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Thou seest not in the creation of All-

merciful any imperfection.

Return thy gaze; seest thou any fissure?

Then return thy gaze again, and again and thy
gaze comes back to thee dazzled, aweary
Koran, The Kingdom LXVII.
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Preface for the Third Edition

The main aim in producing the third edition is to bring the book up to
date and as such many chapters have been thoroughly revised. In particu-
lar the chapters on Heavy Flavors (Chap. 8), Neutrino Physics (Chap. 12),
Electroweak Unification (Chap. 13), Weak Decays of Heavy Flavors (Chap.
15), Particle Mixing and C P-violation (Chap. 16), Grand Unification, Su-
persymmetry and Strings (Chap. 17) and Cosmology and Astroparticle
Physics (Chap. 18) have gone through major revision with the addition
of some new material. To make the book self-contained, appendix A has
been extended. An important feature of the 3rd edition is the addition of
a substantial number of new problems.

A number of typographical errors have been corrected and a number of
figures have been streamlined, using Jaxodraw software.

We wish to express our deep sense of appreciation to Dr. Maqgbool
Ahmed and Mansoor-ur-Rehman for critically reading Chap. 18 on Cos-
mology and Astroparticle Physics, making many useful suggestions. We
wish to express our deep thank to Ageel Ahmed (our graduate student) for
doing an excellent job in typing, drawing figures and carefully reading some
of the chapters; without his help it was difficult to put the manuscript in the
final form. Thanks are also due to Ishtiaq Ahmed, Jamil Aslam, M. Junaid,
Ali Paracha and Abdur Rehman for assistance in typing the manuscript.

Finally we wish to acknowledge the permission granted by Particle Data
Group for reproducing figures indicated in the text which are duely referred.
One of us (F) would like to acknowledge the support of Higher Education
Commission (HEC), Islamabad.
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Preface for the Second Edition

Our aim in producing this new edition is to bring the book up to date
and as such many chapters have been throughly revised. In particular,
the chapters on Neutrino Physics, Partcle Mixing and CP—Violation and
Weak Decays of Heavy Flavors have been mostly rewritten incorporating
new material and new data. The heavy quark effective field theory has been
included and a brief introductory section on supersymmetry and strings has
been added. We wish to thank Ansar Fayyazuddin for writing this section.

A number of typographical errors have been corrected. Another change
is that we have adopted a metric and notation for gamma matrices com-
monly used.!

Finally we wish to thank Mr. Amjad Hussain Gilani and Dr. Muham-
mad Nisar who did an excellent job in typing the manuscript; without their
help it was difficult to put the manuscript in final shape.

Fayyazuddin
Riazuddin
Jan. 21, 2000

ISee for example, J. D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics,
McGraw-Hill Book Co., New York (1965).
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Preface for the First Edition

Particle physics has been one of the frontiers of science since J. J.
Thompson’s discovery of the electron about one hundred years ago. Since
then physicists have been concerned with (i) attempts to discover the ul-
timate constituents of matter, (ii) the fundamental forces through which
the fundamental constituents interact, and (iii) seeking a unification of the
fundamental forces.

At the present level of experimental resolution, the smallest units of mat-
ter appear to be leptons and quarks, which are spin 1/2 fermions. Hadrons
(particles which feel the strong force) are composed of quarks. The evidence
for this comes from the observed spectrum and static properties of hadrons
and from high energy lepton-hadron scattering experiments involving large
momentum transfers, which “prove” the actual existence of quarks within
hadrons. As originally formulated, the quark model needed three flavors of
quarks, up (u), down (d) and strangeness (s) not just v and d. The discov-
eries of the tau leptons and more flavors [charm (¢) and bottom (b)] were
to some extent welcomed and to some extent appeared to be there for no
apparent reason since elementary building blocks of an atom are just u and
d quarks and electrons. A charm quark was predicted to exist to remove
all phenomenological obstacles to a proper and an elegant gauge theory of
weak interaction. Without it, nonexistence of strangeness-changing neutral
current posed a puzzle. This also restored the quark-lepton symmetry: for
each pair of leptons of charges 0 and —1 there is a quark pair of charges 2/3
and —1/3. The existence of 7-leptons and discovery of the b quark (charge
—1/3) demand the existence of another quark (charge 2/3), called the top
quark, to again restore the quark-lepton symmetry. Indeed, six quark fla-
vors have been proposed to incorporate violation of CP invariance in weak
interaction.

Quarks also have a hidden three valued degree of freedom known as
color: each quark flavor comes in three colors. The antisymmetry of three-
quark wave function of a baryon [e.g. proton] is attributed to color degree
of freedom. The three number of colors also manifest themselves in 7°
decay and in the annihilation of lepton-antilepton into hadrons. We have
encountered the following types of charges: gravitational, namely, mass,
electric, flavor and color. The fundamental forces through which elemen-
tary fermions interact are then simply the forces of attraction or repulsion
between these charges. The unification of forces is then sought by search-
ing for a single entity of which the various charges are components in the
sense that they can be transformed into one and another. In other words,
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they form generators of a gauge group G which is taken to be local so that
a definite form of interaction between vector fields (which must exist and
belong to the adjoint representation of G) and elementary fermions (which
belong to the fundamental or trivial representation of G) is generated with
a universal coupling constant. In this respect non-Abelian gauge field the-
ories [Yang-Mills type| have played a major role. Here the field itself is a
carrier of “charge” so that there are direct interactions between the field
quanta.

Let us first discuss the strong quark interactions. The local gauge group
is SU¢(3) generated by three color charges, the field quanta are eight mass-
less spin 1 color carrying gluons. The theory of quark interactions arising
from the exchange of gluons is called quantum chromodynamics (QCD).
The most striking physical properties of QCD are (i) the concept of a “run-
ning coupling constant a(g?)”, depending on the amount of momentum
transfer ¢2. It goes to zero for high ¢2 leading to asymptotic freedom and
becomes large for low ¢, (ii) confinement of quarks and gluons in a hadron
so that only color singlets can be produced and observed. Only the prop-
erty (i) has a rigorous theoretical basis while the property (ii) finds support
from hadron spectroscopy and lattice gauge simulations.

Weak and electromagnetic interactions result from a gauge group acting
upon flavors. It is SUL(2)xU(1) and is spontaneously broken rather than
exact as was SU¢(3).

The electroweak theory, together with the quark hypothesis and QCD,
form the basis for the so called “Standard Model” of elementary parti-
cles. There have been many quantitative confirmations of the predictions
of the standard model: existence of neutral weak current mediated by Z°,
discovery of weak vector bosons W+, Z% at the predicated masses, preci-
sion determinations of electroweak parameters and coupling constants (e.g.
sin? @y which comes out to be the same in all experiments) leading to
one loop verification of the theory and providing constraints on the top
quark and Higgs masses. Similarly there have been tests of QCD, verify-
ing the running of the coupling constant a(g?), ¢*>-dependence of structure
functions in deep-inelastic lepton-nucleon scattering. Other evidences come
from hadron spectroscopy and from high energy processes in which gluons
play an essential role.

In spite of the above successes, many questions remain: replication
of families and how many quarks and leptons are there? QCD does not
throw any light on how many quark flavors there should be? Origin of
fermion masses, which appear as free parameters since Higgs couplings with
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fermions contain as many arbitrary coupling constants as there are masses,
is another unanswered question. Origin of CP violation at more funda-
mental level, rigorous basis of confinement and hadronization of quarks are
other questions which await answers. Top quark and Higgs boson are still
to be discovered.

Symmetry principles have played an important part in our understand-
ing of particle physics. Thus Chapters 2-6 discuss global symmetries and
flavor or classifications symmetries like SU(2) and SU(3) and quark model.
Chapter 5 provides the necessary group theory and consequences of flavor
SU(3). Chapters 2-6 together with Chapters 9, 10 and 11 on neutrino,
weak interactions, properties of weak hadronic currents and chiral symme-
try comprise mainly what is called old particle physics but include some new
topics like neutrino oscillations and solar neutrino problem. These Chap-
ters are included to provide necessary background to new particle physics,
comprising mainly the standard model as defined above. The rest of the
book is devoted to the standard model and the topics mentioned in paras
2-7 of the preface. Recently there has been an interface of particle physics
with cosmology, providing not only an understanding of the history of very
early universe but also shedding some light on questions such as dark mat-
ter and open or closed universe. Chapter 16 of the book is devoted to this
interface.

Particle physics forms an essential part of physics curriculum. This book
can be used as a text book, but it may also be useful for people working
in the field. The book is so designed as to form one semester course for
senior undergraduates (with suitable selection of the material) and one
semester course for graduate students. Formal quantum field theory is not
used; only a knowledge of non-relativistic quantum mechanics is required
for some parts of the book. But for the remaining parts, the knowledge of
relativistic quantum mechanics is essential. The familiarity with quantum
field theory is an advantage and for this purpose two Appendicess which
summarize the Feynman rules and renormalization group techniques, are
added.

Initial incentive for this book came from the lectures which we have
given at various places: Quaid-e-Azam University, Islamabad, Daresbury
Nuclear Physics Laboratory (R), the University of Iowa (R), King Fahd
University of Petroleum and Minerals, Dhahran (R) and King Abdulaziz
University, Jeddah (F).

We have not prepared a bibliography of the original papers underlying
the developments discussed in the book. Remedy for this can be found in
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the recent review articles and books listed at the end of each Chapter.

We wish to express our deep sense of appreciation to Dr. Ahmed Ali for
critically reading the manuscript, for making many useful suggestions and
for his help to update the data. We also wish to express our deep thanks
to a colleague Mr. El hassan El aaud and a graduate student Mr. F. M.
Al-Shamali [of one of us (R)], who drew diagrams and in general assisted
in producing the final manuscript. In addition, the typing help provided by
Mr. Mohammad Junaid at Research Institute of King Fahd University of
Petroleum and Minerals was indispensable in getting the job done. Finally
we wish to acknowledge the support of King Fahd University of Petroleum
and Minerals for this project under Project No. PH/Particle/123.

We also take this opportunity to express our deep sense of gratitude
to Prof. Abdus Salam, who first introduced us to this subject and for his
encouragement throughout our work in this field.

Fayyazuddin
Riazuddin
March 4, 1992
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Chapter 1

Introduction

1.1 Fundamental Forces

Particle physics is concerned with the fundamental constituents of matter
and the fundamental “forces” through which the fundamental constituents
interact among themselves.

Until about 1932, only four particles, namely the proton (p), the neutron
(n), the electron (e) and the neutrino (v) were regarded as the ultimate
constituents of matter. Of these four particles, two, the proton and the
electron are electrically charged. The other two are electrically neutral.
The neutron and proton form atomic nuclei, the electron and nucleus form
atoms while the neutrino comes out in radioactivity, i.e. the neutron decays
into a proton, an electron and a neutrino. Each of these particles, called
a fermion, spins and exists in two spin (or polarization) states called left-
handed (i.e. appears to be spinning clockwise as viewed by an observer
that it is approaching) and right-handed (i.e. spinning anti-clockwise) spin
states. One may add a fifth particle, the photon to this list. The photon
is a quantum of electromagnetic field. It is a boson and carries spin 1,
is electrically neutral and has zero mass, due to which it has only two
spin directions or it has only transverse polarization. It is a mediator of
electromagnetic force. A general feature of quantum field theory is that each
particle has its own antiparticle with opposite charge and magnetic moment,
but with same mass and spin. Accordingly we have four antiparticles viz.,
the antiproton (p), the positron (e*), the antineutron (%) and antineutrino
(D).

The four particles experience four types of forces:
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1.1.1 The Gravitational Force

This is the force of attraction between two particles and is proportional to
their masses and inversely proportional to the square of distance between
them. It controls the motion of planets and galaxies and also governs the
law of falling bodies. It is a long distance force. It determines the overall
structure of the Universe.

Its strength is characterized by the Newton’s constant Gy = 1.3 x 107°*
(GeV/m)~1. The gravitational energy between two protons of mass ~
(1GeV/c?) at r = 107 1°m is given by Newton’s law

m2
V= GNT” ~107% GeV = 107% eV. (1.1)

Hence on microscopic scale, the gravitational energy is negligibly small
as compared with electromagnetic energy. We note that

Gn _ 4o [(GeV 7
L~ 671 x 1079 (= (1.2)
and
I GeV
G—; ~ 1019% = Mp (1.3a)
h
Planck length = ﬁ ~2x107% cm (1.3b)
PC

where Mp is called the Planck mass with the associated Planck length. It
is clear from Eqgs. (1.3) that gravitational interaction becomes significant
at Planck mass or Planck length. Assuming that this interaction is of the
same order as the electromagnetic interaction (see below) (a = e%;/hc =
1/137, €3, = e?/4mep) at Planck mass Mp, we conclude that the effective
gravitational interaction at 1 GeV is given by
2
agy ~ (15\4/[;2\/)& ~10738a ~ 10710, (1.4)
P

In particle physics, the gravitational interaction may be neglected at the
present available energies.

1.1.2 The Weak Nuclear Force
It is responsible for radioactivity, e.g.

n—p+e 4+,
O L NY Lot 44,
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The latter process has half life of 71.4 sec. From the half life we can
determine its strength which is given by the Fermi coupling constant [see
Chap. 2]

Gr

e’ ~107° GeV 2 (1.5)
C
We note that
(hc>3/2
= 300 GeV 1.6a
VGr (1.62)
(he) (gCP;S ~0.7% 107 ¢m (1.6b)

Eq. (1.6a) gives the energy scale at which the weak interaction becomes
significant i.e. of the same order as the electromagnetic interaction. At an
energy scale of 1 GeV,

(1GeV)?
awy = ————«
(300GeV)
It is clear from Eq. (1.6b) that weak force is a short range force effective
over a distance of order of 107!¢ cm.

~ 10 °a. (1.7)

1.1.3 The Electromagnetic Force

It acts between two electrically charged particles e.g. a negatively charged
electron and a positively charged proton attract each other with a force
which is proportional to their electric charges and inversely proportional
to the square of distance between them. But according to the concept of
electromagnetic field introduced by Faraday and Maxwell, the presence of
a charged particle produces an electric field and when moving it produces
a magnetic field. This field manifests itself in a force between charged
particles. It is responsible for the binding of atoms. The interatomic and
intermolecular force are all electrical in nature and mainly governs all known
phenomena on earth, including life. This force also manifests itself through
electromagnetic radiation in the form of light, radio waves and X-rays.
The electromagnetic force is a long range force and its strength is de-

termined by the dimensionless number o = ﬁ This is because the elec-
tromagnetic potential energy in MKS units is given by
B e? 1 B e? ) 1 hAc
dreg v “dwey’ hic T
he
= —a— (1.8)

r
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where
1 e? 1
o = —_— = —
deg  he 137
and is called the fine structure constant.

(1.9)

The potential energy between an electron and a proton at a distance
r = 1071 m [dimensions of an atom] is given by V = —14 eV.

In quantum mechanics, the binding energy between electron and proton
due to electromagnetic interaction is given by Bohr’s formula

1
B1] = 502 (ue?)

where p is the reduced mass of the system. For hydrogen atom p ~ m, =
0.512MeY which gives |E | ~14 eV.

For a proton (p) and antiproton (p) hypothetical atom (u ~ %2
1000 m.) the binding energy provided by the electromagnetic potential is

|EPP| ~ 14 keV.

1R

1.1.4 The Strong Nuclear Force

The strong nuclear force is responsible for the binding of protons and neu-
trons in a nucleus. We have seen that the electromagnetic binding energy
for the pp atom is of the order of 14 keV, but the binding energy of deuteron
(bound n-p system) is about 2 MeV. Thus the strong nuclear force is about
100 times the electromagnetic force. It is a short range force effective over
the nuclear dimension of the order of 1073 cm.

1.2 Relative Strength of Four Fundamental Forces

We conclude from the above discussion that the relative strengths of the
four forces are in the order of
10740:1077:1072: 1 (1.10)
The experimental results on the scattering of electron on nuclei can be
explained by invoking electromagnetic interaction only. In fact the scatter-
ing of v-rays on proton at low energy is given by the Thomson formula:
2 2
8 1 1
Oy = T (=) ~ara?(—) ~10"%em?. (1.11)
3 my myp
The neutrino participates in weak interactions only as reflected by the ex-
treme smallness of the scattering cross-section of neutrino on proton, viz.
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Uep — eTn, which is given by oy ~ 10~*3cm?. Comparing the above cross-
sections with the one for nucleon-nucleon scattering, which is of the order
on ~ 107 2*cm?
strong interaction. Thus we can divide matter into two broad classes: lep-
tons, e.g. v, e and hadrons, e.g. p, n.

, we see that the electron and neutrino do not experience

1.3 Range of the Three Basic Forces

We now briefly and qualitatively discuss the ranges of the three basic forces.
Due to quantum fluctuations, an electron can emit a photon and reabsorb
it. Electromagnetic force is mediated by the exchange of photon as depicted
in Fig. 1.1.

Fig. 1.1 Electromagnetic force mediated by a photon.

Such a photon can exist only for a time

h 1
At ~ — = — 1.12a
AE w ( )
where AF is the energy of the photon. Since the unobserved photon exists
for a time < %, it can travel at most

R=°. (1.12b)
Now w can be arbitrarily small and therefore R can be arbitrarily large,
i.e. the distance over which a photon can transport electromagnetic force
is arbitrarily large, i.e. electromagnetic force has infinite range. This is
expected from the Coulomb potential €2, /r.

If we assume that weak interaction is mediated by a vector boson W
in analogy with electromagnetic interaction (Fig. 1.2), then since weak
interaction is of short range, W must be massive.
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Fig. 1.2 Weak interaction mediated by a vector boson W.

The maximum distance to which the virtual W-boson is allowed to travel
by the uncertainty relation is

he
my c?

RW ~ (1.13&)
The W boson has been found experimentally in 1983 with a mass my ~ 80
GeV/c? as predicted by Salam and Weinberg when they unified weak and
electromagnetic interactions (see Sec. 1.6). Equation (1.13a) then gives the
range of the weak interaction as

197 % 10713 MeV - cm N

—16
Ry ~ ——o e ~ 2 x 1071 e, (1.13b)

Fig. 1.3 Strong nuclear force mediated by a particle of mass my,.

If the strong nuclear force is mediated by a particle of mass my, as
shown in Fig. 1.3, then its range is given by

he

Ry~ ——
mp C

(1.14)
Since nuclear force has a range of 107!3 em, my, ~ 100 MeV/c?. Yukawa
in 1935, predicted the existence of pion by a similar argument. A particle
of this mass was discovered in 1938, but it turned out that it was not the
Yukawa particle, the pion; it did not interact strongly with matter and



1.4. Classification of Matter 7

therefore is not responsible for strong nucleon force. It was actually the
muon, while the pion was discovered in 1947 in the decay

L T 8
where v, is the neutrino corresponding to muon. The mass of m, was found
to be 140 MeV /c2. Thus
R, ~1.4x 10" Bem =~ V2f, (1.15)

where f is called the Fermi and is equal to 1073 cm

1.4 Classification of Matter

The electron and neutrino are just two members of a family called leptons
(leptons do not experience strong nuclear force) of which six are presently
known to exist, listed below in the table. Similarly, the neutron and pro-
ton are members of much larger family called hadrons (hadrons experience
strong nuclear force). Hadrons exist in two classes, baryons and mesons;
the former carry half integral spin and a quantum number called baryon
number while the latter carry zero or integral spin and no baryon number.

Leptons Mass[12] Electric Life Time[12]
Charge

Ve, €~ m,, < 2eV 0, -1 v, Stable

me ~ 0.51 MeV Te > 4.6 x 10%6 yrs
Vyy, W= | my, <019 MeV | 0, —1 v, Stable

m,, ~ 105.6 MeV 7, =2197Tx107% s
Ve, T | My, < 18.2 MeV 0, -1 v, Stable

m, ~ 1777 MeV 7 =290.6 x 1071 5

It was found experimentally that the proton or the neutron has a struc-
ture; they are not the elementary constituents of matter. The mass spec-
trum, production and decay characteristics of hadrons can be understood
in a much simpler picture if one assumes that the baryons are made up
of three constituents called quarks and mesons are made up of quark and
antiquark.

The quark carries fractional charges 2/3 or 1/3. They have spin one half
and carry different flavors to distinguish them. At present six flavors, called
up, down, charm, strange, top and bottom, are known to exist. They are
listed in the table below. Quarks play the same role in hadron spectroscopy
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as neutrons and protons in nuclear spectroscopy and electrons and nuclei
in atomic spectroscopy.

Quark type | Electric charge Mass [effective mass or
(Flavor) constituent mass in a hadron]
(u, d) (2/3, —1/3) 0.33 GeV
(¢, s) (2/3, —1/3) (1.5 GeV, 0.5 GeV)
(t, ) (2/3, —1/3) (172 GeV, 4.5 GeV)

Masses of u, d, s are so-called “constituent” which are effective masses
in a hadron; they are not directly measurable but are theoretical estimates.
To sum up, according to present view, the six quarks and six leptons form
the fundamental constituents of matter.

There are three generations of matter as depicted in the two tables
above. The first generation is relevant for the visible universe and the life
on earth as the proton (uud), neutron (udd) are composite of up and down
quarks. The second and third generations do exist and are produced either
in laboratory or in cosmic rays by a collision of particles of first generation.

The table below summarizes the known elementary interactions exhib-
ited by different elementary fermions.

Interactions Relativistic length | Leptons v;,l; | Quarks u;,d;
Strong 1 Y
Electromagnetic | 1072 N,Y Y
Weak 10—® Y, Y Y
Gravitational 10—40 Y,Y Y

The first generation of quarks v and d form an isodoublet, i.e. they are
assigned isospin I = 1/2 and I3 = £1/2, [that is why they are called up
and down quarks]. The second and third generation of quarks are assigned
new quantum numbers as follows: s-quark, strangeness S = —1, c-quark,
charm, C' = +1, b-quark, bottomness B = —1, t-quark, topness 7" = +1.
The second and third generation of quarks account for the strange hadrons,
charmed hadrons and B-hadrons created in the laboratory in high energy
collisions between hadrons of first generation. They are always created in
pair, so that final state has S = 0,C = 0,B = 0 and T" = 0 that is to
say these quantum numbers are conserved in electromagnetic and strong
interactions.

In high energy atomic collisions, we can split an atom into its
constituents-atomic nucleus and electrons. In high energy nucleus - nu-
cleus collisions, we can split a nucleus into its constituents viz. neutrons
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and protons. But in high energy hadron-hadron collisions, a hadron is not
split into its constituents viz., quarks. A hadron-hadron collision results not
into free quarks but into hadrons. This leads us to the hypothesis of quark
confinement, i.e. quarks are always confined in a hadron. The quark-quark
force, which keeps the quarks confined in a hadron, is a fundamental strong
force on the same level as electromagnetic and weak nuclear forces which
are the other two fundamental forces in nature. Its strength is characterized
by a dimensionless coupling constant a, = g2/4m a~ 0.5 at present energies.
It is actually energy dependent. The strong nuclear force between pro-
tons and neutrons should then be a complicated interaction derivable from
this basic quark-quark force. As for example, the fundamental force for an
atomic system is electromagnetic force, the interatomic and intermolecular
forces are derivable from the basic electromagnetic force.

1.5 Strong Color Charges

We have seen that the quarks form hadrons; the baryons and mesons in the
ground state are composites of (gqq)r—o and (¢q)r=o. Quarks and (anti-
quarks) are spin 1/2 fermions. Now ¢ and ¢ spins may be combined to
form a total spin S, which is 0 or 1. Total spin for gqq system is 3/2 or
1/2. Further as ¢ and ¢ have opposite intrinsic parities, the parity of the
qq system is P = (—1)(—1)* = —1 for the ground state. Thus we have for
the ground states [see Chap. 6]:

Mesons Baryons

(99) =0 (999)L=0

S=0,1 S=1/2,3/2
JEP =01 | JF =1/2%,3/2*

Some examples are listed in Table 1.1.

Table 1.1 Some examples of mesons and baryons

Mesons Baryons
s p p7 A
+ = g p(S=1/2,5,=1/2)
't = (ud) J5 (11 = 11) ) G0
pT(S=1,57=0):
(ud) Z5 (11 + 11) AtH (S =3/2,S7 =3/2)
PrS=1,87=1): = (uwuw) (117)

(ud) (17)
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There is a difficulty with the above picture; consider, for example the
state, |[ATT (Sz = 3/2)) ~ |ululul) . This state is symmetric in quark fla-
vor and spin indices (1). The space part of the wave function is also sym-
metric (L = 0). Thus, the above state being totally symmetric violates the
Pauli principle for fermions. Therefore, another degree of freedom (called
color) must be introduced to distinguish the otherwise identical quarks:
each quark flavor carries three different strong color charges, red(r), yel-
low(y) and blue(b), i.e.

4= da a=ry,b
Leptons do not carry color and that is why they do not take part in strong
interactions. Including the color, we write, e.g.
1

|A++ (SZ = 3/2)> = 76 Zaabc

so that the wave function is now antisymmetric in color indices and satisfies

c

uluZuT> ,

the Pauli principle. Other examples, as far as quark content is concerned,
are

1
|p> = % Zgabc |uaubdc> )
1 _
’7r+> = % Z |uada> ,

i.e. these states are color singlets. In fact, all known hadrons are color
singlets. Thus, the color quantum number is hidden. This is the postulate
of color confinement mentioned earlier and explains the non-existence of
free quark (g) or such systems as (qq), (¢qq) and (qqqq). Actually nature
has also assigned a more fundamental role to color charges as we briefly
discuss below.

1.6 Fundamental Role of “Charges” in the Unification of
Forces

First thing to note is that the electromagnetic and the strong nuclear forces
are each characterized by a dimensionless coupling constant and thus to
achieve unification there has to be a “hidden” dimensionless coupling con-
stant associated with the weak nuclear force which is related to the “ob-
served” Fermi coupling constant by a mass scale. That this is so will be
clear shortly. Secondly we know that the electromagnetic force is a gauge
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force describable in terms of electric charge and the current associated with
it. This force is mediated by electromagnetic radiation field whose quanta
are spin 1 photons. This is generalized: All fundamental forces are gauge
forces describable in terms of “charges” and their currents as summarized
in Table 1.2.

Note that the coupling constants «, g, as in Table 1.2 are dimensionless
but they are energy dependent due to quantum effects, a fact which is used
in the unification of the forces. Note also that ()3 is not identical with
Qem; thus the unification of electromagnetic and weak nuclear forces needs
another charge, call it Qp with an associated mediator, call it B, which
does not change flavor like photon:

Then the photon ~ associated with the electric charge Qey, is a linear
combination of the mediators B and W3 bosons, associated with the charges
@p and Q3 respectively,

v = sin Oy W3 + cos 6w B, (1.16a)
while the second orthogonal combination
Z = cos Oy W3 — sin Oy B, (1.16b)

is associated with a new charge Q7. Z is the mediator of a new interaction,
called neutral weak interaction. The weak mixing angle 6y is a fundamental
parameter of the theory and in terms of it

Qz = Qs — sin® Oy Qem. (1.17)

The weak color charges Qw,Qy and Qp generate the local group
SUL(2) x U(1) where the subscript L on the weak isospin group SU(2) in-
dicates that we deal with chiral fermions that is to say that the left-handed
fermions [i.e. those which appear to be spinning clockwise as viewed by an
observer that they are approaching] are doublets under SU[(2) [required
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Table 1.2
. Coupling
Mediators of between
Force Charges force: Spin 1 . .
auge particles basic fermions
gauge p and mediators
Electro-
magnetic Qem Photon (7)
2
a= g
W+, w—, wo
Qw, Qv £ chan
W =change
Weak | [Qw,Qwl | pacone
avor as
Nuclear =Q3 .
£Q shown in the
e next column
8 color
carrying
3 color
Strong charges gluons: Gy
a,b
=1,2,3
g2
g = ﬁ

by parity violation in weak interactions] while the right-handed fermions
(spinning anticlockwise) are singlets as indicated below:

Ve u
() () fom o | oo
eLdL

Ly | (3-3) | (3.—3)
Yir —1 —-1/3

—2 [ 4/3 ] —2/3
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We have [I3;, is the same as Q3 and 3Yyy is identical with Q]

1
Qem = Isr + 5Yw, (1.18a)
giving
1 1 1
5= ;§+gﬁ’ (1.18b)
so that we have the unification conditions
2 2
sin? Oy = 6—2, cos? Oy = %. (1.18¢)
92 g

Unlike photon, which is massless, the weak vector bosons W+, W~ and Z°
must be massive since we know that weak interactions are of short range.
This is achieved by spontaneous symmetry breaking (SSB)[see Chap. 13].
For this purpose it is necessary to introduce a self-interacting complex scalar

field
+
(%),

which is a doublet under SUL(2) and has Yy = 1. This is the so-called
Higgs field which also interacts with the chiral fermions introduced earlier
as well as with gauge vector bosons, W+, W3 and B. The scalar field ¢
develops a non-zero vacuum expectation value:

<¢>><0|¢|o>< N )
V2

thereby breaking the gauge symmetry of the ground state |0). This amounts

to rewriting
ot
¢ = ( P1+ida 4
V2 V2

where ¢T and hermitian fields ¢; and ¢, have zero vacuum expectation
values. In contrast to the gauge invariant vertices shown in Table 1.1 [which
are not affected by SSB], one starts with manifestly gauge invariant vertices
involving ¢ and other fields and then translate them to physical amplitudes
after SSB as pictorially shown below [the dotted lines ending in X denotes
(¢) = v/V2]:

Because of mixing between W, and B, these are not physical particles,
the physical particles v and Z are defined in Eq. (1.16). This requires diag-
onalization of the mass matrix for Wy — B sector, which on diagonalization
gives
27 cosbw

ma =0, (1.19a)



14 Introduction

where from the above picture

1
my = 5921}. (1.19b)

Further we note from the above picture that the mass of a fermion of flavor
f and that of Higgs particle H are respectively given by

h
my = %, myg = V202 (1.19¢)
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What has happened is that ¢* and ¢, have provided the longitudinal de-
grees of freedom to W and Z which have eaten them up while becoming
massive. The remaining electrically neutral scalar field is called the Higgs
field and its quantum is called the Higgs particle which we have denoted
by H in the above picture. We note from Eq. (1.19a) that

sin Oy =1 — —2~ (1.20a)

The directly observed Fermi coupling constant in weak nuclear processes
at low energies (i.e. < my) is given by [cf. Eq. (1.18¢)]

Gr_ 95 _ < (1.20D)
V2 8my,  8mi, sin® Oy
or
o 1/2
my = {ﬁGF i QW} , (1.20¢)
where o = % = ﬁ is the fine structure constant and Gr is the Fermi

constant (= 10~° GeV~?).
The main predictions of the electroweak unification are

(i) existence of a new type of neutral weak interaction mediated by Z°,
(ii) weak vector bosons W, Z whose masses are predicted by the relations
(1.20c) and (1.20a), once sin” Oy is determined, o and G being known,
(iii) existence of the Higgs particle with mass my = v 202\, which is arbi-
trary since A is not fixed.

The first prediction was verified more than 30 years ago and the phe-
nomenology of neutral weak interaction gives

sin? Oy ~ 0.23.

One can now use this result to predict my, and myz through the relations
(1.20) to get

mw ~ 80 GeV, myz ~ 92 GeV

in agreement with their experimental values. The standard model is in very
good shape experimentally. The third prediction is not yet tested and the
present lower bound on mpy from Higgs searches at LEP is

myg > 114 GeV.
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We also note that the electroweak unification energy scale is given by

)\sz:2m—w
g2

—1/2
- (vacr)
~ 250 GeV. (1.21)

We will briefly discuss the unification of the other two forces with the
electroweak force after discussing the origin of the strong force between the
two quarks below.

1.7 Strong Quark-Quark Force

We have already remarked:

(i) each quark flavor carries 3 colors.
(ii) only color singlets (colorless states) exist as free particles.

Strong color charges are the sources of the strong force between two quarks
just as the electric charge is the source of electromagnetic interaction be-
tween two electrically charged particles. The analogy is carried further in
Table 1.3.

The binding energy provided by one gluon exchange potential of the
form mentioned above cannot be sufficient to confine the quarks in a hadron
since as one can ionize an atom to knock out an electron, similarly a quark
could be separated from a hadron if sufficient energy is supplied. Thus V9,
the one gluon exchange potential, can at best provide binding for quarks
at short distances and cannot explain their confinement, i.e. impossibility
of separating a quark from a hadron. The hope here is that the self in-
teraction of color carrying gluons may give rise to long distance behavior
of the potential in QCD completely different from that in QED, where the
electrically neutral photon has no self interaction. One hopes that the long
range potential in QCD would increase with the distance so that the quarks
would be confined in a hadron. Phenomenologically, a potential of form

Vig(r) = VE(r) + V°(r), (1:22a)
where

Qs
VI =~k (1.22b)
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Table 1.3

Electromagnetic Force Between
2 Electrically Charged Particles

Strong Color Force Between
2 Quarks

We deal with electrically neutral atoms.

Mediator of the electromagnetic force
is electrically neutral massless spin 1

photon, the quantum of

the electromagnetic field.

Exchange of photon gives the electric
potential:

_ €2 QiQ,
Vvi(;' — 4 r
For an electron and proton

, T = |I‘i —I‘j|

2
— (o3 €
Vij=—-7.a= 4
This attractive potential is
responsible for the binding

of atoms.

The theory here is called quantum
electrodynamics (QED).

Due to quantum (radiative) corrections,
« <\/q72> increases with increasing
momentum transfer q27

for example

We deal with color singlet systems
i.e. hadrons.

Mediators are eight massless spin 1
color carrying gauge vector bosons,
called gluons.

Exchange of gluons gives the color
electric potential:

ij 358
for gq color singlet system (mesons)
while for gqq color singlet system

(baryons).
9 — _2, 1
V;J' = T3%5

Note the very important fact that in
both cases, we get an attractive
potential. Without color, Vi‘;.q would
have been repulsive.

The theory here is called quantum
chromodynamics (QCD).

Due to quantum (radiative) corrections,
Qs <\/q72) decreases with increasing ¢2
[this is brought about by the self

interaction of gluons (cf. Table 1.2)],
for example

a(me) ~ %K, as (m+) ~ 0.35,
a(mw) ~ 135 as (my ~ 10 GeV) = 0.16,
as (mg) ~ 0.125.
That the effective coupling constant
decreases at short distances is called
the asymptotic freedom property of QCD.
(... denotes spin dependent terms, (see Chap. 7) and ks = 4/3(¢q),

2/3(qqq)) is the single gluon exchange potential while V¢(r) is the con-
fining potential (independent of the quark flavor), has been used in hadron
spectroscopy with quite good success. Lattice gauge theories suggest

Ve(r)

= Kr,

(1.22¢)
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with K ~ 0.25 (GeV)z, obtained from the quarkonium spectroscopy. This
gives the confining potential. Note that as r increases V¢(r) increases
and as such it requires an infinite energy to release the quarks from a
hadron. However quarks can be produced for example, in electron-positron
annihilation

et

e —7—4qq
In this process, the photon emitted from the electron-positron pair lifts the
quark and antiquark pair from the vacuum. The ¢g pair in a very short
time hadronize themselves into hadrons. In the process of hadronization,
the foot print is left by quarks which provide us information about them.
To sum up the most striking physical properties of QCD are asymptotic
freedom and confinement of quarks and gluons. The quark hypothesis, the
electroweak theory and QCD form the basis for the “Standard Model” of
elementary particles to which most of the book is devoted while Chap. 18
is concerned with the interface of cosmology with particle physics.
We now briefly discuss the attempts to unify the other two forces with
the electroweak force.

1.8 Grand Unification

The three strong color charges introduced earlier generate the gauge group
SU¢(3) while that of the electroweak interaction is SUp(2) x U(1). Thus
the standard model involves

SUc3) x SUL(2) x U1

g o o

where the associated coupling constants oy, as and o’ are very different at
the present energies. But these coupling constants are energy dependent
due to quantum radiative corrections. Grand unification is an attempt to
find a bigger group G:

G D SUx(3) x SUL(2) x U(1)

such that at some energy scale ¢ = m% ,

as(mk) = az(m¥) = o (m%)
= ag. (1.23)
This merging of coupling at high energy in principle is possible because of

the logarithmic dependence of coupling constants with energy scale as cal-
culated in quantum theory (renormalization group analysis, see Appendix
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B) and the fact that the two of the three coupling constants, namely, o’ and
9 are related at \/qi2 = myy through the electroweak unification conditions
given in Eq. (1.18¢c). As will be discussed in Chap. 17, the relation (1.23)
holds at \/q;2 =my ~ 10'® GeV or less, which gives the grand unification
(GUT) scale. In other words, the GUT breaking scale is almost 14 orders
of magnitude of SU(2) ® U(1) breaking scale. In a way it is good because
such a large scale suppresses proton decay, though we now know that it
does not work for simple SU(5). The reason is that with the modern values
of the couplings, they do not merge at a single scale. They do merge for
supersymmetric version of SU(5) (see Chap. 17).
In spite of this GUT scale have some attractive features:

(i) quark-lepton unification
(ii) relationships between quark and lepton masses
(iii) quantization of electric charge, for a simple group it is a consequence of
the charge operator being a generator of the group and traceless. So for
example, sum of charges in a multiplet containing quarks and leptons
= 0, thus giving some relation between quark and lepton charges.

But they still leave arbitrariness in Higgs sector needed to give masses
to lepto-quarks and W+, Z vector bosons, do not explain number of gen-
erations, do not explain fermions mass hierarchy typified by m;/m, ~ 10°
and the gauge hierarchy problem my,/mx = 10~'2 in a natural way. These
mass hierarchies are more naturally accommodated in supersymmetry (see
Chap. 17).

1.9 Units and Notation

We shall use the natural units:

We note that

[A] = ML*T = 6.582 x 10~ *2MeV-s
[c] = LT™' =3 x 10"Y%cm/s
[hc] = 197 x 10~ 3 MeV-cm
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Ifﬁ:C: 1, then
2
v = 2 = M (ln units Of C)
E g (MeV/CQ)

If we take, M =1 GeV

1 hic
L~ = ~2x 107
GoV ~ 1000 Moy = 2x 10 em
1 I
T ~6.58x 1072 g

~ GeV ~ 1000 MeV
1 MeV =1.6 x 10 %rg =1.6 x 107137

1 gm = 5.61 x 10**GeV
1 GeV = 10°MeV
We will denote the position by a 4-vector z (u=0,1,2,3) :
x# = (et,x) = (t,x); contravariant vector
z, = (ct,—x) = (t,—X) = gx” covariant vector

2 = x,xt =12 — x2

0 0
0= gn = (&tv)

0 0
oH=—=|=,-V
Oz, ot
32
ot = =5,-V?) =07
= ()
with g, = 0, 0 # v, goo = 1, 911 = g22 = g33 = —1. On the light cone
22 =0, ie t? —x?=0.
The energy F and momentum p are represented by a 4-vector p:
p" = (E/c,p) = (E,p),
p* =pup! =py—p° = E> - p*.
For a particle on the mass shell
E? = p?+m?,
i.e.
p? = pupt = m?®.

The scalar product

p.q=p'q, = E,E; —p.q.
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1.10 Problems

(1) Show that the gravitational potential energy for a body of 1 kg on the

surface of the earth is 6.250 x 107 J= 3.90 x 1026 ¢V. Force of attraction
F=Y =98N, g =9.8 ms 2. Take mass of earth M = 5.974 x 10%**

.=

kg. Mean equatorial radius of earth is 6.378 x 10%m.

(2) Newton’s gravitational constant

Gy = 6.67 x 107! (kg) " m®s~2
= (6.67 x 1071) (kgm*s~?) m (kg)

Show that in GeV:

—2
Gy = 1.35 x 1077 (GeV /m) (GeV/cz) .
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Chapter 2

Scattering and Particle Interaction

2.1 Introduction

Most of the information about the properties of particles and their interac-
tions are extracted from the experiments involving scattering of particles.
High energy projectiles (electrons, protons, photons and pions) are used to
probe the structure of matter at short distances. For high energy parti-
cles, the theory of special relativity becomes relevant. As such the Lorentz
invariance is assumed in any process involving particles. The transition
reaction amplitude is a function of Lorentz invariant variables. We first
briefly review of the Lorentz transformation.

In relativity theory, space and time are treated on equal footing and as
such we deal with four vectors in four (1+3)-dimensional space:

" = (2°,2%) = (ct,x), contravariant vector

x, = (20, x;) = (ct,—x), covariant vector

0 10
8“_6xﬂ_<c6t’v>

0 10
w_ 9 _ (29 _
9 oz, <cat’ V>

We introduce metric tensor g,

Correspondingly

uv = diag(1,-1,-1,-1) = g", goo = 1, gij = —5ij
which can be used to lower and raise the indices
ot =g, x,=gur”
The Lorentz transformation
't = Atz (2.1)
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leaves the length of vector x

% = atx, = A2 —x2?

invariant so that

z'ga’ = x’o‘gagas’ﬁ
= Ag:v“Afx”gag
giving
v = Azg(m/\f (2.2)
In matrix form the Lorentz transformation is
¢’ = Ax, v = ATa' (2.3)

and the metric
_ (AT
9=(A") 905 (Mg,
= ATgA (2.4)

A is a 4 x 4 matrix. It has two sub-matrices, that is, Lorentz transformation
has two subgroups
A(v) 0 10
(570) 2= (0an) 29

cosh( —sinh( 0
A(w) = | —sinh¢ cosh¢ 0 (2.6)
0 0 1

where

corresponds to the Lorentz velocity transformation. Noting that cosh? ¢ —

S 12 . B . v _ 1
sinh® ¢ = 1 and putting cosh( = v, sinh( = 7 with ~ o we
have the usual Lorentz transformation (v = (v, 0, 0))
0 _ o_ﬁ): (O_V'X)
x y (ac . vz -
n_ 1 v 0) _1 v-X v
- — =2 =2l (Y= 1) v — y— 2.7
=7 (2t = 2a") =2l + (y - )TV = 9T (2.7)
22— o2
23— 3

connecting two inertial frames when one frame moves with velocity v in
z-direction relative to the other. The matrix
cosw sinw 0
Ar=| —sinw cosw 0 (2.8)
0 0 1
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gives the rotation in three dimensions along the =3 axis

210 — 20

't = cosw ! + sinw x?

2'? = —sinw 2! + cosw 2? (2.9)
23— B

It is easy to see that a generalization of the Lorentz velocity transformation
when v is not restricted to the z!'-direction is

irerf-22]
' Iy YE, Y0 2.10
xX'=x+(y-1) VLT (2.10)
giving [v; = —v7]
0_ i _doioa0 _ Yioai i v'y;
Ag =1, AO__Evv A; = Aj=0;—(v=1) 2 (2.11)

In relativistic mechanics, energy and momentum are treated on equal
footing just like the space and time. Accordingly we introduce energy-
momentum 4-vector :

= (p",p) = (E/c,p)
Pu = (po, —p) = (E/c, —p)
so that
p? = pup" = E?/c* — p* = m?c? (2.12)

where the particle is on the mass shell.
o 1 . .. . .
In terms of v = WaEEret the above relation is identically satisfied

with
E =~mc*, p=~ymv
so that
cp
= = 2.13
vje="T (2.13)

Thus in analogy with space-time transformation

vV-p E
w2 Ve

p'=p+|(y-Dv

E' =~[E—v-p] (2.14)
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where the primed quantities are in the frame moving with velocity v relative
to the one in which E and p are measured. It is convenient to write the
vector p in terms of its longitudinal and transverse components

p=(p:pPL)
v
Pl =7 [P~ % E]
plL=pl (2.15)

E'=y[E—-v-p|]

From now on, we will put ¢ = 1.

2.2 Kinematics of a Scattering Process

Consider a typical 2-body scattering process
a+b—c+d.

We denote the four momenta of particles a,b,c and d by ps, Db, Des Pd
respectively. Energy momentum conservation gives:

Fig. 2.1 Two-body scattering: a+b — c+d

Pa +Pb = Pc + Dd (216&)

or in the component form

Pa + Pb = Pe + P (2.16b)

E,+E,=FE.+ Ey (2.16(3)
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We assume Lorentz invariance in any process involving particles. The
reaction transition amplitude is a function of scalars (i.e. Lorentz invari-
ants) formed out of the four vectors p,, pp, pc and pg. The invariants are

5= (pa + 1) = (e +pa)’ (2.17a)
t=(pa —pe)® = (pa — pb)° (2.17b)
u=(pa —pa)® = (e — pb)*. (2.17¢)
But only two of the three scalars are independent:
s+t 4u=3p2 +pi + po + i+ 2pa - (Db — Pe — Pa) (2.18)

:mi—l—mﬁ—&—m?—i—mfl-
In an actual scattering experiment, we have a projectile (let it be a) and
a target (b), which is stationary in the laboratory frame. Thus

Fig. 2.2 Two-body scattering in the laboratory frame.

Pa (Ef,pﬁ) = (vL,PL)
Py = (s, 0) (2.19)
pe=(EX,PE). pa= (EjP)-

Hence in the laboratory frame:

s = (pa +pb)2
=m2 4+ mi 4+ 2mpry, (2.20a)
t = (pa _p6)2
=m2+m2—2v,EF +2|pL||pl|costy- (2.20b)
or
—_m2 _ 2 .
yp =2 Ma 7 Pa DY (2.21a)
me my
p2 = —p2+12 =—m?+12 (2.21b)
N 3 2
pr| = (5, ma, mb), (2.21¢)

me
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where
Mz, y,2) = 2® + 9% + 22 — 20y — 222 — 2yz. (2.22)

Theoretically, it is convenient to consider a scattering process in the
center-of-mass (c.m.) frame. In this frame:

Fig. 2.3 Two-body scattering in the center-of-mass frame.

Pa = (Eavp) , Db = (Eba _p) )
Pe = (Ew p/) y Pd = (Eda _p/) . (223)

Thus we have

s = (pa +1)° = (pe +pa)’
= (B, + E)* = (E.+ Eyg)?=E?, (2.24a)

t=m24+m? - 2E,E,. + 2|p||p| cos
=mj +m3 — 2E,FE4 + 2 |p| |p’| cos 6- (2.24b)
Now

s=FE% 4+ E} +2E,F, (2.25)
= (P*+m2) + (P* +mi) +2v/(p? + m2),/(p? + m}).
Solving Eq. (2.25), we get
A(s, m2, m2)
Ip| = NG :
s
Similarly by considering, s = (E. + E4)?, we get

, A(s, m2, m3)
= . 2.26b
P = (2.260)

(2.26a)
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‘We also note that
B = tE e g Sd T
2y/s
g St me c (2.27)
c — 2\/5 ) d — . .

For the elastic scattering

o
I
=
Q
Il
=

and

|p| = |p/‘ , E.=FE, FEq=E

6
t = —2p% (1 — cosf) = —4p? sin® 7 (2.28)

Thus —t is just the square of momentum transfer.

Finally one can derive a relation between the scattering angles # and
01, using Lorentz transformation. Let us take py and p along z-axis. The
c.m. frame is moving relative to the laboratory frame with a velocity:

v=_PL (2.29)

v +my
Lorentz transformation gives
pcosfy, = v [p cos O + vE,]
pEsinfy, = p'sinf (2.30)
EL =~ [E. +vp cos].
Hence, we get

p’'sin 6

tanl, = ————— 2.31
anvL v [p cos® +vE.]’ ( 2)
where
1 v + my
= = . 2.31b
K vV 1-— 1}2 Ecm ( )
Equation (2.31b) follows from the relations:
pL=7[p+vEd], vL=7[E,+vp], my=~[E,—uvp]. (2.32)

Another variable which is useful for scattering process, particularly for in-
clusive reactions, is rapidity. We define the longitudinal rapidity y :

1. E+
lﬂ:*hl p”

y = tanh™
E 2 E— D

(2.33)
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Now using Egs. (2.15)
E'+p| =~v(1Fv/c)(E+cp))
one gets

1 n1—|—11/c
2 1-v/e

and
dy' = dy

i.e. the shape of rapidity distribution is invariant. It may be noted that by
choosing some direction, e.g. beam direction for the z-axis, one can write
the energy and momentum of the particle as

E =mrcoshy, p.=p|=mrsinhy, pr = (ps,py)
where mp is called the transverse mass and is given by
E? - pﬁ =m%
which follows from cosh? y — sinh? y = 1
Now

E® —pi = E> — (p* - p7) = m* + p7
so that

Thus from Eq. (2.33),
E +p

mr

=In
The rapidity 7 is defined as
0
n = —In(tan 5)

where 0 is the scattering angle in the c.m. frame. For high energy scattering

(E =~ [p|):

_11 E+p. 11 E+|p|cos9
YT EC p. 2 — |p| cos 6
cos? /2
~ fln —In (tand/2) =
(sm 9/2) /2)=n
The scattering cross section is
Ed30 d3c B d3c

R - E
d3p dpzdpydp. prdprdedp,
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As

dp, = my coshy dy
=F dy
and averaging over ¢,
d3c d’c

&Bp — wdyd(p)

. 3 . . . .
ie. E‘fla—g is an invariant quantity.

2.3 Interaction Picture

In quantum mechanics, the transition rate from initial state |¢) to final state
|f) is given by

W =2r | (f| Hy |i) |* ps (Ey), (2.34)
where Hy is the interaction Hamiltonian viz.
H=Hy+ Hj. (2.35)

The above formula is obtained when Hj is treated as small in first order
perturbation theory and |i) and |f) are eigenstates of Hy. ps(Ey) is the
density of final states, i.e. py(Ef)dE; = number of final states with energies
between Ey and Ey + dEy.

In order to define the transition rate in general, it is convenient to go
to interaction picture, which we define below:
The Schrodinger equation is given by

.d

i |0 (1) = H W (1)) (2.36)
We now go to interaction picture by a unitary transformation

[0 () = ! U (1)) - (2.37)

Then, using Eq. (2.36), we have
d , ,
W (1)) = — Ho [ (6) + et He™ 0t [ (1)), (2.38)
Now using (2.35)

HE (t) = ot geiHot — (2.39a)
HI (t) = et ge—tHot — [y 4+ HE (1), (2.39b)
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where
HI (t) = etfot gpe=tHot, (2.39¢)
Hence we have from Eq. (2.38) [From now on, we will drop the superscript
I from HI(t), it will be understood.]
d
i— W (b)) = Hr () ¥ (2));- (2.40)

Thus an operator Ain Schrédinger picture is related to operator A 1 (t)
in interaction picture by a unitary transformation

A (t) = e'tlot 4 ¢=iHot (2.41a)
and
dA({t) [+
i = [A, (t) ,HO} . (2.41b)

2.4 Scattering Matrix (S-Matrix)

From the general principles of quantum mechanics, the probability of find-
ing the system in state |b), when the system is in state |¥ (¢)),, is given by
|Cy(t)|* where

Colt) = (b (1), (2.42)
Assume that | (t)); is generated from |¥(¢p)), by a linear operator
U(t, to):

(W (), = UL, to) [V (o)), (2.43a)
Ul(to, to) = 1. (2.43b)
Substituting Eq. (2.43a) in Eq. (2.40), we get
IO g 1)), = U 1) (o)), (2440
so that we obtain
Z’W =H;(t)U(t, to). (2.44b)

We note that U(t,ty) depends only on the structure of the physical system
and not on the particular choice of the initial state |¥ (to)),;. Thus

(W (t)); = U(t, to) |V (o)),
=U(t, t) |V ('),
=U(t, ') U, to)|¥ (to)); (2.45)
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Therefore,
Ut, )Y U, to) =U(t, to) (2.46a)
I =Ul(to,to) =Ul(to, YU(L, to) (2.46b)
Ulto,t) =U"(t, to) (2.46¢)

Thus, the operator U satisfies the group properties.
The formal solution of differential Eq. (2.44a) is given by

t
Ult,ty) =1—1i | Hi(t)U(t, to)dty. (2.47)

to
This integral equation can be solved by iteration method, i.e.

Ut ty) = 1—¢/t dty Hy (1) [1—1’/:1 dto Hy (1)U (b, to)]

to

t t t1
=1- Z/ dtlHI(tl) + (—i)2/ dtlH](tl)/ dt2H1<t2)
to to to

- (2.48)

Eq. (2.48) is the basis of perturbation theory.

Now at t = tg — —oo, the system is known to be in an eigenstate |a)
of Hy. Hence the probability amplitude for transition to an eigenstate |b)
of Hy is given by

Cy(t) = (b|W (1)),
= lim (B U(t, to)|¥ (to));

to——o0
= lim (Ut to)e ot | (15)) ¢ . (2.49)
0——O0
Now for to — —o0,
|V (to))g = |a,to) = |a) e~ tFato, (2.50)

Hence from Eq. (2.49), we get
Co(t) = (b U(t, —o0)|a). (2.51)

Our purpose is to calculate Cy(t) for large ¢ (since for ¢ — oo, the system
is an eigenstate of Hy), i.e.

tlim Cy(t) = tlim (blU(t, —o0)|a) = (b|U(co, —o0)|a). (2.52)
The operator
S =U(co, —00) (2.53)
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with matrix elements
Sta = (b| U(0c0, —00) |a) = (b| S |a) (2.54)
is called the S-matrix.

An important property of S-matrix is that it is a unitary operator. This
follows from the conservation of probability:

> ICy(0))* =1 (2.55)
b

> (b Sla)y (b S|a)” =1
b
> (al ST[b) (0] Sa) =1. (2.56)
b
Hence
(a] STS|a) =1,
Sts=1 (2.57)

Therefore, S is a unitary operator. It is convenient to introduce “in” and
“out”states [see also Appendix A]. Assume that before time t; and after
time to, H = Hy and perturbation acts only during the time interval
t1 <t < ty. Then the “in” state

|a)in = la,ty — —00) (2.58a)
Similarly the “out” state is
|a)out = |a,ta — o0) (2.58b)

The operator S provides the link between the description of the system
before ¢1(t1 — —o0) and after to (to — o0). Thus

|a>in = S|a>out
so that
Sba =out (bla);, (2.58)

where ¢ and b indicate quantum numbers necessary to specify the initial
and final states or in more transparent notation

Sti =out (f1i), (2.59)
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Now using Eq. (2.48)
+oo
S:U(oo,foo):lfz/ dtlH](tl)

+(i)2/+oo dty /tl dtoHy(t1)Hr(t2) + - -+ (2.60)

By interchanging the variables of integration t; — t2, we can write the
second term as

+oo to
(—i)? / dt, / dty Hi (t2) Hr ()
It can be shown' that this term is equally well described as
+oo o0
(—z’)2/ dtl/ dtoHy(to)Hr(ty)
— 00 t1

Using this identity we can write S as

1 +oo +oo
52 = (4)25 / dty / dtoT [Hy(t1)Hy(to)] (2.61)
where the time ordered product
T [Hy(ty)Hi(t2)]
= H[(tl)H](tQ) to < t1 (262)
= H](tQ)H[(tl) to > 1

In terms of the Hamiltonian density H(x)

Hi(t) = / BaH, ()

so that

A2
g = 21 / dhy / dhyT [ (1) M (22)]
A generalization of this is
g = CF / d', / dhay - / A4, T [y (1 H (2) - Hi ()]

(2.63)
Up to the first order in perturbation

Spi= S —i / de (f [Hi(2)] ) (2.64)

1See J.J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley (1973) p.186.
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Using the translational invariance, which is generated by momentum oper-
ator one can write

Hi(z) = eP*H;(0)e P
/ di (f [Ho(2)] i) = / dhae®1PO (£ 1] )

= (2m)" 6" (py — pi) (f [H1] ) (2.65)

where H; = H;(0) and é-function ensures energy-momentum conservation.
This suggests that it would be convenient to introduce an operator 7', called
T (transition) matrix with the element 7'; so that

Spi =0 +i(2m) Ty (2.66)
In the first order of perturbation
Ty = — (f [Hild) (2.67)

Then, using Egs. (2.37) and (2.38), the transition probability for large
t from a state |i) to state |f) for i # f is given by

P = lim [Cr (1) = [(f1S i) = 3 (2m)° 6" (s — p2) 6 (0) [Tyl

(2.68)
Now
5 0) = [t
(2m)
1 Vit
6*(0) = —— (Volume) t = ——. (2.69)
(2m) (2m)
Therefore, the transition rate per unit macroscopic volume is given by
P
Wi = o = (2m)" 326" (o — i) [Tl (2.70)

To carry out sum over final states, we need to know the density of final
states ps (Ef).

2.5 Phase Space

Consider a single particle in one dimension confined in the region 0 < x < L.
The normalized eigenstate of momentum operator p is given by
I
u, (x) = —=e'P*. 2.71
() = (271)
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The boundary condition that wu, (z) is periodic in the range L gives

b (2L77> n. (2.72)

5= (5) =0, (2.73)

i.e. the number of states within the interval £ and F + dFE is given by
dn = p(E)dE. In three dimensions, we have

dn LN\ d [ 4 L\? ,dp

The generalization to the n particles in final state gives:

Thus

-1

n= [(;)TL /d3 d3ply - d3p!, . (2.75)

Pi =Pf=P) +Ps+ - +P, (2.76)

only (n — 1) momenta are independent. With the normalization L = 2,
we can rewrite from Eq. (2.75)

Since

n= [ 8- OBt p P d (277)
Thus we can write
/5 —(Ei+Ey+---+ E))
x 0% [p; — (P} + Py + -+ P))]
x d3pl d3phy - - - d>pl,. (2.78)
Hence the transition rate [cf. Egs. (2.70) and (2.78)]
W, = (2n)* / &>yt dPply- - dPp),

x> Tl W +ph+ =) (2.79)

final spins

where bar (—) denotes the average over initial spins if initial particles are
unpolarized, otherwise we have to use the density matrix if initial particles
are polarized.
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Remarks:
(1) In the first order perturbation theory

Ty = = (fIH1 i) - (2.80)

(2) The normalization of states is

@' |p) = / d*z (p' %) (x|p) (2.81)
= (271)3/ei(p/p)'xd3x =5(p'-p).

The phase space [ d3p is not Lorentz invariant. Thus we consider the
Lorentz invariant phase space

/d4p/ 5 (pIQ _ m2) 9(p6)

3./ / 1 / / /
— [ [ahy o 50 — B+ 5% + B 0(30)
0

d3p/
= / ok (2.82)

Now we write
o) = [ @ Ip) @'lp)
d3p/
:/QE/ Ip) 2E" (p'|p)]
d3p/ y , )
= [ 55 VAror (®'[p) [p). (2.83)

It is clear from Eq. (2.82), that (p'|T |p) is not Lorentz invariant, but
Vo py (P'|T |p) is. Thus in general we write

Ty = N'Fys, (2.84)

where N’ is a multiple of factors like 1/FE,.. In fact it is convenient to take

1/2
;L My 1
N= (H (2m)° E, 11 (27)® 2E, ) ’ (2.85)

T S

if there are r fermions and s bosons such that

n+m
1
_ I _
r+s=n+m, N = l(2w)3/2] N, (2.86)
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m and n being the number of initial and final particles respectively. Hence
finally the transition rate is
_ (en)? / ’py dpy  dPpl,
T en™ ) enen’ e’

x N26* (p} +phy+ -+ +pl, — i) Z |Fpl®. (2.87)

final spins

In the first order perturbation theory

Lzl/] o () 11 () Fro=—tmai,

) v

For example for s = 0,7 =4 (i.e. four fermions process)

—~

2.88)

1 (ma my Me My
(27‘()6 Ea Eb Ec Ed
Here mg, my, m. and mgy are the masses of four particles a,b,c and d
involved in a scattering or a decay process.

1/2
) Fri == (fIHrli). (2.89)

2.6 Examples

2.6.1 Two-body Scattering
Consider the scattering process
a+b—c+d,

where a and ¢ are bosons e.g. pions and b and d are fermions, e.g. nucleons.
The scattering cross section is given by

aw
do = ——— 2.90
7 (Flux)zn 7 ( )
where (Flux);,, is the incident flux defined as
(Flux),, = p1p2vin = (;;‘;36- (2.91)
Vin = % - %Z . (2.92)

We calculate the scattering cross section in the c.m. frame. In this
frame:

Po =Py =Pab =P, Pc=—Pi=Pca =P (2.93a)

Eo =E,+Ey,=E.+ E,. (2.93b)
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Ecm
EaEb.

(2.94)

Vin = |P|

Now from Eq. (2.87)

dW:(2”)4/d3p d3pq mpmq 5% (Do + pa — pa — )ilF'F
2n)° ] @n) @n)° \ABBaE E, ) © Ve TP e T LR

We can write

8* (Pe + Pa = Pa —b) = 0% (Pe + P — Pa — Pb) 6 (Ec + Eg — By — Bp).
(2.96)
The integration over d®p; in Eq. (2.95) can be removed by the three-
dimensional §-function. Writing

= [p* d|p’| d2, (2.97)
Eq. (2.95) gives

mpm
4Elv)bEd /|p| dp|dQ§( cm — VP /2+m2 \/ P /2+m)

\/p/2 m2 \/p/2 m2 Z |E fz : (2.98)

my spins

Now using the formula

dx 0 [E =Y (x)] F(z) = [F (z) } , (2.99)
/ [ Y’ (2) E=Y ()
we have from Egs. (2.90) and (2.98)
dw (2m)°
do = ————
Vin
1 |pl| 1 2 /
= —_— M|* dQ2 2.1
where
dmpmg Y. |Ffi|2 ,if particles a,c bosons and b, d fermions.
spins
\M|2 — ) 16mempmemg > |Ffi|2 ,if all particles are fermions (2.101)

spins

> |Fﬁ\2 ,if all particles are bosons

spins
In the c.m. frame,
dt = —dQ?
/

™
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do 11 |M]?
— = 2.102
dQ*  EZ2, |p|* 64 ( )

In the Lab frame we note from Egs. (2.29), (2.31b) and (2.32)

p="(pr —vvr)
_ PL™p _ PLT
VL + my Ecm

so in the Lab frame

do 1 1 |MP

dQ> ~ m} |p,|? 647

From Eq. (2.20b),

aQ? =

™

IpL| IpL] d2
one gets

dQ,  m?|pp|64n2’ ’

2.6.2 Three-body Decay
2.6.2.1 Three-body Phase Space

Consider a three-body decay

a—b+c+d
m — mi + mo + ms
k = p1+ p2 + ps.
The decay rate [cf. Eq. (2.87)] is given by [pin
AW
 Pin

= (2n)" / d’py / dpz / dps <mm1m2m3)
2m)? ) (@2m)? J (2r)® \ E E1E2E;3
x 8% (p1+p2+ps — k)0 (B + By + B3 — E) [M[|, (2.104)

where for definiteness, we have taken all the particles to be fermions.

We evaluate Eq. (2.104) in the rest frame of particle m. In this frame
k =0 and I = m. Hence we have

_ 1
o (277)3]

dar

pr+pP2+p3=0

FEy+ FEs+ Es =m. (2.105)
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From Eq. (2.104), removing the integration over d®ps due to three-
dimensional d-function, we get
4

1
= 2dpy pidpy dQyg———
(27)° (mlQOS)/pl 1 pofba FR12 E1E>E3

X & [El + Ey+1/(p1 +p2)” +mi — m} |M|?. (2.106)

After performing the angular integration over {212, we obtain
2 (271')2 |p1‘ |p2‘ E1E2 dEl dE2 E3

—-— 2
dl' = ——=mimam M
(27)° R EVEy By Ip1| P2 7]
2 J—
- ’rl(l;”;gm/da dE, | M|*, (2.107)
'/T

— 2
where [M|” is the value |M | after the angular integration has been per-
formed. In order to evaluate the integral in Eq. (2.107), it is convenient to
define the invariants:

s12 = (k—p3)” = (p1 + p2)°
s13 = (k—p2)* = (p1 +ps)*
523 = (k—p1)* = (p2 +p3)*. (2.108)
In the rest frame of particle m, we have
S10 =m> + m% —2mkE;
S13 = m? + mg —2mkE,y
s93 = m% +m? — 2mE, (2.109)
12 + 813 + 93 = m* + m7 + m3 + m3. (2.110)
On the other hand, in the c.m. frame of particles 1 and 2, we put
p1=-p2=p and p3=q. (2.111)

In this frame, we denote the energies of particles 1, 2 and 3, by wy, wa, w3
respectively. Thus in this frame

s13 = (w1 +w3)” = (p+a)” = mf +mj - 2p.q+2w1ws
s23 = (w2 + W3)2 —(p— Q)2 = m% + m§ + 2p.q+2waws
S19 = (wl + OJQ)Q . (2.112)

For fixed s12, the range of sq3 is determined by letting q to be parallel or
antiparallel to p. Thus

2
(523)"% = (wy + w3)® — {\/wg —mdF \/wg - mg} . (2.113)
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We also note that one can express wi, wg and w3 in terms of sys.

S12 + m% — m%

Wl =
2\/512

w S12 — m% + mg

2 = —-——
2\/512

2 2
m= — Mg — S12
w3z = . (2.114)

2\/512
In terms of the invariants s13 and sa3, Eq. (2.107) can be written as

r— legw/dszg dsia | M|”. (2.115)
(2m)” (4m?)

The scatter plot in sa3 and s1o is called a Dalitz plot (Fig. 2.4). If
|M|2 is a constant, we have uniform distribution of events. Non-uniform
distribution of events over Dalitz plot will indicate a structure in |M|2 and
would provide an important information about the dynamics underlying
the process concerned.

10""|"';'""|""|""

M B B B B

) IPETIN IFRPS N NRPRREN IPEPATI I

1 2 3 4
m?, (Gev?

o
[$2]

Fig. 2.4 Dalitz plot for a three body final state [ref. 6].

2.6.2.2 B-decay

A— B+e +7,, D =DpB +DPe+ Py
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e.g.
oY - NY 4 et 4 u,.
We obtain from Eq. (2.104)

4 2
dl’ = E2ﬂ-;5 /pgdpe pgdpu dQeV ) (EB + Ee + Eu - mA)
v

ma mp Me My 2
M 2.116
ma Ep E. E, M7 ( )

where

Pv dpu = El/ dEu (2117)

It is a very good approximation to neglect the recoil of the particle B,
so that pg =~ 0 and Fg = mp. For this case, the j-function removes the
integration over dF, and we get

4 2
ar — 4 p? dpe dQey (ma —mp — E.)

(2m)°
172 / m. m
—mp — E.)* - 2) < VM. 2.11
< (ma—mp — £ = m2) (e p (2118)
Let us write
Emax :E8+EV ~ma—mpg. (2119)
Then one gets
47)? 1/2
I'= ( 71—)5 Pg dpe (Emax - Ee) ((Emax - Ee)2 - m,%)
(2m)
Me My 2
M7 ) dQe,. 2.12
< (e jarp) (2.120)
In the first order perturbation theory,
. I,
M* = (2m)"? fIH : 2.121
| w3 ] Hu i) (2121)

spin v
If the expression S |(f| Hw |i)|® is averaged over angles between electron
spin
and neutrino, dI" can be integrated over df)., and we obtain

dF ( )5 pe dpe ( max Ee)
2m)

(
( max — - mi)l/2 (27r)12§|<f| Hy [1)]. (2.122)

spin
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Let us make the simplest assumption that the averaged expression is inde-
pendent of electron energy FE.. In this case

1 /dr 1/2
7 ( dpe> % (Epx = Be) [(Bmax — Be)* —m2] . (2.123)
If we neglect the mass of the neutrino, then
ar O\ /2
K= <pg dpe) X (Emax — Ee). (2.124)

From Eq. (2.124), we see that plot of (dI'/p? dp.) 2 versus E. should be a
straight line. This is called Fermi or Kurie plot. Figure 2.5 shows that it is
indeed a straight line. Therefore, the assumption that the matrix elements
(f| Hw |i) are independent of energy is correct.

A
K

E

€

Fig. 2.5 Fermi or Kurie plot.

From Eq. (2.123), we get

ma.

1 27 [Pe
= 5z [0 TIEWT] [ (B = £ do.
1 -
= 55 me [@m) TUTHW ]| £ (s0). (2.125)
where
0 2
f(po) = /Op P’ <\/p8 +1-vp?+ 1) dp (2.126)
_ De _pe™
p=-"—", P
Me Me

This does not take into account Coulomb corrections due to Coulomb
force which the electron experiences with the nucleus of charge Ze once
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it has left the nucleus. This can be taken into account in the integral
f(po) and the formula (2.126) remains valid. The lifetime for S-decay
73 = 1/T'g, but it is the half life ¢/, = 75(In2) which is experimentally
measured, while f is computed. ft;/; is called the ft value. It is assumed
that Hy is universal, i.e. the same for all decays and this assumption is
supported by experiments. ft values for 3-decay vary from about 10% to
1023 seconds. This variation is due to the phase space available in the final
state characterized by E,, 4, and hence by f (pg). Other cause of variation is
due to the nuclear wave functions that enter into the calculation of matrix
elements (f| Hw |¢). Without the universality of Hy, an understanding
of weak interaction would be hopeless. Some characteristic ft values are
shown in Table 2.1.

We now consider the transition O'* — N4 so that we do not have
complications due to spin. Nuclei may be described by highly localized
@ )3/2 Uy (r) which vanish for

r > 107'3 cm. Electron and neutrino can be described by plane waves as

wave functions described by WUZ-(T) and

they carry large momenta. We take that Hy responsible for g-transitions
is characterized by a parameter G which determines its strength. Thus
2

1 ) .
/U;(r) Us(r) ePeT ePrrddp| (2.127)

(m)°

Since p./h ~ 10 ecm™1, r ~ 107! cm, it is a good approximation to
replace the exponential in the integration by 1. This is called the allowed
approximation. Thus one gets from Eq. (2.128)

(| Hw |))]* = G

(2m)** [(f| Hw |i)]* = G- (2.128)
Hence we obtain from Eq. (2.126)
G% mb
]‘—‘/6 = 27‘(‘3 f(po)
1 In2
=— == (2.129a)
T8 tiye
or
273 In 2) 1
= B2 L 2.129b
F ft m2 ( )
or

773 n m 5
(Gr m%)* = (thlz) ( N) 1 (2.129¢)
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Using - ~ (0.7) 107* sec and ft = 3100 sec we get
Grpm3% ~15x107° (2.130)
to be compared with its present accurate determination
Gr =1.166 x 107° GeV?.

We rewrite Eq. (2.130b) in a more transparent form

ft1/2:27r3(1n2) [mc)?’r( 1 ( h ) (2131)

|]\4F|2 Gr mec?)* \ mec?

where MF is called Fermi matrix element. We note that f ;5 is constant.
With
Gr

= 1.166 x 107° GeV > 2.132
one gets
5972
[ tijg = — sec (2.133)
/ |MF|2

In (-decay, isobars are involved, i.e. it is a transition with Al = +1. In
particular for

O = N": [JP =0t 1=1, I;=0,1]
Mp = (5 : 031,019 = 0%, 1,1) (2.134)
Also in the Fermi transition, AJ = 0. Thus for the decay O'* — N4
f t1/2 = 2986 sec (2.135)

to be compared with the experimental value 3100 sec; a discrepancy of
only 1%. In view of the simplification used, it is in good agreement with
the experimental value. However, the decay He® — Li® is forbidden in the
Fermi theory as it involves a transition AJ = %1, whereas in Fermi theory,
the selection rule is AJ = 0.

But the decay s HeS — 3Li% 4+ e~ 4 7, does occur. Gamow and Teller,
then introduced an additional matrix element

Moz = Ca (by o] ) = /U; (s o] o) Ui dP (2.136)
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which allows the selection rule AJ = 0,41. Summing over the spins and
taking the average for the initial spin s

2 1 *
|Mgr|” = §ZZ<Xf|U|Xi>'<Xf lo| xi)
i f

53 tuilolxg) - (s lol )
i f

3 2
= §Z<Xi|a |xi) =3 (2.137)
where we have used 02 = 3 and there is no interference term as Tr(c) = 0.
Hence we replace |Mp|” in Eq. (2.131) given by
|MI* = gt [Mr|” + g5 |Mar|?

where gy = 1 and g4 = 1.261. The results are summarized in Table 2.1.

Table 2.1
ti/o T T [ Mpl® | [Marl® [ f tiys(s)
n—p 17— 17 [ 106 min [ 0.7821 [ 1 3 1100
He =8 Li | 00 —-1— 0.813 s 3.50 0 3 810
oMM N [ofF=soF [ 7145 1.812 [ 2 0 3100
H3 > He [ 7532 12.33 Yr | 0.0186 | 1 3 1131

Finally we note from Eq. (2.124) that a non-vanishing neutrino mass
reveals itself as a downward deviation from a straight Kurie plot as the
energy approaches its nominal (m, = 0) kinematically allowed maximum
T 'We can write Eq. (2.124):

3/2
(j;) o T3/ 7@}??;3 (T — 1) (T = T,)° = m? "

(2.138)
where

T.=FE. —me=+/p2+m?—me. (2.139)

We note that the effect of m,, is near T, = T,"%*  otherwise (/"% —T,)? >
m2. If we put

Te (&
Tr = e = % (2.140)
then
1 3/2
2%,
Ty o (T7)° / B2 (1 =g EEE) T (2.141)
0 (z+ )
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Hence it follows from Egs. (2.138) and (2.141), that if m, # 0, then the
fraction of events G (m, ) which will be absent at the end point is given by

1 T dr
G (m,) = = dT,
(mv) =1 /Tm (dTe)mu_o ‘

g m N
(rpeny? T )

(2.142)

where g is some constant. Hence it follows from Eq. (2.142), that in order to
have G (m,) as large as possible, T*** has to be as small as possible. Thus
we see from Table 2.1, that tritium (H?) is most suitable to determine the
mass m, of neutrino experimentally, since electrons from this decay have
very low end-point energy (18.6 keV).

The distortion at the extreme end of the Kurie plot due to m, # 0 is
shown in Fig. 2.6. Thus in order to determine m, one has to look for such
a distortion, but note that the deviation is in fact quite small. Moreover,
the fraction of the events in the energy range of 18.5 keV < Fe < 18.6 keV
is only 3 x 1077. The experiment is hence quite difficult and even then
it would be extremely difficult to determine m, better than 2 eV by this
method. We shall come back to this point in Chap. 12.

=

w

a

WL

.

N 306V

=2 S~ 10eV

_-0eV

PR RO VN T DU T WHT YU S0 SUT ST S WU T T DU W PR
18.4 185 186

KINETIC ENERGY (keV)

Fig. 2.6 The distortion at the extreme end of the Kurie plot due to m, # 0.
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2.7 Electromagnetic Interaction

A monochromatic electromagnetic wave is composed of N monoenergetic
photons, each having energy and momentum, F = hAw and p = hk. The
electromagnetic field is described by a vector potential A with polarization
vector €. Electromagnetic waves are transverse waves so that k- = 0 and
thus have two independent states of polarization. We can conveniently de-
scribe it as left-circularly or right-circularly polarized photon or we can say
that a photon has two helicity states 1. Such a photon can be described
by a polarization vector

1
= (¥1, —i, 0), =0, (2.143)

where we have taken the propagation vector k along z-axis.
The spin 1 matrices S are given by

(Si)jk = —iGijk' (2.144)
Writing them explicitly, we have

000
Si=S8,=[00-i
0i 0
00
Sy=5,=[ 000
—i00
0—i0
S3=8.=1i00 (2.145)
000

If we write et and £~ as column matrices

~1 1
1 1
—i|, ee=—1|-i], (2.146)

E4 = —=
V2 0 V2 0

it is easy to see that they are eigenstates of S, with eigenvalues +1 respec-
tively. We also note that

e ep=1=¢" -e_

€ e-=0=¢ -4 (2.147)
EK-E,\:(s)\)\/ ,)\,)\I::tl. (2148)
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For a real photon, if we sum over polarizations (spin), we have
Z E;\Ej,\ = (Sij — k;{];] . (2.149)
A=+1
In quantum field theory, electromagnetic force between two electrons (or
any charged particles) is assumed to be mediated by photons, the quanta of
electromagnetic field. The simplest case is the exchange of a single photon
as shown in Fig. 2.7.
The Coulomb potential between two charged particles is e?/47r in ra-
tionalized Gaussian units. This is the Fourier transform of an amplitude
M (q) corresponding to the diagram shown in Fig. 2.7. Thus we write

Fig. 2.7 Electron-electron scattering through exchange of a photon.

e? 1 Rl
—_— = arpy 3q. 2.1
i = | M@y (2150)

In order to find M(q), we note that

[e'e) eiq.r o) L 1 9
/ " d3q = 27r/ / e”qlmose@ lal” d|q|sin6 df
o Jo

—00

_A4m [ sin [q]r

d|q|
T Jo lql
_dm [Tsinz, dww 2n0 (2.151)
T Jo x r 2 T
Hence we have )
e
M (q) = ? (2.152)

This gives the matrix elements of the above diagram (Fig. 2.7) in mo-
mentum space in non-relativistic limit. A relativistic generalization of this

e? my mg mh mbh (J*); (Ju)
M=-M=s\EmeE ¢ o P

1S
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i.e.
F= 9w <J”>21 <JU>27
q
where (J#) is the expectation value of the electromagnetic current. g, /q?
is called the Feynman propagator of the photon. J, is given by

(2.154)

T =ey ",
so that in free particle approximation
(J"), = eu(p)) Yu(p;), i=1,2. (2.155)
Thus
T = (P4 7" (pa) 1 (ph) er, (p1)
S m’ . (2.156)

(27)° /E| B, E| E}

2

In the non-relativistic limit %2 ~0, B = FEy=F{ =E})~m,
a(p)y’u(p) =1, @(p)yu(p) =0,

2 2
¢ = (P —p1)” = (B] — B1)” —4p® = —4p°,
and ¢> — —q? so that we have from Eq. (2.153)

T =M(q) = 122 (2.157)

Q

2.8 Weak Interaction

If weak nuclear force is mediated by exchange of some particle, then this
particle must have a finite mass, since weak nuclear force is a short range
force. We assume that mediator of this force is a vector particle of finite
mass. It, therefore, has three directions of polarization or it is a spin 1
particle with M, = £+1,0. These spin states can be expressed as

(F1, —i, 0), €L =0

mw

Er = —=
f

< > e = gl (2.158)
In this representation

q= (4,0, 0, |a]), ¢* =miy (2.159)
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so that
q-¢=0. (2.160)
It is easy to see that €L, €y are eigenstates of S, with eigenvalues £1, 0
respectively. For a spin 1 particle on the mass-shell
" . * q* q°
Z eheS = el €5 +ele? +efef =—g" + ——. (2.161)
= myy
A==£1,0
In order to estimate the strength of weak interaction, we evaluate the
matrix elements of the scattering process
Ve+e€e —ve+e

as given by the diagram in Fig. 2.8. In analogy with Eq. (2.154), the

Fig. 2.8 Neutrino-electron scattering through exchange of vector boson.

scattering amplitude F is given by [the propagator 1/ (q2) is replaced by
1/ (¢* — m,) as W-boson is massive]

(T (T )y
(¢* —miy)
Now in contrast to electron, neutrino is a two-component object and its

wave function is (1 — 75)u(p). Thus in analogy with Eq. (2.155)

<JWM>1 = gw ﬂ(p;) ’YH (1 - ’YS) u(pi)ﬂ i = 17 27 (2162b)
where gy is the strength of weak interaction just as e is the strength of the
electromagnetic interaction. Thus for ¢? << m¥;,

F= (2.162a)

- 7% [(py) v (1= 75) u(p2)] [@(P)) vu (1 —7s) u(p1)] (2.162c)
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Using Eq. (A.48), we get

4 —
IF|* = %ZA“BMA*”B; (2.163)
Wspin
_ gy 1 [p3' D5 + 0y Ph — p2 - phg"” + i pay ph, |
mb mem, 02 P27 P2 P2 2" P2 2p Dao
2 .
X o, [le Prv + Py D1y — D1 PiGuw + i€uwap DY pﬂ
4
gw 2 2 22
_ 2 2.164
where
s= o +p2)’ = (0 +92)° = B (2.165)
From Eqgs. (2.103) and (2.164), we get
293 1 2 2)2
o= —— 3 (s—mZ—m)". (2.166)

If we neglect the lepton masses (viz for s > m?), then we have

2 2 8
o= (i::) <m4> drs. (2.167)
w
Now Gr/V2 = g% /m%, so that

o =G} = (2.168)

Taking 0 ~ 10738 cm? at s = (1 GeV)?, we get

—38
(41)1(01028) ™ GGV_4 = G%v
Grp~107° GeV ™2 (2.169)
to be compared with Eq. (2.130). This shows the universality of the weak
interaction since G is the same as obtained from the §-decay or from the
scattering of neutrinos on leptons.
In unified electroweak theory [see Chap. 13]
€

sinfy = ——, 2.170
aw w 272 ( )

where sin Ay is a parameter of the theory. Experimentally, sin? Oy ~ 1 /4,
thus we get

Gr e? «
— = =4 2.171
V2 8mi, sin? Oy 7TSm%,V sin? Oy ( )
or
T M2
mw = | —= (sin2 ew GF)_ (2.172)

V2
Using sin? Oy ~ 1/4, and Eq. (2.172), we get
mw ~ 80 GeV. (2.173)
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2.9 Hadronic Cross-section

Consider the N — N scattering through the pion exchange.

consider the diagram (Fig. 2.9).
N(p') N(p',)

—_——— e — — —

N(p,) N(p,)

55

In particular

Fig. 2.9 Nucleon-nucleon scattering through pion exchange.

Neglecting the spin of the nucleon

1
Fzgg 5

2
@ —m2’ ¢* =y —p)".
™

From Eqs. (2.103) and (2.174), we get

do 4 1 s 1P 1
R S 5 S | il Bl
a0 = (@ — 22 "N ar? [p| B2,
For elastic scattering |p’| = |p|, so that
gr mi 1 [T 27 sin §d6
= A2 A s 2
Ams mz s Jo {1 + 24;’!2 (1 — cos 9)]
2\ 2 2 2
(9 my 4 4myy 1
- \d4n M m2 s 14 S=Ami

2
mz

Now

EK
—4m2. (1 L
S mN< +2mN),

where Ef is the incident kinetic energy of the nucleon. Now

2 2
(1071)" em?, (22)" ~ 50, thus

92 ? 23, 2 1
o= s) 1.3 x107*°cm?*) ———.
(47r ( ) |1+ 142% |

(2.174)

(2.175)

(2.176)

(2.178)
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For Ef <« 2= ~ 10 MeV,

2\ 2
o= <i;> (1.3 x 10~ 23cm?) . (2.179)
Experimentally o ~ 5 x 10~23cm?, therefore,
2
9s
= x1-2. 2.1
4 (2.180)

2.10 Problems

(1) Show that for the scattering
e” et =y —at(k) 7 (k)

the differential and total cross sections are given by (s > m?):

/2
do a? 2 2 *m721. ?
0= |E(s)] (3 53/2) (1- cos? 9)
s 3/2
_ 87 4 2 (§—m3)
7= 5 FOI T gm—

where s = ¢2 = (k1 + k2)? and F(s) is the electromagnetic form factor
of the pion, defined by (0|J5" 7" (k1)7~ (k2)) = F(s)(k1 + k2),-
Hint: See Appendix A.

(2) Consider the decay

w— ntr 70,
Discuss the Dalitz plot for this decay.

Hint: From Lorentz invariance, the decay amplitude

wovo P
F)\NE/\;J,Vp pP1 P2 Ps

where p1, po and p3 are four momenta of pions.

(3) Consider a process in which one proton is at rest and the other collides
with it, as a result of collision a particle of rest mass M is produced,
in addition to the two protons.

p+p— M-+p+p.

(a) Find the minimum energy the moving proton must have in order to
make this reaction possible.

(b) What would be the corresponding energy if both the protons are
moving.
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(4) (a) A K-meson decay into a muon and a neutrino
K —u v,

Find the energy and velocity of p~. Using the above result show
that whether the reaction

Vy+p— ,u+ +n
is allowed energetically.

M M
mi = 494 ev, m,, =106 oV

(b) In c.m frame

— (Ecm T Ecm)Q — E2

= (Ea, p), p» = (Ev, —P)
In the lab-frame
= (ELa pL)
Py = (mb70>

Show that in the limit Er > m,, my
Eon = \/2myE;
(5) Consider the decay
W™ —u +1,
mw ~ 80.4 GeV/c®, m, ~ 106 MeV/c>
T =10, To=22x107°
What distance p~ travels, before its decays?
(6) To explore a structure of size of linear dimension d, we need a beam
of particles of de Broglie wavelength A\ < d. What is the momentum of

beam particles required for d = 0.01 fm?
(7) For the decay

a—b+ec,
show that the decay width is given by

1 |pl /
M|*dQ2
= 3972 m2 | ‘

1 Ip\| MP,
87Tm2
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if |[M|? is independent of angles and |p| is the momentum in the rest
frame of particle a and
D |Fﬁ|2 , if all particles are bosons.

spin

IM[? = (dmpme) f |Ffi|2 if particles b and ¢ are fermions.

spin
(dmams) 3 |Ffi|2 if particles a and b are fermions.
spin

(8) Consider the process
e”(p1) + e (p2) = (k1) + q(k2) + g(k3)
Define s = (p1 +p2)” = ¢* , ¢ =p1 +p2 = k1 + k2 + ks
v 2ki - q
i
Show that the phase space integral is

/d%ﬂ%ﬂ%31 1 1

eny BE B 5 07 0k k)

q2
= W/dxlfdxg
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Chapter 3

Space-Time Symmetries

3.1 Introduction

Symmetries have played an important role in the progress of physics. There
is a close connection between a symmetry and a conservation law. This is
stated in the form of Noether’s theorem. This can be illustrated by a simple
example. Consider a single particle of mass m moving in a time independent
potential V (x?). Such a system is described by the action integral

1= / dtL(x",t) (3.1)
ty
where the Lagrangian
i\ 2
; 1 dx’ ;
L(z',t) = 5m ( o ) —V(z*). (3.2)

Let us subject this system to a small change : z¢(t) — x%(¢) + 6x'(¢) then
[1 d(zt + 82

L e V(2" + 02"

12
I —T4+6= dt
- / dt

ty
To the order §(x?)

V(' +62%) = V(&) + 6 g;/i (3.3)
and
d(z' + 6a%) d(z' + 62%)  (da'\®  dw; d
dt dt -\ dt +2 dt dt((h)
dai\? d [ dai (A2
(@) 2l () o ()]
(3.4)
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Thus

f2 ; .zt oV () 2 d dxt
ol = dtozt |— — - — | oz* .
/tl x[ " T or }“”/h dt<xdt) (3:5)

The second integral is known as the surface term and can be eliminated if we
assume that the variations to the path vanish at the end points 6xi(t;) =
0 = dx%(ty). Then we get the classical equation of motion as a result of
extermization of I:

mdei 3 oV (%)
a2 ox?

3.1.1 Rotation and SO(3) Group

To establish the connection between symmetry of the action and existence
of conserved quantities, assume that V (z?) is a function of length 2 = z'a?
only and consider rotation of coordinates

x'' = RYgI (3.6)
which leaves the length of a vector x invariant
it — Rk kR — i
R*RY = §M (3.7)

For an infinitesimal rotation

RY = §" € (3.8)
€ = ¢t (3.9)
xt =€yl (3.10)

Thus [ is manifestly invariant under rotation since it depends on the length.
Thus 6 = 0 but now one cannot put surface integral equal to zero since
the boundary condition §z°(t;) = 0 = dx'(ty) will destroy the rotational
invariance. So the invariance of I, together with equation of motion gives

2 d dxt da’
= — m— | = dx;m—— 11
0 /tl dtdt (5m,m dt) dxyim o (3.11)
But
Sat = €lad (3.12)
so that
. dz? o dz?
i ¥ P |
5x(mdt) ex(mdt>
1

= §eijLij (3.13)
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(3.14)

at - ar
where L% are components of angular momentum and from Eq. (3.11)
LY(ty) = LY(ta) (3.15)

i.e. LY are conserved. Thus the conservation of angular momentum is
a consequence of the rotational invariance of the action. The same thing
holds in Quantum Mechanics where L* are operators. They generate SO(3)
group which have just three generators corresponding to three independent
parameters €. One can easily identify these generators [h = 1] as

. .0 .0
i — g g gl
L i (:z: 57 ¢ 8.’17i> (3.16)

because of the identity

. .9
T T T R ' IR, g 0 i
5$ —56‘7 L —5(5] (.'Ejawk—l: M)CC

- f%ejk (767 — o)

_ 7% (Gjixj _ Gikxk)
= €a’ (3.17)
It is easy to see that L¥ satisfy the commutation relation
(LY, L] =i [0 L™ — 67" L™ + i j] (3.18)

which forms the Lie algebra of SO(3). The most general representation of
the generators of SO(3) is given by

JYU =LV 4§ (3.19)
where the hermitian S% satisfies the same commutation relation as L* and
commute with them and refer to internal degree of freedom. For spin—%

particle,
U U
S = 50” = ie”kak (3.20)
where ¢’s are Pauli matrices. Consider
LV = ik pk (3.21)
1
JRP=7P =1+ -0 (3.22)

2
(%, J7] = i€k gk (3.23)
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In Quantum Mechanics a transformation is associated with unitary operator
U, which corresponding to the rotation

o' =t 4 Vgl (3.24)
is

Up=1- %eijﬂi (3.25)

which on exponentiation becomes

_ietd gid
s€7J

Ur=c¢
= W (3.26)
where
€l = ek k (3.27)
3.1.2 Translation
For space-time translation
't =t + ot (3.28)
or
St = 2t — gt = (3.29)
and
Pt =—i0, = —ii (3.30)
Ozt
is corresponding generator since
oxt = ie”(—id, )xt = €0l = & (3.31)

By Noether’s theorem, the invariance of action under translation gives con-
servation of P*, i.e. energy momentum.
The corresponding unitary operator is

Ur=1-1ie'P, (3.32)
which on exponentiation gives
Up = e " Pu (3.33)

The above discussion can be extended to Lorentz group.
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3.1.3 Lorentz Group

As discussed in Sec. 2.1, a Lorentz transformation is

't = Aa¥ (3.34)
Guw = N gaph? (3.35)
An infinitesimal Lorentz transformation can be written as
o'# =6 + g'eq” (3.36)
so that
A =08 + g"%€an (3.37)

and the above condition (3.35) gives
€ur = —€up (3.38)
Corresponding to six parameters €,,, the Lorentz group has six generators
LW =i (xHd” —x¥0"), Ly =i(x,0) — x,0,) (3.39)
since in terms of these we have the identity
)

i
bt =™ — 2 = 3 €uv (19" — VM) 2>

_ _%GW (x“g”)‘ -~ xug,u)\)
= gMea” (3.40)
It is easy to check that L*"’s satisfies the commutation relations
[L*,LP°) = i {g"L"" — g" " 4+ u < v} (3.41)

which form Lie algebra of the Lorentz group. The most general represen-
tations of the generators of this group that obey the above commutation
relations are given by

MM = L 4 S (3.42)

where the hermitian S*¥ satisfies the same commutation relation as L*”
and commute with them so that

(M, MP7] = i [P MY — g MM 4 p s ] (3.43)
For a Dirac spin % field
i

1
S = 52’“/ = ) Y, 71, (3.44)
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since this is the only combination of «-matrices which have six indepen-
dent components and is antisymmetric in p, v. The unitary transformation
corresponding to the infinitesimal Lorentz transformation is

Uy =1+ %GWM“” (3.45)

which on exponentiation is
Up = ez M (3.46)
Just as the Lorentz transformation has two subgroups as discussed in Sec.

2.1, the six generators of the Lorentz group spilt into three generators M
which belong to SO(3)

M = ik g, = ¢k gk (3.47)
where €122 =1, €193 = —1, €?F = ¥
[T, J7] = ek gk (3.48)

satisfying the commutation relations of SO(3). The other three generators
K% = M give the Lorentz boosts with commutation relations

[J7, K" = iel'm K™ (3.49)
(K1) = = [, 0]
= —ig"" M = —jcik g* (3.50)

Note that the minus sign in the last equation which is manifestation of the
non-compactness of the Lorentz group. Note also K’s are antihermitian. It
is useful to introduce hermitian combination

M= % (J'+iK") (3.51)

N' = % (J' —iK") (3.52)
which satisfy

[M?, M7] = ie'd* M* (3.53)

[N?,N7] = ie"’*N* (3.54)

[NY,M7] =0 (3.55)

This algebra is identical to the Lie algebra of SUp(2)® SUn(2) with the
Casimir operator

M?* = M'M’* (3.56)
N? = N'N* (3.57)
[M? M'] =0=[N? N'] (3.58)

Thus in analogy with angular momentum, one can use the eigenvalues
of M?,M?3, N2, N3 to label the irreducible representations of the Lorentz
group, but this is beyond the scope of this book.
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3.2 Invariance Principle

We now formulate an invariance principle in a general way. Consider a
transition from an initial state |i) to a final state |f). This transition is
described by a matrix element (f|S |¢) . The invariance means:

(fIS]i) = (fe1S]i*) = (FIUTSU i) (3.59)
or
S =U'SU (3.60a)
[S, U] =o. (3.60D)
Here
i) = Uli)
/)y =Ulf) (3.61)

are the transformed states. We see that the invariance under unitary trans-
formation means that S-matrix commutes with it. Since S-matrix is related
to the Hamiltonian of the system, it follows that [H, U] = 0.

We consider two cases when U is continuous and discrete, as discussed
below.

3.2.1 U Continuous

U can be built out of infinitesimal transformations. Thus we need to con-
sider an infinitesimal transformation:

U=1—icF, (3.62)

where F is a hermitian operator. F can often be identified with an observ-
able of the system, for example, the energy-momentum P, or the angular
momentum J. F is called the generator of the transformation represented
by U. From Eq. (3.60b), we get

[s, ﬁ} —0. (3.63)
This means that F is conserved. To see this, let |i) and |f) be eigenstates

of F :

\f) = Fs|f)- (3.64)
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From Eq. (3.63), we have

(1[s. F| 1y =0 (3.65a)
or
(Fy — Fy) (f| S i) = 0. (3.65b)
Hence, we get
Fy=Fp if (f|S]i) #0, (3.66)

i.e. F is conserved (eigenvalue of F is conserved) in the transition i) to | f).
F is then said to be a constant of motion. We have already discussed some
of the common transformations and their generators in Sec. 3.1. Invariance
under these transformations means that the corresponding generators are
conserved. There is no evidence that space-time symmetries are violated by
the fundamental laws of nature. The translation and rotational symmetries
implies that space is homogeneous and isotropic.

3.2.2 U is Discrete (e.g. Space Reflection)

U?=1. (3.67a)
Eigenvalues of U are
U = =+1. (3.67b)

Thus U is both unitary and hermitian. U can be regarded as an observable.

3.3 Parity

Consider a transformation corresponding to space reflection:
x—x =—x (3.68)

The corresponding unitary operator is denoted by ﬁ, which acts on a wave
function gives

PU(x, t)=V(—x, t). (3.69)
Now
P*=1, (3.70)
so that P has two eigenvalues +1. If

[S, 13} —0 or [H 13} —0 (3.71)
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then we say that parity is conserved. P does not commute with all types of
H. In particular, the weak interaction Hamiltonian Hy, does not commute
with P :
[HW, ﬁ] £0 (3.72)
i.e. parity is not conserved in weak processes.
Under parity operator P

X——X, p— —Pp (3.73)
but the orbital angular momentum
L=xxp—1L, (3.74a)
so that
J—J, o—o0 (3.74b)
Such vectors are called axial vectors. Also under parity, the scalars trans-
form as:
X-p—X-p (3.75a)
(P1 XP3) - Ps— — (P1 XP2) - Ps3 (3.75D)
J p——-J-p (3.75¢)

The scalars which change sign under parity are called pseudoscalars. All
the three quantities are rotational invariant, but the last two have different
behavior under P.

A particle when it is in an orbital angular momentum state [ has an
orbital parity associated with it. In polar co-ordinates x = (r, 6, ¢), so that
X — —Xx implies

r—r, O0—-m—0, ¢—7T+0. (3.76)
Now we can write the wave function of a particle as
(x) = R(r)Yim (6, 0) (3.772)
CoNL/2
Vin(0,0) = (- | ) pross) e,
(3.77b)
Under space inversion
P™(cosf) — P (—cosf) = (—1)"F™ P (cos 0) (3.78a)
eme _ giml(etT) — (—1)meim?, (3.78b)
so that
Yim(0,¢) — (71)l Yim (0, ¢). (3.78c)

We see that the orbital parity of a particle in an angular momentum state
lis (—1)%
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3.4 Intrinsic Parity

As far as orbital parity is concerned, it is independent of the species of
particles and depends only on orbital angular momentum state of system
of particles. When creation or annihilation of particles takes place, we
have to assign an intrinsic parity to each particle. Consider, for example,
a photon, the quantum of electromagnetic field represented by a vector
potential :

Ax)=e f(z), (3.79)

where ¢ is the polarization vector and f(z) is a scalar function. Now the
interaction of a charged particle with electromagnetic field is introduced by
the gauge invariant substitution:

p—p—e A(x). (3.80)
Since x and p change sign under ﬁ, it follows that
A(x) = —A(—x) (3.81a)
ie.
PA(x) P7'=—A(—x). (3.81b)

This means that under parity
€ — —¢. (3.82)

The behavior of the polarization vector € characterizes what we call the
intrinsic parity of a photon. Thus we say that intrinsic parity of a photon
is odd. Similarly for any particle a represented by a state vector |a, p),

Pla,p) =1t |a,~p), (3.83)

where nf” is called the intrinsic parity of particle a. Note that nf = +1.
We now show that the conservation of parity leads to multiplicative con-
servation law. Consider a reaction

a+b—c+d. (3.84)
We can write the initial state
[i) = |a) |b) | relative motion ). (3.85)

Here |a) and |b) describe the internal states of a and b, while the third
factor describes their relative motion. This state can be described by a
wave function R(r) Yin (60, ¢). Since, we assume that parity is conserved in
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the reaction (3.84), it follows that the states |i) and |f) are eigenstates of
P, with eigenvalues ! and 77}) respectively. Now

!
n =1 my (—1) (3.86a)
l/
nf =nt ni (-1)", (3.86b)
where 0, nf, nf’, and n¥ are intrinsic parities of a, b, ¢ and d respectively

and (—1)" and (—1)" are their orbital parities in the initial and final states.
Parity conservation for the reaction (3.84) gives

n=ny (3.87a)
or
l I

e My (1) =n¢ ng (=1) (3.87b)

i.e. parity is conserved as a multiplicative quantum number.
However, the law of parity conservation is not universal, in particular it
does not hold for weak interactions. Then it follows from Eq. (3.72) that
it is not possible to find simultaneous eigenstates of Hy and P. Thus if

parity is not conserved, the energy eigenstates | ¥ ) are not expected to be
eigenstates of parity. In this case, we can write

|\Il> = ‘\I]regular> + Y ‘\Ilirregular> 3 (388)

where |Uycguiar) and |Wirregular) have opposite parities. y is called the parity
mixing amplitude and is a measure of the degree of parity non-conservation.
Parity violation is maximum if |y|> = 1. Several experiments involving
hadrons show that in hadronic interactions

|y > <1071,

Experiments involving atomic transitions show that parity is conserved to
a high degree in electromagnetic interaction and that | y |2 < 1074, For
weak interactions, the parity violation is maximum viz |y|? = 1. It follows
that in order to determine the intrinsic parity of a particle, one cannot
use weak interactions. Only by considering reactions involving hadronic
or electromagnetic interactions, one can determine the intrinsic parity of a
particle. Even then the intrinsic parity cannot be fixed uniquely and we
have to use a convention viz the intrinsic parity of a proton is +1, i.e.

n (proton) = +1. (3.89)
Since proton and neutron form an isospin doublet, we also take

7 (neutron) = +1. (3.90)
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3.4.1 Intrinsic Parity of Pion

We shall assume that the spin of pion is zero (we shall show later, how it
comes out to be zero). Consider first the decay 7 — 2v. Here we have two
polarization vectors €1 and €5 corresponding to two y-rays, whose momenta
we take as k; and ks, such that (gauge invariance) k; -e; =0, ko -e5 = 0.
We also note that €1 - 5 = 0. Now only the momentum k = k; — ks is
independent as K = k; + ko = 0 in the rest frame of 7°. It is clear that the
only invariant which we can form is k - (g1 X €3), which is a pseudoscalar,
showing that intrinsic parity of 70 is —1.

Consider the capture of 7~ at rest by deuteron. The dominant processes
are

T +d—-n+n (3.91)
—n+n-+-y.

Parity conservation for the first reaction gives

mema (<1 =m0 m0 (-1)" = (<1)", (3.92)
where [ is the relative orbital angular momentum of 7~d and !’ is that of
two neutrons. There is evidence that 7~ is captured in [ = 0 orbital state.
Thus from Eq. (3.92), we get

e = (=1)". (3.93)
The deuteron is a bound state of a proton and neutron and has spin 1.
The relative angular momentum of the two nucleons in deuteron is pre-
dominantly zero. Thus deuteron is a predominantly 3S; state, i.e. for a
deuteron JP = 1*. Tt follows that the total angular momentum of the
initial state is J = 1. Conservation of angular momentum gives Jgna = 1.
The spin S of the two neutron system is either 0 or 1. Thus for J =1, we
have two possibilities: Triplet spin state (S = 1): I’ = 2,1,0, i.e. the final
state is 3D; or 3P; or 3S;. For the singlet spin state (S = 0): I’ = 1 and the
final state is 'P;. Now the Pauli exclusion principle requires that the final
state must be antisymmetric. Since the triplet spin state is symmetric, the
orbital state must be antisymmetric, i.e. I’ = 1 and allowed final state is
3Py. For the spin singlet state, since it is antisymmetric, I’ should be even.
Thus ' P; state is not allowed by the Pauli exclusion principle. Hence we
have the result that the final state must be 3P so that from Eq. (3.93), we
get
e = (1) =1 (3.94)
since g = +1. Thus for a pion J” = 0~ and it is called a pseudoscalar
particle.
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3.5 Parity Constraints on S-Matrix for Hadronic Reactions

3.5.1 Scattering of Spin 0 Particles on Spin % Particles

Consider two-body elastic scattering of a spin 0 particle on a spin % particle

a + b — ¢ + d
/

P1 (p2,0) P} (py,0)

In the center-of-mass frame

p
p

= — P2 =DPi

— Py =Py (3.95)

For the elastic scattering |p;| = |p¢| = |p| = p. The initial and final states

can be labeled as |i) = |pi, 0),|f) = |ps, o). Under parity
Pliy=n!|-pio). P|f)=1}|-ps.0). (3.96)

The transition matrix elements

1
/
1

<pf,0"T|pi,0-> = <pf70|PTP T PTP |pi70>

=nm; (—py,o| PT Pt |—p;,0). (3.97)
Now invariance under P implies
PT P =T (3.98)
Because of elastic scattering
= (3.99)
Therefore, we have from Egs. (3.97), (3.98) and (3.99)
(=ps; 0| T|=pi;0) = Py, 0 T'|pis 0) - (3.100)

If we assume rotational invariance, then ( T') can depend only on the
rotational invariant quantities p, ps-pi, 0-P;; 0-Ps, 0 (PiXPy)-
We need not consider o2 or higher powers of it, because ¢? = 3 and
(o-a)(c-b)=a-b+io-(axDb). Thus these quantities can be reduced
to either a constant or o. In other words, assuming rotational invariance
only, we can write in spin space

(Ps,0| T Ipi;o) = [A(p,0) + A1 (p, 0) 0.pi + Az (p,0) 0.ps + B (p, 0) 0. (Pi X ps)] -
(3.101)

This is a 2 X 2 matrix in spin space. It is understood that the above matrix

elements are to be taken between spin wave functions x} and x; for the final
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and initial states. Thus using rotational invariance alone, we have 22 = 4
independent amplitudes. If in addition we assume invariance under parity,
then Egs. (3.100) and (3.101) imply A; = 0 = Ag. Therefore, invariance
under rotation and space-inversion gives

(ps,0| T |piso) = X} [A(p,0) + B (p,0) o (pi x pp)lxi-  (3.102)
This is an example which shows how a symmetry principle restricts the
form of a transition matrix.

3.5.2 Decay of a Spin 0T Particle into Three Spinless Par-
ticles Each Having Odd Parity

Consider the decay
A — P1 —|— P2 —|— P3

where all the particles have spin 0. Consider the decay in the rest frame of
particle A. We have

0 = p1 + p2 + 3, (3.103)

where p1, p2 and p3 are momenta of particles Py, P, and Pj respectively.
The transition matrix elements for the decay is given by

M (p1, p2, p3) =( P1(p1) P2 (p2) Ps(p3)|T | A(0) ). (3.104)
Under parity
Pl A(0) )=1]A(0))
PIPi(pi) )=—I|Pi(-pi) ), =123 (3.105)
Now
M (p1, P2, P3) = { P (p1) P2 (p2) Ps(ps)| PP T PIP| A(0) )
= (-1)*( P (—p1) P2(~p2) Ps(—ps)| P T P'| A0)).

(3.106)
If parity is conserved
PT P =T (3.107)
and we have from Eqs. (3.106) and (3.107)
M (p1, P2, p3) = —M (—p1, —P2, —Ps3)- (3.108)

Because of the rotational invariance, M can be a function of rotational
invariant quantities p; - p2, P2 - Ps, P3 - P1 and p; - (P2 X p3). But the
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last invariant is zero, since ps = — (p1 + p2). Hence the rotational and
space-inversion invariance implies
M (p1-P2, P2°P3; P3-P1) = —M (pP1-P2, P2 P3, P3-P1)
or
M =0.

Thus we have the result that the decay of a spinless particle with even parity
to three pseudoscalar particles is forbidden if we assume invariance under
space-inversion. On the other hand, decay of a spinless particle with odd
parity to three pseudoscalar particles will be allowed under space-inversion
invariance.

3.6 Time Reversal

Under time reversal
t— —t, xX—X (3.109a)
Therefore,
p—-p, L—-L oc— — 0. (3.109b)

Let II denote the operation which transforms quantum mechanical states
and operators under the above transformation, i.e. under t — —t. First
we show that II cannot be a unitary operator. Under II, the commutation
relation

is not invariant. Hence the transformation generated by Il cannot be uni-
tary. But we want the above commutation relation to be invariant under II.
A way out of this difficulty is as follows: All c-numbers are simultaneously

transformed into their complex conjugates. Such a transformation is called
antiunitary. Then under II,

-G =g, p—UpIT"'=-p (3.111)
1 — —i
and the commutation relation (3.110) remains invariant. Also, we note that

NJImnt=-J (3.112)
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and the commutation relation
(i, Jj] =g Ji (3.113)

is preserved.
If Hy and V are invariant under time reversal, then

I H,I"' = H,y

II Hiy T = Hypy (3.114)

Now [cf. Egs. (2.60) and (2.61)], under time reversal we have to follow the
rule , ¢ — —i and as such

s = St
o7 =71t
Now referring to Eq. (2.58)
Mja);n = M]a,ty — —o0)
= |a', tg — o0)
= |at>out-
Invariance under time reversal implies
(fIT |4)=(f I 'L T I | )
=yt
=" |T | f). (3.115)

From time reversal invariance, we derive some important results:

3.6.1 Unatarity
Consider the weak decay B — f. The decay amplitude is
Af ~out <f |H| B>
Time reversal invariance gives
Ap = (f|H| Bt
=out (f'|STH| B')" (3.116)

The superscript t on states represents that we have to reverse momenta
and spins. If we use the fact that spins are to be summed and final states
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are to be integrated and work in the rest frame of B, then we can remove
superscript ¢ and Eq. (3.116) gives

= o (F|STn), . ot (IH|B) (3.117)
t= ;S;;fAn
=" (Ouy — iTf) An (3.118)
A3 = ;f —iy TrpAn (3.119)
Ay —Ap= —iZTZ‘fAn (3.120)
SAp = %ZT;‘}AH (3.121)

n
where T, ¢ denotes the scattering amplitude for f — n scattering.

3.6.2 Reciprocity Relation

Let us specify the initial and final states as

i) =1a, pi mi)

| f) =18, ps, my). (3.122)
Then
’ it > = | «, —Ps, _mi>
| f') =18, —=ps, —my). (3.123)

where m; and my denote the z-component of spin and o and 3 denote the
all other quantum numbers which may be necessary to specify the states.

Therefore, Eq. (3.115) gives

(B, Py, mf\T | o, pi, mi) = (a, —pi, —my|T | 3, —DPy, —mf>~

(3.124)

This expresses the equality of two scattering processes obtained by revers-
ing the momenta and spin-components and interchanging the initial and
final states. This is known as reciprocity relation and is a consequence of
invariance under time reversal. Since II is not a unitary operator, there-
fore, it does not have observable eigenvalues. The states cannot be labeled
by such eigenvalues. Therefore, invariance under II cannot be tested by
searching for time-parity forbidden decays. It can be tested by using the
relation of the form given in Eq. (3.124). No violation of time reversal has
been found in hadronic and electromagnetic interactions.
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3.7 Applications

3.7.1 Detailed Balance Principle
3.7.1.1 Determination of Spin of the Pion

If we assume invariance under time reversal, we get Eq. (3.124). In addi-
tion, if we assume parity conservation, we have from Eq. (3.124).

<67 Py, mf|T |017 Pi, m7.> = < @, —Pi, _m1|PTT P |ﬂa —Py, _mf>
If the spins are summed, then we can write

2 2
spin spin
(3.126)
This is called the “semi detailed balance principle”. We now apply the
above result to two-body scattering
a+b—c+d, eg p+p—7t+d

Then we get [cf. Eq. (2.100)]

do 1 m?\[ Pcd 1

- b d) = Fopedl?

oo (a+b—ctd) =3 E2 pap (25a+1)(25b+1)§1| -
(3.127)

and

do 1 m% pab 1 9

— d b) = N 72 Foa—al” .

49 (C-i- —a+ ) 1672 Egmpcd (2Sc+1) (23d+1)§1| cd ab‘
(3.128)

But Eq. (3.126) gives
Y N Fabcd = Y | Feaanl® (3.129)

spin spin
Hence we have

do (28 + 1) (284 + 1) p?,; do
— b d) = 2 d b).
dQ (Cl+ — c+ ) (25a+1)(25b+1)p3bdﬂ (C+ — a + )

(3.130)

This is known as the principle of detailed balance. We now apply the above
result to the reaction

p+p—at+d
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Then from Eq. (3.130), we get

3(28x +1) p2 do

d
dfé(p+pﬂ7r++d): - Ed—g(ﬁ++dﬂp+p), (3.131)

where we have used the result that the proton spin s, = % and that the
deuteron spin sq = 1. For the total cross sections, we get

3 2
a(p+p—>7r++d)=1(237r+1)%2r0’(7T++d—>p+p)- (3.132)
p

From the experimentally measured cross sections, we find s, = 0, i.e. the
spin of the pion is zero.

3.8 Unitarity Constraints

So far, assuming rotational invariance, we have discussed the constraints on
the T-matrix imposed by space reflection and time reversal invariance. In
this section, we discuss the constraints on the T-matrix due to the unitarity
of the S-matrix.

Unitarity of the S-matrix gives

SSt=1 (3.133a)
or
(G 1S 8T [0y =G li) = dj, (3.133b)
where |i) and |j) are initial and final states. Introduce a complete set of
states |k),
M GIS k) (kST 1) =65 (3.134a)
k
or
SoGl[1+i@m ot (B = PO T] k) (k| [1 =i (2m)" 6* (P = P) T i)
k
=9 (3.134D)

Jis
which gives

—i(2m)" Y [k 0 (P = Po) Tor — 88" (P — P) (T |
k

= (2m)® ) 0" (Pj = P) (j |T|k) (k| TT[i)6* (P, — Py)  (3.135a)
k
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or
—i [Ty = Tj5) = 2m)* > (G | T|k) (B TT[i) 6* (P, — P).  (3.135b)

k
In Eq. (3.135b), > means integration over momenta and sum over other

quantum numbersfC Only those states will contribute which are allowed by
energy-momentum conservation implied by the J-function in Eq. (3.135b).
For forward elastic scattering and no spin flip, i = j and we get

2975 = (277)42 G|T | k) (k|TT |d) 6* (P, —P). (3.136)
For two-body scatteril;lg viz

a+b—-1+2+---

the right-hand side of Eq. (3.136) is the transition rate W; [cf. Eq. (2.99)],
where W;(i = a + b) is given by

1 |p|Ecm
W; = o; (Flux),, = oy . 3.137
Expressing the T-matrix, in terms of the amplitude F', we have
4
1
Tii = |75 N Fii7 (3138&)
[ (27r)3/2
where
"I‘i g;”, a and b both fermions

N =1 3%, a boson, b fermion (3.138b)
ﬁ, a and b both bosons
Hence, we have from Eq. (3.136):

2nSFy = Eem |P| 0ab = 3 A (s, m2, mi) oa, (3.139)
where Fj; is the forward elastic scattering amplitude, o; = o4 is the total
cross section for the reactiona+b —1+2+--- and

meMmp
n=4q 5 (3.140)
i

depending upon the nature of particles a and b. Equation (3.139) is known
as the optical theorem. As a simple example, consider a and b to be spinless
particles. Then we can express

F;; (s,0) =8rm 51/22 (2L +1) F;j,1 (s) P (cos®)
L=0
=87 s'/2 f,; (5,0). (3.141)
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If we put f;; (s,0) = f(0) we have from Eqs. (3.139), (3.140), and (3.141)
Sf(0)= Ip| Tab (3.142)
47
the usual form of optical theorem in potential scattering.

3.8.1 Two-Particle Partial Wave Unitarity

Assume that for each channel k, three or more particles states can be ne-
glected. We work in the center-of-mass frame, with initial state ¢ = a + b,
so that p, = p» = p. We take p along z-axis. Two-body Lorentz invariant
phase space is given by

d3p d?
4 1k P2k 4
ne (2w / ) pik + ok — F;) - 3.143
(2m) (47)° Exg (21)° B, (P1k 72— F) (3.143)
In the center-of-mass frame, p1x = —p2r = Pk, where
A (s, m?,_, m2,)
Pe = [Pl = v 7 B (3.144)
%, both bosons
ng =1 "4, 1st particle boson, 2nd one fermion (3.145)

M1k Mok, both fermions
Then working out the integral (3.143), we get
i Pk ’
An2 51/2 ’
where ' = (0, ¢') is the solid angle between p and py. Q = (6, ¢) is the
solid angle between p and pi; where py; is the momentum of first particle
in the state j. Q" = (0", ¢") is the solid angle between pj, and pi;. For the
two-particle states in channel k, the unitarity relation (3.135b) becomes,
on using Eq. (3.146)
. * ng *
—i [F}i (Q) — F5 (—-Q)] = Zip’“ /ij Q") Fj (=) d9.

42 g1/2
k

n (3.146)

(3.147)
We use the general relation (3.147) for two-particle unitarity for three im-
portant cases:
Case (i): Collision between spinless particles. In this case ¢, j, and k are
simply channel indices. For this case, we can expand Fj; () in terms of
the Legendre polynomials of cosf [this is a consequence of rotational in-
variance; there can be no dependence on the magnetic quantum number m
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and hence no dependence on ¢|. This expansion is given in Eq. (3.141).
Similarly Fj (©') is independent of ¢’ for spinless particles and can be ex-
panded in terms of Py, (cos@’). Likewise F i (") can be expanded in terms
of Py, (cos ). Hence, we have from Eq. (3.147)

— 87 s1/? Z (Fji, L (s) — Ff5 1 (s)) (2L +1) Pr (cos)
L
_ 1 Pk 2
x> N (QL"+1) (2L +1) Fi, 1 (s) Fjy 1o (s)
L// L/
X /PLu (cos0") Pp: (cos@') sinf do’ dg¢'. (3.148)

In order to evaluate the integral on the right-hand side of Eq. (3.148), we
use the following formulae:

4m
P, " = — E Y/ Y NGy 14
L (COSQ ) (2L+ 1) — LM (€70) LM (9 7¢) (3 9&)
2 A7 27T
P /! / — Y* Y / / /
/0 L (cos0”) do GL+ D) EM/ v (0,0) Yo (60',¢7) do
0
872 ,
= 4—PL (cos @) Pr, (cos8") (3.149Db)
7r
! 2
[1d (cos®') Pp (cos®) Pr/(cosf) = 2L+15L/L' (3.149¢)

We get from Eq. (3.148), using Egs. (3.149)

%Z (2L +1) (Fji, L(s)— F;}, L (S)) Py, (cos )
L

= Zpk Z (2L' +1) Fji, 1 (s) Fjy 1 (s) Pr (cosf) (3.150)
k L

Since the Legendre polynomials are linearly independent, we get the desired

2-body partial- wave unitarity relation

%(Fja L(s) = F5 0(8) =D ok Fj n(s) Fis p(s) (3.151)
k

If we are interested only in elastic scattering, we may drop indices i and j
and we obtain

SFL(s)=> e |Fi, ol - (3.152)
k
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Occasionally all channels except the elastic one are closed at low energies.
Then pr = p and we have

SF, =p |FL)? (3.153)
so that we can put
Fp = % L sin §p,, (3.154)
where d;, is a real function of s. We can also express
F = % (e¥0r —1) = p~! (cot oy, —i) . (3.155)

The differential cross section is given by

d 0ij 1 p’ 1 2
- - \F.
dQ ~ 4s p 1672 [F2j (5, 0)]
2
/
:% 3" (2L +1) Fyjp (s) Pr (cosb)| (3.156)

L
where we have used Eq. (3.141). Using the orthogonality of Legendre
polynomials, we get

/
Oij :47’(’%2 (2L+1) IFji,L (S)|2 EZ 0ji,L, (3157a)
L L
where
/
OjiL = 4 (20 +1) |Fjipl (3.157b)
p

For “purely elastic” region, where Eq. (3.154) applies, we have from Eq.
(3.157b)

oL=3 (2L + 1) sin® 6. (3.158)

Case (ii): Particles a and b carry spin. Here it is convenient to introduce
helicity. Let A; and As be helicities of particle a and b respectively and
let A = A1 — Xo. In the center-of-mass frame p, = —pp, = p. Let us
take the vector p = (p, 0, @) . In the center-of-mass frame we represent the
two-particle state as [Q= (6, ¢)]
[P AL A2, Q) = [ ) [=pa) (=) (3.159)
The last factor in Eq. (3.159) is due to phase convention. Noting that
J=J1+J3),J-p=J, -p—J2 (—p), we have
J-p

|p| |p7)‘17)‘279> = A ‘p7A17)\27Q> (3160)
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Now
R 10,0) =10,¢) (3.161)
where R is the rotation operator e~?J/" [n = (—sin ¢, cos ¢, 0)] and

RI|JM)=>"|J M) (JM |R |J]M)
M’

=3 [J M) i () (3.162)
VT

where df,,,,; (Q) are rotation matrices. Thus
(J M M\ 606) = (J M,X|R |00)

_Z (J M X R |J M\ (J M ,\[00)

= ZdMM, (J M ,\00)

2J+1
= die (Q) 1o OMA
M’

2J +1
= e disy () (3.163)

Hence

10,6, X) = > |TM, \) (JM, \| 0¢)
JM

2J +1
=> o [T dis (Q). (3.164)

Thus we can write
12 +1
|97¢7>\17)‘2> = JZM|JMA1)\2> Td}]\/[)\ (Q) . (3165)

We now consider the scattering process a+b = c+d. Let A\; and A, be initial
helicities and A} and M\, be final helicities. A = X\ — X and X = \| — AL,
We take initial momentum p = (p, 0, 0) and final momentum p’=(p/, 6, ¢).
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We can write the scattering amplitude on using Eq. (3.165)
Fji (>\/1 /27)\1>\2aQ) = <0 ¢ >\/1 ,27.]| F |O 0 >\1/\27 Z>

. 27 + 1 27 + 1
> St @22 g, 0

J'M' JM

(J'M' N, Xy, §IF |JM Mg, i)

T 2J'+1) (2J+1)
d I/A/ 2
JZ,M, Z (4m)
X Oneand g S OpnF. ji (A1AS, A A2, s)

2 +1 .
:nZgFjg (>\/1 ,27>\1>\273)d){)\/ (0,¢)

X

47
J
(3.166)
Note that n = 87@% when all the particles are fermions. For

spinless particles n = 3272 s%/2 X\ = N = 0, J = L and dj, (,¢) =
2J+1YL*O (0,¢) = Pr, (cosf), we get back Eq. (3.141). The differential
scattering cross section for the process a + b — ¢+ d is given by
do _ p'| 1
d  |p| (2s1+1)(2s2+1)

2
x> DI+ FT (XA, Mg, s) dfy (0) (3.167)
NGz | J
where we have used
dly (0,0) = )2 ql (9). (3.168)
To proceed further we note the following properties of rotation matrices
J (o _ (4771 _ gt _gJ*
il (—Q) = (d (Q)) = (d (Q))XA = d{3, (Q) (3.169)
g 7 47
d)\)\/ (Q) dM)\’ (Q) dQ = méj]' (5)\]\/[ (3170)
a7 () =d’ (=) d’ () =d’" (@) &’ (Q)
or
o (@) =3 (¢ @) (@ (@),
M
=D dii () dipn (Q) (3.171)
M
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Note that in Eq. (3.171) d” (©2”) has been expressed as product of two ro-
tation matrices corresponding to —€2’, Q. Then using Egs. (3.166), (3.169),
(3.170) and (3.171), we get from Eq. (3.151), for the two-particle partial
wave unitarity relation.
2%. [Fji (N1 A da; s) = By (AnAa; ALAG; S)]
=D Ded > Fi (N A Akos 8) Fi (Mdas e, Aryss) . (3.172)
ko Ak Ak
The two-particle elastic unitarity gives
1
2i
=p > F NG M A 8) 77 (Mdg; A ASss) - (3.173)
A/AY

[FJ (VN A Aas 8) — F77 (A das XD s)]

Assuming parity conservation, we get

F7 (=N}, =Ny =1, —Aas8)

= (=1)"1% 2751752 BT (VM A Ay s) (3.174)
where s1, $2, s7 and s} are the spins of particle a and b in the initial
and final states and 7 is the product of their intrinsic parities. Equation
(3.174) shows that not all the amplitudes are independent. Time reversal
invariance puts additional restrictions on the amplitudes F”/’s namely

Fji]i (M5 A1 )e;s) = F;; (M A2; A1 AS;s) (3.175)
For the elastic scattering:

FY (N M a:s) = F7 (A ha; MM s) (3.176)

Finally using the orthogonality of d-matrices, we get integrated cross section
for elastic scattering from Eq. (3.167)

U:EO'J
J

where
(2J+1)

2
281 =+ ].) (282 —|- ].) ’

(3.177)

oy =4 Z |E7 (N AG; At das s)
( N AL Ao

In particular, when all the particles have spin 1/2; the S-wave unitarity

gives (s = 4p2)

47 sin? & T

T (3.178)

g8 =
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For special case of the elastic scattering of a +b — a+b, where a carries
spin s and b is spinless, we have A = A\; — Ay = A\ and X = \| =\, = \|. For
this case we have from Eqs. (3.166), (3.167), (3.173), (3.174) and (3.176)
(for a to be fermion)

4m/s J 7+
Fux (Q) = 2J +1)F, , 1
va () o Z( J+ 1) F5iy (s) day (6,9) (3.179)
2
do 1 S @I+1)Fly (s)dl (0) (3.180)
Q@ (2s+1) 42 |5 AR RTTEAN :
2J+1 J 2
oy =4n <25+1> D | (5)] (3.181)
A
1 .
Z /i]'A( ) F)\)\’ :| _pz M F)‘\]/A’< ) (3182)
A//
Fl,=F’,_, (3.183)

We end this chapter with the following remarks. We have shown how
the symmetry principles put restrictions on the S-matrix. In this way,
we get the minimum set of observables to describe the experimental data.
This approach is especially rewarding, when the underlying dynamics is not
known, which is the case for the hadronic interactions.

3.9 Problems

(1) Nucleon-nucleon scattering
N, + Ny, — N, + Ny

In the center-of-mass frame

Pa = —Pr=DP
P, = P, =p
Introduce three orthogonal unit vectors 1, m,n
_pxp P -p P +p
= o, M= n=—
Ip x p| I’ - p| P’ + p|

lil]‘ + m;m; + nin; = 6ij 1= ]., 27 3
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Then T-matrix can be written as

<T> = <a7 p/a o1, 02|T |O‘7 P, 01, U2>
= [Al —|—B1 0'1~1+Cl Ul'm+D1 Ul'n]
X [Ag + By 09:14Cy 02-m+Dsy 091
It is understood that the matrix elements are to be taken between the
spin states Xl f X}: f and X4 Xpi- Then using parity conservation and
time reversal invariance, show that 7" can be written as
m .
<T> = (E) [Hl +H2 0'1‘1 g9 - 1+ZH3 (01 +02) -1
+iH% (01 —02) - 14+Hy 01-m oo-m+Hs 011 031

For identical nucleons like p — p and n — n scattering, (T} has to be
symmetric under 1 < 2; hence H4 = 0. Show that

01-02=01-10og-14+40,m osm+ o1-n oyn.

By eliminating o;-n o2-n, using the above relation, express (T') as

<T> = (%) [Gl + Gy 0109 +G3 01'm og-m

1
+Gy i(O’l —|—O’2) -14+-G5 5 (01'1 09 '1+02~1 o1 - 1)
+ G6 i(O’1 —0’2) 1]

Using
T
et 1t G (q?) &P =V(r),
(%)3/ (a2) dq =V (+)

show the most general form of 2-nucleon potential can be written in
the form

Vig =Ve+V, 01-024+Vr S12+ Vs 0 - L+Vs Q2 + Vs (01 —02)-L
where

Sia=301ToyT—01 02

Q12=%[01-L02~L+ oL oy - L]

oc=o01+09 =28
L=(rxp)



3.9. Problems 87

(2) Consider the elastic scattering a + b — a + b, where a is spin half
particle and b is spinless. For this case J = L + 1/2. Expressing the
two independent amplitudes FlJ/2 12 and F1J/2 1yp B8

1
Fi1/2 £1/27 5 (fL+ + f(L+1),) ;

where Ly correspond to J = L+1/2, and then using Eq. (3.153), show
that

%fLi =Pp |fLi|2

Hence one can write

1 .
fr,=-— e+ sindr,,
p
1 .
fr_ =~ er- sind;
p
The scattering matrix [cf. Eq. (3.102)] can be written as
4rrst/? )
Fapr (0,0) = o Xoo [f +ig o -n]xum
where n = Ii . g:‘. If p is along z-axis, then

XM’ = eiie on XM, n :(_Sind)v COS ¢70)
Using the relations (where the prime denotes differentiation with re-
spect to cosf),

1 0
le/2 1/2 (0,¢) = di]/z 1/2 = m0055 (P3+1/2 - 3—1/2)
= d{1/2 -1/2 (0)

A )y 1yp (0,0) =€ d{)y 1) (0)]
e 0
EEESVEA (Pras  Proap)

A1y 1p0 (0,0) =€ d)y 1) (6)

show that
Mg 0 i .0
[(0)= Insl/2 |:F1/2 1/2 COS 5 +e'? Fi/a —1/2 sin 2]
Mg i 0 .0
90) =5 [e P Fijp _1j2 055 = Fipp 1 sin 2]
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Now, using Egs. (3.179) and (3.180), show that

f(0)= Z [(L+1) fo, +Lfr_| Pr(cosb)
L=0
g(0) = Z [(fLJr - Lfo) sinf Py (cos@)}
L=0
do m2 1 9 5 5
30~ Tonzs3 2o P =117 +1gl
dQ  16732s 2 &~
(3) Consider the decay
a; — pw

pr=F+q¢", p=k+q

P =ik, K=,

@ =m2~0

List all the ¢-values allowed by the conservation of angular momentum
and parity. The decay width is given by

1 |k
po & M|?
8mm2,
where
2 - 2
MPP= > |F|
Polarization
Take
F:fapTr Mgy 1€
where
n* : Polarization of axial-vector particle a;
e . Polarization of p
Find T

(4) Consider the decay

V — P1P2
V(17) = Pi(O7)P(07)

(a) Show that it is a p-wave decay, if it is a strong decay.
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(b) p* : 4-momentum of V'
e* . polarization vector of V'
p-e=0
Using, Lorentz invariance, show that the amplitude has the form
F=gvpq-e, ¢ =(p1—p)"
(c) Show that the decay width is given by
3
r— gy rp 2\ Ip|
4 3 m%/
|p| is the momentum in the rest frame of V

A _*\ Pubv
ZEHEV = 9w T 75
my

A

(5) Consider the decay
=y
(a) Show that it is a p-wave decay.
(b) Show that the decay amplitude can only have the form:

F=¢eF. k- (s’\ X e’\l>

Show that
3
]
F (7TO — ’y’y) = 47TO[2F7§0V,7m72
70
2
T
= TFfowmﬂo (in the rest frame of 7°)
Find Fro.., using the experimental value

7= (8440.5) x 10" "s.
(6) Consider the decay
A—-X+V
JPXx)y =07, JF(v)=17, JP(A) =1",1"
List allowed [-values for the final state. If the parity is conserved, which

I-values are excluded for JF(A) =1 and JF(A) =1-.
(7) (a) For the decay
X —=Vi+Vy JP(X)=0"
the decay amplitude is given by
A=Aje;-ea+ Ager -pea-p+ A3p- (61 X €2)

where €1 and €5 are polarization vectors of V; and V5 and p is the
momentum in the rest frame of X. If the parity is conserved which
of the above amplitudes are zero.

(b) List all the allowed I-values for the final state. If the parity is
conserved which [-values are excluded.



90 Space-Time Symmetries

3.10 References

—_

. S. Gasirowicz, Elementary particle physics, Wiley, New York (1966).

. H. M. Pilkuhn, Relativistic particle physics, Springer-Verlag, New York
(1979).

3. P. Ramond, Field Theory: A Modern Primer, Westview Press; 2nd
edition (2001).

4. E. M. Henley, A. Garcia, Subatomic Physics, World Scientific, 3rd edi-

tion (2007).

[\



2022 © The Author(s). This is an Open Access chapter published by World Scientific Publishing Company, licensed
under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
https://doi.org/10.1142/9789814338851_0004

Chapter 4

Internal Symmetries

Hadrons found in nature are not fundamental constituents of matter. There
are hundreds of them. They can be divided into two classes: (a) baryons:
they are fermions with half integer spin, i.e. J = 3/2,1/2; (b) mesons:
they are bosons with integral spin, i.e. J = 0,1,2. Some of the low lying
mesons with J© = 0~ and J¥ = 1~ are shown in Figs. 4.1 and 4.2.
Low lying baryons with J = 1/2% 3/2% are shown in Figs. 4.3 and
4.4. Hadrons with the same J¥ are distinguished from each other by some
internal quantum numbers. The assignment of these quantum numbers
is meaningful, since these quantum numbers are additively conserved in
hadronic interactions.

4.1 Selection Rules and Globally Conserved Quantum
Numbers

A particle would decay into two or more lighter ones if the decay is allowed
by energy-momentum conservation. The reason is that the entropy S =
kpln (phase space). Since phase space for the lightest particles is largest
and the entropy S tends to increase, the system tends to decay into the
lightest particles, unless there is some selection rule to forbid that decay.
But we know that certain decays, although allowed by energy-momentum
and angular momentum conservation, do not take place. Thus there must
be selection rules or conservation laws which forbid these decays.

We now list these “global” conservation laws:

(i) Electric charge conservation: The decay e~ — v+ is not seen (7, >
4.3 x 10?3 years). This is a consequence of electric charge conservation:
“Electric charge is additively conserved in any process”. This in turn is
a consequence of the invariance of Hamiltonian under the global gauge
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Mass (M{eV)
960 | ul 5=0,I=0
2= 1,I=1/2
550 _ m == O, I=0
4941921 J=1/2 ¥ K KD K'g= 1 J=12
1401 7 7 i
Q
g
-1 0 1
Fig. 4.1 Lowest lying pseudoscalar mesons J* = 0.
WL (leV)
1020+ ¢ ==0,I=0
_ - - “&0 _#Q ¥t
B9245=-1,F12 K K Ko=1 =12
i == 9_ I=0
7834 - —n T—
7707 P ol P5=0,I=1
-1 0 1 Q
Fig. 4.2 Lowest lying vector mesons JF = 1~
transformation Ug (1) :
|T) — @A W) (4.1a)

so that
[Q, H} = 0. (4.1b)
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M eV
1320 = =0 =2 I=1/2
1190 T ¥ wre=-1, =1
1114 - M 8§=_1, I=0
933 n p 5=0,I=1/2
-1 0 1 o

Fig. 4.3 Lowest lying 1/2% baryons.

M (WleVN)
16720 §=.3 I=0
153 = = §=-2, I=1/2
13gs| T 0 #* g=.11=1
1232] A AL A A
S=0, I=32,
-1 0 1 2 Q

Fig. 4.4 Lowest lying 3/2% baryons.

The electric charge Q is a generator of Ug(1) global gauge group. If A is
a function of space-time viz A = A(r,t), then the gauge transformation is
called local. Actually, electric charge has a dual rule; it is also a generator
of the local gauge group, U = e’@Mr:t) Tt is a feature of local gauge group
that corresponds to this transformation, there is a vector field A, coupled
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to the matter field ¥, with a universal coupling whose strength is just the
electric charge of the particle represented by the field ¥. None of the other
quantum numbers has this feature.

A closely related concept is the quantization of the electric charge, which
at particle level is expressed as

qg=Nge, (4.2)

i.e. the electric charge ¢ of any hadron or lepton is an integral multiple of
elementary charge e. In particular N,, = 0 [g, = (—0.4 £ 1.1) x 1072} ¢]
and N, + N, =0 [|(ge + )| < 1.0 x 10721 ¢].
(ii) Baryon charge conservation:

The following decays

p—et+y
p—>e++ﬂ'0

although allowed by electric charge conservation are not seen experimen-
tally (7, > 1031 —1033 years). This can be understood, if we assign a baryon
charge B as follows:

+1 for baryons
B = ¢ —1 for antibaryos (4.3)
0 for leptons and mesons

and demand that B be additively conserved in any reaction
AB=B;—-B; =0. (4.4)

The corresponding global gauge transformation under which the Hamilto-
nian is invariant is given by

T) — eBA |p) (4.5)

(iii) Lepton charge conservation:

Some decay modes of leptons are not seen. The absence of these de-
cay modes is a consequence of non-conservation of lepton charge which is
assigned as follows:

+1 for leptons
L =< —1 for antileptons (4.6)
0 for all other particles.
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Any reaction in which L is additively conserved (AL = 0) is allowed; oth-
erwise it is forbidden. Some examples are given below:

n—op+e + U Allowed
L0 O 1 —-1AL=L;—-L;=0
Ve +(Z,A) = (Z+1,A) + e~ Not allowed

L -1 0 0 1 AL=2
ve +(Z,A) —» (Z—1,A) + et Allowed
L -1 0 0 —1AL=0

Further, the reaction [antineutrinos obtained from the decay of pile neu-
trons in a fission reactor (n — p+ e~ + 7]

.+ 3Cl—e 4+ 3Ar
for which AL = 2 is not seen, but the reaction using solar neutrinos,

ve £ ClL — e~ +37 Ar
has been seen and is allowed by lepton charge conservation. Also the allowed
reaction

Ve +p— et +n

has been observed with expected cross section. The global gauge transfor-
mation, under which the Hamiltonian is invariant is given by

|T) — LA | D). (4.7)

It was later discovered that the neutrino produced in the decay =+ —
uT v was not the same as v, since if it were so, a reaction of the type

v+ (Z,A)— (Z+1, A)+e”

would have been observed. Instead what was observed was p~ replacing
e~. This clearly shows that the neutrino accompanying u™ in 7+ decay is
different from v, and is denoted by v,. The muon number defined as

+1 for p=, v,
L,=< —1forut, p,
0 for all other particles

is conserved in processes involving u*, vy, V. The best limits are

I(u— ey) —11
— - < 12x1
L(p — all) < x 10
and
L'(p — 3e)

T <1.0x10712
T'(u — all) < %
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(iv) Strangeness and Hypercharge:

It is clear from Figs. 4.1-4.4, that hadrons with the same spin and parity
occur in nature as multiplets. Consider, for example, J¥ = 0~ mesons.
We distinguish the triplet of pions (7%, 7%), the doublets (K, K°) and
(f( 0K ’) by assigning a new quantum number, called strangeness: S(7) =
0, S(K) = +1 and S (K) = —1. The singlets 7 and 1’ have strangeness
S = 0. Similarly the baryons with J* = 1/2% are assigned the strangeness
quantum number as follows: For the doublet (p,n), S = 0, for the triplet
(2%,%%), § = —1, for the singlet (A°), S = —1, and for the doublet
(E%,=27), § = —2. Sometimes, it is convenient to write Y = B + S, where
Y is called the hypercharge.

The quantum number S is additively conserved in hadronic interac-
tions. In any process, involving hadronic interactions, AS must be zero.
This immediately leads to the result that in hadronic collisions, the strange
particles are produced in pairs:

— KO+ A0 AS=0

_ A K-+ AS = -2
4 A K™ +p AS = -1 (4.8)

—n+ KT +K- AS =0.

Experimentally, only the first and the last reactions are seen and the cross
section for these reactions is typical of strong interactions. On the other
hand, strange particles decay into ordinary particles by weak interactions:
AN—-pn™
K° - nfn—.

These decays have lifetimes of the order 107!° seconds, characteristics of
weak interactions. Thus strangeness is not conserved in weak interactions.

In strong interactions, since both quantum numbers B and S are con-
served, it is clear that hypercharge is also conserved. The gauge transfor-
mation under which the Hamiltonian is invariant is given by

T) — VA |p) (4.9)
It is interesting to note that the hypercharge of a multiplet is just equal to
twice the average charge of that multiplet, i.e.

Y=2(Q)=2 (q/e). (4.10)
For example for the triplet of pions (7%, 7%), (Q) = 0 and Y = 0, for the
doublet (p,n), (Q) =1/2 and Y = 1, whereas for the doublet (K°, K~) or
(2%27),(Q)=1/2and Y = —1.
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It is tempting to assign another quantum number, called isospin to each
multiplet. For example we can assign I = 1,13 = +1,0,—1 to the triplet
of pions (77, 7% 77) and I = 1/2, I3 = 1/2 and —1/2 to the doublet
(p,n). We will discuss isospin in the next section. Here we summarize the
conservation laws for internal quantum numbers @, B, S and I for the three
basic interactions.

Quantum Number | Hadronic | Electromagnetic | Weak
Q Yes Yes Yes
B Yes Yes Yes
SorY Yes Yes No
Isospin Yes No No

4.2 Isospin

We now introduce isospin. From Figs. 4.1 and 4.2, it is apparent that
particles occur in nature as multiplets. In analogy with ordinary spin, we

can regard proton and neutron as an isospin doublet (nucleon) N = (p )7
n

with I =1/2 and I3 = +1/2.

The concept of isospin is meaningful only if in hadronic interactions
isospin is conserved. This is indeed the case. Experiments on nucleon-
nucleon scattering show that after subtracting the effect of Coulomb force
in pp scattering, pp, np and nn hadronic forces are equal in strength and
have the same range. That is nuclear forces do not depend on the charge
of the particle and are thus charge independent. It is now known that all
hadronic forces, not just the one between nucleons are charge independent.

The two states of nucleon N viz p and n will have similar properties as
far as hadronic forces are concerned. Without electromagnetic interaction,
proton and neutron will have the same mass, but its presence makes their
masses slightly different. This is supported by the fact that (m, —m,,) =
—1.2 MeV only, i.e. about 0.1% of m,,.

Like ordinary angular momentum, we introduce a quantity isospin
I = (I1,15,1I3) in isospin space. The operator 1 satisfies the commutation
relations of angular momentum J viz.

[I}, I}} =ieyk 1j,i=1,2,3. (4.11)

As a consequence of these commutation relations, it is possible to find a
complete set of simultaneous eigenstates |I I3) of I?, and I3 with eigenvalues
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I(I+1) and I5:

12 |1 13)=I(I+1) |IIs) (4.12a)
Ig |1 L) =15 |1 I5). (4.12b)
I5 has (21 + 1) eignenvalues
=1, +I. (4.13a)
The possible eigenvalues of I are
1=0,1/2,1,3/2,2,--- (4.13b)

Thus, all the multiplets in Figs. 4.1 and 4.2 belong to an irreducible repre-
sentation of the isospin group, i.e. they have any of the possible eigenvalues
of I given in Eq. (4.13b). For example, the proton and neutron states can
be written as far as the isospin is concerned as

lp) =11/21/2)
[ny =1/2 —1/2), (4.14)
and the pions can be represented as
|7t) =111)
‘7r0> =110)
|77y =11 —1) (4.15)

The charge of a state is given by the relation

1
Q= (g) =L+{(Q) =1+5Y. (4.16)
This is called the Gell-Mann-Nishijima relation.

Charge independence of hadronic force implies that this force does not
distinguish any direction in isospin space that is to say that hadronic inter-
actions are invariant under a rotation in isospin space in complete analogy
with ordinary angular momentum. This means that the S-matrix or the
hadronic part of the Hamiltonian H;, commutes with the rotation operator

Ur = e*m'i, a=wn (4.17)

in isospin space, i.e.
[S, U]] = 0, or [Hh, U]] =0. (418)
iis the generator of a rotation group in the isospin space. For an infinites-

imal rotation

Ur=1—ia. I (4.19)
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Hence, we have
[S, i} —0, or [Hh, i} -0, (4.20)
i.e. isospin is conserved in any process involving hadronic interactions.
Thus we have the selection rules
AJI?P=0, AIL=0. (4.21)
Since in the absence of electromagnetic interaction, the mass Hamilto-
nian Hj; commutes with I, the eignestates of Hjy; with the same I, i.e.
(2 + 1) states with different values of I3, are degenerate in mass.
As an illustration of isospin conservation, we consider the m — N scat-
tering.
mp — 7t
T p—T P

N 7T0’I’L

We can write
|7t p)=1[11) [1/21/2) =[11/211/2)
|7~ py=111/2 —11/2)

|7 n) =11/20 —1/2). (4.22)
Now the scattering amplitude F' is given by
(7~ p|F|7~ p)
=33 (mp| I I511)2)

I3 I'I}
x (I' I3 11/2|F|T 131 1/2) (I1311/2 |7 p)

=> > (x"p|I' 15 11/2) Fy 6,y Opyp (1 1311/2 |7~ p)

II; I'T,
= Z<7r— p| I —1/211/2) Fr (I —1/211/2 |7 p). (4.23)
I
Using the Clebsch-Gordan coefficients, we have
_ _ 1 2
(7~ p|F|m p>:§F%+§ 1 (4.24a)
Similarly, we get
_ V2 V2
(r° n|F|n~ p) = 5 -5 (4.24b)

(7t p|F|7" p) = Fs. (4.24¢)

2
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Without using isospin invariance we have three independent amplitudes.
With its use we have only two independent amplitudes. Thus

2
=g (4.25a)

Op+ = P ‘F%
Op— = [0’ (7r_ p— T p) +o (7r_ p— 70 n)} =g 45O
1
=’ {3 7
Here p is the kinematical factor. If F 5 > I} /s, then from Eq. (4.24)
o) 66 =9:1:2

Experimentally, the cross-sections are in the ratio (122 +38) : (12.8+1.10) :
(25.6 &+ 1.3) for the kinetic energy of the pion from 120 MeV to 300 MeV.
Thus it is clear that the scattering takes place predominantly in the I = 3/2
state for the above energy range.

Finally, we note that since the electric charge is always conserved, the
conservation of I3 implies Y-conservation and vice versa. To summarize,

2 2
317

2} . (4.25b)

for hadronic interactions
AlI? =0
A(Q, B, Y)=0. (4.26)

4.2.1 Electromagnetic Interaction and Isospin

Because of Eq. (4.16), electromagnetic interaction breaks the rotational
symmetry in the isospin space:

[Hem, f} £0 (4.27a)
but
[Hem, fg} = 0. (4.27D)

Hence H.,, is invariant under an isospin rotation about the 3rd axis, i.e.
I3 is still conserved by the electromagnetic interaction.

We can say that the isospin symmetry is broken by the electromagnetic
interaction and a small mass difference between the members of an isospin
multiplet may arise due to the electromagnetic interaction. Since

[Hem, Q} —0, (4.28)
therefore, it follows from Eq. (4.27b) that
[Hem, Y} —0. (4.29)
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Hence for electromagnetic interaction, we have the selection rules:
Al; =0, AY =0, AB =0, (4.30a)
but
AlT|2 #0. (4.30b)

4.2.2 Weak Interaction and Isospin

Consider the weak processes
AN—p+a~
n—p+e + Ue.
Clearly I3 is not conserved in weak interactions and hence I? is also not

conserved. It follows that Y is also not conserved, since () is conserved.
Thus for weak interactions, we have the selection rules:

AlT? # 0, AY #0, AB = 0. (4.31)

4.3 Resonance Production

We now consider the reaction shown in Fig. 4.5. We have three particles in
the final state, produced incoherently. Let us consider the pair of particles
(nmt), (nm~) and (7 77). We define the invariant mass of each system
designated by Eq. (4.22) and |1,1,1, —1):

s12 = (E1 + E2)? — (p1 + p2)? (4.32a)
s13 = (B1 + E3)? — (p1 + ps)’ (4.32b)
so3 = (B + F3)* — (p2 + p3)* (4.32c)

If the reaction proceeds as in Fig. 4.5, n, 7+ and 7~ will have energy and
momentum statistically distributed. The number of (n 7%) pairs with an
invariant mass /s12, N(s12) can also be calculated. N(s12) can be plotted
as a function of |/s13 and the result is called a phase space spectrum as
shown in Fig. 4.7. If the reaction takes place as shown in Fig. 4.6, i.e. with
71’s strongly correlated with the n’s, then energy-momentum conservation
demands

Ex =F, + Ey
PA =DPpP1+ P2

ma = [EZ —pQA]l/Q = ./512. (4.33)
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Fig. 4.6 The pion production through resonance 7~ p — AT7n~ — nrtr—.

In this case the final n 7+ results from the decay of a quasi-stable particle
AT, called a resonance. In this situation, N(s13) shows a strong peak
aty/siz2 = ma (Fig. 4.7). The finite width of the peak shows that the
particle is very short lived, the life time 7 = %,F being the width of the
resonance. Actually a broad peak is seen experimentally at /512 = ma =
1238 MeV with the full width at half maximum 'y ~ 120 MeV [see Fig.
4.8].

Similarly, if we consider the pair n 7~ one finds a peak due to A™. The
(7T 7~) invariant mass distribution, N(sa3), also shows a broad peak at
about |/s23 = 750 MeV, due to the p® resonance.
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4.3.1 A-resonance

We now discuss the quantum numbers of the A-resonance. We first deter-
mine its isospin. The resonance A is seen both in 7~ p and 77 p scattering.
Since for 7Tp, I = 3/2 is the only possibility, it follows that its isospin
must be 3/2. This is confirmed in the 77p and 7~ p scattering experiments
at energies at which multiple mesons production is insignificant viz the
processes:
mtp —7tp
T p—T P
— 71n.

If the I = 3/2 channel dominates in the above processes, we then have from
Eq. (4.25) o,+/0;- = 3, at the resonance energy. This is what is borne
out experimentally, showing unambiguously that the resonance channel is
I =3/2 (see Fig. 4.8).

4.3.2 Spin of A

We first consider two-body scattering

a+b—R—d+V (4.34)
through a resonance R. Suppose the spin of R is J. Consider the decay
R—a+0d.

Let p be the momentum in the center-of-mass frame of particles a and b.
Let A; and A2 be their helicities. Now |p| = p and its direction is given by
w = (0, ¢). We can write the helicity state [cf. Eq. (3.165)]

12 J +1
‘)\1 )\2 W Z J * dM/A , |J/M/ > (435)

JM
where A = A1 — Ay. Therefore, the decay amplitude is given by

2J’ 1
=) /= L (I MA|F|TM) (4.36)

J/M/
We now take R and a to be fermions and b a boson. Now
(J'M'XN|F|JM) =615 Saare FY (s)Vdr. (4.37)

Therefore,
Fx(w) = V2T +1d3;, (0,6) FY (s)
= V2T + 1O BT (s) di;, (). (4.38)
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Fig. 4.8 The resonance scattering for 7+p and 7~ p channels.

dr = (2n)* /

d*pa

py

mpRr Mg

(27‘()3 (27T)3 2ER Ea Eb

D s (),

spin

(4.39)
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or
dl’ 4 m, ~ 2 2
(cosd) = T6r 172 pI> (27 +1) |[F{ (s)]" [dia(0)]".  (4.39b)
spin
Therefore
=5 51/2 Ip |Z F ()|, (4.40)

spin

where we have used the orthogonality of d-functions. When R, a and b all
are bosons, we get

=Y [F ) (141)

spin
For a resonance scattering as in Eq. (4.34), the invariant scattering
amplitude is given by

F(ab— R — a't')=> F(ab— R) F(R — a't) ¢r(s), (4.42)

where ¢g(s) is the resonance factor. Now using Eq. (4.38), we have

F(ab— R — d't) = Z Al (W) dpy (W) (2T +1)

xFy (ab— R) F{, (R — d'V') ¢g(s), (4.43)

where w’ = (¢',¢’) and w”’ = (0", ¢") are the polar and azimuthal angles
of particles a and a’ with respect to some fixed direction. Using the group
property of d-functions

Z d]%)\ dM)\’( ) = d)\;\’ (9, ¢)a (444)

where 6 and ¢ are the polar and azimuthal angles of the particle a’ relative
to a. Hence we have

F(ab— R — d't') = (2J + 1) d{\, (0, $)
xFy (ab— R) Fy, (R — d'V') ¢g(s). (4.45)
Now comparing it with [cf. Eq. (3.179) for the Jth partial wave]

Fir (@) = 2L @74 1) () dfi0.0),  (446)

we have

Fi]/,\ (s) =

!/

Yt (ab— R) F{, (R — d't) ¢r(s). (4.47)

Mg M),

Amy/s
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Now the partial wave cross section in the angular momentum state J is
given by

2J+1 2
7= RS, ) 28+ 1) |II;I| %: [For (I 48
Using
|FY (ab— R)|* = |F{ (R — ab)|’ (4.49)
and Eqgs. (4.40), (4.47) and (4.48), we get
4 2J+1 F'(R—ab) T (R—d'b) 2
7T P (25, + 1) (25, + 1) { 4 [9r(5)]
(4.50)
The resonance factor is given in the Breit-Wigner form:
2 1
lpr(s)|” = [(\/g S T I (4.51)

Hence we have

v 2J+1 ' R—ab) T (R—d'b)
7T D2 (28, + 1) (25, + 1 24 - 45y
Ip|” (254 + 1) (25, +1) (V3 —mg)’ + L
Consider now the process
7tp — ATt = 1t (4.53)
From Eq. (4.52), we get
2
oy(ma) = 77; (2J +1).
p|
Experimentally, near the resonance
8
oy (4.54)

giving J = 3/2.

It is also possible to determine the spin of a resonance by angular dis-
tribution of its decay products. This we illustrate by considering the A-
resonance viz ATt — wTp. Take the z-axis along the direction of the nu-
cleon (or pion) in their center-of-mass frame, so that (£ = 0 (i-refers to 7 p
in the initial state and [ refers to orbital angular momentum). Since pion
is spinless, M® = 4+1/2. If J is the spin of A-resonance, then M = +1/2,
by angular momentum conservation. Now from Eq. (4.39b), the angular
distribution of pr* in the final state is given by

10) o S [ ()] |ddin ()

M\

? (4.55)
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Thus for J =1/2, M =+1/2,-1/2,

o o (|Efz + Pae]) (a2 o +[afz Lol
Using [Problem 3.2], we have )
I(0) x [cos2 g + sin? Z} . (4.57)

Thus the angular distribution is isotropic.
For J =3/2 and M = +1/2, we have

o (|Fae + [ ) (|47 o +]afi Lm0 ).
Again using [Problem 3.2], we have 9
I(0) (14 3cos®0). (4.59)

We note that I(—0) = I(#). The observed angular distribution of the
protons or the pions at the resonance agrees with the prediction of Eq.
(4.59), showing that J = 3/2 for the A. The above derivation clearly
shows that the angular distribution depends only on the value of J, and
not on the parity, i.e. orbital angular momentum which never enters in the
helicity representation used above.

4.4 Charge Conjugation

It is a general feature of relativistic quantum mechanics that corresponding
to a particle, there is an antiparticle which has the same mass and spin as its
particle. We treat particle and antiparticle on equal footing. We, therefore,
postulate an operator U,, which changes a particle into its antiparticle. The
operator U, is a unitary operator. Thus, for example

e m Ty =|77) (4.60a)
Ue lp) = [p)- (4.60Db)

In general, for a charged particle

Uc |Q7 b, S> = |_Qa P, S>7 (461)
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where |@, p, s) represents a single particle state with charge @, momentum
p and spin s. Now

Q1@ p,s)=Q |Q, p, s) (4.62a)
U.Q 1Q, p, s) =Q |-Q, p, s) (4.62b)
QU. |Q, p.s)=Q |-Q, p, s)
=-Q [-Q, p; ). (4.62c)
Therefore, we have
Ue Q+Q U =0, (4.63a)
{UC Q] =0 (4.63b)

i.e. U. and @) do not commute. Hence it is not possible to find simultaneous
eigenstates of U, and Q. In general, for any additive internal quantum
number, such as @, I3, B, Y and L,

U. |Q, Is, B, Y, L)=|-Q, —1Is, —B, =Y, —L) (4.64)
and consequently,
[Ue, Qi] #0, (4.65)
where
Qi=1Is, B, Y, or L
Now
Ue |B) = |=B)
U2 |B)=U, |-B) = |B). (4.66)
Therefore,
U?=1 (4.67)

and eigenvalues of U, are +1, i.e. U, is a discrete transformation.

It follows from Eq. (4.64) that states with Q@ # 0, B # 0, Y # 0, etc.
cannot be eigenstates of U.. Only states with @ =0, B=0, Y =0, I3 =
0 can be eigenstates of U.. For them it is possible to define the charge
conjugation parity 7.:

U. |B=0)=n. |B=0), (4.68)

where

=1 or n,==*l. (4.69)
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7 is a multiplicatively conserved quantum number in any process which
conserves C-parity. The C-parity is either +1 or —1.
Charge conjugation is an internal symmetry. If

[U., H =0, or [U., S]=0, (4.70)

we say that the corresponding interaction is invariant under charge con-
jugation U.. While strong and electromagnetic interactions are invariant
under U,., weak interactions are not

[Uca Hweak] 7& 0 (471)

This is clear from the fact that neutrinos and antineutrinos which
come out in [-decay of nuclei have opposite polarizations or helicities
[H = 2s - p/|p|] - If charge conjugation were conserved in weak interactions,
neutrino and antineutrino would have the same helicity.

p p
\Y J=S v J=S
<H>=-1 <H>=+1

Fig. 4.9 The neutrino with helicity —1 and antineutrino with helicity +1.
How to test charge conjugation in hadronic interactions? Consider for
example, the reactions
ptp—mt+h
— 77 + 71,
where h (i_L) denote all other hadrons with B = 0 and with positive (nega-
tive) electric charge. Now
(pplS|7T h)y={(pp|U" U.SU;" Uc|n" h)
=(pp|S|=~ h), (4.72)
where we have assumed that S is invariant under U,.:

U.SU ' =5. (4.73)
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Thus C-invariance requires that positive and negative pions have same en-
ergy spectrum. Comparison of 7 and 7~ distributions show no difference,
the result is stated as

o - litud
nonconserving amplitude) -

C — conserving amplitude
As we have discussed, v, 7 and 7" can be eigenstates of U.. We now
determine the C-parity of these states. Now under U,, the electromagnetic
current j;™:
-em Ue -em
Ju 7 = Ju - (474)
But the electromagnetic field A, satisfies the equation
0% A, = ji™. (4.75)
Thus from Eq. (4.75), it follows that
Ue
A, —— A, (4.76)

Since a photon is a quantum of electromagnetic field, it follows that the
C-parity of photon is —1 viz.

ne (v) = -1 (4.77)

The decays 7 — 2y and n° — 2v and w® — 7%y have been observed.
Hence if these reactions proceed via electromagnetic interaction, it then
follows from C-conservation that

ne (7°) =+1

ne (n°) =+1 (4.78)

ne (W°) =-1. (4.79)
Since 7 — 3y and 7° — 3y can proceed via electromagnetic interac-

tion, but have never been seen, these decays are strictly forbidden due to
C-conservation in electromagnetic interaction. We conclude that the elec-
tromagnetic interaction is invariant under U..

[Uc, Hcm] =0. (480)

Consider now the positronium, the bound states of e~ and e™. Let
us consider e~ — e in definite (I, s) state. Now e~ and e’ are identical
fermions which differ only in their electric charges. We can use a generalized
Pauli principle for the positronium viz “under total exchange of particles
(which consists of changing simultaneously @, r and s labels), the state
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should change sign or be antisymmetric”. Under exchange of space co-
ordinates, we get a factor (—1)!, under spin co-ordinate exchange, we get
a factor (—1)*T! (s = 0 for spin singlet state and s = 1, for spin triplet
state), exchange of electric charge gives a factor n.. We require the state
to be antisymmetric, i.e.

(=)' (=1 e = -1 (4.81)

or
ne = (=1)"** (4.82)
which gives the charge conjugation parity of the positronium in (I, s) state.

The positronium (e~ — e¥) can decay into n v by electromagnetic in-
teraction. C-parity conservation gives

(=) = (1), (4.83)

From Eq. (4.82), we get the following selection rules:

1Sy — 2y Allowed

1Sy — 3v | strictly forbidden
=0 38, — 2v | strictly forbidden

s=1 38, — 3y Allowed

Similarly for (p — p) and quark-antiquark systems: 1, = (—1)*+*.

Now for (7t —7~) system for which B=0, Y =0, Q = 0, generalized
Pauli principle requires that the state should be symmetric (even) under
total exchange of pions that is

(-1 pe=1 (4.84)
ne = (=1 (4.85)

Similarly for 7% — 70 system we get 1. = (—1)!. For this case, since two
7%’s are identical particle, ordinary Pauli principle requires that (—1)! =
even, i.e. they must be in an orbital state with [ even. Thus 7, must be
+1 for 7° — 70 system, whereas 7. depends upon [ value for 7+7~ system.
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4.5 G-Parity

For strong interactions, both isospin and C-parity are conserved. For
hadrons, it is convenient to define a new operator G= charge conjugation
+180° rotation around 2nd axis in isospin space. It follows that strong
interactions are invariant under G, but

(G, Hem] #0 (4.86a)
[G, chak] 7é 0 (486]?))

i.e. electromagnetic and weak interactions are not invariant under G.
Under 180° rotation around the 2nd axis in isospin space, we have

[m1) — = |m1)

|m2) — |m2)
m3) — — |m3) . (4.87)
Therefore, we get
|7 =0) — — |2 F0). (4.88)
Under charge conjugation
|7 t) &5 | ) (4.89a)
|7°) % |0). (4.89b)
Thus we have
7ty & |rt) (4.90a)
and
70) S — |x0) (4.90b)

Thus the G-parity of pions is G (w) = —1. The nucleon state |N), under
180° rotation about 2nd axis in isospin space transforms as

[Ng) = 2 772 |N)
T .
= (COSE +i TQSIHg) |N)
=iTe |N) (4.91)
ie.
= )

lp) —
n) 29 _|p). (4.92)
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But
Ip) = 1)
n) % |m) . (4.93)
Therefore,
) S [a) (4.94a)
n)y S —|p). (4.94b)

Only states with B = 0 and Y = 0 for which isospin I is integer can be
eigenstates of G. Only for such states we can define G-parity G. In general
G-parity of a state with isospin I is given by

G =ne(-1)! (4.95)

Thus for n° and w® G = +1 and —1 respectively. Thus for fermion-
antifermion e.g. ¢ — ¢ system, the G-parity is given by

G = (-1 =, (-1)f (4.96)
For (mT7™) system
G=(-D" (-1 =)t =1 (4.97)

The concept of G-parity is particularly useful to see whether a decay which
does not involve 7 is strong or electromagnetic (problems 4.3 and 4.4).

4.6 Problems

(1) Consider pion nucleon scattering
7+ N -1 +N

where ¢ and j are isospin indices of the incoming and outgoing pions
respectively. Using isospin invariance, show that in isospin space, the
scattering amplitude A can be written

1

Show that isospin % and % projection operators are given by

24+t-7 1—-t-7

P = Py =
3/2 3 ’ 1/2 3
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where 7 are Pauli matrices and t are isospin matrices for I = 1. Further
show that

1 1
(P3/2)ji ~ 3 {2 0ji — ) [ijTi]}
1 1
(P1/2)ji = 3 { dji + 3 [Tj77—i]} .
Hint: (tk)ji = igjki-
Show that for the decay

i — f+,

either AI =0 or |AI| =1.

Hence show that for the decay n — w7+, pions are in I = 1 state
and [ is odd, but for the decay w — w7+, pions are in I = 0 or 2
state and [ is even.

Show that the decay w — wtn~ is forbidden in strong interaction,
but is allowed by electromagnetic interaction. What are the values of
isospin I and orbital angular momentum for the pions ?

Show that n — 7+ 7~ 70 is forbidden in strong interaction but is allowed
by electromagnetic interaction. Determine the possible values of isospin
for the final pions.

A meson f has been seen in the invariant mass plot of (7m) in the
reaction:

T p— nntaT
but not in the reaction

7tp — prta®

What can you say about isospin of f? What is its electric charge?
Let us consider the following particles:

X0 . 1=0, JP9=0""%
y+o 1=1, JP6é=1"%+
Which of the following decays are allowed by strong interaction? Also

for what values of orbital angular momentum and isospin of the final
states the decays is allowed.

(a) X0 — rfm™
(b) Y~ — X On~
(c) YO - atqn—
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(d) YT — X gt
(e) Y™ -7
(7) (a) List all the decay channels allowed by strong interaction for .
i. Why strong decays of 2~ are not seen?
ii. Why radiative decay of {2~ is not possible?
(b) List all the possible weak decays (Semi-leptonic and Hadronic) for
O,
(8) A particle with spin angular momentum J has the following Hamilto-
nian in an external magnetic field B (B =V x A)

_ (g (T
Hinag = <2mc> (ﬁ) B

How H,,q4 transform under C, P and T respectively?
(9) For (mt7m™), :

ne (wr) = (-1)"

K — 37 is parity conserving decay, i.e. parity of three pions in the
final state is negative.
Show that CP-conservation implies

K — 7%79%° s allowed
K — 7%%% s forbiden
K} — 7tn~ 7% s allowed if ¢ is odd

O s allowed if ¢ is even

KY s atnn
where
CP|KY) = |KY) and  CP|K}) = —|K3)
G-parity of ntn— 70 is
e =nc (1) = (-1)" ' = -1
Hence show that

for ¢ even — I =1,3
for ¢ odd — I =0,2

(10) G-parity is defined as

ne =nc(—1)



116 Internal Symmetries

where [ is the isospin

JPC IG
1=/ | 0™
p | 177 | 1T
T |07t | 1~
aq 1++ 1~

C-parity and G-parity are conserved in the strong decays. For
(rT ™) system

ne = (=1, ng = no(-1)" = (1" **
where ¢/ and I’ are the orbital angular momentum and isospin of the

(7t7~). Which of the following decays are allowed and which are
forbidden?

(11) For the radiative decay
i) = 1)+
Show that either
AlIl =0, G(f)=-G()
or
Alll==+1, AG=0
Photon behaves either like “p-mesons”, i.e. it carries “I =1 G = 1" or
like “w-mesons”, i.e. it carries “I =0, G = —1”
P’ =7y A|Il=0,G(f)=-1, GE)=1
W=7, AlIl=1, AG=0
(12) Which selection rule forbids, the decay
w—TmtrT
as a strong decay. Show that this decay has
ATl = 1,AG #0,G(f) = ~G(i),
i.e. this decay is allowed by electromagnetic interaction as second order
in electromagnetism.
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(13) Show that the decay

+ 0

w—mT'Tw

is allowed in strong interaction. What are the allowed [ and I values
for (nt7™) system?

(14) By using the similar arguments as used in A-resonance, show that p(770
MeV) meson has I =1 and J = 1.
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Chapter 5

Unitary Groups and SU(3)

5.1 Unitary Groups and SU(3)

Consider a vector ¢;, ¢ = 1,2,--- | N in an N-dimensional vector space.
An arbitrary transformation in this space is

(b;:az ¢j i,j=1,2,--- N. (51)
For unitary group U(N) in N dimensions,
az® a? = (aT)k a? = 5; (5.2)

For the group SU(N), we also have
det a=1. (5.3)

The basic assumption of all the group theoretical approaches to classi-
fication of hadrons is that particles belong to an irreducible representation
of some group (in our case SU(N)) form a multiplet and thus have the
same space-time properties, especially the mass, spin and parity. The ba-
sic mathematical problem is the investigation of the representations of a
group. There are two approaches to this investigation (i) global way, (ii)
infinitesimal way. For continuous groups it is convenient to restrict to (ii).
For the general infinitesimal transformation:

o, = o] +<l] 5. (5.4)
Then conditions (5.2) and (5.3) give

el =0. (5.5)
The unitary transformation corresponding to (5.4) may be written as

U()=1-¢l AL+0(?). (5.6)
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A;- are called the generators of the group U(N) and characterize the group
completely. The N x N unitary complex matrices U(a) form the represen-
tation of U(N). Hence there are N? arbitrary real parameters and thus
there are N2 generators of the group U(N). For SU(N) we have N? — 1
generators because of the unimodularity condition.

The matrices U(a) have the group property:

U(b) Ua)=U (c)
U(@)=U() U1),U1)=1
U™ (b) Ua) U(b)=U (b~"ab)
Ul (a) Ula) =1 (5.7)
It is easy to see that Eqgs. (5.5) and (5.6) give
(A" = ad. (5.8)

By taking a to be an infinitesimal transformation, it is easy to derive (see
problem 5) the commutation relations

[Ag', A;] — o] Al — o Al (5.9)
For the transformation (5.4), we have
O =U""(a) dx Ula) = dx +] [A7, 0] (5.10)

But we can write

o = Uy ¢
o
o, = (o +2 (0)),) . (5.11)
Comparing Egs. (5.11) and (5.4), we get
i\l i
(M), = 6;.0%. (5.12)

Hence from Eq. (5.10) one has
i i\ !
[45, &) = (M), &1
= 618! ¢ = o}, ;. (5.13)

The matrices M; {(M;)T = MZJ] give the representation of group U(N) for

the fundamental representation ¢;. Let us define a vector

¢' = ¢;.
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It belongs to the representation N of U(N), whereas vector ¢; belongs to
the representation N of U(N). Thus ¢° transforms as

o = o= o = (6] ) o)

= (6 —¢l) ¢, (5.14)
Hence it follows that
(AL "] = =67 ¢ (5.15)
Now if we consider a tensor le, it transforms as ¢*¢;, so that
(AL, TF] =6 T} — 6 T} (5.16)

Thus the tensor T; transforms in the same way as the generator A;
Let us now restrict ourselves to SU(IN). The generators of SU(N) must
be traceless. Hence we can write its generators as

i i Lok
F; = Aj - N(Sj Ag, (5.17)
so that
U(a) =1— E;- F;
At .
(7)) = ¥
F =0. (5.18)

Since Aj is a U(N) invariant, the commutation relation for F/ remains the
same as in Eq. (5.9) viz.
[F), Ff] =06 F} -0} F. (5.19)
The matrices M]Z must now be traceless, hence
Nk sk Lok
Thus instead of Egs. (5.13) and (5.15), one has
i i 1
[}, o] = 6} ¢5 — N(Sj b

[F, ¢F] = =6k ¢ + %5; o". (5.21)

Let’s now confine to SU(3). It is convenient to express eight generators

FJz (1,7 =1,2,3) in terms of hermitian operators F4, (A=1,---,8) intro-
duced by Gell-Mann. The relationship between F4 and F} is as follows:

1

Fy=F—iF,, F:=F+ilF,, 5(1~“11—F22):Fg,

Fy=F —iFs, F}=F,+iFs, Fj=F;—iFy,
2

F3=Fs—iFy, Fj 7

F.
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From the commutation relation (5.19) for F j, one can show that Fa’s satisfy
the standard commutation relation of a Lie group:
[Fa, Fp] = CEpFp
=ifac Fo, (5.22)

where the structure constants f4pc are real and antisymmetric. F'4’s also
satisfy the Jaccobi identity

[Fa, [Fp, Fcll+ [Fp, [Fo, Fall+[Fc, [Fa, Fp]] =0. (5.23)
Infinitesimal unitary transformation generated by Fjy is
U=1-1 A FA,
€ 4 being infinitesimal real parameters. For an inifinitesinal transformation,
the vectors ¢; and ¢ transform as

¢, = Ul ¢,

= [(ﬂ + %EA ()\A)'Z] ?;, (5.24)
¢ =U Ty = [6{ - %sA (AM} ¢’

— [53 - %5,4 (AA){] ¢, (5.25)

since the matrices A4 are hermitian. The matrices A4 are related to M ; in
the same way as F4 are related to F ]’ . Thus

1 ) 1 . 1
My = 5 (M1 —ido), M}? = 3 M tidg), - M3 = —%)\g. (5.26)
Now for SU(3), the matrix elements M} are given by Eq. (5.20)
ik ik Lo

Using Egs. (5.26) and (5.27), we can explicitly write 3 x 3 matrices A 4.
They are

010 0—i0 100
M=[100]), =[i00], 3=[0-10],

000 000 000

001 00 —i 000
M=(000],x=(000],x=[001],

100 i0 0 010

000 5 0 0
M=100—i], A= 0% 0 |. (5.28)

0i 0 0 0 2

V3
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Aa

5+ satisfy the same commutation relations as the

Obviously the matrices
generators Fy, so that

[Aas AB] =2i fapc Ac. (5.29a)
They are traceless and have the following properties:

TT()\A >\B) = 25,43 (5.29]3)

4
[Aa, ABl+ =2 dapc Ac + §5AB, (5.30)

where dapc are real and are totally symmetric. Defining Ao = \/gl , the
commutation and anticommutation relations can be written as

[Aa, AB] =2i fapc Ac
[Aa, ABl+ =2 daBc Ac
T’I’()\A )\B) = 25,43

2
doc = \/; dBC, foBc =0, (5.31)

where A, B,C =0,1,---,8. Thus A4 are closed both under commutation
and anticommutation. We also note that Ao, A5, A7 are antisymmetric while
the rest of them are symmetric. We express this fact by writing

Myo=na 2 (not summed) , (5.32)

where ng = —1, for A =2,5,7 and +1 otherwise. The following identities
follow from Egs. (5.31) and (5.32):

na mB Nc fapc = —faBc
N4 N8 Nc dapc = dape (repeated indices not summed)
(5.33)

ie. fapc (dapc) is zero if even (odd) number of indices take the value 2,
5 or 7. The values of fapc and dapc have been tabulated by Gell-Mann
and are reproduced in Table 5.1. The role of F4 is the same in SU(3) as
that of isospin I in SU(2) and for this reason F4’s are sometimes called
component of F-spin.
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Table 5.1 Values of fapc and dapc
ABC  fapc ABC daBc

123 1 118 1/V3
147 1/2 146 1/2
156  —1/2 157 1/2
246 1/2 228 1/V3
257 1/2 247 —1/2
345 1/2 256 1/2
367  —1/2 338 1/V3
458  +/3/2 344 1/2
678  V/3/2 355 1/2
366 —1/2
377 —1/2
448 -1/ (2V3
558  —1/(2V3
668 —1/(2V3
778 —1/(2V3
888 -1/v/3

doas  \/2/30aB

5.2 Particle Representations in Flavor SU(3)

Out of the eight tensor generators F} of SU(3), the set F}, Fy, F{ and
FZ form the generators of the subgroup SU(2)x U(1). We have SU(3) D
SU(2) x U(1) D SU(2). It is convenient to classify states in an SU(3)
representation by making use of this fact. The generators of the SU(2) x
U(1) subgroup which are conveniently taken to correspond to isospin and
hypercharge are

1
L= F} I =F, Iy = 5 (F{ - F})

Y = F} + Fj = —F3, (5.34)

in the case of SU(3) group. There are thus two diagonal operators in SU(3),
namely I5 and Y. SU(3) is, therefore, a group of rank 2. Further if we define
the electric charge as

Q = F! in SU(3), (5.35)
Eq. (5.34) give the Gell-Mann-Nishijima relation

Q:k+§. (5.36)
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The fundamental representation is a vector which we write as ¢;. Let
us take

q1
Q2 | =
q3

qi =

w Q)

(5.37)
as the field operator which creates a u-quark, a d-quark or a s-quark viz.
al0) = [u). d[0) = |d), 5[0) = |s). (5.38)
The field operators ¢; belong to the representation 3 of SU(3), whereas the
field operators

u

d

(5.39)
s
belong to the representation 3 of SU(3). ¢' create antiquarks or annihilate
quarks. From Eq. (5.21), we have

¢ =q =
qS

, , 1.
[F}, k] =6}, q; — 55;- k-

(5.40)
In the matrix notation, we can write the field operators ¢; and ¢* as row
and column matrix respectively viz.
g=(uds)

(1) -
Then it follows from Eqs. (5.24) and (5.25)

(5.42)
Hence we see from Eqgs. (5.36), (5.38), (5.40) or (5.42), that the quark
states or simply quarks belong to the triplet representation of SU(3) and
have the following quantum numbers:

I Y Q

|u) /2 1/3  2/3
I=1/2

\d) ~1/2  1/3 -1/3

ls)  IT=0 0

—2/3 -1/3
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|d> 1/3 u>

-1/2 172 L

-2/3

Fig. 5.1 Weight diagram for 3.
Y

s> A2/3

|d>
173

Fig. 5.2 Weight diagram for 3.

It is convenient to plot each state of the triplet representation on a I —Y
plot as shown in Fig. 5.1. Such a diagram is called the weight diagram.

The 3 representation of SU(3) is not equivalent to 3; it transforms as
q' = gf. It is the hypercharge which distinguishes 3 and 3. Antiquarks
belong to the 3 representation of SU(3) and the weight diagram is shown
in Fig. 5.2.

5.2.1 Mesons

Quarks are taken to be spin 1/2 particles. To build observed particles from
quarks, it is convenient to assign a baryon number 1/3 to quarks. Thus

¢ |0): B=1/3
q'0): B=—1/3.

Consider
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‘ . 1 1
q'q; = (qlqj - 35§qqu) + 3050 0
= P} (octet) Singlet
33 = 8 & 1

P; can be regarded as a field operator for pseudoscalar mesons. Thus

. _ . 1.
P10 = 17) = (o0 - g0t ) 0 (5.43)

has baryon number zero and is an octet. It may be taken to represent octet
of pseudoscalar mesons 7, K and 7. We write (in our notation upper index

is row index and lower index is column index)
i L i

where identification is shown in Table 5.2.

Table 5.2 Pseudoscalar Mesons J© = 0~ [cf. Egs. (5.43) and (5.44)]

State and its quark content [DL,Y,I,13)
|PE) =[nT) = |ud) 7”1:7;2 :—18,0,1,1)
1 2 _ =
%> = |n0) = |wazad) 73) : I8,0, 1, 0)

PH)=|r) =ld @
[P = |K*+) =|us)

%> :18,0,1, 1)
7,,4%”5> D18,1,1/2,1/2)

|PF) = |K%) =1d 5) T s 1s,1,1/2,-1/2)

|P§) =|K) =|s d) meIEL) 118, —1,1/2,1/2)

|P3)=|K")=lsa) mazina) 8, -1,1/2,-1/2)
‘—%P§>=Ins>=‘%¢g’m> =|mg) :|8,0,0,0)

Hence in a matrix notation, the octet of pseudoscalar mesons J* = 0~
can be represented by a matrix:

%T)g + %ﬂ'o at K+
P = ™ %778;%71’0 KO . (545)
K~ K —%778

The singlet pseudoscalar meson 7, is given by

[0) : |1,0,0,0).

uli + dd + s§ ult + dd + s§
|771>: =

V3 V3
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Another possible set of candidates for the octet of bosons is vector mesons

JP =1
pto’p™  I=1,Y=0
*+ *0
K"K I=1/2, Y =1
K“K* I1=1/2,Y=-1
wsg IZO,Y:O

A singlet vector boson is denoted as w;. In broken SU(3), a singlet meson
can mix with the eighth component of an octet. For example, wg and wq

can mix and physical particles are mixtures of them and are denoted by w

and ¢. The weight diagram for mesons is given in Fig. 5.3.

Y

K° 1 K*

I\ a2 Qyuz: 1

Fig. 5.3 Weight diagram for pseudoscalar meson octet.

5.2.2 Baryons

We now consider baryons. Baryons have B = 1 and they must be con-
structed out of 3 quarks. For this purpose let us proceed as follows. Writing

1 1
q; Qk=§(qj qrk + Qj)+§(Qj qk — Gk 95)

1 1
= —=Sk + —=4k,
V2T R
where the symmetric tensor

1
Sik = E (g5 qr + ar q;5)

has six independent components. The antisymmetric tensor

1
A, = 7 (95 ax — ar q;)

(5.46)

(5.47)

(5.48)



5.2. Particle Representations in Flavor SU(8) 129

has three independent components. Now a vector 1% belonging to the
representation 3 can be written in terms of A;,, as

Ti — Eilm Alm
or
1 i
Ajk = §€ijk T (549)
Hence we have the result
33=603

and
3323=(623)+(3x3).
First consider 3 ® 3 :
TMU:(TMb—éé;Tk%>+;5§Tk% (5.50)
viz.
33=8a1.

The octet operator for baryons can be written as

i 1 i | "
Boi(ru-tera), e
where

. ) 1 .
Th = ¢ilm 4y, = ——¢ilm m— Gm Q1) - 5.51b
m =5 (@ gm — Gm @) ( )
For the singlet representation,
11 1
Sk g — cHm 4,
23 4k 23 im Gk
1
= ﬁ&'klm( Q@ Gm — Gm @) Q- (5.52)

Now let’s consider 6 ® 3: It is given by
Sij ar = Sij @k + Sjr ¢ + Ski @5 — Sik @i — Ski q;
= Tyijky — Sik @ — Ski 455 (5.53a)
where

T{ijk} = Sij @+ Sjk ¢ + Ski qj (5.53b)
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is completely symmetric tensor and has 10 independent components. Now
we show that

— (Sjk @i + Ski @) +2S5j qx = €xji glmn G G + et M7 Sin Gm. (5.54)
Proof:
R.H.S = (07" 6} — 61 65") Sin qm + (61 67" = 6 6") Sjn Gm
= Sij qx — Sik q; + Sji ak — Sjk @
= —(Sjk ¢i + Ski q;) +2S5;; ¢ = L.H.S.
Hence from Egs. (5.53a) and (5.54), one gets

1- 1
Sij @k = 5Tny + 5 [Erjt €™ Sin @m + kit €™ Sjn Gm)

3 3
— %T{ijk} +% (ki O] + erar 5;] glmr S Gm. (5.55)
Hence we have
63=10c8.

We write the decouplet representation:
Tiijey = V3 Tiijny

1
= /3 [Sij ax + Sjx @i + Ski ;] (5.56)

and the octet (8') representation:

_ 1
B;l = 7€lmn Srn qm

V3
Bl'=0. (5.57)
Hence the final result becomes
33®3=(603)®3=(603)®(3x3)
=1068% 8 & 1.

5.2.2.1 Baryon States

(i) Octet Representation 8
From Eqgs. (5.51) and (5.57), we have
Bj|0) = |B})

1 . 1.
= ﬁ €zlm (qum - q"qu) q; — g&;‘gklm (QIQM - q"qu) qk |O>

(5.58)
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Table 5.3 Baryons J = %Jr
State: 8 Quark content Q I I3 Y
P} = BY[0) S [T S
In) = B2 [0) 2 {fu,d)d) o 1
\2+}>;>B§ |0) f |[u s] u) 1 1 +1 0
%( B2) |0) %Hds]u—l—[us}) 0 1 0
|=- > B110) {Hd s] d) -1 1 -1 0
|A%) = — 252 |o) iz 2wl s o 0 0 o0
V6T —[d, s]u— [s,u] d)
[=2=) = Bilo) 5 |1d, 5] s) -1 12 -1/2 -1
|E%) = B2 o) % I[s, ] s) o 1/2 1/2 -1
State : 8’ Quark content
B3 10) % ‘([u dLr u— 2uud>>
B3 |0) f ‘( Ld- zddu)>
B210) f ‘([u s)Lu— 2uus>>
1
(B -BR)0)  VE (i
+[u,s}+d+[d,s]+u)>}
B |0) % ([d, s]yd— 2dds) >
- 2B 0) 2 [s,d] u— [s,u], d)>
Bi0) f ‘ 2ssd —[d, 5] s >
B#2 |0) f‘ [s,u]l, s — 2$su>
and for representation &' :
_ i i 1 ikl
B 10) = |B] ) = ;=™ S ai [0) (5.59)

The octet of baryons are then identified as given in Table 5.3. Hence from
Eq. (5.58) and Table 5.3, we see that known eight J© = 1/2% baryons can
be represented as 3 x 3 matrices

Note that

1 A0 1 ¥0 +
\/EA ' \/EZ 1 OE 1 0 Y
= =0 —2 A0
6
1 A0 1 $0 S — =—
76A j>+722 1 _02 1 50 ‘_'_0
Ef %A - WZ j -
B} = B 4°,

(5.60a)

(5.60D)

(5.61)
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where the symbol # denotes complex conjugation with respect to SU(3)
but hermitian conjugation for the field operators. The weight diagram for
the octet representation is shown in Fig. 5.4.

Y

Fig. 5.4 Weight diagram for %-‘_ baryon octet.

Singlet representation 1:
From Eq. (5.56), one gets

11
A= -— " (@ g — @m @) @i 10)

N~ DN
—_

[\
Sl s

{[d, 5] u+[5 @] d+ [u, d] 5} |0).

=% I[d, s] w+[s, u] d+ [u, d] s). (5.62)

(ii) Decuplet representation 10:
From Eq. (5.56), we have
1
V3
The detailed identification of the states of decuplet representation are given

in Table 5.4. The weight diagram for the decuplet of baryons is shown in
Fig. 5.5.

Tijr) = —= {Sij @ + Sjk ¢ + Ski ¢} 10) . (5.63)

5.3 U-Spin

We have labeled the states within an irreducible representation of SU(3)
uniquely by the eigenvalues of I?, I3 and Y. The reason is that SU(3)
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Fig. 5.5 Weight diagram for %Jr baryon decuplet.

Table 5.4 Decuplet J¥ = 3/2% [cf. Eq. (5.63)]

State Quark content Q I I3 Y
|A++> = % |T111) |uuu) 2 % % 1
|at) = % [Ty12) % |udu + duu + vud) 1 3 1 1
|A%) = 75 [T122) 5 ludd + ddu + dud) o 3
|A—) = % [T222) |ddd) -1 3 F 1
‘E*+> = % [T113) % |uus + usu + suu) 1 1 1 0
) =i G| ) 0 1 0 o
2*’> = L |Te)  Llsdd+dds+dsd) -1 1 -1 0
:*O> = % |T133) % |uss + ssu + sus) 0 % % -1
E*7> = % |T233) % |dss + ssd + sds) -1 1+ F
|o-) = % |T533) |sss) -1 0 0 -2

contains the direct product of SU(2)r x U(1)y, i.e.

133

The generators of SU(2); and U(1)y are identified with the generators of
SU(3) as given in Eq. (5.34). However, we can take a different decomposi-
tion. For example the generators

1
Up = F, U= F, Us = 5 (F§ = Fy)

(5.64)

are the generators of group SU(2)y . These generators commute with the

generator

Q= F}.

(5.65)
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Thus SU(3) can be decomposed as follows
SUB) D SU2)uy xU(1)g

Therefore, it is possible to label the states within an irreducible representa-
tion SU(3) by the eigenvalues of U2, Us and Q. The generators of SU(2)y
commute with the generator Q = F{, thus U-spin is very useful when
dealing with electromagnetic interactions. Just as each isospin multiplet is
associated with a definite hypercharge, each U-spin multiplet has a definite
charge.

5.4 Irreducible Representations of SU(3)

We have already encountered two irreducible representations:
triplet = ¢;
A . 1
octet = P! =q'q; — 55; " q.

The octet representation is a regular or an adjoint representation of SU(3)
because Pj transforms in the same way as the generators F}.

Now we look at more general representations of SU(3 ) The general
prescription for ﬁndlng the basic tensors T] ' J ¢ for an irreducible repre-
sentation of SU(3) is:

1. Construct tensors Tfll,::'ii"
2. Symmetrize among i - - -4, and j; - - - jq indices.
3. Subtract traces so that all contractions give zero, e.g.

T2 j" =0, etc.

7,7,2

The linearly independent components of tensor 7" then supply an irreducible
representation of SU(3) which is designated as (p,q). The dimensionality
of such a representation can be easily computed. First let us calculate the
number of independent components for a symmetric tensor with p lower (or
¢ upper) indices. We note that each index can take only the value 1, 2 or 3.
Thus the number of independent components are the same as the number
of ways of separating p identical objects with two identical partitions:

+2)! (@+2)(p+1)
p! 2! 2 ’
Thus a tensor which is symmetric in p lower and ¢ upper indices has

Blp.q) = P+2)(p+ 1)4((1 +2)(g+1)
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independent components. But the trace condition shows that a symmetric
object with p — 1 lower indices and ¢ — 1 upper indices vanishes. This
gives B(p — 1, ¢ — 1) conditions. Hence a symmetric traceless tensor has
dimensions

D(p.q) = B(p.q) —B(p—1, ¢—1)
=(+1)(¢+1) (p;q - 1) . (5.66)

Thus we have for example:

Representation | Dimensionality
(p,q) D(p,q)
(0,0) 1 : Singlet
(1,0) 3 : Triplet
(0,1) 3 : Triplet
(1,1) 8 : Octet
(3,0) 10 : Decuplet
(2,2) 27 : 27 plet

5.4.1 Young’s Tableaux

By taking the direct product of basic representation 3 with itself, we can
generate the representations of higher dimensions. These representations
are however reducible. Let us now discuss a general method to decompose
these reducible representations into irreducible representations. We have
already discussed some simple examples.

We represent the fundamental representation 3 by a box, i.e. associate
index ¢ with a box.

D :3:q;. (5.67)

We note that the representation 3 is antisymmetric combination of two 3’s

viz.
. y 1
T =% (q; qx — qr (Jj)ﬁ
= Eijk A]/ﬁ
Ay = ey T". (5.68)

This can be represented by a column of two boxes

H :3: T (5.69)
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Since a tensor index takes only three values i = 1, 2, 3, a column in Young’s
tableau can have at most three boxes

(5.70)

It is completely antisymmetric and it corresponds to the trivial singlet
representation. We note that

1= | = - = (5.71)

Consider the (p, q) representation. It is a tensor whose components are

T/ e (5.72)

il“-lp
symmetric in lower and upper indices and traceless. We can lower the upper
indices with € tensors, obtaining an object with p + 2¢g lower indices:
_ J1-Jq
bir.viy kaliokgly = Ejikali-Ejokgly Liy.i, (5.73)

It is clear that ¢ is antisymmetric in each pair k, «— I, x = 1,--- ,q.
Since there are p 4+ 2¢ indices, we arrange p + 2¢q boxes as follows:

(5.74)

k1 kq | i1 ‘ip‘
I I

This is a Young Tableau. The most general Young Tableau has only two
rows. An irreducible representation is completely specified by two integers
(p,q). Note that (p,q) = (¢,p). It is clear from Eq. (5.71) that tableaux of
the form

(5.75)

Ky kq 2'1‘ ‘Zp‘
I l

still corresponds to the representation (p,q). Comparison with the Young
Tableau gives the following rule for preparing a tensor with the right sym-
metry properties to give a state in (p, q): First, symmetrize indices in each
row of the tableau. Then antisymmetrize the indices in each column. If
we have more general tableau with columns of more than two boxes, the
rules for forming a tensor are the same as before. Assign an index to each
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Table 5.5 Irreducible representations of SU(3).

(p,q9) | D(p,a) Tableau Tensor

! 1: Eijk
1,0 3 50
(0,1) 3 3.7 — gk tin
(270) 6 6 T’L]
©,2) 6 6: T4 = gthihigikale gy gy,
(1,1) 8 871 = e 1y,
(5,0) 10 10 :T;

. TY = 6'L'l1’m1 Ejlzrnzsklgrn;;

0,3 10 10
( ) thlm112m213m3
(2,1) 15 15 T} = ™ty
(2,2) 27 27 Tlllg — gilimigjlama
7 Xtm1n1m2n3lk

box. Then symmetrize the indices in each row and finally antisymmetrize
the indices in each column.

Some of the common irreducible representations of SU(3) are shown in
Table 5.5.

Decomposition of Product Representations

We now consider the decomposition of the direct product of irreducible
representations (p, ¢) and (r, s) corresponding to tableaux A and B.

[ ] afalefalel oo
A B

We now give a recipe for the decomposition of the direct product of
(p,q) and (r,s) with the aid of Young Tableaux. Put a’s in the top row of
B and b’s in the second row. Take boxes with a from B and add them to
A, each in a different column, to form new tableaux. Then, take the boxes
with b and add them to form tableaux, again each box in a different column,
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with one additional restriction given below. On reading the added symbols
from right to left and from the top to bottom, the number of a’s must be
greater than or equal to that of b’s, i.e. forget all tableaux which concave
upwards or towards the lower left. This avoids double counting of tensors.
The tableaux formed in this way correspond to irreducible representations

in (p,q) ® (r,s). We now give several examples to illustrate how this recipe
works.

Examples

(i)

L] ® [e) = [faf @ E
(5.77)
3 ® 3 = 6 @ 3

(i)

B ® IZ] = a &
(5.78)

(iil)

(5.79)
We discard the first and the third tableaux in Eq. (5.79) as they do not

satisfy the constraint that number of a’s greater than or equal to the number
of b’s as we go from right to left or top to bottom.
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(iv)

(L) ®(1,1)=(3,0)® (2,2)® (1,1) ® (0,3) ® (1,1) ® (0,0).  (5.80)

The slashed tableaux are discarded because they do not satisfy the con-
straint a’s > b’s.

(v)
1@ [e]= la| @ (2] |
|| || e -
15 § 3
8®3=150603 (5.81)
(1,1) ®(1,0) = (2,1) ® (0,2) @ (1,0). (5.82)

To summarize, an arbitrary irreducible representation of SU(3) is de-
noted by two integers, each positive or zero: (p,q). The corresponding irre-
ducible tensor is denoted by Tfll“fj ‘. It transforms as ¢, -+ §7 by o Py

iy
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Each component of the tensor is an eigenstate of I3 and Y and possibly of
I2. If it is not an eigenstate of I, such a state can be formed by a linear
combination of states with components having the same I3 and Y. The ba-
sic states occurring in (p, q) can be completely labelled by three quantities
I, I5, and Y, which form a complete commuting set within an irreducible
representation. The values of I and Y that appear in (p,q) are given in
Table 5.6. We note that highest state i.e. the one with I, has

1
I3 = §(P+Q)

v=10-0) (5.83)

Table 5.6 Isospin I and hypercharge Y for the states in
representation (p, q).

I3 and Y
) v 7 Number of for the
P q states
highest state
(1,0) é % 2 11
R 1 20 3
2
2 0 1 _
(0>1) —31 1 %7 Tl
= 2 2
1 5 2
2
(1,1 | o 1,0 3+1=4 1, 0
1
-1 g 2
o | i 3
3
(3)0) -1 % 2 29 1
-2 0 1
% 1 3
3 1 _
21 | 3 23 4+2=6 31
’ 7 1,0 3+1=4 2’3
—5 1
5 2 2
2 1 3
31 _
1 3,1 442=6
(2,2) | o 2,1,0 | 54+3+1=9 2, 0
-1 3.1 4+2=6
-2 1 3
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5.5 SU(N)

We now discuss Young’s tableaux for SU(N). Again we assign an index to
a box. Thus fundamental representation N(¢;, i = 1,--- , N) is represented
by a box:

[ ]:N (5.84)

The tensor €;,4,...i5 is represented by a column of N boxes

i1 (5.85)

It describes the singlet representation 1 of SU(N). Now €;,4,...i5 18 & com-
pletely antisymmetric tensor:

0, if any of the two indices are equal
€iyigeiy = E1, if 41 ---in is an even (odd) (5.86)
permutation of 1,2,--- | N.

The N-dimensional representation N is described by a column of (N — 1)
boxes.

2

(5.87)

Hence we see that for SU(2), 2 and 2 are equivalent representation and
both will be represented by D Only for N > 3, N and N are distinct
representations.

We now discuss the decomposition of the product of representation N
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by itself into irreducible representations of SU(N).

e ] = [l« @

N N = N (N +1) IN(N —1).
(5.88)

Thus N? components decompose into two irreducible representations of

1
2

dimensions & (];]H) and & (1;[71) viz.
1
bi 95 = NG (Sij + Aij) (5.89)
where
1
Sij = 7 (9 dj + &5 ¢i)- (5.90a)
1
Aij = 7 (¢i &j — &5 &i). (5.90Db)

We can regard S;; as an NV x N matrix, but since it is a symmetric matrix,
it has only & 22_ NyN= %N (N + 1) independent elements and this gives
the dimension of symmetric representation S;;. Again if we regard A;; as
N x N matrix, we can easily see that it has NQQ’N = N (N—1) independent
elements and this gives the dimension of antisymmetric representation A;;.

® [] = ® |

N -1 N (N-1)
Boxes Boxes Boxes in
the column
N ® N = 1@ Adjoint representation of dimension N2 — 1. (5.91)
Thus

A 1
¢ b =Ti+ 59 o o, (5.92a)
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where
i i LG
T;=9¢"¢j =+ 9 o dr. (5.92b)

The adjoint representation has the same dimension as the number of gen-
erators of SU(N). For example for SU(6) : 6 ® 6 = 1 & 35.

We now give a general recipe to calculate the dimension of irreducible
representations in the decomposition of the product of representation N
by itself. To calculate the dimension of an array of boxes there is a recipe

. : . Numerator
which involves calculation of Dononiastor

Numerator: Insert IV in each of the diagonal boxes starting from the top
left-hand corner of the tableaux.

N N+1|[N+2
N-1|N N+1 (5.93)
N-2|N-1|N

Along the diagonals immediately above and below insert N + 1 and N — 1
respectively. In the next diagonals insert IV + 2 and so on. The numerator
is equal to the product of all these numbers. For example for the tableaux

N N+1
N-—-1| N

(5.94)

the numerator = N2 (N +1) (N —1) = N2 (N? —1).

Denominator: The denominator is given by the “product of hooks”. We
associate each box with a value of the hook. To find it, draw a line entering
the row in which the box lies from the right. On entering the box, this
line turns downwards through an angle of 90° and then proceeds along the
column until it leaves the diagram. The value of hook associated with that
box is then the total number of boxes that the line has passed through,
including the box in question. The product of hooks is the denominator.
We illustrate this by the following example. Consider the tableau (5.94).
The hooks associated with each box are shown in Eq. (5.95).

(5.95)
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We see that the denominator = 3 x 2 x2x 1 = 12. Hence the tableau (5.94)
corresponds to an irreducible representation of dimension N2 (N 2 1) /12.
Let us now consider some more examples:

(5.96)

To avoid double counting, we discard the slashed tableaux. Thus we can
write

bi &5 Dk ~ Tiijiy + Tiajik + Tiings + Tiijuy- (5.97)
Note further that
Tiijik + Tiga); + Tijrge = 0. (5.98)

In order to find the dimension of these representations, we note that

(5.99)
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For example for SU(6) : 6 @6 @ 6 =56 ® 70 @ 70 @ 20.

(5.100)

Hence we have

(5.101)

For example for SU(3) : 3®3 = 6@ 3 and for SU(5) : 10 ®10 = 50 &
45 ®© 5.

5.6 Applications of Flavor SU(3)

5.6.1 SU(3) Invariant BBP Couplings

If O4 is an octet operator, the matrix elements of this operator between
the states |8, B) and |8, C) can be written as

(8,C04|8,B) =i fapc F +dapc D. (5.102)



146 Unitary Groups and SU(3)

In particular if Oy4 is pseudoscalar meson octet operator P4, and |8, B),
|8, C) are octet of baryon states, the BBP couplings can be written as

gapc =29 [i fapc f+dapc d]. (5.103)
For example

441454 —15 441454 —15

- :2 z g (L — +d:77

Irvr g[f3\/§ \/if V2 V2

gﬂ'_pn

= +d) = —grop, = =22, 5.104
g(f+d)=—gg 7 (5.104)

We normalize grop, = g, so that f +d = 1. Then

N N9 - _9
ngA—g< V3f \/§d>_ \/§(3f+d)_ \/3(1+2f). (5.105)

In this way we can calculate all the relevant couplings:

2
s = —7=(1—=f) 9 grzz =2 f g, grzz = —(1 -2
GrAS \/g( g grixs==2fg, g ( g
1
JKNA = —%(1 +2f) g, grns =—(1—-2f) g
1
JKA= = —%(1 —4f) g, grks==—g
1 2
gnsNN = _ﬁ(l - 4f) g, GnsAA = _ﬁ(l - f) g
2 1
Iness = ﬁ(l —f) 9, Gnsz= = —73(1 +2f) g. (5.106)
Experimentally
2 2
9znN _ 9
47 47
d 1-—
f208,  r=5= Tf < 1.85. (5.107)

5.6.2 VPP Coupling
Here we take O4 = Vy, the vector meson octet and |8, B) and |8,C) are
octets of pseudoscalar meson states. Now under charge conjugation C:
Va4 — —naVa, (no summation over A)
8, B) — 148, B), (5.108)

where

[ +1, B=1,3,46,8
nB—<_1 B—257 > (5.109)

)
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Hence the invariance under charge conjugation gives
<8aO |VA‘ 83B> — —NaAa B Nc <87C |VA| 87B>
= —nang nc [YF i fapc +7p dasc]

= [vr i fac + D dapcl. (5.110)
But [cf. Eq. (5.33)]
na ne nc fapc = —fasc
na ne nc dapc = dapc. (5.111)

Therefore, we have

Yp =—7p or ~p =0.
Hence V PP has only F-type coupling. Thus
<8, C ‘VA| 8, B> =1 fapc 27, (5.112)
where we have put vr = 2v. For example V3 = p°:
1—42 1442 14421—142
8, V3] 8, =i f3 ——————— = 27.
< /2 V3] V2 > I3 NG /2 Y g
Thus Yyrr = 2v. It is straightforward to calculate the V PP coupling for
other members of the octet, which are given below:

1
Vorrm = 29, Vot pogt =V = 75 Vit gor Yo = V3y.  (5.114)

(5.113)

The decay width of decay V' — PP is given by

2 3
YWwep 2 (Pem
I'(V—- PP)= =<2, 5.115
(V= PP) = =53 (m2v> (5.115)
Hence we have
8 (pl,

This gives = ~ 0.74. Now

ot K HKW) =T (K*+ HWOKJ“) +T (K*+ HWJFKO)
2

2 pi
— A (1 + 2) Q -,
4 3m.
and
Lot (K*+ - K7r> 3 o
_ 3Pkn/Mic (99 (5.117)

T'(p— 7m) 4 p;q'm/mf,
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This gives T'iot (K*+ — Kw) ~ 44.5 MeV to be compared with the exper-

imental value 49.8 £+ 0.8 MeV.
In broken SU(3), wg can mix with the singlet wy, so that the physical
particles w and ¢ are linear combinations of wg and w;:

¢ = wgcosfh — wysinb
w = wgsinf + wy cos b
10) cosf —sin6 ws
= ) 5.118
(w sinf cos6 w1 ( )
Let us now show that w; — PP is forbidden by charge conjugation
invariance. The invariant coupling in this case is
wip P jl o Pz‘j
which changes sign under charge conjugation. Hence

I'(¢p— KTK™)=cos’0 I (wsg — KK)

Therefore,
2 3
_ Y 2\ (p
I'(p— K"K ):c032047r(3><3) (7;(??) (5.119)
and
r K+*K-) 3 /M3
DO KYKT) 3 o (Pre/Ms) _ o1 (5.120)
T'(p—7m) 4 Pa/mp

where we have used cos?f = 2/3 [see Eq. (5.153) below]. This gives
I'(p — KTK™) =1.95 MeV to be compared with the experimental value
2.1 MeV.

5.7 Mass Splitting in Flavor SU(3)

In exact SU(3), the particles belonging to an irreducible representation
of SU(3) must have the same mass. But we note that all members of a
supermultiplet do not have the same mass. This means that SU(3) is not
an exact symmetry of strong interactions, but is a broken symmetry of
these interactions. This means that the interaction Hamiltonian consists of
two parts viz.

H = H0+H1, (5121&)
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where
[F}, Ho] =0 (5.121b)
[F}, Hi] #0 (5.121c)
i.e. Hy is SU(3) invariant, but H; breaks the SU(3) symmetry. If we take
H such that
1, Hy)=0, [Y, H]=0, (5.122)

H; still preserves the isospin symmetry and hypercharge is conserved in its
presence. The first of Egs. (5.122) holds only in the absence of electromag-
netic interaction. In order that SU(3) to be meaningful, H; must be at
least an order of magnitude weaker than Hy.

The simplest general form of Hy in SU(3) which satisfies Egs. (5.121c¢)
and (5.122) is

Hy ~ T3 or )g. (5.123)
To get Hy from the quark model, the mass Hamiltonian for quarks is given
by
Hy=m, uu+mg dd+mg 5 s,
where m,,, mg and m, are masses of u-quark, d-quark and s-quark respec-

tively. In the exact SU(3) limit, m, = mg = m,. If SU(3) is broken but
isospin symmetry SU(2) is still exact, then m, = mq # ms. Now one can

write
- wu—dd
Hy=m (au+dd)+ms5 s+ (my —md)uu2
2m +ms ,_ — _
:%(UU_Fde’_SS)
m —mg 1 -
+ f —_(au+dd—2ss
V3 \/3( )
1 -
+ (my —md)i(ﬁu—dd), (5.124)
where
_ My +mg 2m +ms my, +mg+ms
m = , = =my
2 3 3
(m —ms) My +mg—2mg A
= = — 5.125
V3 2V/3 2 ( )

H, becomes

q. (5.126)
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This also shows that SU(3) symmetry breaking term transforms as A\g under
SU(3).

It was shown by Okubo that for any irreducible representation (p, q) of
SU(3), the matrix element of tensor T5 is given by

{(p.q) I, Y |T3| (p,q) 1, Y>:a+bY+c[i—I(I+1)}, (5.127)

where a, b, ¢ are independent of quantum numbers I and Y but in general
depend on (p,q). Thus we can write the mass formula for particles in a
multiplet of SU(3) as

Y2
m:m0+Am:a+bY+c[4—I(I—!—l)]. (5.128)
Let us apply this formula to baryon octet. Then from Eq. (5.128), we get
my + mg 3ma + my
= 5.129
5 1 (5.129)
whereas for pseudoscalar meson octet, we get
3m2 +m?2
mi = — 1 (5.130)

In Eq. (5.130), we have used squared masses, as in the Lagrangian for
bosons, the square of boson masses appear. Equations (5.129) and (5.130)
are well known Gell-Mann-Okubo mass formulae.

For the decuplet

Y
I=2+1, (5.131)
and Eq. (5.128) reduces to
m=a +0Y (5.132)

and we obtain the equal spacing rule for the decuplet.
mqo — M= = Mz — Myx = My — TNA. (5133)

The mass relations (5.129) and (5.133) are well satisfied experimentally and
are regarded as a great success of SU(3). Similarly for vector bosons we
get
m%( o 3 mig + m%
4
Since due to mixing between wg and the singlet wy, the physical particles
are ¢ and w, the formula (5.134) is not directly applicable. We will come

(5.134)
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to this formula later. Similar remarks are applicable to the mass formula
(5.130).

For octet and decuplet representations of SU(3), one can easily derive
the mass formula as follows. We note from Eq. (5.126) that

A s\’
Hi~q 5 q=a (8) ¢’

2 2/,
A\ i i
=13 ) O] = (Tg)j 0 (5.135)
where O; is an octet operator viz.
i i Lk
O;=q¢"q5 — géj q° qx (5.136)
and
A
Ty = 78 (5.137)

Hence we see that Hy transforms under SU(3) as
Hy ~ (Ty)} 0] = (M3)! Of = (5; CRLY 5].) o’
= 03. (5.138)

Thus to first order in A, the mass splitting for the state |A) of an SU(3)
multiplet is given by

Am =\ (A|H[| A)
=X (4|03 A). (5.139)
Let us apply it to baryon octet:
0} =0r (B; B} - B} B}) +Op (B} B} + B} B})

=0p (727 + E°2° — pp — ain)
2 _ 2
+0p |22 + 220 4 pp + fin + 2 <A> (A)] . (5.140
D [ p 5 7 ( )

Hence we have
mpzmo—l—)\(—OF—i—OD) = My
my = Mo
4
mp = mg + g)\ Op
ms= :m0+)\(0F+0D). (5.141)
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This gives the Gell-Mann-Okubo mass formula (5.129) for baryons.
For the decuplet, we have
A O3 =\ T3 (5.142)
This is the only possibility as Tj;i is a completely symmetric tensor.
A O§ = [T113T113 + 2T123T123 + 2T133T133
+ 2T233T233 + T223T223 + T333T333]
=28 2t 4250 9042 B B
+4EET + 4E0E0 607 Q7. (5.143)
This gives
ma = My
mz=x = My —+ 4)\
mo- = mg + 6A, (5.144)

and hence this gives the mass relation (5.133) for the decuplet.
For octet of vector mesons

0} =0p Vi VP + V) Vi

T P [o* * N x0 2 2
=0p |[K" K* +K* K* +K*K* +2 —%ws —— Ww§

(5.145)
Hence one gets
m2 = m3
mg(* = mg + A Op
ml, =mg+ g/\ Op. (5.146)

This gives the octet formula (5.134) for vector mesons. Now wg and w; mix,
when SU(3) is broken, the mass matrix in wg and w; basis can be written

2 2
M? = (%88 7:11%8> . (5.147)

Using Eq. (5.118), we can diagonalize it:
2
UTM2U = <m¢ 0 ) : (5.148)

0 mg
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where
cosf —sind
= . .14
u <sin9 cos 0 ) (5.149)
This gives
mi +m2 =mZ+m? (5.150a)
mi —m2 = (0052 6 — sin” 0) (mg —m3)
+45in 6 cos O m3s, (5.150b)
2 2
fan 20 = — 18 (5.151a)
mg —my
m2 —m2  3m2 —4m%. +m?
tan?f = —2——> = —_2 K P (5.151b)

mi—m2 4 mi.—m2—3mZ
Now using mg~ = 892 MeV, m, = 770 MeV, m,, = 783 MeV and mg =
1020 MeV, we have mg = m,, = 930 MeV, m; = m,, = 880 MeV and

tan @ = 0.84, 6 ~ 40°. (5.152)
It is tempting to take
1
tanf ~ — ~ 0.71, 0 ~ 35.3°. 5.153
7 (5.153)
For this case sin 6 ~ %, cos ) ~ % and

V2 1 B _
7 lws) — —=|m1) = —|s 5) (5.154a)

1 V2 ui+dd >
w)=—=|wg) + —4=|w1)=|—F7~—). 5.154b
jw) 7 |ws) 7 |wi) 7 ( )
Hence we have
m, =m; (5.155a)
and from Egs. (5.151b) and (5.153)
mi —m2 =2 (mik. — mf,) . (5.155b)

Equation (5.153) gives the “ideal mixing”. With this mixing ¢ is made
up of s5, i.e. of strange quarks only. Experimentally it is observed that ¢ —
pm or 37 is very much suppressed as compared with ¢ — K K. Note that pr
or 37 does not contain any strange quark. The suppression of ¢ decay into
non-strange particles is explained by the so-called Okubo-Zweig-lizuka rule
(OZI rule): “The decays which correspond to disconnected quark
diagrams are forbidden”. Thus the decay in Fig. 5.6a is allowed but
the decay in Fig. 5.6b is forbidden. There is no theoretical basis for the
OZI rule. No strong interaction selection rule forbids the decay of ¢ — pm
or 3w. But experimentally this rule seems to be well satisfied. The small
decay width for ¢ — pm (37) can be explained by some deviation from the
“ideal mixing” which allows small admixture of non-strange quarks in ¢.
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Fig. 5.6 (a) ¢ — KK decay allowed by OZI rule, (b) ¢ — ntn~ 70 decay suppressed
by OZI rule.

5.8 Problems

(1) Show that for a vector operator O;(i = 1,2) under SU(2)

[Ia, O;] = O; (%A)J A=1,23.

Given
(2,3/2,-1/2]041]8,1,—-1) = F,
find
(a,3/2,-3/2]02]8,1,-1).

The states are labelled as |, I, I3).

(2) Suppose that (TA); = (74),; and ((TA)g = (04), are Pauli matrices in
two different two-dimensional spaces. In the four-dimensional product
space, define the basis vectors

=1 =li=1) Ja=1), [p=2)=|i=1) [a=2)
n=3)=]i=2) la=1), u=4)=|i=2) la=2).
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(3)

(4)

(8)

Problems 155

Define ,
Tap=7a®0p; (Tan), = (14); (0B)5,
v =1,--- .4, A, B=1,2,3.

Evaluate
Ty = (2 ®o01), as a 4 x 4 matrix.
A second ranked mixed tensor T; transforms as ¢ ¢;, under the unitary
transformation
¢; = ag ¢j7
show that

[F}, TF) =6 T} — &} T7.

(a). Using the following relation for SU(3):
i i L
show that
FY|d)=|u),  Fy |u)=]s).

(b). Using the relation

(7}, Bf| =& B} - &) Bi
and Eq. (5.60b) of the text, show that

B[S =—valst).  F =[5,
From the group property
U™ (b) U(a) U(b) = U(b"tab),
derive the commutation relation for the generators of the unitary group
U(N):
i 4l i Al _ sl oAd

[Ag, Ak] — 6] AL — gl Al
Show that A1, A2 and A3 generate an SU(2) subalgebra of SU(3). Show
that the representations generated by the remaining A’s or their lin-
ear combinations transform as doublets and singlet representations of
SU(2).
Show that Az, As and A7 generate an SU(2) subalgebra of SU(3). Show
that the representation generated by the linear combinations of remain-
ing \’s transform as 5-dimensional representation of SU(2).

Hint: A5 F i)\, act as raising and lowering operators.
Find the matrix generators Ay (A =1,---,15) for the group SU(4).
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(9)

(15)

(16)

Unitary Groups and SU(3)

The following assignments for 3 quarks are given instead of the usual

ones:
B S 1 I
W1 -2 12 1)2
11 -2 1/2 -1/2
s 11 -3 0 0

Find the charge @@ and hypercharge Y for each quark in this case.
Mesons can be constructed as ¢’ g as before. If baryons are constructed
as ¢’ ¢’ ¢’, can the above assignment of quarks work? If not, discuss
the difficulties encountered.

Find the U-spin eigenstates for the baryon octet and decuplet. Plot
them on @ versus Us plot.

As far as SU(3) is concerned, magnetic moment operator transforms
as T} which is singlet under U-spin. Using this fact and the U-spin
multiplets found above, show that the baryon octet magnetic moments
are related as follows:

1
Pt = fp,  fim- = fime, pE0 = pa = 5 (3pa — pso),

In SU(3), find
10 ® 8, 10 ® 10, 8® 3.
In SU(5), show that

55=241, 10 ® 10 = 5 @& 50045

5®10 =5 ¢ 45, 1010=1024¢ 75.

Consider the representation 6 of SU(3). Write down the particle con-
tent of this representation in terms of quarks. If SU(3) breaking Hamil-
tonian H; transforms as Oz or Ty, write down the mass formula for
these particles.

Draw the weight diagrams for the 15 plet and 27 vlet representations
of SU(3).

Consider the O~ nonet. Experimental masses are

my; = 137 MeV, mg =496 MeV,
my = 549 MeV, m, = 958 MeV.
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(19)

Problems 157

From the octet mass formula, find m,,. Compare it with m,,. Assuming
that discrepancy between the two values is entirely due to 1 —ns mixing
in broken SU(3), so that

) =cos |m)+sind |ns), |n)=—sind [m)+cost |ns),
find from the experimental masses and m,,, the values of m,, and the
mixing angle 6. If we write

In) = cos¢ |nns) —sing [ns), |7]/> =sing [nns) +cosg |ns),
where

1 _
‘77ns> = ﬁ |ﬂ u+d d>7 |773> = |§ $>7

show that
¢ =tan"' V2 +0.
You are given an octet operator
O = cos0 O14i2 +sind Oyyys,
determine the SU(3) matrix elements for the transitions:
n—p , YT —n , XYX—oA
- =0 =0 — A SR Y
in terms of F: D and 6. 7
Write down the D B P couplings in the SU(3) limit for the process
D—Bp

Zoﬂp
ET -2t

)

[1]

)

where
D : Bayron decuplet JF =3/27F
B : Baryon octet JF =1/2F
P : Meson octet J¥ =0,
Hence show that for the energetically allowed decays, they are in the
following ratios:
At s »* g =
— prt LA =Yt S Eat =0
—\/6 : \/g : 1 : \/§ : —1
Show that why in Eq. (5.102), only two reduced matrix elements F
and D are possible?
Hint: From field operators B}, B and P} one can form only two in-
dependent SU (3) scalars: Bjiys By, PF and Blins P} Bf, giving Yukawa

K3
. +
coupling between pseudoscalar mesons and J° = % baryons. The
above two scalars can be arranged antisymmetric Hr and symmetric
Hp combinations.
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Chapter 6

SU(6) and Quark Model

6.1 SU(6)

Quarks have spin 1/2. The well-known baryons with spin 1/2 and spin 3/2
are in the octet and decuplet representations of flavor SU(3). We note that
within each representation the mass splitting between adjacent members is
of the same order. For example

ma —mpy ~ 170 MeV, mz —my = 125 MeV;

my= —ma = 153 MeV, mgq — mz- = 142 MeV.
It is tempting to put these two representations in an irreducible representa-
tion of a group higher than SU(3). But octet and decuplet representations
have different spins. This means that the proposed group cannot com-
mute with angular momentum (spin). The proposed group must contain
SU(3) ® SUo(2) as its subgroup. This might cause some trouble, since we
are combining an internal symmetry with a space-time symmetry. It does
cause trouble but this does not show up until one tries to make the theory
relativistic [see Chap. 17].

We note that spin 3/2 baryon decuplet has (10 x 4) states and spin
1/2 baryon octet has (8 x 2) states. Thus, we look for an irreducible
representation with 56 dimensions. Such a representation occurs in the
decomposition of the product of representation 6 of SU(6) by itself viz.

6R6®6=56070070 D 20. (6.1)
The representation 56 is completely symmetric irreducible representation of
SU(6). The six quark states (in this section we will not write | ) explicitly)
(utw] dTd| s1s])can be put in the fundamental representation 6.
We denote such a state as U, : @« =1, 2; i = 1, 2, 3. In matrix notation.

Cfutdtst
‘P:<uldm>' (62
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Now SU(3), SU(2) and SU(3)®SU(2) are subgroups of SU(6)
representation 6 splits under these subgroups as shown in the table below:

Subgroups Quarks Representation Generators
of SU(6)
(Widist) (ldlsl) Irawl
SUB) 3,1 ° (3, 1) A=1...8
(uTul) (dTd]) (sTsl) 1® 5 o,
TP Ty @y oy =123
SU(3) x SU(2) (3, 2) (/\TA ® %)

Thus, one can see that SU(6) has 35 generators. Hence the adjoint
representation of SU(6) has dimension 35 and is given in the following

decomposition:
626=35®1. (6.3)

The representations 56 and 35 split under the subgroup SU(3)®SU(2) as

follows:
56 [(37 2) ® (37 2) ® (37 2)]symmctric
(10, 4) + (8,2) (6.4)
= baryon baryon
decuplet octet
35 (3, 2)® (3, 2)]
(8,3)®(1,3) & (8 1) @ (1, 1)
_ nonet octet of singlet (65)
- of vector pseudoscalar  pseudoscalar
mesons mesons meson
6.1.1 SU(6) Wave Function for Mesons
The mesons are composite of ¢gg. The lowest lying mesons have
(@@),—y and P=(-1)(-1)"=-L
The spin wave functions are given by:
(6.6a)

Spin singlet state : x4 = \% 1L =17
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Spin triplet states: X;’Oﬁl =111

1
7%”

L+, 1D

161

(6.6b)

The spin singlet state is antisymmetric, it gives J© = 07, whereas the spin
triplet states are symmetric and gives J¥ = 1. Thus one can write SU (6)
states for

JP =0 (150) :

1
(4:T) =g x4 = (¢: ;) 7 (Tole —Loly)

For example

at = (qui — ulJT)

o 1

T ==

('@t — ula! — d'd + d'd")

Similarly one can write SU (6) states for other members of nonent. For
JP 117 (381) , SU (6) states are as follows:

J, =1 J,=0 J,=-1
(%) 0 X5 (9:93) p—o X5 (4i4j) o X5
(@:3;) (T 1)) (@) 5 Uty + loTy) (@:3;) (Lay L)
pt: (uldl) % (u'dh +utdl) (utdl)
WO | 5 (Wldl +u1dl) | 5 (ulat +utal +dld +dtdT) | o5 (uld +uldh)

Similarly one can write for other states.

We now briefly discuss, the p-wave, i.e. L = 1 mesons:

(44),_,, Parity P=(—1)(=1)" = +1

For L = 1 mesons, we have the following SU (6) wave functions

(q0) ;—y X% : 1Py state 17

_ 1,0,
(QQ)L:1 Xs

-1, 3PO state 0T

: 3P, state 1T
: 3P, state 21

Now C-parity for the mesons composite of identical flavor quark and anti-

quark C' = (—1)*"* and G-parity G = C'(—1)". Hence for

L=0
L=0
L=0

L=0

S=0
S=0
S=1
S=1

C=+4+1 G=1"
C=+1 G=1"
C=-1 G=17
C=-1 G=1"

™

mn

p
w,

/
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1t

3p1,3 P, 0++, 1-%--&-7 2++

Hence in the quark model we have nonent of these states. Some of these
states can be identified in the particle data book.

Lowest lying baryons are made up of three quarks: (qqq)r—o, P =
(—=1)°(1)3 = 1. Here we have to combine three spin 1/2’s. In this case we
have the following decomposition:

I e

2 2 2
| |
I R I R I
4 2 2
Completely Mixed Mixed
Symmetric Symmetry Symmetry
Spin % Spin % Spin %

It is convenient to combine first two spin 1/2’s. For this case we have
S = 0 with spin wave function x4 [Eq. (6.6a)] and S = 1 with spin wave
functions xs [Eq. (6.6b)]. Let us now combine spin 0 with the remaining
spin 1/2 and we get the spin S = 1/2 and the following wave function xasa:

1/2
XmA = \[ | \[ |
Now combine spin 1 with the remaining spin 1/2. For this case one gets
S =3/2 and S = 1/2. The spin wave functions for this case are given in
Table 6.1.
In table 6.1, the numerical coefficients are Clebsch-Gordon coefficients
in combining spin 1 and spin 1/2.

-1/2 _

XmA (6.7)

(T =1nn, T=1nh.

The state function for the completely symmetric representation 56 of
SU(6) can be written:

1
By vs+ — [® o : 6.8
5 Xs NG [®ars Xas MA XMA] (6.8)
where [cf. Eqgs. (5.63), (5.58) and (5.59)]
®s = [Tijk) (6.9a)
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Table 6.1 Spin wave functions for S = 3/2 and S = 1/2 resulting in the
combination of spin 1 and spin 1/2.

S, =3/2 S.=1/2 S, =-1/2 S, =-3/2
3/2 .
X¢ = Symmetric: ) )
—= ML+ 117 —= LT+ 1Tl
V3 NE
LU + 1), 110, L
/2 s
Xai g (Mixed B ‘_(Tl+lT)T 1 ‘ (+iD]
symmetry: V3 V2 3 2
symmetric +V2 T”> , — V2 llT>
in 1 and 2)
®pa=B; 0), ®ys=—DB; |0). (6.9b)

The spin state functions xs, xas and xara are given in Table 6.1 and Eq.
(6.7). Using Tables 5.4 and 6.1, we can write the state function &g xg for
the decuplet. For example,

|A°, 5, =1/2)

1
=—(wudtudut+duu)

\f
m + 71T+ 111)

uTqul +uldlul + dTuTeut
+ulutd! +uldia! + dutul | . (6.10)
+utuld + wtdTu’ + dbulu!

(wud+udu+duu)|TTT) (6.11)

(uTquT +uldlu! + dTuTuT)

‘Q, S, = 2> =sss|11T) = |5T5T5T>. (6.12)

Similarly one can calculate all the other states.
For baryon octet 1/2% states, we explicitly calculate the state
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lp, S, =1/2). It is given by

pose=1/2 = {lwd s diu-2eud - 11+ 1012110
1
+ (1) [wa-awu 210110 1)

i (qul + uldT) wl = 2uldTut
1 + (dTul + dluT) wl = 2dTuut — 2uTutd!
6v2 | —2utuldl + 4ululd' + 3uldlul
| —3utdu! — 3d"ulu! + 3dtulu’
1 M2utdbul + 20Tl dd + 2dtul ot
ot —dtdt et — wtdtet (6.13)
u'u wd'ut —utd'u
V18 —d"wte! — duTut — whu'dl

The rest of the states can also be calculated in a similar way. (See problem
6.3.)

Finally we give the state functions for the representations 70, 70 and
20. They are as follows:
Representation 70 : MS

D5 Xms : (10, 2) : 20
Drs Xs - (8, 4) 132
5 (=Pars Xars + Para Xara) ¢ (8, 2) 1 16
Dy xma (1, 2):2 g = |AD)[cf. Eq. (5.62)].
Representation 70 : MA
Dg xnra: (10, 2) : 20
Drra xs - (8, 4) : 32

% (Pms Xma+ Paa xms) : (8, 2):16
Da xmac: (1, 2):2
Representation 20
Dy xs:(1,4):4
% (Prrs xvra — Para xms) < (8, 2):16
We will not give the detailed identification for these states.

6.2 Magnetic Moments of Baryons

Magnetic moment operator is given by
A =guod /b (6.14)
Define the magnetic moment p of a particle of mass m:
1= gpoJ, (6.15)
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where
to = eh/2me (6.16)

and J is the angular momentum which appears in the eigenvalue of J?2
which is J(J + 1)h?. For electron, J = 1/2, g = -2, i.e.

pe = —eh / 2meec. (6.17)

For a spin 1/2 particle, J = 1/2ho. Thus for a quark, the magnetic moment

eh 1
=2
fla = 264 <2mq >2 %
= Hq0q; (6.18)

=Q, ( ch > (6.19)

2myce

operator is given by

where

is the magnetic moment of the quark.
The magnetic moment operator for a baryon of J* = 1/2% in the quark
model is given by

I = Zﬂqaq- (6.20)
q

We need to calculate the expectation value of [ig, viz.

pB = (iB:) Zﬂq (0g2) - (6.21)

Let us explicitly calculate the magnetic moment of the proton. For the
proton

//ff\pz = UuOuz + HdOdz + HuOuz- (622)

Using the proton state |p,o, = 1) as given in Eq. (6.13), we have (we will
not write o, = 1 explicitly in the state)

2 (pu — pd + fru) uldul +2 (fow + fu — pta) ululdt
L | P2 (pa g ) dbutul = (= o+ pa) ulutd!
fip= |p) = VT — (ptu + pa — pra) wdM b — (=g + pra + p) utd'u!
— (pa — o + Mu) dlutul — (pa + pg — p) dTul
= (—pu + fu + pa) utul d!
(6.23)
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Hence
Hp = <p‘ ﬁpz |p>
1
BRT] [12 (200 — pa) + 6p1d]
4 1
= —ly — = - 6.24
3/'L'Uz 3 Hd ( )
Similarly, we can also calculate the magnetic moments for the rest of the
baryons in the octet.
However, one can use simplified state functions to calculate the magnetic
moments. In this calculation the order in which quarks appear is important.
For the proton, write the state function

P = luwd) X2 = uu d) (—jé) L+ 10T =211 (6.25)

oo (1) [[(TL+ 1) T =2 11D = [T = 1) T =2 1711]) (6.26a)
o (2) [[(L+IDT 21D ==L+ 1D T -2114) (6.26D)

o (3) [[TL+HID) T =217 = [[(TL +11) T+2111]) - (6.26¢)
Hence
fipe Xars = [Huos (1) + o (2) + paos (3)] Xars

1
- <¢a) (g [T10) + pa [T+ 10) T 42 111D

(6.27)
Therefore,
1
Hp = <Apz>p = G By + (1 +1—4) pgl
41
- g/f‘u - g Hd
For ‘AO>, the simplified state function is given by
1
[A%) = —lud &) il = —luds) Z5I1L=1DD) (6.28)
//j\/AZ = Uy Oz (1) + HdO (2) + HsO (3) (629)
~ o2 L T (LD D) +pa [(=TL=1D)T)
paXara = 5 s 1(TL = 1) 1) - (630)
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Therefore,
=N 1
pa = (faz)p = ) [0+2 pis] = pas. (6.31)

For |EO>7 the simplified state function is

50) = Ju d s) XY2 = ud s) (—;6) L+ T=2111)  (632)

/JEUZX]VIS f{ﬂu H(Tl - lT) T —2 TT”>
+pa [[(=TL+ 1) 1T =2114)

s (104 11) T +2 111D} (6.33)
Therefore,
~ 1
pso = (fioz)so = 5 [ (4) + pra (4) + s (141 = 4)]
= gﬂ’u + gﬂd ENJ . (634)

3 3rhe 3
From Egs. (6.30) and (6.32), we get
o no = (20| fin- |A)

= = P~ 2u]
1
= (b = pid] = prno—so. (6.35)
The magnetic moments for the rest of the baryons in the octet, can be
written from Eq. (6.23) as follows:

[ (o = pa) = g fd — % fh- (6.36)
st (Ha > ps) = % Hu — % fhs- (6.37)
Ky~ (o pa in ps+) = % Ha — % Hs- (6.38)
pao : (fa ¢ ps in ) = % fts — % [hu- (6.39)
pz- 1 (fu < pa in pzo) = g Hs — % Hd- (6.40)

In order to compare these magnetic moments with their experimental val-
ues, we introduce the following quantities:

eh My +my
= — = —. 41
Ho QWC’ m 9 (6 )
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We can write

m
Ho = N (jp> ; (6.42a)
m
where
eh
= . 6.42b
N = G (6.42D)

Here pupv is the nucleon magneton. Thus we can write the magnetic moments
of u, d and s quarks in terms of puy :

2 my
L= (2 6.43
I 3<mu)‘“" (6.43a)
1 my
- (== 6.43b
b S(md)m (6.43D)
1 my
= (=2 . 6.43
I 3(m8>“N (6.43¢)

We will now assume isospin symmetry, i.e. will take m, = my = m.
We see that there are two unknown numbers m and m,. These numbers
will be fixed from the experimental values of p1,, and pa. From Eqgs. (6.24),
(6.31) and (6.42b), we obtain

m
Hp = %p un =2.793 py. (6.44)
1m,
HUA = — 3 UN = —0.613 UN - (6.45)
3mg

On the right-hand side of Eqgs. (6.44) and (6.45), we have put their exper-
imental values. From Eqs. (6.44) and (6.45), we get

m=m, = mg ~ 336 MeV (6.46a)
ms = 510 MeV. (6.46b)
It is interesting to compare these values with those obtained from the naive

quark model. Now proton is made up of uud quarks and A is made up of
uds quarks:

3 M =my, m = 313 MeV (6.47a)

—2
m% = 490 MeV. (6.47D)

The masses of u, d and s quarks given in Egs. (6.46a) and (6.46Db)
are called the constituent quark masses. These are effective masses of the

2m 4+ ms = my, mg =



6.2. Magnetic Moments of Baryons 169

quarks confined in a hadron. The constituent quark masses are quite dif-
ferent from those appearing in the Hamiltonian or the Lagrangian. These
masses are called current quark masses [see Chap. 11].

Using Egs. (6.43) and (6.44), we get

oy = 1.862 (6.48a)
f1a ~ —0.991 pn (6.48D)
s ~ —0.613 up. (6.48¢)

Using Egs. (6.48) the predictions of quark model for the baryon magnetic
moments as given in Eqgs. (6.24), (6.31) and (6.34)-(6.40) are tabulated in
Table 6.2 along with their experimental values. If we put m, = mg = my,
in Egs. (6.24), (6.31) and (6.34)-(6.40), one gets the SU(6) predictions

Pp = fis+ = —5 Hn = =3 pa = =3 pi— =3 pixo

3
= — = Um0 = -3 H=—- = \/?: U330 _AO.

N W

(6.49)

We conclude this section by the following observations:
1) The quark model is simpler than SU(6).
2) It is more predictive than SU(6). It gives information about the scale of
magnetic moments.
3) It gives good account of some corrections to SU(6) relations.
From Table 6.2, we see the agreement between quark model values of baryon
magnetic moments and their experimental values is not bad.

Table 6.2 Magnetic moments of baryons: Quark model predictions
and comparison with their experimental values.

ﬁiﬁ:ﬁf Quark model values (in ppn) ‘]:?Si):;n(?sn;;l)
Up input 2.793
Ln —1.862 : 24 — —1.913
KA input —0.613 £ 0.004
Ps+ 2.687 : Zftu — 3 fis 2.458 + 0.010
Hs— —1.037 : Zpq — s —1.160 + 0.025
Kx0 0.785 : Fpu+ 3fd —ghs -
fi=o —1.438 : Zis — % pu —1.250 & 0.014
fe— —0.507 : Zps — 3Hd —0.6507 £ 0.0025
U520 _ A 1.647 : % (w — 1) 1.61 £ 0.08
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6.3 Radiative Decays of Vector Mesons

For a quark and antiquark system, the Hamiltonian is given by

P1 p2
H=—"+4+—"—"="+4+V(r,r
2m1 + 2m2 * ( b 2)

_ (U1.p;)ﬂ£ol.p1) n (Uz.ﬁzzﬂsaz-ﬁz) +V (01, 12). (6.50)

To introduce electromagnetic interaction, we make the gauge invariant re-
placement

P—D-—eQA(ryi), (6.51)
where A (r, t) is the electromagnetic field, e @ is the electric charge of the
quark and p = —iV. From Egs. (6.50) and (6.51), we get

I Wvbw A i,
i=1 EQL L'A(riat))o-t pz+ 2Q AQ(rta)

+ V (I‘l,rg) .

(6.52)
Using the identities

(0-P)(0-A)+(0-A)(0-P)= P-A+AP+ io-(—iVxA) (6.53)

Pp-A=Ap-V-A (6.53b)
and the gauge condition
V-A=0, (6.53c)
Eq. (6.52) becomes
H = Ho + Hint, (6.54)
where
Hy = 22: L iy (r1,12) (6.55)
i=1 2m;
Hip = —€) QQ"_ [2A (r;,1) - i + i0q (—iV; x A (4, 1))]. (6.56)
7 <

In Eq. (6.56), the second order term e? has been neglected. Now [see
Appendix A]

N Cl)\/ (k) eik’Are—iw’t

A. t -1,/ .
(I‘ /2V ZZ \/> */\ 1\’ (k/) e—zk Toiw't

(6.57)
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where e’ is the polarization vector, ay (k') and a;, (k') are the annihila-
tion and creation operators for the photon respectively. They satisfy the

commutation relation

[a)\ (k) al, (k’)] = Gy 0 (k—K). (6.58)
Let us now consider the emission of a photon viz the process
a—b+n. (6.59)
We note that
ax(k)|a) =0 (6.60a)
(b ] = (b ax (k) (6.60b)

(bylal, (K) = (b |ax (k) a, (K)
= | [6an 6 (k—K) —al, (K) ay (k)} .
(6.60c)

It is clear from Egs. (6.60a), (6.60b), and (6.60c) that only second half of
Eq. (6.57) contributes and the matrix elements for the process (6.59) are
given by

Qi 1 —iker;
Hyo = —¢S " (b ik
v 62} s Vave"

x [2e* - p; —ioy - (k x €*)] [a) ™, (6.61)
where we have used
—V x A oc(—i)? kxe\. (6.62)

In Eq. (6.61), the term with 2 €*" - f)l gives the electric transition and the
term o; (k X e*x> gives the magnetic transition.

Making the dipole approximation so that in the expansion
e” T =] ke (6.63)

we retain only the first term. Then

1 D; .
E; _ L AT iwt
HE = — Xz:m (b] Q; . la) - ™ e™t. (6.64)

Now

i— = [r;, Ho] + 0(e). (6.65)
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We now choose the center-of-mass (c.m.) frame and introduce

r=r; —ry (6.66a)
miry + Mmors

R = (6.66b)
mi + mo
1 1 1
-—=— 4 —. (6.66¢)
1% miq mo
In the c.m. frame R = 0, so that
R, H]=0. (6.67)
Therefore, Eqgs. (6.64)-(6.67):
HE = lepw {b (Ql — Qg) rla -5)‘*] et 6.68
ba \/m < | my Mo | > ( )

where we have used the fact that |a) and |b) are eigenstates of Hy with
eigenvalues F, and Ej:

Hyla) = Eqa), (6.69a)
Hy |8) = Byla). (6.69b)
Eo— By = w. (6.69¢)

We shall make use of Eq. (6.68) later. Here we consider the magnetic
transition in dipole approximation, i.e. allowed M1 transition. For M1
transition we get from Eq. (6.61)

P T e R (WS iwt, 6.70
= v W g (kx ) e (6.70)

We consider the decays of the form

V—-P+y

351 — 150 + 7. (671)

For the transition 3S; — 'Sy, AL = 0 and there is no change in parity.
Therefore, it is M1 transition and the Hamiltonian given in Eq. (6.70) is
relevant for the decay (6.71). Now we can write

o- (kx 5’\*) =0, (kx 5’\*)z+\/§s+ (kx E/\*)
+V2 s (kXE/\*)+7 (6.72a)

where

1
S+ = 5( o tioy), s—= 5 (02 —i0y), (6.72b)
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(kxsv)i:% [(kxe’\*Lii(kxeA*)J . (6.72¢)

If we take the matrix elements between V(S, = 0) and P(S, = 0), we need
to consider o;, (k X 5/\*)2, i.e. we have to calculate the matrix elements of
the operator

i, = Z (Qi/2m;) 0y (6.73a)
between the states
[V, S, =0) and |P). (6.73b)
IV, S.=0): |qid2) x& = % 91G2) |(T(1)l(2) +1lnT@))- (6.74)
Now
o X&) = X%), o2 X&) = — X)) (6.75)

We explicitly calculate (fi,) for the transition w® — 7%

lw, S, = 0) = %|uﬂ+d&>xg.

Using Eq. (6.75); one gets

m R T T 7 AN N 7 AN
A |w, SZ—0>—3mu\/§‘uu+dd>xA 3md\/§|dd>xA. (6.76)
Now
|7%) = % | v —dd ) x%. (6.77)
Hence
07 |, 5, =0y = L (2 4+ L
(7| iz |w°, S, =0) = G (mu +md>. (6.78)

Similarly one can calculate (fi,) for other members of the octet. They are
given in Table 6.3.

We now calculate the decay rate for V. — P5. According to Fermi
Golden Rule, the decay rate is given by

T = 2r [(P| HM V)| p (E) . (6.79)

int

If we consider the decay of the vector meson at rest, then

Ey =my ; 0=k +kp, |k|:w
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Table 6.3 The matrix elements (P|fi. |V, S, = 0) for M1 transition for the
decay V — P + .

. Matrix elements . Matrix elements
Transition A Transition A
(Ply |V, 8- =0) (Plp, |V, S:=0)
0 0 1(_2 1 0 0 1( 2 1
wi o 5(mu+m) p o 6<mu—m>
+ + 1(_2 1 0 1 4 2
pm =T a(mu *mj) W= = Tns 1\ 3m,  3mg
1 4 2 1
pO — Tins 1 (3mu + 3md> ¢ — s "3mg
+ + 1(2 1 0 0 _1(1 1
KT = K 6<'mu 'mS) K™ — K 6(m5+md>

Ep =\/w?+m%

and
/ §(my — Ep —w) 2dwdQ
Vw? E
=2 2240, [my =Ep+wl. (6.80)
(2m)” my

Now (P| HM!|V) is given in Eq. (6.70) with a =V and b = P. In order to

int
calculate I', we have to average over the initial spins of vector meson V' and

sum over the final spins of the photon. The vector meson has three spin
orientations S, = +1,0, —1. Instead of calculating <HM1> for S, = +1,

int

0 and then taking the average, it is more convenient to calculate (H}M!

for S, = 0 and forget about the spin average. Thus from Egs. (6.70) and
(6.74), we get

2
PP = 3 S e s =0 (e =2)[ ()

)

From now on we will not write S, = 0 explicitly in |V). We note the
following properties of the polarization vector e’

’
S 'SA :5)\)\/

Z E*)\ 7{:/ _ ( o — knkljn’> 7 'I'L,n, _ 17273. (682)
Using Eq. (6.81), we have
3 [(kx ) |F =k (1 cos?0) (6.83)

A=1, 2
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and
8
/dQ k* (1—cos®0) = ?ﬂ-k? (6.84)
Hence from Eqs. (6.79), (6.80) and (6.83), one gets
4o ~ 2 3EP
P=— (Pl |V)|" k>—. 6.85
= (PR V)2 42 (6.85)
For the decay
P—V+n, (6.86)

we only sum over the spin of vector meson and do not take the average.
Hence for this decay, one has

E
T'(P—V+7)=4a |(V|ﬁz\P>|2k3m—‘;. (6.87)

We note that a relativistic treatment of the phase space gives the expres-
sions (6.85) and (6.87) without the factor Ep/my and Ey /mp respectively.
Thus we can write Eq. (6.85):

4o .
I =— (P V)2 k302, (6.88)

where € is the overlap integral. It is of order 1, but it may differ from 1, if we
take into account the distortion of wave function due to symmetry breaking
introduced by the quark mass differences. ) may vary from process to
process. We assume that this variation is not large. Then we can fix () by
using one decay, which we take p* — 7+ 4 ~. Using Eq. (6.87), Table 6.7,
my = mg = 336 MeV and k = 372 MeV, we get

T (p* — 7% +7) = (123 KeV) Q (6.89)
But
Texp (p5 — 75 +79) = (67£7) keV. (6.90)
which gives
Q ~ 0.735. (6.91)

Using this value of Q and m,,/ms = 0.66, we can compare the predictions of
quark model using Table 6.3 and Eq. (6.88) with their experimental values.
This is given in Table 6.4.

We notice from Table 6.4 that agreement between the predictions and
experiment is only fair. This is understandable since the relativistic correc-
tions become important for hadrons involving light quarks (see, for instance

[6])-
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Table 6.4 Quark model prediction for V— P + v with = 0.735.

k T T
Decay Experimental)
(in keV) (in keV) (in keV)
2
WO = 704y 380 (9"2 ((égg’)) @ 703 + 23
K*F S KT +4 307 124 Q% = (67) 50.3 £ 4.4
K*0 — KO 44 309 190 Q2 = (103) 116 + 16

6.4 Radiative Decays (Complementary Derivation)

6.4.1 Mesonic Radiative Decays V = P + ~
The decay
V=P+y

is a parity conserving decay. It is a transition from 3S; — 1Sy; thus it is
a M1 transition. The angular momentum and parity conservation implies
[ =1 in the final state, i.e. it is a p-wave decay. Now

p=p +k.
Let 1 and € be the polarization vectors of V' and + respectively.
p-n=0, k-e=0, k-e=0.

From Lorentz invarience, the only invariant one can form for this decay
is €"VP7p,,p),ny€,. Hence the T-matrix

1 F

[(%)3/2} 2 /2p02ph2ko’

T =

where
F = 2eqy p €7 pup,npeo.

The decay width

1 k| )2
Fzgi 2| |
7rmv
2 2
|M[* =" |F|

pol

In the rest frame of vector meson V: p=(my,0), p=-k, p-n=0,
give 11" =0, n, = (0,7m).
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Thus in the rest frame of V :

), () _ Pk
z;m m G + va

= an)\) *(

Hence in the rest frame of V :
F = —2mvegvp76ij”k:mjen
= 2myegv py€ijnkinjen

= vaegvp,yk- (r] X 6)

N 4 N
Z |F|2 gezmvgvaezm (Z ( ) ) ei/j’n'k’i/ ( $LA)65L/ )>
A

pol

4
_ L g, (21)

3
e k
F:gSVP”Q'( Vk2>
T mi \3

4a 3 e?
3 g‘Q/P7 |k|”, where a = yp=

Since it is an M1 transition, we can put

gvpy = p=(Plp.|V),

4
L=k’

In quark model:

N Qi

o XZ: <2mi 74
6.4.2 Baryonic Radiative Decay

1t 1t
B = B (=
(3)-#2( )+

is an M1 transition. The transition matrix for this decay is

The radiative decay

1 mm/’

T = F
(2m)*/2 \| 2kopop)
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where

_ 2 .
P! | ek )
This follows from Lorentz invariance and electromagnetic current conser-
vation.

The decay width is given by [see Chap. 2]
1 I
P ()
T\ m

M= Y P

spin polarization

where

In the rest frame of B :

p=(mp,0), p'=-k=[kln
+ 1
Tomy

Fry o-(kxe)x;

where we have put

E =Vk2+m?2x~m

Now
P = (;);ZT (00 x @) (0 (kx ©)
S0 i <2};il)2 e

1 F?2 3
r=-—2 1k
T 4dmm/ ‘ |
Since it is an M1 transition
F} 0 2 €
= /1/ —
() o

4Amm/
Hence

1 2.3
I'= 4am (Mozo_mf)) k|

Using the quark model values: M%o_) o = 1.647, we get

'~ 9.08 x 1072 MeV
h
T==

r
~7.3x107%0 sec
to be compared with experimental value (7.4 & 0.4) x 10729 sec.
To conclude that quark model gives results compatible with experi-
ments.
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6.5. Problems

6.5 Problems
(1) In quark model, using SU(6) wave functions, show that the Fermi ma-

trix element for n — p transition:

1 1

— + — —

<p, 52—5 zq:Tq n, S’Z—2>—1.

Find the Gamow-Teller matrix element

1 1

<p, S, = 3 ZT;'aqz n, S, = 2>.

q
(2) Show that the transition moment between A* and p is given by
1 1 2V2
SzzfAzA—s_aSz:* = —5 HMp-

(3) Write all the SU(6) states for the octet J£ = %+. You have to calculate
1> the other states can be calculated as

1) and |AT, S, =3

2%, 8. =3
follows:
1
n’, S, = 2> Change u — d and overall sign in |p+>
1 -
X7, S, == ): Changed—>31n‘p>
1
¥, 8. = 2> Change u — d and overall sign in ’—(E+)>
1
=09, = 2> Change d — s and overall sign in ’n0>
—_ 1 . 1=0
:,SZ=§ : Changeu—>d1n|:>
(4) Consider M1 transition decay
0 5 A%+ .

Calculate its decay rate in the non-relativistic quark model and com-

pare it with its experimental value
7= (7.440.4) x 1072° sec.

Hint: M1 transition operator is
52, (e £) = i (lox =), + VB (kx ™)
7 a

V2 [ (k x E*A)Jr,
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where

~ Qq o~ Qq
Mz = Eq 2mq Oqzy M+ = Eq 2mq Ogq+
N +£1/2
A7 Sz—iE __|U’d8> XnmA

1
‘EO, S, = :|:2> =|ud s) xAi/IIS/Q.
(5) Calculate the decay rates for the following decays in quark model:
¢—=n+t~y

i — o+
—>w0—|—'y

and compare them with their experimental values (54.9 +6.5) keV, (72
+13) keV, (72 £13) keV and (6.5 +£1.0) keV respectively. [You may
take ng — 11 mixing angle as § = —10°.]
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Chapter 7

Color, Gauge Principle and Quantum
Chromodynamics

7.1 Evidence for Color

As we have discussed in the introduction in order that 3 quark wave function
of lowest lying baryons satisfy the Pauli principle, each quark flavor carries
three color charges, red (r), yellow (y) and blue (b), i.e.
Ga a=r,1,b.

Leptons do not carry color and that is the reason why they do not experience
strong interactions. Thus each quark belongs to a triplet representation of
color SU(3), which we write as SU¢(3). Now SU(3) has the remarkable
property that 3@3®3 = 1008®8®1 and 3®3 = 8@ 1, so that baryons
which are bound states of 3 quarks belong to the singlet representation,
which is totally antisymmetric as required by the Pauli principle and mesons
which are bound states of gg belong to the singlet representation which is
totally symmetric. This assignment takes into account the fact that all
known hadrons are color singlets. Thus the color is hidden. This is the
postulate of color confinement and explains the non-existence of free quarks.

Evidence for color also comes from 7 — 2v decay. Since 7¥ is bound
state of gq, i.e. |7r0> = % ‘uﬂ — d@, one can imagine that the decay takes
place as shown in Fig. 7.1. The matrix elements M for the 7%-decay,
without and with color [where we have to sum over the 3 colors for the
quarks in the above diagrams| are respectively proportional to

e [0 -] e

TR [
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2/3e v (k) 2/3e v (k,)
Y d
P u t e — - d
° ©
u d
2/3e Y (k) 2/3e v (k,)

+ kl<—>k2
Fig. 7.1 Triangle diagrams for 7° — 2+ through its constituents.

In fact the above quark triangle diagrams predict

28
M:eQF:%f—” (7.1a)
where
L without color
S,=24 32 , (7.1b)
7 with color

and f, is the pion decay constant and is determined from the decay 7™ —
put + ve [see Chap. 10]; its value is 130.41 £ 0.231 MeV. Hence the decay
rate is given by

m30
(% — 27) 47r042|F|21—g

a’ 2,3
= Wswmﬂ.o. (72)
With S, = %, this gives I'(7” — 2v) = 7.77 eV in very good agreement
with the experimental value I'¢,, = 7.82 4+ 0.31. Without color I'y;, will be
a factor of 9 less in complete disagreement with the experimental value.
Furthermore another evidence for color comes from measuring the ratio
of e~e™ annihilation processes

o(e”e™ — hadrons)

R= (7.3)

oemet — p—pt)

in the large center-of-mass energy /s = \/(p1 + p2)? limit, where p; and
pe are the momenta of e~ and et respectively. To the lowest order in

electromagnetic interaction, Eq. (A.78) gives in the asymptotic region (s >
2 2
mg, my,)
4 1
ole et = puut) = goﬁf. (7.4)
s
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Now for the inclusive process e“et — hadrons, we expect this to take
place via e”e'™ — ¢g and quarks (antiquarks) fragment into hadrons [see
Fig. 7.2], so that

(e”e™ — hadrons) = » o(e ™ — qq)
q
]

where the analogue of Eq. (7.4) gives in the asymptotic region [s > m?2, my

—qq) = 4%04[365]%, (7.5)
where e, (in units of e) are the electric charges of the quarks which enter
the photon-qq vertex [see Fig. 7.2] and the factor 3 arises because we have
to sum over 3 colors for each quark flavor ¢q. This gives in the asymptotic

region

ogleet

Fig. 7.2 One photon exchange diagram for hadron production in e~e® annihilation.

R=3) el (7.6)

For example, above the bottom quark threshold (see Chap. 8) i.e. for /s
in the range 2m; < /s < myz [so that weak interaction effects can be
neglected],

9 4 1 1 4 1 11

3;6q—3<9+9+9+9+9) =3

which is confirmed by experimental measurement of R above /s > 2m,

[see Fig. 7.3]. Actually nature has also assigned a more fundamental role

to color charges. We know that electromagnetic force is a gauge force; here

we postulate that strong force is also a gauge force. In order to discuss the
gauge force, we first state the gauge principle.
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Fig. 7.3 Compilation of R-values from different e~et experiments [29].
7.2 Gauge Principle

Suppose a physical system described by a wave function ¥(z), z = (¢,r)
has the property that under a phase transformation
U(z) — U (z) = YU () (7.7)
(with A constant), the wave equation satisfied by ¥ or the corresponding
Lagrangian is invariant. Now if we demand that it remains invariant when
A is a function of space-time, then we shall show that it is necessary to
introduce a vector boson which is coupled to a vector current with universal
coupling e. We call such a phase transformation local gauge transformation
and the vector boson associated with it is a mediator of force whose strength
is determined by the charge e.
This is best illustrated by considering a non-relativistic particle of charge
e and mass m described by a complex wave function ¥(z). Consider a
space-time dependent phase transformation given in Eq. (7.7), with A as
a function of z and e the electric charge. For this case the physical law is

given by the Schrodinger equation
1 _, RoA%
—— VU =i—. .
2mV 5 (7.8)

This is not invariant under the local gauge transformation (7.7). In order
to restore gauge invariance, it is necessary to postulate a vector field A, =
(¢, A) and make the substitutions

V =V —ieA

9 — 9 + e
ot ot
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or
B, — O, +icA,. (7.9)
Equation (7.8) now becomes
1 . 2 o 8 .
—%(V —ieA) U =4 (8t + zed)) . (7.10)

This equation is invariant under the transformation (7.7), provided that A
and ¢ simultaneously undergo the transformations:

A — A+VA
0
¢ —d— a/\
or
A, — A, — 9,A. (7.11)

A, = (¢, —A) are the electromagnetic potentials. From the present point of
view, the necessity for the existence of the electromagnetic potential A, (x)
is a consequence of assuming invariance under the local gauge transforma-
tion. The electromagnetic fields E and B are related to the vector potential
A, as follows:

0A
BE=—% — V¢
B=VxA. (7.12)

They are clearly invariant under the gauge transformations (7.11).
The Lagrangian density which gives Eq. (7.10) is given by

1 . 1 LOv ov*
E——%V\I/ -V\IJ—&-%(‘I' E_\I] 8t>
1
~e(po— - A) + 5 (B~ BY), (7.13)
where
p=y"y,
1 e
j= — (U*VU — (VI)T) — —AT*D. .14
j= g (WVT - (VU)T) - S (7.142)

L is clearly invariant under the gauge transformations (7.7) and (7.11). p
and j satisfy the equation of continuity

0

P iv.j=o. (7.14b)

ot
This implies that the charge

Q:/p(a:)d3x (7.14c)
is conserved. Note also that the last term in Eq. (7.13) can be written
in manifestly covariant form —%FWF/“’, where F,, = 0,4, — 0, A, is
the electromagnetic field tensor. The term —iFWF/“’ is the Lagrangian
density for pure electromagnetic field.
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7.2.1 Aharanov and Bohm Ezxperiment

We now discuss the question of testing the applicability of the gauge princi-
ple in electromagnetism. Taking the vector potential A to be independent
of time and putting V = e¢, we try solution of Eq. (7.10) in the following
form

(r, t) = ¥O(r, t)e"'® (7.15a)
where

r)= e/r A(r')-al'. (7.15b)

Here ¥ can be regarded as a wave function of a particle that goes from one
place to another along a certain route where a field A is present while W°
is the wave function for the same particle along the same route but with
A = 0. It is easy to see that [A — A + V1]

DU = (V —ieA)¥
S RAAVA Y
D’V = vyl
Thus (7.15a) is a solution of Eq. (7.10) when A(r) # 0 if U9(r,¢) satisfies

\IIO
v2x1/° + V0 = ZaaT (7.16)

The solution (7.15a) has some striking physical consequences as shown in
the two-slit electron interferometer experiment proposed by Aharanov and
Bohm [Fig. 7.4].

¥:
_
I Q.
W e
W T
T
7&
]

Fig. 7.4 Double slit electron interferometer to test Aharanov-Bohm effect.
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In this experiment the magnetic field B (pointing in a horizontal direc-
tion out of the paper) is produced by a long solenoid of small cross-section
and is confined to the interior of the solenoid so that the two electron beams
(1) and (2) can go above and below the B # 0 region but stay within the
B = 0 region and finally meet in the interference region P’. In the inter-
ference region, the wave function for the electron is

U=V, +¥y
so that
U2 =[O0 4 W% 4 2|T| |TY] cos[y1(r) — 7o (r)] (7.17a)
where
n="_+e A(r')-dl'. (7.17b)
Lnr
Y2=73+e A(r')-dl'. (7.17¢)
(2)p

Here 7Y and +9 are the phases of the wave functions ¥{ and ¥ in the
absence of A. The interference pattern is determined by the phase difference

§(B#0) = —7
—f = e b AG)-al.
C

=46(B=0)+ A, (7.18a)
where C' is the closed path P P’ P and
A:e% A(r') - dl’ :e/ B do =ed. (7.18b)
c s

In Eq. (7.18a) we have used Stokes theorem and put B = V x A and ®
is the magnetic flux through the surface S bounded by the closed path C.
Note the important fact that the phase difference A is gauge invariant since

/VA.dl:/dA:O

while the individual phases 7; and 7 are not. Note also the remarkable
fact that the amount of interference can be controlled by varying magnetic
flux even though in the idealized experimental arrangement, electrons never
enter the region B # 0.
Now referring to Fig. 7.4
Phase difference  Path difference

27 A
1
= dein@ ~

a
2r A

<

d
y
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where L is the distance of the screen from the slits. Thus from Eq. (7.18a)
we see that the diffraction maximum of the interference pattern for B # 0
is shifted from that for B = 0 by the amount Ay given by
L A

Ay =ed (d27r) . (7.19)
This shift in the diffraction maximum, being gauge invariant, should be
measurable. In fact the existence and magnitude of Aharanov-Bohm effect
has been confirmed to within 5% of the theoretical prediction (7.19) by
two qualitatively different experimental arrangements - one involving an
electron biprism interferometer while the second used a Josephson-junction
interferometer.

The following comments are in order.

(i) Measurement of Aharanov-Bohm effect not only verifies the gauge prin-
ciple in electromagnetism but also quantum mechanics itself since clas-
sically the dynamical behavior of electrons is controlled by Lorentz force
which is zero when the electrons go through magnetic field free region;
yet in quantum mechanics observable effects are seen and depend on
the magnetic field in a region inaccessible to the electrons.

(ii) The vector potential A rather than the fields plays a crucial role as the
basic dynamical variable in quantum mechanics.

(iii) By varying B (and hence ®) we change the relative phase between the
contributions from the two paths and move interference pattern up and
down. When A = 2n7 or ® = ngg [pg = 27/e = 4.135 x 1077 gauss

cm?], the interference pattern will return to its initial form, as if there

were no field. In other words, an integral multiple of the flux quantum
¢ will not make any observable difference to the quantum mechanics
of the particle.

7.2.2 Gauge Principle for Relativistic Quantum Mechanics

We now discuss the gauge principle for relativistic quantum mechanics.
The spin 1/2 particle is described by the Dirac equation with the La-
grangian density:
L=V (2)iv"9,¥(z) — m¥(z)¥(z). (7.20)
In order that the Lagrangian density £ be invariant under the gauge trans-
formation (7.7), we must introduce a vector field A, (x) satisfying Eq. (7.11)
and replace in Eq. (7.20) 0,V by
0¥ (z) — (0, +ieA,)V =D, V. (7.21)
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D, is called the covariant derivative. The gauge invariant Lagrangian den-
sity is given by

_ _ 1
L= V(a)ir" (D + ied,) ¥ —mU(2)¥(x) = JF"Fu  (722)

Fu = 0,4, — 0, A,. (7.23)

It is easy to see that under the transformation (7.11), F},, is invariant.
Under the transformations (7.7) and (7.11),

D,V — A p (7.24)

so that \TID#\II is gauge invariant, and so is m¥W¥. From Eq. (7.22), we see
that the interaction of matter field ¥ with the electromagnetic field A, is
given by

Lint = elif’y“\IJA# =—eJt A (7.25a)

em* |

where
Jb, = eUy I, ouJdt, =0 (7.25b)

is the electromagnetic current. We conclude that the gauge principle viz
the invariance of fundamental physical law under the gauge transformation
gives correctly the form of interaction of a charged particle with electro-
magnetic field. To sum up the consequences of the electromagnetic force as
a gauge force are as follows:

(i) It is universal viz any charged particle is coupled with the electromag-
netic field A with a universal coupling strength given by e, the electric
charge of the particle.

(ii) J# . is conserved.

(iii) The electromagnetic field is a vector and hence the associated quantum,
the photon, has spin 1.

(iv) The photon must be massless, since the mass term p?A*A, is not
invariant under the gauge transformation. Thus unbroken gauge sym-
metry gives rise to long range force mediated by a massless gauge boson
i.e. photon.

(v) The covariant derivative D,, is an operator whose commutator is

[D,, D,] = ieF,,
Fy = 0,A, — 0,A,. (7.26)
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7.3 Non-Abelion Local Gauge Transformations (Yang-
Mills)

We now generalize the idea of local gauge transformation when there are
more than one type of state. We first extend it to an isospin doublet ¥, a

v~ (u)

U belongs to the fundamental representation of of isospin group charac-
terized by SU(2). As discussed in Chap. 5, there exist transformations
between different states (cf. Eq. (5.24))

Yo — Yy = Uty
= [55; + %AA (TA)Z} vy,  a,b=1,2,... (7.27)

two-component object:

where
UUT =1, detU = 1.
Correspondingly there exists a unitary operator
U=1—iA-I=1—iAsly, A=1,2,3 (7.28)

I, are generators of the group SU(2). They are hermitian and traceless
and satisfy the commutation relations

[IA, IB] = iGABCIC (729)
For the fundamental representation,

U, » U =Uw,U"

= U, — A [14,7,] (7.30)
so that
1
(L4, Vo] = —5 (T4)0 Wy

T4 are Pauli matrices

™= ((1) é) , Ty = <(Z) _OZ) , T3 = (é _01> (7.31)

In general exponentiating (7.28),

U= e—iAAIA
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whose matrix representation is

U —_ eiAATA

where for the fundamental representation

1
TA:tAziTA

1
Tr [tAtB} = §5AB

[ta,tB] = ieapctc
For the regular or adjoint representation, the matrix Tf associated with
each generator is
(T5) po = —icasc
[IA, Tg] = ieABcTCG
In contrast to the Abelian case where the gauge field is A, we now have a

triplet of gauge fields, W, which form a basis for 3-dimensional irreducible
adjoint representation for SU(2), with the transformation law

LA, Waul = — (T5) o Wop = ieancWep, (7.32)
i.e. it transforms in the same way as generators of the group. Thus under
SU(2), Wa, transforms as
Way — Wi, = Wa, —eapcApWey
W, =W, =W, -AxW, (7.33)
W, — W;W =W, —AxW, (7.34)
The last transformation follows since W, = 9, W, — 9, W, is a vector in
SU(2). It is convenient to define the matrices A and W),
1 1 1

iT'AziTAAA:A; §T'WH:WN (735)

For the local SU(2) gauge transformation, A 4 is a function of x.
Thus the gauge invariant Lagrangian, under the infinitesimal local gauge
transformation

U(z) — (1+ %z 7 A(x))P(x)
= (1+41iAx)¥(z) (7.36)
is given by

_ _ 1
L= 0" D0 —mU¥ — S Tr(W" W) (7.37)
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provided that W, transforms as
1
W,—-W,-AXxW,—--0,A
g

1
Wi = Wi ilA, W = 0, (7.38)

Note the appearance of ;a#A compared to (7.33). Here the covariant
derivative is

D, =8, +igW, =, + %g W,
and
W, =0,W, -0, Wy —gW, xW,
W = 0, W, — 0, W, + ig[W,, W, ]

— D, W, — D,W, (7.39)
[D,,D,] = igW,, (7.40)

1
Tr[WeW) = W - W, (7.41)

For finite gauge transformation
U = )
It follows from Eq. (7.40) that

Wy — W), = [UDHUT ,UD,U']
= éU[DWD,,] Ut
= UW,U'

Further
Tr [W#W,,] — Tr [UW=UTUW,, U]
= Tr [UW»W,,U']
Tr W WUTUWM]
Tr W Wr]
Tr (Ww W,

where we have used

Tr[AB] = Tr[BA]
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The mass term WW is obviously invariant. Now all we have to show is that
W~#D,V is invariant.

Uy'D, U — U (2) U (2) 4" [0,U (2) ¥ (2) + U (2) 9,V ()]
+ig [¥ (2) UT (2) " W,,U (2) U (2)]

Using
9, [UT (2)U (2)] =0,
we see that it is invariant provided that
W, — W, =UW,U" - éU () (0,UT (z))
Under SU(2) gauge transformation the Lagrangian,
L=ivy"9,¥ —mI¥ — EW’“’ W, (7.42)

which is invariant under the global guage transformations (7.27) and (7.33),
is transformed to £ + 6L, when A is a function of x, where

1_
0L = =W 7 WA = O A - (WM X W)

1-
= —[5\117“ TW+ (WH xW,)]-0,A (7.43)
Now under SU(2) gauge transformation, we have
oL oL
0L =—"0A -6(0, A 7.44
Comparison with Eq. (7.43) gives
oL 1
JH=— =-Uy" 7 T+ WH X W,
d0,A) 2 TET WX

and invariance of the Lagrangian under the global gauge transformation
(OuA =0), 6L =0 gives the Noether Theorem:

o _
oA

Hence the interaction part of the Lagrangian (7.37) can be written as

9, 3" = — 0 (7.45)

Lint, = g Jr W}L

1 -
59 UV T W, Ut g W (W, x W) (7.46)
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7.4 Quantum Chromodynamics (QCD)

We now generalize the ideas of Secs. 7.2 and 7.3 to the case where there
is more than one type of states, e.g. g, (a = 1, 2, 3) and where there exist
transformations [SUq(3)] between the different states

Ga — ¢, = Ulqy, (7.47a)
with
U(z) = exp B)\AAA(I)] : (7.47D)
Uut =1, detU =1

and repeated indices imply summation. Here ¢, (a = 1, 2, 3) for a particu-
lar quark flavor ¢ form the fundamental representation of the color SU(3)
group and A4, A = 1---8, are the eight matrix generators of the group
SU¢(3) [see Chap. 5 for the form of these matrices. Although in Chap. 5
we discussed flavor SU(3) but the mathematics is the same].

Each quark flavor carries three color charges: red (r), yellow (y) and
blue (b), i.e.

Ga; a=1,2,3
ga belongs to the triplet representation 3 of SUc(3). Under infinitesimal
SUc(3) gauge transformation
U= 1—iAAFA, A= 1---8, AAZAA(LB)
Now ¢, transforms as
o — 4, = UgqaUT
= (1 — iAAFA)qa(l + ’iAAFA)

da — Z.1\14[}?147 Qa]
o +iAa(Ta)Sq

Hence

[Fa, ¢a] = _(TA)Z%
Aa
=—( 7)2%
where A4 are Gell-Mann matrices discussed in Chap. 5. Gluons, the gauge
vector bosons of SUq(3) belong to the octet representation, i.e. to the

adjoint representation of SU¢(3) :
[Fa, Gpul = —(Ta)3Gew
=ifapcGeyp
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Thus

UGp,U' = Gp, +iMa(Ta)5Goy

= Gpu—AafpacGey

Quarks are spin 1/2 particles. The Lagrangian density for free quarks
is

L =q"i"0uda — ¢*MGa, (7.48a)
where
Ugq My,
o=\ da and m = mq (7.48b)
Sa mg

is clearly invariant under the SU(3) transformation (7.47a) with A constant.
If we now require that the Lagrangian density (7.48a) be invariant under
the gauge transformation (7.47a) , with A(x) as function of space-time, then
as we have seen in Sec. 7.3, we must replace 0, by its covariant derivative
which in the present case takes the form

D, = (aﬂ - %gs)\ : G#> = (a# - ;gs)\AGA,L> (7.49)

where g, is a scale parameter, the coupling constant and G4, are vector
gauge fields, their number being equal to the generators of SU¢(3) group,
namely 8. Then we note the important fact that the covariant derivatives
satisfy the commutation relation

A A
Dy, Do) = ~igs 5 [0, Gpu] — igs 55 (G 0]

Aa B

+(—igs)? {27 2} GauGpy

A
—29370 {0,.Gcv —0,Gep + 9s fapcGauGau}
= —igs {8MG,, - 0,G, —igs [Guv G,]}
= _igsGyuv (750)
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where in the matrix notation

1 1
5)\ . G# = 2)\AGA;L = Glﬂ (7.51&)
1 1

G ==\ Gy = 0,G,y — 0,G,, — igs |Gy, Gy
= D,G, — D,G, (7.51c)

Gapw =Gay —0,Gap+ 9sfapcGpuGaow

1
2

(7.51d)
1 1
TT(GHUG,U,D) = TT' <2)\AGA/,LV2)\BGB;LV>
1
= ZTT()\A)\B)GAMVGBMV
1
= 3G G (7.51e)

Note the important fact that G, in Eq. (7.50) provides the generalization
of Fj, [cf. Eq. (7.26) in Abelian case| for the present non-Abelian case.
The two differ in the appearance of the last term in Egs. (7.51c) or (7.51d).
This is because the gauge fields themselves carry color charges in contrast
to photons which are electrically neutral in the electromagnetic case. Now
if we replace the Lagrangian density (7.48a) by
. b
L= q*iy" (@ - ;gSAAGA;L> qp — q"Mmqe — iGﬁVGAW (7.52a)
a

or in the matrix notation by
. . _ 1 v
L = qgiv" (0 — i9sGp) g — qmq — §TT(G’ Guv)s (7.52b)

then the Lagrangian density (7.52a) is invariant under the infinitesimal
gauge transformation [cf. Eq. (7.47b)]

- (1 + %A . A(m)) 0 (7.53)

provided that the vector fields G 4, undergo the simultaneous transforma-
tion

1
G, — G, +ilA, G+ g—auA (7.54a)
or

1
Gap — Gay — fapcApGep + ;a#AA' (7.54b)
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To see this, we note that under these transformations

D,q — (1 + %/\ : A(a:)) Dy.q (7.55a)

Gaw — Gaw — fapcABGouw. (7.55b)

It is then trivial to show that the Lagrangian (7.52a) is gauge invariant.

For the finite gauge transformation (7.47a), we have the gauge invari-
ance provided that the gauge fields G, simultaneously undergo the trans-
formation

G, - UG,U + ganﬂUT (7.56)

Under these transformations:
Dp,q - U(DNQ) (757&)
G — UG, U (7.57h)

and hence the Lagrangian (7.52a) is gauge invariant. [see Sec. 7.3.]

The eight gauge vector bosons G 4, are called gluons. They are medi-
ators of strong interaction between quarks just as photons are mediators
of electromagnetic force between electrically charged particles. The gauge
transformation given in Eq. (7.47a) is called the non-Abelian gauge trans-
formation, whereas the gauge transformation (7.7) is called the Abelian
gauge transformation. The non-Abelian gauge transformation was first
considered by Yang and Mills and gauge bosons are sometimes called Yang-
Mills fields.

7.4.1 Conserved Current

In order to discuss the conserved current associated with gauge fields, we
discuss a general method. Suppose we have a set of fields which we denote
by ¢q(x). The Lagrangian is a function of these fields ¢, and 0,¢q:

L= L(Pg,0uq)- (7.58)
Consider an infinitesimal gauge transformation
$a(x) = da(x) +iha(z)(Ta)od. (7.59)

T4 are matrices corresponding to the non-Abelian gauge group and the
representation to which the fields ¢, () belong. From Eq. (7.58),

oL = Za% Z 5 M% 5(Dyuba). (7.60)
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Using the Euler-Lagrange equations

oL oL
90w Oy (8(%%)) =0 (7.61)

and the fact that §(0,¢4) = 0,0(da), we have

oL = Z[ ( M%))ad»ﬁa(g;a)(s(ama)}
%:a[ ) qb} (7.62)

On using Eq. (7.59) so that ¢, = iAa(Ta)% s,

6L = Za{ 500 zAA(TA)gqsb]. (7.63)

If we take A4 as constant, i.e. independent of x, then we can rewrite
Eq. (7.63) as

5L =0, Z [ 5t )qub} Aa = —8,FiiA4, (7.64)
where
oL
Fr=—N "0 ——— ) (Tx)b . 7.65
e (00) e (709

Hence we have the Noether’s theorem. If the Lagrangian is invariant under
the gauge transformation (7.59) with constant Ay, i.e. 6L = 0, then the
current given in Eq. (7.65) is conserved.

Let us apply this to the QCD Lagrangian (7.52a). Here ¢, corresponds
to Gp, and q,. Now, for the gauge vector bosons which belong to the
adjoint representation of SUc(3), we have i(T4)§ = —fpac and for the
quarks which belong to the triplet representation of SU¢(3), Ta = %)\ A
Then from the Lagrangian (7.52a):

oL L oL

9= g, & g
90,0 Y 9(0,G ) A
Hence Eq. (7.65) gives
1 v
Fi = 2" (\a)! @y — fapcGp,GY (7.66)

2

1 v
= §C7’Yﬂ>\Aq + fapcGY Gew.
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The current F is universally coupled to the gauge fields G 4, with universal
coupling g;. Now the interaction part of the Lagrangian (7.52a) is given by

Lint = 9sFYGa,

o Aa\’
= 9sGanq*v" <2> @ — 9sfaBcGa,GBy

1 1
x [2 (9"Ge - 9 Gl) + 19.fopeGhGh (7.67)

The last term of Eq. (7.67) represents the self interaction of gauge bosons
among themselves as they carry the color charges. This term is very im-
portant in QCD and is responsible for the asymptotic freedom of QCD.

From Eq. (7.67), the ¢¢G, GGG and GGGG vertices in the momentum
space can be represented graphically as shown in Fig. 7.5.

—ig? fapefepE (99" — g7 g")
—ig? facefepE (9977 — 7 g")
—ig2fape fope (99" — gMg")

Fig. 7.5 Graphic representation of qqG, GGG and GGGG vertices.

The Feynman rules for the QCD Lagrangian are discussed in Appendix
B.

7.4.2 Ezperimental Determinations of as(q?) and Asymp-
totic Freedom of QCD

The important physical properties of QCD are
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(i) the gluons, being mediators of strong interaction between quarks, are
vector particles and carry color; both of these properties are supported
by hadron spectroscopy discussed in the next section,

(ii) asymptotic freedom which implies that the effective coupling constant

as = g2 /4 decreases logarithmically at short distances or high mo-
mentum transfers, a property which has a rigorous theoretical basis.
This is the basis for perturbative QCD which is relevant for processes
involving large momentum transfers,

(iii) confinement which implies that potential energy between color charges
increases linearly at large distances so that only color singlet states ex-
ist, a property not yet established but find support from lattice simula-
tions and qualitative pictures (see next section) and from quarkonium
spectroscopy to be discussed in Chap. 8.

In this section, we discuss the present evidence for QCD being asymp-
totic free. First we note that due to quantum radiative corrections, as
evolves with the characteristic energy of the process in which it appears.
Actually these corrections give

95(Q%) = g0 {1 + 92,bo In 2 Q2 ] , (7.68a)

where A2 > 2 and must be introduced so that the integrals involved in
these corrections are convergent. Here - -- denotes higher order corrections
and \/@ is the momentum carried by a gluon at quark-quark-gluon vertex
which defines g,(Q?). It is convenient to rewrite Eq. (7.68a) as

gg(le) - 920 {1 —2g2 o1 n@ + 0l )} . (7.68b)
This gives
—1(,2 -1 A2
ag (¢°) —ayy = —8mhyIn o (7.68¢)

We now eliminate the unobserved “bare” coupling constant asg and the
cut-off A2 by making a subtraction at % = 2. Thus we obtain
2

a; Q%) — o (4®) =bln 7 (7.68d)
with b = 87bg. Or
1
(Q%) = . 7.68
(@)= 0 o (7.68¢)
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The constant b is evaluated in Appendix B and is given by

1 2
= 11— .68f
b= 471_ ( 3nf> (7 68)

where ny is the number of effective quark flavors. Another way of writing
Eq. (7.68e) is

a; 1 (Q*) =bln @ (7.68g)
s - A2 -b3g
QCD

where

a; (p) = blnp® = —bInAdep.
Thus finally we have

4
(@) = - (7.68h)

(11 — %nf) In

q2

Adep
and we see the running of as(Q?) with Q%. Agcp is the QCD scale factor
which effectively defines the energy scale at which the running coupling
constant attains its maximum value. Agcp can be determined from exper-
iment. For 2n; < 11, it is clear from Eq. (7.68b) or (7.68h) that v (Q?)
decreases as Q2 increases and approaches zero as Q2 — oo or r — 0. This
is known as the asymptotic freedom property of QCD. This is due to the
factor 11 in Eq. (7.68f) or (7.68h) and arises due to the self-interaction of
gluons (see Appendix B).

We now discuss the experimental determination of the coupling constant

as(Q?) at various values of @Q? from different reactions, starting from the
lowest value of /Q2.

(1) From Eq. (7.5)

R o(et €= — q @ — hadrons)

olet em — u* no)

NE

—32 1+a5—+1411( Y2
™

For s > 2m7, 3) el = 4.

q
By fitting the values of R at /s = 34 GeV, shown in Fig. 7.3, one
obtains

(34 GeV) = 0.142 + 0.03
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(2) From Eq. (8.71) and Eq. (8.69):
2

ag(me) _ 27”7727 I'(n. — hadrons)
a? N 3m§, (U —ete)
ad(my) . 81w o2 I'(V — hadrons)
0[2 o 10(7T2 — 9) 4q F(V — €+ 67)

where 7. is (¢ 4)*S1 state while V is (¢ q)3S; state, e, corresponds to
charge of the quark gq.

Using the experimental values for the leptonic and hadronic decay
widths,

as(myyp) = 0.217 +0.009, a,(my) = 0.163 % 0.005 (7.69a)

The value of as obtained from the scaling violations in deep inelastic lepton-
nucleon scattering [see Chap. 14] gives

a (\/(P —2.6 GeV) — 0.264 £ 0.101. (7.70)

Finally from the semi-leptonic branching ratio R, for the inclusive decay
T — v, 4+ hadrons, one obtains

as(m,) = 0.35+0.03

Figure 7.6 shows the values of a(m,) deduced from the various experi-
ments. Figure 7.7 clearly shows the experimental evidence for the running
of as(q) i.e. decrease of the coupling constant as ¢ increases as indicated
by Eq. (7.68a). An average of the values in Fig. 7.6 gives

as(mz) =0.119 £ 0.002
which coresponds to
Agep = 219733 MeV. (7.71)
The LEP / SLAC value for as(myz) is 0.124 £+ 0.004.

7.5 Hadron Spectroscopy

7.5.1 One Gluon Exchange Potential

All known hadrons are color singlets. Just as an exchange of photon gives
force of repulsion between like charges and force of attraction between unlike
charges, the exchange of gluon gives force of attraction between color singlet
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Fig. 7.6 Summary of the values of as(m;) from various processes. The values shown
indicate the process and the measured value of a5 extrapolated upto p = m,. The error
shown is the total error including theoretical uncertainties [29].

states. The exchange of gluons can provide binding between quarks in a
hadron.

For ¢g system (meson), the color electric potential due to one gluon
exchange diagram [see Fig. 7.8] is given by:

oo~ Aa\" A\ L 1,
Vij = —g AM;( 5 >b ( 5 ) ﬁ%ﬁ%- (7.72)
The factors %(53 and %53 in the initial and final states arise due to nor-
malized color singlet totally symmetric wave function for the ¢g system.
The minus sign arises due to the coupling of a vector particle to the anti-
quark. Here 4, j are flavor indices and a, b, ¢, d are color indices. Since
TT()\A)\B) = 2(5,43, T’I"(/\AAA) = 16,

4 a, g:
——— = 22
3r am

For three quarks system (baryon), one gluon exchange diagram (Fig.
7.9) gives the following two-body potential

1 €eae € AN A4\
V= g e () () (7.74a)
2 d 2 b

Vi = (7.73)
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Fig. 7.7 Summary of the values of a(u) at the values of p where they are measured.
The figure clearly shows the decrease in a,(u) with increasing p [29].

g A,/2

i, b g A,/2 i, a
Fig. 7.8 Diagram generating one—gluon exchange potential for ¢gg system.

The factors 5\5/%0 and 5\5/%‘1 arise due to the fact that three-quark color
ebd __

wave function is totally antisymmetric in color indices. Using ecqc€
8b6d — 5468, and Traa = 0,

a’c’

2 ay
3
Note the important fact that in both cases, we get an attractive potential.
We also note that V7 = 2V;27 for color singlet states. Thus we can write

Vi = — (7.74b)
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g A,/2

i, b g A,/2 i, a

Fig. 7.9 Diagram generating one-gluon exchange two-body potential for three quarks
(baryon) system.

the two-body one-gluon exchange potential as

4 _

‘/ij = ks%aks = { _g 11 } (775)
r -3 49

Since the running coupling constant a; becomes smaller as we decrease the

distance, the effective potential V;; approaches the lowest order one-gluon

exchange potential given in Eq. (7.74a) as r — 0. Now in momentum

space, we can write the potential in QCD perturbation theory for small

distances (r < 0.1 fm) as

V(q?) = kidras(q®)/q?, (7.76)

where V(r) is the Fourier transform of V(q?) and q? is the momentum
conjugate to r. The running coupling a4(q?) in QCD is given by Eq.
(7.68h).

We conclude that for short distances, one can use the one gluon exchange
potential, taking into account the running coupling constant as(q?).

7.5.2 Long Range QCD Motivated Potential

The second regime, i.e. for large r, QCD perturbation theory breaks down
and we have the confinement of the quarks. Thus unlike the short range
part of the potential, the long range part cannot be calculated on perturba-
tive QCD as the QCD constants become large in this region. Perturbative
QCD gives no hint of intrinsically nonperturbative phenomena such as color
confinement. One may look for the origin of this yet unsatisfactorily ex-
plained phenomena. There are many pictures which support the existence
of a linear confining term. One of these is discussed below:
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7.5.2.1 The string picture of hadrons

This picture is depicted in Figs. 7.9 and 7.10. A string carries color indices
at its ends. Gauge invariance implies that each site must be a color-singlet.
Thus, an allowed configuration of a quark and an antiquark on adjacent
sites is the one in which the quark and antiquark are linked by a string so
that the color index of quark (antiquark) and the color index of the string
at that end are contracted to form a color singlet. When a quark and an
antiquark are far apart, many strings have to be excited to connect the two
sites [see Fig. 7.11]. When there is enough energy available to create a
new qq pair, the system breaks up permitting the formation of two color
singlets. Calculation based on this theory shows that the energy stored in
this configuration is:

g ® O ® O ¢
i(String]j

Fig. 7.10 String picture of qg.

:o—oo—()()—oo—oo—og
((

| L ]

) ) Strings
Fig. 7.11 String separation of a quark-antiquark pair.

EZTO% for L > a,
where L is the quark-antiquark separation and T} is the string tension. To
isolate a quark for example, the antiquark in the above illustration has to
be removed to infinity; it clearly takes an infinite amount of energy to do
this. This is the basis of color confinement. The confining potential is of
the form:

V(r) ~ constant X r,

for r > 1/M, where M is a typical hadronic mass scale. Thus ﬁ is of order
of the hadron size of 1 fm = 5 GeV~! so that M ~ 200 MeV. The confining
potential is spin and flavor independent. This picture is supported by the
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observation that hadrons of a given internal symmetry quantum number
but different spins obey a simple spin (J)-mass (M) straight line relation,
i.e. we say that they lie on linear Regge trajectories, an example of which
is displayed in Fig. 7.12.

Spin
i s
6 (2500 ,%/
o
5 (2300)/,5/
/5/
4 & )/ K (2060)
170
3 &« )// T (1730)
(1310} .7 /
2 //' ¥ (1430)
(’@a;f
LK (392)
(Iviass)
T 2z 3 4 5 & T @Gw?

Fig. 7.12 Regge trajectories for non-strange (I = 1) and strange (I = 1/2) bosons.

For the families of hadrons composed entirely of light quarks, the above
mentioned relation between .J and M? for Regge trajectories is given by:

J(M?) = ag + o/ M?, (7.77a)

with
a = 0.8—0.9(GeV/c*)72, (7.77b)
The connection between linear energy density and the linear Regge tra-
jectory is provided by the string model formulated by Nambu. We consider
a massless (and for simplicity spinless) quark and antiquark connected by

a string of length r(, which is characterized by an energy per unit length
o. The situation is sketched below:

Ty /2 Taf2
o ©
q 0 q

For a given value of length r(, the largest achievable angular momentum
J occurs when the ends of the string move with the velocity of light. In
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these circumstances, the speed at any point along the string at a distance
r from the center will be: (8 =v/c)

B(r) =2r/r.
The total mass of the system is then:
ro/2 d
M=2 L (7.782)

o VJ1-8(r)2 2
while the orbital angular momentum of the string is:

B /2 dr o rB(r) o
J=2 o W—U’/‘Og, (778b)

Using the relation (7.78a), one finds that:

M?
= —, (7.79a)
2mo
which corresponds to a linear Regge trajectory with
1
o = —. (7.79b)
2o
This connection yields:
0.18 GeV? 0.9 GeV~2
= f ! = .
77 020Gev2 YT 0.8 Gev? (7.80)

This heuristic estimate of the energy density suggests that at a separation
of the order of 1 fm, we may characterize the interquark interaction by the
linear potential
V(r) =or. (7.81)
The lattice gauge theory calculations also support the linear form for the
long range part of the QCD potential.
Thus phenomenological potential of the form

Vij(r) = Vi (r) + Vig (r) (7.82)
can be used for heavy quarks. The Cornell potential
K r
where
K =048, a=234(GeV)™! and C=-025 (7.83b)

has been used successfully to describe mass spectrum of charmonium and
bottomonium systems [see Chap. 8]. Note that value of (a = %) in Eq.
(7.83b) is consistent with the value of ¢ stated above [cf. Eq. (7.80)]. The
purely phenomenological potentials of the form and

V(r) =a+ b’ (7.84a)
and

V(r)y=Clar (7.84b)

have also been used successfully for ¢é and bb systems.



7.6. The Mass Spectrum 209

7.5.3 Spin-Spin Interaction

Finally, we note that a spin 1/2 charged particle of charge e@; has a mag-
netic momentum p; = ;QnL 0;. In quantum mechanics, the energy splitting

between S-states (zero orbital angular momentum) is given by two-particle

operator (Fermi contact term)

1 8T
1Y = [ e -y (7.85)
= 78106 Qle ag; - Ujég(r)
3 Qmimj
Similarly in QCD, we have eight color-magnetic moments
i 9s (A4 1
uA72mi ( 5 )0’, A=1, , 8. (7.86)
The analogous two-particle interaction for QCD is then given by
8T i 1
Hy = [3ui§) 8w —xy)| (7.87)
Again for a color singlet system « — ksa (cf. Eq. (7.75))
8T 0; 0
H. = ——qa.k. J 83 .
ij 3 ok 4mlm]5 (7’), (7 88)

Eq. (7.88) gives m(3S1) > m(*Sp) [for example m, > m,] in agreement
with the experimental result. This supports the fact that gluons are spin 1
particles.

7.6 The Mass Spectrum

The one gluon exchange potential is obtained by summing over all possible
quark indices in Vl? in a multiquark system like ¢q and qgq. Thus

ves33vs
7]
1
=5 | LV LW
| ©>J 1<j
1
=5 |22 Vi +Vid)
_i>j

=> V§ (7.89)

i>]
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The potential Vi for S-states is found to be [in non-relativistic limit keeping
terms up to (p?/m?)]

1 1 . D) D
ngksasZ[ (pl p; | r(r-p) pﬂ)

=L - 2m;m; r r3
T 1 1 16s; - s;
—=8 4 . 7.90
2 (r) (ml2 + m? + 3m;m; )1 ( )

The second term in the bracket will be ignored so that one gluon po-
tential is velocity independent. The first term on the right-hand side is the
potential in the extreme non-relativistic limit (£ ~ 0); spin dependent term
is due to the color magnetic moments interaction as mentioned previously.

For S—states,

(s |0°(r)] )
_ / U ()83 (0) U, (r)d%r
= W, (0). (7.91)

Now our Hamiltonian, including the rest masses of the quarks can be writ-
ten as

A2
Hr) =Y m+Y % Ve (r) + Va(r), (7.92)
where
p2 = —h—zv2 (7.93)
pP; = om, i .

Here Vi (r) is the confining potential, Vi (r) is the one gluon exchange po-
tential given in Eq. (7.90), i is the quark flavor index, i.e. i = u, d, s for
ordinary hadrons. We will take m, = mg. In order to discuss the mass
spectrum of hadrons, we have to take the expectation value of the Hamilto-
nian H(r) with respect to the relevant wave functions of the hadrons. The
wave function is the product of three parts viz unitary spin, spin and space
parts. For s-wave, we write the space function as WU,(r). Let us first take

1
r

the expectation value of H(r) with respect to U(r), we have

m = (U, |H|Ty)

szi+2%<\lls

™ 1 1 16s1 - s9 2
e <m2 + =+ ) W5 (0)] (7.94)

2 mj 3m;m;

f)z2 Ve (r) + ksas—

W)+ <\I/s
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Note that the mass operator m is still an operator in unitary spin and
spin space. We first apply the mass formula (7.94) to pseudoscalar meson
system.

7.6.1 Meson Mass Relations

From Eq. (7.94), the mass operator for S-wave mesons can be written as

1 1
m=mg+mg+ms+a [—i—]
mp M2
- 1 1 16S1 - So
d|—+—++7—7—7 7.95
* [m% * m3 * 3m1m2} ( 2)
mo = Ao + ksasb (7.95b)
where
a= (¥, |p;|¥,) (7.96a)
Ao = (¥ Ve (r)| ¥y) (7.96b)
1
b= <\I!S ' \IIS> (7.96¢)
T
- 4
d= —gasg (W, |83(r)| U,) (7.96d)

For (q@)r=o the indices ¢ = 1 and j = 2 refer to the constituent antiquark
and quark respectively

1 { % spin triplet state S = 1: vector meson

—01:09=S1:Sg = L.
FREE —% spin singlet state S = 0: pseudoscalar meson.

Thus we have,

32 1
m(SSl) — m(ISO) = 57’('&5 .

2
|1s(0)]
Hence we have the following mass relations, m, =~ mgy
m, = my,
Mg = 2my+ —m,

My

(mi~ —mp) =— (m, —mz)

ms

These relations are well satisfied experimentally with m, = mg = 336 MeV,
ms = 510 MeV (cf. Chap. 6).
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If gluons were scalar particles, then s; - s5 term would be absent so
that m(3S1) = m(*Sp) in disagreement with the experimental observation.
%, since pseudoscalar coupling is the same
for antiquarks. In this case we would have m(3S;) < m(1Sp), again in

For pseudoscalar gluons, ks =

disagreement with the experimental result. We conclude that the exper-
imental results about meson spectrum support the fact that gluons are
vector particles and are thus quanta of QCD.

For pseudoscalar mesons 7, and 7, we get

My,s = My (7.97a)
my, = (2mx —mg) + O(\?). (7.97b)

These formulae are badly broken. Thus the above analysis breaks down
for J = 0 mesons, 7 and 7r’. The reason for this is that our Hamiltonian
does not take into account quark-antiquark annihilation into gluons. The
lowest order annihilation diagram is shown in Fig. 7.13. This diagram
contributes only to 1Sy state, because of charge conjugation conservation.
Since gluons do not carry any flavor, therefore it contributes to I =Y =0,
18y states only. This diagram is relevant only for  and i’ mesons, and is of
order O(a?). For I =Y = 0 vector bosons, the diagram with three-gluon
exchange contributes, which is of order O(a?) and hence can be neglected.

2
q oy = q
q Tpisvatauat: q
gS gs

Fig. 7.13 The ¢q annihilation diagram for 1Sy state through two gluons.

We now take into account the diagram of Fig. 7.13 for pseudoscalar
mesons. If uii, dd and s§ can annihilate with an amplitude A, which we
assume to be SU(3) invariant, then there will be an additional contribution
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to the mass matrix, which in the u@, dd and s3 basis is given by

A A A
Mym=1| 4 A 4 |. (7.98)
A A A

Taking into account Eq. (7.96) and the fact that |ns) = [s3), |gns) =
% ‘(uﬂ—i—dci), |mo) = % |(uﬂ —dd), we get in 7°, 7,, and 7, basis, the
mass matrix

My 0

0
0 my+24A V2A . (7.99)
0 V24 2mg —my + A

From Eq. (7.98), we note that we have to diagonalize the mass matrix

my + 2A V2A >

"5A o e 4 A (7.100)

M*)M+Mann<

For this purpose, we define the physical states as (see Problem 5.15)

|77> = COS¢ |"7ns> —sing |"78>
) = sin ¢ [nns) + cos ¢ |ns) (7.101)

Then the mass eigenvalues are given by

My My = my(2myg —my) + A(dmg — my)

My + My =My, + My, = 2mg + 3A. (7.102)

Using the experimental values for  and 7/, we can determine A. The mass
scale A comes out to be ~ 172 MeV, a rather low value compared to m,,
and m, which is both interesting and reasonable.

To conclude, we have shown that mass spectrum of vector mesons can
be explained successfully. With the addition of annihilation diagram, the
pseudoscalar meson mass spectrum can also be understood.

7.6.2 Baryon Mass Spectrum

In order to discuss the mass spectrum of the baryons, it is convenient to
first calculate the matrix elements of the spin operator

1
Qo= Si - Sj (7.103)

mim;
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between spin states. The eigenvalues of s; - s; are 1/4 and —3/4 for spin
triplet and singlet states respectively. Therefore,

-85 111) = 111)

M1 ] 1
Si - S; NG [(1] + lT)>_ = NG (1L +11)
5511 = 7 1L0) (7.1040)
(1 i 3
sy |5 I0L =D = =5 0L =1m) (71040)

From Eqgs. (7.104a) and (7.104b), we get

s [i15) =~ 1131 + 51i%")

y 1., 1.4,
si-s;j|itil) :_Z|ZlJT>+§’ZT‘71> (7.105)
The spin wave functions for baryons are given in Table 6.1 and Eq. (6.7).

Using these wave functions, we get with the help of Eqgs. (7.104a), (7.104b)

and (7.105) for %Jr baryons with s, = 1.

Qss D)
-2 mlmj Si - fuud) (%) (1L +11) = 20110
= % |uud) (—%) {i (1L 4+ 11) = 2(111)]

1 1 1 1 1
w[pmm-gum e -2 (=g 1um)]
1 1 1 1 1
+ [+ g+ g -2 (—p e+ i) |

~uud) oz (-3) 104+ 1D T =211

i\ 4/ V6
3
Similarly we get
3
Qs |A) _4m% |A) (7.106b)
171 4
0 = 0
Qs [2°) = 1 (m% mums) =) (7.106¢)
171 4
=0\ _ _ =0
Qqs [2%) 1 (m% mums) |=°), (7.106d)
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where we have used

1/2
A) = — |uds) x5
20 = |uds) X3/ (7.107)

2
O> = |ssu) X}\/,/{S'

i

For %+ baryons, we take s, = 3/2 and calculate the matrix elements of
Q4s. Now

Qss |A++> = Z Si - Sj |uuu> |TTT>

m;m;

i>j 7
31 a4+
Similarly we get
1 2 1
Qg |25 - — )|zt 7.108b
‘ > 4 (mums * ma) ‘ > ( )
1 2 1
Qs |[Z70) = = — | |=*° 1
=) =7 mum5+m%>‘ ) (7.108c)
Qs |Q7) = §i\ ) (7.108d)
4m? ’
where we have used
|ZF) = [uus) [111) (7.1092)
=) = [ssu) [111) (7.109b)
|Q7) = [sss) [111). (7.109¢)
Since the spin-spin interaction term from Eqs. (7.90), (7.103) and (7.105)
is,
16
Tﬂ-as 1164 (0)]? s (7.110)

we have from Egs. (7.105) and (7.107):

(-2)n(e1)

in agreement with experimental observations for gluons with color, k; =
—2/3. If gluons do not carry color, then ks = 1 instead of —2/3 and we
would get results in contradiction with experimental values. This supports
that the vector gluons carry color.
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The spin dependent term €24, splits the masses of baryons with the same
quark content, but with different spin. Thus, we get from Egs. (7.106a),
(7.108a) and (7.110):

8m 1

ma = mp = = m2 s (0 )| (7.111a)
ms —my = Loma, (R |5 (0)? (7.111b)
= A= Qm% ms ° .
8T« 2
o _or (0 7.111
Mz» =Mz =3 My Mg [4:(0)] ( )
8T o 2
e = T g 7.111d
ms- —ms = S |y, (0) (7.111d)
From Eqgs. (7.110),
me TmE (Exp. value 1.12) (7.112a)
my+ — My
2my« -
ms- +my —3ma _ (Exp. value 1.04) (7.112b)

2(ma —my,
my —my 2 (1 m

“) =023 Exp. value 0.26 7.112
A —m, 3 ) (Exp. value ) ( c)

mS
In the above derivation, the effects of wave function distortion due to sym-
metry breaking by quark effective masses have been neglected. These effects
will give slight deviations from unity in the relations (7.112a, 7.112b).

We now discuss the baryon masses of same spin, using Eqgs. (7.94) and
(7.105). We can write the baryon mass formula:

m = (my + ma + mg) + ( Ly ) (o B71)

myp M3
s ( o 2t )]w +Z< . +> T s [, (0)
i>7 Z j
67
+7as [45(0)* (B || B) (7.113)
From Eq. (7.113), we get the Gell-Mann-Okubo mass formula
my + mg _ my + 3ma (7.114)
2 2 '

We conclude that both the meson and baryon mass spectra can be explained
quite well in QCD. In this simple picture, we have used non-relativistic
quantum mechanics for u, d and s quarks. Although this approximation
is not so good for these quarks (as their masses are less than 1/2 GeV)
and at this energy scale QCD perturbation theory may not be a good
approximation, even then the results are good.
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7.7. Problems

7.7 Problems

(1) Show that the Lagrangian
_ — 1
L=1y"D, ¥V —my¥ — §T7‘(WW W)

where
D, =0,+igW,
Wy = 0,W, — 0, W, +iglW,,W,]

is invariant under the infinitesimal gauge transformation
U(z) — (1 +iA(2)T(x)
1
W, — W, +iA, W,]— ga,,A
First show that under the infinitesimal gauge transformation
D,¥ — (14+iA)D,V
VI/,UJ/ - WMI) + Z[A7 VI//LV]
(2) Consider the Lagrangian
_ ; _ 1
L= 0 (0, + 597 W)U = mBW — TWH W,
W, =0,W, -0, W, —gW, xW,
Wauw = 0uWay, — 0, Wa, — geapcWau x Wey
T-W =714Wy,
Use Euler-Lagrange equations to show that
v ST uT v
O WHE” = g~y ?A\I’ + geapcWg " Wey

=gJa
v T VTA v
Jy = Uy 7\1’+6A30WB Wen

»Cint. = gJZWAV

Write the Lagrangian in detail for

(),
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(3) In QED, for
e u—e [
scattering, the cross section is given
do 2ra? 5% + u?
Show that in QCD for

ud — ud
or
ud — ud
do 4ra? 9s% + u?

dQ? 52 ( t2 )
To take into account the non-Abelion aspect of QCD, show that

2 — 2 1 1 2
alFI” = a, ; I = [ Tr(Aads)l[55Tr(Map)los | F]
(4) In QED, for Bhaba scattering

+ +

e'e —e'e
do 2ra? 2 + u? n 52 + u? 2u2]
dQ? 2 52 t2 st
Show that in QCD for
uU — Ul
do 47ra§[t2+u2+52+u2 2u2]
dQ?  9s2 52 2 3 st
Note for the interference term, we get
TT()\A)\B)\C)\D)

Hint:
faBcfapcr = 3dcc

5
dapcdapcr = 5500'

Interference term will give —%

Draw the Feynman diagram for uu — wu, then using the crossing sym-
metry, show that

do 4ra? [t2 + 52 L s24+u? 287

dQ?  9s2 u? 2 3 ut
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Chapter 8

Heavy Flavors

8.1 Discovery of Charm

The J/¥ was discovered in 1974 in the reaction

p+Be —ete” + X

at /s = 7.6 GeV. A narrow peak at m(ete™) = 3.1 GeV was found. It was
also seen in ete™ collision at /s = 3.105 GeV in the following reactions

eet — e7eT

e"et — pTpt

+

e~ e" — hadrons.

The width of the resonance was very narrow. It was less than the energy
spread of the beam, I' < 3 MeV. For this reason, the width cannot be read
off directly from resonance curve. The resonant cross section for any final
state f :

e et — J/U — f
is given by the Breit-Wigner formula [cf. Eq. (4.52)]:
o 2J+1 r.I'y
L2 r2
k? (251 +1)(2s2+1) (Vs —m)2 + L2
where J is the spin of the resonance, m is its mass, s; = so = 1/2 is the

spin of electron or positron and

s=F% = 4(k* + m?) ~ 4k? (8.2)

Ocf (81)

Here k = |k| is the center-of-mass momentum. I" is the total width, I'. and
I's are the partial widths into e~ e™ and f respectively. We can write Eq.
(8.1)
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r.I'y
2 4 I?
(Vs—m)>+
Since the resonance is very narrow, I' is very small and it is a good ap-

proximation to replace the denominator in Eq. (8.3) by the d-function
275(y/s —m) and then integration of Eq. (8.3) gives

op = g(ZJ +1) (8.3)

2nl.I"
/Uefd\/g =m(2J +1) jn?I’f

Now > 0cf = Otot, p Iy =T and assuming I'c = I',,, we have for the
f

(8.4)

f
process
eet — U — ot
2 Ir?
/ o3 = 22 +1) i (8.5)
We also have for the total cross section
r.
/(zoef)d\/; =272(2J + 1)m2 (8.6)

Assuming the spin of the resonance J/W¥, J = 1, we determine the widths
I'. =TI',, and the total decay width I'. Since I' =I'c +1I',, +1',, we can also
determine the hadronic decay width I',. The experimental values for these
decay widths are given below:

m(J/¥) = 3096.916 + 0.011 MeV,
I, =T, =555+0.14+0.02 keV,
I'=932+21 keV.

The J/¥ spin-parity can be determined from a study of the interference

between e“et — v — p~puT and eet — ¥ — p~put. The cross
section for the QED process e et — v — p~u™ is well known [Eq. (78)

of Appendix A] and is given by (s > m2, m?)

o
do  o? 9
0= 4—8(1 + cos® 0)
4 2
o= 7;0‘ . (8.7)

If the spin-parity of J/¥ is that of photon viz 17, then the angular
distribution would not change by the interference between QED amplitude
and the resonant amplitude (See problem 1). In fact, experimentally, it
was found to be (1 + cos?f) near the resonance, clearly establishing the
spin-parity of J/W to be 1~ .
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8.1.1 Isospin

Experimentally the decay J/¥ — pp occurs with a branching ratio I',; /T’ =
(0.214 £0.010)%, which is too large to be explained by the electromagnetic
effects. Now pp can have only I = 0 or I = 1. Thus the isospin of J/U is
either 0 or 1. If J/¥ has I = 1, then the decay J/¥ — p°7¥ is forbidden
while for I = 0 (see problem 8.2), we have

I (J/¥ — p'n0) 1 83
L(J/U = p=7t)+ T (J/¥ — pta—) 2 (88)
to be compared with the experimental value of 0.494 + 0.068. Thus the
isospin of J/¥ is 0. Now G-parity is given by G = (=1)!C, where C is
the charge conjugation parity of J/W. Since I = 0, therefore, G = C. The
allowed decay J/¥ — pO70 fixes its C—parity to be C = (—1)(+1) = —1.
Hence G = —1 for J/W.

8.1.2 SU(3) Classification

Due to C-invariance, the VPP coupling is F-type (see Sec. 5.6.2) which
is not possible if V is SU(3) singlet. Thus SU(3) singlet vector meson
cannot decay into two pseudoscalar mesons belonging to the same SU(3)
multiplet. Thus in particular if J/¥ is SU(3) singlet, then J/¥ — KK is
forbidden while J/¥ — K*K or J/¥ — K*K is allowed by C-invariance.
Experimentally one finds

I(J)¥ — KtK™)

I(J/¥ — KK*)
which shows that J/¥ is SU(3) singlet. If J/¥ is SU(3) singlet, then its
invariant coupling with PV is given by

~ 2.6 x 1072 (8.9)

UTr(PV)=0| 7 +p 7t +ptn” + K* KT + K*TK~

_ _ 2 4
+K*0K0 + K*OKO + 6&)8778 + 6&)8778 . (810)
Hence
rJ/v
(J/ — m_T) = 1 (phase space correction) (8.11)
I (J/¥ — KK*)
=12

to be compared with the experimental value 1.39 + 0.12. To summarize,
the J/¥ resonance is SU(3) singlet with J°¢ =177, G = —1 and I = 0.
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8.2 Charm

Although J/ W itself does not carry any new quantum number, its unusually
narrow width in spite of large available phase space suggests that it is a
bound state of c¢ , where ¢ is a quark with a flavor which is outside the three
flavors u, d and s of SU(3). This new flavor is called charm. The quark c is
assigned a new quantum number C = 1 and C' = 0 for u, d and s quarks.
Thus to take this quantum number into account, the Gell-Mann-Nishijima
relation would be modified to

Q=1I3+ %(Y+C). (8.12)

For the charmed quark ¢, C =1, I3 =0, Y = B = 1/3. Thus the charge of
charmed quark is 2/3 and its mass m. = %mj/\p = 1.55 GeV.

The narrow width of J/¥ (87 keV compared to 100 MeV for p) can
be qualitatively understood by the OZI rule, just as the suppression of
¢ — 31 compared to ¢ — KK is explained (see Sec. 5.7) by this rule.
Thus the decay depicted in Fig. 8.1 is allowed but that shown in Fig. 8.2
is suppressed by OZI rule. But the decay J/1 — DD shown in Fig. 8.1 is
not allowed energetically since m j/¢ < 2mp.

8.2.1 Heavy Mesons

The heavy quark Q (Q) can form bound states with light quark g(q), where
Q=c bandg=wu,d, s:

©(M80) : (QD)r=ox% ¢ (S1): (QD)p—oxs" " !
Q=c : (cq)=0" D (eq) =17
C = : DT, D° DF . D*t, D*0 D*t
C=-1 : (¢¢): D°, D~,D; : D* D*= D:

For L =0, i.e. for s-wave

J=S,+8S¢
J? = S2 4+ 55 +2S,-Sq (8.13)
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Fig. 8.1 J/4 allowed by OZI.

Fig. 8.2 J/4 suppressed by OZI rule.

We have [h = 1]

(Sq-Sq)s=01 = 1 [J(J+ 1 - 2}

[\

3
=1 for singlet state: o4 -0g = —3

for triplet state: o4 -0g =1

(351) > m(1Sp) (8.14)

3 el

The mass spliting between 2S; and 'Sy is given by the Fermi contact
term (see Chap. 7) viz
Hi’ = 8£Oésk's i 9
3 4mimj
ks = 4/3 for qq
= 2/3 for qq (8.15)

8%(r)
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Hence

m(ssl) - m(lso) = **asmWswg(”)Wﬁ

= TN (o) (8.16)

From the experimental masses of D* and D},
mp«+ — Mp+ ~ 141 MeV
mp«o —mpo ~ 142 MeV
Mpt —Mpe ~ 144 MeV
These values are in agreement with QCD prediction (8.16) for the mass

difference between m(3S;) — m(1Sp). In particular

mp- —mp  ms [1s(0)[3

~1

i.e. right-hand side is flavor independent.

We now discuss L = 1 (p-wave) heavy mesons: (Q7)r—1. As a first
approximation, we take heavy quark as stationary and its spin is decoupled.
It is natural to couple orbital angular momentum L with S, in heavy quark
limit:

j=L+8§, (8.18)
The total angular momentum J of the bound state Q¢ is given by
J=j+8So (8.19)
Now
j*=5]+L*+2S,L
Eigenvalues of S,.L are given by [h = 1]

(8, L) =5 |iG+ )10+~ (3.20)

Now
j=1-1/2,1+1/2.
Thus for L =1
j=1/2,3/2
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Hence

Since

for j=3/2, we have J =2, 1: Dj, D; degenerate JE
for j=1/2, we have J =1,0: Dj, Dy degenerate JP

<Sq ' L>j:1/2 =

(Sq-L)j=s/2 =

DN =

m(j =3/2) >m(j =1/2)

J=j+1/2, j—1/2,

m(j = 3/2) =

m(j = 1/2) =

8

4

5mD; + 3mp,

3mps +mp,
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(8.21)

(8.22)

=9t 1%

=1% 0"

(8.23)

The degeneracy between (D3, D1) and (D7, Do) is lifted by spin orbital
coupling (see Chap. 9). All the charmed mesons are listed in Table 8.1.
We note that D+, D°, D (D°, D~, D) can decay only weakly, whereas
JP =1~ D-meson decay strongly and radiatively.

Table 8.1

Charmed  Quark Mass Lifetime (10~ 2sec) JT
meson content  (MeV) /Width

DO ca 1864.54 £ 0.17 7 =0.4101£0.0015 0~
D+ cd 1869.62 =+ 0.2 7 = 1.040 + 0.007 0~
Df cs 1968.49 & 0.34 7= 0.5+ 0.007 0~
D*0 cli 2006.97 £ 0.19 I' <21 MeV 1~
D+t cd 2010.27 £ 0.17 = (96+£22) KeV 1~
Dit s 2112.3+ 0.7 [ <19 MeV 1-
Dy° ct 2318 £ 29 I <267+40 MeV 1™
DY c 24223+ 1.3 [=204+17MeV 1%
DIL cd - - 1+
D30 cti 2461 + 1.6 ' =434+ 4 MeV 2+
D3t cd 2460.1725 + 1.6 ['=37+6 MeV 2t
DI c3 2317.8 £ 0.6 I < 3.8 MeV ot
DIF cs 2459.6 + 0.6 I < 3.5 MeV 1+
D% c3 2535.35 £0.34 £ 0.5 I < 2.3 MeV 1+
D%, cs 2572.6 £ 0.9 [ =20+5MeV 2+
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8.2.2 The Fifth Quark Flavor: Bottom Mesons

Fifth quark was discovered, when in 1977 the upsilon meson Y(JF¢ =
177) was found experimentally as a narrow resonance at Fermi Lab. with
mass ~ 9.5 GeV. This was later confirmed in eTe™ experiments at DESY
and CESR which determined its mass to be 9460 + 10 MeV and also its
width. The updated parameters of this resonance [from the Particle Data
Group Tables] are mass 9460.37 £ 0.21 MeV and width 52.5 £ 1.8 keV.
Again the narrow width in spite of large phase space available suggests the
existence of a fifth quark flavor called beauty, with a new quantum number
B = —1 for the bottom (b) quark. With this assignment the formula
Q = I3+ 1/2(Y + B + C) would give the charge of b quark the value
—1/3(I3 = 0). The mass of b quark is expected to be around 4.9 GeV as
suggested by the Y mass which is regarded as a 2S; bound state of bb.

Thus one would expect particles with B = 41, such as bg or ¢gb. The
lowest lying bound states bg and ¢b have been found experimentally. The
B = —1 states (B°, B7)BY form an SU(3) triplet (3) and B = +1 states
(B*, B®)B? form another triplet (3). For p-wave multiplets

*+,0 +,0
(@@)per  JP =2+ 1% { (gio BOB) ) }
j=3/2

899

(
T { (B *;ro OB+0) }
BB
The masses and decay time of B-mesons are given below
+ = 5279.16 + 0.31 MeV, 7 = (1.638 4 0.11) x 10~ sec
BY = 5279.53 4+ 0.33 MeV, 7 = (1.530 & 0.069) x 10~ '?sec

The masses and decay widths of other B-mesons can be found in particle
data book.

8.2.3 The Sixth Quark Flavor: The Top

The top quark t with @ = 2/3 and new flavor ' = 1 was expected on
theoretical grounds. It was first found experimentally in 1996; its mass is
my = 172.0 £ 0.9 & 1.3 GeV. Since (¢, b) form a weak doublet, it decays
weakly to W+ + b, i.e.

t—Wt+b
The predicted decay rate is [see Chap. 13]

Gr m2,\ > m2
't - Wt +b)= m3 <1W> (1+2W) 8.24
(t— ) s m3 m3 (8.24)
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where we have neglected the b quark mass compared to myy and m;. Taking
my = 172 GeV and myy = 80 GeV, G = 1.166 x 10~° GeV ™2, we get

I'~1.48 GeV.
If QCD correction is taken into account, then
'~ 1.36 GeV.
which gives, the life time of 7 to be
T =484 x10"% sec

Thus t quark decays before it can form bound states such as tf and ¢q.

8.3 Strong and Radiative Decays of D* Mesons

DD+
D* - D+~
These are p-wave decays. The decay width for the strong decay D* — D7
is given by
’2|pl7
N(D** — D¥x%) = L2 Plbx 8.25
(D = DI = 23 (8.25)

Now D+, D° form an isospin doublet. SU(2) gives
Dt - DTr%: —g
D*t — D%t /29 (8.26)
D — D%0 . ¢
D = DT /29
The decay D*® — D% 7~ is not energetically allowed. The experimental
value for the total decay width of D*7 is
I'p«+ = 96 £ 22 keV
Br(D*" — D) = (67.7+£0.5)%
Br(D*" — D% = (30.7+0.5)% (8.27)
Br(D*t — D) = (1.6 £0.4)%
From the above equations, we get
I(D*" — D% ™) = (65 + 15) keV
I(D** — D% = (36 4 8) keV (8.28)
[(D*t — D%y) = (1.5£0.5) keV
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Thus we get
g2
— =(3.32£0.76 8.29
< —( ) (8.29)
The decay width for the radiative decay is given by
4
I = ?O‘;ﬁ\kﬁ (8.30)
wps = (D43 g Dt
i,z
6 | Mg M
171 1 :|
Hpo = 5 | — + —
3 |{m, me
17 1 2
= |-—+= 8.31
S mc} (8.31)

Using myqg = m,, ~ 336 MeV, ms_z 490 MeV, m, =~ 1500 MeV,

['(D*t — D'y) =1.8 keV

I'(D*® — D%) = 37 keV

[(D:" — Dyvy) = 0.36 keV (8.32)
Now

|P|30 o M.
F(D*O — DO,R_O) _ |p‘3D+7r0 mggl—w(D*+ N D+7r0)
D+x *

= (52 £ 10) keV

. 38.140.29 .
I'(D* — D%) = (W> I'(D*° — D) (8.33)
= (324 6) keV

consistent with the quark model value for the radiative decay given in Eq.
(8.32) . The strong decays of

D:+ — DK+

— DTKO
are not energetically allowed. Thus decay channel allowed are radiative
decay, Dt — Dyv and the decay D+ — DI 70 is isospin violating decay,

hence it is also electromagnetic decay. The full width of Dt is T' < 1.9
MeV, and

Br(D:t — Dfv) = (94+0.7%
Br(D:T — DI7r%) = (58 +0.7)% (8.34)
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We now briefly discuss the strong decays of p-wave D-mesons. Parity
and angular momentum selection rules imply the following allowed decay
modes

D5 —D'nr =2 d-wave decay
— D7 =2 d-wave decay
Dy —D*r [=0,2 s and d-wave decays
Dy -» D =1 not allowed due to parity
D — D' 1=0,2 sand d-wave decays
D§ -+ D*rm not allowed
Dy—Dr [=0 s-wave decays

The allowed s-wave decays are very broad, since D3, D; belong to one
multiplet viz j = 3/2; it is reasonable to assume that the s-wave decay of
D is suppressed, this is also born out by the experimental values of decay
widths

Ipo = (20.4 £ 1.7) MeV
Ipso = (43 £4) MeV (8.35)
FD;i = (37+6) MeV
The resonances D7, Dg have not been seen experimentally; their decay
widths are expected to be of the order of few hundred MeV. However, a
resonance D§ at (2138 £28) MeV with width (267 +40) MeV has been ex-
perimentally discovered. Same selection rules hold for p-wave, Dg; mesons;
J=2,1,1,0.
The decay channels and the widths for the multiplet, j = 3/2 are given
below

D} — D*"K°
. DK+
DY — DK+
— DVK"
— DK+
— D*TK°
I'p, < 2.3 MeV (8.36)

s

Tp:, =20+5 MeV (8.37)
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For the multiplet, j = 1/2 (D} , D},), the above decays are not ener-
getically allowed, only channels energetically allowed are radiative decays
and isospin violating decays

D: — Ditn®
— Dy
— Dy
D:o — Djﬂ'o
They are narrow resonances, since strong decays are energetically not

allowed. Experimentally it is more likely to find a narrow resonance than
a very broad resonance.

8.4 Heavy Baryons

Since u, d, s, belong to the triplet representation of SU(3), the charmed and
bottom baryons with spin parity %+ belong to either triplet representation
3 or sextet representation 6 of SU(3). Using the Pauli principle, the unitary
spin and spin wave functions of spin %Jr baryons can be written as

1

Aij = NG (4645 — 4;%) @ Xara (8.38)
1

Sij = 7 (4545 + 4j4) @ X s> (8.39)

where i, j =1,2,3(q1 =u, ¢ =d, g3 = s, Q@ = c or b) and the spin wave
functions xar4 and x s are given in Eq. (6.8) and Table 6.3 respectively.
Note that A;; belongs to triplet representation 3 of SU(3): In particular
we have an isospin singlet and isospin doublet: For @ = ¢

JP:%JF Mass(GeV) Mean life(10~1° sec)
A1z = o5 (ud — du) c: A} 2.286 20046
s | A= g lus—su)eEL 2.468 442+26
B Ags = 5 (ds — sd) c: E{ 2.471 112+
These baryons decay weakly.
For Q@ =b
Mass  Mean life(10712 sec)
At AY 5.620 1.383
[ Al?’:Eg] 5.792  1.42
A23 : E’b_ ’ '
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S;; belongs to sextet representation of SU(3). In particular, we
have an isospin triplet, an isospin doublet and an isospin singlet:

JF :%Jr Mass(GeV) Decay channel
S = V28L,
I=1 Spp = XF 2455 —  AFrO(T ~2.23MeV)
Sao = /250
I=1/2 Sz = A 2.576 Zey(—)
523 = :‘c
I=0 S33 = % (2s8) c: /290 2.697 —(7 =69 x 107 sec)
Si = V2(Zy),
I=1 Si2 = (29),
Sae = V2(3y),
_ (=0
I=1/2 S13 = (5)

Sas = (8,7)
I=0 Ss3 = v2())

The spin %+ baryons also belong to the sextet representation of SU(3).
They are given in Eq. (8.39), with x s replaced by x 4 where the spin wave
functions y; are given in Table 6.1. The six spin % baryons are labelled
as

DeTHEE), B, 2 ),

=HE), ZOE), @)

c » =

In addition to C' = 41 and B = —1 baryons considered above, we also
have the following baryons with C' = 2 and B = —2 belonging to the triplet
representation of SU(3) with spin parity (3/2)":

*

ot
cc C

= = ccuxs, =
Zpp = bbuxs, =5, = bbuxs, Q7 = bbsys (8.40)

*+:

+
cc CCdX57 Q c T CCSX s

Finally we have singlets with C' = 3 and B = —3, namely
QT = ceexs, Oy = bbbxs (8.41)

cce

8.5 Quarkonium

The bound system of heavy quarks QQ, Q = ¢, b, is called quarkonium e.g.
charmonium c¢ and bottomonium bb. Since quarks are fermions with spin
1/2, their bound system can be written as (QQ) 1 s. Now spin S can have
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two values 0 and 1 with spin wave function antisymmetric and symmetric
respectively. If we regard Q and Q as identical fermions which differ only
in their charges, then we can state generalized Pauli principle: The wave
function is antisymmetric with the exchange of particles @ and Q. Under
particle exchange, we get with space coordinates exchange, a factor (—1)F,
with spin coordinates exchange, a factor (—1)*! and with charge exchange,

a factor C (C' is called C-parity). Hence Pauli principle gives

(-5 = 1. (8.42)
Therefore,
C = (-1)L*5, (8.43)

Hence we have the result

-1 L+S odd
¢= { +1 L+S even. (8.44)
Also for (QQ) system, the parity
P=(-1)(-1)F = (=nF*. (8.45)
Let us now use the spectroscopic notation,
Lo 023
N S’ P7 D, E’
A state is completely specified as
n 25+

where n is the principal quantum number and J is the total angular mo-
mentum. Thus for L = 0, we have the following states

JPC
n 'S C=+1, n=1,2,-- 0—t
n 38 C=-1, n=1,2---. 1—

The ground state is therefore a hyperfine doublet 1155(0~+) and
1381(177). For L = 1, we have the following states

n Py J=+41, C=-1, 1+

n 3P; J=0,1,2 C=1, 0+, 17+, 2%+,
Finally, we note that for L = 2, we have the following states

n Dy J=2, C=+1, 2°F

n *D; J=1,2,3 C=-1, 177,27,3 .
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The low lying states for L = 0, 1 are listed below (Masses in GeV and decay

widths in MeV).

g [1¢(2.980) 26.743.0
n=1 350 J/¥(3.097) (93.2+2.1) x 1073
! T(9.460) (54.02+1.25) x 1073
11(3.637) 1447
n=2 [ (3.686) (317+9) x 1073
1(10.023) (31.9842.63) x 1073
1Py (117) he(3.526) <1
3Py(01 ) Xeo(3.415) 10.240.7
3P (11 Xe1(3.510) 0.8940.05
S 3Py(217) Xc2(3.556) 2.03£0.12
1P1(1+7) hy -
3Py(0F ) X50(9.859) -
3p (1t X1 (9.893) -

3P2(2++) Xb2(9~912) -

It is interesting to see that the state 3D; has the same quantum number
as 3S;. They can therefore mix, but the mixing is expected to be small.

The states >P; and ' P; is a hyperfine quartet (degenerate), but this
degeneracy is removed due to hyperfine splitting. The low lying charmo-
nium states listed above are shown in Fig. 8.3. Most of these states have
been discovered experimentally. The transitions and decays of charmonium
states are shown in Fig. 8.3. Similar transitions and decays occur for bot-

tomonium bound states.

From Fig. 8.3, we note that both M1 and E1 radiative transitions are

possible:
J/W = e+
U —ne 4
U" — /. +~ (no parity change) M1 transitions
— U+
U — X+
X =T+
From Eq. (6.88) and Table 6.3, we get (for example)

} (parity changes) EI transitions

2
4o (2 1
(Y — ney) = ) L;m} k02
C

=2.7 keVQ (1.21 £ 0.37 expt. value)

(8.46)
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where (2 is the overlap integral defined as
Qn’n = / eiq.rd)n/oo(r)qﬁnoo (I‘) d31‘. (847)
0

and q = (msp/m)k, k is the momentum carried by photon, m, is the mass
of the spectator quark and m is the mass of the bound state. For Q =1, T’
is about a factor of two larger than the experimental value.

THE CHARMONIUM SYSTEM

n@s .7

hadrons hadrons

hadrons hadrons y= radiative

JPC = o+ 1—— ot+ 1++ 1+- 2++

Fig. 8.3 The charmonium spectrum (c¢ bound state) [16].

For F1 transitions nS; — n'Py and nP; — n'S; (J =0, 1, 2) the decay
widths can be written (cf. Eq. (6.68))

da [2J +1

Tnsi—wp, = 5 [ 3 } | M| K (8.48)
4o

Tupyon's; = = | M| K (8.49)

where

Mn’n =< Q > Qn/n» Qn’n = (1/\/5)

« /0 T lo(ar) — 2 (qr) Ruvo (r) R (r)rdr (8.50)

Note that jp and j are spherical Bessel functions and R,,; are radial wave
functions. In order to predict these decay widths one needs to know the
radial wave functions, i.e. some potential model is needed.

Finally, we note that there are 22 states below B threshold as compared
with eight states below charm threshold. This is a consequence of the fact
that interquark potential is flavor independent (as expected in QCD) so
that E,5 — F,,; is the same for ¢¢ and bb. (Note that charm threshold is at
about 3.74 GeV whereas B threshold is at about 10.55 GeV.)



8.6. Leptonic Decay Width of Quarkonium 237

8.6 Leptonic Decay Width of Quarkonium

The decays of 251 (QQ) state (V) into charged leptons proceeds through
the virtual photon as shown in Fig. 8.4.

Fig. 8.4 The decay of V in to charged leptons through virtual photon.

The scattering cross section for the QQ — Il is given by Eq. (A.77)

_47ra2 21,8[
i A
2 2 92 1— 2 1— 2
x |14 Bg ﬁl+( ﬁQ)4( ﬁl)] (8.51)
where
BV T LR
ﬂl—T, ﬂQ—T
s = E(in (8'52)

and @ is the charge of the quark . Now the cross section o can be written
as

o= th + ias, (8.53)
where o, is the cross section for 35; state and o, is the cross-section for 1S,
state. Since the photon is coupled to a conserved vector current, therefore
it contributes only to spin triplet state. Thus o4, = 0. Hence the decay rate

in the limit §; — 1(s = 4mé > 4m?) is given by
I' = (incident flux) oy
= 2gl0,(0)*50, (8.54)
where the incident flux = p;,,(268¢) = 2|V5(0)|?8g. Hence from Egs. (8.51)
and (8.54),

2 | ¥ (0)?
mi

- 16ma?

I'[S1(V) = 1t17] 3

(@) ; (8.55)
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where we have put s = 4m?Q & m%, and fo ~ 0 (in the non-relativistic
limit).

Taking into account the color |V) = % >0 |QaQq), we multiply Eq.
(8.55) by a factor of three. Hence we have

U,(0)]?
0V —1*17] = 167 (Q)? # (8.56)
my
It may be pointed out that before comparing experimental leptonic
widths with their theoretical predictions, the vacuum polarization contri-

butions to the leptonic decay width have to be removed so that
0 =1T1eP(1 — )2

where (1 —I1)? = 0.958, 0.932 for charmonium and bottomonium respec-
tively and then it is T'° which is to be compared with the theoretical pre-
dictions.

In the quark model, the electromagnetic current

em  2_ 1- 1_ 2 1-
Jm = Ut — gd%d 35S + 3CMmC— gb’yﬂb
1 4, 11 4 1, 2 1
~— ——w, — — -, — =T 8.57
\/ipp,—’—g\/gwp, 3¢p+3wu 3 H ( )
For
Vi — ete”
e.m my E/L
olJ™V)Y = fyv——==
O IV) = v i e
4 2 2
PV —ete] == WJ;—VV (8.58)
where (cf Eq. (8.57))
1 11 1 2 1
= = o5 /=Jwy T 5 ' o sy T o 8.59
fv \/pr, 3\/§f 3f<z> 3fw 3fr (8.59)

for V.=p, w, ¢, ¥ and T respectively.

8.7 Hadronic Decay Width

The decays of quarkonium states 3S; and 'Sy to ordinary hadrons are
suppressed by the OZI rule. The narrowness of their decay widths can be
explained as follows. By C-conservation 3S; state can decay in the lowest
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order to three gluons and thus its hadronic decay width is proportional
to a3 x (probability of conversion of gluons into hadrons). Since color is
confined, this probability is unity. Similarly the decay of 'Sy into hadrons
is proportional to 2, since by C-conservation it can decay into two gluons.
Here analogy with positronium is in order. Positronium in 1Sy state (para
positronium) decay into two photons via the diagram (Fig. 8.5).

e (k) e Vi)

e VAAYAY,V,V, VI —

———"VVWVVVVVNV ————
e V() et Vky)

Fig. 8.5 Positronium (1Sy state) decay into two photons.

In the low energy limit the cross section for the above process is given

by
s « 2
g = B <’,’ne> . (860)

Since o, = 0, we get using Eq. (8.53)
2
4
oy =40 = Fﬂ (ﬁ) . (8.61)

Hence the decay rate
2

T ['So(e"e™) — 29] = |8, (0)* 40 = 16775?2@5(0)\2. (8.62)
For (QQ) 'S state decaying into 27, replace
et [\/§Q262r = 3Q%! (8.63)
and 4m? — 4mg2 ~ m%. Hence
I ['So(mp) — 27] = 176;“ : 3Q" WL (0). (8.64)
P

For 7. — 2 gluons, replace o by 2a2 in Eq. (8.62) [see problem 8.2], so

3
that the hadronic decay rate is

327 a3 (my,)

2
3 my.

I'[7. — hadrons| = [T, (0)]2. (8.65)
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The decay rate for 351 (e~e™) system going to 3+ is given by
64w al
3¢, — + _ 2 2
L [*S(e7e®) — 39 = o (T —9)@“1’5(0)\ : (8.66)

For the decay of 251 (QQ) — 3g, we replace o® by 5a3/18 [see problem 8.5]
and (2m¢)? = (2mg)? ~m? in Eq. (8.66). Hence
I'[*S1(V) — hadrons] =T [*S; — 3¢]

1607 (7% —9) o

B 817 m?,

W (0).  (8.67)
We now apply the above results to ¢, J/¥ and v decays. From Egs.
(8.67) and (8.55),

8lma? < Q >2 T'(V — hadrons)
10(mw2 —9) I'(V—eet)

a(my) = (8.68)

From Eq. (8.68),
as(me) ~ 0.45,  as(my) =0.22,  as(my) ~0.19,

where we have used I'(¢ — non-strange mesons)~ 653 keV, I'(J/¥ —
hadrons)~ 82 keV, I'(T — hadrons)~ 54 keV, T'(¢ — ete™) ~ 1.26 keV,
['(J/¥ — eTe) ~ 5.55 keV, I'(T — eTe™) ~ 1.34 keV. From this we see
a realization of the asymptotic freedom of QCD, the coupling a(q?) falls
with the increase of ¢2.

Finally from Eqgs. (8.65), (8.67) and (8.55), we have [with ag(m,, ) =
as(my)]

27r m3 1

I'(n. — hadrons) = 5% —0) m2 as(mq,)F(J/\p — hadrons)
(8.69)
3 [as(my) 2 m3, -
= 2| L) T gy ot
2[ " } m%c (J/U —eTe™)
~ 7.6 MeV (8.70)

where we have used as(my) = 0.22. This value is lower than the experi-
mental value I';,; =~ 13.2f§'_§ MeV for ..

8.8 Non-Relativistic Treatment of Quarkonium

From a theoretical point of view, heavy quark system (quarkonium) is inter-
esting because this is a relatively simple system. To a good approximation,
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the quark motion in this bound state should be non-relativistic. Thus we
can use the Schrodinger equation for Q@) system:

h2
—EV2\IJ(1‘) + [V (r) — E]¥(r) = 0. (8.71)
p is the reduced mass of QQ system, i.e. p = %mQ. For central potential,
we can use the wave function:

U(r) = R(r) Yim (0, ¢). (8.72)

The radial wave function R(r) satisfies the equation

—;i Lj; ijr] R(r) — [E V) — W R(r) = 0.
(8.73)
If we define a radial function
x(r) =rR(r), (8.74)
then x(r) satisfies the equation
% + [?;(E _V(r) - l(l:; 1)] =0 (8.75)
The wave function x(r) is normalized as
| o= [T mepear
’ = 10 (8.76)
with the boundary conditions
x(0)=0 (8.77)
For S-waves:
x(r)—0 as r— o0
(8.78)
R(r)—0
For S-waves:
X' (0) = R(0) = V47V (0). (8.79)

We now prove two important results:

w0 = 54 (). (3.50)
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Proof.
From Eq. (8.75) for I =0
X" 1
= E-V). 8.81
C o E-V) (8.81)
Therefore,
d [x" 2u dV
— | === — 8.82
dr [X 2 dr (8:82)
Taking the expectation value [note that x(r) is real], we get
o d X/I 2#/ oo dV
— | = | xdr = = — xdr. 8.83
/oxdr{x xdr=g5 | X g xdr (8.83)
Integrating left-hand side by parts, we get
1" S o0 "
Lh.s. = [XXQ} —/ Xoxxdr
X Jo o X
" oo
_ [XXQ . X’z}
X 0
= [X'(0)* = [R(0)%, (8.84)

where we have used the boundary conditions (8.77), (8.78). Hence Egs.

(8.79) and (8.83) gives
2_ 1 [V
% () = 27h? < dr >

2. Virial Theorem

1/ dv
T) == {r=- .
@=3(r%) (8.55)
Proof.
From Eq. (8.82), we have
> d (X" 2u / dV
— | &= xdr=—= {(r— 8.86
/0 err<x>xr n2 \"dr (8:86)
Integrating left-hand side by parts and using Eqgs. (8.77) and (8.78), we get
Lh.s. = 2/ X' 2dr (8.87)
0
Therefore,

e 2u /) dV
2 Pdr =5 (r— .
/o X' “dr 2 <r o > (8.88)
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Now from Eq. (8.81),

1
2
<’;>——h‘;[E<V>]. (8.89)
But
1" o0
() o
X 0
o
= |=xxl —/ X%dr
0
=— / X 2dr (8.90)
0
Hence from Eqs.(8.88) — (8.90), we get
1/ dv
E-{V)=5 <rdr> (8.91)
or

=3,

Let us apply Eq. (8.85) to one gluon exchange potential V (r) = —gaS%.

For this case
2
D 2 /1\ 2 1
— — — — = — . — . 2
<2u> 3as<r> 30 (8.92)

where a = 3/4p105 is the Bohr radius. Thus, we get

v 2

- = -« 8.93

c 3° ( )
As a; decreases with mass, for sufficiently high mass v/c < 1 and one
can treat dynamics non-relativistically. For the special case of power law

potential

Vir)y=A+ M\, (8.94)
one can obtain interesting results by studying the scaling of Schrodinger
equation (8.75). Put p = fr, where (3 is some parameter such that it makes

p dimensionless. Let us put x(r) = u(p) and £ = E — A. Then from Eq.
(8.75)

I TR A TR S (RS )
a2\ = | R 2" gy 2
Put |\| = 24 3%, this gives

6 _ 2,u|>\| 1/2+v
h2 '

u(p) (8.95)

(8.96)
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Then put

2p [2uA ]2
-2 [ = E, (8.97)

where ¢ is dimensionless. If we write sgn(A) = A/|A|, Eq. (8.95) gives

d2

o)+ |2 = s — 1LY

P2

] u(p) =0 (8.98)

which depends only upon pure numbers. We now study the consequences
of Eq. (8.98).

(i) Lengths and quantities with the dimensions of length depend upon
constituent quark mass m = 24 and coupling strength |\| as

1
L5~ ()T, (5.99)
Particle density at the origin of coordinates
[T (0)]* ~ L% o (ufA) /2. (8.100)

(ii) Level spacing between energy levels depends on p and |A| as
1
AE ~ ;(MP\I)Q/Q“ oc VAP (8.101)

The “power law” potential corresponding to the limiting value v — 0 is
simply the logarithmic potential.

V(r)=Cln—. (8.102)
To

We summarize these results for the power law potentials in Table 8.2.

Table 8.2
Simple
Coulomb | harmonic Power
like oscillator | linear log law
v=-—1 v=2 v=1 v=20 v=0.1
FROE T 1377 m 11372 e
AFE m u—1/2 p=1/3 | constant | p—0:048
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8.9 Observations

my: —my = Mgy — My (8.103)

implies either v = 0 or v is very small. In fact Martin has shown that the
potential

V(r) = —8.04GeV + 6.870(r/1GeV 1)1 (8.104)

gives a good fit to quarkonium mass spectrum.
The logarithmic potential

V(r) = (0.71GeV) In (:) (8.105)
0
gives good fit to the data. The two forms are numerically indistinguishable
for 0.1fm <r < 1fm.
If we plot |W4(0)|? for the vector bosons p, w, ¢, ¥, T versus y in a
log-log plot, a straight line fit is possible, i.e.
[T (0)* ~ P

with p ~ 1.6. Again this supports the power law potential with v very
small, i.e. v ~ 0.1.

Both for charmonium and bottomonium, the low lying bound state en-
ergy spectrum satisfies the rule

FEis < Elp < Fo,. (8106)
In particular we find for c¢
m(13P) —m(1S) = 457 MeV
m(238;) —m(13S) = ¥ — J/¥ = 589 MeV (8.107)

m(13S1) —m(11Sy) = J/¥ — 5, = 117 MeV
m(23S1) —m(218y) = ¥ — 5. = 82MeV,

3

where
m(S) = 3m(351): (') (8.108)
m(3P) _ 5m(3P2) + 3m(3P0) + m(?’Po) . (8109)

9
For Coulomb potential, the energy spectrum satisfies the rule

Fis < By = Ezp < Egs = Egp = Egd (8110)
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and for the harmonic oscillator potential
Eis < Eip < Eys = E1g < Eop,. (8.111)

Further, the harmonic oscillator potential gives the level spacing as follows:

1
By — By = Eyy — By = i(EQS — Fi5) (8.112)

Thus although oscillator potential is a confining potential, the level spacing
is not in agreement with the experimental results.

The QCD inspired Cornell potential [cf. Eq. (7.82a)]

K T
V(?”) =C - ? + aiz
reproduces the mass spectrum for ¢é and bb bound states quite well (see
the problem 8.9).

Thus we see that the quarkonium spectroscopy is consistent with a
potential that increases linearly at large distances, thereby supporting the
color confinement. We also saw in this chapter (as well as in Chap. 7) a
realization of other striking property of QCD, namely the running of the
QCD coupling constant a(g?) with ¢2.

8.10 Tetraquark

Tetraquark mesons are composite of diquark-diantiquark. A diquark is
either in symmetric color state 6. or color antisymmetric state 3.. The
antidiquark is either in symmetric color state 6. or color antisymmetric
state 3.. Now

6. ® 6, =35, @ 1,
3.®3. =8 @l
3. ®6, =10, ® 8,
6. ® 3, = 10, @ 8,

Hence only 6. ® 6. and 3. ® 3. give color singlet state. However for both
diquark and antidiquark in color symmetric state, the one gluon exchange
potential is repulsive unlike attractive one gluon exchange potential for
diquark and antidiquark in color antisymmetric state. In any case, we will
confine ourselves to the color singlet tetraquark composite of diquark and
antidiquark in color triplet states 3. and 3. respectively.
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Now diquarks are either antisymmetric or symmetric in flavor:

1 o
Md:;g@%*%%)mjzwd,&c

{aq} = \%(%‘Qj + QjQi)

Similarly for antidiquark flavor states. For antisymmetric color state 3. or
3., Pauli principle requires overall wave function of diquark or antidiquark
to be symmetric in flavor, in space and spin: (s, denote the spin of diquark
or antidiquark)

[Q(J]L=0, s=0 1 P=1 [QQ]L=1, =1 5 P=-1
{QQ}L:O, =1 3 P=1 {QQ}L:L s=0  P=-1
000, =0 P =1 a1 =1 s P=-1
{00t =0, =1 s P=1 {q@};—y = ;P=-1

For u, d, s quarks, the underlying flavor symmetry is SU(3) (S denotes
strangeness quantum number)
For this case

I=0 =1/2
lgq] {S:O C g
- I=0 1=1/2
[qq] {S_O C g

Hence we have a nonet of low lying scalar mesons 0%, composite of
tetraquark viz

[QQ]L:O, 5=0 [(j(ﬂL:O, s=0
Nonet of scalar mesons 0T have inverse mass spectrum:

Isosinglet: ¢(600)

Two isodoublet: K (800) { giil
Isosinglet: f0(980)
degenerate [ Isotriplet: ap(980)

This mass spectrum does not fit 07 as bound states (¢q)r=1-
The following tetraquark states are of interest

([qq]L:o, s=0 100} 1o, s=1 T {aq} 10, 51 (0] 1o, 5:0)
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These states have JP¢ = 1T+, 11~ The following states have JF¢ = 0+,
1++72++

{aa}r—o, s=1 {00} =0, 5=

{‘IQ}L:L s=0 {QQ}L:L s=0
Both these states give the tetraquark mesons with J©¢ = 0++ 1t+ 2+,
We see that there are a large number of tetraquark states. It is hard to
formulate selection rules to select the states which can exist as composite
of tetraquark.

As an example, we consider the following two tetraquark charmonium
states, with L = 0:

([CQ]L:O, s=0 {EQ}L:O, =1 T {CQ}L:O, s=1 [E‘ﬂL:o, s:O)

The two states have JP¢ = 17 and 17—. The J¥¢ = 1+ meson is
identified with the state X (3872). This state was discovered in the J/¥

mta~ distribution. However, this state decay in two different final states:

X — J/Unta~
— J/ Ut 7°
with equal probability:

_ Br(X(3872) — J/¥ntr )
~ Br(X(3872) — J/¥rta— 70)

The C-parity of (7t77) is C = (—1)!; C-conservation requires | = 1,
I(mt7~) =1 as required by Bose statistics. Thus the G-parity of (7t77)
system (—1)"*1 = +1, i.e. (777~) has the same C and G parities as p°
meson.

Hence for the decay channel

X — J/Urtr=, AG=0, AlI|=1
For the decay channel
X — J/Untr 70

we note that G-parity of the (7*7~ 7°) is —1 and C-conservation requires
the C(n 7~ %) = —1. Hence the (777~ 7?) system has the same quantum
number as w’. Hence for this decay channel AG # 0, A|I| = 0. We conclude
that both decay channels are electromagnetic decay, for the channel X —
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J/¥ntr=, AG =0, A|I| = 1, whereas for the channel X — J/¥rt 770
AG # 0, A|I| = 0. Experimentally, the branching ratio is

Br(X(3872) — J/Untr™) ~ Br(X(3872) — J/Unt =7
For the open charm the tetraquark, D-states
(Cq)L:L s:O(qu)LZO, s=1
(cq)r=0, s=1(qq ) =1, s=0
have JP¢ =27, 17, 0~. The D-states
(cq)r=1, s=0(qq ) L=1, s=0
(cq) =0, s=1(4q )L.=0, s=1
have JP¢ =2+ 1%, 0t.
In particular, for ¢ = d, ¢ = s, D} : states have JF¢ =2+ 1% 0% out
of the tetraquark states

(cd)(d5)

L=0,s=1
L=1,5=0

have been considered as possible tetraquark mesons.

8.11 Problems

(1) Write down the amplitude F for the Feynman diagrams shown in Fig.
8.6, Show that

do o ( g* 52
dQ 4s 64 (m%es - 5)2 + rn’%esr2 JP=0—,0t

2 2 2
i = G0 et 125 e
g4 82
et (m%es - 5)2 + m%esl—q} JP=1-
2 4 2
% - Z‘S{u +cos?8) + [1 + L(e%(m%es - 3)52 +mgesrg]
—4 cos 92; (m2 S(i”f)e; _;;)2 2 }
2.02f L

In writing above equations, the finite width of resonance has been taken
care of. Hence we conclude: experimental angular distribution excludes
JP¥ =07,0%, 17 and higher spin.
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Fig. 8.6 e~et — p~puT through ~ or resonances.

(2) Show that if J/¥ has isospin I = 0,

I (¥ — p0r0) 1
T(U—pat)+0 (U —pta—) 2

Hint: The pr final state has I = 0, 1 or 2. But we are interested in

I = 0. Using C.G. coeflicients

_ L

“at) = 0,0) +---
e 7100
1
Oy = —10,0) + - --
|p°7°) 7100
Show that D* D couplings in SU(3) are given by
D* — DOpg: Ly
D0 — Dt \/ig V3
Dt — DOK+ /2
D*-i— N D07T+ . \/5 s . g
Ve Dt — DVYE®: /2
D*-i— — D+7T0 i —g s : g
D*t — Dtpe s — 2
s s 18 \/gg
Consider the decays
b= J/Wn

= J/ur®

Show that above decays are p-wave decays. The second decay is isospin
violating decay. Obtain the decay widths

Ly — J/¥n)
and

P — J /)
in terms of the coupling constants 941w and 9 w0 Obtain the val-
ues of these couplings. Hence show that isospin violating interaction is

of the same order as electromagnetic interaction from the experimental
branching ratios.
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Fig. 8.7 (qq) — 27 or 2 gluons.

(5) For (4q)color singlet — 2~ or 2 gluons, as shown in Fig. 8.7, where

a,b=1,2,3 are 3 colors of quarks, A, B =1,---, 8 are eight colors of
gluons, show that

M(2g)  a, 36an
M(2y)  aQ? 3

and hence show that

I'(29) :

as
['(27)  9a%Q;

For (4q)color singlet — 3~ or 3 gluons coupled symmetrically in gluon
color, show that

_2
9

I'(39) 5 o

_ S

I'(3y)  54a3QS

Hint: Use tzdapcdapc = 2

Using Eqgs. (8.59) and (8.60) in the text and the experimental table
below
Vector Meson  my (MeV) T (keV)

p 770 7.04 £0.02

w 783 0.60 + 0.02

¢ 1020 1.26 £0.04

U 3097 5.55+0.14

T 9460 1.34040.018
show that

fo =221 MeV, f, =194 MeV, f, =228 MeV,
fo =416 MeV, fr =715 MeV

J/U can also decay into hadrons via electromagnetic interaction
through one photon exchange
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Show that

27 (47)2a’?
LW — h)y = e 3m2 f3-3m3 p(m3)
%

= 12720V — e~et) p(m3)

Using Fig. 8.8,

Fig. 8.8 Decay of J/W into hadrons via electromagnetic interaction through one photon
exchange

1

pmy) = 1532 @
1.4 1 1
- W3(§ + 9 + 5) below charm threshold
1
= 12 @

Show that

[(¥ — h), =2I(V — e e™)
= 11.10 £ 0.28 KeV

Exp: 12.60 £ 0.28 keV

(8) Using the formula for S; bound state

I(QQ)(2%5)) — e et]  m(QQ)ass, [P2:(0)5g

TQA)(I?S)) — e=e] ~ m(QQ)1s, ¥1.(0)[3

and the experimental values for the leptonic decay width and the
masses, show that

Uy, (0)]2, s (0)|7;
W2sOles g1, T2 Ol )|gb ~ 0.65.
‘\1119(0) e |\I’1‘?(0) bb
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(9) By writing

(10)

1
E=<H>:<\I!|H\\Il>=2m+ﬂ<p2>+<V(T)>

where 1 = m/2 and V(r) = C — £ + Ly evaluate the energy eigen-
values s, Ey1, and Eyg by variational principle.

Hint: Write £ = (2ub")'/3E = 2ub")'/3[< H > —2m — O], (E =
E+C)and U ="y, (9, ¢)and express

f[—u%—k(y—g—kl(ly%l))uﬂ dy

[ udy
where y = (24/b%)'/3r and n = (4u2b?)'/3K. [All these quantities are
dimensionless and are therefore also suitable for numerical solution on

a computer.|
Using the trial wave functions

g =

15 :u= Nye_1/252y2,

2
25 . Ny (1 _ 352y2) 6_1/2523/2
1P :u= Ny26_1/252y2,

minimize & in order to determine the parameter 3 for each wave func-
tion. Then find . For numerical purpose, use m. = 1.52 GeV,
K = 048, a = 2.34 GeV™'. Compare your results with the experi-
mental values.

Using the equation

2 w AV p gL L
s (0)] 27r<d7“ >n3277 {a2+K<r2 el

evaluate |U,,;(0)|? by using the above wave functions for 15 or 29 states
in order to determine < 1/r? >, with the parameters 3’s determined
in the first part of the problem. Hence evaluate the mass difference
U — . and ¥’ — 7/ and compare your results with the experimental
values.

From Eq. (8.76), using similar proceedure used in deriving Eq. (8.81),

show that for p-wave
1N v
73 » T4 \dr/’
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Chapter 9

Heavy Quark Effective Theory

9.1 Effective Lagrangian
The QCD Lagrangian (7.52)
. . — 1 LV
L = qiv" (0, — 19sGp) g — gmaq — iTr(G‘ Gu)

for light quarks is chiral invariant in the limit m, 45 — 0 as discussed in
Chap. 11. For a heavy quark c¢, b, or ¢, the chiral symmetry does not hold.
However, QCD has asymptotic freedom which implies that the effective
coupling constant as decreases logarithmically at short distances or high
momentum transfers. This is the basis for perturbative QCD, i.e. above
a certain mass scale u, the perturbative QCD is applicable. The size of
a hadron is of the order of Agcp, where Agep ~ 0.2 GeV (see Chap.
7). Thus for a bound state of quarks or (quark-antiquark), we are in the
nonperturbative regime, i.e. in the confinement region.

Consider for example a bound state of light-heavy quark-antiquark, viz
qQ or Qg. In the limit m¢g — oo, heavy quark (antiquark) can be taken as a
static source of field in which light antiquark (quark) moves. The situation
is like hydrogen atom. In the limit mg — oo, the Hamiltonian for the light
degrees of freedom in analogy with H atom can be written to order v?/c?

He P v P meep - Lo, (o)
© 2my, e\” 8m2  4m2 %a: p 8m? v ’ '

where E€ is the color electric field, V,(r) is related to E¢ by E¢ = —4/=X,
and p = —ivy. Although Agep/mg is small, it is still finite. The effec-
tive heavy quark theory provides a framework to take into account 1/mgq
corrections.

The starting point is to define a four-velocity
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dz,, B dxdr v

= —, = —— = - 9.2
Y dr v dr dt 0% (9-2)
Vo =79 = v?

so that
v? = vk, =72 =Pt =471 - u?) =1 (9.3)
It is convenient to define
¥ =", P=0"=1 (9.4)

The Dirac equation for a heavy quark is given by

(iv" D, —m)¥ =0 (9.5)

where D, is the covariant derivative

0 )
w = % - ngGM (96)

A
Gy = 5Gy!

We define the projection operators

1
Pi=§(1i¢) (9.7)
Note that in the rest frame v =0
1
P:I: = 5(1 + 70)7

i.e. it projects out upper and lower components of W. Write
V=P, UV4+P VU
=e MU, + h_y]
= e_im¢“'”h+v + emtvTh (9.8)
where

hiy =€ PV
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‘We note that
¢h+v = h+v, ¢h_v = —h_v (99)

Pyt =41P_ 4+ 0¥

P_At =~FpP, — ot (9.10)
Using Egs. (9.8), (9.9), and (9.10), we obtain from Eq. (9.5)
(iv-D+iv-D)h_y +iv-Dhyyy, =0 (9.11)

(iv-D —iv-D)hiy — (2m~+iv-D)h_, =0 (9.12)

Note that ki, and h_, are not decoupled. The next step is to show that
to order 1/m?, the equations for h,, and h_, are decoupled. From Eq.
(9.12), one obtain

I iy-D—iv-D
T 2m+iv-D
1 w-D . .
= %[1— 7 + ..][iv - D —iv - D]h, (9.13)
Thus from Egs. (9.11) and (9.13) to order 1/m, we get
D —iv-D
iy D +iv - D}%hﬂ +iv-Dhyy=0  (9.14)

Now
v-Dvy-D=+"y"D,D,
7: A
=D? - 57 Y[D,, D]

=D*— %UWGW (9.15)
Hence from Eq. (9.14), we obtain
. D? s v v - D)?
[’LU -D— % + fﬁmo"u G,LAU — %]h-‘rv =0 (916)

This is the Pauli form of Dirac equation to order 1/m. The corresponding
Lagrangian for the field h,,, is given by
D? + (iv-D)? g,

e :]_lv.'D*—
Lepp = hyoliv o +toam

G oolhys  (9.17a)

_ D2 <
:h+v[z‘v~D——L+i

Hu
o e Gl (9.17D)
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Note that h,, annihilates a heavy quark. In the limit m — oo
Lefp = hiyiv- Dhy, (9.17¢)
Now from the relation
—i0,¥(z) = [P,, U(z)] (9.18)
it follows through the transformation (9.8) that
—i0uhyy = MU hyy + [P, by (9.19)

This shows that a derivative acting on h., corresponds to a factor of the
residual momentum £, carried by the heavy quark

—ky =muv, —pu (9.20)
so that k, indicates how much heavy quark is of-mass shell. In the limit
m — 00 (no recoil limit) with v, and k&, fixed

k
Ulqtuark = % =, + EM — vy, (921)

One would expect the heavy quark to carry most of the momentum of the
qQ bound state, but not all:

Py =pu+ L =mof" 41, (9.22)

where pf = mpv, is the momentum of the bound system and [,, is that
which is carried by the light degree of freedom. Now mp = m +my — B
where B is the binding energy supplied by the interaction through gluon.
Thus from Eq. (9.22)

Uguark = %Uu - % (9.23)
so that again vz“‘”k — v, as m — oo and a comparison of Eq. (9.23) with
Eq. (9.21) shows that in the limit m — oo, the interaction with gluons
can change k, but not UZ“‘”k = v,,; the velocity of the heavy quark can be
altered only by an external current which absorbs “infinite momentum”.
Thus in a hadron, the light degrees of freedom are independent of the
heavy quark mass, i.e. residual motion of the heavy quark in a hadron can
be taken into account by adding the effective Hamiltonian for heavy quark
@ from the L.f¢ given in Eq. (9.17) to the Hamiltonian for the light quark
given in Eq. (9.1). We will come to this point later, when we discuss the
masses of heavy hadrons.
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The third term in the Lagrangian (9.17a) undergoes short-distance QCD
corrections and as such is multiplied by the renormalization factor

Zq (n) = [QS (k) } o (9.24)

as (m)
with Zg (u=m) = 1.
The heavy quark propagator in QCD can be written in HQET using
Eq. (9.20):

sa m+-y-p a1 +Y

10y =
p2

= 9.25
—m? +ie Zb2(v~k+ie) (9:25)

where we have neglected the term k?/m — 0. The gluon heavy quark
vertex can be written from the Lagrangian (9.17) and is given by

igoo (T,): (9.26)
The following relations are useful

P+ oy = 20

Py = 20u¥ — (9.27)
From Eq. (9.27), one can write
B+U'YILh+v = ﬁ+vvuh+v (9.28)

9.2 Spin Symmetry of Heavy Quark

In the limit m — oo, the Lagrangian L.y given in Eq. (9.17) has additional
symmetries not present in the full QCD Lagrangian. One such symmetry,
namely the spin symmetry of heavy quark is reflected in the fact that the
first term in the Lagrangian Eq. (9.17b) makes no reference to the Dirac
structure at all which can couple to the spin degrees of h,.

More explicitly define the spin:

X2

s' = —s; = —ys9y - € (9.29)
where
e -v=uuel =0,

ejuey = —0jk (9.30)

In the rest frame of h,,
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thus
Si =75 (’YOUO) ’Y;ﬁf

= vy 5% = ( Ol a) = —s, (9.31)
K]

i.e. we get the usual definition of the spin. We note that the Lagrangian
Ly givenin Eq. (9.17a) is invariant under the infinitesimal transformation

(5h+v =10 - Sh+v

Shyy = —i6 - sh.y, (9.32)
Now the Noether current is given by
oL
JH = —f—————sh
ODuhi)”
= hy,v"sh, (9.33)

Hence the spin operator is given by
S = /JO (x,t) d*x

=1y / hyyshyod®z. (9.34)
Note that
S5y b)) = —sihp (9.35)

We conclude that the Lagrangian L.;; in Eq. (9.17a) is invariant under
SU(2) of heavy quark spin symmetry. It means that pseudoscalar and vector
meson states |P (v)) and |V (v, €)), containing the same heavy quark, with
momentum pl’f = mpv, can be related to each other:

S3 (V) [P (v)) = =V (v,€)), §%(v) [P (v)) = |V (v,¢)) (9-36)

Thus their masses are degenerate in this limit. This degeneracy is lifted by
the third term in the Lagrangian (9.17) giving e.g. for B* (17) and B(07)
mesons, the mass difference (m% — mp) which scales like 1/m.

The second symmetry of the Lagrangian (9.17) in the limit m — oo
arises when we introduce two distinct flavors hy (e.g.b) and hz (e.g.c). Since
the first term in Eq. (9.17) makes no reference to masses m; (i = 1,2), and
since mass is the only property which can distinguish between quarks of
different flavors in QCD, the effective theory has a symmetry under which
hi (v) < hg(v). It may be emphasized that this symmetry does not in
any way depend on m; = ms but only on m; > A, where A is a scale
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parameter such that 1/A determines the size of light degrees of freedom in
the bound state and is a few hundred MeV'; it may vary from process to
process. Note also that the flavor symmetry holds between heavy quark
fields of the same velocity and not with the same momentum. This flavor
symmetry together with the spin symmetry mentioned above gives rise to
hy (v)
ha (v)

matrix elements of flavor changing effective currents which mediate weak

SU(4) symmetry for the system < ) and has been used to relate the

decays of mesons containing heavy quarks. Since we will be dealing with
h4., only, we will drop the subscript 4 in what follows. We first note that

[SY,h,Thy] = —h,Ts;h,

[S?’/ By Thy| = by siChy (9.37)

10 (%

These equations follow from Eq. (9.35). Their use is as follows:
Consider the transition B~ (v) — D (1/). Then from Eq. (9.37), we
obtain

z’<D° (v)‘ {S;’/,Ev/FbU] 1B~ (v)) = <D0 (u)
Now using Eq. (9.36),
i<D*° (v) ‘ Gy Thy |[B~ (v)) = <D0 (u)‘ &, 53Tb,] |B~ (1)) (9.39)

where 53 = v59'7”€}, €, is polarization vector for D*°. For T' = v* (1 — 73),

¢,/ s:Tby] | B~ (v))
(9.38)

we have

537" (1 —=v5) = v5 0'7€e) " (1 —s5) (9.40)
Now using

VAPt = gyt — gMaP 4GP i PR sy, (9.41)

(D (V)| lewr (1= 5) 6] | B ()
=— (U'“e*” — /T — ie“’\p”U;\EZ)
x (D% (0|17 (1 =35) bl | B~ ()

i
= — (U'”e*” — e — ze“Ap”UAej))

X \/411)Tvé {50 (’U . U/) (U + UI)J (9.42)
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where we have used the fact that ¢y*b is a symmetry current, so that

<D0 (U) [Ey Vb | B~ ( >_\/411)TU0{§0 (v u)(u+v')J (9.43)
with

b (V) =& (1) =1 (9.44)
Another application of Eq. (9.37) is for the matrix elements of the
current gy* (1 — 75) b, (¢ = u,d, s) between the vacuum and B meson state
viz
(O[[S7', qT'b] [By) = — (0] qT'sib | By) (9.45)
Hence we get
(0 rb|B;) = — (0|20 (¢ - ) b[B,) (9.46)
Thus for I = 4* (1 — 75) on using Eqgs. (9.40) and (9.41), one obtains

) 1 . .
i p— (f336“> = szq7an112€M =ifB,\/MB,€u
fB; = /mB,B; B, = MB,[B, (9.47)

where we have used

(0] @v*v5b| By (p \/ ip" fp, = ,/—sz vt (9.48)
(0l gv"b |B; (p) \/—e for =y/5s—— sz*UO (9.49)

The results obtained in Egs. (9.42) and (9.47) will be used in Chap. 15,
where we will discuss the semlleptomc decays of B mesons involving the
vector and axial form factors in the transitions B — D, D*.

Similar results can also be derived by the following procedure (called

and

trace technique). For vector and pseudoscalar meson fields, we can write
(P=Bor D)

L+ 1 o
H, = — ¥ [iv" Py, — 5P , (9.50)

where a = 1,2,3 for u, d and s quarks and
operators normalized as

*

Py and P, are annihilation

(01Pr,1Q 7, (17)) = eu (9.51)
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OIPIQ, (07)) - 1 (9.52)
We define the adjoint field
149

H, = Hi® = [—E’;m“ +Ey5] . (9.53)
We note that
yH, = H,
H,y=—-H, (9.54)

The spin symmetry which relates P, and P, is automatically incorporated
in Eq. (9.50).
In case of spinor field ¥(x), the wave function can be written
(0]¥(z)|p) ~ e P u(p) (9.55)
Then in view of Egs. (9.50)-(9.52), we can write for mesons containing a
heavy quark

(01l Pu (o)) = -5 (9.56)
O1H Py (0,0 = 11 Pin.c (9.57)

We now apply the above considerations for the matrix elements
(07 (V") [JA| 07 (v)) and (1~ (', €*) |Jx| 0~ (v)) where J) = V), — Ay. Using
Egs. (9.56), (9.57) and (9.50)-(9.53), we get

(0= (') [J* 0™ (v))

- 4;% (o) Tr | T p L
= e )’ (9.59)
(17 () [ 7207 ()
- ]
T | —int z¢lfyA(1—’y)>< ;3”75

=——¢(v-v) [ie? 7 v e v, + (1+ 0" - v) € — v - €0}

VA4vov)

(9.59)
Note that since only vector current contributes in Eq. (9.58), the form
factor £ (—v - v') is normalized as £ (1) = 1. Comparing Eqgs. (9.58) and
(9.59) with Egs. (9.40) and (9.46), we see that trace technique gives exactly
the same results for B — D(D*) transitions as previously obtained.
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9.3 Mass Spectroscopy for Hadrons with One Heavy Quark

We now discuss the effective Lagrangian (9.17a) in relation to hadronic
masses containing one heavy quark. We introduce the following notation:
Write a pseudoscalar (vector) heavy meson as Py(Py), P = B or D, ¢ = u,
d or s and we take m,, = mq. The heavy baryon is written as Bg, @ = b or
¢, B=A, 2,2, 5 or Q ; the light quark content and spin configurations are
contained in these symbols.

Define

@(P) = (P|hyD?h, |P) (9.60a)

d(P) = Zg (1) (P| gshvo"" Guyhe | P) (9.60b)

We take @(P) and d(P) independent of the light quark flavor ¢. We also
assume

a(B)=a(D)=a (9.61a)
P2 (0 a(B) = T2 27 () (D) = (9.61b)

These assumptions imply that interquark interactions are flavor indepen-
dent. To understand the physical meaning of these terms we go to the rest
frame of @ (i.e. v =0). In this frame

- D = gsGo (9.62)
-D?* = (V —ig,G) - (V —ig,G) = D? (9.63)
0 —io - E° c-B° 0
Ky =
"G 2(_2.0_.EC 0 >+2( 0 U_BC> (9.64a)
where
1
Goj = —E5 | Bf = §5ijijk (9.64b)

are the color electric and magnetic fields respectively. Thus h,D?2h, is
gauge invariant extension of kinetic energy term representing the residual
motion of heavy quark in a hadron and term EUUQ-BchU describes the color
magnetic coupling of the heavy—quark spin to the gluon field (S = %a)[we
have exhibited the subscript @ with o].

Matching Eq. (9.62) with V. in Eq. (9.1), we can write the effective
Hamiltonian for a bound hadron containing one heavy quark @ as

H=H,+ Hg (9.65)
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where Hq takes care of the residual motion of the heavy quark. Note that
9sGo = —Ve(r)

has been absorbed in Hy. In view of Egs. (9.63) and (9.64), Hg is obtained
from Eq. (9.16) or from L.s in Eq. (9.17a) to order 1/mgq as follows:

D? oq - B¢
- - Z, s 9.66

g 2mg 2@ () g (9.66)
Note that the second term on the right-hand side of Eq. (9.66) represents
the interaction of color magnetic field B¢ with color magnetic moment of

the heavy quark pg = ;niQQ (Zq (1) gs)-

We note that the term og-B* gives rise to color magnetic moment in-

Hg =

teraction of the type ji,-j1o which induces a term of the type (ks = %)
8 0Q - 0q o3
—agks——L6°(r
3 7 dmgm, )
Now
—3: for spin singlet (15’0) state
(0g0q) = . S 3
1: for spin triplet ( Sl) state

Then the Hamiltonian (9.65) gives the masses of the heavy meson P, and
P*
q

- a d(P)
= A - — .
mp, mqQ + Ng + 2mQ QmQ (9 67)
- a d(P)
. = A — .
mpy =mg+ R+ 5o (9.68)
where we have put
Ay = (Hy) +my (9.69)
and
- Z
= Zal) g k) w.(0)2
2mq
From Eqgs. (9.67) and (9.69) the following mass relations are obtained
2d(B
mB; —mp,; = mB: —mp, = grgzib) (9703)
2d (D)
Mp+x —Mp, = Mps —Mp, = = 9.70b
D}, Dy D: R ( )
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S 1
mp, —mp, = (A5 — Ad) +0 (ml)) (9.71a)
mp_—mp, = (Ay —Ag) + O (;L) (9.71b)
Tip —Tp = (my —me) |1 — —2 (9.71¢)
mp mp = (Mmyp me 2mbmc .

where

_ 3mp+« +mp

mp = 1 (9.72)

Experimentally (in MeV)
Mpse —mpe = 140.64£0.10,  mpe. —mpe = 143.8 +0.4
mps —mp, = 45.78 £ 0.35, mpx —mp, =46.5+£1.2
mp, —mp, =87.5+£0.6, mp, —mp, = 98.87 £ 0.30
mp = 5313, mp =1971

which are compatible with equalities obtained in Eqs. (9.70) and (9.71).
From Eqgs. (9.70) and (9.61b), we also obtain

_ mpd(B
mp (mB* — mB) — Enzf : _ ZC (:u) — g (mb) 925 (9 73&)
mp (mD* — mD) mpd(D) Zy (1) as (me) ’
me
Using the experimental values for the masses, we obtain
s (o) _ 69 (9.73b)
as (me)

Eq. (9.73b) is compatible with a; (mp) ~ 0.22, a; (m.) ~ 0.32 [see Chap.
15] used in discussing the decays of D and B mesons. If we use m;, = 4.9,
m. = 1.5 (in GeV), then from Eq. (9.70), we get

% ~ 0.07 GeV, d(B) ~ 0.34 GeV? (9.74a)

b

(D) ~0.213 GeV, d (D) ~ 0.32 GeV? (9.74b)
me

It may be noted that we cannot use Eq. (9.71¢) to determine a, in a
meaningful way since it is very sensitive to quark masses m; , m. which are
not well known. Finally we note from Egs. (9.67), (9.69) and (9.72) that

mp —myp = Ad + 0 <1) (975&)
my
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which gives for m, ~ 4.9 GeV,
Ag ~0.41 GeV (9.75b)

With the help of Eqgs. (7.105) and (7.106), we can derive the mass
formulae for heavy baryons using Eqs. (9.65) and (9.66). The masses for
the baryons Aq , ¥ and ¥f,, can be obtained as

~ 3~ a

= Ag — A 9.76
Mg =MmQ + Ad dm,my + 2mg ( )

~ 3~ a  d(Z)

= Ag— A — 9.77
Msg = MQ + Ad dmymy + 2mg mq ( 2)
s = mg + Ayt — A4 = +J@@ (9.77b)
R d dmy,myq 2mg 2mg ’
where G and d are given in Egs. (9.60) with P replaced by Bg and

Ag = (Hg) +mg+m, (9.78)

and parameter X arises from the color magnetic moment interaction of light
quarks in a heavy baryon [cf. Eq. (7.86)]:

8 2 S, -S
Hy, =——|—ca, | —2 =25 9.79
v == (30 ) R ) (9.79
From Eq. (9.79), one can write
< /84S
Hyg) = A —20 9.80
(i) = 3 (S5 (9.50)
where
- 16 (2 T =3 —
A= (3a5> 5 (U |6% (r)| @) (9.80b)

The masses for other baryons can be obtained from my,, , mg, and ms,
by appropriate replacement in the light flavor index. From Egs. (9.77),
(9.78), we get

3d (Xq)

Mgy, =My =May = Ma, = Mg, — Mg, = 2o (9.81)
1 / 1
5 (sz + mQQ) —mo, =5 (mgz2 + m%) —mz;, =0 (9.82)

@%m3<mmﬂ1 ~] (9.83)
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With the present experimental values for the charmed baryons. [see Chap.
8 and Ref. [11]]

My, — My, =Mz, — m ~ 65 MeV (9.84)
Thus the mass relation (9.82) is well satisfied. From Eq. (9.82) then we
obtain

Mg, = mg_ + 65 MeV ~ 2765 MeV 9.85
Q
We also note from Eqs. (9.74b), (9.82) and (9.84) that
b
= ) ~ 0.2 (9.86)
d(D
Further from Egs. (9 71) and (9.83),
mp —Me 7 —_ —
2myme. [( ) —(my —m )] (9-87)
Now m, —m, =~3.34GeV =m, D,thereforea—a Using a = g,
one gets from Egs. (9.77), (9.78), (9.71), and (9.72):
mAb —my = m —m, = Ad - Ad (988)
where
_ 1
Mag =7 {mAQ +my, + 2m%} (9.89)
Thus using m, = 2.443 GeV,
Ag — Ag = 0.47 GeV (9.90)
Also from Egs. (9.77) and (9.78)
A d(x
My, =My, = _ 4(Zq) (9.91)
My My mg
Thus in particular f~or charmed baryons,
A

Mg = (mzc - mAc> + 3 (m;c - mzc)

~ 168 + 43 ~ 211 MeV (9.92)

which is not very much different from %Dc) ~ 213 MeV (see Eq. (9.74Db)).
The success of the mass formulae Eqgs. (9.70) and (9.82) cannot be taken
as verification of HQET, since similar formulae also hold for light hadrons
[see Sec. 7.6.2]. If we follow the approach of Chap. 7 for baryons and put
i (9.93)
Mg
then Eq. (9.83) remains unchanged. Using m,_  —m, = 168 MeV, we
obtain

My, — My, = 67 MeV
my. —my, =~ 20 MeV (9.94)
my, —m, =~ 199MeV, (9.95)

i.e. the results similar to the ones obtained in HQET.
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9.4 The P-wave Heavy Mesons: Mass Spectroscopy

So far we have discussed only S-wave heavy mesons. We now discuss P-
wave mesons for which experimental evidence is available. Since the spin
of heavy quark is decoupled, it is natural to combine

J=L+S8, (9.96)
with Sq to give
J=]j+8Sg (9.97)

for the bound Qg system. Thus for the P states we get two multiplets, one
with 5 = 3/2 and the other with j = 1/2. Hence for £ = 1 we have four
multiplets

(D3 (29)], [Py ()]

and

(D3 ()] [Do (07)],2, 2

It is useful to write down the angular momentum part of the wave
functions for the four P-states. According to the angular momentum scheme
outlined above, P-state can be labeled as |JMjsg). We can write these
states for D mesons:

7 [Yiox$' + YiixY]

DE M = +1) =
= ) {\}»[YNXJ,_ +Yio1ixY]

|D§,M = 0> [Yl 1X+ +2Y10X+ +Y11X+ } (998&)

%\

[ YioxT' + Yir (x4 +2x%)]

D, M =41) =
D1, ) { [Y10X+ + Y11 (—x% +2x%)]

%Hx\

1 -
Dy, M =0) = — [-Yi_1xT" +2Yiox2 + Yiixy']  (9.98b)
V6
1 Y, +Y 0
Dy = a1y = |y [TV bei - X’o)]
7[Y10X+ + Vi (—x3 —xY)]
|DI, M =0) = 7 [ Yio 1XJr — Yiox2 + Yuxy ] (9.99a)
|Do, M = 0) = [Y171Xil - YlOX:J» + YHX_T_l] (9.99b)

Sl
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The degeneracy between j = 3/2 and j = 1/2 states is removed by the
spin-orbit coupling term S,-L in the Hamiltonian H, given in Eq. (9.1).
viz the term

1 1dV.
8§ .Lx |>
2m2 1 . {r dr}
where
4 1 K’
Vo= —Ca,- = —— 9.100
3% r ( )
is one gluon potential. Thus using [cf. Eq. (8.21)]
1
(Sq-L)j=s/2.1/2 = > -1 (9.101)
we have
1 - 3=
mj:3/2 — mj:1/2 = 5 +1 )\1 = §A1 (9102&)
where
om ., +3m
Mgy = —t (9.102b)
3m,, +m,
Mjmijy = —— (9.102¢)
- 1 /1dV, K /1
AMg=——(——F—)="—(—= 9.102d
1 4m3 <7‘ dr > 4m?1 <T3>1p ( )

(subscript 1 on A refers to [ = 1 state). The degeneracy between the doublet
D3 and D; and the doublet D} and Dy is removed by the term o0g-B® in
the Hamiltonian (9.66). For P-wave this term induces the color magnetic
moment interaction of the type

Siz = [12(S, - n) (S - n) — 48, - S¢] (9.103a)

where n is a unit vector f To see this we note the interaction Hamiltonian
for dipole-dipole interaction is given by

Hipy = —po-B° (9.103b)
where the field B¢ produced by the magnetic dipole p, is given by
3 . — 8
B(r) = n(n:f—;)“q + g 11403 (F) (9.103¢)
Hence
1 8 3
Hint = 5 [(nq - 1g) = 3(n - po)(n - )] =~ g - pg0°(r)  (9.104)
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This term induces a term
1 1dv. d?V, 3 K’
— S |—— — °| = S — 9.105
12mgmg 12 [r dr dr? ] 12mgmg 12 (r3> ( )
in Eq. (9.1). Then using the angular wave functions for the states D3, Dy,
D7, and Dg given in Eqgs. (9.98) and (9.99),

<Sl2>D; = —2/5, <512>D1 = g (9.1064)
(S12) p: = g, (S12)p, = —4 (9.106b)
Hence the masses for these states, can be written as
mps, =me+ Aig + %qu + 22@ ~ %d;fnlj) (9.107)
mp,, = me+ Mg+ %qu + 220 + 3%755) (9.108)
mpz, = Me + Mg — Aig + 220 + g‘%fnlz) (9.109)
Mp,y = Me + Mg — Aig + 26_:7; — 4‘1_;755) (9.110)

where

- K’ 1
di (D) = 5 < =3 >
Mg r 1p
and the parameters a; and d; refer to P-state, similar to @ and d for S-state.

From Egs. (9.105) and (9.110),
164, (D)

mD;2 — mel = 15 ch (9.111)
16 dy (D)
Do =MD = "3 9,
-5 (ngq - leq) (9.112)

Needless to say that for b-flavor P-states, replace D by B and m. by my.
Using the experimental values for the masses, one finds mps —mp, = 39
MeV; mpx, —mp,, ~ 38 MeV. Thus relation which gives mp; —Mmp, =
mp+, —mp,, is well satisfied. From Eqgs. (9.107) and (9.108)

d, (D)

2me

~ —36 MeV (9.113)

Using the values of mpy, mp,; mp=,, and mp_,, Eq. (9.112) gives

mDI —Mmp, = —190 =~ TYLD:1 — Mpg, (9114)
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Now, Eq. (9.112) gives mp;, < Mp,,, which is against the hierarchy in
which we expect the P-wave states, i.e. D1, to lie above Dy,. In deriving
Eq. (9.112), ie. mp;, < mp,,, we have used the same d; for j = 3/2
and j = 1/2 states. However, to arrive atithe result mps, > MDy,; di(j =
3/2) must have opposite sign to that of dy(j = 1/2); in that case there is
no reason to believe that they have the same magnitude. This is highly
unlikely; in fact it is impossible since the sign and magnitude is determined
by Si2 given in Eq. (9.105), with the one gluon exchange potential given in
Eq. (9.100). However the above deficiency can be removed by taking into
account the relative motion of heavy quark to give the spin orbit coupling

2"?;@. This term induces a term
(S L) {} =5——(S L) <3) (9.115)
mgMmQ r dr 2mgmg r

Then the wave functions given in Eqgs. (9.98) and (9.99), give

1
(S - L>D; =1, (S-L)p, = ~3 (9.116)
2
<S'L>D; =3 (S-L)p, =2 (9.117)
These terms give an additional contribution to the last two terms in Egs.
(9.107)-(9.110) which are modified to,

94(D) _1dy(D) 2dx(D) _ (D)

5 me 3 me. 3 me =6 Me (9.118)
Thus instead of Eq. (9.111) and Eq. (9.112),
mpz, —Mp,, = ﬁgln(ﬂf) (9.119)
Mp:, — Mpgy = 1;67177(5) (9.120)
mp:, —Mmp, = g (mD;2 - mel) (9.121)

From Egs. (9.119) and (9.70b):

di (D) _ 5 Mpy, —Mpy, N{ 0.086 for q=d

- 9.122
d (D) 16 mp: —mp, 0.082 for ¢g=s ( )

i.e. di (D) and d (D) are independent of light flavor. Now using the exper-
imental values of D5, Dy, D%,, Ds; and D};:

5
Mmpy, = TYLD:1 — i(mD:Q — mpsl) = (23562 + 17) MeV (9123)
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777/[):1 —Mp,, = (103.5 + 1.1) MeV (9.124)

mp: —mp, = (102.0 £ 1.6) MeV (9.125)

(mp+, —mp:) — (mp,, —mp,) = (1.5 4 3.0) MeV
~ 0 MeV (9.126)

The mass difference between S-wave J = 1 and J = 0 mesons:

Mmp.+ —mp+ = (143.8 £0.4) MeV
M0 —mpo = (142,12 4 0.07) MeV
Myt —mpe = (140.65 % 0.10) MeV (9.127)

mye —mp = (98.88 4 0.301) MeV
mps —mp+ = (102.05 + 0.64) MeV (9.128)

We conclude from these equations and those proceeding them that mass
differences are independent of light flavor and

1
(’rTlD;1 — meo) ~ — (mD; — me) (9.129)

V2

The mass of D7y is not experimentally known, since it has not yet been
observed. Unlike D}, which is a narrow resonance, Dj is expected to be
broad resonance as its decay to D*m is S-wave decay and it is energetically
allowed. However in the potential model its mass can be obtained as follows.
From Egs. (9.107, 9.108):

(A1s = Ata) = mp:, — mps

= 77”LDS1 - le (9130)

(Als - Ald) +

| —

and from Egs. (9.109), (9.110)

(Bre = 81a) = (s = Maa) = s, —mpy
= mDSU — mDO (9.131)

Hence from Eqs. (9.130), (9.131), one gets

3 - _
(mDsl - le) - (ngl - me) = 5()\15 - /\1d)

(mpz, —mp;) = (mp;, —mp;)
(9.132)
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Now from the experimental masses of D}y, D5, D ; and D; :

mp+ —mps = (109.8 + 1.9) MeV
52 2
mp_ —mp, = (113.0 £0.3) MeV (9.133)

Hence from Eqgs. (9.126), (9.128) and (9.133), we conclude that in the
potential model, the mass difference between the bound states (c5) and (cd)
is of the order of 100 MeV. This is a general feature of potential model.
Thus from Eq. (9.132):

;\13 ~ ;\ld
(mps, —mps) =~ (mp_ —mp, )= (113 £0.36) MeV (9.134)
Hence
mp; = (mp* —mp,,) —mp, =(2346.2+ 1.4) MeV (9.135)
and on using Eq. (9.125):
mp, =mp: — (mpr —mp,) = (2244 + 3) MeV (9.136)

However the J = 0, P-wave states 07 : (D%,, D{), discovered experimen-
tally have masses (2317.8 £ 0.6) MeV and (2318 £ 29) MeV. These states
satisfy the following mass relations

mpe —mpe &0 (9.137)
(mp:, —mp:>,) = (141. 7:|:12) MeV

~ (mps —mp,) (9.138)

(mp; —mp:) ~ (28 % 30) MeV (9.139)

The pattern of mass relations for these states given above is hard to un-
derstand in the bound state model (¢q)—1. Hence we conclude, the exper-
imentally discovered 0T states D§ and D}, do not fit as the bound state
(cq)r=1. This is because the bound state predicts 0t states Dy and D, at
masses given in Egs. (9.123) and (9.136), which do not satisfy Eq. (9.137).

We conclude that potential model combined with HQET give masses
for S-wave heavy mesons in reasonable agreement with experiment. For
P-wave states: (¢d)r—1, the potential model gives

Mj=1/2 < Mj=3/2

)
mp= W = 5 (mD;2 — me1>

ql —Mmp
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1
mp:, — Mp,, & \ﬁ(mD; —mp,)

Out of the multiplets (mD;2 — mel)j:g/Q and (mD;H — meo)j:UQ ,
D%,, D3, Dy, and D; have been experimentally discovered. However ex-
perimental discovery of the Dj, Dy, Dy states at the masses predicted by
the potential model is still awaiting. The states D, and D, do not follow
the general features as bound states of (¢5)r—1, (cd)r=; and (ctt)r—1. The
states D, and D, are good candidates as tetraquark states (see [8,9]).

9.5 Decays of P-wave Mesons

We now discuss the strong decays of P-wave mesons. Parity and angu-
lar momentum conservation restricts these decays to the following modes:
D; — (D7), D5 — (D*m)—y, D1, DI — (D*m);_g, and Do —
(Dm),_, - Note that Dy, DY — D is forbidden due to parity conserva-
tion.

It is convenient to express the decay width in terms of the helicity
amplitudes (see Eq. (4.41))

J |pﬂ‘z | (9140)

81s

In the rest frame of the decaying particle the helicity amplitudes which
contribute are Fg, Fi, Fy, Fi,, F',F! and F?. In the heavy quark
limit the helicity amplitudes are related as follows:

J = 3/2 multiplet:

2
F%, (9.141)

Ry =-2r} = Ff = 2

j = 1/2 multiplet:
E}=—Fl, =F? (9.142)
The simplest way to see this is as follows. The emission of pion by D
would not affect the velocity of heavy quark. Thus it is the operator S, -n

which is relevant for these decays. If we select the direction of quantization
along z-axis, (i.e. L, is taken along z-axis) then for the helicity amplitudes,

the operator Ssq4/ 4?“ Y10 contributes. Then using the wave functions in
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Egs. (9.98) and (9.99), it is easy to derive Eqgs. (9.141) and (9.142) by
considering the matrix elements of the type

F{ = [{D* (D), X|S3;Y10| Dy, A) (9.143)
where f is the reduced amplitude. Since hadronic decays of D3 are pure
D-wave, it follows that Dy — D*r is also D-wave. As such for these
decays, FY (s) ~ |pﬂ\5. Similarly since the decay of Dy is pure S-wave, it
follows that the decay of Dj is also pure S-wave. The above restrictions
are consequence of relations (9.141) and (9.142) which hold in the heavy
quark spin symmetry limit. Hence for the decays D5 — Dm, D5 — D*m,
and D1 — D*m

I'(D; — Dm) _ 2 |p7r|E[))7r

I'(D; — D*m) 3 |p.[5._

5
I'(Dy — D*m) §|p7r|D1D*7r
(D5 — D*m) 3 |pﬂ|§)*ﬂ

~ 2.46 (9.144)

~ 1.05 (9.145)

where we have used from the experimental data, |px|p, = 505 MeV,
|Pr|per = 389 MeV, |p7"|D1D*7r = 355 MeV. Experimentally
Tpg- =T (D§ — D*r~ + D*x° + Dr~ + D°7°) (9.146)
=43+ 4 MeV
From Eq. (9.145)
Fop _ (F (DY — Drm) ) ! ~0.30 MeV  (9.147)
Ty \T(DF =D'm) ) |, roiDr)
r(D;—D*r)
which gives
Tpo =~ 13.0£ 1.2 MeV (20.4 £ 1.7MeV) (9.148)

This is in disagreement with the experimental value given in parentheses.
This shows that the decay Dy — D*rm is not pure D-wave; there may
be a component of S-wave. The S-wave widths are usually large, a small
component of S-wave may be possible due to symmetry breaking, since
heavy quark spin symmetry is not exact. This may be tested for B3 and
B, decays where the symmetry breaking effects are expected to be small.
The decays D} — D*m and Dy — D7 are S-wave decays; thus the decay
widths are expected to be large, i.e. in the range of few hundreds of MeV.
No experimental data are available even on the masses of D} and Dy.
The prediction
T'(D; — D)
I' (D5 — D*m)
and the other predictions on the decay widths of heavy hadrons have to
wait for their verification till the experimental data is available.

~ 2.5
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9.6 Problems

(1) Show that eF™¥v-ohy = e=imv-ep,
(2) Using Eq. (9.35), derive Eq. (9.37).
Hint: First show that

[hao(t, 2), ho (8, )] = —6°(F — 7)
using the Lagrangian
L = hy,iv- Dhy,
You may use the relation:
[AB,C] = A[B,C],_ - [A,C]. B

(3) Noting the fact that J = 1 mesons D; and D7 both contain the spin
singlet component x? in their wave functions given in Eqgs. (9.98) and
(9.99), so that E; transition of Dy and D} to D(1S) is allowed. Show
that

1

A(Dy — D" +7)/A(Dy — D7) = 7

[\

and

A(D? — D* 4+ ~)/A(DY — Dy) =2
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Chapter 10

Weak Interaction

10.1 V — A Interaction

In analogy with electromagnetic interaction J,A*, Fermi proposed for (-
decay the interaction J*J,, viz

Hint = G [W1(2)7,Va(2)] [U3(2)7" Wy(x)] + h.c. (10.1)
The above interaction is for the process
2—=14+3+4 (eg n—p+e +).

The interaction (10.1) can be generalized using five Dirac bilinear co-
variants. Thus the most general non-derivative four-fermion interaction
can be written as

Hiny = Y [U1(2)1302(2)] [W3(2)T*(C; — Cirs) Wa(w)]

?

+h.c. (10.2)

where I'; (i = S, V, T, A, P) are the five Dirac independent matrices:
L, Yy, Opw, VY5, ¥5- In writing Eq. (10.2), we have taken into account
the parity violation in (-decay.

For a massless Dirac particle, if ¥ is a solution of Dirac equation, then
45V is also its solution. Without loss of generality, we take only negative
sign. Suppose particle 4 is massless, then the bilinear

Uy ()T Wy (2) = —U3(z) Ty Ty (2).
Hence for this case C; = CJ. Thus we can write Eq. (10.2) as

Hint = Z [\lerl\yg] [@3011_‘1(1 - ’)/5)\114] + h.c. (103)

%
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If we identify particle 4 with the neutrino, we have the result that only left
handed neutrino takes part in weak processes. This is what is observed
experimentally (see below). Thus irrespective of the fact whether neutrino
is massless or not, Eq. (10.3) will hold if we take into account the fact that
only left handed neutrinos take part in weak processes. Suppose we impose
the chiral transformation for the field W3 viz W3 — —v5V3, then if H;,; is
to be invariant under such a transformation, we have

Cs=Cp=Cr=0.
Hence Eq. (10.3) becomes
Hipt = [Cv 017, W2 — CaW17y,75Va] [WsyH (1 — 75) Wy

Grp (= _
= L [17,(1 — e35)Ws] [Ty (1 = 75) W] , (10.4)
V2
where we put
Gr Ca
Cv=—F, === 10.5
v \/i CV € ( )

Further we note that if we impose the chiral transformation on fields ¥; or
Wy, we have

Cy =Cy (10.6)

i.e. € =1 or V-A theory. We conclude that if one requires invariance of the
four- fermion interaction under the chirality transformation of each field
separately, we have the V-A theory.

We have written Eq. (10.2) in the order 1 2 3 4. We can go to the order
3 21 4 by Fierz reordering theorem:

ot

1(3214) Z 5(1234). (10.7)

The coefficients A;; are given by the matrix

1 1 1 1 1
R 2 -4
Nj=-7] 6 0 -2 0 6 |, (10.8)
4 2 2 4
1 -1 1 -1 1

where

K;(1234) = [0 105 [Tl Wy . (10.9)
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It is obvious that
K;(3214) = K;(1432).

If we denote by S, V, T, A, P the five quadrilinears appearing in the order
(1234)and S, V', T, A/, P" when they appear in the order (3 2 1 4),
then from Eqs. (10.7) and (10.8) we get
Vi-A=V-A
S'—T'+P =S-T+P (10.10)

i.e. these combinations are invariant under Fierz rearrangement.

10.1.1 Helicity of the Neutrino

To obtain a direct measurement of neutrino helicity, the following reaction
was studied

152EU(JP:0—) +e  — 1525mz‘Jp=1,) + Ve
!
— (1525m(Jp:0+) =+ 7) .

The main point of this experiment is that we can select those « rays from
the decay of the excited state which go opposite to the v, direction (i.e. in
the direction of the recoil nucleus) by having them resonance-scatter from
a target of %2Sm. Balancing the spin along the upward z direction (v, is
assumed to be emitted along this direction), one finds that the helicity of the
downward ~-ray will be the same as that for the upward v.. By measuring
the circular polarization of y-ray, the experiment fixed the helicity of the
~v-ray as negative, indicating a left-handed v.. Thus it is established that
only left-handed neutrinos take part in weak processes.

10.2 Classification of Weak Processes

10.2.1 Purely Leptonic Processes
The well-known example is p-meson decay
pwoo— e+ U+,

In this process four well-known particles =, ™, ve, v, called leptons, take
part. The decay process is described by V - A interaction [cf. Eqgs. (10.4)
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and (10.6)].

G
it = Ly = — =& {Dw”(l =)} {Ev.(1 = ~+°)ve}
GF

=7 LY Ll - (10.11a)

L,(Lu) and L), are lepton currents associated respectively with p meson

and its associated neutrino v, and e~ and v,

Li,y = 5" (1 =" (10.11b)
Loy = evu(1 = 7°)e. (10.11c)

The v* and 7° (= i7°y'y2~3) appearing above are the usual Dirac matrices.
We write the lepton current as

W TH
=L, + L, (10.12)

Here LL denotes the hermitian conjugate of L,. One can also picture the
process (1) as being mediated by a vector boson W, the so-called weak
vector boson. This is shown in Fig. 10.1 below: Thus all leptonic weak

Fig. 10.1 The muon decay mediated by a W-boson.

processes can be described by interaction of the form
Ly = 7ng‘uW7u + h.c. (1013)

where h.c. denotes the hermitian conjugate. Note that Eq. (10.13) is
analogous to electromagnetic interaction of say electron which is mediated
by photon and is shown in Fig. 10.2.

The interaction responsible for the process shown in Fig. 10.2 is the
usual electromagnetic interaction

Le™ = —eji™ a, (10.14)
where a* is the photon field and j;™ is the electromagnetic current:

g = eyue. (10.15)
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Fig. 10.2 Electromagnetic interaction mediated by a photon.

Note the similarity between Eqs. (10.13), (10.14), (10.11b,c) and (10.15)
respectively. Both the electromagnetic and weak currents are vector in
character, the appearance of 5 in weak current is due to the fact that
parity is not conserved in weak interaction, in fact it is violated maximally.
The coupling of electromagnetic current with the photon is characterized
by electric charge (related to the fine structure constant o by % ==
1/137) while that of weak current with the weak vector boson field W), is
characterized by gy (related to the Fermi coupling constant G by % =

Gp )
47r\/§m€‘, :

10.2.2 Semileptonic Processes

Some examples of these processes are given below

n—pte +,
7T+*>€++l/e, #++Vu
T e Ve, b F U,
2T > A%+e + 7
X7 -n+e +1,
YW —pte +7
K+H7r0+e++ye
K —71'+e 47 (10.16)

From these processes, one notes the following rules:

1. The hadronic charge changes by one unit, i.e. AQ = %1
2. In the first three processes, strangeness does not change, in the last five
processes it changes by one unit (AQ/AS =1).
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For hadrons, Gell-Mann-Nishijima relation

Y
Q=13+ 5
implies that for AQ = £1, either Al = +1, AY =0or Al = £1/2, AY =
+1, if we assume that AY = 2 processes are suppressed. The processes of
first kind are called hypercharge conserving processes and those of second
kind are called hypercharge changing processes. In all the processes listed
above, we see that either AY = 0 or AY = #41; no weak process with
|AY| > 1 is seen with the same strength as |AY| > 1 transitions. Thus we
have the selection rule AY =0, £1, AQ = AY.

Since there are so many hadrons in nature, therefore to deal with semi-
leptonic decays of each of them would be very tedious. Thus we use the
simple picture of hadrons made up of quarks. The main thing about the
quarks is that they are regarded as truly elementary similar to leptons.
Their weak and electromagnetic interactions would then be like those of
leptons. Thus in analogy with Egs. (10.15) and (10.11), their electromag-
netic and weak currents are respectively

-e.m. 2 — 1- 1 =
I = g = gdfyud — 558 (10.17)
while
It = (1 = 5)d, (10.18)
where
d = cosf.d+sinf.s,s = —sinf.d + cos0.s (10.19)

Since in weak interactions flavor quantum number is not conserved, weak
interactions eigenstates d’ and s’ are not identical with mass eigenstates d
and s, they are linked as in Eq. (10.19). Here 6, is the Cabibbo angle; its
value is 6. = 13° or sin 6, = 0.22. This is introduced since it is seen experi-
mentally that decay rates for |[AY'| = 1 semi-leptonic decays are suppressed
by a factor of about 1/16 compared to those for AY = 0 processes. We
shall deal with s’ in Chap. 13. Then in analogy with Eq. (10.11) or (10.13)
the interaction responsible for fundamental processes like

d—u+e +0,
s—ute +i, (10.20)

would be

G
hi. _ _UF ohppt
L = =5 T Lt
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Fig. 10.3 Quark level process for neutron (3-decay.

Fig. 10.4 Quark level process for neutron A — 3-decay.

or
Ly = —gwJ!W ™" + h.c. (10.21)

In this picture neutron 3-decay, A — S-decay and K° — 7t + e~ + 7., for
example, would be pictured as shown in Figs. 10.3, 10.4 and 10.5.

Note the very important fact that both the leptonic and hadronic weak
currents in (10.11b, ¢) and (10.18) are charged, i.e. they carry one unit of
charge and the hadronic weak currents (10.18) satisfy the selection rules
|AY| < 1 and AQ = AY. We also note that in terms of flavor SU(3)
notation we can write

ho_ . 1
Jy = cosO.J +sinf.J, (10.22)
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Fig. 10.5 Quark level process for K9 — nte~ 7.

where weak hadronic current is a linear combination of vector and axial
vector currents involving respectively ~, and 7,75 and are given by

+ _ 1t +
Ju - Vll B Au
1 .
= ‘ji(/\l + i) Yu(1 —5)q (10.23a)
1 .
Ji = a5 +i2s)7.(1 = 75)a. (10.23b)
Note also that
1
3 = q§/\37u(1 —75)q (10.24a)
1
Jou = a5 As7u(1 = 5)a (10.24b)
em 1
T = Vau+ ZoVa (10.24c)
u
Here ¢ = d . The heavy quarks and s’ will be considered in Chap.
c

13.
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10.2.3 Non-Leptonic Processes

Here no leptons are involved. The well-known non-leptonic processes are:
A — pr—(A2)
A — pr®(A9) (10.25a)

X7 s nr (XD)

ot — prd(Z8) (10.25b)

Tt -t (1)

ET = Ar(ED)

20 — AnO(ZD) (10.25¢)
or

K° K% - ntn=, 7070

K* = a5 70, ete. (10.26)
Note that all these decays are strangeness changing (JAS| = 1). Let us con-
centrate on the decays (10.25), the so-called non-leptonic decays of hyper-

ons. If we consider the decaying particle in its rest frame, the conservation
of angular momentum J gives

1
Jin = Jﬁnal =/+s,
where £ is the relative orbital angular momentum of the pion and the baryon
in final state. Since spin s = 1/2, £ can be 0 or 1. The pion being pseu-
doscalar (having odd intrinsic parity), the relative parity of final state with
respect to the initial state is

Py = (-1)°(=1) = —1 odd for £ =0
= (=1)*(=1) = +1 even for £ = 1.
The s-wave (¢ = 0) decays are parity violating while p-wave (£ = 1)
decays are parity conserving. Accordingly decays (10.25) are governed by

two amplitudes, parity violating (s-wave) and parity conserving (p-wave).
We can write the Lagrangian responsible for non-leptonic decays as

L%) — Lh(Pv”) + Lh(PvC)

?;J[}J’WT + h.c., (10.27)
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where J)} is given in (10.18). The |AS| =1 component of (10.27) behaves
as

Gr
V2

Now w and d belong to isospin doublet I = 1/2 while s is isospin singlet
I = 0. Thus from the combination of angular momentum rules (isospin
behaves like angular momentum) first term in curly brackets in Eq. (10.28)
has I = 1/2 while the second term in curly brackets has I = 0, 1. Thus
the interaction contains both AT = 1/2 and 3/2 parts. Experimentally
AT = 1/2 part predominates over AI = 3/2 and then decays (10.25a),
(10.25b) and (10.25¢) respectively get related among themselves. We shall
come to these relations later.

sin 6. cos 0.{5v, (1 — vs)u} - {ay"(1 — v5)d}. (10.28)

10.2.4 p-Decay
Consider the p-decay

p—e +v,+ e
From Eq. (10.4), we can write the interaction as

Hipe = ?/}23 [evu(1 — evs)p] [y (1 — ys5)ve] - (10.29)

The interaction written in this order is called the charge retention order. It
is easier to deal with this order in calculations. Here we have assumed 2-
component neutrinos (left-handed v, and right-handed 7. ) but have allowed
V — €A interaction, where for V — A, ¢ = 1 and in that case by Fierz
rearrangement we get Eq. (10.11a).

From Eq. (10.29), we can write the T-matrix for p~ decay:

_ -1 mpmeml/“mye ﬁ
' Gy \/Wﬁ
x [a(pa)ya (1 — evs)u(p1)] [a(ka)y (1 — v5)v(k1)]  (10.30)

where p1,p2, k1 and k are the four momenta of u=, e”, v, and 7 re-
spectively and u(p1),u(p2),u(k1) and v(ke) are Dirac spinors. From Eq.
(10.30), we get

1 MMMy, My,

dr = St (pr—po—k1—k
(27)° (1= p2 =1 = o) P1op20k10k20

\M|? dPpod®kyd® ks
(10.31)
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where

_ GQ B
M = 1P = () S latma - ers)ute)
spin spin
_ 2
x Ja(k2)y N (1 = y5)v (k)| (10.32)
We can easily calculate |M \2 using the standard trace techniques [see Ap-
pendix A]. Neglecting the neutrino masses, we get
G2
|M‘2 =—F [(1‘*'52) (P2'k2 p1-k1+p2-k P1'k2)

My MeMy, My,

— (1 — 52) m#mekl . kQ + 2e (p1 . ]{52 p2 - kl — P11 k’l P2 kg)] (1033)
Since neutrinos are not observed, we integrate over d®k;d>k,. Performing
these integrations, and writing d®ps = 47p.F.dE,, we get

peLedE,
dl = e GZ%(1 + |€]?)
m?2 m
— 2Ee - 2 —= - Ee 9 1 . 4
x |3W Ee+677EE(W ) (10.34)
where )
1lel* -1
= 10.35
TP+t (10.35)
m?2 +m?
W=k __¢ (10.36)
2m,,

In evaluating the final result (10.34), we have gone to the rest frame of the
muon:

E,=m,
my :Ee+E1 +E2
O = pe + ki + k. (10.37)

10.2.5 Remarks

(1) Tt is always possible to take Cy as real and take C'4 = €Cy (e complex).

(2) The electron spectrum does not distinguish between ¢ = +1 (V — A) or
e =—1(V + A) interaction.

(3) Any deviation from € = £1 can be determined by measuring 7 in the

electron spectrum. Since 7 is the coefficient of (%;Ec)

), it plays
a minor role except at low electron energies, where measurements are
difficult. The best experimental value of 7 is

n = —0.007 £ 0.013 (10.38)

which is consistent with zero.
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(4) Tt is instructive to write the electron energy spectrum (10.34) as

mtpeEedEe 2 2
r = M BB g (1)
d 127(3 GF + ‘5'
4 1m? Me
x [3(WE6)+2p(3EeW3Ee) + 3t (W =B

(10.39)

where p = 3/4; p is called the Michel parameter. In fact the most general
interaction without assuming two-component neutrinos gives the electron
spectrum of the form within the square brackets. The experimental value
of p = 0.7518 4+ 0.0026 is in excellent agreement with p = 3/4 as given by
V —eA theory. We conclude that the two-component neutrino hypothesis is
in an excellent agreement with the experimental results. Finally integrating
Eq. (10.34), we obtain

r=r7,"'"=G%P (10.40a)
where
8m2] m,
P=|1- < E_. 10.40b
[ m3]192n3 (10-40b)
If we include O(«) radiative corrections
25 2. m
=GP+~ (2 -+ (14 = 10.4
T, Gt +27r 17 + +37rnme , (10.40c¢)

m. The Fermi constant G
determined from (10.40c), using the experimental value for 7, = 2.19703 x
1076 sec, is

where the fine structure constant o« =

Gr = 1.16637 x 107° GeV ™2 (10.41)

10.2.5.1  Decay of polarized muon

We have seen that the electron spectrum cannot determine the sign of e.
In order to determine ¢, we consider the decay of polarized muon. Let n,
be the polarization vector of muon. We note that

n? = nynt = —1,

n-py = 0. (10.42)
In the rest frame of the muon m,ng = 0; thus ng = 0 and n = (0, n). For
this case in taking the trace, we put

w(p)a (pr) = K’Hm“> (% 7'7”1)} . (10.43)

2m,, 2
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Using the standard trace techniques [see Appendix A], and performing the
integrations over d>k; d®ks, the differential spectrum in the asymmetry an-
gle for p~ decay is

2

2
i 12,3 my, ps dEe cosy

2
m
where 7 is the angle between the electron momentum and the p—spin di-

rection and

2
x [W —2F, + me] : (10.44)
m

_ 2Rce

= ) 10.45
1+ el (10:49)
It is instructive to write Eq. (10.44) in the form
dl = — &Y G—%(l+|6|2)m 2dE& cos
B 4w ) 673 ube@Se 7
4 1 m?
—F 2 -E,—-W—--—% 10.4

where 6 = 3/4 for two-component neutrinos viz for V — €A theory. For a
general interaction without assuming two-component neutrino, the asym-
metry distribution in angle 7 is of the form given within the square brackets.
The experimental value of § is 0.749 + 0.004 in excellent agreement with
two-component neutrino hypothesis.
The experimental value of £ is given by
&P, =1.003 £ 0.008. (10.47)

10.2.6 Semi-Leptonic Processes

For a semi-leptonic weak process we can write the interaction Hamiltonian
as [cf. Eq. (10.21)].

— Lyt = Hine = ?/gj)\ () [e(x) ¥ (1 =35) ve (@)] + hoe. (10.48)

To first order in weak interaction, the T-matrix for a semi-leptonic process
of the type
A—B+e +10,
is given by
Gr 1 My Me
T=——(B|Jy|A) —= -

[a(k') v (1= 5) v (k)]

(10.49)
where k' and k are four momenta of electron and antineutrino. We denote
four momenta of A and B by p and p’.
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10.3 Baryon Decays

We consider the case when A and B are spin 1/2 baryons and (B |Jy| A) =
(B|Va — Ax| A). From Lorentz covariance alone, the most general structure
of these matrix elements is given by [¢ = p’ — p|

/ _ 1 mAmBﬁ /
(B(p') VAl A(p)) = (%)3,/ ) B(P")

x [gv (*) v + fv (6) oxv @v — ihv (¢°) ax] ua(p)

(10.50a)
/ _ 1 mAmBa /
(B(p') |[Ax| A(p)) = 2\ o, B(P)
x [ga (@) 725 + fa (6%) 500 — ox @ v5ha (6%) ar] wa(p).
(10.50b)

The above equations may be deduced by the following simple argument.
If we consider the quantity (B |Vi| A) \/popy, we are dealing with a Lorentz
vector [without the square root factor this would not be the case because
of the noncovariant orthogonality condition]. Such a Lorentz vector must
be expressible as a linear combination of the various vectors that can be
constructed from the different tensor quantities associated with the two
particles A and B and their Dirac spinors. In actual fact there are five such
vectors, namely, @(p’)yau(p), a(p’)ox.p™u(p), a(p')or.p’u(p), a(p’)pau(p),
a(p’)p\u(p). Since u(p) and u(p’) are free Dirac spinors, satisfying (y-p —
m)u(p) = 0 and @(p)(y-p’ —m) = 0, only three of these vectors are linearly
independent and hence from the five vectors above, it is sufficient to choose
three linearly independent ones. We choose u(p')vau(p), u(p’)orq”u(p)
and u(p’)gyu(p). Then the matrix elements (B [Vi| A) \/popf, must be some
linear combination of these three vectors and that is the content of Eq.
(10.50a). An entirely parallel arrangement applies in the case of matrix
elements (B|A\| A).

Since the momentum transfer ¢ = p’ — p is very small compared to the
mass of A or B for the processes we are considering, we can write

, 1 mAmBﬂ ,
(B(') |Ix| A(p)) = (%)3,/ P ()

[9v Y — 94 Yuvs) ua(p). (10.51)
Now we shall take A and B as members of the spin 1/2 baryon octet and
then

Jy = cosf, J;—l—sinec Ji, J;[:cosec Jy +sinf,. J;T,
(10.52)
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where Jf\[ and J}, J;T are 1+42 and 44145 components of octet of currents
Jix (i=1,---,8). As shown in Chap. 5

1 mpmp _ ijk
Bi|An| B)) = — ./ ' i 10.
(Br |Air Bj) = 53 P a(p ) avsu(p)gis (10.53a)

g% = ifijnF + dijiD. (10.53b)
Since F; = —i [ Vio(,0) d3z is a generator of SU(3), it follows that

1 m2 y
By |Vial Bi) = — | —B-a(p’ ijk 10.54
(B [Via| Bj) 2773\/pOp()U(;D)wu(p)gv, ( a)

92" = ifijn- (10.54b)

where

where

Thus if we neglect the momentum transfer ¢2, (¢*> ~ 0), the matrix ele-

ments (By, |J;1| Bj) are essentially determined in terms of Cabibbo angle 0.
and the two reduced matrix elements F' and D. Using Egs. (10.53a) and
(10.54a), the matrix elements of these decays are given below:

Decay Vector Axial vector Ratio Expt. value of
B—DB'lv, current gy current g4 ga/gv ga/gv

n—p cos b, cosb.(F+D) F+D 1.2695=0.0029

3 . — 3/2 Sin 96 1

A=p  —y/2sing, XV(F +1p) F+iD 07180015
X" —n —sinf, sinf.(F—D) F—-D  —0.340£0.017
_ . V/3/2sin 0,
ET A 3 sin 6, < (F - 1D) F—iD 0254005

In order to test the octet hypothesis, we note that if we determine
F and D from the first two decays, we find ' — D and F' — 1/3D for
the third and fourth decay in agreement with their experimental values.
The parametrization given in Eqgs. (10.53a) and (10.54a) is in excellent
agreement with experiment. Using the first two entries of the above table,
we find F' = 0.444 4+ 0.015, D = 0.823 £ 0.015.

As an example to show how g4/gy is determined, we consider the case
of neutron 3-decay n — p+ e~ + 7, in detail, where from Eqs. (10.51) and
(10.52) we have

(»)

1 MpMy _,

o) =
w | np)) =55 Ll

X [gv Y — gavuvs) u(p) (10.55)
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with gy = cosf., ga = cosl.(F + D). In the rest frame of neutron, we
write k' = (E.,p,), k= (Fv,p,), p=0, p'+p, +p, = 0. Since ¢ is very
small as compared with neutron and proton masses, we can treat them
non-relativistically. Then

<p(p') (+)’n(p)> = (2;)3X;9VXn
() |27 ) =~ 9o (10.56)

Let us write the leptonic part as
L = a(k") v* (1 —v5) v (k). (10.57)
The amplitude F [cf. Eq. (10.49) and Eq. (2.84)] is given by
Gr 4 0

F = 7 Xy [9vL® + gao - L] xn. (10.58)
We now sum over proton spin and lepton spin and define the neutron spin
S, as

1

Sn = §x,f0xn. (10.59)
Using Eq. (2.122), we get for the probability distribution
G? P
dl = —£ p?(Enax — Ee A{I—H\e z
(%)a Pl ) =

E,
(A’E+BE+DPEE ﬂd Q. dQ, (10.60)

where S,, is the direction of the neutron spin and
A= lgv[* +3|gal?]

1
A= llovl® = lgal]

2 *
A" === [lgal* = Re gv 93]
2 *
=2 [|9A\2 + Re gv QA]
2
D= AIm gv G- (10.61)

The experimental data give the following values of these correlation func-
tions,
A = —0.103 + 0.004
A= —0.1173 £0.0013
B = 0.9807 £+ 0.0030
D= (-4+6)x107* (10.62)



10.8. Baryon Decays 295

If we write x = |ga/gv|, then the value of A gives
z = |ga/gv| = 1.261 £ 0.004. (10.63)

The very fact that B is nearly 1 implies the maximum parity violation in
[-decay. The value of A’ [assuming gy and g4 are relatively real, see below]
gives [ga/gv| = 1.2674+0.014, consistent with Eq. (10.63). A non-zero value
of D would imply time reversal violation in 3-decay. The experimental value
of D is nearly zero and show that time reversal invariance holds. If we write

ga/gv = —ze'®, where for ¢ = 0 or 7, T invariance holds, we obtain
¢ = (180.06 £+ 0.07)°. (10.64)
Finally, from Eq. (10.60), we obtain for the decay width I":
AGZ
r= 5.3 m? f(po), (10.65)
where

A=|gv|* +3|gal?

and

max

PO
— 2 2 _ 2 _pe
f(po) = ; dpp (\/po+1 vV +1>, po="-

Since charged particles are involved, this expression of fr = fI'~! is subject
to radiative corrections, which are normally incorporated into the factor f
along with the first order Coulomb corrections. These corrections change f
by about 5%. The average value from direct neutron life-time measurements
is

(10.66)

€

7 = 888.5 £ 0.8 sec. (10.67)

Knowing |ga/gv|, one can determine Gy = Gpgy from Eq. (10.65). Gy
can also be determined from the superallowed OT — O pure Fermi decays
for which F'r value is

273 1
Fr="0 = 10.68
"= g GYIMAR (1068)
where
_ Wy v;
MF< 0t I=1 I 0t T=1 > (10.69)

I here is different from f for the neutron (-decay and it must account
for the stronger Coulomb effect and for the much more subtle radiative
effects associated with the higher electric charge. The quantity (F'7) 4, =
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3070.6 & 1.6 sec from the Ot — O%decays together with the phase space
factor F' and the value of |ga/gy| given in Eq. (10.63) gives 7 = 894 4+ 37
sec, to be compared with the direct neutron life-time measurement given
in Eq. (10.67).

Finally the Cabibbo angle
B8

cos 0, = gg (1+A3—Ap)~/? (10.70)
where G% = 1.16637 (13) x 107° GeV~? while A3 and Ay are the “inner”
radiative corrections to both nucleon -decay and muon decay with AS —
Ap = 0.023 (2). This gives

|Vaid| = cos 8. = 0.97418 £ 0.00027. (10.71)
sin @, is determined from K3 decay and its value is 0.2255 4+ 0.0019.

10.4 Pseudoscalar Meson Decays

10.4.1 Pion Decay

T — 0T 4 by, {=e,p.
For this decay, the T-matrix is given by

T = ?/g cos B, <O |J;'|7r7>

(er)g WZ(),Z?V u(k') 7 (1 =) v (k). (10.72)

Here, we have p = k' + k. Now from Lorentz invariance
1 1
P -\ x
(0]Jf[77) =—=(0|Af|~") = (zﬂ)3/2’/2pozf" Pa- (10.73)

Using the standard techniques of Chap. 2, the decay rate I' can be easily
calculated. We obtain

X

2 29 2\ 2
T(r = )= GBS e 20 <1—m@) . (10.74)

2
8T m

It thus follows that pion decays mainly to muon, its decay to electron is
suppressed by a factor m?2 /mi (phase space). In the same way, we can
write down the decay rate of K~ — ¢~ 4 1y; it is given by
GZsin*0. ., o m3 ?

~ & fie mi mg < - m%) . (10.75)
From the experimental values of the decay rates for pion and kaon, we can
determine fr and fx. We get fr =~ 131 MeV and fx/fr ~ 1.22. From the
particle data group: fr = (130.7 0.1 £0.36) MeV, fx = (159.8 £ 1.4 £
0.44) MeV.

F(K_—>€_+Dg):
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10.4.1.1 Remarks

Suppose pion decay occurs through a vector boson W. Then we can write
the decay amplitude F':

—Gux + P;Lgb\
F=—gwi fxpl' —5——"u(k') (L —5)v (k). (10.76)
P —myy,

We write the W-propagator in the following form

1 Db p* —m}
|:< Gux T > + PuPx 2W
p? —m3, p? p2m

w
DuPx 1 DuPx
= | —gux\ + ) + . 10.77
( : p? p* - m%v me%/V ( )

The first part of Eq. (10.77) gives the transverse part of the propagator
and second part gives its longitudinal part. If we substitute Eq. (10.77)
into Eq. (10.76), we find that the first part of Eq. (10.77) gives zero and
the entire contribution comes from the second part. We get

2
F=—90fr pya) v (1—75)v (k)
my,

= TiW ifr me a(K) (1—n~s)v (k). (10.78)
w

Here we have used the Dirac equation a(k’) (v - k" — my) = 0 and p = k' +k.
Thus we note that the longitudinal part behaves as if the decay has taken
place through a scalar particle of zero mass with effective coupling g3, /m%;.
We also note that it gives a contribution proportional to the lepton mass
which is reflected in the formula (10.74). This is called helicity suppression.

10.4.2 Strangeness Changing Semi-Leptonic Decays
As an example of these decays we consider the decay.
K™ — 14+ +1, (=e,p.

We first note the rule: AQ = AS = 1. The T-matrix is given by

T = —3; sinf, (7| Jy| K™)

1 my My

[a(k) P (1) v ()] . (10.79)
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The Lorentz structure of the hadronic matrix elements is given by
(m® [N ET) = (=7 [VA[ K7)
1 1
(2m)° \/2po 2P}
X [f+ (@) 0+ + - (¢®) (0= p),], (10.80)
where p and p’ are four-momenta of K~ and 7°, ¢ = (p’ — p) and &k’ and k
are four momenta of £~ and vy respectively. In the rest frame of K, we

have mx =w+ E¢+ E,, px+p¢ + p,, = 0. Using the standard techniques
of Chap. 2, we get

dr 1,
B = gl |1 (@) A+ BRE+ClEP], (1081)
where
2
A={msc BB, =i (7 =)+ LW ) - m? B,
1
= [ 5 W)} my
1

C= 4[W—w] m?
e - m?
ZmK

E=r1-(%)/ f+ (&) (10.82)

For electron, we can neglect its mass, i.e. we put m? ~ 0. Then Eq. (10.81)
is much simplified. In this case, we get for the electron spectrum

dr 1 2 3 2 2 (W - Ee)2
XL s, pr W = Bo)” 0.
dEe 47'('3 GF SI1 |f+| mK e (mK _ QEC) ( 0 83)
Here we have put fy (¢?) ~ f1 (0) = f4. For this case we obtain
G2 sin” 0
+\y _ YF c 2 5
I'(K3) = Te8a (0.573) [f+]" m-. (10.84)

In the SU(3) limit (7% |Vi!| K—) o if14i56-im5 so that f1(0) = %
Consider the neutral Kaon decays:

K =77 407 1+, AS = AQ
KO — 7t 407 4y, AS = —-AQ

For the first case the hadronic matrix elements are given by

<7r_ JiT‘ K0>
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where
1 1
Iy = Jatisn, J,\T = J4_isn-

J ;T creates negative charge and S = —1. For AS = —AQ, no such current
can be written down in this conventional theory. For more details for semi-
leptonic K-decays see Ref. [2].

10.5 Hadronic Weak Decays

10.5.1 Non-Leptonic Decays of Hyperons
Consider the decay
B(p) — B'(p) + 7 (k).

The Lorentz structure of the T-matrix for this process is given by

te (27r1)9/2 m u(p’) [ A= Brys|u(p). (10.85)

The amplitudes A and B are functions of scalars: s = (p'+k)?, t = (p—p')%.
A is called the parity violating (p.v) [or s-wave] amplitude and B is called
the parity conserving (p.c) [or p-wave| amplitude. In the rest frame of
baryon B

p'=-k [p|=kl=Fk p'=kn,

m=py+ko, po=VEZ+m?2 ko=+\kZ+m2

s=m? t=m?+m"? - 2mp|

k= ;n\/[mQ —(m/ — m,,)Q] [mQ —(m/ + mﬁ)Q]

m?2 +m'? —m?2
ph = (10.86)

In this frame, the amplitudes A and B are constants. In the rest frame of
B
1 m’ + pg

u(p):((1)> X u(p’)=\/2m,(p67+m,)< ooy ) x,  (10.87)
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where x is a constant 2-component spinor. Using Eq. (10.87), we may
write the T-matrix

T=x"M x, (10.88a)
where
1 1
M = W\/TTO [CLS + ap O - n] s (1088b)
/ / k
gom JPEM) gk g (108s0)

2 py 2 po (P +m')
We note that the p.v. amplitude A is essentially the s-wave amplitude and
the p.c. amplitude B accounts for the p-wave amplitude.

The decay width is given by

1
dl = (2m) 6* (p—p' — k) [QTr (MMT)] d3p' d3Fk. (10.89)
Performing the integration, we get the decay width
k p 2 2
r= 2 [|as| + |ay| ] . (10.90)

‘We now consider the decay of polarized baryon B. Let S be the polarization
(spin) of B. Let s be the polarization of decayed baryon B’. In the rest frame
of B’, s gives the spin of B’. The decay probability in this case is given by

AW = (21)" 8" (p—p' — k)
1 0,
x5 {Tr(1+o-s)M(1+0-S)M}d*p'd®k.  (10.91)
The trace can be easily evaluated and the transition rate is proportional to

R=14+aS-n+s[(a+S-n)n+3(Sxn)+vynx(Sxn),

(10.92)
where
o 2R2€a:ap 3= 23 af ap
Jas|” + lap|* Jas|? + fap |*
g = o
jas|* + Jap |

A+ B+ =1, (10.93)
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Because of the last constraint, we can write
8= (1 — az)l/QSind)
v = (1 — a2)1/2005¢
¢ =tan"" (8/). (10.94)

One also defines
A= —tan"! (3/a).

If we do not observe the polarization of B’, we put s = 0 and we get

dQ)
dW/T = 4—; l1+aS-n. (10.95)
Hence we can write the angular distribution
I (0) = Const [14 « Scos¥], (10.96)

where 6 is the angle between the hyperon spin S and the decayed baryon
momentum direction n. If a = 0, the angular distribution is isotropic.
o = 0 implies either a; = 0 or a, = 0. For this case parity is conserved.
The anisotropy in angular distribution implies nonconservation of parity.
From the angular distribution we can determine the product a.S. Since the
polarization S of baryon is not generally known, it is difficult to measure
«a by this method. Further information about « can be obtained from
the polarization of decayed baryon B’. From Eq. (10.92), we obtain the
polarization of decayed bayron B’'.

1
In particular if the original baryon B is unpolarized viz S = 0, we get

(s) = an. (10.98)
This equation implies that the baryon B’ obtained from the decay of unpo-
larized baryon B is longitudinally polarized. Thus a measurement of this
polarization allowed a direct determination of . The experimental values
[8] for «, B and ~ are given in Table 10.1.

Now a non-zero value for 3 implies the violation of time reversal invari-
ance in these decays. From Table 10.1, it is clear that g = (1 — a2)1/2 sin ¢
is consistent with zero. Thus the time reversal invariance holds in these
decays. P invariance implies either a; = 0 or a, = 0, so that « =0, 3 = 0.
But Table 10.1 shows that « is non-zero. C' invariance implies a = 0, 3 # 0;
hence from Table 10.1, it follows that C invariance is also violated. The
consequences of T and C' invariance quoted above hold if we neglect the
final state interactions.
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Table 10.1
0 A
Decay @ ¢ (derived)  (derived)
AT A . .
S 064240013 (—65+£35)°  0.76 (8 +4)
0.
Ao A 0.65 + 0.05 - - -
— N
+ .yt
. 0.017
Zg p§> —0.9801001T  (36+34)° 016 (187 +6)°
Lyt °
Z: m% 00680013 (167+£20)° -007  (-73}3%)
)IEEDV +12 \°
ST 2 006840008 (10£15)° 098 (249713)
=080 12)°
00 041120022 (21£12)° 085 (218f19>
j;\ f;* —0.456 + 0.014 (44 4)° 0.89 (188 +8)°

10.5.2 AI = 1/2 Rule for Hyperon Decays

The effective weak Hamiltonian responsible for |AS| = 1 non-leptonic de-
cays in the conventional theory is given in Eq. (10.28), namely

H{}ﬁf = ﬁsin 0. cos b, [J;r (JD‘)Jr + h.c.}

V2
= ﬁsin@ cosf, H (10.99)
= \/5 c c W, .
where
Hy = 75 (/™) +he]. (10.100)

Now J ~ @y (l+vs)dhas I =1, Iy = +1, J} ~ 5 n(1+75)u
has I = %7 I3 = —|—%. Thus in general Hy has a mixture of Al = 1/2
and AI = 3/2. However, the most striking effect of these decays is the
approximate validity of AI = 1/2 rule. The decays with AI = 3/2 are
suppressed. A satisfactory understanding of this rule is still lacking.

We now examine the consequences of AI = 1/2 rule in non-leptonic
hyperon decays and its approximate experimental validity. Consider first
the decays

A A —p+a Al; =1/2
AS: A —n+n° Al3 =-1/2

Al =1/2, 3/2,--
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The simplest possibility is Al = 1/2. Assuming this to be the case, the
only possible isospinor which one can form is

Nr.omhA= (pw0+\/§ﬁ7r_,\/§ﬁ7r+—ﬁ7ro)A. (10.101)
Then for AQ = 0, we have

A% = —V2A8. (10.102)

Hence we get
I'(A2) =2r (A]), (10.103a)
ap0 = Qpg. (10.103b)

It is clear from Table 10.1, ayo =~ « Ag ; experimentally

I'(A%) 639

~ —— = 1.78. 10.103
T(AY) ~ 35.8 ( )
Thus Al = 1/2, rule is a good approximation, AT = 3/2 amplitude is very
much suppressed for A-decays. An exactly similar argument gives

EZ=—V2 =), (10.104a)
which implies
2.90
== =0} _ . ~1. )
I'(22) /I (5)) =2 (Ea:pt. 630 < 77) (10.104b)
0.456

For Y-decays, assuming AI = 1/2, the only isospinors which we can form
are

aN (Z-7m)+ibN (Ex7)-7. (10.105a)
Writing only the part for which total charge is zero, we have
an (Efw+ + Xt + EOWO)
+b (V25 S0t = V2 pSta® — a $r 47 Shr0) )(10.105b)

Thus we get
" =a+b
Ei =a—0b
20 =20 (10.106)

Y5 =-V2b
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From Eq. (10.106), we get
¥T -2 = V25, (10.107)

The prediction can be tested as follows: In the (as,a,) plane if we regard
Zi, ¥~ and \/?E(T as vectors, then they should form a closed triangle.

To sum up, in case the AT = 1/2 rule holds, out of 7 decays listed in
Eq. (10.25) only four are independent. In the language of flavor SU(3)
[cf. Chap. 5], the dominance of AI = 1/2 rule is generalized to octet
dominance. This can be seen as follows:

u, d, s, belong to 3 representation of SU(3).

i, d, 5, belonging to 3 representation of SU(3).

Now

33=8®1.

Thus J/}j in Eq. (10.27) belongs to an octet representation of SU(3). Hence
H!'. in Eq. (10.27) or (10.28) contains

SR8=10808® 103 +10 @ 27.

It can be seen that only 8 and 27 are relevant for the decays (10.25). Thus
Hl' contains both 8 and 27 where 8 corresponds to AI = 1/2 only while
27 contains AT = 3/2 as well. Thus in the language of SU(3), generaliza-
tion of AI = 1/2 rule is the octet dominance. The octet dominance for
the current-current interaction implies an additional relation (called Lee-

Sugawara relation) between s-wave decay amplitudes of (10.25)

2A(E0)+A(A) =+V3 A (). (10.108)

10.5.3 Non-leptonic Hyperon Decays in Non-Relativistic
Quark Model

One can recover not only the AI = 1/2 rule but also the right order of
magnitude of the scale required to reproduce the s- and p-wave fits of non-
leptonic hyperon decays. Consider the weak vector boson exchange graph
of Fig. 10.6 as the analogue of the gluon exchange quark-quark scattering
graph considered in Chap. 7 which quite successfully described the quark
spectroscopy.

The matrix elements for the process shown in Fig. 10.6 are of the form

2

1 9w . _ _
MW 5% sinfccosf. { a(pH)y* (1—s)a; u(p;)

< w(pi) v (1 —7s) B ulp)) +i < j}, (10.109)
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Fig. 10.6 W-boson exchange diagram for u 4+ s — d + u.

where ¢ = p; — p, = p;» — pj. u’s are Dirac spinors in Dirac space
but are column vectors involving u, d, s quarks in ordinary flavor SU(3)
space. o and /B;T are operators which transform a u-like state into a d-
like state and a s-like state into a wu-like state respectively. We take the
leading non-relativistic limit of the above matrix elements. In the lead-
ing non-relativistic approximation, only vy and + 75 have non-zero limits.
Thus only parity conserving (p.c) part of M survives in the leading non-
relativistic approximation and we have in this limit
. 1 . _ _

MV~ \ﬁGF sin 0, COSQCZ (o ﬂj‘ +ﬂi+ozj ) (1—o040;) (10.110)

MPY =0.
The latter corresponds to a general result that (B'[(JJ)""|B) =0 as a
consequence of CP and SU(3) invariance. The Fourier transform of Eq.
(10.110) gives the effective Hy as
1 . _ _
EGF sin 0, cos 0., Z (o ,BJJT + ﬁjaj )

i>j

x (1 —0;0;)6% (r). (10.111)
Now it has been shown [see Sec. 11.4.2] that in the current-algebra

approach the question of AT = 1/2 rule or octet dominance for non-leptonic
decays of baryons hinges on the matrix elements
(B |HG| By ) ~ aystiu, (10.112)
which essentially determine both s- and p-wave amplitudes. Here u is a
Dirac spinor for B, or Bs which denotes a baryon like A, = n, or p.
Therefore, we have to take the matrix elements of Eq. (10.111) between
the baryon states B, and B;. We regard the baryon state B,. or B as made
up of three quarks. We take the spatial wave function for such states to be
the same for the octet of baryons p, n, A, %, £0 Z° =~ and denote it
by Wy. Thus writing
2
d' = (U |8° (r)| Wo) = [¥o (0)]°, (10.113)

)J

pc _
oy, =
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where r =r; —r; (i # j), we have to calculate the matrix elements of the
operator

Z (a;ﬂf + ﬂjaj_) (1—-o0;0y)

i)j
between the spin-unitary spin wave functions of the states p, n, 7, 2°, A,
=0 given in Chap. 6. We obtain

Gr
GAp = — sin b, cos b.d’ (—i—\/é) (10.114a)
V2
Qg = ﬁsin@ cos 0.d' (—6) (10.114b)
5 T \/i c c .
= —V2axp (10.114c)
o g0 = (\;/g sin 0, cos O,d’ (72\/6) (10.114d)
d=—yn— — 0. (101146)
The relation ay+ = —\/iazg expressed in Eq. (10.114c¢) ensures the

AI =1/2 rule (or octet dominance) and hence A (Y1) = 0 (which is good
experimentally) in current algebra approach [see Eq. (10.117) below].

Once the octet dominance for a4 is established we can parametrize a,
in the SU(3) limit as

ars = V2 (2F" i fors + 2D dgys) - (10.115)
Then the relations (10.114) immediately give
D/
w =L (10.116)

Now using the current algebra relations [see Sec. 11.4.2] for the s-wave
amplitudes one has

A(AY) = fﬂaAn——fA (A9)
A(2D) :—ﬁa =op = —V24 ()
A(xg) = ﬁl o

A1) =~ (amep + V2 o)

) (10.117)
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Here f, is the constant which enters in 7= — 7, + 4~ decay. Then using
Egs. (10.114) and (10.117), we have the relations (10.107) and (10.108).
Using the value of d’ as determined by the constituent quark spectroscopy
[cf. Chap. 7],

—27 GF sin6. cos 0, ( ) ( m2 >
a = my —m T
=p 8\@77053 > A 1- m/mS constituent
~ —105 eV (10.118)

for the accepted value of a (¢? ~ 1 GeV) ~ 0.5. This is almost the phe-
nomenological octet dominance scale, which together with D’/F’ ~ —0.86
[not very far from the prediction (10.116)], are required to fit the s- and
p-wave amplitudes of hyperon decays.

10.6 Problems

(1) Show that the electron spectrum in the decay of b-quark
b—c+e +1,,
using V' — A theory is given by (neglecting the electron mass)

d _ G} s (um =)’ v (3_2g)+ L) B=9)

dy  96m T (1 y)? (t-y) [
where
2F, m?2
Y= ’ Ym =1 — PR
my my

Similarly, show that for c-quark decay
c— s+ et + Ve

the electron spectrum is given by

dt _ Gy 52 Wm =)

dy 1673 ¢ (1-y)
2F m?2
y=""  Ym=1-—.
Me m2

Hint: For b — ¢+ e~ + 7., the matrix elements are

T = _f;/g [@(p2) 2 (1= 75) ulpy)] [a(pr) v (1 —5) v(k2)] -
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Use Egs. (31) and (32) with the replacements (mu, Me, Mym, Mye)
— (Me, Mey, Me, Mye), € = 1 so that
G2
‘M|2:—F 4 p1-kapa-ka
my Me Me My,
G% 2 2
=—F " 2my b, [mb—mc—2mbEy],
my Me Me My,
in the rest frame of b. Performing dp, integration, write d®k1d%ks =
k? dky dky dQ and use

6<mb—Ee—E,,— \/k‘%—&-kg—i—?klkgcos@—l-mg)

to perform the angular integration to obtain
ar - 4G%
dEe dEl/ B (271’)3 v

[m% —mf —2my E,,}

where from

B o_ m%—mi—Zmb E.
Y 2(my —me + E. cosf)
m2 —m2—2my E mp
Eu = b c e __ " .
(E,) 7(m§—m3)—2mbEe7mb(yry)
V/max ~ -

2my, — 2E, (1-1y)

The integration of E, gives the result %.
For the second problem, the matrix elements are

T = —3; [a(p2) 1 (1= 95) upy)] [a(k2) v* (1= 15) v(ky)] -

Results from the first can be obtained by changing ko «—— ki, my —
mC) mC - mS
G2
IM[> = ———E—— [4py-ky ps - ko
Me Mg Me My
G2
-—Fr _ ©2m.E,) [mg—mi—2mC Ee]
Me Mg Me My,
and then follow the same steps as in the first part.
(2) Consider the decay

K — 3r.
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Show that decay rate can be expressed as

1 2

= % [ardy AP
2613 mK 64/3 v dy |4]

0<a?+y? <1,
where A is the decay amplitude,

T, —-Th 313 — Q
xr = \/g s y =
Q Q
T1,T> and T3 are kinetic energies of pions. Then the energies w1, ws, ws
of pions are given by w; =T; +m,; and Q =T1 + 1o + T3 = wy +ws +
w3 —3My = Mg — 3My.
The events in Dalitz plot can be expressed by taking

205 mk
Aj = Aj (0) 1+ ?W (2(4)3 — W1 —wz)

T

where j stands for any decay channel of K.
Show that if the three pions in the decay of K — 37 are in [ = 1 states,
then

I'(K — ntr a%) =2 (Kt — 7ta%70) (10.119)
r (K+ — 7T+’/T+7T7) -T (K+ — 7r+7707ro)
=TI (K9 — 7). (10.120)

Equations (10.119) and (10.120) are the necessary conditions for Al =
1/2 rule to hold. But they are not sufficient since I = 1 state can be
reached also by AT = 3/2.

Show that for totally symmetric I = 1 states
r (K+ — 7r+7r+7r*) =4I (K+ — TF+7TO7TO) ,

r (Kg — 7ro7r07r0) = gf‘ (Kg — 7T+7T77TO) .

Show that if time-reversal invariance holds, the decay amplitudes A
and B given in Eq. (10.85) are real, i.e. 8= 0.
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Chapter 11

Properties of Weak Hadronic
Currents and Chiral Symmetry

11.1 Introduction

In Chap. 10, we have introduced an octet of vector and axial vector currents

Via = @%wq (11.1)
Ay = @%%\75% (11.2)
where
Jy = Viziox — Arxion (11.3)
Txs JAT = Vizisa — Astisa (11.4)

take part in |[AY| = 0 and |AY| = 1 semi-leptonic processes respectively.
The electromagnetic current is given by

1
V™M = Vay + —=Vs 11.5
A 3\ \/g 8\ ( )

where the first part is the third component of an isovector while the second
part is an isoscalar. Now HZ™ ~ V¢™ma*. Since photon field a* has C-parity
—1 and the intrinsic parity of the photon is —1, we see that CP of V™ is
+1. From this we can generalize that CP of vector current Vy is +1. The
parity of axial-vector current Ay is +1 and since the weak Hamiltonian is

CP invariant, the C-parity of Ay must be +1.

11.2 Conserved Vector Current Hypothesis (CVC)

The hypothesis of conserved vector current (CVC) states that VAjE and
Vax(= J{™, AT = 1) are respectively 1+ 2, 1 — 42 and 3 members of an
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isospin current, which is conserved by strong interaction. The generators
of the isospin group SU;(2) are then given by

I = / Vio(x, t)d*z, i =1, 2, 3. (11.6)

The first consequence of CVC (0*VE = 0) is that the form factor hy (¢?) =
0 in Eq. (10.50a) where A and B are respectively taken as neutron and
proton. [Note: When invariance under SU(2) is assumed, m, = m,, = my.]

In order to discuss the other consequences of CVC, we note from Egs.
(11.6) and (10.50a) that

(p(®") |1+ n(p))

- (271r>3 m a(9) [ov (a0 + ifv (@)nsa’ u(p) [ doe @™ (11)

Since I, is conserved in the absence of electromagnetism, I, (¢) is a constant
of motion, i.e. I (t) = I;(0) = I;; we can take t = 0 and

1 —iq-X __
W/d?’me = 5%(q). (11.8)
Now
a(p)roulp) = 22
my
Iy In(p)) = [p(p)) (11.9)
and thus
@) [+ n(p)) = 8°(p" — p) = 0°(q) (11.10)
Hence it follows from Eq. (11.7) that
gv(0) = 1. (11.11)

Thus in the absence of electromagnetism, the vector coupling constant in
nuclear 3-decay is not renormalized and is equal to its “bare” value. Noting
that [J) = %VS,\ in SU(3)]

[J/%/(x)’ I—‘r] =0,
Vax, I4] = Vigioa(2), (11.12)

and

Lyfn) = Ip), (pl 1y = (nl (11.13)



11.2. Conserved Vector Current Hypothesis (CVC) 313

it follows that
([Vi[n) = (pl[Vax, 1+][n)
= (pIVX™, I+][n)
= (VX" |p) = (n|[VX™n). (11.14)

Now Lorentz invariance gives the electromagnetic form factors of proton
and neutron as

1 m3
(2m)* \| poph

(@) V™ p(p)) =

2

xu(p") [Flp(q2)’)’>\ + ilg;(i/)m,,q”} u(p) (11.15)

2
1 my

) V1) = a0

xa(p) [Fl"(qQ)w + iFgl(q;)an”} u(p)(11.16)

2m

where [since [ d3z V™ (x, 0) is the electric charge in unit of €] it follows,
on using Egs. (11.8)-(11.10) that

FP(0) =1, F*(0) = 0. (11.17)
Since o0y, q" gives Pauli type interaction, it also follows that
FP(0) = kp, F3(0) = kyp, (11.18)

where k, and k,, are the anomalous magnetic moments of proton and neu-
tron respectively. s, = 1.792 and &,, = —1.913 in units of nuclear magne-
ton. Hence we get from Eq. (10.50a) and Eqgs. (11.12), (11.13) and (11.14)
that

gv(¢®) = FY(¢*) — F{'(¢*) = Y (¢°)
1

fv(?) = P [FY(q®) — F3(¢%)] =

FY (¢%)
2mN

, (11.19)

where F)” and F)  are the isovector electromagnetic nucleon form factors.
Their normalization follows from Eqs. (11.17) and (11.18).

FYV(0) =1, FY(0) = (kp — kn)- (11.20)
Thus in particular
gv(0) =1,
fo(0)="2 "0 (11.21)

2mN
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Using SU(3), we can write the matrix elements of vector current Vy, i =

1, ---, 8 for an octet of baryons (assuming ¢ ~ 0):

m2
(B Vol By0) = (5| oot i) ifponute) (1122

namely the relation (10.54).

11.3 Partially Conserved Axial Vector Current Hypothesis
(PCAC)

From Eq. (10.73), we have
(0]o*AT (@)| =)

—ip <O ‘Aﬂ 7r_> —ipw

- 7(27:)3/2 Ffﬂ 2 i (11.23)

If the axial vector current A; is conserved, then either f, = 0 or m2 = 0.
Since for a physical pion m2 # 0, then f, must be zero and pion decay is
forbidden. Thus A; is not conserved. Now 8’\Aj has the same quantum
numbers as those for a pion. If we now put

AL = frm2 (11.24)

then

_ 1 1

1) = G
(2m)3/2 \/2py
Here 7~ (z) is the pion field operator which creates 7% or destroys 7.
Equation (11.24) is called the PCAC hypothesis. We note from Eq. (11.23),
that in the limit m2 — 0, the axial vector current is conserved. This implies

that strong interactions have an approximate symmetry which is exact in
the limit of zero pion mass. Such a symmetry is called chiral symmetry.

(0|7 (2) e P (11.25)

Chiral symmetry manifests itself in the existence of massless pseudoscalar
mesons called Nambu-Goldstone bosons.

We shall come to this point again later. Here we discuss one of the
important consequences of PCAC. We apply PCAC to neutron [3-decay.
From Eq. (10.50b), we have

(o) |AY [ n(p))
1 My,
2m)3 P0p6
(') [9a(@®) s + fa(@®)vsan — iha(g®)vsoag” ] ulp)  (11.26)

—~

X

S
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We note that pion pole contributes to the form factor fa(g?) only. It
does not contribute to ga(q?) nor to ha(q?). Separating out the pion pole
contribution, we write

271' T
_ngNf +

£ om? fa(d® (11.27)

fa(@®) =

where fa(q?) is the remaining part of f4(g?). From Egs. (11.26) and
(11.27), we get

(p(v') |0* A n(p))

1 mpm

= 2 a(pYivsu
(27)3 p0p6 (p )5 (p)
\/E T s a2
X [%nzng(qZ) - qggfi]% + @ faldd)|. (11.28)

Now if we assume that in the limit m2 — 0, the axial vector current is
conserved, we get,

2mnga (¢%) = V20rnnfr + ¢ fald®) =0 (11.29)

At ¢? = 0, this gives
ga = g‘n'NNfTr
V2my

This is called the Goldberger-Treiman (G-T) relation. Thus G-T relation
is exact in the chiral symmetry limit when pion mass is zero and the axial
vector current is conserved. This relation can be easily tested as all the
quantities in Eq. (11.30) are experimentally known. This relation is valid
within 6% agreement with experiment. On the other hand, we note that

(11.30)

(00) 045 |n0) = gz |/ 50 )ir5u(0) [2maa(a®) + 4 Fala®)]
(11.31)
Using PCAC, viz Eq. (11.24),
2
VRINNIE () + 6 Fale?) (11.32)

_m?2
q m7-r

Evaluating it at ¢> = 0, m2 # 0, we again get the G-T relation. We
conclude that the success of the G-T relation implies that deviations from
chiral symmetry or equivalently from PCAC are indeed small.
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Finally, using SU(3) we can write for ¢*> &~ 0 for an octet of baryons [cf.
Eq. (10.53)].

(Br(p") |Ainl B;(p))

1 m2

T (2n)32 z?z%ﬂ(pl) vavs (ifijeF + dije D) u(p)  (11.33)

In particular for neutron S-decay,

ga=F+D, (11.34)
where
D 1
(27m)3 22 (p | Asal p) = S ga@(p)yar5u(p) (11.35)
my 2
We define a four-vector
s* = u(p)y* 7 u(p) (11.36)
We note that
p-s=0, s> =—1. (11.37)

The vector s* thus gives the spin of the proton. To see it explicitly we go
to the rest frame of the proton. In this frame, we get from Eq. (11.37),
so =0, s> = 1. From Eq. (11.36),

s=x"ox. (11.38)

In quark model, we can write the axial-vector current A;, = ¢v.7s %q We
define the quantity Aq as

2m)* 22 (p|grarsal p) = Agsa. (11.39)

m
In particular for Asy = (@yr\v5u — dyrysd), we have
3P0 1
(2m)" plAsal p) = 5 (Au — Ad)sy (11.40)
so that

Au—Ad=gy=F+D. (11.41)
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11.4 Current Algebra and Chiral Symmetry

Isospin conservation implies that strong interactions are invariant under
SU(2) group generated by the charges:

I(t) = /mo(x, d3z, i =1,2,3. (11.42)
In the same way we can define the axial charges
() = /Aio(x,t)dg’a:, i=1,2,3. (11.43)
The generators of the isospin group SU(2) satisfy the commutation relations
[1;(t), I;(t)] = icijule(t). (11.44)
Since I7(t)’s belong to the adjoint representation of SU(2) group, we have
[Li(t), L2 (t)] = iesn I (t). (11.45)
We obtain a closed algebraic system by requiring that
[I2(t), 12 (t)] = igijuli(t). (11.46)

The last relation constitutes a major theoretical assumption. The commu-
tation relations (11.44), (11.45) and (11.46) represent the algebra of the
group SU(2) x SU(2) generated by the vector and axial vector charges.
This group is called the chiral SU(2) group.

Let us now write the part of the QCD Lagrangian [cf. Eq. (7.52)] which

involves v and d quarks:
Lyq =iqy"D,q — Mu ; MMd dq — M ; d (au — dd), (11.47)

where ¢ = (Z) is an isodoublet field and we have suppressed color indices.
For m, = my this Lagrangian is invariant under the isospin transformation
q— Ugq, (11.48)

where U is a special unitary matrix, ei%Ai, A; being constant. The asso-
ciated vector current V;, = g% ,q is conserved. The existence of nearly
degenerate isospin multiplets of hadrons shows clearly that |m, — mg| is
small compared to hadron mass scale ( ~1 GeV). Setting m, = mqg = m,
we can write

Lya = iqy" Dyuqr +iqgry" Duqr — m(qrqr + qrqr), (11.49)
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where we have split ¢ into “left-handed” and “right-handed” components

1F s
B) q

qL,R =

It is clear that in the limit m = 0, the Lagrangian (11.49) would be invariant
under independent ‘chiral’ isospin transformations on ¢;, and gg:

qr. = Urqr, qr — Urqr

and not only V;, but also the axial vector current ¢v,v5 % ¢ would be con-
served. We note that the mass term m (Grqr + qrqr) or in general the
coupling to scalar and pseudoscalar fields

{Qﬁq < ! ) q=¢(qrLqr £ drqr)
V5

would break chiral symmetry. This also demonstrates that the forces be-
tween the quarks have to be vector in nature [mediated by spin 1 gluons,
cf. the term gy, - G"q in Eq. (11.47) or Eq. (11.49)]. As we shall see
later m,, ~ 5 MeV, mg ~10 MeV (these are called current quark masses,
not to be confused with constituent quark masses of order 300 MeV |[cf.
Chap. 6]) are small compared to the hadron scale of O(1 GeV) so that
chiral symmetry is nearly exact.

Now if A;) were conserved, the axial charge I? would commute with the
Hamiltonian:

(17, H] = 0. (11.50)
Hence if we define
I |X5) = deijn | Vi) (11.51)

use of Eq. (11.51) would imply that the states |Yj) are degenerate in mass
with |X;) even though they have opposite parity. This is because I? has
negative parity. This condition can be realized in either of the two ways:

(1) The Wigner-Weyl realization of chiral SU(2) symmetry, in which case
|Y)) would consist of “parity doublets” of |X;) e.g. if |X;) were pseu-
doscalar mesons, |Y;) would be scalar mesons degenerate in mass with
the pseudoscalar mesons. This is not what occurs in nature and there-
fore chiral symmetry is not realized in nature in this way in contrast
to the ordinary isospin symmetry which is realized in this way.
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(2) Spontaneously broken symmetry realization of chiral SU(2), in which
case |Y) would consist of |X;) plus an odd number of pions with van-
ishing four-momentum (called soft pions), the pion being a massless
“Nambu-Goldstone” boson. In particular

! ff A(0) # (11.52)

the first part being valid only for single-pion transitions, while
1;10) = 0. (11.53)

17 10) =

As we shall see m2

sure of explicit chiral symmetry breaking is provided by m2/m2 ~ 0.03, p
being the non-strange (non Nambu-Goldstone) boson next to pion. The
notion of (approximate) spontaneously broken chiral symmetry has been
found useful in hadron physics and has given rise to many predictions in-
volving soft pions which are in good agreement with the data [see refer-
ences]. One such prediction is the Goldberger-Treiman relation (11.30):

[mAgAﬁ] —1=0 (11.54)

JrgnNN
to be compared with the experimental value 0.06 4+ 0.01 of the left-hand
side.

The above considerations can be easily generalized to SU(3). Thus
the QCD Lagrangian (7.52) shows an approximate global symmetry in the
limit m, — 0, this Lagrangian is invariant under the group SU(3) x SU(3)
generated by the charges associated with the weak currents .J;,. Thus the
generators of the group are (i =1,---,8).

/Vzo (x,t)d
Z/Aio(x,t)d?’l‘

They satisfy the commutation relations

would involve (m,, + mq) /2 as a factor and so a mea-

[F3, Fy] = i fijiF (11.55)
[F}, F5] =ifiFyp (11.56)
[FS ] Zijka- (1157)

The commutation relations (11.55) and (11.56) follow from flavor SU(3),
the commutation relation (11.57) is a new assumption. Equivalently if we

define

Fl=_(F - F}), F f%(FiJrFf) (11.58)

N\H
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we get

[FEFF] = ifinFy
[FiRaFjR] =ifipFil (11.59)
[FiL’ FjR] =0.

Symmetry generated by the above group is called the chiral symmetry. If
(R1, Ry) is a multiplet of group SU(3) x SU(3), then under parity

(R1,R2) — (R2, R1) (11.60)

For example (8,1) — (1,8),(3,3*) — (3*,3). This means that if this sym-
metry is realized as a classification symmetry, we must have parity doublets.
This is not the case in nature. No parity doublets are found. This implies
that the chiral symmetry is realized in the Nambu-Goldstone mode that is
to say, there are eight bosons which in the chiral limit have zero mass. As
we have already seen, pions are the Nambu-Goldstone bosons which in the
chiral SU(2) x SU(2) limit are massless. The eight pseudoscalar mesons are
identified with Nambu-Goldstone bosons of chiral SU(3) x SU(3) group.

The algebra generated by F; and F? is called the chiral algebra. This
algebra has rather rich physical content because generators of the symmetry
group can be identified with observables. The matrix elements can be
measured in electroweak interactions. This in fact provides evidence for
chiral symmetry [see bibliography].

11.4.1 Explicit Breaking of Chiral Symmetry

As already seen the chiral symmetry is spontaneously broken [cf. Eq.
(11.52)]. Another way of expressing it is that

(0124 0) # 0 = F?[0) # 0. (1L.61)

To see this, we note that in the quark model, we have the following com-
mutation relations:

[F?,S;] = idyjiPe i=0,1,...,8

[F?, Pj] = —id;;xSh (11.62)
[Fi, ;] = ifijrSk

[Fi, Pj] = ifijiPr

where

A A
Si=a5a bi=iq5s4 (11.63)
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are respectively the scalar and pseudoscalar densities. We note from Egs.
(11.62) that

<0|[P1+z'P2,F15i2]|o>:i2\/g<0SO|0>+z‘j§<0|Sg|0> (11.64)

Now we expect that flavor SU(3) is realized in the usual way and is not
spontaneously broken [cf. Eq. (11.53)]. This implies that

1
050:70}71,372 0)=0 11.65a
(0158[ 0) \/§<|[4+545]|> ( )
as
Fyii5]0) = 0. (11.65b)
Thus, if
1 /2, TR
(So0) = 2\/g<uu +dd+5s), #0 (11.66)
then we have from Eq. (11.64):
F} 5 |0) #0. (11.67)

the condition for spontaneously broken symmetry [cf. Eq. (11.52)]. Let us
write

(au), = <(fd>0 = (5s), = —v(say). (11.68)

Hence we have the result that (Sp), # 0 which implies that chiral symmetry
is spontaneously broken and (Sg), = 0 implying that flavor SU(3) is not
spontaneously broken.

We can write the QCD Hamiltonian density [cf. Eq. (7.52)] as

H="Ho+ (muﬂu + mgdd + ms§s)

2 2
=Ho+\/g(2m+ms)50+(m+ms)58+(mu—md)53

V3
=Ho+H (11.69)
The Hamiltonian density Hy is chiral invariant. Here m = (1/2)(m,, +maq).
Now
dF?
el [FP,H| = —i[F},H'], (11.70)
where

H(t) = / PaH(t,x).
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The (charge) continuity equation

dFis 3 8Ai0(t, X)

= /d%amw (11.71)
then converts Eq. (11.71) into
P A =—i [FP,H']. (11.72)
From Eq. (11.72), we have
(O|[F?,0*Aix]| 0y = =i (0 |[F?, [F?, H']]|0). (11.73)

Using Eq. (11.52), namely

5 = s
Fj|0>_ \/"J>

(0] F} = 2\f< il s (11.74)

we obtain

L (o074 ]0) + (0]0 A )] = =i 015, 7, 7]] )
(11.75)

The use of PCAC relation 9*A;\ = (fr/V2) m?m;, then gives [mfj is sym-

metric in ¢ and j].

= 25 0[5 [72.3¢]] 0 (11.76

where H' is given in Eq. (11.69). Substituting it into Eq. (11.76) and using
Egs. (11.68) and (11.62), one obtains

mio = mfr (my, + mg) v

f2

mies = f2 (M +ms) v, mio = — (md—|—ms)v

IE

2 2 2

Mpoy = Mpro = \[sz (mu - md) v
™

mfl 3f2 (Mmy + mg + 4ms) v (11.77)

Let A be the electromagnetic contribution due to photon exchange to mfri.
Since 7T, KT form a U-spin multiplet the electromagnetic contribution to
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m%i is also A while it is zero for m20, mio, , so that adding A in Eq.
(11.77) for 7, KT, we get
ma _ Myeo — Myey +m2, 18

2 2 2 2
My, 2mio — Mo + My — Mo
2

.
el e +mg+ ~20.1 (11.78)

2 2
Mg Mo —l—mK+ —-m

Here we have used the explicit breaking of chiral symmetry in calculating
the current quark mass ratios in terms of masses of pseudoscalar mesons.
When quark masses go to zero pseudoscalar mesons become zero mass
Nambu-Goldstone bosons required by spontaneously broken chiral sym-
metry.

11.4.2 An Application of Chiral Symmetry to Non-Leptonic
Decays of Hyperons

Consider the matrix elements [where B, and Bs are members of the same
baryon octet]:
(Bs (') |[F?, Hw]| By (p)) = (Bs (') |FY Hw — Hw F}| B (p)) (11.79)

where ¢ = 1,2,3. Using Eq. (11.74) and its hermitian conjugate, we can
write it as

(Bs 0) |[F}, Hw]| B (p))

= ;\% [(Bs (p') mi(0) [Hw | By (p)) + (Bs (¢') | Hw | 73(0) B (p))]
— i (B, () mi(0) | B, (). (1150)

In other words in the limit ¢, = (p —p'),, — 0 [called the soft pion limit], if
the matrix elements (B; (p’) m;(q) |Hw| B, (p)) are non-singular, then Eq.
(11.80) gives

: / \/é / 5

tiny (B () mig) [ Hw | Br (p)) = ~i~— (B« () |[F7, Hw]| B, () -

(11.81)

Now Hy = HU+ Hy}" [cf. Chap. 10] and it can be shown that for s-waves
[HY"], the amplitude on the left-hand side of Eq. (11.81) is non-singular
[see below] and we have

lim (B, (p') mi(q) | Hyy"| Br (p) = 72£<B ®") |[F7, Hyy']| B (p)) -

q—0 fﬂ'
(11.82)
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For p-waves [H{;"], one can apply the result (11.81) to
limy [(B; (p') mi(9) | Hyy”| Br (0))

— (B (p/) mi(q) |H€Vc| B, (p)>Born]
= i (3, ) |17, 1) B, () (11.83)

where the Born terms are shown in Fig. 11.1.

Fig. 11.1 Pole diagram in hyperon decay.

These are singular for Hi;“ in the limit ¢, — 0 where mp = m/y as they
behave like 1/ |mp — m/g| but for Hi}" they behave like 1/ |mp + m/z| and
are non-singular. Now as we have seen in Chap. 10 [cf. Eq. (10.28)], the
|AS| = 1 non-leptonic Hamiltonian is

G
Hy = 7; sin 0. cos 6 57" (1 — vs)u] [ay, (1 — 5)d] . (11.84)

This being the product of two left-handed currents [Fr = F; + F?] satisfy

[FiRv HW] =0
or
[F?, Hw] = —[F;, Hw],
i.e.
[P H ] = = [Py B (11.85)

Further F; (being the generator of SU(3) flavor group) acting on |B,) or
| Bs) produces a member of the same octet. To illustrate this point, consider
for example, |B,) = |A) and (Bs| = (p| , i = 1“2 Then

F1+i2 |A> =0 and <Tl‘
Thus for s-wave from Eqs. (11.82) and (11. 85)

(p (") 7~ (@) [HEVIA® (p)) = - (n[HEC|A) (11.86)

Also as shown in Chap. 10, in the exact SU(3) limit (B |HE?| B,) = 0.
Thus the p-wave non-leptonic decays are given by the Born terms which
are also determined by (B, |HE€| B,.) as far as weak vertices are concerned.
These were the results which we employed in Sec. 10.5.3.

g

|Fl+i2

&"N\_/%\
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11.5 Axial Anomaly

As seen in Chap. 7, 7° — 2y is given by the triangle graph of Fig. 11.2.

Fig. 11.2 Triangle diagram for 70 — 2~ decay.

In the chiral limit (m, = mgq = 0), this triangle graph gives a finite value
for the 70 — 2+ amplitude:

M(7® — 2y) = e (k1)e" (k2)Ewaski ks Fron (q%), (11.87)
with
F, = N,[e2 —e2] () Iraa 11
o 0) = Nl - 3] () 2. (1188

where N, is the number of colors, e.g. 3, e, = 2/3, e, = —1/3 while the
Goldberger-Trieman relation for (g|As,|q) with Az, = 1 (@y,y5u — dy.d)
gives (fr/V2)grqq = My s0 that Eq. (11.87) gives

Fryry(0) = _ﬂfa (11.89)

It is important to remark that the result (11.89) is unaltered by radiative
corrections to the quark triangle and Eq. (11.89) is independent of the
masses of fermions in the loop. Equation (11.89) gives

P =2 M g oy 11.90
™Y — 7r'y’y64ﬂ_7 . € ( . )

which is remarkably close to experiment with only 2% PCAC correction to
the amplitude.

The above result is often stated in terms of contribution to the amplitude
due to an axial-vector “anomalous” divergence:

0 Ay = %F#Vﬁ’“’, (11.91)
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where F),, = 0,a, — 0ya, [aﬂ being electromagnetic potential] and E“, =
%5“”0‘5Fa3. Note that Eq. (11.91) does not arise from equations of motion
(11.71). That is why it is called “anomalous” divergence. Combining Egs.
(11.72) and (11.91), we have

P Ay =— [FP, H] + 51-343@”?“”. (11.92)
7r
The first term on the right-hand side of Eq. (11.92) vanishes in the chiral

limit but it is not so for the second term. The PCAC relation for As) thus
becomes

O Az (z) = ﬁmiﬂo(:ﬁ) + 2

V2 4

The “anomalous” divergence equations for ng and 7y are

M Ay = %SI’?-,FHV?W, (11.94)

F F. (11.93)

where kK = 8 or 0 and
1

1
S, = N, (\/g) €+ -2 = =
Spy = N, \F [e2+62+62]:2l (11.95)
o c 3 u d s \/§~ .

Similar considerations show that in QCD, the flavor SU(3) singlet cur-
rent

A 1 /2, - _
Aoy =1 20 W= 51\ 3 [ay,v5u + dyuysd + 57,758]
has “anomalous” divergence
2 3a ~
O Apy = \st , - GH 11.96

0A 3 4n " ( )
where

- 1

G = E.s“”aﬁGaﬁ (11.97)

and G, involving gluon field has been defined in Chap. 7 [cf. Eq. (7.51c)].
Thus

9 _
N Aoy = \/; [muﬂi%ﬂ + mgdiysd + ms§i753]

2 30, _
ﬂ/?li‘ G, - G (11.98)

It is clear from Eq. (11.98) that the SU(3) singlet current is not conserved
in chiral SU(3) x SU(3) limit. An application of this will be considered in
Chap. 14.
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11.6 QCD Sum Rules

We have seen in Chap. 7 that the asymptotic freedom property of QCD
makes it possible to calculate processes at short distances or for large ¢2, ¢>
being the square of the momentum transfer. On the other hand, bound
states of quarks and gluons (hadrons or hadron resonances) arise because of
large distance confinement effects, i.e. strong coupling effects, which cannot
be treated in perturbation theory. The idea of QCD sum rules is to calculate
resonance parameters (masses, width) in terms of QCD parameters (s,
quark masses and number of other matrix elements which are introduced
to parametrize the non-perturbative effects). We have also seen previously
that in the absence of quark masses, the QCD Lagrangian shows a global
chiral symmetry, i.e. it is invariant under a global SUL(3) x SUg(3) group.
But this chiral symmetry is spontaneously broken, i.e. the ground state is
not invariant under this symmetry. This gives rise to [¢ = u, d, s] [cf. Eq.
(11.61)]

(0]gqq|0) #0

leading to an octet of zero mass pseudoscalar mesons (so-called Nambu-
Goldstone bosons; such bosons acquire masses when QCD Lagrangian is
explicitly broken by the quark mass terms). The non-vanishing of the
above quark condensate is a non-perturbative effect and gives rise to power
corrections to asymptotic freedom effect, which is logarithmic. The essential
point of the QCD sum rules, i.e. to relate QCD and non-perturbative
parameters of the above type with resonance parameters, is illustrated by
the simplest of sum rules, i.e. for a two-point function:

A(g?) = 7r/ImA ZC ) (01041 0) (11.99)

s—q?
The left-hand side is saturated with resonance so that
2
g.
l.h.s.= ——— (11.100)
-
where (g;, m;) are resonance parameters. The right-hand side is useful only
for large ¢2 in which limit the perturbative QCD allows us to calculate the
coefficients C;(¢?) in the operator product expansion. In practice we want
to saturate l.h.s. by a few low lying resonances. Thus we should use some
weighting factor to suppress large s contributions on lL.h.s. This is done
by using Borel transform of the sum rule, which introduces a weighting
factor involving a mass parameter M2, which should be sufficiently large
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to suppress non leading terms on r.h.s. of Eq. (11.100) but not too large in
order to suppress contribution from higher hadron states on L.h.s. Thus the
problem in practice reduces to finding a region of stability point for M? so
that a small variation in M? will not affect the physical parameters. In this
way from QCD sum rules for two point and three point functions, a large
number of constraints on hadron spectrum have been obtained providing
not only a consistency check but also a useful phenomenological information
on resonance as well as QCD parameters and on (0|7g|0). For details see
the bibliography.

11.7 Problems

(1) Use Dirac Equation, to show that

(a)
_ y _ A
iwu(p )™ (o' + p), ulp) = a(p') (' = p)" ulp)
(b) }
, .
N — (o (r' +p) [T
' a) = o) | Lo o o <), o)
(¢) Using Lorentz invariance, show that most of the general matrix

elements are of the form:

1 m?2 { ?
/ A — (] A Av A
P | Jem|P) = 3 —ul) |1 + s—I%0 qV‘i‘l(Z}Up
< ’ ’ > (277)3 popy ¥ |y 2m’ ° 3 ()

(2) Using the conservation of electromagnetic current viz
aAJé‘m (x) =0
Show that F3 = 0.
Finally [P = p’ + p], show that alternatively

(v | m|p>~u ){;Pk+2j;l(F1+Fz)a>‘”qy]u(p)

F:
~alp) [(F+ P - 22 utp)
(3) Determine the commutation relations (11.62).

Hint: Use equal-time anticommutation relations of Dirac fields
4 (@).q ()], =676 (x—y)

to show that

[q"(2)0q(x), ¢" (y)O'q(y)] = 8*(x — y)q' () [0,0'] q(y)

and take operator O and O’ approximate to various quantities in
(11.62).
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Chapter 12

Neutrino

12.1 Introduction
Experimental puzzles in the past have led to some important discoveries
in Physics. Neutrino, which has spin 1/2, was invented in 1930 by Pauli
as the explanation of such a puzzle, namely the conservation of angular
momentum and energy in (-decay

n—pte,
require such a particle, so that

n—p+e —+ .

Its direct observation was made much later. The electron type anti-
neutrinos are thus produced by the decay of pile neutrons in a fission reac-
tor. These can be captured in hydrogen giving the reaction:

Ve +p— et + n,
whose cross-section was measured by Reines and Cowan
Oexp = (11 £2.5) x 107** cm?
to be compared with the theoretical value
om = (11£1.6) x 1074 cm?.

Note the extreme smallness of the cross-section. It is a reflection of the fact
that neutrino has only weak interaction.
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12.2 Intrinsic Properties of Neutrinos

(a) Neutrinos are elementary particles with spin %, electrically neutral and
obey Fermi Dirac statistic.

(b) All neutrinos detected are left-handed (see Sec. 10.1.1), i.e. their spin
points in the opposite direction from their momenta. All anti-neutrinos
are right-handed.

(c) Neutrinos occur in three flavors v., v, v, associated with the corre-
sponding charged leptons e™, u~, 7~ respectively. Neutrinos “oscillate”
from one specie to another with a high probability (see Sec. 12.4). This
means that neutrinos produced in a well-defined weak eigenstate v, can
be detected in a distinct weak eigenstate vg later. This phenomenon
of neutrino oscillation is possible if one or more neutrinos have non-
vanishing mass.

(d) The discovery of neutrino mass raises the question whether each mass
eigenstate v; is identical to its antiparticle 7; or is distinct from it.
If 7; = v;, we call the neutrinos Majorana particles, while if 7; # v;
they are called Dirac particles. Usually conserved charges distinguish a
particle from its antiparticle. For example electric charge distinguishes
electron from positron. But neutrinos carry no electric charge and
might not carry any other conserved charge like quantum number. It
might be thought that there is a conserved lepton charge (see Sec. 4.1)
that distinguish v,, e~ from 7., e*. However conservation of lepton
charge is not protected by any gauge symmetry. If such a conserved
charge does not exist, then there is nothing to distinguish 7; and v;.
Then neutrino may very well be a Majoran particle.

12.3 Mass

The question of neutrino mass is one

indexNeutrino Mass of long standing. In the context of the standard model
of unified electroweak interactions (Chap. 13), there is no understanding of
the origin of masses of elementary fermions. In this category the question
of neutrino mass also arises. It has an added importance for the following
reasons:

(a) The fact that neutrinos occur asymmetrically in one (left handed) he-
licity state with lepton number conservation imply that m, = 0 (see
below). However, there is no local gauge symmetry and no massless
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gauge boson coupled to the lepton number L to guarantee the mass-
lessness of neutrino and lepton number conservation in contrast to the
photon where both the masslessness of photon and charge conservation
are consequences of local gauge invariance of Maxwell’s equations. One
may thus expect a finite mass for neutrino. But the intriguing question
is why m(v.) < m(e).

(b) Non-vanishing neutrino mass has important implications in Astro-
physics. It is a candidate for hot dark matter. It affects history, struc-
ture and fate of the universe as we shall seen in Chap. 18.

Experimentally the question of neutrino mass is still open. This is
because

(i) m, is small and a smaller quantity is more difficult to measure with
high precision than a bigger quantity.

(ii) Neutrino has only weak interaction with matter which implies in prac-
tice that no direct measurement of m,, is possible.

12.3.1 Constraints on Neutrino Mass
12.3.1.1  Direct Limits
We first confine to electron anti-neutrino (7). 7. comes out in [-decay of
Tritium
SH — 3He+e™ + 7.

Electrons from this decay has a very low end-point energy (18.6 keV). As
such this process is ideal to look for a possible finite mass of neutrino. If
m, =0,

{ dar
pZdpe
Kurie plot is thus a straight line. If m, # 0,

dr \/? 1/4
XX Emaz - Ee 1/2 Emaw - Ee 2 - m12/
(pgdp) ( 2 2 — m2]

This equation also illustrates why the end point energy range is important
for determining m, = 0. This gives a distortion at the extreme end of the
Kurie plot (see Fig. 2.6). Thus one has to look for such a distortion, but
note that the deviation is in fact quite small and the experiment is thus
quite difficult. An added complication is the presence of final state ionic

1/2
} X (Emaz — Ee).
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and /or molecular effects that are not well understood. Anyway, the present
limit on the so called effective mass of electron neutrino [for the definition
of Ug; see Sec. 12.4] placed

my, = Z|Uei|2mi <2eV:m, <m

The Katrin experiment is expected to improve the limit to ~ 0.2 eV. Direct
limits on the other two types of neutrinos are

T = pvy s my, <190 keV 1 m,, <my,
T =5ty :my,, <182 MeV : m, < m,

12.3.1.2  Double B-Decay

The double §-decay is another way to look for a finite mass of neutrino.
Two kinds of double 3-decay can be considered:

2v) (A, Z) — (A, Z+2)+2e” + 20, (12.1)
(Ov) — (A, Z+2)+2e".
Usually the neutrinos are assumed to be Dirac particles, that is, neutrino

v and its anti-neutrino 7 are distinct. There is another picture of neutrinos,
called Majorana in which v and © are identical. This implies

n—p+te +vp=pt+e +vL
vp+n—p+e, (12.2)
so that (2n) — (2p) + 2e~ as shown in Fig. 12.1.

Fig. 12.1 Basic reactions in double 3-decay.

The important physics issues in (0v) double 3-decay are:

(i) Lepton number must not be conserved, which is possible if neutrinos
are Majorana particles: v = v.
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(ii) Helicity of the neutrino cannot be exactly —1, this can be satisfied if
my, # 0.

Thus (0v)5 8 decay is especially interesting in determining m,, as half life
Tijo x Q7% <m, >3, (12.3)

where @ is the Q-value of the reaction involved.
There is now distinct evidence of (2v) S-decay:

82S6*>82K7’

Tijp = (1.110:5) x 102 Yis. (12.4)

Incidently this is the rarest natural decay process ever observed directly
in a laboratory. This would help to provide a standard by which to test
the double (3-decay matrix elements of nuclear theory. From the limit on
half-life on (0v)3 3 decay process "6Ge —76 Se + 2e~,

Ty o > 1.9 x 10* Yrs,
the Heidelberg-Moscow experiment gives the best present bound on m,,,:
m,, < (0.35—0.5) eV

Part of the collaboration claims an evidence for the positive signal which
would correspond to m,, ~ 0.4 eV. Actually, if there is a mixing among
neutrinos (see Sec. 12.4 below), then m,, = >, X\i|Ue;|*m,,, where ); is a
possible sign since Majorana neutrinos are C'P eigenstates and U,; arises
due to two vertices.

12.3.1.3  Cosmology

Non-zero neutrino mass alters large scale structure formation within the
standard cosmology. The cosmological observations put a bound on the
sum of neutrino mass

3
Zmi <0.17-12¢eV
=1
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12.3.1.4  Astrophysical Constraints

As will be shown in Chap. 18, the mass density of all fairly light (m, <1
MeV) stable neutrinos is

0
n
0 v 0
p=§ Ny M
v TLO v

%

- 11 Vzm”l

Z2myi eV) x 1073 gm/cm®, (12.5)
i

where ng = 400 cm™3 is the present photon number density. Now the

average mass density of the universe is

po = Qopeo,
where Qy <1 and p.g is the critical density
_ Mg (12.6)
Peo = 87TGN ' ’
Here H, is the Hubble parameter, Hy = 3 x 10718h, sec™!

[100 h km g_l Mpc*l]7 with h, = 0.71 £ 0.01 and Gy is Newton’s gravi-
tational constant. Thus

peo = 1.88 x 10~ A2 gm/cm®
= 1.05 x 107°h2 GeV /em® (12.7)
This together with Eq. (12.5) gives

0
O, h2 = %hg =1.06x 1072 m,, eV

The sum of the masses of all stable neutrinos is constrained by the WMAP
data (see Chap. 18) which gives

Q,h2 <0.0076
Hence

> m,, <0.72eV

We may also mention here that the big-bang nucleosynthesis puts con-
straints on the mass of any metastable (m.s) neutrinos which are

my,, . (Dirac) > 32 MeV or < 0.95 MeV
my,. . (Majorana) > 25 MeV or < 0.37 MeV

Both the lower limits are in conflict with m,_ < 18.2 MeV, mentioned
earlier, implying that m,_ must actually be below 1 MeV.
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12.3.2 Dirac and Majorana Masses

It is a general feature of weak interactions that only left handed neutrino
vy, takes part in it (see Chap. 10). Let us write a Dirac spinor ¢ as

¢< 757 ) (12.8)

In a representation in which ~5 is diagonal,

e - TP A 3 14+, (0
¢L—2¢—<0 ),%/JR— 5 1/1—<n )7 (12.9)

the Dirac equation for the two component spinors £ and 7 can be written

. .0
(zaonat)men

as

) .0
<—w -V — Zat) n=—-mpé (12.10a)

It is the mass which links & (or equivalently ) with n (or ¥R).
These equations can also be written in the form

16" 0,6 —mpn =0
10,0, —mp& =0 (12.10b)
where
ot =(1,0), " =(1,-0) (12.10¢)

Under charge conjugation C (particle — antiparticle) 1 — ¢¢ = —iy2¢*
[see Appendix A], so that

€& =iy

n—n° =ioc’¢* (12.11)
For massless neutrino, £ and 1 decouple and we have from Eq. (12.10a)
0
oV —i— | &= 12.12
(w \Y% Z@t) £E=0 ( a)
—io -V — zg =0 (12.12b)
at) "~ '

These are called the Weyl equations for massless spin % particles. It is easy
to see that Eqgs. (12.12a) and (12.12b) are not disconnected. In fact, using
the usual representation of Pauli matrices o, one verifies that, if £(x) is a
solution of Eq. (12.12a), 02£*(x) is a solution of Eq. (12.12b). In order to
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see physical implications of Weyl Eq. (12.12a), we examine the plane wave
solution, given by

£(x) = w(p)e " = w(p)e ®*FY (12.13)
Then from Eq. (12.12a), we get
[o-p+Ejw(p) =0 (12.14)

with E? = p?. Let us denote the positive energy spinor by u(p) and
negative energy (F = —|p|) spinor by v(p). Thus we get
o-p
W“(p) = —u(p) (12.15)
o-p
D] v(p) = v(p) (12.16)
Hence we get the important result: if neutrino is massless, then 2-
component Weyl field £(z) satisfying Eq. (12.12a) or equivalently, the chiral
projection $[(1 — 75)¢] of a four component field () satisfying massless

Dirac equation, give a left-handed (helicity negative) neutrino and a right-
handed antineutrino. This is what is realized in nature. If we start with
n-field, then we have opposite case: a right-handed neutrino and left-handed
antineutrino. This case is not realized in nature. It is important to remark
[see Ref. [2]] that charge conjugation operators given in Eq. (12.11) are
not possible in the 2-component case.

If we allow both a finite mass and lepton number non-conservation, then
for an electrically neutral lepton, the Lagrangian is

L= (4", — mp) U + mTM (TTC0 - BCTT) (12.17)
The second term in Eq. (12.17) is the Majorana mass term and violates
lepton number conservation: AL = 2. Let us define the new fields ¢, and

Pa:

1 s 2, %
= —(£—io

é1 NG (5 n )

i - 2 %
=——F(&+10 . 12.18
®2 NG (& n) ( )

It then follows from Eq. (12.11) that under charge conjugation

b1,2 = +¢1,2, (12.19)

i.e. ¢1,2 are eigenstates of C' with eigenvalues +1 and —1 respectively. In
terms of ¢1 and ¢, Eq. (12.11) becomes

L= {w{a”aﬂ% + (mD ;mM

wgﬁ(qazwz + hcﬂ . (12.20)

¢T(—i02)¢1 + hC)

+ i} 0,0 + (
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If we start with £ and n or equivalently vy, and vg, then we can have two
Majorana particles of masses (mp + mas)/2. If we start with vy only,
mp = 0, we have a Majorana neutrino of mass mj;. In this case Eq.
(12.20) reduces to

my

L= iuZ&“aﬂyL + 5

(vi (—ic® v, + h.c.) (12.21)

We get an important result: a two-component neutrino (v) cannot have a
Dirac mass; it can only have Majorana mass, which violates lepton number
conservation. Thus one helicity state (—1 for neutrino) together with lepton
number conservation implies that m, = 0. It may be mentioned that if
neutrino is massless, there is no distinction between Majorana and Weyl
neutrino.

12.3.3 Fermion Masses in the Standard Model (SM) and
See-saw Mechanism

The fermion masses in the standard model are generated through a Yukawa
coupling of fermions with a Higgs scalar (see Chap. 13):

L=—gsfrofr+h.c. (12.22a)

where ¢ develops a vacuum expectation value as shown in Fig. 12.2.

T <p>,

fr fr

Fig. 12.2 Fermion mass generation.

Here fr, and ¢ are doublets while fg is a singlet under SUL(2) of the
standard model group SU(2) ® U(1), e.g.

e

fL:< v ) , fr=er. (12.22b)
L
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The SM conserves L, nor does it contain any chirally right-handed neutral
fields but only the left-handed ones vy,. If, however, one allows right-handed
neutrinos Ny which are SU(2) ® U(1) singlets, then one can write the
Yukawa interaction

Luew = Lsm — g5 fLONR + h.c. (12.22¢)
The above mechanism gives [fr = e or Ng|

LorC = —gi(d)ofLfr + hec.,

leading to the Dirac mass

my = gr{¢)o
Thus mp(ve) = ge(p)o where (¢), = 175 GeV and one thus expects

mp(ve) ~ mp(¢), say within a factor of 10 or so. This does not explain
m (1)) < m(l). This would require

g, < 10713 _ 10712

which looks unnatural if Ny is the same type of field as right-handed com-
ponents of other fermions. For the neutrino Eq. (12.22a) gives

LE = —mp [PLNR + Ngvy] (12.23)

Note that Dirac mass does not mix neutrinos and antineutrinos and as such
conserve lepton number. The most economical way to add neutrino mass
term to the SM involving only light neutrinos is that the neutrinos have
Majorana mass arising from AL = 2 non-renormalizable interaction of the
form:

G _
Lot =17 (fro)" 7Y (fro) + h.c. (12.24a)
After the electroweak symmetry breaking
G
Leg = Mufc—lyng (12.24b)
giving nothing but the neutrino mass
G 2
my, = = (8 (12.24c¢)
and
LMajorana )y — T C 1y + hec. (12.25)

We may remark here that with G ~ 1, (¢)¢ ~ 175 GeV, as in the standard
model, Eq. (12.24c) gives m, ~ 107° eV for M ~ 10*® GeV (Planck mass
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X <>, T <>,

W N. M NG v
Fig. 12.3 Majorana mass generation.

scale) while for m, ~ 0.045 eV, M ~ 10'5 GeV not much different from
the Grand Unification (GUT) mass scale.

The above mass generation can be pictured as a two-step process shown
in Fig. 12.3. This process also gives a Majorana mass to Ng

Lo (N) = My (NEC™ Ny = NpCNp)
— Mg (NG)" C7'N§ + hee. (12.26)

Such a mass term is allowed by the SM, since Ni being the electroweak
isospin singlet, all the SM principles including electroweak isospin are pre-
served. In Eq. (12.26), the second step is obtained by using the charge
conjugate of Ng

N, =-NLc™', NS =CNp (12.27)
so that NpCNp, = — (N§)" C-ING. Further
Ngyvp = (NR) c 1ty
_ % (N§)" Ctwy +vf CING]]

Thus we rewrite Eq. (12.24a) in more convenient form

LOT(N) = %mD [((NE)T C~ v + u{C—lNg) + h.c.} (12.28)

Referring to Egs. (12.25), (12.26) and (12.28) the mass matrix in 2-
component basis v, N§ needs diagonalization. Denoting by prime fields
before diagonalization, we have in 2-component basis

AT (AT =1 mr Mmpy/2 vy,
Lo = (uL (NE) )C ( s Mo )( NiE ) (12.29)



342 Neutrino

It is useful to consider various limits:
Majorana : mp — 0
Dirac : mp, Mr — 0
See-saw : my, — 0, mp < Mg

The diagonalization of the mass matrix (12.29) in the see-saw limit gives

_ 1 MD ..C

VL =V oMy B

C mp o}
NE = oapvi+ Ni (12.30)

By introducing the charge conjugate left handed component Ny, = (N, R)C
we can equivalently write the relation (12.29) in vy, Ny, basis giving

vy = v — %N’L
mp
Np = QMRV/LJFN/L

Hence we have two Majorana neutrinos vy, and Nr with masses
my, ~m¥,/AMr < mp
my ~ Mg (12.31)

Depending upon Mg, vy, could be extremely light and Ng correspondingly
heavy. To summarize, in the Dirac case, one must answer the question why

(M) pirae << M (12.32)

while in the Majorana case the see-saw mechanism sidesteps this question;
here one has
2
(M) srajorana = %’2 < my (12.33)
by requiring the existence of a large scale M, associated with some new
physics. Below we give some typical scales indicative of new physics and
the corresponding neutrino masses, which may be relevant for neutrino

oscillations (to be discussed below), dark matter and leptogenesis [Chap.
18]:

M (GeV) my, (eV) my, (eV) | m,, (eV)
Mpiane(10¥) | 10714 | 4 x 10710 10—°
Mgy (101°) 10~ 4% 1077 1073

Mgr(1012) 1077 4%x1073 1

108 101 4 x 10° 106
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12.4 Neutrino Oscillations

If neutrinos are massless, then the neutrinos v, v,, v, which enter the
weak interaction Lagrangian are also the mass eigenstates. If anyone of
them have a mass, then it may be that the mass eigenstates which we denote
by v;(i = 1,2, 3) are different from flavor eigenstates v, (w = e, p, 7). In
this case, we can get neutrino oscillations. The phenomenon of neutrino
oscillations can provide a mechanism to measure extremely small neutrino
masses. We note that two sets of states |v,) and |v;) are connected with
each other by a unitary transformation:

) = ZUwilVi> (12.34)
Z Uiw Up, . (12.35)

Now
H(k)|vi) = Eilvi) (12.36)

2k
since k > m; and we take the extreme relativistic limit. Now at time

Ei= (¥ +m)? ~

(12.37)

t, |v(t)) satisfies the Schrodinger equation:

.d
() = HIu(D).
In v; basis, H is a diagonal matrix with eigenvalues F;, Fo and E3. Thus
lvi(t)) = e """ (0)) = e vi).
Hence from Eq. (12.34), we can write

[ (t) ZUme_’E blug)

and

<Vw’ |Vu;>t = Z UwieiiEit<I/w/|I/i>
=3 Uwie UL, (12.38)

K3
Thus the probability that at time ¢, the neutrino of type w is converted to
the neutrino of type w’ is given by
2
Py = [(Var [V )]

_ZZU Unri) (UwjUsy ;) cos(E; — Ej)t.

(12.39a)
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Neglecting CP-violating phases so that U is real, it is convenient to rewrite
it as
Puw: = 6w =4 Y Uil jUnjUsrj sin® (L[ Aij) (12.39b)
§>i

where L is the distance traveled after which v,, is converted to v, and

4mE, E, eV?
Aij = =24 12.
NG om (Mev> A (12.39¢)
where we have used the relation L = ct,
2mc
Ai' = )
7B — E;
B py = L= m) 12.39d
(B = Bt = =t (12.394)
- 2E,°

The matrix U with matrix elements U,;, commonly called PMNS
(Pontecorvo-Maki-Nakagawa-Sakata), mixing matrix is given by U =
Uz3U13U12

1 0 0 Cc13 0 813€_i5 c12 S12 0
U= 0 C23 S93 0 1 0 —S12 C12 0 (1240)
0 —823 C23 _51361'6 0 C13 0 01

where 0 is known as CP-violating Dirac phase. If neutrinos are Ma-
joran particles, the mixing matrix U is multiplied by Is, where Iy =
diag (1,ei¢17ei¢2) is the diagonal matrix of the Majorana CP-violating
phases. They can be absorbed with the mass eigenvalues which can then
be considered as complex parameter. As a consequence of CPT and CP
invariance

PV /uw:PD

w w! Vw

:Puwuw/:PD

The form of transition probability (12.39b) depends on the spectrum of

Am? or A;j chosen and the explicit form of U. If Am? is chosen such

that A >> L, then the oscillator term sin® % — 0. On the other hand, if

)\ < L, one has a large number of oscillations and sin? % averages out to

1

E.
For the conversion of v, to v, (x = u or 7),

cosf sinf
U= <— sind cos@) (1241)
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Fig. 12.4 The neutrino oscillations.

and

Py, ., = sin® 20 sin {1.27&”2 L} (12.42)
Vg E,
while the survival probability is P,,_.,, = 1—PF,,_,,,. Here 0 is the vacuum
mixing angle. P, _,,, and P, _,, oscillate with L as shown in Fig. 12.4.

The amplitude of the oscillations is determined by the mixing angle; the
wavelength of the oscillations is A. Incidently the above result illustrates
the quantum mechanical phenomena of interferometry which provides a
sensitive method to probe extremely small effects.

To look for oscillations, one needs factors, which enhance tiny effects: a
coherent source (there are many, the sun, cosmic rays, reactors etc.), low
energy neutrinos, large base line (size of the sun and that of the earth),
large mixing angles and large flux.

12.4.1 Mikheyev-Smirnov- Wolfenstein Effect

First we write the Hamiltonian in v, v, basis [z = p or 7 or s (sterile v)]:

H,(k)=UHU* (12.43)

where H is diagonal in v1 — vy basis:

(B 0N (10\ 1 [—Am® 0
H‘(o E2>_k(01)+4k< 0 AmQ) (12.44)
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and
cosf sinf
= 12.4
v <—sin9 cos@) (12.45)
. m? mg—m? Am?
while E; ~ k + 5+ and Fy — By = =%~ = =7 Then
10 —Am?cos20 Am?sin 20
H, (k) = const. ( 0 1) 1 Amin2e 436 (12.46)
4k

where the first part of Eq. (12.46) is irrelevant for oscillations. Now in
traversing matter, neutrinos interact with electrons and nucleons of inter-
vening material and their forward coherent scattering induces an effective
potential energy. Such contributions of weak interaction in matter to H,
arise due to Feynman diagrams shown in Fig. 12.5.

Fig. 12.5 Feynman diagrams for neutral current (n.c.) and charged current (c.c) weak
interactions which contribute to H, for oscillations in matter, where x = e, u, 7.

The first diagram contributes equally to ve, v, and v, and as such is not
relevant v, < v, or v, oscillations. This gives the effective Hamiltonian
[see Chap. 13]:

2Gp = . _
T; [fL'y“ (IgL — Qsin® 9W) fL} [y (1 —v5)V] (12.47)
where f = e, p or n for which respectively I3;, = —%, %, —% and Q =

—1, 1, 0. The second diagram after Fierz rearrangement gives the effective
Hamiltonian:

(\;/g<¢e |€_’y“(1 _75>e|/(/)e>pe'7u(1 _'75)Ve (1248)

where 1), denotes the state of the medium. These diagrams give the poten-
tial energy

1
Voo = V2Gp(ng® — 5ni)
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1
VDIA,T = 7\/§GF§(H’$LC) (1249)

V,. =0

where n. denotes the number of electrons per unit volume and n,, that of
neutrons. Then the Hamiltonian in the matter is [k ~ F]

Hy (k) = Hy (k) + Hw

—Am? cos 26 Am? sin 20

—Am? cos 20 2G iy, Am? sin 20
= QEAmZ SIQ{ Fn 4B (1250)
4E 0

where
n = n, for v, < v, or v,

1
=n, — =n, for v, < v,

The diagonalization to v, v, basis gives:

Vel [ cosOn sinfyy V1
(l/m> o (sin@M COSQ]\/[) (VQ) (1251)

with
sin 20, = sin 29@,
ly
5Ys
cos 20 = (cos 26 — A)l— (12.52)
v
1
AE=FEy—F = — (12.53)
2ls
where
A= 2\/§GFni (12.54)
Am?2
E 2 .2 —1/2
Iy = A2 [(A — cos260)* + sin® 20 , (12.55)
E
ly = —— 12.56
14 Am?2 ( )

For constant density n, the considerations of Sec. 12.3 give the conversion
probability

L
P(ve — v,) = sin® 20, sin® [1'271] (12.57)
M
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The following are useful limits:

Am?
2F

\/iGFn — 0
— 0 0 )

(1)) n—0, Oy =0, AE=
(i) n — oo, H]\J*)(

AFE = 2v2Grn

T
Om = =, Ve =10, Uy =1

2
(#i1) M = ny.es defined by V2GE (N)res =

0 Am? sin 20
4F
HM - Am? sin 20 0

4E
Am? sin 20
2F
Ve + Vg Ve — Vg

y V1 =
/3 1

Am? cos 26
2F

AEIQS =

O =—,va=

T
4

Neutrino

(12.58)

(12.59)

Using the above limits, the plot of E versus n is shown in Fig. 12.6.

V=V,
Vi=Vyg
Ey
VeV
Orn=0<<1 ! V2
™
On = —
4
=V,

n

Fig. 12.6 Plot of neutrino energy E versus density n , showing conversion of ve, to vy

in matter.

Suppose v, is created at ng > n,.s say at the center of the sun, and
then it propagates out. If there is no level crossing (shown by dotted lines
in Fig. 12.6, then v(n = 0) ~ v, and undetectable. This conversion of v,
into v, is the cause of the depletion of observable neutrinos. Now neutrinos
of any energy will not go through the resonance. The resonance condition
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for any given neutrino energy F is:
Am?
2V2G

We may remark here that for v, — v, or v, conversion,

nne<nf)Y
N

where Y denotes the number of electrons per nucleon and is 1/2 for ordinary
matter. Then, the resonance condition (12.59) can be written as

nres(F) = cos 20

(12.60)

~ Am?cos 20 my 1
Pres = 72 NG Gr Y E
1 Am? MeV
=1.3x107 — o820 | —— | | —— 12.61
X g/cc 57 coS [(eV)2] < i > ( )
For pres > p (center of the sun) = 100 g/cc, we have
E Am?
<1.3x10°
(MeV> =20 vy
Thus, for example, for Am? > 6 x 1076 eV?2, we will not have resonance
for E < 0.4MeV and the resonance will be at least at £ = 0.8 MeV. In
this case the resonance will not effect pp neutrino for which E,,,, = 0.44
MeV but can eliminate 7B neutrinos for which F, ~ 0.86 MeV.

(12.62)

12.4.2 FEwolution of Flavor Eigenstates in Matter

The evolution of flavor eigenstates in matter is governed by the equation:

w(im) () e

where H(z) is given in Eq. (12.50). Note that the « dependence arises due
to the = dependence of the density n for varying density case. Using

(i) v () e

V() = ( cos () sinﬂ(x)), (12.65)

—sin0(x) cosf(x)
we have

() =7 () -5 (50)

with

(12.66)
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where
E1 0
-1 _ 1
U 'HU = ( 0 E2>
_Ei+E, (10 —&E ¢
—2(01>+< 0 AE (12.67)
and
_,0U 01
U p (10) 0 (z) (12.68)

where (') means differentiation with respect to x. Noting that the first part
of Eq. (12.67) is irrelevant for oscillations and using Eq. (12.52) we have

#(0)- (G0 ) (10) e

For the constant density case, 6, () = 0 and [, is independent of z, so
that Eq. (12.69) has simple solutions

v () = 1 (0) exp (24;;)

T

vo(x) = 12(0) exp (_Z4lM> (12.70)

where we have taken x = 0 as the initial point. Then Eq. (12.64) gives

T

ve(z) = cos O(z)v1(0) exp( Y ) + sin 0(x)12(0) exp (_2411\4)
= cos f(z) cos 83,1 (0) exp <z4fM>

—sin @(z) sin 83, v, (0) exp —i— (12.71)
Al py

where we have used the boundary condition v, (0) = 0 [see Eq. (12.64)].
Then the electron neutrino survival probability averaged over the detector
position L (from the solar surface) is given by

P (ve — 1) = cos” By cos? 63, + sin? By sin® 69,

1 1
=3 + 5 cos 26 cos 2609, (12.72)
where 0y = 0 is the vacuum mixing angle. In general when the density n
is a function of = one has to solve Eq. (12.69) and as a result P(v, — v.)
is given by the Parke formula:

1 1
Py — ve) = 3 + <2 - Pj> cos 26 cos 203, (12.73)
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where 69, is the initial mixing angle and P; = exp (—%7) is the Landau-
Zener factor. Here

Y= Am? sin® 20 (1 dn>1

E cos20 \ndx res

and is called the adiabaticity. In the adiabatic limit v > 1 and P; — 0 and
we recover the relation (12.72). The survival probability P (v, — v.) as a
function of vacuum oscillation length I, oc E/Am is displayed for various
mixing angles in Fig. 12.7. The transition between the regime of vacuum
and matter oscillations is determined by the ratio I, /Iy (see Egs. (12.52-
12.56). If it is greater than 1 then matter oscillations dominate. If less than
cos 26 vacuum oscillations dominate. Generally there is a smooth transition

between these two regimes.

12.5 Evidence for Neutrino Oscillations

One looks for neutrino oscillations in the following two types of experiments.

12.5.1 Dzisappearance Experiments
Reactors are source of 7, through the g-decay
n—p+e +r

and experiment looks for possible decrease in the v, flux as a function of
distance from the reactor, 7, — X [if converted to 7, say, one would see
nothing, 7, could have produced pt but does not have sufficient energy to
do so].

KamLand experiment confirms that 7, do indeed disappear when the
reactor 7.’s have traveled ~ 200km. 7, flux is only 0.658 + 0.044 + 0.047 of
what it would be if none of 7.’s were disappearing.

12.5.2 Appearance Experiments

Here one searches for a new neutrino flavor, absent initially, which can arise
from oscillations. Such experiments involve atmospheric neutrino studies,
K-2K and MINOS accelerator experiments, which are sensitive to Am3; =
m3 —m?2 and 6a3 (atmospheric sector), and solar neutrinos. Solar neutrinos
and KamLand are sensitive mainly to Am3; = m2% — m? and 615 (solar

sector). The 1 — 3 mixing, if not zero, may give subleading effect. The
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reactor CHOOZ experiment gives a bound on 63 as a function of AmZ;.
The physical effects involved are:

(i) vacuum oscillations for atmospheric neutrinos, K2K, MINOS, CHOOZ
and

(ii) MSW effect —see Fig. 12.7 — which illustrates the adiabatical conversion
of solar neutrino in the matter of the sun while at low energies solar
neutrinos undergo the averaged vacuum oscillations with small matter
effects.

Fig. 12.7 Schematic illustration of the survival probability of ve created at the solar
center. The curves are labeled by thesin? 26 values [16].

We now consider some of the experiments and their analysis.

12.5.2.1  Atmospheric neutrino anomaly

Atmospheric neutrinos are produced in decays of pions (Kaon’s) that are
produced in the interaction of cosmic rays with the atmosphere:

p+A -t A

™t — uFv, (7,)

— eFv, (Ve) Uy (V)
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These neutrinos are detected through the reactions v, +n — p= + p,
Vp+p— pt+nand ve+n — e +p, V. +p — et +n and are respectively
called p-like and e-like events. One would expect the ratio

N(vu) _ N +7)

Nw) - Noeta) 2

However this ratio was measured in several detectors and it was found that
it is substantially reduced from the value ~ 2. Indeed [MC for Monto Carlo]

~ (p/e)data
(n/e)MC
= 0.658 £ 0.016 £ 0.035

which should be one in the absence of oscillation.
The results of global analysis gives for the dominant mode of the atmo-
spheric neutrino oscillation (v, < v, oscillations)

|Am3,| = (2.391008) x 107%eV?
sin? fg3 = 0.4661) 073 (12.74)

12.5.2.2  Solar neutrinos

Electron type antineutrinos are produced by the decay of pile neutrons in
a fission reactor: n — p+e~ + ., e.g. KamLand. Electron type neutrinos
are produced from reactions in the sun called solar neutrinos. The energy
of the sun is generated in the reactions of pp and CNO cycles. Energy is
generated through nuclear burning involving the transitions of four protons
into *He :

4p — *He +2et + 20,4+ Q

where Q = 26.7 MeV is the energy release in the above transition. Thus
the generation of the energy of the sun is accompanied by the emission of
ve’s. The total flux of the neutrinos is connected to the luminosity of the
sun Lo by the relation:

Lo
_9 4 =
QY (1-25) %= 5rp
where R is the sun-earth distance, ®; is the total flux of neutrinos from the

source i, and F; is the average energy.
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The most important sources of solar neutrinos in the pp cycle, which
dominates cooler stars, particularly the sun, are the following reactions:

pp — 2Hetv, : B, < 0.42 MeV
ppe” — 2Hu, : E, = 1.442 MeV
"Bee” — "Liv, : E, ~0.86 MeV
8B — ®Bfetv, : E, <15 MeV

On the other hand, the CNO cycle dominates hot stars and the following
reactions are sources of v, ’s:

BN - BCety,

|4
B - BNety,

The first reaction in the pp cycle is the main source of solar neutrinos.
The third reaction is a source of monochromatic neutrinos. This reaction
contributes about 10% to the total flux of solar neutrinos. The fourth
reaction contributes only about 10™* to the total flux but it is the main
source of high energy solar neutrinos (up to 15 MeV).

Due to different detection thresholds, solar neutrinos from different
sources can be detected in different reactions. Thus the solar neutrinos
with energy > 0.814 MeV can be detected in 37Cl and Super-Kamiokande
and those > 0.233 MeV in "'Ga. In all experiments the observed event
rate is significantly smaller than the rate predicted by the standard solar
model:0.34 £ 0.04,0.47 4+ 0.08 and 0.53 + 0.03 of the expected rate from the
standard solar model, respectively for 37C1l, Super Kamiokande and "'Ga.

Particular compelling evidence that the solar neutrinos change flavor has
been reported by Sudbury Neutrino Observatory (SNO). SNO measures the
high energy part of the solar neutrino flux (8B neutrinos). The reactions
employed by SNO are

vd — vnp

— €epp

ve — re.

SNO measured v, + v, + v; flux, ¢. + ¢, and the v, flux, ¢.. From the
observed rates for the first two reactions, which involve respectively neutral
current and charge current, SNO finds that the ratio of two fluxes is

Pe

———— =10.340 = 0.023 12.75
ot o (12.75)
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This implies that the flux ¢,,, is not zero. Since all the neutrinos are born in
nuclear reaction that produces only electron neutrinos, it is clear that neu-
trinos change flavor. Corroborating information comes from the detection
reaction ve — ve, studied by both SNO and Super-Kamiokande. Incidently
the total neutrino flux ¢ + ¢, measured by SNO is (4.94 & 0.217033) x 10°
em™2s7! is in agreement with the Standard Solar Model (SSM) value
pssm = (5.4970:27) x 10% ecm 2571 or (4.3470:77) x 10 cm~2s~! depending
on assumption about solar heavy element abundances.

The global analysis of solar neutrino data as well as that of KamLand

give best values:
Ami, = (7.671015) x 107%eV?
sin? 12 = 0.312700.5 (12.76)
The CHOOZ experiment gives
sin? 013 < 0.046 (12.77)

One may mention two more experiments, Los Alamos liquid scintillation
detector (LSND) and MiniBOONE experiment at Fermilab which search
for , — v, oscillations, and have found 7, candidate events. The data is
consistent with the v, — ¥, oscillations in the 0.1 to 1.0eV? range for Am?
and small mixing angle. It is not possible to accommodate this mass range
in the three known neutrinos picture. If these results are further confirmed,
it would require a mechanism to generate a third mass squared difference,
involving one or more sterile neutrinos or a new type of flavor transition
beyond oscillations.

12.6 Neutrino Mass Models and Mixing Matrix and Sym-
metries

Due to lack of precision in the data, several mass models and mixing pat-
terns are possible which can be limited by some symmetry conditions. From
the observed data one sees:

(i) Angle 0,3 is suppressed while 023 and 615 are large.
2 2
(ii) Am, =AMy (3240.2) x 1072 < 1.

T = = =
[AmZ.,| ‘Amgz |
(iii) The sign of mass split Am2, determines the type of mass hierarchy. It
is customary to order the mass eigenstates such that m? < m3, then
Am3, > 0 give the normal hierarchy m% > m3 > m? while Am2, < 0
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Fig.

Neutrino

gives inverted hierarchy m% > m?2 > m2. This is depicted in Fig. 12.8.

12.8 Neutrino mass and flavor spectra for the normal (left) and inverted (right)

mass hierarchies. The distribution of flavors (colored parts of boxes) in the mass eigen-
states corresponds to the best-fit values of mixing parameters and sin 613 = 0.05 [21].

(iv)

The |Am3, | given in Eq. (12.74) implies a lower bound on the heaviest

mp, > 1/ |AmZ,| > 0.05eV (12.78)

By combining this and all other bounds discussed in Sec. 12.2.1 it is
safe to conclude that neutrino weighs less than 1 eV. Neutrino masses
may be qualitatively different from charged fermion masses. There

of neutrino mass

is an enormous gap between neutrino masses and the lightest charged
fermion (m.) in contrast to that between m, and m; which is populated.
Further

my _

L—Lﬁﬁ<2x106 (12.79)
Me

which need to be understood. This is indication of the new mass scale

signifying new physics in nature but it has not yet been pinpointed.

The leptonic mass Lagrangian in see-saw model can be written as

L=-1L (Ml)ij erj — Li (MD)ij Nrj — % 17216’71 (MR)ij Nrj + h.c.
(12.80)
where i, j are flavor indices, L = (er, v ) are lepton doublets, eg
charged lepton SU (2) singlets with non-vanishing hyper charge, Ng
are SUL (2) x U (1) singlets. It is convenient to have a basis in which
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M; and Mp are simultaneously diagonal

Ml — Ml = UEMZUL
Mp — Mg = VT MRV. (12.81)
Correspondingly L; — UpL;, e;g — Ugeir, @ = e, u, 7 is the flavor

index. Then the effective Majorana mass matrix for the light neutrino
is

M, = MpMz* M} (12.82)
where
Mp = MpV*
Ve
is the Dirac matrix in (Nl N, Ng) v, | basis.
vy

M, is diagonalized by PMNS mixing matrix given in (12.40)
M, =UTM,U (12.83)

As seen from above the data are consistent with having the atmospheric
mixing angle A3 maximal, the reactor angle 613 zero. This indicates some
underlying symmetry. These are the consequences of v, — v, permutation.
The general form of such a matrix U is

Tyy
M,=|yzw (12.84)
Yyw z

which has p — 7 (or 2 — 3 symmetry): (M, ),y = (My)35 and (M,), , =
(My), 3. Such a matrix is diagonalized by

ci2 s12 0
U— _%%_% I, (12.85)
s c 1

It must be emphasized that pu — 7 symmetry cannot be simultaneously
imposed for L. and L,. For example in the basis where the charged leptons
are diagonal, this would imply m, = m,. Deeper origin of ; — 7 symmetry
is not yet known. Ignoring Majorana phases, we have in this case four real
parameters, three masses and solar angle.



358 Neutrino

The diagonalization gives

— 2 2
T = CioMmq + S1oMa2
1

Y= Ecmsm (mg —my)

z = % (s%le + C%ng + mg)

w = % (s1ym1 + cfama — ms3) (12.86)
Furthermore

Am3, + Amiy = Am?,

and

= A2 603340004 (12.87)

|Am3,|

For normal hierarchy (m; < ma < mg), referring to Egs. (12.84), (12.86),
M, has the following texture
A2 (€€ €
M, = 7V2m31 el+e —1 (12.88)
e —1 1+4¢

where € ~ 2,/r. A salient feature of this matrix is the dominant ;1 —7 block.
For inverted mass hierarchy (my ~ mgy > mg)

10 0
M, =+/Am3,; [ 01/21/2 | + small corrections (12.89)
01/21/2
For degenerate case mi ~ mo ~ mg = my

100

M,=mo|010]|+6M (12.90)
001

oM < myg

or
100
M,=1001]|+0M (12.91)
010

in case of opposite CP-parity of vo and v3 (ms and ms are of opposite sign).
Some new ingredients are needed to describe correctly the three mixing
angles. Two patterns can be considered:
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(i)

(i)

The bimaximal mixing matrix (superscript m for maximal)
Upm, = UgsUT5, Uiz =1 (12.92)

with maximal 7 rotations in 2 — 3 and 1 — 2 spaces.

1 1
1 0 O ﬁﬁo
U, =0 L L 1 1y
b Vi v i Vs
0-75 75 0 01
11 9
Vig o,
=72 2 & (1293)
111
2 T2 /2

Then from Egs. (12.84), (12.86), + = w + z, i.e. in addition to p —
7 symmetry, there is an additional symmetry (Ml,)l’1 = (MV)Z? +
(M,,)2’3. However identification of Up,, with Upymns is not possible
owing to substantial deviation of sin? 615 from maximal value % Yet
Upm can play a dominant role, the correction might originate from
charged lepton (mass matrix) so that Upprns = U'Upp,, where U’ ~
Uiz (o) with a@ ~ O (6.) in analogy to the quark mixing, 6. is the
Cabbibo angle so that 612 + 6. = 7. The U simultaneously generates
deviations according to the pattern: dsin? 615 ~ 6, while & sin? fp3 < 62
and 0 sin? 613 < 6. It is not trivial to achieve such a pattern.

The tri-bimaximal [TB] mixing matrix: The data suggest the approxi-

mate tri-bimaximal texture of Harrison, Perkin and Scott.

Upm = UzsUs2 (012) ,

V2 1
31 \{g 1
V2 3 V2
with sin? Oo3 = % sin? 6,5 = % and sin? 013 = 0, i.e. mixing parameters
are simple numbers 0, %, % This requires = + y = z + w so that
€ Y Y
MIP=|y 2 2z+y-—z (12.95)

yr+y—=z z

There have been many attempts to understand v,, — v, symmetry and
TB. These involve auxiliary symmetries based on Ss, Ay, Z4, Zs groups
which have been reviewed in recent review articles.



360 Neutrino

12.7 Neutrino Magnetic Moment

With the definition
eh
2me

where pp is Bohr Magneton, magnetic moment interaction is

[y = K5— = K[iB, (12.96)

Hpog = 1o - B (12.97)

Here B is the solar magnetic field. The neutrino spin would then precess
in the magnetic field, some left handed (LH) neutrinos would become RH
and sterile to the detector as shown below in Fig. 12.9.

-

s

n
4 \
< y
A
Ly 10%m
A 1
s
VL b . VR

“ I

-

-

Fig. 12.9 The conversion of vy, into vg in the solar magnetic field.

The conversion probability is determined by

kg B (é) . (12.98)

Now the solar magnetic field in the convective zone of thickness L =~
2 x 10%m is B = (1 — 5) x 10® gauss, so that the conversion probability is

2 x 108m

: 107° 1- 103
A(5.79 > 1072eV/G)(1 = 5) X 1076 om0 6 % 10-T6e7/5]

~ r(0.6 — 3)10". (12.99)

This is O(1) if kK = (0.3 — 1) x 10719 giving 1, ~ (0.3 — 1) x 1071 p.
In the standard model,

m,
(Hw)sm = 3erm (12.100)

i.e.
()sm ~ 3 x 1072 up(m, /eV). (12.101)

So if g, ~ 107'%up, this would definitely indicate physics beyond the
standard model. Thus the question of dipole moment of neutrino is very
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important. What are the other limits on it? The best laboratory limit on
m,, comes from reactor experiments. In addition to the usual electroweak
scattering via W=+ and Z° bosons exchange, the process

Ve +€— Ve + €

could proceed via magnetic scattering which is large in the forward direction
and for small F,. Consistency with measured cross-section requires

o, <107 Pup. (12.102)

More stringent limits have, however, been quoted from astrophysics:
(a) Nucleosynthesis in the Early Universe

Presence of u, mediates vpe™ — vgre™ scattering. If this occurs fre-
quently in the era before the decoupling of the neutrinos, it doubles the
neutrino species and increases the expansion rate of the universe, causing
over abundance of helium. To avoid this,

py <85 x 107 up. (12.103)
(b) Stellar Cooling

Magnetic scattering of neutrinos produced in thermonuclear reactions
may occur, flipping the helicity [v;, — vg] so that the outer regions of the
star will no longer be opaque to neutrinos and cooling will proceed much
faster. Applied to helium burning star in order that

€exotic < €H.
where €4y tic denotes energy loss due to process of the above types while
en, denotes energy generation rate. This gives

p<10"Mpup. (12.104)

(¢) Limit on u, from Supernova 1987A

Neutrinos produced in the initial collapse state have high energies ~
100 MeV. These high energy neutrinos could escape the following spin-flip
magnetic scattering [, — vg]. Furthermore, a proportion can process back
vr — v, in the galactic magnetic fields and the result on earth could be a
signal of high energy (~ 100 MeV) neutrino interactions in the underground
detector with a high rate [note that ¢ ~ E? in 7, + p — et + n]. The
observance of no signal implies

iy <1072 pp.

In view of the above upper limits on pu,,, the neutrino spin precession
mechanism does not appear to be a viable solution to the solar neutrino
problem.
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12.8 Problems

(1) Show that

(a)
i) % 1— Hn 5
vLyteL = vy (1—~")e

(b)

1 1
erY'vR = 556’7” (1+7°) v = —5177" (1—7")e=—wy*er
= —vyfer

(¢) The same result follows using,

Vg = Cﬁg

c __ =T

e = Cep,

e = —efC!
v, O~ Np =~ N
R R = —VLNR.

(2) (a) Show that the Dirac mass term
_ 1 _ _
mpgy = Zmp (4 + §°°)
1 - - e e ¢ e
= 5™MD (VLR + YrYL + VHVE + YEUE)
(b) Show that the Majorana mass term:
mar [YTCT M + hee] = mar [T CT1 — PCYT]
= —ma [O°Y + Py°]
— mas [WF O™ 0y + $EC g + hic)
= —m [V{VR + iYL + h.c.]

For neutrino v : ¥ = vy, ¥r = 0. Hence for neutrino v, the
Majorana mass

—m [PRYL + h.c] = myy [V%C_ll/L + h.c.] .

(3) From equation

derive
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Chapter 13

Electroweak Unification

13.1 Introduction

The Fermi theory of g-decay cannot be the fundamental theory of weak
interactions. It leads to many difficulties; it is non-renormalizable theory.
In this theory the scattering cross section for the process v, +e~ — ve+pu~
is given by Eq. (2.155):

2
- (13.1)

T
The above scattering is purely S-wave. Now Eq. (3.177) [\ = A2 = +1/2]

gives oy = 47” ‘2F0| [the factor 2 in the denominator is average over initial

26
electron spin], where F© = %
when 79 = 0, so that |F0 |2 < # = % Thus the partial wave unitarity gives

. Now the maximum absorption occurs

8
oy =8m|[FOP < 2 (13.2)
S
so that from Eq. (13.1)
2

Gr,8m

™ S
or

Grs (13.3)

IVOR

Hence Fermi theory breaks down for s > (2v/2/Gr) = (0.9 TeV)2. There-
fore, we need a cut-off Ap signifying new physics beyond Ar where from
Eq. (13.3)

ALY < 0.9 TeV. (13.4)
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Here PWU signifies that this has been obtained from partial wave unitarity.
On the other hand, if weak interactions are mediated through vector boson
W, then instead of Eq. (13.1),

. — @ ? 32 ms
P \dr ) (s+md) m¥,
_Gr

w (1+m‘2)
w

which is finite for all energies, approaching the limiting value

2

Thus we see from Eq. (13.1) that the W-boson mass my provides the
cut-off Ap. As we shall see my =~ 80 GeV, so that my < Ap = 0.9 TeV.

The charged weak interactions like electromagnetic interaction are vec-
tor in character (V' — A) and if the mediators of these interactions are vector
bosons, then the universality of weak interactions suggests that the under-
lying theory of these interactions is a gauge theory. Since weak interactions
have short range, the vector bosons associated with them must be massive.
But the mass term is not gauge invariant. However, if the gauge symmetry
is spontaneously broken, then the gauge vector bosons acquire mass. In
this way all the desirable features of a gauge theory like universality and
renormalizability are preserved.

(13.5)

13.2 Spontaneous Symmetry Breaking and Higgs Mecha-
nism

Consider the Lagrangian for the scalar field ¢(z)
L=0"60, 01> dd—) (60) (13.6)
V(e)=w do+r (69)

The above Lagrangian is invariant under the global gauge transformation

¢(x) = e () (13.7)

Now

Q

G5 =0 i+ 60
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It is usual to choose A > 0, since for A < 0,V (¢) would have no minimun.
For y? > 0, 2 %% ¢ =0 at ¢ = 0. Then we have ordinary field theory of scalar
particles of mass p and V (¢) has a local minimum at ¢ = 0. For u? < 0,

%—Z = 0 gives

p=1¢]> = -t = @2 (13.8)

For this case V (¢) has a local minimum at |¢>| = f% , == 7% and
the vacuum is degenerate (see Fig. 13.1.). This is a classical approximation

to the vacuum expectation value of ¢ :

(016(@)|0) = /L = 2. (13.9)

22 V2
Although the Lagrangian in Eq. (13.6) is invariant under the gauge trans-
formation Eq. (13.7), but the ground state is not. This can be seen as
follows.
(0le(2)0) = (0 [UT Ud(x)U~'U| 0)
= (0|U"tUe ¢(z)UU| 0)

IfU |0) = |0), i.e. if the vacuum is invariant under the gauge transformation,
then

(0 16(x)] 0) = ¢ (0 [¢(2)] 0) .
i.e. if (0|p(2)|0) # 0, e =1, for every A, a contradiction. Hence U |0) #
|0}, i.e. the vacuum is not invariant under the gauge transformation. This
is the case for spontaneous symmetry breaking. Now ¢(z) can be written
in the form

1 .
6(w) = 75 (04 H(x) +in(x)) (13.10)

(0|H +1in|0) =0

For the case of the spontaneous breaking, £ in terms of the fields H(z)
and n(z) is given by

1 1 1
L= S0"H 9, H+ 50" 0, n— 5 (27 v?)H?

—% [4vH(H? +n*) + (H* +n*)?] — iw (13.11)
Note that %/\v4 is the vacuum energy. Thus we have a massive scalar
particle H with mass m% = 2X v? and a massless scalar particle 7, so-
called Goldstone boson. Hence the “Spontaneous symmetry breaking” of
a global symmetry implies the existence of a massless spin zero particle
(Goldstone boson). The symmetry that is spontaneously broken is still a

symmetry of the Lagrangian but not of the Hamiltonian.
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Fig. 13.1 Effective potential V(¢) for u? < 0, showing local minima.

13.2.1 Higgs Mechanism

For the local gauge transformation
U(z) = e, ¢(x) — @ g(x) (13.12)

the situation becomes quite different. Gauge invariance requires a massless
vector field B, :

1
By = Bu= 0, A (13.13)

Then we can write the gauge invariant Lagrangian by replacing d,, by the
covariant derivative in Eq. (13.6)

Opd = Dyt = (9, — igBy) ¢
L= 1B Byt (9 +i9B,) 6 (0, —i9Bu) 6 — V () (13.14)
where
B" = 9" BY — 9" B*

The unwanted zero mass mode due to spontaneous symmetry breaking can
be eliminated by means of field dependent gauge transformation:

¢() [v+ H(z)] M)/

L1
V2
1
B, (z) — Bu(z) + @ ()
DG = (9, +igB") 6 = /% (0" H + ig(v + H)BY]
1

Dy¢ = (0 —igBy) b = " 7

0,H —ig(v+ H)B,] (13.15)
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Hence we have
1 1 1
L= —3B" By + 50"H 0, H+ 5¢°(v* + 2vH + H*)B"B,
1

1
—§(>\ v H? — %H3(H + 4v) — 1)\’[}4 (13.16)

where m% = %gZUQ, m? = 2\ v? and vacuum energy = i/\v‘l. The vector

boson becomes massive, would be Goldstone field n(z) has been transformed
away, it has been eaten away by B,, to give it a longitudinal component.

13.2.2 Gauge Symmetry Breaking for Chiral U; U, Group
Consider a simple Lagrangian
L=Tiy 0, V+0"¢0,d—hV, Vg ¢
~h¥r Uy 6—p* 66— X (69)°
=Wy iv" 0, ¥y + VR iV 0, Yp+0" ¢ 0, ¢

—hWp ¢ Up—h¥g ¢ ¥y -V (9) (13.17)
where
1
U, = 5(1*’)’5)\11 (1318&)
1
Up = 5(1+’y5)\1/ (13.18b)

are left-handed and right-handed fermion fields respectively. ¢ is a complex
scalar field interacting with fermion having a coupling strength h. V() is
given by
- N2
V(g)=u>do+A (¢9) . (13.19)
Consider the gauge transformations
Uy — M@ g,
Up — ™M@ gy (13.20a)
¢—9

Wy — 2 g
Uy — e 2@ g, (13.20D)
¢ _ eQiAz(I) ¢

Obviously the Lagrangian in Eq. (13.17) is invariant under the gauge
transformations (13.20a) if A; and As are constants. The gauge group
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corresponding to gauge transformations (13.20b) is Uy (1) ® Ua(1), where
we identify Uy with Ue,,. If we require the Lagrangian in Eq. (13.17) to be
local gauge invariant, then we must introduce two massless gauge fields A,,
and B,,, which transform as

1

Ay — Ay — =0, Ay (13.21a)
&
1

By, — B, + =0, As. (13.21b)
9

Then we can write the gauge invariant Lagrangian by replacing d,, by the
covariant derivatives:

0, ¥y — D,V = (0, +1ieA, —igB,) ¥y,
Oy Yr — D, Vg = (0, +ieA, +igB,) Vg,
Oy ¢ — D¢ = (0, —2igB,) ¢
in Eq. (13.6). Hence the gauge invariant Lagrangian is given by
1 1

L= A" Ay — B B, + Uy in" (0, +ied, —igB,) ¥y
+U g iy (O, + ieA, +igB,) Vg — h (VoV g + VR )
+ (0" + 2igB*) ¢ (0, — 2igB,) ¢ — V (). (13.22)

U(A3) |0y # |0) , and the gauge symmetry is spontaneously broken, i.e.
Ui x Uy — Uy, U; is unbroken.

For spontaneous symmetry breaking we write
v  H+iny v

G RNC RN
(0]¢]0) = % (13.23)

where H and 7 are hermitian fields with zero expectation values. The
Lagrangian (13.17), in terms of the fields H and # has the form

1 _ h _
L=—JA" Ay + 0 (Maﬂ = \/%> U — el TA,
_ ho- , .
—gUy VB, — \ﬁq/ (H +iysn) ¥+ L —V(p) (13.24)
where
1 1 1
Lp = _ZBW B,, + 5(8#H +29B,m)* + 5(8#7) —2gB,(v+ H))?

(13.25)

¥ 1 2 2 2 2 Ao 222 A 9
V(¢):§(2)\v )H? + NWH(H? 417 )+Z(H +n°) -7V (13.26)
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If U, is a global gauge group, then as already seen in previous section we
have the Goldstone-Nambu theorem. A spontaneous breakdown of global
symmetry leads to a massless scalar particle. But when Us is a local gauge
symmetry, then due to the presence of the term 2gvB*0,1n in Lp a straight-
forward interpretation of (13.24) is not possible. But we can eliminate this
term by a field dependent gauge transformation. Actually what happens
is that 0, n combines with B,, (which has only transverse components) to
form a single massive spin 1 field, d, 17 now becomes longitudinal mode
of spin 1 field. This can explicitly be seen as follows: Choose the gauge
function As(z) to be % Then under the gauge transformations

in(z) —in(z) ~

U, =e 20 Uy , WUp=e 2o Up

N . 1
AH = A'u 5 B,“' = Bli —+ %8;177 (I’)

in(x)

o (z) = [v+ H (z)]e v, (13.27)

V2

the Lagrangian (13.24) becomes (removing ):

1 1. 1
L=~ A" Ay — 1B" By, + 5 (49°0%) B" B,

1 2
_ h _ _
4T (m“aﬂ _ \/g) U — eTy"UA, — gOrylysUB,

h - 1 s 15,
——UVUH+ - H)” — = (2 H

1
+2¢°B"B,, (H? + 2vH) — vAH® — ZAH‘l. (13.28)

It is clear from Eq. (13.28), that the would be Goldstone boson field
n(x) has been transformed away; it has been eaten away by the field B, to
give a longitudinal component. This mechanism is called the Higgs-Kibble
mechanism. The massive scalar particle H is called the Higgs particle.
To summarize: (i) No massless scalar boson appears. (ii) A, which is
associated with unbroken gauge symmetry (electric charge conservation)
has zero mass. (iii) The vector boson B, has acquired a mass mp =

2gv. (iv) The fermion field has acquired a mass m; = 22 (v) Both the

V2
masses of B,, and ¥ arise due to the same symmetry breaking mechanism.
(vi) A massive scalar particle with mass v2Av? appears. This particle is
called Higgs particle. Presence of Higgs scalar is an essential feature of

spontaneously broken gauge symmetry.
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13.3 Renormalizability

We give here few remarks about the renormalizability of a gauge theory.
Now the fields A, and B,, cannot be determined uniquely by field equations.
In order to quantize these fields, one has to fix a gauge that is to say break
gauge invariance. For the photon field A4, a term added to the Lagrangian
for this purpose is —%5*1 (8“/1#)2 . Photon propagator is then given by

. kok,1 1
? _gHV+(1_€> 22 ﬁ
For the field B,,, the gauge fixing term is
Loy o 9
~587 (9" By — Empip)” (13.29)

It is so chosen that it cancels awkward looking mixing term B*0J,n in the
Lagrangian (13.25). £ is a parameter which determines the gauge.
The quadratic part of the Lagrangian (13.25) is then given by

Ly = _%BH[_gwaQ * (1 - §> 919" — (29v)%9"1B,

1 1 1
b3 O — Sy H? 4 3 (0n)* — o) (13.30)

where mp = 2gv,m3’ = £(2gv)? = &m%. For this Lagrangian, we have
Feynman rules:

(i) gauge boson propagator

. k. k, 1
’[‘gﬂ”+(1‘f>szgmﬂ P

which is the inverse of

i - ) - )|

(ii) n (Goldstone) boson propagator
o
k2 — & m%

(iii) Higgs boson propagator

2 _ 2
k my
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These forms of propagators are expected to give a renormalizable theory
for any finite value of ¢ since they have a good high k2 behavior, falling like
k%. This is called R-gauge. The fields B,, and 7 separately have no physical
significance. In particular the poles at k? = ¢m% are unphysical and are
canceled out in any S-matrix element, which is also independent of £. To
see this let us consider fermion-fermion scattering through B —meson, n —
meson as represented by the Feynman diagrams, Fig. 13.2: The scattering
(T') matrix, using the Lagrangian (13.24), for the relevant vertices for the
first diagram is given by

. o —i
Tl = (@Q)ZU(M)’W Ysu(p2)

k? —m?%
kuky PN
X g — (1 =€) P —mZ, u(p1)y”ysu(pr) (13.31)
B

The expression in square brackets can be written as

Fig. 13.2 Fermion-fermion scattering through B-meson, n-meson.

ik, k2 — m3,
v— — + k(5= 13.32

Further by using the Dirac Equations
(6 —m)u(p) =0, u(p)(p—m)=0,

we can write

u(p2) kysulp) = 2mpu(ps)ysu(p2)
u(p1) kysu(pr) = —2mypu(py)vsu(p),
where
o
G

, mp = 2gv

and

i
4g2m?¢ = sz?
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Thus the second term in Eq. (13.32) gives

h2 i
— S U)W 15e(1) (13.33)
B

which precisely cancels the contribution of the Goldstone boson n. Thus
the fermion-fermion amplitude is independent of £ and no physical pole
at k% = ¢ém?% appears. The result obtained is one which we would have
found by neglecting the Goldstone boson and computing the gauge boson

exchange by using the uniterilized propagator kz—_an (9 — k;;’; ). The ten-
B B

sor structure represents a gauge boson polarization sum Y e#(k)e* (k) =

Juv — ky‘;’;”) for vector boson on the mass shell having 3 polarization

directions. TB‘huS in the cancellation of the {-dependent part of the gauge
propagator, we also find that the Goldstone diagram cancels the contri-
bution of the unphysical time like polarization state of the gauge boson,
leaving over the sum required to three physical polarizations.

13.4 Electroweak Unification

As we have discussed in Chap. 10, the leptonic charged current of weak
interactions has the form vy, (1 —7s5)e = 20..y"er. The corresponding
hadronic charged weak current can be written as a7y, (1 —vs) d’ = 2ar7y,d} .
Here d’ means that it is not mass eigenstate. This suggests that we consider

(0), ()
e),’ dj,
as left handed doublets in a weak isospin space. The weak currents are
then associated with weak isospin raising and lowering operators

S =y, U0 =0 ey, (13.34)
where U, is any of the above doublets, 7, = (71 +i72) and 7_ = (11 — iT2).

Let the charges associated with these currents be Q4 and @Q_ . These
charges generate an SU[(2) algebra

[Q+, Q-] =2Qs. (13.35)

The current associated with the charge Q3 is given by
-1
g = Yi5msm e (13.36)
The gauge transformation corresponding to the group SUL(2) is

Uy (2) — U (2) = exp (z% A (x)) Uy (z). (13.37)
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Then the Lagrangian
- 1
L= \I/LZ"}/“D,U\I’L — EWHV . VVW,7 (1338)
where

1
D,=0,+ igET W, =0, +igW,,

1
(W# =7 Wu)
2
W, =0,W, -0, W, —gW, xW, (13.39a)

1
Wy = 57’ -W,, =D,W, -D,W,

=0, W, —0,Wu+ig[W,,W,], (13.39b)
is invariant under the gauge transformations [see Chap. 7]:
Uy (z) = U ¥y (z)
W, — UW,U" - éUauUT (13.40a)

where U is given in Eq. (13.37). For A infinitesimal, we get

U, () — (1 + z% -A(x)) Uy (x)

1
Wi = Wy = A x W, = -0, (13.40D)

The gauge group SUL(2) leads to a neutral current Jﬁ which is neither
observed experimentally nor is identical with the electromagnetic current.
It is possible to unify weak and electromagnetic forces into a single gauge
force, if we extend the gauge group to SUL(2) x Uy(1). For this group
we have two gauge couplings g and ¢’ associated with SUL(2) and Uy (1)
respectively. The weak hypercharge Y is defined by the relation

1 1 1
=t -Y = - -Y.
Q 3+2 2T3+2

The gauge vector bosons W=, W? belong to the adjoint representation of
SUL(2) and vector boson B, is associated with Uy (1).

Fermions belong to either fundamental representation [doublet] or trivial
representation [singlet]. In view of the structure of charged weak currents
given in Eq. (13.34), it is natural to put left-handed fermions into a doublet
while the right-handed fermions (except neutrinos, which exist only in left-
handed chiral state) are put in the singlet representation of SUL(2). Thus
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in the Standard Model, the fermions for each generation belong to the
following representations of the group SUq(3) ® SUL(2) ® Uy (1)

Uy o <ZZ> 1 3, 2,
i/

W=

N, UiR 37 17 %
"dig 3,1, -2 (13.41)
ein 1,1, =2

where 7 is the generation index and hypercharges Y are fixed by @ = I3+ %Y.
The group SU¢(3) is essential as the color plays a crucial role in the cancel-
lation of gauge anomalies (see Sec. 13.12) needed for the renormalizability
of the model. Except for this, it does not play any other rule in electroweak
interaction and as such we now confine to the electroweak unification group
SUL(2) ® Uy (1). The three generations are

Quarks : Leptons
wct\ [(vevy,vr
(ner). (%) s

The weak eigenstates d’, s’, b’ are not identical with mass eigenstates d, s, b
but are related by a unitary matrix V; and similarly for u, ¢, t.

d d

S/ = Vd

v c

u’ U

d =Vl c (13.43)

t t

The CK M matrix is
Vud Vus Vub
Vokm =ViVa=V = | Vog Vis Vi (13.44)

Via Vis Vi

We can do the same thing for the leptons as was discussed in Chap. 12.
However, as neutrino masses are negligible compared to the corresponding
charged lepton masses, we would not consider it further in what follows.
We can select a basis in which V,, is diagonal. Then there is no need to put
primes on u, c¢,t and Vg is essentially Vy.
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In order to break the gauge symmetry spontaneously so that weak vector
bosons acquire their masses and fermions also get masses, we need Higgs
doublet ¢ :

¢+
¢=<¢0), Y =1. (13.45)

The Lagrangian invariant under local gauge transformations
i

\IIL—>exp(2

oA+ ;YLAO> v,

g — exp (;YRA0> g (13.46)
is given by
L= \T/Li’y“ (8# + %gT . W# + ;g'YLB#> Uy + @Rai’}/u <8,u + ;g'YRaBM) U Rra
+ (6#¢ - %957 -WH — ;g/¢B#> (auﬁb + %QT : Wuﬁb + ;g/BNgﬁ)

—hy [$L¢V Rt + VR1¢WL] — hy [‘I’Léf)‘I’Rz + \TIRZQ;\IIL}

W W, = BB =V (0) (13.47)
where W, is given in Eq. (13.39b) and
By = 0,B, — 3,8, (13.48)
V() = 1260 + A (60)” (13.49)
¢ =it = (_qf_> (13.50)

a = 1,2 with U1 = eg or dg,¥Yrs = ugr. Under infinitesimal gauge
transformation, vector fields W, transform as given in Eq. (13.40a), but
B,, transforms as

1
By = By = —0uo. (13.51)

In order to break the gauge symmetry spontaneously, assume that

(9o = <O> ; (13.52)
V2

where v = /—p2/\, (¢), = (0]|4|0). In this way, not only SUL(2) is
broken but Uy (1) is also broken, but it leaves the group U(1) corresponding
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to electric charge unbroken viz SU,(2) x Uy (1) is broken to Ug(1). We can

now write Eq. (13.45) as
ot
=\ @itioa) | v | (13.53)
V2 V2

where ¢ and hermitian fields ¢; and ¢, have zero vacuum expectation
values. We can select a gauge such that ¢T and ¢ disappear from the
theory. Instead au(bi and J,,¢2 provide longitudinal components to w*
and one of neutral vector bosons respectively. Thus out of the four gauge
vector bosons, three become massive and the remaining one remains mass-
less. This massless vector boson is the photon corresponding to unbroken
Ug(1) symmetry. All this amounts to replacing ¢ given in Eq. (13.53) by

(pr =H)
o= <HO+U> . (13.54)
V2

With Eq. (13.54), the following term of the Lagrangian (13.47)
Mo — %gq—ﬁ W, — ;g'd_)B“] [5;@ + %gT W+ %Q’Bm
gives

1 2
LV = SOMHO,H + 5 (H? + 20H +02) (W W + W5 Wy, )

2 /
+5 (H? + 20H +v°) B'B,, — L (H? + 20H + v*) W B,
(13.55)
, W, V2W,F :
where Wi = (Wy, T iWou)/V2, - W, = (ﬂ;ﬁ; _WB‘; > . From this
equation, it is clear that vector bosons VV#i have acquired a mass:
1
my, = 19202. (13.56a)
For the neutral vector bosons, the mass terms in Eq. (13.55) give the matrix
1/ ¢®? —gg'v?
M? =~ . 13.56b
(0 (13.560)

Since det (M?) = 0, therefore one of the eigenvalues of M? is zero. The
mass matrix (13.56b) can be diagonalize by defining the physical fields A,,,

A%

A, = cosOw B, +sin Oy Ws,,,
Z,, = —sinfw B,, + cos y Ws,,. (13.57)
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Then we get
m? =0, A, : photon (13.58)
1
m = : (6 + %) v?
145, 1
= - _— 13.59
17 <cos2 GW) ( )
where
g/
tanfy = = (13.60)
g
and the parameter
2
p=—g W . (13.61)

m3, cos? Oy h
The fermion masses are given by
v
V2
Note that each fermion mass has a new coupling, indicating that fermion
masses need a more fundamental theory. Further V(¢) goes into
2 (H +v H+wv T
V2 V2

m; = hi (13.62)

)+ A(
giving the Higgs mass
my = p? + 3\ =22 v = /—p2 /A (13.63)

From Eq. (13.47), using Eqgs. (13.54), (13.57), (13.58) and (13.62), and
Q = T° + 1Y, the Lagrangian for the fermions can be written as:
2

Lp =10, (iv“ 0, —m; — L H) v,
2mW

9

2v/2

—e Uy Y1 Qi Wi Ay, —

Ui A (L—ns) (TYWF + T W) 0,

Ui v* (9vi —7°94i) Vi 2y,
(13.64)

V; U; ’
where U, = [ "] and | | ], e = ¢ cosbyw = g sinfy = —L—,
' < li ) <di) g v g W Vg3+g’?
d; =V,;; d; (V : CKM matrix), m; is the mass of ith fermion and Q; is its
charge. gy; and ga; are given by

gvi = (T} —2Qi sin®Ow) ,ga; = T} (13.65a)

_9
2 cos Oy

1 1
=gt TP=or (13.65D)
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We note that the interaction part of the Lagrangian can be written as

g poa I (e — g7
Lint = —gsinfy JE, A, 2v/2 (J W, +h. C') cos@WJ Zn
2my,
where
Jh =0 4" Q; Y,
_ (—ey“e-ﬁ-gu ’YILU—%CZ’Y“ d) 4+ (13.66b)
T = S Wt (1) T
=@ (1=7")e+uy" (1—~")d)+- (13.66¢)
1 _
Jo = 9 Ui (gvi v — 94 7" ") ¥
_ %J?’“ ~sin2 Oy JE
_ 1 = 5\ T3 52 ) TP
=3 [\11 (w (1=9°) 5 —2sin®Ow Qs W”) ‘If}
:i[ﬁev“ (1= )ve—er"(1-17")e
F (L) u—d g (1 7)d

2 1-
— 4sin? Oy (—e e+ gﬂ A — gd ~H d)] +--- (13.66d)
where ellipses in Eqgs. (13.66) indicate repetition for the second and third

generations.
For low momentum transfer phenomena, ¢*> < m#,, m%, we can write

2

g GF
== 13.67
st = s (13.67)

\/?62 T
m2, = = 13.68
w 8GF sin2 ew \/iGF sin2 0W ( )
my = 37_'32& > 37.3 GeV (13.69)
sin” Oy,

p=1 my =W TAECV 6 Gev. (13.70)

cosOw  sin® Oy
Note that p = 1 is a consequence of the fact that Higgs scalar ¢ is an
SUL(2) doublet. The effective neutral current coupling [see Eq. (13.66a)]

1S

2 2
g g Gr

= =8p——. 13.71

m? cos? Oy pm%V P V2 ( )
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Finally, we note that for the Higgs vacuum expectation value v , using Egs.
(13.56a) and (13.71), we get

2 1
V2GE

This gives the electroweak unification scale, i.e. the energy scale after which

~ (246 GeV)?. (13.72)

the weak interactions become as strong as electromagnetic interaction.
The fermion masses are given by

2
2 2V o 1
7 t 9 12\/§GF
h? = 2v2 Gp m?, (13.73)

i.e. the Yukawa couplings are very weak except for the top quark.
We conclude this section with the following remarks:

(i) A definite prediction of electroweak unification is the existence of weak
neutral current J, HZ with the same effective coupling as charged currents
J f . This current has been found experimentally.
(ii) The existence of vector bosons W¥, Z, with definite masses given in
Egs. (13.69) and (13.70).
(iii) The theory has one free parameter sin® fyy .

At low energies ¢> < m3,, one test of the model is to determine sin? Oy
from different classes of experiments. If sin? 8y comes out to be the same in
all these experiments, it will support the model. The true test of the model
is the existence of vector bosons. This requires much higher energies. We
first discuss low energy consequences of the electroweak unification. The
vector bosons W* and Z have been found experimentally with masses
predicted by the model.

13.4.1 Experimental Consequences of the Electroweak Uni-
fication

Low energy phenomena ¢? < mj, : From the Lagrangian (13.66a), for low
momentum transfer phenomena [¢? < m¥,, m%] we can write the effective
Lagrangians for charged and neutral currents:

LG = i;/gﬁ” g (13.74)
e — ,Grg gz gz 13.75
eff — P w ( . )

V2
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It is convenient to write J HZ :

TP =J7 W)+ J7 (e)+ J7 (h), (13.76)

where
J7(v) = i D70 (1 = 5) V] (13.77)
2J7 () =[er(e) ey (1 —7s)e+er (e) &y, (1+75) €] (13.78)

2J7 (h) = Z ler (1) Gy (1 —95) ¢ +er (1) G v (1 +5) @) (13.79)
i=u,d,S,

Table 13.1
e u d
€L 7%+sin29W %7%Sin29w f%+%sin20w
ER sin? Oy —% sin? Oy % sin? Oy
_T T I
9gA 2 2 2
%7%Sin29w f%+§sin20w
gv | —3+2sin?0y | Cru =294 g Cia =295 g
Cou =2¢% g% | Coa=2g% g%

Since the net strangeness of the proton is zero, we will assume that
strange quark s and heavy flavor quarks ¢, b etc. make negligible contribu-
tion to JZ(h) for proton and neutron targets. Then we can write effective
Lagrangians for various neutral current processes as follows:

GF_ A
LV =p—v 4" (1+ v(2J7 (e 13.80
Gr
Luh = -2 5
’)ﬁ
= pCE 7 Z [Criev" v eqivugi + Coier" eqivuysqi] - (13.82)

V(1= 5)v (27 (h)) (13.81)

From Eqs. (13.65a), we can determine the parameters €y, (e), er(e), €L (i),
er(i), C1i, and Cs;(e), (i = u,d). They are given in Table 13.1.

13.4.2 Need for Radiative Corrections

Before we discuss the experiments in support of the standard model, let
us summarize here the three parameters (not counting Higgs meson mass
mpy and the fermion masses) which the minimal model (with p = 1) has:
(a) fine structure constant o = 1/137.035999679(94) determined from the
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Josephson effect (b) the Fermi coupling constant G = 1.166367(5) x 10~°
GeV~? determined from the muon life-time {including lepton mass and
O(a) radiative corrections [cf. Eq. (10.40c) ]} and (c) sin? Oy, determined
from neutral current processes or the W and Z masses. Now a best fit to
the neutral current neutrino reactions data gives

sin? Oy = 0.2255 & 0.0021 (13.83)

This implies that the theory without radiative corrections gives through
the relations [cf. Egs. (13.68) and (13.70)]

A2
m%,V< ra )/sin20W 0

V2GF sin? Oy
m = i (13.84a)
27 cos2 Oy '
where
1/2
Ag = ( Ta ) = 37.2802 GeV (13.85)
V2GF ’
my = 7842 GeV,  my = 89.14 GeV. (13.86)

These values are to be compared with the experimental ones my, = 80.39+
0.06 GeV and mz = 91.1867 £ 0.002 GeV. This shows a need for radiative
corrections. First we note that the two coupling constants g and ¢’ which
determine the strength of weak interactions are related to e through e =
g9'/(g*+g"?). Since most measurements are made at Z peak, therefore most
convenient mass scale for these couplings is at m