeV (left) and 11 < pT < 12 GeV
(right). The decay leptons must have pT & 3 GeV to be detected. The darker is the shade of a cell,
the higher is its population.
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considered in the example of Fig. 2.18: towards the lower end of the interval (9 <
pT < 10 GeV), the cosϑ coverage is visibly narrower than towards the higher end
(11 < pT < 12 GeV).

This observation reinforces a consideration found more than once in this book: it
is important to minimize the size of the integrated kinematic domain where the an-
gular distribution is measured. In fact, correcting the event distribution by an average
acceptance value when the shape of the acceptance function, and even its support,
vary inside the considered kinematic interval should only be considered as a first
approximation to reduce the complexity of the analysis: its effects on the resulting
angular distribution, especially towards the most critical regions at the border of the
acceptance coverage, must be carefully checked with detailed systematic studies.

2.13 Caveats of one-dimensional analyses

We will now see that, besides the problems of ambiguous interpretations mentioned
in Section 2.11, experimental data analyses ignoring the azimuthal dimension can
actually lead to wrong results. The reason is that, as we have just seen in the previous
section, the detection acceptance is usually a strongly intercorrelated function of the
two variables, cosϑ and ϕ. In other words, the experimental efficiency relevant for
the projected cosϑ distribution depends on the ϕ distribution, i.e. on λϕ, and vice-
versa.

If the ϕ dimension is integrated out and ignored, the resulting λϑ measurement
becomes strongly dependent on the specific “prior hypothesis” (implicitly) made for
the angular distribution in the Monte Carlo simulation. Since we do not know which
distribution should be used in the generation of the acceptance maps, as this is one
of the observables that we should be measuring, it is clear that the raw measured
data will be wrongly corrected, leading to a wrong result.

Figure 2.20 offers a concrete and quantitative illustration of this kind of mistake,
using the J/ψ scenario considered in Section 2.12, with 9 < pT < 12 GeV and
|y| < 1. The starting point is the generation of J/ψ events with fully longitudinal
polarization in the HX frame, λHX

ϑ = −1 and λHX
ϕ = 0. As we have shown in Fig. 2.6,

if we generate J/ψ mesons with fully longitudinal polarization in one frame (the
HX frame, in our example) and then measure the angular distributions in another
frame, approximately perpendicular to the first one (the CS frame), then we should
see a distribution with λCS

ϑ
and λCS

ϕ approaching, respectively, +1 and −1. This is
expected, of course, under the assumption that the measurement is correctly done.

If, instead, the cosϑ acceptance correction is made using a one-dimensional pro-
jection, using Monte Carlo events generated with a flat azimuthal dependence, we
get the blue points shown in the top panels of Fig. 2.20, well compatible with unpo-
larized production. The rather strong anisotropies that we should see (and are seen
if the measurement is made in the HX frame, as shown in the bottom panels) were
completely smeared away by the incorrect analysis procedure. The result is a reflec-
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Fig. 2.20 Angular distributions, in cosϑ (left) and ϕ (right), measured in the CS (top) and HX
(bottom) frames, for J/ψ mesons generated as fully longitudinal in the HX frame, λHX

ϑ = −1 and
λHX
ϕ = 0, using one-dimensional projections with acceptance corrections without (blue) and with

(red) iterative reweighing.

tion of the polarization assumption used in the Monte Carlo simulation and not of
the real physics we would like to probe.

Analyses that, for some reason, need to use one-dimensional projections rather
than the two-dimensional distribution can still provide correct results, under the con-
dition of using the correct distributions in the generation of the acceptance map. That
is something that can be achieved through an iterative procedure, where the Monte
Carlo simulation is repeated, each time using the previously measured distributions
as inputs for the new iteration.

The procedure is effective only if the measurement is sufficiently precise to
clearly indicate the polarization to be assumed in the first step of the iteration. In
this case, the successful application of this iterative acceptance correction leads to
the results shown by the red points in Fig. 2.20, indicating, as expected, a strong
transverse polarization in the CS frame. The small difference between the obtained
values (λCS

ϑ
= 0.93 and λCS

ϕ = −0.95) and the values expected in a frame exactly
orthogonal to the natural one (λCS

ϑ
= 1 and λCS

ϕ = −1) reflects the fact that the angle
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between the two frames, for the phase space domain used in the example (|y| < 1
and 9 < pT < 12 GeV), is around 83◦.

The iterative reweighing procedure means that, effectively, a two-dimensional
acceptance correction is being made, avoiding the bias mentioned above. In other
words, when only a one-dimensional projected distribution is measured, the detector
acceptance description must, nevertheless, be maintained multi-dimensional. One-
dimensional acceptance corrections or “template” fits should be avoided, unless the
Monte Carlo is (when possible and effective) iteratively re-generated with the cor-
rect distribution of the variables that have been integrated out (which has, therefore,
to be measured anyway).

Concrete examples of data analyses where the one-dimensional approach should
be avoided are searches for physics beyond the Standard Model (SM). Precision
measurements of the parity-violating asymmetry in Drell–Yan production have been
made at the LHC [5–7], using simulations based on the SM to account for the de-
tector’s acceptance and efficiency, and to integrate over the unobserved azimuthal
dimension. Given the high level of theory-data agreement, these analyses can be
considered as successful tests of the SM. But can one then proceed and translate
these precision measurements into limits on the existence of “new physics” (e.g. a
Z’ resonance), expected to be found in the form of small deviations with respect
to the standard Drell–Yan distributions? If the detection acceptance as a function
of cosϑ depends on the generated ϕ distribution, and the searched-for new phe-
nomenon leads to a distribution (slightly) different from the one assumed in the
simulation, then the acceptance correction will be (slightly) biased, hampering the
sensitivity of this kind of analyses, given that, as shown in the example above, the
results will be “attracted” to the distributions assumed in the event generation. Sta-
tistically meaningful limits on models predicting new physics should be provided
by one-dimensional analyses only after careful consideration of suitable variations
of the assumed azimuthal anisotropies

2.14 The importance of being lucky

We will now develop a concept introduced at the end of Section 2.9: the way the
observed polarization depends on the frame and, consequently, on the production
kinematics has important consequences when the results reported by several exper-
iments are compared to each other. Comparisons between experiments are common
practice to verify the reliability of the measurements in high-energy physics and one
of the main reasons justifying the existence of several similar experiments at particle
accelerators, such as CDF and D0 at the Tevatron, or ATLAS and CMS at the LHC.
However, they are not immune to difficulties and require some care, especially when
the experiments cover different acceptance windows in rapidity and/or pT.

We will illustrate this problem by considering a toy Monte Carlo simulation
where we generated events with J/ψ and Υ(1S) mesons naturally polarized in the CS
frame: λCS

ϕ = λCS
ϑϕ

= 0. For each meson, we consider in turn the two cases of extreme
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Fig. 2.21 Polarization parameters λϑ (top), λϕ (middle), and λϑϕ (bottom) measured in the HX
frame, as a function of pT and for several rapidity ranges (different line colours), for J/ψ (left)
and Υ(1S) (right) mesons generated with natural transverse (λCS

ϑ
= +1) or longitudinal (λCS

ϑ
= −1)

polarizations in the CS frame. As a function of pT over mass, the two columns would look identical.

polarizations: fully transverse (λCS
ϑ

= +1) and fully longitudinal (λCS
ϑ

= −1). Obvi-
ously, if the experiments perform their measurements in the CS frame, they should
all measure identical values, λϕ = λϑϕ = 0 and either λϑ = +1 or −1, depending on
the sample, independently of pT and rapidity. But what will the measurements look
like if the experiments, covering several different rapidity windows, decide to use
the HX frame in their analyses?

Figure 2.21 shows the results obtained, as a function of pT, by four hypotheti-
cal experiments, covering the rapidity intervals |y| < 0.6, |y| < 0.9, |y| < 2.5, and
2 < y < 5, respectively corresponding to the acceptances of CDF, ALICE (central
barrel), ATLAS/CMS, and LHCb. Only at pT = 0, an extreme limit where the HX
and CS frames coincide, would the experiments agree with each other. For other pT
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regions, each experiment would obtain a different result, not only in magnitude but
also in the trends vs. pT.

Furthermore, the rapidity distributions of the events collected (“reconstructed”)
by the experiments are affected by detection efficiencies, so that it is very difficult to
infer the (original) λϑ value that would have been observed in the CS frame. In other
words, it is not easy to transform the λ parameters measured in one frame into those
that would have been measured in another frame, given that this transformation can
only be accurately made if one accounts for the rapidity distribution of the detected
particles. It is much more accurate (and easier) to directly provide the measurements
in two frames.

The spread among the four patterns displayed in Fig. 2.21 for each generated case
shows that an “unlucky” choice of the frame used in the analyses of the data may
lead to very misleading conclusions regarding the consistency of the experimental
results. Results that are perfectly identical in the “right frame” (the frame closest to
the ”natural” one) will, instead, look completely inconsistent with each other when
the analyses are made in the “wrong frame”. We also recognize the “extrinsic” kine-
matic dependences created by a specific frame choice, already seen in Section 2.9,
which produce a misleadingly complex view of the underlying constant-polarization
scenario and would, moreover, mask or strongly distort a possible intrinsic momen-
tum dependence of the natural polarization.

The example now described shows, furthermore, that these spurious effects are
even detector-dependent, given that they change with the kinematical range covered
by the detector; additionally, in a real measurement the result should also reflect the
variation of the detection efficiencies within that acceptance window (a detail not
explicitly considered in here).

If we reverse the roles of the frames, so that the events are generated in the CS
frame and the measurements are made in the HX frame, the figures showing the λϑ
and λϕ parameters remain identical, as already seen in Figs. 2.9 and 2.10.

Only the λϑϕ parameter changes, flipping its sign, because it depends on the
sign of the rotation angle, δ, between the two frames, as shown in the frame-
transformation relations reported in Eq. 2.13, in Section 2.7. As already mentioned
in Section 2.9, it is because the transformation relations depend on the produc-
tion kinematics that we see the (“extrinsic”) acceptance-dependent kinematic be-
haviours; in the case of transformations between the CS and HX frames, in particu-
lar, the kinematic dependence can be found on the first row of Table 2.1.

Naturally, the effects of the acceptances and efficiencies of the experiments are
not only relevant when comparing multiple measurements with each other but also
when comparing measurements with theory calculations. The polarization results
reported by the experiments reflect the specific population of events that they have
collected, which will depend on the detection and trigger efficiencies, and on the
event selection criteria used in the analysis. When the polarization depends signif-
icantly on the kinematics, two experiments covering the same phase space window
may find different average polarizations, if their differential acceptances are suffi-
ciently different. This problem can be minimized by providing the measurements,
and the corresponding theoretical predictions, in several narrow kinematic intervals.
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2.15 More general frame transformations

Even if it is true that, in inclusive production studies, a change of polarization frame
is always a rotation in the production plane (around the y axis) — because experi-
mentally the only possible and/or sensible choices of polarization axis belong to this
plane — for theoretical and modelling considerations it can sometimes be useful to
also know what happens to the parameters of the angular distribution under the other
two kinds of rotations, those around the x and z axes.

In this section we provide the mathematical expressions of these transformations,
also extending those seen in Section 2.7 to consider all eight coefficients of the
general distribution of a possibly parity-violating decay (Section 1.11). Besides the
rotation matrix Ry(δ), reported in Eq. 2.8, the derivation also uses the correspond-
ing matrices of the rotations around the x and z axes, defined with the conventions
already discussed:

Rx(δ) =


1 0 0

0 cos δ sin δ

0 − sin δ cos δ

 , Rz(δ) =


cos δ sin δ 0

− sin δ cos δ 0

0 0 1

 . (2.31)

All angular expressions appearing in Eq. 1.29 are suitable combinations of the
components of the vector r̂ = (sinϑ cosϕ, sinϑ sinϕ, cosϑ). The corresponding
components in terms of the coordinates in the new frame are obtained from the
inverse rotation r̂ = RT

x|y|z(δ) r̂′. After these are replaced in Eq. 1.29, the resulting
expression can be ordered by collecting the eight terms in cos2 ϑ′, sin2 ϑ′ cos 2ϕ′,
sin 2ϑ′ cosϕ′, sin2 ϑ′ sin 2ϕ′, sin 2ϑ′ sinϕ′, cosϑ′, sinϑ′ cosϕ′, and sinϑ′ sinϕ′,
whose coefficients, divided by the cosϑ′- and ϕ′-independent term, give the ex-
pressions of the eight transformed shape parameters.

The result of a rotation around the y axis, extending the relations of Eq. 2.13, can
be shown using a matrix form to describe the linear part of the parameter transforma-
tion, scaled by an overall factor, common to all transformed parameters, expressing
the nonlinear part.

The “parity-conserving parameters” transform as

λ′ϑ

λ′ϕ

λ′ϑϕ

λ⊥′ϕ

λ⊥′ϑϕ


=

1
1 + Λy



1 − 3
2 sin2 δ 3

2 sin2 δ 3
2 sin 2δ 0 0

1
2 sin2 δ 1 − 1

2 sin2 δ − 1
2 sin 2δ 0 0

− 1
2 sin 2δ 1

2 sin 2δ cos 2δ 0 0

0 0 0 cos δ − sin δ

0 0 0 sin δ cos δ





λϑ

λϕ

λϑϕ

λ⊥ϕ

λ⊥ϑϕ


, (2.32)

while the “parity-violating parameters” transform as
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A′ϑ
A′ϕ
A⊥′ϕ

 =
1

1 + Λy


cos δ sin δ 0

− sin δ cos δ 0

0 0 1



Aϑ

Aϕ

A⊥ϕ

 , (2.33)

with
Λy =

1
2

(λϑ − λϕ) sin2 δ −
1
2
λϑϕ sin 2δ . (2.34)

The coefficients of the parity-conserving terms and those of the parity-violating
terms follow two decoupled transformations, except for the common 1 / (1 + Λy)
factor, which depends on the λϑ, λϕ, and λϑϕ parameters.

The corresponding equations for a rotation around the x axis are

λ′ϑ

λ′ϕ

λ′ϑϕ

λ⊥′ϕ

λ⊥′ϑϕ


=

1
1 + Λx



1 − 3
2 sin2 δ − 3

2 sin2 δ 0 0 − 3
2 sin 2δ

− 1
2 sin2 δ 1 − 1

2 sin2 δ 0 0 − 1
2 sin 2δ

0 0 cos δ − sin δ 0

0 0 sin δ cos δ 0

1
2 sin 2δ 1

2 sin 2δ 0 0 cos 2δ





λϑ

λϕ

λϑϕ

λ⊥ϕ

λ⊥ϑϕ


(2.35)

and 
A′ϑ
A′ϕ
A⊥′ϕ

 =
1

1 + Λx


cos δ 0 − sin δ

0 1 0

sin δ 0 cos δ



Aϑ

Aϕ

A⊥ϕ

 , (2.36)

with
Λx =

1
2

(λϑ + λϕ) sin2 δ +
1
2
λ⊥ϑϕ sin 2δ . (2.37)

Finally, a rotation around the z axis transforms the shape parameters as

λ′ϑ

λ′ϕ

λ′ϑϕ

λ⊥′ϕ

λ⊥′ϑϕ


=



1 0 0 0 0

0 cos 2δ 0 sin 2δ 0

0 0 cos δ 0 sin δ

0 − sin 2δ 0 cos 2δ 0

0 0 − sin δ 0 cos δ





λϑ

λϕ

λϑϕ

λ⊥ϕ

λ⊥ϑϕ


(2.38)

and 
A′ϑ
A′ϕ
A⊥′ϕ

 =


1 0 0

0 cos δ sin δ

0 − sin δ cos δ



Aϑ

Aϕ

A⊥ϕ

 . (2.39)
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The rotation around the z axis is a linear and orthogonal transformation of the
parameters. Contrary to what happens in the rotations around the y and x axes,
no parameter-dependent factor 1 / (1 + Λ) appears in front of the matrices and the
transformation of the parity-violating coefficients is now completely independent
of the values of the parity-conserving ones. In fact, an equivalent way to obtain
the expression of the transformed distribution is to simply transform the angle ϕ,
leaving unchanged the values of the shape parameters, given that a rotation around
z is a shift in the azimuthal orientation:

W(cosϑ′, ϕ′) ∝
1

(3 + λϑ)

[
1 + λϑ cos2 ϑ′

+ λϕ sin2 ϑ′ cos 2(ϕ′ + δ) + λϑϕ sin 2ϑ′ cos(ϕ′ + δ)

+ λ⊥ϕ sin2 ϑ′ sin 2(ϕ′ + δ) + λ⊥ϑϕ sin 2ϑ′ sin(ϕ′ + δ)

+ 2Aϑ cosϑ′ + 2Aϕ sinϑ′ cos(ϕ′ + δ) + 2A⊥ϕ sinϑ′ sin(ϕ′ + δ)
]
.

(2.40)

Several of the relations reported above — actually, all of them in the case of
Eqs. 2.38 and 2.39 — are orthogonal or have orthogonal components (the linear
parts, excluding the factor 1 / (1 + Λ)), suggesting the existence of combinations of
parameters that remain unchanged in the transformation and, therefore, characterize
the decay distribution in a frame-independent way. These “invariant” shape param-
eters are very interesting and their meanings and possible uses will be the subjects
of Chapters 3 and 4.

The most general frame transformation, changing the directions of all three ref-
erence axes, can be parametrized as the sequence of three rotations, which can be
chosen according to different conventions. We will consider the convention illus-
trated in Fig. 2.22.

All rotations are applied to the axes of the frame being transformed. The first one
is made around the z axis, by an angle ψ, defined so that the rotated y axis becomes
perpendicular to the final z axis and will now belong to the final xy plane (a). Then
follows a rotation around the new y axis, by an angle ζ, bringing the initial and final
polarization axes (z) and, therefore, the two xy planes, to coincide (b). A rotation
around z by ω completes the transformation, giving the x and y axes their wanted
directions (c).

The order of the sequence of rotations is important because, in general, rotations
do not commute. In order to describe all possible rotations with a 1 : 1 correspon-
dence, the angles ψ, ζ, and ω must belong to, respectively, the domains [−π, π],
[0, π], and [−π, π], that is, ζ can be seen as a “polar” variable and the other two as
“azimuthal” variables.

The overall transformation of the shape parameters can be calculated as a func-
tion of the angles with the usual procedure, considering now the product matrix
Rz(ω) Ry(ζ) Rz(ψ), or by applying, in the correct sequence, the parameter transfor-
mations given by Eqs. 2.32, 2.33, 2.38, and 2.39. The resulting transformations for
the parity-conserving and parity-violating parameters are presented in Table 2.2.
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Fig. 2.22 The three consecutive steps of a generic transformation that brings a given initial polar-
ization frame (violet) to coincide with the final one (orange).

2.16 Recapitulation

When the decaying particle is observed in “inclusive” production processes of the
kind h1h2 → V + X, with unpolarized targets and/or beams, and without including
any information on X in the analysis, the polarization axis z is naturally defined by
the experiment as belonging to the production plane, formed by the h1 and h2 mo-
mentum directions in the V rest frame (Fig. 2.1). The y axis is taken perpendicular
to this plane, which, therefore, coincides with the zx plane.

The different options for defining the z axis reflect the simplest topologies of the
elementary production processes, as seen in the V rest frame (Figs. 2.2 and 2.3):
the two Gottfried–Jackson (GJ1 and GJ2) axes (defined as the momentum direc-
tions of h1 and h2) approximate the natural quantization axes in certain t/u-channel
processes, the helicity (HX) axis (direction of V itself) the one of s-channel pro-
cesses, and the Collins–Soper (CS) axis (direction of the relative motion of h1 and
h2) is best suited for 2 → 1 processes (where no X is produced); the perpendicular
helicity (PX) axis is exactly perpendicular to the CS axis.
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Table 2.2 Matrix presenting the rotated parity-conserving (λ′i , top rows) and parity-violating (A′i ,
bottom rows) parameters of the decay distribution as linear combinations of the initial parame-
ters (λi and Ai, columns). For instance, A′ϑ = Aϑ/(1 + Λ) × cos ζ + Aϕ/(1 + Λ) × sin ζ cosψ +

A⊥ϕ /(1 + Λ) × sin ζ sinψ. In the 1 / (1 + Λ) factor, the term Λ is a function of the λi parameters:
Λ = 1/2

(
λϑ − λϕ cos 2ψ − λ⊥ϕ sin 2ψ

)
sin2 ζ − 1/2

(
λϑϕ cosψ + λ⊥ϑϕ sinψ

)
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The convention for the positive orientation of the z axis must be specified in the
presence of parity-violating effects, because it determines the resulting sign of the
asymmetry parameter Aϑ. More generally, the y axis orientation must be part of
the definition of the polarization frame, as the sign of λϑϕ depends on it and even
changes from the positive to the negative pL (or rapidity) hemispheres if the y axis
does not, at the same time, flip its orientation: any integration over a symmetric
pL range would artificially suppress λϑϕ, creating serious ambiguities of interpre-
tation (Figs. 2.13–2.16), as well as incompatibilities between measurements and/or
predictions using different conventions. In collisions between identical hadrons, or
whenever the underlying processes are insensitive to the exchange of the colliding
objects, the GJ1 and GJ2 frames have to be carefully defined and used: in each of
them, the values of all anisotropy parameters can change radically, not only in sign,
with the change of sign of pL, as a consequence of having arbitrarily chosen one
or the other beam to define the z axis (Figs. 2.9–2.11). “Symmetrised” versions of
these two frames, changing the beam taken as reference when pL changes sign, may
be adopted to eliminate this spurious asymmetry (Fig. 2.12). It is anyhow essential,
for any faithful comparison to models or to other measurements, that all adopted
conventions are well indicated.

Any change of polarization frame, among the ones above defined, is a rotation
in the production plane (around the y axis) by an angle δ (Eq. 2.13), which depends
on the transverse and longitudinal momentum components of V , normalized by its
mass m. The anisotropy parameters depend strongly on the frame. For example, a
fully longitudinal polarization (λϑ = −1, λϕ = λϑϕ = 0) in the HX frame becomes
transverse (λϑ = +1) in the CS frame (or vice versa) when, for pT >> m, the two
z axes are almost perpendicular (Figs. 2.6 and 2.7). Importantly, a strong azimuthal
anisotropy (in this case, λϕ = −1 in the frame where λϑ = +1) clearly denotes
that the chosen frame is not providing the simplest and more natural physical pic-
ture. This means that the azimuthal anisotropy is a crucial observable: when it is
integrated out (a compromise adopted in some measurements based on relatively
small data samples) it is generally not possible to establish if the measured polar
anisotropy (λϑ) represents the “natural” polarization characterizing the production
of V in the given conditions, unless the measurement is repeated in different frames.

More generally, the measurement of a moderate and pT-dependent λϑ, as the
one that was reported by CDF in the HX frame (Fig. 2.17), may be interpreted,
without an accompanying λϕ measurement, with an infinite and continuous range of
fundamental polarization hypotheses involving different natural frames.

Neglecting the azimuthal dimension also affects the reliability of the result, be-
cause, in the presence of acceptance correlations between the variables cosϑ and ϕ,
the integration over ϕ can lead to completely different acceptance-corrected cosϑ
distributions (and measured λϑ values), depending on the hypothesis on the value of
λϕ used in the determination of the acceptance (Fig. 2.20).

The importance of these effects depends on the experiment. Moreover, not all
frames are equally susceptible to them. For example, the minimum-lepton-pT re-
quirements sculpt the two-dimensional distribution in such a way that the HX frame
(at high pT) and the PX frame (also down to low pT) show a minimal level of corre-
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lation between the two angular variables (Figs. 2.18 and 2.19). A two-dimensional
study of the acceptance effects should always be made, at least to assess or exclude
possible correlations. Actually, the problem should be addressed in its even higher
dimensionality, given that the cosϑ, ϕ acceptance sculpting depends on pT and ra-
pidity, and the correction of the data by a strongly non-uniform acceptance function,
should be made avoiding integrations as much as possible.

Being the frame-rotation angle δ a function of the particle’s laboratory momen-
tum (Table 2.1), the anisotropy parameters have very different kinematic depen-
dences in different frames. A constant polarization λϑ = ±1, λϕ = λϑϕ = 0 observed
when the measurement is made in the natural frame transforms into a complex pat-
tern of pT and rapidity dependent λϑ, λϕ, and λϑϕ values, when a different frame is
chosen (Figs. 2.9–2.11). Moreover, two experiments choosing the same frame, dif-
ferent from the natural one, will observe, in general, different results as a function
of pT if they integrate over rapidity (or vice versa), as a consequence of different
rapidity (pT) coverages and/or different detection efficiencies as function of rapidity
(pT): not only the simplicity of the underlying polarization scenario escapes obser-
vation, but seeming incompatibilities are found between measurements (Fig. 2.21).
While, in principle, the choice of the frame is arbitrary, in practice there can exist
a frame leading to significantly clearer and more informative physics results. This
example shows the importance of using at least two alternative frame definitions in
the analysis.

Frame transformations corresponding to rotations around an axis not coinciding
with the y axis are not directly relevant for experimental analyses (for inclusive
observations), but were provided in Section 2.15 for future reference in descriptions
of phenomena involving deviations from purely planar processes, as when more
than two final states are produced or the intrinsic transverse momentum of partons is
taken into account (Chapter 5), as well as in indirect production via cascade decays
(Chapter 6).
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Chapter 3
A frame-independent study of the angular
distribution

In this chapter we continue our study of the dilepton decay distribution of a vector
particle, introducing general frame-independent relations between the observable
anisotropy parameters. Some of these relations reflect the geometrical properties of
the distribution, including inequalities that delimit the allowed phase space of the
anisotropy parameters, and the representation of the distribution in a “canonical”
form.

The most interesting relation defines a rotation-invariant parameter expressing
the intrinsic nature of the polarization, independently of the reference frame and
even (as will be seen in the next chapter) of shape variations caused by the superpo-
sition of production processes.

We will address the following questions.

• What extreme physical values can be assumed by the anisotropy parameters λϑ,
λϕ, λϑϕ, etc., and what angular momentum configurations do they correspond to?

• By what “trajectory” is the transformation from one frame to another represented
inside the physical parameter space? What are the parameter combinations pre-
served by the transformation?

• How can the angular distribution, as a geometrical shape, be represented in terms
of “absolute” shape parameters, independent of the reference axes?

• How can the concepts of “transverse” and “longitudinal” polarization (which, as
defined in the previous chapter, seem to strongly depend on the reference frame)
be expressed in a rotation-invariant way?

• Is it possible to define a frame-independent parity asymmetry?
• How can the repetition of the same measurement in more than one frame provide

a cross check of the analysis procedure?
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3.1 Is polarization a relative concept?

The careful definition of a system of reference axes is the first ingredient of a po-
larization measurement. The choice among several possible definitions is arbitrary
in the sense that, regardless of how it is (properly) made, it always leads to a mea-
surement retaining, at least potentially, the same amount of physical information.
However, it must not be a random choice. As illustrated in the previous chapter,
the measured values of the shape parameters defining the decay angular distribu-
tion depend strongly on the chosen frame and, consequently, on the decay particle’s
laboratory momentum, since the angle between two different frames is explicitly
kinematics-dependent. One choice may lead to results showing a simpler kinematic
pattern and allowing for a cleaner and more immediate physical interpretation, with
respect to other choices. In the case of the decay of vector particles, the denomina-
tions themselves of transverse and longitudinal polarization, where a characteristic
angular momentum projection originates from a specific kind of couplings between
the involved particles, become relative to the chosen observation frame and can even
switch their roles if the frame choice is particularly “unfortunate”. As mentioned in
Chapter 2, to provide all necessary ingredients for an unambiguous physical inter-
pretation the analysis must consider alternative choices of the polarization frame and
avoid blind simplifications (integrations, cancellations), which, especially in the less
favourable frames, can lead to significant losses of information.

While the multidimensional and multi-frame method must remain the core of the
measurement, we consider now a complementary approach, based on the existence
of rotation-invariant relations between the shape parameters [1–7]. Such relations
characterize the angular distribution independently of the chosen frame, directly re-
flecting the angular momentum projection along the natural quantization axis, even
if a different axis was chosen for the measurement. In fact, the natural polarization
of a particle is not a “relative” concept. In particular, as hereafter illustrated, it is
possible to qualify the nature of the polarization of a vector particle as transverse or
longitudinal in absolute terms, as an intrinsic property of the production mechanism
and, as such, unaffected by the arbitrary choice of the quantization axis.

3.2 The borders of the physical domain

In the first part of this chapter we will consider, for simplicity, the case of a parity-
conserving dilepton decay, exclusively and fully described by the λϑ, λϕ, and λϑϕ
parameters. We start by discussing the magnitude scale of the shape parameters,
until here not explicitly addressed. For λϑ, the values −1 and +1, corresponding
to the fully longitudinal (Jz = 0) and transverse (Jz = ±1) cases, respectively, are
the extremes of the physically allowed interval, as can be seen from the relation
(Eq. 1.13)

λϑ =
1 − 3 |a0|

2

1 + |a0|
2 , (3.1)
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where |a0|
2 is the fraction of longitudinal polarization (with respect to the total sum

of transverse and longitudinal components), thereby necessarily in the range 0–1.
Figures 2.10 and 2.11 suggest that also |λϕ| and

√
2 |λϑϕ| reach at most unity,

while not demonstrating it in general, because they represent rather specific physics
cases. Moreover, the three-dimensional (λϑ, λϕ,

√
2 λϑϕ) parameter domain certainly

does not occupy the full cube [−1,+1]3. The fully longitudinal polarization case
provides a clear illustration of this statement. As seen in Eq. 1.13, when λϑ = −1,
i.e. |a0| = 1 and a+1 = a−1 = 0, λϕ and λϑϕ are necessarily zero: no azimuthal
anisotropies are allowed when a fully longitudinal polarization is measured, mean-
ing, moreover, that the analysis has “luckily” chosen an observation frame coincid-
ing with the natural frame. Instead, in the transverse polarization case we already
know, from the example of Eq. 2.17, that a measurement of λϑ = +1 may be ac-
companied by a large azimuthal anisotropy, λϕ = −1, meaning that the polarization
is natural, and actually fully transverse, in a frame perpendicular to the chosen one.

The shape of the allowed three-dimensional parameter space can be determined
from Eq. 1.13. For each single subprocess (i) producing V in one given angular
momentum composition, we obtain the following identities and inequalities (the
latter two using the Schwarz inequality):

1 ± λ(i)
ϕ =

(
|a(i)

+1 ± a(i)
−1|

2 + 2 |a(i)
0 |

2) / (N (i) + |a(i)
0 |

2) ,
λ(i)
ϑ
± λ(i)

ϕ =
(
|a(i)

+1 ± a(i)
−1|

2 − 2 |a(i)
0 |

2) / (N (i) + |a(i)
0 |

2) ,
|λ(i)
ϑϕ
| ≤
√

2 |a(i)
0 | |a

(i)
+1 − a(i)

−1| /
(
N (i) + |a(i)

0 |
2) ,

|λ⊥(i)
ϑϕ
| ≤
√

2 |a(i)
0 | |a

(i)
+1 + a(i)

−1| /
(
N (i) + |a(i)

0 |
2) .

(3.2)

These, in turn, imply the following relations between the coefficients of the angular
distribution:

(1 − λ(i)
ϕ )2 − (λ(i)

ϑ
− λ(i)

ϕ )2 ≥ 4λ(i)2
ϑϕ
,

(1 + λ(i)
ϕ )2 − (λ(i)

ϑ
+ λ(i)

ϕ )2 ≥ 4λ⊥(i)2
ϑϕ

.
(3.3)

To reach expressions valid for a generic superposition of production processes, we
use Eq. 1.17 and the Schwarz inequality,(∑n

i=1 g(i) X(i)∑n
i=1 g(i)

)2

≤

∑n
i=1 g(i) X(i)2∑n

i=1 g(i) , (3.4)

valid for g(i) > 0. To eliminate from the expressions the parameter λ⊥ϑϕ, assumed
to be unobservable (as we are considering parity conserving processes in unpolar-
ized collisions), we use the obvious relation λ⊥(i)2

ϑϕ
≥ 0. In this way we obtain the

following completely general inequalities:

(1 − λϕ)2 − (λϑ − λϕ)2 ≥ 4λ2
ϑϕ ,

1 + λϑ + 2λϕ ≥ 0 .
(3.5)
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frame transforma5ons

Fig. 3.1 The “invariant cone”, defined by Eq. 3.5, enclosing the physically allowed values of the
decay angular parameters λϑ, λϕ, and λϑϕ in any reference frame. The three intersecting planes are
defined by Eq. 3.7 for F = 0 (“plane of the longitudinal polarizations”, in blue, corresponding
to the base of the cone), F = 1/2 (“plane of the transverse polarizations”, in red), and F = 4/5
(green). Several possible frame-transformation trajectories belonging to the three planes are drawn
in matching colours. The “line of the invariant configurations”, in yellow, is the locus of points
(Eq. 3.8) representing angular distributions that are identical in all polarization frames.

The first relation defines the space inside a circular conic surface, while the
second selects the half-space on one side of a plane. Their intersection defines an
oblique solid cone contained in the cube [−1,+1]3, as shown in Fig. 3.1. The pro-
jections of this conic volume on the (λϑ, λϕ), (λϑ,

√
2 λϑϕ), and (λϕ,

√
2 λϑϕ) planes

are shown as grey areas in Fig. 3.2. They are described by the following sets of
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Fig. 3.2 The invariant parameter space as seen in the (λϑ, λϕ), (λϑ,
√

2λϑϕ) and (λϕ,
√

2λϑϕ) planes.
The projections of the invariant line and of the invariant planes and transformation trajectories
shown in Fig. 3.1 are also drawn.

inequalities, in the three respective cases:

|λϕ| ≤
1
2

(1 + λϑ) and |λϑ| ≤ 1 ;

λ2
ϑ + 2 λ2

ϑϕ ≤ 1 ;

|λϑϕ| ≤
1
2

(1 − λϕ) and |λϕ| ≤ 1 ,

with (1 + 2 λϕ)2 + 2 λ2
ϑϕ ≤ 1 for λϕ < −1/3 .

(3.6)

The relations of Eq. 3.5 are frame-independent, that is, the oblique cone of
Figs. 3.1 and 3.2 represents the allowed parameter space in any polarization frame.
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In other words, no frame rotation around the y axis ever leads to (λϑ, λϕ,
√

2 λϑϕ)
values outside that volume.

3.3 Inside the parameter domain

A closer insight into the structure of the invariant domain can be obtained by study-
ing the transformation of the shape parameters from one frame to another. The frame
rotation described by Eq. 2.13 can be seen as a “trajectory” in the (λϑ, λϕ, λϑϕ) space,
parametrized by the variation of the rotation angle δ. While in principle δ can vary
from 0 to 2π, it can be seen in Eq. 2.13 that the results of the transformation are
fully invariant by a simultaneous change of sign of cos δ and sin δ: therefore, the
half interval [0, π], for example, parametrizes all (λ′ϑ, λ

′
ϕ, λ

′
ϑϕ) points reached by the

transformation. This is due to the fact that in the considered, parity-conserving, case
a parity-flip of the polarization axis has no observable consequence. As seen in the
more general transformations reported in Section 2.15, with observable parity vio-
lating effects, the δ intervals [0, π] and [π, 2π] no longer represent equivalent families
of transformations.

There is one and only one trajectory passing through a given (λϑ, λϕ, λϑϕ) point:
it represents the infinite number of “views” of the same physical distribution that
are obtained by continuously varying the orientation of the polarization axis (in the
production plane). Figures 3.1 and 3.2 show several examples of such trajectories
in the three-dimensional parameter space, as well as their projections in the three
planes. All trajectories are, as expected, fully contained in the invariant cone. A
feature can be recognized from this representation: the trajectories do not “spiral”
through the parameter space, but form circumferences belonging to fixed planes.
Also this is expected: they represent rotations around one fixed axis, depending only
on cos δ and sin δ, and must therefore be closed circular (or elliptic) trajectories, with
coinciding start and end points. Each “invariant plane” is defined by the equation

1 + λϑ + 2 λϕ
3 + λϑ

= F (3.7)

for a given value of F , between 0 and 1, with F = 0 representing the base of the
invariant cone and F = 1 its vertex. The value of F , identical in all frames, has an
interesting physical meaning that will be discussed in the next sections.

In each invariant plane, larger circular trajectories correspond to larger differ-
ences between λϑ and λϕ, and larger values of λϑϕ. In fact, the trajectories reduce to
points in the limit condition λϑ = λϕ

λϑϕ = 0
, (3.8)

defining a line that represents the locus of fixed points of the frame rotation: when
the shape parameters belong to this “invariant line”, they remain identical in all
reference frames.
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Fig. 3.3 The projection of the invariant parameter space over the plane λϑϕ = 0. The six coloured
points, all belonging to the λϑϕ = 0 plane, indicate combinations of observable parameters corre-
sponding to pure eigenstates of Jx, Jy, and Jz with eigenvalues 0 or ±1.

Specific angular momentum configurations of the decaying particle are shown
in Fig. 3.3, within the triangle projected by the cone onto the (λϑ, λϕ) plane. The
two points in blue, for which nonzero λϑϕ values are forbidden, correspond to pure
eigenstates of Jz and Jx, with eigenvalue 0. They both represent possible experimen-
tal observations of fully longitudinal polarizations, but with respect to two different
polarization axes (z and x), related by a 90◦ rotation in the production plane. All
transformations of these two configurations to any other frame remain inside the
same “invariant plane”, having the blue line as projection. This means that all possi-
ble configurations representing fully longitudinal polarizations (along quantization
axes rotated by any angle δ within the production plane, and this time with varying
values of λϑϕ) belong to the F = 0 invariant plane, which can, therefore, be seen as
“the plane of the longitudinal polarizations”.

Analogously, the two points in red (for which λϑϕ necessarily vanishes), repre-
sent fully transverse polarizations with respect to the x and z axes, while transverse
configurations in any other polarization frame belong (with λϑϕ no longer necessar-
ily zero) to what can be called “the plane of the transverse polarizations”, where
F = 1/2, having the red line as projection.

It is important to emphasise that the frame transformation relations in Eq. 2.13
and all considerations in the previous chapter and in the present one only concern
rotations around the y axis. We do not contemplate in our discussion rotations where,
for example, the y axis transforms into the z′ axis. While taking y as polarization axis
is geometrically possible, its direction, perpendicular to the production plane, is not
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an obvious candidate for a natural polarization axis, at least in inclusive production
studies and at least in the case of fully planar processes, such as the h1h2 → V and
h1h2 → V + X topologies mentioned in the previous chapter. In fact, it is difficult
to imagine that, in such conditions, a spin alignment would naturally arise along a
direction perpendicular to the plane where all particle momenta belong.

Nevertheless, the physical phase space formally includes an entire family of an-
gular distributions “oriented” along the y axis, that is, having a cylindrical symmetry
with respect to it. These are the above-mentioned cases of distributions that are in-
variant with respect to rotations around the y axis and appear identical in the HX,
CS, and GJ frames, and any other frame having the zx plane coinciding with the
production plane. These configurations, all with λϑϕ = 0, belong to the green line
shown in Fig. 3.3. Given their peculiar symmetry, they have a simple representation
in terms of Jy components. The extreme cases are indicated by the two green points.
The one at λϑ = λϕ = −1/3 is identical to the “peanut” shape shown in Fig. 2.15-
right, a hypothetical case of fully transverse (Jy = ±1) polarization along the y axis.
The λϑ = λϕ = +1 point, vertex of the invariant cone, touching the frontier plane
defined by F = 1, represents a fully longitudinal distribution (Jy = 0), a “donut”
having as symmetry axis the y axis. All other points along this “invariant line” can
be seen as intermediate cases, obtainable as mixtures of these two base cases and
always maintaining their rotational symmetry along the y axis. One example, with
λϑ = λϕ = +1/5, is a distribution identical to the one in Fig. 2.13-right.

Obviously, even if theoretically allowed as angular momentum states, these cases
do not necessarily represent real configurations in which the decaying particle may
actually be produced in the considered physical conditions. When the outcome of
a measurement is interpreted, the comparison to the mathematical constraints rep-
resented by the invariant cone should be complemented, when possible, by further
considerations about how the measured distribution is related to possible symme-
tries imposed by the production mechanism and by the observation conditions. In
fact, while we just mentioned, as examples of peculiar frame-independent distri-
butions, two cases effectively encountered in the previous chapter, there they were
meant to illustrate possible “artefacts” of an incorrect use of the polarization frame
definitions, resulting in significantly distorted versions of the physical distributions
of, respectively, Fig. 2.15-left and Fig. 2.13-left.

A further clarification is needed for the example of Fig. 2.15. One may find it
contradictory that the seemingly “transverse” λϑ = λϕ = −1/3 case (right) actually
belongs to the plane of the longitudinal polarizations F = 0. The way this case
was obtained, starting from the fully longitudinal distribution on the left, shows that
there is actually no contradiction. The “peanut” on the right is the result of a full
rotational smearing of the distribution on the left: it can be seen as the superposition
of infinite “donuts” rotated around the y axis by all possible angles. Each rotated
donut (i) remains, like the original one, in the invariant plane F = 0 and its pa-
rameters satisfy, therefore, the condition 1 + λ(i)

ϑ
+ 2 λ(i)

ϕ = 0. This linear relation,
summed over i = 1, . . .∞ using the sum rule of Eq. 1.17, remains unchanged in
form: 1+λϑ +2 λϕ = 0. The superposition of any number of F = 0 distributions is a
F = 0 distribution: F can be interpreted as the “intrinsic” polarization of the decay
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distribution, a property maintained in any frame rotation and in the superposition of
rotated distributions.

This is only one illustration of the interesting concept of “invariant polarization”
that will be developed in the following sections.

3.4 An absolute definition of “longitudinal” and “transverse”

As we saw in the previous chapter, for instance in Figs. 2.4 and 2.6, a transforma-
tion of polarization frame, being nothing else than a rotation, leaves the shape of the
decay distribution unchanged. While the shape itself is rotation invariant, the shape
parameters λϑ, λϕ, and λϑϕ are not. In particular, the concepts of “longitudinal” and
“transverse”, when defined as, respectively, λϑ < 0 and λϑ > 0, depend, just like λϑ,
on the reference frame. However, it is possible to define one or more parameters,
in terms of λϑ, λϕ, and λϑϕ, to reflect the characteristic shape of the distribution,
independently of the chosen reference frame. We have encountered one possible
definition of such kind of observable in the previous section: the parametric equa-
tion of the invariant planes, Eq. 3.7, can be read as the definition of the invariant
polarization parameter F , which has the same value, included between 0 and 1, in
all polarization frames. In particular, F assumes the characteristic values 0, 1/3, and
1/2 when (even if not exclusively) the polarization is, respectively, fully longitudi-
nal, zero (two thirds transverse, one third longitudinal), and fully transverse with
respect to a given (not necessarily known) polarization axis.

The very existence of such a parameter is interesting: it means that it is possible
to identify the natural alignment of the angular momentum vector in absolute terms,
that is, independently of the direction of the quantization axis and even when the
latter is unknown. The words “longitudinal” and “transverse”, classically referred
to a specific, known direction in space, acquire a rotation-invariant meaning.

More generally, using the general frame-transformation relations in Eq. 2.13 the
reader can verify that 3 + λϑ and 1 − λϕ transform covariantly,

3 + λ′ϑ =
1

1 + Λ
(3 + λϑ) ,

1 − λ′ϕ =
1

1 + Λ
(1 − λϕ) ,

(3.9)

and, therefore, any quantity F{ci} defined by the linear relation

F{ci} =
c1 (3 + λϑ) + c2 (1 − λϕ)
c3 (3 + λϑ) + c4 (1 − λϕ)

, (3.10)

where c1, c2, c3, and c4 are real numbers, is left unchanged by the transformation:
F ′
{ci}

= F{ci}. All these definitions of invariant shape parameters are equivalent: each
one can be expressed as a function of the others. The parameter F defining the
invariant planes corresponds to: c1 = c3 = 1; c2 = −2; and c4 = 0.
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3.5 A more fundamental derivation of the invariant polarization

The existence of a rotation-invariant relation among the parameters of the decay
distribution is rooted on the rotational covariance properties of angular momentum
states. In fact, the frame-invariance of F , seen in the previous section to be a conse-
quence of how the observable parameters of the decay distribution transform from
one frame to another, can also be demonstrated starting from the transformations of
the (not directly observed) angular momentum components of the decaying particle.

As discussed in Chapter 1, for successive rotations about the z and y axes, respec-
tively by the angles ϕ and ϑ, a pure J = 1, Jz = M angular momentum eigenstate
|1, M〉 transforms according to the relation (analogous to Eq. 1.1 but describing the
inverse rotation)

|1, M〉 =
∑

M′=0,±1

D1∗
MM′ (ϑ, ϕ) |1, M′〉 . (3.11)

For a generic superposition

|V〉 =
∑

M=0,±1

aM |1, M〉 , (3.12)

the components transform, therefore, as

a′K =
∑

M=0,±1

aM D
1∗
MK(ϑ, ϕ) . (3.13)

For a rotation in the production plane (about the y axis; ϕ = 0),

a′+1 + a′−1 =
∑

M=0,±1

aM [d1
M,+1(ϑ) + d1

M,−1(ϑ)] = a+1 + a−1 , (3.14)

where we have used d1
±1,+1(ϑ) + d1

±1,−1(ϑ) = 1 and d1
0,+1(ϑ) + d1

0,−1(ϑ) = 0 (Eq. 1.3
or Table 7.3).

In other words, the amplitude combination a+1 + a−1 is invariant by rota-
tion around the y axis, that is, for a transformation between polarization frames.
Therefore, given also the obvious rotation invariance of the state normalization
|a0|

2 + |a+1|
2 + |a−1|

2, we can write the following frame-independent quantity, now
explicitly considered for one individual subprocess i, producing a state with compo-
nent amplitudes a(i)

+1, a(i)
−1, and a(i)

0 :

h(i) =
1
2

∣∣∣a(i)
+1 + a(i)

−1

∣∣∣2∣∣∣a(i)
0

∣∣∣2 +
∣∣∣a(i)

+1

∣∣∣2 +
∣∣∣a(i)
−1

∣∣∣2 . (3.15)

It can easily be seen that this expression is always positive and assumes its maximum
value, 1, when a(i)

+1 = a(i)
−1 and a(i)

0 = 0.
Using Eq. 1.13, summing over n subprocesses with fractional contributions f (i),

and then using Eq. 1.17, a few algebra manipulations finally lead to
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i=1 f (i)N (i)h(i)∑n

i=1 f (i)N (i) =
1 + λϑ + 2 λϕ

3 + λϑ
. (3.16)

This expression is frame-independent, being the sum of n frame-independent terms,
and gives values between 0 and

∑n
i=1 f (i)N (i) = 1. It can be recognized from Eq. 3.7

that it is equal to F .
While the rotation around the y axis is the one relevant for a change among

experimentally-definable polarization frames (in inclusive production studies), for
completeness and curiosity we can wonder what observable quantities are invariant
by hypothetical rotations around other directions. Following an analogous procedure
and using the same notation as above, we find that the quantity

G =

∑n
i=1 f (i)N (i)G(i)∑n

i=1 f (i)N (i) =
1 + λϑ − 2 λϕ

3 + λϑ
, (3.17)

with

G(i) =
1
2

∣∣∣a(i)
+1 − a(i)

−1

∣∣∣2∣∣∣a(i)
0

∣∣∣2 +
∣∣∣a(i)

+1

∣∣∣2 +
∣∣∣a(i)
−1

∣∣∣2 , (3.18)

is invariant by rotation about the x axis.
Finally, it is immediate to understand that the parameter λϑ is in itself invariant

by rotation about z: such a rotation simply corresponds to a change of the value of
the azimuthal coordinate ϕ, leaving completely unchanged, in form and value, the
polar-angle dependent term, (1+λϑ cos2 ϑ) / (3+λϑ), of the full angular distribution
(Eq. 2.1).

3.6 Frame-independent angular distribution

The frame-invariant polarization observable F can be determined through the mea-
surement of the two-dimensional, three-parameters angular distribution of Eq. 2.1.
A convenient procedure, adoptable in an analysis of experimental data, is to fit the
event distribution (after considering acceptance and efficiency corrections) to the
expected functional form, where either λϑ or λϕ is re-expressed in terms of F . In
the latter case, for example,

W(cosϑ, ϕ) =
1

4 π
3

3 + λϑ
×

{
1 + λϑ cos2 ϑ + λϑϕ sin 2ϑ cosϕ

+
1
2

[
(3 + λϑ)F − (1 + λϑ)

]
sin2 ϑ cos 2ϕ

}
,

(3.19)

This method obviously requires the prior choice of one of the several possible ref-
erence frames, because the angles ϑ and ϕ depend on it; however, the resulting
determination of F will not depend on that choice. Actually, the latter statement is
more properly written as “the resulting determination of F should not depend on
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that choice”, given that, as discussed in Section 3.12, systematic variations caused
by experimental biases may lead to a violation of the invariance ofF . It is, therefore,
very useful and important to perform the experimental analysis in two sufficiently-
different reference frames, in order to probe such effects and verify whether identical
values of F are indeed measured in both frames, in spite of the different values of
λϑ and λϕ.

On the other hand, it can sometimes be convenient to determine F directly from
a one-dimensional, single-parameter angular distribution. That such a distribution
exists, and what it is, can be inferred with simple reasoning. The distribution must
necessarily be, as its (only) shape parameter F , invariant by rotation about the y
axis. In other words, it must be a function of a frame-independent angular variable.
This restricts the possibilities for the definition of the corresponding angular variable
to one single case,

cosα = sinϑ sinϕ , (3.20)

where α is the angle formed by the direction of the decay lepton with the y axis (the
axis perpendicular to the production plane). The cosα distribution can only be of
the form

w(cosα) ∝ 1 + λα cos2α , (3.21)

just as any parity-conserving distribution of the angle formed with respect to an axis
must be, when only J = 1 wave functions are involved. Finally, the coefficient λα
can be specified as a function of F by imposing the condition

〈cos2α〉 =

∫ +1

−1
cos2 α w(cosα) d(cosα)

=

∫ 2π

0

∫ +1

−1
(sinϑ sinϕ)2 W(cosϑ, ϕ) d(cosϑ) dϕ ,

(3.22)

with the result

λα = −
λϑ + 3 λϕ

2 + λϑ + λϕ
=

1 − 3F
1 + F

. (3.23)

The similarity between the latter equality and the expression of λϑ as a function
of the longitudinal polarization fraction |a0|

2 (Eq. 3.1) reveals that F also represents
a longitudinal polarization fraction, determined in this case taking as quantization
axis the axis perpendicular to the production plane.

The cosα distribution should be used with care because it has similar limitations
to those of the projected one-dimensional cosϑ and ϕ distributions, previously dis-
cussed in Section 2.13. While its reduced variable dimensionality with respect to
the the full angular distribution (Eq. 3.19) can offer advantages in an experimental
analysis, especially when limited data samples are available, it can also lead to a
biased measurement if correlation effects induced by the limited experimental cov-
erage and detection efficiencies are not properly taken into account. Such effects
must be corrected in their full dimensionality (that is, as a function of cosϑ and ϕ)
when the cosα event distribution is produced.
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3.7 The parameter domain of the general dilepton decay

The relations in Eq. 3.5, defining the allowed parameter space for the inclusive ob-
servation of a parity-conserving decay in unpolarized collisions, can be made more
general to include the effects of parity violating processes and/or polarizations of the
colliding hadrons. Five combinations of the eight shape parameters enter the gener-
alized inequalities, which formally represent the intersection of volumes defined by
three conical surfaces (relations of the kind (1 + X)2 − (Y + X)2 = 4K2) and a pair
of planes (one relation of the same kind, with K = 0) in the five dimensional space

of the coordinates λϑ, λϕ,
√
λ⊥2
ϑϕ

+ A2
ϕ,

√
λ2
ϑϕ

+ A⊥2
ϕ , and

√
λ⊥2
ϕ + A2

ϑ
:

(1 − λϕ)2 − (λϑ − λϕ)2 ≥ 4(λ2
ϑϕ + A⊥2

ϕ ) ,

(1 + λϕ)2 − (λϑ + λϕ)2 ≥ 4(λ⊥2
ϑϕ + A2

ϕ) , (3.24)

(
1 +

√
λ⊥2
ϕ + A2

ϑ

)2
−

(
λϑ +

√
λ⊥2
ϕ + A2

ϑ

)2
≥ 4

[
(λ2
ϑϕ + A⊥2

ϕ ) + (λ⊥2
ϑϕ + A2

ϕ)
]
,

(
1 −

√
λ⊥2
ϕ + A2

ϑ

)2
−

(
λϑ −

√
λ⊥2
ϕ + A2

ϑ

)2
≥ 0 .

Figure 3.4 shows the two-dimensional projections of the physical parameter do-
main defined by these relations. The inequalities of Eq. 3.24 become equivalent to
those of Eq. 3.5 when only the three parity-conserving observables λϑ, λϕ, and λϑϕ
are nonzero.

It is worth noting that, while the polar component of the parity asymmetry, Aϑ,
is bounded between −1 and +1, like λϑ, the azimuthal counterparts Aϕ and A⊥ϕ have
magnitudes limited to |A(⊥)

ϕ | <
√

2/2, just like λϑϕ and λ⊥ϑϕ.

3.8 The “canonical form” of the angular distribution

According to Theorem 1.1, presented in Section 1.10, for any angular momentum
state |V〉 = a−1 |1, −1〉 + a0 |1, 0〉 + a+1 |1, +1〉 of a J = 1 particle it is always
possible to make the Jz = 0 component vanish by performing a well defined rotation
of the system of axes. The redefined state, written as

|V〉 = a?−1 |1, −1〉 + a?+1 |1, +1〉 (3.25)

with respect to the new polarization axis z?, has a dilepton decay angular distribution
simpler than its most general form in Eq. 1.27. In fact, it can be seen in Eq. 1.28 that
the parameters λϑϕ, λ⊥ϑϕ, Aϕ, and A⊥ϕ (the index indicating the individual subprocess
is omitted for simplicity), containing amplitudes of the kind a0,L′ , all become zero.
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Fig. 3.4 Two-dimensional projections of the allowed parameter space for the angular distribution
of the dilepton decay of a vector particle.

Of the remaining ones, we notice that λϕ and λ⊥ϕ do not need to be both nonzero: if
they are, a further rotation around the z? axis by a suitable angle δ (determined by
tan 2δ = λ⊥ϕ /λϕ) can always bring λ⊥ϕ to zero, according to the following relations (a
subset of the relations in Eq. 2.38): λ

′
ϕ

λ⊥′ϕ

 =

 cos 2δ sin 2δ

− sin 2δ cos 2δ


λϕλ⊥ϕ

 . (3.26)

The same rotation, as seen in Eq. 2.38, leaves λϑ and Aϑ unchanged, while it
would change λϑϕ, λ⊥ϑϕ, Aϕ, and A⊥ϕ only if they were not zero; but they are zero,
after the first rotation. Therefore, considering also that a?0 = 0 implies λϑ = +1,
we can reformulate Theorem 1.1, for the specific case of a dilepton decay, in the
following form.
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Theorem 3.1. For any production mechanism where a vector particle is con-
sistently produced in the same angular momentum state, expressed as a linear
combination of the Jz = −1, 0, and +1 eigenstates, there always exists a sys-
tem of axes, x?y?z?, with respect to which the dilepton decay distribution has
the shape

W?(cosϑ, ϕ) =
3

8π

(
1 + cos2 ϑ + λ?ϕ sin2 ϑ cos 2ϕ + 2A?

ϑ cosϑ
)
. (3.27)

The distribution has only two shape parameters, λ?ϕ and A?
ϑ , given by

λ?ϕ = 2 Re[(a?+1,+1)∗a?−1,+1] + 2 Re[(a?+1,−1)∗a?−1,−1]

= |a?+1,+1 + a?−1,+1|
2 + |a?+1,−1 + a?−1,−1|

2 − 1

= 2F ? − 1 ,

A?
ϑ = |a?+1,+1|

2 + |a?−1,−1|
2 − |a?+1,−1|

2 − |a?−1,+1|
2 ,

(3.28)

where a?M,L′ are the amplitudes for the general (possibly parity-violating) dilepton
decay process, previously defined in Section 1.11 but now referred to the frame (x?,
y?, z?). The amplitudes are normalized according to |a?

+1,+1|
2 + |a?

−1,−1|
2 + |a?

+1,−1|
2 +

|a?
−1,+1|

2 = 1 (since a?0,±1 = 0).
The quantity F ? is formally identical to the invariant polarization parameter F ,

which, for one individual subprocess, is defined, extending the parity-conserving
case of Eq. 3.15, as

F =
1
2

∣∣∣a+1,+1 + a−1,+1
∣∣∣2 +

∣∣∣a+1,−1 + a−1,−1
∣∣∣2∣∣∣a0,+1

∣∣∣2 +
∣∣∣a0,−1

∣∣∣2 +
∣∣∣a+1,+1

∣∣∣2 +
∣∣∣a−1,+1

∣∣∣2 +
∣∣∣a+1,−1

∣∣∣2 +
∣∣∣a−1,−1

∣∣∣2 . (3.29)

Also in the most general parity-violating case, and after summing over all subpro-
cesses, F maintains its dependence on (only) λϑ and λϕ, as defined in Eq. 3.16.

Coming back to the particular view of the distribution referred to the axes
x?, y?, z?, the parameter F ? becomes (1 + λ?ϑ + 2λ?ϕ ) / (3 + λ?ϑ ) = 1

2 (1 + λ?ϕ ). The
difference in notation, F ? instead of F , is a reminder that this parameter now ex-
presses the polarization as it would be measured in the (x?, y?, z?) frame, which
is not always experimentally accessible. In fact, if z? does not belong to the pro-
duction plane, the parameters λ⊥ϕ , λ⊥ϑϕ, and A⊥ϕ are, in general, nonzero, but may be
suppressed in the average over all events in certain situations, when not all particles
participating in the production and decay process are observed, as previously men-
tioned (“inclusive” observation). In these conditions, the distribution is, to some
extent, smeared out: it effectively changes shape. This also changes the “natural”
value of F ? (i.e. of λ?ϕ ), which reflects the full shape of the unsmeared distribution,
into an “effective” F , characterizing the observable distribution.

Even if λϑ = +1 in the (x?, y?, z?) frame, natural polarizations different from
the transverse one are included in this parametrization: for example, as seen in Sec-
tion 2.8, the condition a?

+1,±1 + a?
−1,±1 = 0 corresponds to a longitudinal polarization
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with respect to an axis perpendicular to z? (Eq. 2.17), and, in fact, Eq. 3.28 gives
F ? = 0.

The quantities F ? and A?
ϑ represent, respectively, the natural polarization and

parity asymmetry characterizing the production and decay process. Interestingly,
these parameters, which obviously do not depend on the chosen frame, are both
invariant by any rotation, not only around the y axis, with the caveat mentioned
above: they are not always fully observable.

The existence of a simpler, “canonical” form of the distribution, identified by
two shape parameters independently of its orientation in space, is sometimes of
more theoretical than practical interest. First, as discussed above, the z? axis may
not belong to the production plane and may, therefore, not be approximated well
enough by any of the polarization axes adoptable in the analysis of the experimental
data. Second, we have assumed that there is no superposition of different production
processes. In the most general case, where a mixture of different angular momentum
states is produced, we can still, at least in principle, characterize the shape of the
overall distribution with a small number of geometrical parameters independent of
the chosen frame. However, in general, it is not possible to simultaneously reduce
the parity-conserving term, parametrized by λϑ, λϕ, λ⊥ϕ , λϑϕ, and λ⊥ϑϕ, and the parity-
violating one, described by Aϑ, Aϕ, and A⊥ϕ , to their simplest possible forms.

To illustrate this fact it is convenient to start by assuming that the latter three
parameters are zero. The resulting (parity-conserving) angular distribution can be
written as a quadratic form:

1
3 + λϑ

(
1 + λϑ cos2 ϑ + λϕ sin2 ϑ cos 2ϕ + λϑϕ sin 2ϑ cosϕ

+ λ⊥ϕ sin2 ϑ sin 2ϕ + λ⊥ϑϕ sin 2ϑ sinϕ
)

= r̂TM r̂ ,

with r̂ = ( sinϑ cosϕ, sinϑ sinϕ, cosϑ )

and M =
1

3 + λϑ


1 + λϕ λ⊥ϕ λϑϕ

λ⊥ϕ 1 − λϕ λ⊥ϑϕ

λϑϕ λ⊥ϑϕ 1 + λϑ

 .
(3.30)

The real and symmetric matrixM can always be diagonalized: the parameters λϑϕ,
λ⊥ϑϕ, and λ⊥ϕ represent off-diagonal terms that can be set to zero with a suitable
rotation. In the rotated frame, the axes x, y, and z of the reference frame will coincide
with the principal axes of the geometrical shape of the distribution: that is, the planes
xy, yz, and zx will be symmetry planes, bisecting the distribution into halves that are
mirror images of each other. The distribution will then be described by only two
parameters, λ?ϑ and λ?ϕ , or λ?ϑ and F ?.

As far as parity-conserving processes are concerned, we can, therefore, condense
the above considerations in the form of the diagonal matrix representing, in a suit-
able and always existing frame of axes, the decay distribution in its “canonical”
shape.
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For a single subprocess producing always the same angular momentum state, the
matrix has one parameter, F ?,

M =


F ?

2 0 0

0 1−F ?

2 0

0 0 1
2

 , (3.31)

while in the most general case it has two parameters, F ? and λ?ϑ ,

M =


1
2

(
1−λ?ϑ
3+λ?

ϑ
+ F ?

)
0 0

0 1−F ?

2 0

0 0 1+λ?
ϑ

3+λ?
ϑ

 =


1+λ?ϕ
3+λ?

ϑ
0 0

0
1−λ?ϕ
3+λ?

ϑ
0

0 0 1+λ?
ϑ

3+λ?
ϑ

 . (3.32)

Incidentally, this means that the measurement is not sensitive to the existence of
more than two underlying processes: the distribution created by a superposition of
n different processes can always be reproduced as the sum of only two components.

It is not possible to include the parity-violating parameters, together with the
parity conserving ones, to build a 3 × 3 matrix that can be diagonalized through an
ordinary space rotation. However, the subset of the parity-violating parameters has
a simple transformation property, resembling a rotation. Table 2.2 shows that, under
a generic rotation Rz(ω) Ry(ζ) Rz(ψ), as defined in Section 2.15, the parameters Aϑ,
Aϕ, and A⊥ϕ transform like the vector (z, x, y), besides acquiring the factor 1/(1 +Λ):


A′ϑ
A′ϕ
A⊥′ϕ

 =
1

1 + Λ


c ζ s ζ cψ s ζ sψ

−s ζ cω c ζ cω cψ − sω sψ c ζ cω sψ + sω cψ

s ζ sω −c ζ sω cψ − cω sψ −c ζ sω sψ + cω cψ



Aϑ

Aϕ

A⊥ϕ

 ,
where cα and sα are condensed abbreviations of cosα and sinα, respectively.

It is always possible, therefore, to choose a suitable rotation that brings the “vec-
tor” (Aϑ, Aϕ, A⊥ϕ ) to lie on one of the three “axes” of the parameter space, that is,
to transform it to a vector of, for example, the kind (A′ϑ, 0, 0). According to The-
orem 3.1, in the case of a single angular momentum state, the rotation leading to
the canonical form of Eq. 3.31 for the parity conserving parameters automatically
performs, at the same time, the “projection” of the vector of the parity asymmetries
over the polar direction. That does not always happen, however, in the presence of
an ensemble of states characterized by different production mechanisms and/or de-
cay properties. In general, while a rotation diagonalizing the parity conserving part
and another “projecting” the parity-violating part of the distribution always exist,
they are not necessarily the same rotation.

This concept can be visually clarified through an example scenario where the
measured angular distribution results from the superposition of two hypothetical
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production mechanisms; the first creates a natural polarization along the z axis, the
second along an axis forming a 45◦ angle with z, in the production plane. The two
mechanisms account, respectively, for 70% and 30% of the events. Three variants
of this scenario are considered, differing for the polarizations of the two processes
and leading to the shapes seen in the three panels of Fig. 3.5.

The first two cases only include parity conserving processes and are mixtures
of either two fully transverse polarizations (a) or one longitudinal and one trans-
verse (b). In the case (c), both polarizations are transverse but the first component,
polarized along the z axis, is of the kind 1 + cos2 ϑ − 2 cosϑ (the shape shown on
the left side of Fig. 1.7-b), corresponding to Aϑ = −1. The observable shapes in
the cases (a) and (b) have a clear “directionality”: for each of them there are three
orthogonal directions in space representing its principal axes. The major axis, for
example, is indicated by the green dashed line.

The preservation of this “ellipsoidal” symmetry is not a trivial result of peculiarly
“symmetric” cases selected as examples: we intentionally chose the relative contri-
butions of the two components to be significantly asymmetric and in the case (b)
the two contributing distributions have maximally different shapes. In fact, these
are illustrations of a general result: a parity-conserving decay distribution always
assumes a canonical form with respect to a certain system of axes.

Instead, no directionality can be seen in the third distribution, which has a parity-
violating component along an axis different from z. Its geometrical shape has no
principal axes. More generally, distributions lacking axes of symmetry are obtained
in the presence of two essential conditions: the existence of more than one “natu-
ral” axis in the superposition of processes and the presence of at least one parity-
violating process.

It is worth repeating this same message using different words: as long as all pro-
cesses are parity conserving, their superposition leads to a diagonalizable distribu-
tion; and a superposition of parity-violating processes, having individual asymme-
tries with different signs and magnitudes, will also lead to a shape that retains a well
defined axis of symmetry, as long as they all share the same reference direction. The
latter situation was illustrated in Fig. 1.7-c and is contemplated by Theorem 3.1.

Actually, we can generalize that theorem by summing Eq. 3.27 over any number
of subprocesses, with the additional hypothesis that the z? axis is the same for all of
them. In that case, the overall distribution can be written, in its canonical form, as

W?(cosϑ, ϕ) =
3

4π
1

3 + λ?
ϑ

[
1 + λ?ϑ cos2 ϑ

+

(
1 −

(
1 − F ?) (

3 + λ?ϑ

)
2

)
sin2 ϑ cos 2ϕ + 2 A?

ϑ cosϑ
]
,

(3.33)

where λ?ϑ and F ? result from the diagonalization of the parity-conserving part of
the distribution, Eq. 3.32, and A?

ϑ is the largest measurable parity asymmetry, that
is, the maximum projection of the (Aϑ, Aϕ, A⊥ϕ ) vector.



3.8 The “canonical form” of the angular distribution 103

y

x

za)

b)

y

x

z

c)

y

x

z

Fig. 3.5 Three examples of dilepton angular distributions resulting from the superpositions of two
mechanisms with natural polarizations along two different directions: (a) both processes are parity
conserving and transversely polarized; (b) both are parity conserving, with one being longitudinally
and the other transversely polarized; (c) both are transversely polarized, but one of the two violates
parity, making the overall distribution lose any “directionality”.
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3.9 Other parity-conserving frame-independent parameters

An outcome of the considerations in the previous section is that F is not the only pa-
rameter that is invariant by rotation of the reference frame. We discuss here in more
detail the further frame-independent parameters describing the parity-conserving
part of the distribution and how they are related to the frame-dependent shape pa-
rameters, while the parity-violating asymmetry will be the subject of the next sec-
tion.

We will start by assuming that it is possible to observe the full angular distribu-
tion, with an experimental procedure sensitive to all physical reference directions
relevant for the process under study and, therefore, immune to event-averaging ef-
fects that would partially smear the observed shape. This ideal scenario is certainly
worth considering; in order to quantify smearing effects and interpret the physical
indications lying behind the blurred picture, it is important to have a baseline per-
spective of what happens in ideal conditions, when such effects can be neglected.

We have seen that the parameters λ?ϑ and λ?ϕ are necessary and sufficient for defin-
ing the shape of the distribution when parity asymmetries are absent (Eqs. 3.30–
3.32). One of the two can be optionally replaced by F ? = (1 + λ?ϑ + 2λ?ϕ ) / (3 + λ?ϑ ),
which identifies the nature of the polarization (transverse, longitudinal, or a mixture
of the two cases). Moreover, λ?ϑ can always be chosen to be 1 if only one elemen-
tary process contributes to the production of the decaying particle. In this case, there
is only one essential shape parameter, λ?ϕ or F ?. For whatever fully reconstructed
dilepton distribution it is always possible to determine these parameters as a func-
tion of λϑ, λϕ, λ⊥ϕ , λϑϕ, and λ⊥ϑϕ, as measured in any rotated frame. Their expressions
can be obtained by diagonalizing the matrix M, that is, by solving the following
cubic equation in κ:

det (M− κ I ) = 0 . (3.34)

The three solutions provide the diagonal elements of M (Eq. 3.32), only two of
which are independent. Since M is real and symmetric, the equation has always
three real solutions, which can be determined analytically, leading to expressions
containing nested trigonometric functions of the kind sin [ (arcsin(K)+nπ) / 3 ] (with
integer n), and similar ones. The resulting formulas, while not particularly illumi-
nating, are reported here explicitly, so that the following discussion becomes less
abstract:

κ1 =
1
3
−

1
3

1
3 + λϑ

{
2A1/2 sin

[
1
3

arcsin
( B
2A3/2

)]}
,

κ2 =
1
3

+
1
3

1
3 + λϑ

{
2A1/2 sin

[
1
3

arcsin
( B
2A3/2

)
+
π

3

]}
,

κ3 = 1 − κ1 − κ2 ,

(3.35)

where the last relation uses the property that M has unit trace. The parameters A
and B are:
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A = λ2
ϑ + 3

(
λ2
ϕ + λ⊥2

ϕ + λ2
ϑϕ + λ⊥2

ϑϕ

)
,

B = 2λ3
ϑ + 9λϑ

[
λ2
ϑϕ + λ⊥2

ϑϕ − 2
(
λ2
ϕ + λ⊥2

ϕ

) ]
+ 27

[
λϕ

(
λ2
ϑϕ − λ

⊥2
ϑϕ

)
+ 2 λϑϕ λ⊥ϑϕ λ

⊥
ϕ

]
.

(3.36)

It is important to note that the three solutions are interchangeable, that is, there
are three diagonal forms of the distribution, corresponding to the three combinations
of “names” (x?y?z?, y?z?x?, or z?x?y) given to the principal axes of the angular
distribution: (

1 + λ?ϑ
3 + λ?

ϑ

,
1 + λ?ϕ

3 + λ?
ϑ

,
1 − λ?ϕ
3 + λ?

ϑ

)
=


(κ1, κ2, κ3)
(κ2, κ3, κ1)
(κ3, κ1, κ2)

. (3.37)

The choice among the three options is conventional, but it can be driven by phys-
ical considerations. One option is to make the canonical form converge towards the
one characterized by λ?ϑ = 1 (Eq. 3.27) when one underlying process dominates.
For this, it is sufficient to choose the combination giving the largest positive λ?ϑ
value. In this case, the following procedure can be used. The first step is to de-
fine λ?ϑ = max

i

{
3κi−1
1−κi

}
, where the function of κi is the inverse of the one in the first

diagonal element in Eq. 3.37. Let us assume, for discussion purposes, that κ3 is
the solution yielding such maximum. The subsequent alternative choices of either
λ?ϕ = (3 + λ?ϑ ) κ1 − 1 or λ?ϕ = (3 + λ?ϑ ) κ2 − 1 differ only for the sign of λ?ϕ , given that
(3 + λ?ϑ ) (κ1 + κ2)− 2 = 0, as implied by the unit-trace property, κ1 + κ2 = 1− κ3, and
by the definition of λ?ϑ as (3κ3 − 1) / (1 − κ3). This ambiguity is due to the fact that
until here we are dealing with a purely geometrical representation, abstracting from
the physical reference frame.

In fact, as seen in Eq. 3.26, λ?ϕ changes sign (and λ?ϑ is invariant, while F ?

changes to 2 (1+λ?
ϑ

)
3+λ?

ϑ
− F ?) for a rotation by π/2 around the z? axis, i.e. when the

reference plane for the measurement of ϕ changes from the z?x? plane to its per-
pendicular one, the y?z? plane. Only when the principal axes are identified with
physical directions, the sign of λ?ϕ will become unambiguously determined.

Figure 3.6 represents the λ?ϕ vs. λ?ϑ two-dimensional domain of all possible dis-
tributions in canonical form. In fact, the two parameters satisfy the same positivity
constraints of Eqs. 3.6 with λϑϕ = 0:

|λ?ϕ | ≤
1
2

(1 + λ?ϑ ) , |λ?ϑ | ≤ 1 . (3.38)

The six points marked on the border of the triangle represent the cases of natural
longitudinal or transverse polarizations along the three axes. The sign ambiguity
of λ?ϕ in this abstract frame-independent representation is well illustrated by the
longitudinal cases. The diagonalization in this case reveals a “donut”-like shape, in
one of its three orientations (red, blue or green), depending on the assumed order
of the eigenvalues. The choice of the solution with the largest λ?ϑ selects not one
but two cases, the blue and the green orientations, both having λ?ϑ = +1. With the
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Fig. 3.6 The parameter space of the dilepton decay angular distribution in its canonical form, with
λ?ϑϕ = λ⊥?ϑϕ = λ⊥?ϕ = 0, i.e. having the x?, y?, and z? axes as principal axes. The six points on the
border correspond to natural transverse (Jz|x|y = ±1) or longitudinal (Jz|x|y = 0) polarizations, with
distributions having the characteristic “peanut” and “donut” shapes. Those points are connected by
coloured lines representing mixtures of processes that are longitudinal or transverse along the z?

(red), x? (blue) or y? (green) axes; “intermediate” shapes are shown inside the triangle. Each of
these distributions has cylindrical symmetry with respect to its respective natural axis, so that, if
we assume that axis as a new quantization direction z?, we will see that λ?ϕ vanishes.

specific axis orientations chosen in the figure, the blue shape has λ?ϕ = −1 (F ? = 0)
and the green one λ?ϕ = +1 (F ? = 1). The alternative axis definition exchanging the
x? and y? directions would exchange the signs of λ?ϕ and the values of F ? between
the two cases. Note that, instead, with the adopted diagonalization criterion, there
is no ambiguity in the case of the “peanuts”: the solution with maximal λ?ϑ , equal
to +1 also this time, is now unique and the red shape is the one univocally selected
(the other two have λ?ϑ = −1/3). In fact, this is a limit case where λ?ϕ = 0, that is,
the two alternative solutions coincide.

This suggests an alternative criterion, where the chosen canonical form is the
one minimizing |λ?ϕ |. In the limit λ?ϕ → 0, the distribution acquires a cylindrical
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symmetry: two of the eigenvalues become identical. The procedure in this case con-
sists in determining the pair of eigenvalues κi, κ j minimizing the difference |κi − κ j|

and defining λ?ϑ from the other eigenvalue. The three coloured lines in the figure
represent all configurations where this procedure leads to a univocal result (with
κi − κ j = 0), because λ?ϕ vanishes for a certain choice of z? (the one coinciding with
the axis of cylindrical symmetry). Along such axis the decay distribution results
from the superposition of an ensemble of pure angular momentum eigenstates, in
part longitudinally and in part transversely polarized, and its shape is intermediate
between those of the two extremes, as can be seen in the examples shown inside the
triangle, at their approximate coordinates.

The configurations deviating from the coloured lines often lose the cylindrical
symmetry and, when this happens, two opposite λ?ϕ solutions appear. Also this cri-
terion is, therefore, not immune to the seeming ambiguity in the sign of λ?ϕ . In both
procedures, the eigenvector corresponding to the eigenvalue chosen to define λ?ϑ
provides the direction of the new z? axis with respect to the original axes (those
of the frame where the angular distribution is measured). The other two eigenvec-
tors provide the x? and y? directions: x? and y? cease to be “names” and become
physical directions well defined in the experiment. If the distribution has an intrinsic
azimuthal anisotropy, i.e. it has no cylindrical symmetry, λ?ϕ will be nonzero and its
sign will indicate unambiguously how the shape is oriented around the z? axis.

The main outcome of the previous discussion is that all possible shapes of a
parity-conserving dilepton decay angular distribution can be classified with only
two parameters, which are frame-independent and can, in principle, always be
determined from the data. The five shape parameters of the angular distribution
(Eq. 3.30) contain the additional information of how the shape is oriented in the
three-dimensional space. The three additional degrees of freedom correspond to the
three angles, ψ, ζ and ω, necessary to define the generic rotation of a rigid body (as
in Fig. 2.22). Average values of such angles can, in principle, be determined from
the observed distribution together with λ?ϑ and λ?ϕ , using the relations of Table 2.2 to
express the vector of parameters (λϑ, λϕ, λϑϕ, λ⊥ϕ , λ

⊥
ϑϕ) in terms of (λ?ϑ , λ

?
ϕ , 0, 0, 0) and

of the rotation angles. In conclusion, λ?ϑ , λ?ϕ , ψ, ζ and ω become the new parameters
of the analysis.

Most measurements are made in less ideal conditions, where the process produc-
ing the decaying particle is only partially reconstructed, as is the case of inclusive-
production studies, so that only λϑ, λϕ, and λϑϕ survive the event-averaging effect
and are observable. When λ⊥ϕ and λ⊥ϑϕ are not seen, the observed shape is the “sym-
metrized” version of the original one: it is invariant by reflection about the pro-
duction plane. Just like any other smearing effect, this symmetrization prevents the
experiment from reconstructing the original, asymmetric shape. The canonical form
of such event-averaged distribution can still be defined and still depends on the two
shape parameters λ?ϑ and λ?ϕ , but only on one angle, defining the orientation of the
shape in the plane of symmetry, that is, a rotation around the y axis, perpendicular
to the plane.

The expressions of the invariant parameters in this simpler case can be derived
by noticing that Eq. 2.32 can be rewritten in terms of an orthogonal matrix:
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λ′ϑ − λ
′
ϕ

λ′ϑϕ

λ⊥′ϕ

λ⊥′ϑϕ


=

1
1 + Λy



cos 2δ sin 2δ 0 0

− sin 2δ cos 2δ 0 0

0 0 cos δ − sin δ

0 0 sin δ cos δ





λϑ − λϕ

λϑϕ

λ⊥ϕ

λ⊥ϑϕ


. (3.39)

This implies two new covariance relations, complementing those in Eq. 3.9:√
λ⊥′2ϕ + λ⊥′2

ϑϕ
=

1
1 + Λy

√
λ⊥2
ϕ + λ⊥2

ϑϕ
,

√
(λ′
ϑ
− λ′ϕ)2 + 4λ′2

ϑϕ
=

1
1 + Λy

√
(λϑ − λϕ)2 + 4λ2

ϑϕ
.

(3.40)

Since there are three covariant quantities, 3 + λϑ, 1 − λϕ, and
√

(λϑ − λϕ)2 + 4λ2
ϑϕ

,
depending on λϑ, λϕ, and λϑϕ, it is possible to define two invariant quantities, as
ratios of linear combinations of those. This operation is similar to how we defined
one invariant, F{ci}, from the two covariants 3 + λϑ and 1 − λϕ (in Section 3.4).

Incidentally, the fact that the ratio (1 − λϕ) / (3 + λϑ), equal to (1 − F ) / 2, is
invariant, is also immediately visible in the expression of M (Eq. 3.32), where it
appears as the middle diagonal element, which remains constant in rotations around
the y axis.

To find the combination of covariants giving λ?ϑ and λ?ϕ , we can impose that the
rotation brings to a frame where the “diagonal” element λϑϕ vanishes and, therefore,
the distribution becomes ∝ 1 + λ?ϑ cos2 ϑ + λ?ϕ sin2 ϑ cos 2ϕ. From Eq. 2.13, we see
that this happens when tan 2δ = 2λϑϕ / (λϑ − λϕ), or when δ = π/4, if λϑ = λϕ.
Substituting this angle in the λϑ and λϕ transformations of that same equation, we
obtain

λ?ϑ =
λϑ − 3Λ?

1 + Λ?
,

λ?ϕ =
λϕ + Λ?

1 + Λ?
,

with Λ? =
1
4

(
λϑ − λϕ ±

√
(λϑ − λϕ)2 + 4λ2

ϑϕ

)
.

(3.41)

The two possible solutions (plus or minus sign) correspond to the cases in which
the new z axis coincides with one or the other of the principal axes of symmetry
belonging to the production plane. For example, if the vector particle is fully longi-
tudinally polarized with respect to a certain quantization axis in that plane, the two
solutions are (λ?ϑ , λ

?
ϕ ) = (−1, 0) and (+1,−1). If, instead, the polarization is fully

transverse, then the solutions are (λ?ϑ , λ
?
ϕ ) = (+1, 0) and (−1/3,+1/3).
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As discussed above, the definition of the absolute shape parameter λ?ϑ can be
made univocal by always choosing either the solution with larger positive λ?ϑ or the
one giving the smaller |λ?ϕ |. Moreover, in this case, since frame rotations around an
axis different from the y axis are no longer foreseen, the λ?ϕ sign ambiguity seen in
the most general case disappears. It is, therefore, always possible to define both λ?ϑ
and λ?ϕ univocally. Then, λ?ϑ represents the best possible approximation of either —
depending on the convention — the polar anisotropy with respect to the z? axis of
Theorem 3.1, or the natural polarization, when it exists and is uniquely definable.

The rotation invariants λ?ϑ and λ?ϕ are related to λϑ, λϕ and to the invariant F by
the expression

1 + λ?ϑ + 2λ?ϕ
3 + λ?

ϑ

= F =
1 + λϑ + 2λϕ

3 + λϑ
. (3.42)

It should be noted that the second equality is not valid, in general, for the previously
defined F ? parameter, which, being invariant for any rotation, actually depends, just
like λ?ϑ and λ?ϕ in that case, on all five parameters of the distribution.

It is possible to obtain λ?ϑ and λ?ϕ directly, by fitting the observed angular distri-
bution performing the following substitutions in Eq. 2.1:

λϑ −→
λ?ϑ − 3Λ

1 + Λ
,

λϕ −→
λ?ϕ + Λ

1 + Λ
,

λϑϕ −→
− 1

2 (λ?ϑ − λ
?
ϕ ) sin 2δ

1 + Λ
,

with Λ =
1
2

(λ?ϑ − λ
?
ϕ ) sin2 δ .

(3.43)

The third parameter of the fit, δ, is the angle by which the shape of the angular
distribution is tilted with respect to the principal axes of symmetry, in the specific
kinematic conditions considered. While in the most general case three rotation an-
gles would be necessary to define an alternative set of parameters, as previously
mentioned, here δ, representing a rotation in the zx plane, forms a complete set to-
gether with λ?ϑ and λ?ϕ . A fit performed using this parametrization has two solutions,
in which the two values of δ differ by π/2, corresponding to the two canonical forms
of the angular distribution. The criteria discussed above help choosing between the
two.

As a final remark, we note that the existence of a diagonal form of the distribu-
tion clarifies why the invariant polarization parameter F depends only on λϑ and
λϕ. In fact, λϑϕ can be interpreted as a measure of the “tilt” of the chosen system of
axes with respect to the principal axes of symmetry of the distribution, while F rep-
resents an intrinsic (rotation-independent) characteristic of the shape of the angular
distribution.
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3.10 Frame-independent parity-violating asymmetry

We will now study the rotational properties of the parity-violating coefficients Aϑ,
Aϕ, and A⊥ϕ . The matrix expression of the most general transformation in Table 2.2
implies the following covariance relation, valid for any rotation (while those given
in Eqs. 3.9 and 3.40 only refer to rotations around the y axis):√

A′2
ϑ

+ A′2ϕ + A⊥′2ϕ =
1

1 + Λ

√
A2
ϑ

+ A2
ϕ + A⊥2

ϕ . (3.44)

Moreover, from the transformation for λϑ, it can be verified that 3 + λϑ is another
completely general covariant quantity:

3 + λ′ϑ =
1

1 + Λ
(3 + λϑ) . (3.45)

Therefore, the following quantity is fully rotation-invariant:

A? =
4

3 + λϑ

√
A2
ϑ

+ A2
ϕ + A⊥2

ϕ . (3.46)

It takes values between 0 and 1, and represents the magnitude of the maximum
parity-violating effect that can be observed in any polarization frame. It is related to
the three asymmetries of Eq. 1.30 by the relation

A? =
4
3

√
A2

cosϑ +A2
cosϕ +A2

sinϕ . (3.47)

The parameter A⊥ϕ and the corresponding asymmetry Asinϕ should be small, as
a consequence of the approximate symmetry with respect to the production plane
expected for the decay distribution of inclusively produced vector bosons. In any
case, these parameters can be neglected without affecting the exactness of the frame-
independent formalism. In fact, the “reduced” invariant asymmetry

A?
R =

4
3 + λϑ

√
A2
ϑ

+ A2
ϕ

=
4
3

√
A2

cosϑ +A2
cosϕ

(3.48)

is exactly invariant under rotations about the y axis (whileA? is invariant under any
rotation) and is, therefore, independent of the choice of a polarization axis belonging
to the production plane.

The rotation-invariant parameter A? can be determined directly from a fit of
the measured angular distribution (taking into account the detection acceptance and
efficiencies) with any choice of polarization frame, through a suitable substitution
of parameters in Eq. 1.29. For example:
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Aϑ →
(3 + λϑ)A?

4
cos ξ ,

Aϕ →
(3 + λϑ)A?

4
sin ξ cos χ ,

A⊥ϕ →
(3 + λϑ)A?

4
sin ξ sin χ .

(3.49)

The fit also yields the values of the angles ξ and χ, which represent the rota-
tion of the current polarization axis to the one with respect to which the maximum
partity-violation effect would be observed, i.e., the axis of maximum projection of
the vector (Aϑ, Aϕ, A⊥ϕ ). With A⊥ϕ being negligible, the χ angle may be set to zero.

3.11 The frame-independent counterpart of λϑ

Another possible definition of the invariant polarization parameter (Eq. 3.10) has a
particularly intuitive and useful meaning. The observable

λ̃ ≡ F{1,−3,0,1} =
λϑ + 3 λϕ

1 − λϕ
(3.50)

can be considered as a frame-independent version of the polar anisotropy parame-
ter λϑ: when the polarization is naturally fully longitudinal or fully transverse with
respect to whatever axis (even an unknown one), it assumes the values −1 and +1,
respectively, while it is zero in the unpolarized case, that is, when the transverse
component is twice as large as the longitudinal one [3]. Contrary to λϑ, it can, how-
ever, assume values larger than +1, corresponding to the region of invariant param-
eter space delimited by the F = 1/2 plane on the side of the vertex of the cone
(Fig. 3.3). Towards that vertex, while F remains finite and between 1/2 and 1, the
variable λ̃ tends to∞.

The determination of the invariant polarization is immune to the “extrinsic” kine-
matic dependences of λϑ, λϕ, and λϑϕ, illustrated in Figs. 2.9, 2.10, and 2.11, which
are due to nothing else than a change in observation perspective with respect to the
“natural” frame (where the polarization is constant). In the scenarios considered in
those figures, a measurement will always yield, in the absence of experimental bi-
ases, the values λ̃ = +1 (F = 1/2) for the transverse case (natural in either the
HX or CS frame) and λ̃ = −1 (F = 0) for the longitudinal one, both results being
completely independent of pT, y, and m: the value of λ̃ is identical to the value of λϑ
in the natural polarization frame.

This is also true for the J/ψ and Υ(1S) examples illustrated in Fig. 2.21: the mea-
surement would in these cases yield λ̃ = +1 for all experiments, independently of
the choice of the frame and of the rapidity range, indicating that the significant vari-
ations seen for the frame-dependent λϑ, λϕ, and λϑϕ parameters are not caused by



112 3 A frame-independent study of the angular distribution

experimental biases, nor by strong physically-relevant (“intrinsic”) dependences of
the underlying production processes on the particle’s rapidity, but rather by the “ex-
trinsic” kinematic dependences generated by how polarizations transform from one
frame to another. It is also interesting to note that, when the underlying physics is
not intrinsically momentum dependent, the frame-independent polarization, λ̃, re-
mains immune not only to changes in the overall acceptance window (“geometrical
coverage”) but also to variations in the kinematic dependences of the detection effi-
ciencies within those windows.

While it is correct to say that the value of λ̃ always represents, irrespectively of
its measurement frame, the intrinsic “nature” of polarization, assuming the value
+1 or −1 if the particle is, in each event, produced as a J = ±1 or J = 0 state
along some quantization axis, it can happen, in some cases, that there is no uniquely
defined “natural” frame where the measurement can be performed. An interesting
example is the case of Drell–Yan production, where the main contributing processes
lead to transverse polarizations with respect to significantly different quantization
axes, as seen in Fig. 2.2. In the presence of such a superposition of topologically
different processes, no individual choice of the polarization frame leads to a simple
observation of a constant, “natural” polarization. It is in more complex cases like
this that the use of the invariant polarization provides the biggest advantage in terms
of immediate understanding of the underlying physics. This concept is the main
subject of Chapter 4.

3.12 Searching for biases using λ̃

Polarization measurements are clearly not simple to perform and many examples
can be found of difficulties related to experimental hurdles, among which we can
cite the effects introduced by detection efficiencies on the measured distributions, as
discussed in Section 1.5. It should be kept in mind that polarization measurements
are directly based on the correlations between two particles, such as the two muons
emitted in the decay of a J/ψ, so that we need to be very careful about effects that
might affect the detection of the pair and the measurement of their (correlated)
kinematical variables.

We have already shown in Section 2.13 how the dependence of the detector ac-
ceptance on the momenta of the decay products creates strong cosϑ–ϕ modulations.
It might also happen that the efficiency of the experiment to detect one of the two
daughter particles depends on the kinematics of the other one. For instance, a detec-
tor might be inefficient when the two particles (the two muons, say) cross the same
detection elements, at least in a section of their trajectories. Such inefficiencies will
directly affect the probability that the pair of muons is detected, therefore sculpt-
ing the angular distributions that are needed to measure polarizations. If the detec-
tor performance is not known with sufficiently good accuracy, maybe because the
Monte Carlo simulations do not faithfully reproduce the data collection conditions
(material budget, magnetic field map, detector calibrations, geometric alignment,
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etc.), then the final measurement, not fully corrected for the detector effects, may be
biased, sometimes even showing unphysical distributions.

Another frequent source of potential problems is the treatment of the background
inevitably associated to all polarization measurements. The vector quarkonia J/ψ,
ψ(2S), and Υ(nS), in particular, are usually detected using the dimuon decay chan-
nel, which is ideal for the measurement of their polarizations, as long as the anal-
yses include a reliable subtraction of the underlying continuum background due to
pairs of uncorrelated muons. These background muon pairs, if not accurately sub-
tracted, will bias the polarization measurements, especially in the cases where the
peaks have a poor signal to background ratio, which is usually the case of the ψ(2S)
and Υ(3S) states. This problem is particularly important in experiments that suf-
fer from poor measurement resolutions, where the background “under the peak” is
correspondingly larger, since it is integrated over a broader mass range. Poor mass
resolutions also lead to a different kind of background, the cross-feed between two
close-by peaks, as is often the case of the Υ(2S) and Υ(3S) mesons.

The measurement of the frame-invariant parameter λ̃ can be used as a tool to
probe the existence of systematic effects not properly covered by the reported un-
certainties. For example, it is easy to understand that the values of λ̃ measured in
two different frames will likely not be identical if the probed dimuon sample is dom-
inated by uncorrelated muon pairs, which are not the daughters of a vector particle.
In fact, the angular distribution of these pairs, observed in their rest frame, is not
expected to have a physical shape and, in particular, not the characteristic shape
of the two-body decay of a vector state, with parameters satisfying the constraints
described in Section 3.2 and transforming from frame to frame according to the
corresponding covariance relations (Sections 3.4–3.5).

As an illustration, we will consider the case of two experiments that study the
polarization of a given particle, using the same colliding particles, the same colli-
sion energy, in the same decay channel, and in the same kinematic domain. The only
difference is that the λϑ and λϕ parameters are measured in the HX frame by the first
experiment and in the CS frame by the second. Let us assume that these hypothet-
ical experiments report the λϑ and λϕ values shown in Fig. 3.7. What can we say
about the compatibility of the two measurements? This question can be answered
by evaluating λ̃ for each of the two frames. The result, on the right panel of Fig. 3.7,
shows a clear discrepancy for the lowest pT measurement, which can be considered
as evidence that one of the two experiments (or both) reported systematic uncer-
tainties (for that kinematic interval) that are significantly smaller than the real ones.
Since λ̃ is “homogeneous” to λϑ, we can also deduce that the error is quantitatively
equivalent to a bias of order 0.4 in the polar anisotropy.

This example shows the importance of measuring the frame-independent param-
eter λ̃ in two frames as a valuable tool to reveal unaccounted residual systematic
effects biasing the experimental results. The two chosen frames should be as “or-
thogonal” as possible, to maximize the possibility that their sensitivities to analysis
biases are quantitatively different. For example, we have seen in Section 2.12 that
the shape of the efficiency as a function of cosϑ and ϕ is very different in the CS
and HX frames, so that, for example, the effects due to an improper integration over
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Fig. 3.7 Illustration of a case where the λϑ and λϕ polarization parameters measured by two ex-
periments, in two different frames, are inconsistent with each other (in the lowest pT bin).

the azimuthal variable in a one-dimensional analysis will be quantitatively different
in the two frames. The combination of the CS and PX frames may be, from this
point of view, an even better choice, given that the two efficiency maps maintain
the strongest shape difference at every value of pT and rapidity, with the CS frame
showing the maximum and the PX frame the minimum correlation between the two
variables.

The use of λ̃ as a tool to check the reliability of the systematic uncertainties
implies that exactly the same event sample is used in its measurement in the two
(sufficiently different) polarization frames, so that the statistical uncertainties can-
cel in the comparison. In that way, the differences between the central values of
the two λ̃ evaluations can be used to see if certain steps of the analysis should be
revisited (correction of the detection efficiencies, background subtraction, etc.). For
this purpose, figures showing λ̃ vs. pT as measured in the HX and CS frames with
their total uncertainties are not as informative as when the systematic uncertain-
ties are presented separately. An even better method for the verification of residual
systematic effects consists in determining the variations directly for the difference
between the two sets of λ̃ values. The resulting values of, say, λ̃CS

− λ̃
HX would then

be compared with zero within their purely systematic uncertainty, properly taking
into account that some of the variations may be correlated or anti-correlated in the
the two frames.

Figure 3.8 shows recent measurements of λϑ and λϕ, in the HX and CS frames,
reported by the LHCb [8] and ALICE [9] Collaborations for J/ψ mesons produced
in pp and Pb-Pb collisions, respectively. We can deduce from these results that the
λ̃ values corresponding to the three highest pT bins of LHCb change from around
−0.20 in the HX frame to around −0.11 in the CS frame, a difference that does not
seem to be negligible with respect to the reported uncertainties. The difference in
the λ̃ values that can be inferred from the ALICE points is similar, around 0.1 in
the intermediate pT bin, a variation that also seems to be quite large, in comparison
to the reported (systematic) uncertainties. These are qualitative observations, only
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meant to illustrate the importance of proper measurements of the difference between
two sets of λ̃ values, including a reliable evaluation of its uncertainty, as a tool to
eliminate doubts regarding potential biases.

Figure 3.9 shows an example of λ̃ measurements made in the HX and CS frames,
as a function of pT. They were reported by the CDF Collaboration [10] and corre-
spond to Υ(nS) polarizations in pp collisions at 1.96 TeV. In general, the two sets
of λ̃ values are in good agreement for the Υ(1S) state, while the Υ(2S) and Υ(3S)
patterns do not show such a good overlap, especially in the lowest and highest pT
bins. It is probably not a coincidence that the signal to background ratio is better for
the 1S state than for the 2S and 3S states. The biggest “fluctuations” are seen in the
lowest pT bin, which is where the background under the signal peaks is the largest.
The λ̃ values measured for the lowest pT Υ(3S) mesons are particularly outstanding,
being significantly larger than +1.

To further illustrate the application of the frame-independent formalism as a prac-
tical tool to spot problems in experimental data analyses, we refer again to the J/ψ
pseudo-experiments described in Section 2.13, generated with fully longitudinal po-
larization in the HX frame, λHX

ϑ = −1 and λHX
ϕ = 0. In Fig. 2.20 we showed what

happens if one applies one-dimensional acceptance corrections, computed assum-
ing unpolarized production, when measuring the parameters λϑ and λϕ, in the CS
and HX frames. From the four one-dimensional values obtained without iterative
reweighing (corresponding to the distributions shown in blue in the four panels), we
obtain, using Eq. 3.50, λ̃CS

' −0.30 and λ̃HX
' −0.97. The large difference between
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the two values is an unequivocal signal of a mistake in the analysis. Instead, using
the distributions (represented in red) obtained by reweighing the Monte Carlo with
the “correct” polarization, iteratively inferred by successively choosing as “genera-
tion frame” the one showing the strongest polarization modulations (the HX frame
in this case), both λ̃ values approach −1, as expected in this specific exercise.

We also see from this example that the correct λ̃ value is generally not included
between the ones found in two different frames, in the presence of not completely
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corrected systematic effects. It is not recommendable, therefore, to use as best value
of λ̃ the average between the values obtained in different frames. In the example
just discussed, the best value of λ̃ is the one found in the frame showing the smallest
acceptance correlations between cosϑ and ϕ (the HX frame, in this case, as can be
seen in Fig. 2.18). For the same reason, it is not always a correct practice to impose
λ̃

CS
= λ̃

HX as a constraint in a simultaneous fit of the angular distributions observed
in two frames (a method that has been used in the literature), without previously
investigating reasonable causes of the discrepancy.

3.13 Recapitulation

While the parameters λϑ, λϕ, λϑϕ, etc., of the dilepton decay distribution of a vector
particle depend on the reference frame, general frame-independent relations exist
between them.

A first category of such relations is a set of inequalities delimiting the allowed
phase space of the anisotropy parameters: Eq. 3.5 for the case of the inclusive obser-
vation of the particle V in processes of the kind h1 h2 → V + X and, more generally,
Eq. 3.24.

The physical domain for the parameters λϑ, λϕ and λϑϕ is an oblique cone
(Figs. 3.1 and 3.2), whose intersections with the planes (1+λϑ+2λϕ) / (3+λϑ) = F ,
with 0 < F < 1, contain the elliptical trajectories representing all possible rotations
from one reference frame to another (around the y axis). Each transformation pre-
serves, therefore, the value of F . When the polarization is transverse or longitudi-
nal in the “natural” frame, F equals, respectively, 0 and 1 in any other frame. This
implies that the intrinsic nature of the polarization can be defined in an absolute,
rotation-invariant fashion.

This result is interesting because, while the underlying elementary production
processes and the involved interaction couplings usually lead to a distinctive po-
larization signature, the measurement of the frame-dependent parameters may not
immediately reflect it, if the chosen frame is different from the natural one. As will
be discussed in detail in the next chapter, the production of Drell–Yan lepton pairs is
an emblematic example: helicity conservation in the coupling between light quarks
and gluons represents a strongly polarizing mechanism leading to an unmistakable
transverse polarization, even if along more than one possible direction, depending
on the topology of the process (as seen in Fig. 2.2).

Except for the “one-dimensional” pT → 0 limit, where all polarization directions
tend to coincide, or when only one natural quantization direction exists and the
analysis chooses it as reference axis, the measurement of λϑ may fail to provide
an evidence of the underlying fully transverse polarization. As will be seen, this
evidence is fully recovered when the frame-independent polarization parameter is
measured.

The parameter F , defined as a combination of λϑ and λϕ, can be determined di-
rectly from the measurement of the two-dimensional cosϑ, ϕ angular distribution
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(Eq. 3.19), or even from the distribution of one suitably defined angle (Eqs. 3.21
and 3.23), provided that the caveats of one-dimensional analyses are taken into ac-
count.

While F represents an intrinsic polarization and does not directly parametrize
the different possible shapes of the distribution, other frame-independent relations
exist, reflecting purely geometrical properties.

As a three-dimensional solid figure, the distribution can be written in a “canon-
ical” form, depending on “absolute” shape parameters and, in principle, three rota-
tion angles describing the spatial orientation of the shape. In particular, it is always
possible to “diagonalize” the parity conserving term of the distribution (depending
on λϑ, λϕ, λϑϕ, λ⊥ϕ , and λ⊥ϑϕ) to a two-parameter shape (Eqs. 3.30 and 3.32), by
taking as axes its principal axes of symmetry. Moreover, with a suitable rotation it
is possible to simplify the parity violating term (depending on Aϑ, Aϕ, A⊥ϕ ) so that
only the polar component of the asymmetry survives. Not always, however, the two
terms can be diagonalized simultaneously, as exemplified in Fig 3.5. These consid-
erations, reported with somewhat technical details in Sections 3.8 and 3.9, refer to
the hypothetical case where the full geometry of the decay (including the direction
of the recoiling particle X) is reconstructed event after event, preventing the pa-
rameters λ⊥ϕ , λ⊥ϑϕ and A⊥ϕ from being suppressed by rotational smearing and event
symmetrization effects.

In the more usual case of an “inclusive” production measurement, where those
parameters effectively vanish, the diagonalization of the parity-conserving term re-
duces to a rotation in the production plane, providing simple mathematical relations
for the two frame-independent polar- and azimuthal-anisotropy parameters λ?ϑ and
λ?ϕ (Eq. 3.41). These are related to F by the same expression valid for the frame-
dependent parameters, Eq. 3.42. Two of these three rotation-invariant parameters,
together with the rotation angle between the observation frame and the “canoni-
cal” one, form, therefore, a complete set of observables, replacing λϑ, λϕ and λϑϕ
(Eq. 3.43).

Additionally, the parity-violating part of the distribution can be represented with
one absolute asymmetry,A? (Eq. 3.46), representing the modulus of the maximum
parity asymmetry that can be observed by varying the orientation of the polarization
axis. Also this parameter can be determined directly with a fit of the (acceptance-
and efficiency-corrected) event distribution to a functional shape, also depending on
one or two orientation angles (Eq. 3.49).

Some limitations in the effective frame-transformation invariance of the param-
eters λ?ϑ , λ?ϕ and A?, due to their non linear dependence on the coefficients of the
angular terms of the distribution, will be discussed in the next chapter, where they
will be renamed as “quasi-invariants”.

The parameter λ̃ = (λϑ + 3λϕ) / (1−λϕ), related to the invariant F by the relation
λ̃ = −(1−3F ) / (1−F ), provides, in any frame, the value of the “natural” polarization
(a pure polar anisotropy in the natural frame), when it exists. The crucial difference
between λ?ϑ and λ̃, and the general advantage of the latter, will be understood in the
next chapter, where superpositions of processes having natural polarizations along
different axes (as in the Drell–Yan case) will be considered.
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The frame-independence of F or λ̃ (and, with some limitations to be discussed,
of λ?ϑ and/or λ?ϕ ) can be exploited as a test condition to be verified during the experi-
mental analysis, repeating the measurement in at least two sufficiently “orthogonal”
frames: when it is not exactly satisfied (within systematic uncertainties, but not con-
sidering the statistical ones, if the two measurements use the same events), it must
be concluded that one or more steps of the analysis procedure are affected by biases
that have not been fully accounted for.
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Chapter 4
Meaning and interpretation of the
frame-independent polarization

The invariant polarization observable F (or λ̃) introduced in the previous chapter
is particularly interesting in certain physics scenarios, where none of the adoptable
polarization frames would provide a particularly simple picture in terms of λϑ, λϕ
and λϑϕ. One such case is the production of Drell–Yan dileptons. Their polariza-
tion parameters, when calculated including perturbative QCD corrections, satisfy
the Lam–Tung identity (reported in 1978), a frame-independent relation maintaining
its seemingly surprising simplicity even when the polar and azimuthal anisotropies
have strong dependences on the particle momentum. The notion of invariant polar-
ization allows us to reinterpret this relation in a geometrical way, explaining it as a
mere consequence of helicity conservation and rotational invariance.

In the illustration of these concepts, we will go through the following questions.

• How are the measurable F and λ̃ parameters related to those of the individual un-
derlying production subprocesses, possibly having different natural polarization
axes?

• Which advantages offer the invariant polarization in the interpretation of Drell–
Yan, Z and W measurements?

• How should the geometrical invariants λ?ϑ and λ?ϕ , as well as the invariant parity
asymmetryA?, be interpreted and used?
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4.1 Addition rules for invariant shape parameters

We have seen in Chapter 3 that, when a particle is produced with a natural transverse
or longitudinal polarization along one well defined quantization axis, this property
can immediately be recognized even if the measurement has chosen another quan-
tization axis and even if the “natural” polarization axis is unknown: it is sufficient to
determine the value of the invariant polarization parameter.

Natural transverse and longitudinal polarizations are revealed in any chosen
frame by the respective conditions λ̃ = +1 and −1, or, equivalently, F = 1/2
and 0. This also means that, in such extreme physical cases, while an “arbitrary”
frame choice can show complicated patterns of kinematic dependences for λϑ, λϕ,
and λϑϕ, as those seen in Figs. 2.9, 2.10, and 2.11, even creating seeming discrep-
ancies between experiments covering different rapidity ranges, as seen in Fig. 2.21,
the same choice, whatever it is, will always show the same, simple scenario of an
extreme, constant value of λ̃ or F .

In this chapter we consider a more complex hypothesis, where several, rather
than one, natural polarization axes exist, each one reflecting the topology of a cate-
gory of subprocesses contributing to the particle’s production. This hypothesis has
at least one important physical counterpart, the one of Drell–Yan production, where,
as anticipated in Chapter 2 (Fig. 2.2) and hereafter discussed in more detail (in Sec-
tion 4.3), different process configurations, all simultaneously contributing to the ob-
served distributions in some proportions, are best reflected by different definitions
of the polarization axis.

We will, therefore, consider examples where the observed particles result from
a superposition of production mechanisms, characterized by different natural polar-
izations along different quantization axes. It was shown in Section 1.8 (Eq. 1.17)
how the frame-dependent polarization parameters for the observed mixture of pro-
cesses are related to those of the individual processes. We have seen that λϑ, λϕ, and
λϑϕ do not sum linearly, as comprehensible since they are akin to asymmetries, not
to yields: the sum, reported here for clarity in the case of λϑ,

λϑ =

n∑
i=1

f (i)

3 + λ(i)
ϑ

λ(i)
ϑ

/ n∑
i=1

f (i)

3 + λ(i)
ϑ

, (4.1)

requires the use of a further weight, 1/(3 + λ(i)
ϑ

), besides the fractional contribution
f (i) of the process to the particle yield. To determine the analogous addition rule for
the invariant parameters, it is convenient to start by considering F .

It is possible to define anisotropy parameters that represent fractional yields
and, therefore, sum linearly. For example, the longitudinal fraction |a0| appearing
in Eq. 3.1 is by definition the fraction of events where the particle is produced in
the Jz = 0 state. In the superposition of two or more subprocesses such fraction
gets averaged linearly. Similarly, from Eq. 3.23 we see that F itself is a longitudinal
fraction: specifically, it is the fraction of events where the particle is produced, this
time, in the Jy = 0 state. The addition rule for F is, therefore, simply linear:
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F =

∑n
i=1 f (i)F (i)∑n

i=1 f (i) , (4.2)

so that, for example, if half of the processes have F = 1/2 (as in the fully transverse
case) and half F = 0 (the longitudinal case), the measurement yields the intermedi-
ate F = 1/4.

The analogous rule for λ̃ can be derived using the relations

1 − 3F = −2λ̃ / (3 + λ̃)
1 − F = 2 / (3 + λ̃) ,

(4.3)

leading to

λ̃ = −
1 − 3F
1 − F

= −

∑n
i=1 f (i)(1 − 3F (i))∑n
i=1 f (i)(1 − F (i))

=

n∑
i=1

f (i)

3 + λ̃
(i) λ̃

(i) / n∑
i=1

f (i)

3 + λ̃
(i) .

(4.4)

The observable λ̃ is, therefore, a weighted sum with weights 1/(3 + λ̃
(i)), formally

identical to the sum giving the value of the average λϑ (Eq. 4.1). Just as in that
case, an equal mixture of transverse (λ̃ = +1) and longitudinal (λ̃ = −1) processes
yields λ̃ = −1/3. The analogy in addition rule is a further reason to consider λ̃ as
the frame-invariant counterpart of λϑ.

In the special case when the observed distribution is the superposition of n ele-
mentary distributions of the kind 1+λ(i)

0 cos2 ϑwith respect to n different polarization
axes (n − 1 of which, at least, do not have the same orientation as the experimen-
tal polarization axis), λ̃ represents a weighted average of the n λ(i)

0 parameters, made
without transforming these “natural” polarizations from their respective natural axes
to the actual observation frame:

λ̃ =

n∑
i=1

f (i)

3 + λ(i)
0

λ(i)
0

/ n∑
i=1

f (i)

3 + λ(i)
0

. (4.5)

It is important to emphasize the difference between this expression and the addi-
tion rule for λϑ, Eq. 4.1, where the individual λ(i)

ϑ
are all measured with respect to

the same polarization axis, the experimental one.

4.2 When λ̃ is “simpler” than λϑ in every polarization frame

In the examples of Figs. 2.9, 2.10, and 2.11, the use of λ̃ provides benefits that, in
principle, can also be obtained by repeating the measurement in several frames and
realising that one of them provides the most “natural” view of the angular distribu-
tion. This is only possible, however, when the natural frame coincides with a frame
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that can be experimentally defined, a condition not always established in practice.
For example, in proton-proton (or, more generally, hadron-hadron) collisions, the
polarization measurement is made in a frame defined in terms of the proton-proton
system (e.g. at rest in the laboratory, in the case of symmetric colliding beams),
but the particle under study is produced in a parton-parton interaction, and the mo-
mentum of the parton-parton system can be significantly different from that of the
proton-proton system. The description of such effects, related to the parton motion
inside the protons, will be developed in Sections 4.3 and 5.4.

Moreover, it can happen that the observed mixture of production processes is
characterized by more than one natural polarization axis. It is in such cases that the
measurement of λ̃ is particularly helpful for understanding and characterizing the
underlying physics.

As a hypothetical illustration, we can consider a physics case analogous to the
one considered in Figs. 2.9, 2.10, and 2.11, but now assuming a mixture of pro-
cesses such that 50% of the particles are produced with transverse polarization in
the CS frame and 50% with longitudinal polarization in the HX frame. The result-
ing dependences of the parameters λϑ, λϕ, and λϑϕ in several frames are shown in
the Figs. 4.1, 4.2, and 4.3, corresponding in order and notations to Figs. 2.9, 2.10,
and 2.11. A second scenario is also shown, exchanging the two polarizations (lon-
gitudinal in the CS frame, transverse in the HX frame).
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Fig. 4.1 Values of λϑ measured in the five frames indicated in the legends, as a function of three
kinematical observables (m, pT, and y), when the particle is produced with an equal and constant
mixture of purely transverse polarization in the CS (or HX) frame and purely longitudinal polariza-
tion in the HX (or CS) frame. For each kinematical dependence, the other two variables are fixed
to suitable values: m = 25 GeV, pT = 20 GeV, and y = +0.5.
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Fig. 4.2 Same as previous figure, for λϕ.
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Fig. 4.3 Same as previous figure, for λϑϕ.

As can be easily seen, in these cases there is never an observation frame offering
a simple point of view, with a constant λϑ and zero λϕ and λϑϕ, as it happened by
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definition in the example with one natural frame: here the kinematic dependences
are always strong and complex.

It is just in physical conditions like these that the measurement of the invariant
polarization is particularly revealing, as it provides the numerical average of the
natural polarizations, each one considered along its own natural axis. In the present
example, F = 0.5 × 1/2 + 0.5 × 0 = 1/4, independently of pT, y and mass, while
applying the non-linear addition rule of Eq. 4.5 provides a constant λ̃ = −1/3.

We will now illustrate the possible effects of different experimental acceptances
by considering J/ψ polarization measurements made by gedanken experiments cov-
ering different rapidity windows, analogous to those considered in Fig. 2.21. We
assume that J/ψ production proceeds through the superposition of two processes: in
60% of the events, the mesons have full transverse polarization in the CS frame,
λCS
ϑ

= +1, while in the remaining fraction the production is also fully transverse but
this time in the HX frame: λHX

ϑ = +1. The polarizations of the two event subsam-
ples are intrinsically independent of the production kinematics, as in the examples
we considered in the Fig. 2.21.

However, as shown in Fig. 4.4, none of the frames, CS or HX, will allow the sev-
eral experiments to find simple and mutually compatible results; it is surely not ev-
ident from these patterns that we are studying production processes that are exactly
identical for all considered experimental conditions and always fully transversely
polarized.

The measurement of λ̃ will, instead, yield the “universal” value +1, immedi-
ately revealing the simplicity of the underlying production scenario and the con-
sistency between the experimental results, a result not achievable in terms of the
frame-dependent parameters in any chosen experimental frame. On the other hand,
it remains true that λ̃ should not replace the measurement of the frame-dependent
parameters, since it is by itself “blind” to some underlying physical information. In
the present examples, the measurements of λϑ, λϕ, and λϑϕ contain the indication
that we are indeed in the presence of a superposition of (at least) two processes. In
fact, they can even be used to infer the relative contribution of the two processes,
since the observed patterns depend on that factor.

It should now be clear that the measurement of λ̃ complements the frame-
dependent observables λϑ, λϕ, and λϑϕ, allowing us to better understand the pro-
duction processes behind the experimental results. In fact, it sometimes represents
the only way to obtain the immediate experimental indication of a constant and
maximal underlying polarization, a fact that can help in the discrimination of differ-
ent physics scenarios. As an example, we refer again to the possible interpretations
of the ambiguous J/ψ polarization measurement reported by CDF [1], discussed in
Section 2.11 and presented in Fig. 2.17. In the scenarios 1 and 2, with one single
participating subprocess having, respectively, λHX

ϕ = 0 and λCS
ϕ = 0, the correspond-

ing λ̃ parameters are immediately obtained as λ̃ = λHX
ϑ and λ̃ = λCS

ϑ
. The scenario 3,

instead, corresponds to the superposition of two processes, both having full trans-
verse polarizations, natural in either the CS or the HX frames, so that we need to
use the Eq. 4.5, introduced in the previous section, to see that the frame-invariant
polarization parameter is λ̃ = +1.
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Fig. 4.4 Polarization parameters λϑ (top), λϕ (middle), and λϑϕ (bottom) measured in the HX (left)
and CS (right) frames, as a function of pT and for several rapidity ranges (different line colours),
for J/ψ mesons generated with a superposition of transverse polarizations along the HX (40%) and
CS (60%) axes.

Figure 4.5 shows the pT dependence of λ̃ for each of the three scenarios. The
three curves are very different from each other, confirming that, as foresseable, a
measurement of λ̃ provides a remarkable level of discrimination between hypotheses
that are indistinguishable when only λHX

ϑ is measured.
In the pedagogical examples considered above we used hypotheses involving

two natural polarizations coexisting with relative probabilities independent of pT, y,
and m, to provide simple, even if not completely realistic, illustrations. A practical
case where polarizations along two distinct quantization axes do indeed contribute
equally in all kinematic conditions is represented by certain t/u-channel processes,
like the ones shown in Fig. 2.2-a. There the observed particle is produced with an-
gular momentum aligned along the direction of one or the other incoming parti-
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Fig. 4.5 The frame-independent parameter λ̃ determined in the three fundamentally different pro-
duction scenarios described in the text and previously shown in Fig. 2.17.

cle (a quark or an antiquark). These two distinct natural quantization directions,
approximated experimentally by the GJ1 and GJ2 axes (as defined in Chapter 2),
are equiprobable in symmetric collision systems (such as pp collisions) and in the
absence of parity-violating effects. Therefore, considering the GJ as the “natural”
frame effectively means to consider 50% of the particle yield as naturally polarized
along the GJ1 axis, and the other 50% as polarized along the GJ2 axis.

Two scenarios of this kind are illustrated in Figs. 4.6, 4.7, and 4.8, for transverse
and longitudinal polarizations. As can be seen, no individual observation frame
shows the fully transverse or fully longitudinal nature of the polarization.

An “optimal” frame for the observation of these t/u-channel processes appears to
be the “composite” frame having the identity of the CS frame for pT/m < 1 and of
the PX frame for pT/m > 1: the diagrams of the pT and m dependences show that
λϑ is always maximal (and λϕ minimal) in this frame (the transition point pT = m
being indicated by a vertical dashed line). However, only the invariant polarization
reveals immediately the full natural polarization (λ̃ = +1 or −1).

More generally, the superposition of production processes can itself be a function
of pT, y or m, reflecting the different kinematic behaviours of the coexisting mech-
anisms. The invariant polarization continues to provide the average of the natural
polarizations; if such “absolute” polarizations are constant in value, the invariant
polarization remains constant, despite the presence of an evolving mixture of pro-
cesses. Realistic examples of process superpositions, possibly also changing with
pT, are considered in the next section.

4.3 Drell–Yan and W / Z boson polarizations

In the previous section we illustrated the difference between frame-dependent and
frame-independent parameters in the presence of hypothetical superpositions of pro-
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Fig. 4.6 Values of λϑ measured in the five frames indicated in the legends, as a function of three
kinematical observables (m, pT, and y), when the particle is produced with fully transverse or fully
longitudinal polarization in the GJ frame (that is, in the GJ1 and GJ2 frames with equal probability).
For each kinematical dependence, the other two variables are fixed to suitable values: m = 25 GeV,
pT = 20 GeV, and y = +0.5.
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Fig. 4.7 Same as previous figure, for λϕ.
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Fig. 4.8 Same as previous figure, for λϑϕ.

cesses having natural polarizations along different quantization axes. We now turn
our attention to the interesting case of the direct production of Drell–Yan lepton
pairs and of the vector bosons W and Z. The partonic processes contributing at the
lowest perturbative orders were shown in Fig. 2.2 and it was already discussed in
there how their different topologies lead to polarizations that are always transverse,
but along different axes.

The purely electromagnetic (order α0
s) qq̄ annihilation process (Fig. 2.2-c) is

characterized by a constant and transverse polarization in the CS frame. This pro-
cess alone, where the lepton pair is produced at rest in the frame of the parton-parton
system (2→ 1 process), explains well the observations of the E866 experiment [2],
which collected data at pT values of the same order as the intrinsic parton momen-
tum, for which the contribution of 2 → 2 topologies is expected to be small. The
E866 results are presented in Fig. 4.9, as a function of the dilepton pT (left panel)
and xF (right panel). The variable xF is commonly used (instead of rapidity) in fixed
target experiments. It is defined as xF = 2 pL/

√
s, where pL is the longitudinal

momentum of the dilepton in the rest frame of the colliding hadrons (the proton-
nucleon rest frame, in the case here considered).

To illustrate what happens in the presence of a superposition of different pro-
cesses, it is particularly interesting to study the case of W and Z production, as
measured, at much higher pT, by Tevatron and LHC experiments. Here we consider
the results for the polar anisotropies of the two decays distributions (W in lepton-
neutrino and Z in dilepton). The Z results use an alternative parametrization of the
angular distribution (given in its complete form in Appendix A),
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Fig. 4.9 Measurement of the polarization (λϑ in the CS frame) of Drell–Yan lepton pairs of in-
variant masses 8.1 < m < 8.45 and 11.1 < m < 15 GeV, produced in proton-copper collisions at
√

s = 38.8 GeV [2].

W(cosϑ) ∝ 1 + cos2 ϑ +
1
2

A0 (1 − 3 cos2 ϑ) , (4.6)

where transverse and longitudinal polarizations are indicated by A0 = 0 and A0 = 2,
respectively, so that λϑ = (1− 3

2 A0) / (1+ 1
2 A0), i.e. 1

2 A0 is the longitudinal fraction.
To describe high-pT production, it is necessary to consider processes with the

presence of a recoil system produced back-to-back to the dilepton system. A recoil-
ing quark or gluon appears for example in the diagrams (a), (b), and (d) of Fig. 2.2,
which include order-α1

s QCD corrections due to one gluon emission/absorption by
the quark line. These terms contribute with polarizations that are naturally trans-
verse along the HX axis (s-channel qg scattering diagram in panel (d)) and both the
GJ1 and GJ2 axes (t/u-channel qq̄ and qg diagrams in panels (a) and (b)). When
observed in the CS frame, these 2→ 2 processes show polarizations changing from
transverse to longitudinal values, depending on the dilepton momentum, as it was
shown, in the two respective cases, in Figs. 2.9 and 4.6. In fact, the main motiva-
tion of the parametrization of Eq. 4.6 is that A0, when considered in the CS frame,
measures directly the effect of the QCD corrections causing the deviation from the
zero-order, fully transverse and momentum-independent, 1 + cos2 ϑ distribution.

For a realistic and accurate interpretation of the measured patterns, shown in
Figs. 4.10 and 4.11, it is important to have a deeper understanding of the impact that
the quantization direction has on the observations of polarizations that are natural
in the HX frame. For simplicity of illustration, we have until now neglected an im-
portant detail in the definition of this kind of polarizations: the natural quantization
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Fig. 4.10 Polar anisotropy parameter, λϑ, measured by the CDF [3] and D0 [4] Collaborations, in
the CS frame, for W bosons produced in pp collisions at 1.8 TeV. The vertical bars represent the
total uncertainties while the horizontal tick marks represent the statistical-only uncertainties. The
curves represent the analytical model described in the text, for the |y| < 0.5 (solid) and |y| < 2
(dashed) rapidity ranges.

axis is the (unobservable) direction of the decaying particle with respect to the rest
frame of the parton-parton system (parton-parton-HX axis), which is not the same
as the one seen in the proton-proton system (experimental HX axis). To transform
such intrinsic polarizations in predictions for λϑ, λϕ, and λϑϕ, as measurable in an
experimentally definable frame, it is necessary to use an additional piece of infor-
mation on the process: how the parton-parton system is boosted with respect to the
proton-proton system (which is the laboratory frame in the case of symmetric col-
lisions in collider experiments). For W and Z production, we can safely neglect the
effects of parton motion in the direction transverse to the beam, since the transverse
momentum of a parton (of order 1 GeV) is negligible with respect to its longitudinal
momentum, which is of order mZ|W/2 already in the limit pT, y→ 0.

A look at the formulas in Table 2.1 reminds us that the rotation angle between
frames, δ, only depends on pT (actually, on ξ = pT/m) and y; rotations between the
parton-parton HX frame and the others can then be obtained by simply replacing
the rapidity measured with respect to the proton-proton system, y, with the (unmea-
sured) one referred to the parton-parton system, ŷ, while the corresponding replace-
ment of pT with p̂T has a negligible effect in the case considered. It can also be seen
in the table that, for a measurement performed in the CS frame, only the polariza-
tions that are natural in the HX frame are indeed sensitive to y and, therefore, to its
difference with respect to ŷ. To interpret the data of Figs. 4.10 and 4.11 we need,
therefore, some knowledge of ŷ, that is, of the (average) rapidity boost y0 of the
parton-parton system in the laboratory (ŷ = y− y0), when calculating the observable
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Fig. 4.11 Polarization (A0 in the CS frame) of Z bosons produced in proton-proton collisions at
√

s = 8 TeV [5, 6] in two ranges of rapidity: |y| < 1 (left) and 1 < |y| < 2.1 (right). The curves

polarizations of the s-channel qg scattering process, while such additional ingredi-
ent is not necessary in the case of the t/u-channel qq̄ and qg processes. The study
of y0 in the relevant conditions requires the use of parton distribution functions and
of specific calculations of the partonic cross sections. Here we limit ourselves to
assuming that (the average) ŷ is roughly proportional to y. Figure 4.11 shows, for
different fixed values of ŷ/y (0.1, 0.5, and 1.0), how the polarization of the s-channel
processes would be observed in the CS frame as a function of pT, in two rapidity
ranges. All individual t/u-channel and s-channel components change polarization,
in the CS frame, from fully transverse at pT = 0 to 50% longitudinal in the pT � m
limit (λϑ → −1/3, A0 → 1).

It can be seen in Figs. 4.10 and 4.11 that a specific combination of the two kinds
of 2 → 2 processes, with ŷ/y = 0.2 for the s-channel one, is able to reproduce well
the data. In that combination, the relative proportions of the s- and t/u-channel terms
has been assumed to depend on pT, changing from 1 : 3 at around pT = 50 GeV to
3 : 1 at around pT = 220 GeV, in the same way, for simplicity, for both the W and
the Z, and in all rapidity ranges. In these calculations, the masses are fixed to the W
or Z pole masses, as applicable.

Figure 4.12 shows, for one of the rapidity domains considered in the previous
figure, |y| < 1, how the observed polarization (corresponding to the combination
best describing the data) would look like in different frames; the results are given
for both A0 and λϑ. For pT larger than the particle mass the CS frame, commonly
chosen by the experiments, turns out to be the one showing the largest departure
from transverse polarization (largest A0, smallest λϑ), while the HX and PX frames
are the ones closest to the natural frame, as they show the largest polar anisotropies.
We remind that the magnitude of A0 in the parametrization chosen by CMS and
ATLAS is not related to the strength of the anisotropy. In fact, A0/2 is the “longitu-

represent the analytical model described in the text, for those two specific rapidity ranges.
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dinal fraction”. The maximal polar anisotropies are obtained when the longitudinal
fraction is A0/2 = 0 or A0/2 = 1, while A0/2 = 1/3 corresponds to the absence
of polar anisotropy (flat cosϑ distribution). The value A0/2 = 1/2 asymptotically
approached by the data represents, hence, a mild anisotropy. On the contrary, λϑ is
a geometrical anisotropy parameter and large |λϑ| values correspond to large exper-
imentally recognizable anisotropies.

In general, therefore, the several 2 → 1 and 2 → 2 processes contribut-
ing to Drell–Yan, W, and Z production have different angular distributions, with
momentum-dependent shapes, and their superposition is itself a function of mo-
mentum. Therefore, the observable angular distribution, determined by that super-
position, is strongly momentum-dependent, so that its measurement, in whatever
frame, does not provide straightforward evidence, if not in the pT → 0 limit, of
the actually fully transverse and momentum-independent polarization intrinsically
characterizing each of the individual processes.

Such fundamental information is, instead, immediately provided by the invari-
ant polarization: each subprocess has λ̃(i)

= +1 (F (i) = 1/2) and any event mix-
ture, therefore, maintains the property λ̃ = +1 (F = 1/2). An important notion in
reaching this conclusion deserves being emphasized: the transformations between
the (experimentally undefinable) parton-parton-HX frame and the “experimental”
frames (CS, HX, GJ, PX) follow the same rules as those between two experimental
frames, being described by the relations of Eq. 2.13 for some (unobservable) value
of δ. Therefore, also such transformations preserve the invariance of λ̃ (F ). This
happens because they are all represented by rotations applied within the production
plane, at least at not too low pT, so that intrinsic parton momentum effects can be
neglected.
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The importance of these conditions, and their limitations, will be discussed in
Chapter 5. Here we want to remark another advantage of the measurement of λ̃ with
respect to the one of the frame-dependent λϑ: it usually provides information on the
underlying polarization with no need to worry about the longitudinal motion of the
partons within the colliding hadrons, i.e. without invoking the parton distribution
functions.

4.4 The Lam–Tung relation

It is known since 1978 that Drell–Yan dilepton production, calculated at order αs in
perturbative QCD, obeys a relation between the helicity structure functions of the
produced virtual photon or, equivalently, between the coefficients λϑ and λϕ of the
lepton angular distribution measured in the dilepton rest frame:

λϑ + 4 λϕ = 1. (4.7)

This identity, known as the Lam–Tung relation [7], is valid not only for Drell–Yan
production, but also for the direct production of elementary vector bosons, Z and W,
decaying into lepton-antilepton or lepton-neutrino.

The Lam–Tung relation can be seen as the analogous, for dilepton production, of
the Callan–Gross relation in deep inelastic scattering, F2(x) − 2xF1(x) = FL(x) = 0,
where the Bjorken scaling functions, F1 and F2, are connected by the condition
that the longitudinal structure function, FL, of the virtual photon vanishes identi-
cally. The Callan–Gross relation is affected by substantial O(αs) corrections, due
to gluon radiation. Similarly, also the Drell–Yan production cross section and the
corresponding λϑ and λϕ coefficients (considered individually) change significantly
from the order-α0

s calculation. The theoretical relevance of the Lam–Tung relation
resides in the fact that the specific combination of Eq. 4.7 is, instead, unchanged by
O(α1

s) corrections. Moreover, it is invariant under rotations in the dilepton rest frame
around the axis perpendicular to the production plane.

The existence of such a relation has been described as “remarkable” and even
“surprising” because, while it is the outcome of perturbative QCD calculations, the
ingredients of its derivation (magnitudes of the contributing partonic cross sections,
shapes of the parton distribution functions, and the identity of the colliding partons)
unexpectedly disappear from the final expression. It has been found, not long ago,
that the relation remains valid, or is only affected by small corrections, when subse-
quent orders in αs are taken into account [8, 9], as will be discussed in Chapter 5.
In fact, the Lam–Tung relation is generally assumed to be such a solid result of per-
turbative QCD that its violation is considered as a strong signal of non-perturbative
effects.

Experimentally, the Lam–Tung relation has been shown to be violated in pion-
nucleus collisions [10, 11], triggering discussions about effects of intrinsic parton
kT [12, 13] or of higher twist contributions [14]. Saturation effects have also been
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proposed as a cause of violations of the Lam–Tung relation, in proton-nucleus and
deuteron-nucleus collisions at RHIC and at the LHC [15].

As the reader may have already noticed, there is a direct connection between the
Lam–Tung relation and the frame-independent polarization parameter λ̃, which was
introduced three decades later [16]. In fact, the condition λ̃ = +1 (or, equivalently,
F = 1/2) is precisely the Lam–Tung relation:

λ̃ =
λϑ + 3λϕ
1 − λϕ

= +1 ⇒ λϑ + 4 λϕ = 1. (4.8)

The Lam–Tung relation is, therefore, a special case of the more general frame-
independent polarization relations for vector particles, denoting a physics scenario
where all underlying processes produce a vector state with an intrinsic transverse
polarization. This latter condition is verified in all 2 → 1 and 2 → 2 processes,
including, in particular, when leading QCD corrections are considered.

In other words, the Lam–Tung relation, just like λ̃ = +1, is not really a “QCD
relation” but rather a consequence of the rotational covariance of J = 1 angular
momentum eigenstates and of the properties of the electroweak coupling between
quarks and elementary bosons (photon, Z, W), i.e. of helicity conservation. In fact,
all the “QCD details” disappear from it: the partonic cross sections, including the
distribution of how the vector state is emitted in the parton-parton rest frame, the
pT dependences of the different contributing processes and their relative mixture,
the identity of the colliding partons and their density functions (PDFs), and even the
mass of the produced state (be it a Z boson or a low-mass Drell–Yan pair). All of
these aspects, necessary ingredients and features of the QCD calculations, leave no
trace in the Lam–Tung identity.

On the other hand, this interesting observation also denotes, in a particularly illu-
minating way, the limitation of the frame-independent approach: we lose significant
physics information if its measurement is not accompanied by the simultaneous de-
termination the frame-dependent parameters, which provide, through their trends as
functions of pT and y, fundamental information about the underlying elementary
processes (even if, sometimes, in a somewhat hidden or cryptic way).

4.5 The quasi-invariants

We will now discuss the meaning of the frame-invariants λ?ϑ and A? introduced in
Sections 3.9 and 3.10. In the first example, we consider the superposition of two
processes characterized by transverse polarizations along two different polarization
axes, with half of the events naturally polarized in the CS frame and the other half
in the HX frame.

For simplicity of illustration, in the case of the HX frame we neglect effects of
the longitudinal motion of the partons within the colliding hadrons and assume the
proton-proton centre-of-mass HX axis as natural axis.
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Fig. 4.13 The shape of the dilepton angular distribution resulting from the superposition of two
processes, both transversely polarized but with respect to significantly different natural axes. The
green axis z? represents the polar axis of the frame where the distribution is in its canonical form
and has minimal azimuthal anisotropy, as discussed in Section 3.9.

The angular distribution resulting from this mixture, for a kinematic condition
where the HX and CS axes are significantly different (but not fully perpendicular,
as it happens at very high pT), is shown in Fig. 4.13. Looking at this figure we
can easily recognize that the invariants λ̃ and λ?ϑ have different meanings. In fact,
the former is equal to +1, as in the examples seen in the previous sections, while
the latter represents the value that λϑ assumes in the frame where the distribution
becomes “diagonal”. According to the discussion of Section 3.9, two of such frames,
orthogonal to one another, can be defined with a rotation in the production plane,
but we can make the choice univocal by selecting as new polar axis, z?, the one
minimizing the azimuthal anisotropy. In the present case, this selection leads to the
axis indicated in the figure by the green dashed line.

The corresponding λ?ϑ value is strictly smaller than 1 (it would be even smaller
with the other possible choice of the polar axis), as can be recognized from the
identity

λ?ϑ + 3 λ?ϕ
1 − λ?ϕ

≡ λ̃ , (4.9)

considering that the shape in the figure has a visible azimuthal anisotropy, λ?ϕ > 0,
in the diagonalizing frame.
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constant mixture of purely transverse polarizations in the CS and HX frames. Both λ?ϑ and λ̃ are
identical in all frames.

The positive sign of λ?ϕ can be deduced from the fact that the shape flattens
against the reference plane zx, instead of protruding perpendicularly to it. The con-
dition λ̃ = λ?ϑ is only verified when there is a frame where the distribution has
the shape ∝ 1 + λϑ cos2 ϑ, without any azimuthal anisotropy, this frame being the
“natural” one for all involved processes.

Figure 4.14 illustrates quantitatively, for m = 25 GeV and y = +0.5 (the same
kinematic conditions as used in the examples of Section 4.2), the difference be-
tween λ?ϑ (always chosen according to the above-mentioned convention), λ̃, and λϑ
as measurable in different polarization frames (in this specific case, given the chosen
symmetry of the processes, the HX and CS frames provide identical observations).
While not constant (unlike λ̃), the parameter λ?ϑ is identical in all frames. It is also
always larger, in magnitude, than λϑ: it represents, in fact, the maximum observable
polar anisotropy.

The parameters λ?ϑ and λ?ϕ are geometrical invariants, describing the absolute
shape of the distribution. In the presence of a superposition of processes character-
ized by different natural axes, they become dependent of the kinematics, following
the variation of the (pT/M and y-dependent) angle between those natural frames; in
the example of Fig. 4.13, this is the angle between the two superimposed “peanut”
shapes. Clearly, the shape of the resulting distribution depends on such an angle.

On the other hand, λ̃, like F , denotes the nature of the polarization and, in the
case of a superposition of production processes, it equals the average of the natural
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polarizations, independently of possibly different directions of the several natural
axes and, therefore, with no direct correlation to the shape resulting from the su-
perposition. In fact, in the present example only λ̃ is completely independent of the
production kinematics.

The two different natures of the λ̃ and λ?ϑ invariants also affects how they should
be used, both in measurements and in calculations. As seen in the discussion of
the Drell–Yan and Z/W boson decay distributions in Section 4.3, the invariance of λ̃
survives any integration over kinematic ranges. For example, the Lam–Tung relation
λ̃ = +1, when verified for fixed values of pT, mass and y or xF, continues to hold even
if the angular distribution is measured integrating over the largest possible ranges
of such variables, provided that the underlying physics does not change inside the
integration domain. This is not true for λ?ϑ and λ?ϕ , which, actually, should rather
be called “quasi-invariants”. Because of the non-linearity of their dependence on
λϑ, λϕ, and λϑϕ (Eq. 3.41), when the angular distribution is averaged over a large
kinematic domain, λ?ϑ and λ?ϕ can lose their exact frame independence; only the
combination (λ?ϑ + 3 λ?ϕ ) / (1 − λ?ϕ ), equal to λ̃, is immune to the averaging effect.

This fact is illustrated in Fig. 4.15, prepared for the case of Drell–Yan dileptons
with invariant mass in a narrow window around 25 GeV. For simplicity, we only
consider a single scenario, where the dileptons are produced with a fully transverse
polarization in the HX frame, with no process superpositions: as mentioned above,
we straightforwardly expect λ?ϑ = λ̃ = +1 and λ?ϕ = 0. The parameters are shown
as a function of pT, in two hypothetical measurements performed around the same
average rapidity, 〈y〉 = 1, but integrating events in two different ranges: 0 < y < 2
and 0.5 < y < 1.5.

The results are not shown for the HX frame, where, naturally, λ?ϑ = λ̃ = λϑ = +1
and λ?ϕ = λϕ = 0. In the CS frame, λ̃ confirms its invariance, remaining exactly
+1, while the parameter λϑ is, not surprisingly, slightly different when measured
in rapidity intervals of different widths, as already seen in previous examples. More
interestingly, the parameter λ?ϑ departs from +1, with a deviation that increases when
measured over a broader rapidity interval. Analogous observations can be made for
the variable λ?ϕ , seen to depart from zero when the integration is made in the broader
∆y = 2 range.

The violation of the invariance of these parameters can, in principle, be made
negligible with respect to the experimental precision of the measurement, by suit-
ably reducing the width of the integration intervals. In the example of Fig. 4.15, the
effect becomes almost invisible when the width of the integration interval, ∆y, is
reduced from 2 to 1. The integration over large kinematic intervals is, in general, a
hazardous practice for more than one reason. As discussed in Section 2.14, different
experimental acceptances, and even different efficiency shapes inside a given ac-
ceptance, have a direct influence on how the anisotropy parameters transform from
one frame to another and the same effects, including a different dependence of the
detector efficiency on pT and rapidity among different experiments (even inside the
same dilepton kinematic range), can lead to slightly different values of λ?ϑ and λ?ϕ .

Similar considerations apply to the frame-independent parity-violating asymme-
tryA? introduced in Section 3.10. The measurement of this parameter is interesting



140 4 Meaning and interpretation of the frame-independent polarization

-1

-0.5

0

0.5

1

ϑλ

λ
∼

ϑλ*
100% transverse in HX frame

CS

Δ y = 1

Δ y = 2

10

-1

-0.5

0

0.5

1
CS

λ
λ*

30 50 70 90
 (GeV)

T
p

100% transverse in HX frame

Δ y = 1

Δ y = 2

ϕ

ϕ

Fig. 4.15 The parameters λ̃, λ?ϑ , and λϑ (top), as well as λ?ϕ and λϕ (bottom), as a function of pT, as
seen in the CS frame, for a state of mass 25 GeV produced transversely polarized in the HX frame.
Two cases are shown, with the same average rapidity, 〈y〉 = 1, and only differing in the width of
the rapidity window over which the measurement is integrated, ∆y = 1 or 2.

because it provides the magnitude of the maximum observable parity asymmetry,
that is, the net asymmetry measured along the polarization axis that maximizes it.

As mentioned in Chapter 1 (Eq. 1.30), the parameter Aϑ is related to the
“forward-backward asymmetry” between the numbers of events with cosϑ > 0 and
cosϑ < 0 (according to the adopted definition of cosϑ), studied, for example, in
experimental analyses of direct Z/γ∗ and W production. This asymmetry is usually
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defined in the CS frame. However, at high pT, where processes beyond leading or-
der contribute significantly, the CS frame no longer closely reflects the topology of
the decay process. As previously discussed, the polarization parameter undergoes a
strong reduction from its leading-order expectation for direct production, λCS

ϑ
= +1.

In a similar way, the polar “projection” of the asymmetry becomes smaller than the
maximum observable asymmetry. For example, the processes shown in the panels
(a), (b), and (d) of Fig. 2.2 have natural transverse polarizations and, therefore, natu-
ral parity asymmetries along the GJ or HX axes; the transformation to the CS frame
leads to a reduction of the corresponding Aϑ contributions and to the appearance of
an azimuthal component Aϕ.

In such situations, the significance of the measured parity-violating effect can be
improved, independently of the choice of the polarization frame, by measuringA?,
which can be done with the parameter substitutions of Eq. 3.49. This is illustrated
in Fig. 4.16, corresponding to the same process and conditions of Fig. 4.14: we
see that A? always represents a more significant parity-violating effect than Aϑ,
whatever direction is chosen as quantization axis.

However, it is important to note that A? is actually a “quasi-invariant”, so that
its measurement is affected by the same caveat noticed for λ?ϑ and λ?ϕ . This is shown
in Fig. 4.17, prepared for the same conditions as assumed in Fig. 4.15, where we
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clearly see that A? deviates from the frame independence expectation. While it
remains true thatA? is always larger than |Aϑ| in any frame (just like |λ?ϑ | is always
larger than |λϑ| when the correct convention is used), a rigorous use of its frame-
independence (for example, as a data-analysis crosscheck) can only be made in
cases where one can avoid integrations over broad kinematic ranges.

4.6 Recapitulation

When the production of the particle under study results from two or more fundamen-
tal processes, characterized by natural polarization axes having distinct directions,
the frame-dependent parameters λϑ, λϕ and λϑϕ always show a significant depen-
dence on the particle momentum, in whatever frame they are measured (Figs. 4.1–
4.3 and 4.6–4.8). The measurement also depends on the experimental acceptance,
just as described in Section 2.14, but, this time, no frame exists, in general, where
two experiments with different acceptances obtain the same results (Fig. 4.4). In
fact, in the considered hypothesis the chosen observation frame differs from at least
one of the natural ones and to calculate (for example) the λϑ value resulting from the
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sum over processes, given by Eq. 4.1, we must first transform at least one of the in-
dividual λ(i)

ϑ
values, introducing a kinematic dependence. The invariant polarization

parameter F (or λ̃) solves this problem: the analogous addition rule (Eq. 4.2 or 4.4)
only involves frame-independent quantities, which can be determined, therefore,
choosing either always the same frame or a different frame for each term, with the
same the result in both cases. If the natural polarizations are intrinsically indepen-
dent of the kinematics, their simplicity will be strongly disrupted in the observation
of λϑ, λϕ and λϑϕ, but fully recovered in that of F or λ̃.

The production of Drell–Yan dileptons and of Z or W bosons offers an interest-
ing application of these concepts, because the different contributing subprocesses
provide examples of natural polarizations in the CS, GJ and HX frames (Fig. 2.2).
While very low pT measurements are not sensitive to the variety of topologies and
a measurement in the CS frame simply shows a constant polarization (Fig. 4.9),
the CDF (W) and LHC (Z) data are ideally suited to illustrate the strong kinematic
dependence observed (Figs. 4.10 and 4.11) despite the underlying constant natural
transverse polarization characterizing each individual subprocess.

To reproduce the data as a superposition of such processes requires attention in
the modelling of the s-channel processes, whose natural quantization axis is actually
the particle direction with respect to the parton-parton rest frame, significantly dif-
ferent from the proton-proton frame. The longitudinal parton motion must be taken
into account in the transformation from the unobservable parton-parton-HX frame
to the experimental (proton-proton based) polarization frame, so that λϑ (or A0) and
the other frame-dependent parameters cannot be predicted without using as input the
proton PDFs. On the other hand, the transformation from the parton-parton to the
proton-proton HX frame is a simple rotation in the production plane, if the intrinsic
parton kT is neglected (a justified approximation at high pT). For this reason, F and
λ̃ are identical in those two frames: interestingly, the invariant polarization returns
the natural polarization even when it arises along an experimentally unobservable
direction.

More generally, each of the subprocesses depicted in Fig. 2.2 yields exactly
F = 1/2, or λ̃ = +1, independently of the frame and of the kinematics. This
condition is nothing else than the Lam–Tung relation, previously considered as a
surprising coincidence in the results of perturbative QCD calculations, while it can
simply be explained as a manifestation of helicity conservation (determining the
intrinsic transverse polarization of all participating processes) and rotational invari-
ance. The Lam–Tung relation, as well as F and λ̃, are actually insensitive to the
details of the process topologies used in the calculations. Such important physical
details are reflected, instead, in the kinematics-dependent values of λϑ and of the
other frame-dependent shape parameters: frame-dependent and frame-independent
measurements complement each other.

In the presence of a superposition of processes with different natural polariza-
tion axes, the invariant λ?ϑ no longer equals the (average) natural polarization and,
together with λ?ϕ , becomes kinematics dependent (Fig. 4.14). These two parame-
ters can be defined (with a suitable choice of the alternative sign definition inside
Λ? in Eq. 3.41) so as to represent, respectively, the maximum λϑ and the minimum
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λϕ values measurable in any frame. They are related to λ̃ by Eq. 4.9 and may re-
place λϑ and λϕ without loss of information. Similarly, the frame-independent par-
ity asymmetry A? represents the maximum observable asymmetry when varying
the observation frame (Fig. 4.16). There is a limitation, not affecting F and λ̃, in
the use of the parameters λ?ϑ , λ?ϕ and A?: because of their non-linear dependence
on the coefficients of the angular distribution, a measurement averaged over a large
kinematic interval can violate frame-independence (Figs. 4.15 and 4.17). Their use
should be, therefore, limited to cases where the effects of kinematic integrations are
under control.
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Chapter 5
Smearing effects in non-planar processes

In certain physical cases, the angular momentum of a vector particle may naturally
align with a direction no longer exactly contained in the production plane, leading
to an attenuation of the polarization magnitude observable in any experimentally
defined frame.

In this chapter we consider two possible causes of this phenomenon: the higher-
order, nonplanar processes contributing to Drell–Yan, W and Z production, and the
intrinsic transverse momentum of the partons inside the colliding hadrons.

We will address the following questions.

• How are the polar and azimuthal anisotropies affected by the non-planarity of the
production process?

• What happens to the Lam–Tung relation and to the frame-independent polariza-
tion? What kind of qualitative and quantitative information is provided by their
modifications with respect to the purely planar case?

• How can the existing measurements of Z polarization at the LHC be interpreted?
• For what particles and in what kinematic conditions does the effect of the intrinsic

transverse parton momentum become important?
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5.1 When the natural axis escapes experimental observation

In the previous chapter we saw that the invariant parameter λ̃ provides, indepen-
dently of the chosen frame, the value of the “natural” polarization parameter λ0,
when the decay distribution is of the kind ∝ 1 + λ0 cos2 ϑ along some natural quan-
tization direction, even when such direction is not uniquely defined because of the
superposition of different underlying production mechanisms. We have mentioned
that this happens under a condition: the natural quantization axis (or axes) must be-
long to the production plane (zx), that is, the plane containing all meaningful exper-
imental definitions of the polarization axis for inclusive production measurements.
In fact, λ̃ is invariant only by rotations about the zx plane. We will now focus on that
condition and discuss in detail what happens when it is not satisfied.

There are, in fact, important physical cases where the natural polarization axis
does not necessarily belong to the production plane. The process leading to the
production of the observed particle can often deviate from a planar topology. For
example, it can have more than two final states (“2→ N processes”, with N > 2), a
case illustrated in the next section as a possible cause of violation of the Lam–Tung
relation. Similarly, it may involve more than two incident objects, as when three or
four partons of the colliding protons actively participate in the process.

Even in the case of 2 → 1 or 2 → 2 processes, if the incoming partons have
non-negligible transverse momenta with respect to the particle’s mass (and, there-
fore, with respect to their own longitudinal momenta), they may collide along a line
of flight no longer contained in the production plane, so that the plane they form
together with the outgoing vector particle represents an additional physical refer-
ence. Another example, which will be the subject of the next chapter, is the entire
category of “two-step” or “cascade” processes, as the case of J/ψ mesons produced
from the decays of B or χc mesons.

All these processes are no longer “two-dimensional”, as those shown in Fig. 2.2.
Their intrinsically three-dimensional topology allows for the meaningful definition
of more than one reference plane for the “theoretical” description of the decay dis-
tribution of the observed particle. It is to one of such distinct planes, not necessarily
the production plane, that the natural polarization axis may belong.

However, the measurement is often limited to the two-dimensional “view” of the
process; in inclusive production studies (as in the cases that we will consider here)
the additional degrees of freedom of the non-planar topology are averaged out. This
means that only the final, decaying vector particle is detected and no information is
acquired on the accompanying objects, such as the additional products of a 2 → 3
process, or the recoil particle in the decay of a cascade process, for example the pho-
ton in χc0 → J/ψ γ decays (discussed in the next chapter). Also, the parton-parton
collision direction and, in particular, its tilt with respect to the production plane are
not even accessible experimentally. In these cases, the only possible reference for the
study of the decay distribution remains the production plane, formed by the only two
directions that are known in the decaying particle’s rest frame, those of the colliding
hadrons. Therefore, the angular momentum of the particle will have, in general, its
definite or preferred projection along an axis intersecting the production plane at an
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unknown angle, which varies from one event to another. As a consequence of this
uncertainty in the geometry of the process, the observed angular distribution will
only be a “smeared” version of the original one.

5.2 Non-planar processes: violations of the Lam–Tung relation

As discussed in Section 4.4, the production of Drell–Yan lepton pairs and elemen-
tary vector bosons satisfies, up to the leading order (order-α1

s) QCD corrections
shown in Fig. 2.2, a simple polarization identity, λϑ + 4λϕ = 1 (that is, F = 1/2 or
λ̃ = 1), known as the Lam–Tung relation, valid in any reference frame. This result
is today understood as a simple consequence of the helicity-conserving couplings
between light fermions and elementary vector bosons (gluon, virtual photon, or Z
and W bosons), as appearing in the relevant elementary processes, and the rotational
covariance of angular momentum states.

Processes including higher-order QCD corrections, like those shown in Fig. 5.1,
can lead to the observation of a violation of the Lam–Tung relation, as has indeed
been reported in the LHC measurements of Z decay distributions already considered
in Section 4.3.

In the parametrization adopted by the ATLAS and CMS collaborations, the angu-
lar distribution, considering the relevant azimuthal components but, for simplicity,
only including parity-conserving terms, is written as

W(cosϑ, ϕ) ∝ 1 + cos2 ϑ +
1
2

A0 (1 − 3 cos2 ϑ)

+ A1 sin 2ϑ cosϕ +
A2

2
sin2 ϑ cos 2ϕ ,

(5.1)

where the coefficients correspond to the ones of the usual expression (Eq. 2.1) ac-
cording to the relations

λϑ =
1 − 3

2 A0

1 + 1
2 A0

, λϕ =

1
2 A2

1 + 1
2 A0

and λϑϕ =
A1

1 + 1
2 A0

.

(5.2)

The full expression of the distribution and the properties of the parameters Ai are
reported in Appendix A.

The invariant polarization parameter becomes

F =
1
2

(
1 −

A0 − A2

2

)
. (5.3)
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Fig. 5.1 Two categories of Feynman diagrams contributing to Drell–Yan, Z and W production at
higher perturbative orders than those shown in Fig. 2.2: planar (2 → 1 or 2 → 2) processes (top
three rows); and non-planar (2→ 3) processes (bottom row).

From this expression, we see that the quantity (A0 − A2) / 2 itself, included in the
interval [−1,+1], is invariant, that is, it must be identical in the CS, HX, PX, and GJ
frames, independently of the underlying production mechanisms.

The Lam–Tung relation, F = 1/2, is written as

A0 − A2

2
= 0 . (5.4)

The relation A2 = A0 is significantly violated in nature, as clearly seen by com-
paring the pT dependences of the A0 and A2 parameters measured by CMS [1] and
ATLAS [2], in two rapidity intervals, shown in Fig. 5.2. The red curves, previously
shown in Fig. 4.11, represent the analytical model described in Section 4.3), only
considering the existence of leading order production processes, for which A2 = A0.
We see that, as already discussed in Section 4.3, the O(α1

s) processes of Fig. 2.2
are sufficient to provide a good description of A0 but clearly overestimate the A2
measurements.
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Fig. 5.2 The anisotropy parameters A0 (top) and A2 (bottom), in the CS frame, for Z bosons pro-
duced in proton-proton collisions at

√
s = 8 TeV, as measured by CMS [1] and ATLAS [2], in

two ranges of rapidity: |y| < 1 (left) and 1 < |y| . 2 (right). The curves only reflect production
processes with leading order QCD corrections, for which A2 = A0.

The significance of the violation A2 , A0 is more clearly seen in the measurement
of A0 − A2, presented in Fig. 5.3; the difference is always positive, meaning that
F < 1/2.

The monotonic decrease to zero towards pT = 0 is also an important physical
indication: it confirms that the underlying natural polarization is indeed fully trans-
verse in all involved processes. In fact, in that limit no azimuthal anisotropy can
physically exist and A0 − A2 = 0 implies A0 = 0, that is, λϑ = +1. It is important to
remark that (A0−A2) / 2, even when it is not zero as in the case of leading-order pro-
duction, must anyhow remain a frame-independent quantity in any (small or large)
integrated kinematic range, a check unfortunately not reported by the experiments.

While, in general, the reasons for a violation of the Lam–Tung relation in Drell–
Yan production can be manifold and, in some cases, are still today not fully under-
stood, the ATLAS and CMS results do have a geometrical interpretation, involving
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Fig. 5.3 The difference A0 − A2, directly expressing the violation of the Lam–Tung relation, cor-
responding to the measurements shown in the previous figure.

higher-order QCD production processes, which is as simple and intuitive as the
explanation of why the Lam–Tung relation itself is satisfied by leading-order pro-
cesses [3–7]. In particular, the natural polarization continues to be fully transverse,
as a reflection of helicity conservation, which still represents the polarizing mecha-
nism. In fact, as can be seen in each diagram of Fig. 5.1, the final vector state always
originates from the same kind of coupling to quarks seen in the leading order pro-
cesses. The blue quark line represents, just as it did in Fig. 2.2, the physical direction
along which the polarization of the observed particle is fully transverse.

What is crucially different with respect to the leading order case is that this di-
rection is not always contained in the production plane. Actually, this condition is
a geometrical criterion distinguishing two categories of higher-order processes. The
top three rows of Fig. 5.1 show diagrams that are topologically identical to the lead-
ing order ones of Fig. 2.2, because any additional emission of a gluon is followed
by its internal re-absorption, preserving the same momentum relations between final
and initial partons as at leading order. Instead, in the diagrams of the bottom row
the emitted gluons lead to the presence of additional particles in the event, in this
case belonging to the final state. In other words, the latter kind of diagrams does
not represent 2 → 1 or 2 → 2 topologies, as those of Figs. 2.2 and 5.1-a: they are
“2 → 3” processes, leading, for example, to the production of Z bosons accompa-
nied by two jets. More generally, the present considerations apply to any kind of
non-planar topology (including, for example, N → 2 or 2 → N processes, with
N > 2), where the momentum vectors of the initial and final states are no longer
forced by momentum conservation to belong to one plane.

With respect to the production plane, containing the directions of the incoming
hadrons, the natural polarization direction in the non-planar processes of Fig. 5.1-b
forms an angle φ̂, changing from one event to the next. In inclusive Z or DY studies,
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where the production plane is the only meaningful reference and the polarization
axis chosen in the measurement must belong to it, the transformation from natu-
ral to experimental frame (for a given subprocess) is no longer the simple rotation
around the y axis relating, for example, the CS and HX frames. It can be described
as a composition of rotations, as illustrated in Fig. 2.22, where the first rotation
around the z axis is superfluous when applied to a natural, cylindrically symmetric
distribution of the kind 1 + λ0 cos2 ϑ (it maintains the distribution unchanged).

The general relation between natural polarization and observed one, for a single
subprocess, depends, therefore, on the rotation angles ζ and ω; it can be obtained
from Table 2.2, setting to zero the initial values of all parameters except λϑ, which
should be set to λ0.

The resulting relations are

λϑ =
1 − 3

2 sin2 ζ

1 + 1
2λ0 sin2 ζ

λ0 ,

λϕ =

1
2 sin2 ζ cos 2ω

1 + 1
2λ0 sin2 ζ

λ0 , λ⊥ϕ =
− 1

2 sin2 ζ sin 2ω

1 + 1
2λ0 sin2 ζ

λ0 ,

λϑϕ =
− 1

2 sin 2ζ cosω

1 + 1
2λ0 sin2 ζ

λ0 , λ⊥ϑϕ =

1
2 sin 2ζ sinω

1 + 1
2λ0 sin2 ζ

λ0 .

(5.5)

In the case under study, the natural polarization λ0 is +1, but these more general
relations are reported for later reference.

The analogous transformation between two reference frames both having z axis
belonging to the production plane, as the experimentally defined HX and CS frames,
is obtained from these relations by setting ω = 0, and depends only on the angle ζ
defining the rotation around the y axis. In particular, the relations for λ⊥ϕ and λ⊥ϑϕ
vanish identically, illustrating how these parameters reflect a tilt of the distribution
with respect to the azimuthal reference plane (not observable, when the latter coin-
cides with the production plane, in inclusive studies of parity-conserving processes).
The crucial difference between the two kinds of transformation is that the rotation
between two “experimental” reference frames depends in a known way on pT and
rapidity, as detailed in Table 2.1, where δ coincides with ζ. On the contrary, when
the natural z axis is not bound to lie on the production plane (ω , 0), the rotation
angles are unmeasurable and event-dependent, even if the experiment considers the
narrowest possible ranges of pT and rapidity.

The relation between φ̂, describing the event-dependent tilt of the natural polar-
ization axis with respect to the production plane, and the rotation angles ζ and ω is

sin φ̂ = sin ζ sinω . (5.6)

This relation can be obtained by considering that the unit vector describing the di-
rection of the natural axis is (sin ζ cosω, sin ζ sinω, cos ζ) and forms an angle ξ,
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such that cos ξ = sin ζ sinω, with respect to the y axis; φ̂ is the complementary of ξ,
so that sin φ̂ = cos ξ.

The angle φ̂ is the one appearing in the relations we will find when we verify what
happens to the invariant polarization parameters. In fact, from Eqs. 5.5 and 5.6 the
analogous of the covariant relations of Eq. 3.9 is found to be, for the transformation
now under study,

3 + λϑ =
1

1 + Λ
(3 + λ0) ,

1 − λϕ =
1

1 + Λ

(
1 + λ0 sin2 φ̂

)
,

(5.7)

with Λ = 1
2λ0 sin2 ζ.

The expressions for the variants F ≡ F{1,−2,1,0} (Eq. 3.10), λ̃ ≡ −(1−3F ) / (1−F )
and 1

2 (A0 − A2) ≡ 1 − 2F of the frame-independent polarization are

F =
1 + λ0 cos 2φ̂

3 + λ0
, λ̃ =

1 − 3 sin2 φ̂

1 + λ0 sin2 φ̂
λ0 ,

and
1
2

(A0 − A2) =
1 + λ0

(
1 − 2 cos 2φ̂

)
3 + λ0

.

(5.8)

These quantities depend not only on λ0 but also on the tilt angle φ̂, appearing in
the expressions sin2 φ̂ and cos 2φ̂, which have to be averaged over all the events and
are both positive (being φ̂ distributed around zero). Only when φ̂ ≡ 0 (for all events)
they directly reflect the natural polarization, being in particular λ̃ = λ0 and 1

2 (A0−A2)
representing the corresponding longitudinal fraction (1−λ0) / (3 +λ0). In fact, these
observables, while always remaining anyhow invariant by transformation among
two observation frames (CS and HX, etc.), are not invariant by the transformation
from natural to observation frame. Given that |λ̃| < λ0, as can be deduced from
Eq. 5.8 for a reasonably small sin2 φ̂, this transformation leads to a smearing of the
magnitude of the overall polarization observed in the experimental frame.

As suggested by the fact that the covariant transformation of 3 +λϑ in Eq. 5.7 re-
mains actually unchanged with respect to the transformations between experimental
frames and only 1−λϕ becomes dependent on the tilt angle φ̂, the smearing effect is
due to the loss of an event-by-event coherent reference for the azimuthal angle mea-
surement: it is essentially an attenuation of the observable azimuthal anisotropy. The
transformation of λϑ is formally identical to the transformation between any pair of
experimental frames sharing the same y axis (HX, CS, etc.): it depends only on the
angle ζ between the initial and final polarization axes, whether they both belong or
not to the production plane. Instead, the transformed λϕ depends on both rotation
angles ζ and ω, and, when the natural axis is tilted with respect to the production
plane, that is φ̂ , 0, λϕ is systematically (therefore, also on average), smaller than
if the natural axis could only rotate within the production plane. In fact, even if
φ̂ changes sign event after event and its distribution is, in parity conserving cases,
symmetric around zero, the average quantity 〈sin2 φ̂〉 is not zero unless the process
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Fig. 5.4 The azimuthal anisotropy parameter A1, in the CS frame, for Z bosons produced in proton-
proton collisions at

√
s = 8 TeV [1, 2], in two ranges of rapidity: |y| < 1 (left) and 1 < |y| . 2

(right). The curve represents the same analytical model as previously shown in Fig. 5.2.

is intrinsically planar. Therefore, in non-planar processes the maximum azimuthal
anisotropy that can be observed in any experimentally accessible polarization frame
has generally smaller magnitude than in planar ones.

Similarly, the parameter λϑϕ, or, equivalently, A1,

A1 ≡
4 λϑϕ

3 + λϑ
= −

2 λ0

3 + λ0
sin 2ζ cosω , (5.9)

tends to be reduced in magnitude with respect to the prediction for planar processes
(ω = 0), because the factor cosω has module, on average, always smaller than 1.
This effect is clearly seen in Fig. 5.4, where most of the data points are below the
curve, especially in the pT . 100 GeV range, where the measurements have the best
precision.

The fact that we are essentially seeing a smearing of the azimuthal anisotropy can
be further appreciated through the following considerations. It is possible, in fact, to
define a polarization-related quantity that is invariant, unlike λ̃ and its analogues, by
the full “3D” transformation of the natural polarization λ0, written in Eq. 5.5. Being√

λ2
ϕ + λ⊥2

ϕ =
|λ0|

2
sin2 ζ

1 + 1
2λ0 sin2 ζ

, (5.10)

we see that the quantity

λ̃
3D
≡

λϑ + 3 λ0
|λ0 |

√
λ2
ϕ + λ⊥2

ϕ

1 − λ0
|λ0 |

√
λ2
ϕ + λ⊥2

ϕ

(5.11)
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(where the sign of λ0 is easily inferred from the sign of the “planar” λ̃: λ0/|λ0| =

λ̃/|λ̃|, except for extreme cases not worth discussing) reproduces exactly the natural
polarization:

λ̃
3D

= λ0 . (5.12)

In other words, if it were possible to determine experimentally the full shape of
the distribution, including the parameter λ⊥ϕ , we would recover, in any frame, the
full unsmeared natural polarization. However, the measurement of λ⊥ϕ is not mean-
ingful in inclusive observations of parity-conserving processes, as it must always
yield exactly zero, because of the event averaging of equally probable, opposite
anisotropies with respect to the production plane, as already discussed in more than
one occasion (throughout this chapter we are assuming the absence of effects caused
by polarizations of the colliding hadrons).

In the case of parity violating processes, λ⊥ϕ may acquire small nonzero values
in extreme kinematic conditions, but would anyhow be significantly smeared. To
determine the unsmeared λ⊥ϕ and, therefore, λ0, it would be necessary to study the
decay using reference axes based on the full non-planar topology of the production
mechanism, keeping track, for each event, of the momenta of all particles produced
in the hard scattering process together with the decaying particle. It can be easily
seen that the suppression of λ⊥ϕ in Eq. 5.11 leads to an underestimation of the full

natural polarization: |λ̃| < |λ̃3D
|.

In summary, while it is possible to reproduce the measured polar anisotropy (A0)
assuming a suitable superposition of planar processes, the corresponding predic-
tions for A2 and A1 overestimate the measured values when non-planar processes
contribute: the measurement is not sensitive to the full magnitude of the intrinsic
azimuthal anisotropies existing event after event and only returns a smeared ver-
sion of these, as resulting from the event average. In order to spot the existence
of contributing non-planar processes it is not necessary to compare the individual
A0 (λϑ) and A2 (λϕ) values with calculations of these parameters accurately repro-
ducing their peculiar pT and rapidity dependences: the simplicity of the Lam–Tung
relation allows for an immediate recognition of the effect, resulting in its violation.
Actually, however, the violation alone does not provide indications on what cate-
gory of effects can be the main cause. Moreover, it does not represent a means of
quantification for the magnitude of the effect. In the next section we discuss how the
Lam–Tung relation can be generalized in a form that can provide better qualitative
and quantitative information about the underlying physics.

5.3 A generalization of the Lam–Tung relation

As discussed in the previous section, a violation of the Lam–Tung relation can be
the signal of effects beyond the leading-order perturbative-QCD description of the
production of elementary vector bosons. However, in its original form, λϑ+4λϕ = 1,
the relation does not provide a quantification of the importance of the effects. To
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start with, it is not frame-independent and cannot, therefore, provide any estimate
of the fractional contribution of the processes responsible for the violation: a well-
defined event fraction should be rotation-invariant and, hence, be represented by a
frame-independent quantity.

Figure 5.5 shows values of the quantity G = λϑ+4λϕ−1 = λ+2ν−1, sometimes
used to test the relation (often in conjunction with the alternative notation λ ≡ λϑ,
ν ≡ 2λϕ), calculated for several points in the plane λHX

ϑ , λHX
ϕ . The corresponding

values in the CS frame are also indicated, in the assumed kinematic limit pT � pL,
for which the two frames have perpendicular z axes, independently of the particle
mass: δ2

HX�CS = E2 p2
T / (p2m2

T) (see Table 2.1). The values in the two frames are
completely different, except for G = 0, that is, when the Lam–Tung relation is in-
deed satisfied, and in the trivial cases when λϕ = λϑ, for which λϑ and λϕ themselves
are individually frame-independent, as mentioned in Section 3.3 (invariant configu-
rations shown in Fig. 3.1). Moreover, their difference would vary with the kinematic
conditions, as a function of pT, pL and also of the mass of the particle.

Figure 5.6 shows the values of λ̃ and F for the same configurations as shown in
Fig. 5.5: they are always identical in the two frames and in any other experimental
frame, as they would be in any other chosen kinematic condition and for any mass
of the decaying particle; labels specifying the frame, needed in the case of G, are in
this case omitted.

As an illustration of the interesting quantitative information provided by the
measurement of F (or λ̃) when the Lam–Tung relation is violated, we consider
again the case of vector boson production discussed in Section 5.2. We indicate
with fNP the fraction of contributing non-planar processes (production in associ-
ation with two or more quark/gluon jets), responsible for the violation. Impos-
ing in Eq. 5.8 that the natural polarization is always fully transverse (λ0 = 1)
we write the invariant polarization of the higher-order, non-planar processes as
FNP = 1/4 (1 + cos 2φ̂), while for planar ones FP = 1/2. The observable over-
all combination of the two complementary topologies is, therefore, characterized by
the parameter F = fNP FNP + (1− fNP) FP, where the sum rule in Eq. 4.2 was used.

The resulting “smeared” polarization is

F =
1
2

(
1 − fNP 〈sin2 φ̂〉

)
, (5.13)

or, in terms of “invariant longitudinal fraction” (using Eq. 5.3),

1
2

(A0 − A2) = fNP 〈sin2 φ̂〉 , (5.14)

where we have now explicitly introduced the symbols indicating that the relevant
angular quantity is actually the average over the “non-planar” events used in the
measurement.

According to the CMS and ATLAS data, for Z production A0 − A2 tends to an
asymptotic high-pT value of order 0.1, that is, fNP 〈sin2 φ̂〉 ∼ 0.05. Given that there is
no reason for 〈sin2 φ̂〉 to be particularly small in the effectively “three-dimensional”
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events with two or more “jets” and that the population of events is concentrated to-
wards low pT, where the effect is progressively smaller, we can state that the overall
fraction fNP of events responsible for the observed violation of the Lam–Tung rela-
tion is relatively small (at the percent level). Interestingly, a Monte Carlo simulation
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of the relevant non-planar topologies can potentially provide an estimate of 〈sin2 φ̂〉
as a function of, for example, pT and translate the polarization measurement into
a measurement of fNP, that is, of how many Z bosons are produced together with
two or more jets. As an accompanying check, the rejection/selection of events with
higher jet multiplicity should reduce/enhance the violation of the Lam–Tung rela-
tion, leading to correspondingly smaller/larger fNP values.

In the example just considered, the use of the invariant polarization allows us to
recognize, in a rather straightforward way, that we are observing phenomena repre-
senting only a higher-order correction to the basic theoretical description. We can
wonder if a similar explanation is compatible with other known cases of violation
of the Lam–Tung relation. Drell–Yan production in pion-nucleus collisions is one
such case.

Particularly significant effects were evidenced by the E615 experiment [8], using
252 GeV pions colliding on a tungsten target to study muon pairs in the invariant
mass range 4.05 < m < 8.55 GeV. Results obtained by NA10 [9] and, very re-
cently, by COMPASS [10] are, at least qualitatively, very similar and the following
discussion can also be applied to them with analogous conclusions.

Figure 5.7 shows the E615 pT-dependent measurements of the anisotropy param-
eters λϑ (= λ) and λϕ (= ν/2), as well as the combination G = λ + 2ν − 1, which
was used in the E615 publication to express the violation. The results were provided
in the CS frame and also in the equivalent of what, in this book, we call the GJ1
and GJ2 frames; given the rather low pT/m ratio of the muon pairs (pT < 3 GeV),
the geometrical difference between the three frames is not sufficiently large to be
interesting (see Table 2.1) and here we will only consider the CS results, practically
representing the average of the other two, which are indeed very similar. The values
of F and λ̃, which we derived, are also shown.

At first sight, we could think that we are viewing a rather conventional transverse
polarization scenario (λ ' 1), as expected for Drell–Yan production, while the defi-
nite increase of ν with increasing pT may seem analogous to that of A2, seen in the
bottom panels of Fig. 5.2. At the same time, the Lam–Tung relation λ + 2ν − 1 = 0
is increasingly violated with increasing pT, a result qualitatively similar to the pro-
gressive deviation of A0 − A2 from zero.

However, a look at F (and λ̃) reveals that we are seeing a completely different
kind of effect, both qualitatively and quantitatively. First, F increases monotoni-
cally above the low-pT value 1/2, corresponding to the Lam–Tung relation: this is
the opposite behaviour with respect to the LHC observation of a reduction in the
observable Z polarization, indicated by F < 1/2 (and λ̃ < +1). The value of F
seems to even approach the maximum physical value, 1, in its increasing trend. As
seen in Section 3.3, this limit corresponds to the rather uncommon angular momen-
tum state represented by a pure Jy = 0 projection on the axis perpendicular to the
production plane. Equivalently, it can be interpreted as the coherent superposition

1
√

2
|1,+1〉 + 1

√
2
|1,−1〉 of Jz = +1 and Jz = −1 states (a+1 = a−1 = 1/

√
2 in

Eq. 1.13). An alternative way to appreciate the peculiarity of the result is to con-
sider that all data points have λ̃ > +1. This means that the angular distribution
is never the superposition of n elementary distributions of the kind 1 + λ(i)

0 cos2 ϑ
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(with |λ(i)
0 | ≤ +1), which would imply, according to Eq. 4.5, that |λ̃| ≤ 1: part of the

contributing processes produce states that, instead of having simple “natural” polar-
izations, are coherent superpositions of states, with intrinsic azimuthal anisotropies
(not eliminable by rotation).

Several theoretical speculations exist [11–14] about the nature of the processes
determining this puzzling “anomaly”, and simply adding F to the tools does not
solve the mystery. Nevertheless, using F we easily find that such processes are
very different from the non-planar but always fully transverse ones leading to the
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smeared Z polarization observed at the LHC: in this case we are seeing contributions
of events where the dilepton pairs are longitudinally polarized. This is an example of
how, when the violation is expressed as F −1/2 , 0, its sign provides an immediate
qualification of the possible physics processes responsible for the violation.

Furthermore, it becomes possible to quantify how much the “anomalous” pro-
cesses contribute to the observed yield and also in this respect the two considered
examples differ significantly. We saw that the maximum violation observed as a
function of pT in the Z case is around 5%, F − 1/2 ' 0.025. It is definitely larger
in the Drell–Yan data: the most significant deviation, F − 1/2 = 0.109 ± 0.015
(for the pT range from 1 to 1.5 GeV), allows us to deduce, using the relation
F = fanom × 1 + (1 − fanom) × 1/2, that the fraction fanom of dilepton events vio-
lating the condition F = 1/2 is at least as large as 0.22 ± 0.03. Considering the
highest-pT point, the minimum fraction is fanom = 0.40 ± 0.15.

These should already be considered very large contributions to the Drell–Yan
production yield, certainly not “perturbations”. However, the real values of such
fractions must be even larger, because the deduced lower limit corresponds to an
extreme hypothesis: F is always either 1/2, in the case of standard O(α0

s) and O(α1
s)

processes, or 1, in the case of the anomalous processes violating the Lam–Tung re-
lation. In reality, the anomalous processes can very well have F values smaller than
the F = 1 extreme limit. Allowing for these more realistic conditions, we can say
that, in order to reproduce the E615 measurement, the fraction of Drell–Yan dilep-
tons produced by the anomalous processes needs to be comparable to the contribu-
tion of the standard processes. A “perturbative” interpretation of the phenomenon
is, therefore, ruled out.

In summary, the frame-independent polarization F (or any of its variants) allows
us to write a generalization of the Lam–Tung identity, in the form

F − 1/2 = ε . (5.15)

Unlike λ + 2ν − 1, this expression remains always frame-independent, that is, the
violation amount ε is a rotation-invariant quantity, “homogeneous” to a fractional
particle yield, and can, therefore, be used to estimate the magnitude of the violation.

In other words, thanks to the information it contains on both sign and magnitude
of the violation, the measurement of F (or λ̃) in studies of the production of vector
particles can be used as a discriminant of physics cases [5].

1. A value of F compatible with 1/2 (or of λ̃ compatible with +1) means that we
are not observing any deviation from the most basic picture of vector boson pro-
duction. The Lam–Tung relation is satisfied: the underlying processes involve
helicity-conserving couplings between light quarks and vector bosons in pla-
nar processes, as foreseen at QED and leading-order QCD levels and in several
higher-order QCD contributions.

2. If ε is small and negative (F and λ̃ slightly smaller than, respectively, 1/2 and
+1), effectively requiring a rather precise measurement for its detection, and van-
ishes in the limit pT → 0, as is the case of the Z measurements at the LHC, we are
most probably in the presence of the same, “ordinary” couplings between vector
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bosons and quark pairs as mentioned above, but with higher-order contributions
containing non-planar processes.
Since non-planar processes correspond, for example in the case of Z production,
to the presence of more than one jet in the final state, the measurement of F −1/2
can provide an estimate of the average jet multiplicity in the considered data
sample.
We can include in this category also another kind of phenomenon, equally involv-
ing a deviation from the planarity of the process topology, which is the smearing
of the observable polarization due to the transverse motion of the colliding par-
tons. As discussed in the next section, this effect becomes significant for states
having mass comparable to 1 GeV.

3. Values of F significantly smaller than 1/2 (but always positive), or remaining
(even slightly) smaller than 1/2 in the pT → 0 limit, indicate a significant devi-
ation from the scenario where vector bosons are produced in the coupling with
light quarks and have, therefore, natural transverse polarizations. Completely dif-
ferent production mechanisms have to be expected, where longitudinal contribu-
tions coexist with transverse ones or dominate. This is, at least conceptually, a
large category of scenarios, including practically all cases where, for a variety of
reasons, the decaying particle tends to be produced with natural angular momen-
tum projections that include the Jz = 0 case as a significant component.
One example is the production of a Z boson pair in the decay of a Higgs bo-
son. The intermediate Higgs, which couples directly to the vector bosons, cuts
all links with light-quark helicity fluxes and eliminates the raison d’être of a
preferred intrinsic transverse polarization of the observed Z bosons. For analo-
gous reasons, also the polarization of W bosons produced from the decays of
top quarks is far from being fully transverse. More generally, vector bosons pro-
duced indirectly, as products of the decay of another particle, can in principle
have a wide range of polarizations, depending on the production mechanism of
the mother particle. This is, for example, the case of J/ψ mesons coming from
decays of χc1 and χc2 mesons, which we will encounter in Section 6.6. Further
examples will be the subject of Sections 6.1–6.4, discussing extreme smearing
effects that can even result in the observation of a seemingly unpolarized produc-
tion scenario (F ' 1/3).

4. The last physical category that we consider includes more exotic mechanisms,
which lead to F larger than 1/2 and λ̃ larger than +1, up to even extremely large
values (given that λ̃ is not bound by an upper limit).
The pion-nucleus Drell–Yan data provide an example (possibly the only one ex-
isting so far) seemingly pointing to a significant contribution of processes cre-
ating a longitudinal polarization along the axis perpendicular to the production
plane, a rather unexpected phenomenon with no clear and intuitive explanation.

5. Finally, measured values significantly trespassing the limits of the physical do-
mains, 0 ≤ F ≤ 1 and λ̃ ≥ −1, indicate a mistake in the analysis or calculation.
Similarly, as discussed in Section 3.12, if the invariant parameter is found to be
different in, for example, the HX and CS frames, we know with certainty that
something went wrong in the analysis or computation procedure.
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5.4 Effects of the parton transverse momentum

We saw in Section 4.3 how the longitudinal motion of the system of colliding partons
in the proton-proton centre-of-mass frame influences the outcome of polarization
measurements for vector states produced in s-channel processes, where the direction
of the quantization axis is naturally referred to the unobserved parton-parton system,
rather than to the proton-proton one.

We will now discuss how also the transverse component of the parton motion
inside the colliding hadrons has an effect on the observable polarization. The effect
is relevant in measurements performed at low pT and small xF (or rapidity), that is,
when the momentum of the decaying particle is not significantly larger than the in-
trinsic transverse momenta of the partons. For the same reason, it is more important
in the production of relatively light particles.

For particles produced with pT comparable to (or smaller than) the transverse
momenta of the scattering partons, kT, the natural polarization axis is, most often,
represented by the relative direction of the partons themselves. This is the case, for
example, of the leading order process for Drell–Yan production (Fig. 2.2-c) and,
more generally, of any 2→ 1 process.

Moreover, even in the presence of a recoil particle conferring an “extrinsic” trans-
verse momentum component to the observed decaying particle (2 → 2 processes
and beyond), different natural polarization directions always converge to the parton-
parton scattering direction if that extrinsic component is negligible with respect to
the kT value.

It is also important to remark that, at least for the scope of the present discussion,
we should not restrict the meaning of kT to the bare intrinsic momentum that the
partons have for being confined inside a hadron of finite dimensions (∆p ≈ 1 fm−1 ≈

200 MeV). Doing so, we would be considering kT values that are clearly too small
to account for the pT spectra typically measured in fixed-target experiments. For
instance, the J/ψ mesons produced in proton-nucleus collisions with proton beam
energies between 400 and 920 GeV have average pT squared, 〈p2

T〉, in the range
1.6–2.5 GeV2, depending on the collision energy and on the mass number of the
target nucleus, as shown in Fig. 5.8.

In fact, during the scattering process the intrinsic momentum component is effec-
tively augmented by other effects, ranging from more or less soft gluon emissions to
the multiple scattering of the incoming proton inside the nuclear target (“pT broad-
ening”). In our illustrations we will assume that, thanks to extra sources of trans-
verse momentum kick, the parton average kT squared reaches a magnitude of order
1 GeV2, compatible with the measured pT distribution, given that 〈p2

T〉 ' 2 〈k2
T〉,

with no need of a significant “extrinsic” recoil component.
While in all examples considered until here we have always identified the direc-

tion of the scattering partons with the one of the colliding protons, that is, with the
CS axis as experimentally definable using the beam momenta, we are now going to
study possible effects of this approximation.

In the laboratory frame (centre of mass of the colliding hadrons) the angle Ω
between the two directions is given by
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sin2 Ω =
(k1T − k2T)2

(k1 − k2)2 , (5.16)

where k1, k2, k1T, and k2T are the partons’ momentum and transverse momentum
vectors. When the production is dominated by 2→ 1 processes, (k1T + k2T)2 ' p2

T,
so that (k1T−k2T)2 = 2 (k2

1T +k2
2T)− p2

T. Moreover, assuming the approximation that
the partons collide on average with antiparallel directions, the denominator becomes
(k1−k2)2 ' E2, where E is the total energy of the studied particle. The average over
the transverse momentum component, with 〈k2

T1〉 = 〈k2
T2〉 '

1
2 〈p

2
T〉, leads to the

approximate relation

〈 sin2 Ω 〉 '
2 〈k2

T〉

m2 + p2
L + 2 〈k2

T〉
, (5.17)

where m and pL =
√

s
2 xF are the mass and longitudinal momentum of the particle.

This expression, with its inherent simplifications, is only meant to show that the
parton and proton directions are seen as effectively coinciding (sin2 Ω ' 0) when
we study the production of a particle having m2 much larger than 〈k2

T〉. The angle
Ω is, however, not yet the relevant angle between the “parton-parton CS axis” (in
the following denoted by pCS) and the usual proton-proton axis, which has to be
determined in the rest frame of the decaying particle. The boost to the particle’s rest
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frame attenuates considerably the dependence on pL seen in the above equations.
The boost effect does not only depend on the longitudinal and transverse parton
momentum components, but also on their azimuthal angles. To determine the angle
δCS−pCS between the CS and pCS axes, we used, therefore, a toy Monte Carlo (MC)
model, generating, for given m and pL values, the vectors k1T and k2T with moduli
k1T and k2T following a Gaussian distribution of variance 〈k2

T〉 and azimuthal angles
φ1 and φ2 distributed uniformly.

The results for the relevant average angular quantity, 〈sin2δCS−pCS〉, are shown
in Fig. 5.9, which illustrates the dependences on its three ingredients: the mass, for
the cases of the φ(1020), J/ψ, and Υ(1S) mesons, the average k2

T, for which we have
selected the values 0.5, 1, and 1.5 GeV2, and the longitudinal momentum, shown on
the horizontal axis.

The quantity 〈sin2δCS−pCS〉 determines how the polar anisotropy λϑ of the dilep-
ton decay distribution is modified by a change of polarization axis from the pCS
(natural) frame to the CS (observation) frame As seen in the first relation of Eq. 5.5,
even if the transformation is not a rotation in the production plane (around the y
axis), the natural polarization (λpCS

ϑ
≡ λ0 with no azimuthal anisotropies) trans-

forms always in the same way for a given angular displacement towards any
spatial direction (indicated there by the angle ζ, here by δCS−pCS). In this case,
λCS
ϑ

= λ
pCS
ϑ

(
1 − 3

2 sin2δCS−pCS

) / (
1 + 1

2λ
pCS
ϑ

sin2δCS−pCS

)
, which, for small values of
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〈sin2δCS−pCS〉, can be written as

λCS
ϑ '

1 − 3 + λ
pCS
ϑ

2
〈sin2δCS−pCS〉

 λpCS
ϑ

. (5.18)

This means that 〈sin2δCS−pCS〉 equals the relative decrease of the observed λϑ
magnitude with respect to a natural longitudinal polarization, while a natural trans-
verse polarization decreases twice as much. The effect can be quite large in the
study of low-pT φ(1020) production, where, for 〈k2

T〉 = 1 GeV2, fully longitudinal
and transverse polarizations would be seen as λCS

ϑ
' −0.7 and +0.5, respectively.

In existing low-pT measurements for the heavier J/ψ and Υ states, subtler effects
are expected. Figures 5.10 and 5.11 show measurements by the HERA-B [20] and
E866 [19] experiments, in fixed-target proton-nucleus collisions with beam energies
of, respectively, 920 and 800 GeV (

√
s = 41.6 and 38.8 GeV) and 0 < pT . 4 GeV.

The polarization parameters are shown as a function of xF, averaged over pT. The
HERA-B results, for J/ψ, were reported in three polarization frames, CS, GJ and
HX, and for the three polarization parameters. The hierarchy of λϑ values, with the
largest magnitude measured in the CS frame and the smallest one in the HX frame,
confirms that the natural quantization axis is closest to the CS frame.

As shown by the curves, obtained with the toy MC for 〈k2
T〉 = 1 GeV2, the as-

sumption of a natural polarization λpCS
ϑ

= −0.3, independent of xF, along the parton-
parton direction (black curve) describes reasonably well the patterns observed in the
three experimental frames for λϑ, λϕ and λϑϕ. The MC model shows that, as a con-
sequence of the parton kT effect, the magnitude of the maximum observed λϑ, in the
CS frame, is reduced by about 15% with respect to the natural value. The invariant
parameter λ̃ (grey curve) is only slightly closer to the natural value, reflecting the
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Fig. 5.10 J/ψ polarization parameters, λϑ, λϕ, and λϑϕ, measured by the HERA-B experiment and
calculated in the kT-smearing model described in the text, shown as functions of xF, averaged over
the pT < 4 GeV range.
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fact that the transformation from the pCS frame to the CS frame is not a simple
rotation: while the magnitude of the polar anisotropy decreases as in an ordinary
rotation, the correspondingly arising azimuthal anisotropy does not fully compen-
sate for such decrease. In fact, the rotation plane (formed by the parton-parton and
proton-nucleon relative momentum directions) does not coincide with the experi-
mentally defined production plane. The angle between the two planes changes from
one event to the next, so that the azimuthal anisotropy deriving from the tilt between
the “natural” polarization axis and the experimental axis tends to be smeared out in
the integration over all events.

The almost maximal polarization observed by E866 for the Υ(2S) and Υ(3S)
states (not distinguished experimentally) in the CS frame is a further confirmation
that quarkonia produced at low pT are naturally polarized along the direction of the
colliding objects. As shown by the MC model results, assuming a natural polariza-
tion λ

pCS
ϑ

= +1, the kT-smearing effect is very small in this case, because of the
large mass of the produced particle. The effect becomes undetectable for smaller
polarizations like the one measured for the Υ(1S) state, for which a natural value of
λ

pCS
ϑ

= +0.1 was assumed.
The reader may rightfully be puzzled by the very different natural polarizations

that have to be assumed to describe the results in the three cases (J/ψ, Υ(1S), and
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Υ(2S+3S)), a scenario that seemingly contradicts a very reasonable expectation:
all S-wave quarkonia should have similar production mechanisms. A possible in-
terpretation of these differences is given in Ref. [21], where it is argued that these
measurements are compatible with being the reflection of the interplay between the
same basic qq̄ and gg production mechanisms, with the Drell–Yan-like (transversely
polarized) qq̄ annihilation process becoming increasingly important at larger mass
and |xF| values. At the same time, indirect production via decays from χb states
may be prevalent over direct production processes in the Υ(1S) case, and the two
mechanisms lead, in general, to very different polarizations.

Before wrapping up this chapter, we will add a comment regarding a miscon-
ception sometimes found in publications reporting measurements of the forward-
backward asymmetries in the angular distributions of Drell–Yan dileptons of very
high masses (similar to or larger than the mass of the Z boson). The message has
been conveyed through some form of the following phrasing: “when the dilepton has
non-vanishing pT, the momentum of the incoming quark or antiquark is not known,
because it is no longer collinear with the incoming beams; the CS frame is chosen
for the angular analysis, to minimize the impact of this effect on the asymmetry
measurement”. A more concise version is “this measurement uses the CS frame to
minimize uncertainties caused by the unknown transverse momenta of the incoming
quarks”.

As can be deduced from the comparison between the cases considered in this
section, the effect of the intrinsic parton momentum becomes completely negligible
in studies of the angular distributions of dileptons of a sufficiently high mass, and
even a mass as low as 10 GeV (the Υ(1S) mass) is already large enough. In fact, for
pT > 0 the beams themselves are not collinear in the dilepton rest frame, and this
should be the reason why the CS frame might be considered as a suitable choice,
being more “democratic” than selecting one of the two GJ frames, as the latter option
could be seen as an arbitrary selection of one of the two beams (having said that, one
might even consider more interesting to try matching the incoming quark, antiquark
or gluon with its beam of origin, on a statistical basis, by exploiting events in the
higher-rapidity domain, as mentioned in Section 2.2).

Nevertheless, the lack of collinearity between parton and proton momenta,
caused by the intrinsic transverse momentum, does not induce any “uncertainty”
or “effect” in the analysis, for measurements at such high mass values: if the partons
had zero kT, the result would remain identical. Furthermore, even for low mass dilep-
tons the importance of the effect on the observable angular distribution is the same
in any chosen frame and there is no experimentally-definable frame (using only
the dilepton information) that is less sensitive to the parton-proton non-collinearity
(or to any other observable physics effect). Actually, a measurement of the polar
anisotropy (or of the polar projection of the parity asymmetry) in the CS frame
would even be the one showing with maximum sensitivity the difference between
two hypothetical scenarios, where the parton kT effects either exist or are absent,
in the very low pT domain, where 2 → 1 processes dominate, given that only the
CS frame is directly comparable to the natural partonic frame (pCS), as seen in the
HERA-B example. In the HX frame, for example, the effect would be distributed
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between the polar and azimuthal anisotropies, so that it would seem milder in anal-
yses that only consider the polar dimension. Moreover, at not-too-low pT it is the
HX frame (or, even better, the PX frame) that best approximates the natural frame,
as shown in Fig. 4.12 (based on LHC data) for the parity conserving parameter λϑ
(or A0); similar hierarchies are expected for the forward-backward asymmetries.

As already emphasized several times in this book, a better approach would be
to perform the measurement in more than one reference frame, a procedure that
is particularly important in analyses that ignore the azimuthal dimension. Still, the
ultimate method to obtain the most information from the data, independently of the
frame choice, is to perform a two-dimensional analysis, considering both projections
of the parity-violating asymmetry, Aϑ and Aϕ, as well as their combination into the
quasi-invariantA?.

5.5 Recapitulation

When the production process transcends the planar topology of the basic 2→ 1 and
2 → 2 mechanisms, the natural polarization axis no longer always belongs to the
production plane. Its angle with respect to the experimental polarization axis (which
always stays in the production plane) changes, in general, from one event to another
and is not experimentally determinable in an inclusive measurement. Therefore, a
smeared version of the natural polarization is observed.

Also the invariant polarization parameter loses, at least in part, sensitivity to the
true magnitude of the polarization, because the transformation from natural to ex-
perimental frame is not a rotation around the y axis (perpendicular to the production
plane).

One interesting example of this effect is the contribution of nonplanar processes
to Drell–Yan, W and Z production, as described for example by the diagrams in the
last row of Fig. 5.1. While the natural polarization remains fully transverse because
of helicity conservation, it is never seen as such in any of the experimental frames,
because of the relative tilt between natural and observation axis and the rotational
smearing of the resulting azimuthal anisotropy.

As described by Eq. 5.5, the tilt (by an angle ζ) reduces λϑ just as in a transforma-
tion between two experimental frames. On the other hand, the azimuthal anisotropy
parameters λϕ, λϑϕ, etc., depend on a further rotation angle (ω), which is zero on av-
erage but not in individual events, with the result that their observed magnitudes are
smaller than in a conventional frame rotation within the production plane. There-
fore, F < 1/2, or λ̃ < +1, and the Lam–Tung identity is violated.

This phenomenon has been observed in ATLAS and CMS measurements of in-
clusive Z production: while the polar anisotropy (A0) can be described well with the
same polarization composition rules suitable for planar processes, as was seen in
Fig. 4.11, the azimuthal parameters (A1 and A2) calculated in that way overestimate
the measured ones significantly, as shown in Figs. 5.2 and 5.4.
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The resulting violation of the Lam–Tung relation (Eq. 5.4), absent at pT = 0
and increasing with pT (Fig. 5.2) in the direction corresponding to a decreasing
observable polarization magnitude (A0 − A2 > 0, that is, F < 1/2, Eq. 5.3, or
λ̃ < 1), is qualitatively consistent with the progressive contribution of higher-order
processes with two or more accompanying particles (or “jets”).

The frame-independent polarization parameter F (or λ̃) allows us to recognize
not only the qualitative features of the phenomenon, but also its magnitude. In fact,
the relative deviation of F from 1/2 is at most 5% according to the Z data, being
consistent with a higher-order effect. More precisely, it equals fNP 〈sin2 φ̂〉, where
fNP is the fraction of events due to non-planar processes and φ̂ the tilt angle of the
natural axis with respect to the production plane. Through a simulation of the non-
planar topologies, providing an estimate of 〈sin2 φ̂〉, it is possible to determine fNP
and, therefore, the contribution of events where the Z boson is accompanied by more
than one jet.

More generally, the invariant polarization parameter allows us to replace the
Lam–Tung relation with a family of relations, becoming a discriminant of physics
cases for the production of vector particles (Section 5.3). For example, violations
of the Lam–Tung relation observed in fixed-target pion-induced collisions lead to
F values significantly exceeding 1/2, indicating that the phenomenon observed in
that case has a different physical origin, involving non-transverse natural polariza-
tions, and that the “anomalous” effect is quantitatively much more important than a
higher-order correction.

The intrinsic transverse parton momentum, kT, of the partons inside the colliding
hadrons is another common cause producing a “tilt” of the natural polarization axis
along a direction not contained in the production plane and changing event after
event. The expected result is, also in this case, a reduction of the observed polariza-
tion magnitude, that is, in the Drell–Yan case, F < 1/2 or λ̃ < 1. However, the effect
is important only when the mass of the produced particle is comparable to the mag-
nitude of kT: it will, for example, smear significantly the polarization of φ(1020)
mesons, for which the angle between the proton-proton and the parton-parton CS
axes is large on average (Fig. 5.9), but it should be small in the above-mentioned
Drell–Yan measurements (mµ+µ− > 4 GeV) as well as in more recent measurements
of COMPASS and other fixed-target experiments. Already for J/ψ production the
expected effects are subtle and would require high-precision measurements to be-
come significant in the interpretation of the data, as shown by the comparison to the
HERA-B measurement in Fig. 5.10.
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Chapter 6
Polarization in cascade decays

It often happens that vector particles are not produced directly from the partonic
collision but are, together with an accompanying “recoil” system, the fruit of the
decay or transformation of another particle or object. In inclusive production studies
the two-step process usually remains unobserved and the dilepton decay distribution
is studied as if the vector particle were produced directly.

The basic, intuitive expectation is that the isotropic decay from a J = 0 (mother)
state should lead to the observation of a rotationally smeared angular distribution of
the (daughter) vector particle decay, while, for J > 0, the observed polarization of
the vector particle should somehow reflect the one of the mother particle.

We will address the following specific questions.

• In what kind of measurement and kinematic conditions can we indeed expect
that a vector particle indirectly produced from the decay of a J = 0 particle
(χc0 → J/ψ γ, B→ J/ψK, H→ Z γ, etc.) tends to look as unpolarized?

• How can the observation, made at the LHC, of almost unpolarized “directly” pro-
duced J/ψ mesons be justified in terms of fundamental production mechanisms?
Is it not true that those coming from the decays of (J = 0) B mesons are the ones
most reasonably expected to be unpolarized?

• How do the polarizations of J = 1 or J = 2 mother particles transform into the
observed polarization of the vector particle (χc1,2 → J/ψ γ, Z→ J/ψ γ, etc.)?

• What polarization frame definitions can be adopted to describe the two-step pro-
cess and what are their respective advantages?

173© The Author(s) 2023
P. Faccioli and C. Lourenço, Particle Polarization in High Energy Physics,
Lecture Notes in Physics 1002,
https://doi.org/10.1007/978-3-031-08876-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08876-6_6&domain=pdf
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6.1 Observing unpolarized vector-particle production

In this chapter we describe how the polarization is transferred from the mother par-
ticle to the daughter particle in a cascade (two-step) decay, where the daughter is
a vector particle further decaying into a lepton-antilepton pair. Most of the chapter
is devoted to the detailed discussion of the simplest case, the one where the mother
particle is a J = 0 state. This is not only the easiest possible template of a general
description, but it also corresponds to several interesting physics cases. Moreover,
it represents a bridge to the subject of the previous chapter, where we proposed ex-
amples of “smearing” effects reducing the “amount” of the observed polarization.
In fact, we can see the cascade production from a J = 0 particle as the potential
source of the most extreme of the smearing effects, leading, in certain limits and
conditions, to an effectively unpolarized production, thereby seemingly violating
the unavoidable mathematical constraint that vector particles are necessarily intrin-
sically polarized (Theorem 1.1, Section 1.10).

We will consider examples of the cascade process O→ V + X, V → `+`−, where
O is (in the first part of the chapter) a particle of spin J = 0, V the vector state
of which we want to study the polarization, and X an accompanying particle. The
process has four degrees of freedom, represented by the angles Θ and Φ, describing
the direction of V in the O rest frame, and ϑ and ϕ, the lepton emission angles in the
V rest frame.

Figure 6.1 illustrates the definitions of these variables. The angles Θ and Φ are
defined with respect to the polarization frame chosen for O (such as the GJ, CS, HX,
and PX frames introduced in Chapter 2), referred to external physical directions (the
colliding hadrons). For V we take as polarization axis the V direction in the O rest
frame and, as a reference for the azimuthal anisotropy, the plane containing the
polarization axes (z and z′) of the two particles: we will refer to this frame as the
“cascade helicity frame” (cHX).

In our specific case, the fact that O has zero angular momentum reduces con-
siderably the complexity of the problem. Any J = 0 state, when it decays, emits its
products isotropically. In fact, the spherical symmetry of a J = 0 wave function does
not provide any possible reference for the definition of what an angular anisotropy
could be. The calculation of the decay distribution involves the D0

LL′ (Θ,Φ) matrix,
which has, actually, only one element,D0

00, constant and independent of the angles.
As a result, the full angular distribution, W(cosΘ,Φ, cosϑ, ϕ), is actually indepen-
dent of cosΘ and of Φ.

In several concrete cases it is also straightforward to write the cosϑ and ϕ de-
pendence of W. We will consider a series of examples, where V is either a vec-
tor quarkonium or a Z boson and O is either a χ0 quarkonium (χc0 → J/ψ γ and
χb0 → Υ γ), a B meson (B → J/ψK), or a Higgs boson (H → J/ψ γ, H → Z γ).
Some of these decays happen quite frequently in high-energy experiments; others
are rare or even so-far unobserved processes. Together, they cover a large spectrum
of possible observable manifestations of the polarization of V , thanks to the wide
range of masses of the mother and daughter particles. In fact, and as we will see



6.1 Observing unpolarized vector-particle production 175
1

y
x

ΘO rest 
frame

z
z – z’ plane

z'
θ

y'

x'

V rest frame

production 
plane

O

V

φ

Φ

X

ℓ+

ℓ−

Fig. 6.1 Definition of the four angles used in the description of the cascade decay O → V + X,
V → `+`−: the Θ and Φ angles are measured in the O polarization frame (x, y, z), defined as one of
the usual frames (HX, CS, etc.) introduced in Chapter 2, while ϑ and ϕ are the dilepton emission
angles in the V rest frame, with respect to the “cascade helicity” (cHX) system of axes (x′, y′, z′).

in detail in Section 6.3, the results that can be observed in a real (or simulated)
experiment are strongly dependent on the mass difference between O and V .

In all these examples the polarization of V , when measured in the cHX frame, is
either fully transverse or fully longitudinal, depending on the accompanying daugh-
ter particle X (a photon or a kaon), as a pure consequence of angular momentum
conservation: no role is played by the different interaction couplings involved.

The O→ V + X decay in the O rest frame is illustrated in Fig. 6.2-top. The V + X
system has angular momentum J = 0 and, therefore, projection Jz = 0 on any z axis,
so that, in general,

JV
z + JX

z + IV−X
z = 0 . (6.1)

This relation includes a possible orbital angular momentum component IV−X be-
tween the final states, which is, in particular, mandatory and well determined (I = 1)
in the decay B(J = 0) → J/ψ(J = 1) K(J = 0), where, otherwise, angular mo-
mentum conservation would be violated. The cHX axis z′, defined by the common
direction of the back-to-back V and X momenta, is a privileged axis to study the
composition of angular momenta, because IV−X is perpendicular to the linear mo-
menta and IV−X

z′ vanishes: only the individual spins of V and X have to be considered
in the projected sum. The component JX

z′ is well defined in all considered cases: it
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Fig. 6.2 How the vector particle V , produced in the O→ V + X decay, acquires or loses its observ-
able polarization, depending on the kind of measurement. Top: the process observed with respect to
the O rest frame, in a measurement where both V and X are detected and the cHX axis z′ is adopted
as V polarization axis. For illustration, the case of a transverse polarization is shown, correspond-
ing for example to X = γ (transversely polarized photon): V is transversely polarized. Middle:
the same kind of observation, for different directions of the outgoing V (different orientations of
z′). Bottom: X is not observed or not used in the determination of the angular distribution; the
measurement does not distinguish between directly and indirectly produced V and uses the same
laboratory-referred frame as in inclusive studies. The average over all event configurations smears
the shape of the V decay angular distribution towards the spherical symmetry.
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can only be ±1 when X is a (transversely polarized) photon and 0 when X is a kaon
or another J = 0 particle.

With these constraints, Eq. 6.1 implies, respectively, JV
z′ = ∓1 and 0 in the photon

and kaon cases. As expected for a vector particle (Theorem 1.1), V is intrinsically
polarized. The four-dimensional angular distribution is

WcHX(cosΘ,Φ, cosϑ, ϕ) ∝ 1 + λ0 cos2 ϑ , (6.2)

where λ0 is the “natural” polarization, λ0 = +1 (photon) or −1 (kaon), and, as
discussed above, there is no dependence on the Θ and Φ angles. To be measured,
this distribution requires that the experiment reconstructs not only V but also X,
using the momenta of both to determine the momentum and rest frame of O, needed
for the definition of the cHX polarization axis.

The smearing effect that we will be studying arises when the V polarization mea-
surement neglects (i.e. implicitly integrates out) the degrees of freedom of X, one
possible reason being that X is not even observed and the O → V + X events are
collected in the analysed data sample together with many other events where V rep-
resents the detected final state, independently of how it was produced.

To this category of measurement, which we will call “inclusive”, belong, for ex-
ample, most quarkonium (“prompt”) production measurements, such as those pub-
lished in Refs. [1–11], where J/ψ or Υ mesons are studied without distinguishing
between directly produced states and those coming from the “feed-down” decays
of χc or χb mesons: the analysed sample includes a fraction of such indirectly pro-
duced states, whose yields and (usually different) polarization properties must then
be addressed, through hypotheses or analysis of further data, in the theoretical inter-
pretation of the results.

The so-called “non-prompt” J/ψ (or ψ(2S)), produced in the decays of B mesons
at an experimentally significant distance from the partonic interaction point, can, in-
stead, be effectively distinguished from the prompt ones through suitable selection
and subtraction procedures, as described hereafter, and are generally considered in
separate measurements addressing their different production mechanisms (and dif-
ferent polarizations).

A second class of measurements, which we will refer to as “exclusive”, is per-
formed on the basis of event samples selected by fully reconstructing the final state.
In particular, measurements of χc and χb cross sections (or cross-section ratios or
polarizations), such as those reported in Refs. [12–19], reconstruct the photon emit-
ted in the radiative decays, χc → J/ψ γ and χb → Υ γ, and only select events where
the final state has an invariant mass compatible with the χc or χb masses. Also in this
case, the photon (X) momentum is, generally (and as assumed in our discussion),
ignored in the angular analysis, i.e. it is not translated into values of cosΘ and Φ.

Even when these variables are, in nature, uniformly distributed and the problem
“looks” like a two-dimensional one (Eq. 6.2), acceptance and efficiency limitations
in the detection of the involved particles can sculpt the four-dimensional distribution
introducing correlations between the four angles. Integrating out the variables cosΘ
and Φ can be a necessity when the analysis cannot afford a four-dimensional anal-
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ysis, typically because the data sample is too small. However, this analysis choice
has consequences on the observable cosϑ, ϕ distribution, which we will illustrate in
detail.

Considering the two kinds of measurements, inclusive and exclusive, allows us
to address the following questions, here, for clarity of exposition, only formulated
for the quarkonium case.

a) What are the polarizations of J/ψ orΥmesons produced in the decays of χc0 or χb0
states, as they contribute to the inclusively observed prompt J/ψ or Υ production
(that is, when radiative decay photons are not detected or are ignored)?

b) If, using the measured γ momentum, we exclusively select samples of J/ψ or
Υ mesons coming from the decays of χc0 or χb0 states, and submit them to the
same kind of analysis applied to the corresponding “inclusive” samples, what
polarizations are we expected to measure and why?

We can already anticipate here that, contrary to what common sense may at first
suggest, the two questions have different answers.

Of these two examples, the first one (a) can only be addressed theoretically or
through simulated events: it cannot be investigated experimentally in a direct way,
since restricting the analysis to the vector quarkonia coming from χ states requires
that some selection is applied to X = γ, but this procedure is the one defining the
second example (b).

When, instead, we consider the case of J/ψ mesons produced in decays of B
mesons, the measurement of the corresponding polarization can actually be made
also using “inclusive” samples. In fact, experiments often identify inclusive event
samples dominated by B → J/ψ decays by selecting the “non-prompt” J/ψ mesons,
i.e. the events in which the distance between the primary vertex (the proton-proton
interaction point, where the B is produced), and the dimuon vertex, where the J/ψ
is produced and immediately decays, is significantly larger than the uncertainty in
the measurement of that distance. This method is justified by the relatively large
decay length of B mesons (the B± lifetime is around 500 µm), with respect to the
measurement resolution of most modern experiments, of around 10 µm.

In this case we can, therefore, ask the questions: what do we expect as an outcome
of a real polarization measurement of J/ψ mesons produced in decays of B mesons,
when using either an inclusive sample of non-prompt J/ψ mesons, or the exclusive
events where the accompanying particle X (a kaon, for example) is identified? In
both cases, it is meant that the angular degrees of freedom of the B decay are inte-
grated out and the angular measurement is made in the two-dimensional (cosϑ, ϕ)
space of the dilepton decay in the J/ψ rest frame.

Finally, we will also discuss the polarizations of the J/ψ or Z bosons emitted
in radiative Higgs decays (H → J/ψ γ or H → Z γ), measured with respect to the
usual CS and HX frames, defined in terms of the momenta of the colliding protons
without using the momentum of the daughter photon, that is, without referring, at
each given event, to the rest frame of the specific Higgs boson that generated the
observed particle.
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We will discuss these questions gradually, until the end of this chapter, starting
here with a first, simple and intuitive answer, quantitatively valid under conditions
and limitations that will be studied in the next sections.

The idea is illustrated in Fig. 6.2. We know that V is emitted isotropically in
the rest frame of the J = 0 particle O, as illustrated in the middle drawing. With
a “Copernican” change of point of view, adopting as observation platform the rest
frame of V (where the polarization measurement is made), we will see, event af-
ter event, O departing in all possible directions, a situation illustrated in the bottom
drawing and described by uniformly distributed spherical coordinates cosΘ and Φ.
Along each of these individual directions (represented by the event-dependent z′

cHX axis) we see a lepton decay distribution of shape 1 + λ0 cos2 ϑ, according to
Eq. 6.2. With respect to a hypothetical “absolute” set of x, y, z axes fixed in space
(for example, the laboratory axes), this distribution appears, each time, as rotated
in a different direction. The convolution of all these rotated distributions leads to
a spherical overall distribution. In other words, by referring to the “absolute” axes
we lose the connection to the natural frame and the polarization orientation is fully
“randomized”, resulting in the apparent absence of any anisotropy of the decay dis-
tribution.

The intuitive concept that the decay distribution undergoes a full rotational
smearing, concealing any underlying polarization, if the direction of the polarization
axis is randomized with respect to the natural one, is formalized mathematically by
Eq. 5.5. Here, cos ζ and ω are the analogous of the spherical coordinates cosΘ and
Φ, describing how the observation frame (the “absolute” one in the present case)
is rotated with respect to the natural one. All terms in sin (nω) or cos (nω), with
n = 1 or 2, have zero average over the ω interval [−π,+π], implying that λϕ, λ⊥ϕ ,
λϑϕ, and λ⊥ϑϕ vanish. Concerning λϑ, we notice that the uniform integration over
the polar coordinate cos ζ = cosΘ is actually not the only operation leading to
a perfectly isotropic distribution. While there are in principle several ad hoc pos-
sibilities producing the same result, we consider here a case that will be seen as
physically relevant in the subsequent discussion, namely a linear distribution of the
kind 1/2 (1 + B cos ζ) with |B| ≤ 1 (normalized to unity over the [−1,+1] range). In
fact, the average of sin2 ζ over this distribution is

〈sin2 ζ〉 =
1
2

∫ 1

−1
(1 − cos2 ζ) (1 + B cos ζ) d cos ζ =

2
3
, (6.3)

independently of B, leading to λϑ = 0 in Eq. 5.5: a constant distribution (B = 0) or a
linear one (0 < |B| ≤ 1), the latter option corresponding to a non-spherical smearing,
both lead to the unpolarized scenario.

The actual reason why the linear cos ζ distribution is equivalent to a flat one is
that it corresponds to a flat distribution of | cos ζ |, and the sign of cos ζ is not relevant
for our present considerations (this argument would not be valid in studies of parity-
violating effects).

This simple reasoning, leading to the prediction of unpolarized vector particles,
does have counterparts in possible physical scenarios. However, depending on the
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case, a fully isotropic smearing will be observed only in very specific kinematic con-
ditions and/or with specific analysis choices. In fact, we have used two hypotheses
that require case-by-case validation:

a) the laboratory-referred frames HX, CS, etc., are good approximations of an “ab-
solute” frame;

b) the two-dimensional (cosΘ,Φ) distribution remains uniform, as it is in nature,
in the data sample used for the measurement or, at most, its cosΘ projection
becomes linear.

How are these hypotheses affected by the experimental selections? The next sec-
tions address this problem and illustrate what kinds of observable distributions are
expected in real experiments.

6.2 Kinematics of cascade decays

We have seen that the observation of an unpolarized vector particle becomes possi-
ble, at least conceptually, when the particle is produced from the decay of a J = 0
state O, in specific kinds of measurements where the observer is blind to the an-
gular degrees of freedom of the O decay. The full smearing leading to a complete
lack of measurable anisotropy, is, however, only an extreme case, occurring when,
in the collected event sample, the (unobserved) cosΘ distribution remains uniform
as it is in nature, or becomes linear, the latter condition practically including, as ap-
proximations, cases where it is only slightly and smoothly shaped by experimental
selections.

We are now going to study how the measurement itself, by sculpting the cosΘ
distribution, can perturb the spherical smearing naturally produced by the decay of
a J = 0 particle, and actually find a more or less anisotropic dilepton distribution.
The four-dimensional distribution W of Eq. 6.2 does not depend explicitly on cosΘ
and does not give any hint on how the dilepton distribution can be (more or less)
smeared as a consequence of a (more or less) uniform randomization of the cosΘ
variable; in fact, it remains true that, even when such a randomization occurs, the
V polarization along the cHX axis, built with the per-event knowledge of the O
momentum, is immune to it and remains maximal and unsmeared.

In order to study the geometry of the smearing mechanism, it is convenient,
therefore, to use an alternative configuration of the V polarization frame. Figure 6.3
shows the new definition, which, like the previous one, is adoptable, more generally,
for the description of any two-step cascade decay. The x, y, z axes, with respect to
which the emission angles Θ and Φ of the O → V + X decay are measured, are the
same as in the previous definition: z is, for example, the polarization axis in the HX
or CS frame of O. Instead, the x′′, y′′, z′′ axes, the double-prime sign indicating the
new references for the dilepton decay in the V rest frame, are now exact geometrical
clones of the x, y, z axes, obtained by a simple, undistorted translation, not involving
any Lorentz boosts of the physical references. In practice, the dimensionless unit



6.2 Kinematics of cascade decays 181

y
x

ΘO rest 
frame

z

z''

θ

y''

X''

V rest 
frame

production 
plane

ℓ+

O

V φ

Φ

X

ℓ−

Fig. 6.3 An alternative definition of the polarization frame used in the description of the cascade
decay O → V + X, V → `+`−: the x, y, z axes, and therefore the angles Θ and Φ, are the same
as in the usual definition of Fig. 6.1, while ϑ and ϕ, dilepton emission angles in the V rest frame,
are now defined with respect to a system of axes, x′′, y′′, z′′, geometrically identical to x, y, z (the
“cloned cascade frame”, CC).

vectors of the x, y, z axes, defined in the O rest frame (O must, in principle, be re-
constructed) are used with no modification as unit vectors of the x′′, y′′, z′′ axes in
the V rest frame.

This choice, hereafter referred to as the “cloned cascade frame” (CC) may sound
physically abstract and perhaps counter-intuitive, but there is a limit in which the
x′′, y′′, z′′ axes simply reduce to the axes of the “ordinary” HX or CS frame (or any
other frame adopted for x, y, z) of V , that is, the one “properly” defined in terms of
beam directions Lorentz-boosted to the V rest frame: when the momenta of O and
V in the laboratory are much larger than the mass difference between O and V , they
become almost indistinguishable and the directions of, say, the HX axis in the O rest
frame and the HX axis in the V rest frame tend to coincide (as is more quantitatively
described later in this section).

We note that the definition of the CC frame requires the specification of the frame
used for the decay of O, that is, of what frame is being “cloned”: we can refer, for
example, to the HX CC or CS CC frame. When this specification is absent, we will
imply that we are using the HX frame as “master” frame.

For the decays χc → J/ψ γ, χb → Υ γ or B → J/ψK, given the relatively small
differences between the masses of the mother and daughter particles, this condition
is satisfied in most of the kinematic domain of the LHC measurements. In this limit,
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Fig. 6.4 Representation of the cascade decay O → V + X, V → `+`−, indicating the reference
axes (CC frame), the decay angles, the angular momentum states of the involved particles, and the
Wigner matrix elements used for their rotation. The red axis represents the common direction of
the O and V polarization axes (z and z′′, respectively) in the CC frame.

the determination of the x′′, y′′, z′′ axes decouples from the knowledge of the O
momentum and the polarization measurement in the CC frame can effectively be
performed without observing the accompanying particle X and reconstructing the O
rest frame.

To determine the expression of the four-dimensional angular distribution, we start
by writing the amplitude of the process O→ V+X, following a procedure analogous
to the one used in Section 1.7 to derive the dilepton distribution of a J/ψ.

Figure 6.4 summarizes the notations used for the angular momentum states of
the involved particles, the axes and their rotations; for later use (Section 6.6), the
diagram represents the general case where the mother particle O has angular mo-
mentum quantum number J.

As mentioned in the previous section, in the considered examples X has a definite
angular momentum projection, which we indicate here with K′, along the z′ (cHX)
axis, while there is, in general, also an orbital momentum component that now, with
respect to the CC polarization axis z′′, we will not be able to ignore. In order to use
simple two-body angular momentum sum rules, we then attribute the orbital angular
momentum to X: in practice, we consider X as a state that has, whatever its identity
(a photon, a spin-0 kaon), total angular momentum J = 1, including the orbital part,
as required so that its sum with the, also unitary, spin of V yields the zero angular
momentum of O.

The Wigner matrix needed to rotate the angular momentum of X from the x′, y′, z′

axes to the x′′, y′′, z′′ axes is, therefore,D1
K′′ K′ (Θ,Φ), where K′′ is the Jz′′ projection

of X on the z′′ axis:

|X; 1,K′〉z′ =
∑

K′′=0,±1

D1
K′′ K′ (Θ,Φ) |X; 1,K′′〉z′′ . (6.4)

Since we will only be considering parity-conserving terms of the decay distribu-
tion, Θ and Φ indifferently denote the direction of V or of X, while to obtain correct
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signs for the parity-violating terms, following the notations of Fig. 6.3 where it is
the direction of V that defines Θ and Φ, the Wigner matrix for the rotation of X
should readD1

K′′ K′ (π − Θ, π +Φ).
Indicating with L′′ the generic Jz′′ projection of V on z′′, the decay amplitude is

given by

A(O→ VL′′ + XK′ )

=
∑

K′′=0,±1
z′′〈V X; 1, L′′, 1,K′′ | B |O; 0, 0〉z′′ D1∗

K′′ K′ (Θ,Φ)

= 〈1, L′′, 1,−L′′ | 0, 0〉 D1∗
−L′′ K′ (Θ,Φ) ,

(6.5)

where the operator B, containing the dynamics of the decay, can, in general, impose
relations between the angular momentum states of O, V , and X. In the cases here
considered, the relevant physical constraints are two: a) along z′′, the V and X par-
ticles have opposite angular momentum projections, being the two daughters of a
J = 0 state, as expressed in the relation used in the second equality above:

z′′〈V X; 1, L′′, 1,K′′ | B |O; 0, 0〉z′′ ∝ δK′′,−L′′ 〈1, L′′, 1,−L′′ | 0, 0〉 ; (6.6)

b) the nature of X, being either a transversely polarized photon or another J = 0
particle (a condition that we will impose below, while summing over the squared
amplitudes), effectively determines, by angular momentum conservation, a definite
natural polarization of V .

The Clebsch–Gordan coefficient 〈1, L′′, 1,−L′′ | 0, 0〉 is
√

3/3 or −
√

3/3, respec-
tively for L′′ = 0 or ±1. The amplitude of the two-step process can then be written by
including a factor expressing the rotation of the dilepton angular momentum state,
which has projection L′′′ = ±1 along its own flight direction in the V rest frame
(z′′′ axis), onto the z′′ axis (where it has projection identical to the V one, L′′), and
summing over the possible L′′ components of V:

A [ O→ V + XK′ , V → (`+`−)L′′′ ]

∝
∑

L′′=0,±1

〈1, L′′, 1,−L′′ | 0, 0〉 D1∗
−L′′ K′ (Θ,Φ) D1∗

L′′ L′′′ (ϑ, ϕ) .
(6.7)

This latter expression can also be read, by comparison with Eq. 1.10, as the am-
plitude of the dilepton decay of V , when V has (Θ,Φ)-dependent angular momentum
components (referred to z′′) aL′′ = 〈1, L′′, 1,−L′′ | 0, 0〉 D1∗

−L′′ K′ (Θ,Φ). The final ex-
pression of the angular distribution is obtained by squaring Eq. 6.7 and summing
over L′′′ = ±1 and over the relevant K′ values, which depend on what the final state
X is. In the cases we will consider, K′ = 0 if X is a kaon (or other J = 0 particle),
and K′ = ±1 if X is a photon. Therefore, V has a fully longitudinal natural polariza-
tion in the cHX frame, λ0 = −1, in the first case and a fully transverse one, λ0 = +1,
in the second.
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The resulting distribution for a generic natural polarization of V is:

WCC(cosΘ,Φ, cosϑ, ϕ)

∝
1

3 + λ0

(
2 + λ0 (1 − cos2 Θ − cos2 ϑ + 3 cos2 Θ cos2 ϑ )

+ λ0 sin2 Θ sin2 ϑ cos 2(ϕ −Φ)

+ λ0 sin 2Θ sin 2ϑ cos (ϕ −Φ)
)
.

(6.8)

Only the difference between azimuthal angles, ϕ − Φ, enters this expression,
which is, moreover, fully symmetric by exchange between the O and V decay angles:
(Θ,Φ) →← (ϑ, ϕ). It is, however, possible to rewrite the result giving emphasis to the
dilepton part, by defining (cosΘ,Φ)-dependent anisotropy parameters and obtaining
the same usual expression of Eq. 1.16, with

λϑ =
−λ0 (1 − 3 cos2 Θ)
2 + λ0 (1 − cos2 Θ)

,

λϕ =
λ0 sin2 Θ cos 2Φ

2 + λ0 (1 − cos2 Θ)
, λ⊥ϕ =

λ0 sin2 Θ sin 2Φ
2 + λ0 (1 − cos2 Θ)

,

λϑϕ =
λ0 sin 2Θ cosΦ

2 + λ0 (1 − cos2 Θ)
, λ⊥ϑϕ =

λ0 sin 2Θ sinΦ
2 + λ0 (1 − cos2 Θ)

.

(6.9)

The distribution becomes obviously isotropic if λ0 = 0. We can also recognize
from Eq. 6.8 that the average over a uniform (or linear) cosϑ distribution (giving
〈cos2 ϑ〉 = 1/3) and over the azimuthal dimension leads to an isotropic (cosΘ,Φ)
distribution, as expected from the decay of a J = 0 particle. Vice versa and more
interestingly, the (uniform or linear) average over cosΘ leads to an isotropic dilepton
decay distribution of the vector particle V , providing a further illustration of the
concepts discussed in the previous section. However, it is now apparent that, if the
cosΘ distribution is, for some reason, not uniform or linear, so that 〈cos2 Θ〉 , 1/3,
the resulting dilepton distribution measured in the CC frame will not be isotropic
and the presence of a nonzero natural polarization λ0 will somehow be revealed.

It is not difficult to realize that a measurement usually introduces sculpting ef-
fects on the cosΘ distribution. If all V particles produced by the decay of O were
included in the analysed data sample, the distribution would remain uniform, as it
is naturally. In general, however, this is not possible in a real experiment, and not
only because of the selection criteria applied to improve the quality of the signal
reconstruction. The simple fact that we are observing a sample of V particles (in-
stead of a sample of O particles) and we are, therefore, delimiting the range of their
(transverse and/or longitudinal) momenta in the laboratory, reshapes the cosΘ dis-
tribution. To understand how, we need to open a brief parenthesis on the relations
between the relevant kinematic variables: the momenta of O and V in the laboratory,
P and p, with moduli P and p; the momentum of V in the rest frame of O, p′, with
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Fig. 6.5 Kinematic variables used in the description of the decay O→ V + X.

modulus p′; the masses M, m, and mX of O, V , and X; and cosΘ. The notations are
illustrated in Fig. 6.5, where the angle Θ is seen to be defined in the HX frame of O.
In all relations until the end of this section, we imply Θ ≡ ΘHX.

The components of the V momentum perpendicular, p⊥, and parallel, p‖, to the
direction of P transform from the O rest frame to the laboratory frame according to
the Lorentz boost defined by β = P/

√
M2 + P2, so that:

p⊥ = p′⊥ = p′ sinΘ (6.10)

and

p‖ =
1√

1 − β2

(
p′‖ + β

√
p′2 + m2

)

=

√
1 +

P2

M2 p′ cosΘ +
P
M

√
p′2 + m2 .

(6.11)

The momentum p′ is

p′ =
1

2M

√(
M2 + m2 − m2

X
)2
− 4M2m2 '

M2 − m2

2M
, (6.12)

where the approximate equality corresponds to m2
X � M2 + m2, a relation satis-

fied in all the cases hereafter considered, either exactly (X = γ) or up to 1%-order
corrections (X = K in B decays).

For an easier illustration of the concept we will make the temporary assumption
that we are considering high-momentum measurements, that is, the momenta of O
and V in the laboratory are significantly bigger than their masses. This condition,
which will not be used in the computations of the next section, can be considered to
be satisfied, for example, in most charmonium measurements at the LHC. The re-
lations seen in the remaining of this section are, therefore, applicable quantitatively
to the decays χc0 → J/ψ γ and B→ J/ψK, but not, in general, to the Higgs decays.
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Equations 6.10 and 6.12 imply the general inequality p⊥ < (M − m) sinΘ and,
therefore,

p⊥ � p if M − m � p . (6.13)

This means that, in the assumed approximation, we have p ' p‖, so that the vec-
tors p and P can be considered to be parallel. In this approximation, as previously
mentioned, the CC frame becomes coincident with the corresponding laboratory-
referred frame, for example the HX frame.

We can now quantify the effect of this approximation on a polarization measure-
ment, considering that the angle δCC between the two polarization axes is, by defini-
tion of such axes, the angle between the vectors p and P, given by sin δCC = p⊥/p.
Assuming that the decay distribution is of the kind ∝ 1 + λCC

ϑ
cos2 ϑ in the HX-CC

frame (that is, λCC
ϑ
≡ λ0), the corresponding λϑ value in the HX frame is (Eq. 2.13,

setting λϕ and λϑϕ to zero)

λHX
ϑ = λCC

ϑ

1 − 3
2 sin2 δCC

1 + 1
2λ

CC
ϑ

sin2 δCC
'

1 − 3 + λCC
ϑ

2
sin2 δCC

 λCC
ϑ , (6.14)

where the approximate equality is valid in the limit of a small angle. Therefore,

∣∣∣λHX
ϑ − λ

CC
ϑ

∣∣∣ ' 3 + λCC
ϑ

2

∣∣∣λCC
ϑ

∣∣∣ sin2 δCC ≤
3 + λCC

ϑ

2

∣∣∣λCC
ϑ

∣∣∣ ( M − m
p

)2

. (6.15)

For example, the relative deviation,
∣∣∣(λHX

ϑ − λ
CC
ϑ

)/λCC
ϑ

∣∣∣, of a λϑ measurement in the
HX frame from its CC expectation is at most of order 2–4% (depending on λϑ) for
the polarization of J/ψ mesons from B decays at pT = 10 GeV and rapidity y = 1,
and decreases with increasing pT and |y|.

We will now assume that the condition p ‖ P is satisfied. Taking then p‖ in
Eq. 6.11 as expression for p, with√

p′2 + m2 =
M2 + m2

2M
and

√
1 +

P2

M2

p′

P
'

p′

M
,

the first relation deriving from Eq. 6.12 and the second from the assumption that
P � M, we find that

p ' P f (cosΘ) , (6.16)

with f (cosΘ) =

(
1 − cosΘ

2
m2

M2 +
1 + cosΘ

2

)
, (6.17)

where we note the linear dependence on cosΘ.
This vector relation can be rewritten, remaining formally identical, with p and P

replaced by their moduli, or their transverse or longitudinal components. The math-
ematical passages throughout this section will use the symbols p and P to denote
either of the three possibilities. The one relevant for the case under study is the vari-
able with respect to which the polarization parameters λϑ, λϕ and λϑϕ in the CC
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frame (that is, in its corresponding laboratory-referred frame) are observed. In our
illustrative studies we will consider hypothetical measurements made as a function
of pT. Correspondingly, all the following relations should be considered with the
substitutions p→ pT, P→ PT.

Equation 6.17 can be read as follows: if we consider a sample of events where
O is always produced with the same laboratory momentum, of modulus (or com-
ponent) P, the laboratory momentum (component) p of V is distributed uniformly
between the values m2/M2 P and P, corresponding to the extremes of the natural
uniform distribution of cosΘ between −1 and +1.

Having a sample of events distributed within a defined narrow interval around a
value of P is not a realistic situation for the considered examples, where the experi-
ment may not even reconstruct O and, in general, does not perform the measurement
as a function of P. Instead, the experiment observes V and at each event determines
its momentum (component) p, so that the sample is characterized by a distribution
of p values. However, while fixing P leads to a uniform cosΘ distribution, fixing p
does not. In fact, for a narrow interval in p, neither the cosΘ nor the P distributions
are uniform, their ratio being

dN
d cosΘ

/ dN
dP
≡

∣∣∣∣∣ dP
d cosΘ

∣∣∣∣∣ =


1
2 p

(
1 − (m/M)2

)
f (cosΘ)−2

1
2 p−1

(
1 − (m/M)2

)
P2

, (6.18)

where the dependence on either cosΘ or P has been made explicit.
From this relation we see that, given a value of p, the cosΘ distribution could

only be uniform (constant dN/d cosΘ) if the sample were chosen with a P distri-
bution of the kind dN/dP ∝ P−2 (and it would be possible to obtain a uniform P
distribution, constant dN/dP, only if cosΘ would be distributed as dN/d cosΘ ∝
f (cosΘ)−2). But the P distribution is obviously not chosen by us: on the contrary, it
is precisely what physically determines the p distribution of the event sample under
analysis.

In summary, given a collected sample of V particles, how the cosΘ distribution
of the studied event sample departs from a constant distribution depends on the un-
derlying shape of the unobserved P distribution, that is, on the shape of the observed
p distribution. To figure out how, we start by writing the “original” two-dimensional
(P, cosΘ) distribution as

dN
dP d cosΘ

∝

( M
P

)ρ
, (6.19)

where there is no cosΘ dependence (constant distribution) and the P dependence
is parametrized with a power-law function, an always reliable shape approximation
in a sufficiently narrow kinematic domain. Equation 6.19 means that, in measure-
ments made as a function of the B momentum, the cosΘ distribution would remain
flat (apart from other perturbing effects) and, thus, a fully smeared J/ψ polarization
should be seen (P-independent and negligible λ parameters).

We want to find the corresponding two-dimensional (p, cosΘ) distribution, which
is the one relevant for the description of an experimental data sample where p, and
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not P, is the focus of the measurement. In the variable replacement

P→ p = P f (cosΘ) , cosΘ→ cosΘ (6.20)

the measure changes as

dP d cosΘ = 1/ f (cosΘ) dp d cosΘ , (6.21)

so that Eq. 6.19 is transformed into

dN
dp d cosΘ

∝

(
m
p

)ρ
f (cosΘ) ρ−1 . (6.22)

Apart from finding an unchanged power-law dependence on momentum, we see
from this expression and from the f (cosΘ) definition (Eq. 6.17) that the effective
cosΘ distribution will, in general, depart from a flat or linear shape. Examples of
cosΘ distributions are shown in Fig. 6.6-left for the cases of the decays B → J/ψK
(top) and χc0 → J/ψ γ (bottom), for some chosen values of ρ. In their analytical
description, the two decays differ only for the value of m/M, which fully determines
the shape of f (cosΘ). The corresponding | cosΘ | distributions,

dN
d | cosΘ |

∝
dN

d cosΘ
(cosΘ) +

dN
d cosΘ

(− cosΘ) , (6.23)

are shown in the right panels. As mentioned above, the latter distributions are the
ones relevant for the effect under study: whether or not they are flat, and to what
degree, determines if we will see a fully smeared or only attenuated polarization in
the HX or CS frame approximating the CC frame. The cases ρ = 1 and ρ = 2 lead,
for both decays, to a flat | cosΘ | distribution and are not shown in the figure.

The deviation from a flat distribution is larger for larger values of | ρ − 1 |. It is
important to understand that ρ is the (locally defined) “slope” of the p distribution
of the collected sample of V particles, affected by experimental acceptance and effi-
ciency effects. Even if the measurement of the dilepton angular distribution implies
that the dilepton acceptance and efficiency are taken into account and/or corrected
for, and even if the correction of the dilepton events brings the p distribution close to
its natural shape, the cosΘ distribution, defined in the O rest frame and additionally
affected by the acceptance and reconstruction efficiency for X, is, by hypothesis, not
observed and cannot, obviously, be corrected. It is, therefore, the “raw” experimen-
tal distribution of p that determines the shaping of the cosΘ distribution.

For example, as a consequence of the lepton selection criteria (minimum pT re-
quirement) we can expect to see a turn-down shape towards the lowest detected
values of p, meaning that ρ can be negative at low p (number of events increasing
with p), passing through zero at the maximum of the distribution and changing to
positive values at higher p. Correspondingly, with varying p the shape of the cosΘ
distribution will change, according to Eq. 6.17, from decreasing to increasing, lead-
ing to varying degrees of smearing of the polarization observed in the CC (that is,
HX or CS) frame.
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Effectively, therefore, the smearing of the polarization is strongly influenced by
purely experimental features of the measurement, which may be difficult to be ac-
counted for. This fact can lead to disagreements between experiments performing
the same measurement with different detectors and selection criteria, as illustrated
in the next section.

Equation 6.17 shows another factor that influences the strength of the smearing:
the dependence of f on cosΘ tends to vanish in the limit m/M → 1. We expect,
for example, a significantly stronger polarization smearing for J/ψ mesons from
χc0 → J/ψ γ than from B→ J/ψK, given the proximity of the χc0 and J/ψ masses, as
shown by the comparison between the upper and lower panels of Fig. 6.6.

The above description is appropriate for measurements made at a high momentum-
to-mass ratio. In particular, in the decay from χc0 the condition of Eq. 6.13, leading
to p ‖ P, is practically always satisfied and the “ordinary” J/ψ HX or CS axis,
adopted in the measurement, becomes coincident with the corresponding CC axis
over the entire momentum range of the measurement; moreover, for pT & 10 GeV
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and even at mid rapidity, the analytical relation of Eq. 6.17 is almost exact and the
previous discussion should faithfully reproduce the reality. In the case of B decays,
a slightly higher threshold in pT and/or |y| is necessary.

Instead, this description does not apply to the typical events produced by decays
of the much heavier Higgs boson. The decay H→ J/ψ γ is the one departing the most
from the assumed approximations. It remains true that a smearing of the natural
polarization is expected, because the direction of the z axis of the J/ψ HX frame (the
observation frame) is certainly not fully correlated with the emission direction of
the J/ψ in the Higgs rest frame (natural polarization axis). However, the sizeable J/ψ
momentum p′ ' M/2 ' 62.5 GeV in the Higgs rest frame must play an important
role, determining different observations when the laboratory momentum p is much
smaller than, or much larger than, or comparable to p′: a complex smearing pattern
is expected.

In general, realistic descriptions of the considered decays, moving away from
the kinematic approximations mentioned in this section, are important to predict
more accurately not only the effects of differences in the masses of the mother and
daughter particles but also the transitions between scenarios where the smearing is
more or less effective, depending on the laboratory momentum of V and on how the
events are selected in the analyses (of measured or simulated event samples). This
is the subject of the next section.

6.3 A wide spectrum of possible observations

In this section we will illustrate, using simulated events, a range of possible smear-
ing effects occurring in the polarization measurement of a vector particle produced
from the decay of another particle. As described in the previous section, the effects
depend, among other things, on the distribution of the V momentum component with
respect to which the polarization is measured. In what follows, we have chosen the
transverse component, pT. Since the kinematics of V are a direct reflection of those
of the mother particle O, to produce a realistic event sample we must use realistic
pT distributions for the considered mother particles. The distributions are obtained
by interpolating existing quarkonium, B meson and Higgs-boson cross section mea-
surements from LHC experiments, shown in Fig. 6.7 as a function of pT/M. The
B meson cross section measured by CDF is also shown, as it will be used for the
corresponding prediction in Section 6.5.

As illustrated in the left panel, the quarkonium data, available for seven states
(including χc1 and χc2), do not show deviations from a “universal” pT/M spectrum.
This observation allows us to assume, at least for illustration, that this universal
shape also characterizes the χc0 and χb0 distributions, for which no data exist. Since
a finite-pT V can come from the decay of a “zero”-pT O, especially if the mass
difference (that is, p′) is large, as in the Higgs decays, it is important that the mother
particle is generated in the simulation down to low pT. Extrapolated shapes are used
for this purpose, but it must be kept in mind that these are only empirical guesses
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made in an illustrative context. In the event generation, O decays isotropically into
V + X and V to µ+µ− according to the distribution of Eq. 6.2 in the cHX frame. No
approximations are made in the generation of the decay distributions.

We start by analysing the case of J/ψ production from B decays, for which both
the “inclusive” and “exclusive” kinds of measurement are realistic experimental op-
tions. The inclusive case corresponds to measurements which select samples of J/ψ
mesons from B → J/ψ X decays by applying a threshold on the distance between
the primary and dimuon vertices, thus presumably rejecting all the “prompt” events.
Ideally, this selection has no effect on the momentum of the accompanying parti-
cle X. Instead, the exclusive measurement selects events where X is identified as
(for example) a kaon and its momentum enters, therefore, the domain of acceptance
of the detector, here parametrized with the rapidity and pT selections |yK| < 2.5
and pK

T > 1.3 GeV, representative of those applied in typical analyses of the LHC
experiments.

For the modelling of the inclusive scenario we are making a series of simplifying
hypotheses that need to be clearly specified. First, we assume that X is a J = 0
particle (kaon, pion, eta meson, etc.), conferring a definite “natural” polarization
to the J/ψ, longitudinal along the cHX axis, as discussed in Section 6.1, just as
in the exclusive case. In reality, B → J/ψ X decays include cases where X is a
second vector particle or a multi-body system (possibly having an invariant mass
that can be significantly larger than the “small” mass of a kaon), and, in the lack
of the strong J(X) = 0 constraint, the resulting natural polarization can become
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less than fully longitudinal: the simulation provides, in this case, an upper limit
for the magnitude of the observed polarization. Additionally, inclusive non-prompt
production actually includes more complex decay chains, where the B meson first
decays into a χc1, χc2 or ψ(2S) meson, which then decays into a J/ψ. Also this kind
of further complexity, leading to a reduction in the observed polarization, will be
neglected in our illustration.

As a further, more technical note we clarify that we are assuming that the J/ψ is
produced in the B decay as a 3S1 cc state, already having the quantum numbers of
the final colour-neutral hadron (core hypothesis of the “colour singlet model”, see
Section 6.4). However, it can also happen that the J/ψ exits the decay through an
intermediate coloured cc state,

However, it can also happen that the J/ψ exits the decay through an intermedi-
ate coloured cc state, possibly having an angular momentum configuration different
from the final one (for example, 1S0); in this case, the subsequent gluon emission(s)
necessary to produce the observable meson will tend to attenuate its observed polar-
ization, so that λ0 will, also for this kind of contributing mechanism, deviate from
its extreme value, −1.

All these simplifications are functional to the purpose of this section, where we
want to illustrate the difference between two kinds of observation methods (inclusive
vs. exclusive) on the observed polarization, applied to the same underlying process;
it is, therefore, important that the physical cascade process is modelled in exactly
the same way in the two cases. In Section 6.5 we will revise these assumptions in
a more realistic description of the non-prompt case, also in the light of some basic
notions, presented in Section 6.4, about the existing hypotheses on the mechanisms
of J/ψ production.

The resulting polarization parameters of the J/ψ dilepton decay distribution,
λϑ, λϕ, and λϑϕ, in the HX and CS frames, as well as λ̃, are shown in Fig. 6.8
for the inclusive and exclusive measurements. Both cases reveal a strong smear-
ing of the natural longitudinal polarization (represented by the flat green line at
λϑ = −1). The residual polarizations are, however, quite significant and, further-
more, pT-dependent. The dashed and dotted lines illustrate the effect of performing
the measurement on a sample where the decay muons are required to have mini-
mum pT values of 5 and 10 GeV, respectively. The application of these thresholds,
inspired by selection criteria applied in some typical LHC analyses, leads to non-
negligible variations of the obtained patterns.

We note that all the curves considered in the present chapter become asymptot-
ically constant at very high pT, where, in comparison, the relevant physical scales
determining the natural polarization (the masses of mother and daughter particles)
become indefinitely small. This also happens because the pT distributions assumed
in our simulation have a definite asymptotical power-law behaviour. The high-pT
flatness of the parameters can be disrupted whenever the pT distribution changes
its power-law slope for whatever reason not considered here, for example because
a different production mechanism of the mother particle starts dominating, or in
the proximity of a kinematic end point, or as a consequence of experimental selec-
tions affecting the high-pT spectrum. It can be seen, in particular, that the lepton
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selections and the momentum requirements on X in the exclusive case extend the
non-flat behaviour to higher pT values in comparison to the inclusive curves with no
experimental selections.

The observed effects can be interpreted in the light of the analytical description
made in the previous section. For this purpose we consider the J/ψ pT range 25–
30 GeV, where the high-momentum approximation, adopted in that discussion, is
well satisfied. Figure 6.9-top shows the pT distribution in the considered interval,
well reproduced by a power-law function with best-fit exponent ρ = 4.7 ± 0.4.

The fitted central value of the exponent can be univocally converted (Eqs. 6.17,
6.22 and Fig. 6.6) into the prediction of the cosΘ distribution, f (cosΘ) ρ−1, always
meant here, as in the previous section, to be measured in the HX frame. As shown in
the middle panel of Fig. 6.9, this prediction is in good agreement with the simulated
data for the inclusive case, where no selections are applied to the data. The | cosΘ |
distribution (shown in the bottom panel of the same figure) is not flat, implying that
the smearing effect is only partial and motivating the nonzero observed polarization.

Also the difference between the two experimental approaches can be explained
in terms of the cosΘ distribution. As seen in Fig. 6.10-top, where the exclusive and
inclusive cases are shown by the red and blue histograms, respectively, the additional
selection on the K momentum, in particular on pT, further sculpts the distribution in
the exclusive measurement, removing events close to cosΘ = +1. This is, in fact, the
configuration where the J/ψ and K are emitted, respectively, forward and backward
with respect to the B meson direction and, therefore, where the kaon is most likely
to have a laboratory momentum too small to pass the acceptance threshold, so that
the event is rejected. The | cosΘ | distribution, shown in the middle panel, becomes
less sharply unbalanced towards high values when the K momentum selection is
applied, that is, its average becomes closer to the average of a uniform distribution,
meaning that a fuller smearing should be expected. In fact, a smaller anisotropy is
seen in Fig. 6.8, between 25 and 30 GeV, with respect to the inclusive case.

Figure 6.10 also shows, in the bottom panel, how the corresponding cosϑ distri-
butions can be reproduced by integrating the angular distribution W (Eq. 6.8) over
cosΘ. The integration would lead to a flat cosϑ distribution if the cosΘ distribution
were flat (or linear), while the resulting cosϑmodulation (different in the two cases)
is a reflection of how non-uniform the cosΘ distribution is. The slightly longitudinal
polarization observed in the inclusive case is turned by the K selection criteria into
a practically unpolarized result, a coincidence (〈cos2 Θ〉 turns out to be close to 1/3
even if the cosΘ distribution is not flat nor linear) caused by the fact that inside the
considered pT interval the polarization is changing from transverse to longitudinal
(as can be seen in Fig. 6.8).

Figures 6.11–6.13 illustrate the effects of requiring minimum pT values on the
muons used in the J/ψ reconstruction, referring to the inclusive case. As discussed in
Section 2.13 and shown in Fig. 2.18, such requirements strongly sculpt the dilepton
distribution. Figure 6.11-left shows the cosϑ distribution, in the HX frame, before
(blue) and after (green and red) applying selection cuts on the pT of the muons; the
corresponding “acceptance ratios”, representing the fraction of events that survive
those selection cuts, are presented in Fig. 6.11-right.
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Naturally, an accurate correction procedure must be applied for the recovery of
the physical result. The dashed and dotted lines in Fig. 6.8 indicate the results that
an experiment would obtain after such corrections have been successfully applied in
the data-analysis procedure: they represent the physical polarization of the selected
sample of J/ψ mesons and their values will always remain, irrespectively of how
strong the applied selections are, within the boundaries of the physical domain of
the polarization parameters.

Interestingly, however, we see that the obtained polarization result still reflects
residual traces of how the sample was selected. This also implies that two experi-
ments applying different selection criteria will obtain different physical results. We
could even say, therefore, that there is no such thing as the polarization of J/ψmesons
from B decays, at a given collision energy and in given kinematic conditions: the
experiment-dependent event selection criteria must concur to an extended definition
of the “kinematic domain”. This is, actually, a general feature of analyses where the
polarization of an indirectly-produced particle is studied ignoring the event-by-event
correlations between the mother’s and the daughter’s decay angles.

Before continuing with the discussion of this interesting and delicate problem,
it is worth pausing to explain that these “corrected results” were determined using
Eq. 6.9, with the (cosΘ,Φ)-dependent quantities replaced by average values calcu-
lated using the events around each considered pT value. The dilepton decay parame-
ters in the HX (CS) frame are obtained from these relations when the B decay angles
in the HX (CS) frame are used for cosΘ and Φ. This procedure assumes that the CC
frame can be replaced by the ordinary HX (CS) frame, an approximation valid in
the high-momentum limit, with associated uncertainty quantified by Eq. 6.15 (and
not applicable, for example, in the study of Higgs decays).

To clarify and explain why experiments applying different selection criteria will
obtain different physical results we need to study how the sculpting of the (J/ψ de-
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cay) cosϑ distribution affects the (B decay) cosΘ distribution. The concept is the
same as illustrated above for the “inverse” effect of how different cosΘ modulations
determine different resulting cosϑ distributions: the two distributions are intimately
correlated and any experiment-induced modification of one will have an effect on
the other.

We remind that, in the considered high-momentum limit, the variables cosϑ de-
fined in the CC and HX frames (being cosΘ here defined in the HX frame) are
effectively equivalent, so that the dilepton decay angles appearing in Eq. 6.8 can be
calculated in the HX frame.

Figure 6.12-left compares the cosΘ distributions obtained before (blue) and after
(green and red) muon selections. They are arbitrarily normalized so that the effect
on the shapes can be more easily seen: removing low pT muons induces a loss of
events that is more pronounced as cosΘ → 0, and the higher is the cut threshold,
the bigger is the event loss. The net result, symmetric in cosΘ, is best represented
by the acceptance ratios, shown in Fig 6.12-right.

To confirm that it is the sculpting of the observed dilepton cosϑ distribution that
causes this shaping of the unobserved cosΘ distribution, we use the acceptance
ratios A(cosϑ) shown in Fig. 6.11-right as weights in the integration of the four-
dimensional angular distribution W (Eq. 6.8) over cosϑ. While we know that a full
and uniform cosϑ coverage would lead to a uniform cosΘ distribution (in the ab-
sence of all other effects mentioned above), using the distribution of the actually
accepted dimuon events, A(cosϑ), to perform the average over cosϑ leads to the
green and red curves shown in the right panel of Fig. 6.12, which reproduce per-
fectly well the the shapes of the acceptances as functions of cosΘ. Indeed, we can



6.3 A wide spectrum of possible observations 199

| cos    |Θ
0.50.3 0.7 0.90.1

          J/ψ X
  [ J(X) = 0 ]
B
Inclusive

0

20

40

60

80

100

Ac
ce

pt
an

ce
 (%

)

lepton p   cut
0
5 GeV
10 GeV

T

0

10

20

30

40

50

60

| c
os

   
 | 

 (a
.u

.)
dN

 / 
d

Θ

| y     | < 2.5J/ψ
25 < p     < 30 GeVJ/ψ

T

| cos    |Θ
0.50.3 0.7 0.90.1

∫W(cos Θ, cos ϑ) A(cos ϑ) d cos ϑ

Fig. 6.13 Left: The | cosΘ | distributions (in the B HX frame) for simulated B→ J/ψ X events with
unobserved X and 25 < pJ/ψ

T < 30 GeV, before (blue) and after (green and red) rejecting events with
muon pT smaller than some cut value. The distributions are arbitrarily normalized, to emphasize the
shape differences. Right: Corresponding “acceptance ratios”, representing the fractions of events
surviving the muon selections. See the text for details on the superimposed curves.

conclude that the cosΘ modulations induced by the muon selections are a direct
reflection of the sculpting of the cosϑ distribution.

As clearly shown by the | cosΘ | distributions, and even more visibly by their
ratios, both shown in Fig. 6.13, the muon selections accentuate the unevenness of
the B decay angular distribution, therefore decreasing the smearing effect and in-
creasing the magnitude of the observed polarization, just as seen in Fig. 6.8. The
only way to remove the dependence of the measurement outcome on the event se-
lections specifically applied by the experiment is to adopt a fully four-dimensional
analysis approach, taking into account acceptance correlations between the angular
variables (cosΘ,Φ) and (cosϑ, ϕ). This is not possible, by definition, when X is not
observed (inclusive case) or when the angular analysis is anyhow restricted to its
dilepton “projection”, as in our definition of the exclusive scenario.

The conclusion of this discussion is that both kinds of measurement should report
a full and reproducible definition of the dilepton and single-lepton kinematic phase
space where the analysis is made. Two different experimental measurements (or a
measurement and a theory prediction) can only be reliably compared if those kine-
matical constraints are carefully taken into account. In fact, the exact comparison
between two results may require detailed simulations of the experimental condi-
tions, including any specific event selections that may affect the cosΘ distribution.

As a variation on the theme, Fig. 6.14 shows the result of a simulation of
non-prompt ψ(2S) mesons (right panels), made in the same conditions as the J/ψ
simulation (left panels). The comparison between the two cases, focusing on the
low-pT region, illustrates the important role of the mother-daughter mass differ-
ence. With the decrease of the momentum of the charmonium in the B rest frame,
p′ ≈ (M2

B−M2
ψ ) / (2 MB), from p′ ' 1.7 GeV for the J/ψ to ' 1.3 GeV for the ψ(2S),
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the smearing increases significantly and the magnitude of the observed ψ(2S) polar-
ization is only about half of that seen in the J/ψ case.

We turn now to the case of the cascade process χc0 → J/ψ γ, with J/ψ → `+`−,
where ` represents a muon or an electron. Inclusive and exclusive scenarios are
formally defined as previously, except for the selection of the photon in the exclusive
case, for which the lower pT threshold of 0.4 GeV is used, as a realistic emulation
of typical data analyses in the LHC experiments.

Conceptually, the “inclusive” case no longer represents a realistic measurement,
since it is not possible to measure the polarization of J/ψ mesons emitted in χc0
decays without applying selections on the photon momentum to obtain an event
sample dominated by χc0 decays. However, the scenario remains interesting, since
it depicts the polarization of the (small) fraction of J/ψ mesons coming from χc0
decays in all existing J/ψ polarization measurements, which always address the total
“prompt” production, including undistinguished contributions from the feed-down
decays of heavier charmonium states. The results for the two scenarios are shown in
Fig. 6.15. The differences with respect to the B→ J/ψ X case are the input pT distri-
bution, the natural polarization in the cHX frame (transverse, in this case) and, most
importantly, the significantly smaller mass difference between mother and daughter
particles. In fact, a practically full smearing happens in the inclusive scenario, as an-
ticipated from the almost flat cosΘ distributions seen in Fig. 6.6, as a consequence
of the sole reduction in mass difference: χc0 decays do give an unpolarized con-
tribution to the inclusive prompt J/ψ production. However, the selection of events
with minimum photon pT leads to a slight polarization, according to the mechanism
described above for the B decays.

The difference between the χc0 feed-down contribution to inclusive J/ψ polar-
ization and the measured polarization of J/ψ coming from χc0 decays may be at
first sight counter-intuitive, but becomes comprehensible as a consequence of the
two different selection criteria applied to the χc0 → J/ψ γ events. Even if small, the
difference is conceptually non-negligible.

While radiative χc0 decays actually play a minor role in J/ψ production, because
of their small branching ratio, the decays from χc1 and χc2 produce a fraction of or-
der 25% of the observed J/ψ mesons [27]. It should not be forgotten that a mismatch
between the contribution to inclusive polarization and the exclusive polarization of
J/ψ from χc1 and/or χc2 has to be expected and should, in principle, be taken into
account when “subtracting” the latter from the total inclusive result to deduce the
polarization of the directly produced J/ψ mesons. This problem will be addressed in
the next sections.

One may wonder what happens if we change the masses of both the mother
and the daughter particles. As shown in Fig. 6.16 for the exclusive measurement,
going from the charmonium to the bottomonium system, which implies an increase
in the masses by a factor of three, does not lead to significantly different smearing
patterns. The relevant parameter is not the absolute mass of each of the two particles
but rather the mass difference or, more precisely, the p′ value, which remains in this
case rather similar, only changing from 0.30 to 0.39 GeV. The inclusive case is
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omitted in the comparison given its simplicity: the contribution of χb0(1P) decays to
inclusive Υ(1S) production remains fully unpolarized.

Finally, Fig. 6.17 shows the results of an exclusive simulation of the decays
H → J/ψ γ and H → Z γ, with the requirement that the photon has a minimum
pT of 15 GeV, a realistic value for analyses of experimental data. While in the pre-
vious examples p′ was smaller than the minimum dilepton momentum accessible to
the experiment, now its value falls inside the measured pT spectrum (p′ ' 62 and
29 GeV, respectively), creating complex polarization patterns. The most significant
polarization magnitude is seen, with a resonance-like effect, for pT ' p′, as well
as in the limit pT → 0 for the H → J/ψ γ case. The decay with larger mass differ-
ence produces the less smeared polarization, even approaching the fully transverse
limit of the natural one, as shown by the variable λ̃, which combines the polar and
azimuthal anisotropies.

The decay with larger mass difference produces the less smeared polarization,
even approaching the fully transverse limit of the natural one, as shown by the vari-
able λ̃, which combines the polar and azimuthal anisotropies. The decay H → Υ γ
leads to a Υ polarization of a magnitude similar to that of the J/ψ, given the negligi-
ble decrease in p′ value.

6.4 The unique case of J/ψ production

We have discussed how the observation of an unpolarized (or almost unpolarized)
vector particle is indeed possible: the particle must be produced indirectly, in the
decay of a heavier J = 0 particle, which the experiment is unable to fully recon-
struct or decides to not take into account in a multi-dimensional angular study, to
minimize the complexity of the analysis. The cancellation between oppositely po-
larizing production processes remains an alternative possibility as explanation of an
unpolarized observation, even if it is not only improbable, but also reasonably lim-
ited to a restricted transition domain between kinematic regions where individual
processes dominate. Most often, different production mechanisms tend to be char-
actrized, for example, by different pT distributions. In fact, the existence of concur-
ring processes having exactly opposite polarizations and otherwise indistinguishable
kinematic properties should rather be interpreted as the existence of deeper under-
lying symmetries than those conjectured in the production model.

There is one case where a vector particle appears to be produced unpolarized,
even when produced directly: the J/ψ meson, as observed by LHC experiments [32].
While at first sight this phenomenon seems to pose a serious challenge to the con-
siderations exposed above, in reality, and as we will see in this section, it provides
the most paradigmatic example of what we have discussed in the previous sections.

In fact, the “promptly produced” J/ψ mesons (i.e. after subtracting the contribu-
tion from B meson decays) are mostly produced directly: the feed-down decays of
the ψ(2S) and χc states are responsible for, respectively, around 8 and 25% of the
J/ψ yield [27], and the corresponding polarizations are known or constrained exper-
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imentally. Moreover, its radial excitation, the ψ(2S) state, is always produced di-
rectly, presumably by the same partonic processes as the direct 1S state, and shows
a similar polarization pattern: above a certain pT both states are very close to the
unpolarized conditions, with no significant kinematic dependence.

Figure 6.18 shows the J/ψ and ψ(2S) polarizations measured by LHC experi-
ments [28–31], as well as the result of a global data fit analysis [32] that also uses
experimental constraints on the polarizations of J/ψ mesons emitted in χc1 and χc2
decays [19], providing a reasonably precise determination of the direct J/ψ polariza-
tion: above pT/m ' 3 the J/ψ is produced unpolarized over a wide range of labora-
tory momentum, making the hypothesis of a polarization cancellation implausible.

The mechanism behind the production of vector quarkonia has always been
a matter of debate. The conceptually simplest idea, that a cc pair is produced
by the parton scattering process as an already colour-neutral state in the “right”
spin-angular-momentum configuration 3S1 (“colour singlet’ model” [35]), underes-
timates by a large factor the J/ψ and ψ(2S) production yields seen in hadron collider
experiments. This data-to-theory discrepancy was originally seen in the mid-1990’s
by CDF [36, 37]. Figure 6.19 provides a more modern illustration of this observa-
tion by showing the data-theory comparison for the two states, as measured at the
LHC [1, 20] and as computed in perturbative QCD at next-to-leading order [33, 34].

While for the J/ψ case part of the large discrepancy can be attributed to the con-
tribution from (prompt) feed-down decays of heavier quarkonia, which corresponds
to around one third of the total prompt cross section and is not considered in the cal-
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culated curves, the ψ(2S) comparison is free from those contaminations, justifying
why the early results became known as “the CDF ψ(2S) anomaly”. Clearly, there
must exist additional sources of quarkonium production, besides colour-singlet pro-
duction, dominating at least in high-energy collisions and at high pT. Also in the
mid-1990’s, an improved and more general quarkonium production model was de-
veloped: the non-relativistic QCD (NRQCD) approach [38].

In NRQCD, the J/ψ (or the ψ(2S )) bound state is considered in its superposition
of Fock states, consisting not only of a simple cc pair, but also of combinations of
cc pairs with gluons (or light qq̄ pairs):∣∣∣∣ψ (

3S1

) 〉
= a 3S [1]

1

∣∣∣∣ cc
(
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1

) 〉
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The first term, representing an already colour-neutral (singlet) state and having
the spin and angular momentum quantum numbers of a vector particle, is the domi-
nant one. In each term of the remaining expansion only the cc-gluon(s) combination
must be colour neutral; the cc pair itself is, in general, coloured (“octet” state) and
can have any spin and angular momentum quantum numbers, provided that it com-
bines with the gluon(s) into a 3S1 state.

The colour-octet terms are suppressed by powers of v, the velocity of the c quark
in the cc rest frame, which is assumed to be only moderately relativistic. In fact, the
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kinetic energy T ' mv2 of the bound state is estimated as T ≈ 0.4–0.6 GeV from
the energy splittings between radial and orbital angular momentum excitations of
the quarkonium system, which are very similar for charmonium and bottomonium.
For the J/ψ, the lightest of the vector quarkonia, v is the largest, at around 0.4.

The probability that the final-state hadron has been produced as the result of the
transition from an initial octet cc state is evaluated to be of order v4 smaller than the
probability that it came from a singlet cc. This means that, if in a given experiment
cc pairs were produced with the same probability in the 3S [1]

1 singlet as in any octet
state, the production via colour-octet cc would be responsible for only a few percent
of the observed J/ψ mesons, and an even smaller fraction should be expected for the
three-times heavier Υ mesons coming from coloured bb pairs (v4 ≈ 10−3).

These proportions are opposite to what is necessary to explain the LHC observa-
tion of cross sections one order of magnitude larger than the singlet-only ones. How-
ever, perturbative calculations confirm that the existence of colour-octet processes
represents a solution to the problem: the partonic cross sections for the produc-
tion of colour-octet cc pairs are orders of magnitude larger than the colour-singlet
one and their inclusion completely overturns the proportion, leading to predicted
quarkonium yields dominated by the octet processes.

Furthermore, octet mechanisms offer a potential and interesting solution to an-
other problem of the colour-singlet model: the singlet channel alone leads to a prac-
tically fully polarized J/ψ [39], as is the case of all mechanisms producing vector
particles directly, a prediction in clear contradiction with the quarkonium polariza-
tion measurements made at the LHC.

The production via colour-octet quark-antiquark states is a perfect example of
what happens in a cascade process where the mother state is unobserved and, at
the same time, the daughter’s mass is only slightly smaller than the mother’s. The
mass difference between the octet state and the physical quarkonium must be, in
fact, of the same order as the typical splittings of the mass spectrum (of the order
of 0.5 GeV). If the mother happens to be a J = 0 state, a complete smearing of
the polarization should be expected, in analogy with the χc0 → J/ψ γ and χb0 →

Υ γ decays seen in the previous section (inclusive case). For example, the 3P[8]
0 →

J/ψ g transition is completely equivalent to the χc0 → J/ψ γ decay and leads to an
unpolarized J/ψ, considering that the gluon is not observed. The most relevant J = 0
octet state is, however, the 1S [8]

0 one. Even if its transition to J/ψ has a more complex
topology because it involves the emission of (at least) two gluons and the natural J/ψ
polarization in the 1S [8]

0 rest frame is not easily characterized, the resulting dilepton
decay distribution is isotropic. In fact, it should be clear from the considerations
in the previous sections that the full rotational smearing occurring for small mass
differences with respect to a J = 0 mother state is a pure consequence of the flatness
of the | cosΘ | distribution and is independent of the value of λ0. Above all, however,
it is important to remember that the condition that the mother is a J = 0 state remains
the most crucial one for the explanation of the observed unpolarized production.
Other octet terms, for example the 3S [8]

1 one, lead, instead, to a full polarization,
transverse in this case. It is, therefore, important to determine which of the octet
terms are actually significant.
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Each individual octet contribution to the cross section includes a non-perturbative
constant factor (the long-distance matrix element, LDME), representing the proba-
bility of transition from the considered coloured cc state to the J/ψ and considered
to be “universal”, that is, independent of the nature of the short-distance partonic
process and equal, for example, in hadroproduction, photoproduction or in indirect
production via decays of heavier particles. The LDMEs have not yet been theoret-
ically calculated, and their values are currently determined in the very process of
theory-data comparison, through global fit analyses [33, 40–46].

All octet LDMEs corresponding to the terms shown in Eq. 6.24 are equally
“small”, of order v4 smaller than the singlet LDME (as discussed above with other
words), and it would not be surprising if one of these “corrective” terms were actu-
ally dominating over the others: this could not be reasonably considered as a failure
of the v hierarchy, which is only an order-of-magnitude expectation. However, a re-
liable answer to the question of how the octet terms actually compare to one another
in magnitude is only recently and gradually coming to light. After several years of
difficulties and contradictory or even puzzling results shown by theory studies of the
experimental data [47], the results of recent global-fit analyses comparing NRQCD
calculations with experimental measurements show that the 1S [8]

0 octet mechanism
is indeed the dominant contribution to direct J/ψ production in high-energy hadron
colliders [21, 48–50].

While the explanation of the unique and puzzling observation of the unpolarized
production of the J/ψ meson, as a directly produced vector particle, is the result
of a long path of understanding, we could, a posteriori, look at the problem from
a different perspective and realize that this polarization measurement has always
been implying, by itself, an almost unequivocal physical indication: in the consid-
ered conditions, the J/ψ must have a “two-step” production mechanism, where the
intermediate stage is a J = 0 state. This is a good example of how polarization
measurements can provide deep insights into the underlying physics.

It remains true that the J/ψ case is rather special and results from concurrent
causes. Despite being a “heavy quarkonium” state, the J/ψ is rather light and the
v hierarchy does not penalize the octet terms with respect to the singlet ones as it
could happen for heavier states. For example, it will be interesting to see if future
high-precision polarization measurements for the Υ states will show the same pT-
independent lack of polarization or will rather denote the presence of more compet-
ing processes by showing a non-negligible kinematic variation. Above all, the over-
whelming importance of partonic processes producing octet quark-antiquark pairs
is a peculiarity of direct quarkonium production in hadron collider experiments.

This dominance of octet processes does not seem to be present in low-pT mea-
surements made in fixed-target experiments, which actually show significant polar-
izations of vector quarkonia, as seen in Section 5.4.

It is also reasonably absent in several cases of indirect production, a clear ex-
ample being when the parent particle (with its constituents) and the accompanying
particles have zero colour charge, as in the previously considered H → J/ψ γ case,
so that the gluon emissions enabling the transformation of a coloured cc into the
final observable state cannot be reabsorbed within the isolated process. For similar
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reasons, the purely electromagnetic transitions from χc states do not involve inter-
mediate octet states. In fact, in these examples (as considered in Section 6.3 and
in the following Section 6.6), the J/ψ does have a strong natural polarization, poten-
tially observable by choosing the cHX frame. The non-prompt production of J/ψ is a
more complex case, as denoted by the several simplifying assumptions we adopted
for its description in Section 6.3, and will be further discussed in the next section.

Another counterexample is the production of vector quarkonia in the electromag-
netic process e+e− → QQ (with Q = c, b), where the quark-antiquark pair is formed
through a virtual photon as a colour singlet state and is fully transversely polarized,
as shown by the BES experiment [51]. In summary, the unpolarized production of
J/ψ mesons in high energy proton-proton collisions is an exceptional observation
resulting from exceptional circumstances.

6.5 Non-prompt charmonium production

In the comparison between the two measurement scenarios discussed in Section 6.3
for the polarization of J/ψ mesons emitted in B decays we assumed that the non-
prompt J/ψ events, addressed by the “inclusive” measurement without observing or
selecting a specific accompanying state X, are due to decays of the kind B→ J/ψK
(with K possibly replaced by another relatively light J = 0 state), just as in the
“exclusive” measurement, which explicitly selects these decays through additional
requirements on the X = K candidates. In reality, non-prompt events result from
a spectrum of different B decay channels. In this section we want to address this
problem and provide a more realistic description of the phenomenon.

J/ψ, ψ(2S)
cW

c̄b̄

s̄,
u, d, su, d, s K , K  , η '

B   B   B+        0        0
u       d       s

+       0        ( )

+

d̄ π  , π+       0

Fig. 6.20 Feynman diagram for the decay B→ J/ψ X, with X = K, π or η.

In an exclusive two-body decay as, for example, B → J/ψ X, with X = K, π or
η, it is reasonable to assume that the formation of the J/ψ bound state often happens
through the colour-singlet mechanism, where the decay, represented in Fig 6.20,
produces a cc state that is already a colour neutral 3S1 state [52, 53]. In fact, the
production of an intermediate coloured state (with possibly different quantum num-
bers) would imply its subsequent emission of soft gluons, necessary for the colour
neutralization into a physical hadron; these gluons should then recombine with the
spectator quark of the B meson, to form exactly the “right” accompanying particle
X, for example a kaon: the probability that this happens should be relatively small.
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However, intermediate octet cc states are also expected to contribute to the “cock-
tail” of decay configurations composing the sample of non-prompt events. These
cases generally lead to “multi-body” final states, where X is a system of two or more
particles (for example, two or more pions). Complex final states are also produced
by multiple decay chains, of the kind B → χc1/χc2/ψ(2S) X, with, for example,
χc1/χc2 → J/ψ γ and ψ(2S)→ J/ψ π+π−.

From the point of view of the expected J/ψ polarization, as it can be measured in
an inclusive analysis, the variety of the processes described above can be reduced
to two categories: the one of the two-body B decays where X is a single kaon (or
another relatively light particle) and J(X) = 0 (or, more generally, the J/ψ has a
natural longitudinal polarization), and the one represented by the ensemble of all
the remaining B → J/ψ decays, mostly including multi-body configurations and
complex cascade sequences. We will denote these two cases with the expressions
“two-body” and “multi-body”.

The relevant differences between the two kinds of processes can be summarised
as follows. 1) While the J/ψ has a maximally longitudinal natural polarization
(Jz′ = 0 in the cHX frame) when it comes from the two-body decays (given how we
defined them), the multi-body case represents a mixture of several decays, favour-
ing, in general, all kinds of J/ψ Jz′ projections: a significantly reduced polarization
magnitude is, hence, expected. 2) For the two-body case, the hypothesis that X is,
for instance, a kaon or a pion determines the value of the J/ψ momentum p′ in the
B rest frame, which is one of the parameters determining how the natural polariza-
tion is “smeared” when observed, for example, in the J/ψ HX frame. In Eq. 6.12,
the second, approximate relation shows that any relatively light X leads to the same
p′ ' 1.7 GeV. Instead, in multi-body decays the invariant mass mX of the accompa-
nying system assumes a distribution of values, possibly significantly larger than the
mass of a kaon, and p′ is smaller. Also this effect, increasing the uniformity of the
smearing (as seen in Section 6.3 when the mother-daughter mass difference, hence
p′, are smaller), should lead to a smaller observable polarization.

To quantify the importance of these different properties, we will examine results
reported by the CLEO [54] and BaBar [55] experiments, which measured the mo-
mentum distribution of J/ψ mesons, daughters of B+ and B0 mesons produced “al-
most at rest” in the decay of the Υ(4S) resonance. To interpret these measurements,
shown in Fig. 6.21, we will first have a look at some kinematic relations. The B
mesons have a momentum of only 0.33 GeV in the Υ(4S) rest frame, and, therefore,
the J/ψ momentum (p) distribution measured in the Υ(4S) “laboratory” is a slightly
smeared version of the one observed in the B rest frame (p′). The mathematical
relations between p′ and p, and between mX and p, are shown in the top and mid-
dle panels of Fig. 6.22, where the blue dashed lines represent the hypothetical limit
case where the B meson is produced exactly at rest, that is, p = p′ (and the rela-
tion between mX and p is simply the one described by Eq. 6.12), while the coloured
bands describe the effect of the momentum smearing produced by the small boost of
the B meson in the laboratory. The red lines indicate the case of the specific decay
B → J/ψK. It can be seen that, for masses comparable to or lighter than the one
of a kaon, the p range does not change significantly: we can assume, therefore, that
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Fig. 6.21 Laboratory momentum distribution of J/ψmesons emitted in decays of B mesons that are
themselves produced by Υ(4S) decays. Besides the inclusive spectrum, the individual contributions
(measured by BaBar) from the feed-down decays B→ [χc1|χc2|ψ(2S)] X are also shown.

the ensemble of two-body decays, with mX . 0.5 GeV, is responsible for the events
with p & 1.5 GeV. The measured p distribution (Fig. 6.21) shows that a large part
of the spectrum covers a domain complementary to this, clearly indicating the im-
portant role of multi-body decays. For example, the decay chains B → χc1 → J/ψ,
B→ χc2 → J/ψ, and B→ ψ(2S)→ J/ψ, individually determined by BaBar and also
shown in Fig. 6.21, contribute mostly to the region p < 1.5 GeV.

In these experimental conditions, very different from those of LHC measure-
ments, it also happens that the polarization measured in the HX frame, that is, taking
the direction of p as polarization axis, will tend to be very close to the one measured
in the cHX frame, with polarization axis along p′, given the similarity of the two
momenta. Figure 6.22-bottom shows how λϑ is smeared in the HX frame with re-
spect to the hypothetical natural polarization cases λcHX

ϑ ≡ λ0 = −1, −0.6, and −0.2.
The first case corresponds to our hypothesis for the two-body processes: the full
longitudinal polarization for p > 1.5 GeV remains practically unsmeared. BaBar
reported the values λHX

ϑ = −0.196 ± 0.044 for p < 1.1 GeV and −0.592 ± 0.032 for
p > 1.1 GeV. The former value, in the low-p region, refers to multi-body configura-
tions, with no contamination from two-body ones. In Fig. 6.22-bottom we see that
the polarization smearing for the case closest to this, λcHX

ϑ = −0.2, leads to a differ-
ence λHX

ϑ −λ
cHX
ϑ of order 0.01 on average, considering that the bulk of the events has

0.4 < p < 1.1 GeV. We will, therefore, assume the range from −0.25 to −0.15 for
the average natural polarization of the J/ψ mesons produced in multi-body decays.

As a cross check, we can try to interpret the result in the high-p region, which
reflects a mixture of two-body and multi-body events. Assuming, for simplicity, that
all the events in the range p > 1.5 GeV are due to two-body processes, we derive
that these processes contribute (40 ± 1)% of the events in the p > 1.1 GeV region.
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214 6 Polarization in cascade decays

Assuming λcHX
ϑ = λHX

ϑ = −0.592 ± 0.032 for the average natural polarization of the
mixture in the broader range (where the smearing is completely negligible, as seen
in Fig. 6.22-bottom) and taking λcHX

ϑ between −0.25 and −0.15 for the subsample
of multi-body decays, the sum rule of Eq. 1.17, inverted, leads to a value between
−1.1 and −0.9 for the two-body polarization, which is in perfect agreement with our
assumption that this category of processes leads to fully longitudinal J/ψ mesons.

We will now convert this information, derived from measurements made at the
Υ(4S) resonance, into realistic expectations for the non-prompt J/ψ polarization
as measurable in a high-energy collider experiment. Here the B meson, gener-
ally produced with a large laboratory momentum, emits the J/ψ almost collinearly
(Eq. 6.13), so that the HX axis adopted for the observation of the dilepton decay
loses its correlation to the natural (cHX) one, and a significantly smeared polariza-
tion is observed, as we saw in Section 6.3.

From the spectra measured by BaBar and CLEO, shown in Fig. 6.21, and assum-
ing that the transition from multi-body to two-body events happens at p ' 1.5 GeV,
we see that the fraction of two-body events is f2−body = (22 ± 1)%. However, the
relative contribution of two- and multi-body processes in (high-energy) hadron col-
lisions is probably not the same as the one observed in the conditions of BaBar
and CLEO, given that a different admixture of parent hadron species containing b
quarks (additionally including Bs mesons and b baryons) contributes to the non-
prompt J/ψ sample. Moreover, it should be kept in mind that, at least hypothetically,
certain event selection criteria may alter the proportions between the two kinds of
processes in the collected and/or analysed sample, given that, in general, a multi-
body event should lead to a higher number of particles traversing the detector. It
would be very interesting, in fact, to probe experimentally if the polarization of
the non-prompt J/ψ mesons tends to become more significantly longitudinal when
stricter selection criteria are applied to retain an event sample that corresponds more
closely to the two-body decay limit. For these reasons, besides the realistic mixture
using f2−body we will also report the predictions for the two-body and multi-body in-
dividual cases. The measurement itself should be able to consider the two physical
options and determine their relative contributions.

The two-body expectation is obtained, as was done in Section 6.3, assuming
λcHX
ϑ = −1 and mX = mK = 0.5 GeV. For the multi-body case, from the p dis-

tribution of Fig. 6.21 and the mX-to-p correlation shown in Fig. 6.22-middle, we
deduce that the 1–2 GeV range of average mX values is a good representation of
the spectrum of physical possibilities. Taking into account that a higher mX value
leads to a more strongly smeared polarization in the experimental frames, we can
define reasonable upper and lower margins for the observable polarization magni-
tude: they correspond, respectively, to the pairs of parameter values λcHX

ϑ = −0.15,
〈mX〉 = 2 GeV and λcHX

ϑ = −0.25, 〈mX〉 = 1 GeV. The only existing measure-
ment in the case of hadron collisions was performed by CDF [56], which reported
λϑ in the HX frame as a function of pT. As shown in Fig. 6.23, where the predic-
tions reflect the specific conditions of the experiment (|y| < 0.6), the precision of
the data is not sufficient to indicate if one or the other mechanism is predominant.
The intermediate prediction assumes the same mixture of processes as in the Υ(4S)
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Fig. 6.23 The non-prompt J/ψ polarization (λϑ in the HX frame) measured by CDF in pp collisions
at
√

s = 1.8 TeV, as a function of pT, in the rapidity range |y| < 0.6, compared to predictions
assuming that the J/ψ is produced in “two-body” (red curve) or “multi-body” (blue band) B decays,
the width of the band reflecting the variation of the relevant parameters, λcHX

ϑ and 〈mX〉. The pink
band represents a mixture of the two kinds of processes, as motivated in the text. The B meson pT
distribution measured by CDF (Fig. 6.7) was used in the simulation. For improved visibility, curves
including the small effects of the selection criteria applied to the decay leptons are not shown.

measurements. The multi-body prediction is compatible with the (octet-dominated)
NRQCD calculations of non-prompt J/ψ polarization reported in Refs. [57, 58].

Figure 6.24 shows the predictions of all parameters, in the HX and CS frames,
calculated for conditions typical of a LHC experiment, already considered in Sec-
tion 6.3; in fact, the curves for the two-body case were already shown in Fig. 6.8 (we
do not report again the lepton selection effects, which are invisible in the multi-body
case). The J/ψ mesons produced in multi-body decays look practically unpolarized,
This also means that this prediction is, in substance, insensitive to the assumptions
made to obtain it: further adjustments in the input parameters λcHX

ϑ and 〈mX〉 are
unlikely to change the conclusion that multi-body decays lead to a barely detectable
degree of polarization. The almost pT-independent difference with respect to the
polarization of the two-body case, ∆λHX

ϑ ' 0.2, is not negligible, so that some LHC
experiments should be able to perform significant measurements of the relative im-
portance of the two kinds of processes.

6.6 Decays from J > 0 particles and the “cloning” effect

Among the physical examples considered in Section 6.3, the decay χc0 → J/ψ γ,
followed by J/ψ → `+`−, illustrates in a paradigmatic way, by virtue of the small
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mass difference between the χc0 and J/ψ mesons, the randomization effect leading
to a zero-polarization contribution in the inclusive dilepton observation. In this sec-
tion we address its J = 1 and 2 counterparts, the χc1 and χc2 → J/ψ γ decays, as
prototype cases to illustrate how the previous considerations can be extended to a
wider category of cascade processes, by releasing the crucial J = 0 condition. Just
as seen in the J = 0 case, the following discussion also applies to the bottomonium
counterparts, χb1,2 → Υ γ.

We should reasonably expect to see, in these cases, a generally polarized vector
quarkonium, reflecting the Jz state of the χ. In fact, the first step is to generalize
Eq. 6.7, by introducing the sum over the amplitudes aM defining the angular mo-
mentum state of the mother particle O with respect to the system of axes (x, y, z) of
Fig. 6.3, with M representing the eigenvalues:

|O 〉 =

+J∑
M=−J

aM | J, M 〉z . (6.25)

Figure 6.4 provides a visual aid also for the description of this case. The general
amplitude for the description of the two-step process is

A
[

O→ V + XK′ , V → (`+`−)L′′′
]
∝

+J∑
M=−J

aM

∑
L′′=0,±1

∑
K′′=0,±1

z′′〈V X; 1, L′′, 1,K′′ | B|O; J,M〉z′′ (6.26)

× D1∗
K′′ K′ (Θ,Φ) D1∗

L′′ L′′′ (ϑ, ϕ) ,

where B represents the underlying dynamics of the decay. In the radiative transition
we are studying, we just have to take into account that the Jz′′ projections of V (L′′)
and X (K′′) must sum to M, because the z′′ and z axes represent the same direction
in the definition of the CC frame:

A
[

O→ V + XK′ , V → (`+`−)L′′′
]
∝

+J∑
M=−J

aM

∑
L′′=0,±1

∑
K′′=0,±1

〈1, L′′, 1,K′′ | J,M 〉 δL′′+K′′,M (6.27)

× D1∗
K′′ K′ (Θ,Φ) D1∗

L′′ L′′′ (ϑ, ϕ) .

Moreover, the squared amplitude must be summed over K′ = ±1 (Jz′ projection of
X = photon over the cHX z′ axis of Fig. 6.1; corresponding to setting λ0 = +1 in the
formulas for the J = 0 case) and L′′′ = ±1 (dilepton decay of V).

In reality, we are making an approximation in the derivation of the anisotropies
of the χc and subsequent J/ψ decays. In these transitions the photon emission is
sensitive to the internal electromagnetic charge structure of the quarkonium state. As
a result, the photon can effectively have an orbital angular momentum component
and, therefore, a total angular momentum of up to Jγ = 2 (in χc1 → J/ψ γ) and
up to Jγ = 3 (in χc2 → J/ψ γ). To account for the contributions of these higher
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Jγ values, the total amplitude should be calculated summing also over Jγ, using
the corresponding photon D matrix and the Clebsch–Gordan coefficients for J →
(J = 1) + Jγ, and the partial amplitudes would now have a dependence on J and
Jγ, contained in the matrix elements of B. However, these effects can be neglected,
since they only cause a small change of the values of the anisotropy parameters [59]
and do not have a significant influence in the illustrative considerations that follow.

The resulting expression of the four-dimensional angular distribution for the most
generic χc1 angular momentum state of Eq. 6.25, depending on the complex ampli-
tudes aM , can be found in Appendix B. The corresponding χc2 distribution is not
included in that appendix because its much more complex expression extends over
almost two pages, without offering particularly original insights into the properties
of the observable polarization. Here we report the much simpler distributions pro-
duced by the χc1 and χc2 mesons when they are pure eigenstates of Jz, i.e., |J, M〉z:

WCC(cosΘ,Φ, cosϑ, ϕ) ∝ (6.28)

(1 + cos2 Θ)(1 + cos2 ϑ) − sin2 Θ sin2 ϑ cos2(ϕ −Φ) for χc1 , M = 0 ,

1 − cos2 Θ cos2 ϑ − 1
4 sin2Θ sin2ϑ cos(ϕ −Φ) for χc1 , M = ±1 ,

9 (1 + cos2 Θ cos2 ϑ) − 7 (cos2 Θ + cos2 ϑ) +

sin2 Θ sin2 ϑ cos2(ϕ −Φ) − 2 sin2Θ sin2ϑ cos(ϕ −Φ) for χc2 , M = 0 ,

1 − cos2 Θ cos2 ϑ + 1
4 sin2Θ sin2ϑ cos(ϕ −Φ) for χc2 , M = ±1 ,

(1 + cos2 Θ)(1 + cos2 ϑ) for χc2 , M = ±2 .

As already noticed for the J = 0 case, the distribution is in all cases invariant by
exchange between (cosΘ,Φ) and (cosϑ, ϕ). The origin of the symmetry is in fact
visible in the amplitude of Eq. 6.28, where L′′ and K′′ are completely equivalent
as running variables of two identical sums (with the Clebsch–Gordan coefficient re-
flecting the commutative property of the sum) and, therefore, exchanging the upper
and lower case angles is equivalent to exchanging L′′′ with K′. As long as the square
amplitude is summed over the same set of values for L′′′ and K′ (±1, in this case),
the exchange has no effect on the final result.

Figure 6.25 gives an intuitive illustration of the symmetry. The adopted frame
(Fig. 6.3) has one set of axes providing the reference directions for both angular
distributions, the one of the photon (and J/ψ) emission in the χc rest frame and the
one of the dilepton emission in the J/ψ rest frame. In this situation, it is evident
from the figure that exchanging the “names” of γ and `+`− (i.e., the blue and green
colours), two equivalent objects from the point of view of angular momentum, only
modifies the individual event configuration, but not the resulting event distribution.

Equation 6.28 can be translated into a form that uses the coefficients of the
dilepton distribution (similarly to what was done in Eq. 6.9), as measured in the
CC frame (coinciding, in the case considered, with the corresponding laboratory-
referred frame, HX or CS) and as functions ofΘ andΦ. The λϑ, λϕ, λ⊥ϕ , λϑϕ, and λ⊥ϑϕ
parameters are reported in Table 6.1, including the χc0 case (Eq. 6.9 with λ0 = +1).
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Fig. 6.25 Illustration of the origin of the (Θ,Φ) →← (ϑ, ϕ) exchange symmetry for the angular
distribution of the cascade decay χcJ → J/ψ γ, followed by J/ψ→ `+`−.

Table 6.1 The (Θ,Φ)-dependent J/ψ decay anisotropy parameters for the cascade process χcJ →

J/ψ γ, J/ψ→ `+`−, when the χcJ is an eigenstate of Jz with eigenvalue M.

χc0 χc1 χc2

(M = 0) M = 0 M = ±1 M = 0 M = ±1 M = ±2

λϑ
−1 + 3 cos2 Θ

3 − cos2 Θ
+1 − cos2 Θ

−7 + 9 cos2 Θ

9 − 7 cos2 Θ
− cos2 Θ +1

λϕ
sin2 Θ cos 2Φ

3 − cos2 Θ

− sin2 Θ cos 2Φ
1 + cos2 Θ

0
sin2 Θ cos 2Φ
9 − 7 cos2 Θ

0 0

λ⊥ϕ
sin2 Θ sinΦ
3 − cos2 Θ

− sin2 Θ sin 2Φ
1 + cos2 Θ

0
sin2 Θ sin 2Φ
9 − 7 cos2 Θ

0 0

λϑϕ
sin 2Θ cosΦ
3 − cos2 Θ

0 −
sin 2Θ cosΦ

4
−

2 sin 2Θ cosΦ
9 − 7 cos2 Θ

sin 2Θ cosΦ
4

0

λ⊥ϑϕ
sin 2Θ sinΦ
3 − cos2 Θ

0 −
sin 2Θ sinΦ

4
−

2 sin 2Θ sinΦ
9 − 7 cos2 Θ

sin 2Θ sinΦ
4

0

If the distribution is integrated over cosΘ andΦ uniformly, that is, in the absence
of modulations created by experimental selections as those discussed in Section 6.3,
it can be seen that all azimuthal terms vanish (not a surprising result, as we are in
the special case when the χcJ is in a pure Jz state) and λϑ in the CC frame assumes
(being 〈cosΘ〉 = 1/3) nonzero values, except for the χc0 case. In particular, we see
that the J/ψ mesons produced in decays of χc1 mesons with M = 0 or of χc2 mesons
with M = ±2 are fully transverse (λϑ = +1), those from decays of χc1 or χc2 mesons
with M = ±1 are half transverse and half longitudinal (λϑ = −1/3), and those from
decays of χc2 mesons with M = 0 are 2/3 longitudinal and 1/3 transverse (λϑ =

−3/5). As anticipated, the “smearing” effect leading to the unpolarized observation
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only happens when the mother particle has J = 0, while the decay from a polarized
J > 0 particle produces, in general, a polarized daughter reflecting the mother’s
polarization.

There is no obvious pattern of correspondence between the χcJ and J/ψ polariza-
tions. However, a common denominator can be recognized in how the shape of the
distribution is “propagated” from mother to daughter. In fact, the previously men-
tioned (Θ,Φ) →← (ϑ, ϕ) exchange symmetry implies that the integrated distributions
W(cosΘ,Φ) and W(cosϑ, ϕ) are functionally identical: the two-body decay distri-
bution χcJ → J/ψ γ can be written exactly as in Eq. 1.16, replacing the lower-case
angles with the upper-case ones and using the coefficients of Table 6.1 with the op-
posite replacement of symbols. Integrating uniformly over cosϑ and ϕ, we obtain
that both the χc1 with M = 0 and the χc2 with M = ±2 decay into J/ψ γ with a cosΘ
distribution of polar parameter λΘ = +1, the χc1 or χc2 with M = ±1 produce a
distribution with λΘ = −1/3 and the χc2 with M = 0 has λΘ = −3/5. Comparing
these numbers with those reported a few lines above, we see that the anisotropy pa-
rameters are the same for the decays of mother and daughter, even if the polarization
states are very different. Also the χc0 decay fits this interpretation: both the decay
χc0 → J/ψ γ and the following J/ψ → `+`− are isotropic. What unifies all these
cases is, therefore, that the shape of the two-body distribution is “cloned” from the
mother’s to the daughter’s decay, as illustrated in Fig. 6.26.

Just as seen for the “smearing” effect in Section 6.3, deviations from the “cloning”
condition are expected in real experiments. For χc1 and χc2, as for χc0, the J/ψ CC
frame is well approximated by, for example, the HX one (when the HX frame is
chosen for the χc), at least in LHC experiments, where the laboratory momenta
of the involved particles are always much larger than their masses. Therefore, the
four-dimensional angular distributions reported above can effectively be measured
defining cosϑ and ϕ as the angular variables in the experimental J/ψHX frame. Con-
sequently, no large “anti-smearing” (or, rather, “anti-cloning”) effects as those seen
in Higgs decays (especially close to the limits pT ' p′ and pT � M, not relevant in
here) should be observed.

What can still moderately perturb the cloning effect in the χc decays is the shap-
ing of the cosΘ distribution induced by experimental selections in the exclusive
observations where the photon is reconstructed. However, as seen in Table 6.1, sev-
eral of the anisotropy parameters for J/ψ from χc1 and χc2 are cosΘ-independent (λϑ
for M = ±1 as well as λϕ and/or λϑϕ in several cases), so that deviations from an ex-
act cloning should be moderate. In particular, no visible deviations exist in inclusive
observations, as already seen for the χc0 case.

Figures 6.27 and 6.28 show, respectively for the χc1 and χc2, the resulting J/ψ
anisotropy parameters for exclusive measurements in the HX frame (blue curves) or
in the CS frame (red curves), when the χc mesons are produced with Jz projections
M = 0,±1 and ±2 (panels from left to right) along the HX axis. The solid, dashed
and dotted curves represent the effect of applying threshold values of 0.4, 1 and
2 GeV, respectively, on the pT of the detected photon. The differences with respect to
the cloned parameter values, represented by the green (HX frame) and magenta (CS
frame) curves, corresponding to the inclusive measurements, are relatively small.
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Fig. 6.26 Illustration of the “cloning” effect: the χcJ → J/ψ γ decay and the subsequent J/ψ→ `+`−

decay have identical distributions of the products’ directions.

Nevertheless, they are not zero, meaning that the polarization parameters determined
in an exclusive measurement of J/ψ mesons produced in χc decays are not always
identical to those describing the contribution of χc feed-down to inclusive prompt
J/ψ production.

In particular, we even see values of λ̃ larger than +1 towards low pT in the χc1
case for M = 0. This is a spurious effect of the requirement that the photon pT must
be larger than 0.4 GeV, which, besides removing configurations with cosΘ close
to +1 (for any pT value), as mentioned in Section 6.3, also sculpts the azimuthal
distribution of the J/ψ emission direction when pT is small, rejecting events with
Φ around ±180◦, for which the photon is emitted at Φ → 0◦, that is, towards the
beam direction. This leads to negative values of the average 〈cos 2Φ〉 and, there-
fore, to a positive λϕ, according to the corresponding formula in Table 6.1. Since λϑ
remains unchanged, being independent of the J/ψ emission angles, this experimen-
tally induced azimuthal component results in an increase of λ̃ beyond +1. This is
not an unphysical effect (in fact, λ̃ has no upper limit, unlike λϑ); it is created by the
selection of a peculiar (but physical) subset of events.
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Fig. 6.27 The frame-dependent anisotropy parameters λϑ, λϕ and λϑϕ (top to bottom rows), in the
HX (blue) and CS (red) frames, as well as the frame-invariant parameter λ̃ (top row), of the dilepton
decay distribution of J/ψ mesons observed in fully reconstructed exclusive radiative decays of χc1
mesons produced with Jz projections M = 0 (left) and M = ±1 (right) along the HX axis. The
solid, dashed and dotted curves correspond to increasing cuts on the photon pT. The corresponding
curves for inclusive measurements, where the cloning effect occurs almost exactly, are also shown,
in green (HX) and magenta (CS).
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Fig. 6.28 The frame-dependent anisotropy parameters λϑ, λϕ and λϑϕ (top to bottom rows), in the
HX (blue) and CS (red) frames, as well as the frame-invariant parameter λ̃ (top row), of the dilepton
decay distribution of J/ψ mesons observed in fully reconstructed exclusive radiative decays of χc2
mesons produced with Jz projections M = 0 (left), M = ±1 (centre), and M = ±2 (right) along the
HX axis. The solid, dashed and dotted curves correspond to increasing cuts on the photon pT. The
corresponding curves for inclusive measurements, where the cloning effect occurs almost exactly,
are also shown, in green (HX) and magenta (CS).
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The difference between the results of inclusive and exclusive observations has to
be taken into account when sufficiently precise measurements of the polarization of
J/ψ mesons produced in χc decays are used in a subtraction procedure to extract the
polarization of the directly produced J/ψ, as was done to obtain the band in Fig. 6.18.

Similarly, accurate comparisons of exclusive measurements with theoretical pre-
dictions must account for the impact of the experimental selections on the photon
(and leptons), either by applying the same selection criteria in the theoretical calcu-
lations or by performing a full-dimensional acceptance correction of the experimen-
tal data.

c̄
c’

c

J/ψ

γ

Z c’’

c

J/ψ

γ

Z
c̄

c̄’’

c’

γ*

Fig. 6.29 Diagrams describing the decay Z → J/ψ γ. The same processes, replacing the c quarks
with b quarks, also describe the analogous decay Z→ Υ γ.

As in the J = 0 case, a more variegated scenario is expected when the mother
particle has a much larger mass. As a prototype example of this case we consider
the decay Z → J/ψ γ, which is formally analogous to the radiative decay of the
χc1 meson. In fact, as can be seen in Fig. 6.29, in the diagrams describing the pro-
cesses [63–65] the Z boson transforms into an initial cc pair; one of the quarks then
radiates a photon and the pair turns into the final J/ψ. The diagram on the right side,
representing a higher-order process, adds a further step, where the quarks annihi-
late into a virtual photon, which transforms into a J/ψ, but the momentum (P) and
angular momentum (J) of the J/ψ are the same as those of the pair that has just
produced the photon. In both processes we hence have an initial cc state having the
same P and J as the Z and a post-radiation one having the same P and J as the J/ψ:
from the point of view of energy and angular-momentum conservation among the
involved particles, the process is identical to an electromagnetic transition between
“quarkonium” states, cc → c′cγ. The four-dimensional angular distribution in the
CC frame has, therefore, the same expression for the Z and χc1 decays, for all po-
larization cases. Figure 6.30 shows the pT distribution used for the generation of the
simulated Z events.

The Z polarization is well measured, as seen in Sections 4.3 and 5.2, and can
in principle be used to completely determine W(cosΘ,Φ, cosϑ, ϕ) and, therefore,
obtain one definite prediction for the polarization of the J/ψ mesons produced in
Z decays. The necessary formulas, depending on a completely generic polarization
state of the mother particle, are reported in Appendix B, for this and analogous
decays where the J/ψ is replaced by another vector particle (φ, ρ) decaying into
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Fig. 6.30 The Z boson fiducial normalized pT-differential cross section, 1/σfiddσfid/dpT (right
y-axis), measured by ATLAS [60] (red bullets) and CMS [61] (blue bullets), in the phase space
domain defined by the single muon cuts p µ

T > 20 GeV and |η µ| < 2.4 (ATLAS) or 2.1 (CMS). The
corresponding absolute fiducial cross sections, in pb/GeV (left y-axis), were obtained using the σfid

value reported (for |y Z| < 2) by CMS [62]. The curve represents the absolute acceptance-corrected
pT-differential cross section that we used in the generation of simulated events. It provides a faith-
ful interpolation of four sets of data points (slightly shifted horizontally for visibility reasons),
acceptance-corrected assuming four different Z polarization scenarios. While the procedure usu-
ally depends on the assumed polarization, the results obtained in the four scenarios are almost
identical, the residual differences being negligible for our purposes.

either `+`− (or π0 γ) or π+π−/K+K−, and/or where W is the decaying boson, for
example in W± → ρ± γ, with ρ± → π±π0 (or→ π± γ).

Here, for simplicity, and for immediateness of comparison with the χc1 case, we
still consider the two distinct hypotheses of pure polarization states, M = 0 and ±1,
both in the HX frame. The anisotropy parameters expected as a function of the J/ψ
pT for exclusive measurements in the HX and CS frames are shown in Fig. 6.31. In
this case, with the experimental frame deviating substantially from the CC frame,
given the large p′ value (p′ ' 46 GeV), we see more complex patterns: the cloning
phenomenon is visibly disrupted. However, the different λϑ, λϕ and λϑϕ values and
pT dependences still univocally characterize the M = 0 and ±1 cases. The analogous
decay Z→ Υ γ leads to very similar results, given the only slightly smaller p′ value.
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Fig. 6.31 The frame-dependent anisotropy parameters λϑ, λϕ and λϑϕ (top to bottom rows), in
the HX (blue) and CS (red) frames, as well as the frame-invariant parameter λ̃ (top row), of the
dilepton decay distribution of J/ψ mesons observed in the decays of Z bosons produced with Jz
projections M = 0 (left) and M = ±1 (right) along the HX axis. The results corresponding to an
exact cloning effect are also shown, in green (HX) and magenta (CS). The solid, dashed and dotted
curves correspond to increasing cuts on the pT of the accompanying decay photon, also detected
by the experiment.
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6.7 The importance of the reference frame

In our discussion of the cascade decays we have adopted, as a reference for the
dilepton decay of V , the CC frame, represented in Fig. 6.3, instead of the one more
usually found in the literature, and perhaps a priori more intuitive, which is the
cHX frame, defined in Fig. 6.1. This choice has allowed us to illustrate in an almost
“visual” way, through the concepts of smearing and cloning, how the polarization
properties are transferred from mother to daughter particle. The discussion would
remain somehow incomplete without a brief account of what happens when, instead,
we choose the cHX frame.

To address this point, we will determine the polarization of the J/ψ produced
in the decays χcJ → J/ψ γ for J = 0, 1, 2, using the cHX frame. For simplicity,
we limit the illustration to the polar anisotropy. This allows us to avoid dealing with
rotations andD-matrices and follow a simple shortcut, only considering the possible
combinations of angular momentum projections Jz′ of J/ψ (L′) and γ (K′) along their
common emission direction in the χc rest frame, represented by the z′ axis, that is,
the cHX axis, as illustrated in Fig. 6.32.

g

z'

J

J/ψ

| g ñ
= | 1 , K'

ñ
| J/ψ

ñ = | 1 , L' ñ

Fig. 6.32 The decay χcJ → J/ψ γ seen in the χcJ rest frame, where J/ψ and γ have angular momen-
tum projections L′ and K′ along their common direction (z′ axis).

The relative probabilities of these combinations are expressed by the correspond-
ing Clebsch–Gordan coefficients, squared. The numbers are listed in Table 6.2 for
the generic decay of a J = 0, 1 or 2 particle into two J = 1 particles.

The configurations where K′ = 0 correspond to the forbidden case of a longitu-
dinally polarized photon and must be excluded for the present examples. In the case
of the decay χc0 → J/ψ γ, we find, as expected, that in the only two remaining con-
figurations the J/ψ has L′ = +1 and −1: it is, like the photon, transversely polarized
along z′, so that λϑ = +1: this reproduces the result amply discussed in the previous
sections (Eq. 6.2).

We consider now the χc1 → J/ψ γ case. Taking J = 1 and excluding the forbidden
configurations where K′ = 0, besides L′ + K′ = ±2, we find that in the four allowed
ones the J/ψ has 50% probability of being transverse (L′ = +1 or −1) and 50% of
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Table 6.2 The squared Clebsch–Gordan coefficients weighing the angular momentum configura-
tions of the decay | J, L′ + K′〉 → | 1, L′〉 + | 1, K′〉, with J = 0, 1, and 2, along the z′ axis.

L′ K′ L′ + K′
weight = C2

J = 0 J = 1 J = 2

+1 +1 +2 – – 1

+1 0 +1 – 1/2 1/2

+1 −1 0 1/3 1/2 1/6

0 +1 +1 – 1/2 1/2

0 0 0 1/3 0 2/3

0 −1 −1 – 1/2 1/2

−1 +1 0 1/3 1/2 1/6

−1 0 −1 – 1/2 1/2

−1 −1 −2 – – 1

being longitudinal (L′ = 0): therefore, its dilepton distribution along z′ is

w(cosϑ) ∝
1
2

1 + cos2 ϑ

4
+

1
2

1 − cos2 ϑ

2
∝ 1 −

1
3

cos2 ϑ , (6.29)

that is, λϑ = −1/3. This result is independent of the polarization state of the χc1. For
the χc2 decay, by summing the relevant coefficients in the table we find that the J/ψ
is 70% transverse and 30% longitudinal with respect to the z′ axis,

w(cosϑ) ∝
7
10

1 + cos2 ϑ

4
+

3
10

1 − cos2 ϑ

2
∝ 1 +

1
13

cos2 ϑ , (6.30)

that is, λϑ = +1/13, irrespectively of the χc2 polarization state. In summary, by
adopting the cHX axis for the observation of the J/ψ decay distribution, the measure-
ment remains completely blind to the χc polarization. This is a result of the implicit
integration we made over the emission angles Θ,Φ of the J/ψ itself in the χc rest
frame. In fact, the full information on the χc polarization state remains available in
the four-dimensional distribution W(cosΘ,Φ, cosϑ, ϕ) of the cascade χcJ → J/ψ γ
with J/ψ → `+`−, which can of course be determined, with a method analogous to
the one used in Section 6.6, adopting the cHX axis for the J/ψ.

Anyhow, in the light of these examples, the results seen in Section 6.6 imply a
clear advantage in the use of the CC frame: with this choice the dilepton anisotropy
alone, even after integration over cosΘ and Φ, is fully sensitive to the χc polariza-
tion, because it “clones” the polarization-dependent anisotropy of the J/ψ γ emission
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in the χc rest frame. The difference between the results obtained with the two frame
choices is illustrated in Fig. 6.33.

This crucial advantage of the CC frame remains present also when the cloning
effect is disrupted by the deviation of the HX from the CC frame at typical pT
values and by the effects of exclusive selection cuts, as in the measurement of the
J/ψ polarization in the decay Z → J/ψ γ, discussed in the previous section. In fact,
the calculation of the J/ψ dilepton distribution in the cHX frame leads to the same
polarization-insensitive result as in the χc1 case, λϑ = −1/3. Instead, even if the
cloning is now visually unrecognizable (Fig. 6.31), the λϑ, λϕ and λϑϕ patterns in
the HX (or CS) frame remain very different in the M = 0 and M = ±1 cases,
allowing for a clear discrimination between Z polarization cases.

The title of this section alludes to the previous discussion of Chapter 2 about
the dependence of a polarization measurement on the reference frame and how it
is convenient to test more than one frame in the search for possibly simpler (and,
therefore, more physically revealing) “patterns”. However, it is important to remark
that, in that case, we were considering polarization frames (HX, CS, GJ, PX) that
are mutually related by simple spatial rotations around the y axis and, for this rea-
son, the measurement in one frame could always be translated into a corresponding
result in any other frame, provided that all anisotropy parameters are measured and
effects caused by integrations over kinematic intervals (e.g. pT and/or rapidity bins)
can be neglected. In the present case, the choice between cHX and CC frames for
the measurement of the J/ψ polarization is irreversible, at least if only the dilep-
ton distribution is measured (and, of course, if the analysis is not repeated with the
other choice): it is not possible to transform mathematically the measurement made
in the cHX frame to the CC frame, as can be understood by the simple fact that only
the destination frame gives an anisotropy that depends on the χc polarization, while
this information is irrecoverably occulted in the frame of origin. In fact, the relation
between the cHX and CC frames at fixed pT and rapidity is not a rotation, but the
convolution of a continuous series of event-dependent rotations, where the shape of
the distribution changes and some of the original information it contained gets lost.

6.8 A counterexample for the cloning effect

We have presented the χc radiative decays as prototypes for the illustration of the
cloning mechanism, which can be seen at work when the measurement adopts, for
example, the HX frame, as an almost perfect replica of the CC frame: the dilepton
decay in the J/ψ rest frame will be practically identical to the distribution of the J/ψ
emission in the χc rest frame and, therefore, fully and univocally reflect the χc po-
larization in its HX frame (this is exactly true when higher order multiple radiations
are neglected, as previously mentioned and as discussed in detail in Ref. [59]).

When the mother-daughter mass difference is large, as in the otherwise analo-
gous Z → J/ψ γ decay, the cloning effect is no longer clearly recognizable as such
in the “usual” HX frame. However, the J/ψ dilepton distribution continues to be a
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Fig. 6.33 Illustration of how the observation of the angular distribution of the decay J/ψ → `+`−,
subsequent to χcJ → J/ψ γ, is substantially different in the cHX and CC frames. In the CC frame
the shape of the dilepton distribution is univocally correlated to the χcJ polarization state, making
its measurement possible even when the decay distribution of the χcJ itself is not observed. Instead,
in the CC frame the J/ψ polarization is blind to the χcJ polarization.
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definite indicator of the Z polarization. Above all, it is important to remind that the
cloning mechanism remains present in this decay and is, in principle, observable: it
is sufficient to adopt for the J/ψ the exact CC frame, that is, to calculate the polar-
ization direction in the Z rest frame and translate it with no change into the J/ψ rest
frame.

It is now natural to wonder about what happens in the decays where this kind of
cloning is absent: does in such cases the CC axis still provide its advantage in terms
of sensitivity to the mother’s polarizations? Fortunately, our χcJ → J/ψ γ “proto-
type” admits a very close counterpart, providing a particularly instructive answer.
We simply have to release the constraint that the radiated photon is transversely
polarized: we replace it with a virtual photon γ∗, which eventually produces a sec-
ond, non-resonant, lepton-antilepton pair. The corresponding physical cases are the
rarer decays χcJ → J/ψ γ∗, where both J/ψ and γ∗ further decay into `+`− pairs.
The exchange symmetry (Θ,Φ) →← (ϑ, ϕ) illustrated in Fig. 6.25 is broken by the
replacement of γ with γ∗, since this latter admits a Jz′ = 0 component along z′ and
ceases to be perfectly analogous to the J/ψ’s `+`− system as observed with respect
to the z′′′ axis: no cloning is expected in this case.

The amplitude of the process is unchanged with respect to the one of Eq. 6.28.
The difference in the observable angular distribution results from extending the sum
of the squared amplitudes to include the K′ = 0 term. The four-dimensional angular
distribution for pure χcJ polarizations, corresponding to Eq. 6.28, becomes

WCC(cosΘ,Φ, cosϑ, ϕ) ∝



1 + cos2 ϑ for χc1 , M = 0 ,

1 − 1
3 cos2 ϑ for χc1 , M = ±1 ,

1 − 3
5 cos2 ϑ for χc2 , M = 0 ,

1 − 1
3 cos2 ϑ for χc2 , M = ±1 ,

1 + cos2 ϑ for χc2 , M = ±2 .

(6.31)

These expressions are independent of the angles Θ and Φ, implying that the integra-
tion over ϑ (and ϕ) leads to a constant distribution: the J/ψ is emitted isotropically in
the χc polarization frame. This means that the measurement of the two-body decay
angular distribution of the χc is blind to its polarization state.

Additionally, we can recognize, with the method used in Section 6.7 (Fig. 6.32),
that also the dilepton decay in the J/ψ cHX frame is isotropic for J = 0, 1 and
2 (the same is true, incidentally, for the one in the γ∗ cHX rest frame): with no
restriction on K′, the summed Clebsch–Gordan weights (Table 6.2) become iden-
tical for the three configurations L′ = −1, 0 and +1, in all three J cases. No
trace of the χcJ polarization would be seen, therefore, in either integrated two-
dimensional distribution by adopting the cHX frame. Only the four-dimensional
distribution WcHX(cosΘ,Φ, cosϑ, ϕ) will contain such information, in terms corre-
lating the upper- and lower-case angles.

The CC frame continues, instead, to provide for the J/ψ decay the same distribu-
tion as in the χcJ → J/ψ γ case: the polar anisotropy parameters implied by Eq. 6.31,
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Fig. 6.34 Illustration of the (ϑ′, ϕ′) →← (ϑ, ϕ) exchange symmetry for the angular distribution of
the cascade decay χcJ → J/ψ γ∗, followed by J/ψ→ `+`− and γ∗ → `+`−.

λϑ = −3/5 (χc2 for M = 0), −1/3 (χc1 or χc2 for M = ±1), and +1 (χc1 for M = 0
or χc2 for M = ±2) are the same as those found in Section 6.6 for the decays with a
real photon.

Moreover, for understandable reasons of symmetry, that same polarization in-
formation is also carried by the additional dilepton distribution produced by the γ∗

decay, when observed with respect to the CC axis. In fact, another clone symme-
try can be discerned, as illustrated in Fig. 6.34, between the two dilepton systems,
which are completely equivalent and exchangeable (they only differ for their invari-
ant masses, which do not affect the determination of the angular distribution): the
four dimensional angular distribution W(cosϑ, ϕ, cosϑ′, ϕ′) is symmetric with re-
spect to a change of the J/ψ decay angles (ϑ and ϕ) by those of the virtual photon
(ϑ′ and ϕ′).

It is now immediate to determine the correlated distribution of the four angular
coordinates cosϑ, ϕ, cosϑ′, and ϕ′. In fact, we can reuse the passages of Section 6.6
that lead to the derivation of the distribution of χcJ → J/ψ γ, J/ψ→ `+`− (Eq. 6.28),
replacing the rotation of the γ eigenstate from the z′ to the z′′ (CC) axis, by angles Θ
and Φ, with the rotation of the second dilepton system, coming from the γ∗ decay,
from the z′′′′ axis (where lepton and antilepton are back-to-back) to the z′′ axis,
by angles ϑ′ and ϕ′. Along z′′′′ the γ∗ dilepton has allowed angular momentum
projections ±1, just like γ had along z′. Moreover, the involved Wigner matrices are
exactly the same.

The replacement, therefore, does not change the functional dependence of the
result on the angles: it only leads to the substitution of Θ,Φ with ϑ′, ϕ′. This means
that, with only a change of names of the angles, Eq. 6.28 represents the correlated
angular distribution of the two dilepton systems of the J/ψ and γ∗ decays, being
the angles measured in the respective CC rest frames of the two particles. In par-
ticular, by integrating this four-dimensional distribution W(cosϑ, ϕ, cosϑ′, ϕ′) over
either cosϑ′ and ϕ′, or cosϑ and ϕ, to derive, respectively, the J/ψ decay distribu-
tion w(cosϑ, ϕ) or the γ∗ one, w(cosϑ′, ϕ′), we obviously obtain the same result
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Fig. 6.35 Illustration of how the angular distribution of the decay χcJ → J/ψ γ∗, with J/ψ →
`+`− and γ∗ → `+`−, is observed in the cHX and CC frames. The χcJ decay is isotropic in all
cases and both frames. Concerning the dilepton distributions, all χcJ polarization cases lead to an
undistinguished, fully isotropic result in the cHX frame, while both J/ψ and γ∗ decay distributions
in the CC frame univocally reflect the χcJ polarization state, being two identical replicas of the
J/ψ→ `+`− distribution in the χcJ → J/ψ γ case (Fig. 6.26).

as when we integrate the distribution W(cosΘ,Φ, cosϑ, ϕ) of the χcJ → J/ψ γ case
over cosΘ and Φ.

Figure 6.35 gives a pictorial summary of how the measurements in the cHX and
CC frames differ for integrated two-dimensional distributions: in the cHX frame



234 6 Polarization in cascade decays

every distribution is isotropic, independently of the χc polarization; in the CC frame
both the distribution of the J/ψ decay and that of the γ∗ are exactly the same as in
the dilepton distribution in the χcJ → J/ψ γ case (Fig. 6.33), and both fully reflect
the χc polarization.

We have exploited the close parallelism between the two alternative χcJ decays,
χcJ → J/ψ γ and χcJ → J/ψ γ∗, to further illustrate the concept of cloning and the
roles of different frame definitions, taking advantage of existing and experimentally
observed decay channels. The latter decay channel may, however, not be a good
alternative for the measurement of the χc polarization. First, because the event sam-
ple would certainly be much smaller than the χcJ → J/ψ γ sample, given the lower
branching fraction. Second, because it remains necessary to carefully evaluate the
effects of the integration over cosϑ′ and ϕ′ in the presence of experimental selec-
tions.

As previously described in detail, the selection criteria applied to the photon lead
to sculpting effects on the (cosΘ,Φ) distribution in the χcJ → J/ψ γ case, thereby
creating slight deviations from the full-cloning expectation. In exactly the same way,
the selections applied to the lepton pair produced by the γ∗ will affect the observed
J/ψ dilepton distribution (and vice-versa), since the functional correlation between
(cosϑ′, ϕ′) and (cosϑ, ϕ) is the same as the one between (cosΘ,Φ) and (cosϑ, ϕ).
This problem should not be more easily addressed in the γ∗ decay case, because the
invariant mass of the γ∗ is very small, of the order of only 1 MeV, so that the two
resulting leptons will be produced with very low laboratory momenta, making their
detection a big challenge.

6.9 Recapitulation

In this chapter we have studied the dilepton decay distribution of a vector particle
V produced indirectly, in the decay O → V + X of a heavier particle O, to answer
the following question: what polarization does V inherit in this two-step production
process?

We started by developing in detail the description of the vector particle produc-
tion from the decay of a J = 0 particle, including cases like χc0 → J/ψ γ, χb0 → Υ γ,
B → J/ψK, H → J/ψ γ, and H → Z γ. In certain experimental and kinematic con-
ditions, these processes represent extreme examples of polarization “smearing”, po-
tentially leading to the extraordinary observation of a fully unpolarized vector par-
ticle. In fact, V is intrinsically polarized along the direction of its emission in the
O rest frame (the cHX frame, Fig. 6.1) having, for example, a natural polarization
λ0 = +1 when X is a real photon and λ0 = −1 when X is a J = 0 particle.

However, in “inclusive” studies, where the production of V is observed by re-
constructing only its dilepton decay, and not the underlying O → V + X step, the
dilepton distribution is necessarily referred to the directions of the colliding beams,
taking for example the HX axis as polarization axis. Given that V is emitted isotrop-
ically in the O rest frame, in the V rest frame the directions of the HX and cHX axes
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are distributed in a spherically uniform way with respect to one another, leading,
in principle, to a fully smeared dilepton distribution as seen with respect to the HX
axis (Fig. 6.2).

The four-dimensional distribution of the V emission angles Θ,Φ in the O rest
frame and the dilepton emission angles ϑ, ϕ in the V rest frame is given by Eq. 6.2
in the cHX frame and by Eq. 6.8 in the “cloned cascade” (CC) frame of Fig. 6.3,
where the V polarization axis is a geometrical clone of the O polarization axis and
approximates the HX or CS axis (the same chosen for O) when the laboratory mo-
mentum of V is large with respect to the O − V mass difference (Eq. 6.15). In this
latter frame we see that the uniform integration over the angular variables of either
step of the cascade leads indeed to a constant. However, when the integration is not
uniform, the result is, in general, an anisotropic two-dimensional distribution.

It actually happens that the measurement process disrupts the spherical symme-
try of the smearing, by sculpting the cosΘ distribution. If, for example, V is re-
constructed in intervals of its pT, the cosΘ distribution ceases to be uniform and
assumes a shape depending on the slope of the pT distribution within the considered
interval (Eqs. 6.17 and 6.22, Fig. 6.9). The effect increases with the mass differ-
ence between O and V , as shown in Fig. 6.6, comparing the cases B → J/ψK and
χc0 → J/ψ γ. When the | cosΘ | distribution is no longer uniform (that is, the cosΘ
distribution is not uniform or linear) in the HX or CS frame of O, a non-uniform
dilepton decay distribution will be observed in the CC frame, HX or CS, of V .

The resulting anisotropy parameters as observable in inclusive measurements
(ignoring the O → V step) at the LHC are shown in Fig. 6.14 (B → J/ψK,
B → ψ(2S) K) and in the left panels of Fig. 6.15 (χc0 → J/ψ γ): a practically
isotropic dilepton distribution is observed only when the mass difference is as small
as for the J/ψ from χc0 decays.

It is important to notice that, as seen in those figures, the results depend on the
experimental selections. For example, also the minimum-pT requirements on the
decay leptons sculpt the cosΘ distributions (Figs. 6.12 and 6.13). Since the cosΘ
distribution is not observed and, therefore, not corrected for the lepton acceptance,
this effect leads to an increase of the observed anisotropies. The selection criteria
must become an integral part of the measurement definition.

In most measurements, additional criteria are applied to isolate events corre-
sponding to the specific decay channel O→ V + X. Even if only the dilepton decay
distribution of V is analysed, such selections, effectively requiring the presence of
X with a laboratory momentum in a given acceptance domain, strongly sculpt the
cosΘ distribution (Fig. 6.10). In such “exclusive” measurements, stronger kinematic
modulations are expected for the dilepton decay parameters of V , as shown by the
comparison between the right and left panels in Figs. 6.8 and 6.15. Processes like
H → J/ψ γ and H → Z γ, which must be isolated with suitable selections on the
photon, show particularly strong deviations from the isotropic limit (Fig. 6.17), be-
cause the mass difference is large with respect to the typical values of the observed
V momentum spectrum.

The same smearing mechanism occurring in the decay χc0 → J/ψ γ provides a
key for the interpretation of the surprising observation, made at the LHC, that di-
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rectly produced J/ψ mesons show polarization parameters compatible with being
zero and with no significant dependence on pT (Fig. 6.18). An exact cancellation of
oppositely polarized mechanisms, leading to a pT-independent result, is improbable,
and a more natural explanation is provided by the colour-octet mechanism (a basic
feature of NRQCD), where the observable vector meson results from the transfor-
mation of an unobserved (“pre-resonance”) coloured QQ pair, having a mass only
slightly different from the final one and possibly different quantum numbers. The
binding transition, happening via emission of soft gluons, leads to a seemingly un-
polarized J/ψ if the pre-resonance QQ has J = 0. Measurements in hadron collider
experiments do indeed support the hypothesis of a dominance of partonic processes
creating coloured QQ pairs with respect to those producing already colour neutral
states (Fig. 6.19). Moreover, recent global analyses of LHC data indicate that the
1S [8]

0 colour-octet channel (of J = 0) is the prevalent one. It is, therefore, the pecu-
liar nature of the J/ψ, a composite particle made of two heavy quarks, and the marked
process hierarchy characterizing the high-energy domain explored at the LHC, that
allow for the exceptional observation of unpolarized production.

Colour-octet dominance and unpolarized J/ψ production are not necessarily fore-
seen, nor observed, in low-pT fixed-target production, in electromagnetic processes
and, as exemplified by the several cases analysed in this chapter, in indirect produc-
tion. In particular, the indirect J/ψ production from decays of B mesons, which can
be studied inclusively by selecting “non-prompt” events, should show a significant
longitudinal polarization if the sample is dominated by two-body decays of the kind
B → J/ψK. Multi-body decays, including processes producing a colour-octet QQ
state and more complex chains starting with B → χc or B → ψ(2S) decays, may,
however, dilute the overall polarization (Figs. 6.23 and 6.24).

The generalization of the previous considerations to the cases of a J = 1 or J = 2
mother particle (χc1,2 → J/ψ γ, Z → J/ψ γ) shows the “smearing” effect turning
into another phenomenon, where the shape of the mother’s decay distribution is
“cloned” into the one of the daughter’s as observed in the CC frame (Fig. 6.26),
reflecting the invariance of the four-dimensional angular distribution by exchange of
the O and V decay angles (Eq. 6.28 and Fig. 6.25). Therefore, while the polarization
(Jz composition) changes from mother to daughter, the one of the mother is still
univocally reflected by the dilepton decay distribution of V , even when the O decay
angles are integrated out. Also the J = 0 case, where both mother and daughter have
isotopic decays distributions, is actually a case of cloning.

The cloning is verified in the CC frame, meaning that, at sufficiently high lab-
oratory momentum, it is possible to measure the χc1 and χc2 polarizations in the
“ordinary” HX or CS frames, by only determining the dilepton distribution of the
daughter J/ψ and without performing a four-dimensional analysis including the χc

decay angles. Just as the full spherical smearing in the J = 0 case, also the exact
cloning is partially disrupted by experimental selections affecting the momentum of
the accompanying particle X. The effect is small for J/ψ from χc decays (Figs. 6.27
and 6.28), but significant for large mother-daughter mass differences, as in the case
of the decay Z→ J/ψ γ, where strong kinematic modulations appear for the dilepton
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anisotropy parameters; the Z polarization is, however, still unequivocally reflected
in the observable patterns.

Both the cHX (x′y′z′) and CC (x′′y′′z′′) frames of Figs. 6.1 and 6.3, alternative
choices for the measurement of the V decay distribution, require, in principle, the
knowledge of the O (or X) momentum, besides the V one: for example, z′ (cHX) and
z′′ (CC HX) represent the direction of O, respectively, in the V rest frame and in the
laboratory. Correspondingly, the measurement of the correlated four-dimensional
distribution of the cascade process provides the same amount of physics information
with both frame choices.

However, for V momenta larger than the O − V mass difference, the CC HX
frame is simply determined as the V HX frame, using only the V momentum in
the laboratory. Measurements of the dilepton distribution using the CC (HX or CS)
frame and integrating over the O decay angles, as those considered in all examples
of this chapter, require, therefore, significantly less experimental information than
those choosing the cHX frame, which always rely on the knowledge of the O mo-
mentum. Apart from being more “economical” from the experimental point of view,
the choice of the CC frame is also the only one of the two allowing the experiment
to determine the polarization of O simply using the dilepton degrees of freedom,
as was illustrated by the χc1 and χc2 examples. In fact, after integration over cosΘ
and Φ, the dilepton distribution in the cHX frame is blind to the O polarization
(Eqs. 6.29 and 6.30, Fig. 6.33).

Interestingly, the dilepton measurement in the CC frame continues to provide the
same full sensitivity to the O polarization even in the seemingly evasive example of
the χc1,2 → J/ψ γ∗ decays (Fig. 6.35), where the cosΘ,Φ distribution itself is always
measured as isotropic independently of the χc polarization, an observation not to be
mistaken as an indication that the χc is produced unpolarized.
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Chapter 7
Two-body decay distributions beyond the
dilepton case

Throughout the previous chapters we explored in detail the properties of the angu-
lar distribution of the dilepton decay of a vector particle. We will now illustrate a
general method to calculate the shape of the angular distribution for any considered
two-body decay, and survey examples for different kinds of initial particles, with
integer or half-integer J.

We will focus on the following questions.

• How does the shape of the angular distribution depend on J and Jz? What are the
observable parameters and their allowed physical values? How does the distribu-
tion depend on the identity of the decay products?

• If the nature of the decaying particle has not yet been identified and its angular
momentum properties are unknown, how (and with what assumptions) can the
measurement of the angular distribution lead to the determination of J?

• Apart from the previously discussed smearing effects in the indirect production
from the decay of a J = 0 state, how can a J > 0 particle produce a completely
isotropic two-body decay distribution, irrespectively of its polarization? Why is
such an observation not a paradox?
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244 7 Two-body decay distributions beyond the dilepton case

7.1 Wigner rotation matrices

We saw in Chapter 1 how to calculate the dilepton decay angular distribution of a
vector particle produced in a certain angular momentum configuration (its “polar-
ization”), namely |J, Jz〉 = |1, 0〉z or |1,±1〉z, or a superposition of these three cases,
with respect to a given quantization axis z. In the following chapters we discussed
in detail the properties of this distribution. In this chapter we consider several more
decay distributions, involving initial and final particles of different categories, fo-
cusing on how they can be calculated in their general form and on how they reflect
the angular momentum properties of the decaying particle.

The principal tool in all these calculations is the set of rotation transformations
represented by the Wigner matrices [1]. Each matrix is identified by the value of
the total angular momentum of the decaying particle, J. Its elements, DJ

LL′ (ϑ, ϕ),
describe how an angular momentum state, with Jz projection L along a given axis z,
transforms to a superposition of states of all possible projections L′ along a different
set of axes, rotated with respect to the original one by the spherical coordinates ϑ
and ϕ. We introduced the Wigner matrices in Eq. 1.1 and defined them in Eq. 1.2,
here reproduced for completeness:

DJ
LL′ (ϑ, ϕ) = e−iLϕ dJ

LL′ (ϑ) eiL′ϕ . (7.1)

Before continuing with the description of these matrices, we will make a paren-
thesis to clarify that we use in this book a simpler notation than the one found in
Refs. [2, 3] and other publications, where the rotation matrix elements are functions
of the three Euler angles necessary to define a completely generic rotation in space,
D(α, β, γ). That general transformation is the succession of a rotation around the z
axis by the angle α, followed by a rotation around the (new) y axis by the angle β,
and by a third rotation around, again, the (latest) z axis, this time by the angle γ, just
as illustrated (except for the names of the angles) in Fig. 2.22, for the most generic
change of reference frame.

In all calculations considered in this book, and in the general method used to cal-
culate decay distributions, more examples of which will be seen in this chapter, the
Wigner matrices are employed to rotate a direction, the one of the quantization axis,
and not a three-dimensional shape; the number of angles parametrizing the rotation
of a direction is two, not three, as would be needed to fully define the rotation of a
generic three dimensional object with its own (not cylindrically symmetric) shape,
like a generic wave function.

In fact, while the measurement of the decay angular distribution of a particle can
be considered as a measurement of the particle’s wave function, the wave functions
of the decay products, which are the objects to which we apply the rotations in the
calculation procedure, are not observed, unless they, in turn, decay and this further
step is included as component of a higher-dimensional angular analysis.

Examples of the latter case are the cascade processes seen in Chapter 6, where
the further decaying “daughter” (a J/ψ or Υ meson, or a Z boson) was represented by
an additional Wigner matrix element changing the polarization axis of the dilepton



7.1 Wigner rotation matrices 245

system as seen in the daughter’s rest frame, therefore “giving life” to the daughter’s
three-dimensional nature and adding two more angles to the list of the observable
degrees of freedom.

However, when the decay product is the “final” one, it has no associated “three-
dimensional” structure that would justify the use of three angles for its rotation from
a quantization “frame” to another: what we rotate in this case is only its quantization
axis z and this operation depends only on the two angular coordinates defining the
direction of the new axis with respect to the old axis.

To obtain this “minimal” rotation from the potentially more generic one de-
scribed by the Wigner matrix, we have to impose that the two rotation components
(first and third) around the z axis are the opposite of each other, i.e. γ = −α. In this
way, as can be recognized by observing the passages of the “cartoon” in Fig. 2.22
and inverting the direction of the last rotation step, the net effect is effectively a ro-
tation made around the axis perpendicular to the plane containing the old and the
new z axes, which is, in fact, the only meaningful option when no information exists
about the shape of the rotated object. This is why we can use a simpler notation than
the general one:

DJ
LL′ (ϕ, ϑ,−ϕ) → DJ

LL′ (ϑ, ϕ) . (7.2)

It can now be observed that the complex exponential terms in Eq. 7.1 correspond
to the two opposite rotations around the z axis (which, as explained in Section 2.15
and represented by Eq. 2.40, can be seen as shifts of the ϕ coordinate), while the
(“reduced”) d-matrix elements, dJ

LL′ (ϑ), represent the polar-angle displacement from
the z axis caused by the rotation around the y axis.

As already mentioned in Section 1.3, the reduced Wigner matrices can be com-
puted with the expression

dJ
LL′ (ϑ) =

min(J+L,J−L′)∑
t=max(0,L−L′)

(−1)t

×

√
(J + L)! (J − L)! (J + L′)! (J − L′)!

(J + L − t)! (J − L′ − t)! t! (t − L + L′)!
(7.3)

×

(
cos

ϑ

2

)2J−(L′−L+2t) (
sin

ϑ

2

)L′−L+2t

.

We alert the reader to the fact that two alternative conventions exist in the litera-
ture for this definition [1–4], only differing for a sign in certain configurations. They
are entirely equivalent for the final physical results provided that, naturally, the same
convention is systematically used in all the steps of the calculations. In this book we
adopted and consistently used the convention of Ref. [2].

The number of computations can be significantly reduced through the use of the
following relations (equivalent to Eq. 1.4):
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dJ
L,L′ (ϑ) = dJ

−L′,−L(ϑ) ,

dJ
L,L′ (ϑ) = (−1)L′−L dJ

L′,L(ϑ) .
(7.4)

The dJ
L,L′ (ϑ) matrices are shown in Tables 7.1–7.6, respectively for J = 1/2, 3/2,

1, 2, 3, and 4. In all tables we used two abbreviations, c ≡ cos(ϑ/2) and s ≡ sin(ϑ/2)
(so that c2 + s2 = 1), to provide more compact expressions. It is worth noting that,
since 0 < ϑ < π, both c and s are always positive. With this notation, dJ

J,J = c2J

and dJ
−J,J = s2J . As clearly seen in the definition of Eq. 7.3, all matrix elements are

polynomials of order 2J in c and s.
Obviously, no table is needed for the J = 0 case, given that the only matrix

element appearing in the formulas for its calculation, d0
0,0, is independent of the

Table 7.1 The reduced Wigner matrix for the J = 1/2 case, d1/2
L,L′ (ϑ), with c ≡ cos(ϑ/2) and

s ≡ sin(ϑ/2).

L
L′

−1/2 +1/2

−1/2 c s

+1/2 −s c

Table 7.2 The reduced Wigner matrix for the J = 3/2 case, d3/2
L,L′ (ϑ).

L
L′

−3/2 −1/2 +1/2 +3/2

−3/2 c3
√

3 c2 s
√

3 c s2 s3

−1/2 −
√

3 c2 s c (1 − 3s2) −(1 − 3c2) s
√

3 c s2

+1/2
√

3 c s2 (1 − 3c2) s c (1 − 3s2)
√

3 c2 s

+3/2 −s3
√

3 c s2 −
√

3 c2 s c3

Table 7.3 The reduced Wigner matrix for the J = 1 case, d1
L,L′ (ϑ).

L
L′

−1 0 +1

−1 c2
√

2 c s s2

0 −
√

2 c s 2 c2 − 1
√

2 c s

+1 s2 −
√

2 c s c2
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Table 7.4 The reduced Wigner matrix for the J = 2 case, d2
L,L′ (ϑ).

L
L′

−2 −1 0 +1 +2

−2 c4 2 c3 s
√

6 c2 s2 2 cs3 s4

−1 −2 c3 s c2 (1 − 4 s2) −
√

6 cs (1 − 2 c2) −(1 − 4 c2) s2 2 cs3

0
√

6 c2 s2
√

6 cs (1 − 2 c2) 1 − 6 c2 s2 −
√

6 cs (1− 2 c2)
√

6 c2 s2

+1 −2 cs3 −(1 − 4 c2) s2
√

6 cs (1 − 2 c2) c2 (1 − 4 s2) 2 c3 s

+2 s4 −2 cs3
√

6 c2 s2 −2 c3 s c4

Table 7.5 The reduced Wigner matrix for the J = 3 case, d3
L,L′ (ϑ).

L
L′

−3 −2 −1 0 +1 +2 +3

−3 c6
√

6 c5 s
√

15 c4 s2 2
√

5 c3 s3
√

15 c2 s4
√

6 cs5 s6

−2 −
√

6 c5 s c4

(1 − 6 s2)

√
10 c3 s

(1 − 3 s2)
−
√

30 c2 s2

(1 − 2 c2)
−
√

10 cs3

(1 − 3 c2)
−s4

(1 − 6 c2)
√

6 cs5

−1
√

15 c4 s2 −
√

10 c3 s
(1 − 3 s2)

c2 (1 + 5 s2

(1 − 3 c2))
2
√

3 cs
(1 − 5 c2 s2)

s2 (1 + 5 c2

(1 − 3 s2))
−
√

10 cs3

(1 − 3 c2)
√

15 c2 s4

0 −2
√

5 c3 s3 −
√

30 c2 s2

(1 − 2 c2)
−2
√

3 cs
(1 − 5 c2 s2)

−(1 − 2 c2)
(1−10 c2 s2)

2
√

3 cs
(1 − 5 c2 s2)

−
√

30 c2 s2

(1 − 2 c2) 2
√

5 c3 s3

+1
√

15 c2 s4

√
10 cs3

(1 − 3 c2)
s2 (1 + 5 c2

(1 − 3 s2))
−2
√

3 cs
(1 − 5 c2 s2)

c2 (1 + 5 s2

(1 − 3 c2))

√
10 c3 s

(1 − 3 s2)
√

15 c4 s2

+2 −
√

6 cs5 −s4

(1 − 6 c2)

√
10 cs3

(1 − 3 c2)
−
√

30 c2 s2

(1 − 2 c2)
−
√

10 c3 s
(1 − 3 s2)

c4

(1 − 6 s2)
√

6 c5 s

+3 s6 −
√

6 cs5
√

15 c2 s4 −2
√

5 c3 s3
√

15 c4 s2 −
√

6 c5 s c6

polar and azimuthal decay angles, always resulting in an isotropic angular decay
distribution.

To compare these compact expressions with those used in Chapter 1 and else-
where, it is useful to keep in mind a few trigonometric identities, such as sin(ϑ) =

2 cos(ϑ/2) sin(ϑ/2), cos2(ϑ/2) = 1/2 (1 + cosϑ), and sin2(ϑ/2) = 1/2 (1 − cosϑ).
For visibility purposes, Table 7.6 is reported in truncated form, omitting the

columns corresponding to +1 ≤ L′ ≤ +4 and several of the terms in the displayed
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Table 7.6 The reduced Wigner matrix for the J = 4 case, d4
L,L′ (ϑ). The missing matrix elements

can be obtained using Eq. 7.4, as shown in the inset.
L

L′

−
4

−
3

−
2

−
1

0

−
4

c8

−
3

−
2
√

2
c7

s
c6

(1
−

8s
2 )

−
2

2
√

7
c6

s2
−
√

14
c5

s(
1
−

4s
2 )

c4
(1

5
−

42
c2

+
28

c4 )

−
1

−
2
√

14
c5

s3
√

7
c4

s2
(3
−

8s
2 )

−
√

2
c3

s(
10
−

35
c2

+
28

c4 )
c2

(−
10

+
60

c2
−

10
5c

4
+

56
c6 )

0
√

70
c4

s4
2
√

35
c3

s3
(1
−

2c
2 )

√
10

c2
(3
−

17
c2

+
28

c4
−

14
c6 )

2
√

5
cs

(1
−

9c
2

+
21

c4
−

14
c6 )

1
−

10
c2

s2
(2
−

7c
2

+
7c

4 )

+
1

−
2
√

14
c3

s5
−
√

7
c2

s4
(3
−

8c
2 )

−
√

2
cs

3
(3
−

21
c2

+
28

c4 )
−

s2
(1
−

18
c2

+
63

c4
−

56
c6 )

+
2

2
√

7
c2

s6
√

14
cs

5
(1
−

4c
2 )

s4
(1
−

14
c2

+
28

c4 )

+
3

−
2
√

2
cs

7
−

s6
(1
−

8c
2 )

+
4

s8

L
L′

−
4

−
3

−
2

−
1

0
+

1
+

2
+

3
+

4

−
4

d 4
,4
−

d 4
,3

d 4
,2
−

d 4
,1

d 4
,0
−

d 4
,−

1
d 4
,−

2
−

d 4
,−

3
d 4
,−

4

−
3

d 4
,3

d 3
,3
−

d 3
,2

d 3
,1
−

d 3
,0

d 3
,−

1
−

d 3
,−

2
d 3
,−

3
−

d 4
,−

3

−
2

d 4
,2

d 3
,2

d 2
,2
−

d 2
,1

d 2
,0
−

d 2
,−

1
d 2
,−

2
−

d 3
,−

2
d 4
,−

2

−
1

d 4
,1

d 3
,1

d 2
,1

d 1
,1
−

d 1
,0

d 1
,−

1
−

d 2
,−

1
d 3
,−

1
−

d 4
,−

1

0
d 4

,0
d 3

,0
d 2

,0
d 1

,0
d 0

,0
−

d 1
,0

d 2
,0
−

d 0
,3

d 4
,0

+
1

d 4
,−

1
d 3

,−
1

d 2
,−

1
d 1

,−
1

d 1
,0

d 1
,1
−

d 2
,1

d 3
,1
−

d 4
,1

+
2

d 4
,−

2
d 3

,−
2

d 2
,−

2
d 2
,−

1
d 2
,0

d 2
,1

d 2
,2
−

d 3
,2

d 4
,2

+
3

d 4
,−

3
d 3

,−
3

d 3
,−

2
d 3
,−

1
d 3
,0

d 3
,1

d 3
,2

d 3
,3
−

d 4
,3

+
4

d 4
,−

4
d 4
,−

3
d 4
,−

2
d 4
,−

1
d 4
,0

d 4
,1

d 4
,2

d 4
,3

d 4
,4



7.2 Generic formulas for two-body decay distributions 249

columns. The missing elements can be easily derived from those shown, using the
symmetry relations presented in Eq. 7.4, as illustrated in the inset table.

7.2 Generic formulas for two-body decay distributions

To derive the shape of the dilepton decay distribution of the J/ψ, in Chapter 1, we
used the following relevant physical constraints: a) the decaying particle has total
angular momentum J = 1; b) the products are a fermion and an anti-fermion, of spin
1/2 and mass negligible with respect to that of the mother particle; c) an interme-
diate vector boson (a virtual photon) couples to the final fermions preserving their
helicities. These strong requirements effectively meant that we were considering
a transition between two J = 1 (vector) systems, with the final one being “trans-
versely polarized” (Jz′ = ±1 along the common flight direction of the two fermions
in the J/ψ rest frame). The resulting distributions and the meaning of their shape
parameters were, obviously, specific to this well defined physical case.

We will now consider the most general case of two-body decays, O → X1X2,
without any a priori constraint on the underlying physics. The result will depend
on several amplitudes, in growing number with increasing values of the angular
momentum quantum numbers of the initial (J) and final (J1 and J2) states. In this
approach, physical hypotheses can be applied a posteriori, by restricting the pos-
sible number and values of the relevant amplitudes. Vice versa, an experimental
measurement determining the observable shape parameters will put constraints on
such amplitudes and, therefore, on the admissible hypotheses for the process be-
ing observed, sometimes even helping in the determination of the properties of the
decaying particle.

For our completely generic description, we define a set of amplitudes,AM,G′1,G
′
2
.

As illustrated in Fig. 7.1-left, each coefficient represents the combined probability
that O has angular momentum projection M along the chosen quantization axis z
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 G’
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1
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θ,φ
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z z’
y y’
x x’
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J

G = - J
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X  X  ; J, G(θ,φ)Σ 1 2

O; J, M X  X
  ; 
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 G’

1
2

1
2
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 G’
2

2
2 A J, J  , J

M, G’ , G’1 2

1 2

Fig. 7.1 Diagram of the O → X1X2 decay as seen in the O rest frame, specifying notations for
axes, angles and angular momentum states of the initial and final particles.
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(for example its momentum in the laboratory, that is the HX axis, or the direction
of one or the other colliding beams, the two GJ axes, or the average of the two, the
CS axis) and X1 and X2 have angular momentum projections G′1 and G′2 along the
z′ axis, defined by their common flight direction in the O rest frame (with a purely
conventional orientation along the X1 momentum).

We will consider the AM,G′1,G
′
2

amplitudes as generic complex numbers, without
imposing any specific constraints. These are the coefficients that contain informa-
tion on the underlying process dynamics, determining both the polarization state of
O (the amplitudes aM used in Chapter 1 are included in AM,G′1,G

′
2
) and the angu-

lar momentum configurations of the decay products. They depend on the elemen-
tary couplings in the considered production and decay processes, which determine
the allowed combinations of initial- and final-state “helicities” (angular momentum
projections) and their probabilities. For example, in the decays of Standard Model
vector gauge bosons (virtual photon, Z, W, gluon) into sufficiently light fermions,
helicity conservation forbids terms with opposite fermion spin projections along z′,
so that AM,+1/2,−1/2 = AM,−1/2,+1/2 = 0. Moreover, considering for simplicity the
leading-order process of Fig. 2.2-c, dominating towards low pT, and choosing the
CS frame, helicity conservation also forbids the Jz projection M = 0 for the initial
state, that is,A 0,G′1,G

′
2

= 0.
We start by calculating the amplitude of the transition O(M) → X1(G′1) X2(G′2),

which, by definition, involves the individual coefficientAM,G′1,G
′
2
. Similarly to what

we did in Chapter 1, and as illustrated in Fig. 7.1-right, we use the Wigner matrix to
“project” the angular momentum state of the X1X2 system from the z′ axis to the z
axis:

|X1X2; J, G′1 + G′2 〉z′ =

+J∑
G=−J

DJ
G,G′1+G′2

(ϑ, ϕ) |X1X2; J, G 〉z . (7.5)

Indicating with BM,G′1,G
′
2

the transition operator, the probability amplitude of the
process can be written as

A
[
O(M)→ X1(G′1) X2(G′2)

]
= z′〈X1X2; J, G′1 + G′2 | BM,G′1,G

′
2
|O; J,M〉z

=

+J∑
G=−J

DJ∗
G,G′1+G′2

(ϑ, ϕ) z〈X1X2; J, G | BM,G′1,G
′
2
|O; J,M〉z

=

+J∑
G=−J

DJ∗
G,G′1+G′2

(ϑ, ϕ) δM,GAM,G′1,G
′
2

= DJ∗
M,G′1+G′2

(ϑ, ϕ) AM,G′1,G
′
2
,

(7.6)

where the relation z〈X1X2; J, G | BM,G′1,G
′
2
|O; J,M〉z = δM,GAM,G′1,G

′
2

contains the
conservation of Jz, in the Kronecker delta, and the process dynamics, inAM,G′1,G

′
2
.

The following step in making the calculations more and more general consists in
considering O to be produced not as a pure state having Jz = M, but as a superpo-
sition of Jz eigenstates; this is equivalent to taking the sum of all possible transition
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amplitudes given by the previous equation:

A
[
O→ X1(G′1) X2(G′2)

]
=

+J∑
M=−J

A
[
O(M)→ X1(G′1) X2(G′2)

]
. (7.7)

We note that, having defined AM,G′1,G
′
2

to include the probability that O has Jz

projection M, the sum does not contain the further coefficient aM as it did, for ex-
ample, in Eq. 1.10.

The square modulus of this amplitude gives the partial angular distribution for
the specific angular momentum configurations G′1 and G′2 of the decay products:

WG′1,G
′
2
(cosϑ, ϕ) =∑

|M| ≤ J, |N | ≤ J

A∗
[
O(M)→ X1(G′1) X2(G′2)

]
A

[
O(N)→ X1(G′1) X2(G′2)

]
(7.8)

=
∑

|M| ≤ J, |N | ≤ J

DJ
M,G′1+G′2

(ϑ, ϕ)DJ∗
N,G′1+G′2

(ϑ, ϕ)A∗M,G′1,G′2 AN,G′1,G
′
2
.

As the final step, we sum over all allowed X1 and X2 angular momentum config-
urations (which are not observed, because eventual decay distributions of X1 and X2
are not part of the analysis):

W(cosϑ, ϕ) =
∑

|G′1 | ≤ J1, |G′2 | ≤ J2

|G′1+G′2 | ≤min{J, J1+J2}

WG′1,G
′
2
(cosϑ, ϕ) . (7.9)

The sum is made over all values of G′1 and G′2 satisfying angular momentum con-
servation. Besides the obvious relations |G′1| ≤ J1 and |G′2| ≤ J2, the inequality
|G′1 + G′2| ≤ min{J, J1 + J2} accounts for the fact that the relation |J1 − J2| ≤ J ≤
J1 + J2 is not necessarily satisfied when the decay products X1 and X2 have a relative
orbital angular momentum I1,2, i.e. J = J1 + J2 + I1,2. The presence of a nonzero I1,2
explains, for example, the existence of decays like B+ → J/ψK+, where J = 0 and
|J1 − J2| = 1, so that J < |J1 − J2|. In the next sections we will address several more
cases, for example those where a particle of J = 2 decays to two spin-1/2 fermions,
or a particle of J = 1 decays to two J = 0 particles, for which J > J1 + J2. When
this latter condition happens, |G′1 +G′2| never reaches the value J, because the orbital
angular momentum I1,2 has always projection zero along the quantization axis of
the decay products (z′) and does not contribute to a possible larger magnitude of
G′1 + G′2.

The dependence of the distribution on the dynamical amplitudes AM,G′1,G
′
2

is
usually reorganized into a set of complex coefficients,

ρG′
M,N =

∑
|G′1 | ≤ J1, |G′2 | ≤ J2

G′1+G′2=G′

A∗M,G′1,G
′
2
AN,G′1,G

′
2
, (7.10)
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which form, for each G′, the so-called “spin density matrix”, a hermitian matrix
(ρG′

M,N = ρG′∗
N,M) with trace ∑

|G′1 | ≤ J1, |G′2 | ≤ J2

G′1+G′2=G′, |M| ≤ J

∣∣∣AM,G′1,G
′
2

∣∣∣2 = 1 . (7.11)

Therefore, the angular distribution is written, combining Eqs. 7.8, 7.9 and 7.10, as

W(cosϑ, ϕ) =
∑

|G′ | ≤min(J,J1+J2)
|M| ≤ J, |N | ≤ J

ρG′
M,N D

J
M,G′ (ϑ, ϕ)DJ∗

N,G′ (ϑ, ϕ)

=
∑

|G′ | ≤min(J,J1+J2)
|M| ≤ J, |N | ≤ J

ρG′
M,N dJ

M,G′ (cosϑ) dJ
N,G′ (cosϑ) e−i (M−N)ϕ .

(7.12)

The ultimate generalization consists in considering the sum over all possible sub-
processes contributing to the production of O, with weights proportional to their
relative yields. For this purpose it is sufficient to define the corresponding weighted
average of the density matrix,

ρG′
M,N =

∑
|G′1 | ≤ J1, |G′2 | ≤ J2

G′1+G′2=G′

〈
A∗M,G′1,G

′
2
AN,G′1,G

′
2

〉
, (7.13)

while the final expression of the angular distribution remains formally the one of
Eq. 7.12.

A note of caution is due about the possibly misleading notation used for the dy-
namical amplitudes AM,G′1,G

′
2

and for the spin density matrix elements ρG′
M,N . These

objects appear in expressions like Eqs. 7.8 and 7.12, where we see them together
with Wigner matrix elements, which are the only ones explicitly having “J” as in-
dex. However, they actually depend on all the details of the production and decay
dynamics and, in particular, on J, J1, and J2, despite the fact that these symbols are
not explicitly shown as indices.

7.3 The polar projection of the decay distribution

There are cases where only the polar angle dependence of the decay distribution
is effectively interesting for the study of the process under consideration. The az-
imuthal dependence of the distribution obviously vanishes when the particle is pro-
duced in 2→ 1 processes and the polarization axis z is chosen along the only mean-
ingful direction, that of the relative momentum of the colliding particles (CS frame).
The same happens along any other polarization axis if the particle is produced in a
single, pure Jz eigenstate along that direction. For these cases, it is convenient to
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consider directly the generic expression of the cosϑ distribution, as obtained by
averaging Eq. 7.12 over ϕ. Given that the azimuthal dependence is exclusively con-
tained in the complex exponential factor of that expression, and that

1
2π

∫ +π

−π

e−i (M−N)ϕ dϕ = δM,N , (7.14)

the resulting averaged distribution is

w(cosϑ) =
∑

|G′ |≤min(J,J1+J2)
|M|≤J

σG′
M

[
dJ

M,G′ (cosϑ)
]2
, (7.15)

which only depends on the squared moduli of the helicity amplitudes, that is, on the
“diagonal” (and real) ρG′

M,M terms:

σG′
M ≡ ρG′

M,M =
∑

|G′1 | ≤ J1, |G′2 | ≤ J2

G′1+G′2 = G′

〈 ∣∣∣AM,G′1,G
′
2

∣∣∣2 〉
. (7.16)

As can be seen in Tables 7.1–7.6, the square of any reduced d-matrix element
is, for all cases of J, both integer and half-integer, a linear combination of terms
of the kind sinQ(ϑ/2) cosP(ϑ/2) with even Q and P values, that is, of terms of the
kind (1 − cosϑ)Q/2 (1 + cosϑ)P/2. The maximum overall power Q + P in each d2

expression is 4J. Therefore, the polar angle distribution will be a polynomial of
order 2J in cosϑ, with 2J independent observable coefficients, λi,

w(cosϑ | λ) =
1
N

 1 +

2J∑
i=1

λi (cosϑ)i

 , (7.17)

where the normalization N is equal to 1 +
∑
λ j / ( j + 1), with the sum being made

only over the even natural numbers j ≤ 2J. The terms with odd powers of cosϑ are
parity violating.

We should keep in mind that any information about the interference between
the different angular momentum eigenstates composing the initial state is lost in
the polar projection of the distribution. The decaying particle can be a coherent or
an incoherent superposition of eigenstates. As seen in Chapter 1, these two phys-
ically different cases lead to different azimuthal anisotropies, properly reflected in
Eq. 7.12, but not to different polar anisotropies, thereby being indistinguishable in
the polar projection. As has been discussed a number of times in this book, neglect-
ing the possible existence of significant azimuthal anisotropies can create problems,
both for the accuracy of the measurement and for the interpretation of the results.

On the other hand, as we study cases of increasing J, the simplification of con-
sidering only the cosϑ dimension becomes more and more convenient. For J = 1,
in the most general case, including parity-violating effects, the maximum number of
observable parameters of the full distribution is eight (five of them potentially non-
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negligible if the particle is observed inclusively, without referring the polarization
axes to possible accompanying particles in the event), while the polar projection
only has two measurable parameters, clearly allowing for a substantial simplifica-
tion of the analysis procedure.

In the J = 2 case, the total number of parameters increases from 8 to 24, their
measurement requiring very challenging procedures, and even in the simpler option
of inclusive observation we still need to consider 14 “significant parameters”. In-
stead, when only considering the cosϑ distribution, the number of parameters drops
to four, vastly reducing the complexity of the experimental analysis.

7.4 The general J = 1 two-body decay distribution

In the derivation of the decay distribution of a vector particle into two leptons, in
Chapter 1, we have used the physical constraint of helicity conservation, which im-
poses that the final dilepton has projection G′ = G′1 + G′2 = ±1 along the decay
direction in the mother’s rest frame. By removing this constraint we can obtain, us-
ing Eq. 7.12, the most general two-body decay distribution of any J = 1 state. Its
parametrization is formally unchanged with respect to the dilepton case (Eq. 1.29):

W(cosϑ, ϕ) =
3

4π
1

(3 + λϑ)
(1 + λϑ cos2ϑ

+ λϕ sin2ϑ cos2ϕ + λϑϕ sin2ϑ cosϕ

+ λ⊥ϕ sin2ϑ sin2ϕ + λ⊥ϑϕ sin2ϑ sinϕ

+ 2Aϑ cosϑ + 2Aϕ sinϑ cosϕ + 2A⊥ϕ sinϑ sinϕ) .

(7.18)

Compared to those of Eq. 1.28, however, the shape parameters have now the
additional dependence on the G′ = 0 amplitudes (through the elements ρ0

M,N of the
spin density matrix):

λϑ = 1/D
[
ρ+1

+1,+1 + ρ−1
+1,+1 − 2 ρ0

+1,+1 + ρ+1
−1,−1 + ρ−1

−1,−1 − 2 ρ0
−1,−1

− 2
(
ρ+1

0,0 + ρ−1
0,0 − 2 ρ0

0,0

)]
,

λϕ = 2/D Re
(
ρ+1

+1,−1 + ρ−1
+1,−1 − 2 ρ0

+1,−1

)
,

λ⊥ϕ = 2/D Im
(
ρ+1

+1,−1 + ρ−1
+1,−1 − 2 ρ0

+1,−1

)
,

λϑϕ =
√

2/D Re
[
ρ+1

+1,0 + ρ−1
+1,0 − 2 ρ0

+1,0 −
(
ρ+1

0,−1 + ρ−1
0,−1 − 2 ρ0

0,−1

)]
,

λ⊥ϑϕ =
√

2/D Im
[
ρ+1

+1,0 + ρ−1
+1,0 − 2 ρ0

+1,0 −
(
ρ+1

0,−1 + ρ−1
0,−1 − 2 ρ0

0,−1

)]
,

(7.19)
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Aϑ = 1/D
(
ρ+1

+1,+1 − ρ
−1
+1,+1 + ρ−1

−1,−1 − ρ
+1
−1,−1

)
,

Aϕ =
√

2/D Re
(
ρ+1

+1,0 − ρ
−1
+1,0 + ρ+1

0,−1 − ρ
−1
0,−1

)
,

A⊥ϕ =
√

2/D Im
(
ρ+1

+1,0 − ρ
−1
+1,0 + ρ+1

0,−1 − ρ
−1
0,−1

)
,

where the denominator is

D = ρ+1
+1,+1 + ρ−1

+1,+1 + 2 ρ0
+1,+1 + ρ+1

−1,−1 + ρ−1
−1,−1 + 2 ρ0

−1,−1 + 2
(
ρ+1

0,0 + ρ−1
0,0

)
.

The parameters transform from one reference frame to another exactly as in the
dilepton case (Section 2.15). Their physically allowed domain is shown in Fig. 7.2,
where its two-dimensional projections are represented by the blue areas. Superim-
posed to these are, in gold, the corresponding projections (reproduced from Fig. 3.4)
for the dilepton (or light quark-antiquark) decay via intermediate vector boson, illus-
trating how the additional requirement of helicity conservation (ρ0

M,N = 0) restricts
the parameter domain. We also remind that the same constraint is present in the
decays to a J = 0 particle accompanied by a real photon; for example, the decays
ρ0 → `+`− and ρ0 → π0γ have identical angular distributions.

Frame-independent polarization parameters exist and are formally defined, as
functions of the λ and A parameters, exactly as those of the dilepton distribution
(Chapter 3), even if their meaning in terms of natural polarizations can be different.

This generalized J = 1 decay distribution can be used to describe many physical
decays beyond the dilepton case, such as, for instance, Z → J/ψ γ, the radiative
transitions of J = 1 mesons, like χc1 → J/ψ γ or ψ(2S) → χcJ γ (with J = 0, 1, 2),
and several hadronic decays [5].

As an illustration, we will calculate the polar anisotropy parameter of the de-
cays χc1 → J/ψ γ and Z → J/ψ γ (and the equivalent ones with the charmonium
states replaced by the corresponding bottomonium ones). The decaying particle is
the generic combination |O 〉 =

∑+1
M=−1 aM |1, M 〉. As done in Section 6.7 to cal-

culate the J/ψ decay anisotropy, we refer to the axis z′ (Fig. 6.32), along which the
J/ψ and the γ have back-to-back momenta in the mother’s rest frame, and to the
coefficients listed in Table 6.2, expressing the relative probabilities of the configu-
rations with specific Jz′ projections of J/ψ and γ. This time, the method is applied to
calculate the anisotropy of the χc1 or Z two-body decay.

Considering the column J = 1 of Table 6.2 and keeping only the lines with K′ =

±1 (transversely polarized photon), we see that there are two allowed configurations
with G′ = L′ + K′ = 0, having total weight 1/2 + 1/2 = 1, while the cases G′ = +1
and G′ = −1 only have one configuration each, with weight 1/2. The J/ψ γ state is
then “polarized”, because the three cases, G′ = −1, 0 and +1, have unequal weights:
as will be discussed in Section 7.8, this is a condition for the observability of the
polarization of the mother particle. The diagonal spin densities (i.e. the squared
amplitudes) σG′

M = ρG′
M,M are proportional to those weights, times the probability

|aM |
2 that the decaying state |O 〉 has Jz = M:
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σ+1
M = σ−1

M ∝
1
2
|aM |

2 , σ0
M ∝ |aM |

2 . (7.20)

Substituted in Eq. 7.19, with the normalization |a−1|
2 + |a0|

2 + |a+1|
2 = 1, these give

λϑ = −
1 − 3 |a0|

2

3 − |a0|
2 . (7.21)

This is the polar anisotropy of the J/ψ (or photon) emission direction in the χc1
rest frame, equal (as already seen in Section 6.6) to −1/3, 0 and +1 when, respec-
tively, |a0|

2 = 0, 1/3 and 1, while values of λϑ smaller than −1/3 or larger than
+1 are forbidden. Repeating the exercise for the decay where the emitted photon
is virtual (as in the case χc1 → J/ψ γ∗), this time including in the count, therefore,
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Fig. 7.3 A longitudinally (top panels) or transversely (bottom panels) polarized vector particle O
produces two different decay angular distributions when it decays into a J = 0 meson and its
antimeson (left panels) or into a lepton-antilepton pair (right panels).

the K′ = 0 term, we can see that now the three cases, G′ = −1, 0 and +1, are
equiprobable and, for any M, the anisotropy parameters are zero: the J/ψ is emitted
isotropically in the χc rest frame, independently of the χc polarization. This confirms
the result found, with a different method, in Section 6.8.

It is interesting to consider the case where the two final particles have both spin
J = 0, illustrated by the left drawings of Fig. 7.3. This example is “complementary”
to the dilepton one (shown in the right drawings of the same figure): the Jz′ projec-
tion G′ = 0 of the final system is not only allowed, but is now the only physical
possibility, given that the relative orbital component I = 1, required by angular mo-
mentum conservation, has zero projection along the common direction of two back-
to-back products. The maximum allowed domain is not different from the general
case shown in blue in Fig. 7.2, except that the parity-violating asymmetries Aϑ, Aϕ,
and A⊥ϕ must always vanish, for the same reason why Aϑ can only be zero when
the initial state has zero Jz projection (Sections 1.3 and 1.4): the squared matrix
element (d1

M,0)2, just like (d1
0,G′ )

2, is a function of only the parity conserving expres-
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sion cos2 ϑ (Table 7.3). Relevant physical cases include, for example, the decays
ρ(770)±,0 → π±π0 / π+π−, φ(1020)→ K+K−, and Υ(4S)→ BB [5].

The particles ρ(770), φ(1020), and Υ(4S) also decay to dileptons and it is inter-
esting to compare the shapes of the angular distributions of two decay channels. The
decay into a pair of J = 0 mesons gives an interesting illustration of the seemingly
strange fact that, as seen in Fig. 7.2, λϑ (and therefore |λϑϕ|) can assume values larger
than +1. Actually, λϑ even tends to +∞ when the spin density matrix element ρ0

0,0
dominates over all others, given that, as seen in Eq. 7.19, it is the only element not
appearing in the denominator (or constant factor) D, which therefore tends to van-
ish. This limit corresponds to the hypothetical case when the vector particle ρ(770),
φ(1020), orΥ(4S) is produced longitudinally polarized (M = 0) in the chosen frame.
Equations 7.18 and 7.19 are then simply replaced by

W(cosϑ, ϕ) =
3

4π
cos2 ϑ , (7.22)

a shape very different from the one of the dilepton decay distribution (where, for
any λϑ, a significant fraction of events is emitted at around cosϑ = 0) and in partic-
ular, as shown in Fig. 7.3-a, from the one of the dilepton decay of a longitudinally
polarized vector particle, which is ∝ 1 − cos2 ϑ (Fig. 7.3-b).

In the case of transverse polarization the roles are inverted: in the di-meson decay,
when only the ρ0

M,N matrix elements with M,N = ±1 are nonzero λϑ assumes the
maximum possible negative value, −1 (Fig. 7.3-c), while λϑ = +1 in the dilepton
decay, where the nonzero elements are ρ±1

M,N (Fig. 7.3-d). For example, the Υ(4S)
resonance is produced transversely polarized in e+e− colliders because of helicity
conservation in the coupling between the colliding leptons and the intermediate vir-
tual photon; Fig. 7.3-c represents, therefore, the distribution of the emission direc-
tions of the B and B mesons with respect to the direction, z, of the beams.

A further example leading to this distribution shape is represented by the decays
of ρ and φ mesons to pion or kaon pairs, when the ρ and φ are produced (always
transversely polarized) in the radiative decays H → ρ γ or H → φ γ; in this case
the natural axis with respect to which λϑ = −1 is the meson direction in the H rest
frame (cHX frame).

7.5 Polar anisotropy of the J = 2 two-body decay distribution

Expanding Eq. 7.15 and reordering the result according to Eq. 7.17, we obtain the
polar projection of the two-body decay distribution of a J = 2 particle, described by
four independent parameters:

λ1 = 4 (β22 − 2 β11 + 4 β12) /D ,

λ2 = 6 (α22 − α00 − 2α02 − 2α11 + 4α01) /D ,
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λ3 = 4 (β22 + 4 β11 − 4 β12) /D , (7.23)

λ4 = (α22 + 9α00 + 6α02 + 16α11 − 24α01 − 8α12) /D ,

with D = α22 + α00 + 6α02 + 4α11 + 8α12 ,

and

αi, j = σ
j
i + σi

j + σ
− j
−i + σ−i

− j + σ
− j
i + σi

− j + σ
j
−i + σ−i

j

βi, j = σ
j
i + σi

j + σ
− j
−i + σ−i

− j −
(
σ
− j
i + σi

− j + σ
j
−i + σ−i

j

)
.

(7.24)

Given the, respectively, symmetric and antisymmetric definitions of αi, j and
βi, j by exchange between initial- and final-state helicities, λ2 and λ4 are parity-
conserving, while λ1 and λ3 are parity-violating.

As a simple application of these relations, along the line of the previous section,
where we considered the radiative χc1 or Z decays to J/ψ, we examine here the
analogous decay χc2 → J/ψ γ, where now | χc2〉 =

∑+2
M=−2 aM | 2, M〉. The relevant

weights in Table 6.2 are 1, 1, 1/2, 1/2, and 1/6 + 1/6 = 1/3, respectively for the
J/ψ γ configurations G′ = L′ + K′ = +2, −2, +1, −1, and 0. Therefore,

σ+2
M = σ−2

M ∝ |aM |
2 , σ+1

M = σ−1
M ∝

1
2
|aM |

2 , σ0
M ∝

1
3
|aM |

2 , (7.25)

and Eq. 7.23 gives, after some algebra, the polar anisotropy of the J/ψ emission in
the χc2 rest frame:

λ2 =

3
[

2
(
|a+2|

2 |a−2|
2
)
−

(
|a+1|

2 |a−1|
2
)
− 2 |a0|

2
]

6
(
|a+2|

2 |a−2|
2
)

+ 9
(
|a+1|

2 |a−1|
2
)

+ 10 |a0|
2
,

λ1 = λ3 = λ4 = 0 .

(7.26)

The parameter λ2 has values between −3/5 and +1, being equal to −3/5, −1/3,
and +1 when the χc2 is produced with the respective Jz projections M = 0, ±1,
and ±2, as already found in Section 6.6. When the emitted photon is virtual (χc2 →

J/ψ γ∗) and the cases with K′ = 0 are allowed, the same procedure leads to the fully
isotropic and polarization-independent result λ1 = λ2 = λ3 = λ4 = 0, as in the χc1
case and as already found in Section 6.8.

The physical domain of parameter space depends on the type of decay products
and on the production mechanism; some examples are shown in Figs. 7.4 and 7.5.
The grey contours in both figures represent the allowed regions including all pos-
sible physical cases: they reflect only angular momentum conservation and rotation
invariance, which shape the general dependences of the parameters λi on the dif-
ferent process amplitudes, as described by Eq. 7.23. The more restricted, coloured
areas represent specific physics hypotheses.
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Fig. 7.4 Allowed parameter regions of the polar projection of the two-body decay distribution of
a J = 2 particle O. The largest areas (grey) represent the most general domain. The intermediate
areas (red+blue) represent any of two equivalent cases: O decays into two real photons; O is pro-
duced alone from the scattering of two real gluons (and the measurement is made in the CS frame).
The smallest areas (blue) represent the case where both hypotheses are satisfied. There is no upper
bound on λ2 and no lower bound on λ4.

The union of the blue and red areas in Fig. 7.4 corresponds to the case where the
decay products are two real photons, a condition translating into σ±1

M = 0 for any
M, given that G′ = ±1 would mean that one of the two photons is not transversely
polarized. Known J = 2 particles seen in the photon-photon channel are, for exam-
ple, a2(1320), a2(1700), η2(1870), and X(3915), the latter with spin assignment still
uncertain between J = 0 and J = 2 [5].

Given the symmetry of the equations in Eq. 7.23, in particular the properties of
αi, j and βi, j (Eq. 7.24) by exchange of the i and j indices, identical contours (blue
plus red) are obtained by reversing the role of initial and final states, forbidding this
time that the decaying particle is produced in the M = ±1 state (σG′

±1 = 0 for any G′).
This corresponds, for example, to the production via scattering of two real gluons
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Fig. 7.5 Allowed parameter regions of the polar projection of the two-body decay distribution of
a J = 2 particle O. The largest areas (grey) represent the most general domain. The intermediate
areas (red+blue+orange) represent the case in which O decays into two J = 1/2 fermions. The blue
areas correspond to the hypothesis that O is produced alone from the scattering of two real gluons
and decays into two J = 1/2 fermions, for measurements made in the CS frame; alternatively,
they describe the decay into two J = 0 particles. The orange areas refer to the G′ = ±1 case, for
example a decay into J = 0 particle plus photon. There is no upper bound on λ2 and no lower
bound on λ4.

in 2 → 1 processes (that is, with no recoiling particle); in this case, however, the
contours refer only to a measurement where the polarization axis is chosen along
the scattering direction of the gluons (CS frame).

When either the elementary production process is initiated by two identical par-
ticles or the decay products are two identical particles, the parity-violating terms λ1
and λ3 obviously vanish, resulting in simple lines or dots as allowed regions in the
two-dimensional projected domains. The smallest, blue areas show the case when
both of these hypotheses apply: the particle is produced in gluon-gluon fusion and
decays into two photons.
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This intersection is particularly interesting in the search for unknown boson res-
onances of mass, m, higher than the mass of any known particle, as discussed in
the next section; in fact, such objects would be observed in the domain of very low
pT/m values, where the presence of a recoiling particle is not necessary nor prob-
able. The di-photon decay represented, for example, the discovery channel of the
Higgs boson.

Hypotheses on the properties of the fundamental couplings involved can, ob-
viously, further restrict the allowed regions or even fix the values of the λi pa-
rameters. For example, considering the gluon-gluon to photon-photon case (where
λ1 = λ3 = 0), the hypothesis of a graviton-like J = 2 particle interacting with
SM bosons with no helicity flip [6] (corresponding to the additional conditions
σG′

0 = σ0
M = 0 for any G′ and M: overall, only G′ = ±2 and M = ±2 are al-

lowed) leads to λ2 = 6 and λ4 = 1, the rightmost vertex of the blue triangle in the
λ2–λ4 plane.

Further examples are shown in Fig. 7.5. Here the intermediate areas, in colour
(union of blue, red, and orange), represent the case in which the particle decays into
two J = 1/2 fermions, but with no assumption of helicity conservation, therefore
only forbidding the G′ = ±2 projection: σ±2

M = 0.
The blue areas (blue plus orange in the λ4 vs. λ2 case) are obtained by, addition-

ally, imposing that also the G′ = ±1 component is absent, σ±1
M = σ±2

M = 0: this case
corresponds, for example, to decays into two J = 0 particles, as in the decays of
a2(1320) and a2(1700) to ηπ or KK [5].

Because of the symmetry of these conditions by exchange of final and initial
state, as mentioned above, the same blue contours also refer to the joint requirement
that the particle is produced alone from the scattering of two real gluons (suppres-
sion of M = ±1, in the CS frame) and decays into two J = 1/2 fermions, so that
σG′
±1 = σ±2

M = 0.
The orange areas describe the case of a decay to a final state having always Jz′

projection G′ = ±1. This happens, for example, if the daughters are a J = 0 particle
and a photon, as in the decay a2(1320)→ π±γ [5].

Figure 7.6 shows the shapes assumed by the angular distribution for the different
combinations of initial and final state angular momentum projections, in the parity-
conserving case (λ1 = λ3 = 0). Only the examples with |G′| ≤ |M| are drawn:
the remaining ones are related to these through the above-mentioned symmetry by
exchange of M with G′.

Parity violation is possible in three out of the six distinct cases shown in Fig. 7.6.
The parity asymmetry is parametrized by the amplitude combinations β11, β12 and
β22 in Eq. 7.23: whenever the initial or final state have zero Jz or J′z projections, λ1
and λ3 vanish. The corresponding distributions are shown in Fig. 7.7 for the two
maximal and opposite asymmetry effects.

The anisotropy parameters corresponding to the shapes shown in Figs. 7.6
and 7.7 are indicated on the λ2 − λ4 and λ1 − λ3 maps of Fig. 7.8. The Grail-shaped
distribution defined by M = ±1,G′ = 0 (or vice-versa) represents the asymptotic
vertex of the domain area at λ2 → +∞, λ4 → −∞, where w(cosϑ) ∝ cos2 ϑ sin2 ϑ.
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Fig. 7.6 Shapes of the angular distributions of the parity-conserving two-body decay O → X1X2
of a J = 2 particle, for all combinations of angular momentum projections of O along z (M) and
of the X1X2 system along z′ (G′). Off-diagonal combinations with |G′| > M, here omitted, can be
obtained by exchanging M with G′.

7.6 Case study: spin characterization of a heavy di-photon
resonance

The above-mentioned graviton hypothesis was one of the several models considered
as possible interpretations of the “Higgs-like” resonance observed by the ATLAS
and CMS experiments [7, 8], before its definitive identification. We will now exam-
ine this latter physical example as an illustration of how the determination of the
shape of the decay distribution can lead, with minimal assumptions, to the charac-
terization of an unknown particle.
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Fig. 7.7 Shapes of the angular distributions of the maximally parity violating two-body decay
O → X1X2 of a J = 2 particle, for the three relevant combinations (rows) of angular momentum
projections of O along z (M) and of the X1X2 system along z′ (G′), and for the two opposite signs
of the effect (columns).

As a first step in the determination of the angular momentum quantum number
of the hypothetical new resonance, it is interesting to note that a particle assumed
to be produced with no recoil from the fusion of two real gluons and decaying into
two real photons always produces a significant polar anisotropy (λi , 0 for some i)
with respect to the scattering direction of the gluons, except, obviously, in the J = 0
case, corresponding to H→ γγ.



7.6 Case study: spin characterization of a heavy di-photon resonance 265

4λ

-10

-5

0

5

10

2λ
-5 0 5 10 15

1λ
-4 -2 0 2 4

-4

-2

0

2

4

3λ

2 +

4

Fig. 7.8 The (λ2, λ4) and (λ1, λ3) coordinates of the polarization examples shown in Figs. 7.6
and 7.7.

This effect is seen in Fig. 7.4 for the J = 2 case, being λ4 always ≥ 1. It can,
moreover, be generalized to other J values. The J = 1 case is excluded by the
Landau–Yang theorem [9, 10], stating that a J = 1 particle cannot decay into two
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real (transversely polarized) photons (nor, equivalently, be produced alone by two
transversely polarized gluons). Let us consider then J = 3 and J = 4.

The polar projection of the di-photon decay distribution of a J = 3 particle pro-
duced by gluon-gluon fusion is described by the parameters

λ2 = 3 (3α00 + 10α02 − 5α22) /D ,

λ4 = 10 (−3α00 − 6α02 + α22) /D ,

λ6 = (25α00 + 30α02 + 9α22) /D ,

(7.27)

with D = 4α22 and αi j defined as in Eq. 7.24.
The corresponding J = 4 decay parameters are

λ2 = 4 (−45α00 − 160α02 + 52α22) /D ,

λ4 = 10 (111α00 + 312α02 − 32α22) /D ,

λ6 = −140 (15α00 + 32α02 + 4α22) /D ,

λ8 = 49 (25α00 + 40α02 + 16α22) /D ,

with D = 9α00 + 40α02 + 16α22 .

(7.28)

In both cases the parity-violating λi parameters (odd i) vanish. The parameter
domains for J = 2, 3 and 4 in the CS frame are shown in Fig. 7.9. The minimum
distance from the origin (λi = 0 for any i, corresponding to J = 0) increases from
J = 2 to J = 3 to J = 4 and, in general, should increase with J, reflecting the
higher level of relative polarization represented by the limitation of the initial- and
final-state helicities to M = 0,±2 and G′ = 0,±2: the larger is the modulus of J, the
more of its projections become forbidden (for example, ±3 in the J = 3 case, ±3
and ±4 in the J = 4 case, etc.).

It is interesting to note that, as shown in Fig. 7.10, the three domains have no
intersections between them and also not with the J = 0 point (λi = 0 for any i).
Therefore, a sufficiently-precise measurement of the di-photon decay distribution
can provide an unambiguous spin characterization, independent of further specific
hypotheses on the identity of the particle and how it is produced and interacts.

Figure 7.11 illustrates the dependence of the observable cosϑ distribution on J,
for the J = 2, 3 and 4 cases. The curves were obtained by scanning the (respectively,
two-, three- and four-dimensional) physical domains of the λi parameters.

A more immediate geometrical illustration of the J dependence of the angular
distribution is given by Fig. 7.12, for each of the three allowed combinations of
gluon-gluon and photon-photon polarizations: (M = 0,G′ = 0), (M = ±2,G′ = 0)
(or vice-versa), and (M = ±2,G′ = ±2). The recognizable shape differences seen in
these figures show that it is always possible to unambiguously resolve the value of
J between the three options.

The experimental precision needed to achieve a significant discrimination obvi-
ously depends on J and on the actual values of the polarization parameters, that is,



7.6 Case study: spin characterization of a heavy di-photon resonance 267

4λ

-50

0

50

100

J = 2

J = 3

J = 4

6λ

-200

-100

0

2λ
-20 0 20

4λ
-50 0 50 100

6λ
-200 -100 0

8λ

0

50

100

Fig. 7.9 Allowed regions for the polar anisotropy parameters (in the CS frame) of the decay dis-
tribution of a particle produced by gluon-gluon fusion and decaying into two photons. The three
different shades indicate, from darkest (blue) to lightest (grey), the J = 2, 3 and 4 cases. In the
J = 3 case there are no upper bounds on λ2 and λ6 and no lower bound on λ4.

2λ
-20 0 20

4λ

-50

0

50

100

2λ
-4 0 4 8

4

-10

-5

0

5
λ

J = 4

J = 3

J = 2
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on the identity of the particle. Figure 7.10 includes two ellipses representing putative
measurements of different uncertainties. Both include the origin λ2 = λ4 = 0, which
corresponds to the isotropic distribution that only a J = 0 particle can yield if pro-
duced by gluon-gluon fusion. The larger experimental contour excludes the λ2 = 6,
λ4 = 1 point, eliminating the hypothesis that the decaying boson is a graviton-like
J = 2 particle of the kind mentioned above. However, it does not rule out hypothet-
ical J = 2 (or even J = 3) boson identities corresponding to the smallest values that
λ2 and λ4 can have for those angular momentum values. The inner ellipse illustrates
another hypothetical measurement, sufficiently precise to exclude the full J = 2 and
J = 3 domains, thereby leading to the model-independent spin characterization of a
J = 0 particle.
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7.7 Decay distributions of half-integer spin particles

Expanding Eq. 7.12 for J = 1/2, we find that the most general distribution is

W(cosϑ, ϕ) =
1

4π
(1 + νϑ cosϑ

+ νϕ sinϑ cosϕ (7.29)

+ ν⊥ϕ sinϑ sinϕ) ,

with
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(7.30)

The three parameters measure differences between yields characterized by a
given spin orientation of the final state and those with the opposite spin orienta-
tion, with respect to a given initial state configuration. They clearly represent parity
asymmetries. In fact only parity-violating decays show anisotropic decay distribu-
tions. This is the case, for example, of the decays of the top quark into a W boson
and a b quark, and of the Λ hyperon into a proton and a pion.

The decay anisotropy due to parity violation is measurable only if the particle is
also produced polarized, with its spin preferentially aligned along a certain “posi-
tive” or “negative” direction in the chosen polarization frame; if this does not hap-
pen, the decay angles cannot be referred to a reference direction maintaining con-
sistent orientation event after event and the corresponding parity violation becomes
unobservable. In fact, each anisotropy parameter can be thought as the product of
two parameters, one expressing the polarization induced by the production mecha-
nism, the other being the parity-violating asymmetry of the decay, and it is nonzero
only when both are.

For example, the top quark seemingly decays almost isotropically in tt̄ produc-
tion [11, 12], because of lack of the polarization of the corresponding QCD produc-
tion mechanism; however, its intrinsic left-handed nature is revealed with significant
decay anisotropies in single-t events [13], where it is produced polarized.

The polarization of the Λ is an exception to the rule that the natural polarization
axis tends to stay, at least on average, inside the production plane. In fact, since
the mid-1970’s fixed-target experiments have been showing [14] that the polariza-
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Fig. 7.13 Allowed parameter regions of the two-body decay distribution of a J = 1/2 particle.

tion is largest along a quantization axis perpendicular to the production plane. The
implications of this unexpected observation on the underlying QCD mechanisms,
which must confer a polarization to the s quark, have been the subject of several
experimental and theoretical studies [15], but the question is still open. It remains
true that in symmetric collisions and in the limit of zero longitudinal momentum (xF
or y) the anisotropy along such axis vanishes, as confirmed by the small polarization
measured by the ALICE experiment at the LHC [16].

The physically allowed domain of the ν parameters, shown in Fig. 7.13 in its
three projections, is simply a sphere defined by the relation

ν̃ =

√
ν2
ϑ

+ ν2
ϕ + ν⊥2

ϕ ≤ 1 . (7.31)

It is easy to recognize that, under a generic rotation of the polarization frame
Rz(ω) Ry(ζ) Rz(ψ) (see Section 2.15), the parameters νϑ, νϕ, and ν⊥ϕ simply transform
according to the same rotation as the vector (z, x, y):
ν′ϑ

ν′ϕ

ν⊥′ϕ

 =


cos ζ sin ζ cosψ sin ζ sinψ

− sin ζ cosω cos ζ cosω cosψ − sinω sinψ cos ζ cosω sinψ + sinω cosψ

sin ζ sinω − cos ζ sinω cosψ − cosω sinψ − cos ζ sinω sinψ + cosω cosψ



νϑ

νϕ

ν⊥ϕ

 .
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Fig. 7.14 Shape of the decay distribution of a J = 1/2 particle produced fully polarized and
decaying with maximum parity asymmetry along the chosen z axis, when the initial and final states
have same-sign (left) or opposite-sign (right) projections M and G′.

The rotation preserves ν̃, which, therefore, represents the maximum measurable
value of the asymmetry νϑ along any chosen reference axis z and is obviously in-
variant for any frame transformation, while νϑ, νϕ and ν⊥ϕ are themselves invariant
by rotations around, respectively, the z, x and y axes.

Another way of expressing these considerations on the rotational property of the
distribution is that the three angular expressions cosϑ, sinϑ cosϕ and sinϑ sinϕ
entering Eq. 7.29 are equal, respectively, to the direction cosines cos θz, cos θx and
cos θy. It is an option for the experimental analysis to consider, in fact, the three
one-dimensional distributions of these variables, which have the form w(cos θz) ∝
1 + νϑ cos θz, etc., and yield the three parameters νϑ, νϕ and ν⊥ϕ individually, even if
with statistical correlations more difficult to be accounted for, since the number of
independent angular degrees of freedom remains only two.

Figure 7.14 shows the shape of the distribution in the extreme cases when the
production and decay asymmetries are (for best visualization) maximum along the
chosen axis, that is, w(cosϑ) = 1

2 (1 ± cosϑ).
We finally report the expressions for the polar anisotropy parameters of the decay

of a J = 3/2 particle:

λ1 =
(
−5β 1

2
1
2

+ 3β 3
2

3
2

+ 6β 1
2

3
2

)
/D ,

λ2 =
(
3α 1

2
1
2

+ 3α 3
2

3
2
− 6α 1

2
3
2

)
/D , (7.32)

λ3 =
(
9β 1

2
1
2

+ β 3
2

3
2
− 6β 1

2
3
2

)
/D ,

with D = α 1
2

1
2

+ α 3
2

3
2

+ 6α 1
2

3
2
,
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Fig. 7.15 Allowed parameter regions for the polar anisotropy parameters of the two-body decay
distribution of a J = 3/2 particle. The largest areas (grey) represent the most general domain while
the inner areas (red) represent the case of the decay into a system having G′ projection ±1/2, as in
the proton–pion and proton–kaon channels.

where αi j and βi j are the parity-conserving and parity-violating amplitude combi-
nations defined in Eq. 7.24. The most general domain of these parameters is repre-
sented by the grey areas in Fig. 7.15, while the smaller red areas refer to the decay
where G′ = ±1/2, corresponding for example to the decays of the J = 3/2 N, ∆,
and Λ baryons into proton–pion and proton–kaon, and of the Ω to Λ–kaon [5].

While the decay of a J = 1/2 particle is always isotropic in the absence of parity-
violating effects, this is not true for the J = 3/2 case, where the angular distribution
in the parity-conserving case has the form ∝ 1+λ2 cos2 ϑ, with λ2 included between
−1 and +3.

The shapes assumed by the distribution for all combinations of natural polar-
izations of the initial state (along z) and of the final state (along z′) are shown in
Fig. 7.16. The first two columns refer to the maximally parity-violating cases where
initial- and final- state helicities have, respectively, always the same or always oppo-
site signs, while the third column shows the parity-conserving distributions where
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Fig. 7.16 Shape of the angular distribution produced by a J = 3/2 particle in a pure Jz state (M)
decaying into a two-body system being a pure Jz′ state (G′); the colums represent, respectively, the
two maximally and oppositely parity-violating cases and the parity-conserving case.

the signs of the helicities are uncorrelated. The (λ1, λ2, λ3) values corresponding to
these shapes are shown in Fig. 7.17.

7.8 When “polarized” and “anisotropic” are seemingly not
equivalent

After seeing expressions of the angular distribution parameters for generic decay
channels, we can discuss the relation between the concepts of “particle polariza-
tion” and “decay anisotropy” in a more complete way, with respect to what was
possible by examining the dilepton decay case in the previous chapters. Referring
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in particular to the J = 1 case (Eq. 7.19), we now see a general feature: even con-
sidering one individual production process, where the particle is fully polarized, for
example in the (longitudinal) Jz = 0 state (that is, the matrix elements ρG′

0,0 are the
only nonzero ones), if the final state can have G′ = −1, 0, or +1 with identical
probabilities (ρ−1

0,0 = ρ0
0,0 = ρ+1

0,0), then the distribution appears to be isotropic. The
same result can be seen for any other angular momentum configuration of the initial
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particle, being, for example, λϑ a sum of terms of the kind ρ+1
M,M + ρ−1

M,M − 2ρ0
M,M .

In other words and more generally, the polarization of the decaying particle is ob-
servable through a measurable anisotropy of its two-body decay distribution only
if also the final state is “polarized”, being a superposition of Jz′ eigenstates with
unequal weights. This is a completely general condition, satisfied, for example, also
by the expressions of the polar anisotropy parameters of the distribution for a J = 2
particle (Eq. 7.23): all λi coefficients can be seen to vanish when it is imposed that
σ

j
i = σk

i for any i, j, and k. As we already mentioned in Section 7.7, each anisotropy
parameter of the J = 1/2 decay reflects the product of initial state polarization and
partity-violating decay asymmetry.

It remains true that a J = 1 particle is always produced intrinsically polarized,
in the sense defined by Theorem 1.1, presented in Section 1.10: in every individual
event it has always angular projection M = ±1 along some direction. As we have
seen in Chapters 5 and 6, smearing effects, happening when that direction changes
event after event with respect to the chosen reference frame, can attenuate or even
completely hide the natural polarization. Assuming that none of such effects is at
play here, there is a general condition for the observability of the polarization of a
particle in its two-body decay: the final state must have a non-uniform pattern of
spin orientations G′, effectively providing the “analyzing power” of the decay. This
is what usually happens, as seen in the examples considered, thanks to either the
coupling properties of the involved particles (as helicity conservation in the dilepton
decay) or simply because of angular momentum conservation, which often forbids
certain Jz′ configurations of the final state.

Concerning the latter case, we have seen, in the previous sections, examples
where the polarization becomes observable because J1 + J2 < J. Another possi-
bility is that one of the decay particles has a definite polarization, as in the case of
the transverse photon.

This fact is well illustrated by the already noticed difference between the angular
distributions of the decays χcJ → J/ψ γ and χcJ → J/ψ γ∗. In the first decay the
emitted photon is real and transverse. Its Jz′ projection (Fig. 6.32), which can only
be ±1, rules out, because of angular momentum conservation, certain Jz′ projections
of the J/ψ, which is, therefore, polarized. Above all, the J/ψ γ system is polarized,
that is, the values of its total Jz′ projection, G′ = L′ + K′ = −J, . . . ,+J, are not
equally probable, leading, as seen in Sections 7.4 (χc1) and 7.5 (χc2), to anisotropic
χc decay distributions with shapes univocally correlated to the polarization.

When, instead, the photon is virtual, there is no constraint on its polarization
and these J → (J = 1) + (J = 1) transitions become a “natural” illustration of the
angular momentum addition rule J = 1⊕1, where all possible G′ combinations of the
decay system compatible with |G′| ≤ J participate with equal weights, without any
restriction imposed by the physical interaction driving the decay. This “unpolarized”
final state does not provide any analyzing power for the determination of the mother
particle’s polarization. The J/ψ is, hence, emitted isotropically in the χc polarization
frame, leading to the seemingly paradoxical case where the measurement of the
two-body decay angular distribution is blind to the polarization state of the decaying
particle.
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The solution of the paradox is that this conclusion is true only when the measure-
ment ignores the information contained in the subsequent decays of the final-state
particles. A suitable analysis of the shapes of their own decay angular distributions
will provide the necessary analyzing power.

The full information on the χc polarization state remains available in the higher-
dimensional distribution of the cascade process χcJ → J/ψ γ∗, J/ψ → `+`−, γ∗ →
`+`−, determinable either in the frame (cHX) defined in Fig. 6.1 or in the one (CC)
defined with the alternative J/ψ polarization axes of Fig. 6.3. Exploiting the full
dimensionality of the process with its underlying variable correlations is always
beneficial, also from the experimental point of view, since it minimizes the risks of
analysis biases, presented by the blind integration over physical degrees of freedom
(as we have seen in Section 2.13). In this case, however, as seen in Section 6.8,
with the choice of the CC frame the anisotropy of the J/ψ dilepton decay alone, after
integration over the angles of the χc decay, is fully sensitive to the χc polarization.
Moreover, with the same axis definition, the dilepton distribution produced by the
virtual photon is identical to the J/ψ one and carries a further “duplicate” of the χc

polarization information.

7.9 Recapitulation

In the calculation of a decay angular distribution, the functional dependence on
the decay angles is determined by the elements of the Wigner matrix, DJ

LL′ , cor-
responding to the total angular momentum J of the decaying particle O. In the
considered case of a two-body decay, the matrix transforms the angular momen-
tum projection (L′) of the final state, as defined along the common direction, z′, of
the decay products X1 and X2 in the O rest frame, into the projection (L) on the
quantization axis z chosen for O (Fig. 7.1-right), allowing us to impose the conser-
vation Jz(X1 + X2) = Jz(O). Section 7.1 describes the Wigner matrices in a form
suitable for these calculations, which depends on the two spherical angles ϑ and
ϕ defining the relative orientations of z′ and z. The dependence is factorized as
DJ

LL′ (ϑ, ϕ) = exp[−i(L − L′)ϕ] dJ
LL′ (ϑ), with the “reduced” elements dJ

LL′ (ϑ) de-
fined in Eq. 7.3. Explicit analytical expressions of the reduced matrix elements for
J between 1/2 and 4 are given in Tables 7.1–7.6.

The decay amplitude is a linear combination of Wigner matrix elements (Eqs. 7.6
and 7.7); the coefficients, AM,G′1,G

′
2
, are complex amplitudes representing the dy-

namics of both the production and the decay of O (Fig. 7.1-left). In fact they ex-
press, on one hand, the probability of a given Jz projection, M, of O, that is, the
polarization that O inherited in the production process. On the other hand, they re-
flect the properties of the final states X1 and X2, as well as of their coupling to O, by
representing the probabilities of their possible Jz′ projections, G′1 and G′2.

The general expression of the angular distribution, squared modulus of the am-
plitude (Eq. 7.12), depends linearly on the “spin” density matrix elements ρG′

M,M ,
defined in Eq. 7.13 as the sum of all relevant products between an amplitude and a
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complex-conjugate amplitude, also averaged over all possible contributing mecha-
nisms.

The polar projection of the distribution (Eq. 7.15), depending only on the di-
agonal (and real) density matrix elements σG′

M ≡ ρG′
M,M (Eq. 7.16), is a polynomial

of order 2J in cosϑ and its 2J observable parameters are certainly much easier to
handle in a measurement than those of the full distribution, which, for example, for
J = 2 are 24 instead of 4.

The most general decay distribution of a J = 1 particle into any two-body final
state (Eq. 7.18) is formally the same as for the dilepton decay of a vector parti-
cle (Eq. 1.29), depending on eight observable parameters, three of which parity-
violating and two more vanishing in inclusive observations. The difference is in the
dependence on the amplitudes (Eq. 7.19): the dilepton (helicity-conserving) case
(Eq. 1.28) corresponds to setting the density matrix elements ρ0

M,M to zero. The al-
lowed parameter space is, therefore, different (Fig. 7.2). For a given initial particle
and polarization (M), the angular distributions of the decays into dilepton and into,
for example, two J = 0 particles are as different as they could be, as shown by the
comparison made in Fig. 7.3, which applies, for example, to the decaysΥ(4S)→ BB
and Υ(4S)→ `+`−.

Further examples of how the distribution changes for different final state parti-
cles and, also, for different production channels (which determine different possible
polarizations of O) are given in Section 7.5 for the J = 2 case, considering, for
simplicity, only the polar component, that is, the pure Jz eigenstates of the decay-
ing particle (Fig. 7.6), and maximal parity violation effects (Fig. 7.7). Section 7.6
illustrates, with an example, how the identity of the production and decay channels
strongly constrains the allowed shapes of the decay distributions. In particular, an
unidentified particle produced by gluon-gluon fusion and decaying into two pho-
tons can be characterized with a measurement of its decay distribution without the
need of injecting further theoretical hypotheses on it production mechanism. The
allowed physical domains of the J = 0, 2, 3, and 4 cases (J = 1 being excluded
by the Landau–Yang theorem) are disjointed from one another and can be experi-
mentally discriminated (Fig. 7.10). In fact, the shapes of the distributions have char-
acteristic differences, essentially in the number of changes of sign of the derivative
of the cosϑ distribution (Fig 7.11), that is, in the number of “lobes” of the three-
dimensional shape (Fig. 7.12). Clearly, more specific hypotheses, completely fixing
the polarization of the produced particle, can be tested and rejected with higher sig-
nificance, since they correspond to one point, instead of a region, in the parameter
domain and to one of the possible curves or shapes seen in those figures.

The decays of half-integer spin particles are briefly illustrated in Section 7.7. In
particular, in the J = 1/2 case the cosϑ, ϕ distribution (Eq. 7.29) is either isotropic
or parity-violating, that is, its three parameters are asymmetries (Eq. 7.30), van-
ishing when either the production mechanism or the decay are parity-conserving.
Instead, for the J = 3/2 distribution, parity-conserving but strongly anisotropic
physical cases exist, where it assumes the form 1 + λ2 cos2 ϑ, with λ2 = −1 for
|M| = 1/2 and |G′| = 3/2, or vice-versa, and λ2 = +3 for |M| = |G′| = 3/2 or 1/2
(Figs. 7.16 and 7.17).
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We saw in the previous chapter that an intrinsically polarized vector particle can
appear as unpolarized if it is produced in the decay of a J = 0 state and the existence
of this first decay step is ignored in the analysis. The natural polarization of the
vector particle can, however, at least in principle, be measured, by reconstructing
the two-step decay chain in its full dimensionality. In this chapter we have provided
a further example of how an isotropic decay distribution can be observed even if the
particle is naturally polarized.

A common feature recognizable in all formulas expressing the shape parameters
of the two-body decay distribution as functions of the spin density matrix elements is
that, for any J, a fully isotropic distribution is obtained not only when O is produced
as an identical mixture of Jz = −J, . . . ,+J states, but also (alternatively) when all Jz′

projections of the system of the decay products are equally probable. In other words,
even if the decaying particle is polarized, the resulting two-body angular distribution
will appear as isotropic if the final state is “unpolarized”, and the polarization of O
will seemingly be unobservable. This is a fairly rare occurrence, since the presence
of leptons, real photons or J = 0 particles in the final state is generally sufficient to
provide the X1 + X2 system with its required “polarization”.

As concrete example we considered the decays χcJ → J/ψ γ∗, where a measure-
ment of the J/ψ emission angles in the χcJ rest frame always yields an isotropic
result, irrespectively of the χcJ polarization. As in the case of the cascade decay
from a J = 0 particle, it is actually always possible to perform an experiment that
will determine the particle’s polarization, by recovering neglected dimensions in the
problem. In this case, such dimensions are those of the subsequent step in the de-
cay: the angular analysis of the decays of X1 and X2, considering correlations with
the O → X1X2 distribution, will necessarily reveal the polarization of O, provided
that X1 and/or X2 decay into “polarized” final states. This is the case of the consid-
ered example, where the J/ψ and γ∗ produce lepton pairs having angular momentum
projections ±1 along their own directions in the J/ψ and γ∗ rest frames, because of
helicity conservation. Otherwise, the analysis of the cascade should, hypothetically,
be further extended to subsequent decay steps.
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Appendix A
Alternative parametrization of the dilepton
decay distribution

The angular distribution of the dilepton decay of a vector particle is often parametrized
in the form [1–3]

W(cosϑ, ϕ) ∝ 1 + cos2 ϑ +
A0

2
(1 − 3 cos2 ϑ)

+
A2

2
sin2 ϑ cos 2ϕ + A1 sin 2ϑ cosϕ

+
A5

2
sin2 ϑ sin 2ϕ + A6 sin 2ϑ sinϕ

+ A4 cosϑ + A3 sinϑ cosϕ + A7 sinϑ sinϕ ,

(A.1)

which is equivalent to the expression given in Eq. 1.29, simply replacing its coeffi-
cients by the corresponding Ai versions.

The two alternative sets of coefficients are related to each other according to the
following relations: 

λϑ

λϕ

λϑϕ

λ⊥ϕ

λ⊥ϑϕ

Aϑ

Aϕ

A⊥ϕ



=
1

1 + A0/2



1 − 3 A0/2

A2/2

A1

A5/2

A6

A4/2

A3/2

A7/2



. (A.2)

Inversely, we can compute the Ai parameters from the λ values, using the follow-
ing relations:
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A0/2

A2/2

A1

A5/2

A6

A4/2

A3/2

A7/2



=
4

3 + λϑ



(1 − λϑ)/4

λϕ

λϑϕ

λ⊥ϕ

λ⊥ϑϕ

Aϑ

Aϕ

A⊥ϕ



. (A.3)

The reader should note that we are here considering (and recommending) a mod-
ified version of the parametrization actually used in the previous literature, where
the term sin2 ϑ sin 2ϕ appears with the coefficient A5 (instead of A5/2), introducing a
spurious asymmetry with respect to the term sin2 ϑ cos 2ϕ with its coefficient A2/2.
In the parametrization used throughout this book the corresponding coefficients, λ⊥ϕ
and λϕ, are defined in a symmetric way, reflecting their geometrical analogy. In
fact, these two parameters represent the same kind of geometrical anisotropy of the
distribution, as we have seen in at least two occasions. First, they transform into
one another (in modulus) by a rotation of the reference frame of ±π/4 around the z
axis, as can be seen in Eqs. 2.38 and 2.40. Second, they appear as “homogeneous”
quantities also in the definition of the “3D” invariant polarization of Eq. 5.11.

It is true that the smearing effects of the event averaging in inclusive observa-
tions, which suppress reflection asymmetries with respect to the production plane,
introduce an asymmetry between the effective domains of the parameters λϕ and λ⊥ϕ
(or A2/2 and A5/2), with the latter being reduced in magnitude with respect to its
“natural” value. The appreciation of this effect — of possible interest when parity-
violating effects and/or a polarization of the colliding hadrons prevent the complete
suppression of λ⊥ϕ (and of A5/2) — benefits from a properly symmetric definition.

We also remark the not very helpful ordering of the numerical indices of the
parameters Ai, requiring attention in their identification with the coefficients of the
parity conserving and parity-violating terms of the distribution. Moreover, their def-
initions would be more coherent and practical if some of them were divided by two.
The first relation of Eq. A.3,

A0/2 =
1 − λϑ
3 + λϑ

, (A.4)

shows that A0/2, included between 0 and 1, is the longitudinal polarization fraction
(|a0|

2 in Eq. 3.1), that is, the proportion of events that are longitudinally polarized
in the chosen frame. Figure A.1 shows the shapes of the parameter domain (deter-
mined from Eq. 3.24 using Eq. A.2). We can observe that, except for A0/2, all the
coefficients take values in the range between −1 and +1, if we divide by two the
parameters A2, A5, A4, A3, and A7.
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Fig. A.1 Two-dimensional projections of the allowed domain for the parameters Ai, correspond-
ing, in their order, to those shown in Fig. 3.4 for the parameters λϑ, λϕ, λ⊥ϕ , λϑϕ, λ⊥ϑϕ, Aϑ, Aϕ.

Despite the somewhat counter-intuitive conventions used in the definition of its
coefficients, the Ai parametrization (Eq. A.1) offers several advantages with respect
to “the λ version” (Eq. 1.29).

To start with, the average over concurring production processes follows a linear
addition rule which is, for each individual parameter, independent of all others,

Ai =

∑n
j=1 f ( j)A( j)

i∑n
j=1 f ( j) , (A.5)

contrary to the analogous rule for λ(⊥)
ϑ|ϕ|ϑϕ

and A(⊥)
ϑ|ϕ

(given in Eq. 1.17).
In the determination of the parameters from one-dimensional projections of the

distribution, the coefficients of the azimuthal components no longer depend on the
polar anisotropy parameter (contrary to what happens in Eqs. 1.18, 1.19 and 1.20):
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w(cosϑ) ∝ 1 + cos2 ϑ +
A0

2
(1 − 3 cos2 ϑ) , (A.6)

w(ϕ) ∝ 1 +
A2

4
cos 2ϕ +

A5

4
sin 2ϕ , (A.7)

w(ϕ̃) ∝ 1 +

√
2

4
A1 cos ϕ̃ +

√
2

4
A6 sin ϕ̃ . (A.8)

The same kind of decoupling characterizes the parameter dependences of the
event asymmetries (to be compared with Eq. 1.22),

P(| cosϑ| > 1/2) − P(| cosϑ| < 1/2)
P(| cosϑ| > 1/2) + P(| cosϑ| < 1/2)

=
3
16

(
1 − 3

A0

2

)
,

P(cos 2ϕ > 0) − P(cos 2ϕ < 0)
P(cos 2ϕ > 0) + P(cos 2ϕ < 0)

=
A2

2π
,

P(sin 2ϕ > 0) − P(sin 2ϕ < 0)
P(sin 2ϕ > 0) + P(sin 2ϕ < 0)

=
A5

2π
, (A.9)

P(sin 2ϑ cosϕ > 0) − P(sin 2ϑ cosϕ < 0)
P(sin 2ϑ cosϕ > 0) + P(sin 2ϑ cosϕ < 0)

=
A1

π
,

P(sin 2ϑ sinϕ > 0) − P(sin 2ϑ sinϕ < 0)
P(sin 2ϑ sinϕ > 0) + P(sin 2ϑ sinϕ < 0)

=
A6

π
,

and of the averages of angular combinations (to be compared with Eq. 1.23),

〈 cos2 ϑ 〉 =
1
5

(
2 −

A0

2

)
,

〈 cos 2ϕ 〉 =
1
4

A2

2
,

〈 sin 2ϕ 〉 =
1
4

A5

2
,

〈 sin 2ϑ cosϕ 〉 =
1
5

A1 ,

〈 sin 2ϑ sinϕ 〉 =
1
5

A6 .

(A.10)

As an example of the benefits of dealing with linear and uncorrelated relations,
A0/2, A2/2 and A1 can be determined (in event samples not requiring acceptance
and efficiency corrections or background subtraction) simply as the average values
of suitable variables:
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A0/2 = 〈 2 − 5 cos2 ϑ 〉 ,

A2/2 = 〈 4 cos 2ϕ 〉 ,

A1 = 〈 5 sin 2ϑ cosϕ 〉 .

(A.11)

Also the frame transformations are represented by linear (but not homogeneous)
equations,

A′0/2

A′2/2

A′1
A′5/2

A′6


=



1
2 sin2 δ

1
2 sin2 δ

− 1
2 sin 2δ

0

0


+



1 − 3
2 sin2 δ − 1

2 sin2 δ − 1
2 sin 2δ 0 0

− 3
2 sin2 δ 1 − 1

2 sin2 δ − 1
2 sin 2δ 0 0

3
2 sin 2δ 1

2 sin 2δ cos 2δ 0 0

0 0 0 cos δ − sin δ

0 0 0 sin δ cos δ





A0/2

A2/2

A1

A5/2

A6


(A.12)

and 
A′4/2

A′3/2

A′7/2

 =


cos δ sin δ 0

− sin δ cos δ 0

0 0 1



A4/2

A3/2

A7/2

 , (A.13)

whereas the corresponding transformations of λ(⊥)
ϑ|ϕ|ϑϕ

and A(⊥)
ϑ|ϕ

(Eqs. 2.32 and 2.33)
additionally contain the overall denominator 1 + Λy, itself a function of the param-
eters (Eq. 2.34). Thanks to the absence of that denominator, the Ai transformations
form three completely independent sets, for the groups of parameters (A0, A2, A1),
(A5, A6), and (A4, A3, A7).

In particular, A0 and A2 transform according to the relations

A′0 = A0 + ∆ ,

A′2 = A2 + ∆ ,

with ∆ =

(
1 − 3

A0

2
−

A2

2

)
sin2 δ − A1 sin 2δ ,

(A.14)

immediately showing that A0 − A2 is invariant. In fact, the quantity

A0 − A2

2
= 1 − 2F =

1 − λ̃
3 + λ̃

(A.15)

represents a frame-independent definition of the longitudinal fraction, expressing
the proportion of events where the vector particle is produced longitudinally po-
larized along some direction belonging to the production plane (λ̃ = −1), while
the complementary fraction represents the proportion of “intrinsically” transversely
polarized events (λ̃ = +1).

The frame-independent version of the Lam–Tung relation (Chapter 4) can in fact
be written as
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A0 − A2

2
= 0 , (A.16)

with the meaning that all involved processes are intrinsically fully transverse.
However, we also note that this “frame-independent longitudinal fraction” is, in

the most general case, not a proper fraction of events, since it is included between
−1 and +1. The domain of negative values corresponds to the peculiar physical sce-
narios discussed in Section 5.3, where F > 1/2 and λ̃ > +1, indicating a preferred
orientation of the angular momentum vector along the direction perpendicular to the
production plane.

The quasi-invariant parameters (introduced and discussed in Sections 3.9 and 4.5)
can be defined in the Ai notation as

A?
0 = A0 + B ,

A?
2 = A2 + B ,

with B =
1
2

1 − 3
A0

2
−

A2

2
±

√(
1 − 3

A0

2
−

A2

2

)2

+ 4 A2
1

 ,
(A.17)

where the sign can be chosen according to some convention, for example the one
giving the smaller modulus of A2, in which case A?

0 and A?
2 represent the distribution

as seen in the (always existing) frame where the diagonal terms A1 and A6 vanish
and the azimuthal anisotropy (A2) is minimized.

The frame-independent parity-violating asymmetry (discussed in Section 3.10),
normalized so that 0 ≤ A? ≤ 1, can be written as

A? =

√(A4

2

)2

+

(A3

2

)2

+

(A7

2

)2

. (A.18)

It can be determined directly in a fit to the measured distribution through the substi-
tutions

A4

2
→ A? cos ξ ,

A3

2
→ A? sin ξ cos χ ,

A7

2
→ A? sin ξ sin χ ,

(A.19)

where the angles ξ and χ express the rotation relating the current polarization axis to
the one where the partity-violation effect is maximal, i.e., the axis where the vector
(A4, A3, A7) has maximal projection. Both the definition ofA? and the above substi-
tutions are free from the dependence on the polar anisotropy parameter, contrary to
what happens in the corresponding relations in the usual parametrization (Eqs. 3.46
and 3.49).
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Also the forward-backward asymmetry and the accompanying parity-violating
asymmetries between azimuthal configurations (Eq. 1.30) can be obtained by simply
rescaling A4, A3, and A7:

Acosϑ =
3
8

A4 ,

Acosϕ =
3
8

A3 ,

Asinϕ =
3
8

A7 .

(A.20)
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Appendix B
Angular distributions of O → V γ, with
J(O) = J(V) = 1 and V → `+`− | πγ | ππ | . . .

The formulas presented in Section 6.6 for the decay χc1 → J/ψ γ, followed by the
dilepton decay of the J/ψ, Eq. 6.28, only considered the case of pure Jz states of O. In
the more general case, where O is the superposition defined in Eq. 6.25, the angular
distribution in the CC frame becomes

W`+`−

CC (cosΘ,Φ, cosϑ, ϕ) ∝

2
[
|a0|

2 + 2
(
|a+1|

2 + |a−1|
2
)]

+ 2 |a0|
2 (cos2 Θ + cos2 ϑ)

+ 2
[
|a0|

2 − 2
(
|a+1|

2 + |a−1|
2
)]

cos2 Θ cos2 ϑ

− 2 |a0|
2 sin2 Θ sin2 ϑ cos 2(Φ − ϕ) (B.1)

−
(
|a+1|

2 + |a−1|
2
)

sin 2Θ sin 2ϑ cos(Φ − ϕ)

− 2 Re[a∗+1a−1]
[
sin 2Θ sin 2ϑ cos(Φ + ϕ) + 2 sin2 Θ sin2 ϑ (cos 2Φ + cos 2ϕ)

]
− 2 Im[a∗+1a−1]

[
sin 2Θ sin 2ϑ sin(Φ + ϕ) + 2 sin2 Θ sin2 ϑ (sin 2Φ + sin 2ϕ)

]
−
√

2 Re[a∗+1a0 − a∗0a−1]
{

2 (sin 2Θ cosΦ + sin 2ϑ cosϕ)

+ sin2 Θ sin 2ϑ
[
cos(2Φ − ϕ) − cosϕ

]
+ sin2 ϑ sin 2Θ

[
cos(2ϕ −Φ) − cosΦ

] }
−
√

2 Im[a∗+1a0 − a∗0a−1]
{

2 (sin 2Θ sinΦ + sin 2ϑ sinϕ)

+ sin2 Θ sin 2ϑ
[
sin(2Φ − ϕ) − sinϕ

]
+ sin2 ϑ sin 2Θ

[
sin(2ϕ −Φ) − sinΦ

] }
.

The superscript “`+`−” is included in the symbol W`+`−

CC to clearly specify the J/ψ
decay channel under consideration: J/ψ→ `+`−.
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The same expression also describes the case of any decay of the kind O → V γ,
with J(O) = J(V) = 1. Moreover, the decay channel V → `+`− can be replaced
with, for example, V → π0,± γ or V → K0,± γ, or any other process where the
decay products have angular momentum projection Jz′′′ = ±1 along their common
direction in the V rest frame (Fig. 6.4, L′′′ = ±1 in Eq. 6.28), with the same resulting
distribution. Parity violating effects are here always assumed to be absent.

We are now going to consider the further case where V decays into two J = 0
particles, such as, for example, two pions or two kaons, or, more generally, any pair
of particles having, for some reason, Jz′′′ = 0.

The distribution for V → π+π− (neutral O and V) or V → π±π0 (charged O
and V), or with any other pair of J = 0 particles replacing the pions, can be derived
from the same amplitude of Eq. 6.28, calculating this time its square modulus for
L′′′ = 0. The result is

Wππ
CC(cosΘ,Φ, cosϑ, ϕ) ∝

2
(
|a0|

2 + |a+1|
2 + |a−1|

2
)

− 2 |a0|
2 cos2 ϑ

+ 2
[
|a0|

2 −
(
|a+1|

2 + |a−1|
2
)]

cos2 Θ

+ 2
[
2
(
|a+1|

2 + |a−1|
2
)
− |a0|

2
]

cos2 Θ cos2 ϑ

+ 2 |a0|
2 sin2 Θ sin2 ϑ cos 2(Φ − ϕ) (B.2)

+
(
|a+1|

2 + |a−1|
2
)

sin 2Θ sin 2ϑ cos(Φ − ϕ)

+ 2 Re[a∗+1a−1]
[

sin 2Θ sin 2ϑ cos(Φ + ϕ) + 2 sin2 Θ sin2 ϑ (cos 2Φ + cos 2ϕ)

−2 sin2 Θ cos 2Φ
]

+ 2 Im[a∗+1a−1]
[

sin 2Θ sin 2ϑ sin(Φ + ϕ) + 2 sin2 Θ sin2 ϑ (sin 2Φ + sin 2ϕ)

−2 sin2 Θ sin 2Φ
]

+
√

2 Re[a∗+1a0 − a∗0a−1]
{

2 sin 2ϑ cosϕ

+ sin2 Θ sin 2ϑ
[
cos(2Φ − ϕ) − cosϕ

]
+ sin2 ϑ sin 2Θ

[
cos(2ϕ −Φ) − cosΦ

] }
+
√

2 Im[a∗+1a0 − a∗0a−1]
{

2 sin 2ϑ sinϕ

+ sin2 Θ sin 2ϑ
[
sin(2Φ − ϕ) − sinϕ

]
+ sin2 ϑ sin 2Θ

[
sin(2ϕ −Φ) − sinΦ

] }
.

It can be verified, as a crosscheck, that both distributions, Eqs. B.1 and B.2, when
integrated over cosϑ and ϕ, reduce to the same cosΘ,Φ distribution, representing
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the two-body decay O→ V γ (obviously independent of the subsequent decay chan-
nel of V):

wO→V γ(cosΘ,Φ) ∝ D + D λΘ cos2 Θ

+ D λΦ sin2 Θ cos 2Φ + D λ⊥Φ sin2 Θ sin 2Φ (B.3)

+ D λΘΦ sin 2Θ cosΦ + D λ⊥ΘΦ sin 2Θ sinΦ ,

where

D = 2 |a0|
2 + 3

(
|a+1|

2 + |a−1|
2
)
,

D λΘ = 2 |a0|
2 −

(
|a+1|

2 + |a−1|
2
)
,

D λΦ = −2 Re[a∗+1a−1] , (B.4)

D λ⊥Φ = −2 Im[a∗+1a−1] ,

D λΘΦ = −
√

2 Re[a∗+1a0 − a∗0a−1] ,

D λ⊥ΘΦ = −
√

2 Im[a∗+1a0 − a∗0a−1] .

In particular, and as already shown in Section 6.6 (Table 6.1 and related text), we
see that WO→V γ ∝ 1 + λΘ cos2 Θ with λΘ = +1 and −1/3 when O is, respectively,
a pure Jz = 0 or Jz = ±1 eigenstate.

When V decays to `+`− or to π0,± γ, the (cosϑ, ϕ) angular distribution is for-
mally identical to Eqs. B.3–B.4, with the replacement of the upper-case angles with
the lower-case ones, thanks to the cloning symmetry described in Section 6.6. The
cloning symmetry is, instead, broken when V decays to ππ or, in principle, to any
other pair of particles no longer having definite Jz′′′ = ±1 projection along their
common direction in the V rest frame (Fig. 6.25). The ππ distribution, with coef-
ficients expressed in terms of the angular momentum composition of the original
mother particle O, is

wV→ππ(cosϑ, ϕ) ∝ D + D λϑ cos2 ϑ

+ D λϕ sin2 ϑ cos 2ϕ + D λ⊥ϕ sin2 ϑ sin 2ϕ (B.5)

+ D λϑϕ sin 2ϑ cosϕ + D λ⊥ϑϕ sin 2ϑ sinϕ ,

where

D = 2 |a0|
2 + |a+1|

2 + |a−1|
2 ,

D λϑ = −2 |a0|
2 + |a+1|

2 + |a−1|
2 ,

D λϕ = 2 Re[a∗+1a−1] , (B.6)

D λ⊥ϕ = 2 Im[a∗+1a−1] ,

D λϑϕ =
√

2 Re[a∗+1a0 − a∗0a−1] ,

D λ⊥ϑϕ =
√

2 Im[a∗+1a0 − a∗0a−1] .
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This distribution turns out to be identical to the one defined by Eqs. 1.12 and 1.13:
the V → ππ decay distribution observed in the CC frame, while being different
from the actual decay distribution of O→ V γ, happens to clone the dilepton decay
distribution of O.

Incidentally, the ππ distribution can also be provided in terms of a generic V
angular momentum state (|V〉 =

∑+1
M=−1 bM | 1, M 〉z), starting from Eq. 7.19 and

keeping only the terms ρ0
M,N , expressed as b∗MbN .

The formulas reported here can be used to study Z and W boson production in
several decays channels. Among the processes described by the distribution W`+`−

CC
(Eq. B.1) we can mention the decays Z → J/ψ γ, Z → φ γ, and Z → ρ0 γ, with the
J/ψ | φ | ρ0 mesons observed in the `+`− decay channel or in any radiative decay to
a J = 0 particle. The distribution Wππ

CC (Eq. B.2), on the other hand, describes, for
example, the Z decays with φ → K+K− or ρ0 → π+π−, as well as the analogous W
decay, W± → ρ± γ, with ρ± → π±π0.

Rare decays of this kind have been studied at the LHC [1, 2], to probe the Stan-
dard Model. The measurement of their branching fractions represents an example
of an application of Eqs. B.1 and B.2. Indeed, the Z and W yields observed in the
considered V γ decay channels must be corrected for the corresponding experimen-
tal acceptances, both for the photon and for the further decay products of V . The
results depend, therefore, on the shapes of the four-dimensional decay angular dis-
tributions, similarly to what was discussed in Section 1.6.

The coefficients in the above expressions can be constrained using Z (and W)
polarization measurements performed using the dilepton (and lepton-neutrino) de-
cay channels. The Z polarization has been measured precisely by ATLAS [3] and
CMS [4] (see Sections 4.3 and 5.2). In first approximation, reasonably valid for
the purpose of acceptance correction studies, the W polarization parameters Ai (de-
tailed in Appendix A) can be determined to be the same as the Z ones, as a func-
tion of pT/M and rapidity. In fact, the vector boson polarization is, as described in
Section 4.3, always intrinsically transverse along certain natural directions, and the
parameters Ai in a chosen experimental frame are simply determined by suitable
rotations (Appendix A) of naturally transverse polarizations, by angles depending
only on (dimensionless) combinations of pT/M and y (Table 2.1).

Using Eqs. 1.13 and A.3 we can express the combinations of amplitudes appear-
ing in Eqs. B.1 and B.2 (withN = |a0|

2 + |a+1|
2 + |a−1|

2) in terms of the coefficients
Ai of the angular distribution of the dilepton decay:

|a0|
2

N
=

A0

2
,
|a+1|

2 + |a−1|
2

N
= 1 −

A0

2
,

2 Re[a∗
+1a−1]
N

=
A2

2
,

2 Im[a∗
+1a−1]
N

=
A5

2
, (B.7)

√
2 Re[a∗

+1a0 − a∗0a−1]
N

= A1 ,

√
2 Im[a∗

+1a0 − a∗0a−1]
N

= A6 .
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The angular distribution for processes of the kind Z → V γ, followed by the
dilepton decay of V , becomes, therefore,

W`+`−

CC (cosΘ,Φ, cosϑ, ϕ) ∝

4 − A0

+ A0

(
cos2 Θ + cos2 ϑ

)
− (4 − 3A0) cos2 Θ cos2 ϑ

− A0 sin2 Θ sin2 ϑ cos 2(Φ − ϕ) (B.8)

−

(
1 −

A0

2

)
sin 2Θ sin 2ϑ cos(Φ − ϕ)

−
A2

2

[
sin 2Θ sin 2ϑ cos(Φ + ϕ) + 2 sin2 Θ sin2 ϑ (cos 2Φ + cos 2ϕ)

]
−

A5

2

[
sin 2Θ sin 2ϑ sin(Φ + ϕ) + 2 sin2 Θ sin2 ϑ (sin 2Φ + sin 2ϕ)

]
− A1

{
2 (sin 2Θ cosΦ + sin 2ϑ cosϕ)

+ sin2 Θ sin 2ϑ
[
cos(2Φ − ϕ) − cosϕ

]
+ sin2 ϑ sin 2Θ

[
cos(2ϕ −Φ) − cosΦ

] }
− A6

{
2 (sin 2Θ sinΦ + sin 2ϑ sinϕ)

+ sin2 Θ sin 2ϑ
[
sin(2Φ − ϕ) − sinϕ

]
+ sin2 ϑ sin 2Θ

[
sin(2ϕ −Φ) − sinΦ

] }
.

Correspondingly, the angular distribution for the V γ decays of the Z and W
bosons, with V decaying to two J = 0 particles, can be written as

Wππ
CC(cosΘ,Φ, cosϑ, ϕ) ∝

2 − A0 cos2 ϑ + 2 (A0 − 1) cos2 Θ

+ (4 − 3A0) cos2 Θ cos2 ϑ

+ A0 sin2 Θ sin2 ϑ cos 2(Φ − ϕ)

+

(
1 −

A0

2

)
sin 2Θ sin 2ϑ cos(Φ − ϕ) (B.9)

+
A2

2

[
sin 2Θ sin 2ϑ cos(Φ + ϕ)

+ 2 sin2 Θ sin2 ϑ (cos 2Φ + cos 2ϕ) − 2 sin2 Θ cos 2Φ
]

+
A5

2

[
sin 2Θ sin 2ϑ sin(Φ + ϕ)

+ 2 sin2 Θ sin2 ϑ (sin 2Φ + sin 2ϕ) − 2 sin2 Θ sin 2Φ
]



296 B Angular distributions of O→ V γ, with J(O) = J(V) = 1 and V → `+`− | πγ | ππ | . . .

+ A1

{
2 sin 2ϑ cosϕ

+ sin2 Θ sin 2ϑ
[
cos(2Φ − ϕ) − cosϕ

]
+ sin2 ϑ sin 2Θ

[
cos(2ϕ −Φ) − cosΦ

] }
+ A6

{
2 sin 2ϑ sinϕ

+ sin2 Θ sin 2ϑ
[
sin(2Φ − ϕ) − sinϕ

]
+ sin2 ϑ sin 2Θ

[
sin(2ϕ −Φ) − sinΦ

] }
.

We remind that, when using the existing ATLAS and CMS measurements of the
coefficients Ai, performed in the CS frame, the angles cosΘ and Φ in these formulas
must be defined with respect to the CS frame of the Z or W bosons. According to the
definition of the CC frame, the angles cosϑ and ϕ of the V decay must be referred
to that same system of axes, identically translated from the Z or W rest frame to the
V rest frame.

As seen in Figs. 4.11, 5.2, and 5.4, the coefficients Ai are rapidly varying func-
tions of pT. Considerably simplified formulas are obtained in two limit scenarios,
low pT and high pT, which may correspond, to a very good approximation, to the
conditions where specific measurements are actually performed. When pT is sig-
nificantly smaller than the boson mass, the polarization is approximately purely
transverse in the CS frame, where all coefficients Ai tend to vanish. In the high-pT
limit, instead, the condition Ai → 0 tends to be verified in the HX frame, as seen in
Fig. 4.12. In both limits, the angular distributions of the two decay chains reduce to

W`+`−

CC ∝ 1 − cos2 Θ cos2 ϑ −
1
4

sin 2Θ sin 2ϑ cos(Φ − ϕ) , (B.10)

Wππ
CC ∝ 1 − cos2 Θ + 2 cos2 Θ cos2 ϑ +

1
2

sin 2Θ sin 2ϑ cos(Φ − ϕ) , (B.11)

where the CC frame is defined using the axes of the W or Z CS frame at low pT and
those of the W or Z HX frame at high pT.

We remark for completeness that, as can be deduced from previous considera-
tions (see also Section 1.2), the analogous Z radiative decays to a J = 0 particle
(e.g., Z → π0 |K0 γ, with π0 → γγ and K0 → π+π−) lead to the four-dimensional
angular distribution

WCC(cosΘ,Φ, cosϑ, ϕ)

∝ 1 + cos2 Θ +
A0

2
(1 − 3 cos2 Θ)

+
A2

2
sin2 Θ cos 2Φ + A1 sin 2Θ cosΦ

+
A5

2
sin2 Θ sin 2Φ + A6 sin 2Θ sinΦ

+ A4 cosΘ + A3 sinΘ cosΦ + A7 sinΘ sinΦ ,

(B.12)
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which is formally identical to the expression of the (two-dimensional) dilepton de-
cay distribution in Eq. A.1, except for the substitution of the lower-case angles by
the upper-case ones. There is no dependence on the angles (ϑ, ϕ) of the decay of the
pion or kaon, which is always identically isotropic.
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a2(1700)→ η π, 250
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χc2 → J/ψ `+`−, 225, 223–226, 264
∆→ pπ or ∆→ pK, 261
η2(1870)→ γγ, 248
graviton→ γγ, 251, 257
H→ γγ, 252
H→ J/ψ γ, 182, 196, 197
H→ Υ γ, 196
H→ Z γ, 196, 197
H→ Z Z∗, 2, 156
J/ψ→ `+`−, 9, 9–12
Λ→ pπ or Λ→ pK, 258, 261
N → pπ or N → pK, 261
Ω→ ΛK, 261
φ(1020)→ `+`−, 159, 159, 246
φ(1020)→ K+K−, 246
ψ(2S)→ χcJ γ, 243
ρ(770)→ `+`−, 246
ρ(770)±,0 → π±π0 / π+π−, 246
t →W b, 258
Υ(4S)→ `+`−, 246
Υ(4S)→ BB, 246
W→ ρ γ, 280
X(3915)→ γγ, 248
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detection efficiency, 26
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elementary production processes, 42, 43,

144
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Lam–Tung relation violation, 153, 154
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198

Fermilab fixed target experiments
J/ψ average pT squared, 158

forward-backward asymmetry, 11, 33
frame, see polarization frame
frame-independent

geometrical parameters, 100, 132
line in the parameter domain, 86, 87
parameter domain, 82, 85, 93
parity asymmetry, 106, 135–138
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J/ψ polarization, 160
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invariant, see frame-independent
isotropic decay distribution
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due to smearing effects, 166
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jet multiplicity, 153, 156
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J/ψ polarization
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ψ(2S) polarization
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quantization axis, change of, 6
quasi-invariants, 132
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Υ polarization
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vector particles, 2
theorem on the polarization of, 27, 95
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