
S I M U L A S P R I N G E R B R I E F S O N CO M P U T I N G 4

Olav Lysne

The Huawei and
Snowden Questions
 Can Electronic Equipment
from Untrusted Vendors be
Verified? Can an Untrusted
Vendor Build Trust into
Electronic Equipment?

Simula SpringerBriefs on Computing

Volume 4

Editor-in-chief

Aslak Tveito, Fornebu, Norway

Series editors

Are Magnus Bruaset, Fornebu, Norway
Kimberly Claffy, San Diego, USA
Magne Jørgensen, Fornebu, Norway
Olav Lysne, Fornebu, Norway
Andrew McCulloch, La Jolla, USA
Fabian Theis, Neuherberg, Germany
Karen Willcox, Cambridge, USA
Andreas Zeller, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/13548

http://www.springer.com/series/13548

Olav Lysne

The Huawei and Snowden
Questions
Can Electronic Equipment from Untrusted
Vendors be Verified? Can an Untrusted
Vendor Build Trust into Electronic
Equipment?

Olav Lysne
Simula Research Laboratory
Fornebu
Norway

Simula SpringerBriefs on Computing
ISBN 978-3-319-74949-5 ISBN 978-3-319-74950-1 (eBook)
https://doi.org/10.1007/978-3-319-74950-1

Library of Congress Control Number: 2018930108

Mathematics Subject Classification (2010): 97P99

© The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons license and indicate if
changes were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

The Cretans, always liars…

—Epimenides, Cretan

Foreword

Dear reader,
Our aim with the series Simula SpringerBriefs on Computing is to provide

compact introductions to selected fields of computing. Entering a new field of
research can be quite demanding for graduate students, postdocs and experienced
researchers alike: the process often involves reading hundreds of papers, and the
methods, results and notation styles used often vary considerably, which makes for
a time-consuming and potentially frustrating experience. The briefs in this series are
meant to ease the process by introducing and explaining important concepts and
theories in a relatively narrow field, and by posing critical questions on the fun-
damentals of that field. A typical brief in this series should be around 100 pages and
should be well suited as material for a research seminar in a well-defined and
limited area of computing.

We have decided to publish all items in this series under the SpringerOpen
framework, as this will allow authors to use the series to publish an initial version
of their manuscript that could subsequently evolve into a full-scale book on a
broader theme. Since the briefs are freely available online, the authors will not
receive any direct income from the sales; however, remuneration is provided for
every completed manuscript. Briefs are written on the basis of an invitation from a
member of the editorial board. Suggestions for possible topics are most welcome
and can be sent to aslak@simula.no.

Springer Heidelberg, Germany Prof. Aslak Tveito
January 2016 CEO

Dr. Martin Peters
Executive Editor Mathematics

vii

Preface

To date, devices deliberately designed to turn against their owners have been
confined to fiction. The introduction of electronic devices into our daily lives and
into the critical infrastructures of entire nations does, however, threaten to transform
this troubling notion into a reality—firstly, because electronic equipment has the
ability to act autonomously and, secondly, because its mode of operation is often
beyond what its owners can reasonably be expected to understand.

This problem became the subject of international concern around 2010, when the
use of equipment from Chinese manufacturers in critical infrastructures became
more widespread in Western countries. Distrust in the design prompted several
countries to ban equipment from companies such as Huawei and ZTE, based on the
fear that it could have been deliberately designed to act against the interests of its
owners.

My interest in this topic was spawned by these discussions and bans, which pose
new challenges for buyers and vendors alike: buyers have to ask themselves
whether electronic equipment from untrusted vendors can be verified. On the other
hand, equipment manufacturers that experience loss of market share due to distrust
have to ask themselves if it is possible to (re)build trust in their electronic
equipment.

Surprisingly, there is no clear consensus on the answers to these questions. If
you ask a random sampling of information technology experts, just as many will
say yes as say no. This result stands in stark contrast to the questions’ importance.
Indeed, the discussions on Huawei and ZTE mentioned above were related to
matters of national security.

The intention of this book is to provide answers to these questions by analysing
the technical state of the art in all relevant fields of expertise. As such, writing it
required a detailed study of several fields of technology in which I am hardly an
expert. To help me avoid the most obvious mistakes, all parts of the book were
discussed with people far more knowledgeable than myself. In particular, Kjell
Jørgen Hole, Sabita Maharjan and Aslak Tveito contributed immensely to clarifying
the ideas in an early precursor project to this book. Specific aspects of the book and
portions of the text were also discussed with Bob Briscoe, Haakon Bryhni,

ix

José Duato, Kristian Gjøsteen, Janne Hagen, Magne Jørgensen, Olaf Owe, Øyvind
Ytrehus and Toril Marie Øye. While I take responsibility for any remaining mis-
takes, all of the individuals listed above greatly contributed to the book’s merits.

Fornebu, Norway Olav Lysne
November 2017

x Preface

Contents

1 Introduction . 1
1.1 A New Situation . 2
1.2 What Are We Afraid Of? . 2
1.3 Huawei and ZTE. 4
1.4 Trust in Vendors . 5
1.5 Points of Attack . 6
1.6 Trust in Vendors Is Different from Computer Security 6
1.7 Why the Problem Is Important . 7
1.8 Advice for Readers . 8
References . 9

2 Trust . 11
2.1 Prisoner’s Dilemma . 11
2.2 Trust and Game Theory . 13
2.3 Trust and Freedom of Choice . 14
2.4 Trust, Consequence, and Situation . 14
2.5 Trust and Security . 15
2.6 Trusted Computing Base; Trust Between Components 16
2.7 Discussion . 17
References . 18

3 What Is an ICT System? . 21
3.1 Transistors and Integrated Circuits . 21
3.2 Memory and Communication . 22
3.3 Processors and Instruction Sets . 23
3.4 Firmware . 24
3.5 Operating Systems, Device Drivers, Hardware Adaptation

Layers, and Hypervisors . 25
3.6 Bytecode Interpreters . 26
3.7 The Application on Top . 26

xi

3.8 Infrastructures and Distributed Systems 27
3.9 Discussion . 28
References . 29

4 Development of ICT Systems . 31
4.1 Software Development . 31
4.2 Hardware Development . 34
4.3 Security Updates and Maintenance . 35
4.4 Discussion . 36
References . 37

5 Theoretical Foundation . 39
5.1 Gödel and the Liar’s Paradox . 39
5.2 Turing and the Halting Problem . 40
5.3 Decidability of Malicious Behaviour 41
5.4 Is There Still Hope? . 43
5.5 Where Does This Lead Us? . 44
References . 45

6 Reverse Engineering of Code . 47
6.1 Application of Reverse Engineering in ICT 47
6.2 Static Code Analysis . 49
6.3 Disassemblers . 50
6.4 Decompilers . 50
6.5 Debuggers . 51
6.6 Anti-reversing . 51
6.7 Hardware . 52
6.8 Discussion . 53
References . 54

7 Static Detection of Malware . 57
7.1 Malware Classes . 57
7.2 Signatures and Static Code Analysis 59
7.3 Encrypted and Oligomorphic Malware 59
7.4 Obfuscation Techniques . 60
7.5 Polymorphic and Metamorphic Malware 62
7.6 Heuristic Approaches . 62
7.7 Malicious Hardware . 63
7.8 Specification-Based Techniques . 64
7.9 Discussion . 64
References . 65

8 Dynamic Detection Methods . 67
8.1 Dynamic Properties . 67
8.2 Unrestricted Execution . 68

xii Contents

8.3 Emulator-Based Analysis . 69
8.4 Virtual Machines . 69
8.5 Evasion Techniques . 70
8.6 Analysis . 70
8.7 Hardware . 71
8.8 Discussion . 72
References . 73

9 Formal Methods . 75
9.1 Overview . 75
9.2 Specification . 77
9.3 Programming Languages . 78
9.4 Hybrid Programming and Specification Languages 79
9.5 Semantic Translation . 80
9.6 Logics . 81
9.7 Theorem Proving and Model Checking 81
9.8 Proof-Carrying Code . 82
9.9 Conclusion . 82
References . 83

10 Software Quality and Quality Management 87
10.1 What is Software Quality Management? 87
10.2 Software Development Process . 88
10.3 Software Quality Models . 89
10.4 Software Quality Management . 90
10.5 Software Quality Metrics . 90
10.6 Standards . 91
10.7 Common Criteria (ISO/IEC 15408) . 92
10.8 Software Testing . 93
10.9 Verification Through Formal Methods 94
10.10 Code Review . 94
10.11 Discussion . 95
References . 96

11 Containment of Untrusted Modules . 99
11.1 Overview . 99
11.2 Partial Failures and Fault Models . 100
11.3 Erlang: A Programming Language Supporting

Containment . 101
11.4 Microservices: An Architecture Model Supporting

Containment . 102
11.5 Hardware Containment . 104
11.6 Discussion . 104
References . 106

Contents xiii

12 Summary and Way Forward . 109
12.1 Summary of Findings . 109
12.2 The Way Forward . 112

12.2.1 Encryption . 112
12.2.2 Formal Methods . 113
12.2.3 Heterogeneity and Containment 114

12.3 Concluding Remarks . 115

xiv Contents

Chapter 1
Introduction

InSeptember 2007, Israeli jets bombedwhatwas suspected to be a nuclear installation
in Syria. Apparently, the Syrian radar that was supposed to warn about the attacks
malfunctioned in the critical time interval prior to the Israeli attacks. Eventually, an
alleged leak from a US defence contractor suggested that a European chip maker had
built a kill switch into its chips. The radar may thus have been remotely disabled just
before the strike took place [1].

Whatever the real truth might be, the discussions around the bombing of the
Syrian nuclear plant highlight a profound difference between electronic equipment
and any other type of technology. When you buy an electronic device, you enter
into a long-term relationship with the people and companies who developed and
produced it. Their power over the equipment prevails long after you have bought
it, even when you believe to be the only one who operates it and even while it is
under your physical control. The relation between makers and buyers of information
and communications technology equipment is thus very different from most other
buyer–vendor relationships.

Three properties of electronics created this situation. First, the functionality that
is there when the equipment is shipped is largely invisible to the customer. Second, a
stream of software updates gives the manufacturer the ability to change the operation
of the equipment long after it has been bought. Third, since most equipment is
connected to the Internet, the manufacturer has the power to receive information
from the equipment and even to operate it remotely.

This begs two important questions. First, for what could a manufacturer want
to use its powers? Second, what means do we have to control the actions of the
manufacturer? In this chapter, we give a high-level overview of these questions.
We cite cases in which the position as the manufacturer of electronic equipment
was misused to make the equipment work against the interests of its owner and we
explainwhy the problem of protecting against untrusted vendors is different from that
of protecting against third-party attacks. Finally, we relate the problem to questions
of national security and international trade.

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_1

1

2 1 Introduction

1.1 A New Situation

The trading of tools between tribes is probably as old as toolmaking and trade them-
selves. Early artefacts were perhaps arrowheads, axes, and knives made of stone and
their exchange increased the hunting or fighting capability of the parties taking part
in the transactions. The quality of these early tools was easy to verify and clearly no
one feared that the tools themselves could turn against their owner.

As history evolved, the tools becamemore complex. Consequently, understanding
the quality of a product became amore complex task. Still, as recently as 50 years ago,
the fear that the tools you bought could be made to turn against you was practically
nonexistent. Furthermore, if you feared such attacks, countermeasures were easily
available. Equipment could be disassembled and understood and any exploitable
weakness or malicious functionality ran a very high risk of being detected.

Today, the situation has changed. To a rapidly increasing degree, societies, orga-
nizations, and individuals base their lives and well-being on electronic tools and
infrastructures. These electronic devices and tools are built with a complexity that
surpasses human capacity for analysis. This is obvious from the fact that we are
frequently surprised by what the devices we buy actually do. ‘Oh, I didn’t think it
could do that!’ is a reaction most of us have had to our mobile phone.

It is not only as private consumers that we are losing our ability to check what
our devices really do. The complexity of modern computer systems is so great that,
even for the people developing them, their behaviour is impossible to fully control.
For instance, we do not expect computer systems to be free of design or program-
ming faults anymore, because we know that building fault-free systems is nearly
impossible. This is accepted to the extent that no one will buy complex equipment
without a support agreement that the vendor will provide software updates to correct
programming mistakes as they are identified.

1.2 What Are We Afraid Of?

The reason for such support agreements is that buyers are not expected to find the
bugs themselves. Neither are they assumed to be able to correct them, regardless of
the resources their organization may have. However, if the buyers of equipment are
no longer expected to even understand what the electronic system they have bought
can do, this has serious implications. It means that the vendor of the equipment has
the power to make it do things that are not in the interest of its owner. The vendor
could make the equipment turn against its owner without the owner ever finding out.

This begs the question of what a dishonest vendor could possibly do. The exact
answer will vary depending on themotivation of the dishonest vendor, but the actions
we need to be concerned about are the same as those we fear from third-party cyber-
attackers. We fear that they will carry out espionage and surveillance to get hold of
confidential information, from either companies, private persons, or nation states.

1.2 What Are We Afraid Of? 3

We fear that they will sabotage key equipment, either permanently or temporarily,
to achieve some objective. Finally, we fear that they can commit fraud. Do we have
stories of equipmentmanufacturers using their position as vendors for espionage, sab-
otage, or fraud? Yes, we do. Some examples are documented beyond doubt, some
are made credible through circumstantial evidence, and some are just fear-based
speculation.

One well-documented case of espionage is that the routers and servers manufac-
tured by Cisco were manipulated by the National Security Agency (NSA) to send
Internet traffic back to them. This case is well documented through documents made
available to the press by Edward Snowden [3] and it is therefore a solid example
of espionage done through an equipment provider. There is no evidence that Cisco
was aware of the NSA’s tampering, but the example is still relevant. When you buy
equipment from a provider, you have to trust not only the provider, but anyone who is
in power to change the equipment. Towhat extent Cisco itself contributed is therefore
beside the point.

Another case of privacy-invading espionage is fromNovember 2016.Kryptowire,1

a US-based cybersecurity company, found that several models of Android mobile
devices contained firmware that transmitted sensitive personal data to a server in
China without disclosure or the users’ consent [5, 7]. The code responsible for these
actions was written by Shanghai Adups Technology Company, a Chinese company
that allegedly provided code for 700 million phones, cars, and other smart devices.
The phones were available through major online retailers and they sent user and
device information to China. The leaked information included the full body of text
messages, contact lists, and call history, with full telephone numbers. The intention
of this surveillance is unclear, but Adups explained that the code was made for a
Chinese manufacturer. One of their lawyers described its presence in phones sold in
the United States as a mistake.

An example of fraud is the Volkswagen case, in which electronic circuits con-
trolling a series of diesel engines reduced engine emissions once they detected they
were being monitored [2]. This was deliberately done through the functionality of an
electronic component put into cars by their manufacturer. Volkswagen misled Amer-
ican authorities into issuing approvals of the engine series, even if, under ordinary
use, the engines emitted nitrogen oxide pollutants up to 40 times above allowable US
limits. Volkswagen also misled buyers into thinking that the cars were environmen-
tally friendly. This case was eventually detected by the authorities, but the important
observation here is that the detection was not the result of analysis of the digital
component; it was the result of analysis of the highly analogous behaviour of the
diesel engine. The engineers who committed this fraud did so under the assumption
that what they had done on the electronic chip itself would not be discovered.

Examples of sabotage from vendors of electronic equipment are fewer and less
well documented. The event that we started the chapter with – when the Syrian radars
malfunctioned just before an Israeli airstrike on a nuclear installation in 2007 – has

1Kryptowire is a contractor of Homeland Security. The discovery reported here was reportedly done
outside of these contracts.

4 1 Introduction

not been documented beyond doubt. In the aftermath of the event, there was intense
speculation of what had happened, but no real proof has been put forward.

The merits of such speculation are, however, not important. The crucial observa-
tion is that we seldom have hard evidence to dismiss such arguments. The motivation
of the vendor of the equipment to include unwanted functionality in the Syrian radar
is clear. Its technical ability to go through with it is quite obvious and the chances the
Syrians had to uncover the problem before it was too late appear to have been slim.
Even in the absence of verified examples, the inclusion of kill switches that render
equipment useless through a predefined external trigger is too powerful a concept to
be ignored.

1.3 Huawei and ZTE

Discomforting as the above examples are, the most heated debate on trust in vendors
of electronic equipment relates to Huawei and ZTE. These two Chinese companies
are becoming increasingly dominant in the telecommunications market. Because
of the vendors’ Chinese origin, countries such as the United States, Australia, and
Canada have repeatedly questioned their trustworthiness and objected to includ-
ing their equipment in national infrastructures. The distrust is mainly motivated by
Huawei’s possible ties to the Chinese military and thus to the Chinese government.

Open political debate on how to handle the question of whether to trust Chinese
vendors has taken place on three continents. In October 2012, the US government
released a report by the US House of Representatives’ Permanent Select Committee
on Intelligence [10]. The report presented an analysis of the threats associated with
remote equipment control, especially in the case of a cyberwar, and strongly urged
that US firms stop doing business with both Huawei and ZTE. Australia has echoed
the same concern. In 2011, the Australian government barred Huawei from bidding
for the country’s national broadband network project, based on security concerns
associated with Huawei’s hardware [12]. In Europe, Huawei, along with its smaller
rival ZTE, hold almost a quarter of the European telecommunications equipment
market. According to the European Commission, this strong market position poses a
security risk because European industries ranging from healthcare to water utilities
are becoming reliant on Chinese wireless technology [9]. In the United Kingdom,
a parliamentary committee commented that it was “shocked” at the government’s
failure tomonitorHuawei’s activities and called its strategy formonitoring or reacting
to cyberattacks “feeble at best” [11]. In France, telecommunications executives say
the government generally discourages them from buying Chinese equipment for their
core networks, but not for cell phone base stations and radio equipment [11].

It is important to note that there is no evidence or indication that Huawei, ZTE,
or any other Chinese vendor, for that matter, has misused its position as a vendor of
equipment against any of its customers; there are only suspicions, mainly based on
Huawei’s possible ties to the Chinesemilitary and thus with the Chinese government.
Therefore, some would categorize the suspicions as unsubstantiated fear. To us,

1.3 Huawei and ZTE 5

however, the discussions themselves are important. From their mere existence, we
can draw three very important conclusions, as follows:

1. It is critical for a modern society to be able to rely on its electronic equipment and
infrastructures. All of society’s critical functions, such as healthcare, financial
stability, water supply, power supply, communication, transport, and ability to
govern a state in a situation of national crisis, depend on them. The need to have
an understood level of trust in critical infrastructure is the reason the discussions
on Huawei and ZTE have reached the level of national security politics.

2. Investigating what electronic equipment does or can do is highly nontrivial. If it
were easy, we would not need to discuss how much we can trust such equipment;
checking and verifying it would suffice.

3. Few countries have the ability to design and produce the electronic equipment
for their critical infrastructure entirely by themselves. In other areas, governmen-
tal regulatory bodies impose rules on systems of critical importance to national
security. If designing and producing critical equipment nationally were a viable
path, it would be an obvious solution to the problem.

The three observations summarize the motivation for this book. The trustwor-
thiness of electronic equipment is paramount and we cannot choose to design and
produce all aspects of this equipment ourselves. The question we then need to answer
is how we can check and verify the equipment and how we can build well-founded
trust.

1.4 Trust in Vendors

Trust in a vendor may have a varying foundation. We can choose to trust a vendor
based on a long-term relationship or based on the vendor’s reputation. In both cases,
our trust is based on their previous actions. We could also base trust on our capacity
to verify the contents of the vendor’s equipment. In this case, the decision to trust
rests on our belief that malicious intent by the provider will in some way be visible
in the product and that we will be able to detect it. These bases for trust are often
used in the discussions regardingChinese vendors of telecommunications equipment.
Unfortunately, as we shall document in this book, these arguments do not hold water.

When we discuss our fear of what equipment providers could do, our concerns
will in all cases be related to what they could possibly do in the future. A key
observation is that a provider could change tomorrow the properties of equipment
we bought and installed today, since hardly any complex electronic equipment is sold
without a support agreement. A steady stream of security updates will come from the
provider of the equipment. For fear of being attacked by a third party exploiting the
security holes closed by the updates, wewill dutifully install them. These updateswill
have the power to change the operation of the equipment itself, even to the extent
of performing actions against our interests. Consequently, the question of trust in

6 1 Introduction

a vendor has a timeless perspective. We may have every reason to trust a vendor
based on experience with the company in the past. We may also be correct in that
the vendor is currently to be trusted. Unfortunately, our need for software updates
makes any change in the vendor’s trustworthiness influence the trustworthiness of
all the equipment ever bought from that vendor. Therefore, when we ask ourselves
if a vendor can be trusted, we have to ask ourselves if we believe the vendor will
remain trustworthy for the entire lifetime of the product we are buying.

1.5 Points of Attack

So far, we have somewhat inaccurately discussed the notion of a vendor as if it needed
no further explanation. There are, however, many types of vendors and each type has
a different potential point of attack and a different potential to cause harm [4]. Some
provide pieces of intellectual property to be integrated as a small part of a silicon chip.
Others may build the chip itself or the printed circuit board onto which the chip is
welded. Some vendors provide the hardware abstraction layer or the operating system
running on top of the hardware and a large group of vendors provide applications
running on top of the operating system. There are system integrators synthesizing
hardware, operating systems, and applications into a complete product and there are
service providers providing communication or data centre services. Most vendors of
electronic equipment are also buyers of software or electronic components needed
to build what they eventually sell.

The most critical buyer–seller relationship is that between an operator of criti-
cal infrastructure – such as telecommunications, power grids, and cloud facilities –
and the provider selling the equipment for this infrastructure. Throughout the book,
we will often assume a vendor–buyer relationship in which the values at stake are
high. Furthermore, the equipment bought is assumed to be a fully integrated physical
product containing hardware, firmware, an operating system, drivers, and applica-
tions. Still, most of this book is of relevance to all buyer–seller relationships in the
computer business, including buyers and sellers of components that go into finished
products and buyers of electronic services provided by operators of infrastructures.

1.6 Trust in Vendors Is Different from Computer Security

Computer security has been a research field for decades. We should therefore ask
ourselves whether the problem we address in this book raises new questions of com-
puter security that have not previously been investigated. To answer this question, we
have to extract and express some underlying assumptions in most work on computer
security.

An often-cited definition of computer security is that of Peltier: [8]: Information
security encompasses the use of physical and logical data access controls to ensure

1.6 Trust in Vendors Is Different from Computer Security 7

the proper use of data and to prohibit unauthorized or accidental modification,
destruction, disclosure, loss or access to automated or manual records and files as
well as loss, damage or misuse of information assets.

This definition or variants thereof has formed the basis of security research for
decades. Its weakness – and thus the weakness of most security research – is that it
focuses on “physical and logical data access controls”. Although this phrase does not
explicitly exclude the scenario inwhich the vendor of the equipment is the perpetrator,
it has led to the almost ubiquitous and most often implicit assumption that the buyer
and the producer of equipment are collaborating in defending against a third-party
wrongdoer.

Out of this assumption comes a set of approaches that are not valid for our case,
in particular, those for stopping malicious software, or malware, from entering your
system. If the wrongdoer is the vendor, the malware may be in the system from the
moment you buy it and stopping it from entering later therefore makes no sense.
Another assumption is related to the mechanisms for detecting malware infections.
These methods assume there is a noninfected golden sample for comparison. Since
this golden sample has to be provided by the vendor, the notion of being noninfected
is doubtful if you do not trust the vendor [6]. Yet another mechanism is based on
building cryptographic security into hardware. A Trusted PlatformModule is a piece
of hardware that can be used to verify that the configuration of software and hardware
on a system has not been tampered with. In our case, this will not help. We inevitably
need to ask the question of who made the cryptographic module and to what extent
the maker can be trusted. In summary, four aspects make our problem different and
far more difficult to handle than the scenarios addressed in mainstream security
research:

• When malware is already in the system at the time of purchase, stopping it from
entering is futile.

• When there is no golden sample, it is not possible to detect tampering by comparing
a system to a known healthy system.

• Built-in security mechanisms in system chips, operating systems, or compilers are
in the hands of vendors we may not trust.

• The malicious actions of the system can be performed anywhere in the technology
stack, from low-level hardware to software controlling the user interface.

The implications of these differences will be discussed in this book. We will go
through the different computer science specialities and analyse the extent to which
the current state of the art contains knowledge that can help us solve our problem.

1.7 Why the Problem Is Important

The importance of a problem should be measured by its consequences. Before we
spend time delving into the finer details of controlling an untrusted vendor, we there-
fore need to understand the consequences of not being able to do so. It turns out that

8 1 Introduction

there are consequences for the buyer of the equipment, the vendor of the equipment,
and for society at large.

The consequences for the buyer of the equipment are themost evident. If you need
to invest in equipment for critical infrastructure in your country, youwill be concerned
with everything that can go wrong. You also need to think through scenarios of
international crisis and even war. The discussions related to the Chinese companies
Huawei andZTEare examples of this challenge.Although no international consensus
is reached on how to treat untrusted vendors, the discussions themselves reveal that
the problem is considered important to the extent that it has reached the level of
international politics.

The vendors, on the other hand, see the problem differently. Assume you are in the
business of selling equipment and that you are completely trustworthy. Still, you lose
contracts because there is no way you can prove beyond a doubt that your equipment
is trustworthy. This is the situation in which the Chinese providers find themselves.
No matter how understandable the worries of Western countries are, it is evident
that it is extremely important for Huawei to be able to demonstrate the worries are
groundless.

Finally, the difficulties we have in building a solid basis for trust between vendors
and buyers of electronic equipment are a potential obstacle for international trade
and cooperation. The internationalization of trade since the Second World War has
fuelled financial growth in most societies around the world and this trade has been
argued to be an important factor in the formation of trust between nation states. This
trust has, however, never been blind, in the sense that the parties could not control
the quality, properties, or actions of the goods that were traded. The lack of a solid
basis for trust between buyers and sellers of electronic equipment therefore not only
is a problem in the relation between the buyer and the seller, but can also be seen as
a factor limiting the trust needed to grow international trade.

1.8 Advice for Readers

The topic of this book should be of interest to several groups of readers. One is
security experts who need to understand the vulnerabilities implied by the vendor–
buyer relationships they are a part of. Another is security researchers who need to
understand the limitations of the state of the art, when a system must be defended
against different adversaries from those previously considered.

An often overlooked but important group of stakeholders for this problem is the
decision makers in nation states, public bodies, and large companies. Their need
to understand this problem is huge, since they are the ones ultimately making the
decisions that establish the type of customer–vendor relationships onwhichwe focus.
More often than not, these people are not educated technologists.

Therefore, We have made an effort to make this book readable and useful for all
groups. Technologically savvy readers are advised to read the entire book from start
to finish or to focus on the chapters of special interest between Chaps. 4 and 10.

http://dx.doi.org/10.1007/978-3-319-74950-1_4
http://dx.doi.org/10.1007/978-3-319-74950-1_10

1.8 Advice for Readers 9

Interested readers without a technology background should gain an informed view
of the problem at hand by reading Chaps. 1–3, the conclusion of Chap. 4, and, finally,
Chap. 12.

References

1. Adee, S.: The hunt for the kill switch. IEEE Spectr. 45(5), 34–39 (2008)
2. BBC: http://www.bbc.com/news/business-34324772
3. Greenwald, G.: No Place to Hide: Edward Snowden, the NSA, and the US Surveillance State.

Macmillan, Basingstoke (2014)
4. Jøsang, A.: Potential cyber warfare capabilities ofmajor technology vendors. In: 13th European

Conference on Cyber Warfare and Security ECCWS-2014, pp. 110–115 (2014)
5. Kryptowire: Kryptowire discovers mobile phone firmware that transmitted personally identifi-

able information (PII) without user consent or disclosure. http://www.kryptowire.com/adups_
security_analysis.html

6. Lysne, O., Hole, K.J., Otterstad, C., Aarseth, R., et al.: Vendor malware: detection limits and
mitigation. Computer 49(8), 62–69 (2016)

7. New York Times: Secret back door in some U.S. phones sent data to China, ana-
lysts say. http://www.nytimes.com/2016/11/16/us/politics/china-phones-software-security.
html?smprod=nytcore-iphone&smid=nytcore-iphone-share

8. Peltier, T.R.: Information Security Risk Analysis. CRC press, Bocca Raton (2005)
9. Reuters: Exclusive-EU threatens trade duties against China’s Huawei, ZTE-sources. http://

www.reuters.com/article/us-eu-china-huawei-idusbre94d0rx20130515
10. Rogers, M., Ruppersberger, D.: Investigative report on the U.S. national security issues posed

by Chinese telecommunications companies Huawei and ZTE. http://intelligence.house.gov/
sites/intelligence.house.gov/files/documents/huawei-zteinvestigativereport(final).pdf

11. The Wall Streeet Journal: U.K. raises cybersecurity concerns over Huawei. http://online.wsj.
com/article/sb10001424127887323844804578529141741985244.html

12. ZDNet: Don’t let Aus fall into US-China security fight: Huawei. http://www.zdnet.com/dont-
let-aus-fall-into-us-china-security-fight-huawei-7000006282/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://dx.doi.org/10.1007/978-3-319-74950-1_1
http://dx.doi.org/10.1007/978-3-319-74950-1_3
http://dx.doi.org/10.1007/978-3-319-74950-1_4
http://dx.doi.org/10.1007/978-3-319-74950-1_12
http://www.bbc.com/news/business-34324772
http://www.kryptowire.com/adups_security_analysis.html
http://www.kryptowire.com/adups_security_analysis.html
http://www.nytimes.com/2016/11/16/us/politics/china-phones-software-security.html?smprod=nytcore-iphone&smid=nytcore-iphone-share
http://www.nytimes.com/2016/11/16/us/politics/china-phones-software-security.html?smprod=nytcore-iphone&smid=nytcore-iphone-share
http://www.reuters.com/article/us-eu-china-huawei-idusbre94d0rx20130515
http://www.reuters.com/article/us-eu-china-huawei-idusbre94d0rx20130515
http://intelligence.house.gov/sites/intelligence.house.gov/files/documents/huawei-zteinvestigativereport(final).pdf
http://intelligence.house.gov/sites/intelligence.house.gov/files/documents/huawei-zteinvestigativereport(final).pdf
http://online.wsj.com/article/sb10001424127887323844804578529141741985244.html
http://online.wsj.com/article/sb10001424127887323844804578529141741985244.html
http://www.zdnet.com/dont-let-aus-fall-into-us-china-security-fight-huawei-7000006282/
http://www.zdnet.com/dont-let-aus-fall-into-us-china-security-fight-huawei-7000006282/
http://creativecommons.org/licenses/by/4.0/

Chapter 2
Trust

A relationship between a buyer and a seller of electronic equipment is one of trust.
The buyer of the equipment trusts the seller to deliver the equipment on time, with
the right quality, and at the agreed price. Usually the buyer also has to trust the seller
to provide support and security updates for the lifetime of the product. The focus of
this book is somewhat unusual, since we are not concerned with price, quality, or
technical support. Rather, we study the relationship between the seller and the buyer
under the assumption that the seller might want to use its position as the equipment
provider for purposes that are directly opposed to the interests of the buyer. From
this position, the notion of trust between the equipment provider and the buyer of
the equipment takes on a very different flavour.

Notions of trust have been heavily studied in modern philosophy from the 1980s
onward. Much of this research is based on rational choice theory and most authors
relate trust to an aspect of risk taking. The question that one tries to answer is how to
capture the rationality of relationships between parties that are not transparent to each
other. Framed by the problem we address in this book, the question is how to make
rational decisions on buying equipment from a vendor when neither the interests of
the vendor nor the current and future contents of the product are fully transparent.

2.1 Prisoner’s Dilemma

One of themost celebrated examples that highlight the complexity of decisions based
on trust is the prisoner’s dilemma [12]. There are several versions of it, but the one
most frequently cited is the following: two partners in crime are imprisoned. The
crime they have committed will, in principle, give them a sentence of three years but
the police have only evidence to sentence each of them to prison for one year. The
police give each of the partners the offer that the sentence will be reduced by one
year if they testify against the other. If only one defects, the other will serve three
years in prison. However, if both partners defect, both of them are put away for two
years.

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_2

11

12 2 Trust

What makes this situation interesting is the choice that each prisoner must make
between defecting and not defecting. If you are one of the prisoners, you can go free
if you defect and the other does not. You get one year in prison if none of you defects.
If both of you defect, you get two years in prison and, if you do not defect but your
partner does, you end up with a three-year sentence. Clearly, what would generate
the least number of years in prison for the two prisoners in total is for neither to
defect. This situation would require, however, that each one trust the other not to
defect. Analysis based purely on self-interest makes it clear that whatever choice my
partner makes, I will be better off defecting. If both prisoners follow this strategy, we
will both receive a two-year sentence. Still, the best outcome is if my partner and I
can trust each other not to defect. Then we would both receive a one-year sentence.

The winning strategy in the prisoner’s dilemma is to defect, but the game changes
when the same dilemma appears with the same pair of prisoners multiple times.
It becomes even more complicated if there are multiple prisoners and if, for each
iteration, any arbitrary one of them is involved in the game. In the latter case, the
winning strategy depends on the average attitude of the population. If the population
tends to collaborate, then tending towards collaboration is awinning strategy,whereas
tending towards defection is a winning strategy if that is what most of the population
does [2].

The prisoner’s dilemma has been used to describe the appearance of trust-based
collaboration among animals, in politics, and in economics, to mention just a few
areas. It seems to capture the essence of trust-based decisions when there are risks
of defection involved. For us, the risk we are concerned with is related to the fear
that the vendor from which we buy our equipment will defect on us and the choice
we have to make is whether we will buy from this vendor or not. For the sake of
discussion here, we assume that the vendor has motivation for defecting, without
going into detail what it might be.

The first question that arises is whether the singular or the iterated version of the
prisoner’s dilemma is involved. The answer depends heavily on what our fears are
or, to put it in another way, what the defection of the vendor would amount to. If
we buy a mobile phone and we fear that the vendor could steal the authentication
details of our bank account, we have a case of the iterated prisoner’s dilemma. It is
unlikely that we would be fooled more than once and we would not buy equipment
from the same vendor again. The vendor would most likely suffer a serious blow to
its reputation and subsequent loss of market share, so the vendor would not be likely
to defect.

At another extreme,wefind nations that buy equipment for their critical infrastruc-
ture. If defection means to them that the infrastructure would be shut down as part
of an attempt to overthrow the government, then the game is not likely to be played
out more than once. In this case, the winning strategy for the nation would be to
find another vendor and the aggressive vendor would not let the possible loss of a
customer stop it from defecting.

It is therefore clear that decisions about which vendors to trust will depend heavily
on the consequences of defection. Another equally important aspect of the discussion
is the degree to which the vendor’s actions are detectable. Assume that we, as buyers

2.1 Prisoner’s Dilemma 13

of equipment, fear that the vendorwill use the equipment to steal information fromus.
The realism of this situation is highlighted by the fact that unauthorized eavesdrop-
ping is one of the greatest fears behind the discussions on whether to allow Chinese
vendors to provide equipment for critical infrastructures inWestern countries. In this
case, it is unclear if we would ever know if the vendor defected. Therefore, even if we
are in a situation of repeated decisions on whom to buy from, we might be no wiser
the second time than we were the first. In terms of the prisoner’s dilemma, this means
that we can assume that the buyer will never find out if the vendor has defected or
not and, then, the game can, for all practical purposes, be viewed as a single game.
Still, seen from the perspective of the vendor, there is also a risk associated with
the assumption that the vendor will never be caught. We return to this discussion in
Sect. 2.7.

2.2 Trust and Game Theory

The prisoner’s dilemma and variants that we presented above are examples of a
problem from game theory; that is, the rules of the game are transparent and its
outcome for each individual results from the decisions made by all the participants.
An elaborate mathematical theory can be built around such games, given a solid
foundation for what will be the rational choices of each participant in the game.

Basic notions of trust can be derived from such a theory of rational choice. Gam-
betta [6] defines trust (or, symmetrically, distrust) as

A particular level of the subjective probability with which an agent assesses that
another agent or group of agents will perform a particular action, both before he
can monitor such action (or independently of his capacity ever to be able to monitor
it) and in a context in which it affects his own action.

Seen from this point of view, a trust-based choice of a vendor for a particular
piece of technology would be based on a subjective understanding of the chance that
vendor fulfils the buyer’s expectations, and does not use its position as equipment
provider for purposes that are against the buyer’s interests.

Rational choice as a basis for trust does have its weaknesses. Consider the iterated
prisoner’s dilemma again. It is easy to imagine a situation in which you do not trust
your fellow prisoner. Still, knowing that establishing trust would be beneficial to
the outcome of the game, it might be a rational choice to play as if you trusted the
other prisoner, even if you do not. This point, taken up by Hardin [9], highlights a
distinction between beliefs and strategies. It defines trust as a belief of what your
opponent will actually do. When I trust you, it is because I believe it will be in your
best interest to protect my interests. The implications and value of building a trust
relation between a buyer and a vendor of electronic equipment is discussed further
in Sect. 2.5.

14 2 Trust

2.3 Trust and Freedom of Choice

Onemajorweakness in the game-theoretical definitions of trust is that trust is assumed
to be something one can choose to have or not to have. In an essay on trust and
antitrust, Baier [3] argues that this is not always the case. The most convincing
example is the trust a small child must have towards his parents. He will not be in a
position to choose other parents, so, regardless of what reasons he has been given to
trust the ones he has, he actually has to place some trust in them.

The insight of Baier’s work, for our purposes, is that youmight be forced to entrust
something that is of value to you to people or organizations you do not necessarily
trust. There aremany examples of this in theworld of computers. In amodern society,
one can hardly choose not to be dependent on the national communications network.
Still, you may not trust it to be there when you need it or you might have reasons to
believe that your communications are being intercepted by national authorities that
you do not trust. You may not trust your computer to be virus free but you may still
feel that you have to entrust it with the task of transferring money from your bank
account.

When we choose which vendor of electronic equipment to use for critical
infrastructure, we are in a situation in which our choices are very limited. There
will generally be very few vendors to choose from and we will rarely be in a position
to choose not to buy at all. If we decide, as some governments have, that equipment
or components from a given country should not be trusted, we may find that there are
no trustworthy options left. A very obvious example is that severalWestern countries
have decided to prohibit Chinese equipment from central parts of their telecommuni-
cation infrastructure. In today’s complex world, there is hardly any piece of modern
electronic equipment without at least one part that was designed or fabricated in
China. To a significant degree, the information carried by nations’ telecommunica-
tion systems must be entrusted to components made in countries these nations do
not trust.

2.4 Trust, Consequence, and Situation

Lack of real choices is not the only limitation to basing trust on game-theoretic
approaches. Another shortcoming is the fact that the level of trust depends on factors
that will typically not be part of the game. Most people would agree that the level of
trust required to make a given choice will depend on the consequences of being let
down. Govier [7] provides an example in which a stranger on the street volunteers to
carry packages for you. Yourwillingness to entrust your packages to this strangerwill
depend on what the packets contain. If they contain things that are highly valuable to
you, you would be less likely to entrust them to a stranger and you would require a
higher level of trust to do so. The same considerations apply to your situation. If you

2.4 Trust, Consequence, and Situation 15

have only a small, light packet that fits easily in your hand, the mere fact that some
stranger is volunteering to help you will probably make you distrust that person.

To us, themost relevant learning point fromGovier’s work is that the answer to the
question of whether to trust an equipment vendor will depend highly on what kind of
equipment it is and on how you intend to use it. At one extreme is the private person
who buys an alarm clock to help wake up in the morning. The level of trust the person
has on themanufacturer of the clock should hardly be a criterion of choice. The worst
thing that can happen is that the person will oversleep a day or two, requiring her
to write off the costs when she buys a new clock. At the other extreme, we have
investments in national infrastructures for electronic communications and control
systems for power plants. The level of trust needed before one selects a provider of
equipment for such structures is very high and cases in which lack of trust has barred
named providers from competing for such contracts are well documented.

2.5 Trust and Security

The terms trust and security are usually seen as interrelated and it is common to
assume that the presence of one will promote the formation of the other. If you place
trust in a person, you expose yourself to harm from that person. This person knows
that he can retaliate if you misbehave and thus has all the more reason to trust you
by exposing himself to you in the same way. The fact that you are both exposed will
reduce your inclination to harm each other and you therefore end up being more
secure. Similarly, when one experiences a system as being secure, one starts to trust
it. The fact that an online baking website is relative secure makes one trust it.

Unfortunately, the idea that trust and security are a consequence of each other is
not always true. These two words have many interpretations and the claim that one
follows from the other is valid only for some interpretations [11, 13]. In particular,
placing trust in a computer system will not make it secure. A computer system will
not (well, at least not yet) change simply because it is trusted not to do anything
wrong. One objection to this argument could be that it is not the computer system
itself with which you intend to build a secure relationship but, rather, with the people
who developed it. Still, there is an inherent asymmetry in the exposure to harm in
the relationship between a vendor and a buyer of equipment. Sometimes it is to the
buyer’s advantage, in the sense that the buyer can withhold payments or hurt the
vendor’s reputation. Other times it is to the vendor’s advantage, particularly when
the vendor is controlled by powers, for example, states, that are not exposed to
the financial threats of single companies. If you trust a vendor, this trust will not
automatically make a vendor safe to use; that will depend on the balance between
the risks you expose to each other.

What, however, if we turn the question around? If I develop a highly secure
system, would not the consequence be that my customers will tend to trust me? It
would appear that the answer to this question is yes. Huawei is arguably the company
that is the most challenged by customer distrust throughout the world. It has been

16 2 Trust

banned from delivering products to the critical infrastructures of several countries
and it has complained that it does not have a level playing ground when competing
for contracts. One of their solutions to this challenge has been to focus heavily and
visibly on making their products secure. Unfortunately, this strategy – even though
it might be financially successful – misses the focal point of the discussion. It is
entirely possible to make a system that is very secure against third-party attacks but
where the maker of the equipment, that is, the second party, has full access to do
whatever it wants. An analogy would be if you had a locksmith change all the locks
of your house. Even if the locks were to keep all burglars out, the locksmith could
still keep a copy of the key. Even if you made your house secure, this security is still
built on the trustworthiness of the locksmith.

This section endswith two important observations. In the vendor–user relationship
related to electronic equipment, we cannot assume that security comes with trust.
We cannot assume that trust comes with security either.

2.6 Trusted Computing Base; Trust Between Components

A computer system is built by putting together a range of different pieces of tech-
nology. Multiple components constitute the hardware that an application is running
on and an operating system will typically be composed of various parts. Adding to
this, we have external devices and drivers, before we find an application on top of the
technology stack. Finally, the application itself will bemade of different components.
More details on each of these components are given in Chap.3.

These different parts can fail or default individually. It is thus clear that a notion
of trust is also relevant between the constituent parts. A well-designed system will
have an internal policy that makes it clear to what degree each part is supposed to
be trusted, based on what tasks they are expected to perform. Such trust between
components is described by Arbaugh et al. [1], with the eye-opening statement that
the integrity of lower layers is treated as axiomatic by higher layers. There is every
reason to question the basis for this confidence in the integrity of lower layers.

In their Orange Book from 1983, the US Department of Defense introduced the
concept of the Trusted Computing Base (TCB). This is a minimal set of components
of a system upon which the security of the entire system depends. Security breaches
in any other component can have severe consequences, but the consequences should
be confined to a subset of the system. Security breaches in the TCB, however, will
compromise the entire system and all of its data. The Orange Book makes the case
that, in a security-critical system, the TCB should be made as small as possible.
Ideally, it should be restricted to sizes such that the security can be verified using
formal methods.

Unfortunately for us, the notion of a TCB is of little help. The strengths and
shortcomings of formal methods are discussed in Chap. 9, but the main reason why a
TCB cannot help us is embedded within another fact. As long as you do not trust the
manufacturer of the system, it is hard to limit the TCB to a tractable size. As discussed

http://dx.doi.org/10.1007/978-3-319-74950-1_3
http://dx.doi.org/10.1007/978-3-319-74950-1_9

2.6 Trusted Computing Base; Trust Between Components 17

byLysne et al. [10], the developer of electronic equipment hasmanypossible points of
attack that are unavailable to a third-party attacker. In particular, Thompson [15] has
demonstrated that the compiler or any other development tool could be used as a point
of attack. This makes the compiler as well as the synthesis tools used for hardware
development part of the TCB. Furthermore, since the compiler itself is built by
another compiler, the argument iterates backwards through the history of computing.
Computer systems and compilers have for a long time evolved in generations, each
generation being built using software from the preceding generation. For example,
in the UNIX world, the origins of today’s tools are found in the first design of the
first system back in the 1970s [5]. Finding a small computing base that can truly be
trusted given a dishonest equipment provider is therefore close to an impossible task.

2.7 Discussion

The need for trust between buyers and vendors of electronic equipment depends
heavily on what is at stake. There are electronics in your egg timer, as well as in
systems managing and monitoring the power networks of entire nations; however,
whereas the need for trust in the former case is close to nonexistent, in the latter case,
it is a question of deep concern to national security. This insight from Govier [7]
helps us to focus the discussions in this book. We are not concerned with fine details
on how the need for trust should be derived from a consequence analysis related to
the equipment in question. Rather, we concentrate our discussion of trust on cases
in which the damage potential is huge and thus the need for trust is paramount.

Long-term relationships with equipment providers are sometimes advocated as
beneficial for building trust and confidence between customers and vendors. For
many aspects of the customer–vendor relationships, we would agree. The quality
and stability of a product, the availability of support, price, and time of delivery are
all aspects of electronic equipment where trust can be built over time. It can also be
argued that classic cybersecurity, where the vendor is supposed to help you to protect
against third parties, is an area where trust can be built gradually. If, over several
years, my equipment is not broken into, I will be inclined to trust my vendor. If I need
to protect against the vendor itself, however, a long-term relationship is not likely to
make me secure. Rather, a long-term relationship is likely to make memore exposed.
An equipment vendor of complex equipment almost always has the opportunity to
change the equipment it has already sold and deployed through software updates. A
vendor that has proven to be trustworthy over a long period could become malicious
through a change of regimes in its home country or through changes in ownership
or management. A long-term relationship therefore increases the need for trust and
confidence but it does not constitute a basis for trust in itself.

In the international discussions concerning Chinese vendors of telecommunica-
tion equipment, we have frequently heard arguments in the style of Hardin: we can
trust Chinese vendors because it is in their best interest not to use their position
against others. If they did, they would be out of business as soon as they were caught

18 2 Trust

in the act. We should indeed take it as a fact that Chinese vendors of electronic equip-
ment may be trustworthy. Still, regardless of the origin of the equipment, we should
not make Hardin’s kind of trust a basis for our security concerns about equipment in
a country’s critical infrastructure: First, because in questions of national security, the
situation often has similarities to single games of the prisoner’s dilemma. A hostile
takeover of a country takes place once and there is no obvious sequence of games in
which a dishonest vendor will pay for its actions. Second, there are examples of large
companies that deliberately cheated with their electronic equipment, were caught in
the act, and which are still in business. The most well-known example currently is
the Volkswagen case, where electronic circuits controlling a series of diesel engines
reduced engine emissions once they detected that they were being monitored [4].
A related example is the claim made by Edward Snowden that routers and servers
manufactured by Cisco were manipulated by the National Security Agency (NSA)
to send Internet traffic back to them [8]. There is no documentation showing that
Cisco was aware of this manipulation. Still, the example highlights that the question
of trust in an equipment vendor is far too complex to be based on our perception of
what will be in the vendor’s best interest. This argument is strengthened by Cisco’s
claim that its losses due to the event were minor [14].

An old Russian proverb, made famous by Ronald Reagan, states, ‘Trust, but
verify!’. This means that, in all trust relations, there is a limit to how far blind trust
can go. At the end of the day, trust must be confirmed through observations; thus our
need for trust depends heavily on our ability to observe. As Gambetta [6] points out,
‘Our need of trust will increase with the decrease of our chances actually to coerce
and monitor the opposite party’. For us, this raises the question of how to coerce and
monitor the actions of an equipment vendor. The remainder of this book is devoted to
exactly that question.We examine the state of the art in all relevant areas of computer
science in an attempt to answer the question of how we can verify malicious actions
in electronic equipment or prepare for them.

References

1. Arbaugh, W.A., Keromytis, A.D., Farber, D.J., Smith, J.M.: Automated Recovery In A Secure
Bootstrap Process (1997)

2. Axelrod, R., Hamilton, W.D.: The Evolution Of Cooperation. Science (1981)
3. Baier, A.: Trust and antitrust. Ethics 96(2), 231–260 (1986)
4. BBC: http://www.bbc.com/news/business-34324772
5. Danezis, G.: Trust as a methodological tool in security engineering. In: Trust, Computing, and

Society, vol. 68 (2014)
6. Gambetta, D.: Trust: Making and breaking cooperative relations. In: Can We Trust, vol. 13,

213–237 (2000)
7. Govier, T.: Dilemmas of Trust. Cambridge University Press, Cambridge (1998)
8. Greenwald, G.: No Place To Hide: Edward Snowden, The NSA, and the US Surveillance State.

Macmillan (2014)
9. Hardin, R.: Trust and Trustworthiness. Russell Sage Foundation (2002)
10. Lysne, O., Hole, K.J., Otterstad, C., Aarseth, R., et al.: Vendor malware: detection limits and

mitigation. Computer 49(8), 62–69 (2016)

http://www.bbc.com/news/business-34324772

References 19

11. Nissenbaum, H.: Securing trust online: wisdom or oxymoron? Boston University Law Review.
81(3), 635–664 (2001)

12. Poundstone, W.: Prisoner’s Dilemma. Anchor (2011)
13. Simpson, T.W.: Computing and the search for trust. In: Trust, Computing, and Society p. 95

(2014)
14. The New York Times: Revelations of N.S.A. spying cost U.S. tech compa-

nies. https://www.nytimes.com/2014/03/22/business/fallout-from-snowden-hurting-bottom-
line-of-tech-companies.html?

15. Thompson, K.: Reflections on trusting trust. Commun. ACM 27(8), 761–763 (1984)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

https://www.nytimes.com/2014/03/22/business/fallout-from-snowden-hurting-bottom-line-of-tech-companies.html?
https://www.nytimes.com/2014/03/22/business/fallout-from-snowden-hurting-bottom-line-of-tech-companies.html?
http://creativecommons.org/licenses/by/4.0/

Chapter 3
What Is an ICT System?

The full complexity of the information and communications technology (ICT) sys-
tems that we use every day is hard to fathom and it spans at least two dimensions.
First, if I were to send an e-mail to my colleague in the office next door, the process
easily involves more than a hundred devices over two continents. On its way from
my computer in Norway to the mail server I use in the United States, it will traverse
routers and switches in several countries. Each of these routers and switches will be
dependent on several other components just to determine the next hop on the path
towards the recipient of the e-mail.

The other dimension regards the complexity of every single one of these hundred
devices. From the observable functionality of each device, there are multiple layers
of technology all built on top of each other before we come down to the physical
phenomena that allowed us to build the device in the first place. In this chapter, we
describe the most important of these layers and conclude on how each layer can be
exploited by a dishonest maker of ICT equipment.

3.1 Transistors and Integrated Circuits

In a discussion on the most important inventions of mankind, a strong argument
can be made that the transistor [1] is on par with fire, the wheel, and agriculture.
A few decades after its invention, it has changed the lives of billions of people and
is now central to the way we work, the way we communicate and interact, and our
consumption of cultural expressions.

However important, the transistor is conceptually a very simple thing. It can be
explained as an electrically controlled light switch. The transistor is simply a device
that lets the electric current through one conductor open and close a switch, and
thereby start or stop electric current in another conductor. At a higher level of abstrac-
tion, we observe the transistor move information from one electric circuit to another
and, from this observation, we can understand that the invention of the transistor
was the seminal start of what came to be known as information technology. Circuits

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_3

21

22 3 What Is an ICT System?

consisting of transistors and resistors can be constructed so that they implement all
the logic functions of Boolean algebra. Circuits implementing a Boolean function
are generally called logic gates and, through clever combinations of such gates, all
the computing functions of a modern computer can be constructed.

Of course, electrically controlled switches in the form of relays and vacuum tubes
had been designed before the transistor was invented and they had been used for
building computers as well [3, 10]. What the transistor did bring to the table was
two crucial properties. First, it could switch much faster and far more reliably than
the old technologies and, second, it could be miniaturized. These features have given
rise to modern integrated circuits with a number of transistors that today (2017) can
run in the multiple billions and operate at a switching speed of multiple gigahertz.1

Already at the level of the transistor we find places where a manufacturer can
build in malicious functionality. The physical phenomena that allowed us to build
transistors are the link between the analog continuous world and the discrete world
of the computer, but this link is by no means trivial to engineer. There are a number
of ways a transistor can become unstable or stop working as intended. Therefore,
already here we find places where a manufacturer can plan to do harm. A kill switch
can be implemented by overloading selected transistors based on a given input signal,
thus leaving the integrated circuit unusable. Completely investigating a product for
malicious functionality therefore goes all the way down to studying the countless
transistors on each chip.

3.2 Memory and Communication

The three central elements of a computer are data processing, the storage of informa-
tion, and communication. All of these elements can be implemented by transistors
and logic gates.

Communication in the sense of moving information from one place to another
can, in its simplest form, be done by transmitting high or low power on a conductor.
Thus communication can easily be implemented bymeans of transistors. A great deal
of development has gone into improving the speed and distance of communication
links, as well as reducing the fault rate, and the most successful developments are
based on using light waves in optic fibres rather than electric signals in metallic
conductors. Apart from the added complexity that accompanies these developments,
they are not directly relevant to the discussions we cover in this book. We therefore
refrain from giving further details.

There are a number of ways in which one can store information using logic gates.
The general idea is that to store a bit, you can design a circuit with a feedback loop, so

1In 1965, Gordon Moore observed that the number of transistors on an integrated circuit seemed
to double every two years. The truth of the observation has been remarkably persistent ever since
and has therefore been referred to as Moore’s law. The switching speed of transistors grew as fast
as the increase in the number of transistors for a long time, but it started to level off around 2010.

3.2 Memory and Communication 23

that the input to a logic gate depends on the output of the same gate. Such a feedback
loop can create a perpetually unstable circuit: for example, when an output value of
1 fed back into the circuit will generate an output value of 0 and vice versa. If made
correctly, however, the circuit will have exactly two stable states, corresponding to
a stored 0 and a stored 1, respectively. Storage built from logic gates in this way
are known as volatile memory, meaning that the information is retained only as
long as the system is powered on. This setup is used for registers in the CPU and
for RAM. There are a number of technologies available for storing information in
a more durable form, such as hard disks and flash memory.2 These are dependent
on physical phenomena other than those of the transistor but they still depend on
transistor-based logic circuits for their control logic.

Bothmemory circuits and communication circuits canbe exploitedby anuntrusted
vendor. Above we argued that a circuit can be constructed so that it self-destructs on
a given input signal. For memory and communication circuits, it is clear how such
input signals can be received. For a communication circuit, the signal can arrive from
the outside world, whereas a memory circuit can be designed to self-destruct when a
particular sequence of bits is either written to or read from memory. Self-destruction
is, however, a very simple form of sabotage that can be controlled by an untrusted
vendor. More advanced operations, such as espionage and fraud, are primarily made
possible through the logic that controls the memory and communication circuits. We
discuss such control logic and processors next.

3.3 Processors and Instruction Sets

What drives the actions of the ICT system forward are the circuits of logic gates that
perform actions on the memory and the communication channels. Such circuits read
bits from memory and/or a communication channel, let the logic gates react to the
read input to compute some new value, and write the computed bits into (possibly
other parts of) memory or send them on to a (possibly different) communication
channel. Long sequences of such actions can be constructed to perform arbitrarily
complex operations and, in principle, everything electronic equipment can possibly
do can be realized through such sequences.

The flexibility of a modern computer does, however, not come from fixed
sequences of operations. Early on, it became clear that the exact operation of a
computer could be coded into memory itself. A very complex circuit of logic gates
could read an instruction coded into memory, perform one very specific action based
on that instruction, and then move on to read the next instruction [10]. The semantics
of each instruction would be as simple as read the contents of register A and add
them to the contents of register B. Other instructions could apply to communications
between the circuit and neighbouring circuits in the same system or they could be a

2Non-volatile memory is generally slower in operation; therefore all computers presently uses
volatile memory for registers and other memory close to the core of the architecture.

24 3 What Is an ICT System?

message to the system that it should start reading instructions from another part of
memory, so-called jump instructions.

An electronic circuit reading instructions from memory in this way is called a
processor and the set of different instructions it is able to understand is called the
instruction set of the processor. Each processor model has its own unique instruction
set, which can be quite large; the number of transistors needed to implement these
instructions is therefore also quite high. An example that illustrates some of the
complexity is the 22-core Intel XeonBroadwell E5 [6]. This is a CPU chip containing
22processors and cachememory implemented by7.2 billion transistors andoperating
at a clock switching speed of up to 3.8GHz.

The instruction sets implemented by a processor form the bridge between the
tangible hardware and the software that controls its behaviour. The divide between
hardware and software is very distinct in ICT, in that its respective designs require
different skill sets from the engineers. Also pertinent to our problem, it represents
a divide in the world of security experts. Most security experts are concerned with
weaknesses and attack vectors in software, often assuming that the hardware itself
can always be trusted. If we do not trust the maker of the hardware, however, this
assumption is completely broken. A vendor can include undocumented computer
instructions known only to itself and let their execution be triggered at a predefined
input signal of the vendor’s choice. Documented instructions can have undocumented
side effects that leak information from memory and send it on to a communication
channel.

In principle, all themalicious functionality one can think of could be implemented
in the hardware of a CPU. In particular, one should be aware how this influences
the security provided by cryptographic software. Cryptography is the main building
block of computer security. If cryptographic software runs on untrusted hardware,
there is no reason to believe that the system is secure.

3.4 Firmware

Firmware is often described as something residing in between hardware and software.
In essence, it is a piece of code that is loaded onto non-volatile memory and is read
by the processing unit at start-up [7]. The firmware is what ultimately defines the
instruction set and functionality of a processor.

The huge benefit of firmware is the added flexibility of a chip after its manufac-
ture. Firmware can be used to correct mistakes in the chip design and to add new
functionality after the hardware has beenmade. For instance, updates to firmware are
used to add new codec formats to portable music players and other firmware updates
have improved the power consumption of mobile phones.

What firmware means for the problem we address is that it constitutes another
possible point for the introduction of malicious functionality. Firmware that changes
the semantics of a processor’s instruction set can clearly be used by untrusted ven-
dors to carry out espionage and fraud, as well as sabotage. In our journey up the

3.4 Firmware 25

technology stack, this is the first and lowest point where we can see that a vendor can
introduce unwanted functionality after the product has been purchased and received.
A firmware update has all the conceivable potential to render your product unsafe;
therefore, if your vendor is not to be trusted, firmware updates should be regarded
with considerable suspicion.

3.5 Operating Systems, Device Drivers, Hardware
Adaptation Layers, and Hypervisors

Starting from the instruction sets of the underlying hardware, the operating system [8]
is a piece of software that builds higher-level abstractions and concepts that are closer
to what a user or programmer will need. From basic physics that allow you to store
and read a bit of information, it builds the concept of blocks and files. From the
instruction set of the processor, it builds the notion of process. Some equipment
will allow for multiple users and therefore the concept of user must be formed. In
systems that will have multiple simultaneous processes, provisions must be made for
the time-sharing and virtualization of the computer’s resources. In addition, security
mechanismsmust be built into the operating system such that each process is isolated
from the other processes, ensuring that they cannot overwrite each other’s portions
of memory, and that processes and users do not have access to information on the
system that should be hidden from them.

Ideally, once you have created an operating system, you would like it to be able
to run on several different versions of hardware. To accommodate this, a thin layer
of software often runs directly on the hardware, making the hardware appear as
if it were of a predefined generic type. These thin layers of software are called
hardware adaptation layers for the core part of a computer and device drivers for
peripheral equipment. In particular, the notion of a driver should be well known to
most: whenever you connect external equipment to your computer, a driver for that
piece of equipment needs to be installed.

A hypervisor [2] is a more recent notion. It stems from the need to be able to
virtualize a computer so that it appears as several computers, allowing the same piece
of equipment to run multiple operating systems at the same time. This is particularly
useful for cloud services that offer platforms as a service. Disconnecting the instances
of operating systems from the hardware they run on allows them to offer a number
of software platforms to its customers that is not fixed to the number of instances of
hardware it has installed. A hypervisor can run directly on the hardware (native, or
type 1 hypervisor) or it can itself run as a process on top of another operating system
(hosted, or type 2 hypervisor).

An untrusted maker of operating systems, device drivers, hardware adaptation
layers, and hypervisors has optimal working conditions. If any of these components
does not work, the entire systemwould most likely stop; these components are there-
fore ideal places for introducing kill switches. Second, since most of a computer’s

26 3 What Is an ICT System?

security mechanisms are placed in these components, it is the ideal place to introduce
code that steals and leaks information. The fact that the operating system is a very
complex and large piece of software makes it extremely hard to examine all its parts
fully. As an illustration, it is assumed that most versions of the Windows operating
system have several tens of millions of code lines.

3.6 Bytecode Interpreters

In the same way that device drivers and hardware adaptation layers render operating
systems less dependent on the specifics of the hardware they run on, the intention of
bytecode interpreters is to make the application independent of the operating system
and platform. In essence, bytecode is a program written in a low-level but generic
instruction set. Once the bytecode has been created for an application, this application
can run on any combination of hardware and operating system for which a bytecode
interpreter exists that can run it.

A plethora of different bytecode definitions exist, but the one most of us have
been directly in touch with is that realized by the Java virtual machine [4]. It allows
the same executable Java bytecode to run on a vast set of different platforms, from
huge servers down to handheld devices.

Not all applications come in the form of bytecode, since many applications run
directly on the operating system/hardware platform itself. This is indeed the case for
the bytecode interpreters themselves. The widespread use of bytecode still urges us
to consider how a dishonest bytecode interpreter creator could harm us. Such ways
are quite easy to find, since the bytecode interpreter is in full control of everything
an application does. It can therefore implement kill switches based on given inputs
and leak any information that is made available to the application itself.

3.7 The Application on Top

All throughout transistors, logic gates, integrated circuits, printed circuit boards,
hardware adaptation layers, and finally operating systems and drivers, the intention
of the different fields of engineering is to build generic platforms. The intention of
the complete electronic device itself is determined by the application running on top
of this platform. The set of possible applications is exceptionally diverse and spans
all conceivable uses of electronic equipment.

Many known cyberattacks go through an application to compromise a system.
The attack can appear in the form of a webpage and go through the web browser or
it can come through an email attachment. Still, when what we fear is wrongdoing
on the part of the maker of the equipment, we do have some defences against the
maker of applications. Since security mechanisms against third party attacks will
usually be built into the operating system, applications must exploit weaknesses in

3.7 The Application on Top 27

the operating system to cause harm to the entire installation. If the operating system
is secure, applications will be limited to leaking information that is accessible by the
user running the application. This does not mean that untrusted applications are not
dangerous; it only means that, as opposed to makers of operating systems, we have
at least some level of defence against malicious developers of applications.

3.8 Infrastructures and Distributed Systems

The days of standalone electronic devices are long gone. Most devices are connected
to the Internet and the applications they run are part of a distributed system. Two
obvious examples known to everyone are the World WideWeb and e-mail. The truth
is that the applications that are currently standalone and running on only one device
are quite few. If nothing else, most devices are part of a distributed system that
provides software updates over the net.

A distributed system is as complex from the operating system and up to the user
interface as it is from the operating system down to the physical phenomena of a
transistor. As an example, your e-mail client is built on top of at least three different
layers of path-finding systems before your machine is able to talk to your mail server.
Typically, these are the Ethernet protocol that finds the path between your PC and the
gateway of your building [11], the interior gateway protocol that finds the path within
the network of your Internet provider [9], and the border gateway protocol that finds
the way between different Internet providers [5]. On top of this, a separate distributed
system, called the domain name service, is required that translates e-mail addresses
to the IP addresses of the mail server and a distributed system for authentication is
needed that can secure the integrity of the mail accounts. Only when all of these
components are in place can the mail system start working and the key insight is that
all of these underlying components are themselves complex distributed systems.

In some cases, the same vendor will be responsible for making all the compo-
nents of a distributed system. In other cases, the system is open, in the sense that
new components can be added continuously and these new components can come
from different vendors. Typical examples of the latter are e-mail systems and com-
munication networks. In the former case, the harm that a malicious vendor could do
is quite similar to what we described in the section above. All information trusted to
the distributed system could leak and the system itself can be used to gain access to
resources that should be secured by the operating system. In the latter case, we must
assume that the product of the untrusted vendor is integrated into an already existing
distributed system. This could be a new e-mail server or a new router that extends
a country’s critical network infrastructure. In the latter case, a new challenge arises,
in that the new component could create chaos in the existing distributed system by
behaving in unpredicted and malicious ways. A new router in a system could, for
instance, sabotage the path-finding algorithm in the network and thus disconnect the
entire network (Fig. 3.1).

28 3 What Is an ICT System?

Fig. 3.1 Schematic overview of a distributed system. Each device builds instruction sets from
physical phenomena through the hardware layers of transistors, logic gates, and integrated circuits.
On top of the instruction sets, there are multiple layers of software before we reach the application.
This technology stack can easily consist of billions of transistors and millions of lines of software
code. Such a highly complex structure appears in all the – possibly hundreds of – devices that
constitute the distributed system. Before a simple thing such as e-mail can work, several different
distributed systems must be in place and work well. The domain name system, the interior gateway
protocol, and the border gateway protocol are the three most obvious ones

3.9 Discussion

The takeaway from this chapter is that verifying an ICT system to ensure that it
is not doing harm is a monumental task. In principle, it entails a careful study of
all the software components of several distributed systems running on top of each
other. Each of these systems can easily consist of tens of thousands to hundreds of
thousands of lines of program code. For each of the possibly hundreds of devices
running the code that is involved in these distributed systems, we would have to
study the operating system, device drivers, and hardware adaptation layers that run
on them. The operating system itself can consist of tens of millions of lines of code.
If it runs on a virtualized platform, we would also need to include the hypervisor in
the study.

All of the above would only touch the software side of the problem. Each device
would consist of a number of chips integrated on a number of printed circuit boards.
The CPU of the system alone will consist of tens of millions of logic gates and
billions of transistors and, even if the CPU is probably be the most complex of the
chips in the device, there will usually be more than a handful of other chips that need
to be studied.

3.9 Discussion 29

Most buyers of electronic equipment are only exposed to parts of this problem.
The decision to buy electronic devices will rarely encompass all the infrastructure
necessary to make the device work. If you do not trust the maker of a mobile phone,
you will only need to investigate that device, because the network it connects to
is not under your control. If, on the other hand, you are the network provider, you
have control over what equipment you buy and use in your network but not over the
equipment that your customers might connect to it or the equipment of the network
provider you peer with to provide connectivity. Even under these limitations, the
task of securing against dishonest makers of electronic equipment spans the physical
phenomena underpinning the transistors of the system all the way up to the software
running the user interface of the application. In large parts of this book, we will be
concerned with ways of approaching this problem to understand if it is at all doable.
Before that, in the next chapter, we will discuss the design process of ICT equipment
to understand how a dishonest vendor could introduce malicious functionality into
a product.

References

1. Bardeen, J., Brattain, W.H.: The transistor, a semi-conductor triode. Phys. Rev. 74(2), 230
(1948)

2. Bressoud, T.C., Schneider, F.B.: Hypervisor-based fault tolerance. ACM 29 (1995)
3. Copeland, B.J.: Colossus: The Secrets of Bletchley Park’s Code-Breaking Computers. Oxford

University Press, Oxford (2010)
4. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java Virtual Machine Specification: Java

SE 8 Edition. Pearson Education, London (2014)
5. Lougheed, K., Rekhter, Y.: Border gateway protocol 3 (bgp-3). Technical report (1991)
6. Nalamalpu, A., Kurd, N., Deval, A., Mozak, C., Douglas, J., Khanna, A., Paillet, F., Schrom,

G., Phelps, B.: Broadwell: a family of ia 14 nm processors. In: 2015 Symposium on VLSI
Circuits (VLSI Circuits), pp. C314–C315. IEEE (2015)

7. Opler, A.: 4th generation software. Datamation 13(1), 22–24 (1967)
8. Peterson, J.L., Silberschatz, A.: Operating System Concepts, vol. 2. Addison-Wesley, Reading

(1985)
9. Rekhter, J.: NSFNET backbone SPF based interior gateway protocol. Database 4, 5 (1988)
10. Rojas, R.: Konrad Zuse’s legacy: the architecture of the Z1 and Z3. IEEE Ann. Hist. Comput.

19(2), 5–16 (1997)
11. Seifert, R.: Gigabit Ethernet: Technology and Applications for High-Speed LANs. Addison-

Wesley Longman Publishing Co. Inc., Reading (1998)

30 3 What Is an ICT System?

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 4
Development of ICT Systems

An example from 2015 illustrates how compilers can be used to spread malware.
Xcode is Apple’s development tool for iOS applications. Attackers added infectious
malware to Xcode and uploaded the modified version to a Chinese file-sharing ser-
vice. Chinese iOS developers downloaded the malicious version of Xcode, compiled
iOS applications with it and inadvertently created infected executables, and then dis-
tributed these infected executables throughApple’sApp Store [9]. This technique has
allegedly long been known to the CIA [5], who has been claimed to have exploited
Xcode to add malware to iOS applications.

In this chapter, we consider the processes behind the production and maintenance
of information and communications technology (ICT) equipment. We discuss how
hardware and executable software running on this hardware are produced and main-
tained. Our discussion is not related to the traditional fields of software or hardware
engineering. Rather, we look at the process from a toolchain point of view, to under-
stand fromwhich vantage points a vendor can introduce hidden functionality into the
equipment. Finally, we discuss the advantages, from the perpetrator’s point of view,
of using development and production line tools to include malicious functionality
into a product and we clarify the implications of this for the equipment buyer.

4.1 Software Development

The code language runningon adevice is far frombeing easily understoodbyhumans.
We therefore distinguish between the source code and the executable code. The
source code of a program is written in a programming language that is designed to
be humanly understandable. The source code for the program needs to be translated
into executable code before it is ready to be executed on a device. This translation is
carried out by a compiler. The process of producing the code that actually runs on a
device is illustrated by the three boxes at the bottom of Fig. 4.1.

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_4

31

32 4 Development of ICT Systems

Fig. 4.1 The structure of compiler code and equipment source code that eventually make up the
executable running on the equipment. The first compiler is programmed directly in executable
code. Version 2 of the compiler is programmed in a high-level language defined by the compiler.
Version 1 of the compiler is then used to create an executable form of version 2 of the compiler.
This iterative process is repeated for each new compiler generation. Thompson demonstrated how
malware inserted into any historic version of the compiler can survive forever down the development
chain and eventually result in backdoors inserted into present-day executable code by present-day
compilers

The compiler that produces the executable code is itself a program. It was written
in a programming language and was itself compiled by a compiler. That compiler
was, in turn, compiled by another compiler and, thus, the full structure of programs,
source code, and executable code that leads to the executable of a product is
quite complex. A simplified picture of the dependencies is given in Fig. 4.1. Many
aspects are left out of this figure: We have not shown how this structure allows new
programming languages to emerge, we have not considered how compilers for pro-
grams running on new hardware architectures are built, and we have not considered
how pre-compiled libraries or elements of an operating system would interact with
the final executable. For our discussion, it suffices to know that, for most modern
programs, the dependency chain backwards to older compilers, all the way back to
the first compiler that was written in executable code, is quite long and, for some
very common programming languages, can be traced back to the 1970s [4].

4.1 Software Development 33

It is generally accepted that executable code is humanly understandable only with
a tremendous amount of effort (see Chap.6 for more details). The source code of a
program is therefore at the centre of many discussions. It is usual for companies to
release only the executable code of their products to ensure that their ideas are not
copied by competitors. Open-source discussions and initiatives are other examples
illustrating the absence of transparency in executable code. Equipment vendors have
therefore occasionally countered customer worries by making the source code of
their products available.

Given the above, the following question presents itself: Where in the process of
Fig. 4.1 can malicious code be inserted so that the intended malicious functionality
is part of the final executable? It is obvious that such code can be part of the source
code of the product itself, but can it be placed in the compiler without altering the
source code of the product? The answer is given by Ken Thompson [11] in his Turing
Award lecture in 1983. In it, he gave a very simple example of how a Trojan horse
can be inserted into the end executable code of a product through the source code of
any single one of the compiler versions that, at some time in the past, played a part
in producing the final executable.

What Thomson demonstrated is how one could alter the C compiler so that it
introduces a backdoor into the UNIX operating system whenever the operating sys-
tem is compiled. Furthermore, he showed how one could code this property into
a ‘gene’ so that any later version of the C compiler would inherit this capability.
Finally, he showed how to remove any trace that this had happened from the source
code of both the compiler and the operating system. The backdoor would be inserted
into any future version of UNIX by any future version of the C compiler and neither
the UNIX developers nor future developers of the C compilers would ever know.

The insights of Thompson are well known in the scientific community. Still, as
pointed out by [4], such methods are not considered a real threat to the security
of computer systems. The danger of someone using a compiler to inject backdoors
to break into some system yet to be made has been considered unlikely. If we put
ourselves in the position of a company that wishes to include backdoors into its
products without being caught, the discoveries of Thompson can be viewed from a
different angle. Such a company would like to leave as few traces as possible of this
ever having happened. Using the compiler to introduce backdoors would leave no
trace in the source code, so the code can safely be given to any suspicious customer.
Furthermore, such a company would benefit from keeping knowledge of the secret
confined to as small a group of people as possible to minimize the risk of information
on their actions leaking out. Altering compiler toolsmeans that the development team
itself need not know that the backdoors are being introduced.

From the above discussion, we now draw the following conclusions:

• The absence of malicious elements from the source code of a software product
does not prove that such elements do not exist in the executable code.

• If a vendor wants to install malicious code in a product, it is not necessary for the
development team to be aware of this. The malicious code can be installed in the
compiler tools that the developers are instructed to use.

http://dx.doi.org/10.1007/978-3-319-74950-1_6

34 4 Development of ICT Systems

4.2 Hardware Development

Puttingmalicious functionality into hardware can be very effective in gaining control
over an entire system. Furthermore, it could require very little space on the integrated
circuit. As an example, it has been demonstrated that a backdoor can be inserted into
an entire system by adding as few as 1,341 additional gates to a chip [7]. These
additional gates are used to check the checksum of an IP packet and, given the right
checksum, it would install the packet’s payload as new firmware on the processor.
The firmware could, in principle, do anything, but what is described in the paper by
King [7] is an attack where the installed firmware gives a particular username login
root access to the system.

The process for the development of integrated circuits is somewhat different from
that of software. Still, there are similarities, in the sense that hardware can be defined
through a high-level language,where the details of gates and transistors are abstracted
away. The transition fromdescriptions understandable by humans into a physical chip
coming off a production line will go through a process that can roughly be described
as follows:

1. An algorithmic description of the desired behaviour (usually specified in a dialect
of theC programming language) is synthesized into a register-transfer level (RTL)
hardware design language by a high-level synthesis tool [8].1

2. The RTL is translated into a gate-level description of the chip by a logic synthesis
tool [10].

3. The gate-level description is used by production lines to produce the actual chip.

Again, we agree that our description is vastly simplified. We have not considered
difficulties related to, for example, the layout or thermal issues. Still, the model is
sufficient for the conclusions we need to draw.

In the case of integrated circuits, malicious functionality can, of course, be placed
directly into the RTL or the algorithmic description of the chip. Learning from
Sect. 4.1 above, we need to also consider the synthesis tools that translate the hard-
ware descriptions from languages that are humanly understandable and down to
gate-level descriptions. The important observation in this case is, however, that all
of the synthesis tools are themselves pieces of software. They are therefore subject
to the same considerations made at the end of the previous section. Knowing that as
few as 1,341 extra gates on a chip can leave an entire system wide open, it is easy to
see that any tool involved in the making of a chip can easily insert serious malicious
functionality into it. Such functionality could even be inserted by the production
line that produces the final chip from the gate-level descriptions [1, 3, 6]. We are
therefore forced to make similar conclusions for hardware as we did for software:

• The absence of malicious elements from the source code of a hardware product
does not prove that such elements do not exist in the chip.

1Sometimes the circuit is described directly in RTL. In those cases, step 1 is omitted.

4.2 Hardware Development 35

• If a vendor wants to install malicious code in a chip, it is not necessary for the
development team to be aware of this. The malicious functionality can be installed
in the synthesis tools that the developers use.

4.3 Security Updates and Maintenance

An electronic device consists of two parts: one is the hardware that the customer
can touch and feel and the other is the software that guides the device to behave as
intended.2 Whereas the hardware of a device can be considered fixed at the time of
purchase, the software of the device is generally updated and changed several times
during the lifetime of the device.

The reasons for updating the software running on network equipment can be the
following:

1. There could be a bug in the device that needs to be fixed.
2. New and optimized code could have been developed that increases the perfor-

mance of the device.
3. New functionality that was defined after the purchase of the device, for example,

new protocol standards, needs to be supported.
4. New security threats have emerged, creating the need for new protection mecha-

nisms in the equipment.

In particular, points 3 and 4 in the above list make software updates inevitable.
The requirement that equipment support new protocols that will be defined after the
time of purchase will prevail for the foreseeable future. Furthermore, the security
threats that the equipment must handle will continuously take on new forms.

Software updates come in different sizes, depending on what part of the software
is updated. Device driver updates will have different implications than an update
of the operating system of the entire device. For our discussion, we do not need to
analyse these differences in more depth. It suffices to observe that changes to the
operating system and the device drivers will be required from time to time.

Obviously, since software updates are made in software, they inherit the same
conclusions as those we drew in Sect. 4.1. In addition to these conclusions, we can
draw another one from the discussion in this section:

• Malicious elements in the software code on a device can be introduced through
software updates at any time in the life cycle of the device.

• If a vendor, at some point in time, wants to install malicious code in a sold device
through a software update, it is not necessary that the development team of the
update be aware of this. The malicious code can be installed in the compiler tools
that developers use.

2We have chosen not to include the notion of firmware. In our discussions, we classify firmware as
a particular kind of software because the firmware of a device can be replaced and modified without
replacing any physical component.

36 4 Development of ICT Systems

4.4 Discussion

Protecting an ICT infrastructure from attacks and data leakage is a daunting task.
We are currently witnessing an arms race between the developers of equipment
and intruders in which ever more sophisticated attacks are designed and need to be
countered with ever more sophisticated defence mechanisms. When we assume that
the perpetrators could be the designers of the equipment themselves, the issue looks
entirely different. The problem is new and no real arms race has started. The only
technical discussion of the matter we are aware of is that where Huawei suggested
making its software source code available to its customers [2] in response to doubts
over whether it could be trusted.

There is every reason to applaud the effort made by Huawei to build trust through
openness. Still, there are two separate and independent reasons why giving access
to the software source code is nowhere near giving insight into the true ability of
an electronic system. First, it has been demonstrated beyond any doubt that full
backdoors into a system can be created with a microscopic number of additional
gates on a chip. A backdoor existing in the hardware will clearly not be visible in the
software running on top of it. Second, the code running on amachine is not the source
code, but instead some executable code that was generated from the source code by
a compiler. Again, it has been demonstrated beyond any doubt that backdoors can be
introduced into the executable code by the compiler and, thus, not even a software-
based backdoor need be visible in the source code.

Figure4.2 shows a schematic of an integrated electronic product and parts of the
production line leadingup to it. Theyellowboxes represent the product itself, coarsely
divided up into one hardware layer and three software layers. The green boxes are
representations of parts of the final product that are visible to the engineers building
it. These are the source code of the software and the high-level representations of
the hardware. The blue boxes represent the tools that transform the source code
representations into the finished product. As we have seen above, a backdoor can be

Fig. 4.2 Schematic overview of the elements that contribute to the final integrated product

4.4 Discussion 37

inserted by any tool used in the process, so any blue box is a potential point of attack.
To fathom the full complexity of the design process, we also need to understand that
all of the tools in this chain – all of the blue boxes – are themselves electronic products
that are built in exactly the same way, with source code, compilers, synthesis tools,
logic synthesis tools, and a hardware production line. The recursion of tools that is
implied by this observation is illustrated for compilers alone in Fig. 4.1.

Defence against an untrusted equipment maker should therefore focus on the
actual hardware that has been purchased and on the actual machine code running on
the system. It is depressingly simple for a dishonest equipment provider to introduce
unwanted functionality through the development tools and for the dishonest provider
this approach has the clear advantage that very few people in the company need to
know about it. Looking at source code and verifying the toolchain itself is most likely
futile; we will probably end up in a recursive pit consisting of tools building tools.
For compilers alone, we are easily faced with a sequence of tools going all the way
back to the early days of computing.

References

1. Adee, S.: The hunt for the kill switch. IEEE Spectr. 45(5), 34–39 (2008)
2. BBC:Huawei offers access to source code and equipment. http://www.bbc.com/news/business-

20053511
3. Bhunia, S., Hsiao, M.S., Banga, M., Narasimhan, S.: Hardware trojan attacks: threat analysis

and countermeasures. Proc. IEEE 102(8), 1229–1247 (2014)
4. Danezis, G.: Trust as a methodological tool in security engineering. Trust, Computing, and

Society, vol. 68 (2014)
5. The Intercept: CIA campaign steal apples secrets. https://theintercept.com/2015/03/10/ispy-

cia-campaign-steal-apples-secrets/
6. Karri, R., Rajendran, J., Rosenfeld, K.: Trojan taxonomy. Introduction to Hardware Security

and Trust, pp. 325–338. Springer, Berlin (2012)
7. King, S.T., Tucek, J., Cozzie, A., Grier, C., Jiang, W., Zhou, Y.: Designing and implementing

malicious hardware
8. McFarland, M.C., Parker, A.C., Camposano, R.: The high-level synthesis of digital systems.

Proc. IEEE 78(2), 301–318 (1990)
9. Reuters: Apple’s iOS app store suffers first major attack. http://www.reuters.com/article/us-

apple-china-malware-iduskcn0rk0zb20150920
10. Riesgo, T., Torroja, Y., de la Torre, E.: Design methodologies based on hardware description

languages. IEEE Trans. Ind. Electron. 46(1), 3–12 (1999)
11. Thompson, K.: Reflections on trusting trust. Commun. ACM 27(8), 761–763 (1984)

http://www.bbc.com/news/business-20053511
http://www.bbc.com/news/business-20053511
https://theintercept.com/2015/03/10/ispy-cia-campaign-steal-apples-secrets/
https://theintercept.com/2015/03/10/ispy-cia-campaign-steal-apples-secrets/
http://www.reuters.com/article/us-apple-china-malware-iduskcn0rk0zb20150920
http://www.reuters.com/article/us-apple-china-malware-iduskcn0rk0zb20150920

38 4 Development of ICT Systems

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 5
Theoretical Foundation

What computers can and cannot do has been a long-standing topic in the foundation
of computer science. Some of the pioneers of the field had a strong background
in mathematics and, in the early days of computing, worked on the mathematical
formulation of the limits of computation. The work led to the notion of decidability.
Informally speaking, a question that can be answered by either yes or no is decidable
if a computer can compute the correct answer in a finite amount of time.

The relation that the notion of decidability has to our problem of vendor trust
should be obvious. If the question of whether an executable program performs mali-
cious acts is decidable, we can hope to devise a program to check the code made by
an untrusted vendor. If it is known to be undecidable, this conclusion should impact
on where to invest our efforts. In this chapter, we review and explain some of the key
results on decidability and explain how these results impact the problem of untrusted
equipment vendors.

5.1 Gödel and the Liar’s Paradox

The easiest accessible pathway into decidability is through the liar’s paradox.
Although we intuitively think that a statement is either true or false, it is possi-
ble to make an expression that is inconsistent if it is true and equally absurd if it is
false. The liar’s paradox is such an example: consider the statement, ‘This statement
is false.’ If it is true, then it has to be false and, if it is false, then it has to be true;
thus it can be neither true nor false.

The liar’s paradox has been subject to long philosophical discussions through-
out history. Its first application of relevance to our case was by the logician and
mathematician Kurt Gödel [6]. Gödel used a slightly modified version of the liar’s
paradox to prove his first incompleteness theorem. This theorem states that no theory
with a countable number of theorems is able to prove all truths about the relation of

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_5

39

40 5 Theoretical Foundation

natural numbers. Roughly, what Gödel did was replace the statement ‘This statement
is false’ with ‘This statement is not provable’. Clearly, if the latter statement is false,
it has to be provable, meaning that it has to be true. This situation again implies that
the statement has to be true but not provably so.

The incompleteness theorem of Gödel is not of direct interest to us, but his proof
technique is. At the core of it lies the observation that there are limits to what a
statement can say about itself without becoming an absurdity. Our interest in this
question is as follows: we would like to understand what a program can say about a
program or, more precisely, if a program can decide whether another program will
behave maliciously.

5.2 Turing and the Halting Problem

Before we dive into the limits of what a computer can do, we need to have a firm
understanding of what a computer is. The most common way to model the concept
of a computer is through an abstract device described by Alan Turing [10].

There are several manifestations of this device. What they have in common is
that they consist of a finite state machine, a read/writable tape, and a read/write
head that is located over a position on the tape. The device operates by reading the
position on the tape, changing the state of the state machine depending on what it
read, writing a symbol to the tape depending on the state andwhat it read, andmoving
the tape forward or backward depending on the state and what it read. A more formal
definition, similar to the definition given by Cohen [5], is as follows:

• Σ is a finite set of states for the Turing machine.
• Γ is a finite set of symbols that can be read from and written to the tape.
• Ω is a function Σ × Γ → Γ that decides the symbol to be written to tape in each
computation step.

• Δ is a function Σ × Γ → {−1, 0, 1} that decides in which direction the tape
should move after having written a symbol to the tape.

• Π is a function Σ ×Γ → Σ that decides the state that the Turing machine enters
after having written a symbol to the tape.

TheTuringmachine startswith a tapewith symbols on it and executes its operation
by performing the functions defined by Ω,Δ, and Π in each execution step. In this
definition, the computation of the machine halts when a computation step changes
neither the symbol on the tape, the position of the tape, nor the state of the state
machine (Fig. 5.1).

A famous postulate is that every function that is computable by any machine is
computable by a Turing machine. Although this postulate has not been proven, it
is widely believed to be true. In the years since its formulation, there has been no
reasonable description of amachine that has been proven able to do computations that
cannot be simulated by aTuringmachine.Consequently, the strength of programming
languages and computational concepts is oftenmeasured by their ability to simulate a

5.2 Turing and the Halting Problem 41

Fig. 5.1 A Turing machine. Based on the state of the state machine and the symbol on the tape, Ω
decides the symbol to be written, Δ decides how the tape should be moved, and Π decides the new
state of the machine

Turing machine. If they are able to, then we can assume that anything programmable
can be programmed by the language or the concept.

The definition of a Turing machine and the postulation that it can simulate any
other computing machine is interesting in itself. Still, its most important property,
from our point of view, is that it can help us understand the limits of what a computer
can do. Turing himselfwas the first to consider the limitations of computations, in that
he proved that a computer is unable to decide if a given Turing machine terminates
by reaching a halt. This is famously known as the halting problem and, to prove it,
Turing used the liar’s paradox in much the same way as Gödel did.

In a modernized form, we can state the proof as follows: assume that we have a
programmed function P that, for any program U , is able to answer if U halts for all
inputs. This would mean that P(U) returns a value of true if U halts for all inputs
and false if there is an input for which U does not halt. Then we could write the
following program Q:

Q : if P(Q) then loop forever; else exit

This program is a manifestation of the liar’s paradox. If Q halts, then it will loop
forever and, if it does not halt, then it halts. The only possible explanation for this is
that our assumption that P exists was wrong. Therefore, no P can exist that is able
to decide the halting problem.

5.3 Decidability of Malicious Behaviour

The importance of understanding the work of Gödel and Turing is that it forms the
basis for a series of results on the analysis of what a piece of code actually does. This

42 5 Theoretical Foundation

basis was exploited by Cohen’s [5] Ph.D. thesis from 1985. Cohen first defined the
main characteristic of a computer virus to be its ability to spread. Then the author
assumed the existence of a programmed function P with the ability to decide for any
program U whether it spreads. Using the liar’s paradox in the same way as Gödel
and Turing, Cohen found that the following example code constituted an absurdity:

Q : if P(Q) then exit; else spread

The reasoning is the same. If Q spreads, then it exits without spreading. If Q does
not spread, then it spreads. Again, the only consistent explanation is that P does not
exist.

Cohen’s work was a breakthrough in the understanding of the limits of looking
for malicious code. Subsequently, many developments extended undecidability into
other areas of computer security. The most important basis for this development
was the insight that the automatic detection of malicious machine code requires
code with the ability to analyse code. By using the liar’s paradox, we can easily
generate absurdities similar to those described above. A general variant would be
the following: Assume that P is a program that detects any specific behaviour B
specified in any program code. Then we can write the following program:

Q : if P(Q) then exit; else behave according to B

In the same way as seen before, this is a manifestation of the liar’s paradox and
the only conclusion we can draw is that P does not exist.

Note that the latter example is entirely general, in that it does not specify what
behaviour B is. This means that, by using different instantiations of B, we can
conclude the following:

• It is undecidable if computer code contains a Trojan [4] (B defines the behaviour
of a Trojan).

• It is undecidable if computer code contains the unpack–execute functionality often
found in Trojans [8] (B defines the behaviour of an unpacker).

• It is undecidable if computer code contains trigger-based malware, that is, mali-
cious computer code that will execute only through an external stimulus [2]
(B defines the behaviour of trigger-based code).

• It is undecidable if computer code is an obfuscated version of some well-known
malware behaviour [1] (B contains a specification of how thewell-knownmalware
behaves).

We will return to these bullet points in Chaps. 7 and8, where the craft of malware
detection is discussed in more detail.

http://dx.doi.org/10.1007/978-3-319-74950-1_7
http://dx.doi.org/10.1007/978-3-319-74950-1_8

5.4 Is There Still Hope? 43

5.4 Is There Still Hope?

The theoretical observations that we have elaborated on above appear to extinguish
all hope that we can solve security problems in computer code. This is, of course,
not true, since there is a lively and vibrant computer security industry out there
accomplishing valuable work. In the remainder of this chapter, we take a look at
where the rays of light are that are exploited by this industry. First, however, we
make things even darker by correcting a common misunderstanding regarding the
undecidability proofs above.

All the proofs above were based on the liar’s paradox, meaning that a central part
of the proof is that it is impossible to decide which branch of the following program
will actually be followed:

Q : if P(Q) then exit; else do something bad

This situation has led to the very commonmisunderstanding that the only undecidable
question is whether the code that does something bad is actually executed. Clearly,
any detection method that found badly behaving code – regardless of whether it
would be executed – would be of great help.

Unfortunately, identifying badly behaving subparts of code is also undecidable
and the proof is very similar to those we cited above. A common misunderstanding
stems from mixing up two proof concepts: proof by counterexample and reductio
ad absurdum. The program Q above is not a counterexample in the sense that it
is a program for which all P will have to give the wrong answer. Rather, Q is an
absurdity that is implied by the existence of P and, consequently, P cannot exist.
The proof itself sheds no light on for what subparts or subsets of programs P would
actually exist.

A ray of light is to be found in the definition of the Turing machine itself. This is
a theoretically defined machine that is not constrained by the realities of the physical
world. Where a real-world machine can only work on a limited amount of memory,
a Turing machine can have an infinitely long tape. Based on this insight, we have
seen some limited results that identify decidable versions of the problems studied
above. The existence of certain malware unpacking behaviour in code is shown
to be decidable and NP-complete [3]. A similar result exists, where, under some
restrictions, the decision of whether some code is an obfuscated version of another is
proven to be NP-complete [1]. Additionally, for the detection of viruses, a restricted
version of the problem is NP-complete [9].

However, NP-completeness is still a major problem. It does imply the existence
of a system that, in finite time, can produce the right answer, but the amount of
time needed rises very steeply with the size of the investigated program. For real-
life program sizes, ‘finite time’ means ‘finite but not less than a thousand years’.
The practical difference between undecidable and NP-complete for our problem
is therefore not significant. Still, the future may have further developments along

44 5 Theoretical Foundation

this axis that will help. Work on identifying decidable formulations of our problem
therefore remains important.

A more promising possibility is to be found in the absoluteness in the definition
of decidability. The proofs based on the liar’s paradox hold as long as we require
that P have no false negatives or false positives. In particular, when looking for
malware injected by a vendor, we may be able to accept a relative high ratio of false
positives, as long as there are few false negatives. Most would be happy to require
a purchased system to be designed so that it tested negatively, if one could assume
that deliberately building a system for a false negative was hard.

5.5 Where Does This Lead Us?

It has been stated [7] that there will never be a general test to decide whether a piece
of software performs malicious acts. Above we have gone through the reasoning that
substantiates this claim,which urges us to askwhat options remain. The answer lies in
the observation at the end of the previous section.Wemust aim to organize processes,
mechanisms, and human expertise for investigating equipment such that deliberately
building equipment that would generate a false negative in the investigation is hard.
In other words, any vendor that deliberately inserts unwantedmalicious functionality
into its products should run a high risk of being caught.

This places our problem in the same category as most other sciences related to
security. It is usually impossible to guarantee that security will never be breached, but
one canmake it difficult to the extent that it rarely happens. This is the case in aviation,
in finance, and in traditional computer security. We must therefore understand what
it means to make it difficult to build malicious functionality into a system without
being caught.

Several fields of research have the potential to help. First and perhaps most obvi-
ous, we have all the research that has been done in malware detection. Although
most of the work in that field is based on the assumption that the perpetrator is a
third party and not the vendor, the problem it addresses is close to ours. We study the
applicability of malware detection techniques to our problem in Chap.7. Then we
study how developments in formal methods can help us. The aim of formal methods
is to build formal proofs of the properties of computer systems and we thus consider
how that can help us in Chap.9. Adding to this, Chap.8 examines how the system-
atic testing of a computer system can help us make it difficult to include malicious
behaviour into a system without being caught. Looking for machine code that can
solve the problem once and for all is, unfortunately, futile.

http://dx.doi.org/10.1007/978-3-319-74950-1_7
http://dx.doi.org/10.1007/978-3-319-74950-1_9
http://dx.doi.org/10.1007/978-3-319-74950-1_8

References 45

References

1. Borello, J.M., Mé, L.: Code obfuscation techniques for metamorphic viruses. J. Comput. Virol.
4(3), 211–220 (2008)

2. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automatically identifying
trigger-based behavior in malware. Botnet Detection, pp. 65–88. Springer, New York (2008)

3. Bueno, D., Compton, K.J., Sakallah, K.A., Bailey,M.: Detecting traditional packers, decisively.
Research in Attacks, Intrusions, and Defenses, pp. 184–203. Springer, Berlin (2013)

4. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware malware
detection. In: 2005 IEEE Symposium on Security and Privacy, pp. 32–46. IEEE (2005)

5. Cohen, F.: Computer viruses. Ph.D. thesis, University of Southern California (1985)
6. Gödel, K.: Über formal unentscheidbare sätze der principia mathematica und verwandter sys-

teme i. Monatshefte für mathematik und physik 38(1), 173–198 (1931)
7. Oppliger, R., Rytz, R.: Does trusted computing remedy computer security problems? IEEE

Secur. Priv. 2, 16–19 (2005)
8. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: automating the hidden-

code extraction of unpack-executing malware. In: Null, pp. 289–300. IEEE (2006)
9. Spinellis, D.: Reliable identification of bounded-length viruses is np-complete. IEEE Trans.

Inf. Theory 49(1), 280–284 (2003)
10. Turing, A.: On computable numbers, with an application to the entscheidungs problem. Proc.

Lond. Math. Soc. 42, 230–265 (1936–1937)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 6
Reverse Engineering of Code

The ability to reverse engineer a product has been important for as long as technology
has existed. A vital activity in most branches of industrial design and production has
been to acquire samples of the products sold by competing companies and pick them
apart. Understanding the engineering done by your competing opponents can shed
insight into the strengths and weaknesses of their products, reveal the engineering
ideas behind their products’ features, and fertilize and further improve the innovation
that goes on in one’s own company.

Within information and communications technology (ICT), reverse engineering
has played a lesser role than it has in traditional industries. The main reason for
this is that reverse engineering a product for the sake of copying it as your own is
often considered too costly and time-consuming to be worth the effort. Still, reverse
engineering is used and studied for a handful of select purposes in ICT. In this chapter,
we provide an overview of the state of the art in this area and conclude how it relates
to our ability to verify the contents of a product from an untrusted vendor.

6.1 Application of Reverse Engineering in ICT

The most common form of reverse engineering in computer programming and engi-
neering is deeply rooted in the everyday tasks of the engineer. The making of a
program or a piece of electronic equipment largely consists of interactions with
libraries and components that one has not made oneself. Everybody who has worked
as an engineer in ICT will know that the interfaces of such libraries and components
are hard to understand and often lack the necessary documentation. Reverse engi-
neering the interfaces of the components you need is therefore something that every
ICT engineer will have spent time on [6].

Reverse engineering for the purpose of understanding interfaces is largely uncon-
troversial. The reasons for doing it are clear and they are generally compatible with
the interests of society. An exception to this is when a company intentionally keeps
its user interface secret for commercial reasons or for reasons related to security.

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_6

47

48 6 Reverse Engineering of Code

Whether reverse engineering that interface is acceptable then becomes a legal as
well as a moral question. In 1990, Sega Enterprises released a gaming console called
Genesis. Its strategy was to let Sega and its licensed affiliates be the only developers
of games for it. A California-based company called Accolade reverse engineered the
interface of the Genesis gaming platform and successfully developed and sold games
for it. In 1991,Accoladewas sued bySega for copyright infringement. The court ruled
in Accolade’s favour because it had not copied any of Sega’s code and because of the
public benefit of the additional competition in the market that Accolade represented
[2]. Today – several decades later – secrecy regarding interfaces and challenges of
such secrecy through reverse engineering still take place. The jailbreaking of mobile
phones bears witness to this phenomenon [12].

Another area where reverse engineering is applied is in the search for security
holes. The reason for wanting to do this is much the same as for needing to reverse
the interface of a component you require. When you include a component in your
product, you also exposeyourself to the component’s security vulnerabilities.Reverse
engineering the component will therefore be necessary to understand the extent to
which such vulnerabilities exist and to assess the degree towhich they are inherited in
your own product [4]. This is particularly important for components that implement
cryptographic security protocols. These protocols are usually mathematically sound
but the security they provide is very sensitive to subtle mistakes or shortcuts in
implementation.

The emergence of software reverse engineering as a field in its own right largely
came about as the result of the need to analyse malware. Whenever a system is
infected, there is a need to identify the malware involved, how it infects the system,
how it spreads, and what damage it can do or has already done. There is therefore
a high demand for expertise in reverse engineering different types of malware and
conducting forensic analyses of infected systems [10].

The most controversial use of reverse engineering is related to digital rights man-
agement (DRM). The age of digital equipment has turned copyrighted material such
as recorded music, books, and movies into digital information. On one hand, it has
become trivially easy to copy, distribute, and share such material and, on the other
hand, it has become increasingly hard for copyright owners to protect their property.
The term DRM is used to denote technologies invented for the purpose of protecting
copyright holders while still making copyrighted material easily accessible to those
consumers who paid for the right to enjoy it [8]. Reverse engineering of DRM pro-
tection schemes will allow the cracker to gain unprotected access to the material. It is
therefore regularly done by software pirates, who, in many cases, will make cracked
material available on file-sharing sites. The material then becomes downloadable
for free for anyone who chooses to do so and the value of the copyright diminishes
accordingly.

Even though reverse engineering is more complex and therefore less used in ICT
than in other fields of engineering, it has developed into an area in which a computer
scientist can specialize. In the upcoming sections, we discuss some of the tools that

6.1 Application of Reverse Engineering in ICT 49

have been developed in this area. Understanding the tools of the trade will help us
understand the state of the art. Ultimately, this will help us assess the extent to which
it is possible to fully investigate a product bought from an untrusted vender.

6.2 Static Code Analysis

In Chap.3 we discussed the different layers of technology that constitute an ICT-
system. These layers span from the user interface of a system and all the way down
to the physical phenomena that allow us to build them in the first place. Then, in
Chap.4 we illustrated that many of these layers are hidden from the system develop-
ers themselves. Tools for hardware synthesis, compilers and assemblers makes the
development process more efficient by relieving the engineers from having to relate
to many of the technology layers.

A reverse engineer looking for malicious functionality inserted by an untrusted
vendor will have to study all of the technology layers, as well as the interaction
between them. The software-part of this technology stack starts from machine-code
at the bottom.Here, none of the high-level notions known to programmers are present.
Concepts such as variables, arrays, structures, objects, sets, list, trees, graphs, meth-
ods and procedures are not present. Rather, there are memory locations with a fixed
number of bits in them, a clear distinction between registers close to the CPU and
memory-locations in caches and off-chip, and no obvious distinction between data,
pointers to memory-locations and instructions.

Since reverse engineering of software largely consists of recreating the intentions
and thoughts of the initial programmer, the reverse engineer will have to backtrack
from the machine code and towards the high-level program code that was originally
written. This is a huge challenge. In its pure form, machine code loaded into memory
can easily consist of millions of memory locations, all containing 32 or 64 bits of
information. This has to be translated back – first into assembly code and then,
possibly, into an interpreter of byte-level code – before the high-level concepts used
by the original programmer can be recreated.

Tomost programmers inexperienced in reverse engineering, this sounds undoable.
All software engineers have experienced not understanding high-level code written
by their colleagues andmostwill admit to cases inwhich they did not understand code
they wrote themselves two months ago. Understanding code starting from machine-
level instructions seems like an impossible task. Still, reverse engineering has cele-
brated significant successes in deciphering programmer interfaces, malware analysis,
as well as cracking DRM schemes. This is largely due to the tool sets available. In
the upcoming sections, we review the most important classes of reverse engineering
tools.

http://dx.doi.org/10.1007/978-3-319-74950-1_3
http://dx.doi.org/10.1007/978-3-319-74950-1_4

50 6 Reverse Engineering of Code

6.3 Disassemblers

Adisassembler is a relatively simple piece of software. It takes a sequence ofmachine
code instructions encoded in binary format readable by the machine and translates
the instructions one by one into the more humanly readable textual form of assembly
code. Since the instruction set differs from platform to platform, a disassembler is
generally platform specific [5].

Although disassemblers vary in strength, it is generally agreed that automatically
recreating readable assembly code from machine code is doable [6]. In our case,
however, it should be noted that we do not necessarily trust the platform either.
This means that the hardware and firmware could implement undocumented side
effects and undocumented instructions that will not be correctly interpreted by the
disassembler.

6.4 Decompilers

A decompiler is a piece of software that does the opposite of what a compiler does.
This means that it tries to recreate the original source code by analysing the exe-
cutable binary file. This is a very difficult problem. In all but a very few platforms,
actual recovery of the full original source code with comments and variable names
is impossible. Most decompilers are complete in the sense that they construct source
code that, if recompiled, will be functionally equivalent to the original program. Still,
the results they produce may be extremely hard to understand and that is where the
limitation of decompilers lies with respect to reverse engineering.

There are several reasons why understanding decompiled code is far harder than
understanding the original source code. First, in the compilation process, much of the
information that the programmer writes into the code to make it readable is removed.
Clearly, all comments to the code are removed. Furthermore, no variable names will
survive, since they are translated into memory locations in machine code. High-level
concepts such as classes, objects, arrays, lists, and sets will not be readily recreated.
The programmer’s structuring of the code into methods and procedures may be
removed by the compiler and calls for these procedures may have been replaced
by copying the code in-line. Furthermore, the compiler may create new procedures
through the observation of repeated code and the flow graph of themachine codemay
be very different from that of the original source code. In addition, all assignments
containing arithmetical expressions will be replaced by the compiler by a highly
optimized sequence of operations that renders the original assignment statement
impossible to recreate [1].

These difficulties are such that some compare decompilation with the process of
trying to bring back eggs from an omelette or the cow from a hamburger. This is
true to the extent that the output from the decompiler will, in most cases, be far less
readable than the original source code. On the other hand, it is important to note that

6.4 Decompilers 51

all the information that makes the program do what it does will be present in the
decompiled code as well. Decompilers are therefore valuable tools in most reverse
engineering processes [6].

6.5 Debuggers

Whereas disassemblers and decompilers are tools that work on static program code,
debuggers operate on code that is actively running. As the name suggests, the first
debuggerswere not intended for reverse engineering.Rather, theywere tools intended
to help programmers find programming mistakes.

A debugger allows a programmer to observe all actions of a program while it
is running. Most of the actions of programs running outside of a debugger will be
unobservable to the human eye. Usually, only user interactions are actually visible.
The task of a debugger is to make all internal states and all internal actions of a
program observable. A debugger can be instructed to stop the execution of a program
at a given code line. When the specified code line is reached, the content of specific
memory locations can be probed. The internal state of a program can thus be revealed
at any point of the execution. Another useful feature of a debugger is that it will allow
stepwise execution of the machine code. It is therefore possible to follow the flow of
a program at a speed compatible with the speed of the human brain.

Debuggers are indispensable tools in most reverse engineering processes. They
allow the reverse engineer to understand the control flow of a program, as well as
how complex data structures are actually built and used. A debugger can therefore
help fill the semantic void left by disassemblers and decompilers.

6.6 Anti-reversing

All instances of reverse engineering for the purposes of analysing malware, under-
standing undocumented interfaces, and cracking DRM schemes have one important
thing in common: to reveal something that the original programmer intended to keep
secret. Therefore, the development of reverse engineering schemes has run in parallel
with the development of schemes trying to prevent reverse engineering.

Such anti-reversing schemes generally come in two flavours, where one is known
as code obfuscation. The purpose of obfuscation techniques is to change the code into
a representation that is semantically equivalent but where the structure of the code
and data of the program are difficult to reconstruct. This can be achieved through the
rearrangement of instructions, the insertion of irrelevant code, or the encryption of
parts of the code. The arms race between the reverse engineers and obfuscators of
code follows the same lines as that between malware makers and malware detectors
and is largely being fought by the same people. Rather than giving a separate account
for the race here, we refer to Chap.7 and particularly to Sect. 7.4.

http://dx.doi.org/10.1007/978-3-319-74950-1_7
http://dx.doi.org/10.1007/978-3-319-74950-1_7

52 6 Reverse Engineering of Code

The second type of anti-reversing scheme consists of those that intend to render the
tools of the reverse engineer useless. For all three tools discussed above – disassem-
blers, decompilers, and debuggers – there exist ways to confuse them. Disassemblers
can be confused into interpreting data as instructions and instructions as data. This
is particularly useful for architectures with variable-length instructions. Decompil-
ers can be confused by machine code that cannot be reconstructed in the high-level
language. One very simple example of this is the insertion of arbitrary unconditional
jump statements into Java bytecode. Since Java does not have a goto statement, arbi-
trary unconditional jump statements are hard to decompile [3]. A more challenging
way to confuse a decompiler is to exploit the lack of division between instructions
and data that exist onmost hardware platforms. Inmachine code, sequences of binary
values can be computed in an arbitrarily complex way and, after they have been com-
puted, they can be used as instructions. A decompiler will not be able to handle such
situations because of the strong division between code and data that is assumed in
most high-level languages.

Debuggers can be beat by having the program code detect that it is being run in
debug mode and simply terminate if it finds that it is. The debugger will thus not
be able to observe the dynamic behaviour of the code. The key to this approach is
that it is generally impossible for a debugger to completely hide its presence. It will
most often be visible in the set of processes running on the machine. Furthermore, to
stop the execution of a program at arbitrary points, the debugger will have to change
the program by inserting an interrupt instruction. Such changes can be detected by
the program itself by calculating checksums on portions of its code. The arms race
between debuggers and anti-debuggers has a counterpart in the dynamic detection
of malware. This topic is discussed in Chap. 8 and the ways in which malware can
detect that it is being observed are discussed in Sect. 8.5.

A combination of anti-reversing techniques can make the reverse engineering of
code arbitrarily complex, even for the simplest program functionality. On the positive
side, these anti-reversing techniques all come at a cost: they either make the code
less efficient, longer, or both. Unfortunately for us, short and efficient code may
not be important criteria for a dishonest vendor of digital equipment. The cost of
implementing anti-reversing techniques is therefore not likely to help us.

6.7 Hardware

Reverse engineering a computer chip is, in many ways, an art form. A plethora of
techniques are available for removing thin layers of material and then identifying
the structure of logic gates that constitute the chip. An overview of some of the
techniques is given by Torrance and James [11]. Based on these techniques, it is
often stated that any integrated circuit can be reverse engineered, given sufficient
resources. The key to understanding this statement lies in quantifying what is meant
by the term sufficient resources.

http://dx.doi.org/10.1007/978-3-319-74950-1_8
http://dx.doi.org/10.1007/978-3-319-74950-1_8

6.7 Hardware 53

Nowadays a chip can consist of hundreds of millions of logic gates spread over
a number of metal layers that runs in the two digits. Each logic gate performs an
extremely simple operation; thus, the complex operation of a chip is a product of the
interactions between these gates. There is currently no mature methodology that can
produce high-level concepts from such a set of gate-level designs. Actually, finding
a word-level structure from bit-level gates is still considered a difficult problem
and, even when that problem is solved, we are very far from having understood a
complete chip [7]. Fully reverse engineering a modern complex chip to the extent
that all details of its operation are understood, down to the impact of every bit-level
gate, is practically impossible, given the amount of effort it would require.

However, this may change in the future. As discussed above, strong tool sets
are readily available for building high-level structures from low-level software and
it is reasonable to assume that similar advances can be achieved for hardware. On
the other hand, the development of such tools for hardware will clearly lead to
the development of hardware obfuscation techniques as well. The possible future
balance of power between hardware reverse engineers and hardware obfuscators is
hard to predict. Still, a reasonable guess is that it will converge to a state similar
to the balance of power found in the software domain. If this happens, hardware
obfuscation techniques will reach a state where reverse engineering can be made
arbitrarily complex but not theoretically impossible.

6.8 Discussion

Reverse engineering has played vital roles in most areas of engineering. It is used to
understand the technical ideas behind competing products and the ease with which
a product can be reverse engineered has been a driver behind such legal institutions
as patents. In most fields, it is considered nearly impossible to include an idea in a
product without revealing that idea to anyone who picks the product apart. Stating
that ships, cars, buildings, and bridges have not been built according to specifications
has also been the basis of legal claims.

In ICT, however, things are different. Implementing an idea into a product canoften
be done without disclosing the idea itself and, to support this, obfuscation techniques
have been developed that make it even more difficult to extract engineering ideas
from analysing a product. One consequence is that patents have played a lesser role
in ICT equipment than could be expected from the technical complexity involved.
Finding out whether a patented idea has been copied into a competing product is
often a highly non-trivial task in itself.

The importance of reverse engineering in ICT is nevertheless evident. Major
successes have been celebrated1 by reverse engineering teams in all important appli-

1It should be noted that we use the words success and celebrated in a very subjective manner here
and as seen from the perspective of the reverse engineer. Inmany cases, the task of a reverse engineer
is to extract information that others try to hide. Depending on the situation, the reverse engineer
may or may not have the right to claim the moral high ground.

54 6 Reverse Engineering of Code

cation areas. Programmer interfaces have been reversed to allow for the correct use
and inclusion of components, the reverse engineering of malware has allowed us to
better protect ourselves, the reverse engineering of DRM schemes has changed the
course of entire industries, and the reverse engineering of cryptographic protocols
has revealed weaknesses to be exploited or removed.

All of the successes do have one thing in common. They relate to relatively
small pieces of code or the reverse engineering team was able to narrow the focus
of the effort down to a sufficiently limited code area to make it tractable. For our
case, this will not suffice. Depending on the intent of the dishonest vendor, the
unwanted functionality can be placed anywhere in the product. Kill switches can be
placed anywhere in the hundreds of millions of transistors on a given chip. They
can be placed anywhere in firmware of a CPU so that it is rendered useless when a
given combination of machine instructions are executed. As argued in Chap.3, a kill
switch can be placed anywhere in the operating system – in the device drivers, the
hypervisors, the bytecode interpreters, the dynamic link libraries, or in an application
itself – and, as explained in Chap.4, can be introduced by any development tool used
by the developers.

Morrison and colleagues and colleagues estimated that a full analysis of the Win-
dows code base should take between 35 and 350 person–years, even if the source
code is available to the reverse engineers [9]. Knowing the Windows operating sys-
tem is only a small part of the total technology stack and that the expected lifetime
of this code base is only a handful of years, it becomes evident that the state of the
art in reverse engineering falls far short of being a satisfactory answer to the problem
of untrusted vendors. It is, however, unlikely that reverse engineering will not play
a central role in the future of this problem. Reverse engineering is and will remain
the field that most directly addresses the core of our problem.

References

1. Cifuentes, C., Gough, K.J.: Decompilation of binary programs. Softw. Pract. Exp. 25(7), 811–
829 (1995)

2. Coats, W.S., Rafter, H.D.: The games people play: Sega v. Accolade and the right to reverse
engineer software. Hastings Commun. Entertain. Law J. 15, 557 (1992)

3. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. Depart-
ment of Computer Science, The University of Auckland, NewZealand, Technical report (1997)

4. Down, M., McDonald, J., Schuh, J.: The Art of Software Security Assessment: Identifying and
Preventing Software Vulnerabilities. Pearson Education, London (2006)

5. Eagle, C.: The IDA Pro Book: The Unofficial Guide to theWorld’sMost Popular Disassembler.
No Starch Press, San Francisco (2011)

6. Eilam, E.: Reversing: Secrets of Reverse Engineering. Wiley, New York (2011)
7. Li,W.,Gascon,A., Subramanyan, P., Tan,W.Y., Tiwari, A.,Malik, S., Shankar,N., Seshia, S.A.:

Wordrev: finding word-level structures in a sea of bit-level gates. In: 2013 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pp. 67–74. IEEE (2013)

8. Liu, Q., Safavi-Naini, R., Sheppard, N.P.: Digital rights management for content distribution.
In: Proceedings of the Australasian Information Security Workshop Conference on ACSW
Frontiers 2003, vol 21, pp. 49–58. Australian Computer Society, Inc. (2003)

http://dx.doi.org/10.1007/978-3-319-74950-1_3
http://dx.doi.org/10.1007/978-3-319-74950-1_4

References 55

9. Morrison, P., Herzig, K., Murphy, B., Williams, L.: Challenges with applying vulnerability
prediction models. In: Proceedings of the 2015 Symposium and Bootcamp on the Science of
Security. ACM–Association for Computing Machinery (2015)

10. Sikorski, M., Honig, A.: Practical Malware Analysis: The Hands-on Guide To Dissecting
Malicious Software. No Starch Press, San Francisco (2012)

11. Torrance, R., James, D.: The state-of-the-art in IC reverse engineering. In: Cryptographic
Hardware and Embedded Systems-CHES 2009, pp. 363–381. Springer (2009)

12. Zdziarski, J.: Hacking and Securing iOS Applications: Stealing Data, Hijacking Software, and
How to Prevent It. O’Reilly Media, Inc., Sebastopol (2012)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 7
Static Detection of Malware

In the search for research fields that can shed light on our issue of checking a piece of
equipment for unwanted functionality, staticmalware detection stands out as themost
obvious candidate. Malware detection is as old as malware itself and its main goal is
to discover if maliciously behaving code has been introduced into an otherwise clean
system by a third party. In this chapter, we consider techniques that are static, in the
sense that they are based on investigating the code rather than a running system. We
will return to dynamic methods in a later chapter.

Our point of view is somewhat different from that of classic malware detection,
in that we do not assume that we have a clean system to begin with. Our intention is
to shed light on the implications of this difference to understand the extent to which
the successes of static malware detection can transfer to our case.

7.1 Malware Classes

Themost frequently cited definition ofmalware is software that fulfils the deliberately
harmful intent of an attacker. This definition was presented byMoser et al. [11]. The
termmalware is usually understood to be an abbreviation of the two wordsmalicious
software. As we shall see in a later section, this definition is overly restrictive, since
some types of malware threaten hardware development. A more general definition
and one more relevant to our topic is, therefore, that malware is malicious code,
regardless of whether this code defines hardware or if it is to be run as software.
A reasonable definition of the term is therefore ‘code that deliberately fulfils the
harmful intent of an attacker’.

An abundance of taxonomies of malware are to be found in the literature, but they
generally agree on the most important terms. We do not intend to give a complete
overview here; rather, we concentrate on the notions that are most relevant to our
topic. A more complete set of definitions can be found in [17]. Here, we proceed
with the three notions that define different ways that malware can spread and reside
on a machine.

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_7

57

58 7 Static Detection of Malware

Virus A computer virus shares the property of its biological counterpart that it
cannot live on its own. Rather, it is a piece of code that inserts itself into an
existing program and is executed whenever the host program is executed.
Computer viruses spread by inserting themselves into other executables.
The initial infection of the system can be accomplished through a program
that only needs to be run once. The infecting program could, for example,
reside on a memory stick.

Worm A worm is a complete program in its own right and can execute indepen-
dently of any other program. Its primary distinction from a virus is that it
does not need a host program. This also means that its strategies for spread-
ing will be different, since it does not need to alter existing executables to
spread. It can spread through a network by exploiting vulnerabilities in
operating systems.

Trojan While viruses and worms spread in stealth mode, a Trojan horse is mal-
ware embedded into a seemingly innocent application that is explicitly
and knowingly downloaded and run by the user. This application can be a
screensaver, a small widget that displays the local weather, or a file received
as a seemingly harmless attachment in e-mail. Infections embedded inmali-
cious webpages are also categorised as Trojans.

Although the above categorization gives the impression that an attack falls into
exactly one of these categories, this is not generally true. A sophisticated operation
could take advantage of all three strategies above.

Orthogonal to the infection methods above is a set of notions related to what the
malware is trying to achieve.

Spyware The task of spyware is to collect sensitive information from the sys-
tem it resides on and transfer this information to the attacker. The
information can be gathered by logging keystrokes on a keyboard,
analysing the contents of documents on the system, or analysing the
system itself in preparation for future attacks.

Ransomware As the name suggests, this is malware that puts the attacker in a
position to require a ransom from the owner of the system. The most
frequent way to do this is by rendering the system useless through
encrypting vital information and requiring compensation for making
it available again.

Bot A bot is a piece of software that gives the attacker—or botmaster—
the ability to remotely control a system. Usually a botmaster has
infected a large number of systems and has a set of machines—
a botnet—under his or her control. Botnets are typically used to
perform attacks on other computers or to send out spam emails.

Rootkit A rootkit is a set of techniques are used to mask the presence of
malware on a computer, usually through privileged access—root or
administrator access—to the system. Rootkits are not bad per se,
but they are central parts of most sophisticated attacks. They are

7.1 Malware Classes 59

also typically hard to detect and remove, since they can subvert any
anti-malware program trying to detect it.

This list of actions that could be performed by malware covers the most fre-
quent motivations for infecting a system. Still, we emphasize that the list is not
exhaustive. Other motivations not only are conceivable but also have inspired some
of the most spectacular digital attacks known to date. The most widely known of
these is Stuxnet, whose prime motivation was to cause physical harm to centrifuges
used in the enrichment of uranium in Iran [10]. Another example is Flame [3], which
can misuse the microphone and camera of an infected device to record audio and
video from the room where the infected system is physically located.

7.2 Signatures and Static Code Analysis

Checking for malicious intent in program code is usually done through signatures.
In its simplest and earliest form, a signature is a sequence of assembly instructions
that is known to perform a malicious act. Two decades of arms race between makers
and detectors of malware have led to the development of malware that is hard to
detect and advanced static signatures with complex structures. The utilization of
such signatures is, in principle, quite straightforward: we need a repository of known
sequences of instructions sampled from all known malware. Checking code against
this repository, a malware detection system would be able to raise the alarm when a
matching sequence is found.

There are basically three challenges to finding malware this way. First, the sig-
nature has to be generated and this is usually done manually [8]. Second, before
the signature can be generated, the malware must have been analysed. This will not
happen until its existence is known. There are examples of malware that were active
for several years before they were found [19]. Finally, the repository of signatures is
ever growing and new signatures have to be distributed continuously.

These challenges notwithstanding, the detection of malware through static sig-
natures has historically been one of the most successful countermeasures against
malware infections. The arms race between detectors and developers of malware is,
however, still ongoing and, in the upcoming sections, we give an overview of how
the race has played out.

7.3 Encrypted and Oligomorphic Malware

The response of malware developers to signatures was quite predictable. The devel-
opers needed to make malware that had the same functionality as malware for which
a signature existed but where the signature itself would not produce a match. This
was important for them for two reasons. First, in writing newmalware, it is important

60 7 Static Detection of Malware

that it is not caught by existing signatures. Second, as one’s malware spreads and
infects more and more machines, one would like it to automatically develop into
different strands. This way, whenever new signatures can fight some instances of
your malware, there are others that are immune.

An early attempt at making a virus develop into different versions as it spread
involved encrypting the part of the code that performed the malicious actions. Using
different encryption keys, the virus could morph into seemingly unrelated versions
every other generation. For this to work, the virus had to consist of two parts, one
part being a decryptor that decrypts the active parts of the malware and the other
the malicious code itself. Although this made the static analysis of the actions of the
malware somewhat harder, finding the malware by using signatures was not made
anymore difficult. The decryption loop itself could not be encrypted and it turned out
that finding a signature that matched a known decryption loop was no more difficult
than finding a signature for a non-evolving virus.

A second approach was to embed several versions of the decryption loop into the
encrypted part of the malware. For each new generation of the virus, an arbitrary
decryption loop is chosen so that one single signature will not be able to detect
all generations of the malware. Viruses that use this concealment strategy are called
oligomorphic [15] and they present a somewhat greater challenge for virus analysers,
whichwill have to develop signatures for each version of the decryption loop. Still, for
virus detection software, only the analysis time is increased. Oligomorphic viruses
are therefore currently considered tractable.

7.4 Obfuscation Techniques

From the point of view of a malware developer, one would want to overcome oligo-
morphic viruses’ weakness of using only a limited number of different decryption
loops. The natural next step in the evolution of viruses was to find ways to make the
code develop into an unlimited number of different versions.

In searching for ways to do this, malware developers had strong allies. Parts of
the software industry had for some time already been developing ways to make code
hard to reverse engineer, so that they could better protect their intellectual property.
Rewriting code to have the same functionality but with a vastly different appear-
ance was therefore researched in full openness. Some of the methods developed
naturally found their way into malware development. Many techniques could be
mentioned [20], but here we only consider the most common ones.

The most obvious thing to do when a signature contains a sequence of instruc-
tions to be performed one after the other is to insert extra insignificant code. This
obfuscation method is called dead code insertion and consists of arbitrarily intro-
ducing instructions that do not alter the result of the program’s execution. There are
several ways of doing this. One can, for instance, insert instructions that do noth-
ing at all—so-called nooperations—and these are present in the instruction sets of
most processors. Another method is to insert two or more operations that cancel

7.4 Obfuscation Techniques 61

each other out. An example of the latter is two instructions that push and pop the
same variable on a stack. Another obfuscation technique is to exchange the usage
of variables or registers between instances of the same malware. The semantics of
the malware would be the same, but a signature that detects one instance will not
necessarily detect the other.

More advanced methods will make more profound changes to the code. A key
observation is that, inmany situations,multiple instructionswill have the same effect.
An example is when you want to initialize a register to zeros only: you could do so
by explicitly assigning a value to it or by XOR-ing it with itself. In addition, one can
also alter the malware by scattering code around and maintaining the control flow
through jump instructions.

Themost advanced obfuscations techniques are the so-called virtualization obfus-
cators [16]. Malware using this technique programs malicious actions in a randomly
chosen programming language. Themalware contains an interpreter for this language
and thus performs the malicious acts through the interpreter.

In parallel with the development of obfuscation techniques, we have seen an
abundance of suggestions for deobfuscators. These are tasked with transforming
the obfuscated code into a representation that is recognizable to either humans or
a malware detector equipped with a signature. For some of the obfuscation tech-
niques above, deobfuscators are easy to create and efficient to use. The successes of
these techniques unfortunately diminish when obfuscators replace instructions with
semantically identical instructions where the semantic identity is dependent on the
actual program state or when the control flow of the program is manipulated with
conditional branches that are also dependent on the program state. This should, how-
ever, not come as a surprise. We learned in Chap.5 that whether two programs are
behaviourally identical is undecidable. Perfect deobfuscators are therefore impossi-
ble to design.

The hardest challenge in deobfuscation is to extract the meaning of code that has
been through virtualization obfuscation. The first step in doing this would have to
be to reverse engineer the virtual machine, to get hold of the programming language
that was used in the writing of the malicious code. The complexity of this task
becomes clear when we consider the following two facts. First, the virtual machine
may itself have been obfuscated through any or all of the mechanisms mentioned
above. Second, many different programming paradigms have strength of expression
equal to that of a Turing machine. Logic programming, functional programming,
and imperative programming are all considered in Sect. 9.3—but, in addition, we
have algebraic programming [6] and Petri nets [13], to mention two of the more
important. All of these paradigms can be implemented in a programming language
in many different ways. Analysing the virtual machine itself is a task that can be
made arbitrarily complex and the analysis must be completed before one can start
analysing the operational part of the malware. This is a clear indication that we have
a long way to go before the static analysis of programming code can help us against
a malicious equipment vendor.

http://dx.doi.org/10.1007/978-3-319-74950-1_5
http://dx.doi.org/10.1007/978-3-319-74950-1_9

62 7 Static Detection of Malware

7.5 Polymorphic and Metamorphic Malware

Given the weakness of oligomorphic malware and the obfuscation techniques
described above, the next step in the development of advanced viruses should be
obvious. A polymorphic virus is an encrypted virus that uses obfuscation techniques
to generate an unlimited number of versions of its decryption loop. A well-designed
polymorphic virus can thus not be fought by finding signatures for the decryptor.
These viruses are therefore fought through deep analysis of one version of the decryp-
tor so that the decryption key can be extracted. Thereafter, the body of the virus is
decrypted and matched with an ordinary signature. Although polymorphic viruses
require a great deal of human effort in their analysis, their automatic detection need
not be too computationally heavy once analysed.

Metamorphic viruses are the most challenging. They are not necessarily based
on encryption and, instead, use obfuscation techniques throughout the entire body
of the virus. This means that each new copy of the virus may have a different code
sequence, structure, and length and may use a different part of the instruction set.
Since obfuscation techniques have to be executed automatically from one generation
of the virus to the next, a metamorphic virus must carry out the following sequence
of operations to mutate successfully:

1. Identify its own location in storage media.
2. Disassemble itself to prepare for analysis of the code.
3. Analyse its own code, with little generic information passed along, since this

information could be used in signature matching.
4. Use obfuscation techniques to transform its own code based on the analysis above.
5. Assemble the transformed code to create an executable for the new generation.

Efficient staticmethods for fightingmetamorphic virus have yet to be developed [14].
The fact that no two versions of them need share any syntactic similarities makes the
task hard and it is made even harder by the fact that some of the viruses morph into
different versions every time they run, even on the same computer.

7.6 Heuristic Approaches

Looking for malicious code through signatures has the obvious drawback that, for
a signature to exist, the malicious code has to be analysed in advance [2]. This also
means that the malware has to be known in advance. In the problem we are studying,
this is rarely the case. If the malware were already known, we would know it had
been inserted; thus, we would already know that the vendor in question was not
to be trusted. We need to search for unknown code with malicious functionality
and we therefore need to approach malware detection differently. Heuristic malware
detection tries to do so by identifying features of the code where one can expect there
to be differences in the occurrence of that feature, depending on whether the code is

7.6 Heuristic Approaches 63

malicious or benign. The code in question is analysed for the features in question and
a classification algorithm is used to classify the code as either malicious or benign.

The first classes of features that were considered were N-grams [1]. An N-gram
is a code sequence of length N, where N is a given number. Although an N-gram, at
first glance, looks exactly like a very simple signature, there are crucial differences.
First, N is often a very low number, so the N-gram is very short in comparison with a
signature. Second, unlike for signatures, we are not interested in the mere question of
whether there is a match or not; rather, we are interested in how many matches there
are. Heuristic methods based on N-grams extract a profile of how a set of N-grams
occurs in the code under investigation. This profile is classified as either benign or
malicious by a classifier. The complexity of classifiers varies greatly, from simple
counts of the occurrence of features to advanced machine learning techniques.

Other heuristic approaches use so-called opcodes instead of N-grams [4]. An
opcode is the part of an assembly instruction that identifies the operation itself but
without the part that identifies the data on which it operates. The techniques that can
be used for classifiers are more or less the same as those used for N-grams.

A final class of features worth mentioning is that based on control flow graphs [5].
A control flow graph in its simplest form is a directed graph whose nodes represent
the statements of the program and the edges the flow of program control. From
this graph, several features can be extracted, such as nodes, edges, subgraphs, and
simplified subgraphs with collapsed nodes.

Heuristic approaches have had some significant success. Still, static versions of
these have one major limitation when applied to our problem: since we can assume
that a dishonest equipment vendor is well aware of the state of the art in heuris-
tic analysis, we can also assume that the vendor has made an effort to develop
code that will be wrongly classified. Given the flexibility of the code obfuscation
techniques described above, this is unfortunately not very difficult to do [12]. For
this reason, present research and commercial anti-malware products favour dynamic
heuristics [7]. We return to this topic in the next chapter.

7.7 Malicious Hardware

The intense study of malicious software that has taken place over several decades
has been mirrored in the hardware domain only to a limited extent. For a long time,
this situation was a reasonable reflection of the state of threats. The development and
manufacture of hardware components were assumed to be completely controlled by
one company and it was not suspected that any development teamwould deliberately
insert unwanted functionality in the chips.

Both of these assumptions have now become irrelevant. Indeed, one topic of
this book is exactly that of hardware vendors inserting unwanted functionality. Fur-
thermore, the process of developing integrated circuits now involves many devel-
opment teams from different companies. Putting together a reasonably advanced
application-specific integrated circuit (ASIC) now largely consists of exactly that:

64 7 Static Detection of Malware

putting together blocks of logic from different suppliers. These blocks can be simple
microprocessors, microcontrollers, digital signal processors, or network processors.
Furthermore, as we saw in Chap.4, Trojans can be inserted through the design tools
and in the fabrication as well [18].

Static analysis of ASICs is conducted in industry for a variety of reasons. The
state of the art in the field is discussed in Sect. 6.7 to the extent that it is relevant to our
discussions. In addition to full static analysis of the chip, several approaches require
the execution of hardware functionality. For these methods, we refer the reader to
Sect. 8.7.

7.8 Specification-Based Techniques

The most intuitively appealing approach to detecting malware inserted by an equip-
ment vendor is to start with a specification of what the system should do. Thereafter,
one analyses whether the system does only this or if it does something else in addi-
tion. This approach is very close towhat specification-basedmalware detection takes.
Specification-based malware detection comprises a learning phase, where a set of
rules defining valid behaviour is obtained. The code is then examined to assess if it
does only what is specified.

Themain limitation of specification-based techniques is that a complete and accu-
rate specification of all valid behaviours of a system is extremely work intensive to
develop, even for moderately complex systems [9]. The amount of results in this area
is therefore limited.

7.9 Discussion

The static detection of malware has had many success stories. In particular, early
virus detection software was based almost exclusively on static detection. As the
arms race between malware writers and malware detectors has progressed, we have
unfortunately reached a situation in which static detection is no longer effective on
its own. Obfuscation techniques have significantly reduced the value of signatures
and static heuristic approaches have not been able to close this gap.

The problem becomes evenworsewhenwe focus on dishonest equipment vendors
rather than third-party attackers. All static methods require a baseline of non-infected
systems for comparison. The whole idea behind signature-based malware detection
is that it detects a previously known and analysed piece of malware and this malware
is not present in non-infected systems. If youwant to checkwhether a vendor inserted
malware into a systembefore you buy it, themalwarewill not be known and analysed,
and there will not be a non-infected system for comparison. This means that the
analysis will have to encompass the entire system. We return to a discussion of the
tractability of this task in Sect. 10.10. Heuristic methods will suffer from the same

http://dx.doi.org/10.1007/978-3-319-74950-1_4
http://dx.doi.org/10.1007/978-3-319-74950-1_6
http://dx.doi.org/10.1007/978-3-319-74950-1_8
http://dx.doi.org/10.1007/978-3-319-74950-1_10

7.9 Discussion 65

shortcoming: there is no malware-free baseline with which heuristic methods can
train their classifier.

Even after having painted this bleak picture, there is still hope in the further
development of static approaches. We have argued that full deobfuscation is very
hard and often an impossible task. Still, it is possible to detect the existence of
obfuscated code to some extent. One approach is therefore to agree with the vendor
that the code used in your equipment will never be obfuscated. The problem with
this is that obfuscation is used for many benign purposes as well. In particular, it is
used for the protection of intellectual property. The balance between the benefits and
drawbacks of obfuscation in the formation of trust between customers and vendors of
ICT equipment needs further investigation before one can conclude whether banning
obfuscation is a feasible way forward.

What appears to be the most promising way forward for static approaches is
a combination of specification-based techniques and proof-carrying code, which
we will elaborate upon further in Sect. 9.8. Specification-based techniques have not
been subject to the same amount of attention as the other techniques. Still, for our
problem, it has one big advantage over the other methods: it does not require the
existence of a clean system and it does not require themalware to have been identified
and analysed beforehand. Proof-carrying code has the drawback of being costly to
produce. Still, efforts in this area so far have been to provide proof that the code is
correct. Our purpose will be somewhat different, in that we want to make sure that
the code does not contain unwanted security-related functionality. Although this is
not likely to make all problems go away, the combination of controlling the use of
obfuscation, applying specification-based techniques, and requiring proof-carrying
code on critical components has the potential to reduce the degrees of freedom for a
supposedly dishonest equipment vendor.

In recent years, malware detection has been based on a combination of static
methods such as those discussed in this chapter and dynamic methods based on
observing the actions of executing code. Such dynamic methods are discussed in the
next chapter.

References

1. Abou-Assaleh, T., Cercone, N., Kešelj, V., Sweidan, R.: N-gram-based detection of new mali-
cious code. In: Proceedings of the 28th Annual International Computer Software and Applica-
tions Conference, 2004. COMPSAC 2004, vol. 2, pp. 41–42. IEEE (2004)

2. Bazrafshan, Z., Hashemi, H., Fard, S.M.H., Hamzeh, A.: A survey on heuristic malware detec-
tion techniques. In: 2013 5th Conference on Information and Knowledge Technology (IKT),
pp. 113–120. IEEE (2013)

3. Bencsáth, B., Pék, G., Buttyán, L., Felegyhazi, M.: The cousins of stuxnet: Duqu, flame, and
gauss. Fut. Internet 4(4), 971–1003 (2012)

4. Bilar, D.: Opcodes as predictor for malware. Int. J. Electron. Secur. Digit. Forensics 1(2),
156–168 (2007)

http://dx.doi.org/10.1007/978-3-319-74950-1_9

66 7 Static Detection of Malware

5. Bruschi, D., Martignoni, L., Monga, M.: Detecting self-mutating malware using control-flow
graph matching. In: Detection of Intrusions and Malware & Vulnerability Assessment, pp.
129–143. Springer (2006)

6. Didrich, K., Fett, A., Gerke, C., Grieskamp,W., Pepper, P.: Opal: Design and implementation of
an algebraic programming language. In: Programming Languages and System Architectures,
pp. 228–244. Springer (1994)

7. Dube, T., Raines, R., Peterson, G., Bauer, K., Grimaila, M., Rogers, S.: Malware target recog-
nition via static heuristics. Comput. Secur. 31(1), 137–147 (2012)

8. Egele,M., Scholte, T.,Kirda, E.,Kruegel,C.:A surveyon automated dynamicmalware-analysis
techniques and tools. ACM Comput. Surv. 44(2), 1–42 (2012)

9. Idika, N., Mathur, A.P.: A survey of malware detection techniques, vol. 48. Purdue University
(2007)

10. Langner, R.: Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Privacy 9(3), 49–51
(2011)

11. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware analysis.
In: IEEE Symposium on Security and Privacy, 2007. SP’07, pp. 231–245. IEEE (2007)

12. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: Twenty-
Third Annual on Computer Security Applications Conference, 2007. ACSAC 2007, pp. 421–
430. IEEE (2007)

13. Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the IEEE 77(4),
541–580 (1989)

14. O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: the hidden malware. IEEE Secur. Privacy
9(5), 41–47 (2011)

15. Rad, B.B., Masrom, M., Ibrahim, S.: Camouflage in malware: from encryption to metamor-
phism. Int. J. Comput. Sci. Netw. Secur. 12(8), 74–83 (2012)

16. Rolles, R.: Unpacking virtualization obfuscators. In: 3rd USENIX Workshop on Offensive
Technologies.(WOOT) (2009)

17. Szor, P.: The Art of Computer Virus Research and Defense. Pearson Education (2005)
18. Tehranipoor,M.,Koushanfar, F.:ASurvey ofHardwareTrojanTaxonomy andDetection (2010)
19. Virvilis, N., Gritzalis, D., Apostolopoulos, T.: Trusted computing vs. advanced persistent

threats: Can a defender win this game? In: 2013 IEEE 10th International Conference on and
10th International Conference on Autonomic and Trusted Computing (UIC/ATC) Ubiquitous
Intelligence and Computing, pp. 396–403. IEEE (2013)

20. You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: 2010 International Con-
ference on Broadband, Wireless Computing, Communication and Applications, pp. 297–300.
IEEE (2010)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 8
Dynamic Detection Methods

The static detection of malware has celebrated successes over the years, but obfus-
cation techniques have deprived static methods of many of their advantages. The
Achilles heel of obfuscated code is that, however difficult to read and understand, it
has to display its actions when executed. Dynamic methods for malware detection
exploit this fact. They execute the code and study its behaviour.

In this chapter, we give an overview of dynamic malware detection. We discuss
the different methods used and their strengths and weaknesses compared to static
analysis. Again, the goal of the chapter is to shed light on the extent to which dynamic
malware detection techniques can help us in detecting the actions of a dishonest
equipment provider.

8.1 Dynamic Properties

When we want to observe the behaviour of a system, we first need to decide what
aspects of the execution we are going to monitor. Egele et al. [6] provide a good
overview of the different alternatives, the most important of which we will review
here.

Tracing the function calls of a system under inspection is a natural approach to
dynamic malware detection [9]. In programming, functions usually represent higher-
level abstractions related to the task that the code should perform. They are also the
building blocks of the application programming interface (API) and constitute the
system calls that an operating system provides to the programmer to make use of
system resources. The semantics of the functions and the sequence in which they
are called are therefore very suitable for analysis of what a program actually does.
The interception of function calls is carried out by inserting hook functions into the
code under inspection or by exploiting the functionality of a debugger. These hook
functions are invoked whenever a function subject to analysis is called.

In addition to obtaining the actual sequence of function calls carried out by a
program, the dynamic collection of function calls also reveals the parameters used

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_8

67

68 8 Dynamic Detection Methods

in each call. This information is inherently difficult to obtain through static code
analysis, since the value of each variable passed on as a parameter could be the result
of arbitrarily complex computation.

Another useful feature that can be extracted through dynamic analysis is how
the system processes data. In its simplest form, this consists of recording how the
contents of given memory locations influence what is later stored in other memory
locations. As an example, we could assume that one memory location is initially
tainted. Whenever an assignment statement is executed, the taint progresses to the
memory location that is assigned a newvalue, if and only if the newvalue is computed
based on the content of the already tainted memory location. Using this information,
we would, for example, be able to detect cases in which tainted information is leaked
over the network.

The lowest level of properties that can be captured by dynamic analysis is the
sequence of machine instructions that is performed by the system. For any given
program, such a trace will easily turn out to be immense and therefore extremely
costly to analyse in full. Still, such traces will contain information that may not be
represented in the high level of abstractions of API-, function-, and system calls.

8.2 Unrestricted Execution

Capturing the dynamic properties of suspicious code by running it in an unrestricted
environment has some clear advantages. First, the test environment is easy to set up
and, second, it is hard for the malware to detect that it is being observed and thus
choose to suppress its malicious actions. API calls and system calls can be collected
by inserting hooks into the called functions. The hooks are inserted in the same
manner as in rootkits [10].

This approach has two significant weaknesses. First, since the code under inspec-
tion runs directly on hardware, it is complicated to collect instruction traces and
internal function calls. Second—and this is the most serious drawback—the mali-
cious actions of the malware will be executed in an unrestricted way. This means that
the harm intended by the malware will actually be committed. The second drawback
can, to some extent, be mitigated by recording the actions of the code under inspec-
tion and taking snapshots of the system state. This would allow the tester to restore
the system to a non-damaged state. Unfortunately, it is not always possible to roll
back the effects of a system. Information leaked out of a system cannot be called
back and attacks on other systems can cause harm that cannot easily be undone in
the test environment alone.

8.3 Emulator-Based Analysis 69

8.3 Emulator-Based Analysis

Running the code without allowing it to cause harm requires the use of a controlled
execution environment. An emulator—often referred to as a sandbox in the context
of malware analysis—is a software system that replicates the actions of hardware.
Using an emulator for a given hardware architecture, one can load an operating
system on top of it. In this operating system, the code under inspection can be started
and the consequences of its actions confined to the sandbox.

Emulator-based analysis has an additional advantage. Since the hardware is emu-
lated by software, it is easy to insert hooks to extract features such as instruction
traces, which are usually only observable at the hardware level. On the other hand,
such analysis introduces a semantic gap in comparison with unrestricted execution
with API hooks [6]. A hardware emulator cannot immediately identify API or sys-
tem calls, since these will appear to the emulator as a sequence of instructions that
together implement the call in question. These sequences will need to be identified
and recognized before the higher-level semantic information of API calls can be
obtained.

The most important limitation of sandboxes is, however, their speed of operation.
Hardware emulated in software inevitably represents a slowdown in itself. More
significantly, however, every resource used for analysis represents the removal of
resources for running the code under inspection. The detailed insight provided by
the sandbox comes at a high cost of overhead. This approach is therefore usually
applied only to small suspicious portions of the code.

8.4 Virtual Machines

In an emulator, all the actions of the hardware are simulated by means of software.
Therefore, the emulator itself can, in principle, run on hardware that is different
from the hardware it emulates. This level of indirection contributes to the significant
slowdown induced by emulation-based analysis in sandboxes.

Virtual machines are similar to emulators, in that they encapsulate execution in a
software environment to strongly isolate the execution under inspection. They are,
however, different, in that they run on hardware that is similar to the hardware they
pretend to be. This means that non-privileged instruction sequences in the code under
inspection can be run directly on hardware, a feature that could speed up the execution
considerably.

The strength of virtual machines in relation to emulators is that they run faster. On
the other hand, it is hard to generate instruction traces on non-privileged sequences of
instructions that run directly on hardware. The semantic gap between the sequences
of instructions and API and system calls is similar between the two approaches.

70 8 Dynamic Detection Methods

8.5 Evasion Techniques

A malware programmer’s first duty is to prevent the malware from being detected.
When facing dynamic detection methods, malware should therefore be expected to
use the same strategy as a human wrongdoer, namely, to behave well as long as
you are being observed. Code whose intention is to hide its malicious capability
will therefore try to detect whether it is under observation and will only carry out
its malicious actions when it has reason to believe that it can do so without being
detected [13].

Several different ways of detecting observation have been found in malware. We
have seen samples that will not exhibit their malicious behaviour when run in debug
mode. Furthermore, we have seen malware that behaves well whenever it detects
specific patterns of users or simultaneously running processes. Furthermore, there
is an arms race between the makers of emulators and virtual machines and malware
developers when it comes to detection and evasion techniques. One particularly
interesting aspect of this race is the suggestion that having your system appear as if
it were observing the executing code reduces the likelihood of the malware in your
system revealing its malicious effects [4]. This will not prevent one from becoming
infected but it will, in some cases, make one immune to the consequences.

The bad news is that it is very hard to completely hide emulators or virtualization
techniques from the code that is running on top of them. This is particularly the case
if the code under inspection must have access to the Internet and can use this to query
a remote time source [8]. The good news regarding evasion techniques is that the
emulators and virtual machines that some malware are trying so hard to detect are
rapidly becoming common platforms upon which most software, including operat-
ing systems, are running. The virtualization of resources is nowadays ubiquitous in
computing and, thus, malware that exhibits its malicious behaviour only when run
on non-virtualized systems is losing its strength. In our case, however, the problem is
of a different nature. We are not only concerned with a piece of code. A typical mode
of interest to us would be determining if an entire system consisting of hardware,
virtualization support from a virtual machine monitor (VMM), operating systems,
and application code does not have malicious intent coded into it. It is not important
that the malware hide its behaviour from the VMM if it is the VMM itself we do not
trust.

8.6 Analysis

In the sections above, we discussed the problem of collecting information from the
execution of some code under inspection. Analysis of this information to conclude
whether malicious behaviour is observed is, however, a challenge of its own.

The analysis of execution traces is associatedwithmany of the same problems and
solutions that we discussed for heuristic static analysis in Sect. 7.6. This means that

http://dx.doi.org/10.1007/978-3-319-74950-1_7

8.6 Analysis 71

many of the methods we described in the previous chapter also apply to dynamic
analysis. N-Grams have been used to analyse dynamic instruction traces, as well
as static instructions found in the code [2]. Although there are differences between
instruction traces captured dynamically from those that are captured statically, the
methods for their analysis have close similarities.

Other features, such as the sequences of system and API calls, are more easily
captured through dynamic than static detection. Still, the problem of making sense
of such sequences bears similarities with the problem of making sense of the control
flow information that is used in static analysis (see Sect. 7.6). Therefore, the problem
is approached in much the same way and with techniques frommachine learning and
artificial intelligence [7, 11].

Our question is whether the dynamic analysis of software for malware identifica-
tion can help us identify malicious intent in integrated products offered by a vendor.
The weakness of static analysis in our case is that the same malicious behaviour can
manifest itself in countless different ways in static code. During execution, however,
similar malicious actions will express themselves similarly. We have therefore seen
dynamic methods for detecting malware gain momentum, and few modern products
for malware detection still based on only static detection [5]. There are still two
weaknesses that static and dynamic analysis based on machine learning and artificial
intelligence have in common: First, they must have access to a learning set that is
free of malicious actions. In our case, such sets are hard to define accurately. Second,
when the methods for detecting malicious actions become publicly available, they
are generally easy to evade.

8.7 Hardware

The literature on malicious software has focused almost exclusively on scenarios
where the attacker is a third party. The software user and manufacturer are implicitly
assumed to be in collaboration in deterring unknown wrongdoers from inserting
malicious code into a piece of equipment. The situation is different for hardware. A
wrongdoer is not expected to be able to change the hardware in a finished product.
Therefore, hardware security has consisted of techniques to ensure that the design
does not inadvertently build security holes into a system.

The thought that a wrongdoer could insert malicious logic gate structures into an
integrated circuit was first taken seriously when integrated circuit design and manu-
facturing practices started increasingly relying on intellectual property cores supplied
by third-party vendors. In addition to this development, modern integrated circuits
are currently manufactured in third-party facilities and are designed using third-party
software for design automation [3]. Distrust in third parties in the hardware domain
therefore points the finger at the production phase rather than the post-deployment
phase.

Discussions on hardware Trojans have taken particular foothold in the military
sector. In September 2007, Israeli jets bombed what was suspected to be a nuclear

http://dx.doi.org/10.1007/978-3-319-74950-1_7

72 8 Dynamic Detection Methods

installation in Syria. During the attack, the Syrian radar system apparently failed to
warn the Syrian army of the incoming attack. Intense speculation and an alleged leak
from a US defence contractor point to a European chipmaker that built a kill switch
into its chips. The speculation is therefore that the radars were remotely disabled just
before the strike [1].

There are two classes of dynamic approaches for finding suchTrojans in integrated
circuits. One is the activation of the Trojan by executing test vectors and comparing
the responseswith expected responses. If the Trojan is designed to reveal itself only in
exceptionally rare cases, such as after a specifically defined sequence of a thousand
instructions, such an approach is unfortunately practically impossible, due to the
combinatoric explosion in the number of possible stimuli [16].

The other method is the analysis of side-channels through measuring irregulari-
ties in power consumption, electromagnetic emission, and timing analysis. This is
doable when there are chips without Trojans with which the measurements can be
compared [14]. When these Trojans are deliberately introduced by the manufacturer,
there may not be any Trojan-free chips for comparison. In our case, side-channel
analysis can therefore be easily duped by the perpetrator.

With hardware, unlike software, a great deal of effort goes into handling the
problem of untrusted producers of code that goes into the product. It is therefore
disconcerting that wrongdoers still seem to operate without substantial risk of being
caught. There is yet no ‘silver bullet’ available that can be applied to detect all classes
of hardware Trojans with high confidence [15]. This observation should, however,
not lead to criticism of the researchers in the area; rather, it should make us realize
the complexity of the problem at hand. Continued research is the only real hope we
have to be able to address it.

8.8 Discussion

After obfuscation techniques have rendered many previously successful static
approaches useless, the industry has turned, to an increasing extent, towards dynamic
techniques for detecting malware. The reasoning behind this development is sound.
Whereas it is possible to camouflage malicious behaviour in the code, it is far more
difficult to hide malicious behaviour in the actions that are performed.

Dynamic detection has two significant weaknesses. One is that, in any run through
the code, only one execution path will be followed. Consequently, a dishonest vendor
can make sure that the malicious actions of the code are not executed in the time
available to the analyser. One way to do this is to start the malicious behaviour
only after the system has run for a given amount of time. As discussed above, the
observation of code behaviour will, in most cases, mean that the code will run quite
slowly and, as a result, there is a high probability that the limit of a given delay
will never be exceeded. Still, the safest way for a malicious equipment producer to
steer the execution path away from the malicious code is to make it dependent on a
predefined external stimulus. Having this external stimulus encoded in only 512 bits

8.8 Discussion 73

would yield 13.4 × 10153 combinations. For comparison, the universe has existed
for approximately 4× 1017 seconds. If the strongest computer on Earth had started
computing at the beginning of the universe, it would still not have made any visible
progress on the problem of testing these combinations [1]. The other weakness of
dynamic detection is that one has to choose between execution in a real environment,
where themalicious actions will actually take place, and execution in an environment
where the system can detect that it is being observed.

Modern malware detection products combine static and dynamic detection in an
attempt to cancel out the respective weaknesses of the two approaches [7]. Unfor-
tunately, this is not likely to deter a dishonest equipment vendor. In software, the
combination of obfuscating the malicious code in the product and letting it hide its
functionality until a complex external trigger occurs suffices to reduce the chance
of detection below any reasonable threshold. Symbolic execution has made some
inroads in that area [17], but the state of the art is still far from changing the game.
In hardware, the same trigger approach can be used to avoid dynamic detection and
malicious actions can be hidden in a few hundred gates within a chip containing
several billions of them [12], so that static analysis would be prohibitively hard, even
if destructive analysis of the chip resulted in a perfect map of the chip’s logic. In
addition, a vendor that produces both the hardware and the software can make the
malicious acts be a consequence of their interaction. The malicious acts would thus
invisible in either the hardware or software when studied separately.

When we expect a malicious equipment vendor to be able to put malicious func-
tionality into any part of a technology stack, it is hard to extract traces of activities
that we can be reasonably sure have not been tampered with. Still, insight from the
field of dynamic analysis is of interest to us. In particular, there is reason to hope that
malicious functionality can be detected through observation of external communica-
tion channels. Unfortunately, with kill switches and, to some extent, the leakage of
information, the damage will already have been done when the activity is detected.

References

1. Adee, S.: The hunt for the kill switch. IEEE Spectrum 45(5), 34–39 (2008)
2. Anderson, B., Storlie, C., Lane, T.: Improving malware classification: bridging the

static/dynamic gap. In: Proceedings of the 5th ACM Workshop on Security and Artificial
Intelligence, pp. 3–14. ACM (2012)

3. Bhunia, S., Hsiao, M.S., Banga, M., Narasimhan, S.: Hardware trojan attacks: threat analysis
and countermeasures. Proc. IEEE 102(8), 1229–1247 (2014)

4. Chen, X., Andersen, J., Mao, Z.M., Bailey, M., Nazario, J.: Towards an understanding of anti-
virtualization and anti-debugging behavior in modern malware. In: 2008 IEEE International
Conference on Dependable Systems and Networks With FTCS and DCC (DSN), pp. 177–186.
IEEE (2008)

5. Dube, T., Raines, R., Peterson, G., Bauer, K., Grimaila, M., Rogers, S.: Malware target recog-
nition via static heuristics. Comput. Secur. 31(1), 137–147 (2012)

6. Egele,M., Scholte, T.,Kirda, E.,Kruegel,C.:A surveyon automated dynamicmalware-analysis
techniques and tools. ACM Comput. Surv. 44(2), 1–42 (2012)

74 8 Dynamic Detection Methods

7. Gandotra, E., Bansal, D., Sofat, S.: Malware analysis and classification: a survey. J. Inf. Secur.
(2014)

8. Garfinkel, T., Adams, K., Warfield, A., Franklin, J.: Compatibility is not transparency: Vmm
detection myths and realities. In: HotOS (2007)

9. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls.
J. Comput. Secur. 6(3), 151–180 (1998)

10. Hoglund,G.,Butler, J.:Rootkits: Subverting theWindowskernel.Addison-WesleyProfessional
(2006)

11. Jacob, G., Debar, H., Filiol, E.: Behavioral detection of malware: from a survey towards an
established taxonomy. J. Comput. Virol. 4(3), 251–266 (2008)

12. King, S.T., Tucek, J., Cozzie, A., Grier, C., Jiang, W., Zhou, Y.: Designing and implementing
malicious hardware

13. Lindorfer, M., Kolbitsch, C., Comparetti, P.M.: Detecting environment-sensitive malware. In:
Recent Advances in Intrusion Detection, pp. 338–357. Springer (2011)

14. Rad, R., Plusquellic, J., Tehranipoor, M.: A sensitivity analysis of power signal methods for
detecting hardware trojans under real process and environmental conditions. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 18(12), 1735–1744 (2010)

15. Tehranipoor, M., Wang, C.: Introduction to Hardware Security and Trust. Springer Science &
Business Media (2011)

16. Wang, X., Tehranipoor, M., Plusquellic, J.: Detecting malicious inclusions in secure hardware:
challenges and solutions. In: IEEE InternationalWorkshop onHardware-Oriented Security and
Trust, 2008. HOST 2008, pp. 15–19. IEEE (2008)

17. Yadegari, B., Debray, S.: Symbolic execution of obfuscated code. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, pp. 732–744. ACM
(2015)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 9
Formal Methods

Mathematical reasoning is the foundation ofmost engineering disciplines. Itwould be
unthinkable to construct a ship, bridge, or building without first making amathemati-
calmodel of the design and calculating that the design satisfies relevant requirements.
Such models are used in the exploration of the design space, in quality assurance
processes during construction, and in certification processes.

Computers and systems’ counterpart to traditional engineering mathematics is
called formal methods. The goal of this discipline is to capture the essence of com-
puter code in formal mathematical theory and then draw conclusions about the code
through mathematical analysis. In this chapter, we give an overview of the field, with
the aim of understanding how formal methods can help us defend against untrusted
equipment vendors.

9.1 Overview

The ultimate goal of a formal method is to prove the properties of the behaviour of a
piece of executable code or electronic circuit. In our case, we are interested in proving
that the piece of equipment at hand does what it is supposed to do and nothing else.
Five basic notions are important to grasp on how such a proof is actually possible:

Specification If we want to prove a property of some code, we first have to state
what this property is. Such statements are written in a formal language that is
often an enriched version of some mathematical theory.

Implementation This is the object whose properties are to be proved. It can consist
of code in some programming language or a specification of an entire integrated
circuit or parts of one.

Semantic translation Given the implementation and specification of the wanted
properties, one must synthesize the proof obligations, that is, determine which
mathematical proofs need to be performed before we can conclude that the imple-
mentation fulfils the specification.

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_9

75

76 9 Formal Methods

Model In some cases, the detailed complexity of a complete implementation is such
that a full formal proof is practically impossible. In that case, one can make a
simplified model of what an implementation of the specification could be, prove
that the model fulfils the specification, and finally generate the implementation
automatically from the model. The idea is still to prove that the implementation
fulfils the specification but this is now done by a detour through a model. In
this case, it is the specification and the model that are passed on to the semantic
translation.

Logic propositions The result of semantic translation is a set of propositions expre-
ssed in some mathematical logic. If all of the propositions are true in the given
logic, we can conclude that the implementation fulfils the specification.

Theorem proving This is the process of proving the logic propositions above.

Figure9.1 illustrates the structure of the full formal proof process of a piece of
code. It is important to note that this figure intends to capture ways of finding a
complete and watertight proof of correctness. Formal methods have been developed
to help minimize the number of unintended programming faults. If that were our
goal, there would be many variations of Fig. 9.1 that would be more enlightening.
We are, however, not interested in improving the quality of programming practice.
Rather, we are looking for ways to ensure that no malicious code has deliberately
been inserted by the softwaremakers. For that purpose, our description is appropriate.

In a perfect world, all the phases of a full formal proof would be performed auto-
matically. If that were doable, we would only need to provide the specification and
the correctness of the implementation could be checked by amachine. Unfortunately,
as we saw in Chap.5, there are very tight limits to what can be decided automatically.
This means that all complete sets of formal methods that are able to prove interesting
properties of a piece of code will require the heavy use of human expertise, in either
semantic translation, theorem proofs, or both.

Fig. 9.1 These are the elements that constitute proof of a property using formal methods

http://dx.doi.org/10.1007/978-3-319-74950-1_5

9.2 Specification 77

9.2 Specification

An early attempt to build a logic for reasoning on the behaviour of a program was
made via the notion of assertions. An assertion is a statement that is to be evaluated
as true at a given place in a program [14]. Assume, for example, that we have the
statement

x := y+1

Then, clearly, after the statement’s execution, the assertion that x>y would be true.
This argument can be extended to the notions of preconditions and postconditions,

where a precondition is an assertion that is supposed to be true before the start of
a program and a postcondition is supposed to be true at the end of a program’s
execution. Preconditions and postconditions can be used to specify a program’s
behaviour. For instance, if we want to specify that a program is to sort an array A of
n distinct integers in increasing order, we would require a postcondition that stated
that, for all integers i between 1 and n-1, A(i-1) < A(i) should be true.1

Furthermore, the postcondition would state that all integers present in A before the
execution should also be present after the execution. The precondition should simply
state that no integers are represented in A more than once.

Pre- and postconditions are important because they can be used to specify what
a program should do without specifying how it should be done. Note that all of the
different sorting algorithms one has ever learned would be valid according to the pre-
and postconditions above, even though they differ vastly in their approach.

Pre- and postconditions were involved in an early approach to specify the outcome
of a program’s execution. It had several shortcomings, though, in that several impor-
tant aspects of programming could not be easily captured. Some, such as input/output
and user interaction, can be overcome by introducing sequences of inputs and out-
puts, respectively, as different variables into the machine. Others, such as the fact
that, for instance, an operating system is assumed to run indefinitely and is therefore
not supposed to have a final state, are more of a stretch. Several important notions
emerged from these observations. One is the notion of an invariant, which is an asser-
tion that is supposed to be true at a point of the code that can be reached infinitely
many times. Another is the development of the temporal logic of programs [23],
which allows one to express properties about time, such as when A happens, then
eventually B will happen. Many other notions could be mentioned, but these two
stand out as the most important and they form the basis of most of the others.

Significant amounts of training are required tomaster the rigour and precise formal
semantics of provable specifications. This has been a barrier for the uptake of formal
methods. Because of this, the specification of software is generally done in languages
that are not based in firm formal semantics. An example of such a language is the
Unified Modeling Language (UML), which is widely used for the modelling and

1We follow the informatics convention of starting the enumeration at zero. An array of n integers
is thus enumerated from 0 to n-1.

78 9 Formal Methods

specification of systems [25]. Bridging the gap between formal rigour and intuitively
appealing specification methods has therefore been one of the key challenges to
making fully formal specification more widespread [11].

9.3 Programming Languages

Historically, programming developed from bit-level programming to assembly pro-
gramming, to structured programming with loops and procedure calls, and then to
object-oriented programming. All of these programming paradigms are said to be
imperative, in that they require the programmer to specify sequences of actions that
change the state of memory. Imperative programming languages, including C, C++,
and Java, form the basis of the overwhelming majority of software development
today. They have therefore also been the subject of a great deal of research trying to
capture programs’ properties through formal methods.

There are, however, many different paradigms that have the strength of expression
needed to form the basis for software development. In the formal methods commu-
nity, some are of particular interest, since their mode of operation closely parallels
existing mathematical theories. Two such programming paradigms that have gained
industrial importance are functional programming and logic programming. Func-
tional programming languages use the recursive definition of mathematical functions
as their main building block. Execution of a program corresponds to evaluation of
the mathematical function. In its pure form, a functional program has no explicit
internal state; thus, there is no concept of state change. Most functional languages in
industrial use can, however, be deemed to have a hybrid nature, where some notion
of program state is supported. Examples of functional languages that have industrial
use are Lisp [26], Scheme [27], and Erlang [2].

Logic programming languages are based on formal logic and a programs in these
languages can therefore be viewed as logical clauses. Execution of a program consists
of finding solutions to a logical clause, in the sense of finding instantiations of the
variables forwhich the clause is evaluated as being true. The industrial impact of logic
programming languages has been relatively limited, but Prolog [8] and Datalog [5]
are worth mentioning.

The definition of integrated circuitswas for a very long timequite distinct from that
of programming. These days, the distinctions have diminished, in that the definition
of circuits ismostly carried out in high-level languages such as those described above.
Synthesis tools transform these high-level descriptions into descriptions in terms of
logic gates (see Sect. 4.2).

http://dx.doi.org/10.1007/978-3-319-74950-1_4

9.4 Hybrid Programming and Specification Languages 79

9.4 Hybrid Programming and Specification Languages

In Sect. 9.2, we concentrated on the pure specification of programs, in the sense that
we only consideredmethods that did not say anything about how the execution should
be carried out. Then, in Sect. 9.3, we turned our attention to programming languages
that specify the execution in itself. There is, however, a class of languages that are
somewhere in the middle, in that they are mostly used for specification purposes
but where the specifications are, to some extent, executable. For efficiency reasons,
these languages are most often used for modelling only. Programs or specifications
in these languages are translated, manually or automatically, into other languages
before they are executed.

The earliest example of this involves statemachines [12]. A statemachine consists
of a (usually finite) set of states that a system can be in, together with rules for what
events make the system move from one state to the other. Recall that, in Chap. 5,
we learned that a Turing machine is believed to be able to simulate any computing
device. When we study a Turing machine, we see that it can easily be represented
by a set of states and some rules for transitioning between the states. Therefore,
most reasonable definitions of what a state machine is will be Turing equivalent.
Even though this means that a state machine can be seen as a complete programming
language, state machines are rarely used to model a computer system in full detail. A
computer with, for example, 1GB ofmemorywill have 210

12
potential states, which is

far beyond what can be used in a formal method proof chain. The states are therefore
usually abstracted and aggregated into logical extended states.

One particular string of hybrid languages came out of the observation that the
distinction between specification and programming caused problems when the sys-
tems became parallel and distributed. Whereas a sequential program will execute the
sameway for the same input every time, a parallel program can behave differently for
the same input, depending to how race conditions play out. This issue made it clear
that, when proving the properties of a parallel program, it would be highly beneficial
if the specification itself contained notions of the different parallel processes in the
program, as well as how they were supposed to interact. This led to the development
of process algebras, which, in the context of specification, have the commonalities
that they describe the processes of a parallel program and that these processes com-
municate through explicit message passing rather than through the manipulation of
shared variables. The first two developments that fall into the category of process
algebras are communicating sequential processes (CSP) [15] and the calculus of
communicating systems (CCS) [17]. These appeared more or less at the same time
and were developed in parallel for a long time. Later, several variants of process
algebras were introduced. The most acknowledged of these is the π -calculus [18]
that still forms the basis for an active area of research.

A third strand worth mentioning consists of languages that specify programs as
algebraic transformations. The elegance of this approach is that it unifies amathemat-
ical theory of algebraic equivalencewith the operational aspect provided by algebraic

http://dx.doi.org/10.1007/978-3-319-74950-1_5

80 9 Formal Methods

simplifications [13]. This strand of research had its early days in the late 1970s and
is still vibrant today, through the executable specification language Maude [7].

9.5 Semantic Translation

When we have a program and a specification of what the program should do, the
task of semantic translation is to extract from the two a set of proof obligations.
These proof obligations are a set of mathematical expressions that, if proven to be
true, imply that the program behaves according to the specification. Our entry point
into this issue is Hoare logic [14], which is an axiomatic basis for reasoning about
imperative programs.

The core of Hoare logic is the Hoare triple, denoted {P}S{Q}. In this triple, S is a
program and P and Q are logic expressions on the state of the program. Intuitively,
the triple means that if P is true before the execution of S, then Q will be true after
the execution. An example of a valid triple is

{x + 1 < y} x := x + 1; {x < y}

Hoare logic devises deduction rules for reasoning on such triplets over constructs
that occur in imperative languages, such as assignments, if statements, loops, and
statement composition. Using these deduction rules, it is possible to establish a triple
{P}S′{Q} for programs of any complexity. Finally, instantiation of the consequence
rule below relates this to the specified precondition and postcondition (see Sect. 9.2):

Precondition ⇒ P {P}S{Q} Q ⇒ Postcondition

{Precondition}S{Postcondition}
This rule states that, if a program is specified by a precondition and a postcondition
and Hoare logic is used to prove the triple {P}S{Q}, then the resulting mathematical
proof obligations are that the precondition implies that P holds and that Q implies
that the postcondition holds.

Unfortunately, proving a Hoare triple by the deduction rules given by Hoare
was soon shown to be highly nontrivial. Later developments therefore attempted to
reformulate the deduction rules to form the basis of algorithmic support for building
this part of the proof. This approach led to the notion of weakest precondition,
introduced by Dijkstra [9], which reformulated the ideas of Hoare logic into a system
where the formation of a weakest possible precondition from a given postcondition
could partly be determined automatically. Later, the work of Hoare and Dijkstra was
extended to parallel programs [16] and object-oriented programs, to mention just
two [22].

As stated in the previous section, process algebra was borne out of the obser-
vation that the distinction between specification and implementation seen in Hoare
logic creates difficulties when it comes to parallel and distributed systems. Since

9.5 Semantic Translation 81

a specification in process algebra is partially executable in its own right, the proof
obligation for these formalisms is to establish equivalence between the execution of
the specification and its implementation. Such equivalence is defined as capturing a
situation where the two simulate each other. Bisimulation is thus a relation between
two executables where, intuitively, an external observer is not able to identify which
one is executing. Execution time is usually not deemed to be observable in these
definitions. The reason is that improved execution time is the reason for replacing
the specification with the implementation in the first place.

9.6 Logics

Several preexisting mathematical theories have been used as the fixed frame for
proving the properties of programs. Initial approaches were based on some predicate
logic – usually first-order logic – enriched with algebraic laws for integers or rational
numbers. Others were developed specifically for the purpose. Two examples are
temporal logic [23], which was specifically developed to capture the notion of time,
which is important in infinite processes and real-time systems, and logics to handle
the finite resources available in a physical computer [24].

9.7 Theorem Proving and Model Checking

After the relation between the specification and the program has been transformed
into propositions in formal logic, these propositions need to be proven. The impli-
cation is that most processes for proving theorems are interactive. A great deal of
research has gone into the development of interactive theoremprovers and a fewof the
most important ones are the Prototype Verification System (PVS) [20], Isabelle [21],
and Coq [3]. Going into the details of their different properties is outside the scope
of this book, so we refer to Boldo et al. [4] for a good overview.

Ideally, one would hope that these theorem provers could work automatically
but, unfortunately, all the relevant problems are NP-hard. Furthermore, a majority of
them are super-exponential or even undecidable. This should come as no surprise,
because we saw in Chap.5 that whether a piece of code performs malicious actions
is generally undecidable. This undecidability would have to show up in the case of
formal proofs as well, either in semantic translation or in theorem proving.

The undecidability problem did limit the applicability of formal methods to prove
the correctness of more than very small systems for a long time. The full complexity
of the proof obligation for large systems simply became intractable. Model check-
ing then came to the rescue and showed its value through the 1990s. The idea in
model checking is to abstract a simplified model of the state space of the system and
then check the entire state space or parts of it for execution traces that would be a
counterexample to the specification.

http://dx.doi.org/10.1007/978-3-319-74950-1_5

82 9 Formal Methods

Model checking has proven itself to be very useful for both finding bugs and
proving the properties of protocols [6]. Still, for the problem we study in this book,
model checking comes at a high price, because building a model of a system creates
a level of indirection in the proof systems. Even if we can prove a model’s properties
and can generate the code directly from it, the generation of code is in itself a possible
point of insertion of unwanted behaviour. This fact is discussed in detail in Chap. 4.

9.8 Proof-Carrying Code

We have seen that it is very hard to find a full formal proof for a finished piece of
code. Semantic translation of the specification and the code is highly nontrivial and
proving the logic propositions that come out of this translation is an NP-complete
problem at best and most often undecidable. One of the main obstacles is that it is
generally very hard to analyse code that one has not participated in writing.We return
to this topic in Sect. 10.10.

Providing proof of correctness while one develops the code should, however, be
easier. Clearly, when one programs, one has a mental understanding of why the code
will work. Constructing proof of correctness while one programs should therefore
amount to formalizing an understanding one already has. Furthermore, while finding
a proof for a piece of code is very hard, checking the correctness of an existing
proof is trivially simple. The idea behind proof-carrying code [19] is to exploit these
two facts. The burden of providing proof is moved to the producer of the equipment
and the buyer only has to check that the proofs hold water. Proof-carrying code
was first described in application to software but the idea was later transferred to
hardware [10]. The concept should therefore apply to the entire technology stack.

Although the idea of proof-carrying code holds great promise, it has not seenmuch
practical use. The reasons for this are that, even though it is easier for a programmer
to provide proof while programming, proof-carrying code still requires a great deal
of effort and expertise. The general sentiment is that the extra cost that proof-carrying
codewould incur in a development project will seldom be covered by increased sales.
Still, this remains one of the promising paths to follow when looking for solutions
to the problem of trust in untrusted vendors.

9.9 Conclusion

Much effort has been expended for many decades in finding the foundations of
programming and developing formal methods for reasoning about programs and
integrated circuits. This effort has had a profound impact on the development of
programming languages and language constructs. Furthermore, it has contributed
notions such as invariant and precondition to the everyday language of most pro-
grammers. Finally, formal methods has been successfully applied to findingmistakes
in specifications and rooting out bugs in computer code.

http://dx.doi.org/10.1007/978-3-319-74950-1_4
http://dx.doi.org/10.1007/978-3-319-74950-1_10

9.9 Conclusion 83

Unfortunately, hopes that formal methods will one day provide the full mathemat-
ical proof of the total correctness of an entire system, as described in Chap. 3, have
dwindled. The scalability of the approaches has in no way kept up with the rapid
increase in size and complexity of the systems that one needs to consider. There are
some noteworthy successes of full formal proofs of software, but they are confined
to select application areas and most often to critical subparts of the system itself.
For example, in a survey on the engineering of security into distributed systems,
Uzunov and his co-authors [28] stated that ‘the application of formal methods is
almost invariably localised to critical aspects of a system: no single formal technique
is capable of formally verifying a complete complex system’. The picture is some-
what different for integrated circuits, where formal methods in many development
projects have become a natural and integral part of the development process [1].

If we look at formal methods from our viewpoint of wanting to build trust in
equipment from untrusted vendors, we could choose to conclude that there is no
help to be obtained from this particular research area. As long as we cannot build
complete formal proofs of an entire system, we cannot guarantee that inserted mali-
cious behaviour will be detected. We should, however, not be discouraged. At this
point in the book, it is clear that a guarantee cannot be given by any methodology.
This means that we should look for approaches that increase the risk of the acts of
a malicious vendor being detected. Clearly, if the risk of being detected is either
high, unpredictable, or both, this would be strong deterrent against inserting hidden
malicious functionality into a system.

While whether the application of formal methods to a system will result in a
high probability of finding unwanted functionality is debatable, formal methods do
have properties that make them unpredictable. Formal methods have shown their
worth in finding very subtle bugs in computer code, bugs that were exceptionally
challenging to detect just through testing or code review. This property is interesting
for our problem. It partlymeans that techniques that can be used to hide functionality,
such as code obfuscation, are of limited value in the face of formal methods. Using
computer-aided means of formal reasoning on the correctness of computer code
therefore has the potential to make the risk of being detected impossible to estimate.

The focus of the research in formal methods has been to provide formal veri-
fication, find bugs, or generate cases for testing. Finding deliberately inserted but
possibly obfuscated functionality has not been addressed specifically. Still, in the
quest for a solution to our problem, further research in this direction stands out as
one of the most promising paths forward. It is up to the research community to rise
to the challenge.

References

1. Alur, R., Henzinger, T.A., Vardi, M.Y.: Theory in practice for system design and verification.
ACM Siglog News 2(1), 46–51 (2015)

2. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming in Erlang.
Prentice Hall, Englewood Cliffs (1993)

http://dx.doi.org/10.1007/978-3-319-74950-1_3

84 9 Formal Methods

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and ProgramDevelopment: Coq’Art: The
Calculus of Inductive Constructions. Springer Science and Business Media, Berlin (2013)

4. Boldo, S., Lelay, C., Melquiond, G.: Formalization of real analysis: a survey of proof assistants
and libraries. Math. Struct. Comput. Sci. 1–38 (2014)

5. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never
dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
7. Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Martı-Oliet, N., Meseguer, J., Talcott,

C.: Maude manual (version 2.7) (2015)
8. Clocksin, W., Mellish, C.S.: Programming in Prolog. Springer Science and Business Media,

Springer (2003)
9. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Com-

mun. ACM 18(8), 453–457 (1975)
10. Drzevitzky, S.,Kastens,U., Platzner,M.: Proof-carrying hardware: towards runtimeverification

of reconfigurable modules. In: 2009 International Conference on Reconfigurable Computing
and FPGAs, pp. 189–194. IEEE (2009)

11. Evans, A., France, R., Lano, K., Rumpe, B.: The UML as a formal modeling notation. The
Unified Modeling Language. UML’98: Beyond the Notation, pp. 336–348. Springer, Berlin
(1998)

12. Gill,A., et al.: Introduction to theTheory of Finite-StateMachines.McGraw-Hill,Maidenheach
(1962)

13. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types. Acta informatica
10(1), 27–52 (1978)

14. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–
580 (1969)

15. Hoare, C.A.R.: Communicating Sequential Processes. Springer, Berlin (1978)
16. Lamport, L.: The ‘hoare logic’ of concurrent programs. Acta Informatica 14(1), 21–37 (1980)
17. Milner, R.: A Calculus of Communicating Systems. Springer, Berlin (1980)
18. Milner, R.: Communicating andMobile Systems: The Pi Calculus. Cambridge university press,

Cambridge (1999)
19. Necula, G., Lee, P.: Proof-carrying code. Technical report CMU-CS-96-165, School of Com-

puter Science, Carnegie Mellon University (1996)
20. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. Automated

Deduction—CADE-11, pp. 748–752. Springer, Berlin (1992)
21. Paulson, L.C.: Isabelle: A Generic Theorem Prover, vol. 828. Springer Science and Business

Media, Berlin (1994)
22. Pierik, C., De Boer, F.S.: A syntax-directed hoare logic for object-oriented programming con-

cepts. FormalMethods forOpenObject-BasedDistributedSystems, pp. 64–78. Springer, Berlin
(2003)

23. Pnueli, A.: The temporal logic of programs. In: Proccedings of 18th Annual Symposium on
Foundations of Computer Science, 1977, pp. 46–57. IEEE (1977)

24. Pym, D., Tofts, C.: A calculus and logic of resources and processes. Form. Asp. Comput. 18(4),
495–517 (2006)

25. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Manual. The,
Pearson Higher Education (2004)

26. Steele, G.: Common LISP: The Language. Elsevier, London (1990)
27. Steele Jr., G.L., Sussman, G.J.: The revised report on scheme: a dialect of lisp. Technical report,

DTIC Document (1978)
28. Uzunov, A.V., Fernandez, E.B., Falkner, K.: Engineering security into distributed systems: a

survey of methodologies. J. UCS 18(20), 2920–3006 (2012)

85

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 10
Software Quality and Quality Management

All engineering disciplines have notions of product quality. Along with these notions
come mechanisms and best practices ensuring that, for a given product, each item of
the product has a specified quality. Furthermore, we are used to thinking that themost
critical of these qualitymetrics are absolute. If the product fails tomeet these absolute
quality metrics, the customer might have legal claims on the producer. Such quality
breaches are therefore expected to be relatively rare in most engineering disciplines.

Our expectations of the quality of software are different. For software running on
standard consumer equipment, we expect a stream of security updates. These updates
fix security holes that clearly must have been in the product that was bought prior to
the installation of the update. This state of affairs is not the result of the neglect of
the software engineering community or the result of a lack of investment in quality
assurance by the manufacturers. Instead, it is the result of inherent challenges in the
concept of software development. The support of quality through firm notions and
mathematical rigour existing in many other engineering fields has been shown to be
hard to replicate in a scalable manner in software engineering (see Chap.9).

Still, the quality assurance of software has received amassive amount of attention.
In this chapter, we provide an overview of the most important developments, aiming
to see if methods have been developed that can help address our question.

10.1 What is Software Quality Management?

Early in the development of computers, it became apparent that the instructions
that guide the operation of machines could be stored as data. This naturally pointed
towards the formation of a new notion, software, that encompassed the executable
files in a computer system. The flexibility of separation between the physicalmachine
itself and its operating instructionswas shown to be immensely powerful and software
soon developed into an engineering discipline in its own right.

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_10

87

http://dx.doi.org/10.1007/978-3-319-74950-1_9

88 10 Software Quality and Quality Management

Soon, however, it became evident that the engineering of software presented its
own very specific challenges. Unintentional errors in the code appeared to be hard to
avoid and, when created, equally hard to find and correct. Throughout the decades,
a great deal of effort has been invested into finding ways to ensure the quality of
developed software. These investments have provided insights into some key prop-
erties that make software quality assurance different from what we find in other
engineering disciplines [14].

Complexity One way of measuring the complexity of a product is to count the
number of distinct operating modes in which it is supposed to function. A piece
of software may be required to work on top of different platforms, work together
with different sets of other software running alongside, and be guided by a set of
parameters and settings that can be freely chosen by the user. The combinatoric
explosion of possible configuration settings for a software package easily runs
into the millions. Traditional engineering artefacts rarely see them run into just
the thousands.

Visibility Software is invisible. This means that the opportunity to find mistakes
without observing their consequences is limited to very few people. Inmost physi-
cal products,manymistakes are impossible simply because theywould be obvious
to the eye of anyone looking at them.

Manufacturing The production phase is very different in software engineering,
since it simply consists of making some files available, either through download
or through the standardized process of producing storage media with the files on
them. There is no production planning phase in which mistakes can be discovered
and the manufacturing is carried out without anyone seeing the product.

Assuring the quality of software is therefore different from assuring the quality of
most other products. Because of the general invisibility of software and the fact that its
quality is not influenced by the process ofmanufacturing copies of it, software quality
assurance is aimed at the production and maintenance phases. The main elements of
software quality assurance are the development process, the quality model, and the
implemented quality management scheme. These three notions are described in the
upcoming sections.

10.2 Software Development Process

The initial waterfall model for software development was described in the early
1970s. Many variations of the model exist but they generally consisted of a series
of stages, with the following stages in common: a requirements phase, a specifi-
cation phase, an implementation phase, a testing phase, and a maintenance phase.
Although the model has been ridiculed and used as an example to avoid, there is a
general consensus that the tasks described in these phases remain important in any
software development effort. Most of the models we have seen since, such as those

10.2 Software Development Process 89

in iterative, incremental, and spiral approaches, relate to the tasks identified in the
original waterfall method.

One particular trend that has been influential in recent years is the inclusion of
insights on human psychology and interaction patterns into the software development
process. This has led to the development of so-called agile approaches [12], among
which Scrum [25] is particularly popular and successful.

10.3 Software Quality Models

The goal of any software development process is to promote the quality of the soft-
ware under development. The notion of software quality is, however, highly nontrivial
and it has therefore been subject to significant research and standardization efforts.
These efforts have a common starting point in the efforts of McCall et al. [8, 22]
and Boehm et al. [6], where quality aspects are ordered into a hierarchy. Figure10.1
depicts the hierarchy as defined by Boehm.

Later efforts refined and updated the underlying ideas of McCall and Boehm in
several ways. In particular, the quality attributes highlighted in these early models
have been argued to be heavily based on the designer’s point of view. There are,
however, other stakeholders, such as the user/customer and the company that develops
the software as part of a business model. Depending on the role, the importance given
each attributemay differ [4]. Security as a qualitymetric has also grown considerably

Fig. 10.1 The hierarchy of software quality characteristics of Boehm et al. [6]. The edges in the
hierarchy denote necessary conditions. For example, testability, understandability, andmodifiability
are necessary conditions for maintainability

90 10 Software Quality and Quality Management

in importance over the decades. It is thus included in all modern quality models and
has been the subject of significant academic scrutiny [15].

10.4 Software Quality Management

Quality management has a long history in production and development. Most of the
concepts developed have been shown to be transferrable to software development,
although with some adaptations. Alan Gillies [16] lists four principal aspects of
quality management for software development:

Development procedures These include the tools used by the development team,
in testing procedures, and in training staff.

Quality control This includes planning, progress meetings, documentation con-
trol, code walkthroughs, and so forth.

Quality improvement Organized staff activity aiming at establishing a quality
culture amongst the staff.

Quality assurance Monitoring activity to ensure that all aspects of the quality
system are carried out correctly.

There exist many different manifestations of these aspects in organizations, stan-
dards, and the academic literature. What they all have in common is that they specify
the quality of work processes. This will, of course, have implications on the quality
of the finished product, but hard requirements of the product itself are to be found
elsewhere. We therefore move on to the metrics of software quality.

10.5 Software Quality Metrics

Whereas a quality model as described in Sect. 10.3 gives us a structure for the quality
concept, the model has to be supported by metrics to be useful in a quality assurance
setting. Unfortunately, there is a divide between the qualitative notions in a model
and our ability to accurately capture these notions in numbers. It is a sad fact that
the quality of software cannot be measured in terms of absolute and unambiguous
scales [16].

Depending on the quality notions under scrutiny, the definitions and collection of
metrics differ significantly in complexity. Whereas portability is a quality character-
istic that can largely be captured by the frequency and number of platform-dependent
constructs in the code, the notion of user friendliness is typically captured with met-
rics involving questionnaires and correctness/robustness can be captured by logging
the number of post-release bugs corrected.

The main interest of this book concerns the metrics that relate to security. Since
security has been included as a separate quality characteristic in most quality models,
the world has witnessedmany attempts to capture security in a quantitative way. Still,

10.5 Software Quality Metrics 91

as pointed out by Jansen [21], we have a long way to go and it is not likely that all
aspects of the problem are resolvable. One reason for this is that our understanding
of security does not degrade gracefully with the number of security flaws in the code.
With one flaw, all security could be lost and the second flaw thus adds very little to
the situation. Although this is not true in all scenarios, it is clearly true in ours. If a
system vendor has included a hidden backdoor in the code, the number of backdoors
included in total is of little significance.

10.6 Standards

The notion of qualitymanagement is intrinsically elusive, since it has different mean-
ings for different people, in different roles, in different situations, and at different
times. This issue presents problems in any industry that needs to be able to com-
municate with some degree of accuracy and efficiency how quality is ensured in an
organization or for a product. A series of standards are being developed to address
these problems and some of the ones used in the development of software are listed
below [15].

ISO 9001 This is a general standard applicable to any organization in any line of
business. It defines a set of operation processes and proposes designing, docu-
menting, implementing, monitoring, and continuously improving these operation
processes [17].

ISO/IEC 9126 This standard contains a quality model for software and a set of
metrics to support the model. It was first issued in 1991 [20].

ISO/IEC 25010 In 2011, this standard replaced ISO 9126. It contains a modern-
ized set of quality attributes and, in particular, attributes related to security were
given more attention [18].

ISO/IEC 15504 This standard, which is sometimes referred to as SPICE, covers a
broad set of processes involved in software acquisition, development, operation,
supply, maintenance, and support.

CMM/CMMI The termCMM stands for CapabilityMaturityModel and specifies
software development processes. It is structured such that a development organi-
zation can be defined as belonging to one of a set of maturity levels, depending
on the processes it has in place. The term CMMI stands for Capability Maturity
Model Integration, which superseded CMM [10].

ISO 27001 This model was specifically designed for the certification of informa-
tion security processes and is part of a series of standards related to informa-
tion security [19]. Like ISO/IEC 25010, ISO/IEC 15504, and CMM/CMMI, ISO
27001 is process centric. This means that the models are based on the underlying
assumption that if the process is correct, the outcome will be satisfactory [16].

The use of such standards and their certification arrangements is likely to have
had positive effects on the quality of software. It is also reasonable to assume that the
standards that focus on security aspects, such as the ISO-27000 series and Common

92 10 Software Quality and Quality Management

Criteria, have contributed to the development of secure software and to the safe
operation of information and communications technology installations. Still, it is
important to note that the contribution of these standards lies in the structured use of
methods that have been described anddeveloped elsewhere. Therefore, if our problem
– namely, verifying that an equipment vendor is indeed performing malicious acts
against us – cannot be solved by existing technical approaches, then structuring
these approaches into a standardized framework is not likely to help. Neither is the
certification of an organization or a piece of software according to the same standards.
In our quest for a solution, we must therefore look at the strengths of our technical
methods. Only when they are strong enough can we benefit from making them into
a standard.

10.7 Common Criteria (ISO/IEC 15408)

TheCommonCriteria [1] is the result of a joint effort bymanynations. They comprise
a standard that requires our particular attention for two reasons. First, like ISO 27001,
it is aimed specifically at security. Second, unlike ISO27001, it contains requirements
for products, not only processes.

The key concepts in this standard are the protection profiles by which a user
specifies security requirements. A vendor claiming to have a product meeting these
requirements can have the product tested for compliance in independent accredited
testing laboratories. The rigour of the testing can be adapted to the criticality of the
component in question and, for this purpose, seven Evaluation Assurance Levels
(EALs) have been defined. The lowest of these, EAL1, requires only functional
testing for correct operation, whereas EAL7 mandates full formal verification of the
source code:

• EAL1: Functionally tested.
• EAL2: Structurally tested.
• EAL3: Methodically tested and checked.
• EAL4: Methodically designed, tested, and reviewed.
• EAL5: Semiformally designed and tested.
• EAL6: Design semiformally verified and tested.
• EAL7: Design formally verified and tested.

The wide adoption of Common Criteria has been a major step towards more
secure information technology systems. Still, nothing in this effort addresses cases
in which the company developing the system injects unwanted functionality. The
highest assurance level, EAL7, is, at the time of writing, considered prohibitively
costly for most development projects for reasons discussed in Chap. 9. Furthermore,
evaluation focuses primarily on assessing documentation, which ultimately has to
be provided by the company that is not to be trusted, and secondarily on functional
testing, which we concluded above can be easily fooled. So, at the end of the day,

http://dx.doi.org/10.1007/978-3-319-74950-1_9

10.7 Common Criteria (ISO/IEC 15408) 93

we have to draw the same conclusion for Common Criteria as we did for the other
standards. Structuring existing methods into a framework will not solve our problem
unless there is a solution in the methods themselves. In the following sections, we
cover the basic methods that make up the assurance levels of Common Criteria.

10.8 Software Testing

Testing remains the most frequently used technique for the validation of the func-
tional quality of a piece of software. It has been claimed that, in a typical development
project, more than 50% of the total cost is expended in testing and this figure has
remained more or less stable since the early days of programming [24]. The impor-
tance of testing in the development of stable and trustworthy software has led to a
large body of research in the field. Still, we have not been able to turn testing into
an exact science in the sense that there exist test methodologies with the guaranteed
ability to find all faults. There are several reasons for this.

First, for most software of any complexity, the combination of stimuli that the
software should be able to handle is subject to a combinatorial explosion that prevents
the tester from exhausting all possible test scenarios. This means that an important
part of the testing effort is to choose the set of tests the software should undergo [2].
The goal of this test set could be to cover all branches of the code or – for some
definition of input equivalence – all the equivalence classes of input parameters.

Most serious testing situations involve such a large set of test cases that they
will have to be carried out automatically. This brings us to the second problem of
testing, namely, that of automatically recognizing incorrect behaviour. In the field of
software testing, this is often referred to as the test oracle problem [3]. In complex
applications, this problem is frequently a major obstacle in the testing process.

Some software systems are actually deemed untestable. These are systems where
exact test oracles cannot be defined or where the system interacts with the physical
environment in such complex ways that it is impossible to adequately cover all the
test cases. For these cases, building a model of the system and then performing tests
on the model instead of the software itself has been proposed [7]. This concept is
quite similar to model checking, which is discussed in Sect. 10.9.

Although software testing is and remains the main vehicle for the validation
of software functionality, the state of the art falls short of helping us when fac-
ing a potentially dishonest equipment vendor. Triggering unwanted software can be
accomplished by arbitrarily complex sets and sequences of stimuli, meaning that the
likelihood of being detected in a test case can bemade arbitrarily small. Furthermore,
model testing is not likely to help us, since the malicious functionality will clearly
not be communicated in a way that will let it become part of the model. For testing
to be of help to us, we will need a scientific breakthrough that is not on the horizon
at the time of this writing.

94 10 Software Quality and Quality Management

10.9 Verification Through Formal Methods

One of the methods referred to in the Common Criteria is code verification. This
consists of writing an accurate specification of how the software should behave
and performing a rigorous mathematical proof that the piece of software actually
conforms to the specification. The correctness of this proof can in turn be checked
automatically by a relatively simple program. In Chap. 9, we discussed formal meth-
ods in some detail and concluded that both hope and despair are associated with this
approach.

The hope is related to the fact that the approach itself carries the promise of
being watertight. If there is a formal and verifiable proof that there are no malicious
actions in the software code, then a mathematical certainty has been established. The
despair is due to two facts. First, it can be argued that formal methods only move the
complexity from understanding the software to understanding and proofreading the
specifications. The second– and this is themore serious one – full formal specification
and verification are considered prohibitively costly for larger systems [11]. This is
further supported by the fact that very few pieces of software have been reported to
have undergone full formal verification as specified in the highest assurance level,
EAL7, of Common Criteria.

One particular development that seems to address both the complexity of spec-
ification and the cost of formal verification is model checking [9]. This consists of
building an abstract model of the software that is sufficiently small so that its state
space can be made the subject of an exhaustive search. Although this is a promising
approach, our problem pops up again in the question of how to build the model of
the software. This task is intrinsically difficult and has to be carried out by human
experts [5]. The likelihood of an intentional backdoor in the code showing up in the
model is therefore quite similar to the likelihood of it being detected by reviewing
the code itself. Model checking is therefore not a silver bullet to our problem, so we
move on to seeing if code review can help.

10.10 Code Review

Code reviews have been performed in security engineering for a long time. The
goal of code reviews in security is to look for known classes of vulnerabilities that
typically result from programming mistakes. These reviews can be performed as part
of the development process or take place entirely after the systemhas been developed.
There are several types of reviews, depending on which code is available. Down et
al. [11] mention the following alternatives, varying in the information available to
the tester:

• Source only.
• Binary only.
• Both source and binary.

http://dx.doi.org/10.1007/978-3-319-74950-1_9

10.10 Code Review 95

• Binary with debugging information.
• Black box, where only the running application is available.

As argued in Chap.4, a review of the source code alone gives a dishonest equip-
ment vendor full opportunity to includemalicious code through the compiler or other
development tools. In the case of the black box, we are, in principle, left with testing,
a situation we discussed in Sect. 10.8. This leaves us with the testing situations in
which the binaries are available.

Code reviews of binaries have many the same strengths and weaknesses as formal
methods. On one hand, they hold the promise that, when carried out flawlessly and
on a complete binary representation of a piece of software, all hidden malicious
code can be found. Unfortunately, there are two major shortcomings: one is that
finding all hidden malicious code is generally impossible, as shown in Chap. 5. Even
finding some instances will be extremely challenging if the malicious code has been
obfuscated, as described in Chap.7. The second shortcoming is one of scale. Down
et al. [11] estimate that an experienced code reviewer can analyse between 100 and
1,000 lines of code per day. Morrison et al. [23] estimate that a full analysis of the
Windows code base should take between 35 and 350 person–years. To make things
worse, these figures are based on the assumption that it is the source code that is to
be analysed, not the binaries; the real costs are therefore likely to be higher.

One way to handle this problem is to perform a code review on only parts of the
software product. Which parts are to be selected for scrutiny could be chosen by
experts or by a model that helps choose the parts that are more likely to contain mali-
cious code. Such defect prediction models have been used for some time in software
engineering to look for unintended faults and a range of similar models have been
proposed for vulnerability prediction. The value of the vulnerability prediction mod-
els is currently under debate [23]. We do not need to take a stand in that discussion.
Rather, we observe that the models try to identify modules that are more likely to
contain unintended vulnerabilities. If the vulnerabilities are intended, however, and
we can assume that they are hidden with some intelligence, then a model is not likely
to be able to identify the hiding places. Even if such a model existed, it would have
to be kept secret to remain effective.

It is thus a sad fact that rigorous code reviews and vulnerability detection models
also leave ample opportunity for a dishonest equipment producer to includemalicious
code in its products.

10.11 Discussion

Fuggetta and Di Nitto [13] took a historical view of what was perceived as the most
important trends in software process research in 2000 and compared this to what was
arguably most important in 2014. One of the key observations is that security has
gained significantly in importance and, consequently, the community should ‘iden-
tify and assess the major issues, propose ways to monitor and manage threats, and

http://dx.doi.org/10.1007/978-3-319-74950-1_4
http://dx.doi.org/10.1007/978-3-319-74950-1_5
http://dx.doi.org/10.1007/978-3-319-74950-1_7

96 10 Software Quality and Quality Management

assess the impact that these problems can have on software development activities.’
Although the statement was intended for scenarios with unintended security holes
and where the perpetrator is a third party, it does shed light on the extent to which
software development processes and quality assurance are promising places to look
for solutions to the problem of untrusted equipment vendors and system integrators.
If these tools and methods are inadequate to help the developers themselves find
unintended security holes, they are probably be a far cry from helping people outside
of the development team to find intentional and obfuscated security holes left there
by a dishonest product developer.

The findings in this chapter confirm the above observation. We have covered
the concepts of development processes, quality models, and quality management
and have found that they relate too indirectly to the code that runs on the machine
to qualify as adequate entry points in the verification of absence from deliberately
inserted malware. The field of software quality metrics in some aspects directly
relates to the source code but, unfortunately, it is doubtful that all aspects of security
are measurable. In addition, counting the number of bugs found has still not given
us bug-free software; thus, it is not likely that counting security flaws will provide
any guidance in finding deliberately inserted malware.

Methods that go deep into the code running on the machine include testing, code
reviews, and formal methods. In the present state of the art, formal methods do
not scale to the program sizes we require, code review is error prone and too time-
consuming to be watertight, and testing has limited value because of the problem of
hitting the right test vector that triggers themalicious behaviour. Evenwhen triggered,
recognizing the malicious behaviour may be highly nontrivial. It is clear that these
methods still leave ample space for dishonest equipment providers to insert unwanted
functionality without any real danger of being exposed.

Although these approaches still fall far short of solving our problem, they remain
a viable starting point for research on the topic. In particular, we hope that, at some
time in the future, the combination of formal methods, careful binary code review,
and testing will increase to a significant level the risk of being exposed if you include
malware in your products. However, we have a long way to go and a great deal of
research must be done before that point is reached.

References

1. http://www.commoncriteriaportal.org
2. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review of the appli-

cation and empirical investigation of search-based test case generation. IEEE Trans. Softw.
Eng. 36(6), 742–762 (2010)

3. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in software
testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015)

4. Berander, P., Damm, L.O., Eriksson, J., Gorschek, T., Henningsson, K., Jönsson, P., Kågström,
S., Milicic, D., Mårtensson, F., Rönkkö, K., et al.: Software quality attributes and trade-offs.
Blekinge Institute of Technology (2005)

http://www.commoncriteriaportal.org

References 97

5. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, P.:
Systems and Software Verification: Model-Checking Techniques and Tools. Springer Science
and Business Media, Berlin (2013)

6. Boehm, B.W., Brown, J.R., Kaspar, H.: Characteristics of Software Quality. North-Holland,
Amsterdam (1978)

7. Briand, L., Nejati, S., Sabetzadeh, M., Bianculli, D.: Testing the untestable: model testing of
complex software-intensive systems. In: Proceedings of the 38th International Conference on
Software Engineering (ICSE 2016), ACM (2016)

8. Cavano, J.P., McCall, J.A.: A framework for the measurement of software quality. In: ACM
SIGMETRICS Performance Evaluation Review, vol. 7, pp. 133–139. ACM (1978)

9. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
10. CMMI Product Team: CMMI for development, version 1.2 (2006)
11. Down, M., McDonald, J., Schuh, J.: The Art of Software Security Assessment: Identifying and

Preventing Software Vulnerabilities. Pearson Education, Boston (2006)
12. Fowler, M., Highsmith, J.: The agile manifesto, Softw. Dev. 9(8), 28–35 (2001)
13. Fuggetta, A., Di Nitto, E.: Software process. In: Proceedings of the on Future of Software

Engineering, pp. 1–12. ACM (2014)
14. Galin, D.: Software Quality Assurance: From Theory to Implementation. Pearson education,

Boston (2004)
15. García-Mireles, G.A., Moraga, M.Á., García, F., Piattini, M.: Approaches to promote product

quality within software process improvement initiatives: a mapping study. J. Syst. Softw. 103,
150–166 (2015)

16. Gillies, A.: Software Quality: Theory and Management (2011). https://www.lulu.com
17. ISO 9001:2015 quality management systems - requirements
18. ISO/IEC 25010:2011 systems and software engineering – systems and software quality require-

ments and evaluation (square) – system and software quality models
19. ISO/IEC 27001:2013 information technology – security techniques – information security

management systems – requirements
20. ISO/IEC 9126-1:2001 software engineering–product quality–part 1: quality model
21. Jansen, W.: Directions in Security Metrics Research (2009)
22. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in software quality. volume I. Concepts

and definitions of software quality. Technical report, DTIC Document (1977)
23. Morrison, P., Herzig, K., Murphy, B., Williams, L.: Challenges with applying vulnerability

prediction models. In: Proceedings of the 2015 Symposium and Bootcamp on the Science of
Security. ACM–Association for Computing Machinery (2015)

24. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley, New York (2011)
25. Schwaber, K., Beedle,M.:Agile SoftwareDevelopmentwith Scrum. Prentice-Hall, Englewood

Cliffs (2001)

https://www.lulu.com

98 10 Software Quality and Quality Management

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 11
Containment of Untrusted Modules

In previous chapters, we established that the problem of fully verifying informa-
tion and communications technology (ICT) equipment from an untrusted vendor is
currently not feasible. As long as full and unconditional trust does not prevail in
the world, we will have to build and maintain digital infrastructures consisting of
equipment we do not fully trust and equipment consisting of modules we do not fully
trust.

In the real world, we handle persons and organizations we do not trust by trying
to contain them. First, we make efforts to detect if they defect on us and, second,
if they defect on us, we work to limit the impact of the defection and then strive to
manage without the defectors in the future. The counterparts to such strategies in the
digital world are discussed in this chapter.

11.1 Overview

Many of the chapters in this book are concerned with fields of research that are
motivated by problems besides ours but which still have some bearing on the problem
of untrusted vendors. This chapter is different, in that it is motivated by an envisaged
solution to the problem rather than a research field.

This envisaged solution – containment of the equipment that we do not trust –
consists of two parts. The first part is the detection ofmisbehaviour. This problemarea
is discussed thoroughly throughout the book. In separate chapters, we have discussed
detection through formal methods, reverse engineering, the static analysis of code
and hardware, the dynamic analysis of systems, and software quality management.
The other part of the solution is that of replacing or somehow handling misbehaving
equipment. For this part of the solution, we are in the fortunate situation in which
the mechanisms we need have been studied and developed over decades. This work
has been conducted under the headline of fault tolerance rather than security, but the
developments work well in our situation nevertheless. In the upcoming sections, we
touch upon some of this work. The field is rich and solutions have been developed for

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_11

99

100 11 Containment of Untrusted Modules

somany different areas that this chapter cannot do justice to all of them. Our ambition
is therefore to give a high-level overviewbut stillmake it sufficiently detailed to assess
whether the containment of ICT equipment from untrusted vendors is a viable path
forward.

11.2 Partial Failures and Fault Models

In the early days of computer programming, a program was a monolithic entity that
either worked or completely collapsed. Whenever one part of the program ran into
a problem – for example, division of a number by zero – the entire program stopped
executing. Later, when computer architectures allowed for several parallel processes
and computer networks allowed for distributed systems, this situation changed. Sys-
temswhere one component or process failedwhile the others continued to run became
something we had to deal with. This gave birth to the notion of partial failures.

One basic problem in the area of partial failures is that there is a wide range
of different ways in which a component can fail. It can fail suddenly and immedi-
ately by simply halting its execution. It can fail slowly by performing inconsistent
actions before it halts and these actions may or may not leave the entire system in an
inconsistent state. Furthermore, the faults may or may not be detectable by the other
components in the system or they may be detectable long after the fault occurred.
The different ways by which a component can fail span out a set of fault models,
each of which captures a specific class of ways to malfunction [8].

In Chap.1, we discussed the different deeds we fear that a dishonest vendor might
commit. In particular, we mentioned the introduction of kill switches that would
allow an adversary to render the equipment nonfunctional at a time of choosing.
In the theory of fault models, this would be close to the fail-stop model [18]. The
fail-stop model captures cases in which a system component crashes, the crash is
detectable by the other components of the system, and the component works in a
benign and correct manner until it crashes. Other scenarios we were worried about
are where the vendor uses the equipment it has sold for either espionage or fraud.
In those cases, the malevolent components will appear to function correctly while
they are actually not. In addition to performing the tasks expected of them, they leak
information to the outside world or behave in a fraudulent manner. In the world of
fault models, this would be categorized as a Byzantine fault [14].

Theoretical solutions for both fault models are easily derived through capacity
and functionality replication. For a fail-stop failure, there is need for one additional
module with the same functionality that can take over the job of the failing one.
For Byzantine faults, the situation is more complex. Detection of the fault in itself
is a challenge and the situation usually comes down to having multiple modules
doing the same job, with a comparison of the output. The number of replicated
modules needed will depend on the number of defecting modules one wants to be
able to defend against and how the tasks are distributed among the modules. One
easily understandable result is that if all the modules have identical information and

http://dx.doi.org/10.1007/978-3-319-74950-1_1

11.2 Partial Failures and Fault Models 101

identical tasks, 2N + 1 modules are needed in total to successfully detect and isolate
a coordinated Byzantine fault in N of the modules. This number will guarantee that
trustworthy replicas will be able to outvote the replicas that have defected. More
complex situations can be described, and they will lead to different ratios between
the trustworthy and defected modules.

Fault models, in general, and fail-stop and Byzantine faults, in particular, can
easily be described in a simple, idealized way and, indeed, this is what we have done
above. Both models are, however, deeply problematic from a practical point of view.
For example, it is very hard to implement a module so that it guarantees adherence to
the fail-stop model. This would require it to never do anything wrong. In particular,
this would require that the module itself detect that it is starting to malfunction,
for example, because a bit has flipped in memory, and then stops all operations
before it does anything wrong. This is a highly nontrivial task to implement. In
real life, a module will most likely undergo a period with a Byzantine fault before it
stops [19]. This is especially likely to be the case if the fault itself has beendeliberately
introduced to cause harm. Indeed, most fault models can themselves be fooled by an
intelligent adversary. The obvious answer to this problem would be to treat all faults
as Byzantine.

Byzantine faults do, however, have problems of their own. The algorithms that
handle Byzantine faults generally build on the notion of an atomic broadcast. An
atomic broadcast is a message-passing service that allows a module to send the same
message to all the other modules and with a guarantee that the messages arrive in the
sameorder at everymodule.Unfortunately, atomic broadcasts, like fail-stopmodules,
are easy to describe but generally impossible to implement in a real system.

In spite of these shortcomings, the study of fault models and the approximative
implementations of the protocols that handle them have resulted in remarkably com-
plex, robust, and flexible systems in the real world. Our methods for handling failing
modules in complex systems is perhaps the most promising of the existing technolo-
gies when it comes to controlling the effects of buying equipment from untrusted
vendors.

11.3 Erlang: A Programming Language Supporting
Containment

In our discussion, the significance of fault models relates to what a dishonest com-
ponent might do and how we could discover that it is not acting in the interest of the
system’s owner. After the detection of dishonest actions, the next step would be to
actually proceed with the containment of the malicious components. This could, in
most settings, imply the replacement of the dishonest components with components
that can presumably be trusted.

Erlang is a programming language that was developed at Ericsson in the 1980s.
One of its motivating intentions was the need to develop highly reliable software

102 11 Containment of Untrusted Modules

systems – particularly for telephony applications – taking into account that neither
hardware nor software will ever be perfect. Erlang has many distinctive features, but
the most important ones to us are the following [1, 2]:

• The core component in an Erlang system is a process. This process is strongly
isolated from other processes; thus, its existence or performance is not, per se,
dependent on the perfect operation of the other processes.

• Processes can only interact through message passing and there is no shared mem-
ory. This means that the memory state of one process cannot be corrupted by
another process.

• The addition and removal of processes are lightweight operations.

These mechanisms have proven to be very powerful in the creation of robust
parallel and distributed systems and Erlang is still an important language in the
development of such systems [4]. For us, this means that one of the core mechanisms
for the containment of untrusted modules – the replacement of misbehaving pieces
of software at runtime – has been studied for a long time and that we can consider
this problem solved to a significant extent.

11.4 Microservices: An Architecture Model Supporting
Containment

There have also been developments within software architecture that are – at least
partly – motivated by the need for the containment of malfunctioning components.
A recent development is called microservices [17]. Microservices are sometimes
referred to as a dialect of service-oriented architecture [12], but they have important
differences. We will return to these below.

A microservice is the name of the architecture model and its components alike. A
software system based on this model consists of a set of microservices, where each
microservice has the following set of features:

• It is a relatively small piece of software that performs a well-defined service.
Exactly what is meant by the term small is unclear, but a statement that is repeated
in many places should be small enough so that it can be programmed from scratch
in two weeks. This means that it must have limited and focused functionality that
can be observed and understood.

• It is autonomous in the sense that its existence is not dependent on other microser-
vices. Such autonomy can be implemented by letting it be its own operating system
process or an isolated service on a ‘platform as a service’.

• It can be independently developed and deployed and is not restricted to a given
programming language or communication protocol.

11.4 Microservices: An Architecture Model Supporting Containment 103

• It communicates with other microservices through messages. It exposes an appli-
cation programming interface (API) and collaborating microservices use this API
for interaction.

• It can be changed or even replaced without affecting the services using it.

These features are a goodmatch for the problemweare grapplingwith in this book.
The emphasis on the size of microservices sets them apart from mainstream service-
oriented architectures. For us, this is an interesting distinction. A small service that
performs a relatively simple task is easy to observe and monitor while it is working.
If its complexity is sufficiently low for it to be reprogrammed in two weeks, the task
of reverse engineering it also falls within the limits of tractability (see Chap.6). This
means that this architecture model is well suited for the detection of components
written with malicious intent [15].

Another interesting aspect of microservices is that they can be independently
developed and deployed. Since the development of each microservice is relatively
low cost, it is possible to develop several versions of the same service indepen-
dently of each other. These can use different programming languages and be based
on distinct libraries. For us, this means that microservices open up the possibility
of heterogeneity in the set of components. Carefully designed, such heterogeneity
could be used to detect malicious components at runtime. Last, but not least, the
autonomy and replaceability of a microservice allow us to contain and later replace
a malfunctioning microservice [17].

Microservices are an important development when it comes to understanding the
problemof verifying equipment bought from an untrusted vendor.Although designed
for another purpose, it is an architecture model that captures all of our challenges if
we want to encapsulate untrusted equipment. It addresses the detection of malicious
behaviour through the size and observability of the modules, it handles the need to
have alternatives that can be trusted through heterogeneity, and, like Erlang, it allows
for the easy replacement of untrusted modules.

It is important to state, however, that microservices are not yet a full solution
to our problem. The apparent simplicity of the microservice model hides the fact
that the size of a complex system reappears in the number of microservices needed
to implement it [6]. The complexity of the entire system will thus reappear in a
complex web of collaborating microservices. The challenge of analysing a system
down to the bottom is therefore no simpler in a microservice architecture than it is in
any other system. In addition, when we buy a piece of equipment, it consists of both
software andhardware and themicroservice approach is part of software development
philosophy only. Finally, we generally have no control over the architecture model
used by the vendor.

Nevertheless, future research into microservices and their properties in terms
of fault tolerance stands out as one of the few promising avenues when it comes
to tackling the problem we address. Insights from this field of research hold the
promise of forcefully addressing the question of trust between buyers and vendors
of electronic equipment.

http://dx.doi.org/10.1007/978-3-319-74950-1_6

104 11 Containment of Untrusted Modules

11.5 Hardware Containment

Handling untrusted hardware consists of the same two tasks as for software: First,
the fact that a given piece of hardware is not to be trusted needs to be detected and,
second, the distrusted components will need to be contained. In hardware as well,
it is the detection task that is the most difficult. We have elaborated on methods of
detection in Chaps. 7 and 8 and concluded that this is a highly challenging task [23].
In terms of hardware, some are even labelling it the problem from hell, deeming
it generally impossible [21]; therefore, the problem of untrusted hardware is often
overlooked [20].

On the other hand, the actual containment of pieces of hardware that are no longer
to be trusted is a topic that has been successfully studied since a long time. Solutions
for disk arrays that allow for the removal and hot swapping of disks are one exam-
ple [7]. Other examples are routing techniques that route around faulty routers [13],
switching techniques that handle faulty switching components [9], techniques that
handle misbehaving portions of disks or memory [5], and load-balancing techniques
that keep misbehaving CPUs out of the equation [16]. There also exist methods that
let redundant pieces of logic on a chip take over when a limited area of the chip has
failed [22].

The replacement of failing components or graceful degradation by shutting down
failing parts is regularly carried out in all complex ICT systems. In tightly coupled
hardware systems, the possibility of hot swapping, that is, replacing components
while the system is running, is a research field in itself since decades. Unlike for
software, however, the fact that hardware is a physical thing requires that provisions
for hot swapping be made in advance. The replacement of a chip’s functionality with
the same functionality on another part of the chip is limited by what is on the chip in
the first place. Routing around components in a network or the replacement of a disk
in an array have to be carried out within the framework of what disjoint paths exist in
the network or what other trusted disks are present in the array, respectively. Still, for
hardware aswell, we can conclude that one part of the problemof containment, that of
isolating untrusted parts, is largely covered by existing mechanisms and technology
for fault tolerance.

11.6 Discussion

The scheme for the containment of untrusted ICT systems or components thereof
consists of two parts. First, mechanisms must be in place to detect that compo-
nents are misbehaving and, second, mechanisms must be in place that isolate the
misbehaving components. In this chapter, we have demonstrated that the latter of
these challenges is tractable. Fault-tolerant computer systems have been studied for
decades and mechanisms for making the system independent of components that no
longer work have celebrated many successes. We therefore have a good grasp of how

http://dx.doi.org/10.1007/978-3-319-74950-1_7
http://dx.doi.org/10.1007/978-3-319-74950-1_8

11.6 Discussion 105

to handle the actual containment. The detection part is, however, far more involved.
In Chaps. 7 and 8, we discussed static analysis methods and methods that detect
malicious behaviour at runtime, respectively. Our conclusion from these chapters is
that the developer or manufacturer of products has all the freedom needed to include
stealthy malicious functionality into a product.

This could lead us to conclude that containment, as an approach to handling
untrusted electronic equipment, is futile. Our conclusion is, however, completely the
opposite. The containment of untrusted modules is the most promising approach we
have to our problem, first, because all the mechanisms that have been developed for
fault-tolerant systems in the last decades fit nicely with our need to perform the con-
tainment and, second, because the detection of misbehaving components need not
come from ICT technology itself. Indeed, the most communicated incidents of inten-
tional fraud we know of were discovered in ways that had nothing to do with ICT.
The Volkswagen case, where electronic circuits controlling diesel engines reduced
the engine emissions once it detected that it was being monitored, was discovered
by analysing the car’s behaviour [3] and an insider disclosed that routers and servers
manufactured by Cisco were manipulated by the National Security Agency to send
Internet traffic back to them [10]. Containment therefore remains an important mech-
anism, regardless of our lack of ability to analyse the behaviour of ICT equipment.

All mechanisms for containment we have seen come at a cost. If your untrusted
piece of equipment consists of software alone, then alternative software with equiv-
alent functionality must exist and it must be ready at hand. For some pieces of
standardized high-volume products, alternatives are likely to exist. In addition, in a
microservice system, several generations of each service are likely to be available.
For tailor-made monolithic software for specialized tasks, the development of com-
pletely independent alternatives will probably double the price of development. For
hardware, one will have to buy equipment from different vendors. This means that,
apart from the cost of having redundant components, one will have to cope with
the extra cost of running and integrating different product lines. This will clearly
not always be worth the cost. Still, for highly critical systems underpinning critical
infrastructures supporting large populations,we can consider this price low compared
to the potential consequences.

Based on the above, we conclude that further research on containment is one of
the most promising ways forward to tackle the problem. In this future research path,
it is important to keep in mind that the containment of modules from an untrusted
vendor is, in some respects, very different from the containment of faulty modules.
When working only on fault tolerance, one can assume that ICT equipment fails
according to a statistical distribution. Each component will work well for some time
and then, for some reason, it will start to malfunction independently of all the other
components. Then, when you fix whatever the configuration problem is, restart a
piece of equipment, or replace a piece of hardware, the system is good to go again.
When you detect that a vendor of ICT equipment is not to be trusted, however, then
no statistical distribution can be assumed. Furthermore, all the components made by
this vendor become untrusted. This can affect a large portion of a system and, if the

http://dx.doi.org/10.1007/978-3-319-74950-1_7
http://dx.doi.org/10.1007/978-3-319-74950-1_8

106 11 Containment of Untrusted Modules

equipment is part of an infrastructure one depends on, one has to be able to cope
with this situation for some time.

The above brings to mind two lines of research that should be pursued with more
intensity than is currently the case: First, we must develop hardware and software
architectures that allow a system to run with malicious components in its midst
without letting them cause substantial harm. Recent developments point to the notion
of anti-fragility as a particularly promising avenue to explore [11]. Second, for critical
infrastructures, more effort must be directed to handling large-scale disasters as
opposed to single faults. The large number of components of an infrastructure that can
suddenly become untrustworthy as a result of a vendor being deemed untrustworthy
makes this case different from what is generally studied under the label of fault
tolerance.

References

1. Armstrong, J.: Making reliable distributed systems in the presence of software errors. Ph.D.
thesis, The Royal Institute of Technology Stockholm, Sweden (2003)

2. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming in Erlang.
Prentice-Hall, New Jersey (1993)

3. BBC: http://www.bbc.com/news/business-34324772
4. Cesarini, F., Thompson, S.: Erlang Programming. “O’Reilly Media, Inc.”, Massachusetts

(2009)
5. Deyring, K.P.: Management of defect areas in recording media. US Patent 5,075,804, (1991)
6. Fowler, S.J.: Production-Ready Microservices (2016)
7. Ganger, G.R., Worthington, B.L., Hou, R.Y., Patt, Y.N.: Disk arrays: high-performance, high-

reliability storage subsystems. Computer 27(3), 30–36 (1994)
8. Gärtner, F.C.: Fundamentals of fault-tolerant distributed computing in asynchronous environ-

ments. ACM Comput. Surv. (CSUR) 31(1), 1–26 (1999)
9. Gomez,M.E., Nordbotten, N.A., Flich, J., Lopez, P., Robles, A., Duato, J., Skeie, T., Lysne, O.:

A routing methodology for achieving fault tolerance in direct networks. IEEE Trans. Comput.
55(4), 400–415 (2006)

10. Greenwald, G.: No place to Hide: Edward Snowden, the NSA, and the US Surveillance State.
Macmillan (2014)

11. Hole, J.K.: Anti-Fragile ICT Systems. Springer, Verlag GmbH (2016)
12. Josuttis, N.M.: SOA in Practice: TheArt of Distributed SystemDesign. “O’ReillyMedia, Inc.”,

Massachusetts (2007)
13. Kvalbein, A., Hansen, A.F., Čičic, T., Gjessing, S., Lysne, O.: Multiple routing configurations

for fast ip network recovery. IEEE/ACM Trans. Netw. (TON) 17(2), 473–486 (2009)
14. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program.

Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)
15. Lysne, O., Hole, K.J., Otterstad, C., Aarseth, R., et al.: Vendor malware: detection limits and

mitigation. Computer 49(8), 62–69 (2016)
16. Nelson, M., Lim, B.H., Hutchins, G., et al.: Fast transparent migration for virtual machines.

In: USENIX Annual Technical Conference, General Track, pp. 391–394 (2005)
17. Newman, S.: Building Microservices. “O’Reilly Media, Inc.”, Massachusetts (2015)
18. Schlichting, R.D., Schneider, F.B.: Fail-stop processors: an approach to designing fault-tolerant

computing systems. ACM Trans. Comput. Syst. (TOCS) 1(3), 222–238 (1983)
19. Schneider, F.B.: Byzantine generals in action: implementing fail-stop processors. ACM Trans.

Comput. Syst. (TOCS) 2(2), 145–154 (1984)

http://www.bbc.com/news/business-34324772

References 107

20. Sethumadhavan, S.,Waksman, A., Suozzo,M., Huang, Y., Eum, J.: Trustworthy hardware from
untrusted components. Commun. ACM 58(9), 60–71 (2015)

21. Simonite, T.: NSA’s own hardware backdoors may still be a “problem from hell” (2013)
22. Srinivasan, J., Adve, S.V., Bose, P., Rivers, J.A.: Exploiting structural duplication for lifetime

reliability enhancement. In: ACM SIGARCH Computer Architecture News, vol. 33, pp. 520–
531. IEEE Computer Society (2005)

23. Tehranipoor, M., Koushanfar, F.: A survey of hardware trojan taxonomy and detection. IEEE
Des. Test Comput. 27(1), 10–12 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 12
Summary and Way Forward

In this book, we have asked the following question: What if one or more of the
providers of the core components of an information and communication technology
(ICT) system are dishonest? This question has been actualized by recent discussions
and events, such as the Snowden revelations, the discussions that have taken place
in many Western countries on the inclusion of equipment from Chinese providers
into telecommunications infrastructures, and the case of Volkswagen cars having
electronics recognizing that they were being tested for emissions.

Our problem is widely distinct from the traditional problem of the prevention and
detection of malware in a system, first, because the malware is already present at the
time of purchase, so preventing it from entering into the system is meaningless, and,
second, because there is no clean malware-free sample for comparison, something
that is the basis for most effective malware detection techniques. In this book, we
havewandered through the landscape of ICT knowledge. Throughout the journey, we
have tried to determine how onemight verify if a producer of an artefact consisting of
electronic hardware and software has included unwanted functionality in the product.

12.1 Summary of Findings

The notion of trust has been heavily studied in modern philosophy since the 1980s
and onwards. In most aspects of life, our relationships to the people and institutions
we interact with are influenced by the amount of trust we have in the people and
institutions in question. Our need to verify their actions depends on our earlier his-
tory with them, their reputation among other people we trust, and the consequences
for ourselves and the other party if they defect on us. In Chap. 2, we discuss the
trust relationship between a buyer and a vendor of electronic equipment. Ultimately,
we find that meaningful trust in this relationship can only be attained through an
ability to verify the functionality of the equipment that is being sold. Most of this

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_12

109

http://dx.doi.org/10.1007/978-3-319-74950-1_2

110 12 Summary and Way Forward

book is therefore devoted to the technical verification of the properties of electronic
equipment.

In Chap.3, we embarked on the notion of a system, pointing out that it spans many
dimensions. The most obvious dimension is that going from the user interface of a
given system – through many layers of software, firmware, and hardware – down
to the physical phenomena that allow us to build the machines in the first place.
Another dimension emerges from the distributed nature of most complex systems.
These are typically constituted by a series of subsystems, many of which physically
reside on different machines. In addition, these subsystems may be owned and run
by different organizations in different countries. Since the outsourcing of services
and the usage of cloud facilities are becoming commonplace, the diversity of the
ownership of subsystems is likely to increase.

A usual assumption when looking for weaknesses in computer systems is that
the weakness, or, in our case, the security hole, will be visible from the source code.
Several companies have therefore made efforts to let their customers study the source
code of their systems. This is a strong act of goodwill but, unfortunately, we cannot
assume that the absence of malicious actions in the source code guarantees freedom
from malicious behaviour in the equipment itself. In Chap.4, we use a result from
the 1980s to show that malicious executable code and electronic circuits can be
introduced by the tools used by developers. In these cases, not even the developers
of the product need be aware that malicious code is being embedded into the product
they are building. Therefore, to look for malicious code or malicious circuits, we
have to study gate-level electronics and the executable code.

One reason reverse engineering and the search for malware are challenging is that
there are theoretical limits to what can be achieved through code analysis. This is
studied in Chap. 5.We showed proof that decision procedures for detectingmalicious
functionality are a mathematical impossibility.

Understanding and making sense of executable code and gate-level definitions
of hardware in life-size systems is a massive task. There is, however, an active
community with well-developed tools for the reverse engineering of systems. The
expertise of this community is used in analysing the effects of known malware, as
well as in reverse engineering programmer interfaces for software development. We
provided an overview of the classes of tools used for the reverse engineering of
hardware and software in Chap.6. Although these tools have shown their worth in
analysing limited problems, they are a far cry from bringing us close to analysing
entire systems in the full complexity illustrated in Chap. 3.

The detection of intrusion is perhaps themost developedfield in computer security.
Such detection consists of scanning a system in the search for a computer virus,
Trojan, or unwanted active processes placed there by third parties. Chapter 7 gave a
high-level overview of the different known methods. The success of this field is one
of the finest stories in the tale of computer security. Still, its methods fall short of
solving our problem. The most efficient modus for intrusion detection is to scan a
system for the signature of a piece of code that is not supposed to exist in a healthy
system.Whenmalware is inserted into a system at the development phase, no system

http://dx.doi.org/10.1007/978-3-319-74950-1_3
http://dx.doi.org/10.1007/978-3-319-74950-1_4
http://dx.doi.org/10.1007/978-3-319-74950-1_5
http://dx.doi.org/10.1007/978-3-319-74950-1_6
http://dx.doi.org/10.1007/978-3-319-74950-1_3
http://dx.doi.org/10.1007/978-3-319-74950-1_7

12.1 Summary of Findings 111

will be healthy. The distinction between code that is supposed to be there and code
that is not disappears.

An alternative to analysing an electronic product before it is powered on is to start
it up, let it run, and then study its behaviour. In Chap.8, we explained that this can be
done in one of twoways. One is to build a controlled environment around the piece of
equipment, a so-called sandbox This has the advantage of containing the malicious
acts the equipment could carry out so that no real harm is done. Another benefit
of this approach is that the sandbox itself can conduct a systematic test of how the
piece of equipment acts under different stimuli. The main weaknesses of sandboxes
are, first, that they only run for a limited time and, second, that malicious pieces of
code may try to check if it is running in a sandbox before it exposes its malicious
behaviour. These weaknesses form separate battlefields where malware creators try
to hide malicious functionality from the sandbox and the sandboxes creators work
on tricking the malware into exposing itself.

The second approach to dynamic analysis consists of putting the device into
ordinary production outside of a sandbox and then observing its behaviour. By doing
so,we avoid sandboxes’ drawbacks of time limitations and test detection.On the other
hand, malicious acts performed by the device will have real-life effects. The severity
of these effects will differ, depending on what the effects were. If the malicious effect
is to render a piece of equipment unusable, then it will be too late by the time it is
detected. If it is to leak confidential information, it may not be too late but, depending
on the criticality of the function of the equipment and alternative ways of providing
this function, it may be hard to stop.

The key to understanding if dynamic testing – either in a sandbox or in production
– can help solve the problem lies in the question of whether the malicious acts can
actually be detected. As stated, acts that render the equipment useless are easily
detected when they occur. When they occur in real production, however, it will be
too late and, since they can be triggered by arbitrarily complex external stimuli,
one cannot expect to be able to trigger them in a sandbox. As for the leakage of
information, there is more bad news. It has been shown through information theory
that undetectable leakage is possible, although with limited bandwidth.

Although we have presented a series of undecidability results that seem to end
our analysis, several theoretical developments have promise. In the field of formal
methods, which we discuss in Chap.9, we have a plethora of logic systems for
programs and deduction systems that are sound and complete. This means that,
for every property of a program that can be expressed in the logic system, there
exists a proof for this property. Although the undecidability results mean there is no
systematic way the absence of malicious behaviour can be proven, it is clear that
an honest developer will have a clear mental picture of this during the development
phase. We can therefore envision that the programmer provides proof of absence of
malicious behaviour as part of the development process. Checking the correctness
of such proofs is a trivial task that can be done by a machine.

However, even formal methods have limitations. In this case, the limitations are
related to the fact that the developer mainly works on source code. This source code
is automatically transformed into binary code before it is executed on a machine or

http://dx.doi.org/10.1007/978-3-319-74950-1_8
http://dx.doi.org/10.1007/978-3-319-74950-1_9

112 12 Summary and Way Forward

into gate-level structures before it is implemented in hardware. For the proofs to be
watertight, theywill therefore have to refer to code on another level of abstraction than
what is in the developer’s mind. Another difficulty is that an ICT system is generally
exceptionally complex, as discussed in Chap. 3. This complexity overwhelms the
current state of the art in formal methods. Finally and most importantly, the notion
of sound and complete is deceptive. It leaves the impression that every property of
a program can be proven. What it really means is that every property expressible in
the logic system can be proven. A logic system that is sound and complete therefore
has the limitation that properties that are undecidable in the Turing sense cannot be
expressed in the system. As mentioned above, this will be the case for most of the
malicious properties we are interested in finding.

We discussed in Chap. 10 the existence of various systematic approaches to the
assurance of software quality. The most common one of these for computer security
is called the Common Criteria and these are formed around seven quality assurance
levels. Although the gist of these assurance levels is that the developer of the equip-
ment collaborates with the customer to secure the system against third parties, they
can be made relevant for our discussion as well. They do, however, encounter the
same limitations as those discussed in the various chapters of this book, with regards
to both the static analysis of code and dynamic testing.

If our system has only a few components that we do not trust, we could try to
execute them in a controlledmanner. They can be put in a sandbox environmentwhere
they cannot send information to the outside and where the information going into
the components is controlled and even encrypted to ensure that all communications
from the outside are scrambled before reaching the component in question. We study
these mechanisms in Chap.11. Unfortunately, they are usable only for a limited set
of cases.

12.2 The Way Forward

The conclusion on the current state of the art with respect to our problem is rather
bleak. If we do not trust the makers or vendors of our electronic equipment, there
seems to be no framework of knowledge that adequately addresses the full complexity
of the question. However, some approaches appear to be more promising than others
and they should receive the additional attention that the seriousness of the problem
seems to justify. We will mention some of them in the following sections.

12.2.1 Encryption

Distrust in the equipment you communicate through and collaborate with is one
of basic assumptions in encryption algorithms and protocols. This is therefore an
example – and possibly the only example – of a field of ICT security and robustness

http://dx.doi.org/10.1007/978-3-319-74950-1_3
http://dx.doi.org/10.1007/978-3-319-74950-1_10
http://dx.doi.org/10.1007/978-3-319-74950-1_11

12.2 The Way Forward 113

where the premise of the field need not be changed as a result of distrusting the
equipment vendor instead of accidents or a third party. The researchfield has therefore
resulted in numerous methods that provide a solid basis for trust in our case as well,
even when communication can be leaked and even in the presence of attempted
man-in-the-middle attacks.

The development, harnessing, and proliferation of strong encryption techniques
should therefore be encouraged and will be an important component in the solution
to the problem of untrusted equipment. Still, encryption does not solve the problem
altogether, for two reasons: First, the equipment used for encryption and decryp-
tion will also consist of electronic devices. The question of who built the encryption
equipment, from the transistors up to the application, will be important. If one can-
not place complete trust in the people who built the encryption equipment, in all the
complexity we have described in Chap.4, then the encryption methods offer nothing.
Second, while encryption promises to build defences against threats such as eaves-
dropping and man-in-the-middle attacks, it does not touch the problem of remotely
controlled kill switches. For that problem, we must look for solutions elsewhere.

12.2.2 Formal Methods

Wehave argued above that formalmethods currently fall short of solving the problem
of fully verifying electronic equipment. In spite of this, we choose to list it as one
of the research fields that should be pursued with greater intensity in the search for
solutions to our problem. Our reason for this is that, of all the existing approaches
to quality and the scrutiny of code – such as software quality management, reverse
engineering, code review, and static and dynamic analysis – the field of formal
methods is the only one that holds the promise of being able to issue guarantees of
the absence of unwanted functionality.

One particularly promising approach lies in the combination of specification-
based techniques in defining proper benign system behaviour, discussed in Sect. 7.8,
and proof-carrying code, discussed in Sect. 9.8. Specification-based techniques have
the advantage over other static detection methods of not requiring a clean, uninfected
sample of the system. Proof-carrying code has the advantage that the computational
challenges of finding the proof of a system’s correctness are transferred from the
system’s customer to its provider. The customer of the system will therefore only
have to carry out proof-checking, usually a fairly simple computational task.

Several problems, however, need to be addressed through research. First, much
research in the field has focused on providing specifications in which a piece of code
performs some specified predefined actions. Our problem is somewhat different, in
that we need to be able to prove that a system is free of unwanted side effects, such
as the leakage of information or the halting of operations. The latter problem is
particularly challenging, since it is well known that the halting problem is generally
undecidable (see Chap.5). A second challenge is that many of the existing results
of formal methods relate to source code. As made clear in Chap.4, it is the machine

http://dx.doi.org/10.1007/978-3-319-74950-1_4
http://dx.doi.org/10.1007/978-3-319-74950-1_7
http://dx.doi.org/10.1007/978-3-319-74950-1_9
http://dx.doi.org/10.1007/978-3-319-74950-1_5
http://dx.doi.org/10.1007/978-3-319-74950-1_4

114 12 Summary and Way Forward

code that needs to be verified. We will therefore need, not only scalable tools to help
programmers construct correctness proofs of the source code, but also compilers that
create machine code and translate proofs from source code to machine code. Finally,
the production of proof-carrying code is highly resource intensive. The approach is
therefore most likely only applicable to a relatively small trusted computing base
(see Sect. 2.6).

The verification of hardware chips is, however, challenging in a different way.
Whereas the development chain from an algorithmic description of the hardware
down to gate-level descriptions can be framed in by formal methods, the actual
production of the chip cannot. Furthermore, as described in Sect. 6.7, determining
what logic was actually placed on a chip is no easy task. Whereas formal methods
seem to be an interesting prospect in solving the software side of our problem, it is
hard to see how it can help us prove that malicious functionality is not being included
into hardware in the production phase.

12.2.3 Heterogeneity and Containment

Themost potent approach to handling untrusted electronic equipment is through con-
tainment and heterogeneity. This basically means that systems must be constructed
to the extent possible so that no code and no piece of hardware is universally trusted.
Unfortunately, this field has received limited attention, as discussed in Chap.11.

The strength of the approach is that it holds the promise to handle all sides of
the problem. Disjoint pieces of equipment can handle disjoint pieces of information,
so that damage through information leakage is limited. Whenever a kill switch is
triggered, rendering a piece of equipment out of service, other pieces of equipment
can take over. Once it has become clear that parts of an infrastructure can no longer
be trusted, software can be replaced and hardware isolated for later replacement.

Another strong aspect of this approach is that it can be applied to the entire
technology stack. Intellectual property integrated onto a chip can be controlled and
contained by other pieces of intellectual property, pieces of software can be controlled
and contained by other pieces of software, and entire devices can be controlled and
contained by other devices.

Still, there are problematic aspects to the state of the art in this area. The first
is that most methods currently applicable were developed for the purpose of fault
tolerance. This means that much of the work assumes that faults strike in an arbitrary
fashion and that, at a given time, there will be few faulty components to handle.
These assumptions will not necessarily hold when there is an intelligent adversary
and this adversary controls a large number of components in your system. Another
problematic aspect is that of cost. Duplication of functionality is costly at all levels,
and heterogeneity itself will significantly increase the cost of maintenance. Finally,
the containment of malicious actions is not a trivial feature to build into a system. It
will require a great deal of research to understand how to do so and most likely its
implementation will come at the cost of loss of performance.

http://dx.doi.org/10.1007/978-3-319-74950-1_2
http://dx.doi.org/10.1007/978-3-319-74950-1_6
http://dx.doi.org/10.1007/978-3-319-74950-1_11

12.2 The Way Forward 115

Even if many problems are involved in handling untrusted vendors through het-
erogeneity and containment, we still see these as the most promising way forward.
Unlike other conceivable approaches, there are no important parts of the problem that
we can identify upfront as impossible to handle. In particular, whenwe are challenged
by possible kill switches implemented in hardware, it seems that heterogeneity and
containment are the only viable path that can lead to a solution at all.

12.3 Concluding Remarks

Industrialized nation states are currently facing an almost impossible dilemma. On
one hand, the critical functions of their societies, such as the water supply, the power
supply, transportation, healthcare, and phone and messaging services, are built on
top of a huge distributed digital infrastructure. On the other hand, equipment for the
same infrastructure is made of components constructed in countries or by companies
that are inherently not trusted. In this book, we have demonstrated that verifying the
functionality of these components is not feasible given the current state of the art.

The security implications of this are enormous. The critical functions of society
mentioned above are so instrumental to our well-being that threats to their integrity
also threaten the integrity of entire nations. The procurement of electronic equip-
ment for national infrastructures therefore represents serious exposure to risk and
decisions on whom to buy equipment from should be treated accordingly. The prob-
lem also has an industrial dimension, in that companies fearing industrial espionage
or sabotage should be cautious in choosing fromwhom to buy electronic components
and equipment.

Honest providers of equipment and components see this problem from another
angle. Large international companies have been shut out of entire markets because
of allegations that their equipment cannot be trusted. For them, the problem is stated
differently: How can they prove that the equipment they sell does not have hidden
malicious functionality? We have seen throughout the chapters of this book that we
are currently far from being able to solve the problem from that angle as well. This
observation implies that our problem is not only a question of security but also a
question of impediments to free trade.

Although difficult, the question of how to build verifiable trust in electronic
equipment remains important and its importance shows every sign of growing. The
problem should therefore receive considerablymore attention from the research com-
munity as well as from decision makers than is currently the case. The question has
implications for national security as well as for trade and is therefore simply too
important to ignore.

116 12 Summary and Way Forward

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Foreword
	Preface
	Contents
	1 Introduction
	1.1 A New Situation
	1.2 What Are We Afraid Of?
	1.3 Huawei and ZTE
	1.4 Trust in Vendors
	1.5 Points of Attack
	1.6 Trust in Vendors Is Different from Computer Security
	1.7 Why the Problem Is Important
	1.8 Advice for Readers
	References

	2 Trust
	2.1 Prisoner's Dilemma
	2.2 Trust and Game Theory
	2.3 Trust and Freedom of Choice
	2.4 Trust, Consequence, and Situation
	2.5 Trust and Security
	2.6 Trusted Computing Base; Trust Between Components
	2.7 Discussion
	References

	3 What Is an ICT System?
	3.1 Transistors and Integrated Circuits
	3.2 Memory and Communication
	3.3 Processors and Instruction Sets
	3.4 Firmware
	3.5 Operating Systems, Device Drivers, Hardware Adaptation Layers, and Hypervisors
	3.6 Bytecode Interpreters
	3.7 The Application on Top
	3.8 Infrastructures and Distributed Systems
	3.9 Discussion
	References

	4 Development of ICT Systems
	4.1 Software Development
	4.2 Hardware Development
	4.3 Security Updates and Maintenance
	4.4 Discussion
	References

	5 Theoretical Foundation
	5.1 Gödel and the Liar's Paradox
	5.2 Turing and the Halting Problem
	5.3 Decidability of Malicious Behaviour
	5.4 Is There Still Hope?
	5.5 Where Does This Lead Us?
	References

	6 Reverse Engineering of Code
	6.1 Application of Reverse Engineering in ICT
	6.2 Static Code Analysis
	6.3 Disassemblers
	6.4 Decompilers
	6.5 Debuggers
	6.6 Anti-reversing
	6.7 Hardware
	6.8 Discussion
	References

	7 Static Detection of Malware
	7.1 Malware Classes
	7.2 Signatures and Static Code Analysis
	7.3 Encrypted and Oligomorphic Malware
	7.4 Obfuscation Techniques
	7.5 Polymorphic and Metamorphic Malware
	7.6 Heuristic Approaches
	7.7 Malicious Hardware
	7.8 Specification-Based Techniques
	7.9 Discussion
	References

	8 Dynamic Detection Methods
	8.1 Dynamic Properties
	8.2 Unrestricted Execution
	8.3 Emulator-Based Analysis
	8.4 Virtual Machines
	8.5 Evasion Techniques
	8.6 Analysis
	8.7 Hardware
	8.8 Discussion
	References

	9 Formal Methods
	9.1 Overview
	9.2 Specification
	9.3 Programming Languages
	9.4 Hybrid Programming and Specification Languages
	9.5 Semantic Translation
	9.6 Logics
	9.7 Theorem Proving and Model Checking
	9.8 Proof-Carrying Code
	9.9 Conclusion
	References

	10 Software Quality and Quality Management
	10.1 What is Software Quality Management?
	10.2 Software Development Process
	10.3 Software Quality Models
	10.4 Software Quality Management
	10.5 Software Quality Metrics
	10.6 Standards
	10.7 Common Criteria (ISO/IEC 15408)
	10.8 Software Testing
	10.9 Verification Through Formal Methods
	10.10 Code Review
	10.11 Discussion
	References

	11 Containment of Untrusted Modules
	11.1 Overview
	11.2 Partial Failures and Fault Models
	11.3 Erlang: A Programming Language Supporting Containment
	11.4 Microservices: An Architecture Model Supporting Containment
	11.5 Hardware Containment
	11.6 Discussion
	References

	12 Summary and Way Forward
	12.1 Summary of Findings
	12.2 The Way Forward
	12.2.1 Encryption
	12.2.2 Formal Methods
	12.2.3 Heterogeneity and Containment

	12.3 Concluding Remarks

